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Editorial on the Research Topic

Intelligence and Safety for Humanoid Robots: Design, Control, and Applications

Humanoid robots attract growing research interests from different communities, both as tools
for artificial intelligence research and neurocognitive interaction assessment, and as enabling
technology with high societal impacts as personal robots for health, education, and entertainment.
These robots, modeled on the basis of the embodiment of neural systems in software and hardware
devices, are characterized by a high number of degrees of freedom, complex end effectors, and
locomotion mechanisms on the hardware side. On the control side, they are characterized by the
intrinsic and complex variety of their behavioral skills that are learned (imitation, reinforcement,
statistical), for instance, learning-by-demonstration, data-driven approaches to humanoid arm
programming, and the most recent AI-based approaches to manipulation and locomotion control.

Targeting at co-existing or physically interacting with humans, both intelligence and safety are
of prominent importance for service-oriented humanoid robots, corresponding to the software
and hardware levels, respectively. There has been recent progress in both areas, such as the quick
emergence of learning-based artificial intelligence and soft robotics, bringing paradigm changes to
brain-inspired humanoid design, control, and applications.

The Research Topic “Intelligence and Safety for Humanoid Robots: Design, Control, and
Applications” includes 11 high-quality manuscripts that offer technological and methodological
advances, as well as new features and approaches to robots.

Zhu et al. explored the challenging situation where robot grasping easily fails, and proposed a
hybrid policy by combining visual cues and proprioception of the gripper for the effective failure
detection and recovery in grasping. Particularly, they validated their system using a proprioceptive
self-developed soft robotic gripper that is capable of contact sensing.

By investigating the fact that soft actuators usually fall short of motion accuracy and load
capacity, or need large-size, bulky compressors, due to the limitations of materials and structures,
Lin et al. developed a self-sensing vacuum soft actuation structure that acquires good balance
among precision, output force, and actuation pressure.

Considering the huge demands for elderly-serving devices, especially for those with mobility
impairment, Zhao et al. designed a novel smart robotic walker that supports multiple modes of
interactions through voice, gait, or haptic touch, and allows intelligent control via learning-based
methods to achieve mobility safety.

To improve the fast and stable walking ability of a humanoid robot, Tao et al. proposed a
gait optimization method based on a parallel comprehensive learning particle swarm optimizer.
Experimental results confirmed that the method achieved a quickly optimal solution, and the
optimized humanoid robot possessed a fast and steady gait and flexible steering ability.
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To enable robots to execute pre-defined tasks based on simple
and direct and explicit language instructions, Li et al. developed a
framework that includes a language semantics module to extract
the keywords, a visual object recognition module to identify
the objects, and a similarity computation algorithm to infer the
intention based on the given task.

Due to the surge in demand for data, computing resources,
and network infrastructure, a scalable architecture was developed
by Luo et al. to optimize the image processing efficiency and
response rate of the robot’s vision capabilities. The implemented
Rinegan extension can improve the effectiveness and efficiency of
image processing.

With the high demand on robot communication, Ge et al.
proposed a traffic classification framework to effectively classify
encrypted network traffic using a classification network structure
combining a convolution neural network and long short-term
memory network capturing traffic time and space characteristics.
Experimental results demonstrate that the network can
classify encrypted traffic and does not require manual
feature extraction.

Peng et al. investigated the challenging situation of the
limited number of wild images that are available for robotics
to reconstruct 3D faces, and developed an accurate geometrical
consistency modeling method based on B-spline parameter
domain. Experimental results demonstrate the effectiveness of
their method even in a challenging scenario, e.g., limited
number of images with different head poses, illuminations,
and expressions.

For the agency of a public opinion early warning
task, an innovative cascade virus prediction model
called CasWarn was proposed by Gao et al., which can
be quickly deployed in intelligent agents to effectively
predict the virality of public opinion information in
different industries.

To exploit the importance of relation representation learning
for knowledge graphs, an encoder-decoder model, which
achieves better link prediction performance was proposed by
Song et al. The core procedure of it is to embed the interaction
between entities and relationships, and add a gate mechanism to
control the attention mechanism.

Under the trend to integrate the ideas in game theory
into the research of multi-robot systems, Jin et al. proposed a
team-competition model to solve a dynamic multi-robot task
allocation problem. Experimental results under many different
cases demonstrate the effectiveness of their method.
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A Smart Robotic Walker With
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The elderly population has rapidly increased in past years, bringing huge demands for

elderly serving devices, especially for those with mobility impairment. Present assistant

walkers designed for elderly users are primitive with limited user interactivity and

intelligence. We propose a novel smart robotic walker that targets a convenient-to-use

indoor walking aid for the elderly. The walker supports multiple modes of interactions

through voice, gait or haptic touch, and allows intelligent control via learning-based

methods to achieve mobility safety. Our design enables a flexible, initiative and reliable

walker due to the following: (1) we take a hybrid approach by combining the conventional

mobile robotic platform with the existing rollator design, to achieve a novel robotic system

that fulfills expected functionalities; (2) our walker tracks users in front by detecting

lower limb gait, while providing close-proximity walking safety support; (3) our walker

can detect human intentions and predict emergency events, e.g., falling, by monitoring

force pressure on a specially designed soft-robotic interface on the handle; (4) our walker

performs reinforcement learning-based sound source localization to locate and navigate

to the user based on his/her voice signals. Experiment results demonstrate the sturdy

mechanical structure, the reliability of multiple novel interactions, and the efficiency of

the intelligent control algorithms implemented. The demonstration video is available at:

https://sites.google.com/view/smart-walker-hku.

Keywords: elderly safety, human-robot interaction, intelligent control, falling protection, soft-robotic interface,

coaxial front following, sound source localization

1. INTRODUCTION

Over the last few decades, the elderly population has rapidly increased globally and is expected
to exceed 2 billion by 2050 (WHO, 2018). While constrained physical and cognitive abilities leave
many older adults dependent, most of them prefer to continue living in their homes rather than
moving into nursing homes, because the opportunity to stay in a familiar home environment offers
them greater privacy and autonomy (Garçon et al., 2016).

For patients with Parkinson’s disease, movement disorder can severely disrupt the performance
of daily activities and increase the risk of falling. Despite various existing walkers are owned by

6

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.575889
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.575889&domain=pdf&date_stamp=2020-10-22
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wangz@sustech.edu.cn
mailto:cwu@cs.hku.hk
https://doi.org/10.3389/fnbot.2020.575889
https://www.frontiersin.org/articles/10.3389/fnbot.2020.575889/full
https://sites.google.com/view/smart-walker-hku


Zhao et al. Smart Elderly Walker

seniors, reported statistics show that 33% of people over 60 years
fell at least once (Luz et al., 2017). We argue that intelligence is
essential for an elderly walker to detect abnormal user behaviors
and provide timely safety support, since primitive assistance
devices, such as rollators and walkers, are much likely to
fail (Bertrand et al., 2017). Exoskeleton (Tucker et al., 2019) is
another approach with multiple robotic joints and links worn
onto the user body, effective but less practical for daily wearing
by older persons. Moreover, rather than merely using remote
button (Glover, 2003), voice (Gharieb, 2006), or gesture (Gleeson
et al., 2013) to achieve user interaction, older persons need
various modes of human-robot interaction for convenience and
efficiency. These motivate us to seek a solution of equipping
the robotic walker with sufficient intelligence and interaction to
guarantee mobility safety of older users.

In this paper, we propose a novel smart robotic walker that
targets a convenient-to-use indoor walking safety aid for the
elderly. Present-day assistant devices require attentive control
of the user while moving (Di et al., 2015; Xu et al., 2018),
which could raise safety issues for many elderly people with
executive dysfunction or dementia. Although a few studies have
investigated the task enabling the walker to follow behind the
user (Moustris and Tzafestas, 2016), the problem is simplified
since the human intention is known a posteriori by inspection
of his/her trajectory. We take the approach of adopting a co-
axial differential drive with sufficient braking force and enabling
our walker to monitor and predict the movement trend of the
user by detecting gait posture, our walker can then automatically
move in front of the user, providing mobility support. With the
walker moving in the front, we can enforce the elderly walking
in a forward-learning position, preventing retropulsion falls,
while our walker can support propulsion falls; with auto moving
functionality, our walker alleviates the older users from attentive
control of the walker.

As a service robot for the older users, the user interface
(UI) provides the fundamental information acquisition for any
intelligence and human-robot interaction. The vast majority of
existing service robots often choose a touch-screen panel for
touch input (Hans et al., 2002; Graf, 2009). However, there
are severe limitations for touch-screen UI, from not being able
to provide user motion data, to only detecting user command
with a pre-defined set of items. Given that soft robotics has
become a new trend to design and fabricate robots from a very
distinctive approach than conventional robotics (Yi et al., 2018),
we propose to use a soft robotic layer to be the user interface
in constructing the handles due to its inherent safety (lack of
rigid components) (Chen et al., 2018) and intelligence add-ons.
To measure user intention and detect emergency event (e.g.,
falling) in a timely manner, we embed a sensor network inside
the soft chamber to monitor force pressure on the handles. After
conditioning and asynchronous filtering of the pressure data, our
walker generates the appropriate output for system execution to
meet user demand or provide safety support.

We also consider the very likely scenario that the elderly
user and the walker are located in different locations in a
household (e.g., the walker being charged and the user in bed).
The autonomous mobility of an elderly walker through user

voice summoning becomes essential to provide ready assistance
to users with mobility impairment, which is often neglected in
existing design (Mukai et al., 2010; Xu et al., 2018). To localize
the sound source for autonomous mobility, existing methods
have used Time Difference of Arrival (TDOA) (Valin et al., 2003)
or deep neural network (DNN) (Ma et al., 2018), which are
often ineffective in long distance or a multi-room environment.
Recently, reinforcement learning (RL) has been widely applied in
robotics. The mobility system based on RL (Zhang et al., 2015),
for the first time, learns robotic manipulator motion control
solely based on visual perception. Tai et al. (2017) learn to
navigate by training a policy end-to-end, but the solution is only
validated on a robotic platform with low degrees of freedom. A
novel DRL approach (Choi et al., 2019) with LSTM embedded is
proposed to learn efficient navigation in a complex environment.
For multi-robot motion control, a decentralized RL model is
presented to learn a sensor-level collision avoidance policy in
multi-robot systems (Fan et al., 2020). Domains like UAVs (Hu
et al., 2020; Wan et al., 2020) and underwater vehicles (Carlucho
et al., 2018; Chu et al., 2020) have also exploited RL for motion
control for various purposes, e.g., robust flying, path planning
and remote surveillance. In our work, we present a novel
approach of exploiting mobility of the walker and RL techniques
for efficient sound source localization (SSL).

We conduct extensive experiments to demonstrate the
efficiency of our smart walker for elderly mobility safety in the
following aspects:

(1) A sturdy mechanical structure that fulfills expected
functionalities and supports a user of average weight in
home scenarios or outdoor sites with slopes ≤ 16◦, which
outperforms the safety requirement of the related ISO
standard (ISO, 2003).

(2) Ability to track the user in the front to provide close-
proximity walking safety support and turn according to
user’s turning intention with small error, through detecting
lower limb gait of the user.

(3) Soft robotic user interface with a finite-state machine
(FSM) model to detect user intention and emergency event
effectively, ensuring timely safety protection.

(4) Autonomous mobility through RL to locate the user (sound
source) and navigate to the user, in a multi-room household
with environmental noises, reverberations, and long distance
(over 10 m).

2. MATERIALS AND METHODS

2.1. System Overview
An overview of the proposed smart robotic walker with novel
functionalities is shown in Figure 1. Our walker consists of
a sturdy body frame with sensors deployed at appropriate
positions, a motion system with differential driver and
emergency brake, and a soft robotic interface with haptic
monitor. A user staying in a different room from where the
walker is can summon it to come close with the help of RL-based
SSL technique, and the brake will be activated to prevent
slipping once user intention of entering the front-following
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FIGURE 1 | System overview of the smart robotic walker.

status (AKA user walking stage) is detected by the soft interface;
then the walker enters front-following walking-assistance status,
when a DNN-based method predicts movement of the user
to achieve smooth front following with close-proximity safety
protection. The force pressure applied on the soft interface
is always monitored and analyzed. If an emergency event
is detected (e.g., falling), the brake will be activated, and
the sturdy body frame and the soft interface will serve as a
safety support.

In this section, we will briefly describe our objectives of
hardware design and the technique roadmap of software control
in order to achieve the proposed functionalities.

2.1.1. Hardware: Smart Walker With Soft Sensing

Handle
The hardware design of our smart walker takes cues from both
the conventionalmobile robotic platform and traditional rollator.
Several requirements are met in terms of structural stability,
human-robot formation and human-robot interaction.

2.1.1.1. Structural stability
Designing a mechanical structure that is sturdy, strong, and
agile enough to provide the safety support for the human user,
is a fundamental requirement of the walker. Loading capacity
should be sufficient to withstand a human user of≤85 kg leaning
against the top handle, with minimum tipping or sliding. To
allow the device suitable for home usage, the maximum width
of the walker should be no more than 700 mm, to ensure agility
when navigating through narrow places.

2.1.1.2. Mobility system
Proposed functionalities require the walker to freely turn into
any direction at any time. The walker should achieve zero
turning radius or small radius turning in order to navigate within
confined spaces. The standard solutions to omni-turning, i.e.,
omni-wheels or Mecanum wheels, have very limited rigidity
against tipping disturbances. Besides, holonomic drive is not
required as elders rarely walk sideways. In this work, to combine
multi-terrain adaptability and standing support, a differential
drive is ideal as it is the most widely used mechanism for
moving robots and the most effective in terms of control
strategy. To further increase safety, a brake mechanism that
can respond to emergency in a timely manner is implemented
as well.

2.1.1.3. Sensing network
The platform is equipped with a sensing network that enables the
walker to perceive and interact with users. Sensing the status of
the walker and the user are crucial for intelligent control to ensure
user’s safety and maximize system performance. This requires
equipped sensors to achieve precision, timeliness, and robustness
when dealing with various situations. We use optical, thermal,
force, and vocal sensors to create a multi-modal sensing network,
achieving effective human-robot interaction.

As the most direct way of haptic interaction, we adopt a novel
soft-robotic technology (Chowdhary et al., 2019) to construct
user interface on the handles for better and safer interacting
experience comparing to the existing products.The handles are
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designed to be soft with certain elasticity to withstand falling
shock and provide comfortable touch. With the physical data
(force, pressure, etc.) collected by high-sensitivity sensors inside
the soft chamber, the system can acquire some useful information
about the user all the time.

2.1.2. Software: Intelligent Control
We adopt learning-based methods to achieve intelligent control
of the walker, based on signals obtained during human-robot
interactions.

2.1.2.1. Soft haptic monitor
The soft interface on handles can detect user’s intention and
status. With pressure data collected from embedded sensors,
we design a finite-state machine (FSM) model to analyze the
temporal and spatial characteristics of the pressure data. Based
on these characteristics, the intelligent framework is able to infer
current status of the user and produce corresponding system
actions to support the user in case of potential emergency (e.g.,
teetering, falling). The touch history of the handles can also
be recorded as less privacy-sensitive health data for healthcare
personnel to inspect.

2.1.2.2. Close-proximity coaxial front following
To achieve user tracking from the front, the gait information is
collected by an infrared temperature sensor and a lidar sensor.
We train a neural network (NN) model to learn the intention of
the user from time-serial gait data. After obtaining the intention
of the user, we compute a target position of the walker to ensure
that one foot of the user is on the rear-wheel axis of the walker and
the forward direction of the walker is parallel with the orientation
of the foot. Such close-proximity and coaxiality between the
walker and the user provide timely protection when the user is
walking with the walker.

2.1.2.3. RL-based SSL
To achieve autonomous mobility in case that the walker
and the user are located at different places (e.g., two rooms
in a household), voice signals are monitored by deployed
microphone array in a low-power state. Time-delay features of
each microphone pair are extracted to estimate the direction
of the sound source, and then the walker can move toward
it, when the user summons the walker to come close with
certain keywords. Before usage, we first train a NN model
using supervised learning, on dataset collected from GSound
simulator (Schissler and Manocha, 2011). Trained NN model is
then fine-tuned through online RL, in daily usage of the walker.
Note that during autonomous movement of the walker, once
haptic touch is detected by the soft interface (i.e., when the walker
reaches the user), the walker can provide sturdy support for the
user to recover from sitting or lying status (if he/she has fallen on
the floor).

2.2. Hardware Design
Hardware structure of the proposed smart robotic walker
prototype is shown in Figure 2, consisting of the chassis and the
upper handle, with basic parameters given in Table 1.

2.2.1. Body Frame and Actuation
The design of the body frame takes many safety issues into
consideration. For static and dynamic stability, weight is
concentrated low into the chassis. The resulting center of gravity
(CG) height HCG as estimated in Solidworks (Dassault Systems
S.A.) is 156 mm, i.e., 18.8% of the walker’s total height. The
maximum tilt angle8max before the CG goes over the supporting
point (assuming the CG is located at the center point in the lateral
direction) can then be calculated as:

8max = arctan
l/2

HCG

where l = 540 mm is the length of wheel base. Calculated 8max is
approximately 60◦, which is significantly larger than the tilt angle
that human can incur before losing balance. Thus, before the tilt
angle of walker reaches 8max, walker’s weight (37 kg) would help
elderly users resume to an upright position.

The walker protects the user from his/her front and both
lateral sides to prevent falling, forming a “C” shape from the
top view (Figure 2C). To maximize the space for the user to
walk within the range of support (green area in Figure 2C) while
constraining the maximum length of the walker, two wheel-hub
motors (Zhongling Technology Ltd., China) are used as the rear
driving wheels due to their lateral compactness. This results in
providing a 420 × 436 mm walking space with the maximum
walker width of 660 mm.

Both wheels are equipped with individual emergency brakes,
modified from bike brakes, actuated by two individual linear
actuators with 0.4 s of lead time to maximum break force,
ensuring fast emergency response (Ahn et al., 2019).

2.2.2. Sensor Arrangement
To measure the movement of the walker, each wheel is
equipped with a high-precision rotary encoder (4,096 ticks per
revolution) and a wheel encoder odometer is implemented as
well. The odometer yields the position of the walker (x, y, δ)walker ,
where (x, y)walker indicates the position and δwalker indicates the
orientation of the walker in the global frame, and the moving
state (v,ω)walker , where v is the linear velocity andω is the angular
velocity of the walker, over time. An inertial measurement unit
(IMU) is used to correct the orientation as it uses magnetometer
to measure the yaw movement, which is more robust to dynamic
disturbance as compared to the odometer.

Multiple sensors are used to acquire user states in order to
achieve functions such as hand-free front following and SSL. The
lidar used for leg detection is placed lower than the user’s knees to
ensure a good leg separation result. It is mounted in the front at
a height of 410 mm, which is about the height of the upper calf of
humans. An IR thermometer which has a 120◦ field view is placed
at an angle that can cover most of the walking area and the user’s
front foot when walking. Four microphones are installed at the
top of the walker with fixed spacing between each other. This will
lead to different input signals at the microphones received from
the same sound source, helping the controller to locate the source.
All the readings from various sensors will be sent to a small form
factor PC (NUC, Intel Co.) for processing.
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FIGURE 2 | The overview of the smart walker: (A) Front view; (B) Rear view; (C) Top view; (D) Soft sensing handle; (E) Section view of the handle.

TABLE 1 | Basic parameters of the smart walker.

Parameter Value

Width * Length * Height 660 mm * 626 mm * 832 mm

Weight 37 kg

Minimum Turning Radius 622 mm

Speed 0–5.34 m/s

2.2.3. Soft Sensing Handle
We use a soft robotic layer to be the user interface when
constructing the handles (Figure 2D) as a safe and friendly
approach of interaction. In the core of a handle, the rigid base
made of acrylic board is used to transfer the load to the main
frame. The interior of the handle consists of multiple air pressure
sensing bellows connected with air pressure sensors (Figure 2E),
and sponge infills to provide a consistent handle surface. The
pressure sensors detect the normal air pressure inside the bellow
when the user is not holding the handle. When the user grabs
onto the handle, a sudden change in air pressure will be read

almost instantly through an MCU (Arduino Mega 2560). By
deciphering the air pressure signal, the system calculates whether
the user is or is not holding, or how firm the grip is. The
handle is covered with a layer of artificial leather providing
comfortable texture.

From each pressure bellow we can extract the information of
pressure changes and the rate of changes. To enrich the sensing
capability of the handle, the slight rigidity of the covering leather
acts as a linkage between separated bellows. In this case, even
when a force is not directly exerted on a bellow, it will also
cause a less significant pressure change in the adjacent bellows
(Figure 2E). Hence, one more dimension of signal, which is the
position of the exerted force, is added to the sensing network. The
reliability of this prototype handle will be tested in section 3.

2.3. Software Design
We next present the detailed design of software techniques to
achieve intelligent control: (i) soft haptic monitor to recognize
pressure pattern, (ii) close-proximity front following, and (iii)
sound source localization through a reinforcement learning
(RL) model.
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2.3.1. Soft Haptic Monitor
Pressure data collected by sensors on the soft haptic handle with
temporal and spatial characteristics can be analyzed to monitor
the state of the user.

2.3.1.1. Position adjustment
After the walker navigates to proximity of the user (through
SSL), the walker needs to know how itself is positioned against
the user, and adjusts itself to be well-positioned as the user’s
walking support, before it enters the walking-support status (i.e.,
starting close-proximity front following of the user). Figure 3A
illustrates the relative positioning of the user and the walker
when the walker has moved up to the user through SSL. The
user is likely to be in the Expected Zone because the walker
keeps heading to the sound source. Even if the user is not in the
Expected Zone, he/she can call the walker through voice control
and the walker will adjust its direction again and eventually the
user will be in the Expected Zone. The user can press his/her
nearest part on the soft haptic handle to let the walker know
where he/she is. Taking the midpoint of the line connecting the
two sensors at the two ends of the handle as the origin O and the
connection line as the y axis, a rectangular coordinate system is
established. The connection line between the origin O and the
center of a sensor has an angle α with the y axis. According
to α, the walker will rotate at a calculated angle of β so that
the walker and the user will be facing the same direction. The
rotation angle β and the rotation direction are calculated as
follows:

β =

{

π
2 + α right, 0 < α < π

2 ,
3π
2 − α left, π

2 6 α < π .

2.3.1.2. State monitor and falling protection
When the user is operating the walker, the soft haptic handle
will monitor the state of the user. Different states are related to
different intentions of the user. As an interface, the soft haptic
handle collects the pressure data to infer the states of the user.
For example, when there is a fall, there will be an abnormally
high pressure or a rapid pressure change. Also, multiple sensors
may be pressed since the user tends to lean on the handle when
he/she falls. To detect user’s intention and falling, the pressure
data from different sensors of the soft haptic handle are analyzed
independently or collectively: independent analysis concerns the
pressure on one specific sensor, while the collective analysis
focuses on comparing the pressure and changes of pressure on
different sensors.

(1) Abnormal Maximum Pressure: One case of independent
sensor analysis is that we calculate the maximum pressure
value Pmax of all pressure values of all sensors at the
same time. According to Pmax, the motor brake and the
mechanical brake will be activated differently. The former
can be activated instantly but is not sturdy enough to support
the user, while the latter needs time to be fully activated
but can provide more satisfying braking force. Especially, if
Pmax is normal (e.g., Pmax is below the pressure generated
by the user when he/she is grabbing the handle but is not

FIGURE 3 | (A) Walker position adjustment upon reaching user after SSL; (B) FSM of the soft haptic monitor.
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leaning on it), the user is in a safe situation and the walker
operates normally. When Pmax becomes higher but still in an
acceptable range, the user is at the boundary state between
a normal situation and an accident, e.g., the case when
the user stops and leans a little on the walker for a rest.
In this range the user can recover to safe situation easily
just by straighten his/her body without pushing the walker
hard. In such a situation, the motor brake will be activated
and the mechanical brake will change to a readiness state.
The threshold that differentiates the normal range and the
acceptable range is about 5% of user weight. If the value
of Pmax falls and becomes in the normal range again, the
motor brake will be released and the mechanical brake will
cancel the readiness state; the walker can move again. On the
other hand, if Pmax keeps raising and becomes unacceptable,
representing the user leans more heavily on the walker, the
mechanical brake will be fully activated and the walker will be
locked to offer stable support for the user; the walker will not
be unlocked until the soft haptic handle identifies an unlock
intention from the user (to be detailed later). The threshold
that differentiates the acceptable range and the unacceptable
range is about 8.5% of user weight. The two thresholds can
be changed by the user within 2% of his/her weight for better
user experience. For privacy concern, user can choose one
of the preset levels of weight range for threshold calculation.
The preset levels consist of low weight (e.g., 40–55 kg),
medium weight (e.g., 55–70 kg), and high weight (e.g., 70–85
kg). We use the average weight of each level range to decide
the thresholds.

(2) Abnormal Pressure Change: Another independent analysis
situation focuses on the maximum change rate of R′max of all
pressure values of all sensors. For each sensor, the current
pressure value is used to minus the previous pressure value.
Then the difference is divided by the time in between, about
three sampling periods, to get all the change rates of all the
sensors. Among all these change rates, the maximum change
rate R′max is calculated. With R′max, the walker can detect
an accident and offer protection sooner. For example, in
cases of a stumble or a fall when the user is walking, the
change rate R′max is very large (regardless of Pmax’s value);
this is considered as an accident and both two brakes will
be activated immediately, and the walker will be locked. The
threshold for detecting the accident is about 15% of user
weight per second. The sudden change of pressure can be
detected within 0.2 s.

(3) Multiple Sensors Simultaneously Pressed: One collective
analysis situation is that when too many sensors are being
pressed at the same time, a falling tendency can be detected.
Among the pressed sensors, if there are only sensors from
the left and right sides of the soft handle, the user is inferred
to be holding the two sides; if there are sensors from the
front part of the soft haptic handle triggered, the user is
assumed to lean on the front part of the handle and need
support from the walker. In this situation, both brakes of
the walker should be fully activated and the walker should
be locked.

(4) Pressure Change Comparison: Another collective analysis
situation focuses on temporal characteristics of pressed
sensors. By comparing different pressure changes on
different sensors, we can detect the strength and direction
of the force applied by the user to the soft haptic handle.
There are different cases: (a) When the two brakes are fully
activated, if the user grabs the handle for recovery from fallen
or sitting status, the direction and the strength of the force
applied on the handle changes over time. If the change rates
and the time for pressure value reaching the peak of different
sensors are different or Pmax is very high, we infer that the
user needs support, and the two brakes will not be released.
(b) If the user gently puts his/her hands on the left and
right sides of the handle, the pressure data collected from
different sensors on the two sides vary a bit over time, while
the change rates and the time for reaching the peak will
be similar among the sensors because the direction of the
force remains unchanged and Pmax is also at an acceptable
level.We regard these characteristics as a signal of unlocking,
and the walker will be unlocked and the two brakes will be
released. (c) When the handle detects that the pressure of the
left side is a bit higher than that on the right side, the user
may want the walker to turn to the left. We will use such a
pattern to decide turning radius of the walker.

By analyzing these pressure data patterns, falling and other user
intentions can be recognized. Therefore, the walker can monitor
the state of the user and provide falling protection, or respond to
other user intentions.

2.3.1.3. The FSM of the soft haptic monitor
An FSM is embedded to control the working of the walker based
on user states, as shown in Figure 3B. There are three states:
unlocked state, locked state, and ready state. When the walker
is in the unlocked state, the motor brake and the mechanical
brake are released, and the walker is movable. When the Soft
Haptic Monitor detects an accident, such as in cases of an
unacceptable large maximum pressure Pmax, a sudden change
in the pressure, or multiple sensors are being pressed at the
same time, the motor brake and the mechanical brake will be
fully activated immediately and the walker will be in the locked
state. At this state, the walker will be stable enough to offer
support for the user, and will not respond to other signals except
the unlocking pressure pattern. The other signals include not
only those that activate the conversion from unlocked state to
locked state, but also the patterns that cannot be analyzed as
the unlocking pressure pattern such as the pressure pattern of
recovery from falling. When the unlocking pattern is detected,
the walker’s state changes from the locked state to the unlocked
state, when the two brakes will be released. When the walker is in
the unlocked state, if an abnormal but acceptable Pmax is detected,
the walker will be in the ready state: at this state, the motor brake
will be activated so the walker can not move; the mechanical
brake will be ready for further protection. If Pmax drops back to
a normal value, the walker will go back to the unlocked state; if
Pmax keeps rising and finally becomes unacceptable, the walker
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will enter the locked state. Since the mechanical brake is ready, it
will take less time for the mechanical brake to be fully activated.
Accidents like a sudden change in pressure and multiple sensors
pressed will also activate this conversion.

2.3.1.4. Speed control
As the interface of the walker, the soft haptic handle allows the
user to control the speed of the walker for effective walking
assistance. Five speed-levels are preset and the user can select
their preferred one by pressing two sensors on the handle. The
two sensors are the sensors at the end of the left and right sides of
the handle. One is used for acceleration and the other is used for
deceleration. For the safety of the user, if one button is pressed,
the walker will not respond to the other sensor, i.e., the walker will
only respond to one button at a time. If one button is pressed and
not released, the speed level of the walker will not keep changing.
When the user presses the speed control button, there will be a
unique peak of pressure value on that sensor while the pressure
on other sensors will be weak. Therefore, this pattern of pressure
data is different from other patterns and can be used while the
FSM is monitoring the state of the user.

2.3.2. Close-Proximity Front Following
The walker tracks the user in the front through an NN-
based intention detecting approach and generates movement
through building a virtual target position. See Figure 4A for
an illustration.

2.3.2.1. Sensor data processing
The IR sensor returns a 32 × 24 thermal image (see Figure 4B

as an example), which can be flattened to a temperature vector
Eu with dimension of 768. Compared with an RGB camera, a
low-resolution IR sensor as a visual sensor is less costly and
more privacy preserving. We normalize data in the temperature

vector Eu into image data in a vector Eg, where umin and umax

are the maximum value and the minimum value in this vector,
respectively:

g[i] =
u[i]− umin

umax − umin
.

Meanwhile, we identify the user leg positions in relation to the
walker using data from the lidar sensor. We set a baseline to be
the straight line connecting the two rear wheels of the walker, and
the origin as the midpoint of this baseline. The forward direction
is the positive x-axis, and the left direction is the positive y-axis.
In this way, we define a coordinate system relative to the origin
with the right-hand system, and calculate the coordinates of user
leg (x, y) relative to the walker as follows:

[

x
y

]

=

[

cos θwalker − sin θwalker
sin θwalker cos θwalker

] [

xleg − xwalker
yleg − ywalker

]

where (xobj, yobj) and θobj describe the coordinates and
orientation of user leg or the walker relative to the initial
starting position of the walker, respectively.

We distinguish the computed leg positions into two classes
using a k-means algorithm (Krishna and Murty, 1999), and use
the prior condition that the y value of the left foot is more than
that of the right foot to tell which class represents the left or right
foot. The image of the two feet and the leg positions relative to
the walker are output of sensor data processing.

2.3.2.2. Movement intention detection
Front following is essentially replacing the need of user pushing
the walker, such that the walker can move automatically
according to user’s movement intention.We design an NNmodel
to learn the relationship between user gait and user intention
using time-serial data.

FIGURE 4 | (A) Workflow of front following; (B) IR image frame; (C) gait samples with labels; (D) movement control of the walker.
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Each input sample to the NN is a sequence of 8 data points,
where each data point contains vector Eg and leg positions
(xleg , yleg) computed from the corresponding IR image. Each
sample is labeled with the respective movement according to the
user’s gait, out of 6 cases (as illustrated in Figure 4C):

(1) Left foot turns left, with left foot in the front 1© and right foot
at the back 8©;

(2) Left foot steps forward, with left foot in the front 2© and right
foot at the back 8©;

(3) Left foot turns right, with left foot in the front 3© and right
foot at the back 8©;

(4) Right foot turns left, with left foot at the back 7© and right
foot in the front 4©;

(5) Right foot steps forward, with left foot at the back 7© and
right foot in the front 5©;

(6) Right foot turns right, with left foot at the back 7© and right
foot in the front 6©.

In addition, for the straight-backward case, we can easily tell
whether the user is moving backward based on the lidar data, and
hence it is not included as one output class from the NN. We use
an NN consisting of two 512-unit hidden layers with ReLU as
the activation function. The output is the probability distribution
over the above six cases from a Softmax function.

2.3.2.3. Walker movement
Based on the leg positions (xleg , yleg) and inferred movement
intention from the NN, we then compute a virtual position that
the walker should move to, to achieve front following.

We use the turning radius r and a forward or backward
distance h to decide the moving trajectory (arc length L) and
the target position of the walker, as illustrated in Figure 4D.
Figure 4D demonstrates the rear wheels in the origin and in the
target position, respectively. The intersection of the extension of
the rear wheels is the turning center Oturning . The distance from
the center of rotation Oturning to the center of the walker O is the
radius of rotation r.

L =
θexp · π · r

180
θexp = arcsin(

h

r
)

l is the length of the driving wheel base; we ensure that there is
one foot on the baseline and the orientation of the foot is parallel
with the forward direction of the walker. There are three cases:

(a) When the NN output is case (1) or (6), the user is making
a left or right turn. The range of this turning radius r is l to
2 · l, as determined by the probability p corresponding to this
case: when the probability is large, the turning intention is
obvious, and the walker is given a relatively small turning
radius r; when the probability is relatively small but is still
higher than that of the forward case, the user’s intention is
to move forward with a turn, and the walker will be given
a relatively large turning radius r. When the turning center
corresponding to the turning radius r is on the left side of the
walk O, the turning radius r is positive; for symmetry, when
the turning center Oturning is on the right side of the center

of the walker O, turning radius r is negative. Therefore, there
are two cases of the turning radius:

r = ±(l · p+ l)

(b) When the inferred movement is (2), (5), or moving
backward, the turning radius r is positive infinity, i.e., r =
+∞.

(c) When the NN output is case (3) or (4), the user is marking a
sharp right or left turn. Generally, these two situations occur
after case (a) and are to further complete a sharp turning
process. Therefore, we set the turning radius to one half of
the walker width to provide a maximum rotation space. We

have two cases of the turning radius: r = ±
l

2
.

Due to differential drive control, two velocities vl and vr are
calculated to control the walker to move to the target position.
In practice, a walker is typically assigned with a linear velocity
v. The two velocities vl and vr of each of the rear wheels can be
calculated as follows:

vl = v−
v · l

2r
vr = v+

v · l

2r

2.3.3. RL-Based SSL
Our walker monitors audio signal received by a 4-channel
microphone array, and can be waked up by customized keywords
through a simple keyword spotting system. We choose 1 s of
raw audio as input signal. In particular, 40 MFCC features are
extracted from a frame of length 40 ms with a stride of 20 ms,
which gives 1960 (40×49) features for each 1-s audio clip. We
use Google speech commands dataset to train an NN model
with three hidden layers, each with 128 neurons, to classify
the incoming audio clips into one of the predefined words in
the dataset, along with the default class “silence” (i.e., no word
spoken) and “unknown” (i.e., word not in the dataset). Once
waked up, our walker performs SSL following an RL model as
follows (see Figure 5 for an overview of the workflow).

2.3.3.1. State space
We define the input state s of the RL model to be an m × c
matrix, where m is the total number of microphone pairs [e.g.,
m =

(4
2

)

if the walker is installed with four microphones],
and c is the length of the feature vector of one pair. The input
state indicates the time difference of arrival (TDOA) of sound
signals received at each pair of microphones. The generalized
cross correlation (GCC) of two sound signals is a measure of
similarity. To accurately calculate the TDOA from the received
signals, we firstly perform spectral subtraction (Martin, 1994) to
raw audios for the purpose of de-noise and then calculate the
GCC-Phase Transform (GCC-PHAT) (Knapp and Carter, 1976)
as follows:

GPHAT(f ) =
Xi(f )[Xj(f )]

∗

∣

∣Xi(f )[Xj(f )]∗
∣

∣

,

where f is a series of sound data after denoising, Xi(f ) denotes
the Fourier transformation of the signal of the ith microphone,
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FIGURE 5 | The workflow of sound source localization (SSL) with a series of pre-processing and a reinforcement learning (RL) model.

and []∗ represents the complex conjugate. Then we compute
the c-dimensional vector Esn in s as the c-dimensional subset
of GPHAT(f ), which indicates near-central part of a pair’s GCC
vector (Knapp and Carter, 1976). We empirically set c = 61 to
make Esn contain the most useful information of TDOA.

The objective of our SSL module is to output the Direction
of Arrival (DOA) of the sound source. Traditional DOA
estimation approaches such as the Azimuth Method (Wikipedia
contributors, 2020) are often unreliable under high reverberation
conditions (as in our scenario) and with complex structures
between microphones (as on our walker) (Xiao et al., 2015). We
enable the walker to learn the nonlinear mapping from the input
GCC features to the DOA output through RL.

2.3.3.2. Action space
After collecting state s, the controller selects a horizontal angle
(i.e., the DOA) as action a based on policy πγ (a|s), which is a
probability distribution over action space. The policy is produced
by a neural network with γ as the set of parameters. We use a
discrete action space including eight angles which are 45◦ apart:
0◦, 45◦, 90◦, . . . , 315◦.

In output layer of the policy NN, we mask invalid actions,
which points to a direction of obstacles within one meter from
the walker, by setting their probability to 0 in the probability
distribution. Then we re-scale the probabilities of all actions such
that the sum still equals 1 (Bao et al., 2019). The walker will then
move one meter toward the chosen direction. Note that, while
approaching the user, the infrared distance sensors deployed in
the front part of the walker will keep feeding distance data (to
objects ahead) to the control module. If the walker detects that
the user is 5–10 cm in front of it, the walker stops immediately to
avoid collision with the user.

2.3.3.3. Reward
We carefully design a reward to use in RL, addressing variability
of sound intensity and unknown location of the sound source.
Consider a home with one hall and K rooms. At the beginning,
the walker estimates the user to be in each room or hall with
an equal probability, which is the confidence on which room
(or hall) the sound source is located in. The walker updates its
confidence on each room k in every time step:

Belt+1(k) = ρ(zt+1, z
′
t+1) ∗ Belt(k),

where zt+1 is the vector of relative intensity collected at the
microphones during real usage, z′t+1 is a relative intensity vector
of simulated signals when putting sound source at the center of
room k in our GSound simulator (which emulates the impact of
reflection, diffraction and reverberation on sound propagation.),
and ρ denotes the Pearson Coefficient. By comparing the
similarity of received signals and simulated signals, the walker
accumulates probability on each room. Note that after every
update, we re-scale Bel(k)’s to make their sum remains to be 1.

Our reward functions are defined in four cases:

(1) When the walker is located in a different room from the
sound source, the reward should encourage the walker to
step out of the current room k:

rt = 1−
dk

∑

i∈K\k Belt(i)

Max

where dj is the shortest distance from the walker to the door
of room k andMax is a constant value for normalization.
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(2) When the walker is located in the hall, we encourage the
walker to explore rooms with higher Bayesian Confidence:

rt = 1−

∑

i∈K diBelt(i)

Max

(3) When the walker is located in the same room with the
sound source, the difference between direction estimations
of consecutive inferences is used as the reward:

rt = 1−
|at − at−1|

315◦

(4) When the walker has reached the sound source, it receives a
relatively large reward rt = 5.

2.3.3.4. Offline training and online tuning
The policy NN used by the walker is trained with SGD
method (Sutton et al., 2000) by updating the NN parameters γ

using policy gradients computed with samples 〈s, a, r, s′〉: a is the
chosen direction for the walker to step forward, s and s′ are the
input state before and after action a is taken, and r is the reward
computed in the current inference.

We collect samples using the GSound simulator (Schissler
and Manocha, 2011) for offline training of the NN model, by
specifying the locations of a sound source and recording received
signals in arbitrary other locations in the multi-room setting.

Then we use the trained model in the online setting: during real-
world usage of the walker, the NN model is further fine-tuned
with collected realistic samples.

3. EXPERIMENTS

In this section, we first conduct experiments to evaluate the
mechanical structure of our walker and test sensors deployed
on the soft handle. Usability test is also done to prove that our
walker can achieve expected functionalities though intelligent
control. Specifically, we evaluate walker’s ability and efficiency
to monitor user intention through soft interface, track user in
front within close proximity, navigate to the user based on voice
signals. All these demonstrate that our walker is sturdy and
agile, with learning-based algorithms implemented to provide
elderly users with sufficient mobility safety and effective human-
robot interactions.

3.1. Mechanical Structure Test
The structural stability is validated according to requirements
in ISO (ISO, 2003). For static stability, the ISO standard states
that the walker should be placed on a slope in certain ways
and it should remain stable without tipping. The slope angle
requirement and the corresponding results under different test
situations (see Figure 6A) are listed in Table 2. For dynamic
stability (see Figure 6B), the self-modified brake mechanism is

FIGURE 6 | Stability tests; (A) Static stability test, from left to right: forward, backward, sideways; (B) Dynamic stability; (C) Tipping resistance test.
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TABLE 2 | ISO.11199-2 stability test.

Test ISO requirement Result

Forward stability ≥15◦ ≥16◦±1◦

Backward stability ≥7◦ ≥14◦±1◦

Sideways stability ≥3.5◦ ≥12◦±1◦

Brake test No sliding or 100 mm

in not <1 min

No sliding

also reliable as the walker stays stationary when it is placed on a
6◦ slope with a subject weighing 63 kg leaning on it.

Moreover, a series of static load tests from the front and
lateral directions are conducted (see Figure 6C) to find out how
resistant the walker is to the external tipping force. Themaximum
force exerted on the handle, measured by a spring scale, when the
walker starts tipping are 180 N forwardly and 182.5 N laterally.
The actual maximum resistance should be larger since the fall
rarely happens horizontally.

Overall, our walker passed all the tests with equal or
better performance than that required in the ISO standard.
It also has good tipping resistance against external push
or pull force which plays an important roll in the fall
prevention function. Therefore, our structure has strong
advantages over those traditional mobility-assistant products, by
implementing intelligent autonomous control based on better
structural stability.

3.2. Soft Handle Evaluation
3.2.1. Sensitivity
To measure the modulus of each pressure sensing bellow and
the relation between the load and the pressure detected on it, we
implement a dedicated testing platform as shown in Figure 7A.
Both pressure change 1P and compression force F are measured
together and the results are shown in Figure 7B. The maximum
load force when the bellow reaches maximum compression (25
mm) is 140 N, giving a modulus of approximately 5.6 N/mm. The
normal interaction force in the non-emergency scenarios should
be <5 kg. The plot shows that 1P corresponds well with the
force exerted on it, laying a good foundation for monitoring user
interaction for intelligent control.

3.2.2. Repeatability
The soft handle is expected to have long-term reliable
performance and consistency. In the repeatability test, the bellow
is gradually pressed until reaching maximum load Fmax, then
it was released to the normal state, and the same process was
repeated. The results are passed through a 2nd Order Low-
pass Filter (LPF) with a cutoff frequency of 1.50 Hz to remove
high frequency noise. The repeatability test plot in Figure 7C

shows that 1P and F have an almost linear correlation with
little deviation throughout the repeated compression. This also
indicates that the bellow has good sealing as no negative effect
due to air leakage showed up in the test.

3.3. Usability Test
We next perform usability tests to evaluate efficiency
and practicality of our design in achieving the
expected functionalities.

3.3.1. Soft Haptic Monitor
Experiments are conducted to collect the pressure data of
different patterns of touching and grabbing the soft haptic
handle. These patterns represent different interactions when the
user is operating the walker. The pressure value is transformed
from a physical quantity to a raw programmable digital quantity.
We record the raw digital quantities of the pressure values from
all sensors and their changes over time. A sliding mean filter
is applied to pre-process the raw data. The window size of
the filter is 5. Figure 8 illustrates the data of different patterns.
Figures 8A–C show three possible pressure data patterns when
there is a fall or a potential fall. Figures 8D,E illustrate how to
detect the unlock intention of the user. Figure 8F shows the
position of each sensor on the handle.

Figure 8A shows that when the user is falling, he/she leans
more and more onto the left front part of the handle. The
maximum pressure Pmax of all pressure values at the same time is
detected on sensor 4, which rises slowly and eventually exceeds
the unacceptable anomaly threshold of the pressure value 120
(e.g., about 8.5% of the user’s weight). At the beginning of this
process, the walker is in the unlocked state. Pmax first exceeds
the acceptable abnormal threshold of the pressure value 70 (e.g.,
about 5% of the user’s weight), and then the walker goes into
the ready state for further protection. There is a pause after that,
corresponding to the situation where the user is not leaning
more onto the handle. Then the user continues leaning more on
the walker by putting most of his weight on the handle; Pmax

keeps increasing and finally reaches the unacceptable abnormal
threshold, which brings the walker to the locked state.

Figure 8B corresponds to the case of a fall or stumble, with
a sudden change in the pressure values. The fastest pressure
change rate is about eight times of the change rate of Pmax as in
Figure 8A, while the peak pressure value in Figure 8B is only half
of that in Figure 8A. Such a characteristic can be easily detected
and the walker can react promptly to the locked state without
waiting for the pressure to rise beyond the anomaly threshold.

Figure 8C shows that when the user falls onto the front part
of the handle, multiple sensors (sensors 3–11) are being pressed
simultaneously.When the user lies on the front part of the handle
for rest and contacts multiple parts of the handle, the pattern of
pressure data will be similar. Under these situations, the walker
should offer falling protection.

Figures 8D,E show two patterns of user grabbing the handle
when the walker is locked and stable. Figure 8D is the case that
the user uses the walker for recovery support (from sitting or
lying status), when the pressure changes of different sensors and
the moments when their pressures reach the peaks are different.
The reason is that during recovery, the gesture of the user keeps
changing, resulting in the changes of the pressure values and the
direction of the force applied to the handle. Figure 8E is the case
that the user is ready to walk and gently puts his/her hands on the
handle and grabs it. The pressure changes on different sensors
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FIGURE 7 | Evaluation of the pressure sensing bellow; (A) Testing platform; (B) Modulus test; (C) Repeatability tests under different external force, from left to right:

Fmax ≈ 20N, 30N, 40N, 50N.

and the time of their pressures reaching the peaks are similar.
Such a pattern can be used by the user to unlock the walker.

All these results show that the pressure data can be used to
detect different states of the user, including falling and other
user intention. By analyzing the pressure data, the walker can
monitor the user’s state to offer falling protection or respond to
other user intention. In further development, more applications
can be designed to make the walker more intelligent and safer
comparing to the current version. For example, by comparing the

changes in the pressure over a long period, the walker can detect
whether the user is getting tired. Also, more advanced models
such as NNs can be applied to learn from the pressure data and
extract more information for medical observation.

3.3.2. Front Following
We experiment with user moving forward, turning and
moving through narrow space without pushing the
handle, as the Supplementary Video 1 demonstrated. For

Frontiers in Neurorobotics | www.frontiersin.org 13 October 2020 | Volume 14 | Article 57588918

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Smart Elderly Walker

FIGURE 8 | Different patterns of pressure data corresponding to different user interactions and position of each sensor. (A–C) Are three possible pressure data

patterns when a fall occurs. (D,E) Show two types of data patterns when the walker is detecting the user’s unlock intention. (F) Shows the position of each sensor on

the handle.

FIGURE 9 | (A) Leg position trajectory; (B) Orientation of the walker as compared to the user; (C) RL training curve of SSL in simulator.

evaluation purpose, we also record actual orientation of
the user during front following by having the user wearing
an IMU.

Figure 9A shows user leg positions collected. The x and y axes
represent the spatial position, and the unit is meter. Scatter points
represent leg locations; we draw a box to represent the walker for
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every 60 leg points; the center of the walker and corresponding
leg positions are highlighted. From the highlighted points, we
observe that the walker area always covers both legs and there
is always one leg on the baseline. This shows that our front
following achieves coaxial following, which is a novel practical
function for older persons who cannot consistently push the
walker well, but rely on the walker’s fall support functionality
while walking.

Figure 9B compares the orientation of the user with that of
the walker. The range of orientation θ is −180 to 180◦ and the
starting position where the walker enables front following is 0◦.
We observe that the two lines follow a similar trend, and overlap
at some peak points. The average error is 5.5◦ approximately.
It demonstrates that the walker can change direction promptly
according to the user’s expected angle.

Most existing human-following studies consider robot
following the human from the back; in case of robot front-
following a human, existing systems assume that the robot is a
distance away from the person, and the robot can easily amend
its route on the go. In our scenario, the robotic walker and the
user are within close proximity (user walking with feet along
the rear axis of the walker). While this functionality enables

elderly users to achieve hands-free walking, we also consider the
situation that elderly users still need physical support with hands
touching on soft handles. The intention of turning will then be
detected and analyzed through haptic monitor, to cooperate with
movement prediction of hands-free front-following to generate
better tracking strategy.

The robustness of the proposed NN to predict lower leg
gesture can be enhanced in the product usage phase, through
collecting diverse and long-term training samples: walkers used
by elderly users are allowed to compute and push their model
gradients to the cloud periodically, and pull updated model
parameters after aggregation is done in the backend cloud.

3.3.3. Autonomous Mobility Through SSL
We experimented in a real-world home-like setting with one hall
(maximum length over 10 m causing strong reverberation) and
four separate regions (similar as rooms). The signal-to-noise ratio
(SNR) can reach as low as 7 dB. Environment layout is given in
Figure 10.

We first build the same environment in the GSound simulator.
A microphone array with four microphones, whose maximum
distance is 0.75 m, records sound data generated from one sound

FIGURE 10 | Walker routes in real-world tests, as compared to paths produced by basic TDOA method (geometric azimuth), simulator, and optimal shortest paths.
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source. The length of each step of the walker is 1 m. By changing
the positions of the walker and the sound source, we simulate in
total 4,000 raw data samples (90% used as training dataset, 10%
as test dataset) for training of the RL model. Figure 9C shows the
training convergence curve, where a higher average reward per
step indicates that the walker produces a better route toward the
sound source.

The offline trained model is then deployed to the real-
world scenario. In Figure 10, we compare the routes performed
in reality to the routes derived by the simulator, as well as
the optimal shortest routes computed. The difference between
simulator paths and the shortest paths is mainly due to our
defining eight discrete directions for the walker to move on. Our
RL-based approach outperforms the basic geometric azimuth
method (which directly uses calculated time-delay of each
microphone pair to generate the basic TDOA path): the latter
often makes the walker lost in the hall (due to high reverberation
and the lack of reward mechanism), especially when the user
summons the walker in different rooms. The “reality gap” (Tan
et al., 2018) between real paths and simulator paths stems
from the difference between the simulator and real-world
environments: especially, for sound propagation in a multiple-
room home with high reverberation, physical parameters of the
real world are hard to be simulated exactly. Even so, our smart
walker with RL model is able to automatically approach the user
located in another room only based on voice signals. Our RL
model is robust as it only needs offline training using data from
the simulator and slight online tuning to achieve autonomous
mobility in new environments.

4. CONCLUSION

This paper proposes a novel smart robotic walker platform to
assist the elders with mild mobility impairment. We design a
unique and sturdy mechanical structure that cooperates with
sensors, and apply soft-robotic technology on the walker’s handle
to achieve better protection and richer sensing capabilities. A
series of stability tests show that the walker has good resistance
against external disturbance. The soft handle prototypemeets our
expectation and can provide useful information about the user
with a low-cost solution.

We design a comprehensive finite-state machine model
to detect user intention and emergency events in a timely
manner through analyzing spatiotemporal pressure data
collected from soft handle. We also develop a hands-free
close-proximity front-following function through intelligent
control using an IR sensor, a lidar, and NN-based gait classifier.
A reinforcement learning-based sound source localization
approach is implemented for summoning the walker to
the user through voice signals. Field tests show that our

walker can actively approach the user in a complex indoor
environment through an acceptable path. All these intelligent
functionalities achieved enables our walker to provide an
elderly user with sufficient mobility safety and rich modes of
human-robot interaction.

As future work, we will further investigate learning-based
algorithms to learnmore of user behavior through the soft handle
interface. To make our front following more generic, we seek to
collect data on more walking styles. For SSL, we plan to further
reduce the “reality gap” when applying the RL model in the
real world.
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Using soft pneumatic actuator is a feasible solution in the complex unstructured

environment, owing to their inherent compliance, light weight, and safety. However, due

to the limitations of soft actuators’ materials and structures, they fall short of motion

accuracy and load capacity, or need large-size, bulky compressors. Meanwhile, in order

to gain better control, it is essential for them to sense the environments as well. This

leads to high-price sensors or a complicatedmanufacture technique. Here, a self-sensing

vacuum soft actuation structure is proposed, aiming at acquiring good balance among

precision, output force, and actuation pressure. The actuator mainly comprises a flexible

membrane and a compression spring. When actuated, the flexible membrane outside the

actuator compresses the internal spring skeleton, realizing large contractile motion in axial

direction. Its built-in force sensor can indirectly measure the absolute displacement of the

actuator with certain accuracy (about 5% F.S.). Besides, it does not require high actuation

pressure to generate enough output force. The actuator is quite easy to manufacture with

low cost, and there are a variety of materials to choose from. We established quasi-static

models for actuators built of two different kinds of membrane materials, and tested their

accuracy and output force. In addition, to break through the limits of vacuum actuation,

a method of positive-negative pressure combined actuation has been proposed, which

lowers the requirements for air source equipments, increases actuation pressure, and

reduces potential safety threats at the same time. This kind of soft actuators can also

effectively resist and detect impacts. The design of a two-finger dexterous robot hand

and robot joint based on this soft actuator illustrates its broad application prospects in

the fields of mobile robots, wearable devices, and human–robot interaction.

