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Editorial on the Research Topic

Advances in Molecular Docking and Structure-Based Modelling

The three-dimensional (3D) structures of proteins form the structural framework of their
functions. Having access to the structure allows scientists to better apprehend molecular
details of protein functions; it is also crucial for protein engineering, e.g., to modify and
optimize an enzyme for a certain biochemical reaction; or for designing new and improved
drug molecules based on the structure of the target protein. Structures are also needed to
investigate how proteins interact; a vast majority of the protein-protein interface residues are
involved in extensive intra-protein interactions apart from inter-protein interactions (Jayashree
et al., 2019).

With the increase in protein structures available in the Protein DataBank (PDB, 184,929
entries, on the 11th of December 2021, https://www.rcsb.org) (Berman et al., 2000), and the
recent development of machine learning approaches for protein structure prediction, e.g.
AlphaFold2 (Jumper et al., 2021), it is evident that protein structures will be an essential
component of a large number of biological research studies. It also highlights the importance of
efficient computational tools to process the structures and derive various biological
interpretations.

These in silico methodologies are often complex, have limitations, and the results must be
associated with appropriate statistical and quality measures. The objective of this Research Topic was
to bring together various contributions based on cutting-edge computational methodologies; these
include computational analysis of structures and complexes with developments and applications that
integrate docking and molecular dynamics approaches, and complex experimental data such as
cryogenic electron microscopy (cryo-EM).

Two articles underline the importance of new computational approaches for evaluating atomic
models derived from experimental data or built ab-initio. The first work by Olek and Joseph dealt
with the quality of models obtained by cryo-EM. In fact, the final atomic model is often incomplete
or contains regions where atomic positions are less reliable or incorrectly built. They presented a
software tool for the validation of the backbone trace of atomic models built in the cryo-EM maps.
They use the false discovery rate analysis to segregate molecular signals from the background and
show how this approach can properly complement current measures Olek and Joseph. Launay
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et al. tackled the challenging question of scoring in
protein–protein docking. They explored several ways to
perform consensus-based rescoring. They showed that
rescoring performs worse than the traditional physics-based
evaluation but the two complement each other and can be used
in combination (Launay et al.).

Classical approaches such as molecular dynamics (MD) are
useful to apprehend new biological systems. In this field,
Pitard et al. studied the interaction of calmodumin (CaM)
with the bacterial virulence factor, Edema Factor (EF). The
system is of great interest as orthosteric and allosteric ligands
have been proposed to inhibit EF activity. Using state-of-the
art MD simulations, they underlined the presence of cavities at
the interface between EF and CaM that could be linked to
allosteric events Pitard et al.; Tang et al. combined molecular
modelling and MDs to apprehend new mechanistic insights
into the exciting CRISPR-Cas9 system in the DNA cleavage
state. Their results provide useful guidance for engineering
new CRISPR-Cas9 editing systems with improved specificity
Tang et al.; Kumari et al. look at the Farnesoid X receptor
(FXR) that is essential in regulating the network of genes
involved in maintaining bile acid and lipid homeostasis. MDs
of FXR with or without cofactors allowed a precise description
of critical residue positioning during conformational changes
that explain FXR activation state underlying main differences
between bound and unbound forms Kumari et al.; Ghoula
et al. analysed the multi domain ceramide transfer protein
(CERT) implicated in the transport of ceramide from the
endoplasmic reticulum to the Golgi and plays a major role
in sphingolipid metabolism. Combining docking and MD
simulations, the binding affinity of 14 ligands was tested.
This study suggests a novel inhibitory mechanism of CERT
for limonoid compounds involving the stabilization of the
sub-domain interface and could help in developing new and
potentially more selective inhibitors of this transporter
Ghoula et al.

As previously mentioned, experimental 3D structures or
structural models are crucial for the design of new drug
molecules. Gheyouche et al. applied different approaches to
model the structure of RHOA-ARHGEF1 complex and they
further analysed the protein-protein interface. They refined
the models using MD simulations and highlighted the
importance of data-driven human inspection. The modelled
RHOA-ARHGEF1 interface will be extremely useful for the
design of inhibitors targeting this protein-protein interaction
(PPI). Gheyouche et al. Similarly, Pal et al. look at systems of
economic interest. They have characterized, using molecular
docking, immune response molecules of duck protein TLR3,

TLR7, and RIGI and predicted to have potent antiviral
activities against different identified strains of Avian
influenza Pal et al.; Gobinath et al. combined experiments
and docking approaches in COVID research. They have
screened and proposed new indole derivatives on the
famous spike glycoprotein of SARS-CoV-2 Gobinath et al.

At a larger-scale, Chakraborti et al. looked at the infectious
pathogen with a serious global impact: Mycobacterium
tuberculosis. There is a constant need to search for novel
therapeutic strategies because of the emergence of multidrug-
resistant tuberculosis (MDR-TB). Universal stress protein (USP,
Rv1636) is a perfect target in this field. A library of 1.9 million
compounds was subjected to virtual screening, which led to the
selection of 2,000 hits through an enrichment process, then 22
potential binders of Rv1636 were prioritized for experimental
validations where two compounds of natural origin showed
promising binding affinities Chakraborti et al.; Vedithi et al.
looked at the proteome of Mycobacterium leprae. They
presented a large set of computational approaches to unravel
new potential druggable targets Vedithi et al.

Finally, Souza et al. presented innovative approaches to
perform high-throughput ligand-protein docking calculations
by using coarse-grained molecular dynamics simulations,
based on the most recent version of the Martini force field.
Their approach, characterized by excellent computational
efficiency, offers a level of accuracy comparable to all-atom
simulations Souza et al.; Jiang et al. looked at the Interaction
of leukocyte integrin macrophage-1 antigen (Mac-1) to platelet
glycoprotein Ibα (GPIbα) implicated in haemostasis and
inflammatory responses. They performed a series of “ramp-
clamp” steered molecular dynamics (SMD) simulations and
compared the results with single molecular AFM measures.
The concordance in the results underlined the importance of
such approach to understand the platelet–leukocyte interaction in
haemostasis and inflammatory responses under mechano- and
microenvironments Jiang et al.

This special issue is dedicated to the loving memory of Prof.
Narayanaswamy Srinivasan who left us too soon on the third of
September 2021 (Eisenhaber et al., 2021). As a passionate scientist and
a wonderful human being, he is a true inspiration. May his soul rest
in peace.
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Scoring is a challenging step in protein–protein docking, where typically thousands
of solutions are generated. In this study, we ought to investigate the contribution of
consensus-rescoring, as introduced by Oliva et al. (2013) with the CONSRANK method,
where the set of solutions is used to build statistics in order to identify recurrent
solutions. We explore several ways to perform consensus-based rescoring on the
ZDOCK decoy set for Benchmark 4. We show that the information of the interface
size is critical for successful rescoring in this context, but that consensus rescoring in
itself performs less well than traditional physics-based evaluation. The results of physics-
based and consensus-based rescoring are partially overlapping, supporting the use of
a combination of these approaches.

Keywords: protein–protein interaction, docking, scoring, prediction, interface

INTRODUCTION

Protein–protein docking aims at predicting the structure of a complex starting from the structures
of isolated components (Melquiond et al., 2012; Vakser, 2014). The CAPRI community-wide
initiative allows a blind assessment of the participant methods on common data sets and evaluation
criteria, offering an updated view of progress in the field since 2001 (Lensink et al., 2007, 2017;
Lensink and Wodak, 2010). Protein–protein docking methods typically generate thousands of
potential solutions for a particular complex. Scoring the models to discriminate near-native
solutions is a known bottleneck of docking methods (Moal et al., 2013a,b; Malhotra et al., 2015).
Most scoring functions are physics-based, attempting to capture the determinants underlying the
stability of protein–protein complexes, e.g., shape complementary, electrostatics and desolvation
potential (Dominguez et al., 2003; Cheng et al., 2007; Pierce and Weng, 2007, 2008; Moal and Bates,
2010; Ritchie and Venkatraman, 2010; Ohue et al., 2014). Knowledge-based functions, on the other
hand, aim at taking advantage of the information from available structures, via pair potentials (Lu
et al., 2003; Huang and Zou, 2008; Mezei, 2017), or multibody potentials (Khashan et al., 2012).
Docking methods often use scoring functions that combine physical terms with knowledge-based
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terms (Kozakov et al., 2006; Liang et al., 2009; Feliu et al., 2011;
Vreven et al., 2011). More recently, evolutionary information
has been successfully used for scoring (Andreani et al., 2013;
Yu et al., 2017).

Another approach consists in relying on the recurrences
observed in the set of solutions, i.e., consensus-based scoring.
Consensus-based scoring functions seek to identify solutions
with features that are the most frequent in the solution set,
independently of any physics-based or evolutionary evaluation.
The CONSRANK scoring function, proposed by Oliva et al.
(2013, 2015), Vangone et al. (2013), and Chermak et al. (2015,
2016) has shown very good results, based on the conservation of
interface contacts.

In this study, we compare several CONSRANK-like
scoring functions on large sets of docking poses generated
by ZDOCK, including CONSRANK. We then explore how to
combine consensus-based rescoring with the native scoring
function of ZDOCK.

METHODS

Docking Decoy Set
The ZDOCK3.0.2 decoy set (Pierce et al., 2011) (6 degree
sampling, fixed receptor format) for Benchmark4 (Hwang et al.,
2010a) was retrieved from https://zlab.umassmed.edu/zdock/
decoys.shtml. This data set encompasses 176 protein–protein
complexes, with 54,000 docking poses for each complex. For each
pose, the interface Cα RMSD, with respect to the bound structure,
is given. A near-native docking hit is defined as a prediction with
interface Cα RMSD < 2.5 Å.

Consensus-Based Rescoring Schemes
Following the CONSRANK method (Oliva et al., 2013; Chermak
et al., 2015), docking poses are rescored using the frequencies of
interface contacts in the set of docking poses. Interface contacts
are defined using a distance cut-off of 5 Å between the heavy
atoms of receptor and ligand proteins.

