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Editorial on the Research Topic

Coastal Flooding: Modeling, Monitoring, and Protection Systems

Coastal flooding has received significant attention in recent years due to future sea-level rise (SLR)
projections and intensification of precipitation, which will exacerbate frequent flooding, coastal
erosion, and eventually create permanently inundated low-elevation land. Coastal governments will
be forced to implement measures to manage risk on the population and infrastructure and build
protection systems to mitigate or adapt to the negative impacts of flooding. Research in this area
is required to establish holistic frameworks for timely and accurate flooding forecast and design of
protection systems.

In this Research Topic, a combination of Original Research Articles on monitoring and
modeling of coastal flooding, design of protection systems, and economic perspective of coastal
damage provides up-to-date information on diverse aspects of the risk and impact of coastal
flooding and how it can be predicted and mitigated. The next paragraphs describe each of the
published articles within the themes covered by the special issue.

The improvement of storm surge forecasting is necessary to implement strategies to minimize
the damage of coastal flooding. The works by Callahan and Leathers and Callahan et al. study
the impact of hurricanes in the Mid-Atlantic along one of the most developed and commercially
active regions in the USA, the Delaware and Chesapeake Bays. The analysis of the spatial variability
of the detrended and normalized skew surge combined with regional storm rankings and storm
tracks allow to identify the surge impact of past TC on nearby coastal communities and set the
approach to predict future risk damage (Callahan and Leathers). They evaluate two traditional
approaches [namely, Block Maxima fit to General Extreme Value distribution (BM/GEV) and
Points-Over-Threshold fit to Generalized Pareto distribution (POT/GP)] to determine the return
sea levels for extreme skew surge (Callahan et al.). They conclude that POT/GP is more
consistent with the data and has a narrower uncertainty band. The increased reliability of
projections of extreme water levels using POT/GP will help plan more effective mitigation and
adaptation strategies.

In addition to being reasonably accurate, storm surge forecasts must also be timely and be
made available to users well before the onset of the event. The work by Li et al. focuses on the
improved efficiency of the Coastal and Estuarine Storm Tide (CEST) model developed to simulate
the storm surge due to the combined action of (anti)cylonic winds and astronomical tides. The
new model version includes an upgraded advection algorithm and a simpler parallelization. As a
proof-of-concept, they consider the impact of hurricane Irma in South Florida that lasted 4 days
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and the improved CEST model was able to run it in just 22
min. Coastal flooding is not only attributed to storm surge, the
work by Loveland et al. analyzes the combination of storm surge
and river discharge as a specific case of compound flooding
related to hurricane. The authors present a coupled modeling
approach to simulate and forecast compound flooding using
the Advanced Circulation (ADCIRC) model as the primary
model to simulate the compounding effects of fluvial flooding
and storm surge at regional scale. They stress the need to
account for river discharge to accurately predict flood patterns,
water surface elevations, and duration of drainage. However, in
order to capture the complexity of compound flooding at the
large regional or even global scale, it is envisaged to develop
new holistic and numerically integrated models for compound
flooding description.

Damage of flooding upon storm surge can go beyond the
coast and affect inland regions. In their work, Kim et al.
propose a probabilistic scenario generation approach to forecast
coastal and inland flooding coupling coastal and fluvial models
and incorporating uncertainty of hurricane landfall locations
and inland precipitation intensity. In the simulation scenarios,
the authors consider the case of Hurricane Harvey that
devastated coastal areas of Texas and Louisiana (USA) in August
2017. A probabilistic scenario generation approach provides
better tools to decision makers for mitigation strategies and
preparedness decisions.

Flood-prone inland areas are also subject to the consequence
of erroneous modifications of natural drainage systems.
The work by Saad and Habib investigates the effect of
large-scale channel modifications via riverine dredging.
The article analyzes the case of Vermilion River in south
Louisiana (USA) and shows that dredging can increase
the hydraulic conveyance of the river system but also the
runoff volumes delivered by the urbanized tributaries which
can outweigh the larger in-channel storage. Moreover, as
the work by Bilskie et al. shows, antecedent rainfall has
an important effect on the flooding of south Louisiana.
The results show that antecedent and TC-driven rainfall
increase simulated peak water levels within the watershed.
The work highlights the need to extend both the spatial and
temporal boundaries of flooding prediction in coastal regions.
This is particularly important in those areas with complex
hydrological features. There it is recommended to undertake
a watershed-centered approach instead of a riverine-centered
approach combined with earlier storm events to plan flood
mitigation strategies.

Damage to coastal areas due to flooding can be
significant but it could also be challenging to assess,
especially in environmentally vulnerable regions. The paper
by Rifai et al. presents a holistic approach for damage
assessment caused by severe hydrologic events. The
approach combines a water quality model, Environmental
Fluid Dynamic Code-Storm Surge model (EFDC-SS),
and Facility Economic Damage and Environmental
Release Planning (FEDERAP). The framework allows to
determine the impact of spills from waste storage and
contaminated sites at regional scale and estimate the cost
of remediation.

Finally, the works by Miura et al. and Barbier focus on
the optimization of protection systems. Miura et al. report
a methodology that aims at minimizing the overall expected
losses within a prescribed budget. They consider human-made
protective systems such as seawalls, barriers, artificial dunes,
raising individual buildings, sealing parts of the infrastructure,
strategic retreat, and insurance that could be activated over
time and built throughout the sensitive area. The effectiveness
of each solution and their spatio-temporal combination was
evaluated under different SLR scenarios using the storm surge
computational model GeoClawflood. The authors apply a proof-
of-concept of the method to the urban area of Lower Manhattan
in New York City (NY). Barbier analyzes the economics of
protective systems based on natural estuarine and coastal
ecosystems (ECE) such as marsh, mangroves, coral reefs,
and sea grass meadow. He observes that ECEs do not only
provide flood mitigation but also have environmental benefits
related to long-term coastal restoration and protection, which
should considered. Alone, or in combination with human-
made structures, ECEs can significantly reduce the vulnerability
of the coastal areas while providing critical habitats of the
land-sea interface.

With this Research Topic we provide a platform for scientists
and engineers that are interested in modeling and monitoring
coastal flooding, the design of protection systems, and the human
and environmental impact of coastal flooding. The excellent
contributions to this Research Topic are a demonstration of
a highly active research community in coastal science and
engineering focused on assessment of coastal flooding impacts.
Together they provide a detailed overview of the state-of-the-art
of the subject and future research needs.
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Estuarine and Coastal Ecosystems
as Defense Against Flood Damages:
An Economic Perspective
Edward B. Barbier*

Department of Economics, Colorado State University, Fort Collins, CO, United States

The rapid loss of estuarine and coastal ecosystems (ECEs) in recent years has raised

concerns over their role in protecting coastal communities from storms that damage

property, cause deaths, and inflict injuries. This paper reviews valuation studies of the

protective service of ECEs in terms of reducing flood damages. Although the number

of studies have grown significantly, there is still a need for a greater range of studies in

more locations and for a wider variety of ecosystems. This review also examines, from an

economic perspective, the issues and challenges surrounding estimating the protective

benefits of ECEs, as exemplified by some of the recent valuation studies. Recent

developments in valuation methods are summarized and critically reviewed. Important

challenges remain in valuing coastal ecosystems as a defense against flood damages.

The review discusses two of them, such as how protective benefits are subject to spatial

variability and dependent on connectivity across “seascapes.” These challenges, along

with analyzing the multiple benefits of estuarine and coastal ecosystems, are important

areas of future research priority.

Keywords: estuarine and coastal ecosystems, marsh, mangroves, storm protection service, economic valuation,

wave attenuation

INTRODUCTION

The rapid loss of estuarine and coastal ecosystems (ECEs) globally has focused attention on their
role in protecting coastal communities from storms that damage property and cause deaths and
injury. It is now well-documented that many of these habitats provide such protection (Koch et al.,
2009; Loder et al., 2009; Wamsley et al., 2010; Gedan et al., 2011; Paul et al., 2012; Armitage et al.,
2019). These include specific studies of marshes (Shepard et al., 2011; Rupprecht et al., 2017),
mangroves (Cochard et al., 2008; Zhang et al., 2012; Dasgupta et al., 2019; Montgomery et al., 2019),
near-shore coral reefs (Ferrario et al., 2014; Reguero et al., 2018) and seagrass beds (Paul et al., 2012;
Christianen et al., 2013; Ondiviela et al., 2014). This protective value of ECEs is increasingly used
to justify coastal conservation and restoration efforts worldwide (Temmerman et al., 2012; Arkema
et al., 2013; Duarte et al., 2013; Barbier, 2014; Elliott et al., 2016; Narayan et al., 2016; Ruckelshaus
et al., 2016; Hochard et al., 2019; Menéndez et al., 2020; Newton et al., 2020).

Given that ECE conservation and restoration are increasingly advocated for protecting coastal
communities from flooding hazards that damage property and cause deaths and injury, there
is growing interest in quantifying and valuing such benefits. But despite the importance of this
coastal protection service, there are still not many economic studies that have estimated a value
for it and geographic coverage is still thin. In addition, questions have been raised about some
of the methods used, and whether they are sufficiently robust to serve as a guide for policy
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Barbier Valuing Coastal Protection

(Barbier, 2007; Kousky, 2010; Arnold, 2013). However, more
reliable economic estimates of the protective value of mangrove
and marsh systems are emerging. The purpose of this review
is to examine, from an economic perspective, the issues and
challenges surrounding measuring the protective benefits from
ecosystem restoration, as exemplified by some of the recent
valuation studies.

The paper begins with an overview of selective economic
studies globally that have valued the protection benefit provided
by ECEs. The paper then briefly summarizes recent developments
in valuation methods that have been employed to estimate
coastal protection. It is also important to recognize that ECEs
provide other valuable benefits in addition to protection service.
Nevertheless, important challenges remain in valuing coastal
ecosystems as a defense against flood damages. The paper
identifies two of them, such as how protective benefits are
subject to spatial variability and dependent on connectivity
across “seascapes.” The final section of this paper concludes by
discussing how further research can address these challenges in
valuing the protective service of estuarine and coastal ecosystems.

VALUATION STUDIES AND METHODS

Review of Valuation Studies
Table 1 lists 41 studies, selected from peer-reviewed academic
journals, which value the storm protection service of estuarine
and coastal ecosystems (ECEs). This value is estimated for the
ability of various ECEs to reduce the flood damage to property
and other economic assets, and in some instances the risk of loss
of life or injury, from coastal storms. The studies are grouped by
type of ECE and geographical location.

The key ecological function that allows ECEs to provide a
protection service is their ability to attenuate, or reduce the
height, of the storm surges andwaves as they approach shorelines,
or to buffer winds (see Table 1). Both wave attenuation and wind
buffering are directly related to the vegetation contained in some
ECEs, such as marsh, seagrass beds and mangroves. However,
the effects may vary for types and characteristics of hazardous
events, the presence of emergent vs. submerged vegetation,
and tidal and other seasonal conditions (Koch et al., 2009).
For example, studies of wave attenuation by marsh wetlands
consistently demonstrate significant wave height reductions per
unit distance across marsh vegetation, although most of this
wave attenuation effect was measured only for small to moderate
waves (Shepard et al., 2011). Montgomery et al. (2019) note that
numerous studies have found that mangroves provide effective
coastal protection from storm waves, but their research in New
Zealand and Florida show that mangroves can also reduce storm
surge, which is the temporary increase in water level resulting
from the combination of high winds and low atmospheric
pressure during a weather event. Their study also shows that the
effectiveness of mangroves in reducing surges depends not only
on storm characteristics but also the density of the vegetation
and the extent and depth of the mangroves along shorelines.
Seagrass meadows on their own may provide only limited coastal
protection in shallow waters and low wave energy environments,
with the most effective protection provided by large, long-living

and slow-growing seagrass species (Ondiviela et al., 2014). In
contrast, the coastal protection from near-shore coral reefs can
be significant, as it is their reticulated structure that provides a
natural barrier to storm waves (Koch et al., 2009; Ferrario et al.,
2014; Reguero et al., 2018).

Bathymetric effects, such as from sediment trapping and
sedimentation that cause shorelines to become higher, are
additionally important factors for the wave attenuation function
of marshes (Koch et al., 2009; Loder et al., 2009; Wamsley et al.,
2010; Rupprecht et al., 2017; Armitage et al., 2019). Sea-to-
land shoreline elevation also contributes to the wave attenuation
function provided by coastal landscapes populated by mangroves
(Alongi, 2008; Cochard, 2011; Laso-Bayas et al., 2011; Armitage
et al., 2019). For example, Alongi (2008) suggests that the extent
to which mangroves offer protection against catastrophic natural
disasters, such as tsunamis, may depend on a range of structural
features and conditions within the mangrove ecosystem, such as
width of forest, slope of forest floor, forest density, tree diameter
and height, proportion of above-ground biomass in the roots, soil
texture and forest location (open coast vs. lagoon).

In recent years, there have been a growing number of
economic studies estimating the protective value of ECEs,
especially for marsh and mangroves (see Table 1). Of the 41
studies listed, 31 have been published since 2010. In addition,
estimates for coral reefs are starting to emerge. In contrast, few
studies have valued the coastal protection benefits of seagrass
meadows, which are more effective in shoreline stabilization
than attenuation of large waves (Paul et al., 2012; Christianen
et al., 2013; Ondiviela et al., 2014). Many additional studies
for ECEs exist other than those listed in Table 1; however,
especially for some of the earlier efforts, there have been problems
in the reliability of the valuation methods employed (Barbier,
2007; Kousky, 2010; Arnold, 2013; Chaikumbung et al., 2016;
Vedogbeton and Johnston, 2020).

Geographical coverage is also limited, with most valuation
studies occurring in the United States and tropical Asia. This
is not surprising, given that since Hurricanes Katrina, Rita,
Sandy, and Harvey in the United States, the Indian Ocean
tsunami in South and Southeast Asia, and TyphoonHaiyan in the
Philippines, there has been increasing alarm that the loss ECEs
in these regions has made their coastal areas and communities
more vulnerable. But as the concern about damaging and life-
threatening storms in all low-lying coastal areas grows, there are
likely to be more studies in other parts of the world. For example,
in Europe, the recognition that tidal marshes and other habitats
provide protection against coastal flooding has led to increased
studies of the potential wave attenuating function of these ECEs
(Liquete et al., 2013; Guisado-Pintado et al., 2016; Schoutens
et al., 2019).

Finally, because of the growing interest in the storm
protection service provided by estuarine and coastal ecosystems,
global analyses of this benefit are beginning to emerge. Table 1
lists one example for coral reefs (Beck et al., 2018) and two
for mangroves (Hochard et al., 2019; Menéndez et al., 2020).
For example, Beck et al. (2018) estimate that the absence of the
protective benefit of coral reefs would double the annual expected
damages from flooding globally and triple the costs from frequent
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TABLE 1 | Examples of studies that estimate the protective value of estuarine and coastal ecosystems.

Ecosystem structure and

function

Ecosystem service Valuation examples (chronologically by location)

Attenuates and/or

dissipates waves, buffers

wind

Protection of coastal

communities against

property damage, loss of life

and/or injuries, risk.

(Badola and Hussain, 2005; Das and Vincent, 2009; Das and Crépin, 2013, mangroves, India)

(Sathirathai and Barbier, 2001; Barbier, 2007, 2012; Barbier et al., 2008; Barbier and Lee,

2014, mangroves, Thailand)

(Farber, 1987, 1996; Landry et al., 2011; Petrolia and Kim, 2011; Barbier et al., 2013; Kim and

Petrolia, 2013; Barbier and Enchelmeyer, 2014; Petrolia et al., 2014; Boutwell and Westra,

2016, marsh and coastal wetlands, Louisiana, United States)

(Rezaie et al., 2020, marsh, New Jersey, United States)

(Highfield et al., 2018; Atoba et al., 2020, coastal wetlands, Texas, United States)

(Boutwell and Westra, 2015, coastal wetlands, US Gulf Coast)

(Narayan et al., 2017, marsh, northeastern United States)

(Costanza et al., 2008, marsh, US Atlantic and Gulf Coasts)

(Vázquez-González et al., 2019, coastal wetlands, Mexico)

(King and Lester, 1995; Mangi et al., 2011, marsh, United Kingdom)

(Liu et al., 2019, coastal wetlands, China)

(Ouyang et al., 2018, coastal wetlands, China and Australia)

(Huxham et al., 2015, mangroves, Kenya)

(Menéndez et al., 2018, mangroves, Philippines)

(Mahmud and Barbier, 2016, mangroves, Bangladesh)

(Laso-Bayas et al., 2011), mangroves, Aceh, Indonesia)

(del Valle et al., 2020), mangroves, Central America)

(van Zanten et al., 2014, coral reefs, U.S. Virgin Islands)

(Wilkinson et al., 1999, coral reefs, Indian Ocean)

(Pascal et al., 2016, coral reefs, Caribbean and Pacific)

(Beck et al., 2018, coral reefs, global)

(Hochard et al., 2019; Menéndez et al., 2020, mangroves, global)

(Rao et al., 2015; Narayan et al., 2016, estuarine and coastal ecosystems, global)

The 41 studies selected are from peer-reviewed academic journals only, and are grouped by type of estuarine and coastal ecosystem and its location.

storms. Improved reef management would especially benefit
Indonesia, Philippines, Malaysia, Mexico, and Cuba, with each
country reducing annual flood damages by at least $400 million.
Hochard et al. (2019) analyze the impact of mangrove extent
in protecting economic activity in coastal regions from cyclones
over 2000 to 2012 for nearly 2,000 tropical and sub-tropical
communities globally. For a community with an average cover
of 6.3m of mangroves extending inland from the seaward
edge, direct cyclone exposure can reduce economic activity
permanently by 5.4–6.7 months, whereas for a community with
25.6m of mangroves extending inland from the shoreline, the
loss in activity is 2.6–5.5 months. Menéndez et al. (2020) value
the global flood protection benefits of mangroves at over $US
65 billion per year, and estimate that the loss of all mangroves
would mean that 15 million more people worldwide would
be susceptible to annual flooding. The countries benefiting the
most include the United States, China, India, Mexico, Vietnam,
and Bangladesh.

Economic Valuation Methods
As can be seen from the valuation studies in Table 1, as the
number of studies valuing the protective value of ECEs has
increased, important developments have occurred in themethods
used to estimate the protective value of estuarine and coastal
ecosystems (ECEs). Many of the early studies employed the
replacement cost method to value the storm prevention and
flood mitigation services, which involves estimating the costs
of constructing physical barriers to perform the same services

provided for free by ECEs (King and Lester, 1995; Sathirathai and
Barbier, 2001; Mangi et al., 2011; Huxham et al., 2015; Narayan
et al., 2016). However, as a valuation method, there are two
overall limitations to this replacement cost approach. First, it
estimates a benefit (e.g., storm protection) by a cost (e.g., the
expenses incurred for constructing seawalls, breakwaters, dykes,
groins and other physical structures), and second, human-built
structures are not always cost-effective as an alternative to ECEs
in providing the same level of coastal protection benefit (Barbier,
2007; Freeman et al., 2014; World Bank, 2016; Kousky and Light,
2019).

The limitations of employing the replacement cost method to
value the protective benefit of an ECE are illustrated in Figure 1.
Assume that the initial landscape area of a marsh or mangrove is
S0. Because the ecosystem provides this service for “free,” there
is no cost, and thus it corresponds to the horizontal axis 0S0.
However, suppose conversion causes some of the ECE area to
decrease to S1. The replacement cost method would value any
subsequent loss in protection benefit by the additional cost of
“replacing” it with seawalls, breakwaters, levies and other human-
built structures to reduce storm surge and waves. However,
the additional—or marginal cost—of building more and more
structures to provide coastal protection is likely to rise as the level
of protection increases. In Figure 1, the marginal cost of building
such a physical storm barrier is MCH . Thus, the “replacement
cost” of using the human built barrier to provide the same
storm protection service as the S0S1 amount of wetlands lost
is measured by the difference between the two cost curves, or

Frontiers in Climate | www.frontiersin.org 3 December 2020 | Volume 2 | Article 5942548

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Barbier Valuing Coastal Protection

FIGURE 1 | The net benefits of the storm protection service provided by an estuarine and coastal ecosystem of area S0. The cost of the storm protection service

provided by the ecosystem is “free” and is thus 0S0. However, if the ecosystem area declines to S1, then there is a loss in net benefits from protection service

represented by area S0CDS1. If the cost of replacing the loss in service by a human-built barrier is used to estimate the net benefits, this “replacement cost” estimate

would be area S0ABS1. This method over-estimates the net benefits of the storm protection service by area ABCD. Note that, if the willingness to pay for protection

service also includes not just protection of property and other assets from storms [curve W(S)] but also reducing the risk of injury, illness, or death and the disutility of

risk exposure [curve W(S)*], the net benefits of storm protection service will be greater than area S0CDS1. However, as shown in the figure, the replacement cost

method still over-estimates these net benefits. MCs, Marginal cost of the "free" protective service provided by the coastal wetland; MCH, Marginal cost of building a

storm barrier "replace" the protective service provided by the coastal wetland; W(S), Demand, or marginal willingness to pay, for protection service provided by

wetlands of area S; W(S)*, Demand, or marginal willingness to pay, for protection service provided by ECE of area S, including reducing the risk of injury, illness or

death and the disutility of risk exposure.

area S0ABS1. However, this cost difference is not measuring
the benefit of having the wetlands provide the storm protection
service. Instead, this benefit is represented by the demand curve,
which indicates howmuch extra individuals are willing to pay for
the additional protection provided by havingmore wetlands. This
demand curve is represented byW(S) in Figure 1. Consequently,
if S0S1 amount of wetlands is converted, the loss in net benefit is
the difference in the demand for protection that would have been
met by that amount of wetlands, less the costs of the wetlands
providing this service (which as noted previously is “free”). In
Figure 1, this net benefit corresponds to area S0CDS1. Thus, the
replacement cost method overestimates the net benefits of the
storm protection service by area ABCD.

More recently, some valuation studies of the protective value
of estuarine and coastal ecosystems (ECEs) have developed
the expected damage function approach as an alternative to
the replacement cost method (Barbier, 2007; Barbier and
Enchelmeyer, 2014; World Bank, 2016; Beck et al., 2018;
Highfield et al., 2018; Menéndez et al., 2020; Rezaie et al.,
2020). This method assumes that an ECE provides a non-
marketed service, such as “protection” of economic activity,
property and even human lives, which benefits individuals
through limiting damages. Consequently, the expected damage
function adopts the production function methodology of valuing

the environment as an input into the production of a final
benefit, which is the protection of human lives, property
or economic activity (Barbier, 2007). Utilizing this approach
requires modeling how an ECE provides the “production” of
this protection service, and then estimating its value of this
environmental input or service in terms of the expected damages
avoided to property, lives or activity. For example, suppose in
Figure 1, the benefits of marsh or mangrove are from reducing
flood damage to coastal property, and the loss of the wetland
will increase the willingness to pay to avoid these damages as
represented by the demand curve in the figure. When applied
correctly, the expected damage method will yield the true net
benefit of this service in terms of protecting coastal property and
other assets from flood damages, which in Figure 1 is denoted by
area S0CDS1.

Barbier (2007) estimates the welfare impacts of a loss of
the storm protection service due to mangrove deforestation
in Thailand by both the expected damage function approach
and the replacement cost method, and finds that the benefits
estimated by the latter method are eight times more than those
of the expected damage function approach. Similarly, Narayan
et al. (2016) compare the cost of building submerged breakwater
compared to natural-based defense provided by mangrove
restoration projects. They estimate that the costs of building
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artificial breakwaters is on average five time more expensive
(ranging from 3.1 to 6.9 times expensive across the sample)
in providing the same level of storm protection as restored
mangroves. Increasingly, it is recognized that in remote and
inaccessible sheltered bays where mangroves are normally found,
artificial barriers, breakwaters, and seawalls are not the least-
cost options for providing storm protection benefits, especially
when compared to conserving existing mangrove forests or
restoring them.

However, with respect to mangrove restoration for coastal
protection, other considerations are also important. For example,
there have been problems with the restoration success of
mangrove replanting schemes, especially for the large-scale
programs in the Philippines, Thailand, and elsewhere throughout
South East Asia that have been instigated in response to
major storm events in the regions (Primavera et al., 2016;
Thompson, 2018; Lee et al., 2019). These issues include poor
long-term survival rates of afforested or reforested mangroves,
the over-reliance on area-based planting targets over long-term
ecosystem restoration, and planting at sites that are unsuitable for
mangroves. As a study in Central Philippines reveals, the result is
that mangrove plantations and reforested areas are significantly
less reliable in providing coastal protection compared to natural
forests (Primavera et al., 2016).

As Table 1 indicates, the expected damage function method is
increasingly used in many studies that value coastal protection
provided by ECEs. However, under certain conditions, this
approach may under-estimate this benefit. When households
living in coastal areas are risk averse, the expected damage
function may not necessarily capture the entire ex ante
willingness to pay to reduce or avoid the risk from storm damages
from ECE protection (Barbier, 2016). Instead, the reduction in
expected storm damages to, say, coastal property may be only one
component of the marginal willingness-to-pay (WTP) associated
with greater protection against storms. This ex ante WTP will
also depend on avoiding or lowering the risks associated with the
storm, such as the threat of death, illness or injury or the general
dislike of violent storms, which may be substantial for risk-averse
households. Nevertheless, despite its limitations, the expected
damage function is a direct compensation surplus measure for
estimating an important component of the protective value of
ECEs, and thus can be considered a lower-bound estimate of
this benefit. This is illustrated in Figure 1, where the demand,
or marginal willingness to pay, for protection service provided
by ECE of area S, is now the dashed W(S)∗ curve, as it includes
reducing the risk of injury, illness or death, and lowering the
disutility of risk exposure.

Very few studies are able to estimate this entire marginal
willingness to pay for the protective benefit of ECEs. The studies
that do estimate ex ante willingness to pay often employ survey-
based methods, and have difficulty distinguishing the various
components that comprise this storm protection value (Barbier,
2016). Some willingness to pay estimates for an ECE intervention
that might reduce future storm event risks may include other
values as well. For example, Landry et al. (2011) estimate that
the average U.S. household is willing to pay $103 to reduce
future flood risk in New Orleans through coastal restoration,

but this value may also reflect concern by these households over
the past devastation caused by the 2005 Hurricane Katrina to
New Orleans.

Some studies have documented the role of ECEs, notably
mangroves, in reducing storm-related deaths after major
events. For example, one estimate indicates that, during the
1999 cyclone in Orissa, India, there would have been 1.72
additional deaths per village within 10 km of the coast if
mangroves had not been present (Das and Vincent, 2009).
Similarly, during the 2004 Indian Ocean tsunami, mangroves,
forests and plantations may have decreased loss of life by
3 to 8% in Acheh, Indonesia (Laso-Bayas et al., 2011). In
the Philippines, an analysis of 384 coastal villages impacted
by flooding from the 2013 Typhoon Haiyan found that
the presence of mangroves was significantly correlated with
both lower deaths and less structural damage (Seriño et al.,
2017).

Other studies have employed survey methods to estimate the
entire marginal willingness to pay for storm protection benefits,
as represented by the dashed W(S)∗ curve in Figure 1. For
example, by employing a choice experiment survey for different
coastal wetland restoration programs in southeast Louisiana,
Petrolia et al. (2014) are able to determine how much a typical
U.S. household is willing to pay for different levels of protection
as the amount of restored wetland area increases. The average
U.S. household is willing to pay $149 for an intermediate increase
in storm surge protection through coastal wetland restoration,
but will pay only $2 more for a further increase to high levels of
protection. In a follow-up study of Louisiana households, Petrolia
and Kim (2011) find that each household is willing to pay $111
to prevent future coastal wetland losses. However, households
citing storm protection benefits as a top priority were 48% more
likely to pay for preventing coastal wetland loss, which allowed
the authors to estimate the overall storm protection benefits as
$53 per household.

Finally, it should be pointed out that ECEs and artificial
protection may also be complementary at the early stages of
restoration efforts, and fully restored ECEs may also reinforce
the effectiveness of artificial storm barriers, such as dykes and
seawalls. For example, when mangrove tree seeds or seedlings are
artificially reintroduced or naturally propagated, both frequent
storms and the high energy of tides in coastal zones can prevent
the establishment of young mangrove trees in bare sediments
(Bosire et al., 2003; Moreno-Mateos et al., 2015). In Vietnam, this
problem was solved by establishing bamboo T-fences to reduce
coastal erosion and protect the sediment balance necessary for
natural regeneration ofmangroves (Albers and Schmitt, 2015). At
US$50–60 per meter (m), such low-cost and temporary fencing
(they last on average 5–7 years) is a relatively inexpensive way
to improve the success of mangrove restoration at its crucial
early stages of tree establishment. After successful restoration
of sites suitable for mangrove growth, natural regeneration of
mangroves will occur and the forest area expand. If artificial
dykes are constructed inshore from the restored mangroves, then
protection of coastal populations and property from sea level
rise and the increasing frequency and intensity of storms is
further enhanced.
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This is especially important in developing countries such
as Vietnam, as the construction of dykes is expensive (US$
2,270 per m for a 3.5m high concrete dyke), and the
possibility of increasing dyke height is limited due to the
load-bearing capacity of the soil (Albers and Schmitt, 2015).
Similarly, in China, a comparison of constructing marsh and
other coastal wetlands as an alternative of seawalls for storm
protection, led the authors to conclude that “wetlands are a
less costly alternative for storm protection” and should be
incorporated with seawalls in national coastal defense strategies
(Liu et al., 2019). A study for the United Kingdom showed that
fronting protective structures with coastal wetlands significantly
lowered seawall requirements and resulted in subsequent
savings in construction costs (Mangi et al., 2011). Such a
combination of “green” and “gray” infrastructure may be the
most effective way of protecting vulnerable coasts from the
variability of sea level rise, increased frequency and intensity
of storms, and the risks of climate change (Mangi et al., 2011;
Arkema et al., 2013; Barbier, 2014; Sandilyan and Kathiresan,
2015; World Bank, 2016; Dasgupta et al., 2019; Liu et al.,
2019).

OTHER BENEFITS

Storm protection is only one of the many benefits of conserved
or restored ECEs. For example, as noted previously, Petrolia et al.
(2014) estimate that the average U.S. household is willing to
pay $149 for increased storm surge protection through coastal
wetland restoration in southeast Louisiana, but is willing to
pay $973 per household for restoration when the additional
ecosystem benefits of supporting wildlife habitat and commercial
fisheries are also included.

The additional ecosystem services of mangroves, which
include income and subsistence benefits from collecting products
from the mangroves, nursery, and breeding habitats for off-
shore fisheries, and carbon sequestration, might be smaller
compared to storm protection benefits but important to the
overall decision as to whether or not to conserve mangroves or
invest in their restoration (Barbier, 2007). In addition, products
collected directly from the mangroves and also the artisanal
fisheries supported by them may also be important in terms of
food security and subsistence needs of local coastal communities
(Sarntisart and Sathirathai, 2004; Andrew et al., 2007; Walters
et al., 2008; Nfotabong et al., 2009; Béné et al., 2010).

For example, Barbier (2007) estimates that local coastal
communities in Thailand gain net present value in income from
collecting mangrove products worth $484 to $584 per hectare
(ha), and an additional $708 to $987 per ha in net present
value from support provided to coastal fisheries provided by
mangroves as breeding and nursery habitat. Such benefits are
considerable when compared to the average incomes of coastal
households in Thailand. For example, surveys of mangrove-
dependent communities reveal that the average household
annual income ranges from $2,606 to $6,623, and the overall
incidence of poverty (corresponding to an annual income of
US$180 or lower) in three out of four villages surveyed exceeded

the average incidence rate of 8% in rural Thailand (Sarntisart and
Sathirathai, 2004). If the income to households from collecting
mangrove forest products is excluded, then the incidence of
poverty would rise to 55.3 and 48.1% in two of the villages, and to
20.7 and 13.64% in the other two communities.

Similar evidence exists of the importance of income from
mangroves and other ECEs to support the livelihoods and
subsistence of poor households across many low and middle-
income countries (Bandaranayake, 1998; Naylor and Drew, 1998;
Badola and Hussain, 2005; Walton et al., 2006; Rönnbäck et al.,
2007; Walters et al., 2008; Nfotabong et al., 2009; Mukherjee
et al., 2014; Hassan and Crafford, 2015; Huxham et al., 2015).
In addition, coastal people often associate important cultural
values with local ECE habitats that goes beyond their support
for economic livelihoods. For example, a study of mangrove-
dependent coastal communities inMicronesia has shown that the
communities “place some value on the existence and ecosystem
functions of mangroves over and above the value of mangroves’
marketable products” (Naylor and Drew, 1998, p. 488). An
extensive survey of coastal communities in Papua New Guinea
found that people ascribed most importance to ECE services that
directly contributed to their livelihoods, especially through food,
income and shelter, such as fishing, collecting forest and reef
materials, and habitats that support these services (Lau et al.,
2019). But the survey also found that communities often placed
great importance on local traditions, environmental knowledge
and importance for future generations of their stewardship of the
environment and ECE services.

DISCUSSION

Despite the considerable progress in valuing the protective
service of ECEs and the growing number of empirical studies,
important challenges remain. Here, we discuss two of them:
how protective benefits are subject to spatial variability and are
dependent on connectivity across “seascapes.”

Spatial Variability
Increasingly, field studies and experiments indicate that the wave
attenuation function ofmarsh, mangroves and other ECEs, which
is critical to their protective value, varies spatially across the
extent of these habitats (Madin and Connolly, 2006; Koch et al.,
2009; Loder et al., 2009; Wamsley et al., 2010; Gedan et al., 2011;
Shepard et al., 2011; Zhang et al., 2012; Rupprecht et al., 2017;
Schoutens et al., 2019). This implies that, as storm waves travel
across the extent of ECE landscape, the force and magnitude of
the waves are increasingly dissipated. Equally, the strength and
duration of the storm, and the presence of high or low tides, can
impact wave attenuation by ECEs significantly (Koch et al., 2009;
Loder et al., 2009; Wamsley et al., 2010; Barbier et al., 2011). Only
recently are valuation studies taking into account spatial and
temporal variability of wave attenuation by ECEs in estimating
their potential protective value (Barbier et al., 2008; Barbier, 2012;
Dasgupta et al., 2019; Hochard et al., 2019).

For example, storm surge modeling for the US Gulf Coast
of southeastern Louisiana indicates how the attenuation of
surge by wetlands is affected by the bottom friction caused by
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vegetation, the surrounding coastal landscape, and the strength
and duration of the storm forcing (Wamsley et al., 2010). Early
studies of the protective value of Gulf Coast wetlands in reducing
flood damages do not incorporate such factors (Farber, 1996;
Costanza et al., 2008). However, more recent studies of this storm
protection benefit do incorporate simulations from storm surge
modeling that account for the hydrodynamic properties of surges
and the influences of varying wetland landscape and vegetation
conditions (Barbier et al., 2013; Barbier and Enchelmeyer, 2014).

Similarly, assessments of how well-mangroves and other
coastal forests offered protection against the damages and
casualties caused by the 2004 Indian Ocean tsunami found
that important landscape and spatial characteristics, such as
the variations in coastal topography, shoreline slope, distance
of villages to shore and other coastal features, were important
factors influences on protection (Cochard, 2011). For example,
Laso-Bayas et al. (2011) found that the presence of coastal
vegetation significantly reduced the casualties caused by the
tsunami in Acheh, Indonesia, and the most important factor
in determining casualties and infrastructure damage was the
distance of villages from the coast.

Connectivity
Because estuarine and coastal ecosystems occur at the interface
between the coast, land, and watersheds, there is a high degree of
“interconnectedness” or “connectivity” in the land-sea interface
across these systems. The term seascape is now widely used to
refer to spatial mosaics of interconnected coastal and near-shore
marine habitat types, such as mangroves, saltmarsh, seagrasses
and coral reefs, as the connectivity between and among these
coastal and near-shore marine habitats is the most pronounced
(Moberg and Rönnbäck, 2003; Harborne et al., 2006; Boström
et al., 2011; Pittman et al., 2011; Olds et al., 2016; Pittman, 2017).
This connectivity, in turn, reinforces and augments the storm
protection service provided by each of these ECEs individually.

For example, Alongi (2008) has pointed out that the
storm protection provided by mangroves will be enhanced
further by the presence of foreshore habitats, such as coral
reefs, seagrass beds, and dunes. Koch et al. (2009) also note
similar cumulative effects occur for attenuating waves that
cross seascapes containing coral reefs, seagrasses, and marshes.
Modeling simulations based on a Caribbean reef-seagrass-
mangrove seascape illustrate that the storm protection service
provided by the entire seascape is greater than for either of the
three ECE habitats on their own (Sanchirico and Springborn,
2012). Mumby and Hastings (2008) also find that mangroves and
coral in the Caribbean not only combine to protect coastlines
from storms, but in addition, the mangroves help coral reef
fish populations recover from the severe disturbances caused by
hurricanes and other extreme events. The cumulative effect of
storm protection can sometimes be revealed if an important ECE
is absent from the seascape. For instance, Sheppard et al. (2005)
document how rising coral reef mortality and deterioration in the
Seychelles have increased significantly the wave energy reaching
shores, whereas health reefs would normally protect coastlines
from storm surges.

To provide further insight into the management implications
of valuing the storm protection service across a seascape,
Barbier and Lee (2014) develop a model of a two-habitat
marine system. The model illustrates how the connectivity of
two habitats (a near-shore coral reef and a mangrove habitat)
comprising the seascape influences protection against coastal
flood damages. That is, the presence of coral reefs in the near-
shore marine environment attenuates waves thus enhancing the
storm protection service of the coastal mangrove habitat. The
model also accounts for spatial variation in wave attenuation
across the seascape by allow for the storm protection service
provided by mangroves to be greater for their seaward as
supposed to the inland boundaries. The model was applied
to a representative mangrove-coral reef system, in which the
mangroves faced irreversible conversion to commercial shrimp
farms. The outcome for this development decision when seascape
connectivity was taken into account was compared to the
outcome when the storm protection service of the mangroves
was considered in isolation from the rest of the seascape (i.e., the
coral reef).

Figure 2 illustrates how mangrove-coral reef connectivity
across the seascape affects the development decision. As shrimp
ponds can be located in any part of the mangroves with little loss
of productivity, it is assumed that the returns to shrimp farming
is constant across the landscape at a net present value (NPV) of
$1,220 per ha (red line in Figure 2). Without considering any
connectivity between coral reef and mangrove storm protection,
the NPV per ha of this service provided by the mangroves begins
at nearly $16,000 per ha at the seaward edge and declines to
$108 per ha 1 km inland (green line in Figure 2). However, taking
into account seascape connectivity, the storm protection value is
over $20,000 per ha at the seaward edge and declines to almost
$140 per ha at the inland boundary (blue line in Figure 2). Thus,
without taking into account coral reef connectivity, it is optimal
to conserve the first 515 meters (m) from the seaward edge, and
convert the rest to shrimp farms. However, if the enhancement of
mangrove storm protection by coral reefs is taken into account,
then conservation of mangroves should extend further to 563m
inland.

CONCLUSION

Due to increasing concerns about sea level rise, climate change
and the frequency of coastal storms, there is more interest than
ever in the protective value of estuarine and coastal ecosystems
(ECEs). As a result, there are a growing number of studies that
attempt to estimate this value, for more ECEs around the world.
However, as this review has shown, the geographical coverage of
these studies is still limited. In addition, valuation has focused
mainly on marsh and mangroves. Coral reefs have received more
attention in recent years, but there is still a lack of valuation
studies of the protective role of sea grass meadows in reducing
coastal flood damages, which appear to be more effective in
shoreline stabilization than attenuation of large waves (Paul et al.,
2012; Christianen et al., 2013; Ondiviela et al., 2014). There
is clearly a need for a greater range of studies for different
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FIGURE 2 | Storm protection service and seascape connectivity between mangroves and coral reefs. The net benefits of storm protection of mangroves, with and

without support from a near-shore coral reef, are compared to the economic returns of converting the mangrove landscape to shrimp aquaculture (red line). Without

taking into account coral reef connectivity (green line), only the first 515 meters (m) of mangroves from the seaward edge should be conserved. However, if reef

connectivity is included (blue line), then conservation of mangroves should extend further to 563m inland. Based on Barbier and Lee (2014).

locations and a wider variety of ecosystems. As Newton et al.
(2020) point out, the continuing loss and degradation of coastal
wetlands globally are causing ongoing declines in a wide range
of ecosystem services, of which the protection service of ECEs is
most prominent.

There have been considerable improvements in the valuation
methods used to estimate the benefits of ECEs in reducing coastal
flood damages. However, there is still too much reliance on the
use of less reliable approaches, such as the replacement cost
method, which is likely to lead to inflated estimates. Increasingly,
studies are valuing the protective service of ECEs more directly,
in terms of reducing the expected damages to property and other
assets. This value may be an under-estimate of the full benefit of
this service, which should also include reducing the risk of injury,
illness or death and lowering the disutility of risk exposure.

Improving the reliability and overall methods of valuing
the protective role of ECEs is important, given concerns
over estimates of such benefits are sufficiently robust to
serve as a guide for policy (Barbier, 2007; Kousky, 2010;
Arnold, 2013). Overcoming such concerns through better
valuation of the protective benefits of ECEs is especially

important for meeting the management challenge of convincing
policy makers and other local stakeholders that such “natural
defenses” have a role in coastal zones (Kousky, 2010). In
addition, valuing the benefits of ECEs in reducing coastal
flood damages can aid in the development of more innovative
policies to promote the conservation and restoration of these
coastal habitats, such as using insurance to protect ECEs
and including their protective value to guide buyouts of
flood-damaged property (Kousky and Light, 2019; Atoba et al.,
2020).

In addition, the storm protection benefit of ECEs may be
just one of many important benefits provided by these systems.
Nevertheless, many studies confirm that the protective value of
ECEs are one of the more significant benefits sacrificed when
these habitats are lost or degraded. Global assessments for both
coral reefs and mangroves are also illustrating the economic
significance of this protective benefit (Beck et al., 2018; Hochard
et al., 2019; Menéndez et al., 2020).

Better understanding of how various ECEs attenuate
waves and buffer winds has helped in the development
of methods for assessing the protective benefits of these
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ecosystems. For example, for marsh and mangroves, an
important contribution has been to distinguish between the
role of vegetation and other ECE attributes in storm protection
compared to coastal topography and near-shore bathymetry.
Improved hydrodynamic modeling of the storm surge and wind
characteristics of various storm events and their interaction
with ECE landscape characteristics has also been insightful. An
interesting challenge for future research is to account for the
connectivity across ECE habitats, such as mangroves, saltmarsh,
seagrasses and coral reefs, to assess their cumulative influence on
the wave attenuation and wind buffering functions underlying
the protection of coastlines against storms and floods. Only
recently have valuation studies begun to model this connectivity
and assess how it impacts the protective service provided by an
entire seascape of ECEs.

Finally, although this paper has focused mainly on the storm
and flood protection benefit of ECEs, one should not forget
the multiple benefits provided by these natural systems. This
array of benefits are what give ECEs an important advantage
compared to human-made structures that are built solely to
protect coastlines. Consequently, decisions as to whether or not
to invest in ECE restoration either in combination with or as
an alternative to human-made structures should not be based
solely on their storm protection service alone but should take
into account all the economic benefits provided by ECEs as
well. Such considerations are important to long-term coastal
restoration and protection and restorations. A good example is
theMaster Plan for the Louisiana Coast, which combines human-
built coastal defenses and creating or maintaining over 2,000

km2 of marsh and other coastal land over the next 50 years to
provide storm protection and other ecosystem benefits [(Coastal
Protection and Restoration Authority of Louisiana (LCPRA),
2012, 2017; Barbier, 2014)]. Even when the focus is exclusively
on storm protection benefits, it is clear that ECE protection

and restoration have an important role. For example, Arkema
et al. (2013) have shown that substantial ECE restoration along
the U.S. coast could reduce significantly the vulnerability of
populations and property to future natural disasters as well as
to sea-level rise. As the studies reviewed here suggest, many
important coastal management decisions over the coming years
will depend on improving the valuation of the protective service
of ECEs, as well as assessing other significant benefits provided
by these critical habitats of the land-sea interface.
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Compound flooding is a physical phenomenon that has become more destructive in

recent years. Moreover, compound flooding is a broad term that envelops many different

physical processes that can range from preconditioned, to multivariate, to temporally

compounding, or spatially compounding. This research aims to analyze a specific case

of compound flooding related to tropical cyclones where the compounding effect is on

coastal flooding due to a combination of storm surge and river discharge. In recent

years, such compound flood events have increased in frequency and magnitude, due

to a number of factors such as sea-level rise from warming oceans. Therefore, the

ability to model such events is of increasing urgency. At present, there is no holistic,

integrated modeling system capable of simulating or forecasting compound flooding on

a large regional or global scale, leading to the need to couple various existing models.

More specifically, two more challenges in such a modeling effort are determining the

primary model and accounting for the effect of adjacent watersheds that discharge to

the same receiving water body in amplifying the impact of compound flooding from

riverine discharge with storm surge when the scale of the model includes an entire

coastal line. In this study, we investigated the possibility of using the Advanced Circulation

(ADCIRC) model as the primary model to simulate the compounding effects of fluvial

flooding and storm surge via loose one-way coupling with gage data through internal

time-dependent flux boundary conditions. The performance of the ADCIRC model was

compared with the Hydrologic Engineering Center- River Analysis System (HEC-RAS)

model both at the watershed and global scales. Furthermore, the importance of including

riverine discharges and the interactions among adjacent watersheds were quantified.

Results showed that the ADCIRC model could reliably be used to model compound

flooding on both a watershed scale and a regional scale. Moreover, accounting for the

interaction of river discharge from multiple watersheds is critical in accurately predicting

flood patterns when high amounts of riverine flow occur in conjunction with storm surge.

Particularly, with storms such as Hurricane Harvey (2017), where river flows were near

record levels, inundation patterns and water surface elevations were highly dependent on
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the incorporation of the discharge input frommultiple watersheds. Such an effect caused

extra and longer inundations in some areas during Hurricane Harvey. Comparisons with

real gauge data show that adding internal flow boundary conditions into ADCIRC to

account for river discharge from multiple watersheds significantly improves accuracy in

predictions of water surface elevations during coastal flooding events.

Keywords: ADCIRC, HEC-RAS, numerical modeling, hurricanes, inundation

INTRODUCTION

The observed increasing trend in the destructiveness of coastal
storms over the past decades (Emanuel, 1987, 2005; Demaria
and Kaplan, 1994; Jongman et al., 2012; Hinkel et al., 2014) has
been attributed to the changing climate (Levitus et al., 2000);
a trend that does not appear to be slowing down. Part of the

increase in damage of more recent storms can be attributed to the

higher levels of flooding due to combined effects from riverine
flows and storm surge (Bakhtyar et al., 2020a). While oceanic

processes such as tides and storm surge impact flooding in low
lying coastal areas, meteorological and hydrological mechanisms
influence flooding due to rainfall. When these processes interact,
they can cause much higher flooding levels than if they were
to occur separately. A compound event can be defined as a
combination of simultaneous or sequential processes leading to
a more significant event (Couasnon et al., 2020). Applying this
definition to coastal flooding, a compound flooding event is
flooding due to the interaction of the open ocean, meteorological
behavior, and hydrological factors (Zscheischler et al., 2018).

The increase in damage to coastal areas from hurricanes
in recent years present the need to model the compounding
effects from storm surge and riverine discharge more accurately
so that reliable flood-risk assessments, including forecasts can
be made. Compounding processes pose a challenge to current
coastal models because there are a vast amount of physical
processes such as tides, storm surge, sea level rise, wind, and river
discharge that all interact with each other to significantly impact
flooding in coastal areas (Bilskie et al., 2016; Moftakhari et al.,
2017, 2019; Saleh et al., 2017; Bilskie and Hagen, 2018; Muñoz
et al., 2020; Ye et al., 2020). While there are many physics-based
coastal, hydrodynamic, hydraulic, and hydrologic models, most
have typically been applied to account for one or more limited
processes involved in compound flooding and not the entire set
of forcing parameters. For instance, there aremanywell-validated
models for storm surge such as the Sea, Lake and Overland
Surges from Hurricanes (SLOSH) model (Jelesnianski et al.,
1992), the Semi-implicit Cross-scale Hydroscience Integrated
SystemModel (SHCISM) (Zhang and Baptista, 2008; Zhang et al.,
2016), DELFT3D (Veeramony et al., 2016), and the Advanced
Circulation (ADCIRC) model (Fleming et al., 2008). There are
also many well-validated hydrological and hydraulic models that
model rainfall-runoff processes such as the Gridded Surface
Subsurface Hydrological Analysis Model (GSSHA) (Downer
et al., 2004), the Hydrologic Engineering Center River Analysis
System (HEC-RAS) (Brunner, 2002; Hicks and Peacock, 2005),
and the Watershed Systems of 1-D Stream-River Network, 2-D

Overland Regime, and 3-D Subsurface Media (WASH123D).
Some of these models are capable of modeling streamflow,
surface-runoff flow, and subsurface flow represented using a
common set of governing equations (Yeh et al., 2005). Though
models such as WASH123D, GSSHA, and HEC-RAS excel at
modeling a diverse array of physics in coastal environments, these
models typically cover a single watershed and therefore do not
model wind-driven storm surge coming in the open ocean which
is important in order to perform forecasts (Santiago-Collazo
et al., 2019).

To simulate compound flooding and more specifically the
compounding effects of storm surge and riverine discharge on
coastal flooding, there have been many recent efforts that could
be categorized into the following approaches: (1) a single model
that contains all of the size, detail, and physics needed to
capture compound flooding from wind-driven storm surge from
the open ocean and riverine discharge from inland, (2) loose
coupling of a storm surge model with a hydrological/hydraulic
model (for river discharge) through boundary conditions (one
or two ways), and (3) dynamic coupling by passing back and
forth boundary conditions at each synched time-step (Santiago-
Collazo et al., 2019). Among these approaches, the loose coupling
of the hydrological model with the storm surge model via
boundary conditions, and making a single integrated, holistic
modeling framework are themost common andmost challenging
methods, respectively. To date, to the best knowledge of the
authors, there is no single modeling system that could address
all aspects of compound flooding. However, many studies have
coupled two or more models, loosely or dynamically, to simulate
different compounding effects such as the compounding effect
of storm surge and riverine discharge which this research
focuses on. Kumbier et al. (2018) investigated the compounding
effects of riverine discharge and storm surge off the coast of
Australia by incorporating upstream river discharge boundary
conditions from gauge data into the Delft3D model and found
that neglecting riverine discharge resulted in an underprediction
of flood levels by 30% (Kumbier et al., 2018). Zhang et al.
(2019) utilized the hydrological model National Water Model
(NWM) to account for the compounding effect from riverine
discharge as input into the SCHISM ocean dynamics model
via exterior boundary conditions in order to model Hurricane
Irene’s impact on Delaware Bay (Zhang et al., 2019). It was
found that the inclusion of riverine discharge into the SCHSIM
model resulted in elevated water surface levels for more than 2
weeks after Hurricane Irene hit that area. Bakhtyar et al. (2020b)
executed a loose one-way coupling between the NWM and
ADCIRC/WAVEWATCH III using the D-Flow FM hydraulic
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model to assess compound flooding impacts for tropical cyclones
in the Delaware river basin and it was shown that water level
predictions depend on a detailed representation of riverine
discharge and elevated sea levels as well as detailed pressure
and wind forcing (Bakhtyar et al., 2020b). Gori et al. (2020)
investigated the contribution of flooding due to river discharge
along the North Carolina coast by loosely coupling the storm
surge model ADCIRC, and the hydraulic model HEC-RAS by
using ADCIRC output as downstream boundary conditions into
the 1-D/2-D HEC-RAS hydraulic model in order to account
for the effects of storm surge (Gori et al., 2020). It was found
that riverine contributions increased peak storm tide by up to
0.36m. Environmental Fluid Dynamics Code (EFDC) (Hamrick,
1992) was coupled with ADCIRC to examine the concurrent
impact of hurricane surge and floods due to significant rainfall
with different return periods (Alarcon et al., 2014a,b), and
to simulate the fate and transport of spills during compound
events (Kiaghadi et al., 2018). Results showed increases in
land inundated with longer inundation times along with up
to 2m higher water depth in areas with a higher number of
discharging bayous. Additionally, it was found the velocities were
significantly higher during the receding surge when riverine flows
were included. In these loosely coupled modeling frameworks,
there is a “primary” model which simulates the dominant
physical processes in the area of interest, with the “secondary”
model providing boundary conditions to the primary model.

While the idea of using two or more models in a coupled
framework is common in simulating compound flooding,
choosing the primary model is challenging. Selecting the right
primary model is a function of various factors including but
not limited to the purpose and scale of modeling, reliability
of the model, computational time, and ease of use. When
simulating compound flooding scenarios (or real-timemodeling)
where both riverine discharge and storm surge are occurring,
determining the downstream boundary condition is challenging.
For instance, in a loosely coupled framework with a small
domain model as the primary one, the discharge upstream could
be directly affected by the downstream water surface elevation
(WSE) modeled by a separate large domain model that does not
take the discharge flux into account. This compound effect on
the WSE can also be influenced by contributions from adjacent
watersheds that discharge to the same receiving water body
(e.g., lake or bay). Thus, the application of using some of the
existing hydrodynamic models such as EFDC or HEC-RAS as the
primary model to simulate a compound flooding event, would
be limited to a small domain for a hindcast scenario. These
limitations are mainly due to not being fully parallelized [not
using a high-performance computational (HPC) platform] that
leads to a need for a downstream boundary condition that is not
far away from the affected zone by the storm surge, upstream
discharges, and any adjacent watersheds. Furthermore, some of
the hydrodynamic models do not have the capability to simulate
wind-driven flows from the open ocean. Hence, within the
context of compound floodmodeling related to tropical cyclones,
it is essential to evaluate the ability of a storm surge model that is
capable of simulating wind-driven surges and riverine flows that
could be run on an HPC platform. In other words, the primary

model should have the capability of simulating the maximum
possible components of compound flooding individually with the
minimum requirement of boundary data being provided by the
secondary model.

In this study, ADCIRC was chosen as the primary model
because it is a well-validated model and is maintained by a large
community of users (Dietrich et al., 2011a, 2012; Hagen, 2011;
Bhaskaran et al., 2013; Hope et al., 2013; Technology Riverside
Inc., and AECOM, 2015). Since it has an unstructured mesh
design (Luettich and Westerink, 2004), it allows for a large
domain where ocean dynamics far from the coast (wind-driven
hurricanes) can be modeled with enough detail to capture critical
features in coastal areas such as rivers and weirs, which will
allow for incorporating compound flooding effects. Furthermore,
ADCIRC has been written in parallel with Message Passing
Interface (MPI), so it is capable of evaluating large domains
that contain millions of nodes in a short period of time
(Dietrich et al., 2011b). For this study, the approach to model
compound flooding is by loosely one-way coupling internal flux
boundary conditions into the ADCIRC model to account for
river discharge.

HEC-RAS 2-D was chosen as the secondary model since it
is a well-documented model with many validated test cases that
excels at modeling hydraulics on a single watershed with high
accuracy when calibrated (Hicks and Peacock, 2005; Brunner,
2016; Quirogaa et al., 2016; Balbhadra et al., 2020). The 2-D
version of HEC-RAS was specifically chosen so that comparisons
with ADCIRC, which is a 2-Dmodel as well, can bemade in order
to evaluate ADCIRC’s validity as a model for combined riverine
discharge and storm surge on the scale of a watershed.

The main objectives of this study are (i) evaluating ADCIRC’s
validity in modeling river discharge. This will be accomplished
by simulating compound floods around a single river and
comparing the results with the observed data and a validated
hydraulic model (HEC-RAS 2-D) as benchmarks, (ii) evaluating
ADCIRC’s validity in modeling a storm system from the open
ocean with river discharge included, this riverine discharge will
be interpolated from the flux input from the validated HEC-
RAS 2-D model. This will be accomplished by running ADCIRC
in a larger domain that includes multiple rivers as well as the
coast and greater ocean. The results will then be compared with
the aforementioned benchmarks, and (iii) including discharges
from multiple adjacent watersheds to evaluate the codependency
between WSE and riverine discharge and how a large domain
model could capture this effect. For the first objective, a fixed
downstream boundary condition will be used to mimic the storm
surge effect within the domain, while for the second and third
ones, a wind field will be used to generate the storm surge far
away from the watershed of interest.

METHODS

Model Theory
As noted earlier, the main objective of this research is to evaluate
the reliability of ADCIRC as the primary model in simulating
compound flooding and comparing its performance with the
HEC-RAS model. The two models utilize different physics
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equations to model WSE; HEC-RAS solves the 2-D Shallow
Water Equations while ADCIRC solves the Generalized Wave
Continuity Equations (GWCE) (Luettich and Westerink, 2004;
Dietrich et al., 2012). The GWCE in spherical coordinates is a
differential form of the continuity and momentum conservation
equations specifically for shallow water (where the horizontal
length scale is much larger than the depth length scale) systems
(see the Supplementary Materials section for more details).

It is important to recall that ADCIRC’s numerical
approximation to the GWCE utilizes a finite element
approximation on an unstructured triangular mesh. This
contrasts with HEC-RAS, which uses a finite volume method
on a structured rectangular mesh. It is important here to
see that the GWCE from ADCIRC was first designed for
modeling the open ocean and wind-driven storm surge and so
ADCIRC contains many more forcing terms than the HEC-RAS
equations. The HEC-RAS model was created for evaluating
river floodplains, and so processes that occur in the open ocean,
such as wind-driven surge and tides are not accounted for in
the governing equations but are instead included as external
boundary conditions when needed. However, as an advantage
for HEC-RAS 2D, it has the capability of modeling direct rainfall
excess onto the grid which ADCIRC cannot currently handle.
Since HEC-RAS requires a uniform grid and is parallelized using
a shared-memory approach, it is not as scalable as ADCIRC. As
a result, ADCIRC is capable of modeling much larger coastal
systems than HEC-RAS. However, HEC-RAS has the advantage
in that it is typically run in small but very highly detailed domains
and can account for rainfall effects.

Study Area, Model Domains, and Inputs
The focus of this study is on the lower Neches River from
the Salt Water Barrier to Sabine Lake, located in southeast
Texas, very close to its border with Louisiana. Figure 1 shows
the location of the lower Neches River as well as the Sabine
River, which also discharges into Sabine Lake (3 miles east
of Neches outflow). In this study, an existing calibrated and
validated HEC-RAS model developed by the USACE for the
study areas was used. The HEC-RAS 2-D domain developed
by the U.S. Army Corps of Engineers (USACE), Fort Worth
District, which includes∼26,000 rectangular computational cells
(121.9m by 121.9m), is also shown in Figure 1 (Mosser et al.,
2019). The domain covers ∼28 miles of the Lower Neches River
and includes the conveyance of the Neches River floodplain.
Manning’s roughness coefficients for the model were determined
based on USGS developed land use raster file titled National
Land Cover Database 2011 Land Cover (Homer et al., 2015)
and areas of open water were overwritten with a value of 0.035.
The bathymetry was specified by two sources; all area above
normal water surface was determined by 1-m Light Detection
and Ranging (LiDAR) data surveyed from 2017 to 2018 by the
Texas Natural Resources Information System (TNRIS) while all
area beneath the normal water surface level was determined from
bathymetric data from the Sabine-to-Galveston ADCIRC model
(Melby et al., 2019). An approximate trapezoidal channel along
the Neches River was burned into the terrain below the water
surface whenever the Sabine-to-Galveston ADCIRC bathymetric

data was not refined enough. The HEC-RAS 2-D model has two
boundary conditions: (1) upstream boundary (flow hydrograph)
based on the available observed discharge values from the
United States Geological Survey (USGS) streamflow gage at
the Salt Water Barrier shown in Figure 1, and (2) downstream
boundary (stage hydrograph) based on the WSE collected at
National Oceanic and Atmospheric Administration (NOAA)
8770475 Port Arthur, TX gage. For the upstream boundary when
gage data is not available, there is a calibrated HEC-HMS model
created by the USACE that covers the 25534 square kilometers
of the Neches River watershed just upstream of the upstream
boundary condition in the HEC-RAS domain that will provide
the flow rates. For the downstream boundary condition, in the
absence of data from the NOAA gauge, WSE from ADCIRC or
other models could be fed into HEC-RAS, however in this case
the NOAA gauge was sufficient.