Keywords: soft robotics, design, safety, pneumatic actuator, self-sensing

1. INTRODUCTION

Soft actuators, relative to rigid mechanical structures, have been widely used in rescue, medical
care, wearable devices (Ilievski et al., 2011; Kim et al., 2013; Cianchetti et al., 2014; Park et al., 2014;
Rus and Tolley, 2015), etc, owing to their inherent compliance and safety. Traditional actuators
like electric motors can reach high precision and speed, which makes it excel at repetitive tasks in
industry. But they are often bulky and stiff, and a structured environment is needed for operation,
otherwise they may do damage to the environment or break themselves. Soft actuators, by contrast,
can perfectly adapt to the complex or dynamic situation, which reduces the threat to users.

Recently, research on soft actuator are promoted with the rapid development of flexible
materials, structures, and sensors. According to the actuation method, there are mainly several
kinds, that is, electromagnetic, thermal, chemical, fluid actuation, and hydraulic actuation.
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Shape memory alloys (SMAs) (Jani et al., 2014), actuated by
electric heating, have large contraction force output and the strain
is also significant, yet their high non-linearity and hysteries are
barriers to application. Similar to SMAs, shapememory polymers
(SMPs) (Ahn et al., 2008; Hu et al., 2012) used more kinds of
stimuli like chemical or light, while the response time is limited
accordingly. Dielectric elastomer actuators (DEAs) (O’Halloran
et al., 2008; Anderson et al., 2012), powered by high electric field,
can meet the demands of high-frequency actuation. DEAs use
electrostatic force to attract two different potential electrodes on
either side of a compressible membrane, thus get large strain.
Furthermore, Keplinger et al. proposed a novel hydraulical-
electrostatic hybrid actuator, Peano-HASEL (Acome et al., 2018;
Kellaris et al., 2018), based on Peano fluidic muscle (Sanan et al.,
2014). It provided direct coupling of electrostatic and hydraulic
forces for high-power and precise operation. Themain remaining
hurdle in using electrostatic actuation is the need of driving
voltages up to the order of kilovolts, which is difficult to achieve
and might be a potential safety issue, limits the usefulness of
this technique.

Soft pneumatic actuators (SPAs) are the most popular
actuators in soft robotics. SPAs make use of compressed air (or
vacuum) as power source, so it will not cause any pollution
to environment. Pneumatical driving offers other advantages
such as lightweight, compliance, and inherent safety. The well-
known McKibben artificial muscle, invented and developed in
the 1950s (Gavrilović and Marić, 1969; Chou and Hannaford,
1996), is a landmark pneumatic actuator. TheMcKibben actuator
comprises a rubber inner tube covered with a shell of braided,
inextensible fibers. When the inner tube is inflated by positive
pressure, the muscle swells radially and contracts axially to
shorten its overall length. By using these flexible materials,
the McKibben actuator considerably is more compliant and
lightweight than common pneumatic cylinder. However, the
contraction ratio is not very satisfactory (≤40%), and usually
high pressure is required for operation. Several improvements
have been preformed, such as choosing superior shell materials,
structures, or implementing different membrane composition
(Daerden and Lefeber, 2001; Villegas et al., 2012; Belding
et al., 2018; Terryn et al., 2018), but high driving pressure is
still essential. Contrary to McKibben muscle, fiber-reinforced
actuators lengthen when pressurized (Galloway et al., 2013;
Connolly et al., 2015, 2017). The actuators consist of a core
bladder reinforced with inextensible fibers, which wrap around
to limit the radial expansion. They are able to realize a wide range
of motions (bending, twisting, and extension), and have larger
strain (300% in Hawkes et al., 2016). However, the fabrication
process for fiber-reinforced actuators is complicated.

Another famous SPA is pneumatic network (PneuNet)
originally developed by Harvard University (Sun et al., 2013;
Mosadegh et al., 2014). It is made almost entirely out of soft
materials such as the silicone rubber, with a series of channels and
chambers inside an elastomer.When pressurized, its channels are
inflated and create assigned motion like bending or twisting. The
PneuNets actuators are entirely soft, and can be inflated with low
pressure, which guarantees the safety for human interaction and
environmental adaptability. However, the inherent compliance

also severely limits the stiffness and output forces, and makes
it unstable.

In recent years, a novel design pattern combining origami with
other actuation method has been attracting wide attention, and
many outstanding achievements have emerged (Onal et al., 2013;
Mu et al., 2015; Paez et al., 2016; Miyashita et al., 2017; Kim et al.,
2018). Martinez et al. presented composite structures comprising
elastomers and paper (or other flexible sheets) (Martinez et al.,
2012). They fabricated the 3D paper structure using origami
or laser cutting, and embedded it into silicone elastomers. Due
to the self-folding character, this structure was able to reach
high stretching ratio, and the sheet inside could reinforce the
elastomeric matrix to withstand external disturbance. Yi et al.
proposed a fiber-reinforced origamic robotic actuator (FORA) to
improve the performance of McKibben-type artificial muscles by
replacing the rubber inner tube with specially designed origamic
chamber (Yi et al., 2018). Li et al. presented an architecture
for fluidic artificial muscles, which could be programmed to
produce complex multiaxial motion (Li et al., 2017). The fluid-
driven origami-inspired artificial muscles (FOAMs) consisted of
a compressible skeleton and a non-strechable membrane. When
driven by negative pressure, the membrane deformed inwards
to push the skeletal structure contract. This innovative structure
made FOAMs extremely lightweight, low cost, and provided large
contracting ratio.

In order for precise control, it is necessary to pair the
actuator with sensors to create a feedback control system. But
the deformable characteristic of soft robots prevents the use
of many conventional sensors, and the accurate sensor models
are often unavailable for calculation and analysis (Polygerinos
et al., 2017). In soft robotics, alternative sensing methods with
low-modulus sensors are preferred. Ionic liquid–based resistive
sensors (Chossat et al., 2013; Yeo et al., 2016) are perceived
by monitoring the resistance variation of the driven fluid.
The elastomer layers of these sensors are often patterned with
microfluidic channels, which are filled with liquid conductors
(Majidi et al., 2011; Wong et al., 2012). liquid–based resistive
sensors can be tuned by modulation of channel geometries, and
are able to measure various types of strains (Vogt et al., 2013),
thus have acquired wide attention in applications like soft robotic
hand (Wall et al., 2017), wearable devices (Kramer et al., 2011b),
and human fingers (Kramer et al., 2011a). But they suffer the large
temperature drift due to the correlation between temperature
and ion concentration. Besides, poor long-term stability and risk
of leakage are also tricky. In other related works, conductive
thermoplastic material is adopted to avoid these problems (Culha
et al., 2014).

Capacitive sensors measure the capacitance variations caused
by geometry changes when the elastic body is deformed. In
these systems, dielectric layer is sandwiched between conductive
soft plates, and conductive elements are employed to create
conformable electrodes in the sensing system. Some electrostatic
actuators like DEAs, EAPs, or Peano-HASEL naturally sense
the deformation through capacitance monitoring (Jung et al.,
2008; Kruusamäe et al., 2015; Acome et al., 2018) through their
actuation mechanism. For other soft robots, nanowires (Lipomi
et al., 2011), nanotubes (Amjadi et al., 2014), carbon black (Tsouti
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et al., 2016), and conductive fabrics (Atalay et al., 2017) are
also used as dielectric layers. capacitive-based sensors offer some
advantages over other systems, such as high linearity and fast
response time, which are important parameters when the sensors
are intended to be used in real-life scenarios (Lipomi et al.,
2011; Hu et al., 2013). But they are sensitive to environmental
contaminants, like proximity effect to conductive objects, and are
mostly prone to cracking and delamination over extended usage
of the sensor.

More recently, optical-based sensing has emerged as another
soft sensor category where motion is detected through changes
in the light that is emitted and received in a light guide (Zhao
et al., 2016a; Harnett et al., 2017; Teeple et al., 2018). The probed
optical signal properties can be intensity (Polygerinos et al.,
2011), phase (Pang et al., 2007), frequency (Zook et al., 2000),
or polarization (Saad et al., 1995). Optical-based sensors are
insensitive to any environmental interference, thus already been
used for tactile sensing in prosthetic fingers (Du et al., 2017),
soft surgical manipulator (Sareh et al., 2014), and other clinical
practices (Liu et al., 2011). Fiber optic intensity modulation is a
common method that refers to a class of sensing techniques, and
has been applied in a soft bending actuator (Zhao et al., 2016a)
to detect motion and infer the actuator shape. Furthermore,
the integration of stretchable optical waveguides makes the
sensor seamlessly deform with the actuator (Zhao et al., 2016b),
but these methods are limited by the assumption that the
sensor curvature is uniform. Recently, other researchers have
also explored optoelectronic shape detection with fiber Bragg
gratings (FBGs), which reflect light with a peak wavelength
that shifts in proportion to variations in strain and temperature
(Hill and Meltz, 1997). Multiple FBGs can be fabricated on
different longitudinal positions of one fiber to monitor the
distributed strain and pressure (Zhuang et al., 2018). FBGs show
great potential to develop completely soft strain sensors for
soft continuum robots (Wang et al., 2016b), but expensive and
complex fabrication process is the main barrier. Instead, TacTip
sensors (Cramphorn et al., 2016; Wardcherrier et al., 2017, 2018)
directly use embedded camera to monitor the deformation of
a soft structure’s skin, but rigid camera system is needed to
integrate in soft robots.

Besides the aforementioned works, other soft sensors such
as inductive (Rahimi et al., 2014; Felt et al., 2016), magnetic
(Ozel et al., 2015; Wang et al., 2016a; Luoming et al., 2017), and
piezoresistive sensors (Yamamoto et al., 2007; Shapiro et al., 2014)
are also able to be put in practice. More details about soft sensing
can be found in literatures (Wang et al., 2018). But until now,
the production process of most soft sensors is intricate, especially
hard to be integrated with the manufacture of actuators, or they
may affect the movement of actuators.

In this paper, we present a novel linear actuator Self-sensing
Pneumatic Compressing ArtificialMuscle (SPCAM) based on the
work of Li et al. (2017), but there are several key improvements.
Driven by vacuum pressure, the actuator can realize the axial
contractionmotion, similar tomuscle tissue. Besides, the actuator
can be stretched passively, and the elastic structure ensures its
safety and its impact resisting property. A simple but effective
sensor, which has certain accuracy, is integrated into SPCAM

without disturbing its motion, so SPCAM has the ability of
self-sensing. The actuator is lightweight with large strain and
output force. It is easy to manufacture and be put into mass
production. Furthermore, a positive–negative pressure combined
mechanism is proposed. That is, the SPCAM actuator can be
embedded in other positive pressure actuation structures to lower
the requirements of actuation pressure and enhance its accuracy,
which makes it more practical in mobile devices.

The article is organized as follows: the design and actuating
principles are presented in section 2. The membrane materials,
SPCAM’s static model among traction force, actuating pressure,
and structure parameters, are analyzed in section 3. Its
performance like accuracy and actuation force is tested in section
4. We combine the SPCAM with air cylinder and McKibben
artificial muscle, which is presented in section 5. Finally, in
sections 6 and 7, a two-finer dexterous gripper and a revolute
joint for exoskeleton are designed to demonstrate SPCAM’s great
potential for applications; meanwhile, conclusions and future
work are summarized.

2. ACTUATOR CONCEPT AND DESIGN

2.1. Schematics and Operation Principle of
SPCAM
Figure 1 shows the schematic of SPCAM. The actuator consists
of several major parts as follows: a spring skeleton, a flexible
membrane outside, 3D-printed connectors, sealing rings, and a
pull-pressure microsensor. The spring is sealed in the membrane,
forming a compressible internal cavity. When the actuation
pressure is zero, the self-locking performance is guaranteed by
the elasticity of latex membrane and spring to some extent.
Once we pump air out of the cavity, the pressure difference
between internal and external part makes the membrane deform
inward, similar to the work described in Li et al. (2017). The
deformation of the membrane will exert pressure on the spring
and makes it compress axially, generating a compressing force.
The pulling/pressing sensor fixed on the end of the actuator
is connected to the end of the spring, being able to sense the
compressing force Fsensor (Figure 1B). Since both the spring and
the pulling/pressing microsensor are inside of the cylindrical
hyperelastic membrane, the outer pressure force and tension can
be considered as external forces. According to Hooke’s law, the
compressing force scales linearly with respect to the displacement
of the spring, so the displacement of the spring, that is, the
displacement of the actuator, can be approximately calculated as
the compressing force Fsensor divided by Hooke’s coefficient.

2.2. Materials and Fabrication
The low cost of SPCAM is ensured by the standardized parts and
simple assembly technology without any complicated procedure
or advanced equipment (displayed in Supplementary Video).
The core component is a flexible membrane and there are a
variety of membrane materials to choose from. Here, we choose
stretchable latex membranes and non-stretchable low-density
polyethylene (LDPE) films for test. Other components, such as
springs (304 stainless steel) and the pull-pressure microsensors
(freud, DHMH-106, 1% F.S, 3 kg max.), are widely used in robots
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FIGURE 1 | (A) Cutaway view of the Self-sensing Pneumatic Compressing Artificial Muscle (SPCAM). A typical SPCAM mainly consists of a compressing spring,

3D-printed parts, a flexible membrane, seals, and a pull/pressing sensor. (B) SPCAM under working state. The vacuum pressure pushes the membrane deform

inward to make the actuator contract.

and automation equipment. There is an axial torque generated
during contraction process, so we attach a microrotating ring to
compensate the twist. The only non-standard part is 3D-printed
connectors on the two ends, which can be replaced by injection
molding parts if put into quantity production. The weight of the
whole actuator is<40 g, 60% of which is occupied by the sensors,
and it can be further reduced if the Micro Electromechanical
System (MEMS) technology is adopted.

We have compared SPCAM with other four kinds of flexible
actuators, taking their maximum strain and output force into
consideration. Peano-HASEL (Kellaris et al., 2018) uses both
electrostatic and hydraulic principles to linearly contract on
application of voltage in a muscle-like fashion. PneuNet (Sun
et al., 2013) is made with soft material and inner chambers.When
pressurized, the inflated chambers will create assigned motion.
FORA (Yi et al., 2018) is a fiber-reinforced origamic actuator,
which improves the performance of McKibben-type artificial
muscles. PPAM (Terryn et al., 2018) is another pneumatic
artificial muscle whose membrane is constructed out of self-
healing polymer.

Table 1 shows the comparison of five actuators. Here, the
data of Peano-HASEL is acquired under the condition of 10 kV
voltage. For other four actuators, the actuation pressure is limited
with 40 kPa. The data show that SPCAM outperforms others
in maximum output force and maximum strain. In the same
time, our SPCAM design does not require customized parts and
advanced fabrication techniques; while Peano-HASEL requires

TABLE 1 | Comparison of five actuators.

Actuator SPCAM Peano-HASEL PneuNet FORA PPAM

Maximum strain(%) 71 18 50 50 12

Maximum force(N) 40 10 2.2 50 18

Production complexity Easy Hard Middle Hard Easy

Production cost Low Middle Middle High Middle

specialized high-voltage electrodes, others require complicated
production procedure like pouring forming, which leads to
higher cost.

3. MODELING AND ANALYSIS

3.1. Outer Membrane Material
We have chosen two different kinds of membrane materials to
build the actuator. The first one is polyethylene membrane, as
used in Li et al. (2017). It is a kind of non-stretchable material,
which can be made into certain shapes through hot-pressing
technique. One of themain problems of polyethylenemembranes
is there will be indentations during manufacture process. This
will cause axial non-uniformity of the material and affects
actuator’s motion. The other one is cylindrical latex membrane,
being widely used in soil sample analysis. We prepare different
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specifications of membranes (different diameters, thickness, etc.)
for actuator in order to fulfill design and test requirements.

Latex is a kind of hyperelastic, incompressible material. In
small-strain areas, classic elasticity theory can well explain the
strain–stress relation within the elastic material. However, latex
membranes will have large strain under external force. To solve
the large deformation (finite length deformation) issues of this
kind of polymer, the strain energy function should be introduced.
There are three commonly used forms of function as follows:
the Ogden function, the Mooney–Rivlin function, and the neo-
Hookean function (Mooney, 1940; Gent, 1996; Ogden, 1997).
Here, we choose the Ogden strain energy theory. The three-form
of the Ogden function is adopted as:

W(λ1, λ2) = µ

3
∑

i=1

βi

αi
(λ

αi
1 + λ

αi
2 + λ

−αi
1 λ

−αi
2 − 3) (1)

where µ, αi, and βi are the inherent material constants. λi
(i = 1, 2, 3) are strains in three orthotropic directions. We divide
the latex cylindrical membrane model into three directions:
the meridional direction, circumferential direction, and vertical
direction, as shown in Figure 3A.

3.2. Analysis of Static Equilibrium
In this section, the static model will be established to analyze the
relationship between the characteristic parameters of SPCAM,
that is, the initial screw pitch L0, the screw pitch L1 after
deformation, actuator’s diameter D, active coil number of spring
Na, thickness of the membrane H, pressure difference 1P, and
the output force Foutput . Latex is a kind of non-linear, material,
so we adopt a finite element analysis model based on the
Ogden strain energy theory. Since polyethylene film is non-
stretchable, its approximate solution can be obtained by using

simple geometrical methods combined with classical mechanics.
The analysis is based on the following assumptions:

1. The membrane has axial symmetry and density uniformity.
2. Thickness of the membrane is much thinner than the size of

the actuator.
3. The influence of lateral force is ignored.

When SPCAM is under the effect of pressure difference, the
spring will be compressed by the flexible membrane. However,
the spring has a helix angle, so the compressing force does not
apply entirely in the axial direction. Considering the screw pitch
L1 is small compared to the spring’s diameter D, we assume that
the force interference caused by helix angle has little influence
on the Hooke’s coefficient of spring, yet it still affects the force
equilibrium of actuator, manifested as torque τ .

The equivalence process of model analysis is displayed in
Figure 2. On the spring helix, the effect of pressure on a
membrane material particle generates a force T1, which has
an included angle φ with the axis, where tanφ = L1/D.
Therefore, a single helix in the actuator after deformation can
be equivalent to a slant cylinder model shown in Figure 2B,
where its height L2 = L1/ cosφ, and diameter D2 = D/ cosφ.
Furthermore, considering the spring’s compressive force, the
model is eventually equivalent to a spring-cylinder model fixed
at one end, as shown in Figure 2C. We can obtain the axial force
T1 by analyzing this model. See model a in Figure 2. T1 can be
divided into a SPCAM axial force T′

1 = T1 cosφ, and a radial
force T′

2 = T1 sinφ. T′
2 of all material particles has the same

torsion direction, thus it creates a torque τ on the spring, making
the spring twist for a certain angle. The final output force of the
actuator, Foutput , can be expressed as follows:

Foutput = Fp + T′
1πD− K1x (2)

FIGURE 2 | The equivalence process of the Self-sensing Pneumatic Compressing Artificial Muscle (SPCAM) simplified mechanical model. The dashed lines stand for

a single helix part of SPCAM before deformation, while the solid lines stand for its state after deformation. (A) The original compression model of a single helix section

under negative pressure. (B) The equivalent slant cylinder model of the single section. (C) The spring-cylinder model. Consider the helix as two parallel annuluses

connected by an ideal spring, with the same Hooke’s coefficient as the SPCAM’s spring. (D) The mechanical model of the whole SPCAM, showing the output force

Foutput and torque τ .
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where K and 1x are stiffness coefficient and displacement
(stretching or contracting) of the spring, respectively. Fp is the
pushing force applied on the end of SPCAM by vacuum pressure,

Fp =
πD2

4
1P (3)

The interference torque τ is calculated as:

τ = T′
2 · πD ·

D

2
· Na (4)

Note that there might be relative sliding between the spring and
the membrane, caused by τ . For different kinds of materials,
the friction may not be the same, which is beyond the scope of
this article.

Contraction rate is an important parameter of linear actuators.
The contraction rate of SPCAM is related to the initial screw
pitch L0 and membrane thickness H. If the change of membrane
thickness is ignored during deformation process, the largest
contraction strain of SPCAM can be approximately written as:

δcontraction =
Na(L0 − 2H)

LSPCAM
(5)

where LSPCAM is the total length of SPCAM.
Polyethylene film is non-stretchable, so only latex-membrane

SPCAMs have the issue of stretching rate. The stretching strain is
mainly limited by the fixing and clamping force on both ends of
the latex membrane, and the breaking strength of latex material
itself. The maximum stretching length 1Xstretching satisfies the
following constraints:







T
′

1(1Xstretching ,1P)πD < Ffixed
T
′
1(1Xstretching ,1P)

H < σlatex

(6)

3.2.1. Latex SPCAM Model
From the equivalent model mentioned above, we can conclude
that we only have to analyze the spring-cylinder model in
Figure 2C to get the solution of T1, and eventually obtain
the output force Foutput and interference torque τ expressed
in Equations (2–4). The static equilibrium of cylindrical
hyperelastic materials can be seen in Guo (2001) and Soleimani
and Funnell (2016). Different from those literature, our actuator
only has one fixed end, and the other end will have axial
compressing displacement, which makes the modeling process
pretty troublesome. To simplify the model, we assume that the
actuator will first come to an intellectual state. In this process,
the actuator is not under any external force (or is under an
infinitesimal force), but has the meridional uniform deformation,
reaching a contracting (or stretching) state. That is, λ1(X) ≡
L20/L2 = λ0, where L20 is the height of slant cylinder model
before deformation, and L2 is the distance between the two
annuluses after the deformation. Then from this intellectual state,
we fix the other end and analyze the compression deformation.
The cylindrical membrane has the initial radius of midsurface
Rm, mounting length L2, and thickness Hm. The undeformed

membrane is referred to a cylindrical polar coordinate system
(X, φ, R), while the deformed membrane is referred to a different
cylindrical polar coordinate system (x, φ, r). The material particle
moves from its position in the undeformed profile C(X, φ, R) to a
new position in the deformed profile c(x, φ, r). For each particle,
we have defined the principal stretches in the meridional λ1, the
circumferential directions λ2, and the direction λ3 normal to the
deformed membrane surface as:

λ1 =
ds

dS
, λ2 =

r

Rm
, λ3 =

h

Hm
=

1

λ1λ2
(7)

where s is the arc length measured from the pole (x = 0) to the
particle c(x, φ, r) along the meridian of the deformed profile; S is
the length measured from the pole (X = 0) to the particle C(x, φ,
R) in the undeformed profile, where S ≡ X. h is the thickness of
themembrane in the deformed situation, and λ3 is determined by
assuming that the membrane is incompressible. From the Ogden
function, intellectual state transformation and the analysis in Guo
(2001), λ1, λ2, and θ can be expressed as:

dλ1

dx
= λ0 ·

sin θ

R
(
∂2W

∂λ21
)−1(

∂2W

∂λ1∂λ2
· λ1 −

∂W

∂λ2
) (8)

dλ2

dx
= λ1R

−1 sin θ (9)

dθ

dx
= (

∂W

∂λ1
)−1(

λ1λ2

H
· 1P −

cos θ

R
·
∂W

∂λ2
) (10)

The geometric constraints at the boundaries are specified
as follows:

x |X=0= 0, θ |X=0= 0, x |X=L2/2=
L2

2
, λ2 |X=L2/2= 1 (11)

To get the numerical solution at the boundaries, we use
the fourth-order Runge–Kutta method to run iterations on
λ1, λ2, and θ . The visual results are also displayed in
Supplementary Video using ABAQUS.

In this analysis, we mainly focus on the traction transmitted
in the meridional direction of the material particle, noted as F1.
And F1 can be expressed as:

F1 = h · λ1 ·
∂W

∂λ1
|X=L2/2 (12)

After getting the exact λ1, λ2,and θ at the boundaries from the
iteration, we can plug them into Equation (12) to get F1. However,
this F1 has a included angle θ with the vertical direction axis of
slant cylinder model. We need to transform F1 into T1, which can
be calculated as:

T1 = F1 · cos(θ) |X=L2/2 (13)

According to Equations (12)–(13), we can eventually get the
output force and interference torque of the actuator.
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3.2.2. Polyethylene Film SPCAM Model
Same as latex membrane, a quasi-static cylindrical polyethylene
membrane model is established to get T1. Here, the principle of
virtual work and geometric approximation conditions are used
to obtain the approximate solutions. Output forces have direct
relations with vacuum pressure 1P and model length X = L2,
which together determine the curve of membrane. According to
the principle of virtual work, resultant force F can be written as:

F(X) = T1(X) · π · D2 (14)

F(X) · δX = −1P · δV(X) (15)

where V represents the internal air volume. We built the
coordinate system XOY , where O is on the center profile of the
membrane (i.e., the point with maximum cavity), whose height is
marked as hO. Two endpoints are marked as P1,P2, as shown in
Figure 3B. The function of the parabola can be expressed as:

y =
4hO

X2
x2 (16)

Here, we approximately consider that the arc length of the

parabola
⌢

P1OP2 equals to twice the length of segment P1O.
While the polyethylene material is non-stretchable, the length of
membrane is constant, yielding:

√

X2 + h2O =
L20

2
(17)

The total volume V can be written as:

V(X) = 2 ·

∫ X
2

0
π

(

4hO

X2
l2 +

D2

2
− hO

)2

dl (18)

Combining the Equations (14, 15, 17, and 18), one achieves:

T1(X) =
−1P

D2





D2
2

4
−

D2

√

L220 − X2

3
−

2X2

5

+
2L220
15

+
D2X

2

3
√

L220 − X2





(19)

Note that when X = L20, T1 tends to be infinity. Theoretically,
because of the membrane’s non-stretchability, the actuator
cannot be in the non-compression state under vacuum pressure.
Meanwhile, the model is approximate, so there will be rather big
errors under small deformation.

4. EVALUATION EXPERIMENTS

4.1. Experimental Setup
A platform was built to test the static characteristics of SPCAM
and evaluate the results of finite element analysis, as shown
in Figure 4. The platform mainly comprises a lifting table,
a capacitive displacement transducer, and an external tension

FIGURE 3 | SPCAM’s quasi-static model. (A) The profiles of undeformed and

deformed hyperelastic latex membrane under coordinate systems (X, H, R)

and (x, h, r), respectively. The detail view illustrates the principle stretches λ1,

λ2, and λ3 of a material particle. (B) The profile of deformed polyethylene

membrane under the coordinate system (x, y).

sensor. One end of the actuator is fixed to the base, and the
other end is connected to the external tension sensor via a
pulley, thus we can detect the output force. We used the lifting
table to adjust the displacement of the actuator, which would
be recorded by the displacement sensor. A vacuum pneumatic
proportional valve (SMC, ITV-2090-042BS5, –80 kPa max.) is
connected to the miniature vacuum pump (kamoer, KVP08, –82
kPa max.) to control the internal pressure of actuator. Before
the experiment, the Hooke’s coefficient of spring was measured
first. For the membrane material, we chose three kinds of latex
membrane with the diameter of 25 mm and the thickness of
0.3, 0.5, 0.8 mm, respectively, and a kind of LDPE membrane
with the thickness of 0.2 mm. Five actuators were made in total
for test, whose parameters are listed in Table 2. We tested the
displacement detection accuracy of the built-in sensor and the
output force of SPCAM under static equilibrium (considering no
effects of dynamic force) and compared it with simulation results.
Meanwhile, we displayed the actuator’s ability of interference
detection and shock resistance.
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FIGURE 4 | The experimental setup and actuators for test. (A) The platform built to test the characteristics of Self-sensing Pneumatic Compressing Artificial Muscle

(SPCAM), with the displacement sensor and the external tension sensor. (B) Five different actuators to be tested, with the average weight <40 g. Actuator a, b, c, and

d are made up of latex membrane with different thickness, while actuator e is made up of polyethylene film. Specific parameters are listed in Table 2. (C) The collapse

phenomenon of latex membrane actuator. When overstretched and under high negative pressure, the actuator collapses sidewise due to the unbalanced force, and is

unable to work normally.

TABLE 2 | Parameters of five actuators.

Actuator Overall

length (mm)

Active coil

number

Hooke’s

coefficient

(N/m)

Membrane

thickness

(mm)

Membrane

material

a 85 8.1 135.77 0.3 Latex

b 85 8.1 135.77 0.5 Latex

c 85 8.1 135.77 0.8 Latex

d 140 9.5 158.80 0.5 Latex

e 85 8.1 135.77 0.2 LDPE

4.2. Sensor Accuracy Test
Theoretically, the output force of the built-in microsensor should
depend linearly on the actuator’s displacement, with the scale

factor of K (i.e., the Hooke’s coefficient of the spring). During
the experiment, we applied different pressure to the actuator
at each displacement point in the static equilibrium state, and
sensor’s measured value is expected to be constant regardless
of the change of vacuum pressure. Thus, the fluctuation of the
measured value caused by pressure change is the main motion
error of SPCAM. Figure 5 shows the relations between detected
and actual displacements of five actuators, respectively. Different
colors of solid lines represent different pressures, varying from
10 to 60 kPa. The red dashed line with the slope of 45◦ presents
the reference value. The abscissa presents the actual displacement
of the steel wire, which is connected to the end of the actuator,
so it is also the absolute displacement of the actuator when
the wire is tensioned. Its value is measured by a high-precision
capacitive sensor. Negative value of the abscissa indicates that
the actuator is in contraction state, while positive value means
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FIGURE 5 | Accuracy of five actuators under quasi-static equilibrium. The displacement detection error of the sensor is represented by the distance between

experimental data points and the reference line in the vertical direction. Negative value of the abscissa indicates that the actuator is in contraction state, while positive

value means stretching state. Horizontal experimental data line indicates that the actuation force is too weak to actuate the SPCAM, leading to the relaxed state.

stretching state. The ordinates is the measured value Fsensor of
built-in sensor divided by K. The position error is displayed as
the height difference to the base line vertically. For actuators
a–c, the maximum position errors are 4.0, 6.1, and 5.2 mm,
and root-mean-square errors (RMSEs) are 2.2, 1.8, and 1.3 mm,

respectively (erroneous data are excluded). For actuator d with
the total length of 140 mm and maximum displacement about
100mm, the RMSE is 4.5 mm, therefore the relative displacement
error is <5%. The error tends to increase with the increase
of pressure. This is mainly because the spring twists along
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with the contracting (or stretching) process, which changes the
spring’s structure, thus affects the Hooke’s coefficient. Besides, the
contraction force T1 of the latex membrane does not uniformly
distribute on the spring due to installation error, which results in
an additional lateral force and further increases the error.

Meanwhile, when the negative actuating pressure is too low
and the contraction displacement exceeds a certain limit, the
actuator will come to a relaxed state and is unable to work
normally, like the black curves representing –10 kPa pressure
of actuators b–e in Figure 5. And this is also directly related
to the thickness of the membranes. Negative pressures must
apply work on the membrane, so the thicker the membrane, the
more energy is needed to deform it, and the more obvious the
relaxed phenomenon.

As for different membrane materials, the sensor error of
actuator e (maximum position error 8.4 mm, and RMSE
3.4 mm) using polyethylene membrane is obviously larger
than that of latex membrane actuators. This is because
polyethylene membrane’s manufacture process creates hot
pressing indentations, which causes its inherent axial non-
uniformity, and its inextensibility with incompressibility worsens
the situation.

In addition, we observed that if SPCAM with latex membrane
was in the stretching state, beyond certain displacement, it
would collapse sidewise (Figure 4C) due to unbalanced forces
(disturbing force and lateral force) when vacuum pressure
reached a critical point, similar to buckling deformation of
springs. To avoid this situation, the maximum tensile strain of
SPCAM should be carefully limited.

4.3. Output Force Test
The actuator can produce output force more than 50 times larger
than its weight. The relationship among pressure, displacement,
and output force was investigated in output force test, and
the result is shown in Figure 6. The black surface represents
the results of simulation as described above, and the colored
surface represents the results of experiments. We can see that
the output force obviously increases when vacuum pressure
increases. When the spring is in compressing state, output force
gradually decreases if displacement increases. On the contrary,
when the spring (the latex membrane actuator) is in stretching
state, output force increases with the increase of displacement,
which resembles animal muscles’ characteristics.

Comparing experiment results with finite element analysis,
overall trend is the same, but there are still certain differences.
Almost all numerals of simulation results are larger than
experiment results. This may because some simplifying
assumptions used in finite element analysis do not completely
conform to actual conditions. For example, the torque τ has
severe influence on long actuator d, making the spring twist
too much, enlarging the lateral friction between spring and
membrane, and largely decreasing the output force. Further
analysis will be made to model the friction accurately. At present,
under the condition of low output force, the simulation results
do not deviate much from the experimental ones.

Besides, the resultant force of the membrane is not completely
in the axial direction, which also makes most experiment results

generally smaller. As shown in Figure 6B, as the thickness of
the membrane becomes larger, the output force of the actuator
also increases substantially. Because the surface tension of the
latex membrane is positively correlated with the membrane
thickness, if the membrane is too thin, it cannot resist vacuum
force, causing a severe inward deformation and a large angle
θ (shown in Figure 3A) between the force and the axial, thus
reduces the output force (actuator a). However, if the membrane
is too thick, it is disadvantageous for low-pressure actuation.
As the aforementioned relaxated state phenomenon, when the
latex membrane is too thick, the vacuum force is insufficient to
deform it. Therefore, actuator c with the membrane thickness of
0.8 mm has almost zero output force under negative pressure
of 0–20 kPa when it is in the contraction state. The length
of the actuator and the initial screw pitch of the spring also
affect the actuator’s performance (Figure 6C). Long actuators
have more effective coils, thus have larger strain. Under the
same pressure, with the same contraction displacement or low
stretching displacement, output force of actuator d is obviously
larger than that of actuator b due to relaxed state phenomenon.
But when the stretching displacement is beyond 25 mm, latex
membrane of actuator b has larger axial deformation rate. In
this case, the tension in the membrane becomes the dominant
factor, which makes the output force of actuator b slightly larger
than that of actuator d. As a result, long actuator has better
performance than short one concerning total output force and
maximum displacement. However, actuator d has larger error
under the same displacement due to the influence of the torque
τ . At the same time, its stability becomes markedly lower and is
more likely to collapse.

Although the non-stretchability of polyethylenemembrane on
actuator e can help enlarge output force, the improvement is not
so significant compared to latex membrane, shown in Figure 6D.
This is because the extensibility of latex makes it possible for the
membrane to totally fit on the spring under initial configuration.
polyethylene membrane, however, is non-stretchable, so its inner
diameter should be a little larger than spring’s diameter when
installed, which affects output force to some extent. Meanwhile,
polyethylene membrane actuators cannot work in the stretching
state, which severely impacts actuator’s stretching rate. So we
prefer to choose latex membrane rather than polyethylene film
used in FOAMs (Li et al., 2017) under light load.

4.4. Dynamic Response and Impact Test
We roughly tested the actuator’s dynamic performances. A
motion capture system (OptiTrack, Prime 17Wx12, 0.5 mm
location accuracy) was used to detect the actuator’s displacement.
Actuator d was chosen for the test, with a 1 kg weight on the
end. A feedback control algorithm was adopted to control the
actuators’ position. Results are shown in Figure 7A. The actuator
is able to lift the 1 kg weight for 75 mm within 6 seconds, only
with feedback of the built-in sensor. The motion error is about
2.5 mm, measured by motion capture system. Furthermore, the
actuator’s dynamic response speed depends on the flow rate of the
air pump and proportional valve. If we use air pump with larger
flow, the speed of movement can be further increased.
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FIGURE 6 | The relations between output force and actuation pressure, displacement of the actuators. (A) The simulation results and experiment data of five different

actuators. The black surface represents the results of simulation as described above, while the colored surface represents the experimental results. (B–D) The

comparison of output forces of actuators with different parameters. Different colors represent different actuation pressure, varying from –10 to –60 kPa. Actuators a–c

in (B) have different membrane thickness (0.3 mm for actuator a, 0.5 mm for actuator b, and 0.8 mm for actuator c). Actuators b and d in (C) have different length,

and the longer actuator d has larger strain. In (D), actuator b is made up of latex membrane, while actuator e is made up of polyethylene film.

One of the major advantages of the soft actuator is its
inherent flexibility. Since the actuator comprises elastic parts like
latex membrane and spring, similar to series elastic actuators

(Pratt and Williamson, 1995), it can resist external impacts and
guarantee safety. Not only can the actuator withstand shocks,
it is also able to roughly detect the intensity of the impact, and
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FIGURE 7 | Demonstration of the dynamic performance and impact tests. (A) The position before and after actuation. The actuator is able to lift the 1 kg weight for 75

mm within 6 s. (B) The actuator is able to withstand shocks, as well as roughly detect the intensity of the impact, and whether it touches the target object or interferes

with obstacles. When the external impact happens, the internal sensor’s measured value will have a large fluctuation.

whether it touches the target object or interferes with obstacles,
as illustrated in Figure 7B. When the external impact happens,
the internal sensor’s measured value will have a large fluctuation,
then the detector is triggered. Besides, the impact strength can be
considered to be proportional to the fluctuating value.

5. POSITIVE-NEGATIVE PRESSURE
COMBINED ACTUATION

Another core advantage of SPCAM is that it can combine
negative and positive pressure actuation. Output force of
previous SPCAM or FOAMs is limited by maximum negative
pressure (–100 kPa max.), while positive pressure can reach
a large value. Another issue is when actuating pressure rises,
requirements for pressure sources become stricter, which leads to
clumsy air pumps or compressors, accompanied by huge noises.
Meanwhile, high pressure actuation also brings in potential
safety threats. This is undesirable for most mobile robots and
wearable devices.

To solve these problems, the method of combined actuation
for soft actuator has been first proposed. When there is already
negative pressure within SPCAM, we can provide positive
pressure outside the membrane for actuation. Obviously, under
low-pressure actuating circumstances, positive-negative pressure
combined actuation has much lower requirements on devices
than negative or positive pressure actuation alone. For example,

using an equipment combining 50 kPa positive pressure with –
50 kPa negative pressure will have much lower weight, noise, and
cost than an air pump or vacuum pump that generates 100 kPa
pressure difference. Based on such principles, we designed two
different kinds of positive-negative pressure combined actuation
structures. This can improve the actuator’s loading ability and
safety, which greatly broadens the application prospect of the
actuator in low-pressure actuating field.

5.1. Lightweight Air Cylinder
First, we designed an actuator combining a traditional air
cylinder, whose structure is shown in Figure 8A. The wall of
the air cylinder is a 180 mm long and 5 mm thick acrylic tube
with SPCAM actuator b inside of it. A precision-machined shaft
with the diameter of 3 mm is connected to the end of SPCAM
and a sliding seal structure is adopted at the end face of the
acrylic tube. Two sliding bearings are used to constrain shaft’s
degree of freedom in the radial direction, and a micro variseal
is used to seal high-pressure air. By applying positive pressure
to the acrylic tube and negative pressure to SPCAM, we can
produce larger pressure difference or lower the requirements for
air source equipments. Figure 8B shows that the actuator can still
generate satisfactory output force even both positive and negative
pressure difference is under 30 kPa. Meanwhile, due to the effects
of sliding bearings, the influence of lateral force reduces sharply
and position accuracy of SPCAM is further improved, as can be
seen in Figure 8E. The RMSE of combined actuator is about 1.0
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FIGURE 8 | The structures and performance of two different types of combined actuator. (A) The schematic of negative–positive pressure combined air cylinder. (B)

Demonstration of the combined air cylinder actuator. The actuator can still get satisfactory output force and displacement even both positive and negative pressure

difference is under 30 kPa. (C) The structural drawing of the second type of actuator which combined the SPCAM with McKibben artificial muscle. (D) The actual

performance of the second combined actuator. It is able to lift the 1 kg weight for about 80 mm. (E) The accuracy of air cylinder combined actuator. The RMSE of the

combined actuator is about 1.0 mm and the maximum error is 3.5 mm, much smaller than that of original actuator b alone. (F) The relation among displacement,

actuation pressure, and output force of McKibben-combined actuator and traditional one. Under low-pressure actuation, the output force of the combined actuator

(represented by the black surface, -30 kPa vacuum pressure inside) is larger than that of the traditional artificial muscle (colored surface) and maximum contracting

displacement also increases.

mm and the maximum error is 3.5 mm, much smaller than that
of actuator b.

5.2. McKibben Artificial Muscle
McKibben artificial muscle is a widely used pneumatic actuator. It
is usually considered to be biological muscle like for its similarity
in real muscle contraction and relaxation. Besides, the basic
working mechanism endows itself with great variable compliance
dependent on applied pressure. But one of its problems is the
need for higher air pressure. A lot of literatures have researched
the property of McKibben artificial muscle and tried to improve
its performance. Here, we designed a combined actuator having
SPCAM put inside the McKibben artificial muscle, as shown in
Figures 8C,D. The outer part of the combined actuator consists
of latex membrane and nylon shell with the diameter of 38

mm, similar to the McKibben artificial muscle in Chou and
Hannaford (1996). The internal part is our SPCAM. When
applying positive pressure 1P1 to the McKibben muscle and
negative pressure −1P2 to the SPCAM, the McKibben actuator
shortens under positive pressure 1P1, while SPCAM contracts
under pressure difference 1P1 + 1P2, achieving larger output
force and contraction.

The Model can be resolved into a SPCAM model and
McKibben artificial muscle. The simplified artificial muscle
model proposed in Chou andHannaford (1996) is used to analyze
the output force. For the McKibben artificial muscle, we can
know from the virtual work principle:

dWin = 1P1 · dVMcKibben = dWout = −FMcKibben · dX (20)
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where 1P1 is the provided positive pressure, dVMcKibben is the
volume change of the McKibben Artificial Muscle, and dX is its
effective length.

FMcKibben = −1P1
dVMcKibben

dX
(21)

The model of braided shell has following geometric relationships:

X = b sin θ (22)

DMcKibben =
b sin θ

nπ
(23)

where θ is the angle between a braided thread and the cylinder
long axis, DMcKibben is the diameter of the McKibben actuator
cylinder, n is number of turns of a thread, and b is the thread
length, same as what has been discussed in Chou and Hannaford
(1996).

Approximately consider the artificial muscle as a cylinder,
and assume that the deformation of SPCAM does not affect the
volume change of the air inside the McKibben artificial muscle,
the volume of McKibben actuator can be expressed as:

V
′

McKibben =
1

4
π(D2

McKibben − D2
SPCAM)X

=
b3

4πn2
sin2 θ cos θ −

πbD2
SPCAM

4
cos θ

(24)

Combine Equations (21)–(23):

F
′

McKibben = −1P1
dV

′

McKibben

dX
= −1P1

dV
′

McKibben
/dθ

dX/dθ

=
1P1b

2(2 cos2 θ − sin2 θ)

4πn2
+

1P1πbD
2
SPCAM

4
sin θ

=
21P1b

2 − 31PX2

4πn2
+

1P1πXD
2
SPCAM

4

(25)

Meanwhile, the internal SPCAM is under the pressure difference
of 1P = 1P1 + 1P2, and generates output force
FSPCAM(1p, b sin θ), which can be obtained in modeling analysis
section previously. The final output force Foutput is:

Foutput = F
′

McKibben + FSPCAM (26)

While the output force of the original McKibben artificial
muscle is:

FMcKibben =
21P1b

2 − 31PX2

4πn2
< Foutput (27)

After adopting the combined actuating method, the actuator
has not only greater output force but also larger displacement
than the traditional McKibben artificial muscle under the
same maximum pressure. In the experiment, we tested the
performance of combined actuator and traditional McKibben
muscle. For the combined SPCAM, the negative pressure −1P2

here is simply set identically as –30 kPa. The relation among the
actuator’s displacement, actuating pressure, and output force is
displayed in Figure 8F. It can be seen that under low-pressure
actuation, the output force of the combined actuator is larger than
that of the traditional artificial muscle and maximum contracting
displacement also increases.

6. APPLICATION

In this section, we designed two prototypes to demonstrate
the great advantages of SPCAM and positive–negative pressure
combined actuation. The first one is a soft robot gripper, which
can resist impacts and ensure safety. It can also detect impacts
and grasping state, that is, whether it has grasped the object
firmly. The second one is a robot joint using Mckibben-SPCAM
actuator. Also it has the potential to be used on wearable devices
or exoskeletons.

6.1. Dexterous Robot Hand
We designed a two-finger soft gripper with two degrees of
freedom (DoFs), weighing about 240 g. The structure of
the gripper is shown in Figure 9A. The gripper consists of
two flexible fingers, tendon-driven mechanism, two SPCAM
actuators, and base. On each finger, five 3D-printed hard
connectors are used as phalanges. Suction cups are fixed on the
phalanges, which share the same vacuum circuit with SPCAMs,
which can generate suction force to help better grasp target
objects. In order to increase friction force on contact surface,
fingers are covered with silica gel skin. When the SPCAM
contracts, the effective length of steel wire in the fingers shortens,
and the elastic deformation of the PVC board happens between
two neighboring 3D-printed connectors, causing the fingers bent
and the gripper closed. Since the actuator is able to detect
impacts and collisions, the gripper can sense its grasping state,
so in an unstructured environment, it can be well adapted and
ensure safety.

The robotic gripper is mounted on the end of a six
DoFs manipulator (Kinova Company, MICO2). We first did
experiments on impact resistance during grasping. Based on
the detecting method mentioned before, we can find whether
the gripper is influenced by impact loads readily. When fierce
impacts occur, the actuator’s structure still will not be damaged
and is able to recover. Furthermore, using the information of
force sensor to limit the output force, the gripper is capable of
automatically grasping fragile or soft target objects like inflated
packaging bags and raw eggs, without crushing them, which
shows its dexterity and adaptivity (illustrated in Figure 9C).

6.2. Flexible Joint for Exoskeleton
Wearable devices and exoskeletons have been research hotspots
in recent years. Here the SPCAM, combined with McKibben
artificial muscle, is used on a robotic joint as exoskeleton
equipment. The robotic joint has one rotation DoF, which
connects the forearm with upper arm (both made up of acrylic
board). The two ends of the combined actuator are fixed on
the forearm and upper arm, respectively. When the actuator
contracts, the forearm is pulled to rotate about the axis of
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FIGURE 9 | The applications of Self-sensing Pneumatic Compressing Artificial

Muscle (SPCAM). (A) The structural schematic diagram of the two-finger

dexterous robot hand. (B) The application of positive–negative pressure

combined SPCAM on a robotic joint as exoskeleton equipment, resembling

human’s muscles. (C) Demonstration of the dexterous gripper when grasping

different target objects, including fragile and soft ones. From left to right, top to

bottom, are rubber ball, bowl, cone, tape, raw egg, and puffed food bag,

respectively.

joint, resembling human’s muscles (Figure 9B). Besides, since the
joint is flexible, it also has the ability to sense impacts. In the
demonstration, the endpoint of forearm is loaded with a 1 kg
weight, and it is able to lift the weight up to 70 mm.

This combined mechanism is suitable for exoskeleton
actuator. The wearable devices and exoskeleton need to be
lightweight, adaptive, quiet, and energy-saving, which can be well
fulfilled by our positive–negative pressure combined actuators.
In contrast, other actuators like traditional electric motor
cannot guarantee the compliance to users, or they are heavy
and costly.

A simple prototype is designed for demonstration. We choose
two micro air pumps (ZQ370-03PM, positive pressure 80 kPa
max., negative pressure –45 kPa max.). The actuator is able

to generate maximum traction about 70 N, which can offer
assistance to some extent. The weight of the whole equipments
is <500 g, and the working noise is only 52 dB, which accords
with the requirements of living environment.

7. CONCLUSION AND FUTURE WORK

Soft actuator is the core technique in soft robot field. In
this paper, we proposed a pneumatic actuator SPCAM, which
realizes axial contracting movement. Our design uniquely
uses stretchable latex as the membrane material for the
actuator, bringing it higher strain rate, flexibility, and ability
to resist impacts. The actuator has built-in microtension
sensors, making it able to detect its absolute displacement and
roughly sense the surrounding environment, like collisions and
impacts. We established simplified mechanical models under
quasi-static equilibrium for latex membrane and polyethylene
film, respectively. Finite element analysis has been chosen to
build the model for latex membrane due to the material’s
hyperelasticity, and for polyethylene film, we combined the
virtue work principle with geometry approximation. Finally,
the output force and interference torque are related with the
actuation pressure and other inherent parameters of the actuator.
This can help analyze the actuator’s operating principle and
system error, thus help optimize the design. Five actuators
with different parameters are used for experiments, whose
result are roughly identical with the simulation results. Latex
membrane actuators are obviously better than polyethylene film
actuators concerning overall performance, and the performance
of actuators with different membrane thickness varies distinctly
under different pressures. For example, the actuator with
thicker latex membranes has larger output force under high
pressure, but works unsatisfyingly under low pressure, while
thinner membrane actuator has just the opposite performances.
Meanwhile, the length of actuator has significant influence on
the maximum displacement and torque. These theoretical and
experimental results can guide us to choose proper actuators
for different target applications in order to gain the best
control effect.

Another essential highlight is the proposal of positive–
negative pressure combined actuation, which can effectively
reduce the demand of maximum actuation pressure. In the
experiments, positive and negative pressure difference both no
larger than 30 kPa can reach the same control effect as the
normal SPCAMunder larger pressure. This also guarantees safety
during application like human–robot interaction, and lowers the
requirements for air source equipments.

The SPCAM actuator still has some shortcomings. There are
certain differences between simulation results and experiment
data, mainly because too many simplification hypotheses were
used in mechanical analysis, which does not completely accord
to reality. A more precise model has to be built in the future
in order to further optimize actuator’s parameters. Data from
pressure sensors and tension sensors also can be combined
more effectively. For instance, we can compensate the force
interference caused by vacuum pressure by detecting the
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actuator’s internal pressure, thus obtaining higher detecting
accuracy of displacement. Besides, if air source equipment with
large flow is used, the actuator’s response speed will be largely
increased. In this case, the actuator’s dynamic performance
should be taken into account for it has considerable influence on
precision, output force, and stability. Furthermore, in order to
verify the actuator’s reliability, further fatigue-limit tests should
be done.
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To improve the fast and stable walking ability of a humanoid robot, this paper proposes

a gait optimization method based on a parallel comprehensive learning particle swarm

optimizer (PCLPSO). Firstly, the key parameters affecting the walking gait of the

humanoid robot are selected based on the natural zero-moment point trajectory planning

method. Secondly, by changing the slave group structure of the PCLPSO algorithm,

the gait training task is decomposed, and a parallel distributed multi-robot gait training

environment based on RoboCup3D is built to automatically optimize the speed and

stability of bipedal robot walking. Finally, a layered learning approach is used to optimize

the turning ability of the humanoid robot. The experimental results show that the PCLPSO

algorithm achieves a quickly optimal solution, and the humanoid robot optimized

possesses a fast and steady gait and flexible steering ability.

Keywords: RoboCup3D, humanoid robot, PCLPSO, parallel distributed, layered learning

INTRODUCTION

Gait planning is a research hotspot for humanoid robots, and it provides some technical support
for humanoid robots walking like humans. The methods of gait planning can be broadly divided
into three categories: human walking parameter-based methods (Baoping et al., 2015; Hereid
et al., 2018), humanoid walking model-based methods (Sato et al., 2010; Winkler et al., 2018), and
intelligent algorithm-based methods (Huan and Anh, 2015; Elhosseini et al., 2019). The method
based on human walking parameters makes the gait of humanoid robots more similar to the way
humans walk, but it costs a lot of time to find suitable gait parameters from humanwalking data and
apply them to humanoid robots. Paparisabet et al. (2019) proposed a similar function for human-
likemotion, formulated kinematic constraints for humanoid robots in contact with the ground, and
finally proposed humanoid walking with very high similarity to human motion. In Weon and Lee
(2018), Weon et al. proposed a method for generating humanoid robot motion based on motion
capture data, which corrects extracted joint trajectories based on a reprogrammed zero-moment
point (ZMP) trajectory. Researchers have extensively investigated bipedal walking model-based
approaches. In Graf and Röfer (2011), the three-dimensional linear inverted pendulummodel (3D-
LIPM) proposed is one of the most widely used simplified dynamics models for humanoid robots.
The 3D-LIPM approximates the humanoid robot in the three-dimensional space to an inverted
pendulum model composed of mass points and massless legs connecting the points to the support
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points and constrains the center of mass to move on the
constrained plane. Jadidi and Hashemi (2016) proposed a
closed-loop 3D-LIPM gait for RoboCup standard platform and
implemented a full range of walking on the NAO robot. The
25 degrees of freedom of the NAO robot make it have excellent
omnidirectional walking and full-bodymotion performance. The
RoboCup 3D simulation team uses the NAO robot as a reference
model. At the same time, this model is also widely used in
robot simulation competitions at all levels at home and abroad.
Astudillo et al. (2018) used the 3D-LIPM as amodel for robot and
ZMP tomap joint angles to achieve a humanoid robot walking on
a slippery platform.