For each contact Cij between residue i from receptor and
residue j from ligand the relative frequency in the decoy set is
defined by:

S
(
Cij
)

=
F
(
Cij
)

N
∈ [0, 1] (1)

where F(Cij) denotes the frequency of Cij at the protein–protein
interface in the set of N decoys. These relative frequencies are
then averaged, i.e., normalized by the interface size, to compute
the CONSRANK score of each pose P:

CONSRANK_score (P) =

∑
Cij∈P S(Cij)

Ncont(P)
, (2)

where Ncont (P) denotes the number of interface contacts in
docking pose P.

Variations of CONSRANK Scores
First, we considered the un-normalized version of CONSRANK
scores (Oliva et al., 2013), denoted as CONSRANK_U, where the

relative frequencies of interface contacts are only summed, and
not averaged:

CONSRANK_U(P) =

∑
Cij∈P

S(Cij). (3)

Then, we implemented two other variations, by replacing relative
frequencies of contacts S(Cij) by relative frequencies of residues:

S(Ri) =
F (Ri)

N
∈ [0, 1] (4)

where F(Ri) denotes the frequency of residue i at the protein–
protein interface (distance between heavy atoms lower than 5 Å)
in the set of N decoys. The two related scores are respectively
defined by:

Residue_Average (P) =

∑
Ri∈P S(Ri)

Nres(P)
, (5)

Residue_Sum (P) =

∑
Ri∈P

S(Ri). (6)

where Nres(P) denotes the number of interface residues in pose P.
Here, interface residues are simply those involved in contacts
at the interface.

Note that is it possible to compute the contact and residue
frequencies (Eqs 1 and 4) on a given set of docking poses and then
to evaluate another set of docking poses (with Eqs 2, 3, 5, and 6).

Clustering
We implemented the BSAS clustering procedure (Basic
Sequential Algorithmic Scheme) (Koutroumbas and
Theodoridis, 2008; Jiménez-García et al., 2018) to reduce
the structural redundancy of docking poses. The principle of
BSAS is the following. Docking poses are ranked according to
a score in decreasing order. The pose with the highest score
initiates the first clusters. The other poses are sequentially
compared to already clustered poses: they are included in a
cluster if they are within a given cut-off of cluster members,
otherwise they initiate a new cluster. At the end of the process, the
pose with the highest score in each cluster is the representative
of each cluster. In order to allow a fast clustering process, we do
not compute the RMSD between ligand atoms. Instead we use
a distance cut-off between the centers of mass of the ligands,
here set to 8 Å.

Evaluation
The top 2,000 solutions according to the ZDOCK native scoring
function were rescored using the rescoring schemes detailed
below. We monitored the presence of near-native docking hits
(interface Cα RMSD < 2.5 Å) in the top 10 solutions after
re-ranking. Each protein–protein complex with a near-native
docking hit in the top 10 solutions is counted as a success.

Implementation
The consensus-based rescoring functions are implemented in
python code accessible on GitHub, which operates directly on
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ZDOCK output files, and allows to treat rapidly thousands of
docking poses (typically a few seconds for 2,000 poses, up to
1 min for 54,000 poses). In addition, the code allows to compute
statistics on a given set of poses and re-score another of structures
(see “Results” section). All the scripts necessary to reproduce the
results shown in this article are available at: https://github.com/
MMSB-MOBI/CHOKO.

RESULTS

In this study, we compare four consensus-based scores to identify
the near-native solutions among the ensembles generated by
ZDOCK. The traditional CONSRANK score (Oliva et al., 2013)
is considered, as well as its un-normalized version, and two
variations that consider residue statistics instead of contact
statistics. We first evaluate each consensus score separately. Then,
we combine these results with the native ZDOCK physics-based
scoring function. Finally, we add a clustering step, to reduce
structural redundancy and further improve the results.

Quality of Decoys
In the initial data set of 176 protein–protein complexes, ZDOCK
was able to generate at least one near-native docking hit (interface
Cα RMSD < 2.5 Å) in the first top 2,000 solutions for 90
protein–protein complexes. These 90 protein–protein complexes
thus constitute our reference data set for the rest of the study.
We explore if and how consensus-based rescoring is efficient at
scoring the decoys of these 90 protein–protein complexes.

Evaluation of Different Consensus-Based
Rescoring Functions
First, we compare the four versions of consensus-based rescoring
functions: either contact-based [following the CONSRANK
(Oliva et al., 2013) scheme] or residue-based, with or without
interface size normalization. We estimate the performance by
counting the number of successes, i.e., number of complexes with
at least one near-native hit (interface Cα RMSD < 2.5 Å) in
the first 10 solutions after rescoring. We also tested the effect of
varying the subset of docking poses used to compute the contact
and residue frequencies (Eqs 1 and 4): we used either the first 50,
100, 1,000 or 2,000 first poses provided by ZDOCK, or the full
set of 54,000 poses, referred as the frequency set. In any case, we
rescored the first 2,000 poses provided by ZDOCK.

The results of this evaluation are shown in Figure 1. We can
see that un-normalized rescoring functions (CONSRANK_U and
Residue_Sum) constantly outperform the normalized rescoring
functions (CONSRANK, Residue_Average). The size of the
subset used to compute contact and residue frequencies (Eqs
1 and 4) has a major influence on the number of successes.
Indeed, ZDOCK solutions are ranked by the ZDOCK native
scoring function; hence the top of the list is, in many cases,
enriched in near-native docking hits. Estimating contact and
residue scores on a reduced subset of poses at the top of
the list is logically more efficient. On the contrary, estimating
contact and residue scores from the full list leads to a loss of
information, and worsens the prediction. When frequencies were

FIGURE 1 | Number of successes after rescoring the first 2,000 solutions of
ZDOCK. The size of the frequency set refers to the set of poses used to
compute the residue and contact scores from Eqs 1 and 4. The horizontal red
dashed line indicates the number of successes achieved by the ZDOCK
native scoring function.

estimated on the 54,000 poses, the number of successes was 1
for CONSRANK, 10 for CONSRANK_U, 2 for Residue_Average,
and 17 for Residue_Sum. In the best settings tested here,
estimating the scores on the first 50 solutions to rescore the
first 2,000 solutions allows to reach a number of successes
equal to 27 with the Residue_Sum scoring function, versus 20
for the CONSRANK scheme. It is thus possible to rescore
large sets of docking poses using consensus-based scoring
functions, with better performance than the commonly used
CONSRANK scheme.

Combination With ZDOCK Native
Scoring Function
In this section, we explore how to combine rescoring functions
with the native scoring function of ZDOCK. Out of the 90
protein–protein complexes with at least one near-native docking
hit in the top 2,000 solutions, the ZDOCK native scoring function
identifies 29 successes, i.e., 29 complexes with at least one near-
native docking hit in the top 10, see Figure 1. This is indeed
better than the four consensus-based rescoring functions tested
here. One could wonder if it is then possible to improve the initial
prediction of ZDOCK using rescoring.

We first analyzed the overlap of the successful cases by
ZDOCK and each rescoring function, and found that many
successful cases achieved by rescoring are well predicted by the
ZDOCK scoring function, see Supplementary Figure S1. For
example, when estimating scores on the first 50 solutions for
the rescoring (Supplementary Figure S1A), all the successes
identified by the normalized rescoring functions CONSRANK
and Residue_Average are included in the successes identified by
ZDOCK. Un-normalized scoring functions are able to identify 1
case not included in the ZDOCK successes for CONSRANK_U,
and 4 for Residue_Sum.
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We then tested a combination of ZDOCK poses and rescored
poses by combining the first N1 poses of ZDOCK with the first
N2 poses after rescoring, with N1 + N2 = 10, and no redundancy.
Again, we vary the subset of docking poses used to compute
the contact and residue frequencies with Eqs 1 and 4 (frequency
set = top 50, 100, 1,000 or 2,000 poses) and in any case, we rescore
the first 2,000 solutions provided by ZDOCK using Eqs 2, 3, 5,
and 6. We estimate the performance by counting the number of
successes, i.e., number of complexes with at least one near-native
docking hit (interface Cα RMSD < 2.5 Å) in the first 10 solutions.

The results of this evaluation are shown in Supplementary
Figure S2. Regardless of the size of the frequency set, the best
combination is always obtained with the Residue_Sum scoring
function. Combining the first six ZDOCK poses with the first four
Residue_Sum rescored poses, and estimating the frequencies on
the full set of 2,000 poses (bottom right panel in Supplementary
Figure S2) allows to reach a number of successes equal to 32,
compared to 18 with Residue_Sum alone and 29 with ZDOCK
alone. This suggests the possibility to marginally improve the
native results of ZDOCK by a simple combination of poses. It
is interesting to note that, in this situation, the information about
residues is more efficient in rescoring than the information about
pairwise contacts.

Combining Clusters
Clustering is classically used to improve the performance,
by reducing the structural redundancy of docking solutions
(Kozakov et al., 2005; Hwang et al., 2010b; Koukos et al., 2020).
Here, we used the BSAS clustering algorithm, which takes into
account the scores, to cluster poses by their ligand center of mass.

When applied to ZDOCK results, independently of rescoring,
we obtained an improvement in terms of number of successes:
34 successes instead of 29, reflecting a structural redundancy of
the ZDOCK set. We first analyzed the overlap between ZDOCK
results and the results of each rescoring function when using
structural clustering, see Figure 2.

As shown in Figure 2, the results of ZDOCK and rescoring
functions are partially overlapping also after structural clustering.
The rescoring functions are able to identify between 2 and
8 additional successful cases, with more additional cases
brought by un-normalized scoring functions CONSRANK_U
and Residue_Sum. This means that a perfect combination of
ZDOCK and rescoring with no loss would reach a number of
successes equal to 42.

We then explore how to combine ZDOCK results and
rescoring results. We have tested a combination of clusters. On
the one hand, we computed clusters from the poses ranked by
their initial ZDOCK scores. On the other hand, we computed
clusters from poses reordered after consensus rescoring. We
then combine the representative poses of the first N1 ZDOCK
clusters, with the representative poses of the first N2 poses after
rescoring, with N1 + N2 = 10. We estimate the performance by
counting the number of successes, i.e., number of complexes with
at least one near-native hit (interface Cα RMSD < 2.5 Å) in the
first 10 solutions.