For ADCIRC, two meshes, one small (Figure 2B) and
one large (Figure 2A) were used. The small mesh was used
for evaluating ADCIRC’s ability to model riverine discharge
(objective 1), and the larger mesh was used to evaluate ADCIRC’s
ability to model a storm coming from the open ocean in
combination with riverine discharge (objectives 2 and 3). A
highly detailed and fine resolution mesh, provided by the
USACE, with a total of 9,182,080 unstructured triangular
elements (Figure 2A), was used as the large mesh. The large
ADCIRC mesh includes the entire Gulf of Mexico as well as
the Atlantic coast. A MATLAB tool (could be accessed through
https://github.com/kiaghadi/Codes/blob/master/Extracting_
XYZ_Manning_From_ADCIRC.m) was developed to extract the
bathymetry and manning coefficients within the large ADCIRC
mesh that coincide with the HEC-RAS 2D model (the full
domain is shown in Figure 1 and part of the HEC-RAS mesh
is shown in Figure 2C). The selected nodes were then exported
to ArcMap where the “Extract Values to Point” was used to
assign the bathymetry, land elevation, and manning values to
the ADCIRC nodes from the HEC-RAS input rasters. Another
MATLAB tool (https://github.com/kiaghadi/Codes/blob/master/
Cutting_ADCIRC_Mesh.m) was developed to custom cut the
large mesh to the size of the HEC-RAS domain and export
the updated nodes, cells, boundary conditions, bathymetry,
land elevation, and node attributes in order to create the small
ADCIRC mesh. The output was the small ADCRIC mesh with
a total of 122,839 unstructured triangular elements (part of
the small mesh is shown in Figure 2B). The effects of river
discharge were added into the small and large ADCIRC models
via internal time-dependent flux boundary conditions across
a string of seven nodes. A sensitivity analysis, using the small
mesh, was performed in order to determine the location of
the internal time-dependent flux boundary conditions. The
sensitivity analysis resulted in the boundary conditions being
added into the ADCIRCmeshes (both small and large) in an area
that is as far upstream in the Neches River as possible but where
there is still high enough mesh refinement to describe the river
feature. In addition to the Neches River flow boundary condition
that was added to both small and large mesh, an additional
boundary condition was implemented on the large mesh to
represent discharges from the Sabine River. After the meshes
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FIGURE 1 | Lower Neches River watershed and Sabine River and Sabine Lake locations. The color-coded figure shows the bathymetry and land elevation. The

HEC-RAS domain is outlined in black. Location of gages demarcated by red dots.

were created, a Python code (https://github.com/Markloveland/
Writefort20) was developed to automate the process of reading
the time-dependent flux boundary data by interpolating the
same boundary data that was used for the upstream boundary
conditions in HEC-RAS, which was derived from nearby USGS
gage data, onto the ADCIRC meshes. The code distributes the
flux among boundary nodes and delivers flux at each node for
the time periods of the simulations. ADCIRC treats flow as flux;
thus, the flow data (usually given in cms or cfs) was converted to
m2/s using the width between the flow boundary nodes.

For the ADCIRC small domain, the downstream boundary
condition was defined as a non-periodic, time-varying elevation
boundary condition. To determine the values for downstream
boundary condition in ADCIRC, WSE was extracted from
the HEC-RAS 2D model input, which was derived from
data from the closest NOAA gage, and then interpolated
into ADCIRC model input. For the ADCIRC large domain,
instead of having a downstream boundary condition the
exterior boundaries were tidal boundary conditions in the
North Atlantic Ocean. The tidal boundary conditions were
determined using OceanMesh2D software (Pringle, 2018) which
interpolates output from the Oregon State University TPXO9
tidal model (Egbert and Erofeeva, 2002) into external elevation
specified boundary conditions. In the large domain, winds
were incorporated as inputs in order to account for storm
surge. Official hindcast winds and pressure data were obtained
from the USACE Research & Development Center Coastal &
Hydraulics Laboratory in the Oceanweather Inc. (OWI) format

and used as the forcing input for ADCIRC. The OWI winds and
pressures were given over three uniform grids with three levels of
refinement at time intervals of 15min. The coarsest grid extended
over most of the Gulf of Mexico and Atlantic coast with latitudes
from 5 degrees North up to 42 degrees North and longitudes
from 99 degrees West to 55 degrees West with refinement of
0.2 degrees in both directions. The next level of refinement has
a grid from 18 degrees North to 31 degrees North and 98 degrees
West to 80 degrees West with refinement of 0.08 degrees in
both directions. The level of highest refinement was from 26.5
degrees North to 29.5 degrees North and from 98.5 degrees West
to 95.4 degrees West with a refinement of 0.02 degrees in both
directions. ADCIRC automatically interpolates both temporally
and spatially these winds and pressures from the uniform OWI
grids onto each node of the ADCIRC mesh by taking the winds
and pressures from the grid with the highest refinement at the
location of a given node.

Scenarios
After constructing the meshes, Hurricane Harvey (2017) was
simulated in each model and model results were compared to
measured data from USGS and NOAA gages. Although peak
storm surge caused by Hurricane Harvey was observed in Corpus
Christi, the hurricane produced moderate surge levels in the
study area. Furthermore, Hurricane Harvey caused historical
precipitation in the study area leading to unprecedented flow
rates in the Neches River, making it a good case study for
compound flooding.
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FIGURE 2 | (A) Location of the Neches River watershed within the large ADCIRC mesh that include the Gulf of Mexico and part of the north Atlantic Ocean, (B)

ADCIRC small mesh structure, each black dot indicates a computational node, and (C) HEC-RAS mesh structure, the black lines separate each of the finite volume

elements.

To evaluate the capability of the ADCIRCmodel in simulating
compound flooding, we ran the ADCIRC model with the
Hurricane Harvey test case for 12 days using the small mesh
(with the same domain size as HEC-RAS) with the boundary
conditions set to the same as the HEC-RAS model (USGS
gage data in upstream boundary and NOAA gage data for
the downstream boundary condition) just interpolated onto
the small ADCIRC mesh. We then compared the ADCIRC
results with the validated HEC-RAS model, which ran for the
same 12 days (by USACE), and gage data. Next, we ran the
ADCIRC model with the large mesh for five different scenarios:
(i) Hurricane Harvey with both Neches and Sabine Rivers, and
storm surge (wind and pressure driven) inputs, (ii) Hurricane
Harvey with no flow input (surge effect), (iii) Hurricane Harvey
with flow input only from Neches River, (iv) Hurricane Harvey
with flow input but with no wind field, and (v) Hurricane

Harvey with no flow and no wind output (just tides). The
first scenario was developed to evaluate the performance of the
ADCIRC model as the primary model in simulating compound
flooding and compare its performance in its full capacity (e.g., by
including the wind field) with HEC-RAS. The second scenario
was chosen to evaluate the effect of having riverine flows not
only within the watershed but also farther downstream. The
third scenario was tested to assess the effect of flow discharging
from the adjacent watersheds (Sabine River) when evaluating the
compound flooding within a watershed (Neches River). Finally,
the last two scenarios were tested to see the effect of storm surge
and examine to see if compound flooding from storm surge
and river discharge played a significant role during Hurricane
Harvey. It should be noted that the WSEs in the Sabine Lake,
where both rivers discharging into, are a function of tides, storm
surge (wind driven), and discharges from both rivers. Although
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the HEC-RAS model developed for the Neches River watershed
does not include the discharge rates from Sabine river, using the
actual WSEs observed during a hydrologic event (i.e., Hurricane
Harvey) will incorporate the effect of the aforementioned
variables into themodel. In other words, the effect of Sabine River
discharge on Neches River inundation pattern is dictated to the
model through the downstream boundary condition that is based
on observed data. This dependency to the downstream boundary
condition could be problematic when the model is being used to
test scenarios instead of hindcast studies. In this case, a significant
error in the model results could be introduced by not considering
the effect of adjacent watersheds or not including them in the
coupled models (e.g., ADCIRC).

Comparison Metrics
In order to analyze the differences in WSE output of the
HEC-RAS and ADCIRC models, it is essential to quantitatively
evaluate the differences in the models as well as the difference
between eachmodel and real data collected during the hydrologic
event. As seen in Figure 1, there are four locations within the
HEC-RAS and corresponding ADCIRC domains that have USGS
or NOAA gauge data. These locations are the Neches River
at the Saltwater Barrier, the Neches River at Beaumont, the
Neches River at Beaumont Yacht Club, and Rainbow Bridge
(see Figure 1). Among these four locations, the Neches River
at the Saltwater Barrier (USGS gage) is located upstream of the
flow boundary in the ADCIRC domain and very close to the
HEC-RAS upstream boundary condition. Furthermore, there is
a hydraulic structure located at that location that is not included
in the ADCIRC mesh. Thus, in this study, data from the other
three gauges were used for comparisons with model results.
In the subsequent section, the resulting output from ADCIRC
and HEC-RAS models will be compared with each other and
the gauge data at these three locations. In order to evaluate
the magnitude of error between the models and the real data
quantitatively, the root means square error (RMSE) is computed
for each comparison. RMSE is described by the following:

RMSE =

√

∑T
t=1

(

ŷt − yt
)2

T
(1)

Where t is the time step, ŷt is the observedWSE at time step t, yt is
the model output at time step t, and T is the total number of time
steps. In addition to RMSE, the coefficient of determination (R2)
is computed for each of the comparisons in order to evaluate how
well the models are replicating measured data. R2 is described by
the following:

R2 = 1−

∑T
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(
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)2

∑T
t=1

(

y− yt
)2

(2)

Here y denotes the mean of the observed data. While RMSE
provides information on the accuracy of the model in predicting
the magnitude, R2 evaluates how close the model fits the data.
A value of R2of 1 means that the model fits the data exactly. In
addition to evaluating the accuracy, the bias and mean absolute

error (MAE) will also be calculated in order to see if the models
have an underlying tendency in undershooting or overshooting
measurements and to evaluate the aggregate of error between the
models and data time series. MAE and bias are calculated using
the following formulas:

MAE =

1
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)
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It should be noted that instead of relying on real observational
data from the hindcast that the small mesh uses, the large
ADCIRC mesh relies on wind driven storm surge and the
harmonic tide from the open ocean. As a result, less accurate
results are anticipated from the large mesh simulations; however,
the general trends and periodicity of the rise in WSE is expected
to remain similar to the HEC-RAS and ADCIRC small mesh.

RESULTS AND DISCUSSION

Comparing ADCIRC and HEC-RAS
The small ADCIRC mesh, large ADCIRC mesh (with both
Neches and Sabine Rivers), and HEC-RAS models were run for
the Hurricane Harvey case and resulted in the following WSE
time-series (Figure 3) at the Neches River at Beaumont, Neches
River at Beaumont Yacht Club, Rainbow Bridge stations, and
HEC-RAS downstream boundary location (see Figure 1 for the
locations). The comparison metrics for all simulations are shown
in Table 1. The small ADCIRC mesh showed a very similar
pattern in predicting WSE when compared to HEC-RAS (0.76
< R2 < 0.88). It is apparent that, in general, the ADCIRC small
mesh simulation underpredictedWSEs (Figure 3) with an RMSE
between 0.13 and 0.59m and bias between −0.01 and 0.50m
compared to the HEC-RAS model. The small mesh ADCIRC
results at Rainbow Bridge, the most downstream observational
gauge, compared well with the HEC-RAS results as shown in
Figure 3. At this station, there was an RMSE of only 0.13m with
an R2 of 0.88, MAE of∼11.7% and a small bias of−0.01m, which
corresponds to an overprediction.

The large ADCIRC mesh performed somewhat similar to the
small ADCIRC mesh; the large mesh results were slightly less
accurate (compared to observational data) and underestimated
the WSE even more than the small mesh. The RMSEs in
comparison to the HEC-RAS output and real-time observations
were between 0.21–0.62m and 0.12–0.84m, respectively. The
observed data, in Rainbow Bridge and Neches River at Beaumont
stations, as seen in Figure 3, was too sparse, so the evaluation
metrics presented in Table 1 should be treated with care for these
two stations. However, qualitatively, the observed data followed
very close to the HEC-RAS output.

Based on the results depicted in Figure 3 and Table 1, it
appears that the ADCIRCmodel is capable of computing changes
in WSE due to riverine flooding though with underprediction
of WSEs in some areas. As discussed in the methods section,
HEC-RAS and ADCIRC models have different equations as well
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FIGURE 3 | Results of various ADCIRC simulation scenarios for water surface elevations (WSEs) at different locations (see Figure 1 for the locations).

as various numerical schemes. However, another reason that
could account for the underprediction of the first two stations
is the fidelity of the ADCIRC mesh. The small ADCIRC mesh
simulation was very accurate in modeling the WSE at Rainbow
Bridge; the domain in the small model has a much heavier
refinement in its mesh. The two stations where model results
from ADCIRC underpredicted the WSE were in locations where
the ADCIRC mesh was less detailed than the HEC-RAS mesh
(as seen in Figures 2B,C). It has been shown that increasing the
density of nodes in an ADCIRCmesh, especially near geographic
features such as channels or lakes where there are steep variations
in elevation, can drastically improve accuracy (Pringle et al.,
2020). Finally, it should be noted that the HEC-RAS model was
intensively calibrated for the Hurricane Harvey event while the
ADCIRCmodel was not calibrated explicitly for this event.While
the ADCIRC meshes were tuned to match the HEC-RAS model,
tuning parameters and nodal attributes could also increase the
accuracy as have be seen in multiple validations and sensitivity
analyses using ADCIRC (Blain, 1998; Dietrich et al., 2011a, 2012;
Bhaskaran et al., 2013; Hope et al., 2013).

Impact From Storm Surge
Since Hurricane Harvey was characterized by exceptionally high
riverine discharge that heavily impacted water surface elevations
in the Neches river watershed and Sabine Lake areas, it remains
to be seen what influence storm surge had in compounding with

the riverine discharge. As shown in Figure 4A even with all the
flow emanating from Sabine and Neches Rivers, the WSE in the
mouth of the Gulf of Mexico (GOM) did not change significantly
without the presence of a wind field (storm surge). However,
once the wind was considered an increase of almost 0.6m (2
ft) was observed around August 25 when Hurricane Harvey hit
the study area. Such an increase in WSE in the downstream of
the study area accompanied by the flow from upstream could
be considered a compound flooding event. The effect of flow on
WSE at this location was observed several days after the passage
of the strongest wind field when the riverine flow had continued
to drain the runoff from the upper watersheds to GOM. The
compounding effect of the wind and riverine flow in locations
further upstream of the GOM mount (i.e., at the confluence
of Neches River and Sabine Lake) is shown in Figure 4B. The
simulations with the wind field showed higher level of WSE at
the beginning of Harvey but once the high volume of runoff was
introduced to the system and the wind field passed the study area,
the scenarios with and without wind that considered flow showed
almost identical results.

Effect of Riverine Flow
In this section, the results of the effects of including riverine flow
on the large ADCIRC mesh are presented. The ADCIRC large
mesh was run for the same Hurricane Harvey test case, once with
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TABLE 1 | Evaluation metrics for different simulation scenarios.

Metric* Comparison Scenarios**

HEC—small HEC—large HEC—Obs Small—Obs Large—Obs

Rainbow bridge***

RMSE 0.13 0.21 0.16 0.25 0.12

R2 0.88 0.78 0.72 0.31 0.58

MAE 11.77% 14.86% 14.03% 29.80% 13.57%

Bias −0.01 0.02 0.08 0.22 0.03

Neches river at Beaumont Yacht club

RMSE 0.59 0.61 0.16 0.62 0.68

R2 0.76 0.73 0.98 0.79 0.66

MAE 17.12% 13.64% 6.48% 15.70% 14.43%

Bias 0.46 0.43 −0.04 0.46 −0.49

Neches river at Beaumont***

RMSE 0.58 0.62 0.21 0.71 0.84

R2 0.84 0.79 0.98 0.80 0.71

MAE 13.90% 11.98% 7.30% 15.47% 15.18%

Bias 0.50 0.46 −0.10 −0.55 −0.64

*RMSE, Root mean square error; R2, Coefficient of determination; MAE, Mean absolute

error. Units are in meters unless otherwise specified.

**HEC, HEC-RAS; Small, Small ADCIRC mesh; Large, Large ADCIRC mesh;

Obs, Observation.

***Observed data was available only for a part of simulation time (see Figure 3).

FIGURE 4 | Water surface elevations from ADCIRC with various forcing

conditions turned on/off (A) just downstream of the Sabine Lake at its

confluence with Gulf of Mexico, and (B) at the confluence of Neches River and

Sabine Lake (HEC-RAS and ADCIRC small mesh downstream boundaries).

riverine discharge included from both Sabine and Neches rivers,
and once with no riverine flow.

FIGURE 5 | Maximum elevation in the computational elements over the period

of simulation for the large ADCIRC mesh with and without riverine flow inputs.

Figure 5 shows the maximum WSE at each model node over
the course of the entire simulation (also known as maxele) for the
large ADCIRC mesh with and without riverine flow inputs. The
maximum elevation plots are not representative of any singular
point in time, but instead, the maximum elevation reached at
each point in space over the course of the whole simulation. Such
plots are useful in evaluating the overall differences between the
two simulations. It is apparent in Figure 5 that there is a large
discrepancy in the WSE patterns between the two simulations
(with and without riverine flows).

In addition to having much larger areas of inundation, the
simulation with riverine flow had much higher peak WSEs,
which indicates that there is indeed a compound flooding effect.
The riverine flow compounds with the incoming storm surge,
resulting in higher WSE than with either riverine flow or surge
considered separately. In order to analyze these results in more
detail, the same three stations as in the previous section were used
for comparisons. Additionally, one location near the downstream
boundary of the HEC-RAS domain, one location in the middle of
the Sabine Lake, as well as one location at the mouth of the Gulf
of Mexico were used (see Figure 6).

There are quite large differences in WSEs between the
simulations that include and neglect the riverine discharges.
Such a large difference indicates that flooding in an estuarine
system is a function of both storm surge and riverine discharge;
without including the riverine flow in the simulation, many of
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FIGURE 6 | ADCIRC output for different scenarios at the location of all comparison stations shown in the center colored panel.

the computational elements did not even become inundated for
the bulk of the simulation (Figure 5). Including riverine flow in
the simulation results in a dramatic increase in accuracy. For
instance, as shown in Table 1, for the large mesh (with the flow),
the RMSE at Neches River at Beaumont was 0.62 and 0.84m
when compared to HEC-RAS and observed data, respectively.
This RMSE is much smaller than the RMSEs of >4.00m for the
ADCIRC large mesh without flow. Similarly, the Neches River at
Beaumont Yacht Club and Rainbow Bridge (Figure 6) show that
running the ADCIRC simulation with riverine flow taken into
account dramatically increases accuracy when compared to the
real data and the validated HEC-RAS model.

The inclusion of riverine flow influences WSE further
downstream, outside of where the small mesh ADCIRC and
HEC-RAS domains end. Figure 6 shows the difference in WSEs
due to including flow in the central part of Sabine Lake, where
it was heavily flooded during Hurricane Harvey. The differences
in WSEs were as large as 1.3m. In this location, up to August
28th, the WSEs are relatively similar, indicating that the changes
in the mild rise in WSE over this period are a result of tides and
storm surge. However, after this time, the two WSE time-series
diverge. This divergence agrees with the timing of the increasing
flow input in the upstream. The results at the mouth of the Gulf
revealed that the riverine discharge does not affect the WSEs
beyond the estuarine system. As shown in Figure 6, the scenario
with both Neches and Sabine River (with flow) resulted in a

minor increase (0–5 cm) in the WSE at the mouth of the Gulf
where the Sabine Lake discharges into the Gulf ofMexico. During
an event such as Hurricane Harvey where the spatial extent of the
rainfall-induced flows from the event was an extremely large area
including many watersheds, not considering the riverine flows
and their compound effect in determining WSEs could lead to
significant underpredictions of inundation and flood risk. Thus,
when evaluating storms where river discharge is large, it is critical
to incorporate river flow in order to obtain accurate WSEs. This
comes as no surprise especially whenmodeling a storm with such
high riverine discharge as Hurricane Harvey. These results are
also not limited to just this test case as ADCIRC has been shown
to increase in accuracy when incorporating the effects of riverine
discharge through boundary conditions (Bunya et al., 2010).

Interaction Among Watersheds
The previous sections demonstrate conclusively that adding
riverine flow into the ADCIRC model can allow for much higher
accuracy in modeling storms with compound flooding. In this
section, the codependences of two watersheds are analyzed. In
the previous simulations, when the ADCIRC large mesh with
the riverine flow was used, the discharges from both the Neches
and Sabine watersheds were included since they are in close
proximity, and both feed into the Sabine Lake. Figure 7 shows
the significance of incorporating both watershed discharges as
opposed to just from the Neches. Including the Sabine River
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FIGURE 7 | Maximum elevation in the computational elements over the period

of simulation for the large ADCIRC mesh with only Neches River and both

Neches and Sabine River flows. These plots are not representative of any

singular point in time, but instead, the maximum elevation reached at each

point in space over the course of the whole simulation.

caused higher and more intense inundations in the system. In
addition to areas located in the downstream of both Neches and
Sabine River, adding the Sabine River discharge caused changes
in the WSEs and flooding pattern of areas within the Neches
River (Figure 6).

Incorporating the two watersheds as opposed to just Neches
had the highest effect on the WSE at the Neches River at
Beaumont, followed by Rainbow Bridge and then Beaumont
Yacht Club (see Figures 1, 6 for locations). Neches River at
Beaumont showed the highest impact from the Sabine River,
while it is the farthest from the confluence of Neches and Sabine
Rivers. This high impactmight be due to the fact that the presence
of Sabine River discharge in the system caused some water to flow
back into the Neches River which resulted in more inundation in
the Neches River upstream. Without the addition of the Sabine
watershed, the accuracy of the Neches River at Beaumont would
be marginally better than not including any flow at all. It is
also interesting that the Neches only simulation at Rainbow
Bridge station remains quite similar to the simulation with both
watersheds up until around September 2nd when the overflow
from the Sabine watershed starts increasing WSE in the Neches.
Such an increase in theWSEs far away from the watershed outlets
emphasizes the importance of considering interactions among
watersheds when modeling compound flooding.

In addition to the areas upstream of the confluence of the
two rivers, including the discharges from Sabine River, could
potentially affect the downstream water bodies and floodplains
as well. As shown in Figure 6, right at the downstream boundary
condition of HEC-RAS and small ADCIRC model (see Figure 1)
the effect of extra flow is substantial. This finding is particularly
important when ADCIRC is being used for real-time simulation
or coupling with other hydrodynamic models (e.g., HEC-RAS).
A coupled system that only focuses on a single watershed
without considering the interactions among adjacent watersheds
could result in inaccurate WSEs. The discharge from Sabine
River also caused a 0.5m increase in WSE in the Sabine lake
(Figure 6) which caused more inundation in the adjacent lands
(Figure 7). Similar to the previous section, the effect of adding
more discharge on WSEs of the Gulf was minimal.

CONCLUSIONS

This research demonstrated ADCIRC’s ability to model
compounding effects from storm surge and riverine discharge
via loose one-way coupling with gage data through internal
time-dependent flux boundary conditions in a single watershed
by comparing ADCIRC with a validated 2-D hydraulic model in
HEC-RAS. As presented in this study, accounting for adjacent
watersheds through the incorporation of internal time dependent
flux boundary conditions in ADCIRC could have significant
impact on the accuracy of the WSEs during a tropical cyclone.
Furthermore, the results suggest that adjacent watersheds can
significantly impact the WSEs (as high as 4m observed) of their
neighboring watersheds at times of high riverine discharge and
should be considered when modeling compound flooding events
that affect more than one watershed in the same geographic
region. Some limitations in this study that can be improved upon
in the future are that short range waves and pluvial flooding
were neglected. A common way of addressing short range waves
in ADCIRC has been coupling ADCIRC with a wave model
such as WAVEWATCH III or the Simulating Waves Nearshore
model (SWAN). The contribution to compound flooding by
pluvial flooding in ADCIRC has not yet been addressed and is
currently an open area of research. Further improvements can
be made such as mesh refinement in the upstream locations in
the ADCIRC mesh as well as parameter calibration in order
to increase accuracy in the WSE when compared to gage data.
Additionally, including more watersheds across the Gulf of
Mexico, attempting to use this modeling framework to hindcast
more historical storms other than Hurricane Harvey, as well as
using this framework in a forecasting setting is a future goal.
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Traditional coastal flood hazard studies do not typically account for rainfall-runoff

processes in quantifying flood hazard and related cascading risks. This study addresses

the potential impacts of antecedent rainfall-runoff, tropical cyclone (TC)-driven rainfall,

and TC-driven surge on total water levels and its influence in delineating a coastal flood

transition zone for two distinct coastal basins in southeastern Louisiana (Barataria and

Lake Maurepas watersheds). Rainfall-runoff from antecedent and TC-driven rainfall along

with storm surge was simulated using a new rain-on-mesh module incorporated into

the ADCIRC code. Antecedent rainfall conditions were obtained for 21 landfalling TC

events spanning 1948–2008 via rain stations. A parametric, TC-driven, rainfall model

was used for precipitation associated with the TC. Twelve synthetic storms of varying

meteorological intensity (low, medium, and high) and total rainfall were utilized for each

watershed and provided model forcing for coastal inundation simulations. First, it was

found that antecedent rainfall (pre-TC landfall) is influential up to 3 days pre-landfall.

Second, results show that antecedent and TC-driven rainfall increase simulated peak

water levels within each basin, with antecedent rainfall dominating inundation across

the basin’s upper portions. Third, the delineated flood zones of coastal, transition, and

hydrologic show stark differences between the two basins.

Keywords: compound flooding, coastal inundation, rainfall runoff, Louisiana, coastal flood transition zone

INTRODUCTION

The great Louisiana flood of 2016 resulted in immediate and lingering flooding impacts that
exemplify a need to understand better the interplay between hydrologic, tide, and surge processes.
More than a week after the extreme rainfall event, the overland and riverine flows resulted in
unsuspected complications. Flooding at or near a confluence of two rivers produced dangerous
backwater flooding that led to inundation in dense urban regions. Areas in the lower portions
of the watershed are also vulnerable to hurricane storm surges, which warrants consideration of
the contribution from both overland and coastal flows to flood hazards and ultimately flood risk
(Leonard et al., 2014; Wahl et al., 2015; Wu et al., 2018).
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Historically, similar events have occurred, resulting in
complex interactions between rainfall- and coastal-induced
flooding: Hurricane Rita followed Katrina <4 weeks later. The
devastation of Hurricane Ike was exacerbated by having Gustav
hit Louisiana 12 days sooner. Hurricane Harvey (2017) caused
record rainfalls (1,539mm) in Texas along with 3m coastal
storm surge (Blake and Zelinksy, 2018; Valle-Levinson et al.,
2020). Similarly, Hurricane Florence (2018) caused 3m surges
along the North Carolina coast, with over 900mm of rainfall
(Erdman, 2018; Gori et al., 2020). Just a few weeks before
the time of this writing (August 2020), Hurricanes Marco and
Laura were forecast to make landfall across the Louisiana coast
hours apart. Hurricane Sally (September 2020) is currently
causing widespread flooding due to storm surge and prolonged
rainfall along the Alabama and Florida panhandle. To better
prepare for such outcomes, hurricane storm surge models must
incorporate a representation of overland flooding from rainfall-
runoff (including antecedent conditions) and tropical cyclone
(TC) induced storm tides. Especially under uncertain future
climates (Silva-Araya et al., 2018; Zscheischler et al., 2018; Paerl
et al., 2019; Santiago-Collazo et al., 2019).

A shortcoming of most coastal flood studies (both return
period and risk analyses) assumes that coastal and fluvial floods
are mutually exclusive events (Zscheischler et al., 2018; Santiago-
Collazo et al., 2019). Damage caused by recent TC and unnamed
storm events (e.g., 2016 Baton Rouge flood) that resulted in
compound floods has pushed the research community to develop
improved representations of combined hydrologic and surge
processes into the quantification of flood hazards and risk.
Furthermore, science-based information on flood hazards and
risk are needed for policy-makers and emergency managers
(White et al., 2010; Thaler and Levin-Keitel, 2016; Stephens
et al., 2017; DeLorme et al., 2020). Early efforts to solve
this problem have included simplistic model integration of
hydrologic and coastal ocean models using linking and one-way
coupling approaches. However, there is a need to refine and
develop holistic modeling frameworks to simulate the compound
effects of rainfall-runoff and storm surge flooding. Tightly-
coupled approaches that account for the complex and nonlinear
interactions across the coastal land margin are ideal (Bilskie and
Hagen, 2018; Santiago-Collazo et al., 2019; Shen et al., 2019).

There is a new recognition that flood risk at the coastal land
margin is influenced by hydrologic and tidal/surge processes,
especially in deltaic floodplains. This realization has led to the
awareness that there exists a transitional flood hazard zone
(i.e., flood transition zone) flanked by regions dominated by
hydrologic- and surge-only flooding mechanisms as defined by
Bilskie and Hagen (2018) and later examined by Shen et al.
(2019). The location and spatial extent of the flood transition
zone are event-dependent and a function of individual forcings
(e.g., rainfall and tropical cyclone characteristics) and regional
landscape characteristics (Bilskie and Hagen, 2018). Evaluating
the coupled hydrologic and surge influence on coastal flood
hazards will define coastal flood hazard transition zones that
span from hydrologic to coastal surge dominance. We aim to
address the fundamental issues of compound flooding and the
delineation of coastal flood zones by defining regions where

both rainfall that produces antecedent (i.e., with respect to the
storm surge) runoff and rainfall within the TC-driven storm
surge overlap via the development of a coupled hydrologic and
hydrodynamic model to enable more comprehensive enhanced
flood zone assessments.

Here, we present a novel approach for defining the coastal
flood transition zone using a series of synthetic TC events.
The computational model simulates water levels and currents
driven by antecedent rainfall, TC-driven rainfall, and hurricane
storm surge, all within the ADCIRC model framework. Water
levels resulting from rainfall-runoff was simulated using a new
rain-on-mesh module within ADCIRC. Rainfall accumulation
for antecedent conditions was obtained from observed rainfall
from historic hurricane events, and a parametric rainfall
model was used for TC-driven precipitation. We focus our
modeling efforts and flood zone delineation for two distinct
coastal basins in southeastern Louisiana—the Barataria and Lake
Maurepas watersheds.

MATERIALS AND METHODS

Study Area
We focus on two distinct hydrologic basins located in
southeastern Louisiana, the Lake Maurepas and Barataria
watersheds (Figure 1). These basins are hydrologically separated
by the Mississippi River and its extensive levee system and have
the following distinguishing characteristics.

Barataria Watershed

The Barataria watershed (Hydrologic Unit Code - HUC6 080903)
experiences flood hazards dominated by coastal surges (including
tropical and winter storms) and intense rainfall. The 7,000
km2 watershed is roughly funnel-shaped and extends from
Donaldsonville to the Gulf of Mexico, about 110 km long and
50 km wide (Figure 1A). The watershed has been closed off
from river flows since the 1930–40’s with the Mississippi River’s
leveeing and the closure of Bayou Lafourche-Mississippi River
connection in 1902. Minimal sedimentation is present in the
watershed. With a combination of subsidence and shoreline
erosion, the series of bays, lakes, and bayous have enlarged,
forming a network of hydraulically connected water bodies
within the basin (Morgan, 1967; Conner and Day, 1987).
Bathymetric depths within the basin are between 2 and 3m
NAVD88 and topographic elevations for most of the watershed
are <2m NAVD88, and most of the area is <1m NAVD88
(Figure 1B). The landscape consists of emergent estuarine
wetland to the south, a palustrine emergent wetland in the
central, and palustrine forested wetland in the upper portions of
the basin outlines by developed and cultivated land with the outer
levee system.

Lake Maurepas Watershed

The Lake Maurepas watershed (HUC6 080702) presents
alternative characteristics to Barataria (Figure 1A). Hydrologic
processes dominate the majority of the LakeMaurepas watershed
flood hazard zone. It likely has never been exposed to surge
flooding except for the area surrounding Lake Maurepas. The
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FIGURE 1 | (A) Overall region of study in southeastern Louisiana. The ADCIRC storm surge model boundary is shown as a transparent background that extends

across the coastal floodplain in naturally dry regions. Barataria and Lake Maurepas Watersheds are enveloped by bold off-white and aqua lines. USGS gage

07380120 is shown in orange (G1). Rainfall stations are labeled as follows: (1) Lake Charles, (2) Morgan City, (3) Baton Rouge, (4) Donaldsonville, (5) New Orleans

Audubon Park, (6) New Orleans International Airport, and (6) Abita Springs. Thin white lines delineate the state boundaries. Service Layer Credits: Source: Esri, Maxar,

GeoEye, Earthstart Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. (B) Topographic and bathymetric elevations (m,

NAVD88) of the ADCIRC unstructured mesh of coastal Louisiana. The Lake Maurepas and Barataria watersheds are outlined in black. Label (1) is Lake Pontchartrain,

(2) is Lake Maurepas, (3) is Lake Borgne, and (4) is Barataria Bay.
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basin is the principal drainage system of Baton Rouge through
the Comite and Amite Rivers into Lake Maurepas and then Lake
Pontchartrain. The watershed area is 12,445 km2 with elevations
ranging from over 100m NAVD88 in southwestern Mississippi
to under 1m in the wetlands around LakeMaurepas (Figure 1B).
The landscape is made up of Estuarine and Palustrine Emergent
Wetlands near the outlet and Palustrine Forested Wetlands
adjacent to Lake Maurepas and the Amite River. The majority
of the watershed’s middle and upper portions are collections
of grasslands, forests, and developed regions. Herein, when
referencing the Lake Maurepas watershed, we focus on the
portion south of Interstate 10, the shaded region south of
Baton Rouge and Hammond, shown in Figure 1A. This southern
portion of the watershed area is 3,364 km2 (27% of the total
watershed area).

Hydrodynamic Model Setup
ADCIRC

Computations are performed using ADCIRC (ADvanced
CIRCulation), which is a set of computer codes that solves the
nonlinear form of the depth-integrated shallow water equations
(specifically the generalized wave community equation) for
water surface elevation and currents across an unstructured
finite element mesh (Kinnmark, 1985; Kolar et al., 1994;
Luettich and Westerink, 2004; Westerink et al., 2008). In this
work, the implicit solver was employed with a 1-s time-step
(Courant-limited). Wetting and drying are activated (threshold
of 5 cm), baroclinic and advection terms are neglected, and a
spatially-constant horizontal eddy viscosity for the momentum
equations was set to 50 m2/s. Surface roughness parameters
are based on the Coastal Change Analysis Program (C-CAP),
including Manning’s n coefficient for bottom roughness and
vegetation canopy (Dietrich et al., 2011; Cobell et al., 2013).
Vegetation canopy reduces marine-based wind speed over land
based on upwind conditions (Atkinson et al., 2011). Wind drag
across the water surface employed the storm sector-based Powell
formulation with a wind drag of 0.002 (Powell, 2006; Black et al.,
2007; Dietrich et al., 2011).

Coastal Louisiana Unstructured Mesh

The unstructured mesh used in this study originates from
the 2017 Louisiana Coastal Master Plan ADCIRC model mesh
(Roberts and Cobell, 2017), but with updates bringing the
model to represent present-day (Figure 1B). The mesh contains
1,454,454 vertices and 2,831,106 elements. The mesh spans the
western north Atlantic Ocean (westward from 60◦ longitude),
the Caribbean Sea, and the Gulf of Mexico with high resolution
across coastal Louisiana. Mesh resolution in the Gulf of Mexico
ranges from 14 km in the central portion of the basin to
2 km along the continental shelf and variable resolution of 15–
500m across the Louisiana coastal floodplain. The Amite River
from Lake Maurepas to Interstate-10 (which is the northern
mesh boundary) was inserted into the mesh with a local
resolution of ∼40m and depths of 4m NAVD88. This mesh
has undergone extensive validation for astronomic tides, wind-
waves, and hurricane storm surge [see Roberts and Cobell (2017)

for validation results]. This model is currently deployed for
real-time surge forecasts to support the state of Louisiana.

Bathymetric and topographic elevations of the mesh were
obtained via the USGS topographic elevation model of the
northern Gulf of Mexico (US Geological Survey, 2020),
United States Army Corps of Engineers (USACE) channel
surveys, levee surveys, and recent bathymetric surveys provided
by the state of Louisiana. This mesh (and its precursors) has
been validated for astronomic tides, and numerous hurricanes,
including Katrina and Rita (2005), Ike and Gustav (2008), and
Isaac (2012) (Bunya et al., 2010; Dietrich et al., 2011, 2012; Cobell
et al., 2013; Roberts and Cobell, 2017) and has been used for
projects such as the Louisiana Coastal Master Plan, FEMA flood
insurance studies, levee recertification, and real-time storm surge
forecasting (Dietrich et al., 2013).

Antecedent Rainfall
A general investigation into the probability of antecedent
rainfall amounts before hurricane landfalls examined available
precipitation data sources along the Louisiana coast. Since
a reliable record of hurricane landfalls exists well into the
1800’s, the limiting factor was any limitation in the available
precipitation data. In developing a plan to optimize the
information content in rain-field probabilities in advance of
hurricane landfall, two factors were considered: spatial resolution
and length of record. An initial effort examined the application
of HRAP (Hydrological Rainfall Analysis Projection) data, with
grid cells that cover an area on a polar stereographic grid. The
Limited Fine-Mesh grid version for data available from 2002
to 2019 at the time of this project was conducted utilized a
mapping routine to convert to grid cells that were ∼4-km by
4-km. Unfortunately, the 2002 data could not be retrieved in
a usable form, and only post-2003 data was available for this
study. Thus, this data contained an insufficient range of hurricane
parameters needed to establish a reliable representation of long-
term rainfall probabilities occurring before landfall despite the
high spatial resolution.

Since additional samples were required, the only choice
available was to use rainfall from meteorological station data
available from the National Climatic Data Center (NCDC). Due
to size limits in downloads, this data was downloaded over
a period of about a month. Much of the data in volunteer
stations were missing during some hurricane events but were
available for others. Therefore, all of the obtained data was filtered
to selected rainfall records within the 10-days before landfall.
The stations used in the final analysis are shown in Figure 1A.
All stations used reported hourly rainfall except for the Abita
Springs location, which reports daily rainfall totals. Abita Springs
was included due to its proximity to the study area and its
relatively complete record. Days 1–3 before the day of landfall
were included for this daily data. Storms with central pressures
higher than 990mb were excluded since these would be primarily
rain events inland, leaving a total of 21 storms during the period
from 1948 to 2019 as the storms considered in this analysis. In
chronological order, these are as follows: 1948, Barbara (1953),
Bertha (1957), Ethel (1960), Camille (1969), Danny (1985), Elena
(1985), Juan (1985), Bonnie (1986), Florence (1988), Chantal
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(1989), Andrew (1992), Danny (1997), Isadore (2002), Lili (2002),
Bill (2003), Matthew (2004), Cindy (2005), Edouard (2008),
Gustav (2008), and Ike (2008). The final antecedent rainfall
pattern contains the mean total rainfall (at available rainfall gage
stations—see Figure 1A) from each of the 21 hurricane events.
The result is a 0.5 × 1.0 deg grid that spans the coastal region.
Additionally, the rainfall grid is adjusted laterally to account for a
given storm’s landfall location.

Parametric Tropical Cyclone Rainfall Model
Rainfall intensities associated with tropical cyclones (TC) were
taken from Lonfat et al. (2004) and the US Army Corps
of Engineers (2006) Interagency Performance Evaluation Task
Force (IPET) study for southeast Louisiana. Rainfall intensity
associated with tropical cyclones (TC) varies as a function of
distance from the TC center (r) and azimuth relative to the TC
forward motion (β). The mean rainfall intensity field (mI), as
a function of r and β , spatially varies with the central pressure
deficit (1P), radius to maximum winds (Rmax), and vertical wind
shear (S). Spatially-varying rainfall intensity for a TC is given by:

mI (r) =

{

1.14+ 0.121P, for r ≤ Rmax

(1.14+ 0.121P) e
−0.3

(

r−Rmax
Rmax

)

, for r > Rmax

(1)

Where rainfall intensity is in mm/hr and the central pressure
deficit is in mb. Since rainfall intensity varies with azimuth about
the TC center, an asymmetric factor of 1.5 is applied to the
rainfall intensity on the TC track’s right-hand side. Figure 4D
shows an example of the total rainfall accumulation for synthetic
storm 145.

Rain-On-Mesh
A rain-on-mesh module was developed and applied to the
ADCIRC source code. During run time, rain is applied to
individual mesh nodes and elements and is based on the
current wet/dry status. Wet nodes receive rainfall by totaling
the incremental rainfall for the current time-step to the water
surface elevation:

ηi = ηi,t−1 + Rt (2)

Where η is the water surface elevation at node i and R is the
rainfall at time t. The rainfall applied for the current time-step,
R, is rainfall intensity multiplied by the model time-step. This
rainfall is marked as accounted rainfall as it directly translates
into a change in surface water elevation.

Rainfall is also applied at dry nodes under specific constraints
to avoid wetting elements with small inundation depths. If the
total rainfall accumulation is less than a specified threshold
for a mesh node, then the node remains dry. This rainfall is
considered unaccounted rainfall as it does not directly translate
to surface water elevations during the current time step. Once
the total rainfall is equal to or exceeds the specified threshold, the
node is ready to change to a wet state. When the total rainfall
for all three nodes for a given element exceeds the minimum

rainfall accumulation threshold, then the element and its nodes
are marked as wet. The nodes and elements are then activated
and participate in the computations, and rainfall is received
discussed with Equation (2), and the rainfall is marked as
accounted rainfall. Herein, the rainfall accumulation threshold to
wet (activate) dry (currently inactive) nodes was set to 50mm. A
rainfall accumulation threshold of 100mm was tested. However,
100mm was too large of a threshold to determine when rainfall-
runoff was allowed to begin. Once the node is activated, mesh
nodes are set to an initial water depth of 0.10m above the land
surface. A value of 0.10m is a depth of similar magnitude to
typical values used for a minimum wetting depth threshold in
coastal surge models that employ wetting and drying (Dietrich
et al., 2006; Medeiros and Hagen, 2012). This value was selected
to allow for sufficient wetting to occur while limiting numerical
artifacts due to wetting/drying. Rainfall was not applied to areas
enclosed by a levee system below mean sea level as there is no
natural outlet for water to flow. In coastal Louisiana, rainfall is
routed to outfall canals via complex pump systems.

Rainfall intensity can be applied to a simulation in three
ways. The first is via a gridded rainfall intensity field (refer
to Section antecedent rainfall). The second is rainfall intensity
associated with a TC that is internally computed within ADCIRC
(refer to Section parametric tropical cyclone rainfall model). The
third method involves joining the gridded rain with TC-driven
rain. Application of rainfall into the model was accomplished by
considering the maximum rainfall intensity value at each point
in the model domain at each time-step between the gridded and
TC-driven rain:

ri,t = max
(

rGi,t , r
TC

i,t

)

(3)

Where ri,t is the rainfall intensity at node i and time t, rG is the
rainfall intensity from the gridded data, and rTC is the rainfall
associated with the TC. In this work, the antecedent condition is
applied using a gridded rainfall intensity field.

Synthetic Storm Selection and Simulations

Set
The magnitude of the surge generated by a TC is an essential
factor in determining coastal flooding’s contribution to total
combined flood levels. For scenarios where storm surge is
large relative to antecedent and rainfall magnitudes, the area of
combined flooding dominated by coastal dynamics will increase,
and the transition zone will extend further. For scenarios where
storm surge is small relative to the contribution of antecedent
conditions and rainfall, combined flood levels are less influenced
by coastal processes, and the transition zone will extend further
toward the coast. For this study, surge magnitude is represented
by the return period (i.e., annual exceedance probability) of
flooding generated by a TC in the areas of interest.

To investigate how flooding dynamics are influenced by the
combination of coastal storm surge and rainfall-runoff, a small set
of synthetic TC (also called synthetic storms) were selected from
the total FEMA storm suite (FEMAUSACE, 2008). Two separate
storms sets were established: one for the Barataria basin and one
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TABLE 1 | Return period stillwater elevations (m, NAVD88) for the points of

interest.

Study basin Point of interest Return period (m, NAVD88)

10-years 50-years 100-years

Upper Barataria Basin B1 0.94 1.37 1.55

B2 1.04 1.49 1.71

B3 1.19 1.71 1.95

B4 1.22 1.74 1.98

Target Barataria Basin Flood Elevation 1.16 1.65 1.89

Lake Maurepas M1 1.83 2.56 2.87

M2 1.80 2.47 2.77

M3 1.80 2.50 2.83

M4 1.89 2.83 3.23

M5 1.92 2.93 3.38

M6 1.31 1.83 2.10

Target Lake Maurepas Basin Flood Elevation 1.86 2.65 3.02

The target basin flood elevation was determined from a combination of the return period

stillwater elevation values (m, NAVD88) for each point of interest and their respective

location in the basin. The target values were used for synthetic storm selection.

for the Lake Maurepas watershed. Synthetic storms were selected
based upon the peak water level generated at locations within
the study watershed areas. Published FEMA flood elevations for
the 10-, 50-, and 100-years return periods were defined as target
flood elevations within each basin (see Table 1). For each return
period, storms were selected from the FEMA synthetic storm
suite that most closely generated the target flood elevation at
the sampling points. Storm characteristics were also considered
to reduce the number of storms to a set of four storms for
each return period. From the subset of storms that matched the
target surge elevations, storms were prioritized that made landfall
with proximity to the area of interest to attain impactful rainfall
intensity. Storms that track andmake landfall far from the area of
interest generate rainfall with little to no flooding impacts. Efforts
were also made to include a range of track headings, forward
speeds, and radius of maximumwind within the final storm suite.

The target flood elevations are based on the return still water
levels at sampling locations within each basin (Figure 2). For the
Lake Maurepas basin, six points were laid out to characterize the
flood elevations, where the points to the west experience higher
flood elevations. For the upper portion of the Barataria basin,
four points were laid out to characterize the flood elevations. It
is noted that point B1 lies in an area sheltered by levees, thus
not influencing the selection of representative TCs. The target
stillwater elevations are summarized in Table 1.

A preliminary set of 7–10 storms was selected that generate
peak water levels similar to a set of target return period flood
elevations. Of the initial set of 7–10 tropical cyclones, four were
selected according to the following procedure:

1. Sort the candidate storms in ascending order of the differences
between the peak storm surge of an individual storm and the
target flood elevation.

2. Eliminate the storms that are far away from the area of interest,
e.g., twice the radius of maximum wind away.

3. Prioritize the stormwith different parameters, such as forward
speed, headings, and radius of maximum wind.

After screening, four storms were selected for each basin’s return
period, as shown in Figure 3 described in Table 2. These storms
are used in the model simulations to represent the TC-driven
coastal flooding scenarios.

Rather than refer to the synthetic storms as the storm
that represent a given return period stillwater elevation, we
will simplify and use the following terminology: low) selected
synthetic storms that generated a 10-year return period water
level; medium) synthetic storms that caused a 50-year return
period water level; and high) synthetic storms that generated a
100-year return period water level (Table 2).

Simulation Set
A total of 12 simulation sets were performed for using the
synthetic TCs identified in section synthetic storm selection and
simulations set for each watershed. Astronomic tide forcing was
not included in any of the simulations. Each simulation set
formed four individual runs: (1) storm surge only, (2) storm
surge and rainfall-runoff from TC-driven rain, (3) rainfall-runoff
from antecedent rainfall only (no storm surge), and (4) rainfall-
runoff from antecedent and TC-driven rain and storm surge in
the same simulation. These scenarios result in 48 simulations for
each watershed and 96 overall simulations.

The simulations that included storm surge were forced by
wind speed and pressure for the synthetic storms outlined
in Section synthetic storm selection and simulations set. The
storm surge and TC-driven rainfall-runoff include the same
forcing as in (1) and rainfall-runoff associated with the TC
using the rain-on-mesh module introduced in section rain-on-
mesh and rainfall accumulation defined by the parametric rainfall
model described in section parametric tropical cyclone rainfall
model. The simulation of antecedent rainfall employed the rain-
on-mesh module with rainfall accumulation from antecedent
conditions prescribed in Section antecedent rainfall and no
meteorological forcing. Finally, the forcings from the synthetic
TC, antecedent rain, and TC-driven rainfall were included in a
single model simulation.

Flood Zone Delineation
The delineation of the hydrologic, coastal, and coastal flood
transition zones is similar to that proposed in Bilskie and Hagen
(2018). The following notation is used: ζR is the peak water
level from the antecedent rainfall only simulation, ζS is the peak
water level from storm surge only (no rainfall) simulation, and
ζRS is the peak water level resulting from the combined rainfall-
runoff, TC-driven rain, and surge simulation. Therefore, the we
define the hydrologic zone as the region where ζR ∼

= ζRS (area
covered wetted only by rainfall), the coastal flood transition zone
is defined as the region where ζR > ζS and ζRS > ζR, and
the coastal zone is defined as the region where ζS > ζR. It is
likely that peak water levels in the coastal zone will be greater
for ζRS than ζS, but this region is dominated by storm surge,
hence ζS > ζR.
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FIGURE 2 | Sampling locations for the synthetic storm selection in the Barataria watershed (B, orange circles) and Lake Maurepas (M, green circle) watersheds.

The classification of the three possible flood zones was
performed for each mesh node within the two respective basins
for each set of simulations. Based on the flood zone classification,
each mesh node was assigned either a value of 100 for the
coastal zone, 200 for the coastal flood transition zone, or 300
representing the hydrologic zone. The unstructured mesh with
these values was then transformed into a structured grid (IMG
format) with a horizontal resolution of 20m and imported into
ESRI ArcMap. Within ArcMap, the raster was converted to a

series of polygons where each polygon represented one of the
three flood zone types.

In addition, the flood zones were generalized based on
the low-, medium-, and high-intensity storm sets. All four
flood zone maps were combined for each return period. The
coastal flood transition zone was defined as any region within
the watershed that was classified as a flood transition zone
for any of the four event-driven flood zone classifications.
The hydrologic zone was the region where all four individual
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FIGURE 3 | Synthetic storm tracks for the Barataria (A–C) and Lake Maurepas (D–F) watersheds. (A,D) are the storms that cause the 10-year stillwater surge (low),

(B,E) the 50-year (medium), and (C,F) the 100-year (high). Storms 506 and 546 in (B) are the same track, but have different storm parameters. Storm parameters are

shown in Table 2. Basemap courtesy of Mapbox.
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TABLE 2 | Synthetic storm parameters.

Basin Storm set Synthetic

storm ID

Central

pressure (mb)

Forward speed

(m s−1)

Radius

(km)

Wind speed

(m s−1)

Peak surge at

B4/M4 (m)

Barataria Basin 10-years storms (Low) 532 975 3.09 28.97 – 1.19

562 975 3.09 28.97 – 1.22

11 960 5.66 33.80 32 1.22

77 900 5.66 28.97 46 1.19

50-years storms (Medium) 10 960 5.66 17.70 44 1.65

68 900 5.66 19.31 56 1.71

137 960 3.09 27.36 30 1.65

160 930 8.75 27.36 44 1.68

100-years storms (High) 13 930 5.66 12.87 51 1.92

17 900 5.66 22.53 49 1.92

98 930 3.09 27.36 37 1.89

145 930 3.09 27.36 26 1.83

Lake Maurepas Basin 10-years storms (Low) 506 975 5.66 57.94 – 1.86

521 975 5.66 40.23 – 1.86

535 975 3.09 28.97 – 1.43

546 975 8.75 28.97 – 1.98

50-years storms (Medium) 69 900 5.66 28.97 46 2.83

117 960 5.66 27.36 33 2.77

147 930 3.09 27.36 26 3.05

157 930 8.75 27.36 34 3.23

100-years storms (High) 9 900 5.66 33.80 47 3.02

93 930 3.09 27.36 26 3.20

102 930 8.75 27.36 45 3.54

145 930 3.09 27.36 26 3.17

Values of central pressure (mb), forward speed (m s−1), radius to maximum winds (km), and wind speed (m s−1) are taken at landfall. Blank wind speed values (–) indicate storms are

of tropical storm intensity.

simulations resulted in a hydrologic zone, and the coastal zone
was classified similarly.

RESULTS

Validation
Herein, we perform a model validation based on an extreme
rainfall event across the Lake Maurepas watershed in August
2016 (Wang et al., 2016; van der Wiel et al., 2017). The
validation period was from Aug. 1 to Aug. 31, 2016. No
astronomic tides or wind/pressure forcing was employed as
we wanted to examine model results within the Amite River
away from tidal influence. Two model simulations were setup
using details provided in Section hydrodynamic model setup
and included a 5-days ramping function to initialize the stage
in the Amite River (Aug. 1–5). The first model run included
time-varying inflow for the simulation’s duration into the Amite
River prescribed by USGS gage 07380120 located in Denham
Springs (near Interstate 10) (Figure 1A). The second model
run included the time-varying inflow and was forced with
rainfall from Aug. 11–15. The spatiotemporal rainfall pattern
was obtained from the National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmental
Information (NCEP) Rapid Refresh (RAP) numerical weather

model. The RAP model includes surface precipitation rate in
mm/sec on a 13-km grid. Rainfall rates were converted to mm/hr
and included in the ADCIRC simulation using the rain-on-mesh
module (Section rain-on-mesh).

The results of the two model simulations are shown in
Supplementary Figure 1 for the USGS gage 07380120. Both
models well-represent the rising limb, peak, and falling limb
of the river stage hydrograph and the peak stage timing.
The model run without rainfall; however, it under-predicts
the peak water level by 0.3m. The simulation with rainfall
included a better prediction of the peak stage with an
under-prediction of 0.04m. This gage is the only available
gage with reasonable water levels for this event. There is
a USGS gage (ID 07380200) downstream of Port Vincent,
near French Settlement; however, the gage location is located
slightly downstream of the Amite Diversion Canal. The
diversion of flow between the Amite River and diversion
canal and the diversion canal’s bathymetric representation is
not well-known.

Rainfall Accumulation
Rainfall accumulation was included for TC-driven rainfall,
antecedent conditions, and their joint combination. An example
of the total rainfall accumulation is shown for storm 145 (high
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FIGURE 4 | Rainfall totals (mm) based on storm 145 for antecedent conditions (A), tropical cyclone-driven rain (B), and combined rainfall (antecedent and TC-driven

rain) (C). The top row (A–C) represents the total rainfall amount, the middle row (D–F) is the portion of rainfall amount applied to the model simulation, and the bottom

row (G–I) is the unaccounted portion of the total rainfall. The Barataria and Lake Maurepas watersheds are outlined in gray. The storm track is also shown in gray.

TC – see Figures 3C,F for the track and Table 2 for storm
parameters) in Figure 4. The total antecedent rainfall (mm) is
shown in Figure 4A, TC-driven total rainfall in Figure 4B, and
their joint combination in Figure 4C [refer to Equation (3)—the
joint combination is not the sum of the two rainfall products, but
the maximum at each time-step]. The largest rainfall amount for
the antecedent conditions was 310mm and focused on the storm
track’s northeast region. Total rainfall along the storm track was
found on the storm’s eastern edge with a maximum value of
183mm; however, the largest values are generally offshore. The
joint antecedent and TC-driven rainfall amounts were the largest
east of the track near the landfall location, with a maximum value
of 460 mm.

A cumulative hyetograph from rainfall associated with storm
145 within the (A) Barataria (B3 in Figure 2) and (B) Lake
Maurepas (M6 in Figure 2) watersheds are shown in Figure 4.
Rainfall associated with antecedent conditions produces the
highest rainfall at both locations until 24-h before landfall
(vertical dashed line in the plots). Rainfall from the TC is
zero until just over 24-h pre-landfall when the storm’s outer
portion comes onshore in Barataria and 10 h pre-landfall for
Lake Maurepas. The total rainfall included in the joint rainfall
ADCIRC simulation is shown in Figure 5 as the dashed gray
curve. Barataria’s location is on dry ground, and therefore a
portion of the total rainfall is not included as this location starts
as dry. Rainfall is not accounted for until the total rainfall exceeds
50mm (refer to Section rain-on-mesh). On the other hand, the
Lake Maurepas location, shown in Figure 4B, is in the middle of

the Lake as it is always wet. Therefore, the cumulative accounted
rainfall is equal to the joint rainfall.

Simulated Inundation
Time-series water levels for a location in Barataria (B3 in
Figure 2) and Lake Maurepas (M3 in Figure 2) are shown in
Figures 5B,C for synthetic storm 145. Barataria’s location is on
the landscape (naturally dry ground), and the location of Lake
Maurepas is in the lake (always wet). With antecedent rainfall-
runoff only (black line), the Barataria location wets a few hours
into the simulation to a water level just over 0.50m NAVD88.
It gradually increases to 0.72m NAVD88 before slowly reducing.
Water levels are zero before the storm’s landfall and drives water
levels up to a peak near 1.62m NAVD88 for the surge and
TC-driven rain simulation (black dashed line). The combined
simulation (black dash-dotted line) that accounts for antecedent
rainfall-runoff, TC-rain, and storm surge follows the antecedent
rainfall only simulation. It then gradually increases until the
surge begins at hour 90 up to a peak of 1.84m NAVD88. The
superposition of the individual simulations (gray dashed line)
over-estimate Barataria’s surge level by 0.41m. Similar trends
were observed for Lake Maurepas. However, the water level
overprediction was not as substantial as the Maurepas location
(superposition over-estimates by 0.05m). This is caused by the
Lake Maurepas location being in open water. Therefore, a linear
addition (or superposition) of individual surface water runoff and
coastal surge will tend to over-predict the coastal flood hazard,
especially in normally dry areas.
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FIGURE 5 | Total rainfall accumulation hyetograph for synthetic storm 145 within the (A) Barataria watershed and (B) Lake Maurepas. Locations are shown in

Figure 2 (B3 and M6). Storm 145 makes landfall at 90 h (vertical dashed line). Water surface elevation (m, NAVD88) for synthetic storm 145 within the (C) Barataria

watershed and (D) Lake Maurepas. Water levels from antecedent rainfall only (no surge) is shown as the solid black line. Water levels for storm surge and TC-driven

rain (no antecedent rain) is shown as the dashed black line. Water levels for a combined storm surge, TC-driven rain, and antecedent rain is shown as the dash-dot

black line. A superposition of the individual curves from the antecedent and surge with TC-rain is shown as the gray dashed line.

Peak water levels from each intensity level of storms (low,
medium, and high) were combined to generate a set of maximum
of maximums (MOM) water level across the study watersheds.
For example, the maximum simulated water level among the four
low intensity storms for Barataria (storms 11, 77, 532, and 562 in
Table 2) were combined by taking the maximum value at each
computational point in the mesh. This was done for the surge
only (Figure 6A), surge plus TC-driven rainfall (Figure 6B),
antecedent conditions only (no storm surge) (Figure 6C), and the
combined storm surge, TC-driven rain, and antecedent rainfall
simulation (Figure 6D).

For the low set of synthetic storms in Barataria, the MOM
water levels are relatively low (<2m) for simulations with storm
surge only (no rainfall); however, the majority of the basin
is inundated (Figure 6A). Including TC-driven rainfall causes
a small increase in the basin’s inundated area (Figure 6B).
On the other hand, the antecedent rainfall MOM water levels
span the basin’s entirety outside the flood protection system,

albeit naturally dry regions experience a small inundated depth
above ground (Figure 6C). The MOM water levels from the
simulations containing antecedent and TC-driven rainfall and
storm surge show increased water levels in the lower Barataria
basin compared to the storm surge only MOM water levels
(Figure 6D). Similar trends in water levels were found as storm
intensities increased (medium and high) (Figures 7, 8). However,
with increasing intensity, the coastal water levels are higher
and raise water levels further into the Barataria watershed. For
example, water levels as high as 3m NAVD88 are found in the
middle portion of Barataria Bay under the simulated compound
flood event (Figures 7D, 8D).