As the degrees of freedom of humanoid robots increase, the
complexity of systems will increase as well. Bipedal walking
model-based methods will not be sufficient for the development
of humanoid robot control (Fayong et al., 2014). Besides, a
variety of intelligent control methods are developed, which do
not require accurate modeling (MacAlpine et al., 2015; Hong
and Lee, 2016; Bonyadi and Michalewicz, 2017). However, the
process of adjusting motion parameters and posture based on
various models is very tedious and time-consuming. When the
given parameters are not reasonable, walking instability and
robots moving at a low speed may occur. This shortcoming
can have a significant impact on the coordination between
the needs of speed, stability, and flexibility. Therefore, various
intelligent algorithms are used for robot gait planning. Many
researchers have applied the central pattern generator (CPG)
to generate gait trajectories, but the parameter optimization of
this method is a challenge (Bai et al., 2019). Zhong et al. (2017)
transformed phase signal from CPG output into a trajectory
signal for the legs of a six-legged robot by adjusting it. Wang
et al. (2019) proposed a gait planning method based on a
reactive neuromuscular controller and CPG to achieve a power-
saving human-like large walk, and the controller parameters
were optimized based on an optimization algorithm in the
paper. Common optimization algorithms such as central force
optimization (CFO) and genetic algorithm (GA) have also been
successfully used for the gait planning of humanoid robots.
Kumar et al. (2018) applied GA to optimize parameters for a
triple-linked humanoid robot to achieve numerical simulation
of energy-controlled stable walking. Huan et al. (2018a) used
CFO to optimize the foot lift amplitude of a humanoid
robot, which caused an efficient and stable gait. PSO is a
common intelligent optimization algorithm that solves global
optimization problems simply and efficiently (Kennedy and
Eberhart, 1995). Huan et al. (2018b) applied PSO to optimize
joint angles to achieve stable walking for a humanoid robot
with 10 degrees of freedom. Mandava et al. proposed a multi-
objective particle swarm optimization algorithm method for
the gait optimization of humanoid robots for the trolley table
model. This method uses a sliding mode controller to optimize
robust tracking control and realizes the 3D simulation walking
of a humanoid robot (Mandava and Vundavilli, 2018). Gülcü
and Kodaz (2015) improved the performance of comprehensive
learning particle swarm optimizer (CLPSO) through parallel
computation and proposed PCLPSO. Most of the studies
mentioned earlier are devoted to single movements such as

straight, rotating, and going up and down stairs (Faraji et al.,
2019). There are relatively few studies that comprehensively
consider bipedal robot forward and rotation and their arbitrary
motion connection transitions. Also, during the simulation
process, the individual simulation platforms always add noise
in the same way, resulting in similar movements of the bipedal
robots. Parallel optimization algorithms can be a good solution
to this problem. Muniz et al. (2016) optimized the keyframe
movements of a humanoid robot (getting up, kicking, etc.)
through parallelization to improve the motion performance of
the robot. However, parallel algorithms suffer from low fault
tolerance when dealing with distributed tasks in RoboCup3D,
and it is difficult to ensure the correctness and stability of the
running process.

Based on the considerations mentioned earlier, this paper
selects 13 key parameters that affect speed and stability based
on the gait planning method of natural ZMP trajectories and
designs two evaluation functions to address the problems of
humanoid robot walking. By changing the cluster structure of
the PCLPSO algorithm, a parallel distributed multi-robot gait
training environment is established by using the RoboCup3D
simulation platform. The training environment consists of
multiple computers that can operate independently. The nodes
use the computer network for information transfer to achieve
a common task (gait optimization for humanoid robots). The
computational efficiency is improved by running in parallel
in a distributed environment. A layered learning approach
is used to optimize the evaluation function layer by layer.
Experimental results show that the optimized humanoid robot
has a faster and more stable straight gait and excellent turning
ability and has less wobble when switching between straight
and turning.

GAIT PARAMETER SELECTION BASED ON
NATURAL ZERO-MOMENT POINT
TRAJECTORY PLANNING

In this paper, after setting a natural ZMP trajectory from
heel to toe movement based on a 3D-LIPM in the single-leg
support phase, a mass-centered trajectory equation is obtained
(Graf and Röfer, 2011). In the double-leg support phase, a
linear pendulum model was used to generate mass-centered
trajectory equations. Equations for multistep planning of mass-
centered trajectories in a unified coordinate system are also
given. After planning the walking trajectory by natural ZMP-
based mass-centered trajectory planning method, the key gait
parameters are selected and optimized based on the experience
of manual tuning.

Multistep Trajectory Planning in a Unified
Coordinate System
During the movement of the humanoid robot, if only the
front and back and up and down movements are considered
and the left and right movements are ignored, it is easy to
cause the robot to lose its balance and fall. Therefore, it is

Frontiers in Neurorobotics | www.frontiersin.org 2 January 2021 | Volume 14 | Article 60088542

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tao et al. Gait Optimization Method

necessary to extend the linear inverted pendulum to a three-
dimensional environment and model the robot with a three-
dimensional linear inverted pendulum. However, the process of
directly analyzing and researching the multi-link structure of
biped robots is often cumbersome, so this article equivalently
simplified the robot to a reasonable mathematical model, which
is convenient for research. Regarding the body of the robot as
a mass point and the legs as massless support rods, a three-
dimensional linear inverted pendulum model can be built. It
does not need to know the parameters of the robot, such
as the mass and the inertia of each joint, but is derived
from the model for easy calculation. According to 3D-LIPM,
a humanoid robot is simplified to an inverted pendulum with
only a center of mass and a retractable massless pendulum, and
the height of mass is assumed to remain constant, as shown
in Figure 1A.

Assume that the height of the center of mass is fixed at zs
and the acceleration of gravity is g, the equation of motion
between ZMP trajectory psx(t) and the center of mass in the x-axis
direction is:

psx (t) = xs (t) −
zs

g
ẍs(t) (1)

To make the ZMP trajectory of humanoid robot walking
similar to that of human walking, this paper uses a linear
equation to represent the ZMP trajectory, as shown
in Figure 1B. Assuming that in the single-leg support
phase, ZMP moves in the x-axis direction in the range
of [psx min, psx max], the walking period of the single-leg
support phase is Ts; the center of the foot is the origin of a
coordinate system, and the trajectory of ZMP is given by the
following equation:

psx (t) = b1t + b0 (2)

where, t ∈ [0,Ts], b0 = psx min, b1 = (psx max − psx min)/Ts.

By defining ws =
√

zs
g by substituting Equation (1) into

Equation (2) and solving a differential equation, one has:

xs (t) = C1e
t/ws + C2e

−t/ws + b1t + b0 (3)

ẋs (t) = C1e
t/ws/ws − C2e

−t/ws/ws + b1 (4)

If the position and velocity xs (0) of the center of mass at the
initial moment of the single-leg support phase and ẋs (0) are
known, then one has:

C1 = (
(

xs (0) − b0
)

+
(

ẋs (0) − b1
)

ws)/2 (5)

C2 = (
(

xs (0) − b0
)

−
(

ẋs (0) − b1
)

ws)/2 (6)

If the positions of the center of mass at the initial moment
of single-leg support phase and the positions of the center of
mass at the moment of termination xs (0) and xs (Ts) are known,
there are:

C1 = (
(

xs (0) − b0
)

e−Ts/ws − (xs (Ts) − b1Ts − b0)/

(e−Ts/ws − eTs/ws ) (7)

C2 = (
(

xs (0) − b0
)

eTs/ws − (xs (Ts) − b1Ts − b0)/

(eTs/ws − e−Ts/ws ) (8)

According to Equations (2–4), the centroid trajectory planning
based on natural ZMP can be realized in the single-leg
support phase.

The direct application of the single-leg support phase method
for walking requires the assumption that the support leg switch
is instantaneous. This will cause the center of mass acceleration
to jump from the maximum to the minimum. To obtain a
smooth center-of-mass velocity trajectory, the legs support phase
is introduced. In this paper, a linear pendulum model is used
to realize natural ZMP trajectory planning of the double-leg
supporting phase.

In the double-leg support phase, according to the
linear pendulum model, as shown in Figure 1C, the
equation of the relationship between the position
of robot center of mass and acceleration is given
as follows:

xd (t) − D =
zd

g
ẍd(t) (9)

where zd < 0, t ∈ [0,Td], Td is double-leg support phase walk
period, and D is an x-axis coordinate of the fixed end of the
linear pendulum.

With wd =
√

−zd
g , from Equation (9) can have:

xd (t)= (xd (0)− D) cos (t/wd) + ẋd (0)wd sin (t/wd)+D(10)

ẋd (t) = ẋd (0) cos (t/wd) −
xd (0) − D

wd
sin(t/wd) (11)

In the double-leg support phase, the starting position and speed
and the ending position and the speed of the center of mass
can be known, that is, xd (0), ẋd (0), xd (Td), and ẋd (Td) can
be known.

D =
ẋd(0)

2w2
d
− ẋd(Td)

2w2
d
+ xd(0)

2−xd(Td)
2

2(xd (0) − xd (Td))
(12)

Td = wd arccos
(xd (Td) − D)(xd (0) − D)+ ẋd (0) ẋd (Td)w

2
d

(xd (0) − D)2 + ẋd(0)2w
2
d

(13)

A smooth center-of-mass trajectory based on natural ZMP
trajectory can be achieved in the double-leg support phase
according to Equations (10–13).

The methods mentioned earlier have their own coordinate
systems in the single-leg support phase and double-leg support
phase, which do not facilitate multistep planning calculations
for footprint planning. To do so, the equations mentioned
earlier need to be unified in the same coordinate system.
The equation for the position and velocity of the center
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FIGURE 1 | (A) Three-dimensional linear inverted pendulum model. (B) Diagram of natural zero moment point. (C) Linear pendulum model.

of the mass in multistep planning can be expressed by the
following equation:

x (t) =

n
∑

i=0

(xsi (t) + xdi (t)) (14)

ẋ (t) =

n
∑

i=0

(ẋsi (t) + ẋdi (t)) (15)

The robot gait realized by Equations (14, 15) yields a natural ZMP
trajectory.

Swing Leg Trajectory Planning
Cosine functions and Bessel curves can all be used to plan
swing-leg trajectories (Kajita et al., 2002; Grzelczyk et al., 2016).
However, the humanoid robot is divided into two phases of
single-leg support phase and double-leg support phase during
walking, and only when the speed and acceleration of swing-
leg start and landing are zero can the humanoid robot maintain
stability when switching between single-leg support and double-
leg support (Tang et al., 2003). To obtain a smoother trajectory
of the oscillating leg, this paper chooses the method of simple
harmonic motion synthesis:

zsw (t) =







Hsw

(

2
Ts
t − 1

2π sin ( 4πTs t)
)

, tǫ[0,Ts/2]

Hsw

(

− 2
Ts
t + 1

2π sin ( 4πTs t)+ 2
)

, tǫ[Ts/2,Ts]
(16)

xsw (t) = Dsw(
t

Ts
−

1

2π
sin (

2π

Ts
t)) (17)

where Dsw and Hsw are the maximum height of step length and
leg lift, respectively.

Selection of Gait Parameters
There are two kinds of bipedal walking pattern generation
methods. The first method uses precise knowledge of robot
dynamics parameters, such asmass, centroid position, and inertia
of each joint to configure walking mode. Therefore, the method
mainly depends on the accuracy of the model data. In contrast,
the second method uses limited knowledge of dynamics, such
as the total position of the center of mass, the total angular
momentum, etc. The simplified model method (3D-LIMP) used
in this paper belongs to the second type. After the optimized
trajectory is obtained, the robot can execute according to the
corresponding trajectory, and an excellent walking gait can be
obtained. By means of a gait generation method based on
natural ZMP trajectory planning, humanoid robot walking is
summarized in the following algorithmic steps.

Algorithm 1

1.Set the walking cycle Ts and walking parameters (Dsw, Hsw ), initial

foothold (p
(0)
x , p

(0)
y );

2.Initialization time T = 0, number of walking units n = 0;

3.Calculate the inverted pendulum equation from time T to T + Ts and get

the equation of mass center trajectory;

4. T = T + Ts, n = n + 1;

5. Calculate and determine the next foothold of the biped robot (p
(n)
x , p

(n)
y );

6. Give the next position of the bipedal robot;

7. Return to step 3.

The RoboCup3D server communicates with the robot once every

20ms. In this article, the robot is also controlled once in 20ms.

One step is eight times, so the walk period Ts is 0.16 s. As
algorithm 1 only considers the robot walking in a straight line, for
the case of steering walk. If the step length is set to zero, the robot
will only walk laterally, and if the step width is set to zero, the
robot will only walk in a straight line. However, in a simulation
match, the flexibility of the player is enhanced by changing the
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FIGURE 2 | Diagram of turning parameters.

TABLE 1 | Optimized gait parameters.

Parameter Description

FootLength Step size of one step (Dsw )

FootWidth Step width of one step

FootHeight Maximum height of swinging leg (Hsw )

sθ One step turning angle

Ts One step time

BodyHeight Body height in walking

Thigh Leg length

Hip Hip height

Comoff (x,y) Deviation of centroid

Commax Offset of maximum center of mass

Comnext Next centroid position

Arm(x,y) Amplitude of arm swing

Zmpoff Lateral offset of zero moment point

direction of travel while walking quickly. To be able to walk at
any angle, additional information about the direction is required.
The direction of each step is specified as sθ , as shown in Figure 2.

Equation (18) represents the position of the nth step foothold

of a humanoid robot (p
(n)
x , p

(n)
y )

[

p
(n)
x

p
(n)
y

]

=

[

p
(n−1)
x

p
(n−1)
y

]

+

[

cos s
(n)
θ -sin s

(n)
θ

sin s
(n)
θ cos s

(n)
θ

][

1x
(n)
x

−(−1)ns
(n)
y

]

(18)

Therefore, only important parameters such as step length, step
width, and directional angle of humanoid robot need to be
controlled to enable robot to walk. The gait parameters of the
biped robot are as many as 40. If each parameter is optimized,
it will inevitably affect the convergence speed because of the
huge state space. And different gait parameters bias the focus
of walking differently. According to natural ZMP-based mass-
centered trajectory planningmethod and the previous experience
of manual debugging, 13 key parameters affecting the gait of
humanoid robot were selected, as shown in Table 1.

GAIT OPTIMIZATION BASED ON
PARALLEL MULTIGROUP PARTICLE
SWARM ALGORITHM

Aiming at the problem that a lot of manual debugging time is
required when planning the robot trajectory by directly using a
simplifiedmodel, this paper proposes a machine learningmethod
based on the PCLPSO algorithm to optimize gait parameters.
First, the important parameters are extracted according to
the centroid trajectory planning method based on natural
ZMP. Secondly, in the optimization of walking mode, different
evaluation functions are set according to the requirements of
game gait mode, and the PCLPSO algorithm is used to optimize
the omnidirectional walking ability of a humanoid robot.

Parallel Comprehensive Learning Particle
Swarm Optimizer Algorithm
PSO algorithm is a fast and efficient optimization algorithm
(Kumar et al., 2018). Multiple individuals search for the target
in the search area. It is a parallel and random optimization
algorithm. Compared with other intelligent algorithms, it has a
faster convergence speed and robustness. Each particle in PSO
calculates the evaluation value based on the evaluation function.
During the search of each particle, two extreme values are
compared: the first is the optimal solution pbest of a particle; the
other is the global optimal solution gbest. The speed and position
updates of PSO are shown in Equations (19, 20):

vk+1
i = vki + c1∗r1∗(pbest

k
i − xki )+ c2∗r2∗(gbest

k − xki ) (19)

xk+1
i = xki + vk+1

i (20)

where i = 1, . . . ,N is the number of populations and k =
0, . . . ,Niter is the number of iterations; pbestki represents the

local optimal solution found by the particle itself, whereas gbestk

represents the global optimal solution for all current particles;
c1 and c2 are two constants greater than zero, which are used
to adjust the degree of attraction of local and global optimal to
the particle; r1 and r2 are both uniformly distributed random
numbers in the interval [0,1], which affects the random nature
of the algorithm. CLPSO is a valid variant of PSO (Liang et al.,
2006). The main difference between CLPSO and PSO is that the
original PSO requires the use of pbest and gbest, whereas for
CLPSO, updating the location only requires pbest. For PSO, pbest
only needs its own pbest in CLPSO update, which can come from
other individuals. The speed update formula is shown as follows:

vk+1
i = vki + c∗r∗(pbestkfi(d) − xki ) (21)

where c is the acceleration factor. r is also uniformly
distributed random numbers in the interval [0,1]. fi =
[fi (1) , fi (2) , · · · , fi (D)] is determined by the probability of
population Pc of randomly selected particles i. pbestk

fi(d)

represents the pbest value of particle, which is stored in the list
fi of the particle i of the dth dimension. Pc is calculated, as
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shown in Equation (22); 0.05 and 0.45 are the optimal values of
hyperparameters set by Liang et al. (2006) based on experience.

Pc = 0.05+ 0.45∗
e
( 10(i−1)

ps−1 )

e10 − 1
(22)

where ps is the population size.
In PCLPSO, the particle population is divided into multiple

groups, including a master group and several slave groups. All
clusters run PCLPSO in the cluster environment at the same
time. The gbest, lbest, and pbest in PCLPSO are defined as
follows: gbest is the global optimal solution for all groups, lbest
is the local optimal solution for populations, and pbest is the
optimal solution for particles. Each slave group sends its lbest to
the master group. The master group chooses the best solution
from all lbest as gbest and sends gbest to all slaves. Each slave
group randomly selects a particle to receive gbest to update
its own pbest. PCLPSO algorithm updates its own pbest by a
parallel distributed collaborative strategies. They are improving
the quality of the solution and the rate of solving. Each particle in
the PSO algorithm is updated by updating pbest and gbest values.
The gbest affects the direction of population, and when it falls into
a local minimum, the swarm particles tend to fall into this local
minimum. PCLPSO adopts a comprehensive learning strategy,
and the speed and position of the updated particles depend on
all other particles. The lbest is selected from the pbest of the slave
group, and themain group selects the optimal solution gbest from
all the lbest of the slave group to ensure that it will not fall into a
local minimum.

Construction of a Parallel Distributed
Training Environment
The particles in the group in the PCLPSO algorithm are
all running on a single computer, but each football robot
in a RoboCup3D match is controlled by a separate client.
Therefore, the PCLPSO algorithm cannot be directly applied
to the RoboCup3D simulation platform. Because all clients are
connected to the RoboCup3D simulated football server, the client
and server can run on multiple computers in a distributed
environment. Therefore, the PCLPSO algorithm is decomposed
into three algorithms by changing the cluster structure to
accommodate the RoboCup3D simulation platform in this paper.

In the new cluster, the structure is still based on the master–
slave model of parallel computing; only one is a master cluster;
the others are slaves, as shown in Figure 3. The gait training task
of the humanoid robot is decomposed into multiple processes
in the slave cluster, and a distributed training system is built
to run on multiple computers. The parallel and distributed
optimization framework can reduce the scale of solving gait
problems. When all slaves are started and connected to the
master group, and the master group sends parameters to the
slave group, the communication cycle begins. Communication
takes place only between the master group and slave groups;
there is no communication between slave groups. In the cluster
structure of this paper, the master node has no group, and its
main function is to send initial parameters to the group of slave
nodes (Algorithm 2, line 6), and the slave group sends its own

lbest to the master group (Algorithm 2, line 8). The master group
collects the received lbest, including its own lbest, into a pool
called Elite Pool (EP). The master group finds gbest from the
EP and eventually sends gbest to the slave group (Algorithm
2, lines 9, 10, and 11). The detailed algorithm of the master is
shown in Algorithm 2. The slave group exchange algorithm is
shown in Algorithm 3. Add an exchange program to slave group
clients for exchanging data between the master client and all the
clients of the slave group. In this paper, Local Pool (LP) is added
to the slave group to collect all pbest in the group. The slave
group finds lbest among all pbest and sends its own lbest to the
master group. The master server adds them to EP, finds gbest, and
shares it with the slave server. A robot is a member of a group
during gait optimization training, a slave group has seven clients,
and a client controls a humanoid robot, and eventually, multiple
humanoid robots are trained in a RoboCup3D simulation court.
The group client is used to calculate ZMP trajectory, COM
trajectory, and swing leg trajectory when a humanoid robot
is trained by the PCLPSO algorithm to walk. This part also
calculates joint angle information and adaptation values for a
cycle of humanoid robot walking. The detailed algorithm from
the group client is shown in Algorithm 4. The gait optimization
process for the client-based PCLPSO algorithm is shown
in Figure 4.

Algorithm 2 Master algorithm

1. int n, k, P, m

2. double w, c1, c2

3. Array EP

4. Initialize the parameters n, k, P, m, w, c1, c2

5. Wait until all slave swarms have been launched and connected to this Master

6. The master sends the parameters to the slaves

7. repeat

8. Wait until all slave swarms have sent lBest to the master

9. The master stores the lBests into the EP

10. The master finds the gBest in the EP and empties the EP

11. The master sends the gBest to the slaves

16. until the stopping criterion is met

17. return

Algorithm 3 Switching algorithm of a slave swarm

1. int n, k, P, m

2. double w, c1, c2

3. Array LP

4. Connect to the Master until the parameters are received from the master

5. int d = 0

6. repeat

7. d++

8. Store the pBests into the LP until all pBests in this slave swarm are received

9. if d mod P==0 then

10. Find the lBest in the LP

11. Send the lBest to the master

12. Wait until the gBest is received from the master

13. Randomly update a lBest with the gBest in the LP

14. end if

15. Send the LP to the all clients in this swarm

16. until the stopping criterion is met

17. return
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FIGURE 3 | Cluster structure.

FIGURE 4 | Flowchart of PCLPSO-based gait optimization.
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Algorithm 4 Algorithm in a client of a slave swarm

1. int n, k, P, m

2. double w, c1, c2

3. Array LP

4. Connect to the swap program in a swarm

5. Wait until the parameters are received from swap program in a

swarm

6. Initialize the parameters′ and velocity

7. Calculate Swing leg Trajectory and all joint angles of Robot NAO in

a walk cycle

8. Humanoid robot performs a walking training and calculates the

fitness value

9. Update pBest

10. Send the pBest to the swap program until the LP is received from

the swap program

11. Update the LP and find the lBest in the LP

12. repeat

13. Update the velocity and position

14. Calculate Swing leg Trajectory and all joint angles of Robot NAO

in a walk cycle

15. Humanoid robot performs a walking training and calculates the

fitness value

16. Update pBest

17. Send the pBest to the swap program until the LP is received from

the swap program

18. Update the Local Pool and find the lBest in the LP

19. until the stopping criterion is met

20. return

Design of Evaluation Functions
The design of evaluation criteria is critical to achieving an
excellent result (MacAlpine and Stone, 2018). In this paper, gait
optimization results are judged based on the following criteria:

1. The distance the humanoid robot travels per unit time.

fdis = a1∗ ‖ϕend − ϕstart‖ (23)

where ϕstart and ϕend are the coordinates of start and end of the
training, respectively, and a1 is the weight.

2. Whether zero force matrix is always within the supported
polygon and robot walks without falling all the time. in this paper,
the zmp coordinates of the walking action sequence are chosen as
the basis for calculation.

fzmp = a2∗

N
∑

k=1

√

(Px
(

k
)

)2 + (Py(k))2 (24)

where Px
(

k
)

and Py
(

k
)

are the ZMP coordinates for each gait
action sequence, and a2 is the weight.

3. Humanoid robot in the fast walking process torso always
maintains stability; body torso does not shake. In a simulation
match, the body of players is in frequent contact with each other,
and it is very easy to be knocked down by the opponent if the
torso is not stable. At the initial time of double-support phase,
the expected com coordinates are 2 ft on the center. In this
paper, torso sway is detected by comparing the two coordinates
of com and the center of feet during the initial stage of the dual
support phase.

xf = cx −
xfootR+ xfootL

2
(25)

fshake =

{

0 fabs
(

xf
)

< thθ

c otherwise
(26)

where xfootR and xfootL are the coordinates of initial time 2 ft of
the double support phase, thθ is the set threshold, and fshake and c
are penalty and normal numbers, respectively.

If the robot falls during training, a constant ffalling will be given
as a penalty value. The evaluation function for speed and stability
training is shown in Equation (27).

F1 = fdis − fzmp − ffalling − fshake (27)

Add the lateral walking and the turning angles of the humanoid
robot to the above, and the maximum distance of lateral walking
for each step is limited to 0.04m, and themaximum turning angle
is 15◦. In the optimization process, two different target points are
set for the bipedal walking robot to train its gait. If the target point
is reached, then the training of the next target point is quickly
stopped. The evaluation function is as follows:

F2 = fdis − ffalling − fpunish + freward (28)

where fpunish is the penalty for not completing the task within the
specified time, and freward is the reward for completing the task.

Layered Learning
In the RoboCup3D simulation game, players can be roughly
divided into two categories. The first category is to hold the
ball, avoid the defense of the opponent, intercept the ball in the
shortest time, and send the ball to the goal of the opponent;
the second category is to run according to the situation on
the field players and walk to the designated location as soon
as possible. Players without the ball often complete tasks such
as running and intercepting opposing players with the ball up
and down. For players to complete the tasks assigned by their
superiors in the shortest possible time, the walking speed of
robots is very important. The player is the defensive object
of an opponent after getting the ball, so frequent collisions
and turns are inevitable. Improve the stability of the robot
and steering ability to avoid falling and taking advantage of
collisions. The omnidirectional walking of a biped robot can
be decomposed into forward walking and steering motion.
This paper uses a layered learning method to optimize each
decomposition action of omnidirectional walking, and the final
omnidirectional walking optimization is shown in Figure 5. Each
sub-module requires the optimization algorithm to be trained
through the corresponding evaluation function. Use manually
adjusted parameters to drive the robot to walk, and then learn
to get a fast mode with speed and stability as the goal. The final
optimized parameters of the fast and stable mode are used as the
initial state of the steering mode, and the learning is continued
with the goal of steering stability. Through hierarchical learning
of the humanoid robot, two different walking parameter sets
(straight and turning) can be obtained. When different walking
tasks are to be completed, the parameter sets can be switched at
any time, and the flexible connection transition during switching
is also obtained through learning.
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FIGURE 5 | Layered learning for omnidirectional walking process.

FIGURE 6 | Number of clients from the group and training speed.

EXPERIMENTAL RESULTS AND ANALYSIS

This article uses a 3D-LIMPmodel to generate gait and opens the
function of adjusting walking engine parameters to the public.
OpenAI Gym acts as a bridge between optimization algorithm
and environment and accepts the gait parameters computed by
an optimization algorithm, performs a training session in the
environment, and then provides the necessary information back
to the optimization algorithm. To verify the effectiveness of the
PCLPSO algorithm for gait optimization, this paper compares
PCLPSO with three commonly used optimization algorithms,
GA, CFO, and CMA-ES (Rongyi and Chunguang, 2018), in terms
of the speed, stability, and turn capability of gait. The angle of
view of players is only−120–120◦. To get accurate data during
training, the value of setViewCones in the server is changed from
120 to 360◦. It is also necessary to change the game mode to
fast mode during training so that the training is not limited
by time. The mathematical properties of the four optimization
algorithms of GA, CFO, CMA-ES, and PCLPSO are evolutionary
algorithms. Each training uses the same population size (10)
and the same number of variables (13). First, randomly produce
10 sets of parameters. The humanoid robot walks according
to the 10 sets of parameters. The walking speed and stability
will be different. Choose the optimal one, and then iterate the
formula. Generate the next generation, and repeat the execution
with 10 iterations. In this article, the coding method of the GA
algorithm is standard binary coding. The number of parameters
determines the length of a chromosome. When calculating the
evaluation function value, the binary chromosome string should

FIGURE 7 | Training scenario diagram.

be decomposed and decoded to get the real number parameters.
The specific parameters of the GA algorithm are as follows: take
population size Np = 40, evolutionary algebra T = 200, and
crossover probability Pc = 0.7, and variation probability Pm =
0.05. The specific parameters of the CFO algorithm are as follows:
α = 0.3,β = 0.3,γstart = 0, γstop = 1, and γ = 0.1.

Firstly, Equation (27) is chosen as an evaluation function to
optimize the speed and stability of the robot. The relationship
between the number of clients in a single slave group and training
speed is shown in Figure 6. The training speed of multiple clients
is compared to a single client when it takes a single client to
train to an optimal value 1. The training speed increases linearly
between 1 and 7 clients. The training speed reaches its maximum
when the slave group contains seven clients. So, in the following
comparison experiment, the slave group structures of PCLPSO
are trained by seven clients controlling seven humanoid robots.
The training scenario of a humanoid robot in the RoboCup3D
scenario is shown in Figure 7.

Figure 8A shows the current optimal fitness values of four
algorithms, all of which increase with the increase in the number
of training. The evaluation function of the PCLPSO algorithm
reaches the optimal value after 6,500 trainings, and the optimal
value is 5.86. The evaluation function of the CMA-ES algorithm
reaches the optimal after 14,000 trainings, and the optimal
value is 4.73. GA algorithm reaches the optimal evaluation
function after 17,500 trainings, and the optimal value is 3.92.
The evaluation function of the CFO algorithm reaches the
optimal after 16,000 trainings, and the optimal value is 4.2. The
evaluation function value is averaged every 50 times of training,
as shown in Figure 8B. As the number of iterations increases,
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FIGURE 8 | Comparison of evaluation function values of four algorithms. (A) Current optimal evaluation function value. (B) Average function value.

FIGURE 9 | (A) x-axis trajectory. (B) z-axis trajectory.

the evaluation function of all four algorithms increases steadily.
One hundred twelve iterations for PCLPSO, 146 iterations for
CMA-ES, 176 iterations for GA, and 148 iterations for CFO are
stable. When the parallel distributed optimization framework
interacts with RoboCup3D, many low-cost data samples can be
obtained. Decomposition of gait problems can reduce the scale
of problem-solving. Make sure to get a better solution faster.

The walking stability measured by Equation (25) shows that
the xf fluctuation range of the PCLPSO algorithm is−0.2 to
0.2mm. The CMA-ES algorithm fluctuates between - 0.3 and
0.5. The xf range of GA is−0.7 to 1.4mm, and that of the CFO
algorithm is−1.3 to 0.8mm. The PCLPSO algorithm has the
smallest xf fluctuation range, and the humanoid robot is more
stable. The optimized trajectories of swing leg x-axis and z-axis
of four algorithms are shown in Figures 9A,B. At the moment of

takeoff and landing, the optimized trajectory of the swing leg of
the PCLPSO algorithm is parallel to the ground, which ensures
stability when switching between the single-support phase and
double-support phase.

The real-time changes of hip deflection pitch joint angle, hip
transverse roll joint angle, and hip pitch joint angle for four
algorithms are shown in Figure 10. The hip angle changes of the
PCLPSO algorithm are very stable and better than those of the
CMA-ES, CFO, and GA algorithms.

A comparison of changes in the center of mass landing points
for four methods is shown in Figure 11A. The landing point of
the center of mass in the double-leg support phase of the robot
using the parameters optimized by the PCLPSO algorithm is
always on the center of two-legged linkage and remains stable,
whereas the landing point of the robot center of mass using
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FIGURE 10 | Changes in hip angle for four algorithms. (A) Hip angle variation of PCLPSO algorithm. (B) Hip angle variation of CFO algorithm. (C) Hip angle variation

of GA algorithm. (D) Hip angle variation of CMA-ES algorithm.

the parameters optimized by CFO and GA is unstable. CMA-
ES algorithm optimized humanoid robot mass center fallout is
more stable than the CFO and GA algorithms but inferior to
the PCLPSO algorithm. ZMP trajectory after the optimization
of three algorithms is shown in Figure 11B. The ZMP trajectory
of the CMA-ES, GA, and CFO algorithms is close to the edge
of the support polygon, whereas the whole trajectory curve of
the PCLPSO algorithm moves toward the middle of the support
polygon, in which case the stability margin of humanoid robot
ZMP point is larger.

After the training mentioned earlier, it can be seen in
humanoid robot gait optimization, and PCLPSO algorithm

optimization of humanoid robot already has a fast and stable
gait, but in simulation competition in a humanoid robot, the
target point is constantly changing. When changing from a linear
to a rotating state, the average speed decreases again when the
rotation angle is small, and the humanoid robot is extremely
unstable during rapid stops. In this paper, to better adapt to
dynamic walking, layer learning is used to further optimize gait.
The robot not only has a fast and stable gait but also has excellent
steering ability. Next, the steering ability of the humanoid robot
is optimized using Equation (28) as an evaluation function. Test
experiments on the turning ability of humanoid robots were
conducted under the SimSpark platform of RoboCup3D, and the
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FIGURE 11 | (A) Humanoid robot center of mass landing point pshake variation. (B) ZMP trajectory after optimization of four algorithms.

FIGURE 12 | (A) Body rotation angle. (B) Turning performance test.

walking path was recorded byMatlab using RoboViz observation.
As shown in Figure 12A, the body rotation of four algorithms
when the robot is optimized to make it turn continuously. The
body rotation angle of robots using the PCLPSO algorithm
with optimized parameters reaches a maximum of−1.19◦ during
support leg switching, which shows that the robot is very
stable during the switching process of walking and turning.
Preplanning the walking path of the robot, the trajectory after
layer learning using three algorithms is shown in Figure 12B. The
GA algorithm walks a trajectory that cannot be flexible enough to
maintain stability when turning. The humanoid robot optimized

with the CMA-ES and CFO algorithms can turn flexibly but
requires some adjustment time when turning, and the PCLPSO
algorithm walks on a smooth trajectory that is almost identical to
the planned path.

Let humanoid robot go straight for 15m, test each algorithm
100 times, and take the average value. The results are shown in
Table 2. The PCLPSO algorithm is used to walk with less time
and faster speed under the same walking distance. The steering
angle represents the angle between the body orientation of the
initial position of the humanoid robot and the target point. The
four algorithms are tested 100 times when the steering angle is
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TABLE 2 | Straight speed comparison.

Algorithm Walking distance (m) Average time (s) Average speed (m/s)

PCLPSO 15 16.83 0.89

CMA-ES 15 21.02 0.71

CFO 15 21.05 0.71

GA 15 25.03 0.60

TABLE 3 | Steering performance test.

Angle(◦)

time (s)

Algorithm

PCLPSO CMA-ES CFO GA

30◦ 21.07 21.32 21.37 22.47

45◦ 21.45 22.01 22.38 22.58

60◦ 21.75 22.45 22.67 23.07

90◦ 22.40 22.73 22.85 23.39

30, 45, 60, and 90◦. The average time to reach the target point of
each algorithm is shown in Table 3. The PCLPSO algorithm has
the shortest average time to reach the target point at four angles.

CONCLUSION

This paper has built a RoboCup3D parallel distributed multi-
robot gait training environment based on PCLPSO. A layer
learning approach was used to optimize the existing problems
in layers. It effectively reduces the influence of similar noise of
a single simulation platform and has a faster optimization speed
than common optimization algorithms. The final experimental

results show that the PCLPSO algorithm optimizes faster and
walks more quickly and steadily. During turning motion, the

PCLPSO algorithm walks with a smoother trajectory and a
smaller body rotation angle when switching between straight
motion and turning motion, enabling stable, and flexible turning
of a humanoid robot. This algorithm can also be extended to
other aspects of RoboCup3D, such as the optimization of basic
movements of humanoid robots such as goal shooting.
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With the rapid development of robotic and AI technology in recent years, human–robot

interaction has made great advancement, making practical social impact. Verbal

commands are one of the most direct and frequently used means for human–robot

interaction. Currently, such technology can enable robots to execute pre-defined tasks

based on simple and direct and explicit language instructions, e.g., certain keywords

must be used and detected. However, that is not the natural way for human to

communicate. In this paper, we propose a novel task-based framework to enable the

robot to comprehend human intentions using visual semantics information, such that

the robot is able to satisfy human intentions based on natural language instructions (total

three types, namely clear, vague, and feeling, are defined and tested). The proposed

framework includes a language semantics module to extract the keywords despite the

explicitly of the command instruction, a visual object recognition module to identify the

objects in front of the robot, and a similarity computation algorithm to infer the intention

based on the given task. The task is then translated into the commands for the robot

accordingly. Experiments are performed and validated on a humanoid robot with a

defined task: to pick the desired item out of multiple objects on the table, and hand over to

one desired user out of multiple human participants. The results show that our algorithm

can interact with different types of instructions, even with unseen sentence structures.

Keywords: human–robot interaction, intention estimation, scene understanding, visual-NLP, semantics

1. INTRODUCTION

In recent years, significant progress has been achieved in robotics in which human–computer
interaction technology plays a pivotal role in providing optimal user experience, reduces tedious
operations, and increases the degree of acceptance of the robot. Novel human–computer
interaction techniques are required to further advance the development in robotics, with notably
the most significant one being a more natural and flexible interaction method (Fang et al., 2018,
2019; Hatori et al., 2018). It requires robots to process external information as a human in many
application scenarios. For home service robots, visual and auditory information is the most direct
way for people to interact and communicate with them. With continual advancement in statistical
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modeling, speech recognition has been widely adopted in robots
and smart devices (Reddy and Raj, 1976) to realize natural
language-based human–computer interaction. Furthermore,
substantial development in the field of image perception has been
carried out, even achieving human-level performance in some
tasks (Hou et al., 2020; Uzkent et al., 2020; Xie et al., 2020).
By fusing visual and auditory information, robots are able to
understand human natural language instructions and carry out
required tasks.

There are several existing home service robots that assist
humans in picking up specific objects based on natural language
instructions. (Kollar et al., 2010) proposed to solve this problem
by matching nouns and the target objects. Eppe et al. (2016)
focuses on parsing natural language instructions by Embodied
Construction Grammar (ECG) analyzer. Paul et al. (2018) utilizes
probabilistic graph models for natural language comprehension,
but objects are required to be described in advance through
natural language. With the development of neural networks,
some researchers tried to tackle the problem of natural language
comprehension as a classification problem and connect the
natural language representations of objects with objects in images
(Matuszek et al., 2014; Alonso-Martín et al., 2015), although it
turned out that classification plays an important role, and they
rely on human intervention heavily, leading to less autonomous
level. Shridhar et al. (2020) proposes an end-to-end INGRESS
algorithm to generate textual descriptions of the objects in the
image, and then relevancy clustering is performed with the
object descriptions of human instructions for extracting the
object with the highest matching score. Additionally, for multiple
ambiguous objects, the robot can remove the ambiguity by
identifying the objects. Hatori et al. (2018) uses the Convolutional
Neural Network (CNN) and Long short-term memory (LSTM)
to extract the features of the image and the text, respectively,
and subsequently fuses visual and auditory information by a
multi-layer perceptron. Magassouba et al. (2019) employed the
Multimodal Target-source Classifier Model (MTCM) to predict
region-wise likelihood of the target for selecting the object
mentioned by instructions. Some works learn models for color,
shape, object, haptics, and sound with predefined unique feature
channels have resulted in successful groundings (Mooney, 2008;
Dzifcak et al., 2009; Richards and Matuszek, 2019) explores using
a set of general features to learn groundings outside of predefined
feature channels. Despite these methods being relatively
flexible to determine the target object described by natural
language instructions, they cannot enable robots to understand
the connections between different concepts. The capacity of
understanding these connections determines the adaptability
and flexibility of processing unstructured natural language
instructions. If robots are able to flexibly parse and infer natural
language sentences, users may have better experiences. For
example, we expect robots to understand that “I am thirsty after
running that far in such a hot day” means “Grasp a bottle to me,”
and “I need to feed the little rabbit” means “Grasp a carrot to me.”

In order to achieve this goal, we propose a task-based
framework combining both visual and auditory information
to enable robots understand human intention from natural
language dialogues. We first utilize the conditional random field

(CRF) to extract task-related information from instructions,
and complement a number of new sentences based on the
matching rule. Then we apply Mask R-CNN (He et al.,
2017) for instance segmentation and classification, and use
sense2vec (Trask et al., 2015) to generate structured robot
control language (RCL) (Matuszek et al., 2013); RCL is a
robot-executable command for instruction. It represents the
high-level execution intended by the person. It enables robots
to perform actions in the specified tasks satisfying human
requirements. To evaluate the efficacy of our approach, we
classify human instructions into the following three types: Clear
Natural Language Instructions, saying object names or synonyms
clearly; Vague Natural Language Instructions, only providing
object characteristics (hypernyms, related nouns, related verbs,
etc.) without saying their names or synonyms; Feeling Natural
Language Instructions, describing feelings of users in the scene
without saying object names or synonyms. In such a manner,
by transforming unstructured natural language instructions into
robot-comprehensible structured language (RCL), robots can
understand human intentions without the restriction of explicit
expressions, and can comprehend connections between demand
concepts and objects.

2. METHODS

2.1. Image Recognition
In this work, we mainly use the Mask R-CNN for image
recognition. TheMask R-CNN is improved on the basis of Fast R-
CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015). The
architecture of Faster R-CNN integrates feature extraction, region
proposal selection, bounding box regression, and classification,
resulting in a significantly enhanced speed of object detection.
The Mask R-CNN is inspired by Faster R-CNN with outputting
both bounding boxes and binary masks, so object detection and
instance segmentation are carried out simultaneously. In our
work, we employ Resnet101-FPN as a backbone and use the result
of instance segmentation as the image region to be matched,
including the target object and the delivery place.

2.2. Information Extraction From Natural
Language Instructions
We first use a rule matching method for preliminarily
extracting natural language information. Furthermore, this
method provides labels for the conditional random fields process
to reduce labor intensity.

2.2.1. Rule Matching
Rule matching uses linguistics as a fundamental principle
to segment statements and label sentence components with
predefined semantic information. The reason why rule matching
is effective in parsing languages is that the languages are regular
when they are restricted to a specific domain. Specifically,
according to grammatical features, the sentence type is
straightforward to identify, and the local feature of specific
sentence types can be further utilized to extract key information.
In this paper, two variables, i.e., lexical and dependency
analysis, are selected. Compared to many existing studies
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TABLE 1 | Skills and details of the skills.

Instruction type Sentence structure Target object Delivery place

Feeling type Subject (user) + tether verb + epithet

+ other components

Words that are adjective and begin with a tethered verb in

dependency analysis, words that are adjective and begin with an

adverb in dependency analysis, etc.

Words that are personal pronouns

and end in a nominal subject in

dependency analysis, etc.

Vague type Subject + modal verb + intransitive

verb + other components

Words that are verbs and are the end of an open subordinate

complement in dependency analysis, etc.

Words that are personal pronouns

and end in a nominal subject in

dependency analysis, etc.

Clear/Vague type Subject + modal verb + transitive verb

+ noun + other components

Words that are common nouns and plural nouns, and are at the

end of the direct object in dependency analysis.

Words that are personal pronouns

and end in a nominal subject in

dependency analysis, etc.

Vague type Predicate + direct object (something)

+ indirect object + definite article

(adjective or verb infinitive) + other

constituents

Words that are verbs and end in a modifier in dependency

analysis, words that are adjectives and end in an adjective modifier

in dependency analysis, etc.

Words that are personal pronouns

and end in a noun subject in

dependency analysis, words that are

personal pronouns and end in an

indirect object in dependency

analysis, etc.

Feeling type It (for weather) + verb past tense or

verb present progressive + other

components

Words that are in the past tense of the verb and begin with the

noun subject in dependency analysis, words that are in the

present tense of the verb and begin with a non-primary verb in

dependency analysis, etc.

System default users, etc.

with grasping robots, ours not only contain the single verb
phrase-centered imperative sentence structure but also add
many common sentence types for expressing intentions through
natural language in the training set. These common sentences are
selected from the three types described in section 1. The details
of rule matching connecting sentence structure and instruction
types are displayed in Table 1.

2.2.2. Conditional Random Fields
Although the rule matching method extracts key information
from natural language with sufficient accuracy, it is inadequate
because it still requires grammatical features to identify sentence
types before parsing natural language. However, when the length
and complexity of the instructions increase, the fixed rule
may classify sentence types of the instructions incorrectly or
extract unexpected information because of the interference by
redundant information. Besides, high-frequency word features
are not contained in the grammatical rule due to the limited
and time-consuming enumeration work. Therefore, for further
extraction of natural language information, a statistical model is
necessary to integrate grammar and high-frequency words for
mining specific local features.

We use the CRF model for information extraction, whose
training data are labeled by the rule matching described
previously. The process of extracting information from a
sentence can be considered as sequence labeling. The model
analyzes input natural language sequences, i.e., sentences, and
outputs the label corresponding to each word. In this paper,
the tag set is item, target, none, where “item” represents the
keyword of the target object, “target” corresponds to the keyword
of the delivery place, and “none” is the other components of
the sentence.

The CRF is a common and efficient method for addressing
the sequence labeling problem, and its principle is based
on a probabilistic vectorless graph. In this paper, any

sentence x(x1, x2, ......, xn) has 3n possible label sequences
y(y1, y2, ......., yn), where (xi, yi) represents (word, word label).
The probability of labeled sequence y is written as:

p(y|x) =
escore(y|x)

∑

y′ e
score(y′|x)

(1)

score(y|x) =

m
∑

j=1

n
∑

i=1

λjfj(x, i, j) (2)

where fj(x, i, j) is jth feature function at position i and usually
is a binary function, generated by a feature template, which is
broader in this study according to the variety of the instructions.
At position i, (y|x) takes 1 when it satisfies the jth feature function,
otherwise takes 0. Parameter λ is the parameter to be learned.
The objective of training model is to maximize the probability
of the correctly labeled sequence. The size of m depends on
the variety of training corpus, the number of variables, and the
maximum offset.

2.3. RCL Generating
In order to enable the robot to understand the highly arbitrary
instructions provided by users and to grasp the target object
to the delivery place, unstructured natural language instructions
should be transformed into structured RCL. The RCL format
utilized in this paper is “Grasp A to B,” where A and B represent
the target object and the delivery place, respectively. In this work,
the RCL format is generated from natural language instructions
by extracting the keyword of the target object and place based on
the information extraction module of CRF. Simultaneously, the
image recognitionmodule ofMask R-CNN is utilized for instance
segmentation and classification. We map the extracted features
of natural language instructions and images in the same feature
space, and compare the degree of match between each object and
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FIGURE 1 | The overall framework: Once natural language information extraction and image recognition are completed, the features of natural language and the

image are transformed into the same space for finding the object with the highest matching score. We transform both the object recognized from the image and the

task-related information into word vectors to obtain the word vectors with maximum similarity. The vectors are then put into RCL (grasp object to place) to generate

the structured language comprehended by robots.

two keywords. The two objects with the highest scores are A and
B for generating the structured RCL language, “Grasp A to B.”
The overall framework is shown in Figure 1.

We use the sense2vec model, which is an improved version
of word2vec model, to transform the key information of
images and natural language instructions to the same feature
space. When words are fed into this model, the corresponding
sense information is also required. Compared to the word
vectors computed without context, those generated by sense2vec
model contain contextual information and single vectors of
corresponding compound words. Hence, the sense2vec model
has more flexibility than the word2vec model. The sense2vec
model employs CBOW, SG and structure-SG of word2vec,
and uses token rather than a word as a semantic unit.
Moreover, the same tokens with different tags are considered
as different semantic units. The training process of the model
is twofold. First, every token is labeled by a sense tag in
the corresponding context. Second, the common models of
word2vec, e.g., CBOW and SG, are fitted to the labeled data of the
first step.

After the sense2vec model is used to obtain the objects
according to the similarity between the information of target
objects and object names in the scene, the degree of match is
calculated. The object with the highest matching score is the
target to grasp. We utilize cosine similarity, which is commonly
used in word vector models, as an indicator of the degree of
match between the objects and the keywords in instructions. The
similarity is calculated as Equation (3), where ITEM denotes the
item in the image and A denotes the word that is extracted by
CRF, and V(w) is the sense vector of w.

sim (ITEM,A) =
V(ITEM) · V(A)

||V(ITEM)|| × ||V(A)||
(3)

2.4. Feedback Mechanisms
To make the robot grasp the item that humans want and be more
robust, our system uses a feedbackmechanism.When a user gives
an instruction, the robot determines the target object and delivery
place according to the instruction, and it asks the user whether
the result is right.
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TABLE 2 | Examples of the collected instructions.

Clear natural language instructions Vague natural language instructions Feeling natural language instructions

Can I have a cup of tea? I’m going to feed my monkey. I am thirsty.

I want to play sports ball. I need to control TV. I am hungry.

I’m so thirsty that I need a large cup of cola. The dark clouds shows that it will rain soon. I’m tired.

FIGURE 2 | Experimental setup for robot experiments. Our system uses

Cobot CAssemblyC2 for experiment.

We divide user feedback into three types. The first type is
positive feedback, the user thinks robot’s judgment is right. In
this situation, the robot grasps the target object to the delivery
place. The second type is negative feedback without any other
valid information. In this situation, the robot chooses the object
with the second largest matching score as the target object. The
last type is negative feedback with other valid information. The
algorithm uses CRF to extract the information related to the
target object and uses sense2vec to calculate a newmatching score
between the information of target objects and object names in the
scene, and then it chooses a new target object according to the
updated matching score. The new target object is chosen by the
following formula:

object = argmin
i

(

n
∑

j=0

sim(itemi,Aj)) (4)

where object denotes the target object, and itemi denotes the i
th

item in the image, and Aj and n denote the word extracted by

CRF in the jth time and number of feedback, respectively, and
sim denotes the similarity calculated by Equation (3).

For example, there is a scene with an apple, an orange, a
banana, a bottle, and a book. The instruction is “I want to eat
fruit.” Then the robot asks the user “Do you mean grasp the
apple to host?” The feedback is “No, I want to eat something
sour.” Algorithm can choose “sour” as valid information and use
sense2vec to calculate a new matching score. Then it can grasp
the orange to host.

2.5. Grasp Object
Current data-driven methods have significantly increased
the accuracy of grasping objects (Mahler et al., 2016,
2019; Kalashnikov et al., 2018; Quillen et al., 2018) and
they provide the technical basis for human–computer
interaction.

We are inspired by a state-of-the-art method Dexnet4.0
(Mahler et al., 2019) and use end-effectors based on parallel
gripper in the implementation of this study. We first generate a
series of candidate grasps by pre-computation and utilize Grasp
Quality Convolutional Neural Network (GQ-CNN) to score
these grasps. The grasp with the highest score is implemented
by robots. Since we only employ the parallel gripper, only pre-
trained parallel gripper policy is utilized.

The full process of grasping is as follows. After the
RCL is generated, the robot can use it to grasp the object.
The RCL format in this paper is “Grasp A to B.” The
system matches A and the results of image recognition. The
matching result is a mask image. B is one of the predefined
users. The mask image is the input of Dex-net2.0 that is
used to determine the object to be grasped. Dex-net2.0 can
generate a grasp position of the object. Then the robot
arm will move to the position and grasp the object to the
predefined user.

3. RESULTS

We design experiments as follows. Microsoft COCO is a dataset
for image recognition, and it provides many items that often
appear in the home environment. We exclude items that are
inappropriate to application scenarios from theMicrosoft COCO
(Lin et al., 2014). A total of 41 items remain and are categorized
into 7 classes (animal, accessory, kitchen, sports, electronic,
indoor, and food). Each experiment contains 3 categories of
items and each category has some corresponding items, and we
call it a scenario. Thus, there are altogether 35 scenarios, and
each scenario includes more than 20 items. In each scenario, 8
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FIGURE 3 | Type-specific reciprocal rank. Red, green, and blue represent clear natural language instruction, feeling natural language instruction and vague natural

language instruction.

subjects provide random instructions to the robots. Each subject
provides 3 instructions containing the objects in the scene and
lists of expected items for each instruction. There are 21 natural
language instructions in each scenario, and 735 instructions in
total. We show some examples of the collected instructions in
Table 2.

3.1. Accuracy of Information Extraction
To enable robots to accurately parse complicated sentence
structures, we apply the CRF model to extract information. The
rule matching method is only for generating and evaluating the
data of the CRF model. Therefore, quantitative evaluation of this
method is not involved in this study.

We use 735 sentences collected before to test the accuracy
of our CRF model’s ability to extract the target object and the
delivery place. We evaluate our CRF model in clear natural
language instructions, vague natural language instructions, and
feeling natural language instructions, respectively. The formula
is as follows:

accuracy =

∑n
i=0 Is_true(objecti) ∗ Is_true(placei)

n
(5)

where accuracy denotes the accuracy of the algorithm, and Is_true
denotes whether the objecti is true. n denotes the number of
instructions, and objecti and placei denote the target object and
place that are output by the algorithm.

The accuracy of the CRF model for clear natural language
instructions, vague natural language instructions, and feeling
natural language instructions are 0.710, 0.656, and 0.711,
respectively. This result indicates that our method has consistent
performance over all three types of instructions. By analyzing
the failure cases, we found that the wrong inferred item and the
wrong inferred target are most likely due to the deficiency in
training data that reflect their local features. The local features
are referred to words, positions, and dependency.

3.2. Evaluation of Human–Robot
Interaction
To obtain meaningful results, we evaluate our system’s human–
robot interaction ability in the scenarios. There are 21
instructions that are provided by 8 subjects in each scenario. The
experimental setup is shown in Figure 2.

Our system uses a feedback mechanism. The robot has a
ranking list according to matching score. If a user gives negative
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FIGURE 4 | Scene-specific mean reciprocal rank. This figure shows the relevance between scene-specific reciprocal rank and the categories in each scene.

feedback without any other valid information, the robot is able
to choose the object with the second largest matching score as
the target object, and so on. Therefore, we use reciprocal rank
(RR) as the evaluation of our system. RR is a measure to evaluate
systems that return a ranked list of answers to queries, and
mean reciprocal rank (MRR) is the mean of the sum of RR. The
formulas are given by:

RRi =
1

Position(item)
(6)

MRR =

∑N
i=1 RRi

N
(7)

where Position(ITEMi) represents the position of the real target
object in the matching score list, and N is the number of
instructions in each scenario, and RRi is the reciprocal rank of
ith instruction within each scenario.

The distributions of type-specific RR are demonstrated in
Figure 3. The mean reciprocal ranks of clear natural language
instruction, feeling natural language, and vague natural language
is 0.776, 0.567, and 0.572, respectively. The medians is 1 for
clear natural language instruction, which shows that the robot
can grasp the correct object at the first attempt according to
clear natural language instruction in most cases. The mean
reciprocal rank of all instructions is 0.617, which means the
robot need about 1–2 attempts to grasp the correct object
according to the three types of instruction at the average level.
Thus, we draw a conclusion that the robots infer the expected
item effectively, and especially, the robots make inference most
effectively and most steadily according to clear natural language
instructions among the three types of instructions defined as
before. The result also shows our framework’s ability to interact
with people.