The results of this evaluation are shown in Figure 3. In
agreement with the Venn diagram analysis, the best combination
is obtained using an un-normalized rescoring function,
CONSRANK_U. It constantly outperforms CONSRANK,
regardless of the frequency set. When using the first 1,000

FIGURE 2 | Venn diagrams showing the overlap between successful cases with the ZDOCK native scoring function and each of the rescoring functions, when using
structural clustering.
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FIGURE 3 | Number of successes after combination of clusters with the ZDOCK native scoring function. Each panel corresponds to different frequency sets, i.e.,
sets of poses used to compute the residue and contact scores from Eqs 1 and 4. In any cases, the first 2,000 solutions of ZDOCK are rescored. Gray lines represent
data from other panels for comparison.

poses to estimate the frequencies (bottom left panel in
Figure 3), the combination of five ZDOCK clusters and
five CONSRANK_U clusters achieves a number of successes
equal to 38, compared to 34 with ZDOCK alone and
34 with CONSRANK_U alone. This result suggests that
CONSRANK-like rescoring could be used together with
physics-based evaluation. Contrary to what was observed
in simple pose combination (Figure 2), the most efficient
rescoring scheme when dealing with clusters is based on
contact frequencies, not residue frequencies. It seems that,
after structural clustering, the information of pairwise contacts,
which is more precise than residues, becomes more useful
in discrimination.

Illustrative Examples
To complete this study, in this section, we present examples
to illustrate the asset of consensus rescoring when used in
combination with the native ZDOCK scoring function. We used
the results generated using the CONSRANK_U function, with
frequencies estimated on the first 1,000 poses, and combined
five ZDOCK clusters and five consensus clusters. As explained
in the previous section, this setting allows to reach 38 successes.
We present four examples from the ZDOCK decoy set where

the use of consensus rescoring is critical in Figure 4. For
all these protein–protein complexes, no near-native docking
hit is observed in the first 10 clusters of ZDOCK (or in
the first 10 poses). The use of CONSRANK_U rescoring in
conjunction with clustering allows the identification of near-
native docking poses in the top 10. In every case, these near-
native poses do not belong to the top of the ZDOCK initial
list: they are ranked 355 for 1AVX, 1568 for 1EAW, 250
for 1XQS, and 606 for 1E6E. These examples highlight the
usefulness of consensus-based rescoring to rescue poses with
poor initial ranks.

For the 38 successful complexes in this experiment, we
systematically computed the number of near-native poses coming
from ZDOCK clusters and the number of near-native poses
coming from CONSRANK_U clusters. Detailed results are
provided in Supplementary Table S1 for the 38 complexes
with at least one near-native pose in the top ten. In eight
cases, the near-native poses were present only in ZDOCK
clusters, in 10 cases, the near-native poses were present
only in CONSRANK_U clusters and in the 20 remaining
cases, near-native poses were present in both ZDOCK and
CONSRANK_U clusters. We observed no significant bias
in terms of functional category or interface size between
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FIGURE 4 | Examples of successful combination of ZDOCK clusters and consensus-based clusters. For each protein–protein complex, the receptor protein is
represented as a gray surface and the ligand as a red ribbon. Left column: representative poses of the first five clusters generated with ZDOCK native scoring
function, middle column: representative poses of the first five clusters generated with the CONSRANK_U rescoring function, right column: superimposition between
near-native docking hit and native structure. For each representative pose, initial ZDOCK rank is indicated next to the color legend. Near-native poses are underlined.
1AVX (Song and Suh, 1998): complex between the porcine trypsin (gray) and soybean inhibitor (red), 1EAW (Friedrich et al., 2002): complex between the catalytic
domain of serine proteinase MT-SP1 (gray) and bovine inhibitor (red), 1XQS (Shomura et al., 2005): complex between the human Hsp70 binding protein 1 (gray) and
Hsp70 (red), 1E6E (Müller et al., 2001): complex between NADPH:adrenodoxin oxidoreductase (gray) and adrenoxin (red).

protein complexes that were successful only with ZDOCK or
only with CONSRANK_U. This indicates that ZDOCK and
CONSRANK_U results are only partially overlapping, justifying
the need to combine them.

CONCLUSION

We have implemented four variants of consensus-based
rescoring functions: the CONSRANK score, the CONSRANK
un-normalized score, and their equivalents based on residue
frequencies and tested them on the rescoring of large sets of

docking poses of the ZDOCK benchmark. In this context,
un-normalized scores that do take into account the size of
the interfaces are in general more efficient than normalized
scores. When used alone, consensus-based scoring functions
degraded the initial performance of the physics-based
ZDOCK scoring function. However, when both physics-
based and consensus-based scoring functions were used in
combination, we observed a marginal improvement. This
calls for calibration when using consensus-based scoring
functions to re-rank large sets of docking decoys, since
they are, by definition, highly dependent on the docking
decoy population.
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The multi domain ceramide transfer protein (CERT) which contains the domains START
and PH, is a protein that allows the transport of ceramide from the endoplasmic
reticulum to the Golgi and so it plays a major role in sphingolipid metabolism.
Recently, the crystal structure of the PH-START complex has been released, suggesting
an inhibitory action of START to the binding of the PH domain to the Golgi
apparatus and thus limiting the CERT activity. Our study presents a combination
of docking and molecular dynamic simulations of N-(3-hydroxy-1-hydroxymethyl-3-
phenylpropyl)alkanamides (HPA) analogs and limonoids compounds known to inhibit
CERT. Through our computational study, we compared the binding affinity of 14 ligands
at both domains (START and PH) and also at the START-PH interface, including
several mutations known to play a role in the CERT’s activity. At the difference of
HPA compounds, limonoids have a stronger binding affinity for the START-PH interface.
Furthermore, 2 inhibitors (HPA-12 and isogedunin) were investigated through molecular
dynamic (MD) simulations. 50 ns of molecular dynamic simulations have displayed the
stability of isogedunin as well as keys residues in the binding of this molecule at the
interface of the PH-START complex. Therefore, this study suggests a novel inhibitory
mechanism of CERT for limonoid compounds involving the stabilization of the START-
PH interface. This could help to develop new and potentially more selective inhibitors of
this transporter, which is a potent target in cancer therapy.

Keywords: CERT, START domain, PH domain, limonoid inhibitors, cancer therapy, Ceramide

INTRODUCTION

Sphingolipids belong to a major class of lipids in eukaryotic cells. They are not only involved in
the membrane structure. They also act as important mediators in cellular signaling (Hannun and
Obeid, 2008). Sphingolipid metabolism is highly regulated by various enzymes located in different
subcellular compartments (i.e., endoplasmic reticulum, Golgi apparatus, plasma membrane,
mitochondria, and lysosomes). This compartmentalized enzymatic network contributes largely to
the cellular function of sphingolipids. Among these sphingolipids, ceramides have been shown
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to play a central role in the induction of apoptosis (Hannun
and Obeid, 2018) and several ceramide metabolizing enzymes
have been involved in induced-apoptosis in response to
a variety of agents such as cytokines, chemotherapy and
radiotherapy (Reynolds et al., 2004; Nganga et al., 2018). In
contrast, other sphingolipids derived from ceramide metabolism,
such as sphingosine-1-phosphate (S1P), sphingomyelin and
glucosylceramide, have been shown to play either proliferative or
protective properties (Hannun and Obeid, 2008; Maceyka et al.,
2012). Cancer cells seem to have an altered balance between
pools of sphingolipids promoting tumors from those having a
suppressing role (Furuya et al., 2011; Morad and Cabot, 2013)
which finally favor cells proliferation/survival. The inability of
cancer cells to accumulate pro-apoptotic ceramides can be the
consequence of not only a defect of de novo biosynthesis but
also of an increased degradation into S1P or transformation of
ceramide into sphingomyelin/glucosylceramide (Liu et al., 2013;
Yandim et al., 2013). Consequently, the inability to accumulate
ceramides has been associated with insensitivity to apoptosis
induced by chemotherapy and radiotherapy (Dimanche-Boitrel
and Rebillard, 2013). Importantly, inhibition of ceramide
metabolism into glucosylceramide has been shown to be a
critical factor to restore ceramide and re-sensitizes cancer cells
to chemotherapy (Morad and Cabot, 2013).

Looking at the de novo ceramide biosynthesis which takes
place in the endoplasmic reticulum (ER), it is known that
the ceramides conversion into complex sphingolipids is not
only based on enzyme activities. Namely glucosylceramide
and sphingomyelin synthases (Gault et al., 2010). They are
also regulated by specific transport between the ER and the
Golgi apparatus (Kumagai and Hanada, 2019). Indeed, de novo
sphingomyelin biosynthesis relies on non-vesicular ceramide
trafficking of ceramide mediated by the ceramide transporter
protein CERT. Specifically, CERT transports ceramides from
the ER to the trans-Golgi regions at the ER–Golgi membrane
contact sites. The inactivation of this transporter was shown to
be a cellular response to induced apoptosis in several cell lines
(Charruyer et al., 2008; Chandran and Machamer, 2012). It has
been found that CERT expression is higher in drug-resistant
cell lines (Swanton et al., 2007) and that molecular inhibition of
CERT resulted in re-sensitization of cancer cells to chemotherapy
(Lee et al., 2012; Palau et al., 2018). Taken together, this suggests
that pharmacological inhibition of CERT can represent a novel
anti-cancer strategy by overcoming drug resistance.