Simulated water levels in Lakes Pontchartrain and Maurepas
show substantial increases when rainfall is included in the
storm surge simulation, particularly the antecedent conditions
(Figures 9–11). For the low and medium intensity TCs, water
levels increase by nearly 0.3m (or 15–20%) (Figures 9B, 10B)
when antecedent rainfall is incorporated (Figures 9D, 10D).
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FIGURE 6 | Maximum of maximums (MOM) simulated peak water levels (m, NAVD88) for the Barataria watershed low event synthetic storms for (A) storm surge only

(no rainfall), (B) storm surge and TC-driven rain, (C) antecedent rainfall only (no storm surge), and (D) antecedent rainfall, TC-driven rainfall, and storm surge in a single

simulation.

FIGURE 7 | Maximum of maximums (MOM) simulated peak water levels (m, NAVD88) for the Barataria watershed medium event synthetic storms for (A) storm surge

only (no rainfall), (B) storm surge and TC-driven rain, (C) antecedent rainfall only (no storm surge), and (D) antecedent rainfall, TC-driven rainfall, and storm surge in a

single simulation.
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For the high-intensity TC, peak water levels increased by

40 cm within the Lakes Pontchartrain and Maurepas (10–15%)
when antecedent conditions were included in the storm surge
model simulation and TC-driven rainfall (Figure 11). The higher
TC events caused larger surges in Lake Maurepas than Lake

Pontchartrain, even when rain was not accounted for (the peak
water levels are larger in Lake Pontchartrain than Maurepas for

medium and low TCs). Although peak water levels moderately
increased in the tidal lakes, results demonstrated an increase near
1m (33% of the total water level) across portions of the [normally
dry] floodplain adjacent to LakeMaurepas. These results begin to
indicate how the surge penetration is altered when incorporating
runoff from antecedent rainfall. This will be further evaluated
with the definition of the flood zones, particularly the coastal
flood transition zone.

Flood Zones
The spatial extent of each coastal, hydrologic, and flood
transition zone is dependent on the rainfall, TC, and landscape
characteristics (Figure 12). In Barataria, the coastal flood zone
makes up 66% of the basin’s total area (Table 3) and horizontally
extends ∼100 km from the Gulf of Mexico to Des Allemands
(Figures 12A–C). The transition zone spans ∼20 km for the
lesser TC events to near 60 km toward the basin’s northern
boundary, bounded by levees, for the more extreme TC events.
For all TC events simulated for the Barataria watershed, the
coastal zone is nearly identical, with small variations near
Des Allemands Lake, south of LaPlace. The little variation
results from the low-lying topography, the funnel-shape of the
basin, and its outer boundaries of naturally raised features
and levee structures. Surge can penetrate 100 km inland. It is
only in the upper portions of the watershed that rainfall has a
substantial impact.

The coastal zone across the Lake Maurepas watershed extends
along the eastern edge of the basin and encompasses Lake
Maurepas in its entirety. The coastal zone ranges from 7 to 9%
of total basins area (27–34% of the basin south of Interstate
10) for the 10-year and 100-year TC events, respectively. The
coastal flood transition zone and the hydrologic zone vary
substantially between the varying events. For the 10-year TC
event, the transition zone is 377 km2 (11% of the watershed
area) and increases to 1,254 km2 (37% of the watershed
area) for the 100-year TC event. The increase in the coastal
flood transition zone within the Lake Maurepas basin reduces
the hydrologic zone from 2,057 km2 (61%W of the area) to
959 km2 (29% of the area). The transition and hydrologic
zones are 1,329 km2 and 1,000 km2 for the 50-year TC
event, respectively.

In the Lake Maurepas watershed, the transition zone for
all return period events spans the 2m elevation contour
(NAVD88) from the Louisiana/Mississippi border to the Amite
River. The flood transition zone is also generally locked
along the western edge of Lake Maurepas for return period
TC events; however, this edge does not follow a general
contour line. The difference in the expanse of the transition
and hydrologic flood zones is dominated along the western

edge of the basin, including flood protection infrastructure
and levees along the eastern bank of the Mississippi River.
Furthermore, the flood transition zone extends into portions
of East Baton Rouge Parish with higher return period
TC events.

DISCUSSION AND CONCLUSION

This research address the simulation of compound coastal
flood events and the delineation of a coastal flood transition
zone (Bilskie and Hagen, 2018) for two distinct coastal
basins in southeastern Louisiana. Rainfall-runoff from
antecedent and TC-driven rainfall along with storm surge was
simulated using a new rain-on-mesh module incorporated
into the ADCIRC code. Antecedent rainfall conditions
were obtained for seven rainfall stations with reliable data
records for 21 landfalling TC events spanning 1948-2008. A
parametric, TC-driven rainfall model was used for precipitation
associated with the TC (Lonfat et al., 2004; US Army Corps
of Engineers, 2006). Twelve synthetic storms of varying
meteorological intensity (low, medium, and high) and total
rainfall were utilized for each watershed (Barataria and Lake
Maurepas) and provided model forcing for simulations of
coastal inundation.

First, it was found that antecedent rainfall (pre-TC landfall)
is influential up to 3 days pre-landfall. Rain gages along
southeastern LA that measured total rainfall for 21 storm
events showed little rainfall accumulation beyond 3 days before
TC landfall. Second, results show that antecedent and TC-
driven rainfall increase simulated peak water levels within
each basin, with antecedent rainfall dominating inundation
across the basin’s upper portions. This increase is nonlinear.
The superposition of water levels resulting from antecedent
rainfall alone and water levels from storm surge (and TC-
driven rain) does not equal the peak water levels generated
from the simulation, including antecedent and TC-driven
rain along with storm surge. The non-linear interaction
is caused by the variation in the rainfall runoff’s timing
with the storm surge flooding along with interactions with
the topography, friction, and the forcing. This nonlinearity
underscores the need for further development of numerical
models that tightly couple hydrologic and coastal surge processes
into a single model framework (Santiago-Collazo et al., 2019)
as well as the need to define the transition of flood zone
hazards and risk (Bilskie and Hagen, 2018; Wu et al., 2018).
Additionally, work should focus on examining the reasons for the
nonlinear interaction.

Third, the delineated flood zones of coastal, transition,
and hydrologic show stark differences between the two basins
(Figure 12 and Table 3). The coastal zone makes up most of
the Barataria basin under all scenarios (over 65% of the basin
area), followed by the transition (over 13%) and hydrologic.
Under the medium and high-intensity TCs, the hydrologic
zone is 2% or less of the entire basin, indicating that rainfall,
from both antecedent conditions and TCs, influences the basin
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FIGURE 8 | Maximum of maximums (MOM) simulated peak water levels (m, NAVD88) for the Barataria watershed high event synthetic storms for (A) storm surge only

(no rainfall), (B) storm surge and TC-driven rain, (C) antecedent rainfall only (no storm surge), and (D) antecedent rainfall, TC-driven rainfall, and storm surge in a single

simulation.

FIGURE 9 | Maximum of maximums (MOM) simulated peak water levels (m, NAVD88) for the Lake Maurepas 10-year TC events from (A) storm surge only (no rainfall),

(B) storm surge and TC-driven rain, (C) antecedent rainfall only (no storm surge), and (D) antecedent rainfall, TC-driven rainfall, and storm surge in a single simulation.
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FIGURE 10 | Maximum of maximums (MOM) simulated peak water levels (m, NAVD88) for the Lake Maurepas 50-year TC events from (A) storm surge only (no

rainfall), (B) storm surge and TC-driven rain, (C) antecedent rainfall only (no storm surge), and (D) antecedent rainfall, TC-driven rainfall, and storm surge in a single

simulation.

FIGURE 11 | Maximum of maximums (MOM) simulated peak water levels (m, NAVD88) for the Lake Maurepas 100-year TC events from (A) storm surge only (no

rainfall), (B) storm surge and TC-driven rain, (C) antecedent rainfall only (no storm surge), and (D) antecedent rainfall, TC-driven rainfall, and storm surge in a single

simulation.
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FIGURE 12 | Flood zone delineation for (A–C) Barataria watershed and (D–F) Lake Maurepas watershed for the (A,D) 10-year, (B,E) 50-year, and (C,F) 100-year

return period storm surge stillwater elevation. Basemap courtesy of Mapbox.

and should be considered flood hazard and risk assessments.
However, in Lake Maurepas, the coastal zone makes up 28–
34% of the basins area (basin area south of Interstate-10). The

transition zone is held constant for the medium and high-
intensity events at 40% of the area, but only 11% for the low-
intensity events. The hydrologic zone is large (61% of the area) for
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TABLE 3 | Percent of watershed made up of each flood zone type (coastal,

transition, and hydrologic).

Basin Return period Percent of watershed

Coastal Transition Hydrologic

Barataria 10 66% 13% 8%

50 68% 18% 2%

100 69% 18% 1%

Lake Maurepas 10 28% 11% 61%

50 31% 40% 29%

100 34% 40% 26%

The percentage for the Lake Maurepas watershed is based on a total watershed area

south of Interstate 10 (3,364 km2).

the low events but increase to 26–29% for the medium and high,
respectively. The transition zone extends along the southwestern
portion of the Lake Maurepas basin along the Mississippi
River’s east bank and into southern areas of greater Baton
Rouge. The transition zone’s extent indicates the vulnerability of
compound flood events for a large area in the lower half of the
watershed. As with Barataria, rainfall (for both hydrologic and
surge processes) should be included in coastal flood hazard and
risk studies.

This research has a variety of implications. Most important
is the further refinement of capturing the spatial variation
of the three flood zones (coastal, transition, and hydrologic),
and in particular, the coastal flood transition zone (Figure 12).
The coastal flood transition zone extends into the middle and
upper portions of coastal watersheds, even coastal watersheds
adjacent to tidal lakes removed from open ocean conditions
(e.g., Lake Maurepas watershed). Antecedent rainfall conditions,
as well as rainfall associated with TC, should be integrated
into coastal flood hazard studies. The framework developed
in this research to incorporate rain in a coastal inundation
model and define the coastal flood transition zone is not specific
to the two watersheds studied herein. The methods outlined
can be extended to other coastal watersheds that are prone to
compound flood events. For example, Shen et al. (2019) found
similar flood transition zone results in Norfolk, VA, as did
Bilskie and Hagen (2018) using different numerical models and
techniques to include rainfall-runoff for different intensities and
scenarios. There is a need to understand compound flooding
fundamentals as it is a complex, nonlinear process. Finally,
combining total water levels from individual model simulations
of rainfall-runoff driven models and coastal inundation models
are not sufficient for rigorous flood hazard studies. This basic
approach is likely to overestimate the actual hazard. We must
gain a fuller appreciation of the actual risks and recognize
the integrated natural and human system that exists at the
coastal land-margin.

Although this effort builds upon contemporary research of
compound flood modeling, it has limitations that should be
considered and based on future endeavors. First, our rain-on-
mesh module does not include soil moisture, infiltration, or
evapotranspiration. These mechanisms will reduce the amount

of available rainfall excess, leading to changes in the available
volume of water for surface runoff (Brocca et al., 2008;
Bedient et al., 2018). Second, currently employed wetting/drying
schemes are not well-suited for rainfall-driven runoff (Medeiros
and Hagen, 2012). Further developments in wetting/drying
algorithms for surface water routing should be emphasized in
future efforts. Finally, our study employed a minimal number
of synthetic storms, and a more comprehensive range of
storm intensities and tracks is desirable. Such future efforts,
among others, can enable a probabilistic understanding of the
coastal flood transition zone and with the comprehension of
consequence a more complete appreciation of flood risk at the
coastal land-margin.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: http://doi.org/10.17605/
OSF.IO/G7DFJ.

AUTHOR CONTRIBUTIONS

MB contributed to the research ideas, developed the rain-on-
mesh module, performed ADCIRC simulations, analyzed results
including the flood zone delineation, led this article’s writing,
and was previously at the Louisiana State University Center for
Coastal Resiliency, where he carried out most of his research
contributions to this article, but has since been at the University
of Georgia as of August 1, 2020. HZ provided guidance on
developing the rain-on-mesh module, conducted simulations,
post-processing of results for the Barataria watershed, and
contributed to the writing of this article. DR led the antecedent
rainfall analysis and contributed text to this article. JA provided
guidance on the rain-on-mesh module, led the synthetic storm
selection, and contributed text to this article. ZC wrote/tested
computer code for TC-driven and gridded rainfall. SH is
the PI and conceived the original research ideas, provided
guidance during the development of the rain-on-mesh module,
assisted in analyzing results, and aided in writing/reviewing this
article. All authors contributed to the article and approved the
submitted version.

FUNDING

This project was paid for with federal funding from the
Department of the Treasury through the Louisiana Coastal
Protection and Restoration Authority’s Center of Excellence
Research Grants Program under the Resources and Ecosystems
Sustainability, Tourist Opportunities, and Revived Economies
of the Gulf Coast States Act of 2012 (RESTORE Act)
(Award No. CPRA-2015-COE-MB). This project was also
paid in part by the Gulf Research Program (GRP) of the
National Academies of Sciences, Engineering, and Medicine
(Award No. 200000829), Robert Wood Johnson Foundation

Frontiers in Water | www.frontiersin.org 17 February 2021 | Volume 3 | Article 60923147

http://doi.org/10.17605/OSF.IO/G7DFJ
http://doi.org/10.17605/OSF.IO/G7DFJ
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Bilskie et al. Flood Assessments for Compound Floods

(RWJF) (Award No. 200000829), and the Louisiana Sea Grant
Laborde Chair.

ACKNOWLEDGMENTS

The statements, findings, conclusions, and recommendations are
those of the authors and do not necessarily reflect the views of

the Department of the Treasury, GRP, RWJF, or the Louisiana Sea
Grant College Program.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frwa.
2021.609231/full#supplementary-material

REFERENCES

Atkinson, J. H., Roberts, H. J., Hagen, S. C., Zou, S., Bacopoulos, P., Medeiros,

S. C., et al. (2011). Deriving frictional parameters and performing historical

validation for an ADCIRC storm surgemodel of the Florida Gulf Coast, Florida.

Watershed J. 4, 22–27. Available online at: https://bluetoad.com/publication/?

m=12306&i=69376&p=20

Bedient, P. B., Huber, W. C., and Vieux, B. E. (2018). Hydrology and Floodplain

Analysis. 6th ed. (Pearson), 832.

Bilskie, M. V., and Hagen, S. C. (2018), Defining flood zone transitions

in low-gradient coastal regions. Geophys. Res. Lett. 45, 2761–2770.

doi: 10.1002/2018GL077524

Black, P. G., D’Asaro, E. A., Sanford, T. B., Drennan,W.M., Zhang, J. A., French, J.

R., et al. (2007). Air–sea exchange in hurricanes: synthesis of observations from

the coupled boundary layer air–sea transfer experiment. Bullet. Am. Meteorol.

Soc. 88, 357–374. doi: 10.1175/BAMS-88-3-357

Blake, E. S., and Zelinksy, D. A. (2018).National Hurricane Center Tropical Cyclone

Report: Hurricane HarveyRep.

Brocca, L., Melone, F., andMoramarco, T. (2008). On the estimation of antecedent

wetness conditions in rainfall–runoff modelling. Hydrol. Process. 22, 629–642.

doi: 10.1002/hyp.6629

Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson,

J. H., et al. (2010). A high-resolution coupled riverine flow, tide, wind, wind

wave, and storm surge model for southeastern Louisiana and Mississippi. Part

I: Model development and validation. Monthly Weather Rev. 128, 345–377.

doi: 10.1175/2009MWR2906.1

Cobell, Z., Zhao, H., Roberts, H. J., Clark, F. R., and Zou, S. (2013). Surge and wave

modeling for the Louisiana 2012 coastal master plan. J. Coastal Res. 7, 88–108.

doi: 10.2112/SI_67_7

Conner, W. H., and Day, J. W. (1987). The Ecology of Barataria Basin, Louisiana:

An Estuarine ProfileRep. (US Fish and Wildlife Service), 165.

DeLorme, D. E., Stephens, S. H., Bilskie, M. V., and Hagen, S. C. (2020). Coastal

decision-makers’ perspectives on updating storm surge guidance tools. J.

Contingencies Crisis Manag. 28, 158–168. doi: 10.1111/1468-5973.12291

Dietrich, J. C., Dawson, C. N., Proft, J. M., Howard, M. T., Wells, G., Fleming, J.

G., et al. (2013). “Real-time forecasting and visualization of hurricane waves

and storm surge using SWAN+ADCIRC and FigureGen,” in Computational

Challenges in the Geosciences, eds C. Dawson and M. Gerritsen (New York, NY:

Springer), 49–70. doi: 10.1007/978-1-4614-7434-0_3

Dietrich, J. C., Kolar, R. L., and Westerink, J. J. (2006). Refinements in

continous galerkin wetting and drying algorithms. in Ninth International

Conference on Estuarine and Coastal Modeling, (Charleston, SC) 637–656.

doi: 10.1061/40876(209)37

Dietrich, J. C., Tanaka, S., Westerink, J. J., Dawson, C. N., Luettich, R. A., Zijlema,

M., et al. (2012). Performance of the unstructured-mesh, SWAN+ADCIRC

model in computing hurricane waves and surge. J. Sci. Comput. 52, 468–497.

doi: 10.1007/s10915-011-9555-6

Dietrich, J. C., Westerink, J. J., Kennedy, A. B., Smith, J. M., Jensen, R. E., Zijlema,

M., et al. (2011). Hurricane Gustav (2008) waves and storm surge: hindcast,

synoptic analysis, and validation in Southern Louisiana.Monthly Weather Rev.

139, 2488–2522. doi: 10.1175/2011MWR3611.1

Erdman, J. (2018). Florence Sets Preliminary North Carolina and South Carolina

Tropical Cyclone Rain Records; Third, Fourth States to Do So in 12 Months.

Weather Channel.

FEMA and USACE (2008). Flood Insurance Study: Southeastern Parishes,

Louisiana, Intermediate Submission 2: Offshore Water Levels and WavesRep.

FEMA Region 6 and USACE New Orleans District.

Gori, A., Lin, N., and Smith, J. (2020). Assessing compound flooding from

landfalling tropical cyclones on the North Carolina Coast. Water Resourc. Res.

56:e2019WR026788. doi: 10.1029/2019WR026788

Kinnmark, I. (1985). “The shallow water wave equations: formulation, analysis,

and application,” in Lecture Notes in Engineering. New York, NY: Springer-

Verlag. doi: 10.1007/978-3-642-82646-7

Kolar, R. L., Gray, W. G., Westerink, J. J., Cantekin, M. E., and Blain, C.

A. (1994). Aspects of nonlinear simulations using shallow-water models

based on the wave continuity equation. Comput. Fluids 23, 523–538.

doi: 10.1016/0045-7930(94)90017-5

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B.,

McInnes, K., et al. (2014). A compound event framework for understanding

extreme impacts. Wiley Interdiscipl. Rev. Climate Change 5, 113–128.

doi: 10.1002/wcc.252

Lonfat, M., Marks, F. D., Jr., and Chen, S. S. (2004). Precipitation distribution

in tropical cyclones using the tropical rainfall measuring mission (TRMM)

microwave imager: a global perspective.MonthlyWeather Rev. 132, 1645–1660.

doi: 10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2

Luettich, R. A., and Westerink, J. J. (2004). Formulation and numerical

implementations of the 2D/3D ADCIRC finite element model version

44.XXRep., 12/08/2004. Available online at: http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.675.3043&rep=rep1&type=pdf

Medeiros, S., and Hagen, S. C. (2012). Review of wetting and drying algorithms

for numerical tidal flow models. Int. J. Numerical Methods Fluids 71, 473–487.

doi: 10.1002/fld.3668

Morgan, J. P. (1967). “Ephemeral estuaries of the deltaic environment,” in

Estuaries: AAAS Monograph, ed G. H. Lauff, 115–120.

Paerl, H.W., Hall, N. S., Hounshell, A. G., Luettich, R. A., Rossignol, K. L., Osburn,

C. L., et al. (2019). Recent increase in catastrophic tropical cyclone flooding in

coastal North Carolina, USA: long-term observations suggest a regime shift.

Sci. Rep. 9:10620. doi: 10.1038/s41598-019-46928-9

Powell, M. D. (2006). National Oceanic and Atmospheric Administration (NOAA)

Joint Hurricane Testbed (JHT) Program. Final Report. Silver Spring, MD:

National Oceanic and Atmospheric Administration.

Roberts, H., and Cobell, Z. (2017). 2017 Coastal Master Plan: Attachment C3-25.1:

Storm SurgeRep. (Louisiana: Coastal Protection and Restoration Authority,

Baton Rouge, LA), 1–110.

Santiago-Collazo, F. L., Bilskie, M. V., and Hagen, S. C. (2019). A comprehensive

review of compound inundation models in low-gradient coastal watersheds.

Environ. Model. Softw. 119, 166–181. doi: 10.1016/j.envsoft.2019.06.002

Shen, Y., Morsy, M. M., Huxley, C., Tahvildari, N., and Goodall, J. L. (2019). Flood

risk assessment and increased resilience for coastal urban watersheds under

the combined impact of storm tide and heavy rainfall. J. Hydrol. 579:124159.

doi: 10.1016/j.jhydrol.2019.124159

Silva-Araya, W., Santiago-Collazo, F., Gonzalez-Lopez, J., and Maldonado-

Maldonado, J. (2018). Dynamic modeling of surface runoff and storm

surge during hurricane and tropical storm events. Hydrology 5:13.

doi: 10.3390/hydrology5010013

Stephens, S., DeLorme, D., and Hagen, S. (2017). Evaluation of the design features

of interactive sea-level rise viewers for risk communication. Environ. Commun.

11, 248–262. doi: 10.1080/17524032.2016.1167758

Frontiers in Water | www.frontiersin.org 18 February 2021 | Volume 3 | Article 60923148

https://www.frontiersin.org/articles/10.3389/frwa.2021.609231/full#supplementary-material
https://bluetoad.com/publication/?m=12306&i=69376&p=20
https://bluetoad.com/publication/?m=12306&i=69376&p=20
https://doi.org/10.1002/2018GL077524
https://doi.org/10.1175/BAMS-88-3-357
https://doi.org/10.1002/hyp.6629
https://doi.org/10.1175/2009MWR2906.1
https://doi.org/10.2112/SI_67_7
https://doi.org/10.1111/1468-5973.12291
https://doi.org/10.1007/978-1-4614-7434-0_3
https://doi.org/10.1061/40876(209)37
https://doi.org/10.1007/s10915-011-9555-6
https://doi.org/10.1175/2011MWR3611.1
https://doi.org/10.1029/2019WR026788
https://doi.org/10.1007/978-3-642-82646-7
https://doi.org/10.1016/0045-7930(94)90017-5
https://doi.org/10.1002/wcc.252
https://doi.org/10.1175/1520-0493(2004)132$<$1645:PDITCU$>$2.0.CO
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.675.3043&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.675.3043&rep=rep1&type=pdf
https://doi.org/10.1002/fld.3668
https://doi.org/10.1038/s41598-019-46928-9
https://doi.org/10.1016/j.envsoft.2019.06.002
https://doi.org/10.1016/j.jhydrol.2019.124159
https://doi.org/10.3390/hydrology5010013
https://doi.org/10.1080/17524032.2016.1167758
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Bilskie et al. Flood Assessments for Compound Floods

Thaler, T., and Levin-Keitel, M. (2016). Multi-level stakeholder engagement in

flood risk management—a question of roles and power: lessons from England.

Environ. Sci. Policy 55, 292–301. doi: 10.1016/j.envsci.2015.04.007

US Army Corps of Engineers (2006). Performance Evaluation of the New Orleans

and Southeast Louisiana Hurricane Protection SystemRep. Final Report of the

Interagency Performance Evaluation Task Force.

US Geological Survey (2020). Coastal National Elevation Database (CoNED)

Project - Topobathymetric Digital Elevation Model (TBDEM).

Valle-Levinson, A., Olabarrieta, M., and Heilman, L. (2020). Compound flooding

in Houston-Galveston Bay during Hurricane Harvey. Sci. Total Environ.

747:141272. doi: 10.1016/j.scitotenv.2020.141272

van der Wiel, K., Kapnick, S. B., van Oldenborgh, G. J., Whan, K., Sjoukje, P.,

Vecchi, G. A., et al. (2017). Rapid attribution of the August 2016 flood-inducing

extreme precipitation in south Louisiana to climate change. Hydrol. Earth

System Sci. 21, 897–921. doi: 10.5194/hess-21-897-2017

Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E. (2015). Increasing risk

of compound flooding from storm surge and rainfall for major US cities. Nat.

Climate Change 5:1093. doi: 10.1038/nclimate2736

Wang, S. Y. S., Zhao, L., and Gillies, R. R. (2016). Synoptic and quantitative

attributions of the extreme precipitation leading to the August 2016 Louisiana

flood. Geophys. Res. Lett. 43, 11805–811814. doi: 10.1002/2016GL071460

Westerink, J. J., Luettich, R. A., Feyen, J. C., Atkinson, J. H., Dawson, C., Roberts,

H. J., et al. (2008). A basin- to channel-scale unstructured grid hurricane

storm surge model applied to Southern Lousiana. Monthly Weather Rev. 136,

833–864. doi: 10.1175/2007MWR1946.1

White, I., Kingston, R., and Barker, A. (2010). Participatory geographic

information systems and public engagement within flood risk management. J.

Flood Risk Manag. 3, 337–346. doi: 10.1111/j.1753-318X.2010.01083.x

Wu, W., McInnes, K., O’Grady, J., Hoeke, R., Leonard, M., and Westra, S. (2018).

Mapping dependence between extreme rainfall and storm surge. J. Geophys.

Res. Oceans 123, 2461–2474. doi: 10.1002/2017JC013472

Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P.

J., Pitman, A., et al. (2018). Future climate risk from compound events. Nat.

Climate Change 8, 469–477. doi: 10.1038/s41558-018-0156-3

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Bilskie, Zhao, Resio, Atkinson, Cobell and Hagen. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Water | www.frontiersin.org 19 February 2021 | Volume 3 | Article 60923149

https://doi.org/10.1016/j.envsci.2015.04.007
https://doi.org/10.1016/j.scitotenv.2020.141272
https://doi.org/10.5194/hess-21-897-2017
https://doi.org/10.1038/nclimate2736
https://doi.org/10.1002/2016GL071460
https://doi.org/10.1175/2007MWR1946.1
https://doi.org/10.1111/j.1753-318X.2010.01083.x
https://doi.org/10.1002/2017JC013472
https://doi.org/10.1038/s41558-018-0156-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


ORIGINAL RESEARCH
published: 15 March 2021

doi: 10.3389/fclim.2021.610680

Frontiers in Climate | www.frontiersin.org 1 March 2021 | Volume 3 | Article 610680

Edited by:

Yao Hu,

University of Delaware, United States

Reviewed by:

Brian Blanton,

University of North Carolina at Chapel

Hill, United States

Yi Hong,

University of Michigan, United States

*Correspondence:

Kyoung Yoon Kim

erickim@utexas.edu

Specialty section:

This article was submitted to

Climate Risk Management,

a section of the journal

Frontiers in Climate

Received: 26 September 2020

Accepted: 17 February 2021

Published: 15 March 2021

Citation:

Kim KY, Wu W-Y, Kutanoglu E,

Hasenbein JJ and Yang Z-L (2021)

Hurricane Scenario Generation for

Uncertainty Modeling of Coastal and

Inland Flooding.

Front. Clim. 3:610680.

doi: 10.3389/fclim.2021.610680

Hurricane Scenario Generation for
Uncertainty Modeling of Coastal and
Inland Flooding

Kyoung Yoon Kim 1*, Wen-Ying Wu 2, Erhan Kutanoglu 1, John J. Hasenbein 1 and

Zong-Liang Yang 2

1Operations Research and Industrial Engineering, The University of Texas at Austin, Austin, TX, United States, 2 Jackson

School of Geosciences, The University of Texas at Austin, Austin, TX, United States

Hurricanes often induce catastrophic flooding due to both storm surge near the coast,

and pluvial and fluvial flooding further inland. In an effort to contribute to uncertainty

quantification of impending flood events, we propose a probabilistic scenario generation

scheme for hurricane flooding using state-of-art hydrological models to forecast both

inland and coastal flooding. The hurricane scenario generation scheme incorporates

locational uncertainty in hurricane landfall locations. For an impending hurricane, we

develop a method to generate multiple scenarios by the predicated landfall location

and adjusting corresponding meteorological characteristics such as precipitation. By

combining inland and coastal flooding models, we seek to provide a comprehensive

understanding of potential flood scenarios for an impending hurricane. To demonstrate

the modeling approach, we use real-world data from the Southeast Texas region in our

case study.

Keywords: flooding, scenario generation, Inland flooding, coastal flooding, storm surge, high water mark,

validation, hospital and nursing home evacuation

1. INTRODUCTION

Since 1980, the U.S. has sustained 263 weather and climate disasters where the overall damage costs
reached or exceeded $1 billion, and the total cost of these 263 events exceeds $1,774 billion. Among
the 263 billion-dollar disasters in the last 40 years, the years of 2017, 2018, and 2019 have produced
44 events with a total cost of $460 billion (NOAANational Centers for Environmental Information,
2020). Hurricane Harvey in 2017, which was the most significant tropical cyclone rainfall event in
U.S. history, caused catastrophic flooding in Harris and Galveston counties in Texas (Blake and
Zelinsky, 2018), and was one major motivation for developing the methodology in this paper.

In preparing for future hurricanes and other disasters, federal, state, and local agencies engage
in joint efforts. Especially for decisions like mobilizing resources and prepositioning supplies for
rescue missions, which take place before an imminent but forecasted disaster such as a hurricane,
the agencies have utilized flood prediction tools that were developed in support of decision
making. A review of the relevant literature indicates that these models do not function as an
event- and location-specific tool for impending emergencies but rather as a general guideline for
preparing for potential floods. Moreover, in predicting floods due to hurricanes, to the best of
our knowledge, inland and coastal floods are modeled separately. For agencies that must allocate
evacuation resources, coordinate patient evacuation from multiple affected hospitals and nursing
homes to multiple receiving facilities, comprehensive flood mapping of both inland and coastal
area are important.
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In this paper, we propose a rigorous modeling and
methodological effort that integrates statistical implementation
of models in predicting inland and coastal flooding. The main
goal is to help decision makers immediately before a hurricane
or potential flood event, for decisions that are made 48–72 h
before landfall. The remainder of the paper is organized as
follows. In section 2, we review flood forecasting tools that are
used in government agencies. We further investigate different
approaches in coastal flood forecasting. In section 3, we introduce
a framework for hurricane scenario generation by combining
outputs of inland and coastal models. A modified stratified
sampling technique is used to simulate hurricane landfall
locations. For each simulated landfall location, two models
predict inundation in the southeast Texas region, generating a
potential flood map, and the predicted inundation is validated in
section 4. In section 5, we demonstrate our scenario generation
method on the hospital and nursing home evacuation problem
for Hurricane Harvey. In section 6, we outline future research
directions: alternative ways of perturbing hurricane scenarios
to generate flood scenarios and methods for improving the
model accuracy.

2. LITERATURE REVIEW

About half of the deaths due to flooding caused by tropical
cyclones happened inland (National Oceanic and Atmospheric
Administration, 2018). However, it has been challenging to
model event-specific and real-time inland flood inundation.
The Federal Emergency Management Agency (FEMA) provides
a 100-year floodplain publicly, which is used as a standard
for flood insurance. However, 100-year flood maps are not
informative in preparing for a specific incoming hurricane, since
they reflect estimates that are aggregated over many flood events.
Furthermore, such flood maps provide no information about the
spatial correlation in flooding for specific events. In contrast, the
methodology in this paper is tailored to enhance decision making
for a specific hurricane. It also specifically incorporates the spatial
correlation of flooding induced by an event.

The primary source of coastal flooding is the storm surge,
an abnormal rise of water generated by a storm. The studies
in coastal flooding begin with modeling the atmospheric part
of the storm. As presented by Contento et al. (2018), many
researchers have explored ways to evaluate storm surge with
storm characteristics such as wind velocity and intensity. Two
well-known storm surge models, the Advanced Circulation
Model (ADCIRC) (Westerink et al., 1994) and Sea, Lake, and
Overland Surges from Hurricanes (SLOSH) (Jelesnianski, 1992),
couple storm characteristics with hydraulic characteristics of
impact regions to predict storm surges. While the advantage of
ADCIRC is in its use of an unstructured grid for capturing the
complex spatial variability of the surge phenomenon (Dietrich
et al., 2011), it requires high-performance computing resources
in order to compute ensemble forecasts without degradation of
its resolution benefits (Mandli and Dawson, 2014). Originally
developed for real-time forecasting of storm surges, SLOSH
is an efficient model that can generate multiple ensemble of

forecasts for forthcoming hurricanes. However, its accuracy
when compared to high water marks (HWMs) and tide gauges
measured after storms is within 20% (National Hurricane Center,
n.d.b). For Hurricane Katrina, this accuracy reduces to 5%
when the surge forecast is compared to HWMs marked as
“excellent” quality (National Hurricane Center, n.d.b). Mandli
and Dawson introduce an alternative computationally efficient
model, GeoClaw, using an adaptive mesh refinement (AMR)
algorithm bridging the gap between the current state-of-art storm
surge models (Mandli and Dawson, 2014). The AMR-based
model significantly reduces the computational cost of simulation.
When compared to Hurricane Ike gauge data, the GeoClaw
simulation compares favorably with the ADCIRC simulation.

To build probabilistic storm surge scenarios for an impending
hurricane, instead of using a computationally burdensomemodel
like ADCIRC, researchers have developed metamodels. Such
models estimate storm surge heights as functions of storm
characteristics and are calibrated with ADCIRC simulations.
To draw relationships between surge height and storm
characteristics, researchers apply different techniques such as
kriging metamodel (Jia and Taflanidis, 2013) and artificial neural
networks (Kim et al., 2015). However, the metamodels cannot
include historical records in the calibration data and do not
extrapolate to regions different from those for which they have
been calibrated (Contento et al., 2018).

To the best of our knowledge, no studies have considered
providing both comprehensive inland and coastal flood maps
for an impending hurricane. We further distinguish our work
by utilizing weather forecasts in generating hurricane scenarios
to provide a more pragmatic solution to the problem. Next,
we discuss in more detail how we integrate the inland
and coastal models to forecast potential flooding events for
impending hurricanes.

3. METHODOLOGY

In this section, we explain our method for generating flood
scenarios. During hurricanes, coastal regions suffer from flooding
primarily due to storm surge, while inland locations are subjected
to flooding from water overflowing from streams. As described
in the sequel, we combine models for inland and coastal regions
to predict the overall impact of flooding via scenario generation.
The overall process of generating flood scenarios is summarized
in Figure 1. While the methodology is general, we use Hurricane
Harvey as a descriptive example, as it is also used in our
case study.

3.1. Data Input to Forecasting Models
Inland flood forecasting is driven by the weather forecast,
which are output variables from numerical weather models. The
meteorological inputs used in this study include precipitation,
wind speed, temperature, humidity, and radiation (see
Supplementary Table 1) which are the outputs from the Global
Forecast System (GFS). The original 13 km output data fromGFS
was processed to 1 km data by statistical interpolation for the
1-km Weather Research and Forecasting model-Hydrological
modeling system (WRF-Hydro) simulation. This regridding was
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FIGURE 1 | The flow diagram summarizes the overall flood scenario

generation methodology which combines both inland and coastal flooding.

done by NOAA, and we downloaded the 1 km data directly
from them. These inputs are then used in the inland flood
forecasting model, WRF-Hydro (Gochis et al., 2015, 2018, 2020),
which we ran on a local supercomputer. The dynamic input data
(atmospheric forcing) were downloaded from the NOAA archive
at Renaissance Computing Institute (Alcantara et al., 2017). It
should be noted that WRF-Hydro incorporates weather forecasts
that are not limited to the characteristics of tropical cyclones.

A center of Tropical Cyclone (TC) is usually defined by the
location of the minimum wind field or pressure. We use one of
the GFS forecasts which are produced four times per day to define
the TC track. We estimate the hourly TC center based on the
location of minimum surface wind field. In order to choose one
from the multiple GFS forecasts, we need to take the decision-
making period (T) into consideration. To provide potential
flooding scenarios for impending hurricanes to the decision
makers, we utilize the most up-to-date hurricane information by
choosing a reference GFS forecast issued T hours before landfall.

When the potential TC might be hazardous, the National
Hurricane Center (NHC) issues TC advisories which contain
storm information such as position of storm, maximum
sustained winds, and potential track. Usually, the advisories are
issued in every 6 h. Among the advisories, we choose one advisory
as our reference and use the storm information in the advisory
as inputs to the storm surge forecasting model, SLOSH Display

FIGURE 2 | Twenty-five simulated landfall locations for Hurricane Harvey.

Program (SDP). We explain the method of choosing a reference
advisory in section 3.2. After selecting the reference advisory,
among the information contained in the advisory, we collect
Saffir-Simpson hurricane intensity and hurricane forward speed
as our inputs to the storm surge forecasting model. Two other
inputs, the hurricane direction and tide level, are necessary to
run SDP. The method for obtaining the inputs from the reference
advisory is discussed in section 3.3.

3.2. Scenario Generation Method
We propose a method for scenario generation that considers
track error. The tropical cyclone track dominates the distribution
of rainfall (Elsberry, 2002; Marchok et al., 2007), which leads
to flooding. To create scenarios, we assume that the hurricane
landfall location is modeled by a normal random variable,
distributed along the Texas coastline, with the mean located at
the crossing point between the forecasted hurricane track and
the coastline.

In this study, we approximate the Texas coastline with a
piecewise linear function with two segments (Figure 2). The
first segment is defined by connecting two cities, Port Arthur
and Corpus Christi, Texas with a line. The second segment
is defined by connecting Corpus Christi and Brownsville,
Texas. The GPS coordinates of the three cities are listed
in Supplementary Table 3. Note that the distribution is not
bounded by the two cities, Brownsville and Port Arthur. The
piecewise linear model of the Texas coast described above can be
succinctly expressed as follows:

f (x) =

{

−17.273x+ 1709.991 x ≥ 97.39◦W

−0.603x+ 86.516 x < 97.39◦W,
(1)
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where x is the longitude and f (x) is the corresponding latitude.
The longitude of Corpus Christi, which is 97.39◦ W, is used as
the center-point dividing the domain into two intervals. Then,
we define the intersection of the hurricane track drawn from the
reference GFS forecast and the Texas coastline as the “mean”
landfall location.

The mean landfall location is the reference point for
generating inputs for multiple scenarios. Our assumption is that
potential landfall locations are normally distributed along the
piecewise linear model, with the mean as just described. The
standard deviation of the normal distribution can be inferred
from the cone of uncertainty. The cone corresponds to the
probable track of the TC center. The sizes of cones represent the
forecast position errors over the previous 5-year period. The radii
of the cone circles in 2017 for the Atlantic basin that are used for
the Harvey case study later are given in Supplementary Table 2

(National Hurricane Center, n.d.a).
Since the estimated landfall hour does not perfectly match

with one of the forecast periods in Supplementary Table 2, we
perform a simple linear interpolation. By calculating the ratio,
we compute the corresponding radius of two-thirds cone of
uncertainty circle, r = 89 nautical miles. Using the standard
normal distribution, we find the standard deviation, σ , of the
landfall distribution by using

σ =

r

z5/6
(2)

where z5/6 is the critical point from a standard normal. Let L be a
random variable representing distance from a landfall location to
themean landfall point. Clearly, L = 0 at themean, and L < 0 for
the landfall locations on the left (west) side of the mean location.

Having created a distribution of potential landfall locations,
we now describe the stratified sampling method. First, we
divide the coastal model into m equiprobable segments. Within
each segment, we sample N landfall locations according to the
conditional normal distribution on that segment. As mentioned
above, once sampled, the resulting mN locations are viewed as
being equally likely in later calculations, each occurring with
probability of 1/(mN).

For m = 5 and N = 5, the segment boundaries are defined
by four quantiles (m1 to m4) along the coastline. For example,
P(L ≤ m1) = 1/5. Then, for the first segment we sample five
quantiles (p1 to p5) from a Uniform (0, 1/5). For the remaining
four segments, we also sample quantiles for each segment from a
Uniform ((k − 1)/5, k/5), for k = 2, . . . , 5. Overall, we have 25
quantiles which are next translated to landfall locations.

In order to find the physical location of the landfall points, we
find z-scores of the sampled quantiles using the standard normal
distribution. From the standard normal table, we calculate zpn ,
where n = 1, ...,mN, and use

ln = σ zpn (3)

to calculate the distance ln from the mean crossing point in the
coastline model, for the corresponding quantile. Finally, the GPS

coordinates corresponding to ln are found by solving for xn and
yn in the following system:

cos(θ) =
|xR − xn|

ln
(4)

sin(θ) =
|yR − yn|

ln
(5)

θ = arctan(ac) (6)

where ac is the slope of the coastline that contains the mean
location. Here, xR and yR are the longitude and latitude of the
mean landfall location.

The orange dot in Figure 2 is the mean predicted landfall
location for Harvey. Red dots show 25 simulated landfall
locations and blue dots indicate the TC center at 12, 24, 36, 48,
72, 96, and 120 h obtained from the reference GFS forecast. Once
we have the potential landfall locations, we then runWRF-Hydro
to obtain streamflow simulations.

The meteorological conditions at a given time step (hourly
here) are used to force the WRF-Hydro model. The atmospheric
inputs provided at a 1 × 1 km resolution from the
weather models are obtained from the NOAA archive (see
Supplementary Figure 1). For each sampled landfall location, we
compute the spatial shift, a vector, by using the landfall reference
point (the orange point in Figure 2) and the sampled location.
Then, for each scenario we shift the atmospheric inputs according
to the corresponding vector. To generate comprehensive flood
scenarios from hurricanes, we need to combine the inland
flooding computations with a coastal flooding model. In our
model, we directly combine each inland flooding scenario with
a coastal flooding scenario by matching the direction of a
hurricane. The detailed steps of aligning the two models are
discussed in section 3.3.

3.3. Flood Prediction Methods
3.3.1. Inland Flood Model

We first review our inland flood prediction method. As
mentioned at the beginning of section 3.1, we downloadedWRF-
Hydro and the corresponding input data from NOAA. Secondly,
for scenario generation, we processed the input data to generate
25 sets of input data (as described in section 3.2). Thirdly, the
streamflow ouputs from WRF-Hydro were used with HAND
datasets to generate inland flood mapping. The details of this
third step are described in this section.

WRF-Hydro is an integrated hydrological framework
connecting several modules, including the Noah-
Multiparameterization Land Surface Model (Noah-MP), a
terrain routing module, and a river routing module. The
framework enables different models to work with different
spatial coordinates. WRF-Hydro simulates typical hydrological
processes. The one-dimensional and coarse-resolution land
surface model (Noah-MP) is coupled with a two-dimensional
and finer resolution terrain routing module, which simulates
the hillslope feature for the gravitational redistribution of water.
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Finally, the river routing module simulates the water flows from
upstream to downstream.

The spatial resolution is 1 km for the land surface
model and 250 m for the terrain routing module. The river
routing module uses a vector-based channel network from the
National Hydrography Dataset Plus (NHDPlus) version 2. To
estimate the flood level, we apply the Height Above Nearest
Drainage (HAND) flood mapping methodology (Liu et al.,
2018, 2020; Zheng et al., 2018b). The HAND methodology is a
computationally efficient and terrain-based inundationmapping.
The HAND is defined as the height of a given location with
respect to the nearest stream it drains to. The HAND value of a
location is the difference between its elevation and the minimum
channel elevation. The resolution of the HAND product is 10 m
based on the USGS Digital Elevation Model (DEM) data.

Real-time, street-level inundation mapping is time-
consuming. Instead, we process the studied locations in the
GIS tool to obtain the corresponding catchment ID and HAND
values. This is a one-time approach. Once the WRF-Hydro
forecast is produced, we are able to use the pre-processed
catchment ID and HAND values to calculate the flood levels.

First, we convert the streamflow to a stage height using a
rating curve. The rating curve is a flow-depth relationship that
depends on the hydraulic characteristics of the stream channel.
Here we use the rating curves included in the HAND product1.
The product provides a table look-up rating curve with a series of
1-foot incremental water levels. We apply linear interpolation to
convert streamflow to stage height.

Second, the water level at any given location is calculated from
the stage height minus the HAND value if the result is greater
than zero. Otherwise, the water level is set to zero if the stage
height is smaller than the HAND value. We repeat these steps for
each scenario and each location to obtain maximum water levels
in 10-day forecast period (from August 24 to September 2, 2017,
for Harvey).

3.3.2. Coastal Flood Prediction

We turn our attention to the hydrological model used to predict
flooding in the coastal region. When a hurricane makes landfall,
the storm brings seawater to the shore, and this phenomenon
is called storm surge. To predict the flooding due to the storm
surge, we need to know the elevation of the addresses and the
storm surge height due to the hurricane. For a particular location,
we find the relative surge level above ground by subtracting the
elevation from the surge height.

One of the USGS National Geospatial Program products is
the 3D Elevation Program (3DEP)2. Standard DEMs represent
the topographic surface of the earth and contain flattened
water surfaces. Each DEM data set is identified by its
horizontal resolution and is produced to a consistent set of
specifications (United States Geospatial Services, n.d.). We use
the standard DEM with the resolution of 1/3 arc-second which is
approximately 10 m, and the elevation is referenced to the North
American Vertical Datum of 1988 (NAVD88).

1https://cfim.ornl.gov/data/
2https://viewer.nationalmap.gov/basic/

There are several storm surge simulation models available to
the public. One of the tools that NHC uses to predict storm
surges is the SLOSHmodel. The SLOSHmodel is a computerized
numerical model developed by the NWS to estimate storm
surge heights resulting from historical, hypothetical, or predicted
hurricanes by taking into account the atmospheric pressure,
size, forward speed, and track data (Jelesnianski, 1992). Prior to
hurricane landfalls, SLOSH is widely used as a support tool for
decisionmakers in emergencymanagement agencies. To enhance
decision making, multiple surge-related products provided by
NHC are available.

Using SLOSH, the NHC developed the SDP that supports
emergency managers in visualizing storm surge vulnerabilities.
The SDP outputs the predicted storm surge levels for fan-shaped
basins covering the coastal regions by taking four attributes
of a hurricane as input: Saffir-Simpson storm category, storm
direction, forward speed, and tide level. A basin is divided into
smaller grids and the SDP model predicts the surge height above
the sea level for each grid. Themodel outputs storm surge heights
for a particular area in feet above the reference sea level NAVD88.
To interpret the surge level, users need to subtract the elevation
from the surge heights as discussed earlier.

For our surge forecasting tool, we use the SDP. For a particular
region, a user can input the four attributes of the hurricane
to obtain the Maximum Envelope of Water (MEOW)3 which
provides a worst-case basin snapshot of surge levels for a
particular storm category, forward speed, hurricane direction,
and tide level. Since the MEOW highlights the worst case of
an expected hurricane, it is a time-independent concept, unlike
the WRF-Hydro stage height output. The downside of using the
time-independent measure is that the duration of high waters is
ignored. The SDP output does not indicate how long the storm
surge covers the impacted areas. Nonetheless, the MEOW is
“robust” from the view point of optimization because it based
on the worst-case outcome for a particular storm, instead of, for
example, the average outcome or a probability distribution over
multiple outcomes.

Before generating storm surge scenarios, we need to study
the input parameters of the SDP in more detail. As mentioned
earlier, there are four input parameters for the MEOW product:
storm direction, intensity, tide level, and forward speed. The
available surge outputs in SDP depend on each basin. For the
Galveston basin, which we use for our case study, there are
nine cardinal trajectory directions available from west-southwest
to east-northeast (WSW, W, WNW, NW, NNW, N, NNE,
NE, and ENE). We assume that a storm may come in one
of nine directions with a fixed storm intensity, tide level, and
forward speed. To determine the incoming storm’s characteristics
other than direction, we study the reference hurricane advisory
provided by the NHC. The forecast advisory issued by the NHC
provides present movement speed, direction, hurricane track,
and maximum wind speed in time series.

To choose the storm intensity represented by the Saffir-
Simpson hurricane wind scale, we look at the expected
maximum wind speed within the 5-day hurricane forecast

3https://www.nhc.noaa.gov/surge/meowOverview.php

Frontiers in Climate | www.frontiersin.org 5 March 2021 | Volume 3 | Article 61068054

https://cfim.ornl.gov/data/
https://viewer.nationalmap.gov/basic/
https://www.nhc.noaa.gov/surge/meowOverview.php
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Kim et al. Hurricane Scenario Generation for Flooding

FIGURE 3 | Storm surge output from SDP generated with a Category 2 storm traveling in north direction with forward speed of 5 mph at high tide shows impact on

the hospitals (red dots) and nursing homes (blue triangles) in our region of interest.

by the NHC. According to the 5-day Forecast Track and
Watch/Warning Graphic of the reference advisory, Advisory
14 (see Supplementary Figure 1), the maximum sustained wind
speed is listed as 74–110 mph, which can be easily converted to
Category 2 of Saffir-Simpson category scale. In the SDP, there are
two tide levels available: mean and high tide. Since the tide hours
vary by location and SDP does not generate the time-specific
output, we assume that the storm makes landfall at the high-tide
level. There are three forward speed categories: 5, 10, 15mph. The
forward speed from the advisory is 2 mph. We choose the closest
forward speed category, 5 mph, among the three options.

Figure 3 shows a SDP output generated from a Category 2
storm traveling in north direction with forward speed of 5 mph
at high tide. Within the study region colored in gray, the hospital
and nursing home locations are indicated by red dots and blue
triangles, respectively. The elliptical shaped mesh grids are used
to output surge levels, and the resolution of each cell ranges from
tens to hundreds of meters to a kilometer or more. A darker color
indicates a higher surge level.

To cover the hospital locations in our interest region, we
collect one-degree blocks of DEM spanning from 29 to 32◦ N
and 94 to 97◦ W. We use a GIS software, QGIS 3.8, to extract
the elevation of hospital locations.

3.3.3. Combined Flood Prediction

Now, we are able to combine each inland flooding scenario
with a coastal flooding scenario by matching the direction of a
hurricane. For each hurricane scenario, we are able to define the
hurricane direction by connecting the sampled landfall location
and a reference hurricane center point which is defined as the
current hurricane location (note that this is different from the
earlier reference point, the mean predicted landfall location).
To find the current hurricane location we use the GFS forecast
generated at 00:00 UTC on August 24th. Once we have the
hurricane direction for an inland flooding hurricane scenario,
we determine the closest storm direction in the coastal flooding
model. This allows us to produce a set of inundated locations due
to storm surge. To produce the set of all flooded locations for a
particular scenario we then take the union of the set of locations
flooded according to the inland model and the set of locations
flooded according to the coastal (storm surge) models. Note that
our methodology does not take into account combined inland
and coastal flooding effects. This is an important direction for
future research.

For example, in Figure 2, the southern-most landfall location
in the simulated inland flooding model is at (24.50◦ N, 97.58◦

W). The closest storm direction in SDP to the direction generated
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TABLE 1 | Landfall locations and matching storm surge directions.

Scenario name Latitude (◦ N) Longitude (◦ W) Landfall location Direction

L1 24.50 97.58 p1 w

L2 25.14 97.54 p2 wnw

L3 25.46 97.53 p3 wnw

L4 25.67 97.51 p4 wnw

L5 25.68 97.51 p5 wnw

L6 26.21 97.48 p6 wnw

L7 26.22 97.48 p7 wnw

L8 26.68 97.46 p8 wnw

L9 26.74 97.45 p9 nw

L10 26.81 97.45 p10 nw

L11 27.12 97.43 p11 nw

L12 27.13 97.43 p12 nw

L13 27.23 97.42 p13 nw

L14 27.37 97.42 p14 nw

L15 27.40 97.41 p15 nw

L16 27.63 97.40 p16 nw

L17 27.93 97.18 p17 nw

L18 27.95 97.14 p18 nw

L19 28.05 96.97 p19 nw

L20 28.11 96.87 p20 nw

L21 28.22 96.69 p21 nw

L22 28.41 96.37 p22 nnw

L23 28.42 96.36 p23 nnw

L24 28.64 95.99 p24 nnw

L25 29.27 94.95 p25 nnw

by connecting the reference hurricane center point at 12 h and
the southern-most landfall location is the west direction. The
25 landfall locations and their matching directions are shown in
Table 1.

4. VALIDATION

Our model validation is performed using the High Water
Marks (HWMs) collected by the USGS after Hurricane Harvey4.
We remove HWM locations outside the region of interest or
in catchments of lakes and reservoirs, in which the current
WRF-Hydro-HAND methodology cannot provide flooding
information. The measurements we used were the maximum
HWM reading at each site having an excellent, good, or fair
reading. Figure 4 displays 750 unique HWM sites within our
study region.We observe that many HWM sites are concentrated
near the center of the figure, close to central Houston.

We evaluate the accuracy of our methodology in flood
prediction in capturing using the following rates:

Hit Rate (HR) = P(M1|H1) =
P(M1 ∩H1)

P(H1)
(7)

4https://stn.wim.usgs.gov/FEV/

FIGURE 4 | The circles represent the actual HWMs of the 750 sites within the

CMOC region.

False Positive Rate (FPR) = P(M1|H0) =
P(M1 ∩H0)

P(H0)
. (8)

From a statistical viewpoint, we interpret M0 as the event that
the model predicted a site to be dry (0) and M1 as the event that
the model predicted a site to be wet (1) (i.e., flooded). Similarly,
H0 and H1 indicate events that the site is actually dry (0) and
wet (1) by the HWM. Thus, P(H1) is the number of flooded sites
with HWM value greater than threshold level divided by the total
number of sites. The threshold is set as 0 m. Unlike the false
alarm ratio used in Wing et al. (2017), we use the false positive
rate which directly represents the probability of Type 1 error. If
the flood predictions are used in evacuation decisions, then it is
likely that the false negative rate is more critical than the false
positive rate since the consequences of not evacuating a location
that floods are usually worse than unnecessarily evacuating. The
false negative rate can be easily obtained by subtracting the hit
rate from one.

Column (a) in Table 2 shows the hit rates and false positive
rates by computing over all 750 HWM sites. The hit rate and false
negative rate improve in the middle scenarios (around L11–L16,
around L13) and tend to decrease for landfall locations farther
from the mean path (farthest ones are L1 and L25). The false
positive rates are higher in the middle scenarios, suggesting that
the model tends to overestimate flooding in scenarios where the
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landfall location is close to the mean path. Note that both rainfall
and storm surge are expected to be most severe in the region of
interest, in the middle scenarios. In turn, this induces an increase
in both the hit rate and an overestimation of flooding in more
HWM sites.

In order to assess the effect of catchment size on accuracy, we
divide the HWM sites by the area of encompassing catchments.
We find the median catchment area and evaluate the model
under both metrics for sites within catchments smaller than the
median. We perform the same calculation for the remaining sites
within larger catchments. Among the 750 sites, there are 318 sites
within a catchment area smaller than the median area of 9.26
km2. The remaining 432 sites are within the larger catchments.
In Columns (b) and (c) of Table 2, we compare the two metrics
obtained from the two types of sites. A similar trend in hit rates
and false positive rates is observed. In both cases, the hit rates
improve in the middle scenario whereas the false positive rates
are worse. Comparing the overall metrics of (a), (b), and (c), the
hit rate is the best in the sites in smaller catchments whereas the
false positive rate is worse. This suggests that the sensitivity of the
flood prediction model is greater for smaller catchments.

In order to provide some graphical intuition for the
results of the HWM evaluation, we compare our WRF-Hydro-
HAND model results with USGS-FEMA flood-inundation maps
(Watson et al., 2018), which are created using HWMs and
Lidar elevation data. The modeled results are created with the
maximum streamflow in the predicted period. Figure 5 shows
an underestimated case at Reach 1520007 on the East Fork San
Jacinto River and its corresponding NHDPlus catchment in the
black boundary. The inundation extent in L13 and L25 are similar
but smaller than the inundation as estimated from USGS-FEMA.
Furthermore, the results from L13 and L25 are very similar to
one generated with the NationalWaterModel reanalysis product,
which is driven by observed precipitation (results not shown).
In contrast, the inundation extent in L1 is small because the
precipitation in this scenario is the smallest in our studied region
due to the simulated landfall location.

5. CASE STUDY

5.1. Study Region and Locations
In our case study, we focus on hospitals and nursing homes
in the southeast Texas region. SETRAC, the Southeast Texas
Regional Advisory Council, is responsible for coordinating
patient evacuation in 25-county service region in and around
Houston. For example, during Hurricane Harvey in 2017,
SETRAC coordinated 773 patient movement missions that
evacuated 1,544 patients from 24 hospitals. As such, SETRAC
provided important guidance in formulating the case study
described here. To choose hospitals and nursing homes from
the greater Houston region, we utilize the datasets from the
Homeland Infrastructure Foundation-Level Data (HIFLD)5. We
choose the facilities by filtering the datasets for Texas and the
25 counties, and by selecting locations with status “open.” After
filtering the datasets, we find 176 hospitals and 716 nursing

5https://hifld-geoplatform.opendata.arcgis.com/datasets/hospitals

TABLE 2 | The comparison of hit rates (HR) and false positive rates (FPR) for 25

hurricane scenarios.

Scenario
(a) All

catchments

(b) Less than

median area

(c) Greater

than median

area

HR FPR HR FPR HR FPR

L1 0.15 0.15 0.18 0.23 0.13 0.09

L2 0.17 0.19 0.20 0.29 0.14 0.12

L3 0.20 0.22 0.24 0.31 0.16 0.15

L4 0.23 0.22 0.28 0.32 0.19 0.15

L5 0.24 0.22 0.28 0.32 0.20 0.15

L6 0.34 0.31 0.41 0.45 0.28 0.21

L7 0.34 0.31 0.41 0.45 0.28 0.21

L8 0.39 0.40 0.48 0.53 0.32 0.30

L9 0.40 0.40 0.49 0.53 0.33 0.32

L10 0.41 0.42 0.50 0.55 0.35 0.32

L11 0.47 0.47 0.56 0.60 0.39 0.38

L12 0.47 0.46 0.57 0.60 0.39 0.36

L13 0.48 0.52 0.57 0.59 0.41 0.47

L14 0.48 0.56 0.57 0.59 0.42 0.54

L15 0.48 0.55 0.56 0.58 0.42 0.53

L16 0.48 0.54 0.55 0.55 0.43 0.54

L17 0.43 0.41 0.50 0.50 0.38 0.35

L18 0.44 0.39 0.51 0.50 0.38 0.32

L19 0.41 0.33 0.47 0.45 0.36 0.24

L20 0.38 0.31 0.46 0.41 0.33 0.24

L21 0.38 0.29 0.46 0.39 0.32 0.22

L22 0.36 0.31 0.42 0.41 0.31 0.24

L23 0.35 0.31 0.42 0.41 0.31 0.24

L24 0.34 0.35 0.39 0.41 0.30 0.30

L25 0.28 0.22 0.34 0.30 0.24 0.16

homes in our region of interest. Among the 176 hospitals, we
remove six hospitals and 14 nursing homes that are not in the
catchments of rivers (Liu et al., 2018; Zheng et al., 2018a). The
remaining 170 hospitals and 702 nursing homes locations are
marked in red dots and blue triangles respectively in Figure 3.

To provide potential flood scenarios so that SETRAC can plan
patient evacuation missions before the hurricane landfall, the 48
h window before landfall is important. When a hurricane is too
close to the coast, the road network is expected to be congested
because of the evacuating general population. The mobility of
emergency medical service vehicles is also restricted by the wind
speed. The 48 h window provides assurance that their evacuation
operations is minimally affected by the approaching hurricane
while providing the most up-to-date information for generating
potential flood maps.