We group the MRR by categories in their corresponding
scene, with intersections existing among groups. The result of our
experiment is shown in Figure 4, which indicates that the robots
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FIGURE 5 | Some examples of human–robot interaction. There are two user in these scenarios. The one on the right is host, and the other one is Furong. Red boxes

indicate the target objects chosen by our method. Red arrows indicate the delivery directions.

perform best and relatively steadily when items in “animal”
category appear in the scene, and perform worst and relatively
unsteadily when items in “indoor” and “food” categories appear
in the scene. It is because that the items in these categories
always appear in a similar context. It is also related to the word
embedding model.

The human–robot interaction ability of our system is shown
in Figure 5. Figures 5a–c illustrate the interaction for feeling
natural language instruction, vague natural language instruction,
and clear natural language instruction, respectively. Figure 5d
illustrates that our method can grasp objects to a different user.
Figure 5e illustrates our method’s ability to adapt to instructions
that have untrained sentence structures, which is an interrogative
question in this case. Figure 5f shows the feedback mechanism
of our method. The robot can grasp the orange because of the
feedback information that says he wants to eat something sour.

3.3. The Ability to Deal With Unseen
Sentence
We also note that this algorithm has a generalization capability to
some extent. It can analyze a question like “Which item can help
me use computers more efficiently?,” even though this sentence
type is not involved in the training set. Therefore, we choose
104 instructions that have unseen sentence structures to test the
generalization capability of our approach, such as interrogative
sentences and complex sentences.

The mean reciprocal rank for instructions that have untrained
sentence structures is 0.483, which means the site of the target
object is in the second position in the recommended list on
average, and the robot can grasp the correct object with about
2–3 attempts at the average level.

This also shows that our model has a generalization
capability to interact with complex instructions that have unseen
sentence structures.

4. CONCLUSION

Our proposed algorithm transforms unstructured natural
language information and environmental information into
structured robot control language, which enables robots
to grasp objects following the actual intentions of vague,
feeling, and clear type instructions. We evaluate the algorithm
performance using a human–robot interaction task. The
experimental results demonstrate the ability of our algorithm
interacting with different types’ instructions and a generalization
ability of unseen sentence structures. Although some sentence
types are not involved in the training set, the carried
information still can be effectively extracted, leading to
reasonable intention understanding.

In our future work, we would construct the databases based
on multiple tasks to extend its skill coverage, and explore its
potential in understanding more complex tasks.
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The success of a robotic pick and place task depends on the success of the entire

procedure: from the grasp planning phase, to the grasp establishment phase, then the

lifting and moving phase, and finally the releasing and placing phase. Being able to

detect and recover from grasping failures throughout the entire process is therefore a

critical requirement for both the robotic manipulator and the gripper, especially when

considering the almost inevitable object occlusion by the gripper itself during the robotic

pick and place task. With the rapid rising of soft grippers, which rely heavily on their

under-actuated body and compliant, open-loop control, less information is available from

the gripper for effective overall system control. Tackling on the effectiveness of robotic

grasping, this work proposes a hybrid policy by combining visual cues and proprioception

of our gripper for the effective failure detection and recovery in grasping, especially using a

proprioceptive self-developed soft robotic gripper that is capable of contact sensing. We

solved failure handling of robotic pick and place tasks and proposed (1) more accurate

pose estimation of a known object by considering the edge-based cost besides the

image-based cost; (2) robust object tracking techniques that work even when the object

is partially occluded in the system and achieve mean overlap precision up to 80%; (3)

contact and contact loss detection between the object and the gripper by analyzing

internal pressure signals of our gripper; (4) robust failure handling with the combination

of visual cues under partial occlusion and proprioceptive cues from our soft gripper to

effectively detect and recover from different accidental grasping failures. The proposed

systemwas experimentally validated with the proprioceptive soft robotic gripper mounted

on a collaborative robotic manipulator, and a consumer-grade RGB camera, showing

that combining visual cues and proprioception from our soft actuator robotic gripper

was effective in improving the detection and recovery from the major grasping failures in

different stages for the compliant and robust grasping.

Keywords: soft robot applications, pick and place, failure handling, visual tracking, proprioception
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1. INTRODUCTION

The success of a robotic pick and place task depends on the
success of the entire procedure: from the planning phase (object
detection and grasp planning), to the grasping phase (actually
establishing the grasp), to the lifting and moving phase (transit
the object toward target site), and the final releasing phase
(descending the object and release the grasp). Being able to
detect and recover from grasping failures throughout the entire
process is therefore a critical requirement for both the robotic
manipulator and the gripper (see Figure 1).

Grasp planning aims at generating better grasping proposals
to improve the success rate of robotic grasping. It can be
categorized as grasp detection based (Kumra and Kanan, 2017;
Zito et al., 2019; Li et al., 2020) and direct image-to-grasping
manner. The former mainly generates the grasping proposals for
the novel objects and it utilizes grasping contacts to compensate
for the pose uncertainty. The latter detects structured grasp
representations from images by the pose estimation of a known
object (Sundermeyer et al., 2018).

When establishing grasp and moving the target to the
destination, it is critically important to detect and recover from
any accidental failure in real scenarios. Even with an excellent
grasp planning, unexpected failure may still occur in the pick and
place task due to environmental changes or intrinsic systematic
errors. Without an effective failure detection and recovery
mechanism, the robotic system may crack accidentally and be
less efficient.

Visual servoing (Cowan et al., 2002; Kragic et al., 2002) was
popular for guiding the above phases in the robotic system. Some
typical object tracking algorithms (Grabner et al., 2006; Bolme
et al., 2010; Kalal et al., 2010) have been well studied. Li et al.
(2020) built a sensing pipeline through a neuromorphic vision
sensor DAVIS to satisfy the real-time features in object detection
and tracking. However, preserving visibility of the target has
been the key to robust object tracking in these algorithms and
the performance of algorithms becomes much weakened when
the partial occlusion exists. Robust tracking techniques under
the partial object occlusion are of great significance to a robust
robotic grasping system.

Meanwhile, under-actuated robotic grippers (Zhou et al.,
2017) recently tend to have a variety of advantages over the rigid-
bodied counterparts when the gripper is interacting with the
environment. There are numerous grippers with novel designs of
compliant mechanisms, working as both actuators and sensors
to generate movement and provide proprioceptive feedback
simultaneously (Su et al., 2020; Zhou et al., 2020). Endowing soft
robotic grippers with proprioception enables reliable interactions
with environment.

In this paper, we aim to investigate an effective grasping
system from the beginning to the endpoint, by considering the
partial object occlusion as a normal condition. We especially
focus on the failure detection and recovery framework in
the grasping system by combining the specific proprioceptive
capability of our soft gripper and the visual cues from the highly
obstructed view when the failure occurs. The proprioceptive
soft gripper used in the paper was developed in our recent

work (Wang and Wang, 2020). It was pneumatically driven
by soft bellows actuator and the pressure of the actuator was
leveraged for sensing the gripper movement and external contact
(see Figure 5). The main contributions and novelties are listed
as follows:

(1) more accurate pose estimation of a known object
by considering the edge-based cost besides the
image-based cost;

(2) robust object tracking techniques that work even when the
object is partially occluded in the system and achieve mean
overlap precision (OP) up to 80%;

(3) contact and contact loss detection between the object and the
gripper by analyzing internal pressure signals of our gripper;

(4) robust failure handling of robotic pick and place tasks with
the combination of visual cues under partial occlusion and
proprioceptive cues from our soft gripper to effectively detect
and recover from different accidental grasping failures.

2. SYSTEM ARCHITECTURE

2.1. System Modeling
The setup we considered consists of an RGB camera and a
proprioceptive gripper, which are equipped on the robot arm.
The robot arm is controlled by an operator acting on a master
device and interacting with the environment by combining the
proprioception of our soft gripper (Wang and Wang, 2020) and
the visual cues from the camera view. The relative coordinates of
the camera and the testbed are first calibrated, and the depth is
accordingly computed. We assume all the objects are put on the
same testbed. The system setup is illustrated in Figure 2.

Our system first performs automatic target detection and
poses estimation based on an RGB image and an edge map. Then
a robust object tracking algorithm continuously works to provide
real-time visual cues for failure detection and recovery, even if the
object is highly obstructed in the camera view. Meanwhile, the
proprioceptive capability of our soft gripper (Wang and Wang,
2020) is utilized in the system to sense the contact between the
object and the gripper. We measure the actuation pressure in the
soft actuator chambers to extract the external contact force and
further reflect the contact status between the gripper and object.
The proprioceptive capability is combined with visual cues to
guarantee the effectiveness of our system.

2.2. Workflow Illustration
The proposed multi-sensor collaboration architecture aims at
facilitating effectiveness of failure detection and recovery in the
grasping. A general illustration of the system pipeline is shown in
Figure 2.

The input of our system is the starting frame recorded by
the in-hand camera. We first aim at target detection and pose
estimation. The target is first assigned by the user and denoted
as the number corresponding to the predefined template. Then
the target is detected on the query image and the target’s pose
is estimated by template retrieval with an image and edge cost.
For the determination of the target’s pose, previous work (Zhou
et al., 2017) prefer to first detect objects without recognition.
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FIGURE 1 | (A) The entire procedure of robotic pick and place task. (B) Comparative analysis with other methods.

Then a planner, such as MoveIt planner (Coleman et al., 2014),
is implemented to generate multiple motion plans and intuitively
determine the pose. Compared with our previous work (Zhou
et al., 2017), pose estimation in this paper is more efficient based
on object recognition. Because any accidental changes or failures
affect subsequent steps in grasping, we design three phases of
detection by combining the visual and proprioceptive cues to
improve the effectiveness of our system. The first detection is
designed for disturbance from external factors. For example, the
target may be accidentally moved as the gripper is approaching.

Our system detects position changes with the proposed object
tracking algorithm. It can still robustly work in the challenging
scenario that the target is partially occluded by the gripper in
the camera view. If the position change of target is not detected
in visual tracking, a grasping trial will be executed. Otherwise,
if the target is moved, our system will relocate and track the
target in the current camera view. If the target is reported lost
in the current view, the arm will be reset. Target detection
and pose estimation will be executed in the new camera view.
The second detection aims at checking if the last grasping
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FIGURE 2 | The top-left is the setup of the proposed robotic pick and place platform, with a collaborative robotic arm and a proprioceptive soft robotic gripper with

inner soft pneumatic bellow actuators backed by rigid frames, and pressure sensors for monitoring bellow’s inner pressure. A consumer-grade RGB camera is used

for visual detection and tracking. The bottom is the proposed system pipeline with feedbacks of both visual and proprioceptive cues.

trial is successful. The failure here usually results from internal
disturbance, such as the inaccurate pose of the gripper in the
former trial. Both visual and proprioceptive cues are utilized
by observing whether the coordinate of the target remains the
same and the force changes measured by inner pressure sensor
have followed the common rules during the grasping trial. Then
combined feedbacks will guide the determination of the system.
If no failure happens, the system will step into the next phase.
Otherwise, the system will timely go back to the very beginning
phase. Compared with our previous work (Zhou et al., 2017)
without timely failure detection in grasping, the combination
of visual and proprioceptive information contributes to the
effectiveness of failure reaction in our system. The third detection
aims at checking picking failure based on the proprioceptive
information. Proprioceptive cues can be sensitively observed
from the embedded air-pressure sensor of our soft gripper.
Thus, the soft gripper has its specific advantages in our case
besides its compliance advantage in grasping. Through simple

data processing, the contact force between the object and gripper
can be estimated. Picking failure occurs when a sudden decrease
in the estimated contact force is detected. In the final phase, if
object picking succeeds, the target will be placed in the expected
position and the robot arm will be reset.

3. METHODOLOGY

This section clarifies some technical details in our system. It can
be divided into three parts. In the first part, we introduce how to
automatically detect the target and estimate the pose of the target
by the template retrieval. Besides the canonical image-based cost,
we introduce the edge-based cost to improve the accuracy of
object pose estimation. In the second part, we present the target
tracking algorithm that can robustly work even with partial object
occlusion. In the third part, we explore the details about the
proprioceptive of our soft gripper in the failure detection and
recovery system.
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3.1. Object Detection and Pose Template
Retrieval
In this part, we illustrate our algorithm for object detection and
pose template retrieval. As illustrated in Figure 3, we implement
the network described in Sundermeyer et al. (2018) to compute
the image-based cost by first finetuning Single Shot MultiBox
Detector (Liu et al., 2016) on synthetic images to help detect
and label objects on the query image, and then reducing the
pose estimation issue to pose template retrieval, in which we
create a pose repository for each object by rendering clean images
with different views and inner plane rotations. To retrieve the
best pose template from this repository, here we innovatively
combine not only the state-of-art work (Sundermeyer et al., 2018)
with a deep neural network, but also a canonical edge-based
cost (Shotton et al., 2008) to improve robustness. Figure 3 shows
how we combine these two cues for the pose template retrieval
problem, while in the following paragraphs we will illustrate these

two costs and the way we combine them for the pose template
retrieval in detail.

3.1.1. Image-Based Cost
Through the supervised process of reconstructing the
object’s appearance in the RGB image while eliminating the
influence of background clutter, occlusion, geometric, and color
augmentation, Sundermeyer et al. (2018) output a descriptor
that conveys the 3D orientation information. By looking up
the descriptor codebook for poses in the repository, a cosine
similarity cost is computed to measure the similarity between
the query Region Of Interest (ROI) and the ith pose template in
the repository:

CIMG
i = −

zTq zi

‖zTq ‖ · ‖zi‖
(1)

FIGURE 3 | The pipeline for pose template retrieval, where we first compute the image-based descriptor based on the reconstruction of the foreground model and

use the image-based cost to select top-k template candidates. Among these k candidates, the edge-based cost is then computed with the corresponding edge map

(see details in section 4.1), followed by a combination of two scores to re-rank. Off-line computation for templates is annotated by dash lines, and online computation

by solid lines.
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where zq,zi ∈ R128 correspond to the computed descriptors
for the query ROI and ith pose template in the repository,
respectively. Here, we take a negative to ensure a smaller cost
indicates a better matching.

3.1.2. Edge-Based Cost
We utilize oriented Chamfer distance (Shotton et al., 2008) to
compute the edge-based cost. With a given edge map and the set
of edge points Ti for the ith pose template, we define the nearest
query edge point V(t) for t ∈ Ti as:

V (t) = argmin
q∈Q

‖q− t‖1 (2)

where Q indicates the set of edge points from the query ROI, and
L1 distance is used. So we evaluate the edge-based cost:

CEDGE
i =

1

|Ti|

∑

t∈Ti

‖V (t) − t‖1 + λ ‖φ (V (t)) − φ (t)‖ (3)

where |Ti| indicates the cardinality of the set Ti and φ(x) is the
orientation of edge at edge point x. lambda is the weighting factor
that balances the distance and orientation differences.

3.1.3. Enhanced Image-and-Edge Costs
Due to the gaps between synthetic training data and real test
images in terms of environments andmodel precision, the image-
based cost may fail to retrieve the correct pose reasonably, while
the edge-based cost is robust under these changes. Thus, we first
use image-based costs to provide top-k pose candidates. Then we
use a weight parameter µ(0 ≤ µ ≤ 1) to linearly combine both
image and edge-based costs to re-rank these k candidates:

Ci = µCIMG
i + (1− µ)CEDGE

i (4)

3.2. Visual Tracking Under
Partial-Occlusion Circumstance
In this section, we address the case of continuously tracking the
target even though partial occlusion occurs. We use correlation
filters to model the appearance of the target and perform
robust tracking via convolution. Recently, correlation-filters-
based trackers (CFTs), which were widely used in recognition
(Savvides et al., 2004) and detection (Bolme et al., 2009), have
shown promising performance in object tracking. The CFTs
estimate the target’s position by correlation filters with different
kinds of features. In the Fourier domain, the correlation score
is computed by the element-wise multiplication between image
features and the complex conjugate of the correlation filter
(Bolme et al., 2010). Inverse fast Fourier transform (IFFT) is
utilized to transform the correlation back to the spatial domain.
The peak correlation score indicates the target’s center.

A general illustration of the tracking method, which is feasible
when partial occlusion exists, is shown in Figure 4. Let f denotes
the feature of an image patch and g denotes the desired output,
we can get the correlation filter in the Fourier domain (Bolme
et al., 2010). The state of the target can be estimated by learning
a discriminative correlation filter (DCF) h, which is trained by

an image patch I of size M × N around the target. The tracker
considers all circular shifts f lm.n,(m, n) ∈ 0, ...,M − 1×0, ...,N − 1
as features of training patches for training correlation filters,
where l ∈ 1, ..., d is the dimension of features. The correlation
filter hl of each feature is built by minimizing a cost function
as follows:

h∗ = argmin
h

∑

m,n

‖

d
∑

l=1

f lm,n ⊙ hl − g (m, n) ‖2 (5)

where ⊙ symbol denotes circular correlation. All the training
patches are selected from I by dense sampling. Equation (5)
is a linear least square system that transforms tasks from the
spatial domain into the frequency domain with a simple element-
wise relationship. The Fourier transform of the input image,
the filter, and the output can be represented by Fl,Hl, and

Gi, Fl, Fl represent the complex conjugation operations, and
above minimization problem takes the form:

min
H∗

∑

i

∣

∣

∣
F
l
Hl − Gi

∣

∣

∣

2
(6)

By solving for Hl, a closed-form expression is shown as:

Hl =

∑

i GiF
l

∑

i F
lFl

(7)

To estimate the target’s position in the frame t, a new patch z
with size M × N will be cropped out according to the target’s
position in the frame t − 1. Based on the correlation filter, the
response output is then computed and transformed back into the
spatial domain by IFFT. The location of the maximum value in
the response output indicates the shifted center of the target from
frame t − 1 to frame t.

3.2.1. Tracking With Partial Occlusion
The algorithm performs well under scale variation and partial
occlusion. The Peak-to-Sidelobe ratio, which measures the
strength of a correlation peak, splits the response of the filter into
the maximum value and the “side lobe” that consists of the rest
of pixels in the region, including a small window (i.e., 11 × 11)
around the peak. If the occlusion is detected, the tracker should
attempt to hallucinate the target until it can be detected again. For
occlusion solving, we divide the target into several patches and
then compute the Peak-to-Sidelobe ratio of every response map.
According to the maximum in the response map, the partially
occluded target can be tracked robustly. The occlusion detection
and solving techniques ensure the tracker to work robustly and
reliably in robotic grasping.

3.3. Proprioceptive Grasp Failure Detection
Object picking and placing tasks are a series of contact involving
forces, which cannot be easily monitored by vision. Vision can
indicate to the robotic system the position of the target object,
but it requires physical contact feedback to fast detect-response
to dynamical changes and enable robust grasping. In this section,
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FIGURE 4 | Illustration of the proposed robust correlation-filters-based tracking method for partial occlusion.

based on the soft actuated rigid gripper developed in the previous
work (Wang and Wang, 2020), we proposed a contact and
contact loss monitoring method for the grasp failure detection
in the pick-and-place task. Figure 5 presents the prototype and
mechanism of the soft actuated rigid gripper. The soft actuated
rigid gripper was constructed with antagonistic bellows and plane
six-bar linkages and is pneumatically operated with a simple
control system. Two pressure sensors were used for monitoring
bellows’ inner pressure. We did not attach any traditional force
or position sensors on the soft actuated rigid gripper but to
leverage the pressure signal of the soft bellows actuators for
estimate the joint movements and external contacts. In such
configuration, this soft actuated rigid gripper is endowed with
so-called proprioceptive capability.

3.3.1. Contact Force Estimation
The contact force at the fingertip was proposed to be estimated
by a generalized momentum observer (Wang and Wang, 2020).
The observer dynamics is given by

r = Ko

(

M(θ)θ̇ −

∫ t

0
((Fa − kay)

∂y

∂θ
+ C(θ , θ̇)− g(θ)+ r)ds

)

(8)
where the monitoring signal r is observer output,Ko is observer
gain. Displacement of the actuator y and link angle θ is a set
of generalized coordinates to formulate the dynamic model of
the gripper system. ka is the axial stiffness of the actuator, which
was theoretically and experimentally calibrated as a constant. The
actuation force Fa is estimated by the measured pressures P1 and
P2 of the active and passive bellow, that is Fa = A · (P1 − P2),
where A is the effective active area of the air. M(θ) is the mass
inertia, C(θ , θ̇) is the centrifugal and Coriolis force, and g(θ) is

the gravitational torques in the link joints. Detailed deduction of
the momentum observer can be seen in Wang and Wang (2020).
The contact force at the fingertip Fg can then be estimated via the
observer output as

Fg = (
∂xf

∂θ
)−1r (9)

where xf is the displacement of the gripper finger.

3.3.2. Contact Detection
To detect the physical contact between gripper fingertips and the
object, a contact detection function cd(·) can be introduced to
map the estimated contact force Fg(t) into the two classes TRUE
or FALSE:

cd : Fg(t) → {TRUE,FALSE}

Ideally, the binary classification is obtained by

cd(Fg(t)) =

{

TRUE, if Fg(t) 6= 0

FALSE, if Fg(t) = 0
(10)

Considering the error in measurement, modeling, and
disturbances, in practice the monitoring signal Fg(t) 6= 0 even
when no contact occurs. Thus, an appropriate threshold should
be considered to obtain a robust contact detection function.
Statistical observations of gripper finger open and close motion
without grasping any objects, fingertip collision, or external
disturbances for a sufficiently long time interval [0,T] lead to a
definition of µmax = max

{

|µ(t)|, t ∈ [0, t]
}

. Considering a safe
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FIGURE 5 | Proprioceptive gripper with proprioceptive sensing capability: (A)

prototypical setup of the proprioceptive gripper; (B) mechanism of the

proprioceptive gripper; (C) internal gripper structure showing the bellows soft

actuator; (D) schematic of the pneumatic bellow actuator.

margin εsafe > 0, the contact detection function can be decided
using a conservative threshold σ = µmax + εsafe :

cd(Fg(t)) =

{

TRUE, if Fg(t) > σ

FALSE, if Fg(t) ≤ σ
(11)

3.3.3. Contact Loss Detection
In case of sudden contact loss due to error in grasping pose
configuration, external disturbance, or insufficient contact force,
the gripper finger accelerates in the same direction as the grasping
force applied to the surface of the object. Therefore, the contact
force will suffer a rapid decrease. A binary function can be
introduced to recognize contact loss by monitoring the changes
in the contact force signal between two suitable time intervals
△Fg(kT) = Fg[NT] − Fg[(N − k)T], where T is the sampling
time and kT is the time interval. Similarly, considering the noise
in the estimated contact force, a threshold △>0 is used to decide
the contact loss detection function cld(·)

cld(△Fg(kT)) =

{

TRUE, if △Fg(kT) < △

FALSE, if △Fg(kT) ≥ −△
(12)

FIGURE 6 | Illustration of grasping failure in the second phase of detection.

3.4. Cooperative Work Between Visual
Cues and Proprioception of Our Soft
Gripper
The object detection and pose estimation algorithm contributes
to an initial grasp plan with higher accuracy by considering
the edge-based cost besides the image-based cost. Then
the tracking algorithm provides the visual cues by robustly
reporting the object’s real-time position, even if the target
is partially occluded in tracking. Systematic failures can be
detected from unexpected position changes reflected by the
visual cues. Furthermore, immediately after the failure was
reported, visual cues can efficiently help the systematic recovery
by real-time relocation and pose estimation of the target.
Visual cues take effect in both the 1st phase (detection of
position changes) and 2nd phase of detection (detection of
grasping failure).

Meanwhile, the proprioception of our soft gripper contributes
to the contact detection between the gripper and the object
by contact force estimation with the internal air pressure
sensor. In the 2nd phase of detection, see Figure 6, if grasping
failure occurs, besides the object position changes reflected by
the visual tracking algorithm, the sudden changes of contact
force will simultaneously be reported by the internal air
pressure. We combine the visual and proprioceptive signal for
detection of grasping failure. Let us assume that the maximum
contact force during grasping is Fmax and after grasping is
Fg , the object position before grasping is X0, and the object
position after grasping is X, and the side length of the
rectangle bounding box are a and b. Intuitively, the object
is being stably grasped if larger force Fg retains and X is
close to X0 after contact. Using maximum entropy principle,
we predict whether contact loss occurs based on the visual
or proprioceptive cues and then blend the prediction results
for arbitration.
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The probability µp of grasping failure predicted by
proprioceptive cues can be formulated as

µp =
e−α|Fg−Fmax|

2

e−α|Fg−Fmax|2 + e−αF2g
(13)

where α is an adjustable and negative parameter. The probability
µv of grasping failure predicted by visual cues can be formulated
as

µv=











e−β‖X−X0‖
2

e−β(
√
a2+b2−‖X−X0‖)2 + e−β‖X−X0‖2

, ‖X − X0‖
2 < a2 + b2

1, ‖X − X0‖
2 ≥ a2 + b2

(14)

where β is an adjustable and negative parameter.
To formulate a confident arbitration, a blending function can

be implemented by

µ∗ = (1− λ)µp + λµv (15)

where λ ∈ [0, 1] is a blending factor that represents the
confidence on the visual cues or proprioceptive cues for
predicting grasping failure. Considering a threshold µ0, the
grasping failure can be detected by a binary classification.

cd(Fg ,X) =

{

TRUE, if µ∗ > µ0

FALSE, if µ∗ ≤ µ0
(16)

In the 3rd phase of detection, proprioceptive cues are utilized
again to inspect the state of picking (see Equation 12). Failures
may sometimes occur here because of insufficient grasping force.
The detection result in this phase determines whether the internal
air pressure needs to be increased.

4. EXPERIMENTAL VALIDATION

This section introduces experimental details to validate the
outstanding performance of our system. The experimental
setup is shown in Figure 2. A consumer-grade RGB camera
(Logitech C920) is utilized for object detection and tracking. The
proprioceptive robotic gripper provides proprioceptive cues for
failure detection. They are both mounted to the end joint of a
6-DoF robot arm (E6, SANTIFICO Ltd.).

4.1. Validation of Accuracy Improvement in
Object Pose Estimation After Introducing
Edge-Based Cost
In experiments of this paper, we use the canonical Canny
(1986) to compute edge maps for both pose templates in
the repository (off-line computation) and detected query ROIs
(online computation). For each object, we generate 3,240 pose
templates by evenly sampling the unit sphere space and utilize
the image-based cost to select k = 20 templates for further re-
ranking. We set λ = 10 in edge-based cost and µ = 0.9 for

FIGURE 7 | (A) Quantitative comparisons that show the improvements brought by the introduction of edge-based cost. The number at the bottom of each row

(before “/”) illustrates the rotation angle (in degree) of protruding handles in ground-truth or the estimated pose, as well as (after “/”) the difference between estimated

and ground-truth value. The first column is the ground truth of the object pose. The second column is the pose estimated by the method in Sundermeyer et al. (2018),

which only considers image-based cost. The third column is the estimated pose of our method considering both image-based cost and the edge-based cost. Our

method helps improve the robustness and accuracy of the object pose estimation. (B) Qualitative comparisons that illustrate that the introduction of edge cue could

help rectify the orientation and provide more accurate pose estimation results. Compared with the color cue, the edge cue is more robust under the variants of lighting

conditions.
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the enhanced image-and-edge cost. To illustrate the advantage
of our re-ranking strategy with edge-based cost, we evaluate a
model (see Figure 7) with protruding handles, which are crucial
for gripping. The image-based cost alone fails to accurately
evaluate the orientation of these handles, but the introduction
of edge information improves robustness on these detailed but
crucial parts.

Figure 7 presents examples with qualitative and quantitative
comparisons between two settings that either combines edge
information and re-ranking or not. To analyze the estimated
result quantitatively, we compute the absolute difference (the
error of pose estimation) of rotation angle between estimated

and ground-truth pose for the handles referring to the axis
perpendicular to the image plane. It is apparently validated that
our method, which introduces the edge cost besides the image
cost, have advantages over the state-of-art work (Sundermeyer
et al., 2018). More reasonable templates are retrieved with the aid
of edge-based costs.

4.2. Validation of Object Tracking Under
Partial Occlusion
Object tracking plays an important role in three phases of
detection in our system. However, partial occlusion, which results
from the body part of the gripper or external disturbance, may

FIGURE 8 | (A) Robust object tracking under partial occlusion in different scenarios. (a) When no accidental failure occurs. (b) Unexpected position changes of the

object. (c) Grasping failure. (d) Picking up failure. Letters “T,” “A,” “R,” “G,” “E,” and “T” are marked on the target to indicate different portions of it. The blue bounding

box indicates the position of the target in the camera view. (B) Comparison of tracking methods introduced in (a) (Grabner et al., 2006), (b) (Kalal et al., 2010), (c) (Held

et al., 2016) with (d) ours while the object is partially occluded. The white dashed boxes indicate the object with partial occlusion and bounding boxes in different

colors correspond to the results of each tracking method. (C) Comparisons between four tracking methods in the same sequence. The mean CLE (in pixels, the lower

the better) and OP (%, the higher the better) are presented (whent0 = 0.5). The best results for the experiments are shown in the bold format. (D) Performance

evaluation of the proposed method using precision plot and success plot of OPE (One-Pass Evaluation) for sequences having occlusion in OBT-50. In (a), to achieve

the same precision at 0.7 or more, our method demands less location error than others. In (b), the partial occlusion(overlap) is usually 30–70% when the gripper

approaching to the bottom to grasp the object, and in this overlap interval, our method achieves higher success rate than others.
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accidentally occur during robotic grasping. As shown in Figure 2,
the target is partially occluded by the body part of the gripper. To
provide reliable visual guidance for decision-making in real time,
we introduce the tracking method that can work robustly even
when occlusion exists.

4.2.1. Object Tracking With Partial Occlusion
With numerous systematic tests, the robustness of our tracking
algorithm has been obviously reflected, especially when the
accidental failures occur. In Figure 8A, we visually presented
several tracking examples under different circumstances of our
grasping system. Although the object is partially occluded by the
body part of our robotic gripper when failures occur, the visual
tracking algorithm still robustly provides visual cues to assist the
failure recovery of the grasping system.

To demonstrate the advantages of our method over others, we
designed the following experiments. With the same experimental
setup illustrated in Figure 2, when the target is partially occluded
in the camera view, we compare the results of three typical visual
tracking algorithms (Grabner et al., 2006; Kalal et al., 2010; Held
et al., 2016) in robotic applications with our results. The results
are shown in Figure 8B.

To quantitatively evaluate the performance of each tracker,
we adopt the evaluation protocol described in Danelljan et al.
(2014a,b). (1) Center location error (CLE), which is the average

Euclidian distance between the estimated center location of the
target and ground truth, and (2) OP, which is the percentage of
frames where overlap score is larger than a given threshold t0
(e.g., t0 = 0.5). The score is defined as:

score =
area(RT

⋂

RG)

area(RT
⋃

RG)
(17)

where RG and RT are the region of tracking results and ground
truth, and

⋂

and
⋃

are the intersection and union operations.
We have evaluated each tracker on 21 video sequences,

which is recorded in our real experimental tests and the
partial occlusion exists. For each video sequence, we run
15 times for each tracker and record the mean values of
CLE in pixels and OP (%). Figure 8C quantitatively reports
the comparative results of each tracking methods. Both the
lowest value of mean CLE and the highest value of mean OP
obviously indicate that ours is superior to others. Even the latest
(Held et al., 2016), whose performance is well-acknowledged in
computer vision benchmarks, underperforms when the target is
partially occluded. The value of mean OP in our algorithm has
sufficiently satisfied the requirement of robust tracking under
partial occlusion.

To further validate the tracking performance under partial
occlusion, our method is evaluated on the 29 sequences with the

FIGURE 9 | Pipeline of the object picking-and-placing task.
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partial occlusion in the OTB-50 benchmark (Wu et al., 2013), in
which attributes are fully annotated. We compare our method
with the reported TOP 3 tracking algorithms in the benchmark
using one-pass evaluation (OPE). The OPE uses the ground

truth object location in the first frame and evaluates the tracker
based on the average precision score or success rate.The former
is the ratio of successful frames whose OR is larger than a given
threshold to the total frames in a sequence, whereas the later is

FIGURE 10 | (A) Contact detection: (a) grasping of a rigid object; (b) grasping of a soft object. (B) Grasping failure due to unstable pinching. (C) Grasping failure due

to visual positioning error. (D) Picking up failure due to small grasping force.
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the percentage of frames whose CLE is less than a given threshold
distance of the ground truth. Further, these success and precision
curves are averaged over all the sequences to obtain the overall
success and precision plots, respectively. The plots of OPE for the
4 trackers averaging over the OTB-50 sequences having occlusion
are shown as Figure 8D. In (a), to achieve the same precision at
0.7 or more, our method demands less location error than others.
In (b), the partial occlusion (overlap) is usually 30–70% when
the gripper approaching to the bottom to grasp the object, and
in this overlap interval, our method achieves higher success rate
than others.

4.3. Validation of Proprioceptive Grasping
The pipeline of object picking and placing can be divided into
four phases: (1) approach; (2) contact and grasp; (3) pick up;
(4) place, as illustrated in Figure 9. First, the two-finger gripper
approaches the target object with suitable pose configuration
guided by vision. The two fingers then grasp the object with
commanded grasping force. After that, the robot arm will pick up
and place the object. It is very common in practice that the system
may suffer task failure due to the disturbance in the environment,
including visual position error or unstable interaction force.
Proprioceptive grasp experiments were conducted using the two-
finger gripper, including contact, grasping failure, and picking up
failure detection.

4.3.1. Contact Detection
We validate contact detection on both rigid and soft objects.
Figure 10A presents the recorded data of grasping a rigid object
(Figure 10Aa) and a soft object (Figure 10Ab), reporting the
pressures of the actuator P1(t),P2(t), finger position xf (t), and
estimated grasping force Fg(t). A constant threshold σ = 0.8N
was set to trigger the contact detection signal. The system was
capable of rapidly detecting the collision with the objects during
the grasping. After the contact was detected, the finger motion
would stop when grasping a rigid object while the fingers would
keep its movement when grasping a soft object as can be seen in
phase B in Figure 10A.

4.3.2. Grasping Failure Detection
Figure 10B shows a case when grasping an irregular plane object.
The object was successfully pinched at time t = 2.9 s when

Fg(2.9) > 0.8 N. But due to the unstable grasp, the object was
popped up suddenly at time t = 3.3 s. Contact loss was then
detected with1Fg(kT) < −1(k = 3,1 = 0.75N) and a grasping
failure was recognized.

Figure 10C demonstrates another grasping of a bolt part with
a cylinder surface. Due to inaccurate object positioning from the
visual result, the object was slightly squeezed out from the two
fingers against the cylinder surface. During the fingertip closing
motion, non-contact event was triggered as the monitoring
contact force Fg(t) kept smaller than the threshold σ (σ =
0.8N). In this case, grasping failure was recognized with finger
movement approaching the collision point (xf = 0mm). As
grasping “null” was detected, the robot arm stopped the picking
upmovement and instead to the relocation of the bolt part via the
vision system.

4.3.3. Picking Up Failure Detection
As shown in Figure 10D, the robot system was commanded to
grasp a heavy cuboid part and pick it to the target place. From
the vision result, no indication can be provided for how large
the grasping force should be. Thus, the system commanded a
small grasping force (Fg = 4N) and it succeeded in grasping
the cuboid object. But it failed in the first trail of picking up the
object due to insufficient grasping force. The monitoring contact
force suffered a sudden decrease when the object slipped off from
the two fingers. Contact loss was then detected and recognized
as picking up failure with △Fg(3T) < −0.75N). The robot arm
stopped the picking up movement and relocation of the cuboid
part proceeded. After relocating the cuboid part, the gripper
was commanded with a larger grasping force (Fg = 8N) and
succeeded in picking up the cuboid part in the second trial. In
case it failed again, the aforementioned process may be continued
until placing the cuboid part.

4.4. Validation of Efficiency Improvement
After Failure Detection and Recovery
We have designed the experimental tests to prove our failure
detection and recovery system has improved the efficiency of
robotic grasping (see Figure 11). With the same setup (as shown
in Figure 2) and the same initial grasp planning (target detection
and template retrieval) as our pipeline, the compared grasping
system ignored the real-time failure detection and recovery, and

FIGURE 11 | Experiments of the proposed three-phase failure detection in the real-time pick-and-place tasks. (A) Detection of target position changes. (B) Detection

of grasping failure. (C) Detection of failures when picking up and moving to the destination.
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no matter what failure occurs, the robot arm will complete the
pick-and-place operation. If the former grasping is found failed
by the worker or other assistive means, a new grasping needs to
be planned for another complete pick-and-place operation until
the grasping is finally successful.

When accidental failures occur in the grasping, we separately
recorded the time–cost (the time from the 1st grasp planning to
the final successful object placing) of successfully grasping the
object in Figure 9 with the pipeline without failure detection
and recovery and ours in Figure 2. For each kind of failure,
we separately did 20 tests in each pipeline. The average time–
cost is 42.75 and 60.15 s separately for our pipeline and the
pipeline without the failure detection and recovery. In our
experiments, the average improvement of systematic efficiency
is 40.7%.

5. CONCLUSION AND FUTURE WORK

This paper presents an approach for effectively handling failures
in the robotic pick and place task by combining multimodal
cues under partial occlusion. We achieve more accurate pose
estimation of a known object by considering the edge-based cost
besides the image-based cost. Robust object tracking method is
proposed to work even when the object is partially occluded and
achieve mean OP up to 80%. Meanwhile, we take advantage of
our proprioceptive soft gripper for the contact and contact loss
detection by analyzing internal pressure signals of our gripper.
With the combination of visual cues under partial occlusion
and proprioceptive cues from our soft gripper, our system can
effectively detect and recover from different failures in the entire
procedure of robotic pick and place tasks.

To improve the accuracy of pose estimation, we introduced
the edge-based cost besides the image-based cost. Meanwhile,
a correlation-filter-based tracking approach is proposed to
guaranteed the robustness of the grasping system even partial
occlusion exists, especially when detecting and recovering from
the failures. Yet, proprioception of our soft gripper is proved
to be an effective complement to vision in physical interaction,
facilitating the system to fast detect-response to dynamic

disturbances, such as grasping failure and picking up failure.

Experiments have validated the robustness and accuracy of
our approaches.

In future work, more varieties of grasping targets will be
explored, for example, the jelly-like objects that are non-
rigid or dynamic objects. These are both potential targets
in real applications. A more precise and closed collaboration
of vision and proprioceptive cues will be required for this
kind of grasping task. Meanwhile, the problem of target pose
estimation is significant for deciding the gripper’s pose in real-
time robotic grasping. A more flexible and simplified method
will be considered to determine the pose of the target by simply
moving the camera to a specific position in 3D space and
observing the static target in different camera views.
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With the rapid popularization of robots, the risks brought by robot communication

have also attracted the attention of researchers. Because current traffic classification

methods based on plaintext cannot classify encrypted traffic, other methods based

on statistical analysis require manual extraction of features. This paper proposes (i) a

traffic classification framework based on a capsule neural network. This method has

a multilayer neural network that can automatically learn the characteristics of the data

stream. It uses capsule vectors instead of a single scalar input to effectively classify

encrypted network traffic. (ii) For different network structures, a classification network

structure combining convolution neural network and long short-term memory network

is proposed. This structure has the characteristics of learning network traffic time and

space characteristics. Experimental results show that the network model can classify

encrypted traffic and does not require manual feature extraction. And on the basis of the

previous tool, the recognition accuracy rate has increased by 8%

Keywords: traffic classification, capsule neural network, encrypted traffic, network security, deep learning

INTRODUCTION

With the rapid development of technology, humanoid robots can do more things on behalf
of people, such as helping people guide paths, serving coffee, and turning on lights. While
humanoid robots liberate people’s labor, there are also some risks of security and privacy leakage in
these processes.

Robots need to interact with people or server commands when they are working (Gleeson et al.,
2013; Mavridis, 2015). When robots and people interact through voice, everyone can hear the
commands issued by people.When people want to hide the behavior and content of the commands,
people can Use codes instead, such as a cough that means a command to turn on the light. This
is the easiest way to hide the content of communication between humans and robots. When the
server communicates with the robot, it is impossible for the server to cough and issue a command
like a human (Su et al., 2020). He will put the control command in the network message and send
it to the robot in a specific protocol format. When a stranger repeatedly observes the behavior
of coughing, the robot will light up. He speculates that the coughing behavior may correspond to
the command to turn on the light. Therefore, by observing the communication process between the
control server and the robot in the network, and through learning and training, the communication
protocol between the server and the robot can be identified, and further, the command line in the
communication process between the server and the robot can be inferred as the type (Kanda et al.,
2010). In this article, we have studied the protocol identification of network messages, which can
identify the type and protocol of network communication traffic, which is of great significance to
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the discovery of malicious network attack traffic in the
communication process of humanoid robots. It can also be
used for web traffic detection (Tian et al., 2020) and IoT traffic
detection (Shafiq et al., 2020).

The development of traffic classification technology has gone
through three stages: port-based, payload-based, and flow-based
statistical characteristics. Port-based classification methods infer
the types of mobile services or applications by assuming that
most applications always use “well-known” TCP or UDP port
numbers (Li et al., 2000; Hjelmvik and John, 2009; Wang et al.,
2017). However, the emergence of port masquerading, random
ports, and tunneling technologies quickly lost these methods
Effectiveness. The payload-based method, that is, DPI (Deep
Packet Inspection) (Moore and Papagiannaki, 2005; Finsterbusch
et al., 2013; Wang et al., 2019) technology cannot handle
encrypted traffic because it needs to match the content of the
data packet and has a high computational overhead (Madhukar
and Williamson, 2006). In order to try to solve the problem
of encrypted traffic identification, a flow-based method has
emerged, which usually relies on statistics or time series features
and uses machine learning (Zuev and Moore, 2005; Liu et al.,
2007; Fan and Liu, 2017; Shafiq et al., 2018) algorithms, such
as Naive Bayes, Support Vector Machine (Li et al., 2007; Yuan
et al., 2010; Groleat et al., 2012; Ebrahimi et al., 2017), Decision
tree, random forest (Siahaan et al., 2019), k nearest neighbor
(KNN)(Este et al., 2009; Wu et al., 2015; Sun et al., 2018).
In addition, some statistical models, such as Gaussian Mixture
Model (Alizadeh et al., 2015; Kornycky et al., 2016; Pacheco et al.,
2018) and Hidden Markov Model (Yin et al., 2012), are used to
identify and classify encrypted traffic.

Although classic machine learning methods can solve
many problems that cannot be solved by methods based on
ports and payloads, it still has some limitations: (1) It is
difficult to obtain manually extracted traffic characteristics,
and these characteristics always depend on domain experts’
experience. Therefore, it is impossible to automatically extract
and select features, which will cause great uncertainty and
confusion in classic machine learning methods when ML
is applied to mobile service traffic classification. (2) Flow
characteristics are easily outdated quickly and need to be
constantly updated. (3) How to combine a large, easily
accessible unlabeled data set with some expensive labeled
data sets for traffic classification to reduce the need for
labeled data is a very critical research topic. (4) For traffic
classification tasks, category imbalance is not a small problem.
However, current data enhancement methods cannot accurately
generate samples as close to the original data distribution
as possible.

Unlike most traditional machine learning algorithms, deep
learning (Gu et al., 2020) can perform automatic feature
extraction without manual intervention. This paper uses the
algorithm based on the capsule convolutional neural network
(Vinayakumar et al., 2017; Rezaei and Liu, 2019) and the
self-attention LSTM neural network to identify the encrypted
network traffic (Fu et al., 2016; Si et al., 2019). The results show
that this method does not require manual feature extraction and
has excellent classification effects.

RELATED BACKGROUND CONTENT

Capsule Neural Network
Convolutional Neural Networks (CNN) have good image
recognition performance, but they still have some shortcomings.
When the photos are crowded and blurred, the classification
effect will worsen, and the output of the model does not
respond well to small changes in the input. The Capsule
Network (CapsNet) (Xiang et al., 2018) solves some of the
traditional neural convolutional network problems because the
capsule network is composed of directional neuron groups,
capsules instead of neurons. The traditional training feature
of each neuron, learned which area in the spatial feature is
not fixed, it is entirely random, but in the capsule network,
each neuron group learns a fixed area in a certain area in the
picture Features, such as the eyes and nose of a human face.
The capsule network is also composed of multiple layers. As
shown in Figure 1A, the vector capsule is at the bottom of the
network (Zhu et al., 2019). The capsule network (Deng et al.,
2018) also has a perceptual domain, just like the traditional
CNN. However, for each vector capsule, their perceptual domain
is a fixed part of the spatial feature, and they only learn
the features of that region. During the training process, the
parameters are modified continuously to improve the accuracy
of classification and recognition. Further, some small capsules
will be gathered into large capsules, called routing capsules,
to learn more extensive spatial features. For example, vector
capsules identify network traffic packet space features, and
routing capsules identify the space of multiple network traffic
packets. And then, the characteristics of the entire flow or stream
are recognized.

Anti-fragility
The capsule network output is not the individual value output
by the traditional artificial neuron but the output vector.
The parameters of the dynamic combination of different
vector capsules in the routing can be calculated through its
unique dynamic routing mechanism, which can be trained for
different perspectives.

Robustness
Redundant homomorphism can solve complex problems.
Many small features will be trained by one Capsule. Although
the parameters between capsules are independent of each
other, many capsules will train similar substructures.
Simultaneously, the high-level capsule can learn the
relationship between the various structures of the bottom-
level capsule. Even though the image to be recognized
becomes blurred or shifted and other perspective changes,
it can be correctly recognized through this redundant
network structure.

Interpretability
It is possible to knowwhat each capsule is responsible for training
and which sub-structural features each capsule recognizes so that
each parameter of the neural network is no longer a complete
black box.
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FIGURE 1 | (A) Capsule neural network structure. (B) RNN neural network structure. (C) LSTM neural network structure.

Self-Attention Long Short-Term Memory
When analyzing the flow characteristics between network
sessions, it can be found that it is more like a sentence that
conforms to the special established rules, except that it is
composed of bytes to form a data packet and then a session.
It is very similar to the structure of natural language problems
where words form sentences and sentences form paragraphs.
The principle of using a time series neural network to identify
which application a session belongs to is also similar to the
principle of sub-classification. The essence is to use the form of
an array instead of the data itself as input. A similar time-series
relationship of similar data is obtained through the model to
achieve classification.

As shown in Figure 1B, the traditional RNN network model
cannot fully handle the timing problem because it needs to
determine the parameters before it can be predicted, but in
the process of training the parameters of the neural network
model, the chain derivation rule to determine the gradient
increment of the parameter is essential of. In this case, when
the problem sequence to be dealt with is relatively long, it will
be relatively large, and the upper bound of the derivative of
the common activation function is, so when it is very large,
there will be many less than the numerical value in the chain
derivation rule. When the time sequence is very long, the
parameter increments updated by the chain derivation rule will
be close, causing the parameters to be unable to be updated.
In other words, RNN can handle timing problems, but when
the sequence of timing problems is very long, the information
cannot be very effective Was saved, so researchers proposed an
improved model LSTM[38]. The network structure is shown in
Figure 1C.

The reason why LSTM can solve the long time sequence
problem of t is because the cell state Ci is used to assist in
the transfer of data to time t, instead of relying on the hidden
layer information at time ht−1, and the update formula of cell
state Ci can also be used. Knowing that it is updated through
addition. The advantage of this is that when the chain rule
is updated, the cell state Ci will not appear as the updated
parameter increment in the RNN chain derivation rule will be
close to 0.

The attention mechanism was first proposed in the field of
visual images, and has gradually been widely used in natural
language since 2014. Today, the combination of various attention
mechanisms and deep learning network models has achieved
good results in natural language problems. As a result, this article
also considers adding a self-attention mechanism when using the
time-series deep learning model LSTM to process traffic.

Self-attention (Tao et al., 2020). The above process can be
abstracted as the calculation of similarity between query, key and
value, which can be roughly divided into three stages:(1) query
and keyi use the similarity function that matches the task to
calculate the similarity, and get the parameter si. (2) Normalize si
with softmax() to get αi. (3) After multiplying the corresponding
αi and valuei, and then summing, the self-attention value can be
finally obtained. The calculation process is as follows:

f (Q,Ki) = QTKi

αi = softmax
(

f (Q,Ki)
)

=
exp

(

f (Q,Ki)
)

∑

i exp
(

f (Q,Ki)
)

self − attention (Q,K,V) =
∑

i

αiVi(Q = K = V)
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FRAMEWORK AND METHODS

Our framework logically consists of two parts: the “pre-
processor” and the “traffic classifier.” The former has performed
all tasks that allow us to model the network traffic into data,
which can easily be handled by a deep learning model. The
latter performs specific classification tasks. Before using a deep
learning traffic classifier, it must be trained with a large amount
of labeled traffic data. The traffic data we use comprises the
public dataset ISCX2012 and the data generated by artificially
stimulating the apps.

Network Traffic Pre-processing
There are two traffic forms: flow and session. Usually, we use
five tuples to determine flow and session. Flow: a time-ordered
sequence of packets exchanged between two peers during a single
TCP session. f = < p1, p2, . . . , pN >, N is the number of packets
consist of flow f. packet pi = (ai, li, ti). ai is a 5-tuple that consists
of source address, source port, a destination address, destination
port, and the protocol type. li is the length of the packet pi and
ti is the time of packet pi arrival. The total flow length L =
∑n

i=1 li and t1 ≤ t2, . . . ,≤ tn. Session and flow are similar.
The difference is that the source and destination addresses can
be exchanged, which is a bidirectional data flow. Network traffic
can be divided into four levels, application layer, transport layer,
network layer, and all layers. The input data of the traffic classifier,
a combination of different traffic forms and different network
layers, are eight types. The pre-processing is shown as Figure 2.

Packers Filtering
Due to network congestion, traffic load balancing, or other
unpredictable network behaviors, data packets may be lost
and arrive out of order. When TCP detects these problems,
it will retransmit network data packets and rearrange out-of-
order data packets. Repeated transmission packets will affect
the characteristics of network traffic, and network flows without
data content will not use in identification. Therefore, we filter
out retransmissions and packets with only ACK flags with zero
payloads. The sequence of network packets has an essential
impact on recognition. We will rearrange out-of-order data
packets to obtain a correct network flow sequence.

Traffic Data Processing
Traffic classification should remove data related to the hardware
environment and network environment, such as IP information
in the network layer and MAC addresses in all layers. Therefore,
training data and test data may have different physical addresses
and IP addresses. We need to remove these features that may
change to ensure the feature consistency of the training data and
test data.

The input length of the classifier is consistent to ensure the
correct subsequent recognition. At the same time, the selected
data length has a significant impact on the recognition result.
Through analysis of the contribution of bytes in the stream,
we found that the first 400 bytes in the stream have an impact
on the traffic classification because the recognition contribution
is the highest. Therefore, we choose 400 as the input of the

convolutional neural network. Data streams with a length of
<400 will be dropped, and data streams with a length of more
than 400 bytes will only take the first 400 bytes of the data stream
as classifier input.

Many previous research works have shown that CNN neural
network has a good classification performance for image
recognition. Here we take the first 400 bytes of a network stream,
and we can get a 20∗20 two-dimensional matrix. Each value range
of the matrix is 0–255, so each value can be regarded as the gray
value of a pixel. Thus, picture data containing the first 400 bytes
of information in the data stream can be obtained. When the
network traffic is processed and converted into pictures, we get
the features of the traffic stream. This paper uses the CapsuleNet
neural network, capsule represented by a vector can learn the
spatial feature relationship of the flow graph well.

Traffic Classification
Convolutional Neural Network
The first 400 bytes of encrypted data traffic is converted into
a 20∗20 grayscale image, which is the input of the traffic
classifier. The Inception-CapsuleNet network designed in this
paper is divided into nine layers. The first four layers extract the
characteristics of the traffic, the middle four layers combine the
characteristics, and the last layer is the category output layer, as
shown inTable 1. Before the grayscale image entry the model, the
mean value is zeroed first so that the model converges quickly.

The first layer is a convolutional layer, which extracts local
features of grayscale images. In order to learn more about the
local features of the input data, the step size is 1. The second
layer uses batch normalization, which can prevent the data
distribution from changing greatly after passing through the
previous layer, and can avoid the gradient disappearance and
overfitting problems. In the third inception layer, convolution
kernels of different sizes are used for feature processing.

Convolutions of different sizes can extract features from
different images in different fields of view, which can increase
the ability of the network to extract features. Finally, the outputs
of different convolution kernels are spliced together to obtain a
feature with a dimension of 256. There are 32 capsules in the
PrimaryCaps layer, each of which will convolve all the inputs of
the previous layer. Here the activation parameter is squash, and
an out tensor is ui, with a shape of 4∗4∗8∗32. The input data in
the DigitCaps layer is the vector ui. The calculation process is
as follows:

ûj|i = wij · uij

bij = bij + ûj|i · vj

cij = softmax
(

bij
)

=
exp

(

bij
)

∑

k exp
(

bik
)

sj =
∑

cij · ûj|i

vij =
‖ sj ‖

2

1+ ‖ sj ‖2
·

sj

‖ sj ‖

Where sj is the final input, the final output vector is vj and

b
(0)
ij = 0. After the activation function Squash, bij, cij can be
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FIGURE 2 | Network traffic data packet processing process: flow division, flow filtering, uniform size and classification.

TABLE 1 | Capsule convolutional neural network.