CERT is a cytosolic monomeric protein constituted of
different domains involved in its function (Kumagai and
Hanada, 2019). CERT has a lipid binding START (STeroidogenic
Acute Regulatory protein-related lipid Transfer) domain at
the C-terminus, a PH (Pleckstrin homology) domain at the
N-terminus, and a FFAT (diphenylalanine in an acidic track)
in the middle region. The latter domain binds the ER-localized
protein, VAP-A, whereas the START domain is responsible for
the binding and transport of ceramide (Hanada et al., 2003). The
PH domain also plays a role in ceramide transport by binding the
phosphoinositide, phosphatidyl-inositol-4-phosphate (PtdIns4P)
which is abundant in the Golgi apparatus (De Matteis et al., 2005).
START domain, PH domain, and FFAT motif are all required

for the full activity of CERT. CERT has also a serine-repeat
(SR) motif, which decreases PtdIns4P binding and ceramide
transfer activity when it is phosphorylated. It has been shown
that the inhibition of PtdIns4P binding to the PH domain by
hyper-phosphorylated SR motif requires the presence of the
START domain (Kumagai et al., 2007). Recent crystal structure
revealed that in fact the START domain interacts with PH
domain at its PtdIns4P binding site (Prashek et al., 2017).
Amino acid mutations that disrupt the PH/START interaction,
increase ceramide-transfer activity of CERT, suggesting that this
interaction plays an important role in the regulation of CERT
cellular localization and ceramide transfer. The PH domain is
formed of one α helix (α8) and seven β-sheets (β1– β7). The
START domain is structured with four α helix (α’1– α’4) and
nine β-sheets (β’1– β’9) Representation of the CERT domains and
START-PH interaction complex are summarized in Figure 1.

Three unrelated families of CERT inhibitors have been
described up to date. The N-(3-hydroxy-1-hydroxymethyl-3-
phenylpropyl)alkanamides (HPA) family, synthesized analogs of
ceramide, with HPA-12 as a lead, were identified as inhibitors
of ceramide trafficking at the beginning of 2000 (Yasuda et al.,
2001) by specifically binding to the START domain. It was found
that the amphiphilic cavity of the START domain consists of
hydrophobic residues that recognize the amide and hydroxyl
groups of HPAs by hydrophobic interactions (Kudo et al., 2008).
Importantly, many hydrophobic interactions are conserved in
both HPA and ceramide binding, supporting a competitive
inhibitory effect of this compound. More recently, the virtual
screening of small chemicals leads to the discovery of a new CERT
inhibitor, HPCB-5, which selectively binds the START domain
(Nakao et al., 2019). At the difference of HPA compounds, HPCB-
5 has no apparent ceramide mimicry and can considered as a
ceramide-non-mimetic inhibitor of CERT. Another screen of a
library of natural small compounds reveals that limonoids such as
isogedunin selectively inhibited CERT activity (Hullin-Matsuda
et al., 2012). It was shown that limonoids inhibit the CERT-
mediated ceramide extraction from isolated ER membranes in
order to block sphingomyelin biosynthesis. At the difference of
HPA ligands, limonoids are unable to inhibit the rapid transfer of
an exogenously added fluorescent short chain ceramide analog,
supporting the idea of different inhibitory mechanisms of CERT
mediated by HPA and limonoid families.

Up to date, there is no molecular mechanism proposed for
the inhibitory effect of limonoid on CERT activity. The objective
of this study is to determine the mechanism of interaction of
limonoids to CERT in comparison to the binding of HPA ligands.
We specifically explored the role of the new CERT regulation
system where the PH and START domains interact with each
other on a basal state to maintain CERT as inactive (Prashek et al.,
2017). Accordingly, a computational study has been conducted to
investigate the stability of isogedunin, and HPA-12 binding at the
interaction interface of the two domains in order to maintain a
self-inhibition.

First, a docking approach has been performed with a set of
16 ligands on the START, PH and START-PH complex system
showing a preference of limonoid compounds to bind at the
START-PH interaction site. Then, molecular dynamic (MD)
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FIGURE 1 | CERT domains and structure. (A) CERT domains and motifs. (B) PH (cyan) and START (green) domains representation in 3D structure from the
5JJD.pdb crystal structure. Secondary structures are annotated with α and β in PH domain and α’ and β’ in START domain, respectively.

simulations were performed to evaluate the stability of HPA-
12 and isogedunin ligand at the interface of both domains and
in a presence of mutations W33A, R43A, and Y54A at the PH
domain and, E494R, N495K, P535R, and E537K at the START
domain. These mutations have been described to be involved in
the START-PH interaction (Prashek et al., 2017) and seem to
also play a role in the interaction of isogedunin. Results of these
molecular modeling approaches are presented in the next section.

MATERIALS AND METHODS

Protein Preparation and Docking
Protocol
In order to predict the protein-ligand interactions through
molecular docking, known 3D structures of CERT were selected
from the Protein Data Bank (PDB) (Burley et al., 2018)1. For
the docking protocol, the chosen structures were based on
a few criteria: (a) The best possible resolution; (b) Protein
domains bound to a ligand when available; (c) Protein domains
containing no mutations or modified residues; (d) human
protein. Accordingly, X-ray crystal structures of START domain
complexed with HPA-13 ligand (PDB ID: 3H3Q), unbound PH
domain (PDB ID: 4HHV), and START/PH complex (PDB ID:
5JJD) were used as protein targets in the docking protocol
(Supplementary Table S1).

Proteins and Ligands Preparation for
Molecular Docking
To have a good estimation of the protonated state of
charged residues, each protein was protonated according
to the physiological pH (pH = 7.4) using the PROPKA
server (Li et al., 2005). About the ligands, ten limonoid
compounds reported to inhibit CERT by Hullin-Matsuda et al.

1http://www.rcsb.org/

(2012) and five (1R, 3R)-N-(3-Hydroxy-1-hydroxymethyl-3-
phenylpropyl)alkanamide (HPA) analogs (Kudo et al., 2010) were
used in this analysis (Supplementary Figure S1). The molecules
were collected in SMILES (Simplified Molecular Input Line
Entry Specification) format and converted into 3D conformation
using KNIME software (Fillbrunn et al., 2017). Molecules were
treated with the same physiological pH (pH 7.4) as the proteins
and Gasteiger’s charges were added using an Open Babel script
(O’Boyle et al., 2011) before to be saved into mol2 format.

Molecular Docking Studies
To study the interaction between limonoids/HPAs and CERT
domains, water molecules were removed and the interaction
surfaces were identified as follow: For START and PH domain,
a grid around the HPA binding site in START domain and
around the sulfate (SO4) that binds in place for ligand binding
in PH domain was built (using the option “center on ligand” in
AutoDock), respectively. For the START-PH complex, a grid that
encompasses the interaction surface between the two domains
were developed (using the option center on macromolecule).
Then, docking was run with the standard AutoDock (v4.2) suit
incorporated in MGL tools (v1.5.6) using Lamarckian Genetic
Algorithm (Forli et al., 2016). To identify the most favorable
binding site of each inhibitor into the two domains and the
complex system, flexible ligand docking was performed. The
input grid parameter files were modified and the grid size was
adjusted with 0.375 Å grid spacing to cover the active site region
of receptors (Supplementary Figure S2). Since the target-ligand
poses are ranked using an energy-based scoring function with
AutoDock, only the best pose conformation of docked ligand
was saved, visualized and studied with PyMOL (Rigsby and
Parker, 2016). Basically, the lower is the energy, the higher is the
binding affinity. Hydrogen bonding interactions and distances
between the different domains and ligands were visualized and
measured using PyMOL. PyMOL was also considered in the
development of several virtual mutations of residues known to
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play an important role in the interaction of PH and START
domains (Prashek et al., 2017).

Stability Evaluation by Molecular
Dynamics Simulations (MD)
The MD approach was performed to study the dynamic behavior
of CERT as well as the structural stability of START-PH complex
with docked isogedunin and HPA-12 ligands. MD simulations
were carried out using GROMACS software package (v5.1.4)
(Van der Spoel et al., 2005). First, ligand-free CERT topology was
prepared using “pdb2gmx” with the OPLS-AA/L all atom force
field. On the other hand, PDB files of docked complexes (CERT-
isogedunin and CERT-HPA-12) were separated into PDB files of
protein and ligand. Then, topology of CERT was prepared using
GROMOS96 43a1 force field. The ligands topology was developed
using the “PRODRG” server (van Aalten et al., 2005). The box
(unit cell) in which the protein was located has been defined and
the system has been filled with water. The protein ligand system
was kept in a cubic box, filled of waters (TIP3) and preserving a
minimum distance of 10 Å between each atom of the system and
walls of the box. The resulting system was solvated by a single
point charge (SPC) 216 solvent model, provided in GROMACS
parameters. In order to neutralize the system with a net charge of
-7, counter ions of 7 NA + were added. An energy minimization
was performed on the system to eliminate steric clashes using
the “steepest descent” method. Next, the system was equilibrated
for 100 ps with 50,000 steps. For the equilibration phase, NVT
(Number of particles, Volume, and Temperature) equilibration
was performed for 100 ps at a temperature of 300k with a
coupling constant of 0.1 ps. Once the temperature was stabilized,
NPT (Number of particles, Pressure, and Temperature) was
run by setting the temperature to 300k and the pressure to 1
bar. Electrostatic interactions were calculated using the Particle-
Mesh Ewald method (PME). Finally, the production phase was
performed for 50 ns (MD run) with a time step of 2 fs to
make sure the system is stable. The MD simulation was run in
triplicate on each system. The parameters of the MD simulations
are described in Supplementary Figure S3.

MM-PBSA Analysis
The molecular mechanics Poisson Boltzmann surface area (MM-
PBSA) method is the widely used method for binding free energy
calculations from the snapshots of MD trajectory and g_mmpbsa
was used for this present study (Kumari et al., 2014). It integrates
functions from GROMACS and APBS2 to determine the polar
and non-polar contributions of the binding energy. The dielectric
relative constant ε has been set to 2 for ligands and 80 for water
(Kukic et al., 2013). In this approach, the binding free energy 1
Gbind between a protein and a ligand include different energy
terms and could be calculated as:

1Gbind = Gcomplex− (Gprotein + Gligand)

= 1EMM− T1S + 1Gsol

= 1Evdw + 1Eele + 1GPB + 1GSA− T1S
2http://rashmikumari.github.io/g_mmpbsa/

1 Gbind is the binding free energy. 1 EMM stands for the
gas-phase interaction energy, which is the sum of van der Waals
energy 1 Evdw and electrostatic energy 1 Eele. 1 Gsol is the
sum of polar solvation energy 1 GPB and the non-polar solvation
energy 1 GSA. The polar solvation energy is calculated using
Poisson Boltzmann (PB) approximation model, while the non-
polar solvation energy is estimated by solvent accessible surface
area (SASA). The entropy contribution (−T1 S) is ignored
in this study because of its expensive computational demand.
MM/PBSA is applied to, the 50 ns MD simulations (500 ps-
spaced) of our different protein-ligand systems to estimate their
free binding energies.