5.2. Inland Flooding Analysis
Our modeling domain of WRF-Hydro is the Texas-Gulf region
with the watershed boundary of the USGS 2-digit Hydrologic
Unit Code (HUC-2 region 12) with approximately 471,000
km2. The domain consists of 67,294 NHDPlus river reaches
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FIGURE 5 | Comparison of inundation maps: (A) observed—based on USGS-FEMA, (B–D) predicted maximum inundation from scenarios.

and catchments (Figure 6). The hospitals and nursing homes
in this study are scattered in the area, which is mainly at
the lower part of the Colorado River, Brazos River, Trinity
River, Neches River, and Sabines River watersheds. Sixty
five percent of the studied locations are in the San Jacinto
River watershed.

The performance of hydrological simulation is sensitive
to the precipitation amount and pattern. Figure 7 shows the
10-day (from August 24 to September 2, 2017) accumulated
precipitation with our studied region highlighted. Here
we use the precipitation products from the NASA Global
Precipitation Measurement (GPM) (Huffman et al., 2015) as
“true” precipitation. Generally, the satellite-based observation
shows that most of the precipitation is concentrated in the
Houston area. The precipitation forecasts, which are the
inputs for WRF-Hydro simulation, are generated on August
24. Compared with GPM, the precipitation forecast predicts
that the hurricane would drop heavier rainfall as it makes its
first landfall, and the rainfall happens along with the track. It
is not surprising that the forecast produced on August 24 is
not able to capture the slow movement of the hurricane over

eastern Texas. However, among the simulated 25 scenarios,
in eleven scenarios, total precipitations in the CMOC region
are higher than the precipitation of the mean path scenario
(L13). The highest 10-day accumulated precipitation in the
CMOC region among all scenarios is 457.26 mm which is
experienced in Scenario L21. Total estimated precipitations
in all scenarios are lower than the observed precipitation
of 549.72 mm.

As part of the Gulf Coastal Plains, the terrain of themajority of
the study region is flat, especially for the area close to the coastline
(see Supplementary Figure 3). The city of Houston is mostly
urbanized and flat. Twenty-two hospitals and ten nursing homes
are located in one catchment, Brays Bayou (Reach ID 1440385).
The HAND values of the address points for hospitals and nursing
homes range from 9.45 to 14.40 m, which means that all studied
locations are predicted to be flooded when the water level in the
channel of Brays Bayou is larger than 14.40m. Our results suggest
that 17 studied locations (13 hospitals and 4 nursing homes in the
catchment of Brays Bayou) are estimated to be flooded in a worst-
case scenario. These 17 locations have HAND values lower than
11.87 m, which is the maximum predicted stage height.
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FIGURE 6 | The WRF-Hydro modeling domain within the Texas-Gulf Region. (A) Entire modeling domain that consists NHDPlus reaches, (B) the region of the

hospitals and nursing homes (CMOC).

5.3. Coastal Flooding Analysis
For the 25 flood scenarios, four SDP outputs contribute to the
flood mapping. Table 1 shows that the SDP output generated
with the west direction occurs in just one scenario while the west-
northwest, northwest and north-northwest directions appear 7,
13, and 4 scenarios, respectively. In the Galveston basin, the
maximum surge above the sea level (3.47 m) occurs in the storm
surge forecast generated with the northwest direction.

There are nine locations that have mean inundation level
greater than the threshold level of 0 m. Among the nine, there are
two hospitals (h144, h146) and seven nursing homes (n597, n608,
n610, n612, n615, n640, n662). Two nursing homes (n640, n662)
are located near Port Arthur, TX, while the rest of the locations
are in the Galveston area. Supplementary Table 4 summarizes
storm surge statistics, elevation above sea level (NAV88) and the
inundation level of the nine hospitals. There are seven locations
(h33, n298, n574, n603, n607, n622, n623) in which the elevation
is greater than forecasted surge levels in every scenario resulting
the mean inundation level as 0.

5.4. Combined Flooding Analysis
Recall that there are 25 flood sets that are formed by taking the
union of the inland and coastal flooding sets. With a threshold
level of 0 m, the minimum number of flooded locations (21
locations) is realized in Scenario L1. The number of flooded
location is maximum (153 locations) in Scenario L15. The
mean number of flooded locations from the 25 scenarios is
approximately 92. When the landfall location is expected to be
at the southern-most location, the number of flooded hospitals
is minimal. When the hurricane landfall location is toward the

center of the distribution, the model generates the maximum
number of flooded hospitals.

In total, there are 215 locations that experience flooding in at
least one of the 25 scenarios. Figure 8A shows the mean flood
levels (measured above ground level) of the 215 flooded facilities.
The darker color indicates a higher mean flood level. Examining
the locations of the flooded facilities in the figure, we are able to
see that majority of the flooded locations are located in inland.
Figure 8B shows the locations and their probability of flooding
(indicating a positive flood level). Darker colors indicate higher
probability of flood level being >0. Comparing the two figures,
we highlight that locations with higher flood level are likely to
have higher probability of flooding.

There are two locations (n640, n662) that are both impacted
by streamflow and storm surge. In our analysis, we assume no
interaction between streamflow and storm surge, and define
their flood level with higher flood level obtained from either
streamflow or storm surge. In both locations, flooding due to
streamflow generates higher water level above ground. The mean
flood levels of the two locations (n640, n662) from storm surge
are (0.555, 0.623 m) while the flood levels from streamflow are
(2.923, 2.947 m), respectively.

Table 3 shows how the number of flooded locations changes
with increasing the flood threshold level. The mean number of
flooded locations due to coastal flooding approaches 0 when
the threshold is increased from 0 to 1 m. The maximum
number of flooded locations for threshold levels 0.0 and 1.0 m
occurs in Scenario L15. When the threshold level is 0.5 m, the
number of flooded locations is maximum in Scenario L14. For all
threshold levels, the number of flooded locations is minimized in
Scenario L1.
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FIGURE 7 | Comparison of 10-day accumulated rainfall in the CMOC region between 25 scenarios (model) and GPM (observation). (A) Spatial pattern of GPM, (B)

results from scenario L1, (C) results from L13, (D) results from L25, (E) CMOC regional-averaged rainfall from scenarios using weather predictions and from

satellite-based observations from GPM from August 24 to September 2, 2017.

Now, instead of looking both hospital and nursing home
locations, we only look at a subset, the hospitals in the region,
to provide more detailed results a decision maker can use with an
access to our probabilistic scenario-based analysis. For example,
decision makers who plan for mitigation actions for hospital
flooding should consider not only the flood probability but also
the various statistics of flood levels because the capability of
each hospital to withstand flooding is different. As a sampling of
such analysis, Table 4 shows 45 hospital locations subjected to
flooding in the 25 scenarios. It shows flooding probabilities of
hospital locations and their minimum, maximum, and average
flood height. According to the analysis, Hospitals h72 and h151
are expected to suffer from the most severe flooding. Three
hospitals (h144, h150, h151) are expected to be flooded in every
scenario. The flood probability of Hospital h150 is 1, but the
average and maximum flood levels are 0.28 and 0.84 m. Contrast

that to Hospital h35, with the average and maximum flood levels
at 2.21 and 5.90 m, respectively, and with 0.72 probability of
flooding. Although Hospital h150 is expected to be flooded in
every scenario, the degree of flooding in this location may not
be severe enough to plan for an evacuation. In comparison, due
to the magnitude of the expected flood level, it might be a good
idea to prepare for flooding (say evacuate) for Hospital h35.

In flood level forecasting, it is useful for evacuation decision
makers to ask how often the flood level is above a particular level.
Table 5 shows the complementary cumulative distributions,
Ps(H > h), of flood level random variable, H, of 45 flooded
hospitals (s). In the table, the flood level values (h), from 0 to 4 m
with an increment of 0.5, are chosen to describe the distributions.
The probability of Hospital h45 to have flood level >0 is 0.40,
and it does not expect a flood level above 0.5 m. This indicates, in
any scenario, the maximum flood level at h45 does not exceed
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FIGURE 8 | (A) Mean flood levels (calculated from 25 scenarios)—darker colors indicate higher mean flood levels. (B) Flood probabilities—darker colors indicate

higher probabilities of flooding (i.e., flood level being positive).

TABLE 3 | Number of flooded locations in different threshold levels (ξ ).

ξ = 0.0m ξ = 0.5m ξ = 1.0m

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Coast Hospital 1 2 1.96 0 0 0 0 0 0

Nursing home 7 7 7 3 5 4.64 0 0 0.28

Total 8 9 8.96 3 5 4.64 0 0 0.28

Inland Hospital 2 33 17.24 1 23 11.16 1 15 7.64

Nursing home 13 123 67.76 3 89 44 0 55 26.24

Total 15 156 85 4 112 55.16 1 70 33.88

Grand total 21 163 91.96 7 115 58.16 1 70 34.16

0.5 m. On the other hand, the probabilities that Hospital h72
to have flood level >2 and 4 m are 0.68 and 0.60, respectively.
From the table, we can also make inferences on the forecasted
flood level distribution. For Hospitals h48 and h96, we see that
the forecasted flood levels lie in the intervals (0, 0.5m] and (1.5,
2m]. When dealing with a bimodal flood level distribution, such

analyses are more useful than looking at the mean and standard
deviation of flood levels, as in Table 4.

Depending on the flood prevention structures in each
hospital, one may be comfortable with certain levels of flood
level during flooding events. Another factor in an evacuation
decision is the risk preference of the decision maker. The hospital
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TABLE 4 | Flood statistics (in meters) and probability of flood level (H) greater than zero for hospitals in the region of interest.

Hospital Mean Std. Min. Max. P (H>0) Hospital Mean Std. Min. Max. P (H>0)

h7 0.41 0.45 – 1.04 0.52 h66 0.98 1.13 – 2.43 0.44

h8 – 0.02 – 0.12 0.04 h72 6.14 4.83 – 11.83 0.76

h9 0.03 0.07 – 0.29 0.20 h76 0.09 0.14 – 0.35 0.36

h11 0.18 0.20 – 0.50 0.44 h78 0.01 0.03 – 0.10 0.32

h12 0.43 0.51 – 1.26 0.44 h86 0.77 0.88 – 2.01 0.52

h13 0.01 0.02 – 0.07 0.28 h94 0.01 0.03 – 0.09 0.20

h15 0.30 0.28 – 0.70 0.72 h96 0.67 0.80 – 1.73 0.44

h16 – – – 0.02 0.12 h97 – 0.02 – 0.12 0.04

h17 – 0.02 – 0.08 0.08 h98 1.35 1.22 – 2.96 0.64

h20 0.59 0.71 – 1.55 0.44 h101 0.10 0.20 – 0.57 0.32

h24 0.07 0.12 – 0.36 0.32 h107 0.08 0.16 – 0.48 0.24

h28 0.38 0.57 – 1.45 0.32 h110 0.04 0.06 – 0.17 0.32

h30 0.31 0.38 – 0.86 0.40 h116 1.39 1.24 – 3.02 0.64

h35 2.21 1.93 – 5.90 0.72 h123 0.62 0.53 – 1.42 0.72

h43 0.80 0.93 – 2.02 0.44 h130 0.34 0.63 – 1.86 0.28

h45 0.07 0.09 – 0.26 0.40 h138 0.51 0.59 – 1.43 0.52

h47 0.22 0.28 – 0.64 0.40 h139 0.01 0.05 – 0.27 0.04

h48 0.72 0.85 – 1.85 0.44 h144 0.44 0.04 0.30 0.46 1.00

h49 0.20 0.25 – 0.59 0.40 h146 0.14 0.04 – 0.16 0.96

h55 0.36 0.44 – 0.99 0.40 h150 0.28 0.25 0.10 0.84 1.00

h56 – 0.01 – 0.03 0.12 h151 4.86 4.49 1.33 12.43 1.00

h63 0.92 1.07 – 2.30 0.44 h154 0.15 0.40 – 1.50 0.24

h65 0.04 0.13 – 0.58 0.12

evacuation decision is a unique decision making process because
the decision maker is expected to make balanced decisions
between financial and medical losses caused by evacuating and
unfortunate consequences from not evacuating.

The number of flooded hospitals induced by the mean path
scenario (L13) is 39 while the mean number of flooded hospital
over all scenarios is 19.2. We generate flood level distribution of
each hospital from 25 scenarios. Supplementary Figure 3 Shows
the positions of flood level from mean path (marked as “x”) at
each hospital’s flood level distribution. There are nine hospitals at
which the flood level from mean path is at or below the median.
Similarly, when the flood levels from mean path are compared
to the average of each hospital’s flood level (in dots), there are
nine hospitals whose average flood levels from the scenarios are
greater than the mean path flood levels. There are 39 hospitals
whose average flood levels from the scenarios are greater than the
median flood levels suggesting distributions to be right-skewed.

6. FUTURE WORK

In preparing for future hurricanes, government agencies
continue to rely on flood models that are not designed for
specific forthcoming hurricanes, and the comprehensive flood
mapping for both inland and coastal area is still in need. In
this paper, we have developed a probabilistic scenario generation
scheme for hurricane flooding. By sampling landfall locations of
an impending hurricane, we simulate inland flooding scenarios
and align each of them with a coastal flooding scenario based

on the hurricane directions. Considering Hurricane Harvey
as our instance, by using the data obtained two days before
the hurricane, the uncertainty in hurricane-induced flooding
is quantified. We have shown how the probabilistic flood
scenarios can support disaster response decisions such as hospital
evacuation planning. For this study, we have attempted to
replicate flooding scenarios for Hurricane Harvey. We plan to
apply our flood scenario generation to multiple hurricane events
and compare our predictions with the high-water marks and
perform calibration. In the model validation steps, it is suggested
that the hit rate of flooding improves when the model is applied
to smaller catchments. Incorporating the higher resolution water
routing model and enhancing the land surface model in runoff
routing due to precipitation will improve the accuracy of the
overall methodology.

We plan to reinforce technical aspects of scenario
generation. The current method involves locational shifting of
meteorological inputs such as precipitation based on the possible
hurricane landfall location. We believe that our methodology can
take advantage of the improvements in ensemble meteorological

forecasting and high performance computing, to achieve an
ensemble-based flood forecasting taking advantage of potential
cross-disciplinary approaches. We also intend to improve the

current technique of data assimilation by calibrating hydrological

model outputs with high water mark observations. Moreover,
to improve the storm surge-side of the forecasting in flood
prediction, we plan to enhance the methods for accounting for
more sources of uncertainty. Finally, the scenario generation
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TABLE 5 | Complementary cumulative distribution functions of flood level (m) at hospitals.

Hospital P (H>0.0) P (H>0.5) P (H>1.0) P (H>1.5) P (H>2.0) P (H>2.5) P (H>3.0) P (H>3.5) P (H>4.0)

h7 0.52 0.40 0.08 – – – – – –

h8 0.04 – – – – – – – –

h9 0.20 – – – – – – – –

h11 0.44 0.04 – – – – – – –

h12 0.44 0.40 0.20 – – – – – –

h13 0.28 – – – – – – – –

h15 0.72 0.40 – – – – – – –

h16 0.12 – – – – – – – –

h17 0.08 – – – – – – – –

h20 0.44 0.40 0.40 0.12 – – – – –

h24 0.32 – – – – – – – –

h28 0.32 0.32 0.24 – – – – – –

h30 0.40 0.40 – – – – – – –

h35 0.72 0.68 0.64 0.56 0.52 0.44 0.36 0.32 0.20

h43 0.44 0.44 0.40 0.40 0.04 – – – –

h45 0.40 – – – – – – – –

h47 0.40 0.32 – – – – – – –

h48 0.44 0.40 0.40 0.40 – – – – –

h49 0.40 0.24 – – – – – – –

h55 0.40 0.40 – – – – – – –

h56 0.12 – – – – – – – –

h63 0.44 0.44 0.40 0.40 0.40 – – – –

h65 0.12 0.04 - – – – – – –

h66 0.44 0.44 0.44 0.40 0.40 – – – –

h72 0.76 0.76 0.72 0.68 0.68 0.68 0.68 0.64 0.60

h76 0.36 – – – – – – – –

h78 0.32 – – – – – – – –

h86 0.52 0.40 0.40 0.36 0.04 – – – –

h94 0.20 – – – – – – – –

h96 0.44 0.40 0.40 0.40 – – – – –

h97 0.04 – – – – – – – –

h98 0.64 0.60 0.52 0.44 0.44 0.36 – – –

h101 0.32 0.12 – – – – – – –

h107 0.24 – – – – – – – –

h110 0.32 – – – – – – – –

h116 0.64 0.60 0.52 0.48 0.44 0.36 0.04 – –

h123 0.72 0.52 0.32 – – – – – –

h130 0.28 0.24 0.16 0.16 – – – – –

h138 0.52 0.44 0.32 – – – – – –

h139 0.04 – – – – – – – –

h144 1.00 – – – – – – – –

h146 0.96 – – – – – – – –

h150 1.00 0.24 – – – – – – –

h151 1.00 1.00 1.00 0.64 0.40 0.36 0.36 0.36 0.36

h154 0.24 0.08 0.08 – – – – – –

approach can be integrated more directly with the decision
making and resource allocation models, giving the involved
decision makers better tools to quantify uncertainty and to make
more informed mitigation and preparedness decisions.
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The current study investigates the effect of large-scale channel modifications via riverine

dredging on flood dynamics in low-gradient river systems located in inland-coastal flood

transition zones. The study site is the Vermilion River in south Louisiana, US, which

is characterized by complex flow regimes, reversal and bi-directional flows, presence

of large swamps with significant river-swamp interactions, and large volumes of runoff

contributions from lateral tributaries. The study aims to understand the interplay of these

factors and how they modulate and get affected by different dredging approaches that

vary in spatial extent and the modifications introduced to the channel. The study deploys

a hybrid, one-/two-dimensional (1D/2D), hydrodynamic model that simulates flow and

stage dynamics in the main river and its major tributaries, as well as the flow exchanges

with the interconnected swamp system. Overall, the results show that the dredging

activities can significantly alter the flow regime in the watershed and affect flow exchanges

between the river and the swamp system. In terms of flooding impact, only dredging

approaches that are extensive in spatial extent and modifications to channel longitudinal

slope can result in sizeable reductions in flood stages. However, these benefits come at

the expense of significant increases in the amplitude and inland propagation of the Gulf

tidal wave. On the other hand, less-extensive dredging can still provide moderate and

spatially limited flood mitigation; however, they further expose downstream communities

to increased levels of flooding, especially during more frequent events. The results

reveal that while dredging can increase the hydraulic conveyance of the river system,

the large runoff volumes delivered by the urbanized tributaries seem to outweigh the

added improvement in the in-channel storage, thus reducing the anticipated flood relief.

The results suggest that a watershed-centered approach, instead of a riverine-centered

approach is needed for flood management in these systems so that the relative benefits

and tradeoffs of different mitigation alternatives can be examined.
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INTRODUCTION

Watersheds that are located in inland-coastal transition zones
(Bilskie and Hagen, 2018) are increasingly subject to extreme
flooding due to bothman-made alterations and natural processes.
Examples of such processes include compound inland and
coastal storms, accelerated relative sea-level rise, and increased
population and urbanization (Crossett et al., 2013; NCEI, 2020).
Flooding in these areas is further exacerbated by the typical low
gradients that characterize the main rivers and their tributaries.
Flow regimes under low-gradient conditions typically lead to
channel sedimentation and reduction of the channel conveyance
capacity, and thus an increase in fluvial flooding duringmoderate
and extreme storms.

Flood mitigation measures are often sought in these regions
to alleviate the impact of riverine-induced flooding. One of
the traditional and most common flood mitigation practices in
coastal watersheds is watercourse dredging or channelization
(Liao et al., 2019). Dredging refers to activities that include any
combination of removing instream and riparian sediment and
vegetation, modifying channel width, depth, and gradient, and
straightening the river (Hooke, 1990). By structurally altering
one or more of the hydraulic variables that govern channel flow
and its conveyance capacity (e.g., slope, depth, width, roughness),
the water stages are typically decreased, which can reduce
the spatial extent of the flood inundation and the associated
flood risk.

Early studies on watercourse dredging provided empirical
and theoretical evidence that channelization, if appropriately
designed to prevent the bank erosion and channel silting, can
be quite effective as a flood mitigation measure (Nunnally, 1978;
Shankman and Pugh, 1992). However, recent feasibility studies
examined potential dredging scenarios for tidally-dominated
sections of coastal rivers in southwest UK and demonstrated
that dredging did not lower the peak flood levels significantly
during winter storms (Webster et al., 2014). The study showed
that the shape of the river cross-section and the heights
of the riverbanks played a significant role in determining
the actual flood level reduction. Other studies showed that
dredging can have unintended consequences in other parts
of the watershed, especially in the downstream communities.
For example, Prestegaard et al. (1994) reported that areas
downstream of a modified section of the Raccoon River in
Iowa had experienced higher-magnitude floods compared to
sections from rivers that have upstream similarly-sized drainage
areas. Rose and Peters (2001) showed that channel cross-section
enlargement increases the flood wave velocity, thereby speeding
the arrival time of flood peaks downstream.

Other studies have focused primarily on the adverse effects
of channelization on water quality (Schoof, 1980), ecological
alterations of the stream and the riparian corridor (Juan et al.,
2020), and stream degradation (Pierce and King, 2013). Another
potential aspect of river dredging activities is the effect on tidal
propagation. Cai et al. (2012) applied an analytical model to
show that a reduction in river discharge and degradation of
the riverbed both lead to a significant reduction in the travel

time of the tidal wave. The study also highlighted that the
amplification of the tidal amplitude, as a result of dredging,
could facilitate the penetration of storm surges into the estuary.
Likewise, Ralston et al. (2019) studied the effect of dredging on
New York Harbor and the tidal Hudson River and found that
such modification doubled the tidal amplitude and increased the
landward conveyance of coastal storm surge.

While dredging can increase the hydraulic efficiency of river
channels and potentially reduce overbank flooding, the impact
on flow hydrodynamics and the overall flooding regime needs to
be better understood, especially in watersheds that are located
within inland-coastal transition zones. In such regions, river
systems are typically characterized with complex flow dynamics
due to factors, such as flow reversals and bi-directional flows
(e.g., Burton and Demas, 2016; Watson et al., 2017), dynamic
connectivity and flow exchanges with large natural storage areas,
such as swamps and wetlands (Saad et al., 2020); tidal influences,
and the large volumes of synchronized tributary flows from
urbanized sub-watersheds (e.g., Pattison et al., 2014; Wang et al.,
2019). The complexity of flow regimes in these regions has
implications for flood mitigation; therefore, it is imperative
to develop a comprehensive understanding of the impacts of
riverine dredging that emerge as a possible mitigation strategy
in response to decreased channel capacities and increased flood
risk. This study deploys a hydrodynamic model to investigate
the various impacts of channel dredging and their implications
for flood mitigation and how it may alter the overall flow
regime. The study site is in the Vermilion River in southern
Louisiana, US, a representative of low-gradient tidally-influenced
river systems that are located in flood transition zones. The
study focuses on understanding the effect on flow regime and
reduction in water surface elevations under a suite of dredging
approaches that represent varying degrees of channel cross-
sectional modifications, changes to the riverbed slope, and the
spatial extent of the dredging along the river. The analysis will
be performed for different storm conditions (e.g., 10-year and
>100-year return periods) to assess the dependence on the storm
magnitude and the amount of runoff generated in the watershed.
A special attention is given to how dredging may also alter the
river-swamp interactions. Swamps, which are a common feature
in low-gradient coastal watersheds, play a significant role in flood
mitigation and provide flood relief in large river basins (Wu et al.,
2020). The scientific literature shows a need for understanding
the impact of riverine dredging on flow exchanges with swamp
areas and their ecosystem viability. Given the direct connection
with the Gulf of Mexico, the analysis will also examine the effects
of the spatial location and extent of the dredging on the amplitude
and propagation of the tidal wave along the river. Besides the
main river, it is also of importance to assess the propagation
of any potential flood mitigation benefits into the tributaries
that are connected to the river. Unlike most previous studies
that depended on 1-dimensional (1D) hydraulic modeling in
simulating pre- and post-dredging conditions, the current study
utilizes a hybrid 1D/2D approach that allows for more accurate
representation of the flow dynamics in low-gradient complex
river systems (Saad et al., 2020).
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METHODS

Study Area
The Vermilion River is a tidally-influenced river located in south
central Louisiana, US, and has a watershed that covers an area
of about 1,560 km2 (Figure 1). The Vermilion River basin, a
representative of other low-gradient inland-coastal transitional
basins (Bilskie and Hagen, 2018), has a long history of severe
flooding since the major flood that occurred in August 1940
until the most recent in August 2016 (USACE, 1995; Watson
et al., 2017). The river starts at the confluence of Bayou Bourbeux
and Bayou Fusilier, after which it travels ∼115 km until it
intersects with the Gulf Intracoastal Waterway (GIWW). The
river eventually drains into the Gulf of Mexico through the
Vermilion Bay. The river functions as a major artery that
collects runoff from many intersecting lateral tributaries, locally
referred to as coulees (Kim et al., 2012). The Vermilion River
receives flow diversions from another river in the east, Bayou
Teche, through Bayou Fusilier and Ruth Canal (Figure 1).
Flow diversions are regulated through a concrete weir and a
manually-operated gate that permits about 25% the flow of
Bayou Teche to be diverted during non-flood conditions (Baker,
1988).

A major feature that adds complexity to flood dynamics in
the basin is a series of inter-connected swamps and lakes, locally
known as the Bayou Tortue Swamp and Lake Martin (Figure 1)
that occupy a large area of the watershed (∼35.2 km2). These
swamps function as a natural storage area by accepting reverse
flows (i.e., flow traveling upstream) from the Vermilion River.
During low and normal river stages, the river collects inflows
from its tributaries and travels downstream (south) toward the
bay. However, during extreme flooding events, the river becomes
bidirectional and shows a reverse flow toward the north where
it drains into the Bayou Tortue swamps. The division point
between downstream flows (toward the Vermilion Bay) and
upstream flows (toward the Bayou Tortue swamps) depends
on the severity of the flooding event. During high-frequency
events, the bidirectional flow often initiates where one of the
main tributaries, Coulee Mine, enters the river (Figure 1). If the
storm event is extreme enough, a further downstream change
in bidirectional flow division may occur where two other major
tributaries, Coulee Ile des Cannes and Isaac Verot Coulee, enter
the river. In both cases, extensive flooding occurs along many
reaches of the river and its tributaries, and especially over the
urbanized areas of the City of Lafayette and its surrounding
communities. Examples of reverse flows are shown in Figure 2.
The hydrographs also show excessively slow recession of flood
peaks, which are driven by outflows from the swamp after the
river stage has started to recede. Observations on river stage
and streamflow are available at four locations within the domain
of interest to the current study (Figure 1). Stage measurements
are available at three road crossings over the Vermilion river,
namely Surrey, HWY733, and Perry, while the fourth location
is just upstream the inlet control gates of Ruth canal (Figure 1).
Streamflow (flow rate) data are available only at Surrey and
Perry gauges. More details about the streamflow observations are
available in the Supplementary Material.

The historically navigable reach of the Vermilion River
extends between the City of Lafayette (river kilometer of 76,
measured from the river mouth at the Vermilion bay) and the
GIWW (river kilometer 5), and has periodically been subject to
channel dredging for maintenance purposes. However, due to the
declining navigation activities and other logistical reasons, the
river has not been dredged for the last two decades. This has
resulted in riverbed shoaling and reduction in the conveyance
capacity of the river, especially in the central reaches that pass
through the urbanized sub-watersheds in Lafayette.

Simulation Periods
The dredging analysis of this study was conducted for two
multi-storm simulation periods, August 1st−30th, 2016 andMay
15th–June 5th, 2014 (Figure 2), that capture different storm
magnitudes and flooding impacts. The two simulation periods
were associated with widespread flooding in different parts of
the watershed. The stage and streamflow hydrographs observed
during both periods clearly illustrate the reverse flows that
happen within the Vermilion River, as well as the extremely
slow recession that continue for several days after the end of the
rainfall storm.

The August 2016 storms generated devastating flooding
within the basin and across many areas of the state (van der Wiel
et al., 2017; Watson et al., 2017). Based on a rainfall duration-
depth analysis, the August 2016 storm can be classified as a
100–200-year storm. A total of 762mm of rainfall was recorded
during the August 2016 period, with hourly rainfall intensities
exceeding 90 mm/h. Rainfall events during the 2014 simulation
period can be classified as a 2–10-year storm, depending on
the duration considered. During the May–June 2014 period, a
total rainfall depth of 250mm was recorded, with hourly rainfall
intensities reaching 37 mm/h, causing significant flooding where
lateral coulees meet the Vermilion River (Advanced Hydrologic
Prediction Service, 2018).

Hydrodynamic Model
In this study, an unsteady hybrid 1D/2D hydrodynamic model
for the Vermilion River and its main tributaries was used to
simulate the existing conditions and the proposed dredging
scenarios. The model is an expansion of an earlier version
(Saad et al., 2020) that was developed using the Hydrologic
Engineering Center’s River Analysis System (HEC-RAS) version
5.0.7. The HEC-RAS system allows for 1D and 2D unsteady
flow simulations using either dynamic or diffusive wave
approximations of the shallow water equations. For the purposes
of this study, the HEC-RAS 1D solver was used in the case
of 1D simulations (e.g., the main channel of the river) to
solve the full 1D St. Venant equations for unsteady open
channel flow. These equations are discretized using the finite
difference method and solved using a four point implicit method
(USACE, 2016). For 2D simulations, this study opted to use
the diffusive wave approximation of the shallow water equations
since similar results were obtained when the full dynamic
solver was used. While performing the 2D computations,
the HEC-RAS uses an implicit finite difference scheme to
discretize time derivatives and a combination of finite difference
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FIGURE 1 | (Left) Digital elevation model of the Vermilion watershed in south Louisiana, US. The five lateral tributaries (coulees) that are simulated in the

hydrodynamic model are shown. Locations of USGS gauges are also shown (S: Surrey, H: HYW733 and P: Perry). (Right) Stream network of the Vermillion River and

(Continued)
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FIGURE 1 | its 15 tributaries. Streams in blue represent the main river and the five tributaries that are explicitly simulated in the hydrodynamic model as 1D reaches.

Gray arrows indicate locations of NWM streamflow hydrographs that feed the upstream ends of the five tributaries. Streams in green represent the other 10 tributaries

that were not explicitly simulated in the hydrodynamic model. NWM streamflow hydrographs at the outlets of the 10 tributaries were directly provided into the main

river (red arrows). The model is forced by a stage hydrograph at its most downstream boundary and by two upstream streamflow hydrographs that capture flow

diversions from Bayou Teche through Ruth Canal gates and Fuselier Weir. The swamp area (hatched) is represented in the model using a 2D setup and is enforced by

direct rainfall-over-grid from the Stage IV radar-rainfall product. The inset in the right panel shows an example representation of channel cross sections used in the 1D

hydrodynamic simulations.

FIGURE 2 | (Top) Hourly rainfall rates (black) and accumulations (gray) extracted from the Stage IV radar product. (Middle and lower) Streamflow and stage

hydrographs at the USGS Surrey gauge during the 2014 (left) and 2016 (right) simulation periods. Model simulations are in gray and USGS observations are in black.

and finite volume solver (hybrid discretization) to solve for
spatial derivatives.

Model 1D/2D Setup
The model encompasses a total of 115 km of the mainstream of
the Vermilion River (Figure 1), starting at its headwaters, where
a flow hydrograph from the Fusilier weir provides an upstream
boundary condition. The river also receives flows through the
Ruth canal structure that conveys flows from Bayou Teche to
Vermilion River. Time-series of flow diversions through the Ruth
canal structure and over the Fusilier weir were constructed based
on information provided by the Teche-Vermilion Freshwater
District responsible for operation of the structures. The model
terminates at its intersection with the GIWW, where a stage

hydrograph available from a Gulf monitoring station is used as
downstream boundary condition.

The hybrid 1D-2D model setup includes the mainstem of
the river and five of its major tributaries represented as 1D
(Figure 1), while the Bayou Tortue swamp system and its
surrounding areas were represented as 2D (Figure 3). The
narrow and steep-sided channel of the Vermilion River (Kinsland
and Wildgen, 2006) makes the 1D characterization of the river
rather reasonable. Significant flow exchanges occur between the
river and the Bayou Tortue swamp system through several
tributaries as well as direct bank overflows. To simulate such
exchanges, a 2D setup was used to represent the swamp using
a total of eight 2D flow areas (Figure 3). An unstructured mesh
was developed with varying resolutions of 30–90m. The varying
resolution was needed to address model stability and terrain
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FIGURE 3 | Bayou Tortue swamp system represented using a 2D setup in the hydrodynamic model. The close-up view shows the Vermilion River (modeled as 1D)

flowing through the Bayou Tortue swamp. The red lines around the riverbanks represent a set of fictitious lateral structures that were used to simulate the connection

between the river and the swamp.

representation. Generally, a fine mesh size was heavily enforced
around breaklines and in areas where abrupt changes in the
velocity field was encountered. Breaklines were used in the 2D
areas to enforce key features of the terrain and ensure that the
model reasonably simulates the movement of overland flow.
Breaklines were used along channels with concentrated flows
and ridgelines that allow flows to spill from one area to another
across features, such as road embankments, levees, and natural
ridgelines. On the other hand, a coarse mesh resolution was
adopted in areas where the 2D flow is relatively uniform. Even
in areas with relatively coarse computational grids, a reasonable
representation of the swamp hydrodynamics is achieved due
to the HEC-RAS implementation of a sub-grid approach that
allows for a relatively coarse grid while capturing the finer
scale underlying topography (Brunner, 2016). To allow for flow
exchanges between the river and the swamp, the 1D (river) and
2D (swamp) parts of the model were coupled through lateral
connections represented in themodel as fictitious weir structures.
During the unsteady flow simulation, the solution algorithm
allows for direct feedback at each time step between the 1D
and 2D flow elements, which enables an accurate calculation of
headwater, tailwater, flow, and any submergence that occurs at
the hydraulic structure on a time-step-by-step basis.

Representation of Tributaries and Surface

Runoff
Along its main course, the Vermilion River receives runoff
contributions from 15 main tributaries and about 23 minor
lateral streams. Due to the absence of tributary streamflow
observations, the current study depended on readily-available
hydrologic simulations from the National Water Model (NWM)
Reanalysis to obtain tributary streamflow hydrographs. These
tributary hydrographs were then used to drive the hydrodynamic
model simulations (red and gray arrows in Figure 1). The
NWM is a modeling framework that depends on a fully
coupled surface/subsurface hydrological model called WRF-
Hydro (Gochis et al., 2018). The NWM uses diffusive wave
surface routing and saturated subsurface flow routing on a
250-m grid, and channel routing down the NHDPlus stream
reaches using the Muskingum-Cunge (MC) method (Shastry
et al., 2017). Only five major tributaries (Coulee Des Poches,
Coulee Mine, Coulee Isaac Verot, Coulee Ile Des Cannes, and
Anslem Coulee), were explicitly simulated in the hydraulic
model as 1D reaches (Figure 1). These specific tributaries were
selected since they play a key role in the river hydrodynamics.
Hydrographs were extracted from the NWM dataset at the
outlets of the lower-order streams of the five tributaries (gray
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arrows in Figure 1) and the outlets of the 10 main tributaries
that were not fully included in the hydrodynamic model (red
arrows in Figure 1). These hydrographs were then used to
drive the 1D hydrodynamic simulations of the five tributaries
and the main river. Examples of NWM hydrographs that were
used to enforce the hydrodynamic model are shown in the
Supplementary Material.

It is also noted that, besides the concentrated streamflow
hydrographs, additional overland streamflow hydrographs were
extracted from the spatially-distributed NWM outputs. These
were then provided as laterally-distributed hydrographs to the
1D reaches of the five tributaries and the main river to capture
overland surface runoff that drain directly to the channels (see
Supplementary Material for more details). Additional surface
runoff comes from direct rainfall over the Bayou Tortue swamps.
Since the swamps were represented in the model using a
2D setup, a rainfall-on-grid HEC-RAS approach was adopted
over the swamps. Rainfall data was available via the hourly,
spatially distributed (4 × 4 km2) Stage IV radar-rainfall product
(Eldardiry et al., 2015). Hourly Stage IV rainfall data were
extracted over each of the eight 2D swamp areas and used to drive
the 2D hydrodynamic simulations over the swamp domain.

Terrain and Land-Use Representation
A modified terrain model was developed for the Vermilion
River basin using a combination of cross sectional surveys,
high-resolution LiDAR-based Digital Elevation Models (DEM;
Cunningham et al., 2009), and detailed bathymetric surveys
for the river (USACE, 2015). To compensate for the inability
of the LiDAR technology to “see-through” the water surface
(Cook and Merwade, 2009), the LiDAR DEM and the riverine
bathymetry were merged to generate an improved terrain model
that includes the riverbed survey along the channel reaches
and the DEM data elsewhere in the model domain. The
merged terrainmodel was hydrodynamically-corrected following
Jarihani et al. (2015). Merging these elevation sources into a
single DEM, while keeping the priority for the local surveys and
river bathymetry in overlap areas, produces a base DEM that
is used in the hydraulic modeling and subsequent analysis of
dredging scenarios.

The Vermilion River watershed exhibits a significant
heterogeneity in the land-use and land-cover characteristics.
To reliably model the flood response of the watershed, the
2011 30-m National Land Cover Database (NLCD) (Homer
et al., 2015) was used to develop a lookup table that links each
NLCD grid cell with a representative value of the Manning’s
roughness coefficient. This allowed the model to incorporate a
spatially distributed representation for overland and channel
roughness characteristics.

Model Calibration
The model was calibrated using the May–June 2014 multi-storm
simulation period, while the results were tested under the August
2016 simulation period (Figure 2). Due to the lack of adequate
flow and stage observations in the basin, only a limited level
of model calibration was possible. A visual-based calibration
was performed to adjust the model parameters by focusing on

TABLE 1 | The four dredging scenarios considered for evaluation.

Modifications to river capacity Spatial extent of modifications

Partial Full

Modify channel dimensions Scenario (A)

27 km; 1.7 mm3

Scenario (C)

81.1 km; 3.0 mm3

Modify channel dimensions and bed slope Scenario (B)

27 km; 2.9 mm3

Scenario (D)

81.1 km; 7.5 mm3

The numbers reported for each scenario represent the length of the dredged reach (km)

and the volume of bed material that needs to be dredged (million cubic meters, mm3 ).

key attributes of the river flow regime during flood events (e.g.,
reverse flows, river-swamp flow exchanges, slow recession of
flood waves). The calibration was done primarily by adjusting
the Manning’s roughness coefficient in the channel reaches that
were simulated as 1D and the swamp areas that were simulated
as 2D. In channel reaches, the roughness coefficient was adjusted
for the main channel as well as for the overbanks. The calibration
focused primarily on simulating the magnitudes and timings of
flow and stage peaks at the two gauges. In calibrating the model,
special attention was given to re-produce the reverse flows that
were observed at the Surrey gauge, which is an indication of
the model’s ability to capture river-to-swamp flow exchanges.
Adjustments roughness coefficients were also spatially adjusted
over the swamp areas that were simulated using a 2D grid.
The adjustments were key in improving the model’s ability to
simulate the prolonged recession of the receding flood waves,
a typical behavior of the river during extreme events that is
attributed to swamp-to-river flow exchanges. More details about
the model performance and the calibration results are available in
Saad et al. (2020).

Description of Dredging Scenarios
To investigate the impact of dredging on flow regime within
the river, four different scenarios were considered. The scenarios
reflect different combinations of spatial extents and changes to
the dimensions of the river channel and its longitudinal slope
(Table 1 and Figure 4). These combinations also reflect a wide
range in the expected volume of the dredged material. Despite
the differences between the four dredging scenarios, they all share
some common features. All dredging scenarios intend to cut the
river cross-section to a 30-m width and side slopes of 2H:1V,
while maintaining the river alignment unchanged. These new
channel dimensions were based on navigation and flood control
criteria set by the Bayou Teche and Vermilion River Operations
and Maintenance project (USACE, 1995). In all scenarios, the
roughness coefficient was adjusted in the dredged sections to
reflect the expected improvement in channel irregularity and
bed roughness.

Dredging scenarios A and C focused on changing the channel
dimensions only, while scenarios B and D included changes to
both of the channel dimensions and the longitudinal bed slope.
Modifying the channel dimensions intends to dredge the river
bed to a fixed elevation of−3.35m, based on the North American
Vertical Datum of 1988 (NAVD 88), with a width of 30-m and
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FIGURE 4 | (Top) Bed elevation of the Vermilion River starting from its downstream intersection with the GIWW until its most upstream station. The bed elevation is

shown for the existing condition of the river (base scenario, black line in top panel) and the four dredging scenarios, A–D. (Middle) Shows a close-up view on the

dredging extents of scenarios A and B. A full description of the four dredging scenarios is presented in Table 1. Note that the existing bed elevation follows the

irregular bed profile and overlaps with some of the scenarios in certain reaches. (Lower) Show examples of cross section modified for dredging (solid lines indicate

the existing cross section while the dashed lines show the same section after dredging).

side slopes of 2H:1V (Figure 4). However, if the existing bed
elevation located within the intended dredging reach was already
lower than the −3.35-m elevation, which was the case for most
of the dredged reaches, the bed elevation is kept unchanged

while the new width is carved at the elevation of −3.35m. In
addition to increasing the channel cross-sectional dimensions,
scenarios B and D included grading the river bed to achieve a
downstream-oriented longitudinal slope (Figure 4).
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FIGURE 5 | Simulated flow hydrographs at three key stations along the Vermilion River (top: Surrey, middle: HWY733, bottom: Perry; see Figure 1 for specific

locations) during the May–June 2014 simulation period for the no-dredging baseline condition and the four dredging scenarios.

The study also examined two spatial extents of river dredging,
a partial dredging extent (scenarios A and B) and a full

dredging extent (scenario C and D). The “Full” spatial extent
applies dredging for the whole navigation reach of the river,

starting from its intersection with the GIWW in the south,

and extends north for 81.1 km where the Ruth Canal joins
the river. Alternatively, the “Partial” dredging extent covers
only 27 km of the river where it passes through the heavily-
urbanized areas within the City of Lafayette. The four dredging
scenarios capture different degrees of modifications to the
channel conveyance capacity and will allow a comprehensive
evaluation of impacts on flow regimes and flooding in the river
basin. Each dredging scenario will be tested separately using
the hydrodynamic numerical model under the 2014 and 2016
simulation periods. The results will then be compared against

those of a baseline scenario that represents the existing conditions
of the river geometry.

RESULTS AND DISCUSSION

This section presents the results of the hydrodynamic model
for the Vermilion River under the existing conditions (baseline
scenario) in addition to the four proposed dredging scenarios.
To isolate the effects of changing the river bathymetry, the
forcing boundary conditions, including the tributary inflow
hydrographs and tidal downstream boundary conditions, were
all kept the same in all scenarios including the baseline scenario.
This approach will allow for inter-scenario comparisons and
ensure that reflect only the effect of bathymetric changes due to
river dredging.
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FIGURE 6 | Simulated flow hydrographs at three key stations along the Vermilion River (top: Surrey, middle: HWY733, bottom: Perry; see Figure 1 for specific

locations) during the August 2016 simulation period for the no-dredging baseline case and the four dredging scenarios.

Effect on Flow Regime in the Main River
Figures 5, 6 show the simulated flow hydrographs at three key
locations along the Vermilion River for the two simulation
periods, May–June 2014, and August 2016. The three locations
(Surrey, HWY733, and Perry crossings) are selected in such
a way to reflect different flow regimes along the river (e.g.,
reverse flows, upstream and downstream conditions, water
surface gradients). These figures illustrate flow hydrographs from
simulating the baseline case (no dredging scenario), and those
from the four proposed dredging scenarios (Table 1). Prior to
discussing the effect of the different dredging scenarios, it is
necessary to discuss the flow regime in the river under the
existing conditions. TheVermilion River, under its current status,
tends to show reverse (negative) flow values at Surrey station
(top panels in Figures 5, 6) under moderate and extreme rainfall

storm events. These negative values indicate a reverse in flow
direction where the river starts to travel north and exchange
flows with the Bayou Tortue Swamp, rather than following its
normal course south toward the Gulf of Mexico. The specific
location where this flow inversion starts mostly depends on
the severity of the storm and the spatial distribution of the
rainfall over the watershed. This can be seen when comparing
the simulated flow hydrographs at HWY733 during May–June
2014 period (moderate 2–10-year events) and August 2016
period (extreme >100-year events). The results suggest that the
reach of the river where inversion in flow direction occurred
extended much further downstream to reach south of HWY733
during the more extreme August-2016 storm, while it was only
limited to shorter reaches during more moderate rainfall events.
The degree and spatial extent of the reverse flow are also
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FIGURE 7 | (Lower) Longitudinal profile of maximum water surface elevation (WSE) along the mainstem of the Vermilion River simulated under the baseline case

during the May–June 2014 simulation period. The existing river bathymetry is also shown (irregular line). (Top) Longitudinal profile of the differences between the

maximum WSE simulated under each dredging scenario and the baseline case.

apparent in the longitudinal water surface profiles shown later
in Figures 7, 8.

Generally, the different dredging scenarios appear to alter
the overall flow regime in the river, especially during moderate
storms, such as the May–June 2014 period. All dredging four
scenarios tend to reduce the reverse flows during the peak
period of the storm while increasing the positive flows during
the recession period. Despite differences in the spatial extent
and degree of channel modification across the four dredging
scenarios, the dredging activities tend to cause the main river
to flow in its normal course toward the Gulf of Mexico.
This is further evident in the simulated flow hydrographs at

HWY733 and Perry locations (Figure 5) which experience a
general promotion in the positive flow values. Increases in in
the magnitudes of downstream flows are also apparent in the
slow and elongated recession curve, indicating that the river is
now accepting more flows coming from the swamp system and
moving into the downstream direction.

The results under a more extreme storm (August 2016)
provide other interesting insights on how dredging can
significantly alter the flow regime in the river. Note that during
this extreme flooding event, the extent of the reverse flow
reached much further downstream (top and middle rows in
Figure 6) than during the 2014 moderate events. During the
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FIGURE 8 | (Lower) Longitudinal profile of maximum water surface elevation (WSE) along the mainstem of the Vermilion River simulated under the no-dredging

baseline case during the August 2016 simulation period. The existing river bathymetry is also shown (irregular line). (Top) Longitudinal profile of the differences

between the maximum WSE simulated under each dredging scenario and the baseline case.

August 2016 period, only the more aggressive Scenarios B and
D, which involve implementing downstream-sloped riverbed
grading, acted similar to the May–June 2014 period and reduced
reverse flows. On the other hand, the less aggressive dredging
Scenarios A and C showed an opposite behavior where some
increases in the reverse flows were obtained, indicating an
increase in the peak flows traveling north toward the Bayou
Tortue Swamp. The dredging approach of scenarios A and
C involve only enlarging the river cross-sectional dimensions
without any grading of the longitudinal bed slope as was done
in scenarios B and D. Apparently such approaches lead to an

increase in the in-channel storage capacity within the dredged
reach of the river without changes the bed slope. During extreme
events, such as the August-2016 event, the in-channel storage
of the river gets dominated by the amount of rainfall and thus
plays a less significant role in controlling the water surface
gradient. The runoff delivered to the river through its tributaries
overwhelm the river storage capacity and build a hydraulic
gradient that makes it easier for the river to travel in the reverse
direction toward the Bayou Tortue Swamp system.

The results clearly suggest that the dredging scenarios have
an effect on flow exchanges between the river and the swamp
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system that provide a valuable flood mitigation service for the
entire watershed (Saad et al., 2020). During the peak of the storm,
the river flows north into the swamp providing relief for the
downstream areas of the watershed. However, after the peak, the
large volumes of water that were diverted into the swamp start
to drain back into the river resulting in an extremely extended
recession of the hydrograph, which leaves the downstream
communities under high flood stages for several days. To further
examine the impacts of the different dredging scenarios on the
river-swamp interactions, hydrographs of flow exchange between
the river and the swamp were examined. These hydrographs (not
shown) were constructed by tracking the exchange flows through
the tributaries and lateral connections that connect the swamp
and the river (Figure 3). The results confirmed a significant
reduction in the volume of river-to-swamp flows by as much as
40–64% under scenario D and an increase in the swamp-to-river
outflows into the river by as much as 23%.

Effect on Water Surface Elevations (WSE)

in the Main River
Figures 7, 8 show longitudinal profiles of the maximum water
surface elevation (WSE) along the river during the two
simulation periods for the baseline scenario and the four
dredging scenarios. For better clarity, the results for the four
dredging scenarios are presented in the form of differences from
those of the baseline scenario. In general, the dredging scenarios
reduced water surface elevations along some reaches the river, but
to various degrees. During the August 2016 period, maximum
reductions in water surface elevation were 0.14, 0.22, 0.30, and
0.49m for dredging scenarios A, B, C, andD, respectively. Smaller
reductions (0.19, 0.21, 0.22, and 0.42m) were obtained during
the more-frequent storms of May–June 2014. The reductions are
more noticeable over the middle section of the river (∼river km
50 to river km 80). The reduction reached further downstream
(∼river km 5–20) under the most aggressive dredging scenario
D. Despite the overall reduction in WSE, it is interesting to see
that local dredging that doesn’t extend downstream enough (e.g.,
Scenarios A and B), althoughmay reduce water surface elevations
within the dredged reach, had actually triggered downstream
increases in water surface elevations during the May–June 2014
period where up to a 0.2m increase was observed in the last third
of the river (∼river km 10–45). During more frequent events,
spatially-limited increases in the in-channel storage of the river
offered localized relief to the water surface profiles but led to
a significant backup in water volumes and thus an increase in
downstream water surface elevations.

Interestingly, the results obtained from Scenario C, despite
being a full dredging scenario that extends for a longer distance
down the river, also showed some increase (∼0.15m) in the water
surface elevation in the last reach of the river (up to river km
25). Considering that Scenario C includes increasing the channel
dimensions only, the lack of any enhancements to the channel
bed slope as it approaches the Gulf didn’t allow the river to
benefit from the enlargement added to channel size. It is also
noted that channel size enlargement implemented in Scenario C
were actually much less needed in the last section of the river due

it its already existing large channel. The negative consequences
of increasing the water surface elevation were not obtained
under more extreme storm of 2016. This is simply because the
water elevations were already high and the large rainfall volumes
created their own gradients regardless of the channel slope or
its dimensions.

Effect on the WSE in the Tributaries
In addition to examining the impact of riverine dredging on
the main stem of the river, it is also of interest to assess the
propagation of such impacts into the tributaries that drain into
the river. To allow such examination, five of the main tributaries
that drain into the Vermilion River (Coulee Des Poches, Coulee
Mine, Coulee Isaac Verot, Coulee Ile des Cannes, and Anslem
Coulee) were explicitly modeled as part of the hydrodynamic
model. ThemaximumWSE profiles along two of these tributaries
(Coulee Ile des Cannes and Coulee Isaac Verot) are shown in
Figures 9, 10. Observations drawn from the profiles of these two
tributaries were found consistent for the other tributaries as well.

Compared to the results inside the main river, generally, a
lesser reduction in water stage across the tributaries are attained.
The Ile des Cannes tributary showed larger drops in water surface
elevation, both in magnitude and spatial extent. As expected,
the maximum WSE reduction occurred at the outlet of the
tributaries, with Scenario D showing the most WSE reduction
in both events. Scenario A and Scenario B showed the least
WSE reduction, similar to their in the main river. The reduction
in WSE propagated upstream into the coulees for relatively
limited distances of mostly ∼2 km and no more than 10–13 km.
The magnitude and spatial extent of the reduction within each
tributary is largely dependent on the longitudinal bed slopes
of each tributary and the hydraulic gradient during the flood
event. The most downstream reach of Coulee Ile des Cannes
is characterized by an average bed slope of 0.037%, while the
same reach in Coulee Isaac Verot exhibits a steeper average
bed slope of 0.084%. The WSE reduction apparently increases
in coulees that have milder slopes. Examining the hydraulic
gradient provides some additional insight. During the more
frequent storm, May–June 2014, the hydraulic gradient inside
the Isaac Verot tributary was estimated as 5.4% for the baseline
scenario, resulting in a minimal WSE reduction (0.015m) that
extended for a distance of <2 km under the most extensive
dredging scenario (Scenario D). However, the same tributary had
a milder hydraulic slope of 3% during the August 2016 extreme
event, and thus resulted in a larger reduction in water surface
elevation of 0.42m that extended slightly further upstream under
the same dredging Scenario D. Unlike Isaac Verot tributary,
the hydraulic gradient in the Ile des Cannes tributary, under
the baseline scenario, was 0.004 and 0.005% during the May–
June 2014 and August-2016 periods, respectively. As such,
these conditions resulted in larger reductions of 0.44 and
0.42m that extended for longer distances of 13 and 12.1 km,
respectively (Scenario D). The very flat bed slope for the Ile
des Cannes tributary diminished the effects of differences in the
hydraulic gradient between the periods of May–June 2014 and
August 2016.
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FIGURE 9 | (Lower) Longitudinal profiles of maximum water surface elevation (WSE) for the baseline case during the 2014 simulation period. The existing river

bathymetry is shown (irregular line). (Top) Longitudinal profile of differences between the maximum WSE of each dredging scenario and that of the baseline case.

Effect on Tidal Propagation
Modifications to the river channel are expected to affect the
propagation of tidal wave for rivers, such as the Vermilion
River, especially with its connectivity to the Gulf of Mexico
through the Vermilion Bay. To assess such potential effects, the
model simulations were used to quantify the tidal amplitudes
under the different dredging scenarios and compare them
to the existing baseline condition. Figure 12 illustrates the
maximum tidal amplitude along the main stem of the river
starting from its most downstream intersection with the bay.
The amplitudes shown in Figure 12 were calculated by taking
the difference between the maximum and minimum water
elevation at each cross section along the river over the temporal
span of the simulation period. However, this was performed
for the pre-storm period only and without including the
water stages during the main storm. The main reason for
doing so is to isolate the potential impact of the dredging

activities on the tidal hydrodynamics during non-flooding
conditions and without including the effects of the inland
rainfall storms.

The results (Figure 12) obtained under the baseline scenario
suggest that the tidal signal in the river is largely diminished
around 65–70 km from its outlet to the Gulf. Generally, the
results suggest that all dredging scenarios caused a significant
alteration in the tidal range along the course of the main
river. However, it is clear that dredging Scenario D has
the most significant impact in allowing the tidal signal to
propagate for longer distances upstream. Scenario D resulted
in a drastic increase in the tidal amplitude that extended
across the entire river, with an increase of as high as 1.8
times the magnitudes obtained under the baseline scenario.
This amplification extended for significant distances upstream
and as far as Surrey crossing, ∼73 km landward into the heart
of the City of Lafayette. Scenarios A, B, and C resulted in
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FIGURE 10 | (Lower) Longitudinal profiles of maximum water surface elevation (WSE) for the baseline scenario during the August 2016 simulation period; the existing

river bathymetry is shown (irregular line). (Top) Longitudinal profile of differences between the maximum WSE of each dredging scenario and the baseline case.

tidal amplitudes similar to the baseline condition, but with
some minimal attenuation in the downstream reaches of the
river [0–50 km]. Starting at ∼50 km and further north, an
inflection in the tidal propagation starts to occur and the
reach witnesses a relatively constant tidal amplitude that tends
to be higher than the baseline scenario. Such increases are
apparently triggered by the channel size enlargement and bed
grading involved in this middle reach under scenarios A, B,
and C. Also, the results shown in Figure 11 highlight the
value of the Bayou Tortue swamp as a coastal mitigation
measure. Along the river reach where it has interconnections
with the swamp (73–85 km), the maximum tidal wave height
dropped sharply, especially under dredging scenarios B and
D, which emphasizes the vital role of the swamp system in
attenuating the tidal wave. The swamp storage capacity and
its accessibility to the main river seems to have absorbed

the effect of the tidal signal and reduced its propagation
further upstream.

Effect on Inundation Extent and Duration
The impact of riverine dredging on flooding regime is further
examined by assessing the flood inundation along the main river
and its major tributaries. The maximum extent of flooded areas
that would occur for each dredging scenario and for the baseline
case were calculated during both simulation periods. The spatial
extent of flood inundation was estimated by comparing the
simulated water surface elevations and the LiDAR-based DEM.
For the river channel and tributaries that were modeled as 1-
D, a water surface model was developed by interpolating the
maximumwater stages at each cross-section on a grid that has the
same spatial extent and resolution of the DEM surface. In areas
that were simulated as 2D, the water surface grid is a direct output
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FIGURE 11 | Propagation of tidal amplitude along the Vermilion River under the baseline case and each dredging scenario. Results are based on a non-flood period

(07/25/2016 to 08/08/2016) that precedes the August 2016 flood. The vertical gray lines depict the inlet locations of key tributaries along the Vermilion River.

of the hydraulic model and no extra interpolation was required.
After mosaicking the water surface grids estimated from 1D and
2D areas, the final water surface grid was overlaid onto the LiDAR
grid to calculate differences between the surfaces and delineate
the extent of the flood inundation. The results are summarized
by calculating the total inundated areas for the entire domain of
the river and its tributaries (Table 2). As expected, the dredging
scenarios resulted in some reductions in the inundated areas;
however, such reductions appear rather minimal. The results
report reductions in the flooded area in the order of (0.97–6.87
km2) and (0.48–2.29 km2) during the August 2016 andMay–June
2014 periods, respectively. It is interesting to contrast these rather
minimal reductions in inundation spatial extents vs. the more
noticeable reductions in the water surface profiles reported earlier
(∼0.4–0.5m reduction; Figures 7, 8). These results indicate that
the main river doesn’t necessarily fully control the actual extent
of inundation on adjacent floodplains, and further suggest that
floodwaters of the river are mostly contained within its own
main channel. These results are also consistent with the earlier
observations on the relatively small propagation of reductions
in the water surface elevation from the river into its tributaries
(Figures 9, 10).

Besides examining the spatial extent of inundation, it is
also of interest to examine the duration of inundation. This
becomes particularly relevant given the extreme slow recession of
flood waters in low-gradient rivers, such as the Vermilion River
(Figures 5, 6). The duration of inundation was quantified by
calculating the total number of hours each cell in the composite

spatial inundation grid experienced a positive water depth. The
number of hours were summed over the full duration of each
simulation period. When compiled over the entire domain of the
model, scenarios A, B, and C resulted in average reductions of
2–4 days in the inundation duration, while scenario D showed
average reductions of 4–6 days. Example of the results are
shown in Figures 12, 13 for selected areas within the model
domain. In these areas and depending on the dredging scenario,
the average reduction in inundation duration was in the range
of 9.5–28.6 and 6.7–33.3% for the May–June 2014 and the
August-2016 periods, respectively. Reductions as high as 6–8
days were obtained, especially with scenario D and in areas
around the City of Lafayette and before the river enters connects
to the Bayou Tortue Swamp system. Such results reveal that
while the dredging activities didn’t significantly reduce the
spatial extent of inundation, they seem to reduce the duration
of such inundations. The reduced inundation durations have
implications for communities who are impacted by flooding
conditions that last for several days after the peak of the storms.

CONCLUSIONS AND

RECOMMENDATIONS

This study investigated how large-scale channel modifications
via riverine dredging may alter flood dynamics in the Vermilion
River in southern Louisiana, a representative of low-gradient
tidally-influenced river systems. With the presence of large

Frontiers in Water | www.frontiersin.org 16 March 2021 | Volume 3 | Article 62882980

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Saad and Habib Dredging Impact on Low-Gradient Rivers

FIGURE 12 | Differences in inundation duration between the baseline case and each dredging scenario during the May–June 2014 simulation period.

TABLE 2 | Inundation areas estimated for each dredging scenario.