Layer Name Activation function Input size Convolution kernel Step Output size

1 Condv2 ReLU 20*20*1 9*9*256 1 12*12*128

2 Batch Norm – 12*12*128 – – 12*12*128

3 Inception ReLU 12*12*128 – – 12*12*256

4 Primary Caps Squash 12*12*256 6*6*256*8 2 4*4*8*32

5 DigitCaps Squash 4*4*8*32 – – 10*12

6 Full Connect ReLu 10*12 – – 256

7 Full Connect ReLU 256 – – 128

8 Full Connect ReLU 128 – – 64

9 Full Connect Softmax 64 – – 8

updated by Equations (2) and (3). The best parameter selection
can be achieved by continuously repeating the above process. At
the same time, in order to prevent over-fitting, the number of
iterations here is selected as three, and finally, ten capsules are
output, and each capsule is a 12-dimensional vector.

The following are three fully connected layer classification
networks, and finally, a vector of length 64 is obtained, and the
last one is a fully connected softmax activation function classifier.

Long Short-Term Memory Network
In order to make full use of the characteristics of the network
flow, the network structure of this article first uses the self-
encoding method to train the data packets into a unified array
specification as the information representing the encrypted flow.
Then use the time series neural network to extract the timing
behavior characteristics of the data packet exchange process
at both ends of the conversation, and use the characteristics
to classify the encrypted network traffic of the application.
Because the flow is in the process of data packet exchange,
the encrypted content of the current data packet may be
determined by the protocol in a previous data packet. The
pure LSTM time series network cannot well capture the

characteristic information generated by this behavior. This
article will add from The attention mechanism allows each
data packet unit to better correspond to its own related data
packets during the training process, hoping to obtain more
comprehensive network traffic characteristics and achieve higher
recognition results.

The data processing process is shown in Figure 3. Before the
model training is carried out, after the traffic is cleaned, the data
packets are sorted according to the flow or session according to
the packet sending time of the packet header. After the traffic
enters the model, first select the number of reserved data packets,
then select the reserved byte length of each data packet, and then
convert multiple data packet bytes into an array vector through
the method of self-encoder. Finally, it enters the model’s feature
extraction classifier training stage.

In the stage of training the word vector, the traditional method
is to use the word form to represent the word vector. But when
the number of dictionaries is too long, the word vector cannot
be used in deep learning algorithms. The relevance of the word
vector is very poor, so this article uses the Distributed method to
train the word vector. The vector obtained by this method can be
controlled to a shorter length.
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FIGURE 3 | LSTM neural network data processing process.

When training the word vector of the data packet, it is
considered that the meaning of the same byte in the encrypted
traffic protocol of different applications is very different. If a
traditional word vector training method, such as word2vec is
used to obtain a fixed word vector, this does not conform
to the characteristics of the data in the encrypted traffic
recognitionmodel. Elmo’s two-layer bidirectional LSTMnetwork
pre-training structure can obtain word vectors that meet the
complexity of the protocol, and the same byte corresponds to
different word vectors in different protocol environments.

Regarding the hexadecimal bytes in the pcap packet, this
article converts it into decimal data as the original input, and then
intercepts the 96 bytes of the first six packets of each stream or
session as input. Less than 96 bytes, using the method of adding
0 to fill in, the form of the array converted into an array of 6∗96
dimensions. Its form is similar to the way of analyzing a sentence
category in text classification. For a 6-word sentence, the word
vector length of each word is fixed at 96. In form, it is similar
to the first 6 data contained in a stream or conversation. The
information contained in the data packet represents that the two
ends of the conversation are communicating through a certain
language, so it is reasonable to input it into the training model of
natural language word vector Elmo.

In the Elmo stage, the Embedding of the first layer of LSTM
and the Embedding of the second layer of LSTM are multiplied
by the corresponding weights, and the final Embedding is <

t1, t2, . . . , tn > Then, where n represents the number of data
packets, the value here is 6, that is, 6 data packets are selected,
and each data packet intercepts 96 bytes as input. The size of the
LSTM of the Elmo stage is 128, that is, the size of the vector t1
length, and then input Elmo’s result data into the LSTM+Self-
Attention model.

After entering the LSTM+Sefl-Attention stage, after the first
layer of LSTM, the activation function is Relu, the word vector

feature of the data packet is extracted and the size is 256 as the
input of Batch Normalization to ensure that the data distribution
remains unchanged while maintaining 256 The length remains
unchanged and enters the next layer of Self-Attention. After this
network layer, you can learn an encrypted session or stream.
The internal structure of the intercepted data packets and the
dependency relationship between the protocol features help The
model identifies and classifies encrypted traffic. After passing
through the Sefl-Attention network layer, the traffic length
remains unchanged at 256, and then passes through a layer
of Batch Normalization to enter the fully connected layer. The
number of neurons in the first fully connected layer is 64, the
activation function is Relu, and the second fully connected layer.
The number of neurons is 7, the activation function is Softmax,
which is used to finally output the probability that the encrypted
traffic belongs to the target application.

CNN-LSTM Joint Network
A reasonable network structure plays an important role in the
process of deep learning to identify encrypted traffic. This article
draws on the idea of bagging, and designs a neural network with
convolutional time series to identify encrypted traffic, as shown
in Figure 4. The model has two inputs for the same sample.
On the left side of the model, the input is the overall picture
converted from the session bytes recombined from the data
packet. This side of the model learns the structure information
characteristics of the encryption suite of the traffic data; On
the right side of the model, the input is bytes intercepted by
multiple consecutive data packets in a session. The right side of
the model learns the behavioral communication characteristics
between traffic data, combines the two feature vectors together
through splicing, and then passes through the neural network
Layers are classified. Compared with the previous convolutional
neural network and time series neural network, the combined
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FIGURE 4 | Convolutional neural network and LSTM neural network joint processing model.

TABLE 2 | CNN network structure on the left.

layer Name Activation function Convolution kernel Kernel number Step

1 Condv2 ReLU 3*3 256 1

2 Condv2 ReLU 3*3 128 1

3 Batch Norm – – – –

4 Inception-1 ReLU 1*1 128 1

4 Inception-2 ReLU 1*1 64 1

3*3

4 Inception-3 – 3*3 64 1

1*1

5 Inception-concact – – – –

6 PrimaryCaps Squash 6*6*256 8 2

7 DigitCaps Squash – – –

neural network designed in this paper has an accuracy increase
of nearly 4%, which further proves that a reasonable neural
network structure is essential for the improvement of encrypted
traffic recognition.

In Figure 4, two neural network structures are adopted to
extract the different characteristics of encrypted traffic. The
convolutional neural network on the left learns the overall
structural characteristics of the traffic data packet, intercepting
the first m data packets of the session, each The data packet
intercepts n bytes, and each byte corresponds to two hexadecimal

digital representations in the original traffic, which can be
converted into a 1–255 decimal representation as input to obtain
a matrix of size m∗n. The process of the convolutional network
refers to the network structure of session2, and uses multiple
convolution kernels of different sizes to convolve the same data.
The network structure is shown in Table 2.

The time series neural network used on the right is used
to learn the communication timing characteristics between
encrypted traffic data packets. Its input is the same as the data
format on the left. It intercepts the first m data packets of
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the session, and each data packet intercepts n bytes. A byte
corresponds to two hexadecimal digital representations in the
original traffic, which can be converted into a 1–255 decimal
representation as input, and a two-dimensional array is obtained,
so that the input representation is the same as the natural
language text analysis The inputmethod of a sentence is the same.
Compared with the traditional time series network structure, this
paper adds a self-attention mechanism, so that it can capture
the dependence of learning data packet communication behavior

TABLE 3 | LSTM network structure on the right.

Layer Name Activation function Weight matrix

1 Elmo-1-Forward LSTM ReLU 96*128

1 Elmo-1-ReverseLSTM ReLU 96*128

2 Elmo-2-Forward LSTM ReLU 128*128

2 Elmo-2-Reverse LSTM ReLU 128*128

3 Elmo-concact – –

2 Two-Way LSTM ReLU 128*256

3 Batch Norm – –

4 Self-Attention – –

5 Batch Norm – –

TABLE 4 | Classification layer network structure.

Layer Name Activation function Length

1 Concact – –

2 Full Connect ReLU 512

3 Full Connect ReLU 64

4 Full Connect Softmax 7

and learn more timing characteristics. The network structure is
shown in Table 3. The output data of the network structure on
the left and right sides are spliced together as the input of the
classifier. This part of the network structure is shown in Table 4.

RESULT

The system of the experimental environment is Ubuntu 16.0,
based on Keras running framework. RAM is 96G and video
memory is 16G.

Different input byte length will affect the discrimination effect
of the classifier, so choosing the appropriate byte input length is
very important for the classifier. We have studied the impact of
the byte input length from 50 to 750 on the classification results,
as shown in Figure 5A. As the input byte length increases, the
more features the classifier can use, the better the classification
effect of the classifier. When the length increases at a certain
threshold, the classification effect has not improved significantly.
In order to save computing resources and time, we select the
input data length as short as possible.

The choice of loss function will affect the classification effect
of the classifier. The loss function calculates the distance between
the probability distribution p and the probability distribution
q predicted by the classifier. This article uses a loss function
optimized based on focal loss Loss(p,q)=L.

L =

K
∑

i=1

K′
∑

j=1

αi

(

1− q
(

xij
))γ

p
(

xij
)

lg
(

q
(

xij
))

For a certain type of sample, the higher the value of q
(

xij
)

is, the
smaller the value of 1− q

(

xij
)

is, thus reducing the weight of this
type of sample. The value of q

(

xij
)

is small, and the 1−q
(

xij
)

will
be large, which can increases the weight of the sample recognized

FIGURE 5 | (A) The impact of data stream length on classification accuracy. (B) The impact of different loss functions on classification accuracy.
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FIGURE 6 | (A) Classification results of different network traffic forms. (B) Application classification results of convolutional neural networks.

FIGURE 7 | Application classification results of LSTM neural network.

hard. The value of αi is inversely proportional to the number
of samples of each type. Use the parameter γ to automatically
adjust the ratio of the loss function. This not only considers the
imbalance of sample categories in traffic identification but also
solves the difference of recognization cost in different samples.
Figure 5B shows the comparison with the cross-entropy loss
function and the weighted cross-entropy loss function.

Different traffic forms and network layer divisions contain
different data content. We have studied the impact of different
traffic forms and network layers on the classifier, as shown in
Figure 6A. A total of eight types of samples were obtained for
the two traffic forms and the four network layers. On the data
set ISCX (Draper-Gil et al., 2016), we compared the recognition
effects of the eight forms. As can be seen from Figure 6A, Session
+ All Layer performs best. The accuracy rate is 0.942, the recall

rate is 0.973, and the F1-score is 0.955, because it contains more
traffic characteristics.

In application classification, we selected seven applications, a
total of 52,155 encrypted network traffic samples, with an average
of 7,000 sample data for each application. The results of the
capsule convolutional neural network are shown in Figure 6B

and the results of Long short-termmemory network are shown in
Figure 7. The results show that these two methods have excellent
performance for traffic classification.

Many scholars have performed classification method
evaluation on the data set ISCX (Moore and Zuev, 2005;
Alberto et al., 2006; Huang et al., 2014). Here we compare the
Inception-CapsNet classifier with them. As shown in Table 6, it
can be seen that the accuracy and recall rate of the other four
types of methods have been improved. For the decision tree C4.5
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algorithm, the accuracy rate has increased by 4.3%, and the recall
rate has increased by 7.0%.

The CNN-LSTM joint model experimental results are shown
in Figure 8. For Hangout and Bittorrent, the convolutionmethod
has a high recognition accuracy of 96%. For Facebook, Skype
has a low recognition accuracy rate of only 87%, while for ATM,
Hangout, and Bittorrent, The recall rate is high, reaching 98.

The results show that the recognition accuracy of the time
series method for Facebook, Skype, Hangout is as high as 97%,
and the recognition accuracy for AIM and uTorrent is low,
only 91%. Facebook’s recognition recall rate is even higher,
reaching 99%.

TABLE 5 | Comparison of classification performance with other traffic

classification algorithms on Datasets ISCX.

Algorithm Accuracy Recall

CNN-LSTM 0.981 0.995

C4.5 0.901 0.903

SVM 0.943 0.929

1dCNN 0.933 0.951

2dCNN 0.936 0.955

Apriori 0.931 0.911

Naïve Bayes 0.911 0.927

Hmm-crf 0.955 0.967

TABLE 6 | Comparison of classification performance with other traffic

classification algorithms on datasets UNIBS.

Algorithm Accuracy Recall

LSTM 0.945 0.973

SVM 0.959 0.953

Multi-classifier 0.924 0.971

Random forest 0.936 0.992

Xgboost 0.931 0.961

CNN-LSTM 0.986 0.987

For the combined model, the recognition accuracy has been
significantly improved. Among them, Facebook, Hangout, and
Bittorrent have a high recognition accuracy of 98.5%; for ATM,
FTPS, Skype, and uTorrent, the recognition accuracy is high.
Reached 96%; and for the recall rate, the recall rate of encrypted
traffic of AIM, Facebook, Hangout, Bittorrent, and Skype reached
99%. For the traffic FTPS, the recall rate of the two encrypted
traffic of uTorrent reached 96%.

From the above results, it can be seen that different network
structures extract features of different dimensions, and have
different preferences for the quasi-curvature and recall rate
of encrypted traffic recognition of the same application. For
some traffic convolutional neural networks, the recognition
accuracy rate is higher. But the recall rate may be relatively
low, such as FTPS. For the encrypted traffic of this kind
of application, although the recognition quasi-curvature of
the time series neural network is moderate, the recall rate
is high. In the experimental results of, this conclusion has
also been proved, the accuracy rate of its encrypted traffic
has reached more than 96%, the recall rate is 99%, only
two kinds are lower, and it is also more than 96%. The
effect is compared with the previous neural network. The
organization has very distinctive features. This proves that
extracting features from different dimensions and different
feature spaces helps to capture more recognizable features and
enhance the model effect.

Table 5 shows the comparison results on ISCX, where the
number of features used by the machine learning method is
different, reflecting the complexity of the manual design, such as
SVM using 21 manual design Features. The decision tree uses 18
artificially designed features, but the two methods have only ten
common features, and it is difficult to generalize to other data
sets. Table 6 shows the comparison results on the UNIBS data
(Gringoli et al., 2009). In this data set, the results obtained by the
relevant literature are given by the SVM model, but the accuracy
of the combined model exceeds the model, and the recall rate is
far higher. For SVM, it is 0.05 less than the random forest model
with the best recall rate, ranking second, and the overall effect is

FIGURE 8 | (A) CNN-LSTM joint network application classification accuracy rate. (B) CNN-LSTM joint network application classification recall rate.
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very good. The results show that the accuracy of the CNN-LSTM
network is 8% higher than other methods.

CONCLUSION

In this literature, we propose a capsule convolutional neural
network joint the long short-term memory network traffic
classification framework. For the problem of imbalance of sample
categories in flow recognition, an objective function related to
weight and sample recognition accuracy is designed to reduce
the classification impact caused by sample imbalance. Besides,
the inception structure is added to allow the model to learn
diverse features, and the capsulenet structure is added to allow
the model to learn the correlation of high and low dimensional
features. This model can automatically identify a variety of
encrypted traffic and seek the global optimal classification result.
The experimental results show that this method can effectively
classify the encrypted traffic and is better than previous research
work. At the same time, our work proves that the optimized
neural network structure can achieve better recognition results.

As future work, We believe that we should try to pay attention
to the characteristics of network traffic of different behaviors, so

as to more comprehensively describe the communication process
between users and robots.
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A number of methods have been proposed for face reconstruction from single/multiple

image(s). However, it is still a challenge to do reconstruction for limited number of

wild images, in which there exists complex different imaging conditions, various face

appearance, and limited number of high-quality images. And most current mesh

model based methods cannot generate high-quality face model because of the

local mapping deviation in geometric optics and distortion error brought by discrete

differential operation. In this paper, accurate geometrical consistency modeling on

B-spline parameter domain is proposed to reconstruct high-quality face surface from

the various images. The modeling is completely consistent with the law of geometric

optics, and B-spline reduces the distortion during surface deformation. In our method,

0th- and 1st-order consistency of stereo are formulated based on low-rank texture

structures and local normals, respectively, to approach the pinpoint geometric modeling

for face reconstruction. A practical solution combining the two consistency as well as

an iterative algorithm is proposed to optimize high-detailed B-spline face effectively.

Extensive empirical evaluations on synthetic data and unconstrained data are conducted,

and the experimental results demonstrate the effectiveness of our method on challenging

scenario, e.g., limited number of images with different head poses, illuminations,

and expressions.

Keywords: 3D face modeling, B-spline, face reconstruction, geometrical consistency, parametric domain

1. INTRODUCTION

3D face has been extensively applied in the areas of face recognition (Artificial and Aryananda,
2002; Mian et al., 2006), expression recognition (Zhang et al., 2015). These face analysis
technologies are of significance for human-robot cooperative tasks in a safe and intelligent
state (Maejima et al., 2012). So 3D face reconstruction is a import topic, and it is meaningful
to reconstruct specific 3D face from person-of-interest images under many challenge scenes.
The images under challenge scene are also referred as images in the wild, having following
characteristics: (1) significant changes in illuminations across time periods; (2) various face poses
caused by different camera sensors and view points; (3) different appearances among different
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environment; (4) occlusions or redundant backgrounds. More
seriously, only limited number of identity images are available
under human-robot interaction, surveillance, and mobile
shooting scenario as listed in Figure 1, sometimes.

As a whole, reconstruction technologies include single-image
method, multiple images, and even unconstrained images based
methods. Recent researches (Kemelmacher and Seitz, 2011; Roth
et al., 2015, 2016) prove that good reconstruction depends on
two aspects of efforts: (1) enough rich local information, e.g.,
normal, and (2) a good face prior, e.g., face template. Particularly,
the latter is to find an embedding representation with good
characteristic to register local information finely.

According to the template representation, these methods can
be categorized into three classes: (i) methods without using
template, e.g., integration (Kemelmacher and Seitz, 2011) and
structure from motion (Koo and Lam, 2008), (ii) methods using
a single discrete template, e.g., a reference face mesh (Roth
et al., 2015), and (iii) methods using a statistic continuous
template, e.g, T-splineMMs (Peng et al., 2017), or discrete
template, e.g., 3DMMs (Piotraschke and Blanz, 2016; Roth et al.,
2016). The methods with template always generate good global
shape compared with those without template, and a statistic
template contributes to a better personalization. Therefore, it
is very significant to find a excellent template representation
for face reconstruction. Mesh model is widely used due to its
rapid computation and popularity in computer vision, but it
is not well-compatible with geometric optics in vertex level,
resulting in local mapping deviation of rays, seen in Figure 1.
This makes local information not strictly registered physically.
Additional, discretization of Laplace-Beltrami operation (LBO),
i.e., cotangent scheme (Meyer et al., 2003), may bring a
deformation distortion at local, which often happens when
images are not enough for high-quality normal estimation.
This distortion irregularly occurs at the edge and the location
with large curvature changing, e.g., nose and mouth. Lastly the
topology-fixed mesh also restricts an extended refinement. All
above problem limits reconstruction precision of mesh.

FIGURE 1 | Geometric optics of BP (i.e., back projection) imaging on two types of surfaces: the correct ray lines go through the blue points on the true shape, while

the biased ones go through red points on the mesh shape because the cross point between a ray and mesh is bounded to vertex. The difference between red point

and the blue point is referred to local mapping deviation.

To solve the existing issue in mesh template, we adopt classic
B-spline embedding function (Piegl and Tiller, 1997) to register
local information and reconstruct face. Firstly, B-spline surface
is a parametric surface that can approximate the true shape of
an object with fewer parameters (control points) than mesh. It
contributes to correct rays in geometric optics, that makes local
information, i.e., texture, feature points and normals, accurately
registered. Secondly, we use 2nd-order partial derivative operator
w.r.t. parameters as the local deformation constraint to reduce
the deformation distortion. Lastly, B-spline surface also can be
used to generate mesh in any precision or be extended for further
refinement. The three characteristics of B-spline face show
great advantages over a mesh template based method. Given a
collection of images, we use B-spline embedding function as 3D
face representation and model 0th- and 1st-order consistency
of reconstruction in the parameter domain, which makes BP
imaging rays completely compatible with geometric optics. The
0th-order consistency model guarantees that the images are
well-registered to surface even if the face images has occlusion
or expression; And the 1st-order consistency model guarantees
that the surface normals is consistent to the normals estimated
from images. Both qualitative and quantitative experiments are
conducted and compared with other methods.

In a nutshell, there are two primary contributions:

1. Pinpoint geometrical consistency is modeled on B-spline
embedding function for face reconstruction from multiple
images, completely consistent with the law of geometric optics.

2. 0th- and 1st-order consistency conditions and its a practical
solution is proposed to optimize B-spline face effectively,
which is able to handle variations such as different poses,
illuminations, and expressions with limited of number images.

In the following, we will first review related work in section 2.
Section 3 provides a geometric modeling of multiple BP imaging
in image-based stereo for our problem. We introduce the B-
spline embedding and its brief representations in section 4 and
present consistency modeling for B-spline face reconstruction in
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section 5. In addition, a practical solution is proposed in section
6. We conduct experiment in section 7 and conclude in section 9.

2. RELATED WORK

2.1. 3D Face Required Scenes
With the development of robots and AIoT (Qiu et al., 2020),
vision will play an very important role in safety (Khraisat et al.,
2019; Li et al., 2019), scene and human understanding (Zhang
et al., 2015; Meng et al., 2020). As a base technology, 3D
face contributes to the scenes greatly. For example, to build
humanoid robots that interact in a human-understanding
manner, automatic face, and expression recognition is very
import (Zhang et al., 2015). The recognition during real-
life human robot interaction could still be challenging as a
result of subject variations, illumination changes, various pose,
background clutter, and occlusions (Mian et al., 2006). However,
humanoid robot API of original version cannot always be able
to handling such challenges. Optimal, robust, and accurate
automatic face analysis is thus meaningful for the real-life
applications since the performance of facial action and emotion
recognition relies heavily on it. Many parametric approaches
like 3DMMs (Blanz and Vetter, 1999; Blanz et al., 2004) and
face alignment with 3D solution (Zhu et al., 2016) in the
computer vision field have been proposed to estimate head
pose, recognition identity, and expression from real-life images
to benefit subsequent automatic facial behavior perception to
address the above issues. Therefore, 3d face modeling in a
humanoid robot view is of great significant to handling the
challenging face analysis during interaction.

2.2. 2D Images Based Face Reconstruction
2D methods generally cover several kinds of fundamental
methods including Structure from Motion (SFM) (Tomasi and
Kanade, 1992), Shape from Shading (SFM) (Zhang et al., 1999),
3D Morphable Model (3DMM) (Blanz and Vetter, 1999; Blanz
et al., 2004), and Deep learnings (Richardson et al., 2017; Deng
et al., 2019). SFM methods compute the positions of surface
points based on an assumption that there exists a coordinate
transformation between the image coordinate system and the
camera coordinate system. And SFS methods compute surface
normals with an assumption that the subject surface is of
Lambertian and under a relatively distant illumination. And
the idea of 3DMM is that human faces are within a linear
subspace, and that any novel face shape can be represented by
a linear combination of shape eigenvectors deduced by PCA.
SFS and SFM give the geometrical and physical descriptions
of face shape and imaging, and 3DMM concentrates on the
statistical explanation of 3D meshes or skeletons. Deep learning
methods infer 3D face shape or texture (Lin et al., 2020) by
statistically learning mapping between face images and their 3D
shapes (Zhou et al., 2019). Being limited to data size, most of them
relies 3DMM or PCA for synthesizing supplementary ground
truths (Richardson et al., 2016) or as a priori (Tran et al., 2017;
Gecer et al., 2019; Wu et al., 2019), resulting absence of shape
detail. It’s believed that face reconstruction is rather a geometrical
optimization problem than a statistical problem, as 3DMM is

more suitable to be an assistant of the geometrical method when
building detailed shape, e.g., that by Yang et al. (2014).

2.3. Shape in Shading and Structure in
Motion
SFS has been widely used for reconstruction, e.g., single-
view reconstruction (Kemelmacher Shlizerman and Basri,
2011), multiple frontal images based reconstruction (Wang
et al., 2003), and unconstrained image based reconstruction
(Kemelmacher and Seitz, 2011; Roth et al., 2015). As single-
view is ill posed (Prados and Faugeras, 2005), a reference is
always needed (Kemelmacher Shlizerman and Basri, 2011). For
unconstrained images, photometric stereo is applied to obtain
accurate normals locally (Kemelmacher and Seitz, 2011; Roth
et al., 2015). SFM uses multiple frame or images to recover sparse
3D structure of feature points of an object (Tomasi and Kanade,
1992). Spatial-transformation approach (Sun et al., 2013) only
estimates the depth of facial points. Bundle adjustment (Agarwal
et al., 2011) fits the large scale rigid object reconstruction, but it
cannot generate the dense model of non-rigid face. Incremental
SFM (Gonzalez-Mora et al., 2010) is proposed to build a generic
3D face model for non-rigid face. The work by Roth et al. (2015)
optimizes the local information with normals from shading,
based on a 3D feature points-driven global warping. Therefore,
shading and motion are important and very distinct geometric
information of face, and they enhance the reconstruction when
being combined. In our method, 0th- and 1st-order consistency
of stereo is modeled to integrate the advantages of both shading
and motion information.

2.4. Facial Surface Modeling
Surface modeling is dependent on the data input (point cloud,
noise, outlier, etc), output (point cloud, mesh, skeleton), and
types of shape (man-made shape, organic shape). Point cloud,
skeleton, and mesh grid are the widely used man-made shape
type for face reconstruction. Lu et al. (2016) present an a
stepwise tracking method approach to reconstruct 3D B-spline
space curves from planar orthogonal views through minimizing
the energy function with weight values. Spatial transformation
method (Sun et al., 2013) estimates positions of sparse facial
feature points. Bundle adjustment builds the dense point cloud
for large scale rigid object with a great number of images
(Agarwal et al., 2011). Heo and Savvides (2009) reconstruct face
dense mesh based on skeleton and 3DMM. Kemelmacher and
Seitz (2011) apply integration of normals to get discrete surface
points, which may produce incredible depth when the recovered
normals are unreliable. Roth et al. (2015) reconstruct face mesh
based on Laplace mesh editing, which may produce local mesh
distortion after several iterations of local optimization. In work
of mesh reconstruction, surface-smoothness priors is also needed
to guarantee the smoothness of discrete mesh based on point
cloud, e.g., radial basis function (Carr et al., 2001) and Poisson
surface reconstruction (Kazhdan et al., 2006). Due to the fact
that the point cloud and 3D mesh are discontinuous geometric
shape, they cannot approximate the true shape of a face of
arbitrary precision. There have been works of fitting B-splines
to noisy 3D data, like Hoch et al. (1998). B-spline face model is
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FIGURE 2 | Geometric optics of multiple BP imaging.

a continuous free-form surface that can be reconstructed from
images directly, instead of intermediate point data, but it is not a
detailed model by only using structure optimization (Peng et al.,
2016). Because B-spline surface is a special case of NURBS (Non-
Uniform Rational B-Spline) (Piegl and Tiller, 1997), it can also
be imported to 3D modeling software like Rhino3D for further
editing, analysis, and transformation conveniently by adjusting
the B-spline control points. It can also be converted into mesh
model with any precision according to appropriate parameter
interval, conveniently, which is meaningful for a system with
limited memory.

3. GEOMETRIC MODELING

Our problem modeling is illustrated in Figure 2. The domain
of input image Ii from a camera is Ii ⊂ R

2, i = 1, 2, . . . , n.
5−1 denotes the inverse operator of 5. The camera operator
5i ∈ C∞(R3,R2) map a point P ∈ S to p = 5i(P) ∈ Ii using
weak perspective projection, i = 1, 2, . . . , n. And5−1

i determines
the ray cluster Rays#i of BP imaging from Ii, i = 1, 2, . . . , n. Let
si, Ri, and ti denote scale, rotation, and translation parameter in
projection 5i. The ith projection operation is simply

5i(P)
1
= si · Ri,[1,2] · P + ti. (1)

Ri,[1,2] expresses the first two rows of Ri.
Let U ⊂ R

2 denote the parameter domain of human face
surface. A certain embedding F ∈ C1(U ,R3) maps a point u ∈ U

to the 3D point P ∈ S . F−1 denote the inverse operator of F. It
is thus clear that different embedding F determine different face
shapes. According to the geometric optics of BP imaging, a image
point p ∈ Ii is back projected onto a point u = τi(p) ∈ U via
the operator

τi
1
= F−1 ◦ 5−1

i . (2)

Therefore, an image Ii in the i-th view is mapped to surface S, and
then is mapped to texture space by

Ti
1
= Ii ◦ τ−1

i , (3)

where we define

(I ◦ τ−1)(u)
1
= I(5(F(u))), for u ∈ U . (4)

In fact, τi, i = 1, 2, . . . , n generate discrete and inconsistent rays
mapping in texture space because of the discrete and different
images domains, as well as the noises, seen in Figure 2.

3.1. 0th- and 1st-Order Consistency
Generally, the problem is how to determine F according to from
multiple images. If all images are the captures of a same S , all
{Ti}i=1 : n in texture space are hoped to be highly consistent in
the geometry.

First, that satisfies

< F̂, {5̂i} >= argmin
F,{5i}

rank([vec(T1), vec(T2), . . . , vec(Tn)]),

(5)
with Ti = (Ii ◦ τ−1

i )#, i = 1, 2, . . . , n. And (·)# is a composition
operator of fitting and sampling, to handle the inconsistency. It
firstly fits a texture function based on the discrete texture and
parameters mapped from one image, and then samples texture
intensity values at unified parameter points {uj}j=1 :Np .

Second, it satisfies






∂F
∂u×

∂F
∂v

∥

∥

∥

∂F
∂u×

∂F
∂v

∥

∥

∥

= n,

ρjnj · li = Ti|uj .
(6)

which describes the equivalence relation between normal n and
1st-order partial derivative in the first formulation, and the
equivalence relation among albedo ρ, normal n, light direction
l, and image intensity T in the second. This follows a linear
photometric model, as seen in Figure 3.

We refer to Equations (5) and (6) as 0th- and 1st- order
consistence equations in 3D surface reconstruction respectively.
Generally, researchers solve any one of the two consistence
problem to reconstruct 3D surface, classically, by multi-view
stereo (Seitz et al., 2006) for 0th-order consistence problem,
or by photometric stereo (Barsky and Petrou, 2003) for the
1st-order one.
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FIGURE 3 | The consistency mapping equivalence between embedding F and the image intensity.

3.2. Embedding F
There are several types of representation for embedding F,
such as discrete mesh and C2 parametric surface. In fact the
representation type of F also affects the reconstruction effect.
Intuitively for mesh, on one hand there exists mapping deviation
of rays from image points to vertices of mesh, which contributes
to inaccurate texture charts {Ti}i=1 : n and affects the accuracy of
reconstruction. On the other, discrete differential operator, i.e.,
LBO (Meyer et al., 2003), brings potential distortion error when
there exists obtuse triangles in the mesh caused by error local
normal. Additionally, the precision of mesh also limit the detail
of reconstruction.

We consider to apply C2 parametric surface as the
representation of face. Generally, B-spline surface is
recommended because of its advantages of good locality
over other types of surfaces such as polynomial surface and
Bessel surface. By B-spline surface, it doesn’t exist mapping
deviation in geometric optics, and it avoids the potential
distortion brought by discrete differential operator. Therefore,
accurate and continuous back projection texture charts {Ti}i=1 : n

can be generated based on Equations (2), (3), and (5). Then
accurate reconstruction can be implemented based on Equation
(6). What’s more, the precision can be enhanced for high-detailed
reconstruction by inserting control points.

4. B-SPLINE FACE EMBEDDING F, AND
THE 0TH-, 1ST-, 2ND–ORDER
REPRESENTATION

The human face is assumed to be a uniform B-spline surface S

of degree 4 × 4, with B = {bmn}M×N as its control points. In
parameter domainU , knotsU = {um}

M+4
m=1 andV = {vn}

N+4
n=1 split

uv parameter plane into uniform grid. Let u denote parameter
point (u, v). The surface function is

F(u) =

M
∑

m=1

N
∑

n=1

Rm,n(u)bmn,

with Rm,n(u) = Nm,4(u) · Nn,4(v) and











Ni,1(w) =

{

1 ui ≤ w < ui+1,

0 otherwise,

Ni,j(w) =
(w−ui)·Ni,j−1(w)

ui+j−1−ui
+

(ui+j−w)·Ni+1,j−1(w)

ui+j−ui+1
, (j = 4, 3, 2).

F is C2, meaning that it can approximate the true shape
in arbitrary uv precision with deterministic k-ordered partial

derivative ∂kF
∂uk

and ∂kF
∂vk

, k = 1, 2, and ∂2F
∂u∂v .

4.1. 0th-Order Representation
We give a more brief formulation of 0th-order representation
as follows:

F|u = T|u · b, (7)

where b denotes a 3MN×1 vector storing B-spline control points,
and T|u denotes a sparse 3× 3MN matrix stacking the 0th-order
coefficients at parameter u ∈ U .

In fact, we needn’t consider all 3D points mapping to 2D
images when estimating a operator 5. Instead, we only consider
f landmark points on human face as shown in Figure 4, and their
brief formulation is

F|u(li) = T|u(li) · b, i = 1, 2, . . . , f , (8)

where u(li) is the parameter point of the i-th feature point, i =
1, 2, . . . , f . The landmarks cover a sparse structure of face.

4.2. 1st-Order Representation
The 1st-order partial derivatives of F w.r.t u and v are

F′u(u) =
M
∑

m=1

N
∑

n=1
N′
m,4(u) · Nn,4(v)bmn

=
M
∑

m=1

N
∑

n=1
( 4
um+4−ui

N′
m,3(u)−

4
um+5−um+1

N′
m+1,3(u)) · Nn,4(v)bmn
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FIGURE 4 | Face structure defined by 40 feature points: the left side shows

the point positions in a face image; the right side shows the structure topology

with eye center points of O1 (−25, 0, 0) and O2 (25, 0, 0) in 3D space, which

looks like a frontal 2D face structure from the direction of normal (0, 0, 1). (The

face image used in the figure comes from LFW database1).

and

F′v(u) =
M
∑

m=1

N
∑

n=1
Nm,4(u) · N

′
n,4(v)bmn

=
M
∑

m=1

N
∑

n=1
Nm,4(u) · (

4
un+4−un

N′
n,3(v)−

4
un+5−un+1

N′
n+1,3(v))bmn

respectively.
Similarly, we give a more brief formulation of 1st-order partial

derivative as follows:

{

F′u|u = T1|u · b
F′v|u = T2|u · b

, (9)

where T1|u and T2|u denote the matrixes stacking the 1st-order
coefficients w.r.t u and v, respectively.

Therefore, the surface normal vector at u can be computed by
the cross product

n|u =
F
′
u|u × F

′
v|u

∥

∥F′u|u × F′v|u
∥

∥

= s|u · F
′
u|u × F

′
v|u, (10)

which is the key information for detailed reconstruction using
photometric stereo method.

4.3. 2nd-Order Representation
And similarly, the 2nd-order partial derivatives w.r.t. u and v,
respectively are

{

F′′uu|u = T11|u · b
F′′vv|u = T22|u · b

, (11)

where T11|u and T22|u denote the matrixes stacking the 2nd-
order coefficients w.r.t u and v, respectively. The 2nd-order
information can be used for smooth control during optimization.

Based on face surface embedded with B-spline function, we
present the pinpoint 0th- and 1st-order geometric consistency
conditions in the following section.

5. CONSISTENCY MODELING IN B-SPLINE
FACE RECONSTRUCTION

Reconstruction problem is to compute F by solving 0th-order
consistence of Equation (5) or 1st-order consistence of Equation
(6). Generally, two consistency conditions are combined for face
reconstruction considering that estimating abundant consistent
points in images is limited and that the estimated normals are
unfaithful. Furthermore, how to obtain the accurate registration
of 0th- and 1st-order information is the most important to
high-detailed B-spline reconstruction.

The well-registered textures are low-rank structures of the
back projection texture charts. But in practice, they can be easily
violated due to the presence of partial occlusions or expressions
in the images captured. Since these errors typically affect only
a small fraction of all pixels in an chart, they can be modeled
as sparse errors whose nonzero entries can have arbitrarily
large magnitude.

5.1. Modeling Occlusion and Expression
Corruptions in 0th-Order Consistence
Let ei represent the error corresponding to image Ii such that the

back projection texture charts Ti = (Ii ◦ τ−1
i )# − ei = T

e
i −

ei, i = 1, 2, . . . , n are well registered to the surface F, and free of
any corruptions or expressions. Also combining with 0th-order
representation of B-spline face in Equation (7), the formulation
(5) can be modified as follows:

< b̂, {5̂i}, D̂, Ê >= arg lim
b,{5i},D,E

‖D‖∗ + η ‖E‖1 ,

s.t.
∥

∥De −D− E
∥

∥

F ≤ ε.
(12)

where De =
[

vec(T e
1 ), vec(T

e
2 ), . . . , vec(T

e
n )

]

and E =
[vec(e1), vec(e2), . . . , vec(en)].

However, the solution b̂ of face surface S is not unique if all
images are in similar views. And the reconstruction is not high-
detailed even if we can make a unique solution by applying a
prior face template. So we also need to model high details in
1st-order consistence.

5.2. Modeling High Details in 1st-Order
Consistence
The resolution of reconstruction is determined by the density
of correctly estimated normals. To enhance the resolution of
B-spline surface, we use operator (·)# to sample Np dense
parameter points {uj}j=1 :Np on the domain U for the problem
of Equation (6).

Then the well-registered and dense texture are obtained by

Ti|uj = D̂ji, (13)

for i = 1, 2, . . . , n and j = 1, 2, . . . ,Np.
According to Lambertian illuminationmodel seen in Equation

(6), dense normals nj as well as light li can be computed from the
shading (intensity) of charts Ti by SVD method.

Finally, the high detailed reconstruction must satisfy

min
F

Np
∑

j=1

∥

∥nj − s|ujF
′
u|uj × F′v|uj

∥

∥

2

2
. (14)
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By putting Equation (9) into Equation (14), we get

min
b

Np
∑

j=1

∥

∥nj − s|uj (T1|uj · b)× (T2|uj · b)
∥

∥

2

2
. (15)

Conditions of both Equations (6) and (15) have to be considered
for a good reconstruction, which is very difficult. Therefore,
we propose a practical solution that combining both 0th- and
1st-order consistence.

6. PRACTICAL SOLUTION COMBINING
0TH- AND 1ST-ORDER CONSISTENCE

The problems of both 0th-order consistence and 1st-order
consistence are difficult to solve. For , Jacobian matrices
w.r.t. {τ−1

i }i=1 : n have to be computed, which is computing-
expensive. And the solution of Equation (15) is not unique,
either. Therefore, we aim to find a practical solution to handle
both two consistence conditions in this section. We first
define the subproblem for each condition, and then provide a
iterative algorithm.

6.1. 0th-Order Solution
In Equation (6), three kind of parameters including camera
parameters {5i}i=1 : n, surface parameters F (or b), and texture
parameters {Ti}i=1 : n (or D) need to be computed, but they are
difficult to be solved simultaneously. We adopt to optimize them
by turns, instead.

6.1.1. Estimating 5i

According to linear transformation from 3D to 2D in Equation
(1), we can estimate scale si, rotation Ri and translationti of
landmarks for each image Ii, i = 1, 2, . . . , n based on the and SVD
method (Kemelmacher and Seitz, 2011). The image landmarks
are detected by a state-of-art detector (Burgos-Artizzu et al.,
2013) that has a similar high performance to human. And the 3D
landmarks are defined on a B-spline face template with control
point parameter b0, according to Equation (8).

6.1.2. Estimating b

Let f denote a 2nf × 1 vector stacking f landmarks of n images,
and P denote a 2nf × 3f projection matrix stacking n views of
parameters siRi,[1,2], and t denote a 2nf × 1 vector stacking f
translation. The update of b can be implemented by solving:

min
b

∥

∥

∥
f− t− P · T#lb

∥

∥

∥

2

2
+ ζ

∥

∥(T#
11 + T#

22)(b− b0)
∥

∥

2

2
(16)

where the first and the second are 0th- and 2nd-order item,
respectively, and ζ is used to balance them. Operator (·)#l is a
sampling operator that selects B-spline coefficients of landmarks
at parameters {u(li)}i=1 : f , and (·)# selects B-spline coefficients at

{uj}i=1 :Np . In fact, T
#l is a 3f ×3MN matrix that stacks T|u(li), i =

1, 2, . . . , f , andT#
11 (orT

#
22) is a 3f×3MNmatrix that stacksT11|uj

(or T22|uj ), j = 1, 2, . . . ,Np.
The second item also work as a regularization measuring

the distance of local information between faces b and b0. It

helps eliminate affect of geometric rotation brought by 0st-
order warping, and guarantee a smoothness changing during
optimization. Particularly, ζ cannot be too small, otherwise a fast
changing may bring a local optimal.

6.1.3. Estimating Ti
τ−1
i and τi is determined by Equation (2) when 5i and b is
known. Then texture chart with noise is obtained by applying
consistent parameter sampling T

e
i = (Ii ◦ τ−1

i )#. Let De =
[vec(T e

1 ), vec(T
e
2 ), . . . , vec(T

e
n )]. The update of texture charts is

to minimize the following formulation

< D̂, Ê >= arg lim
D,E

‖D‖∗ + η ‖E‖1 ,

s.t. ‖De −D− E‖F ≤ ε.
(17)

which can be solved by Robust PCA (Bhardwaj and Raman,
2016). And let Ti|uj = D̂ji, for i = 1, 2, . . . , n, and j =
1, 2, . . . ,Np.

6.2. 1st-Order Solution
Firstly, texture charts based photometric stereo method is used
to estimate the local normals. Secondly, a normals driven
optimization strategy is proposed to optimize the B-spline face.

6.2.1. Estimating nj
According to Photometric stereo, the shape of each point can be
solved by the observed variation in shading of the images. Data
of n texture charts are input intoMn×Np for estimating the initial

shape S̃ and lighting L̃ by factorizing M = LS via SVD (Yuille
et al., 1999). L̃ = U

√
6 and S̃ =

√
6VT , where M = U6VT .

To approach the true normal information, we estimate the shape
S and ambiguity A by following the work of Kemelmacher and
Seitz (2011). Lastly, the normal at j-th point is nj = STj , where Sj
is the j-th row of S.

6.2.2. Estimating b
Wenormalize nj and stack them into a 3Np×1 vector h. Equation
(15) can be rewritten as

O1 = min
b

∥

∥h− 3|b · ((T
#
1b)⊗ ((T#

2b))
∥

∥

2

2
,

where 3 is a 3Np × 3Np diagonal matrix that stores 3Np

reciprocals of lengths of the normals {nj}j=1 :Np ; and (·)# is a
selection operator that selects 3Np rows of 1st-order coefficients
at parameter {uj}j=1 :Np ; and b0 represent the control points
of a B-spline template face. Particularly, symbol ⊗ denotes a
composite operator of cross product, which makes w ⊗ v =
[w1 × v1;w2 × v2; . . . ;wNp × vNp ], where w and v are 3Np × 1
vectors containing Np normals.

However, there exists two issues: (1) the low-dimension hmay
not guarantee an unique solution of high-dimension b; and (2)
the system is not simply linear, which is difficult to be solved.
Therefore, a frontal constraint based on template b0 is applied
to make a unique solution; And a strategy of approximating to
linearization is also proposed to make a linear solution.
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6.2.2.1. Frontal Constraint
The frontal constraint is a distance measurement condition
between surface S and template w.r.t. x- and y-component:

O2 =
∥

∥T#xy(b− b0)
∥

∥

2

2
< ǫ,

where the matrix T#xy stacks 0th-order coefficients at parameter
{uj}j=1 :Np corresponding to x- and y- components. Operator

(·)#sxy also sets the coefficients corresponding to z- components
to zeros.

Particularly, the first item O1 is not a simple linear form, for
which an approximating to linearization is proposed.

6.2.2.2. Approximating to Linearization
According to the characteristics of the cross-product ⊗, the first
item in O1 can be rewritten as a linear-like formulation:

‖h− L|b · b‖
2
2 or ‖h− R|b · b‖

2
2 ,

where

{

L|b = 3|b ·
[

T#1b
]

⊗ · T#2
R|b = −3|b ·

[

T#2b
]

⊗ · T
(sn)
1 .

Particularly, the operation [·]⊗ makes a 3Np × 1 vector

w =
[

w
T
1 ,w

T
2 , . . . ,w

T
Np

]T
become a 3Np × 3Np sparse matrix

[w]⊗ = diag([w1]× , [w2]× , . . . ,
[

wNp

]

×
), where [wi]× =

[0,−w
z
i ,w

y
i ;w

z
i , 0,−w

x
i ;−w

y
i ,w

x
i , 0], i = 1, 2, . . . ,Np.

If b is a known parameter, e.g., as b0, for L|b, the minimization
of

∥

∥h− L|b0 · b
∥

∥ will be a linear system. That is also true for R|b.
In fact, we can use formulation

∥

∥h− L|b0 · b
∥

∥ to optimize
the control points in parameter space of v by fixing u, and use
∥

∥h− R|b0 · b
∥

∥ to optimize in parameter space of u by fixing v.

Algorithm 1: Iterative Algorithm for B-spline Face Optimization

Input: Face images {Ii}i=1 : n, B-spline template face b0, and
landmark parameters {u(li)}i=1 : f in domain U .

1: Detect facial landmark points of images
2: while b is not converged do

3: do // LOOP1: 0th-order consistence

4: Estimate camera parameter {5i}i=1 : n according to
landmarks.

5: Estimate b via Equ(16), and update b0 with b.
// Obtain well-registered texture

6: Register images to texture space by {Ii ◦ τ−1
i }i=1 : n, and

buildDe based on unified parameter {uj}j=1 :Np .

7: Solve Equ(17) to obtain D̂.
8: while ‖D‖∗ + η ‖E‖1 is not converged // LOOP1 END

9: Extract texture charts {Ti}i=1 : n from D̂.
10: while b0 is not converged // LOOP2: 1st-order

consistence do

11: Estimate normals {nj} from {Ti}.
12: Estimate b via Equation (18.a), and update b0 with b.
13: Estimate b via Equation (18.b), and update b0 with b.
14: end while

15: end while

Output: Solution of B-spline objective face b.

A practical skill is to optimize the control points on u and v
parameter spaces by turns. The two iteration items are rewritten
as

{

∥

∥h− L|b0 · b
∥

∥

2
2
+ λ

∥

∥31|b0 · T
#
1 · (b− b0)

∥

∥

2
2
,

∥

∥h− R|b0 · b
∥

∥

2
2
+ λ

∥

∥32|b0 · T
#
2 · (b− b0)

∥

∥

2
2
.

where the second term for each formulation is unit tangent
vector constraint on the fixed the directions. 31|b0 (or 32|b0 )
is a 3Np × 3Np diagonal matrix that stores 3Np reciprocals of

lengths of tangent vector ∂F
∂u (or ∂F

∂v ) at {uj}j=1 :Np . During this
procedure b0 is updated step-by-step. As shown in Figure 5, two
partial derivatives ∂F

∂v and ∂F
∂u at (u, v) are updated until ∂F

∂v × ∂F
∂u

converges to n.
By integrating with O2, the final formulation of optimization

consists of two items as follows:















min
b

∥

∥

∥

∥

[

h

T#xyb0

]

−

[

L|b0
T#xy

]

b

∥

∥

∥

∥

2

2

+ λ
∥

∥31|b0 · T
#
1(b− b0)

∥

∥

2

2
, (a)

min
b

∥

∥

∥

∥

[

h

T#xyb0

]

−

[

R|b0
T#xy

]

b

∥

∥

∥

∥

2

2

+ λ
∥

∥32|b0 · T
#
2(b− b0)

∥

∥

2

2
. (b)

(18)
The b0 is initialized by value of b0. Then we can solve b and
update b0 orderly by minimizing (a) and (b) in Equation (18)
iteratively until convergence.

6.3. Algorithm
An iterative algorithm is presented for this practical solution
in Algorithm 1. Processes of 0th-order consistence and 1st-
order consistence are separately conducted in the inner loop.
And the outer loop guarantees a global convergence on two
consistence problem.

6.3.1. Computational Complexity
The computation in above Algorithm 1 involves linear least
square for solving Equations (16), (18.a), and (18.b), SVD for
estimating camera parameter, and Robust PCA for Equation (17).
In detail, the computational complexity for solving Equation (16)
is O(n2f 2MN), and that of both Equations (18.a) and (18.b) are
O(N2

pMN). The computational complexity of robust PCA comes

to be O(N2
pk), where k is the rank constraint. By assuming Np >

M > N >> f > n, computational complexity of the other parts
can be negligible. In addition, we need considering the number
of iteration for total computation of Algorithm 1.

7. EXPERIMENT

In this section experiments are presented to verify our automatic
free-form surface modeling method. We first describe the
pipeline to prepare a collection of face images of a person
for B-spline face reconstruction. And then we demonstrate the
quantitative and qualitative comparisons with recent baseline
methods on projected standard images from ground truth 3D
data (Zhang et al., 2017) with various expressions, illuminations
and poses. Finally, we conduct challenging reconstructions and
comparison based on real unconstrained data taken from the
challenging Labeled Faces inWild (LFW) database1 (Huang et al.,
2007).

1http://vis-www.cs.umass.edu/lfw/
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FIGURE 5 | Iterative adjustment on two partial derivatives: Process (1) to (2) adjusts ∂F
∂u

by fixing ∂F
∂v
, and process (3) to (4) adjusts ∂F

∂v
by fixing ∂F

∂u
, … until that ∂F

∂u
× ∂F

∂v

is infinitely close to objective n; Process A implements a practically and iteratively linear handle for B-spline surface adjustment in B.

7.1. Data Pipeline and Evaluation
7.1.1. Synthesized Data With Expression
The ground truth data are from the space-times faces (Zhang
et al., 2017) which contains 3D face models with different
expressions. We use the data because it is convenient to
evaluate our method with ground truth. And different poses
and illuminations can also be simulated by the spaces-
times faces, seen in Figure 6. Images with various poses and
illuminations are collected, and feature points manually labeled.
The reconstruction is evaluated by the error to the ground
truth model.

7.1.2. Real Data in the Wild
The wild data (Huang et al., 2007) has characteristics of subject
variations, illumination changes, various pose, background
clutter and occlusions. Images of each person are collected and
input into a facial point detector (Burgos-Artizzu et al., 2013) that
has a similar high performance to human, to find the 40 facial
points shown in Figure 4. The initial B-spline template face is
computed from a neutral model of space-time faces.

7.1.3. Comparison
To verify the accuracy of automatic surface reconstruction,
discrete points are sampled from the generated continuous
free-form shape, and are compared to the traditional discrete
reconstructions, e.g., work by Kemelmacher and Seitz (2011) and
Roth et al. (2015). For a memory-limited capture system, it is not
available to collect thousands of images as what Kemelmacher
and Seitz (2011) and Roth et al. (2015) have done, so we
limit all the reconstructions to less than forty images. We also
compare them with an end-to-end deep learning method by Sela
et al. (2017) qualitatively. Deep learning methods rely training

on a large amount of unconstrained data, so we just use the
model provided by Sela et al. (2017) that have been training on
unconstrained images, and test it on the images in the wild.

7.2. Synthesized Standard Images
We conduct five sessions of reconstructions: the first four are
used to reconstruct expression S1, S2, S3, and S4 by using their
corresponding images, and the fifth session S5 is based on images
with different expressions. Each session contains 40 images with
various illumination and different poses. Reconstruction results
are compared with the re-implemented method Kemel_meth
by Kemelmacher and Seitz (2011) and Roth_meth by Roth
et al. (2015). Kemel_meth generates frontal face surface based
on integration in image domain of size 120 × 110. We clip it
according to the peripheral facial points and interpolate points
to get more vertices. Roth_meth generates a face mesh based on a
template with 23,725 vertices. In our method, control point grid
of 102× 77 is optimized for a B-spline face surface.

7.2.1. Quantitative Comparison
To compare the approaches numerically, we compute the
shortest point-to-point distance from ground truth to
reconstruction. Point clouds are sampled from B-spline
face and aligned according to absolute orientation problem. As
done in work of Roth et al. (2015), mean Euclidean distance
(MED), and the root mean square (RMS) of the distances, after
normalized by the eye-to-eye distance, are reported in Table 1.
Particularly, evaluation of Roth_meth is based on surface clipped
with same facial points like the other twomethods by considering
a fair comparison. In the table, the best results are highlighted in
boldface, and the underlined result has no significant difference
with the best. To our knowledge, Roth_meth is the state-of-art
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FIGURE 6 | Sample data simulated by the spaces-times faces (Zhang et al., 2017) : images and 3D model with various poses and illuminations are available; data of

sample S1, S2, S3, and S4 are used for evaluation.

TABLE 1 | Distances of the reconstruction to the ground truth.

Meth. Index S1 S2 S3 S4 S5

Kemel_meth MED (%) 8.08 8.18 8.18 10.75 8.65

RMS (%) 6.64 6.93 4.29 7.11 6.90

Roth_meth MED (%) 5.25 7.06 5.43 6.63 6.96

RMS (%) 4.36 5.79 4.54 4.42 4.62

Ours MED (%) 6.31 6.49 4.43 6.46 6.98

RMS (%) 4.10 4.66 2.91 4.06 4.34

The bold means the best value of MED and RMS, while the underline indicates the values

next to the best.

method for face reconstruction from unconstrained images.
Its re-implementation version is affected by the noisy normal
estimation because of limited number images, showing results
that are not good like as in its original paper. But it still performs
good on all sessions. As a whole, results by both Roth_meth and
our method have lower errors than Kemel_meth. On session
S1 and S5, Roth_meth obtains the lowest mean error 5.21 and
6.96%, respectively. However, we obtains lower RMS 4.10 and
4.34% while its errors is quite close to the best especially on
session S5. And on session S2, S3, and S4, our method obtains
the best results, 6.49 ± 4.66, 4.43 ± 2.91, and 6.46 ± 4.06%. In
contrast, the errors by Kemel_meth exceed 8%, and the RMS is
also very large on every session. These numerical comparisons
supply highly persuasive evidence that our B-spline method can
build promising reconstructions based on face images.