RESULTS AND DISCUSSION

Docking Analysis of START- PH- and
START-PH Complex Ligands Interactions
In this study, fifteen natural compounds were docked into each
of the three different domains, i.e., START and PH domains
independently (Table 1), and on the START/PH interaction
domain (Table 2). We selected the top binding pose of each
molecule bound to the domains, based on the binding energies
estimated by AutoDock (Onawole et al., 2018).

About the PH domain, it was reported that the SO4 ligand
bound with R43, K32, Y54, and K56 (Prashek et al., 2013). In our
study, most of the docked ligands do not interact simultaneously
with these four residues but only with one of them. Cedrelone
was the ligand with the lowest binding energy, with an estimated
binding score of −7.18 kcal/mol (Table 1). Cedrelone formed
two hydrogen bonds with Y63 and S57 located on loop β3/β4.
This loop is known to contribute to the conservative PH domain
pocket composition. Additional contacts including hydrophobic

TABLE 1 | Docking results of the 15 ligands on PH domain and START domain.

PH START

Ligands Energy (kcal/mol) Energy (kcal/mol)

Carapin −6.27 −8.48

Cedrelone −7.18 −8.62

Isogedunin −6.85 −9.79

Khayantone −6.71 −10.17

Khivorin −6.61 −8.53

Limonin −6.95 −6.26

Methyl angolensate −6.99 −8.07

Obliquin −5.58 −6.06

Odoratone −6.81 −10.60

Prieuranin −2.61 −3.28

HPA-12 −4.40 −6.57

HPA-13 −4.93 −6.85

HPA-14 −4.73 −7.11

HPA-15 −4.83 −6.71

HPA-16 −3.07 −6.79

The energy score is a binding affinity estimation between a compound and the
surrounding residues.
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TABLE 2 | Docking results of the 15 ligands on the START-PH interaction site wild type and on 4 CERT mutants.

Ligands PH-START interface

WT R43A R43A/Y54A/W33A E494R/N495K E494R/N495K/P535R/E537K

Energy (kcal/mol) Energy (kcal/mol) Energy (kcal/mol) Energy (kcal/mol) Energy (kcal/mol)

Isogedunin −11.75 −12.03 −11.08 −11.31 −11.38

Cedrelone −9 −8.91 −8.71 −8.88 −8.86

Limonin −9.93 −9.95 −9.53 −10.24 −10.23

Khivorin −5.91 −1.43 −0.95 0.32 −2.73

Khavanthhone −3.74 −3.34 −2.18 −3.31 −3.13

Obliquin −6.93 −6.93 −7.05 −6.94 − 6.88

Odoratone −7.55 −6.74 −10.56 −7.17 −6.85

Methyl angolensate −9.65 −9.74 −9.63 −10.29 −10.21

Prieuranin 0.14 1.19 14.93 10.38 8.99

Carapin −8.66 − 8.27 −8.62 −8.6 −8.5

HPA-12 −6.99 −8.17 −7.64 −7.88 −7.48

HPA-13 −5.62 −7.46 −8.11 −7.83 −7.59

HPA-14 −6.36 −8.91 −7.21 −8.91 −7.56

HPA-15 −5.85 −6.8 −7.74 −7.25 −6.52

HPA-16 −6.45 −6.83 −6.68 −6.8 −8.4

The energy score is a binding affinity estimation between a compound and the surrounding residues. The mutants R43A, Y54A, and W33A are located in the PH domain,
whereas E495R, N495K, P535R, and E537K are located on the START domain.

interactions, have been observed with residues W44 and V29
(Figure 2). In opposite, all the HPA’s analogs bound with higher
energies than the limonoids compounds (i.e., lower binding
affinity) (Table 1). They preferably interacted with hydrophobic
residues and formed hydrogen bonds with the residue R43
only. These results suggest a more suitable interaction site for
limonoids compounds into the PH domain.

About the START domain, HPA-13 has been reported to bind
with residues N504, E446, Y553, and Q467 (Kudo et al., 2010).
From our docking analysis, HPA-13 did not recover completely
the same pose as the one observed in the crystal structure
(Figure 3). This is probably due to the long alkyl chain which
gives some flexibility to the molecule. Still, interactions with
residues E446, Q467, and Y553 are present.

Surprisingly, some limonoids compounds showed lower
binding energies than HPA compounds suggesting that these
compounds would have a higher inhibition effect than HPA
ligands on the START domain (Table 1). For example,
carapin forms hydrogen bonds with Y553, N504, Q467, and
E446. Hydrophobic interactions are made with W445, T448,
I523, V525, and Y576 and a salt bridge with R442 is also
present (Figure 4).

Finally, following the study from Prashek et al. (2017)
ligands were docked into the START-PH interaction domain
in order to evaluate if these compounds could have an impact
by stabilizing the inhibitory mechanism of interaction between
these two domains. Again, limonoid compounds showed lower
binding energies score to START-PH compared to the HPA
ligands. Isogedunin, cedrelone, and methylangolensate have the
lowest binding energies when the two domains are linked
together, resulting in more favorable interactions (Table 2).
About isogedunin, hydrogen bonds are made with N495, P497,
E498 from the START domain, and with W33 and Y35 from the

PH domain. Hydrophobic interactions can be observed with Y96,
P497, and L532. Furthermore, isogedunin forms a salt bridge with
K32, as well as π-stacking with Y36. All these interactions seem
to stabilize isogedunin at the interface of CERT. Interactions with
some of these residues are found for other limonoids such as
limonin, methyl angolensate, and cedrelone and represented in
Figure 5.

Interestingly, some of the residues that participate in the
binding with these ligands have recently been reported to be
important in the interaction of the two domains. Residues of
the START domain, such as N495, E498, and V533, appeared
to form extensive hydrogen bonds, and hydrophobic or π-
stacking interactions with K32, W33, Y36, and Y96 which are
located at the PH domain. Therefore, we decided to run docking
of our set of ligands on four mutated START-PH complexed
systems, including the mutations R43A, W33A/R43A/Y54A in
PH domain, E494R/N495K and E494R/N495K/P535R/E537K in
START domain. For, the limonoid compounds, the mutations
do not have a big impact on the binding energies in the
interface of the START-PH domains which seems to be
maintained in an inactive form. This is not the case for
HPA compounds for which docking results reveal mutations
improve the ligands’ binding affinity for many HPA compounds
(Table 2). However, the binding energies are still weaker than
with some limonoid compounds such as isogedunin, limonin, or
methyl angolensate.At the end of this docking study, we could
conclude that the limonoid compounds bind more favorably to
the interface of the START-PH domains and so could play a
major role in the inhibitory activity of CERT by stabilizing this
interaction. To estimate further this hypothesis, we decided to
run several molecular dynamic (MD) simulations corresponding
to (i) the START-PH complex without ligand and with different
mutations suggested previously, (ii) the START-PH complex
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FIGURE 2 | Representation of cedrelone docked into the PH domain. Cedrelone is in magenta and the residues interacting with cedrelone are in sticks.

FIGURE 3 | Comparison of the interaction of HPA-13 into the START domain from the X-ray (in cyan) and the docking approach (magenta). Residues that interact
with both poses are in sticks.

with the HPA-12 ligand, (iii) the START-PH complex with
the isogedunin ligand, (iv) the START-PH complex with the
mutation E494R/N495K and the isogedunin ligand. For the last
one, the E494R/N495K mutant was reported to be important to
the PH-START interaction and is also present in the binding
of isogedunin. So, it is expected to observe how the ligands are
stabilized during the MD simulations.

Stability Evaluation of PH-START
Complex by MD Simulations
Backbone RMSD of the Wild Type and Mutated
PH-START Complex
Based on the 50 ns of production from the MD simulations for
the WT and the 4 CERT mutants, root-mean square deviation

(RMSD) analysis enabled the measure of average distances (in
Å) of the studied systems from the corresponding starting
structure over the simulation period. We have to notice that
the G387 residues on the START domain was missing in the
X-ray structure. Therefore, the region from the N terminal T364
to the C terminal of V386 was removed from the RMSD and
RMSF analysis as it was fluctuated much more compared to
the others area.

In general, the systems were relatively stable with a maximum
RMSD around 4 Å. The WT and the two other CERT mutants
on the PH domain (R43A and W33A/R43A/Y54A) remain
stable around 2 Å along the 50 ns. These mutants seem
to destabilize the interaction of the START-PH domains less
(Figure 6) compared to the CERT mutants, E494R/N495K
and E494R/N495K/P535R/E537K, on the START domain. These
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FIGURE 4 | Docking pose of odoratone into the START domain. The odoratone is in magenta and the residues of START domain surrounding the ligand are in
green. The odoratone and the residues involved in the ligand binding are represented in sticks.

FIGURE 5 | Ligand interactions depicted between (A) Cedrelone, (B) Isogedunin, (C) Methyl angolensolate, and (D) Limonin within the PH-START interface.
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FIGURE 6 | Evaluation of the RMSD (Å) of the wild-type and mutated protein
as a function of the simulation time (50 ns).

results suggest that the mutations on the START domain could
have an impact on the stability of the START-PH interaction
(Prashek et al., 2017).