Approach Inundated area (km2)

May–June 2014 August-2016

Baseline 181.26 269.1

Scenario A 180.78 268.1

Scenario B 180.39 267.8

Scenario C 180.09 264.2

Scenario D 178.97 262.2

swamp system within its watershed, the river is characterized by
complex flow dynamics where frequent reverse (upstream) flows
occur allowing flood waters to travel upstream for temporary
storage in the swamps. The study examined the impacts of four

different dredging scenarios that represent varying degrees of
spatial extent and modifications to the channel cross section
and longitudinal bed slope. A hybrid 1D/2D numerical model
was used to simulate the impact of dredging activities on the
flow hydrodynamics along the main course of the river and
five of its major tributaries. The analysis was performed on two
flooding periods, May–June 2014 and August 2016, which are
classified as <10-year and >100-year storms, respectively. The
four different dredging scenarios were assessed by evaluating
key characteristics of the flow regime, including changes in flow
hydrographs at key locations, reductions in water surface profiles
and flood inundation, alterations to river-swamp interactions,
and impact on tidal amplitudes and propagation. The results
from each dredging scenario were compared against those
obtained under the existing no-dredging scenario.

Overall, the results suggest that a watershed-centered
approach, instead of a riverine-centered approach is needed
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FIGURE 13 | Differences in inundation duration between the baseline condition and each dredging scenario during the August 2016 simulation period.

for assessment of flood mitigation alternatives in such riverine
systems. The following conclusions can be formulated based on
the findings of the study:

1. The effect of large-scale riverine dredging on the flow

regime in the river and the resultant flood conditions is

highly controlled and modulated by inter-related and often

competing factors, such as extent of the dredging in both
volume and spatial coverage, flow exchanges between the

river and the inter-connected natural swamps, bed slopes
and hydraulic gradients, and the large volumes of runoff
contributions from river tributaries and how they compare to

induced changes to the river in-channel capacity.
2. Dredging scenarios that modified the river channel

modifications and the riverbed slope lead to significant

changes to the river flow regime. Overall, reverse river flows
that travel to the swamp during the peak period of the storms

were reduced. Such impacts have significantly altered the flow
exchanges between the river and the swamp and severed the
river-to-swamp inflows and increased the swamp outflows.
This is expected to affect the hydroperiod of the swamp
system and its residence time and may eventually affect its
viability as a natural ecosystem.

3. Dredging approaches that were spatially extensive and
included modifications to the river slope can result in sizeable
reductions in water surface profiles (40–50 cm) along the river
during flood conditions. However, such extensive dredging
brings significant increase in the amplitude and propagation
of the Gulf tidal wave that extended as far as 70 km inland.

4. While less-extensive, spatially-limited dredging approaches
can also reduce the water surface profiles to some extent (10–
30 cm), they tend to cause an increase in the water surface
elevations downstream of the dredged river reaches. Such
increases can extend over 20–40 km along the river, exposing

Frontiers in Water | www.frontiersin.org 18 March 2021 | Volume 3 | Article 62882982

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Saad and Habib Dredging Impact on Low-Gradient Rivers

downstream communities to increased flooding especially
during more frequent events.

5. The results reveal that while the dredging activities can
increase the hydraulic conveyance of the river system
and improve its drainage characteristics, the large runoff
volumes delivered by the contributing tributaries eventually
overwhelm the river and outweigh the added improvement
in terms of in-channel storage, thus reducing the anticipated
flood relief benefit expected from the dredging.

6. Reductions in water surface profiles in the Vermilion River
propagated along the tributaries that drain into the river, but
only to limited spatial extents. The degree of reduction inside
the tributaries was dependent on the hydraulic gradient and
longitudinal bed slopes of each tributary.

7. While there is evidence that dredging can increase channel
conveyance and reduce water levels inside the Vermilion
River, such reduction was not reflected in a parallel reduction
in the spatial extent of flood inundation boundaries under any
of the four dredging scenarios. On the other hand, reductions
in the duration of inundation were found to be substantial,
suggesting that while dredging didn’t significantly reduce
the maximum extent of inundation, it seems to reduce the
duration that flooded areas get inundated.

8. Generally, the results suggest that, regardless of the specific
scenario, dredging activities caused a noticeable alteration
in the tidal wave range along the river. Extensive dredging
scenarios caused a substantial amplification in the tidal signal
along the main course of the river, which can facilitate the
landward penetration of storm surges into the river.
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It is generally acknowledged that interdependent critical infrastructure in coastal

urban areas is constantly threatened by storm-induced flooding. Due to changing

climate effects, such as sea level rise (SLR), the occurrence of catastrophic events

will be more frequent and may trigger an increased likelihood of severe hazards.

Planning a protective measure or mitigation strategy is a complex problem given

the constraints that it must fit within a prescribed and limited fiscal budget and be

beneficial to the community it protects both socially and economically. This article

proposes a methodology for optimizing protective measures and mitigation strategies for

interdependent infrastructures subjected to storm-induced flooding and climate change

impacts such as SLR. Optimality is defined in this methodology as a maximum reduction

in overall expected losses within a prescribed budget (compared to the expected

losses in the case of doing nothing for protection/mitigation). Protective measures can

include seawalls, barriers, artificial dunes, restoration of wetlands, raising individual

buildings, sealing parts of the infrastructure, strategic retreat, insurance, and many more.

The optimal protective strategy can be a combination of several protective measures

implemented over space and time. The optimization process starts with parameterizing

the protective measures. Storm-induced flooding and SLR, and their corresponding

consequences, are estimated using a GIS-based subdivision-redistribution methodology

(GISSR) developed by the authors for finding a rough solution in the first brute-force

iterations of the optimization loop. A storm surge computational model called GeoClaw

is subsequently used to simulate ensembles of synthetic storms in order to fine-tune and

achieve the optimal solution. Damage loss, including economic impacts, is quantified

based on calculated flood estimates. The suitability of the potential optimal solution is

examined and assessed with input from stakeholders’ interviews. It should be mentioned

that the results and conclusions provided in this work depend on the assumptions made

about future sea level rise (SLR). The authors acknowledge that there are other, more

severe predictions for sea level rise (SLR), than the one used in this paper.

Keywords: coastal protection, optimization, sea level rise, storm surge flooding, damage assessment, GeoClaw,

mitigation, climate risk
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1. INTRODUCTION

Communities in coastal regions are likely to face more severe
catastrophic events such as storm-induced flooding in the future
due to a changing climate, especially sea level rise (SLR) (Marcos
et al., 2015; Marcos andWoodworth, 2017; Marsooli et al., 2019).
Rising sea levels will cause smaller storms to become larger
threats than would otherwise be expected, leading to possible
catastrophic damage to the coastal regions that may not have
experienced these types of events as often in the past. Sea level

is predicted to rise at least one meter for the worldwide mean
by the end of the century (Parris et al., 2012; Stocker et al.,
2013). Consequently, the return period of catastrophic storms
is expected to shorten. It is observed that there has been a
significant increase in nuisance flooding occurrences around
the United States because of the steadily increasing sea level

(Sweet, 2014). It is also found that the odds of flooding increases
exponentially with SLR (Taherkhani et al., 2020). Lin et al. (2012)
demonstrated that the present 100-year surge flooding would
occur every 20 years or less in New York City, New York, due
to the one-meter SLR. Existing and planned coastal defenses

will need strengthening or redesigning because of the anticipated
SLR in the city (Gornitz et al., 2020). New Orleans, Louisiana, is
another vulnerable coastal city due to its low-lying land. The loss
from flooding to the city is estimated to be very high (Burkett
et al., 2002). Abadie et al. (2020) estimate that the flooding risk
will be increased significantly due to SLR in Guangzhou in China
and Mumbai in India. Frequent flooding due to SLR will increase
the physical and financial damages over the years if there is no
action taken to mitigate the risk.

Coastal protection strategies often require a combination of
multiple measures. Finding an optimal solution is a particularly
complex problem as a large number of uncertain parameters are
involved in the decision-making process. A successful protective
strategy should account for multiple physical, financial, cultural,
and social factors (Adger et al., 2005). For example, the
optimal solution will depend on many factors, including the
area, scale, economic situation, community, infrastructure inter-
connectivity, etc. Several models have been developed to assess
global flood risk (Hirabayashi et al., 2013; Winsemius et al., 2013)
but are limited to the circumstances of an absence of protective
strategies. These models also do not account for various factors
at the local level, which may be critical in finding the optimal
solution. Other methodologies in related areas include the
following: Longenecker et al. (2020) introduced a rapid river-
gauge-based methodology to support a decision-making process
for first responders and communities at the community level
in Yerington, Nevada. Although it is a computationally efficient
method, it lacks hydrological modeling for higher accuracy.
Zwaneveld and Verweij (2014) developed a methodology to
optimize the height of a protective dyke in the Netherlands at
the country level. However, the model does not account for any
other protective measures other than a dyke. Dupuits et al. (2017)
introduced a framework for economic optimization of coastal
flood defense systems by considering a front protection (e.g.,
barriers) and a rear protection (e.g., levees). This framework has
been applied in the Galveston Bay area near Houston, Texas.

While risk assessment tools and techniques have been established
in past years (Jonkman et al., 2004), methods to evaluate the
efficiency of an investment, or to support decision-making on
the investment are lacking (Ward et al., 2015, 2017). A recent
study in the Gulf Coast compared the cost-benefit of investments
in coastal natural-based, structural, and policy measures using a
cost-benefit analysis (Reguero et al., 2018). The methodology can
estimate a large scale of losses as it uses a parametric method for
widely averaged information of the target area.

Since the loss varies heavily depending on the local
economy, interdependency, and building assets, it is crucial
to account for the local stakeholders’ feedback and the
local detailed geographical/economic information for decision-
making. Although a number of risk analysis methods have
been introduced, finding an optimal solution is still far from a
trivial problem.

The proposed optimization methodology incorporates
accurate flood estimation models based on hydrological fluid
dynamics, detailed building damage assessment, infrastructure
inoperability loss analysis, and input from stakeholders’ first-
hand knowledge. To manage the computation time efficiently,
the first iterations of the optimization use a simple flood
estimate model based upon Geographical Information Systems
(GIS) and Manning’s Equation [this is called the GIS-based
subdivision-redistribution methodology (GISSR); Miura et al.,
2021a]. The GISSR model is a physics-based, extremely efficient,
heuristic method using detailed topographical and infrastructure
data, Manning’s Equation, and Weir’s coefficient if there are
any protective measures present. After narrowing down the
range of potential optimal solutions, the actual optimal solution
is determined using the GEOCLAW model (Berger et al.,
2011), which is highly accurate, though computationally much
more expensive than the GISSR model. The damage for every
component of the infrastructure (e.g., buildings) is assessed
using fragility curves and the estimated height of water at the
location. The calculated damage also includes indirect economic
losses such as income loss, inventory loss, and loss due to the
interconnectivity of different infrastructure sectors. The optimal
solution minimizes the expected value of the overall cost (the
sum of all types of losses plus the implementation cost of the
protective measures) within a prescribed budget and for a
prescribed frame.

This article provides some preliminary results for Lower
Manhattan in New York City (NYC) using the optimization
methodology framework developed in Miura et al. (2021c) and
assuming a specific SLR scenario. The main objective of this
work is to introduce the methodology and demonstrate the
nature of the results/conclusions. It should be noted that different
assumptions about the extent of future SLR will lead to different
results/conclusions. NYC is selected as a testbed because of
its complex infrastructure assets and data availability. In 2012,
Hurricane Sandy caused a major power outage and resulted
in massive financial losses. Since that event, the city has been
planning to enhance its resiliency against similar future hazards.
The Big U project (Rebuild By Design, 2015) and the East Side
Coastal Resiliency Project (City of New York, 2021) are some
of the proposals to increase the city’s resiliency. This article is
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based on the concept of a similar protective measure like the
Big U and the East Side Coastal Resiliency Project. Although the
focus of this study is NYC, the methodology is general enough
to be applied to different regions when the required data (e.g.,
topography data, building data, hazard data) is available.

2. METHODOLOGY

The proposed methodology aims at optimizing coastal protective
strategies against storm-induced flooding and SLR by integrating
physical damage models, economic loss models, and inputs
from professional stakeholders with first-hand knowledge of the
situation andmembers of at-risk communities. Themethodology
framework was introduced in Miura et al. (2021c).

As shown in Figure 1, the optimization starts from
parameterizing the potential protective measures or strategies
in a target area. The protective strategy can consist of multiple
protective measures, including seawalls, barriers, artificial dunes,
restoration of wetlands, artificial islands and reefs, raising
individual buildings, sealing parts of the infrastructure, strategic
retreat, insurance, and many more. Once these protective
measures are parameterized, inundated areas are analyzed with
two types of flooding model tools: a GIS-based subdivision-
redistribution methodology (GISSR) (Miura, 2020) and the
GEOCLAW model (Berger et al., 2011). The GISSR model is
a computationally efficient, physics-based heuristic model. It
is based on topographical data, infrastructure information,
Manning’s equations, Weir’s coefficient, and ensures mass
conservation. The GEOCLAW model is based on the finite
volume method and solves the shallow water equations to
capture flooding more accurately but is computationally more
expensive compared to the GISSR model. The GISSR model is
used to establish a range of potential optimal strategies during
the first iterations of the optimization loop. The GEOCLAW

model then fine-tunes the optimal solution. Damage and losses
are computed using flood height information at each building
or component of the infrastructure. The damage cost includes
physical damage loss, economic loss, and indirect economic loss.
The physical damage percentage is computed first using fragility
curves for each building or infrastructure component, and then
the actual physical damage value/cost is calculated using the
component’s available asset value. Based on the physical damage
cost, each sector’s inoperable dates and restoration period can
be computed. The economic loss and indirect economic loss
are calculated using these dates and the interdependency ratio
of industries or infrastructures. The interdependent critical
infrastructures are, for example, transportation systems, the
power grid, other utilities, etc. Eventually, with the input from
stakeholders and communities with first-hand knowledge of the
situation, the overall damage cost, cost of the optimal protection
strategy, and suitability and social acceptability of the protective
measures are all examined and modified if necessary. The
optimization loop then repeats with another protection strategy
until the optimal solution meets all objectives and constraints. In
the following sections, each step is described in detail.

2.1. Parameterization of Protective
Strategy
Each optimization iteration starts with the formulation of a new
protective strategy based on the evaluation of the protective
strategy in the previous iteration. For the first iteration loop, the
comparison is made with the base case of no protective strategy
at all. A protective strategy may consist of multiple protective
measures implemented at different geographic (spatial) locations
and at different times. For example, a protective strategy can
consist of building a seawall with a 2 m height in 2020 and then
adding an additionalmeter of height on top of it in 2050. In such a
case, an appropriate discount rate has to be considered. Different
variables can change for each protective strategy. For example,
seawalls or elevating the coastline would need variables such
as height, length, location, construction timing, etc. Based on
these variables, the implementation cost can be computed. The
cost estimate function should account for the local stakeholders’
input as such costs may vary significantly locally according to
Dols (2019). In the case of a seawall or elevated promenade
along the coastline, the topographical data such as the digital
elevation model (DEM) is modified by adding the designated
wall height or the elevation height of the promenade onto the
corresponding DEM cells at the locations where these protective
measures are installed.

2.2. Flood Simulation
Two flood simulation models are employed in the optimization
iterations: the GISSR model and the GEOCLAW model. The first
iterations take advantage of the computational efficiency of the
GISSRmodel to identify a rough estimate of the optimal solution.
After that, the GEOCLAW model takes over to establish the
optimal solution with high accuracy.

2.2.1. GIS-Based Subdivision-Redistribution

Methodology (GISSR)
As the optimization process requires a large number of
iterations, it is necessary to simulate storm-induced flooding
with high computational efficiency. The GIS-based subdivision-
redistribution methodology (GISSR) (Miura et al., 2021a) is
extremely efficient computationally, but it is less accurate than
the GEOCLAW model. This method is used to get a rough
estimate of the optimal solution. The GISSR model requires
topographical features (e.g., elevation, surface roughness, slope,
etc.), time history data of the water level including surge, tide,
and SLR, and a detailed description of the protective strategies as
shown in Figure 2.

At every point within the area under consideration, the
flood height is computed using Manning’s Equation and Weir’s
coefficient. The Manning’s equation’s coefficient is selected
depending on the land type (e.g., urban, wetland) and surface
roughness (e.g., the density of buildings) in the area of interest.
If a scenario includes a seawall type of protective measure, Weir’s
coefficient is used to model a protective measure as a weir. The
GISSR model first computes the overall flood volume during a
hurricane event coming into the area under consideration by
dividing the area into a number of smaller-scale “divisions.”
This overall flood volume is redistributed to adjacent divisions
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FIGURE 1 | Conceptual layout of the proposed methodological framework (Miura et al., 2021c).

FIGURE 2 | The GISSR flood simulation schematic diagram. Rectangles

indicate inputs and rounded rectangles indicate processes.

accounting for water propagation. Once the flood volume in each
division is established, it is translated into flood height within
each division using a surface volume function (the flood height
is uniform in a division).

The maximum surge height for a storm event is modeled
by a modified beta distribution (Miura et al., 2021b). The
corresponding frequency, duration, and time history aremodeled
using the method introduced in Lopeman et al. (2015). The
simulation eventually establishes the flood height time history at
every point within the area under consideration. The computed
flood height at every point will be then used as input in the
damage assessment model, as described in section 2.3. It should
be noted that the GISSRmodel’s accuracy has been validated with
Hurricane Sandy’s data, and the simulated inundated area and
actual inundated area have been found to be almost identical
(Miura et al., 2021a).

2.2.2. GeoClaw Model
During the last optimization iterations, flood simulations are
carried out using GEOCLAW, a numerical solver for 2D shallow
water equations over varying topographies as part of Clawpack

(Conservation Laws Package) (Berger et al., 2011; Mandli et al.,
2016; Clawpack Development Team, 2020). It is important to
use this fluid-dynamics model in combination with the GISSR
model since this provides a more physically accurate picture of
how flood water will redistribute itself.

GEOCLAW takes as input a parameterized tropical cyclone
(TC) and simulates the resulting storm surge by numerically
solving the shallow water equations in the Atlantic basin with
forcing terms from the TC. The TC is parameterized according
to the model given by Holland (1980). For each time step, the
TC has the following parameters: longitude and latitude of the
eye of the storm, maximum wind speed, the radius at which
maximum wind speed is attained, and central pressure. In the
model of Holland (1980), these parameters allow a wind field to
be reconstructed, which supplies the forcing terms to the shallow
water equations.

For the simulations in this work, an ensemble of such
parameterized TCs is run to calculate the expected peak
storm surge height. The ensemble of storms is generated from
the Columbia Hazard Model (CHAZ), a statistical-dynamical
model due to Lee et al. (2018). The CHAZ model takes
environmental parameters in a model of the Atlantic basin
and stochastically generates TCs. The ensemble is comprised of
those TCs that come close to NYC. GEOCLAW is also run on a
parameterized model of Hurricane Sandy (National Hurricane
Center, 2017) with different protective measure scenarios to
examine their effectiveness. An example GEOCLAW run of
Hurricane Sandy’s track in the Atlantic Ocean and resulting
storm surge on the US east coast is shown in Figure 3. A good
predictive test of how efficient the protective strategy will be
on potential future storms is obtained by carrying out a high-
refinement shallow water simulation on storms derived from
physical conditions.
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FIGURE 3 | A plot at 6 h before landfall of a GEOCLAW simulation of Hurricane

Sandy. The red dot indicates the eye of the storm and the black dot (1)

indicates Battery Park in Lower Manhattan.

Each GEOCLAW storm-surge calculation is significantly more
computationally expensive than the GISSRmodel. As a result, the
entire space of protective strategies with GEOCLAW simulations
is not searched. It is used to test the robustness of a small subset
of GISSR suggested optimal solutions over different storms.

2.3. Damage Assessment
Using appropriate fragility functions (e.g., Hazus developed
by Department of Homeland Security, Federal Emergency
Management, 2018), the damage loss and economic loss for every
component of the infrastructure can be quantified (including
structural damage, damage to contents, and loss of use). The
loss is computed for a given storm with known water height
at any location within the geographical area considered (using
the GISSR model or the GEOCLAW model). The losses are then
added for all infrastructure components inside the geographical
area considered to establish the overall loss from this specific
event, and then for all of the events over the prescribed
time frame.

2.3.1. Physical Damage and Economic Damage
For this study, the damage fragility curves provided by Hazus
that was developed by the Department of Homeland Security,
Federal Emergency Management (2018) are adopted with a
slight modification for tall buildings that are prevalent in Lower
Manhattan (Miura et al., 2021c). Damage functions are available
for a variety of different classes of buildings, including various
residential building types, commercial building types, utilities,
factories, theaters, hospitals, nursing homes, churches, etc. The
total damage/loss Cdmg to the built infrastructure in a target area
related to physical loss is computed from the expression:

Cdmg =

Nb
∑

i

aiDi(hi) (1)

where Nb is the total number of buildings/infrastructure
components in the area, ai is the total value/asset of
building/infrastructure component i, and Di is the percentage
of the total replacement cost associated with flood height hi
observed at the location of building i. The flood height at each
location hi is computed by subtracting the critical elevation of
each building from the total flood height computed in section 2.2.

Hazus has also developed functions to compute the economic
losses due to suspended business operations during the
restoration period. The losses taken into consideration in this
article include income losses and inventory losses. If a building
has commercial areas and did not collapse (buildings with over
50% damage are considered as collapsed), the damage functions
for the total economic losses for each type can be computed as
shown in Equations (2) and (3). The total economic losses are the
total losses from all the buildings with commercial areas in the
area under consideration.

Income loss:

Cinc =

Ncom
∑

i

(1− fi)Ai(hi)Iidi(hi). (2)

Inventory loss:

Cinv =

Ninv
∑

i

Di(hi)Ai(hi)GiBi. (3)

where Ncom is the total number of buildings with commercial
areas, fi is the income recapture factor for occupancy i, Ii is
the income per day for occupancy i, and di is the loss of
function time for the business in days. Ninv is the total number
of commercial/industrial buildings dealing with inventories, Ai

is the floor area at and below the flood height hi, Gi denotes
the annual gross sales for occupancy i, and Bi is the business
inventory which is a percentage of gross annual sales. This applies
to retail trade, wholesale trade, and industrial facilities. It should
be noted that when a storm destroys more than 50% of a building,
the building is considered as collapsed and will be demolished
(not repaired) for any types of building/occupancy. It should
be pointed out that no building collapsed in Lower Manhattan
during Hurricane Sandy. Figure 4 shows the estimated damage
percentage of each building in Lower Manhattan for the
Hurricane Sandy scenario, and all the rates are lower than
50%. This result matches what happened in the city during this
hurricane event (Miura et al., 2021c).

The total direct damage cost is the summation of the total
damage/loss Cdmg and the total economic losses (Cinc and Cinv).
For the optimization iterations, the total direct damage cost is
computed for all the randomly generated storm events during
the prescribed time frame of interest with different batches of
storms as inputs for each simulation. Figure 5 shows an example
involving 1,000 simulations of cumulative damage assessment
analysis over the next 80 years (2020–2100) in Lower Manhattan
in NYC (without the presence of any protective measures).
The storms in any year are separated into two seasons: warm
season and cold season. The warm season is from June to
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FIGURE 4 | An example of damage percentage calculation for every building/infrastructure component during Hurricane Sandy in Lower Manhattan (Miura et al.,

2021c).

November, and the cold season is from December to May. The
storm characteristics in each season are physically different.
For example, Hurricane Sandy is a warm-season storm, while
a Nor’easter is a cold-season storm. The total accumulated
damage costs in the year 2100 vary from $2 billion to $4
billion for cold season simulations, and from $1.5 to $9 billion
for warm-season simulations, as every batch of storm surge
events over the next 80 years is quite different because of
the different randomly generated storm events. It should be
noted that the storms in the warm season (depicted in red) are
relatively less frequent but of larger magnitude. The storms in
the cold season (depicted in blue) are vice versa. The different
underlying physical mechanisms causing warm-season vs. cold-
season storm events cause a larger scatter for warm-season
cumulative damages compared to the corresponding cold-season
cumulative damages, as can be seen in Figure 5. It is observed
in Figure 5 that the damage costs of all the simulations start
increasing nonlinearly from around the year 2070 because of the
SLR effect.

2.3.2. Economic Damage due to Inoperability and

Interconnectivity
When an infrastructure component is inoperable due to flooding,
the interdependency (interconnectivity) of infrastructure
components (infrastructures) may trigger additional financial
impacts on other sectors of the infrastructure. This extra
economic impact should be accounted for in the damage
assessment. During Hurricane Sandy in 2012, there was a major
power outage in Lower Manhattan due to an explosion at a

FIGURE 5 | An example of the cumulative direct damage (i.e., the summation

of physical damage loss, income loss, inventory loss, and loss from

interdependencies) from storm-induced flooding over the next 80 years

(2020–2100) resulting from 1,000 different simulations in Lower Manhattan in

NYC (without any protective measures present). The total cumulative damage

cost/loss over the years varies for each simulation because of the different

randomly generated storm events in each one of the 1,000 simulations. Blue

lines indicate damage losses from cold-season storms. Red lines indicate

damage losses from warm-season storms.

flooded utility facility on the Lower East Side. This accident
caused not only millions of people to be without electricity, but
other infrastructure sectors such as hospitals, fuel distributors,
businesses, and many more, to be partially or fully non-
functional. Using the Inoperability Input-Output Model (IIM)
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(Haimes and Jiang, 2001) based on the I-O model introduced
originally by Leontief (1986) and the damage cost computed
using the modified Hazus model as described in section 2.3.1,
economic loss due to interdependencies of the infrastructures
can be calculated using the inoperability ratio. This inoperability
ratio is highly dependent on the region of interest as it indicates
how much each sector depends on each other financially. For
example, a highly urbanized area such as NYC may have higher
impacts on industries such as business and commerce.

For NYC, Cimellaro et al. (2019) evaluated Hurricane Sandy
induced damages and established the inoperability ratios for the
metropolitan area based on IIM. Using the inoperability ratio
matrix, this study quantified the losses due to the inoperability
of utilities and transportation infrastructures.

2.4. Stakeholders’ Feedback Input
A set of interviews with city and state stakeholders who
have first-hand knowledge of the NYC area’s infrastructures
have been planned to check the suitability/acceptability of the
optimization model (including flood estimate models, damage
assessment models, and information on interdependencies of
the infrastructures in the city) and of its results concerning the
optimal protective strategy. The first interviews were conducted
in the early stages of the project. The stakeholders provided
feedback on the models and provided information on the
interdependencies of the infrastructures in the target area. The
second set of interviews was conducted after reflecting on the
first set’s inputs, in order to further refine the method and
its results. Based on the outcomes of these interviews, the
optimization model, including flood simulation models and
damage assessment models, will be updated so that the model can
generate socially acceptable optimal solutions.

2.5. Optimization
The methodology optimizes coastal protective strategies (this
can be a combination of multiple protective measures) given a
constraint, here the overall budget for building protection and
mitigation measures. For a prescribed budget and a prescribed
time horizon of N years (N can be 20, 50, 100 years, or any other
number), the optimal solution is the one that minimizes the sum
of the total storm-induced losses plus the cost of implementing
the protective strategy. The budget can be defined arbitrarily by
the user, and different budget levels can be considered to explore
different corresponding optimal solutions.

The first step is to calculate the overall expected losses over the
N years from all randomly generated storms during this period,
without any protective strategy implemented. These losses are
denoted by Lno (losses are considered in a statistical sense in this
section as Lno is a random variable computed/realized M times
fromM different simulations over the period of N years).

Each selected protective strategy at a given iteration of
the optimization process is examined using the same set of
M simulations of randomly generated storms over N years
that was considered for the base case of “no protective
strategy/measures.” For a selected protective strategy, its total
cost (total implementation cost Lco of the strategy plus overall
losses Lps from all the storms during the period of N years) is

computed, again in a statistical sense. This total cost has to be less
than Lno for the protective strategy to be preferable to the base
case of “no protective strategy implemented”:

Lco + Lps < Lno. (4)

If Equation (4) is not satisfied for a specific protective strategy,
then this strategy is unacceptable (since the case of no protective
strategy has a lower overall cost).

The total cost is estimated using the damage assessment
models (section 2.3) with the estimated flood heights [the
outcome of the GISSR model (section 2.2.1) and the GEOCLAW

model (section 2.2.2)]. As described previously, the GISSR model
is used to find a rough estimate of the optimal solution, and the
GEOCLAW model fine-tunes this rough estimate of the optimal
solution. Since the frequency of storms and their magnitude
are uncertain over the prescribed period, the methodology uses
multiple simulations M over the prescribed N years to find a
histogram and a corresponding expected value and standard
deviation of the total cost. Each simulation uses a different set
of randomly generated storms modeled over the N years.

For a preliminary demonstration of the methodology, this
paper uses a brute-force iterative approach for the optimization
on a discrete set of protective measures. Each brute-force
optimization loop returns a different histogram/probability
distribution of the total cost over the N years. If the summation
of the implementation cost and overall losses of the protective
strategy at iteration (p) is less than that of iteration (p − 1), then
the protective strategy at iteration (p) becomes the temporary
optimum solution. Otherwise, the protective strategy at iteration
(p − 1) remains the temporary optimal solution, and a new
protective strategy is tested against it. This procedure is expressed
as follows:

If (Lco + Lps)(p−1) > (Lco + Lps)(p), then (Lco + Lps)(p)

becomes the new temporary optimal strategy and a new

protective strategy is tested against it. (5a)

If (Lco + Lps)(p−1) < (Lco + Lps)(p), then (Lco + Lps)(p−1)

remains as the temporary optimal strategy, (Lco + Lps)(p)

is discarded, and a new protective strategy is tested against

(Lco + Lps)(p−1). (5b)

The iterations continue until (Lco+Lps) stabilizes, without any
substantial further reduction possible in subsequent iterations.
It is reminded that as with Lno, Lps is considered in a
statistical sense.

The optimization variables can change depending on the
protective measures considered. For example, in the case of
seawalls as protective measures, the variables would be location,
height, length, and construction timing.

3. COASTAL PROTECTION OPTIMIZATION
IN NEW YORK CITY

Lower Manhattan in NYC is selected as a testbed because of
the city’s complex infrastructure and data availability. As this is

Frontiers in Climate | www.frontiersin.org 7 August 2021 | Volume 3 | Article 61329391

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Miura et al. Optimization of Coastal Protections

TABLE 1 | New York City sea level rise projections (the 2000–2004 period is

considered as the sea level baseline (Horton et al., 2015; Gornitz et al., 2019).

Low estimate Middle range High estimate

(10th percentile) (25th–75th percentile) (90th percentile)

2050s 8 in (0.203 m) 11–21 in (0.279–0.533 m) 30 in (0.762 m)

2080s 13 in (0.330 m) 18–39 in (0.457–0.991 m) 58 in (1.473 m)

2100 15 in (0.381 m) 22–50 in (0.559–1.270 m) 75 in (1.905 m)

the first application of the methodology, the protective measure
considered is only a seawall (as there are planned projects called
the Big U (Rebuild By Design, 2015) and the East Side Coastal
Resiliency Project (City of New York, 2021) involving a seawall
in Lower Manhattan).

The optimal solution is narrowed down using the GISSR
model (Miura et al., 2021a) and then is validated with the
GEOCLAW model (Berger et al., 2011). Although the GEOCLAW

model is in general used to fine-tune the optimal solution
established by GISSR, here, it is only used to validate it.

3.1. Future Anticipated Storms and Sea
Level Rise
Surge data for storms are generated using the methodology
introduced by Lopeman et al. (2015) and a modified beta
distribution to model the maximum surge height of a storm.
This study accounts for SLR at the Battery, NY, as predicted by
Horton et al. (2015) and Gornitz et al. (2019). The projected SLR
values are shown in Table 1. The projections are estimated with
the 2000–2004 period as the reference baseline. For each year
examined, the average of the 25th and 75th percentile estimates
from Table 1 is used in this study (which is referred to as the
middle estimate). Hence, the middle SLR estimates employed
for the 2050s, 2080s, and 2100 are 0.406, 0.724, and 0.9145
m, respectively.

As the number of storms and the corresponding maximum
storm surge values are uncertain, M simulations are performed
over the N years considered. Each simulation has a different
number and magnitude of storms, and these are modeled as
random variables. The peak storm surge height is modeled with
a modified beta distribution (Miura et al., 2021b). The number of
simulations M is set equal to 1,000, and the prescribed number
of years N is set equal to 80 (from 2020 to 2100) for this study.
Figure 6 depicts the peak water levels (peak storm surge + SLR
+ tidal height) for storms randomly generated over the 80-year
period from 2020 to 2100, accounting for a middle estimate of
SLR. Figure 6 displays the randomly generated storms from one
simulation among theM = 1, 000 considered. The storms in the
warm season (depicted as red dots) are relatively less frequent
but larger in magnitude on the average. The storms in the cold
season (depicted as blue dots) are the other way around. Figure 7
displays all the storms from all the M = 1, 000 simulations
considered. Evenmoderate storms close to the end of this 80-year
period can become severe ones in overall water height because
of SLR.

FIGURE 6 | An example of one simulation of randomly generated storms

expressed through their corresponding peak water levels (peak storm surge +

SLR + tidal height) over the 80-year period considered (2020–2100). The blue

dots depict peak storm surges in cold season. The red dots depict peak storm

surges in warm season. Middle SLR estimate (Horton et al., 2015; Gornitz

et al., 2019) is considered. SLR is denoted by the continuous sloped blue line.

The dashed horizontal gray line indicates the 1.9 m threshold, below which

there is no flooding observed in Lower Manhattan.

FIGURE 7 | One thousand simulations of randomly generated storms

expressed through their corresponding peak water levels (peak storm surge +

SLR + tidal height) over the 80-year period considered (2020–2100). The blue

dots depict peak storm surges in cold season. The red dots depict peak storm

surges in warm season. Middle SLR estimate (Horton et al., 2015; Gornitz

et al., 2019) is considered. SLR is denoted by the continuous sloped blue line.

The dashed horizontal gray line indicates the 1.9 m threshold, below which

there is no flooding observed in Lower Manhattan.

3.2. Potential Protective Measures
Although coastal protective measures can be numerous as
mentioned earlier, this article considers only a seawall in
Lower Manhattan for demonstration purposes. The seawall
configuration is optimized using multiple variables, including its
height, length, and specific location as indicated in Figure 8.

Based on studies of cost estimates for flood
adaptation/mitigation including seawalls (Aerts et al., 2013;

Frontiers in Climate | www.frontiersin.org 8 August 2021 | Volume 3 | Article 61329392

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Miura et al. Optimization of Coastal Protections

FIGURE 8 | Coastal protection optimization flow chart for the preliminary study considered in this paper. Rectangles indicate inputs and rounded rectangles indicate

processes.

Aerts, 2018) and the NY and NJ harbor and tributaries focus
area feasibility study (HATS) (Dols, 2019), the construction cost
estimate of a seawall in this study is modeled as shown below:

Lcowall = $49, 212 hwall lwall (6)

where, Lcowall is the seawall’s construction cost in US dollars,
hwall is the seawall height in meters, and lwall is the seawall

length in meters. In most of its length around Lower Manhattan,
the currently considered Big U project is designed as an
elevated promenade instead of just a seawall or floodwall. The
construction cost of such an elevated promenade is estimated by
Dols (2019).

The $49,212 cost value in Equation (6) corresponds to a wall
segment having a length equal to one meter and height also equal
to one meter.
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3.3. Optimal Solution
The optimal solution in this study is the protective
seawall/elevated promenade configuration that minimizes
the total expected cost given a prescribed budget. The total
expected cost includes the total damage cost (Equations 1–3) and
the implementation/building cost of the protective seawall given
in Equation (6) (in the following, the elevated promenade/seawall
is simply going to be referred as seawall). The damage costs are
computed using the dataset provided by the New York City
Department of City Planning (2018) for each individual building
with property assets data.

The minimum expected cost is found by an exhaustive brute-
force search using a discretized set of the protective measure
variables (hwall, iwall0 , iwallf ).

3.3.1. Objective Function and Constraints
The objective function of the optimization problem is defined as:

min
x







Lco(x)+ ES





∑

s∈Sj

f (x; s)











(7)

where f (x; s) is the total damage cost (physical damage and
economic loss) from each storm event s, Sj is one set of randomly
generated storms to hit NYC in the period 2020–2100 considered
here, ES is the expected value over all M = 1, 000 simulations
considered, and Lco is the total implementation/building cost of
the protective strategy. The decision variable is:

x = (hwall, iwall0 , iwallf ) (8)

where, iwall0 and iwallf represent the start and end locations of the

seawall, respectively. The constraints are:

0 ≤hwall ≤ 5m

0 ≤ iwall0 ≤iwallf ≤ iwallF

Lco ≤ Lbudget

(9)

As described in Equation (4), the total cost (the summation of
the implementation cost Lco and overall losses Lps), must be less
than the overall losses without any protective measures Lno. This
is ensured by including the no seawall scenario in the search
domain. Lbudget is the prescribed budget.

In the implementation, an exhaustive search is performed
to determine the aforementioned minimum total expected
cost over a discretized set of seawalls, specifically hwall ∈

{0.5, 1.0, 1.5, ..., 5.0} measured in meters, and iwall0 , iwallf ∈

{0, 1, 2, ..., 162} corresponding to 163 locations along the coastline
of Lower Manhattan, spaced 100 meters apart. Consequently, the
seawall length can be computed:

lwall = 100m (iwallf − iwall0 ) (10)

1,000 sets of randomly generated storms to hit NYC in the period
2020–2100 are simulated (M = 1, 000 simulations: {Sj}

1,000
j=1 ).

FIGURE 9 | The total expected cost of an optimal solution as a function of the

prescribed budget for the Lower Manhattan area. Orange dots represent the

implementation cost of the optimal protective strategy, red dots represent the

corresponding total damage cost, and blue dots represent the sum of the

orange and red dots (total expected cost). The total expected cost of the

optimal solution (blue dots) varies significantly as a function of the prescribed

budget.

Consequently, the objective function in Equation (7) can be
rewritten as:

Lco(x)+
1

1, 000

1,000
∑

j=1

∑

s∈Sj

f (x; s) (11)

3.3.2. Optimal Solution Using the GISSR model
The optimal solution minimizing the total expected cost
(Equations 7, 11) differs significantly as a function of the level
of the prescribed budget. Figure 9 plots the total expected cost
of the optimal solution as a function of the prescribed budget
(as the total cost is a random variable, its expected value is used
here). With zero budget available (no protective measures), the
expected value of the total damage cost is around $5 billion. As
the level of the prescribed budget increases, the total expected
damage cost decreases, as well as the total expected cost. At
the $1.7 billion budget level, the total expected cost stabilizes at
around $2.4 billion. Further increases of the prescribed budget
up to $2.4 billion do not produce any significant variation in the
$2.4 billion value of the total expected cost. When the budget
becomes larger than $2.4 billion, the total expected cost starts
increasing again as seen in Figure 9. It should be noted that it
is possible to reduce the expected damage cost to zero, but the
necessary budget is relatively high (a budget of around $4 billion
is necessary to achieve the zero expected damage cost).

Figure 10 displays the actual optimal protective seawall
measures for four different levels of the prescribed budget. It
is clear that different budget levels lead to different optimal
seawall solutions. The $0.5, $1.0, and $1.5 billion budgets produce
optimal solutions with seawalls over only a part of the entire
coastline. The $2.1 billion budget yields an optimal solution with
a 2.5 m high seawall over the entire length of the coastline of
Lower Manhattan.
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FIGURE 10 | Optimal protective seawall measures corresponding to four different prescribed budget levels. (A) $500 million budget, (B) $1 billion budget, (C) $1.5

billion budget, (D) $2.1 billion budget.

3.3.3. Flood Simulations Using the GeoClaw Model
In order to validate and verify the robustness of the optimal
solutions found using GISSR, tests are performed against a
number of storms modeled in GEOCLAW. A representative
point at (−74.013, 40.705) is selected in Lower Manhattan,
and the peak flood height at this point is calculated using
GEOCLAW with different storms and different protective seawalls
in front of it.

Figure 11 shows results of Hurricane Sandy simulations with
different seawalls and no SLR. The images show the flood height
and sea surface height at the time of peak flood height. The $1
billion seawall is in front of our point of interest, but because of
the high storm surge, water can get over the seawall and around
the sides of the wall (see Figures 10B, 11C). As a result, much
of Lower Manhattan is inundated, even areas directly behind the
wall. The $2.1 billion wall shows some inundation, though much
less (see Figures 10D, 11D).

GEOCLAW runs of Hurricane Sandy were also performed
with SLR corresponding to the middle estimate for the 2020–
2100 period. Figure 12 shows the corresponding peak flood

heights at the selected point of interest. Figure 12 indicates
that for Sandy without SLR, the flood protection offered by
the 1 billion wall is little to nothing at the selected point of
interest, whereas the $2.1 billion wall provides greater protection.
With SLR, especially from the year 2080 and onwards, both
walls begin to become obsolete, showing only minimal levels
of protection.

GEOCLAW simulations were also run using an ensemble
of 26 TCs that reach land near the NYC area selected from
the synthetically generated storms in the Atlantic Ocean in a
model of the current climate with no SLR. The mean peak
flood heights of the ensemble of 26 storms at the same point
of interest depicted in Figure 11 are plotted in Figure 13.
The results show that the $1 billion wall provides some
protection in comparison to the no wall situation. This difference
happens because the storm ensemble contains a number of
storms with different induced storm surges, including smaller
ones that do not overtop the wall. The $2.1 billion wall
provides only a marginal further reduction in the mean peak
flood height.
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FIGURE 11 | Selected point in Lower Manhattan (denoted by 1) where peak flood heights are calculated for Hurricane Sandy and various different seawalls, using

GEOCLAW. (A) NYC map with no storm surge, (B) no wall, (C) $1 billion budget wall, (D) $2.1 billion budget wall.

FIGURE 12 | A comparison of peak flood heights at the selected point in

Lower Manhattan (identified by 1 in Figure 11) for different optimal protective

measures and different levels of SLR.

3.3.4. Comparison of the GISSR Model and the

GeoClaw Model
The GEOCLAW model is used in section 3.3.3 to validate
the protective capability of GISSR-established optimal solutions
against Hurricane Sandy and other possible TCs over the 2020–
2100 period. As Figure 12 shows, both walls examined show

FIGURE 13 | Mean peak flood heights at the point depicted in Figure 11

resulting from the selected ensemble of 26 TCs.

little protection past 2050, and the $1 billion wall shows little
protection even at present against Hurricane Sandy. Against the
ensemble of TCs, both walls show some protective capability
compared to no wall. This is because the ensemble of storms
had on average lower intensity than Hurricane Sandy. The
storm inputs to the GEOCLAW simulations in this study are
all TCs categorized as warm-season storms and are therefore
relatively more intense than cold-season storms. For the most
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intense storms, the walls lose their protectiveness altogether as
the flooding completely overtops them and inundates the area
behind them. On the other hand, the GISSR model accounts
for both cold and warm season storms. This explains why in
the GISSR model, the $2.1 billion wall provides significantly
more protection than the $1 billion wall, which in turn provides
significantly more protection than no wall at all, even into the
year 2100. Together these models show that a large advantage of
the walls is their protective capability against frequent smaller
storms. When faced with multiple superstorms such as Sandy
and SLR, the two different examined seawalls start to diminish
in their effectiveness.

4. CONCLUSION AND DISCUSSION

This study provides preliminary results for the optimal protective
measures for Lower Manhattan in NYC, given a prescribed
budget. The optimal solution is determined to minimize the
expected total cost from all the potential storms over the 80-
year period from 2020 to 2100, given a prescribed budget.
The methodology combines hydrology and physics components,
socio-economic factors, and stakeholder feedback to properly
model the complex interdependency of the infrastructures. A
discrete and exhaustive set of seawalls with different heights,
lengths, and locations is examined in this study, and the
corresponding expected total costs (i.e., damage cost and
implementation/building cost) are computed. The optimal
solution varies widely depending on the budget, which can be
defined arbitrarily by users. A seawall with a height of 2.5 m
along the entire coastline of Lower Manhattan with a budget of
$2.1 billion appears to prevent major flooding sufficiently well, as
the expected damage cost is decreased significantly. An optimal
solution does not necessarily reduce the damage cost to zero
since making the damage cost zero would significantly increase
the implementation/building cost. TheGEOCLAWmodel showed
that this seawall might become obsolete past 2050 against an
ensemble of major TC storms like Hurricane Sandy and SLR.
However, this methodology can help decision-makers evaluate
future risks and make optimal decisions.

The results and conclusions provided in this work
demonstrate the capability of the proposed methodology in
optimizing coastal protective measures given a prescribed

budget. This study’s main contribution is to introduce
the methodology and demonstrate the nature of the
results/conclusions. If different SLR projections are used
instead of the selected ones in this study (i.e., Horton et al., 2015;
Gornitz et al., 2019), the corresponding results and conclusions
are expected to be different.

Only the height, length, and location of seawalls were
taken into account for this study for the sake of simplicity in
demonstrating the capabilities of the methodology. In the future,
it is suggested to include other variables such as construction
timing, other measures (e.g., structural, nature-based, financial,
and political), or a combination of thereof to determine a
comprehensive optimal strategy for a target region.

A brute-force optimization approach was employed for
simplicity in this study. More sophisticated optimization
algorithms should eventually be employed to speed up the
search for the optimal solution, such as a derivative-free descent
algorithm on the protective measure parameters or a stochastic
descent approach.
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In this study, a parallel extension of the Coastal and Estuarine Storm Tide (CEST) model

is developed and applied to simulate the storm surge tide at South Florida induced

by hurricane Irma occurred in 2017. An improvement is also made to the existing

advection algorithm in CEST. This is achieved through the introduction of high-order,

monotone Semi-Lagrangian advection. Distributed memory parallelization is developed

via the Message Passing Interface (MPI) library. The parallel CEST model can therefore be

run efficiently onmachines ranging frommulticore laptops tomassively High Performance

Computing (HPC) system. The principle advantage of being able to run the CEST

model on multiple cores is that relatively low run-time is possible for real world storm

surge simulations on grids with high resolution, especially in the locality where the

hurricane makes landfall. The computational time is critical for storm surge model

forecast to finish simulations in 30 min, and results are available to users before the

arrival of the next advisory. In this study, simulation of hurricane Irma induced storm

surge was approximately 22 min for 4 day simulation, with the results validated by

field measurements. Further efficiency analysis reveals that the parallel CEST model can

achieve linear speedup when the number of processors is not very large.

Keywords: CEST, hurricane, parallelization, SLOSH, storm surge, advection, open MPI

1. INTRODUCTION

The Coastal and Estuarine Storm Tide (CEST) numerical model was developed at the International
Hurricane Research Center (IHRC), based at Florida International University (FIU) in Miami,
around a decade ago. The purpose of the model is to simulate the storm surge due to the combined
action of (anti)cylonic winds and astronomical tides. Although the CEST model has both 2D and
3D variants, in this paper we are concerned with the 2D version that is based on the depth–
averaged, primitive variable, non–linear shallow water (NLSW) equations expressed on orthogonal
curvilinear coordinates. These governing equations are solved via an algorithm that is based on
the semi–implicit finite–difference (FD) approach (Casulli, 1990). CEST differs from the approach
presented in Casulli (1990) as it employs a straightforward explicit Eulerian advection scheme
(Zhang et al., 2008). The CEST model allows for forcing by winds, atmospheric pressure and
astronomical tides, and is thus capable of simulating storm tides as well as the wind–driven
circulation at estuaries and coasts. As described in Zhang et al. (2008) the CESTmodel incorporates
a novel wetting–drying algorithm that is based on an accumulated water volume approach for
dry cells.
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Compared to the US operational SLOSH (Sea, Lake, and
Overland Surge from Hurricane) model employed by the
National Hurricane Center (NHC), CEST has demonstrated
favorable results over the hindcast of storm surge induced by
Camille (1969), Hugo (1989), Andrew (1992), Wilma (2005),
Zhang et al. (2008), and Zhang et al. (2012). The performance and
stability of CEST were also examined by conducting simulations
for more than 100,000 synthetic hurricanes for nine SLOSH
basins covering the Florida coast and Lake Okeechobee (Zhang
et al., 2013). It is demonstrated that CEST has the potential to be
used for operational forecasts of storm surge.

Recently, NHC has developed several high resolution basins
along East Coast and Gulf of Mexico with 100 m grid resolution
along the coastal region. South Florida Basin is the one of
the basins with about 640,000 computational cells. It takes 1–
2 h to finish 4-days simulation by SLOSH or CEST with one
CPU. For the storm surge forecast, the P-Surge model is used
to compute the ranges of inundation magnitudes and extents
(Taylor and Glahn, 2008). Real-time storm surge simulations
are required to produce P-Surge products in 20–30 min because
the NHC updates the hurricane forecast/advisory every 6 h
(Zhang et al., 2013). Therefore, improved algorithm and simple
parallelization via the message passing interface (MPI) approach
have to be employed to CEST model in order to satisfy the
forecast requirement.

In this paper we present a modified version of the CESTmodel
that includes an improved advection algorithm and a simple
parallelization via the message passing interface (MPI) library.
MPI allows for distributed memory parallelization ensuring
that CEST is not limited to the amount of memory on a
single machine or the number of processes available on that
machine. The new parallel version of CEST can therefore be
run on machines ranging from multi-core desktops to massively
parallel supercomputers.

The paper is structured as follows in section 2 we detail the
governing equations including the transformation to orthogonal
curvilinear coordinates. ection 3 gives an overview of the
numerical algorithm used to solve the equations with emphasis
on improvements and changes made to the original CESTmodel.
This section also includes details on the treatment of wetting–
drying fronts and parallelization. A test case result is presented
in section 4 which includes a comparison of the CPU time with
the original series CEST code. Finally, in section 5, conclusions
are drawn.

2. GOVERNING EQUATIONS

The CEST model employs a non–conservation, primitive
variable, form of the 2D NLSW equations in orthogonal
curvilinear co–ordinates (Zhang et al., 2008). Flow variables are
considered to be depth uniform; i.e. the velocities are averaged
over the water depth and there is no vertical velocity variation.
The curvilinear co–ordinate system used follows that introduced
by Blumberg and Herring (1987) and comprises horizontal co–
ordinates (ξ , η) and a vertical co–ordinate (z), see Figure 1.
Metric coefficients, h1 and h2, are introduced such that a distance

FIGURE 1 | Schematic showing the ξ − η orthogonal curvilinear co–ordinate

system employed in the IHRC CEST model.

increment satisfies the relation

ds2 = h21dξ
2
+ h22dη

2 (1)

with

h1 =

{(

∂x

∂ξ

)2

+

(

∂y

∂ξ

)2} 1
2

, h2 =

{(

∂x

∂η

)2

+

(

∂y

∂η

)2} 1
2

. (2)

The differential arc lengths at point P in Figure 1 are given by

ds1 = h1dξ , ds2 = h2dη. (3)

Thus, the u and v components of the depth–averaged velocity are
given by

u = h1
dξ

dt
, v = h2

dη

dt
(4)

With ζ = ζ (ξ , η, t) denoting the free surface disturbance
measured from the undisturbed water level h = h(ξ , η).
The depth–averaged velocity components are denoted by u =

u(ξ , η, t) and v = v(ξ , η, t) for the ξ and η directions, see
Figure 2, respectively.

In the orthogonal curvilinear co–ordinate system the
continuity equation is then given by

∂ζ

∂t
+

1

h1h2

[

∂(Hh2u)

∂ξ
+

∂(Hh1v)

∂η

]

= 0. (5)

The momentum equations are
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+

1

h1h2

[

∂(h2u
2)

∂ξ
+

∂(h1uv)
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]

= fv+
1

h1h2

(

v2
∂h2

∂ξ
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∂h1

∂η

)

−

g

h1

∂

∂ξ

(

ζ +

1Pa

ρg

)

−

τ
ξ
B

H
+

τ
ξ
W

H

+

1

h1h2

Ah

h21

∂2u

∂ξ 2
+

Ah

h22

∂2u

∂η2
(6)
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and
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1
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]
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1
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(

u2
∂h1

∂η
− uv
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)

−
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∂
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+
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∂2v

∂ξ 2

+

Ah
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∂2v

∂η2
. (7)

Here H(ξ , η, t) = h(ξ , η, t) + ζ (ξ , η, t) is the total water depth.
The gravitational acceleration is denoted by g, ρ is the water
density, 1Pa is the air pressure drop and f is the Coriolis
parameter. The bottom shear stress is denoted by τB and the wind
shear stress by τW . Closure for the bottom shear stress is obtained
using a quadratic law:

τ
ξ
B

H
= 3u,

τ
η
B

H
= 3v, with 3 =

ρng

H
4
3

(u2 + v2)
1
2 (8)

with n being Manning’s coefficient. The wind shear is
parametrized using the wind velocities from a wind forcing
model coupled to the flow via a drag coefficient based on the
Large and Pond (1981) or Garratt (1977) formulation; full details
can be found in (Zhang et al., 2012). Importantly, it is noted that,
without explicit shock fitting of the type discussed in Pandolfi
and Zannetti (1977), these equations are unsuitable for modeling
flows that contain or develop discontinuities (shock waves).
CEST is capable of using internal parametric wind models such
as the Holland model (Holland, 1980) or the Myers and Malkin
(1961) that is employed by SLOSH. CEST is also capable of
using external wind field time–series generated by the Hurricane
Research Division of the US National Oceanic and Atmospheric
Administration (NOAA) based on fieldmeasurements (H*Wind)
(Powell et al., 1998). For Hurricane Irma simulation presented in
this paper we use the Myers and Malkin (1961) parametric wind
model which parameterizes the wind and atmospheric pressure
fields using both the atmospheric pressure drop and radius
of maximum wind speed (RMW). Pressure, wind speed, and
wind direction are computed assuming a stationary, circularly
symmetric, storm. The set up used here for Hurricane Irma is
essentially the same as that described in Zhang et al. (2008).

3. METHODS

The numerical solution is effected on a staggered, Arakawa C–
type, grid using finite differences. Elevation points are defined at
the centers of grid cells, while the u and v velocity components
are defined on their respective cell boundaries.

When values of dependent variables are required at non–
computation points they are obtained using piecewise linear
reconstruction, i.e. ζ(i+ 1

2 ,j)
=

1
2 (ζ(i,j) + ζ(i+1,j)). The model

employs the method of fractional steps (Yanenko, 1971) in order
to march forward in time. This means that the overall temporal
accuracy in CEST isO(1t).

FIGURE 2 | Schematic showing a computational cell on the ξ − η orthogonal

curvilinear FD grid.

3.1. Modified Advection Algorithm
In its original incarnation CEST (Zhang et al., 2008, 2012)
handled advection via a straightforward, fully explicit, Eulerian
finite difference scheme. This approach often leads to a
prohibitive restriction on the size of the time–step that the
original CEST model can employ. This is because, for numerical
stability, the time–step used for the entire model must be chosen
such that advection satisfies the well-known CFL condition
(Courant et al., 1967). Here, in the spirit of Casulli’s original
approach (Casulli, 1990), we employ a semi–Lagrangian (SL)
methodology for the velocity advection. Importantly, however,
we extend the approach to high–order accuracy in both space and
time by employing second–order Runge Kutta time integration
andmonotonic cubic spline interpolation in space. In theory, this
type of advection is unconditionally stable. When computing the
velocity advection, we work purely on the computational (image)
grid; working on the curvilinear (physical) grid adds complexity
as scales vary arbitrarily between cells and grid curvature is not
necessarily constant. In order to effect the interpolation, and
limiting, the two–dimensional processes are broken down into a
sequence of one–dimensional processes along each co–ordinate
axis. This is possible because the computational (image) grid is
a regular Cartesian grid. Thus, without loss of generality, when
discussing the base point interpolation we need only consider
the 1D case. For the spatial interpolation we use Hermite cubic
interpolation made monotone by use of the limiter proposed
by Nair et al. (1999); from hereonin we shall refer to this as
the NCS99 limiter. The NCS99 limiter is applied in each spatial
dimensional in turn and works as follows: first find the local
maximum and minimum surrounding the particle path base
point xb

f+ = max[f(i), f(i+1)]

f− = min[f(i), f(i+1)]
(9)

Next, reset the interpolated value (obtained using Hermite cubic
interpolation) at the base point f |x=xb = fb such that

fb = f− = if fb < f−

fb = f+ = if fb > f+.
(10)

Note that this amounts to a simple clamping operation and can
lead to the suppression of certain genuine physical waves. For
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FIGURE 3 | Advection of a complex function in uniform velocity field. The results for (A) Linear interpolation, (B) Hermite cubic interpolation (no limiter), (C) Hermite

cubic interpolation with Fedkiew et al. limiter, (D) Hermite cubic interpolation with NCS99 limiter, are shown for 500 grid points after 100 time steps. The analytical

solution is the blue line and the numerical approximation is the red line.

this reason the NCS99 limiter includes additional checks for
monotonicity that must be satisfied before the limiter is applied.
First NCS99 introduce the global minimum and global maximum
of f denoted by fmin and fmax, respectively. Thus, if all of the
following four inequalities hold the limiter should not be applied

fmin ≤ fb ≤ fmax

(f(i−1) − f(i−2))(f(i) − f(i−1)) > 0,

(f(i) − f(i−1))(f(i+2) − f(i+1)) < 0,

(f(i+2) − f(i+1))(f(i+3) − f(i+2)) > 0.

(11)

This stipulates that the signal contains only one extremum in
a five–mesh–length interval (therefore suppressing the Gibbs
phenomenon). We have found this limiter to be particularly
robust when compared with alternative formulations such as that
proposed in Fedkiw et al. (2001). Figure 3 shows a comparison
of SL advection, using a variety of base point interpolation
schemes, for the advection of a 1D function with compound
waves in a uniform velocity field. The 1D function comprises
a combined Gaussian, triangle and square wave. Results are
plotted after 100 time–steps for a grid comprising 500 points;

clearly Hermite cubic interpolation with the NCS99 limiter gives
the best performance in this complex case. Whilst this high–
order accurate advection scheme is monotone, it is unsuitable
for flows that contain or develop discontinuities as it is not
conservative. Moreover, CEST is only suitable for smooth flows
as the governing equations are themselves not in a (divergence)
form that permits discontinuities. Thus, unless explicit shock
fitting is utilized (Moretti, 2002), flow discontinuities cannot
be expected to propagate at the correct strength or speed. We
mention that, when using SL advection, in wet areas close to dry
land, care should be taken to ensure that the particle path is not
allowed to project too far back into an area that is completely dry.
If this is allowed to happen then the velocity advection can cause
a false zeroing of the velocity field in such cells. This issue can be
avoided through the use of locally controlled time–stepping.

3.2. Additional Terms and Free Surface
Evolution
The physical diffusion terms are treated using a simple forward–
in–time centered–in–space (FTCS) scheme (Press et al., 1992).
We note that the use of a simple explicit scheme for diffusion
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FIGURE 4 | Example of a CEST curvilinear computational grid (shown in

physical space) and the strip–type domain decomposition. The shaded strips

show the ghost cells (GC) used for inter–process communication. The plot

shows the NOAA (NHC) basin used for simulations of hurricane such as

Andrew (1992).

introduces its own stability requirements; however, these are far
less stringent than those associated with the advective terms.
The Coriolis and wind stress terms are updated using first–
order explicit Euler time integration and the bottom friction
term is treated implicitly in the manner detailed in Kelly et al.
(2015). After the velocities have been updated using the method
of fractional steps the free surface can be updated. The operator
that updates both u and v by SL advection and explicit diffusion,
evaluation of curvature terms, pressure drop, wind forcing and
finally an implicit bed friction update is denoted by F . Thus,
we have

un+1
i+1/2,j = F(uni+1/2,j, u

n−1
i+1/2,j), v

n+1
i,j+1/2 = F(vni,j+1/2, v

n−1
i,j+1/2)

(12)
Evolution of the free surface requires solution of Equation (5).
This is achieved using an implicit scheme which results in the
following 5–diagonal linear system of equations:

−Au(i−1,j)ζ
n+1
(i−1,j)

− Av(i,j−1)ζ
n+1
(i,j−1)

+Az(i,j)ζ
n+1
(i,j)

− Av(i,j)ζ
n+1
(i,j+1)

− Au(i,j)ζ
n+1
(i+1,j)

= b(i,j)
(13)

where

Au(i,j) =
gh2(i+ 1

2 ,j)
1t2

h1(i+ 1
2 ,j)

·

Hn
(i+ 1

2 ,j)

1+ 3(i+ 1
2 ,j)

1t
, (14)

Av(i,j) =
gh1(i,j+ 1

2 )
1t2

h2(i,j+ 1
2 )

·

Hn
(i,j+ 1

2 )

1+ 3(i,j+ 1
2 )

1t
(15)

and

Az(i,j) = h1(i,j)h2(i,j)+Au(i,j)+Au(i−1,j)+Av(i,j)+Au(i,j−1). (16)

The right hand side of Equation (13) is given by

b(i,j) = ζ n
(i,j)h1(i,j)h2(i,j) − 1t

(

Fun
(i+ 1

2 ,j)
Hn
(i+ 1

2 ,j)
h2(i+ 1

2 ,j)

−Fun
(i− 1

2 ,j)
Hn
(i− 1

2 ,j)
h2(i− 1

2 ,j)
+ Fvn

(i,j+ 1
2 )
Hn
(i,j+ 1

2 )
h1(i,j+ 1

2 )

−Fvn
(i,j− 1

2 )
Hn
(i,j− 1

2 )
h1(i,j− 1

2 )

)

. (17)

Finally, after the free surface has been updated, the final velocity
update is performed using the pressure gradient. Use is made of
the staggered grid to obtain second–order accuracy for the spatial
gradient of the free surface in this step.