7.2.2. Visual Comparison
The visual results in Figure 7. We show 3D models in mesh
format for three methods on different sessions, and vertex
numbers of models are also presented. It also demonstrates that
our method has a promise performance by comparisons in the
figure. An important fact is that Kemel (Kemelmacher and Seitz,
2011) cannot make a credible depth information and global
shape, e.g., the global shape of reconstruction S2 and the mouse
and nose of S3 are obviously incorrect, but our method solves
global and local problem by optimization of 0th- and 1st-order

consistency. And while Roth (Roth et al., 2015) generates more
detailed information of an individual, it also produces distortion
at the detailed shape, e.g., the eye of reconstruction S2 and the
nose of reconstruction S3 and S4. In contrast, ourmethod obtains
realistic shape both globally and locally.

7.2.3. Characteristic Comparison
We give statistics of characteristics of the results generated by
the three methods in Table 2, covering the global shape, local
detail, credible depth, smoothness, distortion, and derivability.
Depending on the quantitative and qualitative comparisons, we
also give a rough rating. One star, two stars, and three stars
represents bad, general, and good reconstruction respectively
in the rating system. Both Roth_meth and our method obtain
good scores on global shape, local detail, and credible depth.
And both Kemel_meth and our method obtain a good score
on smoothness. Because of the bad depth, Kemel_meth also
gets bad score on global shape and distortion, and gets general
scores on local detail. In addition, B-spline face model has better
smoothness than the models by Kemel_meth and Roth_meth,
because it is C2 differentiable parametric surface while the
other two are discrete model. Conclusively, 0th- and 1st-
order consistency modeling using B-spline surface is efficient to
reconstruct parametric surface of individual face.

7.3. Real Unconstrained Images
Our method is also tested based on real unconstrained data.
Unconstrained data mean that the images are captured under
uncertain condition, and the faces in the images are different in
expression, pose and illumination condition. It is difficult to build
the geometrical consistency for reconstruction using such data.
Unlike the experiments in the work by Kemelmacher and Seitz
(2011) using hundreds of images, we conduct reconstruction with
limited number of images, because a large mount of face images
for one person are not always available for small sample size
tasks such as criminal investigation. In the experiment, uniformly
35 images are collected for each person from LFW database1

covering different poses, illuminations and expressions.
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FIGURE 7 | Visual reconstructions and comparisons for session S1, S2, S3, S4, and S5: for each session of reconstructions, a column lists the 3D results of

Kemelmacher and Seitz (2011), Roth et al. (2015), and us, as well as ground truth. (VrxNum means vertex number; TempVtxNum means vertex number of template;

and Ctrl.Point Num means the control point number of B-spline face surface. Particularly, the vertices of B-spline face are points sampled from the reconstructed

parametric surface).

TABLE 2 | A characteristics summarization of three methods by rough rating with

number of ✰.

Characteristics Kemel_meth Roth_meth Ours

Global shape ✰×1 ✰×3 ✰×3

Local detail ✰×2 ✰×3 ✰×3

Credible depth ✰×1 ✰×3 ✰×3

Smoothness ✰×3 ✰×2 ✰×3

No distortion ✰×1 ✰×2 ✰×3

C2 differentiable NO NO YES

Visual face reconstructions for Colin Powell, Donald
Rumsfeld, George W. Bush, Hugo Chavez, and Gloria Macapagal
Arroyo are compared with other two methods, as shown in
Figure 8. Let A label the results generated by the reimplemented
Kemel_meth, and let B label the results generated by the
reimplemented Roth_meth, and let C label the method
Seta_meth of deep learning by Sela et al. (2017) and let D
label our results. Particularly, the input for Seta_meth is one

image selected from the 35 images. Images in column 1, 5, and
8 are corresponding mean textures and two views of images
respectively. By comparing these results, we observe some
phenomena as follows:

(1) In frontal viewpoint,A andD showmore vivid details than B,
e.g., eyes and nose of Colin Powell. But in an other viewpoint,
D shows more credible shape than A, e.g., the eyes and the
forehead of Colin Powell, and the forehead and the mouth of
Donald Rumsfeld.

(2) When the normals are incorrectly estimated from a limited
number of images, e.g., for Gloria Macapagal Arroyo, A
loses the local information completely, but B, C, and D still
maintain general geometrical shape of face. For all methods,
reconstructing nose is a challenge because the geometric
curvature of the nose varies greatly. When the images are not
enough, the noise could be amplified. So B shows bad results
at nose being limited by number of input images.

(3) The input of C is a approximately frontal face image selected.
As the model of C is learning on a set of 3D face data, it may
not handle the uncertain noise and identity of inputs. So the
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FIGURE 8 | Visual reconstructions and comparisons for Colin Powell, Donald Rumsfeld, George W. Bush, Hugo Chavez, and Gloria Macapagal Arroyo: (1) Images in

column 1, 5, and 9 are corresponding mean textures and two views of images, respectively; (2) Columns labeled by A show the results generated by the

reimplemented Kemel_meth, and columns labeled by B show the results generated by the reimplemented method Roth_meth, and columns labeled by C show the

results generated by the Seta_meth, and columns labeled by C show our results. (The face images used in the figure come from LFW database1 ).

details in reconstruction by C don’t look real, although their
global shapes are stable and like human faces.

(4) By comparison, our method steadily produces better looking
results than others from different viewpoints in the dataset.
Clear and vivid details can be seen at key components such
as eyes, nose and mouth, forehead, and cheek.

8. DISCUSSION

All the above experiments prove that our method can build
pinpoint geometrical consistency on the limited number of real
unconstrained data. Our method may not be best method in
area of 3D reconstruction from multiple images, as the results
in the original work by B looks better. It could deal with 3D
reconstruction with limited number of images. Because we may
not obtain large amount of images for reconstruction as done
by Roth et al. (2015), for some condition restricted system. The
shortcomings of A are mainly resulted from the inauthentic
depth generated by integration method. And the bad results of
B are caused by that the mesh template cannot build correct
geometric consistency of number limited of unconstrained
images and that the discrete differential operating on estimated
noisy normal brings distortion errors. In contrast, we build
pinpoint geometric consistency using B-spline surface. B-spline
can smooth the noise in estimated normal better. So D can

reconstruct correct face shape with little distortion, showing
better result as a whole.

In the comparison, we don’t consider other deep learning
methods based methods appeared in recent years (Dou et al.,
2017; Richardson et al., 2017; Lin et al., 2020; Sengupta et al.,
2020; Shang et al., 2020). Because almost all recent works
are focused on deep learning methods for single image based
3D face reconstruction (Dou et al., 2017; Richardson et al.,
2017; Lin et al., 2020; Sengupta et al., 2020), as well as using
a 3DMM model as prior. And the multi-view deep learning
method only handle constrained face images (Shang et al.,
2020). It means the deep learning methods can use a large
amount of training data, and also a good prior. The input are
different between these learning based methods and our method.
So we conduct comparison with the classic optimization-
based approaches for the sake of fairness. Nevertheless, we
also select one representative method by Sela et al. (2017)
to show result by deep learning as a reference in the
comparison. It proves that if the test are not satisfactory to
the prior and distribution of training data, it may obtain
bad result.

9. CONCLUSIONS

This study set out to present high-detailed face reconstruction
from multiple images based on pinpoint 0th- and 1st-order
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geometric consistence using B-spline embedding. Based
on the good consistence modeling in geometric optics,
the method works well for data with different poses and
expressions in the wild. The key contribution of this
study is that surface modeling adapts the correct rays in
geometric optics by using B-spline embedding. This makes
the high-detailed B-spline modeling from a number limited
of face images captured under wild condition become
reality. The method could also be applied to expression
tracking and assisting face recognition in a monitoring or
robot system.
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With the rapid development of artificial intelligence, Cybernetics, and other High-tech

subject technology, robots have been made and used in increasing fields. And studies

on robots have attracted growing research interests from different communities. The

knowledge graph can act as the brain of a robot and provide intelligence, to support

the interaction between the robot and the human beings. Although the large-scale

knowledge graphs contain a large amount of information, they are still incomplete

compared with real-world knowledge. Most existing methods for knowledge graph

completion focus on entity representation learning. However, the importance of relation

representation learning is ignored, as well as the cross-interaction between entities

and relations. In this paper, we propose an encoder-decoder model which embeds

the interaction between entities and relations, and adds a gate mechanism to control

the attention mechanism. Experimental results show that our method achieves better

link prediction performance than state-of-the-art embedding models on two benchmark

datasets, WN18RR and FB15k-237.

Keywords: learning-based artificial intelligence, robot intelligence, human-robot interaction, knowledge graph

reasoning and completion, knowledge graph embedding

1. INTRODUCTION

With the development of science and technology, significant progress has been achieved in robotics
that the types and application fields of robots are constantly enriched. These robots have played key
roles in reducing tedious work. They provide optimal user service and improve the convenience of
life. The popularity of various kinds of robots is an inevitable trend.

The emergence of learning intelligent social robots means that robots have truly begun to play
roles in people’s daily lives, such as pepper and buddy. There are some typical applications, such as
greeting conversations, question responses, interest recommendations, and risk management (Gu
et al., 2021). Huge information is need at the backend of these services. However, the traditional
search engine will be affected by the combination of information, resulting in an increase in search
volume and a decrease in accuracy. Knowledge with unique meaning and with the goal of solving
practical problems can avoid this problem well.

The “Robot Brian” is taken the same as the brain for humans, which stores and infers knowledge
to support other behaviors. Knowledge base is usually used to work as the brain of an intelligent
robot. Unlike general applications that implicitly encode information in programs, it can explicitly
express the corresponding knowledge of actual problems. Providing continuous knowledge support
for robots through the knowledge base is equivalent to injecting “thought” into the robots to
realize real intelligence true intelligence. Knowledge base construction is a core configuration for
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intelligent robots. Without a knowledge base, a robot cannot
answer any questions. The richer the knowledge base, the more
intelligent the robot will have when interacting with users.

A large amount of research work in knowledge representing,
web data mining, natural language processing and other fields
are dedicated to acquiring large-scale knowledge (Jia et al.,
2021), providing rich knowledge bases for building the intelligent
brain of robots. In order to facilitate computer processing and
understanding, we express the knowledge base in a more formal
and concise way, that is, a highly structured knowledge graph
composed of triples (eh, rk, et). The Knowledge Graphs (KG) not
only provides robots with a more human-like representation of
the world, but also provides a better way to organize, manage and
utilize massive amounts of information.

Although the large-scale knowledge graphs already contain
a large amount of entity and relation information, they are
still incomplete compared with existing knowledge and newly
added knowledge (Zhao et al., 2020). Through knowledge
graphs and knowledge self-learning, problems in the knowledge
system can be found, and knowledge can be supplemented and
enhanced so that the robot’s knowledge base can be continuously
improved and evolved. There is no end to the optimization and
completion of the knowledge base, just as there is no end to
human learning, this is research work that needs continuous
improvement and development.

In order to alleviate the above problems, researchers have
proposed a knowledge graph embedding method, which predicts
missing links based on existing facts so as to expand the
knowledge base. Its purpose is to learn low-dimensional vector
representations of all entities and relationships, so as to simplify
operations while the original structured information of the
knowledge graph is retained. These knowledge graph embedding
methods are widely divided into translationmodels (Bordes et al.,
2013; Ji et al., 2015; Lin et al., 2015), semantic matching model
(Nickel et al., 2011, 2016; Yang et al., 2015; Trouillon et al., 2016),
and neural network models (Dettmers et al., 2018; Shang et al.,
2019; Vashishth et al., 2020). The related work will be introduced
in detail in section 2.

Compared with neural network models, the other types
of models are all shallow models, which leads to problems
with poor expressiveness. Therefore, more and more complex
and deeper models, which have better expressive performance
and have achieved competitive success in modeling knowledge
graphs, have been proposed in recent years. But these existing
models, such as Dettmers et al. (2018), Nguyen et al. (2018),
Shang et al. (2019), and Vashishth et al. (2020), are more
focused on entity representation learning, and the importance
of relation representation learning are ignored, let alone the
cross-interaction between entities and relations. The interaction
between entities and relations plays an important role in
knowledge graph representation learning that the entities and
relations in the knowledge graph will influence each other and
influence the prediction of new triples as they do in the real world.

In this paper, a method of knowledge reasoning and
completion based on neural networks on the knowledge graph is
designed for robots to simulate the reaction and learning process
of human brains. Our model adopts the encoder-decoder model.
The encoder model improved the KBGAT model with a gate

mechanism to control the attention mechanism and use entity
embeddings to update relation embeddings. The decoder model
uses Conv-TransE and Conv-TransR to achieve state-of-the-art
efforts. This method can enable the robot to quickly search for
information, predict answers, and complete knowledge from the
knowledge base, to better understand user intent and interact
with users more intelligently.

2. RELATED WORK

In this section, we mainly introduce the work related to
our Large-scale Knowledge Graph reasoning and completion
methods for robots. As one of the research hotspots, Large-
scale Knowledge Graph reasoning and completion has attracted
extensive attention from academia and industry. Thus, many
different types of methods are born, such as the translation
model, the bilinear model, the hyperbolic geometry model, the
neural network model, the rotate model, and so on. Among these
different kinds of methods, the knowledge graph Embedding
method is the closest to human expression, which can be
regarded as languages for computers and machines like robots.
The knowledge graph Embedding method generally includes
the following types of models: (i) translation models; (ii)
models based on semantic matching; (iii) models based on
neural networks; (iv) models with additional information. We
will mainly introduce the work related to translation models
and neural network based models related to our work in
the following.

The translation model represented by TransE (Bordes et al.,
2013) uses a simple vector form to represent the entities and
relations in the knowledge graph. TransE (Bordes et al., 2013)
regards relation as the conversion from the head entity eh to
the tail entity et , and uses eh + rk = et to determine whether
the given triplet is correct. In order to make up for the defect
that TransE can only handle the 1–1 relation, TransH (Wang
et al., 2014), TransD (Ji et al., 2015), TransR (Lin et al., 2015),
and other models have increased the ability to handle multiple
relations and semantics and enhanced the knowledge embedding
model. It shows that entities and relations can also be embedded
in other spaces besides real number space. TransG (Xiao et al.,
2015) introduces Gaussian distribution to solve the problem of
multi-relational semantics to capture the uncertainty of entities
and relations. TorusE (Ebisu and Ichise, 2018) is the first model
to embed objects outside the space of real or complex numbers
and select a torus (compact Lie group) as the embedding space.

Neural network-based embedding models have received
extensive attention in recent years. These methods include
embedding models based on convolutional neural networks
(CNN) and graph convolution networks (GCN). For example,
convE (Dettmers et al., 2018), ConvKB (Nguyen et al., 2018),
and InteractE (Vashishth et al., 2020) are both relational
prediction models based on convolutional neural networks.
ConvE (Dettmers et al., 2018) stacks the embeddings of
head entity and relation into a 2-dimensional matrix, and
performs convolution operation to extract features with fewer
parameters and faster calculations. IntercatE (Vashishth et al.,
2020) increases the expressive power of ConvE and expands
the interaction between entities and relations through three
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FIGURE 1 | Model Architecture. The encoder in the left uses is our GI-KBGAT to obtain the embeddings of entity and relation. The right decoder model feeds the

embeddings of eh and rk and use logits activation function to calculate scores. Dashed arrows in the figure represent concatenation operation. The dimension of

vector Eeh and Erk in the middle is the same with the left in fact. We here use 4 dimension to simply the representation of the model.

key ideas—feature permutation, feature reshaping, and circular
convolution. ConvKB (Nguyen et al., 2018) represents each triple
as a 3-column matrix where each column vector represents
a triple element and feeds this matrix to a 1D convolution
layer to generalize transitional characteristics in transition-based
embedding models.

Graph convolution networks have made great progress in

improving the efficiency of node representation in the graph,

and it is also applied in the knowledge graph by researchers.
Graph convolution network (GCN) (Kipf and Welling, 2017)
gathers information for node(entity) from its neighbors with
equal importance. Velickovic et al. (2018) introduce a graph

attention network (GAT) to learn to assign varying levels
of importance to node(entity) in every neighbor. However,

these models are unsuitable for KGs, since they ignore that
edges (triples) play different roles depending on the relation
they are associated with in KGs. SACN (Shang et al., 2019)
extends the classic GCN to a weighted graph convolutional
network (WGCN) as an encoder, and uses a convolution
model Conv-TransE as a decoder to construct an end-to-
end model. WGCN weighs the different types of relations
differently when aggregating multiple single-relation graphs
into a multi-relation graph and the weights are adaptively
learned during the training of the network. But WGCN inherits
GCN’s shortcomings in that it treats the same relation type
for different entities of the same weight. Nathani et al. (2019)
extends classic GAT to KBGAT by incorporating relation and
neighboring node features in the attention mechanism and
uses KBGAT as encoder and ConvKB (Nguyen et al., 2018) as
a decoder.

The above-mentioned models have achieved good
performance in knowledge graph embedding for knowledge
graph reasoning and completion. However, as far as we know,
few works consider the cross-interaction of entities and relations
when designing models. Our proposed model uses a variant
of the graph attention network (GAT) as the encoder and
uses variants of ConvE [Conv-TransE (Shang et al., 2019),
Conv-TransR] as decoder, to achieve the simultaneous capture
of entity-to-relation and relation-to-entityc

¯
ross-interaction.

3. MODEL

This section begins by introducing some notations and
definitions used in the rest of this article. This is followed
by an introduction of our encoder model GI-KBGAT, an
improved Graph Attention Network for KG, which considers
gatemechanism onmulti-head attention and interaction between
entities and relations to generate embeddings. Finally, we
describe our decoder network based on Conv-TransE (Conv-
TransR). The architecture of our model is as shown in Figure 1.

3.1. Notations and Definitions
The knowledge graph is defined as G = (E ,R, T ), where E =
{e1, e2, ...eN} and R = {r1, r2, ...rK} represent the set of entities
(nodes) and relations. N is number of entities and K is number
of relations. T denotes the triples (edges) of the form thtk =
(eh, rk, et) ∈ E ×R× E , where eh is head entity, et is tail entity,
and rk is the relation between head and tail entity. In particular,
entity eh and et in this paper refer to the head entity and the tail
entity, respectively, while other entities with subscripts, such as
entity ei are not specified. Table 1 explains the notations that will
be used in the rest of this article.

3.2. Encoder: GI-KBGAT
As shown in section 2, most existing models ignore the cross-
interaction of entities and relations. They only use relations to
updating entities, but ignore the effects of entities on relations.
We improve the KBGAT (Nathani et al., 2019) by modifying
the update process of embeddings of entities and relations to
consider the interaction between entities and relations in the
update process, and adding a gate mechanism to the attention
mechanism for control.

Ourmodel uses the initial embeddings of entities and relations
as input, and the following layers use the embeddings obtained
from its previous layer as input. The same as Nathani et al.
(2019)’s GAT model, in order to learn the embeddings of entity
ei, we aggregate features of triples associated with it. The triple’s
embedding is learned by performing a linear transformation over
the concatenation of entity and relation vectors corresponding to
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TABLE 1 | Some of the notations and explanations used in this paper.

Notation Explanation Notation Explanation

E,R Embedding matrices

for entities and relations

[‖] Concatenation of vectors

Eei , Erk Embedding vectors of

entity ei and relation rk

| S | Number of elements in set S

Ni Neighbor sets of entity

ei

φ LeakyReLU function

Rij Relation sets

connecting entities ei
and ej

σ Activate function

Pk Entity pair (eh, et ) sets

with relation rk

ψ ReLU function

it, as shown in Equation (1).

Ethtk = Wt[ Eeh ‖ Eet ‖ Erk] (1)

Where Ethtk, Eeh, Eet , and Erk represent the embeddings of triple thtk,
entity eh, et , and relation rk, respectively, Wt denotes the linear
transformation matrix. To measure the importance of each triple
thtk for entity eh, the LeakyRelu non-linearity activation function
φ is used to get the absolute attention value, the activate vector

is defined as Eb, and the softmax function is used to obtain the
relative attention values αhtk, as shown in Equation (2).

αhtk =
exp(φ(Eb Ethtk))

∑

n∈Nh

∑

r∈Rhn
exp(φ(Eb Ethnr))

(2)

Then, the new embedding of entity eh is obtained by aggregating
the features of the triples associated with eh through weighted by
their attention values. As shown in Equation (3), attention values
are used to calculate the linear combination of triples(neighbor)
features, and the embedding is obtained with a activate
function σ .

Eeh = σ (
∑

t∈Nh

∑

k∈Rht

αhtk Ethtk) (3)

To stabilize the learning process and encapsulate more
information, our encoder also uses a gated multi-head attention
mechanism inspired by Vaswani et al. (2017), Velickovic et al.
(2018), and Zhang et al. (2018). Considering M independent
attention heads, M embeddings for an entity are obtained. For
example, the embedding of entity eh calculated by the m − th
attention head is represented as Eeh

m. These embeddings of an
entity are concatenated with independent gate value gm

h
except

the last layer (for which we use themean pooling). The final entity
embedding update equation is as follows:

Eeh = σ ([‖Mm=1 (g
m
h · σ (

∑

t∈Nh

∑

k∈Rht

αhtk Ethtk)
m)]) (4)

For the relation update, we propose an update mechanism that
uses the same projection operation as the TransR model (Lin
et al., 2015). Similar to GAT, TransR model holds that an entity
is a complex of various attributes, and different relations focus

on different attributes of the entity. TransR uses the projection
matrix Mr to project the head entity eh and tail entity et into the
corresponding relation space, and defines the score function as
fr(eh, et) =‖ EehMr +Er− EetMr ‖

2
2. Inspired by TransR, we project

the head entity eh and the tail entity et of a triple into the relation
space with a projection matrixWr , and update their relation rk as
Equation (5).

Erk =
1

| Pk |

∑

(h,t)∈Pk

(Eet − Eeh)Wr (5)

In order not to lose the initial embeddings information during
training, our model design a gated mechanism to aggregate the
initial embeddings and the updated embeddings with learnable
gate values. The equation is as shown in Equation (6).

E = geiEinitialWte + geuEupdate

R = griRinitialWtr + gruRupdate

(6)

Where Wte and Wtr are the linearly transform matrices for the
initial embeddings of entity Einitial and relation Rinitial, gei, and
gri are the memory gate for the initial embeddings of entity
Einitial and relation Rinitial, geu, and gru are the update gate for
the updated embeddings of entity Eupdate and relation Rupdate

obtained by Equations (4) and (5), respectively. The scoring
function for the GI-KBGAT method is defined as follows:

f (�) =
∑

thtk∈S

∑

t′
htk

∈S ′

(‖ Eeh + Erk − Eet ‖1 − ‖ Ee′
h
+ Er′

k
− Ee′t ‖1) (7)

Where S and S ′ denotes the set of valid triples [thtk = (eh, rk, et)]
and invalid triples [t′

htk
= (e′

h
, r′

k
, e′t)], respectively, ‖ · ‖1 means

L1-norm dissimilarity.

3.3. Decoder
The convolutional structure is used as the base model of our
decoder, which transforms the embedding vector to another
space and possesses powerful feature extraction ability and good
parameter efficiency. The decoder takes the embeddings of entity
and relation trained from the encoder as input. We test both
Conv-TransE (Shang et al., 2019), and Conv-TransR, which
keeps the translational property of TransR ( EehW + Erk ≈ EetW)
with 1D convolution inspired by Conv-TransE to be consistent
with encoder, as decoder as shown in Figure 1.

The only difference between Conv-TransR and Conv-TransE
is that the Conv-TransR model has one more project matrix for
entities than Conv-TransE. Following shows the model of Conv-
TransR: Conv-TransR uses matrix W to project the entity eh
into its corresponding relation rk’s space, the result is EehW. This
result is then stacked with its corresponding relation embedding
Erk to get [ EehW, Erk] as the input of convolutional network.
The convolutional network uses different filters(kernels) ω ∈
R
2×F(F ∈ {1, 2, 3...}) to generate different feature maps as Conv-

TransE. The scoring function for the Conv-TransR method is
defined as below:

g(eh, rk, et) = τ (ψ([‖ ψ([ EehW, Erk]⊛ ω)]Wc)Eet) (8)
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Where ⊛ represents a 1D convolution operation, [‖] denotes
vector concatenation which concatenates features output from
convolution with different filters ω, Wc is a learnable weight
matrix for linear transformation to projected the concatenation
embedding into the tail entity et space, ψ is chosen to be a ReLU
non-linear function, then the calculated embedding is matched
to tail entity et by an appropriate distance metric, and the logistic
sigmoid function τ is used for scoring finally.

4. EXPERIMENTS AND RESULTS

4.1. Datasets
Through continuous learning, the data scale of intelligent robots
will only increase. Therefore, when evaluating our proposed
method, we ignore the small datasets and chose two large datasets
WN18RR (Dettmers et al., 2018) and FB15k-237 (Toutanova
et al., 2015) as the benchmark datasets. WN18RR and FB15k-
237 are improved versions of two common datasets WN18 and
FB15k (Bordes et al., 2013) derived from WordNet and freebase,
respectively, in which all inverse relations have been deleted
to prevent direct inference of test triples by reversing training
triples. Table 2 provides statistics of them.

4.2. Training Settings
We follow a two-step training procedure that, we first train our
GI-KBGAT to encode information about the graph entities and
relations and then train decoder model Conv-TransR to perform
the link prediction task. For encoder training, we use the margin
ranking loss, use Adam to optimize all the parameters with

the initial learning rate set at 0.001, set the entity and relation
embedding dimension of the last layer to 200, and set the other
hyper-parameters for each dataset to be the same as KBGAT
(Nathani et al., 2019). For decoder training, we use the standard
binary cross-entropy loss with label smoothing, set the size and
number of the kernel to 9 and 200, respectively, and set the other
hyper-parameters for each dataset to be the same as InteractE
(Vashishth et al., 2020).

4.3. Evaluation Protocol
Following the previous work, we use the filtered setting (Bordes
et al., 2013) that all valid triples are filtered out from the candidate
set while evaluating test triples. The performance is reported on
the standard evaluation metrics: Mean Reciprocal Rank (MRR)
and the proportion of correct entities ranked in the top 1, 3, and
10 (Hits@1, Hits@3, Hits@10).

4.4. Results and Analysis
Table 3 presents the experimental results of our methods and
several baseline methods on FB15K-237 and WN18RR test sets.
In which all values are presented in percentage. Among these
baseline methods, the methods in the first box, namely TransE
(Bordes et al., 2013), ConvE (Dettmers et al., 2018), ConvKB
(Nguyen et al., 2018), Conv-TransE (Shang et al., 2019), and
InteractE (Vashishth et al., 2020), have their results taken from
the original paper and can be resumed to acceptable results. We
compared our methods with these methods inTable 3 to label the
best score in bold.

TABLE 2 | Statistics of the experimental datasets.

Dataset
# Entities

| E |

# Relations

| R |

# Edges | T | Mean

in-degree

Median

in-degree
Training Validation Testing Total

WN18RR 40,943 11 86,835 3,034 3,134 93,003 2.12 1

FB15k-237 14,541 237 272,115 17,535 20,466 310,116 18.71 8

TABLE 3 | Experimental results on FB15K-237 and WN18RR test sets.

Models
FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE Bordes et al., 2013 29.4 – – 46.5 22.6 – – 50.1

ConvE Dettmers et al., 2018 32.5 23.7 35.6 50.1 43 40 44 52

ConvKB Nguyen et al., 2018 39.6 – – 51.7 24.8 – – 52.5

Conv-TransE Shang et al., 2019 33 24 37 51 46 43 47 52

InteractE Vashishth et al., 2020 35.4 26.3 – 53.5 46.3 43.0 – 52.8

SACN Shang et al., 2019 35 26 39 54 47 43 48 54

KBGAT Nathani et al., 2019 20.5 11.4 22.8 39.6 40.4 32.2 44.8 55.4

Our encoder model (+ ConvTransE) 35.5 26.3 39.1 53.8 45.9 42.8 46.7 52.5

Our encoder model (+ ConvTransR) 33.9 24.4 37.6 52.8 46.6 43.4 47.9 52.9

Our encoder model (+ InteractE) 35.5 26.2 39.2 54.1 46.7 43.5 48.1 52.9

All values are in percentage and the best scores of our model is in bold regardless of the second box (SACN and KBGAT).
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FIGURE 2 | The convergence study of InteractE and our encoder model with InteractE as decoder (represented by “+InteractE”) and with Conv-TransE as decoder

(represented by “+Conv-TransE”) in FB15k-237 using the validation set. Here we only report the results of loss, MRR and Hit@10.

TABLE 4 | Ablation experimental results on WN18RR test sets.

Models
WN18RR

MRR H@1 H@3 H@10

KBGAT encoder (+ KBGAT decoder) 40.4 32.2 44.8 55.4

Our encoder model (+ KBGAT decoder) 41.1 (+0.7) 33.1 (+0.9) 45.5 (+0.7) 55.9 (+0.5)

Our encoder model (+ ConvTransR) 46.6 43.4 47.9 52.9

−gate 46.1 (−0.5) 43.0 (−0.4) 47.3 (−0.6) 52.4 (−0.5)

−rel 46.2 (−0.4) 43.0 (−0.4) 47.5 (−0.4) 52.7 (−0.2)

−gate − rel 46.1 (−0.5) 42.9 (−0.5) 47.3 (−0.6) 52.2 (−0.7)

Since our method is inspired by methods SACN (Shang et al.,
2019) and KBGAT (Nathani et al., 2019) that we present their
results in the second box. The results of the SACN model are
obtained from its corresponding paper, but this model requires
a large GPU to train and these results can not be reproduced with
the authors’ code. KBGAT has test data leakage in its original
implementation that the results in its paper are not credible. In
our experiment results table, we fix the problem and show the
correct results of the model.

We first compare our model use Conv-TransE as the decoder
with the Conv-TransE model. Our model performs better than
Conv-TransE on both datasets. Especially in the FB15K-237
dataset, our model improves upon Conv-TransE’s MRR by a
margin of 7.6%, Hits@1 of 9.6%, Hits@3 of 5.7%, and Hits@10 of
5.5%. In the WN18RR dataset, our model improves upon Conv-
TransE’s Hits@10 by a margin of 1.0%. Under the same accuracy,
our model achieves the same performance on the other metrics
compared with Conv-TransE.

Second, we compare our model use InteractE as the decoder
with the InteractE model to better prove the effectiveness of our
encoder. As shown in the Table 3, compared with the original
model, most metrics of InteractE have been improved after our
encoder model is added. For example, our model with InteractE
improves upon InteractE’sMRR by amargin of 0.3% andHits@10
of 1.1% in the FB15K-237 dataset.

Third, we compare our model with the other baseline models.
In the FB15K-237 dataset, our model with Conv-TransE as
decoder achieves the best performance inHit@3 andHit@10, and
tied for the best in Hit@1. In the WN18RR dataset, our model

with Conv-TransR as decoder achieves the best performance
in all metrics. Meanwhile, these two models both can achieve
the top three effects on the other datasets. In conclusion, our
model can achieve the best results on both datasets FB15K-237
and WN18RR.

Figure 2 shows the convergence of the three models:
InteractE, our encoder model with InteractE as the decoder,
and Conv-TransE as the decoder. Because Conv-TransE uses
a different loss function, we do not put its loss result for
comparison. We can see that our models (the red line and green
line) are always better than InteractE (the blue line) under MRR
and Hit@10. And our models converge faster than InteractE.

4.5. Ablation Experiment
In order to prove the validity of our model, we do some
ablation experiments onWN18RR dataset to show the influences
of different parts of our model. The results of the ablation
experiments are shown in Table 4. Compared with the KBGAT
model, our improved encoder with the KBGAT decoder
(convKB) can achieve better performance as shown in the first
box. After changing the decoder methods, our method performs
more superior as in the second box. Combined with Table 3, the
decoders we use are both better than the ConvKB which is used
by KBGAT, which shows the effectiveness of our decoder chosen.

To better show the influences of our innovation in KBGAT,
we also test the influence of different parts in our encoder.
We separately remove the gate mechanism, the interaction
mechanism, and both of them to see the impact on results.
The results are shown in the second box of Table 4. The gate

Frontiers in Neurorobotics | www.frontiersin.org 6 May 2021 | Volume 15 | Article 674428111

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Song et al. Knowledge Graph Completion

mechanism and the interaction mechanism both perform a
similar influence on the encoder model. And the best result can
be achieved by combining them in the KBGAT model as the
encoder model.

For these results, we conclude that our encoder-decoder
model can better the expressive performance of entity
embeddings and relation embeddings, and can achieve
competitive success in modeling knowledge graphs. Since
the hyper-parameters of our model for each dataset are set to
the same as the existing methods and no parameter tuning
is performed to obtain the best performance, we believe that
the performance of our model can still be improved with
parameter tuning.

5. CONCLUSION

In this paper, we propose a novel approach for knowledge
graph relation prediction, which can be used in intent
understanding in human-robot interaction and in robots’
knowledge graph completion. Our methods can work well in
large-scale knowledge graphs and can be extended to learn
embeddings for various applications of robots, such as dialog
generation and question answering.

In the future, we intend to extend our method to work as
an end-to-end work and consider the attribute information and
temporal information into our model to improve the ability to
handle complex knowledge graphs. And we also intend to test

our work in a real robot’s “brain” to test the ability of our model
in actual work.
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In recent years, it is a trend to integrate the ideas in game theory into the research

of multi-robot system. In this paper, a team-competition model is proposed to solve

a dynamic multi-robot task allocation problem. The allocation problem asks how to

assign tasks to robots such that the most suitable robot is selected to execute the most

appropriate task, which arises in many real-life applications. To be specific, we study

multi-round team competitions between two teams, where each team selects one of

its players simultaneously in each round and each player can play at most once, which

defines an extensive-form game with perfect recall. We also study a common variant

where one team always selects its player before the other team in each round. Regarding

the robots as the players in the first team and the tasks as the players in the second

team, the sub-game perfect strategy of the first team computed via solving the team

competition gives us a solution for allocating the tasks to the robots—it specifies how

to select the robot (according to some probability distribution if the two teams move

simultaneously) to execute the upcoming task in each round, based on the results of the

matches in the previous rounds. Throughout this paper, many properties of the sub-game

perfect equilibria of the team competition game are proved. We first show that uniformly

random strategy is a sub-game perfect equilibrium strategy for both teams when there

are no redundant players. Secondly, a team can safely abandon its weak players if it has

redundant players and the strength of players is transitive. We then focus on the more

interesting case where there are redundant players and the strength of players is not

transitive. In this case, we obtain several counterintuitive results. For example, a player

might help improve the payoff of its team, even if it is dominated by the entire other

team. We also study the extent to which the dominated players can increase the payoff.

Very similar results hold for the aforementioned variant where the two teams take actions

in turn.

Keywords: team competition, task allocation, multi-robot system, dominated players, sub-game perfect

equilibrium
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1. INTRODUCTION

In the past two decades, intelligent multi-robot systems are more
and more widely used in industrial manufacturing, agriculture,
hospital, fire rescue, cargo handling, entertainment, and many
other places. The efficiency of the systems is crucial to their
applications and it highly depends on the collaboration between
robots. One of the primary problem that occurs to the designer of
multi-robot systems is how to assign tasks to robots such that the
most suitable robot is selected to execute the most appropriate
task, which is usually referred to as the task allocation problem
and which arises in all kinds of real-life applications.

It is well-known that game theory lays the mathematical
foundation for the research of collaboration in multi-robot
system, and it is a trend to integrate the ideas and theoretical
results in game theory into the research of multi-robot system.
For example, market-based approaches to task allocation are
proposed in Botelho and Alami (1999), Gerkey and Mataric
(2002), Wang et al. (2004), Dias et al. (2006), Zlot and Stentz
(2006), and Wu and Shang (2020). In this paper, a team-
competition model, which is of interest by itself in game theory,
is proposed to solve a Dynamic Multi-Robot Task Allocation
(DMRTA) problem.

In our DMRTA problem, there are m robots and n pre-
described tasks, and the tasks are coming in T rounds, where T ≤
min{m, n}. One task will come in every round, and it would like to
be assigned to one robot immediately. Be aware that when T < n,
only T tasks, but not all the n tasks, will be assigned (as there are
only T rounds), and this means the set of tasks to be assigned
are not fully determined at the beginning in our problem. For
simplicity, assume that each pre-described task comes at most
once (this constraint can easily be removed by replicate the
task) and that each robot can take at most one task (as well,
this constraint can be removed by replicate the robot). Different
robots have different performances in solving different tasks, and
to describe this diversity we make the following assumption: if
the robot with index r (i.e., robot r) is to execute the task with
index s (i.e., task s), there is a probability pr,s that robot r succeeds
to complete its job—and a probability 1− pr,s that it fails to do its
job. The m × n probability matrix pr,s | 1 ≤ r ≤ m, 1 ≤ s ≤ n is
prior information—it is given to us before the allocation mission
starts. Roughly, our objective is that the number of successful
robots is as high as possible—in other words, the number of tasks
that have been solved successfully is as high as possible. Details of
the DMRTA problem will be elaborated right after we introduce
our team competition model in what follows.1

We investigate a type of team competitions where there are
two teams, each with a number of players, competing against
each other. The competition proceeds in a fixed number of
rounds. In each round, each team simultaneously sends out
a player to a match (We also consider a variant where one
team, say Team 2 without loss of generality, always takes actions

1This team competition model was introduced in the conference version of this

paper, which was accepted by the 2016 International Conference on Autonomous

Agents and Multiagent Systems (Jin et al., 2016) [Yet the conference version did

not discuss (1) its application in DMRTA and (2) the react-in-turn variant].

before the other team in each round. This variant will mainly be
discussed in section 3). The result of the match is then revealed
according to a probabilistic strength matrix between players.
The selected players cannot compete in the subsequent rounds.
The competition proceeds to the next round if there is one; or
terminated otherwise. The format of the competition and the
strength matrix are common knowledge to both teams. The final
payoff of each team is the number of matches it wins. To make
it more general, we also investigate another commonly seen form
where each team gets payoff 1 if it wins strictly more matches
than the other team, 0 if ties, and −1 if it wins less matches.
Clearly, this competition between two teams defines a standard
extensive-form game, or more precisely, a stacked matrix game
(Lanctot et al., 2014). We are interested in the sub-game perfect
equilibria of the game, i.e., a strategy profile that specifies for each
team which player to play at each round. A formal description of
our team competition model is given in the next section.

Our team competition model is first motivated by the Chinese
horse race story described in Tang et al. (2009) (see also
Wikipedia, 2015b). It represents one of the most popular forms
of horse races where each team ranks its horses to match
sequentially. Moreover, the Swaythling Cup, as known as World
Table Tennis Championships, follows the same model described
in our paper: each team adaptively selects a ranking of three
players and brings two additional substitutes. In fact, this has
been one of the most popular formats of team competition in
table tennis. In addition, the card game Goofspeil (Lanctot et al.,
2014; Wikipedia, 2015a) also falls into nearly the same model
as described in our paper. Last but not least, many military
engagements (like fighting between two groups of drones) may
also have this type of structure.

Obviously, we can regard the m robots as the players in the
first team and the n tasks as the players in the second team, and
the probability matrix pr,s | 1 ≤ r ≤ m, 1 ≤ s ≤ n can serve
as the probabilistic strength matrix in the team competition.
Then, the (sub-game perfect) strategy profile of the first team
we obtained via solving the team competition gives us a solution
for allocating the tasks to the robots—it specifies how to select
the robot (randomly according to some probability distribution
given by the strategy) to execute the upcoming task in each
round, based on the results of thematches in the previous rounds.

At this place, it is necessary to point out a feature of our
DMRTA problem inherited from the team competition model:
As the two teams shall send out their players simultaneously in
each round, in our DMRTA problem we shall select the robot
before the task in the corresponding round is revealed to us.
Nevertheless, if we would like to handle the case where we can
select the robot after the task in the corresponding round is
revealed, we only need to deal with the variant where Team 2
reacts before Team 1. Gladly, we will see in section 3 that many
results for this non-simultaneous variant are aligned with the
results for the original simultaneous case (In particular, most of
the results are the same. See Table 1 for a comparison). We first
discuss the simultaneous case because this case is typical and
more difficult.

Despite the aforementioned application in the DMRTA
problem, our team competition model is interesting by itself in
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TABLE 1 | Summarize of the results for simultaneous case and non-simultaneous case.

Simultaneous case Non-simultaneous case

n = m = T

The value of the game equals the average utility (of

Team 1) across all matchings. Moreover, the

uniformly random strategy is a SPE strategy

(Theorem 1).

The value equals the maximal utility that Team 1

can gain over all matchings. The pure strategy

ensuring the best matching for Team 1 is a SPE

strategy (Theorem 5).

Transitive strength

If Am ≤ . . . ≤ A1, AT+1, . . . ,Am can be removed. If

Bn ≤ . . . ≤ B1, BT+1, . . . ,Bn can be removed

(Theorem 2). Exactly the same result holds (Theorem 6).

For non-transitive strength: When other players

are weaker than the first T players in a team, can

the weaker players be removed?

For U = UE , the answer is YES as long as n = T.

For other utility functions U (e.g., UM ), the answer is

NO (Theorem 3).

For Team 1, the answer is YES as long as n = T

(this holds for any U). However, the answer is NO

for Team 2 (Theorem 7).

For non-transitive strength: How many dominated

players shall we recruit to achieve maximum

value?







T − 1 for U = UE ;

⌊T/2⌋ for U = UM.
(Theorem 4) Exactly the same result holds (Theorem 8).

game theory. We are particularly interested in a situation where
at least one team has more players than the number of rounds in
the competition. As a result, some players will never have chance
to participate in any match. A main agenda of this paper is to
understand to what extent can the presence of additional players
affect the payoff of both teams. In particular, we ask the following
questions: (1) Can the presence of additional weakest teammate, a
teammate whose row in the strength matrix is strictly dominated
by any other row, help increase the payoff of the team? (2) Can
the presence of additional dominated teammate, a teammate that
always loses to any player in the opponent team, help increase the
payoff of the team? It might appear intuitive that the answers to
both questions are negative. For the first question, it seems that
the weakest teammate will never have a chance to participate in
any match since one can always replace him by a better teammate
and increase payoff. For the second question, it might seemmore
obvious since the dominated teammate will lose anymatches thus
must be replaced by a better teammate. To our surprise, we find
that the answers to both questions are affirmative.

Our contributions to the team competition model are
summarized in the following. We first show that uniformly
random strategy is a sub-game perfect equilibrium strategy for
both teams when there are no redundant players (i.e., the number
of players in each team equals the number of rounds). The
uniformly random strategy always picks the unmatched player
uniformly at random in each round. Then, we consider the
general case where at least one team has redundant players. We
first study the case where the strength of players is transitive (see
Definition 2), which means that the players can be rearranged
in a queue so that each of them is weaker than its successor.
We prove that, a team can safely abandon its weak players if it
has redundant players and the strength of players is transitive.
Therefore, this case reduces to the case where there are no
redundant players. Finally, we focus on the case where there are
redundant players and the strength of players is not transitive.
In this case, we obtain a number of counterintuitive results.
Most importantly, a player might help improve its team’s payoff,

even if it is dominated by the entire opposing team. We give a
necessary condition for a dominated player to be useful, which
alternatively suggest that a particular utility function (named
UE below) is more reasonable in team competition. Our results
imply that a team can increase its utility by recruiting additional
dominated players. We further show that, the optimal number
of dominated players to recruit can scale with the number of
rounds. More precisely, this number can be 2(T) if there are T
rounds. Last but not least, we study the limitation of dominated
players. These results bring insights into playing and designing
general team competitions.

Team competition has been studied for years. Tang et al.
(2009, 2010) study a team competition setting where the number
of players equals the number of rounds and both teams
must determine the ordering of players upfront, before the
competition starts. They put forward competition rules that
are truthful while satisfy other desirable properties. The main
difference between their work and ours is that we do not
design new mechanisms but study game theoretical properties
of commonly used competition rules. The differences also lie
in that the strategies are adaptive in our setting and each
team can have more players than the rounds. The strategic
aspects of team competition have also been under scrutiny
of computer scientists due to a recent Olympic scandal in
badminton, where several teams deliberately throw matches
in order to avoid a strong opponent in the next round.
The phenomenon has been discussed in depth in a series of
algorithmic game theory blogposts by Kleinberg (2012) and
Procaccia (2013). A parallel literature has been concerned with
the strategic aspect of tournament seeding (Hwang, 1982; Rosen,
1986; Knuth, 1987; Schwenk, 2000; Altman et al., 2009; Vu
et al., 2009). It is well-known that there are cases where by
strategic seeding and structuring, any player can be winner
in knockout tournament. Various game theoretical questions,
such as player-optimal seeding, complexity of manipulation and
incentives to guarantee strategyproofness, have been investigated
in this literature.
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The study of various kinds of multi-robot task allocation
problem using game theory dates back to early 2000’s. Botelho
and Alami (1999), Gerkey and Mataric (2002), Wang et al.
(2004), Dias et al. (2006), Zlot and Stentz (2006), and Wu and
Shang (2020) make use of the theory of market economies to
determine how to allow robots to negotiate on responsibilities in
task allocation. In particular, they discuss how to manage bids
(robots communicate to bid for tasks according to their expected
contribution to the tasks), how to handle bids in parallel and how
to handle multiple tasks at once, and so on. Usually, heuristic
assignments are made by assigning every task to the robot that
can execute it with the highest utility.

2. MATERIALS AND METHODS

Team 1 has a set of m players {A1, . . . ,Am}. Team 2 has a set of
n players {B1, . . . ,Bn}. A competition between team 1 and 2 is a
tuple G(T, P,U) where,

1. T is the number of rounds.
2. In each round, each team simultaneously selects one of its

players that have not been selected yet.
3. P is a probabilistic matrix that describes the relative strength

between players, with Pi,j denoting the probability thatAi wins
against Bj and 1− Pi,j the probability for Ai to lose to Bj.

4. U :[T] → R denotes the utility function of each team. The
utility function only depends on the number of rounds t each
team wins, i.e., it can be represented by U(t). This also implies
that both teams have the same utility functions.

5. The parameters n,m,T, P,U are common knowledge to both
teams, and historical plays are perfectly observable. It is
assured that Pi,j ∈ [0, 1] for all i, j and that m ≥ T and n ≥ T
so that there are enough players to complete the competition.

The following utility functions UE and UM are two commonly
seen ones:

UE(t) = t − T/2. UM(t) =







1 t > T/2
0 t = T/2
−1 t < T/2

. (1)

In other words, UE describes a competition where a team’s utility
is exactly the number of rounds it wins (minus some constant
T/2); while UM(t) describes a competition where a team’s utility
is whether it wins more than its opponent. Notice that, when
U = UE or U = UM , we have U(t) + U(T − t) = 0, hence
both utility functions define a zero-sum game. In this paper we
always assume that U(T)+ U(T − t) = 0.

2.1. Example: Simultaneous Card Games
The models above formulates the standard team competitions
as commonly seen under the context of sports, but shall not be
limited to sports. The following is an instance of card games that
fall into our framework. Suppose that Alice and Bob each has a
deck of three cards. In each deck one card is in suit ♥ and two
cards are in suit ♠. They play three rounds; in each round Alice
and Bob select one card and they reveal the cards simultaneously.
If they select cards in same suit (both in ♥ or both in ♠), Alice

wins this round; otherwise Bob wins this round. The one who
wins two or three rounds gets utility 1; the other one wins zero or
one rounds and it gets utility−1.

This game can be conveniently represented in ourmodel using
the following parameters:

m = n = T = 3, P =





1 0 0
0 1 1
0 1 1



 ,U = UM .

For this game, applying our first theorem, a (sub-game perfect)
equilibrium strategy for both players exists, and it is to just to play
uniformly random. It follows that Alice and Bob have utilities
−1/3 and+1/3.

2.2. Extensive-Form Game With Perfect
Recall
Any particular instance G(T, P,U) of our team competition is an
extensive-form game. In this game, a history can be described by
a tuple (k, a, b, c) where:

• k indicates the number of rounds that has been played;
• a is a k-dimensional vector which stores the players selected by

Team 1 in the past k rounds;
• b stores the players selected by Team 2;
• c is a k-dimensional 0–1 vector which stores the results in the

first k rounds, where 0 corresponds to a lose by Team 1 and 1
corresponds to a win by Team 1.

A behavioral strategy in this game is a mapping from every
history to a probability distribution over actions. That is, at
each history, the strategy of each team is to pick the next
player according to a probability distribution. By Kuhn’ Theorem
(Kuhn, 1953; Osborne and Rubinstein, 1994), there is a sub-game
perfect equilibrium (SPE), in which both teams use behavioral
strategies. According to the SPE, a value V(H) can be defined for
each history H, which indicates the expected utility that Team 1
would get at the end of the game if it is now at history H. Note
that each history is the root of a sub-game and so the value of a
history is the same as the value of the sub-game.

2.3. Computing SPE
By backward induction, one can easily get

LEMMA 1. Two histories have the same value if they have selected
the same players to play (but may be in different orders) and
Team 1 won the same number of rounds.

Based on the above lemma, the histories can be partitioned to
equivalence classes, such that each equivalence class corresponds
to a four-tuple (k,X,Y ,w): k is a number in [T] which denotes
the number of past rounds; X is a subset of A of size k; Y is a
subset of B of size k; X,Y denote the players that have played; w
is a number in [k] which denotes how many rounds Team 1 has
won so far.

In the following, we show in detail how to compute the value
of each equivalence class via dynamic programming.

Let V[k,X,Y ,w] denote the expected utility of Team 1 when
the history belongs to class (k,X,Y ,w).
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Clearly, we have V[k,X,Y ,w] = U(w) when k = T.
When k < T, computing V[k,X,Y ,w] reduces to computing

the value of the matrix game M(k,X,Y ,w) where the matrix
M(k,X,Y ,w) is defined as follows:

It consists of m − k rows and n − k columns. Each
row corresponds to a player in A − X, and each column
corresponds to a player in B − Y . The cell corresponding to
Ai,Bj equals to the expect utility of Team 1 when Team 1 and
Team 2, respectively make action Ai and Bj on the current state
(k,X,Y ,w), which equals

V[k+ 1,X + {Ai},Y + {Bj},w+ 1] · Pi,j+

V[k+ 1,X + {Ai},Y + {Bj},w] · (1− Pi,j).

The reason behind the above definition of M(k,X,Y ,w) is as
follows. If the two teams select Ai,Bj in this round, Team 1 has
probability Pi,j to win this round and hence the history becomes
(k+ 1,X+{Ai},Y +{Bj},w+ 1); besides, Team 1 has probability
(1 − Pi,j) to lose this round and hence the history becomes
(k+ 1,X + {Ai},Y + {Bj},w).

We can compute the value of all equivalent classes of histories
according to the above induction. In fact, by computing these
values, we also find a sub-game perfect behavior strategy for
both players. To see this, suppose that (k,X,Y ,w) is a non-
terminal equivalent class of history. On solving the matrix game
M[k,X,Y ,w] we find the strategies for all the histories in the
history class (k,X,Y ,w).

2.4. Uniformly Random Strategies
The next theorem states that, if there are no redundant players,
uniformly random is an equilibrium strategy for the teams. It
holds for arbitrary utility function including UE and UM .

DEFINITION 1. The uniformly random strategy is a behavioral
strategy, in which a team always selects from the remaining players
uniformly at random in each round.

THEOREM 1. When both teams have no redundant players (i.e.,
n = m = T), then it is a SPE when both teams apply the uniformly
random strategy.2

We apply the following lemma for proving Theorem 1.

LEMMA 2. Suppose that there are no redundant players. Let S

denote the set of all perfect matchings between {A1, . . . ,AT} and
{B1, . . . ,BT}. If Team 1 or Team 2 applies the uniformly random
strategy, then the probability that the competition ends with any
fixed matching in S is exactly 1/(T!).

PROOF OF LEMMA 2: We only prove that the statement
holds when Team 1 applies the uniformly random strategy.
Symmetrically, the statement holds when Team 2 applies the
uniformly random strategy.

2Note that there could be other SPEs. For example, when players in Team 1 always

lose, any strategies for the two teams form a SPE.

First, suppose that Team 1 applies the uniformly random
strategy while Team 2 applies an arbitrary pure strategy.3 In this
case, we claim that the probability that the competition ends
with any fixed matching is exactly 1/(T!). This can be proved by
induction on the number of remaining τ rounds. In the stage with
τ remaining rounds, let M be any fixed matching between the τ

unused players in Team 1 and the τ unused players in Team 2. In
the next round, it occurs with probability 1/τ that some edge e of
M is chosen, because Team 1 will assign the player Bi selected
by Team 2 to a random player among the unused players in
Team 1. If this occurs, denote by M′ = M − {e} the matching
obtained by deleting e from M, which is chosen with probability
1/((τ − 1)!) by induction hypothesis. Thus, M is chosen with
probability 1/(τ !).

Finally, since a mixed strategy is a linear combination of the
pure strategies, our job is done.

PROOF OF THEOREM 1: Let S be the same set as in Lemma 2.
As there are no redundant players, a game will always end with
some matching in S. For any matching s ∈ S, let Zs denote the
event that the game ends with this matching. If Team 1 applies
the uniformly random strategy, it has expected utility

∑

s∈S

E(the utility of Team 1 | Zs)/ Pr
Team 1 uniformly random

(Zs)

=
∑

s∈S

E(the utility of Team 1 | Zs)/(T!)