C-Alpha RMSF of the Wild Type and Mutated
PH-START Complex
The RMSF results are subsequently correlated with the
root-mean-square fluctuation of the residues along the MD
simulations (RMSF) (Figure 7). Some mutations have more or
less affected the flexibility of the PH domain residues. R43A
and R43A/Y54A/W33A mutations have significantly increased
the flexibility of the loops between the different β-strands. For
example, R43A/Y54A/W33A mutation had a greater effect on
the β1/β2, β3/β4, and β5/β6 loops which are involved in the
interaction surface of both domains. This means that these
mutated residues destabilized the environment of the residues
on the PH domain surface. However, no effect was observed
with the presence of the R494R/N495K mutation. With the
E494R/N495K/P535R/E537K mutation, only residues involved in
loop β3/β4 (E58-D59) showed an important flexibility with an
RMSF value going from 1 to about 4 Å. The START domain
showed significant increase in the flexibility of the various loops.
A major gain of flexibility is observed on the loop between α1’
and β1’/β2’. Such result was expected since this loop is partly
crystallized and therefore tends to be unstable. More importantly,
all mutations affected the residues of loops β6’/β7’ and β8’/β9’
involved in the CERT interface and known to be crucial for
PH/START stability. Due to the E494R/N495K/P535R/E537K
mutation, RMSF values of loop β6’/β7’ went from 2 to 4 Å and
this probably explains the instability of the complex. These results
also agree with the findings discussed in the previous section.

Analysis of the Ligands Effect on the
PH-START Complex by MD Simulations
Docking approaches help to determine potential ligand binding
patterns inside a protein, but such methods do not propose
information on the structural stability of protein-ligand

complexes. For this reason, in the aim to reinforce the potential
mode of binding of limonoid compound at the interface of the
START-PH domains, MD simulations were produced (50 ns)
and analyzed to evaluate the stability of isogedunin and HPA-12
in the START-PH interaction domains.

a. Backbone RMSD and C-Alpha RMSF of CERT
Structure
Looking at the RMSD measured on the backbone of the two
domains, the introduction of the ligands HPA-12 and isogedunin
seems to have slightly disturbed the general conformation of
the complex system compared to the wild type. We reached in
average a RMSD around 2, 4, and 6 Å for the WT and with
the introduction of isogedunin and HPA-12 ligands, respectively,
(Figure 8). The increase of the RMSD could suggest several
dynamic movements around the protein, notably at the interface
of the START-PH domains. Isogedunin is relatively more stable
compared to HPA for which the RMSD varies sensibly from one
to another MD simulation and always higher than for isogedunin.
This variability can be explained by the fact that HPA-12 has a
very flexible and unstable alkyl chain, as compared to isogedunin
that remains more static between the START-PH domains.

Looking at the RMSF (Figure 9) of CERT, there are bigger
fluctuations in the START domain compared to the PH domain,
notably the β’2/β’3 loops and β’5 to β’9 and α’4/β’8. A similar
trend is observed with isogedunin except that the fluctuations are
a little higher in α3 and β5/β6 loops in the PH domain and β’5/β’6
in the START domain. In opposite, the RMSF are much higher for
HPA-12, especially in the START domain suggesting that HPA-12
is more disturbing the START-PH complex than isogedunin.

To look at the impacts of the E494R/N495K mutation on the
CERT-isogedunin complex, three molecular dynamics runs of 50
ns were launched following the same MD protocol (Figure 10).
The three runs converged to different states of the complex. In
fact, the third run seems be more stable than the two first ones
during the simulation time. However, we can clearly notice an
increase of the backbone RMSD values compared to the wild
type complex. Altogether, the molecular dynamics simulations of
the mutated CERT-isogedunin complex reveal more variability.
Therefore, we can assume the E494R/N495K mutation might
destabilize the CERT-isogedunin complex and disturb their
interaction over time.

To investigate the impact of the E494R/N495K mutation on
the flexibility of CERT-isogedunin complex, the RMSF of both
CERT domains were analyzed (Figure 11). Compared to the wild
type complex, only a small increase of the RMSF values were seen.
This increase was visible on the main loops involved in the CERT
interaction surface. In fact, there is a slight gain of flexibility
concerning the β6’/β7’ and β8’/β9’ loops of the START domain
and loop β1/β2 loop of the PH domain. These observations
show that the E494R/N49RK mutation tends to disturb the
START-PH interaction through less stable loops movements on
the CERT interface.

Hydrogen Bond Analysis
Hydrogen bonds are known to play an essential role in
the molecular recognition and stability of protein structures.
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FIGURE 7 | Evaluation of wild-type and mutated PH (A) and START (B) RMSF (Å) by residue numbers. The mutated residues are indicated by arrows.

FIGURE 8 | Evaluation of the RMSD (Å) of CERT with and without ligands as a function of time (50 ns) with the protein as a function of the backbone.

A greater number of interactions between the intermolecular
hydrogen bond interaction results in the better stability of the
protein-ligand complex. In this study, a hydrogen bond analysis

was conducted to examine the stability of docked isogedunin
and HPA-12 systems. Concerning the CERT-isogedunin system,
the hydrogen bond interactions reach a maximum number of 6
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FIGURE 9 | Evaluation of the RMSF (Å) of CERT with and without ligands as a function of time (50 ns) with the protein as a function of the backbone C-alpha.

between 20 and 21 ns. Afterward, the hydrogen bonds numbers
remain stable throughout the MD simulation and only fluctuate
between 3 or 4 (Figure 12A). The hydrogen bond interactions
number of CERT-HPA-12 system reaches a maximum of 6 as well
but only up to 42 ns, then drops significantly to one and comes
back to two at the end of the simulation. Furthermore, major
interruptions dropping the number of bonds to 0 were observed
from 9 to 30 ns (Figure 12B). Therefore, we suggest that the few
H-bonding of CERT with HPA-12 may enable its disassociation.

To further investigate the stabilization of our systems,
trajectories of protein-ligand complexes were analyzed.
Hydrogen bonds are constantly formed with Q498 and
V533 and isogedunin (Supplementary Figure S4). π-stacking
interaction is also present between Y36 and isogedunin along
the MD simulation suggesting stability of the ligand at the

interface of the START-PH domains. Nonetheless, HPA-12
remained very unstable and flexible on the CERT interaction
surface (Supplementary Figure S5). At 10 ns, unlike isogedunin,
HPA-12 did not form any hydrogen bonds with CERT. It was
maintained at the interface through hydrophobic interactions
instead. At 40 ns, it reaches its maximum hydrogen bonds
number and interacts with K425, P535, Q537, and R85. However,
these bonds quickly break and only K425 remains bonded to
HPA-12. More about the contact frequency between residues and
ligands are described in Supplementary Information (Contact
Frequency Analysis and Supplementary Figure S6).

MM-PBSA Analysis
The MM-PBSA calculation of isogedunin and HPA-12 was
performed using the g_mmpbsa tool (Table 3). The affinities
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FIGURE 10 | Evaluation of the RMSD (Å) of CERT complexed to isogedunin
as a function of time (50 ns) with the protein as a function of the backbone.

of the CERT-ligand complexes were analyzed based on the MD
trajectory of each system. According to g_mmpbsa calculations,
HPA-12 binds to CERT with a 1 Gbind of −168.869 kJ/mol.
On the other hand, isogedunin binds to CERT with a lower
free energy value of −211.753 kJ/mol. CERT-isogedunin in
presence of the E494R/N495K mutation showed a 1 Gbind
of −192.407 kJ/mol which is a little higher than the CERT-
isogedunin. According, to the energy composition, van der Waals
energy seems to be the major force of the binding process of both
complexes, with a slightly high affinity for the CERT-isogedunin
complex. In fact, van der Waals energy is represented by
hydrophobic interactions which play a major role to form stable
complexes. The rest of the energy terms, such as the electrostatic
energy or the solvent-accessible surface area (apolar) were also
favorable components for the binding energy contribution. The
overall binding free energies displayed that isogedunin has a

better free energy for CERT compared to HPA-12 which is in
agreement with previous analyses.

DISCUSSION

In this study, the interaction between CERT and its potential
inhibitors (limonoids and HPAs), as well as the effect of mutated
key residues, were investigated using several computational
approaches such molecular docking and MD simulations. The
docking results allowed us to conclude on the greater affinity
of limonoids for the START-PH complex as compared to HPAs.
This specific type of compound has a better affinity at the
START-PH interface. Mutations conducted on both domains
confirmed that the mutated residues have no effect or increase the
stability of the interaction between the START and PH domain.
The MD simulations and the results of structural characteristic
features such as RMSD, RMSF, and hydrogen bonding plots
revealed higher stability of isogedunin at the START-PH interface
due to increased hydrogen bond interactions. This may imply
that this interface would be a favorable site of binding for
isogedunin and could explain the assumption of a different
inhibitory mechanism of CERT mediated by HPA and limonoid
families. At the difference of HPA-12, limonoid compounds
are unable to inhibit intracellular transport of fluorescent
short chain ceramide from endoplasmic reticulum (RE) to the
Golgi apparatus (Hullin-Matsuda et al., 2012). The discrepancy
between these results could be explained by our data which
suggests that limonoids would stabilize CERT in an inactive
form (interaction between PH and START domain) unable
to take in charge exogenous fluorescent ceramide (usually
used to analyze CERT-mediated ceramide transport in cellulo).
Limonoids inhibit the CERT-mediated extraction of endogenous
ceramide from isolated membranes (Hullin-Matsuda et al., 2012),
also probably by stabilizing CERT under its inactive form. In
contrast, HPA-12 which preferentially bound START domain

FIGURE 11 | Evaluation of the RMSF (Å) of CERT complexed to isogedunin as a function of time (50 ns) with the protein as a function of the backbone C-alpha.
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FIGURE 12 | Evolution of stability of CERT-isogedunin (A) and CERT-HPA-12 (B) complexes using a diagram showing intermolecular hydrogen interactions as a
function of time (ns) with Gromacs (Van der Spoel et al., 2005).

TABLE 3 | Binding free energy of CERT-HPA-12 and CERT-isogedunin using g_mmpbsa method.