3.3. Wetting/Drying Fronts
CEST employs a straightforward wetting–drying algorithm that
is based on an accumulated water volume (Zhang et al., 2008).
Free surface elevation and water depth at both the cell center
and its four boundaries are all used to calculate the accumulated
water volume. At the beginning of a model timestep, cells are
assigned as being either wet or dry based on whether the water
depth at the cell center is above or below a threshold depth
HTOL. During wetting, if the free surface elevation at the center
of a wet cell is higher than that at an adjacent dry cell, and the
water depth at the shared boundary between these two cells Hk

(obtained by linear interpolation) is greater than a predefined
threshold, the water is allowed to flow from the wet cell into
the dry cell and accumulate there. The flux of water crosses a
maximum of four shared boundaries between a dry cell, and
any wet neighbors. The water interchange velocities (uk, where
k = 1...4 represents the four cell boundaries) are approximated
by solving a simplified 1D momentum equation which ignores
the contribution of advection, Coriolis force, air pressure drop
and wind shear giving

∂uk

∂t
+ g

∂ζk

∂xk
+ 3uk = 0, (18)

with xk being the direction of uk and ζk is a linear reconstruction
of the free surface elevation at the kth cell interface. The
accumulated water volume 1Q in dry cells is computed as

1Qn+1
(i,j)

= 1Qn
(i,j) +

∑

k

1k ·Hk · uk · 1t, (19)

where 1Qn
(i,j)

is the accumulated volume from the previous

time step and 1k denotes the cell length (which is 1ξ or 1η

depending on the value of k). If the water depth, obtained from
the accumulated volume, in a dry cell exceeds HTOL the cell is
reflagged as being wet. During drying a cell is set to be dry
if the water depth at the cell center falls below HTOL. Note
that, if the water depth at a cell boundary is less than HTOL,
water will stop flowing across this boundary even before the cell
itself is completely dry. Also, if it is the case that the linearly
reconstructed water depths at all four boundaries of a cell are less
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FIGURE 5 | The study area, computational domain, Irma track, and measurement locations.

FIGURE 6 | The Manning’s coefficient map for the entire computational domain.
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FIGURE 7 | Comparison between the computed and the measured surface elevations at the various NOAA tide gauges.

than HTOL then the cell is set to be dry. This simple algorithm
conserves water mass, but not momentum. The approach has
proven extremely robust in a huge number of storm surge
simulations carried out at the IHRC over the last decade.

3.4. MPI Parallelization and Domain
Decomposition
Parallelization of the CEST model is achieved using the Message
Passing Interface (MPI) library, see: https://www.open-mpi.
org/. To achieve parallelization a horizontal strip–type domain
decomposition on the computational (image) grid is employed.
The computational domain is split into a number of horizontal
strips and strips are allocated to each process on a single strip
per process basis. Two layers of halo regions (ghost cells) is
employed to transfer information between processes. It should

be noted that no load balancing, or process optimization, is
currently implemented.

Figure 4 shows a schematic representation of the domain
decomposition employed by CEST. Assuming a domain that runs
from ymin to ymax and comprises im × jm cells, only J index
is split to save on computational time and simplify the domain
decomposition. In other words, the computational domain is
split vertically among all available processes np, including the
root process p=0, according to Algorithm 1. The horizontal
direction, I index for each process keeps same.

Whilst the parallelization of the F operator is
straightforwards, solution of the implicit equation for the
free surface (Equation 13) is not. To facilitate the paralellization
of the code, and avoid the need for multicoloring, the pre–
conditioned conjugate gradient (PCCG) method employed to
solve the continuity equation for the free surface (Equation 13)
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FIGURE 8 | Comparison between the computed and the measured HWMs at

the various USGS stations. The green dashed lines represent the perfect

simulation×(100 ± 20%). Note that only those measurement stations

inundated by the simulated storm surge were used.

Algorithm 1: Strip–Type Domain Decomposition Used in
Parallel CEST.
1: procedure STRIPDECOMP

2: ǫ = 1× 10−4

3: dl = (2. ∗ ǫ + jm− 1.)/dble(np)
4: for p = 0, np do
5: ymin = 1.+ dble(p ∗ dl)− ǫ

6: ymax = ymin + dl
7: for j = 1, jm do

8: if ymin ≤ j & j < ymax then

9: proc[j] = p

10: for p = 0, np do
11: for j = 1, jm do

12: if proc[j] = p break

13: jmin[p] = j
14: for j = jm, 1 do
15: if proc[j] = p break

16: jmax[p] = j

in CEST is replaced with simple Jacobi iteration. This allows for
a straightforward parallelization of the implicit part of Casulli’s
algorithm. Whilst this approach leads to slower convergence this
is more than offset by the ability to employ multiple processes
(and the associated decrease in the linear system size that each
process is required to solve).

4. RESULTS

For the verification purpose, a test case with 4-day simulation
of Hurricane Irma (2017) is conducted. Following (Zhang et al.,

2008) we consider both the storm surge and the tidal component.
The simulation starts at 00:00 UTC on 8 September 2017 and
ends at 00:00 UTC on 12 September, with a time step of 10 s. In
what follows, the detailed setup of the simulation and the results
are discussed.

4.1. Model Domain
Figure 5 shows the model domain and the measurement
locations for Hurricane Irma (2017), including tide gauges from
NOAA, High Water Marks (HWMs) from US Geological Survey
(USGS), and river gauges from USGS. We employ a very high–
resolution curvilinear grid that comprises approximately 640,000
computational cells. The cell size at the open ocean area is
approximately 1,470 × 1,470 m, which gradually reduces to 200
× 200 m at the shoreline areas and further smaller inland. It
should be noted that, for display purposes, the grid lines are not
shown in Figure 5. All model boundaries that lie in water are
specified as open; details of the boundary conditions can be found
in the section below.

4.2. Topographic and Bathymetric Data and
Calculation of Grid Cell Elevation
The bathymetric and topographic data are required for
calculating the water depths and elevations of the grid cells in
a model basin. The topographic data used in this study mainly
come from USGS, and the bathymetric data come from NOAA.
Water depths for grid cells at the open ocean were calculated
based on the ETOPO1 global relief dataset from NOAA, which
has a resolution of 1 arc minute ( 1.8 km). Water depths
for grid cells in coastal areas were interpolated from the U.S.
coastal relief dataset from NOAA with a resolution of 3 arc
second ( 90 m) (https://www.ngdc.noaa.gov/mgg/bathymetry/
relief.html). The USGS 90, 30, 10, and 3 m digital elevation
models (DEM) were used to calculate the elevation of grid cells
on the land (http://viewer.nationalmap.gov/viewer/).

4.3. Boundary Conditions
At the open boundaries the model is forced using a nine–
component tide comprising the M2, S2, K1, O1, Q1, K2, N2, M4,
and M6 components. These constituents were obtained from
the ADvanced CIRCulation model (ADCIRC) Tidal Databases
East Coast 2015 database of tidal constituents (Szpilka et al.,
2016). An inverse pressure adjustment is made to the water
surface specification at the tidal boundaries. The inverse pressure
approach partially accounts for the meteorological forcing at the
boundary by imposing the inverted barometer effect (Blain et al.,
1994). Thus, the free surface at the open boundaries is modified

by the amount1η(x, y, t) = −
p′s(x,y,tt)

ρwg
where p′s is an atmospheric

pressure change and ρw is the sea water density.

4.4. Bottom Friction Coefficient
A spatially varying value of Manning’s n is employed. Figure 6
shows the spatial distribution of the Manning’s coefficient used
in this paper. This coefficient map was generated based on the
national land cover dataset (NLCD) created by USGS in 2001,
using the approach proposed in Zhang et al. (2012), where details
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FIGURE 9 | The computed maximum storm surge height in spatial distribution: (a) the entire domain, and (b) a zoomed-in domain centered at the South Florida

mangrove zone. The data are referenced to the NAVD88 vertical datum. The locations of the four profiles for Figure 10 are also displayed.
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FIGURE 10 | The computed maximum storm surge profiles along the four profile lines depicted in Figure 9. The data are referenced to the NAVD88 vertical datum.

can be found. Note that for the open ocean area, a constant
coefficient n = 0.02 was employed.

4.5. Comparison of Model Predictions and
Observations
Figure 7 shows a comparison for the data at the NOAA
tide gauges (Figure 5). The parallel CEST model in general
captures the major trend of the tide and the storm surge
induced by Irma (2017). At Naples, Fort Myers, and Mckay
Bay Entrance, the surface elevations were relatively well
predicted by CEST, while at Virginia Key, St Petersburg, and
Old Port Tampa, CEST tends to underestimate the surface
elevation variation.

Figure 8 presents the comparison for the HWM data. The
CEST predictions have a root mean square error (RMSE) of
approximately 0.69 m against the observations. This error is
contributed significantly by the underprediction of the HWMs
at Florida Keys and the South Florida mangrove zones (where
the USGS gauges were marked, see Figure 5). A reason for
this underprediction may be that these areas are close to the
domain boundary, hence there is a limited fetch for wind to push
water in.

Figure 9 presents the computed maximum storm surge height
across the entire computational domain. It can be seen that the
most severe storm surge inundation occurs at the right hand side
of the track near the landfall location, where the area is known
as the South Florida mangrove zone. The computed maximum
storm surge height is over 3 m, but the overall inundation is
kept within the mangrove zone due to the resistance of mangrove
trees (Zhang et al., 2012). Figure 10 further shows the computed
maximum storm surge profile along the four profiles depicted in
Figure 9b. The maximum storm surge height gradually reduces
as it moves inland. The inundation extents are roughly around
10 km at Profiles 1 and 2, and approximately half of that at
Profiles 3 and 4. It should bementioned however that storm surge
could move further upland in the rivers as seen in Figure 9b.
The overall maximum surge pattern is comparable with ADCIRC
model results (Kowaleski et al., 2020).

4.6. Computational Cost and Parallel
Efficiency
The parallel performance of CEST on the 4-day simulation of
Hurricane Irma (2017) was examined using the parallel efficiency
(Ep) and speedup (Sp) coefficients. The coefficients are defined
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FIGURE 11 | The parallel efficiency and speedup of CEST at different number

of processors for the simulation of Hurricane Irma (2017). The dashed line

represents the linear speedup and is plotted for comparison purpose.

following Chen et al. (2018):

Sp =
T1

Tp
and Ep =

Sp

p
, (20)

where T1 and Tp are the total CPU time when using 1 and p
processors. The simulation presented in this paper were run on
a 32-core i7 CPU (3.7GHz) workstation. T1 is approximately
150 min. The parallel efficiency and the speedup coefficients
are plotted in Figure 11. As can be seen, the parallel CEST
model achieves linear and even super-linear speedup when
the number of processors used are small (≤ 4). When the
number of processors increases the speedup increases but also
becomes flattened and the parallel efficiency drops linearly.
Despite that 4 processors appear to be the optimal number for the
current simulation in terms of parallel efficiency, as many as 10
processors can be used to reduce the total CPU time of simulation
as a priority. In the current case, T10 is approximately 22 min.

5. DISCUSSION

This paper describes the parallelization of the IHRC–CEST
model using the Message Passing Interface (MPI) library. The

MPI parallelization approach allows the CEST model to be run
optimally on a wide variety of computer architectures ranging
from multi–core desktops to massively parallel supercomputers.
Moreover, in the parallel CEST model simple Eulerian advection
is replaced with high–order, monotonic semi–Lagrangian (SL)
advection scheme. The high–order SL advection enables to use
a larger model time–step,while maintaining numerical stability.
The purpose of parallelizing the CEST model, and improving
the advection efficiency, is to enable finer resolution ensemble
forecasts to be undertaken at the IHRC on multi–core desktop
machines. This allows for the most detailed bathymetric data
available to be employed in forecast–mode surge simulations

and thus facilitates the best possible representation of coastal
topography. The use of finer computational grids for storm
surge is known to improve predictions of the magnitudes
and extent of storm surge flooding (Zhang et al., 2008).
Results presented in this paper show that the wall clock
time can be dramatically reduced through the use of a
multicore desktop.
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In this study, a novel framework was developed to provide a holistic damage assessment

caused by severe hydrologic events whether individually or as a compound event. The

novel framework uses a developed hurricane-specific water quality model, Environmental

Fluid Dynamic Code-Storm Surge model (EFDC-SS) and an ArcGIS-based framework,

the Facility Economic Damage and Environmental Release Planning (FEDERAP) to

assess damages to the built and natural environment. The developed framework could

be used to compare different hurricanes and storms with a focus on land inundation, spill

destination in both land and water and their associated risks, as well as economic loss

including both physical and secondary losses. The results showed different spreading

mechanisms during surge and rainfall-based hurricanes. While storm surge pushed

contaminants (from spills) upstream, the rainfall-based hurricane caused a larger footprint

of contamination on land. Though different in spreading patterns, spills during both

hurricane types can widely spread miles away from the release location in a very short

period of time. The FEDERAP economic loss model showed that facility area, average

land elevation, the number of storage tanks and process units at the facility, and daily

production are key drivers in the calculated total losses for a given hydrologic event.

Keywords: compound flooding, inundation, spills and leaks, ADCIRC, EFDC

INTRODUCTION

Storm surge, the rise in water level due to wind and pressure stresses, is known to be the most
devastating aspect of a hurricane due to the retention time of inundated areas, currents, and water
pressures within affected regions (Godoy, 2009; Naito et al., 2012). The literature is replete with
studies that have demonstrated the catastrophic impacts of storm surge on residential areas (e.g.,
Robertson et al., 2007; Frazier et al., 2010) as well as on industrial regions (e.g., Cruz et al., 2001;
Cauffman et al., 2006; Pine, 2006; Godoy, 2007; Harris and Wilson, 2008; Santella et al., 2010;
Hallegatte et al., 2011; Burleson et al., 2015). However, in recent years, hurricanes with historical
rainfall (e.g., Hurricane Harvey with >125 cm of rainfall in Houston, Texas, United States) have
also caused billions of dollars in damages to the economy (e.g., Kiaghadi and Rifai, 2019; NCDC,
2020). The catastrophic impacts of severe hydrologic events whether from storm surge or inland
flooding can be amplified when they occur concurrently or in sequence (compound flooding). In
addition, numerous articles in the general literature have reported on environmental impacts of
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hurricanes, both in built and natural environments and
encompassing damages from the hurricane itself and from
cascading impacts associated with hurricanes (referred as
secondary losses) such as failures in environmental infrastructure
and spills and leaks from industrial and hazardous waste facilities
(e.g., Chang et al., 1997; Khan et al., 2001; Verter and Kara,
2001; Hoobler et al., 2003; Ashley et al., 2008; Srinivas and
Nakagawa, 2008; Kim et al., 2011; Liao et al., 2011; Qi and
Altinakar, 2011; Eldrandaly and AbdelAziz, 2012; Mamauag
et al., 2013; Kiaghadi et al., 2018; Kiaghadi and Rifai, 2019;
Kiaghadi et al., 2020). However, and to the best knowledge of
the authors, there is no integrated framework that covers both
economic and environmental impacts at the detailed facility
level due to vulnerabilities to storm surge, inland flooding, or
compound flooding.

Despite the recent progress in hydrodynamic models to
simulate compound flooding events (e.g., Bilskie et al., 2016;
Moftakhari et al., 2017; Kumbier et al., 2018; Zhang et al., 2019;
Loveland et al., 2021), there is still no single model that could
accurately represent the complex nature of such events that
involve various forcing and processes (Santiago-Collazo et al.,
2019). To address the lack of a seamless framework integrating
all these processes, nested (most common) and dynamic (most
challenging) coupling of various models (i.e., two or three)
have been used by researchers across the globe (e.g., Santiago-
Collazo et al., 2019; Loveland et al., 2021). Additionally, the
majority of the aforementioned modeling efforts have focused
on land inundation and physical damages and less attention has
been paid to environmental impacts such as spills and leaks
(Kiaghadi et al., 2018). While the results of hydrodynamic or
geospatial models could be used to estimate the occurrence
probability of spill and leaks (Burleson et al., 2015; Kiaghadi
et al., 2020), simulating the fate and transport of spills and
leaks during compound flooding events requires more complex
hydro-environmental modeling. For this purpose and depending
on the nature of the hydro-environmental modeling effort
(i.e., hindcast or forecast), a hydrodynamic model with a
mass transport module, individually or in combination with
an infrastructure failure model, is required. A modeling system
developed for hindcasting could work with observed values at
its boundary conditions without the need for other models while
for forecasting purposes, it is required to have other models to
provide flux and water heights at the boundaries. As one of the
few examples in the literature, Kiaghadi et al. (2018) coupled
the U.S Environment Protection Agency’s (EPA) Environmental
Fluid Dynamic Code (EFDC) code (Hamrick, 1992) to the
SWAN (Simulating WAves Nearshore) + ADCIRC (Advanced
Circulation) hurricane simulation model from Hope et al. (2013)
and a stochastic tank failure model developed by Kameshwar and
Padgett (2015). The developed Environmental Fluid Dynamic
Code-Storm Surge model (EFDC-SS) uniquely captures storm
surge, local runoff, and compound flooding effects on the fate and
transport of pollutants in the environment associated with severe
hydrologic events.

In the case of a compound flooding event, when both storm
surge and local runoff are present, the residential impact would be
more severe in areas prone to fluvial and pluvial flooding (Huang

et al., 2001). Thus, the focus of this study is on industrial parcels
where both storm surge and local runoff could cause inundation.
Losses during extreme events entail both primary (direct losses
to product or infrastructure due to inundation) and secondary
losses such as environmental cleanup and downtime that may
result from the inundation in addition to catastrophic losses of
units/processes that have been discussed in previous research
on hurricanes (e.g., Cauffman et al., 2006; Pine, 2006; Santella
et al., 2010; Burleson et al., 2015) and tsunamis (Srinivas and
Nakagawa, 2008; Naito et al., 2012).

Numerous researchers have reported on damages experienced
by industrial facilities during hurricanes such as significant
failure of electrical centers, processing buildings, control centers
(Harris and Wilson, 2008), structural failure, floating tanks, and
significant production downtime due to power failure (Cruz
et al., 2001; Godoy, 2007; Santella et al., 2010). Productivity
loss has been discussed previously in the literature (e.g., Bailey
and Levitan, 2008; Cruz and Krausmann, 2013) but never
accounted for in damage estimates associated with natural
disasters. Furthermore, only a few studies have discussed
potential environmental impacts during hurricanes (e.g., Ashley
et al., 2008; Santella et al., 2010); however, environmental cleanup
has not been accounted for in any of them. Moreover, studies
on tank failure have been limited to conducting surveys in the
aftermath of extreme events to report losses (e.g., Cauffman
et al., 2006; Pine, 2006; Godoy, 2007; Naito et al., 2012) as
opposed to rigorous studies aimed at providing a framework
to predict failure based on locations and elevation. While
various tools have been developed and used to assess hazardous
waste transport (e.g., Zografos et al., 2000; Verter and Kara,
2001; Kim et al., 2011), community businesses (Yang et al.,
2009), and population impact (Qi and Altinakar, 2011), there
is no framework for assessing the vulnerability of industrial
facilities to compound flooding that encompass both primary
and secondary losses. Additionally, and despite the presence of
some Geographic Information System (GIS)-based tools such as
Hazards United States-Multi Hazard (HAZUS-HM, https://www.
fema.gov/hazus) that could be used to estimate the regional losses
due to varios hazards, there is a gap for a framework that could
capture losses based on detailed industrial facility data at the
parcel resolution.

To estimate damages at industrial parcels that encompass
physical damage from inundation as well as secondary losses
from environmental spills and releases and downtime effects on
productivity, an ArcGIS-based framework, the Facility Economic
Damage and Environmental Release Planning (FEDERAP)
framework was developed in this study. Unlike previous ArcGIS-
based toolboxes (e.g., Chang et al., 1997; Khan et al., 2001; Verter
and Kara, 2001; Hoobler et al., 2003; Kim et al., 2011; Liao et al.,
2011; Qi and Altinakar, 2011; Eldrandaly and AbdelAziz, 2012;
Mamauag et al., 2013), the developed model is the first effort
that integrates secondary losses from environmental releases and
facility downtime into the overall loss assessment. This paper
presents the coupling of the ADCIRC+SWAN model with EPA’s
EFDC model as a framework for assessing environmental and
economic damages associated with storm surge and the cascading
effects of storm surge that include failures in environmental
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infrastructure such as wastewater plants, hazardous waste
facilities and failures in industrial infrastructure including unit
processes and above ground storage tanks that store chemicals
and petrochemicals. The paper demonstrates the implementation
of the developed coupled models to the Houston-Galveston
(HSC-GB) region, and more specifically in the HSC-GB Estuary
in Texas, United States that will be collectively referred to
as the GBS, for Hurricanes Ike and Harvey in 2008 and
2017, respectively.

MATERIALS AND METHODS

Study Region
The Houston Ship Channel (HSC) region (Figure 2), located
in Harris County, Texas, United States, was selected for
demonstrating the developed coupled modeling and economic
damage framework. The HSC itself is a highly industrialized
area with more than 900 industrial facilities and more than
4,300 above ground storage tanks (Burleson et al., 2015; Kiaghadi
et al., 2018). The HSC is tidally influenced and geographically
extends from the Port of Houston, near downtown Houston,
Texas, to the Gulf of Mexico. The navigational channel average
width and depth are 162 and 13.7m, respectively. This region
is an ideal setting for the study due to the historical record
of hurricanes in the Houston-Galveston region (Needham and
Keim, 2012) combined with the significant presence of chemical
and petrochemical industries.

EFDC-SS: Coupling ADCIRC + SWAN and
EFDC Models
In this paper, the Kiaghadi et al. (2018) EFDC-SS model is used
to simulate pollutant transport from spills during a rainfall-
based hydrologic event. The EFDC-SS framework developed
by Kiaghadi et al. (2018) has sufficient spatial, temporal, and
stratification resolution to: (1) investigate the compound effects
of inundation from rainfall and storm surge that may lead to
spills and leaks from environmental infrastructure and industrial
facilities, (2) provide water velocity estimates that can be used to
understand erosion, sediment transport, and the probability of
damage to physical infrastructure such as above-ground storage
tanks within industrial facilities, (3) investigate the transport and
trajectory of pollutant releases as surge water moves inland and
recedes back to the ocean, (4) provide pollution sourcing input
functions to air quality models for hydrocarbon spills on land or
in riverine systems that volatilize and create airshed plumes, and
(5) assess the economic loss and recovery periods when combined
with other economic models (e.g., coupled with FEDERAP) as
shown in Figure 1. However, this study is focuced on 1, 3, and 5.

In brief, a detailed grid for the HSC was developed that
includes wet (within the waterway) and dry cells (on land) with
a total of 42,975 cells. The cells are 96 × 96m with a total
396 km2 area coverage. The bathymetry data were combined
from various sources and dry and wet depth values of 0.12
and 0.15m, respectively, were assigned to dry and wet cells,
respectively. In this case, when the water depth is <0.12m, the
cell is excluded from hydrodynamic calculations. The coupling

of EFDC to ADCIRC + SWAN was completed via a surge-
based head boundary condition at the mouth of the HSC
before it reaches Upper Galveston Bay (see Figure 2). For
the headwater boundary, the Water Surface Elevations (WSEs)
throughout a given severe storm duration were extracted from
a gauge maintained by the National Oceanic and Atmospheric
Administration (NOAA) or the SWAN + ADCIRC model when
no measured data was available (e.g., Hurricane Ike). Since the
SWAN + ADCIRC model developed by Hope et al. (2013) was
calibrated for Hurricane Ike, using varios observed data, it is
assumed that the WSEs values at at the mouth of HSC have the
same accuracy as the NOAA gauge. However, using headwater
boundary conditions from two different sources may result
in some uncertainties in intrepting the results. The discharge
flow rates were incorporated into EFDC-SS as headwater flow
boundary conditions at the locations of bayou outfalls into
the HSC (see flow boundary locations in Figure 2). No wind
within the EFDC-SS domain and no direct rainfall on the model
grid were considered in this study. The effect of rainfall was
incorporated in the model through the flow boundaries and the
wind effect was accounted in the SWAN + ADCIRC model.
Furthermore, in this study, the inundation duration was defined
as the duration in which a cell initially dry remains wet before the
flooding recedes. However, and a limitation of numerical models,
it is worth mentioning that if an originally dry cell (land with
a water depth of zero) becomes wet (inundated with positive
water depths) and loses its connectivity with the adjacent cells,
it remains wet for the rest of the simulation period.

Release Locations 1–3 (see Figure 2) were selected because
tanks located within these areas showed the highest probability
of failure during Hurricane Ike and Harvey. The results of the
calibrated EFDC-SS for Hurricane Harvey (RMSE of 0.87m for
265 high water marks) was used to estimate the probability
of failure for all ∼4,300 above ground storage tanks using
the stochastic method developed by Kameshwar and Padgett
(2015). The resulting probabilities and potential spill volumes
were used to set-up the tracer module and simulate the fate
and transport of potential spills during compound events. A
passive tracer dye was used to estimate the trajectory of the
dissolved phase of a spill. However, it should be noted that
using a passive tracer dye limits the ability to capture weathering
processes (i.e., evaporation and emulsification) and the chemical
reactions among chemicals. Three release locations with the
highest probability of failure (Release Locations 1–3 in Figure 2)
were chosen for spill simulations. In the case of a spill, the
waterbody is not the only contaminated matrix and due to high
WSEs and inundation, chemicals released during a spill can reach
and pollute surrounding land areas, and possibly volatilize to the
airshed (this aspect was not considered in this study). The cells in
the model domain toggle between being dry and wet throughout
the storm. One of the novel aspects of the study is in including
the effect of spills on land in addition to waterways.

FEDERAP Economic Damage Framework
The Facility Economic Damage and Environmental Release
Planning (FEDERAP) framework combines an ArcGIS toolbox
with Excel-based economic-function worksheets for estimating
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FIGURE 1 | EFDC-SS framework with the input information/models and potential applications.

costs for a single facility and to accumulate costs across an entire
industrial complex. The GIS toolbox is used to develop spatial
analysis data for various storm surge levels for a given facility
(for example, to determine areas within an industrial facility that
are inundated at a given storm surge level). Built-in tools such as
Clip, Select by Location, and raster conversion tools were used
in an intentional order to accurately evaluate the inundation
of the facility infrastructure. The result is several geodatabases
of shapefiles and statistics that represent the inundation for
each aspect of the facility at multiple storm surge levels. The
data from these geodatabases are exported into a tabular format
for economic damage assessment within the FEDERAP Excel
Analysis. The Excel worksheets allow users to compile the spatial
analysis data from the GIS toolbox and use the information in
conjunction with economic loss algorithms in order to predict
losses for a given storm surge level for a specific facility.

The FEDERAP framework requires a spatial analysis to
determine the extent of inundation of a given facility, its unit-
processes, and storage tanks for a given storm surge depth.
This spatial analysis is undertaken using the results from the
EFDC-SS model scenarios described above. For the purposes of
this research, inundation is defined to occur in any part of the

geographic study extent where the elevation of land is lower than

the predicted storm surge level. The inputs to the spatial analysis

toolbox include:

i. Facility boundary. Facility boundaries are represented using

a polygon shapefile with multiple objects that accurately

represent the entire facility. The data were derived from

parcel boundaries and ownership information from the Harris
County Appraisal District (HCAD, https://hcad.org) and
vcrified with 0.3 × 0.3m (1 × 1 ft) aerial photography

from the Houston-Galveston Area Council (HGAC) GIS
database (https://gishub-h-gac.hub.arcgis.com/).

ii. Water surface elevation (WSE) of interest. The outputs of the
EFDC-SS are used here. Alternatevily, the user could specify
a minimum and maximum value for WSE to be used in the
analysis. The model loops over the WSE range using a step of
one unit. For example, for a minimum storm surge of ∼3m
(10 ft) and a maximum of∼4.6m (15 ft), storm surge levels of
3.04, 3.35, 3.66, 3.96, 4.27, and 4.57m (10, 11, 12, 13, 14, and
15 ft) would be evaluated within the toolbox (6 loops).

iii. Unit-processes. A polygon shapefile defining each unit-process
as a single object is used for this input. A unit-process
is defined in this research as a region within the facility
where chemical or oil refining occurs and/or is processed.
The data were obtained from the HGAC aerial photography
described above.

iv. Storage Tanks. A separate polygon shapefile is used to
represent the various storage tank types within the HSC:
horizontal, fixed-top vertical, and floating-top vertical tanks
(illustrated in Figure 3). The shape of the object in the input
file reflects the shape of the tank (circular for vertical tanks
and oval for horizontal tanks). The data were obtained from
the HGAC aerial photography described above.

v. Elevation for Region. The elevation for the region input is
a point file with elevation locations throughout the region
in which the facility is located. The FEDERAP toolbox
includes commands to extract only the elevation for the
facility within the boundary specified; ArcGIS point to raster
conversion is utilized based on least squares to develop a
high-density elevation-point surface for the entire facility.
Alternatively, Digital Elevation Models (DEMs) compiled
from Light Detection and Ranging (LiDAR) could be used.
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FIGURE 2 | Modeled domain with EFDC-SS.

The FEDERAP framework encompasses four categories of loss
as shown in Figure 4: (1) facility loss, (2) unit process loss, (3)
environmental release loss, and (4) productivity loss. Each of
these components is a function of inundation caused by the
storm surge level and is associated with models of economic
losses due to inundation. The economic loss variables used in
the analysis for each facility ranged between a high and a low
value, therefore, 3 estimates of economic losses were developed:
high, low and average. The framework incorporates aspects of
downtime, production, and potential cleanup costs that have not
been previously combined into a single model for evaluating
vulnerability. Each of these categories is explained in more detail
in the following sections.

Category 1: Facility Inundation Loss

Facility inundation, defined as the part of a facility that is covered
with water for a given WSE, is a key driver in FEDERAP similar
to many of the developed models and regression such as HAZUS
(Vickery et al., 2006). In FEDERAP, the percent of the facility area

that is inundated for a given WSE is calculated using the detailed
elevation data within the facility. Land value is based on the
property-appraised value of the land parcels for the facility from
the Harris County Appraisal District (HCAD) as noted above.
Losses in facility value are modeled based on the percent of the
facility that is under water for a given hydrologic event, as shown
in Table 1; this input economic loss function can be altered by
the user.

Category 2: Unit Process Loss

Unit-processes, locations within a facility that are used to process
(i.e., make and move) chemicals have a value relative to the
overall production of the facility in addition to the intrinsic value
of the structure itself. For each unit-process, a percent inundation
is calculated and associated with a cost of refurbishment or a
replacement cost using the relationship shown in Table 1. While
recent reports have estimated costs for construction of process
units at ∼$340 million with refurbishment estimated at $60
million (Eggleston, 2014), convervative estimates were used in
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FIGURE 3 | Types of storage tanks from left to right (floating top vertical, horizontal, and fixed top vertical).

FIGURE 4 | The FEDERAP model framework.

the study as shown in Table 1. As with facility losses in the
previous section, the algorithm in Table 1 can be customized by
the user.

Category 3: Environmental Release Loss

The environmental losses modeled in FEDERAP are based on
an estimate of the tanks that would be inundated for a specific
storm surge level that are calculated using the EFDC-SS model
presented in the previous section. A tank is designated as
inundated if the elevation of the bottom of the tank is below
the WSEs caused by the extreme event. It is, however, unlikely
that all inundated tanks would experience failure, thus a certain
percentage of inundated tanks is modeled to fail. In this research,
the percent of tanks that experience failure when inundated
ranges from 20 to 50% depending on the type of tank (see
Table 1); thesemodeled percentages are also amodel variable that
can be refined given specific data on tank structural integrity as
discussed previously. The percent of total tanks inundated for

each hydrologic event is applied to the total stored product for
the facility to determine the projected spill quantity. Spills from
previous hurricanes have had significant impact on contaminant
levels in water that would require cleanup (Reible et al., 2006;
Freund et al., 2014). A cost of cleanup of $31 dollars per liter of
product released is applied to the projected spill amount based
on work presented in Etkin (2000). The total environmental loss
is the sum of the loss associated with cleanup of the spilled
volume and an estimated cost for replacing the tank structure
itself. For example, a facility having 10 fixed top vertical tanks
that are inundated at a storm surge level of ∼6m (20 feet)
with a total volume of stored product of ∼1,893 L(500 gallons)
would experience a loss of 20% of the product or ∼378.5 L (i.e.,
378.5 L with an associated cleanup cost of 378.5 L × $31/liter
or $11,733.5). In this case, two tanks would fail and assuming a
replacement cost of $1,000 per tank, the structural cost would be
$2,000 yielding a total environmental cost of ∼$13,733 for the
facility at the∼ 6m (20 ft) surge level.
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TABLE 1 | (A) Land value loss as a function of facility inundation, (B) Loss

algorithm for unit process inundation, (C) Storage tank types and their modeled

failure under surge and (D) Modeled relationship between non-operational days

and percent inundation of facilities.

A. Facility inundation (Percent) Land value loss

(Percent of land value)

0 0

10 25

25 50

50 75

75 100

B. % Inundation of unit process Unit damage ($)

20 (Refurbishment) 1,000,000

50 (Complete Loss) 10,000,000

C. Tank type % Failure for Inundated Tanks

Fixed top vertical tank 20

Floating top vertical tank 50

Horizontal tank 30

D. Facility inundation

Inundation percent Days down

0% 7

20% 14

50% 28

75% 56

Unit-processes inundation

Units inundation percent Additional days down

0% 0

20% 7

50% 14

75% 21

Environmental cleanup

Volume of Release (in liters) Additional days down

0 0

37.85 million (10 million gallon) 7

75.71 million (20 million gallon) 14

113.56 million (30 million gallon) 21

Category 4: Productivity Loss

Productivity loss, as explained above, is the loss resulting from
a disruption of normal business operations; sometimes referred
to as “downtime.” In FEDERAP, downtime is modeled using
the number of days that the facility is not operational in
addition to the loss of physical product that would have been
produced during the lost days (e.g., refined gasoline). The
downtime is modeled using three key variables: the percent
inundation of the facility, unit-process inundation, and the
volume of released product resulting from a spill scenario (this
triggers cleanup activities which cause further days of downtime).
The modeled relationship between the percent inundation of
the facility and days down is shown in Table 1D; for 75%
inundation, for instance, 56 days of inactivity are projected based
on the overall inundation. The total downtime, however, will
be adjusted upwards if process units were inundated: a 20%

inundation of process units adds 7 more downtime days to
the 56 (Table 1D). Additionally, loss of products, for example,
a release of 75.7 million liters (20 million gallons) of product
will add 14 more downtime days to account for emergency
response and cleanup that would needed. Thus, in the above
example scenario, a total of 77 downtime days (56 + 7 + 14) are
projected. The relationships shown in Table 1D were developed
based on personal communications (via phone and/or in person
interviews) with facility and emergency management personnel
in Texas and can be customized for other regions or for a
specific facility.

The downtime loss is estimated based on the number of days
down and the daily revenue of the facility. Thus, for a facility that
has daily revenue of $300K and using the 77 days down in the
example above, the total downtime loss will be ∼$23.1 million.
Also included in the productivity loss is the cost associated with
loss of production. Continuing with the example in this section,
based on an estimated 10,000 barrels of oil-produced daily at the
facility with a cost of $100 per barrel, a total production loss of $1
million is accrued per day during the 77 days of downtime ($77
million for production loss). The total productivity loss for the
example is $100.1 million (the sum of the production loss of $77
million and the downtime loss of $23.1 million).

The Excel-based economicmodel (Table 2) has a total of seven
worksheets that extract data from the geodatabases as discussed
above. The first sheet incorporates general information about a
facility including total land area, number of unit-processes, daily
revenue and production. The next four sheets determine the
results for each of the four categories of losses in the FEDERAP
framework described above. The four loss estimation worksheets
require the output statistics from the statistics geodatabase, as
noted in Table 2. The losses are calculated for each category
within the appropriate sheet in the Excel model. It is also
here that users can modify the cost modeling algorithms and
customize them for their specific application. The outputs from
the FEDERAP Excel analysis are summarized in the final two
sheets of the economic excel-based model. For each hydrologic
event, the loss for each category and the total loss are both shown
in tabular form as are loss curves showing the total loss and
contribution from each of the four categories.

Modeling Scenarios
The fate and transport of potential spills and their footprint
on land, during compound flooding events were simulated
for Hurricane Ike (2008) and Hurricane Harvey (2017), with
storm surge and rainfall as the dominant sources of flooding,
respectively. In other words, Hurricane Harvey (2017) was
used to investigate how local flows emanating from different
watersheds can affect land inundation and spill fate and transport
compared to a surge-based event (e.g., Hurricane Ike in 2008).
The EFDC-SS scenarios were named based on the storm type and
release locations. For instance, Ike-3 represent a simulation with
inputs from Hurricane Ike and tank failure at Release Location
3 (see Figure 2) resulting in a total of 6 scenarions (3 Release
Locations for Ike and Harvey). The inundation patterns during
these two types of hurricanes were compared. The extent of lands
affected by the spill (both upstream and downstream of release
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TABLE 2 | FEDERAP Excel sheets.

Sheet name Inputs Outputs

Cover page—facility information Total number of unit-processes, tanks, daily revenue,

property value, production, and total area (user-defined)

None

Facility inundation Total area inundated (from statistics geodatabase,

Section FEDERAP Economic Damage Framework)

Facility Land Damage ($)

Unit-process Loss Total number of unit processes inundated at 20 and 50%

(from statistics geodatabase, Section FEDERAP

Economic Damage Framework)

Unit-process Damage ($)

Environmental releases loss Total number of tanks inundated (from statistics

geodatabase, Section FEDERAP Economic Damage

Framework)

Environmental Clean-up Damage ($)

Productivity loss None Daily Revenue Loss, Production Loss, Total Productivity Loss

Facility loss summary table None Summary of all the above outputs

Facility loss summary graphs None Loss curves for each category and the total loss for the facility

$ indicates United States dollars.

location) were compared for Hurricane Harvey and Hurricane
Ike for various release locations.

In this paper, while the EFDC-SS model is applied to three
release locations (1–3), the FEDERAP framework is applied to
four facilities identified as A (west of Release Location 1) and
B (Release Location 1), C (Release Location 2), and D (Release
Location 3). The locations and characteristics of the 4 facilities
are shown in Figure 2 and Table 3, respectively. While Release
Locations 1–3 from the EFDC-SS spill simulations were selected
solely based on the probability of tank failure, the 4 identified
facilities in the FEDERAP analysis were uniquely selected for
their differing properties and to illustrate the rigor and range
of possibilities for modeling damage associated with critical
infrastructure. As mentioned earlier, the FEDERAP framework
loops over the maximum WSE using a step of one unit. For
Hurricane Ike, Kiaghadi et al. (2018) evaluated three scenarios
included Hurricane Ike, Hurricane Ike worst-case scenario with
regards to its landfall location bymoving it to 150miles southwest
of its actual landfall location along the Texas coast, andHurricane
Ike worst landfall location scenario with a 30% increase in wind
speed. The maximum modeled WSEs in the study area for the
three scenarios ranged between 4.5 and 7.6m (15−25 ft). Thus
the FEDERAP framework was run within this range.

A sensitivity analysis with FEDERAP further illustrates the
rigor of the developed framework in estimating upper and lower
bounds for damages and losses on a facility basis or for a group
of facilities or an entire region with different types of critical
infrastructure. A sensivity analysis was conducted to illustrate
the utility of FEDERAP and the developed loss estimation
framework. The sensitivity analysis was performed on Facility
A, with a relatively large area of 0.77 km2 (191 acres) and an
average elevation above 6m. This facility has a number of tanks
and process-units at various elevations and locations within the
facility boundary (Table 3). The modeled losses for facility A
ranged from $360 million to $3 billion and were non-linear
relative to storm surge (referred to as the base case). Ten variables
that affect cost estimates in FEDERAP were evaluated in the
sensitivity analysis; each was varied between a lower (halved) and

higher (doubled) value relative to the base run for Facility A.
For example, the property value was varied between the range of
half the base case value and double the base case value. Another
example is the cost of cleanup of a release that was halved and
doubled in the sensitivity analysis. The results sections include
the results of EFDC-SS scenarios on both hydrodynamics and
fate and transport of spills as well as FEDRAP model results.

RESULTS AND DISCUSSION

EFDC-SS Hydrodynamics
Total inundated areas at the peak of the event was slightly higher
during Hurricane Harvey (63.35 km2) compared to Hurricane
Ike (59.72 km2). Compared to Hurricane Ike, Hurricane Harvey
flooded more areas in the northern parts of the model domain,
as shown in Figure 5, presumably because of higher flows in
the San Jacinto River (SJR, historical high flow rates as high as
10,000 m3/s during Hurricane Harvey). In contrast, higher land
inundation was observed within the southern parts of the domain
and in shallow side bays during Hurricane Ike. The western
parts of the model showed very similar inundation during both
events. The different spatial distribution of inundated areas
during different types of compound flooding events, emphasizes
the need for considering all flooding sources (individually and
in combination) in flood management. For instance, the results
presented in Kiaghadi et al. (2018) shows that only focusing
on storm surge (as is common practice for industrial corridors)
could lead to underestimating the WSEs in northern parts of
the system.

The bottom/land elevation as well as the water depth time-
series at several originally dry locations (dry at mean sea
level) of the study area during Hurricane Ike and Harvey were
shown in Figure 6. Different flooding patterns, as shown in
Figure 6, were observed during the two different hurricane types
across the modeling domain. A rapid increase in water depth
(Figure 6), across the domain, was observed during Hurricane
Ike, which was a surge-dominated event, followed by a rapid
recession of the inundation. The entire inundation duration
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TABLE 3 | Facility characteristics for the modeled Case Study facilities in the HSC.

Facility Characteristic Facility A Facility B Facility C Facility D

Area (km2 ) 0.77 (191 acres) 0.27 (66 acres) 7.09 (1752 acres) 4.01 (1008 acres)

Average Elevation (m) 6.1 (20 ft.) 5.5 (18 ft.) 7 (23 ft.) 6.4 (21 ft.)

Fixed top vertical tanks (#) 59 77 400 161

Floating top vertical tanks (#) 30 0 83 52

Horizontal Tanks (#) 22 18 17 7

Unit-Process (#) 15 5 25 34

# indicates numbers.

FIGURE 5 | Comparison of maximum inundated areas for Hurricane Ike (left) and Hurricane Harvey (right).

due to the storm surge (Hurricane Ike) was <24 h. However,
due to the discharges emanating from the greater Houston
bayous, a second peak in water depth and inundation pattern
was observed during Hurricane Ike making the entire event last
for 2.5 days everywhere except the SJR (4.5 days). Continuous
water release from Lake Houston dam caused the elongated flood
in areas adjacent to SJR (P3 in Figure 6). In the absence of a
strong storm surge (about 0.6m), the inundation process during
Hurricane Harvey was driven by tidally forced in the downstream
boundaries and local runoff in the flow boundaries (dominant).
Considering that the travel time for most of the bayous in the
study area is around 2–7 days (Petersen, 2006), Hurricane Harvey
caused longer (between 5 and 6 days) and wider-spread land
inundation compared to Hurricane Ike as shown in Figure 6.
The peak water depth was almost the same for both hurricanes
except areas closer to the downstream boundary of the model
(P4 close to the mouth of Galveston Bay in Figure 6). Lower
water depths and consequently lower inundation in the southern
portion of the modeling domain during Hurricane Harvey
compared to Ike is mainly due to the dictation of the downstream

boundary condition. In other words, despite the high volume

of water discharged to the system during Hurricane Harvey,
the water surface elevation at the final water receptor was not
significantly changed.

EFDC-SS Tank Failure and Pollutant
Transport
The estimated probabilities of failure for the above-
ground storage tanks within the study area during both
modeled hurricanes are shown in Figure 7. Considering the
aforementioned logic in the previous section and the fact that
inundation was for a longer period of time during Harvey
(Figure 6), a higher number of tanks with high probabilities
of failure in the western part of the HSC during Hurricane
Harvey (Figure 7) could be justified. In addition, tanks located
adjacent to the rivers/bayous were more prone to failure during
Harvey due to historic flow rates leading to overbanking (with
higher depth compared to Ike) and flooding the tanks. For the
southern part of the system (Release Location 3 in Figure 7), the
probabilities were almost the same as the maximum WSEs in
the two events were very close in that region. The tanks located
north of Release Location 3 were in a higher elevation area (see
Figure 6) so they did not become inundated during either of the
two events.

As discussed in Kiaghadi et al. (2018), the release time relative
to the peak of storm is a key parameter during an even like
Hurricane Ike where the direction of the flow could change
during the storm. However, the release time could not change the
spread pattern (except the velocity) in a flow-dominated event
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FIGURE 6 | Bottom/land elevation in the study area and water depth time-series at several originally dry (dry at mean sea level) locations of the study area during

Hurricanes Ike and Harvey.

such as Hurricane Harvey that the flow has always the same
direction during the event. The dye concentrations for a release
at the peak of the hydrograph during Hurricane Harvey for all of
three release locations, are shown in Figure 8. Unlike Hurricane
Ike scenarios shown in Kiaghadi et al. (2018), the conservative
tracer was not spread upstream of Release Location 1 during
Hurricane Harvey. In contrast, detectable dye concentrations
were observed in north of the HSC confluence with the SJR
(see Figure 6 for location) 1 week after the release (Figure 8).
During Hurricane Harvey, dye concentrations 24 h after the
release were lower than Ike. Also, 1 week after the release,
dye concentrations were significantly lower within the system
during Hurricane Harvey as compared to Ike, mainly due to
continuous high flow rates. In other words, faster velocities
during Harvey flooding (the results of the EFDS-SS simulations)
caused the majority of the dye to pass through the boundary
in a very short time and led to very low concentrations of dye
remaining in the system after 1 week. For Release Location
2, Kiaghadi et al. (2018) showed that during Hurricane Ike
a significant amount of dye mass remained in Patrick Bayou
(Release Location 2, see Figure 2 for location), due to trapping
within the bayou, that acted as a continuous source of dye that
polluted the western part of the HSC after a week. For the
same location, different mass transport behavior was observed

during Hurricane Harvey. Here again, faster water velocities
during Harvey caused more flushing and transportation of the
contaminants in the HSC. The spread of the spill at Release
Location 3 was very similar during both hurricanes. Just like
Release Location 1, for Release Location 3, no upstream spread
was observed during Hurricane Harvey. However, after water
levels were back to normal (when water surface elevations
are back to the mean sea level), tidal movements transferred
the remaining contaminants in the system to the upstream
regions. With regards to contaminant transport to the final
receptor (Galveston Bay), the two hurricanes showed different
behaviors for Release Locations 1 and 2 but similar behavior
for location 3.

The final percentage of the tracer dye (as a surrogate to the
contaminant of interest) that reached Galveston Bay and the time
for 85% of dye mass to reach Galveston Bay is shown in Table 4.
The high percentage of mass within a low period of time reaching
the final receptor indicates the risk of widespread contamination
of a potential spill. In <3 days the majority of the modeled spill
will reach the final receptor with larger water volume where
dilution makes remediation efforts very difficult. In addition, in
the first few days during the events (especially the rainfall-based
events where the high flow rates last for more than a week), the
priority is on saving lives; and, because of the presence of debris
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FIGURE 7 | Estimated probability of failure for the ∼4300 above ground storage tanks in the study area for Hurricane Ike (top) and Hurricane Harvey (bottom). Due to

the absence of industrial tanks, the northern section of the domain (San Jacinto River, SJR area) is not shown.

in the water, it is not possible to limit the spread or remove the
contaminants from the water.

Lands that were affected by the spill from different locations
during Hurricane Ike and Harvey are shown in Figure 9. The
affected land is directly related to the flooding extent and whether
there were any contaminants in the water that caused the
inundation or passed through the wet cell during the inundation
period. Compared to Harvey, surge driven spill scenarios caused
by Ike created a smaller environmental footprint of the spill on
land for Release Locations 1 and 2 and a larger footprint for
location 3. A spill from Release Location 1 could potentially
affect 8.65 and 9.52 km2 of land, with almost 0.7 and 1%
of the total spill mass retained on land during Hurricane Ike
and Harvey, respectively. The contaminated lands for Release

Locations 2 and 3 were 6.29 and 7.95 km2 for Hurricane Ike
and 9.36 and 2.75 km2 for Hurricane Harvey. Downstream of
the HSC-SJR confluence and upstream of Alexander Island were
identified as the most polluted lands after Hurricane Harvey.
Alexander Island (see Figure 2 for the location) and upstream
of the HSC mouth were the most affected areas for Hurricane
Ike. It is noted again that this does not account for air plume
formation and transport onto land from spills in the waterway
that may represent a significant health risk to nearby populations.
The retention of contaminants on land could pose a threat
to both natural and built environment. Thus, the developed
framework could be used to identify the locations that might
need remediation and a guideline for sampling efforts after
severe storms.
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FIGURE 8 | Dye concentration for Hurricane Harvey at various times during and following the event for different release locations. Blue cells represent concentrations

below 0.001 mg/l.
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TABLE 4 | Results for the Ike and Harvey spill scenarios with their corresponding release times, final percentage of mass in GB, and time lapse for 85% of the dye mass

leaving the model domain.

Scenario Release time Percent Mass in Bay ∼15 days after dye release Time (days) for 85% of dye mass to reach Galveston Bay

Ike-1 9/13/08 12:00 91.5 1.46

Ike-2 9/13/08 12:00 27.3 N/A

Ike-3 9/13/08 12:00 92.7 1.29

Harvey-1 8/23/17 00:00 >97.1* 0.95

Harvey-2 8/23/17 00:00 >96.1* 2.67

Harvey-3 8/23/17 00:00 >95.1* 1.29

N/A, Not Applicable; the total dye passed through the open boundary was <85% of total dye released. *Dye simulation runs for Hurricane Harvey were performed for a shorter period

of time after the reseals (1 week); values reported as greater than represent mass portion of mass transported to Galveston Bay 1 week after the spill.

FIGURE 9 | Comparison of land affected by spills from different locations within the model domain for Hurricane Ike (top) and Hurricane Harvey (bottom).

FEDERAP Projected Losses
The total loss estimates for each of the facilities are shown in
Figure 10. The total modeled losses ranged from $30 million to
$500 million for WSEs between 4.5 and 5.2m (15–17 ft) while
the total losses ranged from $80 million to $7 billion for WSEs
near 7.6m (25 ft). As can be seen in Figure 10, Facilities A and
B loss curves are similar and distinctly different from C and D.
While loss curves for A and B increase gradually and exhibit
separation between the three scenarios shown (low, medium,
and high), the loss curves for facilities C and D are almost
superimposed up to WSEs around 5.8m. Beyond this WSE,
facilities C and D exhibit distinctly different losses that reflect
the difference in facility characteristics (area, elevation, tanks, and
unit-processes). Facility C has a larger area (but more of the area
is at a higher elevation) and more tanks, whereas facility D has a
lower average elevation and more process units. Thus, and as can
be seen in Figure 10, the loss curves increase steadily for facility

C beyondWSEs of 5.8 (19 ft) m whereas facility D experiences an
exponential rise in losses between 6.4 (21 ft) and 7 (23 ft) m that
stabilize beyond 7m. It is noted that Facility B has a relatively
smaller area and a smaller number of tanks and process units
which explains the difference in the relative magnitude of losses
when compared to the other facilities. It is also noted that facility
D is the only facility that did not exhibit any sensitivity to the
high, medium and low cost scenarios for inundation levels below
6.4m (21 ft). This is because the facility is located at a relatively
higher base elevation than the other facilities, similar to facility
C, but unlike facility C; facility D has a relatively lower number
of tanks.

The individual components of the total losses for each facility
can be studied further to determine the main driver for losses as
WSE increases. As discussed above in the Methods, economic
loss variables had low and high values estimates as well as a
calculated average value. For modeled high losses estimates, for
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FIGURE 10 | FEDERAP projected losses for 3 scenarios of cost models (blue line: higher estimate, gray line: medium estimate, red line: lower estimate).

example, as inundation increases, the downtime causes losses
to rise significantly. For three of the four facilities, production
loss was the most important driver for losses in the modeled
scenarios (data not shown). This finding would likely change
based on the specific event, its impacts, and variables used
in the model. Additionally, probabilistic modeling using the
developed economic modeling will further inform analyses for
individual facilities or an industrial complex such as the Houston
Ship Channel. For Facilities A and C, environmental release
plays a significant role due to the number of tanks on site
and the locations of the tanks. For Facility C in particular,
environmental release is the largest component for losses. Facility
C exhibits relatively high tank density (more than one tank
per acre) and the resulting losses for this facility are due to
the large number of tanks at low elevations (the majority of
the facility and its unit-processes are not inundated even at
high storm surge levels of ∼7m). The results from the analysis
with the four facilities can be synthesized to allow general
conclusions to be made for the entire HSC industrial region and
beyond. For instance, when comparing across the 4 facilities,
it was found that losses are at their lowest when the facility
is <20% inundated and their highest once inundation exceeds

75% as would be expected. The results on a spatial basis were
somewhat less intuitive, however. For facilities to the east near
the mouth of the HSC, the initial response to storm surge level
rise is minimal but begins a step increase at ∼6m (Facilities C
and D). The two facilities investigated on the western portion
of the study area have a more gradual loss curve to storm
surge with increases occurring at 5.2 and 6m. Thus, having
an understanding of the relationship between facility elevations,
storm surge levels, and expected losses (in addition to impacted
infrastructure) is critical and can only be gleaned with the
modeling framework presented here. Such an understanding,
when developed, enables decision-makers to evaluate various
mitigation strategies based on vulnerability, hazard, and risk
within a projected losses framework.

The data in Figure 11 illustrate sensitivity analysis results
for Facility A. The modeled losses for Facility A ranged from
$360 million to $3 billion and were non-linear relative to
storm surge levels (Figure 11 base run). The results of the
sensitivity analysis for a surge level of between 4.6m (15 ft)
and 7.6m (25 ft) ranged from $280 million to $4.2 billion
indicating a high degree of sensitivity in modeling results to the
assumed cost relationships. Results also indicated that damage
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FIGURE 11 | FEDERAP sensitivity analysis results for Facility A. Lines with squares and triangles represent doubled and halved scenarios, respectively.

estimates were most sensitive to environmental losses (cleanup
cost and additional days down). At the lower modeled storm
surge levels, FEDERAP damage estimates did not change in
response to changes inmost inputs except for percent tank release
and cleanup costs. For these two variables, damage estimates
increased more than 40% as the storm surge level increased
from 4.6m (15 ft) to 5.5m (18 ft). When the storm surge
level exceeds 5.5m (18 ft), more of the facility infrastructure
becomes inundated causing higher dependency on values used
for production losses. Overall, the loss model had limited
sensitivity to daily revenue, property value, and losses related
to unit-processes with the major driver being productivity
and environmental (spill) losses. The interplay between facility
characteristics and the modeled cost relationships and their
effect on total losses highlights the need for tools such as
FEDERAP and the importance of integrating this type of analysis
into decision-making for addressing vulnerability of critical
industrial infrastructure.

It is important to acknowledge the limitations of the
FEDERAP model in its current formulation. While chemical

spills are included in FEDERAP, the interaction among stored
chemicals within and between facilities in the water is not
presently accounted for. The storm surge level is considered
but the period of time where storm surge is present within
the HSC is not accounted for in terms of pollutant dispersion
within the inundated zones; longer storm surge durations are
expected to push pollutants farther upstream and disperse them
onto a larger area. The length of time and interaction among
stored chemicals may need to be investigated using water
quality and contaminant transport models in order to refine
the cleanup losses determined in the FEDERAP framework.
In addition, a facility may be operational but in reality may
be prohibited from operating normally due to damages in
nearby facilities and/or debris in the Channel or continued
emergency response and cleanup activities. Lastly, this analysis
is not probabilistic in nature and does not include risk
(the risk of incurring a specific storm surge level); however,
the model can be readily adapted to incorporate risk and
probability when data on hurricane risks are developed in
the future.
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CONCLUSIONS

The results from the water quality model driven by storm
surge (EFDC-SS) model containing both land and waterbodies
showed the different mechanisms of spill spread under different
hurricane types. While spreading differently, spills during a
severe hydrologic event can widely spread miles away from
the release location in a very short period of time and
pollute both land and water in addition to the airshed. The
developed framework could be applied to investigate the fate
and transport of spills during compound flooding events. While
damage assessments to date have failed to account for the
complexities of industrial facility vulnerabilities to hurricanes
and severe storm surge events, the Facility Economic Damage
and Environmental Release Planning (FEDERAP) provides a
modeling framework that allows for investigating the complex
relationships between storm surge level and the specific losses
that would be experienced by a specific facility or an entire
industrial region. This research demonstrates that industrial
regions should be evaluated using tools that reflect their
specificity. In addition, this paper demonstrates that property
loss is a relatively small component when compared to other
losses that could be incurred due to storage tank damage or
damage to process units. This research also demonstrates that
storm surge levels are directly related to incurred damages
and losses at industrial facilities and that storm surge above a
facility specific threshold value would cause losses to increase
at a steeper slope because of environmental pollution and loss
of productivity. Without detailed studies and model scenarios
similar to what is presented in this study, it would be very
difficult to anticipate areas (and communities), whether on land
or in water, that would be most vulnerable to contamination
in a given medium (air, soil, water, biota). The methodology

developed in this study can be easily applied to similar severe
storms prone coastal plain estuaries such as the Hudson River
in New York, Delaware Bay between New Jersey and Delaware,
and other estuaries along the Gulf Coast. Future work could
address some of the limitations of the study and expand on
its capabilities. For instance, dynamic coupling of SWAN +

ADCIRC with the EFDC, FEDERAP, and the tank failure model
could provide a near real-time predictive and planning tool.
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Coastal flooding poses the greatest threat to human life and is often the most common

source of damage from coastal storms. From 1980 to 2020, the top 6, and 17 of the

top 25, costliest natural disasters in the U.S. were caused by coastal storms, most of

these tropical systems. The Delaware and Chesapeake Bays, two of the largest and

most densely populated estuaries in the U.S. located in the Mid-Atlantic coastal region,

have been significantly impacted by strong tropical cyclones in recent decades, notably

Hurricanes Isabel (2003), Irene (2011), and Sandy (2012). Current scenarios of future

climate project an increase in major hurricanes and the continued rise of sea levels,

amplifying coastal flooding threat. We look at all North Atlantic tropical cyclones (TC)

in the International Best Track Archive for Climate Stewardship (IBTrACS) database that

came within 750 km of the Delmarva Peninsula from 1980 to 2019. For each TC, skew

surge and storm tide are computed at 12 NOAA tide gauges throughout the two bays.

Spatial variability of the detrended and normalized skew surge is investigated through

cross-correlations, regional storm rankings, and comparison to storm tracks. We find

Hurricanes Sandy (2012) and Isabel (2003) had the largest surge impact on the Delaware

and Chesapeake Bay, respectively. Surge response to TCs in upper and lower bay

regions are more similar across bays than to the opposing region in their own bay. TCs

that impacted lower bay more than upper bay regions tended to stay offshore east of

Delmarva, whereas TCs that impacted upper bay regions tended to stay to the west of

Delmarva. Although tropical cyclones are multi-hazard weather events, there continues

to be a need to improve storm surge forecasting and implement strategies to minimize

the damage of coastal flooding. Results from this analysis can provide insight on the

potential regional impacts of coastal flooding from tropical cyclones in the Mid-Atlantic.