The second equation is according to Lemma 2, which states
PrTeam 1 uniformly random(Zs) = 1/(T!).

Similarly, if Team 2 applies the uniformly random strategy, it
will get

∑

s∈S

E(the utility of Team 2 | Zs)/(T!)

=
∑

s∈S

−E(the utility of Team 1 | Zs)/(T!)

Therefore, it is a Nash Equilibrium if both teams apply the
uniformly random strategy. The argument can be similarly
extended to show that it is SPE.

In the remainder of this paper, we focus on the case where there
are redundant players.

CLAIM 1. If there are redundant players, then the uniformly
random strategy may not be a SPE strategy (For any team, a SPE
strategy for this team requires that it is optimal in each subgame).

This claim is obvious for a team with redundant players; but less
obvious for a team without redundant players. Here we give an
example in which the uniformly random strategy is not a SPE
strategy for a team with no redundant players.

3A pure strategy does NOT mean it determines the entire order of players at the

beginning. Instead, it means that at each possible history, some unmatched player

will be selected deterministically in the upcoming round. In this way, any mixed

strategy is a linear combination of the pure strategies.
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EXAMPLE 1. Let m = T = 2, n = 3, U = UE = UM (UE = UM

when T = 2), P =

(

0 0 1
1 1 0

)

.

According to method given in subsection 2.3, we can compute

that M(0,∅,∅, 0) =

(

−1 −1 1
0 0 −1

)

. Therefore, in the SPE,

the behavior for Team 1 on the initial state should be select A1

with probability 1/3 and select A2 with probability 2/3. This
guarantees (expected) utility−1/3. If to the contrary that Team 1
adopts the uniformly random strategy, it should select A1,A2

with probability 1/2, which would only guarantees (expected)
utility−1/2.

2.5. Transitive Strength
DEFINITION 2. Player Ai is weaker than its teammate Aj,
denoted by Ai ≤ Aj, if for any opponent Bk, the probability of
“Ai wins against Bk” is less than or equal to the probability of
“Aj wins against Bk.” Similar for Team 2. Team 1 {A1, . . . ,Am}
are transitive if there is a permutation π of 1, . . . ,m, such that
Aπ(1) ≤ . . . ≤ Aπ(m). Similar for Team 2.

DEFINITION 3. A utility function U is monotone if U(t + 1) ≥
U(t) for t ∈ 0, . . . T − 1.

THEOREM 2. Assume monotone utility function. Then, (1) If
Am ≤ . . . ≤ A1, Team 1 has a SPE strategy which only selects,
in each round, one of the players in A1, . . . ,AT . (2) Symmetrically,
if Bn ≤ . . . ≤ B1, Team 2 has a SPE strategy which only selects, in
each round, one of the players in B1, . . . ,BT .

By combining Theorem 1 and Theorem 2, we can immediately
get the following

COROLLARY 1. When players in each team are transitive and
U is monotone, there is a simple SPE strategy for both teams as
follows. Assume that Am ≤ . . . ≤ A1 and Bn ≤ . . . ≤ B1.
Then, the SPE strategy for Team 1 is to select an unused player
in A1, . . . ,AT uniformly random in each round; a SPE strategy
for Team 2 is to select an unused player in B1, . . . ,BT uniformly
random in each round.

Theorem 2 and Corollary 1 have many applications. In the real
word, the utility function is monotone, and in many situations,
such as in board or sport games, it is indeed the case that the
players are transitive.

We prove Theorem 2 (1) in the next; the claim
(2) is symmetric.

We first provide two basic terminologies which are necessary
for understanding the subsequent proof. Suppose that Am ≤
. . . ≤ A1 and that A′ is a subset of A and A′ = (Ai[1], . . .Ai[|A′|]),
where i[1] < . . . < i[|A′|]. Then, for any 0 ≤ C ≤ |A′|, the top C
players of A′ refers to {Ai[1], . . . ,Ai[C]}, and the rank C player of
A′ refers to Ai[C].

LEMMA 3. Suppose that U() is monotone.

1. Consider a pair of history classes H1 = (k,X1,Y ,w1) and
H2 = (k,X2,Y ,w2). We claim that, if the top T − k players
of A−X1 and the top T− k players of A−X2 are the same and
w1 ≥ w2, then V(H1) ≥ V(H2).

2. Let H = (k,X,Y ,w) be a non-terminal history class. Let Au be
the rank T − k player in A− X and Av be any player in A− X
that is not a top T − k player. Then, the row in M(k,X,Y ,w)
that corresponds to Au dominates the row that corresponds to
Av. As a result, there is an equilibrium strategy at history H (for
Team 1) which only selects the top T − k unmatched players
to play.

PROOF: Weprove it by backward induction.When k = T, Claim
1 holds according to the monotone property of U(); and Claim 2
naturally holds since it is a terminal history.

Now, we argue that, for 0 ≤ k < T, if the lemma holds for
k+ 1, it also holds for k.

First, we prove Claim 2. Let us compare the two rows
corresponding to Au and Av. Let us fix a column, say the one
corresponding to Br . The cell corresponding to (Au,Br) is

M[u, r] =V(k+ 1,X + {Au},Y + {Br},w+ 1)
︸ ︷︷ ︸

a

·Pu,r

+ V(k+ 1,X + {Au},Y + {Br},w)
︸ ︷︷ ︸

b

·(1− Pu,r)

The cell corresponding to (Av,Br) is

M[v, r] =V(k+ 1,X + {Av},Y + {Br},w+ 1)
︸ ︷︷ ︸

a′

·Pv,r

+ V(k+ 1,X + {Av},Y + {Br},w)
︸ ︷︷ ︸

b′

·(1− Pv,r)

Notice that the top T − k − 1 players in A − X − {Au} and
A − X − {Av} are the same. So, from the induction hypothesis,
a′ ≥ a ≥ a′ ≥ b ≥ b′ ≥ b, i.e., a = a′ ≥ b = b′.

Since that Au is the top T − k player while Av is not, player Av

is weaker than Au, which means that Pu,r ≥ Pv,r .
Combining the above arguments, we get that

M[u, r]−M[v, r] = (a− b) · (Pu,r − Pv,r) ≥ 0.

Therefore,M[u, r] ≥ M[v, r], and thus Claim 2 holds.
Then, we prove Claim 1. Let M1 denote M(k,X1,Y ,w1) and

M2 denoteM(k,X2,Y ,w2) for short. Suppose thatAu is a topT−k
player in A− X1 (which is also a top T − k player in A− X2) and
that Br is any player in B− Y .

We know

M1[u, r] =V(k+ 1,X1 + {Au},Y + {Br},w1 + 1) · Pu,r+

V(k+ 1,X1 + {Au},Y + {Br},w1) · (1− Pu,r)

M2[u, r] =V(k+ 1,X2 + {Au},Y + {Br},w2 + 1) · Pu,r+

V(k+ 1,X2 + {Au},Y + {Br},w2) · (1− Pu,r)

By induction hypothesis, it follows thatM1[u, r] ≥ M2[u, r].
Now, let σ denote the equilibrium strategy at H2 that only

selects the top T − k unmatched players to play (Such a strategy
exists according to Claim 2). Note that σ is also a legal strategy at
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H1. Let µ(H1, σ ) and µ(H2, σ ), respectively denote the utility of
Team 1 when it applies strategy σ on H1 and H2. Then,

µ(H1, σ ) = min
r :Br∈Y

∑

u :Au∈A−X1

σ (Au) ·M1(u, r),

µ(H2, σ ) = min
r :Br∈Y

∑

u :Au∈A−X2

σ (Au) ·M2(u, r).

From the inequality M1(u, r) ≥ M2(u, r), we get µ(H1, σ ) ≥
µ(H2, σ ). Moreover, we also have V(H1) ≥ µ(H1, σ ) and
V(H2) = µ(H2, σ ) (the equality is since that σ is the equilibrium
strategy on H2). Together, V(H1) ≥ V(H2).

Finally, Claim 2 of Lemma 3 implies Theorem 2 (1).

2.6. Non-transitive Strength
DEFINITION 4. A player is said to be weakest, if it is weaker than
all its teammates; and is said to be dominated, if it has 0 probability
to win against any player in the opponent team.

Assume that the utility function is monotone. In the previous
section, we show that if there are redundant players in Team 1
and if the strength of players of Team 1 are transitive, then
there is a SPE strategy for Team 1 which does not select the
weakest player. In other words, Team 1 can abandon the weakest
one without decreasing its utility. In this section, we show that
the transitivity is essential for this to hold. We start by the
following claim.

CLAIM 2. Suppose that Team 1 has redundant players, and some
player Au in Team 1 is weaker than all its teammate, and yet the
players in Team 1 are not transitive. Then, Team 1 might decrease
its utility by abandoning Au.

This is somewhat counterintuitive; it might be intuitive that
the weakest player has no chance to participate in any match
since one can always replace him by a better teammate and
increase utility.

Perhaps even more surprisingly, we have the following claim:

CLAIM 3. Suppose that Team 1 has redundant players, and some
player Au in Team 1 is dominated by the other team (i.e., has
no chance to win at all), and the players in Team 1 are not
transitive. Then, Team 1 might decrease its utility by abandoning
the dominated player Au.

The above claims confirm that, the weakest player or even
dominated player could help its team.

We would now like to state the organization of the remainder
of the section. In subsection 2.6.1, we give examples that verify
Claim 3, and we briefly explain the reason why we need
dominated players. In subsection 2.6.2, we identify a special case
where the weakest player can be abandoned without changing
the utility. In subsection 2.6.3, we consider the optimal number
of dominated players that we may need to achieve maximum
utility. In subsection 2.6.4, we discuss the limitations of the
dominated players.

2.6.1. Dominated Teammates Can Be Helpful
LetV(T, P,U) denote the value of gameG(T, P,U). Let P∗ denote
the sub-matrix of P by deleting the last row (thus G(T, P∗,U) is
the game where Team 1 has abandoned Am).

EXAMPLE 2. Let n = m = 3,T = 2, U = UE (recall that

UE(t) = t − T/2). P =





1 0 0
0 1 0
0 0 0



.

In Example 2, there are redundant players and the players in each
team are not transitive. Besides, A3 is a dominated player. We
argue the follows: (I) If A3 is abandoned, Team 2 can win both
rounds and hence V(T, P∗,U) = −1. (II) If A3 is in the team,
Team 2 cannot win both rounds with certainty and that means
V(T, P,U) > −1. Combining (I) and (II), we get V(T, P,U) >

V(T, P∗,U), which implies Claim 3.

PROOF OF (I): If A3 is abandoned, Team 2 can play as follows.
It chooses B3 to win the first round. If B3 defeated A1, it chooses
B1 in the second round to beat A2; otherwise, it chooses B2 in the
second round to beat A1.

PROOF OF (II): If Team 2 wants to win with certainty in
both rounds, it must select B3 to play the first round.
However, if Team 1 selects the dominated player A3 to play
the first round, Team 2 cannot win the second round with
certainty anymore.

From this example, we see why a dominated player might be
helpful for its team. The reason behind is similar to the horse race
story described at the beginning of Tang et al. (2010).

In the next, we give one more example. It gives, to our best
knowledge, the largest decrease of the value of the game by
abandoning a dominated player.

EXAMPLE 3. Let m = 4, n = T = 3. Let U = UE or U = UM .

Let P =









1 0 0
0 1 0
0 0 1
0 0 0









.

According the method shown in subsection 2.3, we can compute
that4

V(T, P,UM) = 0;V(T, P∗,UM) = −2/3;

V(T, P,UE) = −1/2;V(T, P∗,UE) = −1/2.

So, for the game G(T, P,UM), we will lose utility as much as 2/3 if
we abandon the dominated player.

In the following we explicitly state a SPE strategy for Team 1.
In the first round it selects the dominated player A4. Without loss
of generality, assume that it loses to B1. In the second round,
it selects A2,A3 uniformly random. So, there is 1/2 chance that
Team 1 wins this round. Furthermore, if Team 1 wins the second
round (say A2 beats B2) it can also wins the next (let A3 beat B3)

4The value of G(T,P∗,UM) and G(T,P∗,UM) can be simply computed according

to Theorem 1 since there are no redundant players in these games.
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and thus gets utility 1. By this strategy, there is 1/2 chance to get
utility 1 and 1/2 chance to get utility −1, so the expected utility
is 0.

However, for the game (T, P,UE), we do not lose any utility
by abandoning the dominated player. This is not a coincidence.
In fact, this example belongs to a special case where the
weakest player can indeed be abandoned. We show this in the
next theorem.

2.6.2. A Case Where the Weakest Player Can Be

Abandoned
We have seen that the weakest redundant player is useless when
the players are transitive (as proved in Theorem 2) but might
be useful when the players are not transitive (as shown in the
previous subsection). So, the next question is:

QUESTION 1. If the players are not transitive, in what cases can
the weakest player be abandoned?

We get the following result.

THEOREM 3. Suppose that Team 1 has redundant players but
Team 2 does not. So, m > T and n = T. Moreover, suppose
that each player in AT+1, . . . ,Am is weaker than each player in
A1, . . . ,AT . Let U = UE. Then, Team 1 can abandon all the
players in AT+1, . . . ,Am without losing its utility.

REMARK 1. According to Example 3, the claim in Theorem 3 fails
when U = UM . As a comparison, by recruiting extra dominated
players, a team can gain more utility when U = UM , but cannot
when U = UE. This may suggest that UE is more reasonable than
UM in team competition.

The condition m > n = T is important. If both team got
redundant players, the claim in Theorem 3 fails.

We need the following lemma in proving Theorem 3. It is a
technical statement of probability theory.

LEMMA 4. Assume that n = T and Ai,Bj are any pair of players
from the two teams. Let Qσ

i,j denote the probability that Ai meets Bj
in the game when Team 2 applies the uniformly random strategy
and Team 1 applies some strategy σ . Then, Qσ

i,j ≤ 1/T.

PROOF: We prove it by induction on n. The case n = 1 is trivial.
Suppose that the lemma holds for n − 1, and we now argue
that it also holds for n. Assume that by applying σ , Team 1 has
probability p to selects Ai in the first round. Then, the probability
that Ai meats Bj in the game is at most p 1

n + (1− p)(1− 1
n ) ·

1
n−1

(the term 1
n−1 is due to the induction hypothesis). Therefore,

Qσ
i,j ≤ p 1

n + (1− p) 1n = 1
n = 1

T .

PROOF OF THEOREM 3: We call AT+1, . . . ,Am the weak players.
When the weak players are abandoned, there are T remaining
players for each team. By Theorem 1, the uniformly random
strategy is a SPE strategy for Team 2. To prove Theorem 3, the
key idea is to show that even if Team 1 is allowed to select the
weak player, it will not gain more utility if Team 2 keep using
the uniformly random strategy. On the other hand, it is obvious
that Team 2 can’t gain more utility (when Team 1 is allowed

to select more players). Therefore, the value of game does not
change when the weak players are allowed to play.

First, we compute the utility U∗ of Team 1 when this team
abandons its weak players. As an application of Lemma 4, for
any pair of two players Ai,Bj (1 ≤ i, j ≤ T), they meet with
a probability no more than 1/T. It follows that this probability
equals 1/T, as the sum of all these T · T probabilities equals
T. Because Ai meets Bj with probability 1

T and Ai wins Bj
with probability Pi,j when they meet, it follows that the number

of rounds t that Team 1 wins equals
∑

j=1..T

∑

i=1..T
1
T Pi,j in

expectation. Therefore,

U∗ = (
∑

j=1..T

∑

i=1..T

1

T
Pi,j)−

T

2
.

We now state a formula of the utility Uσ of Team 1 when it
does not abandon its weak players and it applies some strategy
σ against the uniformly random strategy of Team 2. Let Qσ (i, j)
be defined as Lemma 4. Similar as above, the number of rounds
t that Team 1 wins equals

∑

j=1..T

∑

i=1..m Qσ
i,jPi,j in expectation.

Therefore,

Uσ = (
∑

j=1..T

∑

i=1..m

Qσ
i,jPi,j)−

T

2

We only need to prove that Uσ ≤ U∗, and it reduces to showing
that for any fixed j in 1..T,

∑

i=1..m

Pi,jQ
σ
i,j ≤

∑

i=1..T

1

T
Pi,j (2)

To prove (2), consider the following optimization problem:































Variables: x = (x1, . . . , xm)
Parameters: c = (c1, . . . , cm)
Guarantee: ci ≥ ci′ (∀(i, i

′) such that i ≤ T < i′)

Constraint 1: 0 ≤ xi ≤
1
T (∀1 ≤ i ≤ m)

Constraint 2:
∑m

i=1 xi = 1
Objective: max f (x) =

∑m
i=1 cixi

Clearly, f (x) is maximized at x∗, where x∗i =

{

1
T i ≤ T
0 i > T

.

Noticing the following facts, we see that inequality (2) is just an
application of the above problem.

Qσ
i,j ≤

1
T (Applying Lemma 4)

∑m
i=1 Q

σ
i,j = 1 (According to the definition)

∀i ≤ T < i′, Pi,j ≥ Pi′,j (Since Ai′ is weaker than Ai)

2.6.3. Optimal Number of Dominated Players
Here we study the power of dominated players in another
direction. As we see in subsection 2.6.1, by abandoning a
redundant dominated player, Team 1 may decrease its utility.
In other words, Team 1 may increase its utility by recruiting
more dominated players. Note that the utility of Team 1 will
not decrease by recruiting more dominated players. However, it
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is unclear that the utility will strictly increase by doing so. For
example, recruiting T dominated players is the same as recruiting
T − 1 players — in any case, if any team uses T dominated
players in a competition, it gets the lowest utility! So, a natural
question is:

QUESTION 2. In order to maximize the expected utility of Team 1
(i.e., the value of the game), how many dominated players should
we recruit at least? Is it possible that we need as many as2(T) such
players?

The theorem below answers this question.

THEOREM 4.

1. Suppose U = UE. Recruiting T − 1 dominated players can be
better than T − 2, but recruiting T dominated players is the
same as T − 1. So, to achieve optimal utility, one may require
T − 1 dominated players. This number is tight.

2. Suppose U = UM . Recruiting ⌊T/2⌋ dominated players can be
better than ⌊T/2⌋ − 1, but recruiting ⌊T/2⌋ + 1 dominated
players cannot be better than ⌊T/2⌋. So, to achieve optimal
utility, one may require ⌊T/2⌋ dominated players, and this
number is tight as well.

One direction in these claims are rather trivial; we should never
useT dominated players whenU = UE or ⌊T/2⌋+1 players when
U = UM . To prove the other direction, we need to construct
some examples in which recruiting T − 1 (resp. ⌊T/2⌋) could
be better than T − 2 (resp. ⌊T/2⌋ − 1) when U = UE (resp.
U = UM). To construct such examples, an intuition is that we
should make the current players in Team 1 as weak as possible.
Our construction is as follows:

EXAMPLE 4. T ≥ 1,m = T, n = T + (T − 1),U = UE, Pi,j =
{

1 i = j
0 i 6= j

.

EXAMPLE 5. T ≥ 1,m = T, n = T + ⌊T/2⌋,U = UM , Pi,j =
{

1 i = j
0 i 6= j

.

The following claims together prove Theorem 4.

C1. In Example 4, if Team 1 only recruit T − 2 dominated
players, it can win no rounds and thus can get utility−T/2.

C2. In Example 4, if Team 1 recruit T − 1 dominated players, it
can win a positive number of rounds in expected and thus
gain utility more than−T/2.

C3. In Example 5, if Team 1 only recruit ⌊T/2⌋ − 1 dominated
players, it will always lose at least ⌊T/2⌋+1 rounds and thus
can only get utility−1.

C4. In Example 5, if Team 1 recruit ⌊T/2⌋ dominated players, it
can sometimes win at least ⌈T/2⌉ rounds and thus can gain
utility more than−1.

PROOF OF C1: In this case Team 2 can win all the rounds by
playing as follows: in the first T − 1 rounds, it selects the players
BT+1, . . . ,B2T−1 to play; and they all win. Then, since Team 1
only hasT−2 dominated players, at least one player inA1, . . . ,AT

has already played, denote it by Ai. In the last round, Team 2
select Bi and it definitely wins.

PROOF OF C3: In this case, by applying a strategy similar to C1,
Team 2 can win all the first ⌊T/2⌋ + 1 rounds.5

PROOF OF C2: For convenience, we denote the T−1 dominated
players by AT+1, . . . ,A2T−1. We argue that, if Team 1 applies the
uniform random strategy (that is, select one unused player in
A1, . . . ,A2T−1 uniformly random in each round), then, Team 2
has no strategy to win all rounds all the time. Suppose to the
contrary that Team 2 can do it, it must select a player from
BT+1 . . . ,B2T−1 to play in the first round; otherwise there is a
chance that it loses the first round. Note that, since Team 1 apply
the uniform random strategy, there is a chance that Team 1 select
a dominated player in the first round. If this happens, Team 2
must again select a player from BT+1 . . . ,B2T−1 to play in the
second round. Once again, Team 1 might still select a dominated
player in the second round. By induction, there is chance that
Team 1 select all the dominated players in the first T − 1
rounds while Team 2 consumes all its T − 1 invincible players
in BT+1 . . . ,B2T−1. Then, Team 2 cannot win with certainty in
the last round.

The claim C4 is the most non-trivial. To prove it we first state the
following lemma.

DEFINITION 5. For integers a, b,C such that

C ≥ 1, 0 ≤ a ≤ ⌈C/2⌉, 0 ≤ b ≤ ⌊C/2⌋, (3)

let ŴC
a,b

denote the following instance of team competition:

m = n = (C − a)+ (⌊C/2⌋ − b),

T = C − a− b, Pi,j =

{

1 i = j ≤ C − a
0 otherwise

.

The utility is as follows6: if Team 1 wins at least ⌈C/2⌉− a rounds,
it gets utility 1 and Team 2 gets −1; otherwise, Team 1 gets utility
−1 and Team 2 gets 1.

LEMMA 5. For integers a, b,C satisfying condition (3), Team 1 can
win utility larger than−1 in the game ŴC

a,b
.

PROOF: Consider three cases.

Case 1 a = ⌈C/2⌉. In this case, Team 1 always get utility 1, and
so ŴC

a,b
has value 1, which is larger than−1.

Case 2 b = ⌊C/2⌋. The game ŴC
a,b

can be restated as follows.

• m = n = C − a, T = ⌈C/2⌉ − a.
Player Ai can only defeat Bi for i in 1..m.
Team 1 gets utility 1 if it wins all the rounds; and −1
otherwise.

We argue that the uniformly random strategy guarantees
Team 1 an expected utility larger than −1. Equivalently
speaking, by applying the uniformly random strategy, Team 1

5In this case Team 2 can actually win all the T rounds.
6Here the utility functions for two teams are not identical. However, since it is still

a zero-sum game, SPE strategies for the teams exists as before. The requirement

that the utility functions are identical is not necessary in our model.
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has a chance to win all the rounds. The proof is as follows. In
the first round, there is a positive chance that Ai meets Bi for
some i. Then, in the second round, same thing happens with
a positive chance. This could happen for each round. When
these coincidences happen, Team 1 wins all the rounds.

Case 3 a < ⌈C/2⌉ and b < ⌊C/2⌋.
We use induction. Assume that ŴC

a+1,b
and ŴC

a,b+1
both have

value larger than−1, we argue that so does ŴC
a,b
. The following

facts follow from the definition of ŴC
a,b
.

Fact 1. If the two teams select Ai and Bi for i ≤ C − a in
the first round, it becomes a sub-game that is equivalent to
ŴC
a+1,b

.
Fact 2. If the two teams select Ai and Bi for i > C − a in

the first round, it becomes a sub-game that is equivalent to
ŴC
a,b+1

.

Combining them with the induction hypothesis, we get

Fact 3. If the two teams select players under the same index, it
becomes a sub-game whose value is larger than−1.

The value of ŴC
a,b

is equal to the value of the matrix game M,
whereM(i, j) indicate the value of the sub-game when Team 1
select Ai and Team 2 select Bj in the first round. Fact 3 implies
that all the utilities on the diagonal of matrixM are larger than
−1. So, by using uniformly random strategy over its players,
Team 1 can win a utility larger than −1. Therefore, ŴC

a,b
has

value larger than−1.

PROOF OF C4: Let G denote the revised game of Example 5, in
which Team 1 has recruited ⌊T/2⌋ dominated players. We could
observe that game G is almost the same as ŴT

0,0. To be more

specific, when T is odd, G is exactly ŴT
0,0; when T is even, the

parametersm, n,T, P in G and ŴT
0,0 are the same; but the utility U

is slightly different.
Suppose that the value of G is−1. Then, Team 2 has a strategy

which guarantees a expected utility−1. It means that Team 2 has
a strategy which can always win ⌊T2 ⌋ + 1 or more rounds. When

Team 2 applies this strategy, Team 1 can never win ⌈T2 ⌉ rounds.

It further implies that the value of ŴT
0,0 is also −1. However, this

contradicts with Lemma 5. Therefore, the value of G must be
larger than−1.

2.6.4. Limitations of the Dominated Players
Although the presences of dominated players can affect the value
of the game, we conjecture that it will not be too much. A
question is then,

QUESTION 3. By abandoning a dominated player, how much
value might be lost in the worst case? In other words, how much
extra (expected) utility can a team gain by recruiting dominated
players?

According to our simulations, we have the following conjecture
that we cannot prove at the moment.

CONJECTURE 1. If U = UM , we can gain at most 2/3 extra
(expected) utility (in other words, the value of the game increases by

at most 2/3) by recruiting arbitrary number of dominated players.
If U = UE, we can gain at most 1 extra (expected) utility by
recruiting arbitrary number of dominated players.

2.6.5. Throwing a Match and Discarding a Player
Recall the card game betweenAlice and Bob in subsection 2.1.We
shall point out that, recruiting a dominated player in this context
can be thought of applying a cheating action, which is to throw
a match by not placing any card in that round. In the mentioned
card game, if Alice and Bob are not allowed to throw a match,
Alice can get expected utility −1/3; if Alice is allowed to throw a
match, she can get expected utility 1/3. This can be computed
according to the method shown in subsection 2.3. Therefore,
throwing a match is profitable if permitted.

It may seem unnatural to let a team throw a match like this.
The following alternative cheating action called discarding, which
may seem more natural, is still profitable for the team.

Discarding is defined as follows. Alice (Team 1) is allowed
to discard one of its cards and agrees to lose in that round;
however the discarded card is never revealed to Bob (Team 2).
By discarding, Alice do not gain one more card at hand, unlike
the case of throwing a match.

However, if discarding is allowed, it may still be beneficial. We
give an instance in which onemay gain extra utility by discarding.
Formally, we have the following result.

CLAIM 4. For every integer K > 0, there exists a game G such that
VK(G) > VK−1(G), where VK(G) denotes the value of game G in
which Team 1 is allowed to discard at most K players.

EXAMPLE 6. m = K+1, n = 2K+1,T = K+1,U = UE, Pi,j =
{

1 i = j
0 i 6= j

.

The following claims together imply Claim 4.

C5 In Example 6, if Team 1 is only allowed to discard K − 1
times, it cannot win in any round.

C6 In Example 6, if Team 1 is allowed to discard K times, it can
win some rounds in expectation.

PROOF OF C5: Suppose that Team 1 is only allowed to use
discarding K − 1 times. Observer that, for any i in 1...m, after Ai

has played and revealed by Team 1, player Bi becomes invincible
that he would win with certainty if he plays in the next rounds.
Notice that there are K invincible players at beginning (which are
BK+2 . . .B2K+1) and Team 1 has only K − 1 chances to hide a
player by discarding. So, in any round, Team 2 has an invincible
player at hand. Therefore, Team 2 can win all the rounds.

PROOF OF C6: Consider the following strategy for Team 1. First,
Team 1 randomly chooses an order of the players (say, each order
with possibility 1/m!), and then randomly chooses exactly K of
its players so that these players will be discarded while playing.
We argue that this strategy guarantees Team 1 to win positive
rounds in expectation. It reduces to proving that no strategy of
Team 2 can win all the rounds against this strategy. Suppose that
Team 2 can do so. In the first round, it must select an invincible
player (i.e., a player in BT+1 . . .BT+K). Otherwise, there is a
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chance that it loses this round. And then, we know that there
is a chance Team 1 discards in the first round. If this happens,
Team 2 must also select an invincible player in the second round.
Again, it is possible that Team 1 still discards in this round.
Continuing this process we see that, it could happen that, in
the first K rounds Team 2 use all its K invincible players, while
Team 1 uses discarding K times. Then, Team 2 could lose in the
K + 1-th round.

3. MATERIALS AND METHODS (FOR A
VARIANT): TAKE ACTIONS IN TURN

We now turn to the aforementioned non-simultaneous variant
where Team 2 sends its player before Team 1 in each round. As
mentioned in section 1, our techniques for solving the original
simultaneous variant easily extends to the non-simultaneous
variant, and most of our results for the non-simultaneous variant
are aligned with the results stated in the previous section; see the
small difference in Table 1.

First, consider the easiest case where n = m = T. Recall that
S denotes the set of all perfect matchings between the T players
in Team 1 and the T players in Team 2 (defined in Lemma 2). A
key observation is that no matter what Team 2 does, Team 1 can
make sure that the matching result between the two teams equals
the one in S that benefits Team 1 the most (for a given utility
function U). Thus a simple SPE can be described easily based
on this particular matching (However, we do not declare that
there is always an efficient algorithm for computing this perfect
matching. For example, we are not aware of any good algorithms
for computing it whenU = UM . Yet there are efficient algorithms
for U = UE).

THEOREM 5. When both teams have no redundant players (i.e.,
n = m = T), then it is a SPE when Team 1 applies the strategy so
that the matching result is the same as the one that benefits Team 1
the most.

For the case of transitive strength, we have the following result
which aligns with Theorem 2.

THEOREM 6. Assume monotone utility function. Then, (1) If
Am ≤ . . . ≤ A1, Team 1 has a SPE strategy which only selects, in
each round, one of the players in A1, . . . ,AT . (2) If Bn ≤ . . . ≤ B1,
Team 2 has a SPE strategy which only selects, in each round, one of
the players in B1, . . . ,BT . (Be aware that (1) is not symmetric to (2)
for the non-simultaneous variant as Team 2 is no longer symmetric
to Team 1.)

Recall the history classes below Lemma 1 and the terminologies
introduced above Lemma 3. In addition, whenH = (k,X,Y ,w) is
a history class (as in the simultaneous case), letH(σ ) (σ ∈ B−Y)
denote the history class (in the non-simultaneous case) indicating
that Team 2 have sent player σ after arriving at H.

Proving Theorem 6 (1) reduces to proving the following
lemma which is similar to Lemma 3.

LEMMA 6. 1. Consider a pair of history classes H1 =
(k,X1,Y ,w1) and H2 = (k,X2,Y ,w2), where the top

T − k players of A − X1 and the top T − k players of A − X2

are the same. If w1 ≥ w2, we have V(H1) ≥ V(H2).
2. Consider a non-terminal history class H(σ ) where H =

(k,X,Y ,w) and k < T. Let Au be the rank T−k player in A−X,
and let Av be any player in A−X that is not a top T− k player.
Then, for Team 1, selecting Au is at least as good as selecting Av

to play against σ at H(σ ).

Our proof of Lemma 6 is analogous to our proof of Lemma 3.

PROOF: We prove it by backward induction. For k = T, claim 1
holds obviously and claim 2 holds naturally. Assume the lemma
holds for k+ 1, we now prove that it also holds for k.

Proof of claim 1. Clearly, V(H1) = minσ∈B−Y V(H1(σ )) and
V(H2) = minσ∈B−Y V(H2(σ )). Therefore, it reduces to proving
that V(H1(σ )) ≥ V(H2(σ )) for any σ that belongs to B− Y .

Applying claim 2 on H2(σ ), we obtain that there exists a top
T − k player Au in A− X2 such that

V(H2(σ )) =V
(

(k+ 1,X2 + {Au},Y + {σ },w1 + 1)
)

︸ ︷︷ ︸

a

·Pu,σ

+ V
(

(k+ 1,X2 + {Au},Y + {σ },w1)
)

︸ ︷︷ ︸

b

·(1− Pu,σ )

As the top T−k players in A−X1,A−X2 are the same, Au is also
a player in A− X1, and thus

V(H1(σ )) ≥V
(

(k+ 1,X1 + {Au},Y + {σ },w1 + 1)
)

︸ ︷︷ ︸

a′

·Pu,σ

+ V
(

(k+ 1,X1 + {Au},Y + {σ },w1)
)

︸ ︷︷ ︸

b′

·(1− Pu,σ )

By the induction hypothesis, a = a′ and b = b′. Altogether,
V(H1(σ )) ≥ V(H2(σ )).

Proof of Claim 2. The utilities of selecting Au and Av at the
history class H(σ ) are respectively

V = V
(

(k+ 1,X + {Au},Y + {σ },w+ 1)
)

︸ ︷︷ ︸

a

·Pu,σ

+ V
(

(k+ 1,X + {Au},Y + {σ },w)
)

︸ ︷︷ ︸

b

·(1− Pu,σ )

V ′ = V
(

(k+ 1,X + {Av},Y + {σ },w+ 1)
)

︸ ︷︷ ︸

a′

·Pv,σ

+ V
(

(k+ 1,X + {Av},Y + {σ },w)
)

︸ ︷︷ ︸

b′

·(1− Pv,σ )

Notice that a = a′ and b = b′ and a ≥ b according to the
induction hypothesis. Therefore,

V−V ′ = a(Pu,σ−Pv,σ )+b(Pv,σ−Pu,σ ) = (a−b)(Pu,σ−Pv,σ ) ≥ 0.

Briefly, (for the current round) it is by the definition that the
player Au with rank T − k performs better than any player Av
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with rank bigger than T − k, and (for the remaining rounds) the
set of the top T − (k + 1) players are the same regardless of who
we choose between Au and Av. Thus, Au dominates Av.

Theorem 6 (2) can be proved by a similar argument; we only
state a key lemma and omit its proof.

LEMMA 7. 1. Consider a pair of history classes H1 =
(k,X,Y1,w1) and H2 = (k,X,Y2,w2), where the top
T − k players of B− Y1 and the top T − k players of B− Y2 are
the same. If w1 ≥ w2, we have V(H1) ≥ V(H2).

2. Consider a non-terminal history class H = (k,X,Y ,w) (where
k < T). Let Bu be the rank T − k player in B − Y, and let Bv
be any player in B − Y that is not a top T − k player. Then,
for Team 2, selecting Bu is at least as good as selecting Bv in the
subsequent (k+ 1)-th round.

We now move on to the more challenging case where the
strength of the players is not transitive. For this case, our first
theorem is analogous to Theorem 3 in that it demonstrates
a special condition under which we can abandon some
weak players.

THEOREM 7. Assume the utility function is monotone.

1. Suppose m > T and each player in AT+1, . . . ,Am is weaker
than each player in A1, . . . ,AT . If n = T, Team 1 can
abandon all the players in AT+1, . . . ,Am without losing its
utility. However, if n > T, abandoning these weaker players
may decrease the utility of Team 1.

2. Suppose n > T and each player in BT+1, . . . ,Bn is weaker
than each player in B1, . . . ,BT . No matter m equals T or not,
abandoning the players BT+1, . . . ,Bm may decrease the utility
of Team 2.

According to Theorem 7, when a team has redundant weaker
players and its opponent team has no redundant players, whether
the weaker players can be abandoned depends on which team
takes action first.

PROOF OF THEOREM 7: 1. First, assume n = T. Among all
possible matching results between the m players in Team 1 and
the T players of Team 2 that give Team 1 the highest (expected)
utility, there exists a matching result s that matches A1, . . . ,AT to
the T players of Team 2 (because AT+1, . . . ,Am are weaker than
A1, . . . ,AT). Team 1 can gain the same utility (implied by s) even
if AT+1, . . . ,Am are abandoned.

If n > T and U ∈ {UE,Um}, abandoning the weaker players
may decrease the utility of Team 1.We prove this by constructing
an example in the following (this is basically Example 2 yet U is
more general).

EXAMPLE 7. m = n = 3,T = 2. U ∈ {UE,UM}. P =




1 0 0
0 1 0
0 0 0



.

For this example, Team 1 can win exactly 1 round and will lose
all rounds if A3 is abandoned.

2. We give two examples to prove this claim (one for m = T
and the other form > T).

EXAMPLE 8. m = 2, n = 3,T = 2. U ∈ {UE,UM}. P =
(

0 1 1
1 0 1

)

.

In this example, Team 2 can win exactly 1 round and will lose all
rounds if B3 is abandoned.

EXAMPLE 9. m = 4, n = 5,T = 3. U = UE. P =








1 0 0 1 1
0 1 0 1 1
0 0 1 1 1
0 0 0 1 1









.

In this example, Team 2 can win exactly 1 round and will lose all
rounds if B4,B5 are abandoned.

We now study the optimal number of dominated players. The
following theorem is a counterpart of Theorem 4. It says that for
U = UE we need T − 1 in the worst case, and for U = UM we
need ⌊T/2⌋ in the worst case. Interestingly, the same bounds hold
for Team 1 and Team 2 and for the simultaneous case.

THEOREM 8. The following hold claims for Team 1 and
Team 2.

1. Suppose U = UE. Recruiting T − 1 dominated players can be
better than T − 2, but recruiting T dominated players is the
same as T − 1. So, to achieve optimal utility, one may require
T − 1 dominated players. This number is tight.

2. Suppose U = UM . Recruiting ⌊T/2⌋ dominated players can be
better than ⌊T/2⌋ − 1, but recruiting ⌊T/2⌋ + 1 dominated
players cannot be better than ⌊T/2⌋. So, to achieve optimal
utility, one may require ⌊T/2⌋ dominated players, and this
number is tight as well.

PROOF: The proof of the two claims on Team 1 is easy and is
very similar to the proof of Theorem 4. Recall Example 4 and 5 in
the proof of Theorem 4. It can be observed that for Example 4
(where U = UE), Team 1 can win nothing when it recruits
T − 2 dominated players, and can win exactly one round when
it recruits T − 1 dominated players. This means that it needs
T − 1 dominated players to achieve the optimum utility (and
more than T − 1 dominated players is obviously not needed).
For Example 5 (where U = UM), Team 1 can win nothing when
it recruits ⌊T/2⌋ − 1 dominated players, and can win as many
as T − ⌊T/2⌋ rounds when it recruits ⌊T/2⌋ dominated players.
This means that it needs ⌊T/2⌋ dominated players to achieve
the optimum utility (and more than ⌊T/2⌋ dominated players is
clearly not needed).

The proof of the claims on Team 2 is also easy but have to use
different examples (Note that these examples are not symmetric
to the examples given in Example 4 and 5).

EXAMPLE 10. T ≥ 1,m = T + T − 2, n = T,U = UE, Pi,j =
{

1 i = j
0 i 6= j

.
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EXAMPLE 11. T ≥ 1,m = T+⌊T/2⌋−1, n = T,U = UM , Pi,j =
{

1 i = j
0 i 6= j

.

For Example 10 (where U = UE), Team 2 can win nothing
when it recruits T − 2 dominated players, and can win exactly
one round when it recruits T − 1 dominated players. Therefore
it needs T − 1 dominated players to achieve the optimum
utility (and more than T − 1 dominated players is obviously
not needed).

For Example 11 (where U = UM), Team 2 can win nothing
when it recruits ⌊T/2⌋ − 1 dominated players, and can win as
many as T − ⌊T/2⌋ rounds when it recruits ⌊T/2⌋ dominated
players. Therefore it needs ⌊T/2⌋ dominated players to achieve
the optimum utility (and more than ⌊T/2⌋ is clearly not needed).

4. DISCUSSION

In this paper, we study a novel game-theoretic model of situations
where two teams make sequential decisions about which of a set
of exhaustible actions to select in each round. These actions can
be interpreted as team members, cards in a hand, etc. This model
has applications in solving the DMRTA problem we introduced
at the beginning of this paper. We present a simple SPE for the
case where there are no redundant players or the strength of
players is transitive. For the other case, we exhibit evidence that
the redundant dominated players cannot be easily discounted
in their contribution to team performance, which may appear
counterintuitive. We investigate the power of the dominated
players in three directions: (1) When do they influence the
value of the competition? (2) If additional dominated players

can be recruited, how many should be required to attain the
maximum utility? (3) How much utility might be lost at most
if we abandon them? We obtain several non-trivial results that
fully or partially answer these questions. We believe that our
results are of particular interests to both designers and players
of team competitions.
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With the rapid popularity of agent technology, a public opinion early warning agent has

attracted wide attention. Furthermore, a deep learning model can make the agent more

automatic and efficient. Therefore, for the agency of a public opinion early warning task,

the deep learningmodel is very suitable for completing tasks such as popularity prediction

or emergency outbreak. In this context, improving the ability to automatically analyze and

predict the virality of information cascades is one of the tasks that deep learning model

approaches address. However, most of the existing studies sought to address this task

by analyzing cascade underlying network structure. Recent studies proposed cascade

virality prediction for agnostic-networks (without network structure), but did not consider

the fusion of more effective features. In this paper, we propose an innovative cascade

virus prediction model named CasWarn. It can be quickly deployed in intelligent agents to

effectively predict the virality of public opinion information for different industries. Inspired

by the agnostic-network model, this model extracts the key features (independent of the

underlying network structure) of an information cascade, including dissemination scale,

emotional polarity ratio, and semantic evolution. We use two improved neural network

frameworks to embed these features, and then apply the classification task to predict the

cascade virality. We conduct comprehensive experiments on two large social network

datasets. Furthermore, the experimental results prove that CasWarn can make timely

and effective cascade virality predictions and verify that each feature model of CasWarn

is beneficial to improve performance.

Keywords: agent system, deep learning, cascade virality prediction, feature fusion, classification

1. INTRODUCTION

Currently, the number of agents is increasing rapidly (ichocki et al., 2011), and smart agents
are more efficient. With the advancement of artificial intelligence technology, more and more
intelligent agents are being used in the industry. A deep learning model provides a potential
solution for artificial intelligence, it is widely used in various agents fields (Westerlund, 2020). With
the rapid development of the Internet, the growth rate of information in online social networks has
become an evaluation indicator of public opinion. Some information in the network will become
the source of viral dissemination, and this information will spread like a storm. Different industries
need to monitor their own network public opinion, especially for government, enterprises, and
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media industries. They pay attention to the impact of sudden
public opinion on themselves. In other words, they want to know
what information related to their own will become a viral cascade
as early as possible (Tatar et al., 2014). Information cascade
virality means that some informationmay be widely spread in the
network in a short time. It may be organized, planned behavior,
or the extension of controversial social emergencies (Kefato et al.,
2018).

However, the cost of manually studying and judging
information cascade virality is enormous. Automatically
distinguishing early warnings through agents becomes a
way to reduce labor costs in different industries. Designing
efficient neural network algorithms to meet agents’ needs to
predict information cascade virality becomes the focus of
research. Supposing this agent can use the features of significant
differences and accurately warn when information becomes
viral in the early stage. In that case, it plays a crucial role in
the decision-making (blocking or guiding the dissemination) of
the follow-up information dissemination. With the continuous
progress of machine learning models, many advanced models
apply information cascade scale prediction. These works use
the network structure features of information dissemination
and network nodes attribute features to establish a strong
correlation, for example, the number of followers/followers of
participating users, user connections and community structure,
and user activity, etc. They mainly use machine learning models
to predict the magnitude of the information forwarded at the
future moment (Li et al., 2017, 2018; Wang et al., 2018). The
emergence of deep learning technology improves manual feature
selection in early work and obtains more high-dimensional
space representation capabilities. However, in the field of cascade
virality prediction, there are still two types of problems in
previous works.

Firstly, a social network is usually scattered. Most of the
previous virality predictions are based on many underlying social
relationships (Subbian et al., 2017). It causes most models to
rely on the underlying network features and uses users’ network
relationships to predict the cascade virality. However, it may be
difficult to obtain such detailed network information in most
cases. Besides, for different industries that only pay attention
to their own information, it is not significant to obtain global
social network relation data, such as the following relationship
between users. It is not well-supported in terms of data volume
and algorithm efficiency.

Secondly, network relational data are dynamic and complex.
When applying deep learning models to solve network
relational data, it usually requires more complicated information
aggregation work (like GNN Zhou et al., 2018) to embed network
nodes’ representation, which requires a large number of model
parameters. Simultaneously, in an information cascade process,
new nodes will also cause new node embedding problems
after joining the network, which brings about the problem of
continuous training of new parameter models (Qiu et al., 2018).
However, for many practical purposes, the timeliness of the
virality of the information is more critical. If we can predict the
virality earlier rather than later, such predictions are useful.

Some studies expect similar results with less feature
information. They ignore the underlying network structure
features (Zhao et al., 2015). Subbian et al. (2017) propose
an agnostic network-based method to reduce the network
structure information in the information cascade process. Kefato
et al. (2018) apply deep learning models to agnostic-network
virus prediction, use the number of forwarding in the time
sequence process as the feature, and use the CNN model to
predict whether the information will explode. However, the
construction model lacks critical features strongly related to the
information cascade.

To solve these problems, we propose a cascade virality
prediction model based on deep learning, named CasWarn.
First, we segment an information cascade with time slices
and extract the cascaded features in different time slices,
including dissemination scale, emotional polarity ratio, semantic
evolution features, and use advanced models to vectorize these
features. Next, we design a module with two neural network
modules to aggregate these features. The first module uses
a convolutional neural network to aggregate the relations
between different features and uses asynchronous patterns to
learn the potential relations of different time-series features.
The second uses a variant of a recurrent neural network to
learn the semantic evolution relations in the cascade process.
Then, we use the gradient descent algorithm to train the
classification model. The main contributions of our work are
as follows:

(1) We design an intelligent agent model to predict
the cascade virality of social network information, which
can be applied to public opinion monitoring for different
industries. We only need to monitor the dissemination content
and time of information related to different industries and
do not need to care about the user relationship involved
in the dissemination. Using a relatively small amount of
information, it can quickly and effectively predict social network
information virality.

(2) We propose an improved deep learning model, CasWarn,
for cascade virality prediction based on time series. CasWarn
extracts the key features of information dissemination from
the agnostic-network and fuses these features through a deep
learning model, which makes it more suitable for cascade virality
prediction tasks.

(3) We conduct extensive experiments on two public
datasets, and our results prove that CasWarn outperforms the
latest benchmarks in many agnostic-network cascade virality
prediction tasks. Simultaneously, compared with the state-of-
the-art knowable-network model, we have achieved comparable
performance under the premise of a less information parameter.

The rest of this paper is structured as follows. In section
2, we briefly review related works. Section 3 gives the formal
definition of an information cascade event and information
cascade sequence and defines the problem of cascade virality
prediction, while section 4 details the proposed CasWarn model.
In section 5, we discuss the experimental evaluation of CasWarn
against previous state-of-the-art baselines. We conclude our
work in section 6.
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2. RELATED WORK

With the continuous advancement of artificial intelligence
technology, more and more deep learning models are deployed
on agents to solve problems in different fields, such as visual
recognition (Ruiz-del-Solar et al., 2018; Gu et al., 2021), behavior
supervision (Quan et al., 2018; Ganesan et al., 2021; Jia et al.,
2021), and artificial assistance (Xiao et al., 2020), etc. Deep
learning is defined as a scientific field involving complex
functions (for example, non-linear dynamics) to train a multi-
layer neural network, embedding the data from the original,
high-dimensional, multimodal state to the understandable state
of the agent system (Goodfellow et al., 2016). Due to the
flexibility and adaptability of neural networks, it is very suitable
for agent systems (Ciresan et al., 2010), especially at the most
active research frontier, to help researchers study agent systems’
perception capabilities (Marsland, 2009).

In the work of social network public opinion supervision,
intelligent auxiliary agents can help different industries perceive
their own network evaluations, and prompt the industry to
follow-up or block the information. Many models based on deep
learning have emerged in this field, and most of the work is to
predict the scale of the information cascade through the model
(Tsur and Rappoport, 2012; Jenders et al., 2013; Cheng et al.,
2014; Weng et al., 2014; Gao et al., 2015; Zhao et al., 2015; Li
et al., 2017). They use large-scale cascade indicators for intelligent
early warning, and the main focus is predicted performance
indicators and timeliness indicators (early detection). In order to
obtain the macro-level predictive value of information cascade
in social networks in time, many works decided to use machine
learning models and divide the scale of cascade into two types
of tasks: One uses regression, like (Kefato et al., 2018; Zhu
et al., 2018), to predict the potential scale of an information
cascade, and the other uses the classification models, such as
Zhao et al. (2015), to define the form of dissemination as viral
or non-viral. Based on the machine learning models, most of the
work focuses on the following information cascade features: (a)
network topology (e.g., user relationship, first-order relationship
network structure of user, etc.); (b) network node features (e.g.,
user features, discussion content, information sources, or key
early dissemination participants, etc.); (c) temporal features (e.g.,
forwarding interval, etc.).

In an information cascade influencing factors, some studies
suggest that user features play a crucial role in the information
cascade. One of the most common features is the number of
followers. As the representative of user influence, it means that
key users affect the speed and timing of the future dissemination
scale (Zaman et al., 2013). Those who have many followers,
such as celebrities and news industries, are more likely to
have a larger number of cascading effects than ordinary users
because their information is more evident in the network (Suh
et al., 2010; Bakshy et al., 2011; Jenders et al., 2013). However,
a large-scale information cascade is not only generated by
influential users, but also closely related to the content of the
information, and it makes sense to study large-scale cascades
generated by ordinary users rather than celebrities (Dow et al.,
2013). Some studies confirm that the text semantic contained

in the information cascade process is considered one of the
internal driving forces and key factors leading to cascade virality
(Dong et al., 2015, 2016). Moreover, semantic features have
better performance (with higher content complexity) in the
cascade of observation topics (such as hashtags). For example,
breaking news, rumors/fake news, hotspots, controversies/special
topics, etc., attract more attention than normal content (Yano
and Smith, 2010; Yan et al., 2011). Simultaneously, a lot of
work confirms that in the process of an information cascade,
user emotions involved in dissemination are important factors
affecting information dissemination (Stieglitz and Dang-Xuan,
2012; Chen et al., 2016; Yuan et al., 2016). Pfitzner et al. (2012)
introduce the concept of emotional divergence, which combines
the positive and negative points of emotion in a tweet, and can
also predict the probability of a tweet post being forwarded. In
general, tweets with high emotional diversity are more likely
to be retweeted, which affects the spread of the information.
Jenders et al. (2013) on the relationship between emotional
divergence and retweet probability can also confirm the research
results of Pfitzner et al. (2012), and the sentiment analysis task is
significantly improved through deep learning models. Tian et al.
(2020) introduce sentiment knowledge to enhance pre-training
(SKEP), learning a unified emotional expression and achieving
better performance. Some preliminary and reliable attempts to
explore network agnostic methods proved that useful and timely
predictions could be made only based on the information learned
from the cascade itself without any other network structure
information (Subbian et al., 2017).

As mentioned, recent models in this field apply a neural
network framework like CNN (Kefato et al., 2018), RNN (Li
et al., 2017), and GNN (Chen et al., 2019), etc. By using the
above information cascade features, the neural network model’s
excellent feature extraction ability is efficient for agent systems.
Moreover, the semantic information in vector space can be
better obtained by embedding the semantic information in the
representation, such as word2vec (Goldberg and Levy, 2014).

For the reasons above, we use the classification method of
agnostic-network. The advantage is that it is relatively "cheap"
to obtain information dissemination for different industries
(no need for global relationship structure or to construct a
complex relationship network). We use the temporal features
of an information cascade and process relatively easy-to-obtain
text semantics, emotions, and dissemination scale, which are
widely regarded as key features. Furthermore, we construct a
timing-based sequence based on these features and propose
a neural network feature fusion method, which obtained
performance results comparable to expensive operations (such as
the knowable-network models).

3. MODEL FRAMEWORK

3.1. Problem Formulation
The problem of predicting the scale of each cascaded forwarding
depends on the definition of virality. The most common and
useful definition is its size (Cheng et al., 2014). For most practical
purposes, it is much more difficult to predict the exact size
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than to know whether the cascade will be larger than a certain
threshold. The threshold can be set as a relative measure or an
absolute measure. Relative measure is used when the cascade size
is unknown and relative to the population observed in the latest
data (if user engagement with the social network is changing).
In our task, we need to detect new information according to
the needs of different industries, so we use the method based on
fixed thresholds to predict the cascade’s virality according to the
task’s needs.

Definition 3.1.1 (Information Cascade Event) In the cascade
virality prediction process of agnostic-network, we can regard
the information cascade process as a event. It is constantly
changing with the evolution of time. When we divide the event
according to the timestamp, an information cascading event can
be expressed as: E = [et0 , et1 ...etn ], where eti is the state of the
cascade when the event occurs at time ti, which is:

eti = {f
ti
j : f

ti
j ∈ Rn×m, i, j,m, n ∈ N} (1)

where f
ti
j is the feature representation of the event at event ti

and j represents different feature types, which can be represented
as normalized visible features. In this paper, we use three key
features that cause cascade virality, semantic features, and local
and emotional ratios. Section 3.2.1 introduces these features
in detail.

Definition 3.1.2 (Information Cascade Sequence) When an
event is split into a series of sub-events, we define E(ts, te) =
[E :E ∈ (Ets ...Ete )]. For the sake of brevity, we simplify the writing
of E(te): E(te) = E(t0, te), which means that the sub-events all
start from t0. Through the above definition, we can get a cascade
sequence of information as follows:

C = {E(t0),E(t2), ....E(tn)}. (2)

After that, we define two cascade sequences: COt and C1t , we
consider COt to be an observable sequence of the event, that is
COt = C(tn), which represents the set of sub-events of an event
from the start time t0 to tn, and C1t = C(tn + 1t) is considered
to be an unobservable sequence.