Complexes Binding energy components (kJ/mol)

1Evdw 1Eelec 1Epolar 1Eapolar 1 Gbind

CERT-HPA-12 −285.45 ± 17.68 −49.03 ± 17.30 159.89 ± 23.18 −21.27 ± 1.14 −168.86 ± 21.31

CERT-isogedunin −286.51 ± 14.28 −31.284 ± 6.63 126.28 ± 21.87 −20.24 ± 1.11 −211.75 ± 22.64

CERT-isogedunin E494R/N495K −263.04 ± 55.69 −23.466 ± 7.47 112.26 ± 34.83 −18.17 ± 3.37 −192.41 ± 32.90

free of the PH domain, could easily prevent the binding of
exogenous fluorescent ceramide. Prashek et al. have shown that
the stability of PH-START domain interaction dictates CERT
subcellular localization (Prashek et al., 2017). Indeed, disruption
of PH-START domain interaction results in the translocation
of CERT from the ER to the Golgi apparatus, mediating the
transport of ceramide. We could therefore hypothesize that
limonoids, by stabilizing PH-START interaction domain will
stick CERT in the ER. On the other hand, HPA-12, which
binds START domain, will rather favor a Golgi (or cytoplasmic)
localization of CERT. Finally, interaction between PH and START
domain contributes to the inhibition of CERT through its SR
hyperphosphorylation (Kumagai et al., 2007). Limonoids, by
stabilizing the interaction between the PH and the START
domains could also favor hyperphosphorylation of the SR motif
and can therefore inhibit CERT function.

CONCLUSION

In conclusion, our results demonstrate a novel mechanism of
inhibition of CERT by limonoid compounds: an interfacial
inhibitory mechanism. These inhibitors are thermodynamically
more efficient (as evidenced in our study by comparing HPA-
12 and isogedunin) and are likely to be more selective than
competitive inhibitors (Pommier and Marchand, 2011). We
believe that our findings will provide insights in the development
of in vitro assays that can validate our computational study
and guide for the development of limonoid analogs that

could selectively target CERT and used in novel cancer
therapy strategies.
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Molecular dynamics (MD) simulations have been recorded on the complex between the
edema factor (EF) of Bacilllus anthracis and calmodulin (CaM), starting from a structure
with the orthosteric inhibitor adefovir bound in the EF catalytic site. The starting structure
has been destabilized by alternately suppressing different co-factors, such as adefovir
ligand or ions, revealing several long-distance correlations between the conformation
of CaM, the geometry of the CaM/EF interface, the enzymatic site and the overall
organization of the complex. An allosteric communication between CaM/EF interface
and the EF catalytic site, highlighted by these correlations, was confirmed by several
bioinformatics approaches from the literature. A network of hydrogen bonds and stacking
interactions extending from the helix V of of CaM, and the residues of the switches
A, B and C, and connecting to catalytic site residues, is a plausible candidate for the
mediation of allosteric communication. The greatest variability in volume between the
different MD conditions was also found for cavities present at the EF/CaM interface and
in the EF catalytic site. The similarity between the predictions from literature and the
volume variability might introduce the volume variability as new descriptor of allostery.

Keywords: protein-protein interaction, Bacillus anthracis, virulence factor, Cavity detection, allostery

INTRODUCTION

As the interactions between proteins are essential in all biological processes, the modulation of
these interactions with small ligands is a promising direction (Morelli et al., 2011; Tuffery and
Derreumaux, 2012; Huang, 2014; Zhang et al., 2014; Aguirre et al., 2015; Kuenemann et al., 2015;
Fischer et al., 2016; Shin et al., 2017). During the last decade, virtual screening has experienced
a turning point where interest has widened from protein active sites to cryptic sites (Beglov
et al., 2018; Vajda et al., 2018) not visible in the isolated protein conformation but formed upon
ligand binding. These cryptic sites have been proposed to be detected by analysis of protein
structures (Kozakov et al., 2015; Cimermancic et al., 2016), by mixed-solvent MD simulations
(Ghanakota et al., 2019; Martinez-Rosell et al., 2020) or by biased MD simulations (Comitani
and Gervasio, 2018; Sun et al., 2020). Inhibition of protein-protein interactions, search for new
cryptic sites and targeting protein function in an allosteric way are three closely related goals.
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Targeting allostery (Tschammer, 2016; Deredge et al., 2017;
Feng et al., 2018; Ni et al., 2019) is particularly suitable in the
case of inhibition of protein-protein interactions, because the
conformational changes in which allosteric communication plays
an important role when establishing the interaction, may create
or modify cavities (Goodey and Benkovic, 2008).

Allostery, discovered in the early days of molecular biology
(Monod et al., 1965; Koshland et al., 1966) has since then,
evolved from a model of discrete protein conformations to a
more continuous description of the free energy landscape of
proteins (Goodey and Benkovic, 2008; Liu and Nussinov, 2016;
Wodak et al., 2019). Consequently, the allostery is nowadays
quite often described as being closely connected to the variations
of equilibrium between protein conformations. Networks of
protein residues have been pointed out to be involved in the
transmission of these equilibrium variations (Gur et al., 2013;
van den Bedem et al., 2013; Raman et al., 2016). The evolution
of allostery description has allowed the emergence of so-called
allosteric ligands (Goodey and Benkovic, 2008; Nussinov and
Tsai, 2013), for which the binding to the protein has a long-range
influence on the protein conformation via residue networks.
In this regard, a pioneering approach has been based on a
detailed mechanistic simulation of functional motions (Laine
et al., 2010a). The allosteric ligands and the associated allosteric
pockets attract a lot of attention, because they expand the range
of pockets and ligands that could be exploited in effector design
by virtual screening studies (Zhang and Nussinov, 2019). In
addition, the diversity of allosteric phenomena can be utilized to
limit the emergence of resistance mutations in target proteins,
making carefully selected allosteric ligands more robust to the
appearance of resistance in pathogens.

As a result, numerous methods have been developed for
allosteric pocket detection in protein structures (Panjkovich and
Daura, 2014; Xu et al., 2018; Ghode et al., 2020; Tan et al.,
2020). In particular, it was shown (Ma et al., 2016) that most of
the known allosteric site motions show high correlations with
corresponding orthosteric site motions, whereas other surface
cavities did not. Many of the prediction methods are based
on a description of protein structures as an elastic network
in which each residue is replaced by the atom Cα and the
structure deformations are modeled through a set of springs
between these atoms (Panjkovich and Daura, 2014; Guarnera and
Berezovsky, 2019). The structure-based statistical mechanical
model of allostery (SBSMMA) (Guarnera and Berezovsky, 2019)
has been introduced which permits to calculate the free energy
variation due to allosteric communication.

In the present work, we investigate the use of molecular
dynamics (MD) simulations and bioinformatics approaches
to analyze protein-protein interactions, variability of cavities
and allostery for one example of protein-protein interaction
corresponding to the activation of a virulence factor. The
Edema Factor (EF) of Bacillus anthracis is activated in the
cytoplasm of the host cell by interacting with the ubiquitous
protein calmodulin (CaM). This interaction depends on the
level of Ca2+ loaded by CaM, the C terminal lobe of CaM
(C-CaM) displaying the highest affinity for ions Ca2+ during
the interaction with EF (Ulmer et al., 2003). The EF/CaM

complex has been extensively studied by structural biology and
biophysical techniques (Drum et al., 2000, 2001, 2002; Shen
et al., 2002, 2004a, 2005; Ulmer et al., 2003; Guo et al., 2004,
2008) as well as by molecular modeling (Laine et al., 2008, 2009,
2010a,b, 2012; Martínez et al., 2009). This complex (Figure 1A)
represents a very good example of an interaction with induced
conformational selection for both partners. Indeed, free CaM
in solution displays a very heterogeneous set of conformations,
with wide range of relative re-orientations of N terminal (N-
CaM) and C terminal (C-CaM) lobes (Bertini et al., 2004; Anthis
et al., 2011), whereas CaM in complex with EF is blocked in
an extended conformation. Similarly, the inactive state and the
activated state of EF display largely different conformations. The
helical region (residues 660-800) is moved apart from the CA

(residues 292-349 and 490-622) region to allow CaM insertion.
A large conformational reorganization of switches A (residues
502-551, purple), B (residues 578-591, cyan), and C (residues
630-659, yellow) also takes place and the catalytic site is reshaped
in its active organization (Figure 1A). Strikingly, in switch C
two strings β and a connection loop present in the structure of
isolated EF are converted to a α helix in the structure of the
EF/CaM complex.

In the literature, both orthosteric and allosteric ligands
have been proposed to inhibit EF activity. Several orthosteric
inhibitors, binding to the catalytic site, have been discovered
(Soelaiman et al., 2003; Shen et al., 2004b; Chen et al., 2009; Taha
et al., 2009, 2012; Geduhn et al., 2011). Among them, the ligand
adefovir (Shen et al., 2004b) was found by X-ray crystallography
to bind in the catalytic site in the presence of an Yb3+ ion
coordinated by adefovir as well as by protein residues. On the
other hand, the compound 10506-2A has been shown to be an
IPPI (inhibitor of protein-protein interaction) and to bind close
to the EF helical regions (Lee et al., 2004). Thiophen ureoacid
ligands have been discovered following virtual screening on the
pocket SABC, formed by residues from the three switches A,
B, and C (Laine et al., 2010a). Since it is believed that they do
not bind to the enzymatic site of EF, compounds 10506-2A and
thiophene ureoacids must by definition bind to an allosteric site.