Keywords: tropical cyclone, hurricane, Mid-Atlantic, storm surge, coastal flooding, tidal analysis, natural hazard,

coastal risk

INTRODUCTION

Coastal storms are a multi-threat natural hazard, often including heavy rain, strong winds, large
waves, rip currents, and storm surge, all of which must be considered collectively when assessing
risk and devising mitigation strategies. According to the National Oceanic and Atmospheric
Administration (NOAA), for the years 1980 – 2019, 17 of the top 25 costliest natural disasters
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in the US were caused by tropical cyclones (TCs) (NOAA
National Centers for Environmental Information, 2020). Coastal
flooding, primarily from storm surge and waves, from these
storms poses the greatest threat to human life and is often
the source of much of the damage (Blake and Gibney, 2011;
Rappaport, 2014; Chippy and Jawahar, 2018; Weinkle et al.,
2018).

Two of the largest estuaries in the United States, the Delaware
and Chesapeake Bays, have been significantly impacted by strong
TCs in recent decades, notably Hurricanes Sandy (2012), Irene
(2011), and Isabel (2003). These two estuaries, located in the
Mid-Atlantic coastal region, house ∼27 million inhabitants, a
high density of metropolitan areas, transportation networks,
industrial ports, and currently are under active development
(Sanchez et al., 2012; Chesapeake Bay Program, 2020). Alongside
large investments in public and private infrastructure, the region
also hosts numerous critical natural ecosystems, saltmarshes
and freshwater wetlands, agricultural fields, and forested lands
threatened by degradation and erosion. Coastal flooding has
been deemed an important natural hazard in this region (Boesch
et al., 2018; Delaware Emergency Management Agency, 2018)
and can have a tremendous economic impact on current and
future waterfront areas (Li et al., 2020).

Impacts from coastal flooding are highly dependent upon both
the natural and social vulnerability of a location (i.e., it is hyper-
local), as well as the human response to implement adaptation
measures (e.g., dune/berm systems, shoreline hardening), and
therefore can vary drastically over short distances. The wide
diversity of land use and vulnerable communities make it difficult
to plan for this region as a whole. It is critical that we understand
the severity and geographic variability of storm surge to properly
assess the risk, aid in preparedness, and ultimately reduce
the severe impacts from coastal flooding (Council on Climate
Preparedness Resilience, 2016).

Water levels in the Delaware and Chesapeake Bays have
been well-monitored by tide-gauge networks for several decades,
particularly at NOAA National Water Level Observation
Network (NWLON) sites operated through the Physical
Oceanographic Real-Time System (PORTS) for each bay.
Although this is primarily due to the importance of marine
navigation and public safety, many of these gauges are
particularly high quality, have very long records, and have
been well-cited for monitoring sea-level rise and climate studies
(Holgate et al., 2013; Sweet et al., 2017a; NOAA National
Ocean Service National Water Level Observation Network, 2020;
NOAA National Ocean Service Physical Oceanographic Real-
Time System, 2020). Relative sea-level rise (SLR) (Sallenger et al.,
2012; Kopp, 2013; Boon et al., 2018) and high-tide flooding
(Sweet et al., 2014, 2020) rates in the region have increased in
recent decades as compared to the early-mid twentieth century
and are expected to continue increasing into the near future
(Callahan et al., 2017; Sweet et al., 2017a; Boesch et al., 2018).
Increases in sea levels lead directly to higher probabilities of
coastal flood events (Rahmstorf, 2017; Sweet et al., 2017b).

The Mid-Atlantic region lies in a climatic transition zone,
between continental and marine climate types, split in the
Fourth National Climate Assessment (Jay et al., 2018) between

the Northeast (Delaware Bay and upper Chesapeake Bay) and
the Southeast (lower Chesapeake Bay) Regions. Mid-Atlantic
weather is often dictated by the relative position of the westerly
polar jet stream (often times directly above in the winter), flanked
by baroclinic instability from warm ocean waters to the east
and atmospheric uplift along the Appalachian front to the west
(Leathers et al., 1998; Strobach et al., 2018). Coastal flooding
is observed year-round from East Coast winter storms (Hirsch
et al., 2001), surface high pressure systems (spring to fall) and
tropical systems (summer to fall), with a higher percentage of
TC-caused extreme flood events in the southern portions of the
region (Booth et al., 2016). Although the Mid-Atlantic has been
impacted by tropical systems less frequently than some other
portions of the U.S., recent tropical cyclones and their associated
storm surge and river flooding have caused damages in excess of
$80 billion (Smith and Katz, 2013), hundreds of injuries, and loss
of life across this heavily populated and economically sensitive
region of the country.

Several climatologies of tropical weather systems and their
impacts have been completed for the Atlantic and Gulf coast
regions of the U.S. (i.e., Simpson and Lawrence, 1971; Landsea
and Franklin, 2013; Elsner and Kara, 1999; Muller and Stone,
2001; Xie et al., 2005; Keim et al., 2007; McAdie et al., 2009).
Results from these studies (Keim et al., 2007) indicate that
the Mid-Atlantic experiences return periods of 4–10 years for
any tropical cyclone (including tropical storms and hurricanes),
35–100 years for hurricanes of any strength, and >100 years
for Category 3 and above hurricanes. These return periods are
significantly longer than other areas along the Atlantic and Gulf
coasts of the U.S., due mainly to the inland position of the
Mid-Atlantic coastline.

In additions to sea levels, sea-surface temperatures (SSTs) in
the equatorial and North Atlantic are also expected to increase
under future global warming scenarios, leading to an increase
in the number of severe tropical cyclones (Kossin et al., 2017;
Knutson et al., 2020). Recent research has also shown trends
in tropical cyclone location moving northward, increases in
rapid intensification and surface wind speeds, and decrease in
translational speed (Kossin, 2018; Knutson et al., 2019;Murakami
et al., 2020; Yang et al., 2020). All of these suggest the extreme
importance to understand current and past coastal flooding due
to TCs.

Numerous studies have utilized storm surge to measure
frequency or impact of coastal storms along the US Atlantic
Coast (Dolan and Davis, 1992; Zhang et al., 2000; Bernhardt and
DeGaetano, 2012; Colle et al., 2015) or globally (Marcos et al.,
2015; Mawdsley and Haigh, 2016). However, few have focused on
tropical systems occurring in the Delaware and Chesapeake Bays,
or the Mid-Atlantic in general.

SURGEDAT is a database specifically designed to store
storm surge data. It contains 700 tropical surge events around
the world and more than 8,000 unique tropical high water
marks along the U.S. Gulf and Atlantic Coasts since 1880,
however, only a few records are located in the Mid-Atlantic
region (Needham et al., 2015). The USACE North Atlantic
Comprehensive Coastal Survey report (US Army Corps of
Engineers, 2014) and FEMA Region 3 Coastal Storm Surge Study
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(Federal Emergency Management Agency, 2013) included many
simulated tropical systems in their storm surge modeling work
due to the dearth of observational data in the region. Booth
et al. (2016) looked at all extreme storm surge events and the
relative influence of tropical cyclones for select gauges in theMid-
Atlantic. They found that for large coastal flood events, tropical
systems were the most likely cause, whereas for less severe
events, the relative importance of tropical systems decreased
and extratropical cyclones increased. Wilkerson and Brubaker
(2013) investigated the spatial variability of storm surge in the
lower Chesapeake Bay over all extreme coastal flooding events
but included only a few tropical cyclones. Rashid et al. (2019)
looked at interannual and multi-decadal variability of extreme
storm surge during the peak extratropical (November – April)
and tropical (May – October) seasons. Although they included
surges from all types of storm events, they concluded that the
Mid-Atlantic region varied differently than the Northeast and
Southeast portions of the U.S. Atlantic Coast at long time scales.

The overall goal of the current study is to improve
understanding of the magnitude and spatial variability of tropical
cyclone-caused coastal flooding in the Delaware and Chesapeake
Bays. The first part of the paper focuses on the computation of
skew surge at tide gauges for each TC event. Skew surge is not
commonly used to assess the surge produced by a storm although
it may be a more appropriate measure of risk of storm surge
(refer to Section Skew Surge and Harmonic Analysis for more
details). The remaining parts of the paper focus on grouping tide
gauges with similar skew surge response into sub-bay geographic
regions, as well as grouping TCs into clusters that exhibit similar
spatial patterns of skew surge. This information will aid in
local planning, emergency preparedness, and communication
outreach regarding the hazards of coastal storms in the region.

MATERIALS AND METHODS

Study Region
The Delaware and Chesapeake Bays, connected via the
Chesapeake and Delaware (C & D) Canal, surround the
Delmarva Peninsula (Figure 1). Both bays are heavily tidally
influenced with freshwater inputs from the major river systems
of the Delaware River, Susquehanna River, and Potomac
River. Tidal water levels are impacted by many environmental
characteristics, including the geometry of the coastline,
bathymetry, bottom friction/dissipation effects, reflection of
the wave near the head of the bay (Lee et al., 2017) as well
as prevailing remote winds and ocean currents. Storm surge,
while also impacted by these factors, is additionally influenced by
characteristics of the storm itself, such as storm size and direction
of travel, duration, atmospheric pressure, wind speed and wind
direction relative to the coastline (Ellis and Sherman, 2015;
National Hurricane Center, 2019). Coastal flood levels in this
region are the net effect of numerous complex hydrodynamics
at play.

The Delaware Bay has a classical funnel shape, width of about
18 km at its mouth between Cape Henlopen and Cape May,
expanding to ∼45 km at its widest point (Wong and Münchow,
1995), with an average bathymetry of about 7m, although deep

FIGURE 1 | Map of the Delaware and Chesapeake Bays highlighting NOAA

tide gauges used in the current study. The inset overview map shows the

750 km circular buffer around the Delmarva Peninsula reference point (yellow

star) computed from the mean latitude and longitude of the six ocean coastal

gauges: Atlantic City (ATL), Cape May (CAP), Lewes (LEW), Wachapreague

(WAC), Kiptopeke (KIP), and Sewells Point (SEW).

scour in the middle of the lower part of the bay can extend to
over 20–25m (Eagleson and Ippen, 1966; Harleman, 1966; Salehi,
2018). The converging coastlines toward the head of the bay
amplifies tides in the northern regions, where the tidal range is
over 2m compared to <1.5m near the mouth (Lee et al., 2017;
Ross et al., 2017). This contrasts with the Chesapeake Bay, a
much longer bay, more dendritic in form with many tributaries,
ranging in width from 5.6 to 56 km. The Chesapeake Bay is
relatively shallow at median depth of about 6m, with only 18%
of its surface area at depths above 12m, although a narrow
navigation channel width depths > 9m exists along the east side
of the main channel (Patrick, 1994; Xiong and Berger, 2010).
Tidal range is ∼0.7m in the northern reaches, dipping to 0.3m
at the middle of the bay, increasing to 0.9m at the mouth (Zhong
and Li, 2006; Lee et al., 2017; Ross et al., 2017).

Tidal cycle patterns in this region are mainly semi-diurnal,
albeit the tides transition in the Chesapeake Bay from semi-
diurnal in the lower portion to a mixed tidal regime in the
upper portions, forming a mix of progressive and standing waves
throughout the bay system (Xiong and Berger, 2010; Ross et al.,
2017). The average seasonal cycle of mean sea level is similar
across the bays, a bimodal distribution with the maximum in fall
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TABLE 1 | Tide gauges used in the current study.

Station Abbr. NOAA ID Bay Coordinates Data gaps Percent Hourly Missing TCs

Philadelphia PHL 8545240 Delaware 39.933000, −75.142667 0 99.23% 0

Reedy Point RDY 8551910 Delaware 39.558333, −75.573333 5 95.61% 2

Lewes LEW 8557380 Delaware 38.781667, −75.120000 0 99.73% 1

Cape May CAP 8536110 Delaware 38.968333, −74.960000 2 98.35% 0

Atlantic City ATL 8534720 Delaware 39.356667, −74.418333 2 98.08% 1

Baltimore BAL 8574680 Chesapeake 39.266667, −76.580000 0 99.66% 1

Annapolis ANN 8575512 Chesapeake 38.983333, −76.481667 1 98.70% 1

Cambridge CAM 8571892 Chesapeake 38.571667, −76.061667 1 98.84% 1

Lewisetta LWS 8635750 Chesapeake 37.995000, −76.465000 2 98.72% 1

Kiptopeke KIP 8632200 Chesapeake 37.165000, −75.988333 0 99.78% 3

Sewells Point SEW 8638610 Chesapeake 36.946667, −76.330000 0 100.00% 0

Wachapreague WAC 8631044 Chesapeake 37.608333, −75.685000 6 89.30% 11

Number of data gaps and percent hourly data based upon time period 1980 – 2019. Data gaps represent number of continuous gaps of 745 h (∼1 month) or more. Number of missing

tropical cyclones (TCs) is a subset of North Atlantic TCs that crossed into the 750 km buffer around Delmarva over the same time period.

(October) and secondary maximum in late spring (May-June),
primarily caused by periodic fluctuations in atmospheric weather
systems and coastal water steric effects (NOAA National Ocean
Service Center for Operational Oceanographic Products Services,
2020a).

Tropical Cyclone Data
Tropical cyclone information used in this study is extracted from
the International Best Track Archive for Climate Stewardship
(IBTrACS) North Atlantic Basin dataset Version 4 (Knapp et al.,
2018). IBTrACS is a collection of global best track data for
cyclones that achieved tropical or sub-tropical status at some
point in their lifetime. Data were obtained frommultiple research
centers around the world and are stored in a centralized location
for standardized distribution (Knapp et al., 2010). IBTrACS has
been endorsed by the World Meteorological Organization non-
government domain Tropical Cyclone Programme as an official
archiving and distribution resource for tropical cyclone best
track data.

For the current study, TCs were limited to those occurring in
the North Atlantic Ocean basin during the time period 1980–
2019 with tracks that cross within a 750 km radius circular
buffer around theDelmarva Peninsula. Distance toDelmarva was
computed as the great circle distance using the GRS80 reference
ellipsoid from a reference location along the Delmarva coastline
to the TC center listed in each IBTrACS record. The Delmarva
coastal reference location (latitude = 38.137778, longitude =

−75.416944) was determined by computing the mean latitude
and longitude coordinates of the six coastal tide gauges used
in the study, namely Atlantic City (ATL), Cape May (CAP),
Lewes (LEW), Wachapreague (WAC), Kiptopeke (KIP), and
Sewells Point (SEW) (Figure 1;Table 1). The large 750 km radius,
relative to the typical size of TCs, was chosen to be sure to capture
TCs that could significantly impact water levels (Zhang et al.,
2000; Booth et al., 2016). This resulted in a subset of 144 TCs
with median annual count of 3.5 TCs. The monthly distribution
closely matches, although occurring slightly earlier in the season,

the distribution of all North Atlantic TCs (Figure 2). However,
the annual percentage of all North Atlantic TCs that are near
Delmarva can be quite variable, with a minimum of 5% in 2010
and a maximum of 50% occurring in 1985 and 2004.

IBTrACS notes the original source of information for each
storm record. The data source for all the selected TCs from
1980 through 2018 is the U.S. National Hurricane Center (NHC)
Hurricane Database 2 (HURDAT2) (Landsea and Franklin,
2013). TCs from the 2019 season were listed as NHC provisional
status and likely were the operational best track estimate (i.e.,
have not yet been reanalyzed post-season). Specific data retained
from the IBTrACS dataset include the TC name and storm
ID, center latitude and longitude, date and time, and storm
status (e.g., hurricane, tropical storm, and tropical disturbance).
Although HURDAT2 records correspond to 00, 06, 12, and
18Z times, IBTrACS interpolates many variables to 3-hourly
observations using splines for positional data or linearly for non-
positional data. GIS shapefiles of storm tracks were also obtained
from IBTrACS.

Water Level Data
Tide gauges selected for this study were limited to NOAA
operational tide gauges in and immediately around the Delaware
and Chesapeake Bays. Requirements were that the gauge
maintained nearly continuous record of hourly water levels
for the time period 1980–2019, evenly located throughout the
region, a set of harmonic constituents identified for making tidal
predictions, and a vertical tidal datum conversion factor to North
American Vertical Datum of 1988 (NAVD88). In all, 12 gauges
were selected; five associated with the Delaware Bay and seven
with the Chesapeake (Figure 1; Table 1). All selected gauges are
part of NOAA NWLON and PORTS networks.

Hourly and High/Low water level data were downloaded
from NOAA Center for Operational Oceanographic Products
and Services (CO-OPS) API for Data Retrieval (NOAA National
Ocean Service Center for Operational Oceanographic Products
Services, 2020b). High/Low data represent the exact time and
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FIGURE 2 | Monthly (A) and annual (B) distribution of all 1980 – 2019 North Atlantic tropical cyclones and the subset of those whose track crosses the 750 km buffer

around Delmarva Peninsula.

magnitude of eachHigher-High, High, Low, and Lower-Low tidal
peak. Hourly data represent the observed water level on each
hour (e.g., 21:00, 22:00). The 40 years of hourly data at each gauge
were manually inspected for errors and inconsistencies. Small
periods of data clusters (2–16 h) were removed from the hourly
time series (on seven occasions across all gauges) that existed
within larger time periods of missing data to better represent
the number and length of existing data gaps. No data from
the High/Low time series were removed. Data gaps of 1 or 2 h
(<10 across all gauges) were filled using linear interpolation.
Larger data gaps were not filled. Table 1 lists the number of
data gaps that spanned 745 h (∼1 month) or greater as well
as the percentage of valid hourly data points. Reedy Point and
Wachapreague had the highest number of large data gaps, five
and six, respectively, and lowest percentage of valid hourly data
(based on a maximum of 14,610 h during 1980 – 2019), 95.61 and
89.30%, respectively. Water level records were compared against
the dates of the TCs while within the 750 km buffer of Delmarva.
Very few of the 144 TCs were missing from the water level
records. Wachapreague had the largest amount of missing data
due to a 2.5-year period (200,511–200,804) when valid Hourly
and High/Low data were unavailable.

Skew Surge and Harmonic Analysis
This study uses skew surge as themeasure of flooding contributed
by each tropical storm. Skew surge is defined as the difference
between the maximum observed total water level and the
maximum predicted tidal level during a tidal cycle, even if the
observed and predicted tidal peaks are offset (i.e., skewed) from
each other (Figure 3; Pugh and Woodworth, 2014). Each tidal
cycle therefore has one value of skew surge. By measuring the
height of water levels above highest predicted tide, skew surge
represents the increase of water levels more clearly separated
from the astronomically forced-tides and tide-surge interactions

(Batstone et al., 2013; Mawdsley and Haigh, 2016; Williams
et al., 2016; Stephens et al., 2020). With respect to preparedness,
skew surge represents a truer estimate of the amount of water
a location observes above what they expected from high tides
alone. Hourly non-tidal residual (NTR, the difference between
coincident total water level and predicted tide) is a more
common measure of storm surge. However, the statistically
computed hourly NTR includes known and unknown non-linear
interactions between tides and low-frequency surge produced
by a storm, which are complex and dependent upon many
environmental factors (Bernier and Thompson, 2007; Spicer
et al., 2019). As well, often during coastal flooding storm events,
the maximum NTR does not coincide exactly with predicted
high tide peak e.g., Hurricane Ernesto 2006 at Sewells Point and
Hurricane Sandy 2012 at Reedy Point tide gauges had their largest
residuals occur near predicted low tide. Overall, skew surge is less
dependent upon tide-surge interactions and independent of tidal
phase, proving to be advantageous in developing joint probability
estimates of extreme water levels for long-term planning, and
therefore less prone to misleading conclusions drawn from NTR
estimates of surge (Williams et al., 2016).

Predicted tides were computed at each gauge through
harmonic analysis based on hourly total water level time
series using the U-Tide Matlab software package (Codiga,
2011). Harmonic analysis incorporated the set of 37 harmonic
constituents defined by NOAA for their official tide predictions
in this region (NOAA National Ocean Service Center for
Operational Oceanographic Products Services, 2020c). This set
of 37 constituents are based on known astronomically-cyclic
motions of the Earth-Sun-Moon system and local resonances
due to water depth and geomorphology of the region that
are tidally significant; other tidal constituents were either too
small a magnitude or too long a period (i.e., multiple years)
to significantly alter daily tidal predictions (NOAA, 2019).
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FIGURE 3 | Diagram of skew surge during a tidal cycle. In the above example, the total water level and predicted tide peaks are skewed from one another. The

maximum hourly non-tidal residual occurs closer to low tide than to high tide (Source: Mawdsley and Haigh, 2016).

Additionally, the seven constituents noted by Harris (1991)
relevant for US East Coast water levels were included in the
harmonic analysis. The same set of 44 constituents were used for
all tide gauges. A lowpass filter was not applied to the hourly NTR
as this could also remove meteorological forcing on water levels
at these frequencies, which occur when tropical systems move
quickly through the Mid-Atlantic region on the order of a tidal
cycle or less.

Harmonic analysis was performed in 1-year segments over
each calendar year (Jan – Dec) instead of on the full 40-year
time period simultaneously. For time periods with data gaps of
1 month or larger, the harmonic analysis was performed on a
3-year period, centered on the year with most missing data, to
ensure capture of the seasonal variation. Annual computations
minimizes timing errors that can lead to the leakage of tidal
energy into the non-tidal residual (Merrifield et al., 2013) and
minimizes the impact of sea-level rise as the increasing trend is
absorbed into the model through the annual mean. Moreover,
a 40-year analysis would have resulted in harmonics fit to
average conditions and therefore would not account for changing
constituent magnitudes that could result from deepening water
level or other changing environmental conditions (Ross et al.,
2017). Similarly, the Sa (solar annual) and SSa (solar semi-
annual) constituents’ periods of ∼12 and 6 months, respectively,
are largely influenced by seasonal weather conditions and
storm tracks, leading to high interannual variation; harmonic
analysis tests without these two constituents resulted in large
discontinuities between adjacent years.

Over each tidal cycle, the maximum of the observed TWL
peaks between the High/Low and hourly time series was aligned

with predicted tide peaks within +/- 3 h of each other. The time
offset was extended to +/- 6 h if no High/Low or TWL peaks
were found within +/- 3 h (this was required for < 100 tidal
peaks across all gauges over the study time period, and occurred
only for gauges within the Chesapeake Bay). Total resultant count
was 28,231 tidal peaks per gauge for 1980–2019. The difference
between the maximum observed TWL and maximum predicted
tide level over each tidal cycle was computed as skew surge.

Daily Weather Maps provided by the NOAA Central Library
Data Imaging Project (Ritterbush, 2012) were reviewed alongside
observed water levels during the approach to Delmarva of each
of the 144 TCs. A time window was manually identified that
encapsulated each TC’s likely direct influence on water levels
within our study region, with a priority to capture the maximum
tidal peaks. A tidal peak is defined in this study as the point of
high tide within each tidal cycle, and the maximum tidal peak
is the high tide with the maximum water level around each TC.
Since observed high tides can occur a few hours before or after
the predicted high tide, the time of the tidal peak is defined here
as the time of the predicted high tide. It often occurred that winds
from surface high pressure systems and/or mid-latitude cyclones
and associated fronts were influencing water levels in one or
both of the bays coincidentally with the approach of the TC.
NHC Tropical Cyclone Reports were also consulted for TCs from
1994 to 2019, as necessary (National Hurricane Center, 2020).
In cases where a suitable time window without other identifiable
weather systems could not be determined, the TC was removed
from further analysis. TCs that seemed to have little to no effect
on water levels (e.g., they were far away from Delmarva) were
left in the analysis provided that no other weather system was
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noticeably impacting the study region at that time, resulting in
a near-zero (slightly positive or negative) skew surge for some
storms. Although there is potential for false-positive errors (i.e.,
removing a TC that should remain), this method provides a
more conservative approach to assessing surge levels and spatial
variability specifically attributed to tropical cyclones.

Median time window was 24 h before and 18 h after the
TC’s closest approach to Delmarva, although in rare cases the
window was extended to several days. Ultimately, 38 TCs were
removed from the analysis, leaving a total of 106, ∼2.6 per year
on average. For the remainder of this study, this subset of storms
will be referred to as Delmarva TCs. Maximum skew surge and
maximum TWL (“storm tide”) at all tidal peaks occurring within
eachDelmarva TC’s time windowwere extracted. Storm tides and
skew surges were detrended about the mean and normalized by
the standard deviation over all 1980 – 2019 tidal peaks at each
gauge independently. The detrending and standardization allows
for a more direct spatial and temporal comparison of the relative
influence of each storm. The detrended, normalized storm tide
and skew surge are referred to as the storm tide index (STI) and
skew surge index (SSI), respectively.

Distributions of skew surge and SSI values from TCs were
computed at each tide gauge over all Delmarva TCs (N = 106).
SSI was then compared to STI for each storm using Spearman
Rank correlation. Spearman Rank correlation, a non-parametric
method, was chosen over the Pearson Product-Moment method
to compute correlations considering TC-caused skew surges (as
well as storm tides and the normalized, detrended indexes) do not
follow a Normal distribution (refer to section Delmarva Tropical
Cyclone Storm Tide and Skew Surge Summary). Correlations
were computed for skew surge against maximum NTR for each
storm. Skew surge instead of SSI was chosen for this comparison
as the NTR time series was not detrended or normalized.

SSI was also compared to the distance of each Delmarva
TC’s closest approach to the Delmarva Peninsula, regardless of
the storm’s track direction of movement. Influence of distance
on storm surge is compounded by storm size, strength of
winds, direction of winds, direction of storm movement, and the
location of the tide gauge relative to the storm’s direction (e.g., the
right or left front quadrant of the TC). The only storm-specific
characteristic used in the current study is the location of the TC
storm track, and many of the other relevant characteristics are
not available in IBTrACS for the full 40-yr time period (most only
since 2004). It is not the intent of this study to determine which
of these variables are most important to storm surge. However,
the distance away of the storm track is often cited and frequently
used in storm preparation and awareness campaigns.

Regional Skew Surge
Since each gauge location has unique tidal characteristics (e.g.,
mean sea level, tidal range), the STI and SSI derived for each
Delmarva TC were averaged over all gauges within each bay.
The gauges at Atlantic City and Wachapreague were included
with Delaware Bay and Chesapeake Bay, respectively, as listed in
Table 1. This allowed for a distinct measure of TC-based water
levels per bay for each storm with equal relative weights across

gauges. Missing data were ignored in the averaging as no storm
had more than one gauge with missing information.

To investigate sub-bay geographic variability, cross-
correlations and Principal Components Analysis (PCA)
were performed on the STI and SSI to identify tide gauges with
similar responses. Cross-correlations were computed using
Spearman Rank coefficient. PCA with variable clustering was
run on the STI and SSI to aid in grouping of gauges into like
regions. Sub-bay regions are defined as groups of adjacent tide
gauges with higher correlations with each other than with gauges
immediate outside their group. STI and SSI for each storm
were then averaged across gauges that lie within the identified
sub-bay regions. Distributions and cross-correlations among
regions were also computed. Each Delmarva TC was then ranked
based on mean SSI for each bay and sub-bay region. Storms that
were highly ranked in one region/bay as opposed to the others
were noted.

Additionally, K-Means clustering was run on the Delmarva
TC spatial pattern of SSI across all 12 tide gauges, from upper
Delaware Bay to lower Chesapeake Bay. The spatial pattern
of SSI is termed the “surge profile” of the storm. JMP Pro
15 statistical software was used to perform the clustering. K-
Means is an unsupervised clustering technique that aggregates
vectors of data (in our case, each storm’s 12 data points of
SSI at each gauge) into common sets based on each vector’s
(i.e., storm’s) distance to a set number (K) of means in each
dimension. The mean of each dimension is moved upon each
pass of the algorithm to minimize the cumulative distance of
each vector to its cluster mean. Although K-Means is sensitive
to the sort order of the input data, several tests of different sort
orders resulted in very similar clustering of storms. The cubic
clustering criterion score was used to determine the optimum
number of clusters. To determine if a storm’s surge profile is
associated with the location of its track though the Delmarva
region, storm tracks were plotted for all storms within each K-
Means cluster. A qualitative (rather than quantitative) assessment
was performed on the storm’s track position relative to
the surge profile.

RESULTS

Delmarva Tropical Cyclone Storm Tide and
Skew Surge Summary
Mean storm tides over all Delmarva TCs (Table 2) range from
a minimum of 0.48m at ANN to a maximum of 1.36m at
PHL. Higher storm tides are observed in the Delaware Bay than
in the Chesapeake Bay as well as in upper bays compared to
the lower bays. This geographic pattern in storm tides nearly
identically (r = 0.99) matches the pattern of the MHHW
tidal datum currently published by NOAA. After detrending
and normalization, the relationship of STI to MHHW flips
to a strong negative relationship (r = −0.61). Largest STI
values are in the Chesapeake over the Delaware Bay, and in
the lower bays over the upper bays. PHL and RDY have the
highest mean storm tides but lowest mean STI. Relationship of
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TABLE 2 | Mean and standard deviation of storm tide and skew surge of Delmarva tropical cyclones, 1980 – 2019.

Station Storm tide STI Skew surge SSI Tidal datum

N Mean SD Mean SD Mean SD Mean SD MSL MHHW

Philadelphia 106 1.36 0.23 1.30 0.84 0.22 0.23 1.12 1.25 1.09 0.12

Reedy Point 105 1.12 0.19 1.26 0.76 0.18 0.20 1.04 1.16 0.99 −0.02

Lewes 105 0.90 0.27 1.45 1.07 0.24 0.27 1.48 1.75 0.62 −0.12

Cape May 106 1.00 0.25 1.37 0.96 0.22 0.24 1.40 1.60 0.74 −0.14

Atlantic City 106 0.86 0.27 1.32 1.05 0.22 0.27 1.31 1.74 0.61 −0.12

Baltimore 106 0.52 0.26 1.40 1.12 0.21 0.27 1.17 1.49 0.25 −0.01

Annapolis 106 0.48 0.24 1.46 1.13 0.20 0.24 1.20 1.45 0.20 −0.02

Cambridge 106 0.54 0.21 1.44 1.04 0.19 0.21 1.22 1.33 0.29 −0.03

Lewisetta 106 0.51 0.24 1.58 1.24 0.20 0.22 1.38 1.51 0.21 −0.02

Kiptopeke 104 0.62 0.27 1.75 1.40 0.24 0.26 1.71 1.93 0.32 −0.15

Sewells Point 106 0.71 0.33 1.82 1.65 0.28 0.32 1.80 2.15 0.35 −0.08

Wachapreague 97 0.86 0.30 1.54 1.30 0.26 0.27 1.54 1.77 0.57 −0.11

Storm tides and tidal datums referenced to NAVD88 meters. Mean Seal Level (MSL) and Mean Higher-High Water (MHHW) tidal datums defined by NOAA for the current National Tidal

Datum Epoch (NTDE) 1983–2001. STI/SSI, storm tide/skew surge index (detrended and normalized versions of storm tide/skew surge over study time period).

FIGURE 4 | Probability distribution of skew surge (meters) for Delmarva tropical cyclones, 1980 – 2019.

storm tides to MSL is similar as to MHHW albeit weaker (r
=−0.39).

Mean skew surges are more consistent geographically than
storm tides, showing very little change across the study region,
although the standard deviations and range are similar to storm
tides at only 1/2 to 1/6 of the magnitude of the mean. Higher
mean skew surges are toward the extreme upper and lower ends
and smaller means toward the middle of each bay, ranging from
a minimum of 0.18m at RDY to a maximum of 0.28m at SEW.
Mean skew surges show very little relationship to MHHW and a
negative relationship to MSL (r = −0.42). After detrending and

normalization, the relationship of SSI toMHHWandMSL stayed
negative but strengthened (r = −0.35 and −0.67, respectively).
Largermean SSI values are found in the lower bays over the upper
bays, and in the Chesapeake Bay over the Delaware Bay.

Distribution of skew surge for the Delmarva TCs do not
follow a Normal distribution, confirmed by Anderson-Darling
test statistic (Figure 4). Shape of the distributions show the
typical characteristics of upper tail (extreme values) portion
of a normally distributed population, asymmetric right-skewed
with a greater number of outliers on the upper end than the
lower end. Storm tide distributions (Supplementary Figure 3)
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FIGURE 5 | Scatterplot, least-squares regression line, and correlation coefficient of skew surge index (SSI) against storm tide index (STI) for Delmarva tropical

cyclones, 1980 – 2019.

are more evenly distributed but still show a skewed upper
end tail (Box plots of these distributions are shown in
Supplementary Figure 4). Many studies have shown extreme
high coastal flood levels from tide gauges follow similar extreme
value distributions (Tebaldi et al., 2012; Sweet et al., 2014; US
Army Corps of Engineers, 2014; Marcos et al., 2015; Moftakhari
et al., 2015; Booth et al., 2016; Rashid et al., 2019). The larger
population of tidal peak maximum TWL and skew surge (1980–
2019, N = 28,231) from which the Delmarva TC-based storm
tides and skew surges were extracted, did indeed closely follow
the Normal distribution over the long-term once detrended. The
steepest curves (i.e., highest probability of smaller surges) occur
in the upper bays except for the most north gauges in each bay,
namely PHL and BAL, The detrended and normalized STI and
SSI distributions for each gauge (not shown) hold essentially
the same characteristics except with the expected shifted means
and deviations.

SSI exhibits a strong, positive relationship to STI at all tide
gauges (Figure 5). Correlations are consistent among sites within
each bay, with Delaware Bay at 0.70 – 0.76 and Chesapeake Bay
showing higher correlations at 0.82 – 0.89. Sites in the lower bays
demonstrate slightly more scatter than in the upper bay, although
correlations at all sites are statistically significant at the p = 0.01
level. The amount of scatter represents the number of storms
with larger relative differences between storm-produced surge
and total water level. Hurricane Isabel 2003 is the extreme event
in the upper Chesapeake Bay as it produced significantly larger
skew surge and storm tide than other storms.

Similarly, skew surge exhibits a strong, positive relationship
to maximum NTR (Figure 6). Correlations at all sites are
statistically significant at the p = 0.01 level. The diagonal dashed

line represents one-to-one ratio. Deviations from this line denote
storm events when maximum residual occurred at tidal phases
other than at tidal peaks. Largest differences occur during the
largest skew surge events at the upper Delaware Bay sites, which
also have the lowest correlations and relatively broad scatter, even
at low surge levels. Over a single tidal cycle, skew surge must
be equal to or less than maximum NTR, by definition, however
during a storm event that covers multiple tidal cycles, this does
not necessarily need to be the case. In our analysis, across
all storms and gauges, skew surge was greater than maximum
NTR by more than 1 cm only about 25 times, with a maximum
difference of∼4 cm.

An inverse relationship is evident between SSI and distance
to TC closest approach, with correlations ranging from r
= −0.26 at SEW to r = −0.37 at both LEW and CAP
(Supplementary Figure 5). Highest correlations are in lower
Delaware Bay and lowest correlations in the lower Chesapeake
Bay. Although correlations are statistically significant at the 0.01
level, there is broad scatter and several outliers. Similar SSI
amounts, especially at lower surge levels, were produced by
storms from nearly all distances.

Sub-bay Regionalization
Cross-correlations on SSI and STI produced from Delmarva TCs
across all 12 tide gauges showed strong regional relationships
(Figure 7 and Supplementary Tables 1, 2). Natural groupings
of gauges of r = 0.88 and above (red regions in Figure 7)
emerge within the same geographic regions. Strong distinctions
can be noted between gauges in the upper bay and lower
bay regions. PCA with variable clustering was run on the SSI
and STI (results not shown) and supported results from the
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FIGURE 6 | Skew surge against maximum hourly non-tidal residual (NTR) for Delmarva tropical cyclones, 1980 – 2019. Values in meters. Dashed red line represents

to 1:1 ratio.

FIGURE 7 | Corrgram of cross-correlation of skew surge index (SSI) for Delmarva tropical cyclones, 1980 – 2019. Correlation values computed using Spearman Rank

method. Red (blue) colors represent higher (lower) correlations. Regions of gauges with similar correlations are easily identifiable as adjacent, like colors. All

correlations are statistically significant at 0.01 level.

cross-correlation analysis. Results indicate regions as: Upper
Delaware Bay (PHL, RDY), Lower Delaware Bay (LEW, CAP,
ATL), Upper Chesapeake Bay (BAL, ANN, CAM), and Lower

Chesapeake Bay (KIP, SEW,WAC). Observations at LWS showed
similar correlations with gauges in both the upper and lower
Chesapeake Bay regions and had the lowest correlations with
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FIGURE 8 | Skew surge index (SSI) of Delmarva tropical cyclones, 1980 – 2019, spatially averaged over the Delaware (blue) and Chesapeake (red) Bays.

gauges in its immediate vicinity. Hence, LWS was not assigned
to any sub-bay region. Cross-correlations run on long-term daily
maximum skew surge and TWL for 1980–2019 (results not
shown) support the same geographic regions. Although not in
the same geographic region, LEW correlates highly with gauges
in the lower Chesapeake Bay, while WAC correlates highly with
gauges in the lower Delaware Bay.

SSI values were spatially averaged across each of the sub-
bay regions for each Delmarva TC. The Chesapeake Bay regions
have higher mean SSI values than the corresponding Delaware
Bay regions, and the lower bay regions have higher mean
SSI than upper bay regions. Most notably, the lower bay
regions have higher correlations to each other than to their
respective upper bay regions, and likewise for the upper bay
regions. Relationship between the Upper and Lower Chesapeake
regions show the lowest correlation of any pair of groups (r
= 0.50).

Distributions of regional mean SSI (Supplementary Figure 6)
do not follow a Normal distribution, confirmed by Anderson-
Darling statistic, but are more closely related to extreme
value distributions similar to distributions of tide gauges.
Upper bays experience a steeper, more uniform decline than
lower bays, although all regions include outlier storms in
the far upper end. Additionally, regional SSI against STI
showed similar behavior as tide gauge analysis. Most of the
deviations occur at the lower SSI values and the upper
bays have slightly more scatter than lower bays. Chesapeake
Bay shows higher correlations of SSI to STI (r = 0.86
in both upper and lower Bay regions) than does Delaware
Bay (r = 0.73 and 0.72 for the upper and lower Bay
regions, respectively).

Top Surges of Delmarva Tropical Cyclones
SSI values were spatially averaged over all gauges within each bay
boundary (i.e., LWS was included for the Chesapeake Bay; ATL
and WAC were not included for either bay) for each Delmarva
TC (Figure 8). As noted earlier, large variations exist although
most storms have mean SSI values under 2. Larger events
typically have mean SSI values between 2 and 7. Mean SSI across
all storms are 1.31 and 1.42 for the Delaware and Chesapeake
Bays, respectively. Although many storms have similar mean
SSI for each bay, especially for the smaller surge events, some
stand out for their differences. Hurricanes Isabel (2003) and
Fran (1996) impacted the Chesapeake more than the Delaware
Bay by the largest margin, whereas likewise, Hurricanes Gloria
(1985) and Sandy (2012) impacted the Delaware more than the
Chesapeake Bay. The top 10 Delmarva TCs with the largest
differences in mean SSI are listed in Supplementary Table 3.

The top 25 Delmarva TCs were ranked by mean SSI for
each bay (Table 3). The year and month represent the time
of the storm’s closest approach, the great majority occurring
in September and October. Status column represents the most
common value of the IBTrACS USA_STATUS attribute while the
storm was present within the 750 km buffer around Delmarva,
including times before and after the storm’s closest approach.
Both bays have many top storms in common, notably Hurricanes
Sandy (2012), Isabel (2003), and Not Named (1991), claiming 3
of the top 5 spots in each bay.

Delmarva TCs also show significant sub-bay regional
differences. Supplementary Tables 4, 5 list the top 25 Delmarva
TCs ranked separately for each of the four sub-bay regions.
Surprisingly, Hurricane Isabel (2003) was the top ranked storm
for the Upper Delaware Bay although it is typically known as
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TABLE 3 | Top 25 Delmarva tropical cyclones, ranked by skew surge index (SSI), spatially averaged over the Delaware and Chesapeake Bays, 1980 – 2019.

Delaware bay Chesapeake bay

Rank Name Year Month Status Name Year Month Status

1 SANDY 2012 10 EX ISABEL 2003 9 HU

2 GLORIA 1985 9 HU SANDY 2012 10 EX

3 NOT_NAMED 1991 10 EX ERNESTO 2006 9 EX

4 WILMA 2005 10 HU NOT_NAMED 1991 10 EX

5 ISABEL 2003 9 HU FRAN 1996 9 TD

6 ERNESTO 2006 9 EX WILMA 2005 10 HU

7 IRENE 2011 8 HU MELISSA 2019 10 EX

8 FLOYD 1999 9 HU DENNIS 1999 9 TS

9 MELISSA 2019 10 EX IRENE 2011 8 HU

10 DANIELLE 1992 9 TS NOT_NAMED 1981 11 SS

11 NOT_NAMED 1981 11 SS FLOYD 1999 9 HU

12 JOSEPHINE 1996 10 EX DORIAN 2019 9 HU

13 NOT_NAMED 2005 10 EX DANIELLE 1992 9 TS

14 JOSEPHINE 1984 10 HU HERMINE 2016 9 EX

15 BERTHA 1996 7 TS JOSEPHINE 1984 10 HU

16 NOEL 2007 11 EX JOSE 2017 9 TS

17 DEAN 1983 9 TS GORDON 1994 11 HU

18 JOSE 2017 9 TS BONNIE 1998 8 HU

19 KYLE 2002 10 TS GLORIA 1985 9 HU

20 HERMINE 2016 9 EX DEAN 1983 9 TS

21 DENNIS 1999 9 TS JOSEPHINE 1996 10 EX

22 EDOUARD 1996 9 HU HUGO 1989 9 HU

23 DENNIS 1981 8 TS FLORENCE 2018 9 HU

24 BARRY 2007 6 EX HANNA 2008 9 TS

25 HANNA 2008 9 TS CHARLEY 1986 8 TS

Year and Month note the time of TC’s closest approach to Delmarva. Status represents the most common value of USA_STATUS attribute in the IBTrACS database while the TC is within

the 750 km buffer. EX, Extratropical; HU, Hurricane; TS, Tropical Storm; TD, Tropical Depression; SS, Subtropical Storm; DB, Disturbance. Refer to the IBTrACS Version 4 Technical

Documentation for more details.

a Chesapeake Bay flood event. Hurricanes Hugo (1989), Fran
(1996), and Hanna (2008) produced higher surges in upper
bays than lower bay regions (Supplementary Figure 8), whereas
Hurricane Gloria (1985), Not Named (1991), and Hurricane
Irene (2011) produced higher surges in the lower bay regions.
(Note that Not Named (1991) may be better known as the
Halloween Blizzard of 1991 or The Perfect Storm of 1991).

Spatial Patterns of Skew Surge
Analogous to grouping tide gauges based on their cross-
correlations of SSI, the Delmarva TCs were grouped using the
K-Means clustering algorithm based on their spatial pattern
and magnitude of SSI (i.e., surge profile) throughout the study
region. Only Delmarva TCs with valid surge data at all 12
tide gauges (N = 93) were used as input to the clustering
algorithm. Numbers of clusters from 3 to 15 were tested with 13
clusters ultimately chosen based on the cubic clustering criterion
score. Each cluster of TCs represents a unique combination of
magnitude and pattern of variability of SSI. Six of the clusters
contained a single TC and another contained only two TCs; these
were typically the TCs with largest SSI magnitude or differences
between upper and lower bays. Individual clusters with similar

profiles were manually plotted together into a series of six panels.
Figures 9A–F displays surge profiles from all Delmarva TCs used
in the cluster analysis, with like colors in each panel representing
individual clusters. Storm tracks associated with the TCs in each
of the clusters were also mapped accordingly in six panels in
Figures 10A–F. Although the grouping of clusters into each
panel was a manual process done primarily for visualization
purposes, the grouping in panel A was based on SSI magnitude
whereas the grouping in panels C through F was based on
SSI variability.

Clusters 1-2 (panel A) include TCs with the lowest overall SSI
magnitude (generally less than 2) and minor spatial variation.
Cluster 2 has larger SSI values and is out of phase from cluster
1 in regards of upper vs lower bay SSI values. Cluster 3 (panel
B) has slightly larger SSI values but less variation than clusters
1 and 2. Clusters 4–5 (panel C) also have higher SSI values but
also more noticeable variation, with larger values in the lower
bays than upper bays. Storm tracks for the great majority of
these TCs are positioned either to the east of or directly over
Delmarva. Two TCs plotted in panel C were exceptions, Dennis
(1999) in Cluster 4 and Florence (2018) in cluster 5. Both had
close approaches to the south of Delmarva raisin water levels
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FIGURE 9 | (A–F) Clusters of skew surge index (SSI) spatial profiles of Delmarva tropical cyclones, 1980 – 2019 based on K-Means clustering algorithm. In all, 13

clusters were identified K-Means and manually combined into six panels based on magnitude and spatial variation for visualization purposes. Like colors within each

panel represent TCs within a single cluster, with blue, orange, and yellow representing the first, second, and third cluster listed in each panel, respectively. N

represents the number of TCs per cluster.

FIGURE 10 | (A–F) Individual tracks of Delmarva tropical cyclones, 1980 – 2019, for each of the clusters identified by the K-Means algorithm on the skew surge index

(SSI) profiles. Each map panel corresponds to the same panel of SSI profile plots in Figure 9. Colors of each cluster also match those in Figure 9.
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in the Delaware and Chesapeake Bays before changing direction
traveling west/northwest, before curving north and passing the
study region on the west side.

Clusters 6–7 (panel D) and 8–10 (panel E) include TCs with
large SSI magnitudes in the lower bays and greater variation,
with clusters 8–10 showing anomalously low SSI values in the
upper Chesapeake Bay. Each of these clusters contained a single
TC, except for cluster 6 which contained two TCs. The three
TCs in clusters 6–7, Hurricanes Sandy (2012), Wilma (2005),
and Not Named (1991), were all large, late-season TCs that
transitioned to ETCs and whose tracks were east of Delmarva.
Similarly, the three TCs in clusters 8–10, Hurricanes Gloria
(1985), Floyd (1999), and Irene (2011), have nearly identical
tracks passing directly over Delmarva in a more south-to-south
direction. Lastly, clusters 11–13 (panel F) include TCs that show
higher SSIs in the upper bays than in the lower bays. Cluster
12 shows the lowest overall SSIs of the three, similar to cluster
1. Tracks of most of these TCs pass to the west of Delmarva,
most notably Hurricanes Isabel (2003) and Fran (1996), which
produced the largest and second largest SSI, respectively, in the
upper Chesapeake Bay.

DISCUSSION

The goal of the current study is to quantify the magnitude
and regional differences of skew surge in the Delaware and
Chesapeake Bays from tropical cyclones rather than the more
common flood events due to extra-tropical cyclones (ETCs).
Although future increases are projected in the number of
major TCs and TC intensification (Kossin et al., 2017), the
exact response of ETC cyclogenesis and frequency under global
warming is still unclear. TCs make up a significant portion of the
top flood events and receive much attention in research activities,
emergency preparation action, and public awareness campaigns.
Our focus was not to examine the storm-specific characteristics
(e.g., storm size, atmospheric pressure, wind speed and direction)
that contribute to storm surge but rather focus on the net effect
of all of these, which is the ultimate metric to use from a risk
management perspective.

Since skew surge is used in this study rather than maximum
NTR, surge values for a particular stormmay not match previous
reports, such as in NOAA’s NHC Tropical Cyclone Reports
(National Hurricane Center, 2020). Maximum NTR can be a
reliable indicator of storm surge in areas without significant
tide-surge interaction, such as open coastal locations on the US
Atlantic Coast (Zhang et al., 2000; Bernier and Thompson, 2007;
Mawdsley and Haigh, 2016). This was tested on the Delaware
and Chesapeake Bay gauges using Quantile-Quantile (Q-Q) plots
and two-sample Anderson-Darling tests. These were run on the
NTR during four different tidal phases: High Tide (+/- 1.5 h from
high tidal peak), Falling Tide, Low Tide (+/- 1.5 h from low tidal
peak), and Rising Tide. As examples, Supplementary Figures 1,
2 show plots for LEW and PHL. None of the gauges in our study
appear to exhibit significant tide-surge interaction, in agreement
with previous studies.

Closer inspection of the NTR time series did reveal small
oscillations at tidal frequencies. Low-pass filters designed to
remove these components could be applied to the NTR time

series (Shirahata et al., 2016), however, filters can easily decrease
amplitude of the signal and care must be taken to not remove
water level oscillations (e.g., surge) caused by TCsmoving quickly
through the region. Additionally, for TCs with durations of
multiple tidal cycles, maximum NTR often occurs over low
predicted tide, and not indicative of amount of flooding over the
next (or previous) high tide. Hence, maximumNTR is dependent
upon numerous factors, and perhaps not as reliable (Batstone
et al., 2013) or useful (Williams et al., 2016) an estimate of
meteorological component of increased sea level as skew surge.

Figure 6 shows very high correlation coefficients between
skew surge and max NTR for Delmarva TCs. High correlations
values indicate how well-skew surge and max NTR are linearly
related, not necessarily how close they are in magnitude. Across
all gauges and Delmarva TCs, maximum NTR is greater than
skew surge by 10 cm or more for 29% of events, and by 20 cm
or more for 11.5% of events, most prominently at the upper
Delaware Bay sites. This difference in timing could be indicative
of tide-surge interactions or other phenomena occurring in this
region but is beyond the scope of this paper. Large differences
at large surge levels can lead to misinterpretation and potential
overestimation of the amount of flooding from major, usually
well-publicized, storms.

Due to the geomorphology and bathymetry of the region, tides
are higher and exhibit wider range in the upper Delaware Bay
than in other regions. Delmarva TC storm tides in the upper
Delaware Bay were accordingly the highest in the study region
(Table 2). Interaction of tides and surge, in addition to spatially
variable relative sea-level rise, are complex yet play a large role in
the amount coastal flooding a location observes. Detrending and
normalizing storm tides and skew surges removes this influence,
allowing for a better comparison of gauges over space and of
storms over time. Gauges in the upper Delaware Bay resulted
in the lowest STI, potentially meaning that the relative coastal
flooding due to TCs is least in the upper Delaware Bay and
most in the lower Chesapeake Bay. Likewise, STI shows a strong
negative correlation to MHHW, decreasing relative influence of
TC flooding in areas of higher tides.

The same concept holds true for storm surge. Results in
Tables 2, 4 show that the Chesapeake Bay regions experience
higher relative surges from TCs than the Delaware Bay. Likewise,
the lower bays experience higher relative surges from TCs than
do the upper bays. Relative influence of TC surge is expected to
increase toward the south and east. TCs that stay just offshore,
keeping Delmarva sites in the front left quadrant, bring strong
southeast and east winds as they travel north/northeast direction,
pushing water directly on the ocean coast an into the bays. As
they pass, northwest winds that parallel the coast induce Ekman
transport into the bays, at times competing against the local
winds, increasing the surface water levels in the lower bays more
than upper bays (Garvine, 1985). Differences in surge among TCs
depend on duration, size, and strength of wind field.

Cross-correlations (Figure 7) and PCA on SSI demonstrate
sub-bay geographic differences. LWS has similar correlations to
gauges in both the lower and upper Chesapeake Bay regions but
not as strong as among gauges within those regions. Generally,
surge at LWS tended to follow the behavior of lower bay gauges
during TCs that were east of Delmarva and of upper bay gauges
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TABLE 4 | Means and cross-correlations of spatially averaged skew surge index (SSI) of Delmarva tropical cyclones, 1980 – 2019.

Region Mean SSI Cross-Correlation of SSI

Delaware Bay Upper Delaware Bay Lower Chesapeake Bay Upper Chesapeake Bay Lower

Upper Delaware 1.08 1.00 0.68 0.79 0.59

Lower Delaware 1.39 0.68 1.00 0.56 0.88

Upper Chesapeake 1.19 0.79 0.56 1.00 0.49

Lower Chesapeake 1.70 0.59 0.88 0.49 1.00

All correlations statistically significant at the 0.01 level.

during TCs that were west of Delmarva, although the magnitude
was usually somewhere between. The central location of LWS
makes it valuable for assessing surge in the Chesapeake Bay albeit
problematic if assigned to either an upper or lower bay region.

Table 4 shows that lower regions in each bay respond to
TCs more similarly to each other than to their respective upper
regions. The distance between the bay inlets is relatively small
compared to the size of the TC and their tracks, and drivers such
as wind direction or Ekman transport would impact these areas
similarly. This may run counter to public perception since many
outreach and planning activities tend to focus on The Delaware
and Chesapeake Bays separately. The Bays fall into separate
NWS Forecast Offices, who are responsible for sending out real-
time weather and coastal flood advisories, and have separate
state initiatives and SLR planning committees (Callahan et al.,
2017; Boesch et al., 2018). This is understandable considering
the funding sources and political directives, however, perhaps
the results of this study show that regions of each bay could be
addressed collectively regarding surge risk hazards.

TheWorldMeteorological Organization states that hurricanes
are named to help with “disaster risk awareness, preparedness,
management, and reduction,” and names are retired “due
to sensitivity” from the destruction they cause (World
Meteorological Organization, 2020). Ranking of storms can be
looked upon in a similar vein by meteorologists and emergency
managers, recalling local knowledge from pervious experiences
to help in outreach. As well, it could provide scientists and
planners analog storms with similar surge potential to compare
against. Separate ranking by geographic region helps focus
preparedness efforts.

Highly ranked storms in both bays include Hurricanes Isabel
(2003), Wilma (2005), Ernesto (2006), Sandy (2012), and Not
Named (1991). All of these were very large, strong storms with
wide reaching wind fields that transitioned to extratropical near
Delmarva. The high wind speeds and longer duration of swell
directed at Delmarva contributed to the extreme surge levels
from these storms. Surge from Isabel (2003) was an extreme
outlier in the Chesapeake Bay compared to the other TCs primary
due to its linear track, traveling southeast to northwest while
keeping the Chesapeake in its right-front quadrant, continually
pushing water up the bay (National Hurricane Center, 2014).
Gloria (1985) would be Isabel’s counterpart for the Delaware Bay,
although its fast speed and track to the east of Delmarva limited
its most severe impacts to the lower bay region.

Negative correlations between SSI and TC minimum
distance to Delmarva were consistent across all sites, as
expected (Supplementary Figure 5). However, the significant
amount of scatter and outliers prohibit a direct quantifiable
relationship. Results from the clustering analysis show similar
information. For example, TC tracks in clusters 1–2 and 4–5
are indistinguishable yet those TCs produce varying magnitudes
and spatial patterns of SSI. Likewise, TC tracks in clusters 3 and
8–10 are all positioned nearly directly over Delmarva, yet TCs in
cluster 3 produce only minimal variation whereas TCs in clusters
8–10 produced very large variations.

Although the clustering was based solely on surge profiles,
some similarities in tracks do exist. A large majority of the TC
tracks were positioned directly over or just offshore to the east
of Delmarva. The most common surge profile exhibits larger
SSI values in the lower bays than upper bays (N = 51, from
clusters 2, 4, 5, 6, 7, 8, 9, and 10), followed by larger SSI values
in upper bays than lower bays (N = 34, from clusters 1, 11, 12,
and 13) and minimal difference between the upper and lower
bays (N = 8, from cluster 3). TCs that produce the largest SSI
in the upper Chesapeake Bay pass by Delmarva to the west,
whereas TCs that produce very low SSI values in the upper
Chesapeake Bay yet large SSI values in the lower Chesapeake Bay
pass directly over Delmarva. Generally, these results may imply
that although distance and location of storm track may play a
role, other storm-related factors are also involved in producing
the observed surge amount a particular site may receive. Results
of the current work could be extended with additional TC data
(e.g., size, wind speed, duration, direction of travel) and a more
rigorous statistical treatment.

In order to generalize some of the conclusions in this
paper, a similar methodology could be applied to extratropical
flood events at the same tide gauge locations. As well, a more
thorough statistical analysis of surge magnitudes and spatial
variation compared to specific TC meteorological characteristics
and TC track location would quantify the relative contributions
of the major drivers of TC-caused surge in the Delaware and
Chesapeake Bays. Tropical cyclones, like all coastal storms,
are multi-hazard weather events, with storm surge the most
destructive and lethal hazard. In a changing environment, there
continues to be a need to improve storm surge forecasting and
implement strategies to minimize the damage of coastal flooding
(Council on Climate Preparedness Resilience, 2016; Rahmstorf,
2017; Chippy and Jawahar, 2018). Results from this analysis
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can provide insight on the potential regional impacts of coastal
flooding from tropical cyclones in the Mid-Atlantic region.

BENEFIT OF RESEARCH TO SCIENTIFIC
COMMUNITY

This research will develop skew surge values for tropical
storms over the past 40 years in the Mid-Atlantic. It will also
summarize skew surge over regions of multiple tide gauges
and investigate geographic difference among surge level and
storm tracks. Skew surge is not a commonly used estimate
of surge although it has been gaining acceptance and is
well-positioned for separating the meteorological and tidal
contributions to flood events. Impacts of coastal flooding
from tropical storms are not commonly studied in the Mid-
Atlantic, although it is highly developed and critical coastal
region experiencing high rates of sea level rise. With the
prospect of increased severe tropical cyclones in the future, a
better understanding of the surge produced by these systems,
both in spatial variability and magnitude, is important for
developingmitigation and adaptation strategies to protect against
these hazards.
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GLOSSARY

NOAA Tide Gauge Locations, Philadelphia (PHL), Reedy
Point (RDY), Lewes (LEW), Cape May (CAP), Atlantic
City (ATL), Baltimore (BAL), Annapolis (ANN), Cambridge
(CAM), Lewisetta (LWS), Kiptopeke (KIP), Sewells Point
(SEW), Wachapreague (WAC); CO-OPS, NOAA Center for
Operational Oceanographic Products and Services; DEMA,
Delaware Emergency Management Agency; ETC, Extratropical
Cyclone (sometimes called mid-latitude cyclones); FEMA,
Federal Emergency Management Agency; HURDAT2, Atlantic
Hurricane Database (HURDAT2); IBTrACS, International
Best Track Archive for Climate Stewardship; MHHW, Mean
Higher-High Water tidal datum; MSL, Mean Sea Level tidal
datum; NAVD88, North American Vertical Datum 1988;
NCEI, NOAA National Centers for Environmental Information;
NHC, NOAA National Hurricane Center (division of the
National Weather Service); NOAA, National Oceanic and
Atmospheric Administration; NOS, NOAA National Ocean
Service; NTDE, National Tidal Datum Epoch; NTR, Non-
tidal residual; NWLON, NOAA NOS National Water Level
Observation Network; PORTS, NOAA National Ocean Service
Physical Oceanographic Real-Time System; SSI, Storm Surge
Index; SST, Sea Surface Temperature; STI, Storm Tide Index;
SURGEDAT, A database specifically designed to store storm
surge data with 700 tropical surge events around the world and
more than 8,000 unique tropical high water marks along the U.S.
Gulf and Atlantic Coasts since 1880; TC, Tropical Cyclone;TWL,
Total water level; USACE, US Army Corps of Engineers; WMO,
World Meteorological Organization.
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Extreme storm surges can overwhelm many coastal flooding protection measures in

place and cause severe damages to private communities, public infrastructure, and

natural ecosystems. In the US Mid-Atlantic, a highly developed and commercially active

region, coastal flooding is one of the most significant natural hazards and a year-round

threat from both tropical and extra-tropical cyclones. Mean sea levels and high-tide flood

frequency has increased significantly in recent years, and major storms are projected

to increase into the foreseeable future. We estimate extreme surges using hourly water

level data and harmonic analysis for 1980–2019 at 12 NOAA tide gauges in and around

the Delaware and Chesapeake Bays. Return levels (RLs) are computed for 1.1, 3, 5,

10, 25, 50, and 100-year return periods using stationary extreme value analysis on

detrended skew surges. Two traditional approaches are investigated, Block Maxima

fit to General Extreme Value distribution and Points-Over-Threshold fit to Generalized

Pareto distribution, although with two important enhancements. First, the GEV r-largest

order statistics distribution is used; a modified version of the GEV distribution that

allows for multiple maximum values per year. Second, a systematic procedure is used

to select the optimum value for r (for the BM/GEVr approach) and the threshold (for

the POT/GP approach) at each tide gauge separately. RLs have similar magnitudes

and spatial patterns from both methods, with BM/GEVr resulting in generally larger

100-year and smaller 1.1-year RLs. Maximum values are found at the Lewes (Delaware

Bay) and Sewells Point (Chesapeake Bay) tide gauges, both located in the southwest

region of their respective bays. Minimum values are found toward the central bay

regions. In the Delaware Bay, the POT/GP approach is consistent and results in narrower

uncertainty bands whereas the results are mixed for the Chesapeake. Results from this

study aim to increase reliability of projections of extreme water levels due to extreme

storms and ultimately help in long-term planning of mitigation and implementation of

adaptation measures.