Problem 1: Cascade Virality Prediction In order to better
solve the problem of cascade virality prediction, according to the
above definition, we can obtain an observable event subsequence
COt , which contains each event slice Ei and cascade features eti
within the time slice. We seek to predict the magnitude of the
information cascade event; CNum

1t
= |C1t | is larger than the

absolute threshold τ in the prediction time 1t . Specifically, given
a cascade COt and a absolute threshold τ ∈ N, if CNum

1 ≥ τ

then COt is labeled as a viral cascade. That is, we need to quantify
the activation probability of information virality after the time
interval 1t , which is denoted as follows:

Pv = P(CNum
1t
| COt ). (3)

Where Pv is the probability of whether the cascade is viral or not,
and COt is the cascade sequence containing features. Further, the
cascade virality prediction can then be formulated as, given COt ,

1t , finding an optimal mapping function L that minimizes the
following objective with parameters 2:

L(2) = −

N
∑

i=1

log P2(C
Num
1t
| COt ;2). (4)

3.2. CasWarn Model
We hope to use the key features to predict the possibility of a
viral cascade under the premise of the least available data and
return the prediction results in the form of early warning to
realize the early warning agent. Through the previous work of
Subbian et al. (2017), we know that the viral cascade may begin
to spread rapidly in the first few hours. In contrast, a non-viral
cascade takes a long time to reach a small number of users.

Unlike the previous network-agnostic cascade virality
prediction models, we consider that more features can be
used, but the challenge is fusing and embedding features. In
addition to statistical features such as the dissemination time,
dissemination scale, etc., many useful features can be obtained,
such as text and tweets’ emotional features. We know that these
features significantly impact the information cascade’s virality
and apply to agnostic networks from previous studies. Based on
the above assumptions, we use deep learning models to model
a time series-based multi-feature cascade prediction model. In
summary, the model construction process is as follows:

1. For each information cascade process C in our dataset, we
extract Ctn in the observable time window, where tn is the end of
the timestamp we can observe.

2. We label the cascade C and determine whether it is viral or
not by threshold τ at time to 1t .

3. Regarding whether the cascade sequence C will become
viral, we segment the cascade based on a time window, and use
different embedding methods to extract the dissemination scale,
semantic evolution feature, and emotional polarity ratio features
in different time slices, then use them as the input of the neural
networkmodel, and predict the probability as a classification task.

3.2.1. Data Preprocessing
We slice the observable cascade sequence C based on time series
and sample different features with equal time windows. In the
time slice, we extract the cascaded features through the following
three steps:

a) Dissemination scale feature

Dissemination scale feature is a crucial indicator to determine
the virality of the cascade. We process it into a sequence by
extracting the number of forwardings in the time slice, as shown
in Figure 1a–2. Specifically, by extracting the forwarding times
in the time slice, similar to Kefato et al. (2018), the sequence
of integers representing the number of events included in each
slice becomes:

Cdpf = [|COti
| : 0 ≤ ti < to] (5)

where COti
represents the total number of reposts at time ti, to

represents the sequence observation time, and i represents the
i− th time slice.
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FIGURE 1 | The overall architecture of CasWarn. (A): Three perspectives of information cascade. (a-1): The overall information cascade after time slice; (a-2): the

composition form of dissemination scale feature after time slice; (a-3): features in the user’s view, including emotional polarity ratio and semantic evolution features.

(B): Different feature preprocessing and embedding representation processes. (C): The end-to-end neural network model. It first fuses the quantitative and emotional

features through the CNN-E1 layer and then embeds the temporal semantic evolution features through the Bi-LSTM model, it next uses the CNN-E2 model to fuse

the three features again. Finally, the FC-softmax layer predicts the result.

b) Emotional polarity ratio feature We calculated the
emotional polarity of users participating in the information
cascade for forwarding and commenting in the time slice, as
shown in Figure 1a–3. Specifically, we use the Senta model,
which can obtain the comments’ emotional polarity to the
original tweets (Tian et al., 2020). Then we construct the
emotional ratio in a time window. This ratio is a two-
tuple, indicating the degree of opposition of emotions in the
time window:

Ceprf = [(sum(ptis ) : sum(ntis ), ps = 1, ns = 0, 0 ≤ ti < to] (6)

where ps is positive emotion and ns is negative emotion.
c) Semantic evolution feature

For viral cascades, the evolution of topic semantics is more
likely to cause the "mutation." By transforming topics in different
time slices, we want to capture the impact of the features of
topic evolution on the spread of the virus. We use the word2vec
method to vectorize the semantic information of high-frequency
topics in the time window, as shown in Figure 1a–3. Specifically,
we extracted topicn words with the highest word frequency in
each time window to represent the key semantic features of
this time window and form a matrix sequence based on the
time series:

Csem = [Xti
:X ∈ Rd×n, 0 ≤ ti < to]

Xti = [Tt
i : 0 ≤ i < topicn,T ∈W]

(7)

where X is the subject word in the time slice, T is the keyword,
and W is the corpus. It is worth noting that if the number of
samples in a specific time slice is less than topicn, we perform a
zero-padding operation.

3.2.2. Neural Network Model
After obtaining the three features, we design an end-to-end
neural network model (Figure 1C) to predict the cascade virality.
We use the CNN as the main framework to solve the prediction
task. Because in the time series classification task, a CNN has the
advantages of high efficiency and high performance (Gundersen
et al., 2020), we changed the frame structure of the original CNN
to better adapt to the task needs.

As shown in Figure 1C, we use two layers of CNN
convolutional layers in the neural network model to obtain the
feature representation after feature fusion. In particular, we have
designed an improved two-way method for the representation
of semantic features in the time window. The Bi-LSTM layer
(Yulita et al., 2017) learns the potential connections in the topic
evolution process and finally uses the fully connected layer to
predict the results.

3.2.2.1. Input Layer
As illustrated in Figure 1B, the input layer constructs a feature
vector for three types of features. We can see from Figure 1C that
these features are synchronized in the time series, but when input
as a model, the steps are asynchronous.

3.2.2.2. CNN-E1 Feature Fusion Layer
As shown in the CNN-E1 part of Figure 1C, we concatenate Cdqf

and Ceprf as a vector into the convolution layer of the CNN
model, as:

hc = [hcdqf ||hceprf ]. (8)

It is worth noting that we want to obtain the implied features
of filters with different sliding windows, so we apply n filters of
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different sizes on every possible slice of the fused features:

fl(h
i
c) = σ (W ihic + bi) (9)

where hic can be regarded as a filter with step size i, i ∈
(1, slice − 1), σ is the activation function, and we use the
relu method. Similar to the n-grams method, we can regard
Wi as the weight of the filter layer of ith, and hic ∈ Rkd

is the feature representation with the async length i. We
sample the dependencies between subsequences by obtaining
different convolutional layers. Then we obtain the fused feature
representation by summation average:

f1(hc) =
1

i

∑

i∈n

fl(h
i
c) (10)

where, f1(hc) ∈ Rd1, and n represents the number of filters.

3.2.2.3. Bi-LSTM Semantic Evolution Layer
For the feature representation of semantic evolution, we design
an improved architecture based on bi-directional LSTM (Bi-
LSTM) to obtain the potential relationship of topic evolution
in different time slices. Unlike the fully connected layer, it can
capture the potential relations of semantic changes, as shown
in the Bi-LSTM layer in Figure 1C. Firstly, since the number
of keywords extracted in each time interval is fixed, we first
concatenate the semantic information which represents the
semantic feature vector in each time slice:

ht
csef
= ||i∈topicnhti (11)

where hti represents the representation of the i-th feature word
under the t-th time slice. Then, for different time slices, the
content embedding of hcsef is computed as follows:

f2(h
t
csef

) =

∑

t∈slice[
−−−→
LSTM{W(ht

csef
)}||
←−−−
LSTM{W(ht

csef
)}]

|slice|
(12)

where f2(hcsef ) ∈ Rd×1 (d: content embedding dimension), slice
represents the number of time slices, and W represents the
learning parameters of neural networks. The operator || denotes
concatenation. We use the Bi-LSTMmodel to learn the potential
relationship of semantic evolution. The LSTM is formulated as:

zi = σ

(

Uz

(

ht
csef

)

+Wzhi−1 + bz

)

fi = σ

(

Uf

(

ht
csef

)

+Wf hi−1 + bf

)

oi = σ

(

Uo

(

ht
csef

)

+Wohi−1 + bo

)

ĉi = tanh
(

Uc

(

ht
csef

)

+Wchi−1 + bc

)

ci = fi ◦ ci−1 + zi ◦ ĉi

hi = tanh (ci) ◦ oi

(13)

where hi ∈ R
(d/2)×1 is the output hidden state of i-th content, ◦

denotes the Hadamard product, Uj ∈ R
(d/2)×df , Wj ∈ R

(d/2)×df ,

bj ∈ R
(d/2)×1, and (j ∈ {z, f , o, c}) are learnable parameters, zi, fi,

and oi are the forget gate vector, input gate vector, and output gate
vector of the i-th semantic evolution feature, respectively. It is
worth noting that the Bi-LSTM model can aggregate the ordered
semantic information in order to obtain the implicit association
of the semantic evolution process in different time slices.

3.2.2.4. CNN-E2 Feature Fusion Layer
Next, we concatenate the semantic evolution feature f2(h

t
csef

) with

the output feature f1(hc) of the previous layer:

hdes = f1(hc)||f2(hcsem ). (14)

As shown in the CNN-E2 layer in Figure 1C, the concatenated
data are fused again by the CNN feature fusion layer to learn the
potential relationship between different features:

f3(hdes) =
1

i

∑

i∈n

σ (W ihdes + bi). (15)

Then, f3(hdes) is followed by a fully connected (FC-softmax layer)
logistic classification layer:

h (ci) = softmax(Wf3(hdes)+ bi). (16)

The vector h (ci) ∈ R
2 can be regarded as the last feature

representation in the model, which will be used to predict the
virality of the cascade.

3.2.2.5. Output Layer and Loss Function
This layer outputs a two-dimensional representation vector for
each information cascade. We compare the representation of
the dissemination scale feature with the ground truth, and then
optimize the log-likelihood loss, as follows:

min
∑

i

yi log
(

h (ci)
)

+
(

1− yi
)

log
(

1− h (ci)
)

(17)

where h(ci) is the predicted value, yi is ground truth,
and the model parameters are trained using the back-
propagation algorithm.

There are three main advantages for this framework: (1)
It has concise structures with relatively low complexity (fewer
parameters), making the model implementation and tuning
relatively easy; (2) it can fuse the key features of information
cascade in the agnostic-network and has a strong classification
performance; (3) since the model is modular, it is flexible to add
extra features, making the model extension more available.

4. EXPERIMENTS AND RESULTS

In this section, we conduct extensive experiments to answer
the following research questions: (RQ1) How does CasWarn
perform the virus cascade prediction task compared with the
state-of-the-art baselines? (RQ2) How does CasWarn compare
with most state-of-the-art baselines in terms of early detection
capability? (RQ3) How do different features, such as emotional
polarity or semantic evolution, affect the performance of
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the model? (RQ4) How do various hyper-parameters, e.g.,
number of slices, word embedding dimension, impact the
model performance?

4.1. Datasets
Our experiment selected two real-world social network datasets.
One mostly exists to evaluate their methods of predicting
diffusions on single social network data (Zhang et al., 2013, 2015;
Cao et al., 2020). Another is a dataset of Twitter posts that we
collected for specific semantics for different industries’ needs to
evaluate the proposed CasWarn model quantitatively.

4.1.1. Weibo Dataset
Sina Weibo is the most popular Chinese Weibo service. The
dataset is from (Zhang et al., 2013) and can be downloaded here.
The complete dataset contained 1.78 million users and 23 million
tweets between September 28, 2012 and October 29, 2012. It is
worth noting that 300,000 original tweets in this dataset become
information cascades. We sample these cascades, as shown in
Table 1.

4.1.2. Twitter Dataset
During the unrest in Hong Kong in 2019, the government was
more concerned about whether Hong Kong-related tweets would
become viral cascades. Unlike Sina Weibo, different industries’
social public opinion events are more aggregated at a semantic
level. Therefore, in order to better verify the impact of fusion
features on the information cascade, we collected anonymized
tweets related to Hong Kong from September to October 2019
for a total of 30 days by using the Twitter API, to better verify the
authenticity of the cascade virality prediction of the content we
care about.

As Table 1 shows, we sample data with a cascade scale of
more than 1,000 times (τ = 1, 000) as positive samples, negative
samples are obtained by random sampling.

4.2. Comparison Methods
We compare CasWarn with a set of strong baselines, including
feature-based models used for cascade prediction (Logistic
Regression, SEISMIC), deep learning models based on cascade
embedding in knowable networks (Deepcas), and the state-of-
the-art deep learning models based on cascade embedding in
agnostic networks (Cas2Vec).

Logistic Regression (LOR): This baseline is used in previous
studies. We concatenate the vector of each time window and
calculate it as the LORmethod’s input for training a classification
model. It should be noted that each time window contains the
stitching of three feature vectors.

SEISMIC: This is a recent study that uses point estimation
models to predict the popularity of tweets (Zhao et al., 2015). It
evaluates the influence of tweets based on the number of retweets
at time t, then the estimated infectiousness is used to predict the
ultimate size of the tweet.We follow a similar strategy as Cas2Vec
to label tweets based on fixed size, that is viral if and only if fixed
size is larger than τ .

DeepCas: This is the state-of-the-art deep representation
learning model for knowable-network popularity prediction (Li

et al., 2017), which learns the representation of cascade graphs
in an end-to-end model. Specifically, it represents the cascade
graph. DeepCas significantly improves the performance of hand-
crafting feature-basedmethods. As a result, we here takeDeepCas
as a knowable-network method to compare with CasWarn.
Specifically, we use formula (17) to modify the loss function of
DeepCas from regression task to classification task.

Cas2Vec: Cas2Vec is the state-of-the-art deep representation
learning model for network-agnostic cascade virality prediction
(Kefato et al., 2018). This model applies convolutional neural
networks to model the sequence of retweet size within the time
window and predicts information cascade virality.

4.3. Evaluation Settings and
Implementation Details
To evaluate our algorithm, we use the following settings: As
required by problem 1 (section 3.1), we want to predict the task
based on the observable time to and the forecast time window
1t . Since the distribution of viral cascades is highly skewed and
sparse, we set the ratio of positive and negative samples to 1:2 and
use validation sets during training to adjust hyper-parameters,
such as the size of filters.

When the hyper-parameters are fixed, we use three-fold cross-
validation without the validation set, and record the average
results and errors. Regarding the embedding of topic words, we
use a fixed value topicn = 15 and use F-score with β = 3 (because
it is a rare classification prediction).

4.4. Results
4.4.1. Virus Cascade Prediction Performance (RQ1)
To answer RQ1, we design experiments to evaluate CasWarn
on cascade virality prediction tasks. In this set of experiments,
our goal is to evaluate the effective classification performance
of our model under different baselines. We set the observable
time to = 1 (1 h), and then evaluate F1 values under different
1t = to +1. The results are shown in the table.

Table 2 reports the performance of all models and shows
the best results in bold. Comparing different baselines on the
two datasets shows that the best baselines in most cases are
our model. We can see that most of CasWarn’s performance
is better than the DeepCAS model based on the knowable-
network. However, CasWarn is based on the agnostic-network,
which requires less data and is more efficient. Compared with the
agnostic-network model, the relative improvements of CasWarn
over the Cas2Vec range from 1.3 to 2.3% and 1.5 to 6.0% for
the Twitter and Weibo datasets. In general, the experimental
results on the F1 value show that the deep learning framework
we proposed is effective and demonstrates that it can outperform
state-of-the-art baselines in the cascade virality prediction task of
the agnostic-network.

4.4.2. Early Prediction (RQ2)
In order to solve this problem, we analyze the prediction
experiment of early information dissemination. And observed
that most events occurred twice in the median time of spread of
all cascade viruses. Similar to the work of Kefato et al. (2018),
we selected the median of the viral cascade of two datasets. The
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TABLE 1 | Summary of dataset statistics.

Dataset Original tweets Retweets average Positive samples Positive retweets

Weibo 300,131 7.91 6,734 5,725,352

Twitter 470,435 4.43 9,723 7,786,556

TABLE 2 | Prediction performance of different models on the two datasets (%).

Model
Twitter Weibo

1.5 h 2 h 5 h 10 h 20 h 60 h 1.5 h 2 h 5 h 10 h 20 h 60 h

LOR 83.23 83.13 82.47 80.35 76.32 77.39 80.57 81.64 79.87 77.56 72.23 69.14

SEISMIC 82.61 79.77 77.26 74.53 72.24 59.57 77.44 75.32 72.21 69.57 62.27 60.50

DeepCas 86.97 87.42 87.90 83.21 82.77 79.83 83.74 84.42 83.21 80.22 79.38 76.77

Cas2Vec 85.98 86.72 85.43 84.35 82.78 77.21 83.26 83.33 84.23 74.57 73.31 72.29

CasWarn 87.77 88.97 87.45 86.23 84.33 78.77 84.98 82.21 83.44 79.90 79.62 77.23

The bold values are represent the optimal performance values.

median of Weibo is 16 h and Twitter is 7 h (due to Twitter data
being more focused on topics, and that it is easier to quickly
forward various pieces of network information). We choose a
different (but fixed) prediction time 1t for each dataset, that is,
16 h for Twitter and 34 h for Weibo, and then change the size of
the prediction window from 1 h to 1t h (the step is fixed, 1 h) to
evaluate the time.

Note that the forecast time is fixed. In both cases, the step is 1
h. The rest of the hyper-parameters are the same as RQ1, but we
use the recall rate to evaluate the performance of early detection.

Figure 2 shows that, as expected, our model achieves the best
recall rate at the minimum value (1 h), which shows that we
predict that the virus cascade’s performance is the best within 1
h. At the same time, we hope that the prediction of the algorithm
is robust as 1t increases. We can see that the performance of
baselines declines faster than CasWarn, and CasWarn gets the
best recall. In addition to the previous cascade virality prediction,
our experiments also show that CasWarn is more robust than
state-of-the-art models and can predict cascade virality as early
as possible.

4.4.3. Ablation Study (RQ3)
CasWarn is a framework for a deep learning early warning
agent that fuses multiple cascade features. How different features
impact the model performance and whether emotion polarity
or semantic evolution aggregation effectively improves the
model’s predictive ability need to be addressed. To answer RQ3,
we conducted an ablation study to evaluate the performance
of several model variants, including: (a): No-Sen which uses
semantic evolution feature and dissemination scale feature
encoding to represent each cascade sequence embedding
(without emotional polarity feature). (b): No-Sem which uses
emotional polarity and dissemination scale feature encoding to
represent each cascade sequence embedding (without semantic
evolution feature), and (c): Semantic-FC which employs a fully
connected neural network to embed semantic evolution features.

In this group of experiments, we set the observation window
as t0 = 0.5, 1, 3 (hours) and use the same parameter in
RQ1 for our hyper-parameter. The results on two datasets
are reported in Figure 3. From this figure, we can see that
the performance of CasWarn is better than that of No-
Sen in most cases, demonstrating that the cascade sequence
embedded with the emotional polarity feature is more efficient
for cascade virality prediction. Similarly, we can find that
the performance of CasWarn is better than that of No-Sem,
demonstrating that the fusion of the two cascade sequence
features is effective in improving the performance of the
model. Semantic-FC outperforms No-Sen, which shows that our
improved Bi-LSTM-based semantic evolution feature embedding
is better than the embedding methods used to capture "deep"
content feature interactions such as the FC layer. It is worth
noting that the two datasets show better results on the
Twitter dataset due to the more aggregated semantic content
of Twitter.

4.4.4. Hyper-Parameter Sensitivity (RQ4)
Hyper-parameters play an essential role in CasWarn because
optimal parameters for cascade virality prediction determine
the prediction results’ accuracy. We conduct experiments to
analyze the impacts of three key parameters, i.e., the number
of slices (see section in the supplement for detailed setup) and
the topic word’s embedding dimension. Cascade virality predicts
the performances of CasWarn as a function of the two datasets,
which are shown in Figure 4.

For the number of slices parameter, from the upper part of
Figure 4, we can see that performance improves as the number of
slices increases and then drops at a peak. For the Twitter dataset,
we can see that 40 to 50 is the best metric. In the Weibo dataset,
the optimal solution is between 30 and 40. So we find that a value
between 30 and 50 provides the best result. For the parameters
of embedded dimensions of semantic evolution features, we set
them to float before 16 to 256 dimensions. From the lower part
of Figure 4, we can see that the performance is significantly

Frontiers in Neurorobotics | www.frontiersin.org 8 May 2021 | Volume 15 | Article 674322135

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Gao et al. CasWarn

FIGURE 2 | Evaluation results of early prediction experiments for the Twitter and Weibo datasets.

FIGURE 3 | Performances of variant proposed models.

improved with the increase of dimensions in the early stage. Then
the performance has decreased with the increase of dimensions,
which may be the result of over-fitting. The dimension when
set to 32 meets the requirements of fewer variable parameters
and timeliness.

5. CONCLUSIONS

In this paper, we propose a viral cascade early warning
model, which can be deployed on intelligent agents to assist
different industries in monitoring the public opinion effect of
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FIGURE 4 | Impact of different hyper-parameters on prediction performance.

relevant information. Inspired by the agnostic-network cascade
prediction, we design an innovative deep learning model based
on feature fusion named CasWarn. This model serializes the
cascade features through time slices, then fuses and embeds
different key features through our designed neural network
module, and then predicts the cascade sequence’s virality.
Our model incorporates the key features of the information
cascade and does not need to consider the cascade network’s
underlying relationship structure, which is more suitable for
the needs of fast, effective, and easy to deploy on agent
systems. We conducted comprehensive experiments on two
large social network datasets to prove that CasWarn can
make timely and effective cascade virality predictions and
verified that each feature model of CasWarn is beneficial to
improve performance.
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Image processing is widely used in intelligent robots, significantly improving the

surveillance capabilities of smart buildings, industrial parks, and border ports. However,

relying on the camera installed in a single robot is not enough since it only provides

a narrow field of view as well as limited processing performance. Specially, a target

person such as the suspect may appear anywhere and tracking the suspect in

such a large-scale scene requires cooperation between fixed cameras and patrol

robots. This induces a significant surge in demand for data, computing resources, as

well as networking infrastructures. In this work, we develop a scalable architecture

to optimize image processing efficacy and response rate for visual ability. In this

architecture, the lightweight pre-process and object detection functions are deployed on

the gateway-side to minimize the bandwidth consumption. Cloud-side servers receive

solely the recognized data rather than entire image or video streams to identify specific

suspect. Then the cloud-side sends the information to the robot, and the robot completes

the corresponding tracking task. All these functions are implemented and orchestrated

based on micro-service architecture to improve the flexibility. We implement a prototype

system, called Rinegan, and evaluate it in an in-lab testing environment. The result shows

that Rinegan is able to improve the effectiveness and efficacy of image processing.

Keywords: smart gateway, large scale, image processing, intelligent security robot, microservice

1. INTRODUCTION

Image process has been widely implemented in intelligent robots, which significantly improve the
visual ability of smart buildings, industrial parks, border ports and so forth. For example, patrol
robots, a critical partner of police officers or area administrators for security surveillance, are usually
equipped with cameras that can track suspicious persons by collecting and processing images or
video streaming. However, such track task solely relying on individual and narrow view of a single
robot is no longer effectiveness in large scale environment. Specifically, the suspect may appear
anywhere, and the coverage of a single robot is limited, which is not enough to deal with this
situation. Hence, the patrol robots have to cooperate with surveillance cameras distributed in such
monitored area. When a suspect appears somewhere, once the surveillance camera captures him,
it will send the information to a nearby patrol robot through a communication channel, and the
robot will come and track the target person in time.

Such a large scale cooperation of robots and cameras induces a significant surge in demand for
image or video data collection, computing resources for object detection and suspect recognition,
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as well as communication bandwidth of networking
infrastructures. A number of researches (Li et al., 2015; Cai
et al., 2016; Redmon et al., 2016; Shi et al., 2018; Tan et al.,
2020) have dedicated to improve the ability in object detection
by employing supervised learning or reinforcement learning
method. These works consider only the visual information
collected from the camera implemented inside robot, which are
confined in a small surveillance area. Hence, some researchers,
e.g., Dolberg et al. (2016), Meng et al. (2017), Chen et al.
(2018), Lee et al. (2018), Bevi et al. (2019), Bistritz and Bambos
(2019), Chang et al. (2019), and Li et al. (2019), focus on
designing edge computing architecture to achieve a high level
of scalability and fast response rate, comparing with the widely
deployed centralized cloud-based(IoT) solutions. Some others,
e.g., Kovatsch et al. (2012), Morabito and Beijar (2016), Morabito
et al. (2016, 2017), Morabito (2017), Rufino et al. (2017), Cheng
et al. (2018), Dolui and Király (2018), Mendki (2018), and
Ogawa et al. (2019), also works on the virtualization of edge-side
gateways to enhance the flexibility of above edge computing
architecture. All these works either improve the communication
and computation efficacy at infrastructure level or design an
edge-cloud cooperation training mechanism in which training
task runs on cloud side while detection and recognition tasks
are executed on the edge. However, they neglect the advantage
of the decoupling between the object detection and suspect
recognition. Specifically, a patrol robot requires only the location
and suspect information rather than the entire image or video
stream. Therefore, only the required data are transferred to save
the bandwidth. A camera with limited resources can only run
an object detection process and send result to cloud side for
recognition, and the robots receive only the location and suspect
information for tracking process. In this case, both the resource
consumption and the risk of data leakage caused by network
communication are minimized.

In this work, we present a scalable edge-cloud cooperation
architecture, which harmonizes the object detection and
recognition applications to facilitate the image processing ability
of intelligent robots. In our architecture, the image processing
is separate into four phases, i.e., pre-process, object detection,
representation, and recognition. The pre-process and object
detection tasks are deployed on the edge-side gateway to
minimize the response delay and the bandwidth consumption.
The cloud-side obtains and processes solely the detected objects
from the edge-side smart gateways. All these functions are
orchestrated using micro-service techniques, which provide a
high level of modularity and interoperability, to optimize the
resource allocation. As a result, a robot receives only the location
and suspect information for tracking process. Facilitated by the
proposed architecture, the robots are able to effectively surveil
the entire environment and therefore canmake accurate response
than that rely on their inside cameras. We implement a prototype
system, called Rinegan, and evaluate it in an in-lab testing
environment. The result shows the efficacy and effectiveness.

In summary, the contributions of our work are as follows.

1. We propose a hierarchical architecture to enhance the efficacy
of object recognition applications. The lightweight object

detection functions are assigned distributively on gateways
to minimize bandwidth consumption between edge and
cloud. Therefore, the cloud-side servers receive only structural
objects and the recognition result is send to the nearby
robots. This architecture greatly reduces the load pressure
and computation resources and improves the tracking ability
of robots.

2. We develop a prototype system, i.e.,Rinegan, by implementing
the object functions into micro-service instances. Therefore,
Rinegan can reasonably and deftly orchestrate the tasks like
object detection and recognition. In addition, the isolated
property in this system can also helps to protect the sensitive
information reserved in video data (Wang et al., 2020), i.e.,
only the required data is transferred through network.

3. We deploy Rinegan in a in-lab environment to evaluate
its performance. The result shows that Rinegan achieves
outstanding data processing efficacy and excellent scalability
comparing to traditional centralized mode. We have reason
to believe that Rinegan can also be applied to large-scale
scenarios like smart building (Qiu et al., 2019).

1.1. Organization
The rest of the paper is organized as follows. In section 2, we
illustrate the background and motivation, as well as the related
work. In section 3, we provide the designation of our proposed
gateway system. In section 4, we conduct experiments in a in-
lab environment and make comparative analysis and evaluation
of its performance. In section 5, we discuss the shortcomings of
this work and looked forward to the follow-up work. At last, in
section 6, we conclude our work.

2. BACKGROUND AND MOTIVATION

When human beings build the world around us, we often
expect to make copies like ours, which can better adapt to the
environment and habits in human life. Studies have found that a
certain area of the human brain is specifically used to recognize
things andmake cognitive responses. As a result, people also hope
to implement a function such as face recognition on a intelligent
security robot to help humans work. In this section, we briefly
introduce the background of intelligent security robot, image
processing, gateway virtualization andmicro-service architecture
to illustrate the motivation of our work.

2.1. Related Work
Regarding target detection and recognition, many people are
committed to using cloud computing to achieve it. Yaseen
et al. (2018) proposed a video analysis system based on cloud
computing to realize automatic analysis of video stream data.
The experimental results show that the system can be expanded
to a certain extent according to the number and size of video
streams. However, the author did not consider the load capacity
of the cloud in large-scale scenarios. When the amount of data
that the system needs to process is particularly large, the cloud
may be overloaded, and we can use edge computing to solve
this problem. Qi et al. (2017) combined smart phones and cloud
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computing to implement a DNN-based target detection system,
which is mainly used in vehicle detection and recognition. We
noticed that in their work, the authors use smartphones as a
video stream acquisition tool. Tasks such as image processing and
object detection are processed in the cloud. Such a distributed
system may not be suitable for processing a large number
of images and videos on congested roads. Our system is
implemented through microservices, which can schedule edge-
side gateways to process images, taking into account both
distributed and large-scale scalability.

Using cloud computing alone is not enough to deal with large-
scale scenarios. Some people consider reducing the pressure on
the cloud at the edge. Sun et al. (Tian et al., 2019) points out
that edge computing can share the load of the cloud center
and provide a service environment and computing capabilities
at the edge of the network. Moreover, edge computing has low
latency and higher bandwidth. Ren et al. (2018) combined edge
computing, but they use servers on the edge side, which is
difficult to deploy. Moreover, the cloud is only responsible for
training the model, and does not use microservice technology
to schedule image processing tasks. And Tian et al. (2020) and
Luo et al. (2020) mentioned that although cloud computing
and cloud storage have brought great convenience, the security
issues cannot be ignored. The distributed attack detection system
deployed on edge devices in this article also supplements the
deficiencies of cloud-only.

About the architecture of edge computing, Cha et al. (2018)
designed a blockchain-based smart gateway solution, which uses
a digital signature mechanism to effectively protect privacy, and
at the same time, it can adaptively maintain user privacy of
devices in the network. Mouradian et al. (2018), referred to the
ideas of network function virtualization and SDN, and propose
a distributed and dynamic configuration gateway structure to
solve large-scale disaster management applications. Constant
et al. (2017), developed an intelligent gateway system based on
fog computing. This architecture can use a knowledge-based
model to enhance the quality of interaction between wearable
IoT devices and the cloud. Rahmani et al. (2018), used the
key position of the gateway at the edge to provide higher-level
services, and propose a smart electronic health gateway for smart
medical care. We use the concept of fog computing to propose a
fog-assisted system architecture that can cope with many of the
medical systems challenge. Li et al. (2016), proposed an SDN-
based architecture for solving development-level IoT solutions,
making devices and gateways programmable for developers,
which can quickly reuse ready-made programs and data to create
IoT applications. However, none of the above articles takes into
account the scalability of the architecture. We use microservice
technology to deploy and schedule tasks for edge devices more
flexibly to adapt to large-scale scenarios.

2.2. Layout of Intelligent Security Robot
Applications
Figure 1 plots the common architecture of intelligent security
robot applications. Devices, e.g., security cameras, connect to
gateway. Such a gateway provides Internet accessibility for a

set of devices. In general, the robot involves functionalities like
authentication, data analysis and user interface.

Basically, the gateway should have capability of discovering
devices when user makes a “Discover” request. Then, polling
of discovered devices should be initiated once the manage
platform makes a “Approve” request. The gateway should
also make a necessary control action and return “Success” or
“Failure” response whenever it receives a control request from the
intelligent security robot.

However, the ever-increasing large scale data streams
significantly challenge the bandwidth and computation resources
of the centralized intelligent security robot infrastructure. For
instance, image data collected by the cameras in a smart
city application will exhaust the communication bandwidth
between gateway and intelligent security robot and disrupt the
computation ability of robot-side.

2.3. Image Processing
In the object recognition function of nowadays intelligent
security robot, image processing is one of the most important
functionality. It enables visibility for these things and
applications. Figure 2 briefly illustrates the workflow of it,
which consists of four phases, i.e., pre-process, object detection,
representation, and recognition.

In pre-process phase, the raw image data will be transformed,
compressed, enhanced, restored and so forth to improve its
quality and facilitate the following process. In detection phase,
specific objects involved in will be detected and extracted by using
corresponding models such as face, vehicle, animal, and building
models. In representation phase, these objects will be described as
a set of features. Finally, in recognition phase, these objects will
be classified as specific person, car, animal, or building.

In general, above four phases are treated as a whole
when deploying into intelligent security robot system.
Specifically, all of them are either deployed on the edge-
side devices or on the cloud-side servers. Both scenarios
are not scalable enough to large scale environment.
On one hand, most of edge-side devices, even the
gateways, are resource-constraint, which are not capable
of executing all these tasks. On the other hand, cloud-
side deployment significantly increase the stress of such
centralized architecture.

2.4. Gateway Virtualization
The possibility of introducing lightweight virtualization
technologies, and in particular container-based virtualization,
in this kind of environments allows having a system that
benefits of the main features introduced by containers, if
compared to alternative solutions such as hypervisor-based
virtualization or hybrid solutions (Chang et al., 2019): (i) Fast
building process, instantiation and initialization of containers.
(ii) High density of application/services due to the small
container images.

Container-based virtualization (Figure 3) provides a different
level of abstraction in terms of virtualization and isolation
compared to hypervisors. Hypervisors virtualize hardware and
device drivers, which generates overhead. On the contrary,
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FIGURE 1 | Layout of intelligent security robot applications.

FIGURE 2 | Workflow of image processing.

containers implement isolation of processes at the operating
system level, thus, avoiding such overhead (Chang et al.,
2019). Due to the shared kernel (as well as operating system
libraries), an advantage of container-based solutions is that
they can achieve a higher density of virtualized instances,
and disk images are smaller compared to hypervisor-based
solutions. Moreover, an application can be designed to work
in multiple containers, which can interact each other by
mean of linking system, with a guarantee of no conflicts
with other application containers running on the same
machine. It is exactly these features that make possible the
integration of the functionality of containers in a wide range
of contexts: smart devices, the intelligent security robot, and
embedded systems.

2.5. Micro-Service Architecture
Micro-services are an architectural and organizational approach
to software development where software is composed of small
independent services that communicate over well-defined APIs.
These services are owned by small, self-contained teams. Micro-
services architectures make applications easier to scale and faster
to develop, enabling innovation and accelerating time-to-market
for new features.

As shown in Figure 4, each component service in a micro-
services architecture can be developed, deployed, operated,
and scaled without affecting the functioning of other services.
Services do not need to share any of their code or implementation
with other services. Any communication between individual
components happens via well-defined APIs. Each service is

Frontiers in Neurorobotics | www.frontiersin.org 4 August 2021 | Volume 15 | Article 648101143

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Luo et al. Scalable Image Processing Architecture for Large Scale

FIGURE 3 | Architecture of containerized gateway.

FIGURE 4 | Micro-service architecture.

designed for a set of capabilities and focuses on solving a specific
problem. If developers contribute more code to a service over
time and the service becomes complex, it can be broken into
smaller services.

Micro-services allow each service to be independently scaled
to meet demand for the application feature it supports. This
enables teams to right-size infrastructure needs, accurately
measure the cost of a feature, andmaintain availability if a service
experiences a spike in demand.Micro-services enable continuous
integration and continuous delivery, making it easy to try out
new ideas and to roll back if something doesn’t work. The low
cost of failure enables experimentation, makes it easier to update
code, and accelerates time-to-market for new features. Service

independence increases an application’s resistance to failure. In
a monolithic architecture, if a single component fails, it can cause
the entire application to fail. With micro-services, applications
handle total service failure by degrading functionality, and not
crashing the entire application.

3. SYSTEM DESIGN

The image processing architecture we proposed can optimize the
object recognition capabilities of the intelligent security robot
and improve the efficiency of image processing. We developed
a system Rinegan based on this architecture. In this section, we
will introduce this system in detail.

3.1. System Overview
The Rinegan system can effectively improve the image processing
performance of the intelligent security robot in a large-scale
environment. It allocates part of the image processing task flow
to the gateway on the edge-side, allowing the gateway and the
cloud to work together to complete the entire image processing
flow. The system relieves the pressure of data transmission in the
cloud, while also solving the problem of insufficient computing
on the edge side. In order to achieve these effects, we have used
micro-service technology to develop Rinegan, which has good
flexibility and scalability. The reason why we use micro-services
is because micro-services have a high degree of modularity
and interoperability, which can improve the flexibility of the
system and optimize the resource allocation of the system. In
this section, we will introduce two aspects of system architecture
and workflow.

3.1.1. System Architecture
As presented in Figure 5, inspired by the structure of the IoT
system, Rinegan can also be divided into the following three
layers: perception layer, network layer, and application layer. Each
layer corresponds to a kind of entity, and each layer has its own
functions and services. Below we introduce the specific situation
of these three layers, respectively.

1. Perception layer takes the terminal devices as the core, themost
common ones are various sensors, in this work, specifically the
cameras. The perception layer is the data foundation of the
whole system, and it’s also a key part of information collection.
The cameras collect raw data including images and videos, then
upload these data to the next layer—the smart gateway.

2. Network layer is also called the transport layer, in this
work, since we are studying a scalable architecture for image
processing, it can be interpreted as “gateway layer” in a narrow
sense here. In this layer, the gateway is responsible for simple
processing of images and video streams uploaded by the
perception layer to reduce the amount of data transmission.
Specifically, simple processing refers to prepocess images and
the process of object detection, such as image enhancement,
image restoration, We deployed micro-services in the gateways
and made reasonable orchestration components for these
micro-service. The orchestrator component contains functions
like service registry, service detector, load balancer and
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FIGURE 5 | Architecture of Rinegan.

resource manager to ensure the normal and orderly operation
of micro-services.

3. Application layer can be understood as cloud server in
the intelligent security robot, in this work, this layer
contains four parts, including user interface, applications,
orchestrator, micro-service. User interface is divided into
two modules:Authentication and Access control. The
authentication module is based on the identity of each
user, adopts a standardized identity authentication format,
and follows a certain security mechanism to ensure that
the access user is a safe user. The access control module
authorizes the authenticated user through the control strategy
to ensure the legal use of the information resources by the user
within the authorized scope. Applications are user-oriented
tasks, when the cloud receives the image processed by the
gateway, this module is responsible for object description and
recognition, such as human tracking, traffic flow detection,
traffic violation identification and so on. Orchestrator module
is responsible for the orderly organization of micro-services
deployed in the huamnoid robot cloud. The orchestration
process is mainly implemented in the cloud server, and there
a few scheduling processes in the gateway, as mentioned in
the gateway layer. Micro-service is a small granular service
that can be independently developed and deployed. Micro-
services generally perform specific functions according to the

orchestration of the Orchestrator, such as face recognition, face
description, vehicle recognition, and vehicle description.

3.1.2. System Workflow
Above we introduced the three-layer architecture of the system
we designed, as well as the composition and function of each
layer. In this part, we introduce how Rinegan works.

As shown in the Figure 6, we assume an application scenario
to make the workflow more specific. Imaging a scenario where a
criminal is driving a car to escape in the city.We need tomake the
intelligent security robot recognize the vehicle color and license
plate number of the vehicle to lock its position.

The terminal camera at the perception layer can collect and
store large-scale image data, which we call original images, and
the camera transmits the collected data to the gateway layer.
After the gateway on the edge-side receives these raw images,
the image processing micro-services deployed in them start to
work. The first step is image pre-processing. Specifically, image
transformation includes grayscale and geometric transformation
to reduce the amount of data that needs to be processed. Image
enhancement means to enhance the useful information in the
image. It can be a distorted process. Its purpose is to improve the
visual effect of the image. For the application of a given image,
it purposefully emphasizes the overall or local characteristics of
the image. Image compression refers to the process of reducing
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FIGURE 6 | Workflow of Rinegan.

image storage or reducing image bandwidth. Image restoration is
an objective process that attempts to restore the original content
or quality of images with reduced or distorted quality.

The gateway can perform object detection on the pre-
processed image. The object detection is roughly divided into
three steps. For this scenario, the first is the classification
operation. In a given image or a video, the gateway must
determine what type of target is in it, that is, the target vehicle.
Then there is the positioning operation, to locate the location of
the target vehicle. Finally, the detection operation is to detect the
color and license plate of the targeted vehicle.

The gateway uploads the processed image to the cloud of the
intelligent security robot, and executes the feature representation
in the cloud. Through the feature extraction algorithm, the
micro-service describes the license plate number and color
of the target vehicle for identification. After the cloud recognizes
the color and license plate number, compares and matches with
all vehicle feature information in the database, and then the target
vehicle is identified.

3.2. System Description
In this part, we give a detailed description of each module in the
three-layer architecture of the system.

3.2.1. User Interface
For a system, security is the primary consideration in the design
process. To ensure the security of the system, it is necessary
to ensure that the users interacting with the system are not

malicious. There are two aspects of user security that need to be
considered. One is the authentication of the user’s identity, and
the other is the acquisition of the user’s operating authority to the
system. In response to these two problems, we have developed
two functions in the User interface, identity authentication and
access control.

We have realized the authentication of the user’s identity
through the digital certificate. The digital certificate contains
the user’s identity information and digital signature, which
can prove their identity to the entities in the system. The
signature certificate in the digital certificate is used to sign user
information. To ensure the non-repudiation of information, the
encryption certificate is mainly used to encrypt information
transmitted by users to ensure the authenticity and integrity
of the information. Access control means that after the system
completes the identification of the user, it determines the access
request authority to the information resource according to the
user’s identity. We use the discretionary access control strategy to
allow legitimate users to access the objects allowed by the policy
as users or user groups, and at the same time prevent illegal users
from accessing.

3.2.2. Application
This module is user-oriented. After the system completes the
user’s identity authentication and grants the user certain access
rights, the user initiates the corresponding function request to the
system according to his needs, so the function of this module is
specific. For example, the user may need our system to do face
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recognition, track a person, recognize a vehicle, etc., then this
module will send these specific function requests to the server,
and call the micro-service interface to complete these tasks.

3.2.3. Orchestration
When a system adopts the micro-service architecture, the
original business may not change, but the system has been split
into many new micro-services. Compared with the traditional
architecture, the micro-service architecture will rely more on the
collaboration between the micro-services to achieve a complete
business process. This collaboration is the service orchestration,
which requires a complete orchestration framework to support.

Orchestration is oriented toward executable processes, an
executable process is used to coordinate internal and external
service interactions, and the overall goal, involved operations,
and service call sequence are controlled through the process. The
advantage of the orchestrator is that the process control service
always knows where each business is going, and monitoring the
business has become a relatively simple matter.

3.2.4. Micro-Service
The reason why we use micro-services is because micro-services
have a high degree of modularity and interoperability, which
can improve the flexibility of the system and optimize the
resource allocation of the system. Whether it is the lightweight
image processing tasks that we deploy on the edge (e.g., image
preprocessing and target detection), or the subsequent image
processing tasks that we deploy in the cloud, they are all based
on the corresponding micro-service module.

We have used virtualization technology and built these micro-
services using Spring boot in the docker container. To ensure
that the micro-services in the container are running properly,
we set a module named monitor&protection, which has three
functions: link tracking, service fusing, and service monitor.
Service fusing provides a proxy for micro-services. It implements
fault tolerance and self-protection by setting timeout and circuit
breaker modes for network requests to prevent cascading failure
when the service is impossible, which leads to an avalanche
effect. Link tracking is used in the local area network to update
the connection information. This function can ensure the real-
time performance of the micro-service status. Service monitor is
used to monitor the running status of each micro-service. When
a micro-service has a problem, it will report to the server. It
works with link tracking to ensure the normal operation of the
micro-service in the container.

For the configuration management and service discovery
of micro-services, we also designed a module called
discovery&config. Discovery is RESTful-based service discovery
functions, which are mainly used for the discovery and
registration of micro-services. When a new micro-service
is deployed, this function is responsible for registering the
micro-service with the server, which ensures high availability,
flexibility, and scalability through heartbeat checking, client-side
caching, and other mechanisms. Config is used to uniformly
manage the configuration of micro-services. Unlike traditional
monolithic applications, in293the micro-service architecture,
an application system using the micro-service architecture may

contain294hundreds of micro-services. Therefore, centralized
management configuration is necessary.

As shown in the Figure 7, we not only deploy micro-services
in the cloud, but also the gateway on the edge side uses the
micro-services developed by us when processing images. The
entire working process of the system involves the participation
of micro-services from beginning to end. For example, at the
gateway layer, the gateway completes image restoration, image
enhancement and object detection by calling the RESTAPI of the
corresponding micro-service. After the cloud receives the data
processed by the gateway, themicro-services continue to perform
feature description and feature recognition operations on the
image, and the process of calling the micro-services is basically
the same as the gateway layer.

3.2.5. Gateway
In our proposed architecture and developed system, the gateway
is a device on the edge-side that cooperates with the cloud to
complete image processing tasks in a large-scale environment.

In addition to its own original functions, for the flexibility
of the system, and to reduce the consumption of the cloud
to improve the efficiency of the system, we deployed the first
two steps of the image processing process in the gateway for
execution, namely image pre-processing and object detection.

Similar to the cloud, we also use the docker container-based
virtualization technology to deploy the corresponding micro-
services, which greatly enhances the scalability of the entire
system, and the orchestration and details of the micro-services
are basically the same as those of the cloud.

3.2.6. Terminal Devices
In this work, the terminal device is the camera, the physical
device of the perception layer. These cameras collect or capture
images in specific places and store them in its memory, but
the cameras do not have the function of processing images, so
these images are transmitted to the gateway for further screening
and processing.

4. EVALUATION

In this section, we present our experiment to evaluate the
performance of Rinegan. We first introduce the implementation
detail and then analyze the result.

4.1. Implementation
In order to verify that the architecture we proposed can effectively
enhance the efficacy of object recognition, we implemented
the protype system based on our proposed image processing
architecture—Rinegan in our laboratory environment. According
to related research (Nefian and Hayes, 1998; Lal et al., 2018),
face recognition is currently one of the most commonly used
function, such as tracking suspects in cities. So we choose the face
recognition function to test the performance of our architecture.
Note that, Rinegan can not only facilitate the face recognition task
but also the other recognition applications such as car and animal
recognition. This because these applications are all based on the
image process ability just the same as face recognition.
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FIGURE 7 | Micro-services in image processing.

We select 1,000 pictures (7.8MB in total) collected from
“Large-scale CelebFaces Attributes (CelebA) Dataset”1 as our
experimental data. Our purpose is to find a random select
specific target person in these pictures. The face recognition and
detection algorithms used in this work are “Face-recognition”
project.2 This project provides convenient APIs, i.e., the
“face_location”2 and “face_distance”2 APIs, for face detection
and recognition, respectively. Moreover, we collect a MP4 video
file, named “hamilton_clip.mp4”(640*360, 29.97 fps, 4.9 MB,
78 s),3 for evaluation. Indeed, the process of video data is not
different from that of pictures except the loading task which
converts the video stream to a set of frames, i.e., pictures.

1Celeba. Available online at: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
2Face-Recognition. Available online at: https://face-recognition.readthedocs.io/en/

latest/face_recognition.html.
3Face Recognition Example. Available online at: https://github.com/ageitgey/

face_recognition/tree/master/examples.

In the process of image processing, we deploy the task of
object detection on the edge side in which the devices detect
the object in the input pictures or video, that is, the person.
Finally, the picture will be cropped, and other parts except the
face will be cropped off, and the edges will be sent to the cloud
to recognize the face. Therefore, the cloud server only needs
to do the recognition task. It is worth noting that we ignored
the process of sending information from the cloud to the robot
since it is a simple task which transfers only the location received
from corresponding gateways and the suspect information such
as name, passport ID and so forth. At the same time, we also
deployed object detection and face recognition tasks all in the
cloud (we call it centralized later), as a comparative experiment
of our architecture.

In the laboratory environment, we used one cloud server and
ten edge devices for experiments. In the Rinegan, these edge-side
devices receive the images or video collected by the camera, then
they execute the object detection and image cropping tasks. The
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FIGURE 8 | Gateway.

TABLE 1 | Detail of devices used in this experiment.

Device CPU Memory

Cloud Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz 64cores 251G

Device1 Intel I7-9700 (8 CPUs * 1 core) 2G

Device2 Intel I7-9700 (8 CPUs * 1 core) 4G

Device3 Intel I7-9700 (8 CPUs * 1 core) 8G

Device4 Intel I7-9700 (1 CPU * 8 cores) 4G

Device5 Intel I7-9700 (1 CPU * 4 cores) 8G

Device6 Intel I7-9700 (1 CPU * 1 core) 8G

Device7 RK 3309 2G

Device8 RK 3309 2G

Device9 RK 3309 4G

Device10 RK 3309 4G

configurations of the CPU, memory of these devices are shown
in the Table 1. Among these devices, device 1 to device 6 are
virtual machine with heterogenous configurations, devices 7 to
10 are the real gateway containers of our laboratory (as shown
in Figure 8). All these module on the devices are implemented
based on Spring microservice architecture4 which exchange data
through RESTFul api, i.e., the data is transferred based on HTTP.
Our purpose is to simulate the performance of different operation
systems with various configurations to reflect the adaptiveness of
heterogeneity of our proposed system.

4Spring Boot. Available online at: https://spring.io/projects/spring-boot.

4.2. Performance Evaluation
We compared the running time of the two methods we
mentioned above. In the Rinegan, the running times for face
detection and image cropping on the edge devices (100 images
per device) are 62, 58, 56, 59, 64, 66, and 67 s in order,
respectively. The face recognition on the cloud is about 120
s. In total, the entire process consumes about 187 s. As for
the Centralized case, it takes 230 s to process all the images
in the cloud. Therefore, in our experimental environment, our
architecture can increase the processing speed by about 19% (43
s less). It should be noted that in the real environment, there
may be far more than 10 edge nodes. So it is foreseeable that the
processing speed of our architecture will be faster also.

We also measure the video processing ability of our
architecture. In this experiment, when running with 10 edge
side devices (we clipping the video into 10 pieces each with
7.8 s per device), we find a abnormal result that the detection
tasks takes about 3 s per frame, i.e., 3*30*7.8 = 700 s in
total, while the cloud spends only about 570 s to run both
recognition and detection. This result indicates that the entire
resource of edge side is less than the cloud server in Table 1.
Therefore, we implement 10 more edge devices with the same
configurations to reexamine the performance, each processes
about 3.9 s video. In total, the detection and recognition tasks
take about 340(edge)+125(cloud) = 465 s, which shows a 18%
improvement of efficacy. In real world, the edge side devices
may be much more than cloud side and can be equipped with
more computing resource if necessary. As we mentioned above,
since the video processing is essentially similar to process a
sequence of pictures, the increased efficacy depends on the entire
computation resources of edge side devices. Moreover, the low
rate of video process is caused by the higher resolution ratio
rather than the difference of video and picture format.We have to
notice that how to improve the efficacy of processing high quality
pictures is not concerned in this work. Our purpose is to present
a distributed architecture that achieves a better performance than
centralized mode.

The cropping process performed on the edge side significantly
reduces the size of the total pictures and video by about 45 and
90%, respectively, which therefore greatly reduces the amount
of data to be transferred as well as the bandwidth consumption.
Another advantage of cropping is that it can prevent the 45 and
90% data from being leaked when transferring through untrusted
network channel. Specifically, the surrounding environment
which may contains sensitive information can be cropped
before transmission.

In summary, the Rinegan system we developed effectively
reduces bandwidth consumption and significantly improves
the execution speed. Moreover, the data leakage risk can
be remarkably decreased by our cropping process. More
importantly, our system has flexibility and scalability compared
with the centralized image process architecture, and can be
deployed more flexibly at the edge. Additionally, though
the process of all frames (2,356 in total) in our video is
resource intensive one can select a part of them, e.g., 1
frame per second, or compress the pictures to improve the
detection efficacy.
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5. DISCUSSION

From the above experimental results and comparative analysis,
the Rinegan system we designed performed well, but we also
discussed and thought about this work, as shown below.

1. Limitation of this work.Our experiment is not large enough as
real world IoT scene. However, considering our heterogeneous
devices, one of which even configures 1 cpu core, we can
infer that our system can have good performance in large-
scale scenarios. In this work, we have not determined how
to allocate tasks on the edge and cloud to maximize the
performance of the system, but this does not affect the current
use of the system.

2. Prospect. In future work, we should conduct multiple
experiments to determine the optimal task volume ratio
between the edge and the cloud to optimize the performance
of the system. Moreover, our research found that the
architecture we proposed is not only suitable for intelligent
security robots, but also for the construction in the IoT large-
scale scenarios (Qiu et al., 2020; Shafiq et al., 2020). For
example, we can deploy this system on smart light poles to
achieve collaborative work between the edge and the cloud.
We have reason to believe that this will greatly improve the
efficiency of smart city construction.

6. CONCLUSION

In this work, we propose a scalable architecture that can improve
the image and video processing capabilities of the intelligent
security robot and facilitate the tracking task. We reduce the
bandwidth consumption of the cloud by deploying distributed
image processing functions on the edge. At the same time, by

cropping pictures, our architecture can also effectively protect
privacy. We developed a system Rinegan with this architecture
and tested the system in a laboratory environment. The result
shows that Rinegan consumes less resources and Executes in a
shorter time in cloud compared with centralized system. At the
same time, our system takes into account the scalability and
performs better in large-scale scenarios.
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