Keywords: extreme value analysis, storm surge, coastal flooding, flood risk, Mid-Atlantic, tidal analysis
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INTRODUCTION

Coastal flooding poses the greatest threat to human life and is
often the source of much of the damage resulting from the storm
surge and waves of coastal weather systems (Blake and Gibney,
2011; Rappaport, 2014; Chippy and Jawahar, 2018;Weinkle et al.,
2018). Relative sea-level rise (SLR) rates and high-tide flooding
frequency andmagnitude along the US East Coast have increased
in recent decades and are expected to continue increasing into the
near future (Sweet et al., 2017a, 2018; Oppenheimer et al., 2019)
with recent studies estimating mean sea levels are rising faster
than predicted (Grinsted and Christensen, 2021). The US Mid-
Atlantic coast is noted for especially high SLR rates (Sallenger
et al., 2012; Kopp, 2013; Boon et al., 2018; Piecuch et al., 2018)
and states and counties in this region view coastal flooding as one
of their most severe and pervasive natural hazards to prepare for
(Callahan et al., 2017; Boesch et al., 2018; Dupigny-Giroux et al.,
2018). Increases in sea levels lead directly to higher frequencies
of coastal flooding from high tides as well as minor and major
coastal storms (Lin et al., 2016; Dahl et al., 2017; Garner et al.,
2017; Rahmstorf, 2017; Sweet et al., 2017b; Muis et al., 2020;
Taherkhani et al., 2020).

Many of the largest coastal flooding events along the US
Mid-Atlantic coast are caused by tropical cyclones (TCs), most
notably Hurricanes Isabel in 2003 and Sandy in 2012. For both
the USAtlantic andGulf Coasts, tropical cyclones are the costliest
and most damaging weather and climate events (Smith, 2021).
Under current global warming scenarios, atmospheric water
vapor content and sea-surface temperatures (SSTs) in the North
Atlantic Ocean are projected to increase, leading to an increase in
the number of severe tropical cyclones, decreases in the forward
translational speed, increases in wind speed, and increases in the
rate of intensification, especially near the coasts (Kossin et al.,
2017; Kossin, 2018; Knutson et al., 2019, 2020; Murakami et al.,
2020; Yang et al., 2020; Wang and Toumi, 2021).

Although TCs may gather much of the attention, the threat
of major coastal flooding in the region is year-round (Dupigny-
Giroux et al., 2018). TCs can account for 40–60% of the top
10 flood events with higher relative percentages in the southern
part of the region (Booth et al., 2016; Callahan et al., 2021b),
however, the great majority of all coastal flood events, ∼85–90%,
in the Mid-Atlantic come from non-tropical weather systems
(Callahan et al., 2021b). East Coast winter storms, surface high

NOAA Tide Gauge Locations: PHL, Philadelphia; RDY, Reedy Point; LEW,

Lewes; CAP, Cape May; ATL, Atlantic City; BAL, Baltimore; ANN, Annapolis;

CAM, Cambridge; LWS, Lewisetta; KIP, Kiptopeke; SEW, Sewells Point;

WAC, Wachapreague.

Abbreviations: BM, Block Maxima; ETC/TC, extratropical cyclone/tropical

cyclone; EVA/EVD, extreme value analysis/extreme value distribution; GEV,

generalized extreme value distribution; GEVr, generalized extreme value r-largest

order distribution; GoF, goodness-of-fit test; GP, Generalized Pareto distribution;

HA, harmonic analysis; MLE, maximum likelihood estimation; MHHW, Mean

Higher-High Water tidal datum; MSL, Mean Sea Level tidal datum; NAVD88,

North American Vertical Datum of 1988; NTDE, National Tidal Datum Epoch;

NTR, non-tidal residual; NWLON,NOAANOSNationalWater Level Observation

Network; PORTS, NOAA National Ocean Service Physical Oceanographic Real-

Time System; POT, points over threshold; RL, return level; SLR, sea-level rise; SST,

sea surface temperature; SE, standard error; TWL, total water level.

pressure systems, extratropical cyclones (ETCs), and frontal
systems regularly impact the region throughout the year (Hirsch
et al., 2001; Thompson et al., 2013). ETCs in the Mid-Atlantic in
the winter and spring are often dictated by the relative position
of troughs in the westerly polar jet stream, directing low-pressure
systems to travel northeastward up the coast over warmer waters,
often intensifying into strong nor-Easter storms. The intensity
and winds of ETCs, as well as associated beach erosion and
other damages due to coastal flooding, are also projected to
increase due to climate change, however projections of ETC
storm tracks and landfalling TCs due to changing synoptic
atmospheric patterns (i.e., “storminess”) in the Mid-Atlantic
is inconclusive (Hall et al., 2016; Mawdsley and Haigh, 2016;
Dupigny-Giroux et al., 2018). Studies have found that US East
Coast sea levels vary with synoptic oscillations (Colle et al., 2015;
Wahl and Chambers, 2015; Sweet et al., 2020), leading, Rashid
Md et al. (2019) to conclude that interannual and multi-decadal
variability of extreme storm surge in the Mid-Atlantic was in a
transition zone between more clear relationships found in the
Northeast and Southeast portions of the US Atlantic Coast.

Water levels in the Delaware and Chesapeake Bays, two of
the largest estuaries in the US located in the Mid-Atlantic, have
been well monitored for several decades by high-quality tide-
gauge networks, well-suited for climate studies (Holgate et al.,
2013; Sweet et al., 2017a; NOAANWLON, 2020; NOAA PORTS,
2020). This highly developed, economically critical region
includesmany commercial industries, vast amounts of public and
private infrastructure, and provides important ecosystem services
(Sanchez et al., 2012; Partnership for the Delaware Estuary
(PDE), 2017; Chesapeake Bay Program, 2020). Impacts and costs
associated with coastal flooding are highly dependent upon both
the natural and social vulnerability, the amount of exposure,
and adaptation measures in place (Hallegatte et al., 2013; Hinkel
et al., 2014). Extreme coastal flooding can overwhelm protections
in place and can have profound negative effects in this region,
such as saltwater intrusion, loss of wetland forests and low-lying
agricultural fields, beach erosion, damage to infrastructure from
surge and waves, and flooding of roads and personal property
putting human life at risk. Extreme events often include multiple
hazards that compound the damage, leading to their net impact
to be greater than the sum of its parts (Kopp et al., 2017;
Moftakhari et al., 2017).

Estimating frequency and severity of extreme coastal flooding
is difficult as, by definition, these events do not occur often.
This lack of observational data makes it difficult to develop
robust statistical or physical predictive models at the usual level
of confidence although planning and design for extremes are
essential to avoid the most severe consequences (Walton, 2000;
Calafat and Marcos, 2020). Numerous hazard/risk assessments
and flood insurance premiums rely on the FEMA 100-year
(i.e., 1% annual chance) base flood elevations. However, many
local decisions on infrastructure development, major capital
investments, and adaptation planning require estimates of
extreme flood levels at shorter-term return periods. Construction
and maintenance of paved surfaces (10–20 years) and major
roadways and bridges (50–70 years or more) for transportation as
well as for wastewater treatment plants, residential development,
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dams/levees, beach replenishment, and wetland restoration are
examples of projects in the region that require estimates of
return level probabilities at time periods <100 years (DNREC,
2012; Johnson, 2013; Callahan et al., 2017; Delaware Emergency
Management Agency (DEMA), 2018).

A commonmethod to estimate the frequency of extremes (i.e.,
extreme value analysis, or EVA) is by assuming the largest values
from an observational record can be modeled by a statistical
distribution distinct from the parent distribution. Two families of
extreme value distributions have been shown to model extreme
values well: the generalized extreme value (GEV) distribution
and the Generalized Pareto (GP) distribution (Coles, 2001). The
GEV distribution can be fit to the set of maximum values of
discrete, non-overlapping blocks within a time series, such as
annual maximum values; this is termed the Block Maxima (BM)
approach. Data points using this approach are evenly distributed
over time, however, non-extreme data points from years with
abnormally low values may be forced into the model fit, biasing
the results. In contrast, the GP distribution can be fit to the
upper tail of the parent distribution, i.e., the set of values that
are greater than a pre-selected threshold; this is termed the
Points-Over-Threshold (POT) approach. POT is a more natural
interpretation of modeling extreme results although the data
points may come in temporal clusters and selection of a threshold
is subjective.Which approach is considered “better” is non-trivial
and dependent upon the parent distribution of the data, time
period, sample size, as well as the metric used to measure each
model performance (Walton, 2000; Wong et al., 2020).

Numerous studies have performed EVA of total water levels
(TWL) using a variety of methods along the US coastlines; a
few recent examples can be found in Wahl et al. (2017), Kopp
et al. (2019), Oppenheimer et al. (2019), Sweet et al. (2020), and
Wong et al. (2020). TWL is an important measure of flooding,
however, it is inherently influenced by location-specific tidal
ranges and timing of the storm event relative to the phase of
the tide whereas storm surge is generally more closely associated
with the characteristics of the storm. EVA of storm surge has been
performed along the US Atlantic coasts using both the BM/GEV
(Grinsted et al., 2012; Sweet et al., 2014) and POT/GP (Bernier
and Thompson, 2006; Tebaldi et al., 2012; U. S. Army Corps of
Engineers, 2014; Booth et al., 2016; Hall et al., 2016) approaches,
or comparing the twomethods (Walton, 2000;Wong et al., 2020).
EVAmethods such as bootstrap simulations (U. S. Army Corps of
Engineers, 2014; Garner et al., 2017) and global modeling (Muis
et al., 2020) on storm surge have also been investigated.

The aforementioned studies defined storm surge as the
maximum difference between TWL and predicted tide, often
called the maximum non-tidal residual (NTR). Skew surge,
however, is arguably a more accurate measure of storm surge
and most appropriate for long-term planning and estimating
extreme flood levels. It is defined as the difference between
the maximum observed TWL and the maximum predicted tide
during a tidal cycle, even if the observed and predicted tidal peaks
are offset (i.e., skewed) from each other (Pugh and Woodworth,
2014). It represents the meteorologically-forced increase of water
levels due to the net effect of winds, atmospheric pressure

(i.e., inverse barometer effect), nearby river discharge, and wave
setup, and is more clearly separated from the astronomically
forced-tides and potential complex hydrodynamics of tide-
surge interactions (Batstone et al., 2013; Mawdsley and Haigh,
2016; Williams et al., 2016; Stephens et al., 2020). Skew surge
levels are consistently less than the measures of maximum
NTR up to 30% (Hall et al., 2016; Callahan et al., 2021a).
There have been few studies of skew surge in the Mid-Atlantic.
Mawdsley and Haigh (2016) analyzed long term trends of skew
surge and Williams et al. (2016) investigated tide-skew surge
independence, but only a few Mid-Atlantic tide gages were
included in those analyses and neither performed traditional
EVA on skew surges. Callahan et al. (2021a) computed skew
surge at the same tide gauges as the current study but only
analyzed TCs.

Specific goals of this study are two-fold. First goal is to estimate
extreme skew surges within the Delaware and Chesapeake Bays
and investigate sub-bay geographic differences. Many tide gauges
in these bays started collecting data in the late 1970s and
only recently has there been sufficient geographic coverages
of gauges with records of at least 40 years of continuous
hourly data. Second goal is to compare the two common
traditional EVA approaches by implementing objective criteria
for model parameter selection. The BM approach is enhanced
to incorporate the GEVr distribution, a slightly modified form
of the GEV distribution that allows for the inclusion of multiple
values (the r-largest orders) per year instead of only the annual
maximum (see Skew Surge Return Levels section for details),
addressing the primary issue with the traditional BM approach
of the low number of data incorporated in the model. It is
not the intent of this paper to determine the “best” EVA
approach to use in all cases, but rather to better understand
the differences between them and to increase reliability of
projections of extreme water levels due to storms, ultimately
helping in long-term planning of mitigation and implementation
of adaptation measures.

MATERIALS AND METHODS

Study Region
The Delmarva Peninsula, located in the US Mid-Atlantic, is
flanked on both sides by the Delaware and Chesapeake Bays
(Figure 1). Tidal water levels and storm surges are influenced
by the geomorphological environment, geometry of the coastline,
bathymetry, bottom friction/dissipation effects, and reflection of
the wave near the head of the bay (Lee et al., 2017). Storm surge
is additionally influenced by storm size and direction of travel,
duration, atmospheric pressure, wind speed and wind direction
relative to the coastline (Ellis and Sherman, 2015). The Delaware
Bay has a classical funnel shape, with pockets of deep scour in
the wider lower bay, amplifying tidal range and storm surge in
the northern regions (Wong and Münchow, 1995; Lee et al.,
2017; Ross et al., 2017). The Chesapeake Bay, by contrast is
longer, shallower, exhibits a more dendritic tributary landscape,
and its lowest tidal ranges are toward the center (Zhong and
Li, 2006; Lee et al., 2017; Ross et al., 2017). Although coastal
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FIGURE 1 | Map of the Delaware and Chesapeake Bays with the 12 NOAA

tide gauges used in the current study: PHL, Philadelphia; RDY, Reedy Point;

CAP, Cape May; ATL, Atlantic City; BAL, Baltimore; ANN, Annapolis; CAM,

Cambridge; LWS, Lewisetta; KIP, Kiptopeke; SEW, Sewells Point; WAC,

Wachapreague.

storms threaten the region year-round, mean water levels follow
a bimodal seasonal distribution with the maximum in fall (Oct)
and secondary maximum in late spring (May–Jun), primarily
caused by periodic fluctuations in atmospheric weather systems
and coastal water steric effects (NOAA CO-OPS, 2020a). The
largest coastal flood events typically occur either during peak
hurricane season (Sept–Nov) or during the winter/early spring
from nor’easters (Dec–Mar).

Water Level Data and Computation of
Skew Surge
Tide gauges selected for this study were limited to NOAA
operational tide gauges in and immediately around the Delaware
and Chesapeake Bays. Requirements were that each gauge
maintained nearly continuous record of hourly water levels
for the time period 1980–2019, evenly located throughout the
region, a set of harmonic constituents identified for making tidal
predictions, and a vertical tidal datum conversion factor to North
American Vertical Datum of 1988 (NAVD88). In all, 12 gauges
were selected; 5 associated with the Delaware Bay and 7 with the
Chesapeake (Figure 1; Table 1). All selected gauges are part of
NOAA NWLON and PORTS networks.

TABLE 1 | Tide gauges used in the current study.

Station Code NOAA ID Bay Large data

gaps

Percent hourly

Philadelphia PHL 8545240 Delaware 0 99.23%

Reedy Point RDY 8551910 Delaware 5 95.61%

Lewes LEW 8557380 Delaware 0 99.73%

Cape May CAP 8536110 Delaware 2 98.35%

Atlantic City ATL 8534720 Delaware 2 98.08%

Baltimore BAL 8574680 Chesapeake 0 99.66%

Annapolis ANN 8575512 Chesapeake 1 98.70%

Cambridge CAM 8571892 Chesapeake 1 98.84%

Lewisetta LWS 8635750 Chesapeake 2 98.72%

Kiptopeke KIP 8632200 Chesapeake 0 99.78%

Sewells Point SEW 8638610 Chesapeake 0 100.00%

Wachapreague WAC 8631044 Chesapeake 6 89.30%

Percent hourly data based upon total number of hours in 1980–2019. Number of large

data gaps represent continuous gaps of 745 h (∼1 month) or more.

Hourly and High/Low water level data were obtained from
the NOAA Center for Operational Oceanographic Products and
Services (NOAA CO-OPS, 2020b). High/Low data represent the
exact time and magnitude of each Higher-High, High, Low,
and Lower-Low tidal peak. Hourly data represent the observed
water level on each hour (e.g., 21:00, 22:00). The 40 years of
hourly data at each gauge were manually inspected for errors
and inconsistencies. A few small data clusters (of 2–16 h) within
larger gaps of missing data were removed (on seven occasions
across all gauges) and small data gaps of 1–2 h (<10 across all
gauges) were filled using linear interpolation. Table 1 lists the
number of data gaps that spanned 745 h (∼1 month) or greater
as well as the percentage of valid hourly data points used in the
analysis. Wachapreague had the largest amount of missing data
due to a 2.5-year period (200511–200804) when valid Hourly and
High/Low data were unavailable.

Skew surge was computed at each tidal peak over 1980–2019
using modeled predicted time series as reference. Total count was
a maximum of 28,231 tidal peaks over the study time period, less
any missing data. The observed maximum TWL at each peak was
extracted from the High/Low dataset; the maximum hourly value
was used if High/Low data were not available. The observed and
predicted peaks were aligned within ±3 h of each other, which
was extended to ±6 h if no High/Low or TWL peak alignment
was found, such as due to prolonged surge; this occurred for
<100 peaks over the entire study time period and only for gauges
in the Chesapeake Bay.

Predicted tides were generated through Harmonic Analysis
(HA) based on hourly water levels. The HA incorporated
37 tidal constituents defined by NOAA for their official tide
predictions in this region (NOAA CO-OPS, 2020c) and seven
tidal constituents noted by Harris (1991) relevant for the US
East Coast. Computations were performed in 1-year increments
(3-year increments if greater than 1 month of data were
missing within a year). Annual computations minimize timing
errors that can lead to the leakage of tidal energy into the
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non-tidal residual (Merrifield et al., 2013). It also essentially
removes the SLR trend andminimizes inherent constituent biases
when computed over long time periods, which could result
from changing physiographical environmental conditions (Ross
et al., 2017) or from changing seasonal weather patterns that
strongly influence the Sa (solar annual) and SSa (solar semi-
annual) constituents (NOAA CO-OPS, 2007). More details on
the computation of skew surge can be found in Callahan et al.
(2021a).

Mean and standard deviation of skew surge, as well as
maximum TWL for comparison, were computed to get a
sense of the overall parent distribution. To help achieve
stationarity and independence of data samples required by
EVA, two further processes were performed on each gauge’s
time series. First, the data were linearly detrended about
the 1980–2019 mean (Table 2). Second, maximum peaks of
skew surge were separated temporally by 30 h to ensure at
least two high tides between each extreme event. Specifically,
multiple surges above each selected threshold (defined following
approaches in Block Maxima/GEVr Approach and Points-Over-
Threshold/GP Approach sections) within 30 h of each other were
treated as from a single event and only the maximum value
was chosen.

Block Maxima/GEVr Approach
The BM approach of modeling extreme values is to select
the maximum value within equal, independent blocks of time
over the study period, which are usually fit to the GEV
distribution. One-year blocks are commonly chosen (as in the
current study) since a common ultimate goal is to estimate
water levels of multiyear-based return periods for long-term
planning purposes. Using the BM approach in this traditional
way results in 40 data points over the years 1980–2019. The
GEV distribution actually represents the combined generalized
form of the Fréchet, Weibull, and Gumbel distributions,

TABLE 2 | Mean and standard deviation of maximum total water level (TWL) and

skew surge for all tidal peaks observed during 1980–2019.

Station Max TWL Skew surge Tidal datum

Mean SD Mean SD MHHW MSL GT

PHL 1.01 0.27 0.02 0.19 1.09 0.12 2.04

RDY 0.81 0.25 −0.01 0.17 0.99 −0.02 1.78

LEW 0.52 0.26 0.01 0.16 0.62 −0.12 1.42

CAP 0.65 0.26 0.01 0.15 0.74 −0.14 1.66

ATL 0.51 0.26 0.02 0.16 0.61 −0.12 1.40

BAL 0.19 0.24 0.00 0.18 0.25 −0.01 0.51

ANN 0.16 0.22 0.00 0.17 0.20 −0.02 0.44

CAM 0.25 0.20 0.00 0.16 0.29 −0.03 0.62

LWS 0.21 0.20 0.00 0.14 0.21 −0.02 0.46

KIP 0.27 0.20 0.01 0.14 0.32 −0.15 0.90

SEW 0.33 0.21 0.01 0.15 0.35 −0.08 0.84

WAC 0.50 0.24 0.02 0.15 0.57 −0.11 1.36

Mean Seal Level (MSL), Mean Higher-High Water (MHHW), and Great Diurnal Range

(GT) tidal datums defined by NOAA for the current National Tidal Datum Epoch (NTDE)

1983–2001. Water levels and datums referenced to NAVD88 meters.

which have cumulative distribution functions (CDF) defined
by Equation 2.1.
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where the quantity 1 + ξ (x− µ) /σ =

max (1+ ξ (x− µ) /σ , 0), with location parameter µ, scale
parameter σ > 0, and shape parameter ξ. The shape parameter
controls the shape of the tail. The second line of Equation 1 (ξ
= 0) represents the Gumbel distribution and is found by taking
the limit as ξ → 0. When ξ > 0 (Frechet), the tail is thicker
than the Gumbel (i.e., “heavy-tailed”) with no upper bound,
whereas for ξ < 0 (Weibull), the distribution has a hard upper
limit at µ – σ/ξ. Coles (2001) provides a detailed description of
the BM/GEV approach.

A drawback of this approach is the limited number of data
points (i.e., one per year) used to fit the model. Therefore,
this method was generalized to include more than one value
for each independent block of time by Weissman (1978)
and later justified for use in hydrological studies, including
modeling sea level extremes, by Tawn (1988). This extension
of the BM approach allows for the use of the r-largest order
statistics per year, permitted that r << total number of events
per year. The key distinction of fitting data to the GEVr
distribution, as opposed to the GEV distribution, is the choice
of r. At r = 1, the GEV and GEVr are identical distributions.
Since r is not a specific parameter in the GEVr probability
density function, it cannot be estimated in the same way as
µ, ξ , or σ .

Several orders of r were tested from 1 to 20 events per
year. For each r, model parameters were estimated, and a series
of hypothesis tests run. The upper limit choice of 20 was
subjective but reasonable, as it would increase the number of
data points significantly (20 × 40 years = 880, ∼3% of all tidal
peaks over 1980–2019) while keeping r << 730, the maximum
number of twice-daily skew surge events per year. Ideally, r
should be large enough to include enough points to improve
the robustness of the model but not large enough to introduce
bias from the parent distribution and contaminating the EVD
model fit.

A set of rules were developed by G’Sell et al. (2016) and
furthered by Bader et al. (2017) to automate the selection of
an optimum value of r. These rules are based on the sequential
hypothesis tests for each r using the ForwardStop score and
unadjusted p value generated from parametric bootstrap and
entropy difference tests. The ForwardStop score is an adjusted
p-value to control for the incremental false discovery rate, similar
to a weighted mean of p-values of all tests on previous r values
(Bader et al., 2017). The over-riding principal here is to start
with a minimum number of data points and slowly increase the
sample size until the data points do not satisfactorily fit the GEVr
distribution. Following guidance provided in Bader et al. (2017),
the following procedure was adopted to identify the optimum r.

1. Start with r = 1 and note the ForwardStop score from the
parametric bootstrap test. Incrementally increase r by 1 until
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the ForwardStop score fails hypothesis test at the α = 0.05
level. If a failure occurs, that r is rejected and select the r just
prior to the failed test.

2. If no r values are rejected after traversing all 20, use the
ForwardStop score from the entropy difference test and repeat
Step 1.

3. If no r values were rejected following Step 2, then repeat Steps
1–2 using the unadjusted p-values computed for each r instead
of the ForwardStop score.

4. If no r values were rejected following Step 3, increase α to 0.10
and repeat Steps 1-3.

Using these guidelines, an optimum r was selected for each gauge.
The Goodness-of-Fit (GoF) was then tested between the Gumbel
distribution (ξ = 0) fit and the Fréchet/Weibull distribution (ξ
6= 0) fit using the negative log-likelihood ratio test (ratio must
be greater than 0.95) and Akaike Information Criterion (AIC)
test (the difference in AIC score between sequential tests must
be > 2, described in Burnham and Anderson, 2004). Maximum
likelihood estimation (MLE) was used for all GEVr model fits.
Temporal declustering of skew surge peaks was performed on an
annual basis in order for each of the r-largest orders per year to
be an independent event.

Points-Over-Threshold/GP Approach
In contrast to the BM approach, the POT approach is a more
natural way of statistically modeling the upper tail of a parent
distribution. The entire study period is treated as a single block
and the EVD includes only observations over a certain threshold
value (i.e., exceedances) regardless of time the event occurred.
The threshold is derived from a suitably high quantile level
(e.g., 97% quantile is commonly used). Exceedances are then
fit to the Generalized Pareto (GP) distribution. Like the GEV,
the GP distribution represents a family of three distributions,
differentiated by the model shape parameter, the CDFs of which
are in Equation 2.2.
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,
suitably high threshold µ, threshold-dependent scale parameter
σµ > 0, and shape parameter ξ. The condition is that all values
of x must be larger or equal to the threshold µ. Behavior
of the parameters is similar to that in the GEV. The shape
parameter controls the shape of the tail. The second line of
Equation 2.2 is found by taking the limit as ξ → 0, resulting
in the Exponential distribution. A heavy tail occurs when ξ

> 0 (Pareto distribution) with no upper bound, whereas a
thinner tail and a fixed upper bound occurs when ξ < 0 (Beta
distribution). Coles (2001) provides a detailed description of the
POT/GP approach.

Threshold quantiles were tested from 90–99.5% exceedance
probabilities in increments of 0.5% (from 1 to 20 thresholds),
resulting in the maximum number of possible skew surge
peaks used to model GP to be ∼2,920 (90%) to 146 (99.5%).

A threshold should be chosen to include enough upper tail
exceedances that will improve the robustness of the model
but not too many exceedances such that the lower values
introduce bias from the parent distribution. Scarrott and
MacDonald (2012) reviewed various methods on selecting the
optimum threshold, including numerical tests and graphical
diagnostics, such as Quantile-Quantile and Mean Residual Life
plots. Many of these selection methods are subjective, time-
consuming when investigating many sites, and often result
in multiple acceptable answers. Diagnostic plots were used
in the current study (Supplementary Figures 1–24), however,
to better compare results with BM/GEVr approach, a similar
standardized methodology was employed for selecting an
optimum threshold.

The rules developed by G’Sell et al. (2016) and Bader et al.
(2017) were applied to automate the selection of the optimum
threshold of the POT/GP approach in Bader et al. (2018).
Unadjusted p-values from Anderson-Darling test were chosen
in Bader et al. (2018) for threshold sequential hypothesis testing
after a comparison among several other GoF tests. Although,
Bader et al. (2018) recommends using ForwardStop score, based
on skew surge data in the current study, ForwardStop rejects very
few thresholds and the unadjusted p-values performed well in
Bader et al. (2018) tests. Using the same over-riding principal
here as with the BM/GEVr approach, start with the least number
of data points and slowly increase the sample size until the data
points do not satisfactorily fit the GP model. This is essentially
working backwards, from the highest to lowest threshold, noted
as the RawDown approach in Bader et al. (2018). A RawUp
approach, working upwards from the minimum threshold (i.e.,
most data points) until a hypothesis test was accepted, was
also described in Bader et al. (2018) but carries a higher
chance for contaminating the EVD than the RawDown approach.
Ultimately, the following rules were adopted to identify the
optimum threshold.

1. Start with highest threshold percentage (99.5%) and note
the unadjusted p-value from the Anderson-Darling test.
Incrementally decrease the threshold percentage by 0.5% until
the GP model fit fails hypothesis test at α = 0.05 level.
If a failure occurs, that threshold is rejected and select the
threshold just prior to the failed test.

2. If the highest threshold (99.5%) is rejected on the first
test but the second (99.0%) is not rejected, then skip the
highest threshold and continue working downward until next
rejection occurs. This allows for the opportunity to include
more exceedances in the model and assumes the rejection
occurred by chance.

3. If no thresholds were rejected following Step 2, increase α to
0.10 and repeat Steps 1–2.

Using these guidelines, an optimum threshold was selected
for each gauge. Temporal declustering was performed
separately for each threshold on all exceedances over
the entire study period at once. Declustering therefore
significantly reduced the actual number of skew surge
events used in fitting the GP model by ∼30–70%.
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As with the GEVr model, MLE was used for all GP
model fits.

Skew Surge Return Levels
Lastly, return level (RL) skew surges were estimated for 1.1,
3, 5, 10, 25, 50, and 100-year return periods for each EVA
modeling approach. A RL represents a threshold that the
probability of exceedance in any 1 year is the inverse of the
return period. For example, 100-year RL has a 1.0% (0.01)
probability of being exceeded in any 1 year. Since the 1-year RL
is undefined within the BM/GEVr approach, 1.1-year was used
instead for comparison.

Although probability quantiles can be easily extracted from
the GP theoretical distribution using the fitted parameters,
they cannot be viewed as annual probabilities of return levels,
such as can be done using the BM/GEVr approach. Therefore,
an estimate of the probability of a skew surge exceeding a
selected threshold in a year on average must be included in
RL calculations using the POT/GP approach. This is found by
dividing the total number of declustered skew surge events above
the selected threshold by the total number of years (40).

A qualitative review was performed on the estimated model
parameters and return levels, with their 95% standard errors (SE)
modeled using the selected optimum r (BM/GEVr) and threshold
(POT/GP). Differences between the EVA modeling approaches
and spatial variations were noted.

The harmonic analysis and tidal data processing work was
done using the U-Tide package (Codiga, 2011) and standard
modules in the Matlab programming environment. Temporal
declustering was performed using the POT package (Ribatet and
Dutang, 2019) and the EVAmodel fitting and RL extraction were

performed using the eva package (Bader and Yan, 2020), both of
the R statistical computing software environment.

RESULTS

Skew Surge
Mean skew surges are consistent and very close to zero across
all tide gauges whereas TWL shows much larger geographic
variation (Table 2). Although differences are minor, largest skew
surges (0.2m) are at PHL and the open ocean gauges at ATL
and WAC. TWL is consistently higher in the Delaware Bay than
the Chesapeake Bay. Within each bay, the Delaware Bay upper
regions have higher max TWL than the lower regions, whereas
this pattern is reversed in the Chesapeake Bay. Spatial pattern of
max TWL aligns with the Mean Higher-High Water (MHHW)
and Great Diurnal Range (GT) tidal datums (Figure 3), which
do not align with the spatial pattern of skew surge. Standard
deviations of skew surge show slightly more geographic variation
(ranging 0.14–0.19m) with a similar spatial pattern to the max
TWL and Mean Sea Level (MSL) tidal datum. Largest deviations
are in the upper bays and lowest in the central Chesapeake Bay.

None of the gauges showed statistically significant trends in
skew surge except for PHL, which showed a slight negative
trend of ∼ −0.3 mm/year, nevertheless, all gauge time series
were detrended. Note that for comparison, all gauges showed
statistically significant increasing trends in max TWL consistent
with local SLR rates (further analysis was not performed on max
TWL within this study.)

As an example of the parent vs. upper tail distributions,
Figure 2 (left panel) shows the histogram of all detrended skew
surges for the LEW tide gauge over the entire study time period
with a zoomed-in view of the upper tail (right panel). The

FIGURE 2 | Example demonstrating the “fat tail” nature of skew surge distribution for the NOAA tide gauge at Lewes, DE. Histogram includes all detrended skew

surges over 1980–2019 (left panel). Upper tail of the same data with Normal distribution model fitted to all data points (right panel). Note the upper tail of the

theoretical parent distribution under-represents empirical skew surge.
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FIGURE 3 | Example demonstrating GEVr Unadjusted p-values (top panel) and ForwardStop (bottom panel) results based on the Parametric Bootstrap and Entropy

Difference tests for r = 1–20, as defined in Bader et al. (2017). Following the guidelines outlined for the current study, optimum r = 14. Skew surge data for the NOAA

Lewes tide gauge over 1980–2019.

Normal distribution fit the parent distribution at p < 0.01, yet
significantly underestimates the empirical data in much of the
upper tail, emphasizing the importance of modeling extremes of
skew surge separately from the parent distribution.

Model Parameter Selection
Figure 3 shows an example of the GEVr sequential hypothesis
testing for the LEW gauge. No rejections occurred (below α

= 0.05) using ForwardStop score from either the parametric
bootstrap or entropy difference procedures. Starting from r
= 1 and sequentially comparing the unadjusted p-values, the
first rejection occurs at r = 15, resulting in the optimum
r = 14. Testing for the optimum threshold in the POT/GP
approach worked in the same way, albeit starting on the right
side of the unadjusted p-values plot and working downward
until a rejection occurs following guidance in Points-Over-
Threshold/GP Approach Section.

Table 3 and Figure 4 show resultant model parameters
estimated after selecting the optimum r in the BM/GEVr
approach at each gauge. The number of skew surge events per
year that were fit to the GEVr distribution, ranges from N =

120 (r = 3 at CAP, ANN, SEW) to N = 560 (r = 14 at LEW).
Both the location and scale parameters have small, consistent SE
relative to their magnitude across all sites. The shape parameter is
the most uncertain of all the parameters, although SE is relatively
consistent across all sites. Uncertainty is inversely related to the
total number of skew surge events ultimately used in the EVA
after declustering; the lower the number of events, the smaller the
SE. Shape parameter is positive at all sites except at WAC where
it is slightly negative. Based on the negative log-likelihood ratio
and AIC difference tests, none of sites favor the use of the GEVr

TABLE 3 | Results from GEVr distribution model fit of extreme skew surges for

tide gauges in the Mid-Atlantic region.

Station r Npks Location Scale Shape

PHL 7 280 0.636 (0.017) 0.134 (0.012) 0.082 (0.058)

RDY 11 440 0.547 (0.015) 0.117 (0.010) 0.039 (0.046)

LEW 14 560 0.699 (0.023) 0.180 (0.017) 0.102 (0.044)

CAP 3 120 0.602 (0.018) 0.128 (0.013) 0.121 (0.083)

ATL 6 240 0.700 (0.022) 0.166 (0.014) 0.034 (0.059)

BAL 12 480 0.611 (0.016) 0.128 (0.012) 0.113 (0.047)

ANN 3 120 0.566 (0.016) 0.112 (0.012) 0.165 (0.085)

CAM 11 440 0.561 (0.014) 0.111 (0.010) 0.062 (0.047)

LWS 10 400 0.507 (0.013) 0.106 (0.009) 0.064 (0.049)

KIP 4 160 0.566 (0.019) 0.140 (0.013) 0.075 (0.071)

SEW 3 120 0.671 (0.025) 0.178 (0.017) 0.093 (0.081)

WAC 11 418 0.691 (0.020) 0.156 (0.012) −0.057 (0.043)

R is the number of largest maxima per year included in the analysis. Npks is the number

of skew surge events after 30-h temporal declustering and is equal to r multiplied by

the number of years of data. Location, scale, and shape are model parameters fit using

maximum likelihood estimation with 95% standard error in parentheses.

Gumbel (ξ = 0) distribution over the GEVr Fréchet/Weibull (ξ
6= 0) distribution.

Similarly, Table 4 and Figure 3 summarize the results after
selecting the optimum threshold using the POT/GP approach
at each gauge. Threshold percentages range from 94.5% (ATL,
N = 732) to 99.0% (LEW, ANN, KIP, and SEW, N = 160, 194,
139, and 142, respectively.) Gauges that have the same optimum
threshold still result in different total number of skew surge
events due to temporal declustering. Scale parameter SE is low
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FIGURE 4 | Model fit parameters of extreme skew surges to the GEVr (red, top row) and GP (blue, bottom row) distributions. Location is a model parameter only for

GEVr distribution. Dotted lines represent the 90% confidence interval. Mean Sea Level (MSL), Mean Higher-High Water (MHHW), and Great Diurnal Range (GT) tidal

datums defined by NOAA for the current National Tidal Datum Epoch 1983–2001 referenced to NAVD88 meters.

TABLE 4 | Results from GP distribution model fit of extreme skew surges for tide

gauges in the Mid-Atlantic region.

Station Threshold Npks Scale Shape

PHL 94.50 744 0.124 (0.006) 0.020 (0.037)

RDY 96.50 497 0.108 (0.007) 0.034 (0.046)

LEW 99.00 160 0.166 (0.019) 0.032 (0.082)

CAP 93.50 784 0.129 (0.007) 0.004 (0.036)

ATL 94.00 732 0.146 (0.008) 0.034 (0.038)

BAL 98.50 301 0.087 (0.008) 0.187 (0.068)

ANN 99.00 194 0.097 (0.010) 0.123 (0.081)

CAM 96.00 641 0.104 (0.006) 0.016 (0.040)

LWS 98.50 211 0.094 (0.009) 0.071 (0.074)

KIP 99.00 139 0.144 (0.017) −0.015 (0.084)

SEW 99.00 142 0.174 (0.021) 0.044 (0.088)

WAC 98.00 224 0.151 (0.015) 0.052 (0.070)

Npks is the number of skew surge events above threshold percent quantile after 30-

h temporal declustering. Scale and shape are model parameters fit using maximum

likelihood estimation (MLE) with 95% standard error in parentheses.

while the shape parameter SE is relatively high across all sites.
Shape parameter is positive at all sites except at KIP where it
is slightly negative. Spatial patterns and relative uncertainties of
both the scale and shape parameter estimates are generally similar
between the two approaches.

Supplementary Figures 1–12 (BM/GEVr) and 13–24

(POT/GP) show diagnostic plots of the model fit using the
optimally selected r and threshold values at each tide gauge.
Included are probability-probability (PP) and quantile-quantile
(QQ) plots of the modeled vs. empirical data, and histograms

overlaid with model fit PDF curve. The PP plots and histograms
show good agreement between the model and observations. For
most gauges, the QQ plots show a few outliers with the observed
skew surge levels higher than modeled quantile estimates. The
LEW gauge did not show this behavior but rather at the largest
values, the modeled quantiles were larger than the observed data.

Skew Surge Return Levels
Skew surge return levels for 1.1, 3, 5, 10, 25, 50, and 100-year
return periods with 90% confidence intervals (i.e., uncertainty)
are shown in Table 5 for BM/GEVr and Table 6 for POT/GP.
For the sake of brevity and ease of comparison, only the
mean values are plotted in Figure 5. Note the more traditional
continuous RL curves with confidence intervals are included
in Supplementary Figures 25–26, and additionally plotted with
empirical data in panel 4 of Supplementary Figures 1–24. RLs
increase in a consistent manner with longer return periods
at all sites under both modeling approaches. For BM/GEVr,
100-year RLs range from 1.07m (LWS) to 1.79m (LEW)
with generally largest values starting in the lower bay regions,
decreasing to a minimum in the central regions, then increasing
toward the upper regions. This pattern is similar across all RLs.
LEW and SEW have the largest RLs for most return periods,
except for the 1.1-year return period, where the maximum
RL is at ATL (although several other sites are very close).
Longer return periods demonstrate more spatial variation in
RLs. Using POT/GP, 100-year RLs range from 1.08m (LWS) to
1.56m (LEW), with approximately the same spatial pattern as
with BM/GEVr.

There are few differences in RLs between approaches (Table 7;
Figure 6). The most noticeable is that the 1.1-year RLs using
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TABLE 5 | Estimated skew surge return levels for 1.1, 3, 5, 10, 25, 50, and 100-year return periods modeled using the BM/GEVr approach for tide gauges in the

Mid-Atlantic region.

Station 1.1-year 3-year 5-year 10-year 25-year 50-year 100-year

PHL 0.52 (0.04) 0.76 (0.12) 0.85 (0.16) 0.97 (0.25) 1.13 (0.40) 1.25 (0.55) 1.38 (0.74)

RDY 0.45 (0.04) 0.65 (0.09) 0.73 (0.12) 0.82 (0.18) 0.95 (0.27) 1.04 (0.35) 1.14 (0.45)

LEW 0.55 (0.06) 0.87 (0.16) 0.99 (0.23) 1.16 (0.35) 1.38 (0.55) 1.56 (0.75) 1.76 (0.99)

CAP 0.50 (0.05) 0.72 (0.12) 0.81 (0.18) 0.93 (0.30) 1.10 (0.54) 1.24 (0.81) 1.39 (0.99)

ATL 0.56 (0.06) 0.85 (0.14) 0.96 (0.20) 1.09 (0.30) 1.26 (0.48) 1.39 (0.66) 1.53 (0.88)

BAL 0.50 (0.04) 0.73 (0.11) 0.82 (0.15) 0.94 (0.23) 1.10 (0.36) 1.24 (0.49) 1.38 (0.65)

ANN 0.47 (0.04) 0.67 (0.11) 0.76 (0.16) 0.87 (0.26) 1.04 (0.47) 1.18 (0.64) 1.34 (0.72)

CAM 0.47 (0.04) 0.66 (0.09) 0.74 (0.13) 0.83 (0.20) 0.95 (0.31) 1.05 (0.41) 1.15 (0.54)

LWS 0.42 (0.03) 0.61 (0.09) 0.67 (0.12) 0.76 (0.18) 0.88 (0.27) 0.98 (0.37) 1.07 (0.48)

KIP 0.45 (0.05) 0.70 (0.13) 0.79 (0.19) 0.91 (0.31) 1.07 (0.55) 1.20 (0.79) 1.33 (1.11)

SEW 0.52 (0.07) 0.84 (0.16) 0.96 (0.24) 1.12 (0.39) 1.33 (0.70) 1.51 (1.02) 1.69 (1.43)

WAC 0.55 (0.06) 0.83 (0.11) 0.92 (0.14) 1.02 (0.19) 1.15 (0.26) 1.24 (0.32) 1.32 (0.39)

90% confidence intervals in parentheses.

TABLE 6 | Estimated skew surge return levels for 1.1, 3, 5, 10, 25, 50, and 100-year return periods modeled using the POT/GP approach for tide gauges in the

Mid-Atlantic region.

Station 1.1-year 3-year 5-year 10-year 25-year 50-year 100-year

PHL 0.66 (0.06) 0.79 (0.11) 0.86 (0.14) 0.95 (0.19) 1.08 (0.27) 1.18 (0.35) 1.28 (0.44)

RDY 0.56 (0.06) 0.68 (0.10) 0.74 (0.27) 0.83 (0.18) 0.95 (0.26) 1.04 (0.34) 1.14 (0.43)

LEW 0.72 (0.08) 0.90 (0.16) 0.99 (0.22) 1.12 (0.35) 1.29 (0.61) 1.43 (0.88) 1.56 (1.23)

CAP 0.62 (0.06) 0.75 (0.11) 0.82 (0.14) 0.91 (0.19) 1.03 (0.27) 1.12 (0.34) 1.21 (0.42)

ATL 0.71 (0.08) 0.88 (0.14) 0.97 (0.18) 1.08 (0.25) 1.25 (0.36) 1.37 (0.46) 1.50 (0.58)

BAL 0.61 (0.06) 0.76 (0.13) 0.84 (0.19) 0.97 (0.30) 1.16 (0.52) 1.33 (0.77) 1.53 (1.09)

ANN 0.58 (0.06) 0.71 (0.11) 0.78 (0.16) 0.88 (0.25) 1.03 (0.42) 1.16 (0.60) 1.30 (0.84)

CAM 0.58 (0.05) 0.69 (0.09) 0.74 (0.11) 0.82 (0.15) 0.93 (0.21) 1.01 (0.27) 1.09 (0.34)

LWS 0.52 (0.05) 0.63 (0.10) 0.69 (0.13) 0.77 (0.20) 0.89 (0.32) 0.98 (0.44) 1.08 (0.60)

KIP 0.59 (0.07) 0.73 (0.12) 0.80 (0.16) 0.89 (0.25) 1.02 (0.41) 1.11 (0.58) 1.20 (0.80)

SEW 0.69 (0.09) 0.88 (0.16) 0.98 (0.23) 1.12 (0.35) 1.31 (0.60) 1.46 (0.85) 1.61 (1.17)

WAC 0.68 (0.08) 0.85 (0.22) 0.94 (0.36) 1.07 (0.32) 1.25 (0.51) 1.38 (0.77) 1.53 (1.25)

90% confidence intervals in parentheses.

BM/GEVr (0.45–0.56m) are significantly lower than using
POT/GP (0.52–0.72m) at all sites. At the other extreme,
BM/GEVr 100-year RLs are generally higher, mostly in the upper
bay regions, with LEW (0.19m) and CAP (0.17m) showing the
largest positive differences betweenmethods. BAL (−0.15m) and
WAC (−0.20m) are exceptions, with higher 100-year RLs using
POT/GP. Most return periods between 3-year and 50-year show
small differences in RLs across most gauges.

Uncertainty also increases with longer return periods under
both approaches, as expected. At 1.1-year return period the
uncertainties are <0.10m, and range 0.18–0.39m at 10-year, and
0.30–1.43m at 100-year. Sites in the Chesapeake Bay, under both
approaches, exhibit spatial variation in uncertainty similar to that
of the mean RL estimates, with the largest uncertainties in the
lower bay regions, smallest in the central regions, and increasing
in the upper regions. WAC is an exception to this with small
uncertainty under BM/GEVr. Sites in the Delaware Bay also show
this same pattern in uncertainty with BM/GEVr but not POT/GP,

under which CAP and ATL (sites in the lower bay region) show
small uncertainties.

Generally, uncertainties under both approaches are very
similar to each other at shorter return periods. At longer
return periods in the Delaware Bay, uncertainties are smaller
using POT/GP for most sites. At longer return periods in the
Chesapeake Bay, generalization is more difficult; BAL (−0.44m
at 100-year) and WAC (−0.87m at 100-year) have significantly
smaller uncertainties using BM/GEVr while many other sites
have smaller uncertainties using POT/GP.

DISCUSSION

The focus areas of the current study is to investigate the
magnitude and geographic variation within the Delaware and
Chesapeake Bays of estimated return levels of skew surge for
∼1-year to 100-year return periods and to compare the two
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FIGURE 5 | Estimated skew surge return levels for periods of 1.1, 3, 5, 10, 25, 50, and 100 years using the BM/GEVr (left panel) and POT/GP (right panel)

approaches for tide gauges in the Mid-Atlantic region, 1980–2019.

TABLE 7 | Difference in estimated skew surges and 90% confidence intervals (in parentheses) for 1.1, 3, 5, 10, 25, 50, and 100-year return periods modeled from GEVr

and GP distribution for tide gauges in the Mid-Atlantic region.

Station 1.1-year 3-year 5-year 10-year 25-year 50-year 100-year

PHL −0.13 (−0.02) −0.03 (0.01) −0.01 (0.02) 0.01 (0.06) 0.05 (0.13) 0.07 (0.20) 0.11 (0.30)

RDY −0.11 (−0.02) −0.03 (−0.01) −0.02 (−0.15) −0.01 (0.00) −0.01 (0.00) 0 (0.01) 0 (0.02)

LEW −0.17 (−0.03) −0.03 (0.01) 0 (0.01) 0.04 (0.00) 0.09 (−0.06) 0.14 (−0.13) 0.19 (−0.23)

CAP −0.12 (−0.02) −0.03 (0.01) −0.01 (0.04) 0.02 (0.11) 0.07 (0.27) 0.12 (0.47) 0.17 (0.57)

ATL −0.16 (−0.02) −0.03 (0.00) −0.01 (0.02) 0 (0.05) 0.01 (0.12) 0.02 (0.20) 0.03 (0.30)

BAL −0.11 (−0.02) −0.02 (−0.03) −0.02 (−0.04) −0.03 (−0.08) −0.06 (−0.17) −0.10 (−0.28) −0.15 (−0.44)

ANN −0.11 (−0.02) −0.03 (−0.01) −0.02 (0.00) −0.01 (0.02) 0 (0.05) 0.02 (0.05) 0.04 (−0.12)

CAM −0.11 (−0.02) −0.02 (0.01) −0.01 (0.02) 0.01 (0.05) 0.03 (0.09) 0.05 (0.14) 0.07 (0.21)

LWS −0.10 (−0.02) −0.02 (−0.01) −0.01 (−0.01) −0.01 (−0.02) −0.01 (−0.04) −0.01 (−0.07) −0.01 (−0.12)

KIP −0.14 (−0.02) −0.03 (0.01) −0.01 (0.03) 0.01 (0.06) 0.05 (0.13) 0.09 (0.21) 0.13 (0.31)

SEW −0.17 (−0.02) −0.04 (0.00) −0.02 (0.01) 0 (0.04) 0.03 (0.10) 0.05 (0.18) 0.08 (0.26)

WAC −0.13 (−0.02) −0.03 (−0.11) −0.03 (−0.22) −0.05 (−0.13) −0.10 (−0.26) −0.15 (−0.45) −0.20 (−0.87)

Negative values mean GP estimates are greater than GEVr estimates.

most common traditional EVA approaches. Although skew surge
is arguably one of the best and simplest measures of the
meteorological drivers of coastal flooding, as it is the portion
of flood depth above the high tide level, its wider use in
literature has only recently gained attention. This work was
done strictly through empirical data (rather than using simulated
events or scenario-based projections) over the past 40 years
and statistically analyzed through stationary EVA on detrended
skew surges. Observational data showed minimal trends over
this time period, hence results from this study should not be
appreciably different than non-stationary EVA that allows for
temporally varying or multivariable dependent location and scale
parameters. To test the robustness of the methods, the POT/GP

approach presented here was applied to max TWL and resulting
return levels compared against those found in U. S. Army Corps
of Engineers (2014), who performed a similar EVA using longer
time periods. Seven tide gauges were analyzed in both studies:
LEW, CAP, ATL, BAL, ANN, CAM, and SEW. Although they
used different thresholds, detrending methods, and reference
periods, the general spatial and temporal trends were consistent
between the two studies, including the intervals between the 50-
year and 100-year RLs. Largest differences were found for longer
return periods at BAL and ANN, sites that have experienced
extreme coastal flooding outliers (Callahan et al., 2021b).

Due to the approximate independence of skew surge to
SLR and tidal phase (i.e., likely minor influences of tide-surge
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FIGURE 6 | Estimated return levels (solid line) and 90% confidence intervals (dotted line) using the BM/GEVr (red line) and POT/GP (blue line) approaches.

interactions at our sites), extreme return levels can reasonably be
linearly added to future SLR scenarios as a first approximation
for planning (Delaware Flood AvoidanceWorkgroup (DE FAW),
2016; Federal Emergency Management Agency (FEMA), 2016).
For example, if a structure is designed to withstand the 50-
year flood event, the 50-year return levels can be added
to the expected high tide (either the MHWW or Highest
Astronomical Tide datum) under an appropriate SLR planning
scenario. It should be noted that skew surge computed in this
study includes contributions from other aspects associated with
extreme flooding events, such as nearby river discharge and
wave setup, which ultimately likely benefits many long-term
planning activities. As well, trends in skew surge were minor
and mean values were within a few centimeters of zero over
1980–2019 (Table 2), however, an adjustment to skew surge
RLs due to detrending could be performed. Care is warranted
when making linear adjustments too far into the future due
to the expected exponential increase in SLR and uncertainty
in future extreme storm conditions along the Mid-Atlantic
(Callahan et al., 2017, 2021b).

Largest return levels across most return periods occur within
the bay boundaries in the lower regions, and not in the upper
regions of the bays and ocean coast sites that typically show
higher surges and TWLs. Specially, LEW and SEW gauges,
both located on the southwest side of the mouth of each bay,

consistently show the largest RLs throughout the region. One
explanation is that many large coastal flood events are associated
with ETCs, often as traditional nor’easters. For these storms, the
low-pressure center off the coast brings strong northeast winds,
which drives enhanced surges into the bays through Ekman
transport as well as direct winds piling up water on the southwest
sides of the lower bays. This would be most effective in the
lower Delaware Bay, where the width of the Bay reaches 45 km.
The upper Delaware Bay, although it experiences large tidal
ranges and increased surges (due to conical shape of coastline
and from the increased volume of water entering the bay from
southeasterly to easterly winds), may not experience the worst
impacts from the most extreme storm events and may actually
see decreases in surges from northerly winds that also occur
during nor’easters. The upper Chesapeake Bay does not exhibit
the same high TWL, MHHW, or surges as in the upper Delaware
Bay (primarily due to the overall size, shape, and depth of the
Chesapeake Bay), however, extreme skew surge RLs in both upper
regions are comparable to each other. This supports results in
Callahan et al. (2021a), which found the upper bays were highly
correlated with each other from TC-caused skew surges, more so
than with their respective lower bay regions. TCs can account
for close to 40–60% of the largest (top 10) coastal flooding
events in the Mid-Atlantic, with smaller relative percentages over
larger number of events (Booth et al., 2016; Callahan et al.,
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2021b). In particular for the upper Chesapeake Bay, Hurricane
Isabel in 2003 caused extreme coastal flooding compared to
other events, directly influencing higher return period RLs and
their uncertainties.

RLs tend to be at a minimum within each bay closer to the
central regions, CAM and LWS in the Chesapeake and RDY
in the Delaware Bays. These areas have the lowest mean skew
surges throughout the region and typically do not experience
the worst wind-driven impacts from coastal storms. Likewise,
these areas also exhibit the smallest uncertainties throughout the
region across many return periods.

A secondary focus of this study is to provide insight into
the two most common approaches of stationary EVA applied to
Mid-Atlantic skew surge. To that end, the GEVr distribution was
combined with the BM approach to address the small sample
size of the traditional annual max BM/GEV approach, and a
standardized method for selecting optimum r and threshold was
incorporated. The use of GEVr increases the robustness of the
model fit and puts the number of data points more comparable
to the POT/GP approach, however, there are some disadvantages
of using a BM approach. Large surge events could be missed, for
example, if an individual year hasmoremajor coastal flood events
than the selected optimum r (i.e., false positives). At the other
end, non-extreme surge events could be included, for example,
if an individual year has less major coastal flood events than the
selected optimum r, introducing bias from the parent distribution
(i.e., false negatives). Use of the POT/GP approach circumvents
these issues as it is irrespective of time, solely focused on the
upper tail of the parent distribution. A potential trade-off is if
the majority of extreme events occur toward either end of the
study time period, direct interpretation of annual return levels
from the mean number of events per year is more difficult. From
review of the data used in the current study, clustering of major
skew surge events occurring on either end of the time period was
not present.

The choice of optimum r or threshold is a tricky problem
to address. It is usually a subjective process, including graphical
and numerical diagnostic information, and choosing among
multiple appropriate candidates. The current study incorporates
a standardized methodology of sequential hypothesis texting
that can be applied to all sites simultaneously while allowing
for variable r/threshold selection per site. Although stopping
rules and goodness of for tests are still subjective within
this methodology, they are data-driven, based on statistical
results from Bader et al. (2017, 2018). Choice of stopping
rules influences the number of data points (r-largest orders
or threshold exceedances), and hence, directly influence the
uncertainty in model parameters. Uncertainty in RLs do not
consistently show strong dependence on the number of peaks
included in the model fit. This potential relationship of RL
uncertainty and optimum r/threshold should be explored further
in future work.

Changes in storm frequency and intensity (“storminess”),
either observed or projected due to climate change, were
not addressed in this study. As stated above, skew surge is
closely related to the meteorological characteristics driving
the flooding and relatively independent of SLR or tides.

Trends in skew surge are therefore influenced by oscillations
and trends in oceanic-atmospheric circulation patterns that
support enhanced cyclogenesis or steer storms along the coast.
Common teleconnections associated with the frequency or
magnitude of surges in theMid-Atlantic region include the North
Atlantic Oscillation, Pacific-North American oscillation, El
Nino/Southern Oscillation, and AtlanticMeridional Overturning
Circulation, several of which have been included as covariates
in non-stationary EVA or joint-probability models of surges in
recent years (Ezer et al., 2013; Sweet et al., 2014; Hamlington
et al., 2015; Wahl and Chambers, 2015; Kopp et al., 2019; Little
et al., 2019; Rashid Md et al., 2019). The 40-year time period of
the current study is long enough to capture several oscillations
of many of these teleconnections, essentially averaging out
their influence. Extreme RLs then can be viewed as based on
relative average synoptic conditions, however, the probability
of occurrence of an extreme surge event in any single year is
dependent upon the presence and strength of teleconnection
patterns, and assessment should be performed as near to the year
in question as possible.

Other aspects of this study could have influenced extreme
surge estimates. Most notably is the length of the data record,
as is usually the case in EVA. Although there exists general
agreement with results in U. S. Army Corps of Engineers (2014),
40 years of data to estimate 100-year RL is not ideal. Comparing
EVA results on skew surge using the methods presented in the
current study on a subset of gauges with much longer records,
perhaps one gauge per sub-bay region, could offer insight into the
robustness of the current study statistical results. Additionally,
the set of 44 constituents used in the HA computation of the
predicted tide may not capture all the tidal oscillations present at
every site, thereby impacting the magnitude of skew surge (albeit
these changes likely would be minimal). The choice of 30 hours
was subjective and may not be optimum at all sites to separate
individual skew surge events, although it is rare for a single storm
event to reach extreme surge levels multiple times separated by
two or more high tides.

CONCLUSION

Understanding extreme events is important because of their
potential for disproportionate damage and threat to public
health, which will aid in mid- to long-term planning of many
coastal communities and critical ecosystems along their shores.
Across most of the return periods, the largest return levels occur
at LEW and SEW, which are within the bay boundaries in
the southwest side of the lower regions of their respective bay.
Likewise, minimum return levels occur near the central regions
of each bay, at RDY and LWS. This may seem counterintuitive
for the Delaware Bay where the upper bay (PHL) experiences
high water levels and tidal ranges but is consistent with wind and
ocean current patterns for offshore storms in this region.

Determination of which approach is “best” for modeling
extreme skew surge events in the Mid-Atlantic is not a goal of the
current study. Nevertheless, differences between the approaches
are highlighted and some general recommendations can bemade.
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Overall, both approaches provide similar results. Confidence
in model parameters is good and consistent across all sites
between both approaches, with narrow confidence intervals for
the location and scale parameters. Confidence is less for shape
parameter but is generally the same for both approaches. Not
many differences in magnitude of RLs exist, especially for 3-year
to 100-year return periods, which helps justify comparisons of
extreme levels of surge among previous EVA studies in this region
(at least for skew surge).

For the 1.1-year return period, the POT/GP approach
provides more consistent values in respect to other return
periods across both bays. This is likely due to the effects of
estimating RLs from the GEVr distribution close to 1-year. For
the Delaware Bay at longer return periods, the POT/GP also
seems to perform well (lower uncertainty) at most sites and
therefore could be used at all return periods up to 100 years.
This finding is supported by U. S. Army Corps of Engineers
(2014) statements that traditional BM/GEV approach tends to
overestimate and have larger uncertainties when compared to
POT/GP. Recommendations are more mixed for the Chesapeake
Bay for return periods at 3-year and above. Results at ANN
and LWS are nearly identical for both approaches. For KIP and
SEW, sites in the lower Chesapeake Bay, lower uncertainties
and slightly lower RLs tend toward the POT/GP approach.
Conversely, BAL (upper region) and WAC (ocean coast) tend
toward the use of the BM/GEVr approach.
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Extreme storm surges can overwhelm many coastal flooding
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communities, public infrastructure, and natural ecosystems,
particularly in the Mid-Atlantic region. However, by definition,
extreme events are rare and difficult to model due to small
sample sizes. Results from this study provide estimates of
extreme skew surge, a less often studied but robust measure
of the meteorological component of coastal flood levels, for
return periods of 1.1 to 100 years. This study also aims to
increase understanding and reliability of projections of extreme
water levels using methods commonly found in the literature
and ultimately help in long-term planning of mitigation and
implementation of adaptation measures.
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