Here, we propose the following approach to detect protein
regions which should be targeted using an allosteric approach to
inhibit the activity of EF. Starting from the X-ray crystallographic
structure of EF/CaM complex bound to the orthosteric inhibitor
adefovir (Shen et al., 2004b), we destabilized it by removing
alternatively several co-factors: the ion Mg2+ present in the
catalytic site, the ions Ca2+ loaded by CaM or the ligand
adefovir. The analysis of the trajectories made it possible to
detect a network of hydrogen bonds and stacking interactions,
connecting the EF catalytic site and the EF/CaM interface and
showing a strong destabilization when the co-factors are removed
from the EF/CaM structure. In addition, cavities present in the
EF/CaM complex have been tracked along all MD trajectories,
and cavity volume variability has been proposed as a method of
detecting allosteric pockets. The results obtained by this approach
on EF/CaM have been confirmed by analyzes (Xu et al., 2018;
Guarnera and Berezovsky, 2019). Therefore, the network of
hydrogen bonds and stacking interactions connecting the EF
catalytic site and the EF/CaM interface could be considered a

Frontiers in Molecular Biosciences | www.frontiersin.org 2 December 2020 | Volume 7 | Article 58654431

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Pitard et al. Interaction Adefovir/Edema Factor

FIGURE 1 | (A) X-ray crystallographic structure (PDB entry: 1PK0) of the
complex EF/CaM with the ions Ca2+ colored in gray and the ion Yb2+ colored
in lime. The ligand adefovir is drawn in ball-and-sticks, the regions CA (residues
292-349 and 490-622), CB (residues 350-489) and helical (residues 660-800,
labeled “Hel” on the figure). of EF are colored in green, orange and blue and
CaM is colored in red. The switches A (residues 502-551), B (residues
578-591), and C (residues 630-659), labeled SwA, SwB, and SwC, are
colored in purple, cyan, and yellow. The helix V of CaM is colored in salmon.
(B) Network of residues in the X-ray crystallographic structure (PDB entry:
1PK0) of the complex EF/CaM connecting residues of the catalytic site to
residues of the α helix V of CaM. The ligand adefovir is drawn in spheres. The
helix V is drawn in carton. The residues of CaM, region CA and of switches A,
B, and C are in the same colors than in (A).

plausible candidate for the allosteric communication path within
the complex structure.

MATERIALS AND METHODS

Preparation of the Systems for MD
Simulations
The X-ray crystallographic complex of EF with the inhibitor
adefovir (Shen et al., 2004b) (PDB entry: 1PK0, Figure 1A) served
as the starting point of the MD trajectories. The protein chain
was analyzed using Molprobity (Chen et al., 2010) (molprobity.
biochem.duke.edu), in order to add hydrogen atoms and to select
the sidechains orientations optimizing the network of hydrogen
bonds. The ion Yb3+ present in the catalytic site, was replaced by
a physiologically compatible ion Mg2+.

The files to perform MD simulations were prepared with
the CHARMM GUI interface (www.charmm-gui.org) (Lee et al.,
2016; Jo et al., 2017). The chains A and D of the structure 1PK0
were neutralized using potassium ions and solvated with water
molecules (Table 1). The loop (residues 675-695) located between

helices L and M (Drum et al., 2002) in the helical domain is
disordered and not visible in the initial 1PK0 structure. This
missing loop was added to the structure using the CHARMM
GUI interface. The force field CHARMM36 (MacKerell et al.,
1998, 2004; Best et al., 2012) and the TIP3P water model
(Jorgensen et al., 1983) were used to model the physical
interactions. The parameters for ligand adefovir were obtained
using the CHARMMGUI interface (www.charmm-gui.org). with
the Ligand Reader and Modeler tool (Kim et al., 2017). Six
different systems have been prepared with different molecular
compositions, starting from the structure 1PK0 then by removing
various co-factors: ions Mg2+, Ca2+ and adefovir (Table 1).

Recording MD Trajectories
The MD trajectories were recorded using NAMD 2.13
(Phillips et al., 2005) (www.ks.uiuc.edu/Research/namd/).
The simulations were performed in the NPT ensemble. A
cutoff of 12 Å and a switching distance of 10 Å were defined
for non-bonded interactions, while long-range electrostatic
interactions were calculated with the Particle Mesh Ewald (PME)
protocol (Darden et al., 1993). The RATTLE algorithm (Ryckaert
et al., 1977; Andersen, 1983) was used to keep all covalent
bonds involving hydrogens rigid, enabling a time step of 2 fs.
Atomic coordinates were saved every 10 picoseconds. At the
beginning of each trajectory, the system was first minimized
for 10,000 steps, then heated up gradually from 0 to 300 K in
300,000 integration steps. Then, the system was equilibrated for
50,000 steps. For each of six various conditions (Table 1), two
independent trajectories of 200 ns were recorded (named the
replicas R1 and R2) and corresponding to a total simulation
duration of 2.4 µs.

Analysis of MD Trajectories
The root-mean-square deviations (RMSD, Å) of atomic
coordinates, their root-mean-square fluctuations (RMSF, Å),
as well as distance and angle analysis between atoms along the
recorded trajectories were performed using cpptraj (Roe and
TE Cheatham, 2013). Angles between CaM α helix axes were
calculated using python scripts based on the python MDAnalysis
library (Michaud-Agrawal et al., 2011; Gowers et al., 2016), the
helices being defined as CaM regions including residues 8-19
(helix I), 31-37 (helix II), 46-53 (helix III), 66-73 (helix IV), 83-92
(helix V), 103-110 (helix VI), 119-127 (helix VII), 139-145 (helix
VIII). The axis of an helix spanning residues n to p is defined as a
segment connecting the geometric centers of the atoms Cαn and
Cαn+2 and of the atoms Cαp and Cαp+2.

The solvent accessible surfaces of residues along the trajectory
were calculated using a python script based on the python
MDAnalysis library (Michaud-Agrawal et al., 2011; Gowers et al.,
2016) and the software FreeSASA (Mitternacht, 2016). The EF
catalytic site surface was defined as the sum of solvent accessible
surfaces of EF residues H351, K353, S354, K372, R329, K346,
L348, D491, D493, H577, G578, T579, D582, N583, E588, F586,
and T548. The surface of the SABC pocket was defined as the
sum of the solvent accessible surfaces of EF residues A496, P499,
I538, E539, P542, S544, S550, W552, Q553, T579, Q581, L625,
Y626, Y627, N629, andN709. The surface of hydrophobic patches
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TABLE 1 | Systems composition.

System Solute Number of Neutralizing Total number

TIP3P waters K+ ions of atoms

EF_ade_Mg_CaM_Ca EF, CaM, Mg2+,2 Ca2+, adefovir 68,219 9 215,183

EF_ade_CaM_Ca EF, CaM, 2 Ca2+, adefovir 68,220 11 215,187

EF_ade_Mg_CaM EF, CaM, Mg2+, adefovir 69,773 13 219,847

EF_ade_CaM EF, CaM, adefovir 69,795 15 219,914

EF_CaM_Ca EF, CaM, 2 Ca2+ 69,849 11 220,034

EF_CaM EF, CaM 69,785 15 219,844

are defined according to Yang et al. (2004). The N-CaM patch
is formed by the N-CaM residues A10, F12, A15, L18, F19, L32,
M36, L39, M51, V55, M71, M72, and M76. The C-CaM patch is
formed by the C-CaM residues I85, A88, V91, F92, L105, M109,
L112, L116, M124, F141, M144, M145, and A147. The accessible
surface was calculated using the Lee-Richards algorithm (Lee and
Richards, 1971) with a probe radius of 1.4 Å.

Cavities of the EF/CaM complex were detected using the
softwaremkgridXf (Monet et al., 2019). The cavities are delimited
between two surfaces: the inner and out surfaces determined by
rolling probes of radii 1.4 and 8 Å on the protein atoms. In
addition, allosteric pockets were predicted using the Web server
of the PARS approach (Panjkovich and Daura, 2014) (bioinf.uab.
cat/cgi-bin/pars-cgi/pars.pl).

RESULTS

The Removal of Co-factors Destabilizes
the Organization of the EF/CaM Complex
The evolution of coordinate root-mean-square deviations
(RMSD, Å) with respect to the initial conformations of
chains A (EF) and D (CaM) in the structure 1PK0 calculated
along the trajectories, displays quite similar trends, with
a plateau attained in most of the cases, after 50 ns, and
located between 4 and 6 Å (Figure 2). The reproducibility of
the replicas of a given trajectory has been further analyzed
by realizing a clustering on each replica. This clustering
was performed using a self-organizing map approach,
described in the Supplementary Material. RMSD coordinates
were calculated between the representative conformations
extracted from clustering by comparing them two by two
(Supplementary Figure 1). The average RMSD values between
replicas of the same trajectory (yellow cells) are larger than
the average RMSD values within each replicas (gray cells),
but are mostly smaller than the average RMSD between
different trajectories. Interestingly, EF_ade_Mg_CaM_Ca, which
corresponds to the full system, displays the smallest RMSD of 3.9
Å between the replicas.

The coordinate root-mean-square fluctuations (RMSF,
Å) (Figure 3) display similar profiles for all trajectories.
Unsurprisingly, a certain variability is observed for the peak of
fluctuations on the loop (residues 675-695) missing in the initial
X-ray crystallographic structure and modeled when preparing

the system for molecular dynamics simulation, as described in
section 2. Globally, the N-CaM region fluctuates more than the
C-CaM region, loaded with Ca2+ ions.

Interestingly, the removal of ions does not increase much
the mobility provided that the ligand adefovir is still present
(trajectory EF_ade_CaM). By contrast, the removal of one type
of ion in the presence of the ligand (trajectories EF_ade_CaM_Ca
and EF_ade_Mg_CaM) or of the ions and the ligand (trajectory
EF_CaM) increases the internal mobility of EF and produces
a shift between the replicas. The trajectory EF_CaM_Ca,
corresponding to the active toxin ready to interact with adefovir,
has an internal mobility similar to that of EF_ade_Mg_CaM_Ca.
The similarity of internal mobility for these two EF/CaM
complexes mirrors their functional correspondence.

The global shape of the EF/CaM complex was analyzed by
monitoring the gyration radius of the complex as well as the
bending angle of the central α helix of CaM defined as the angle
between the axes of helices IV and V (Figure 4). The gyration
radius mainly samples values in the 19–22 Å range, with the
exception of EF_ade_Mg_CaM in which the gyration radius vary
in the 18–21 Å range (Figure 4, x-axis). Removal of Magnesium
(EF_ade_CaM_Ca) or of Calcium (EF_ade_Mg_CaM) ions in
the presence of adefovir induces an increase in the range of
variations. On the other hand, the removal of the ligand makes
it possible to maintain a narrow distribution of values, but shifts
the radius of gyration to smaller values, around 19 Å. Thus both
ligand and ions have an influence on the complex expansion.

The bending of the central α helix of CaM, monitored
as the angle between axes of α helices IV and V (Figure 4,
y-axis), is relatively stable around 130◦ for the full system
EF_ade_Mg_CaM_Ca as well as for EF_CaM_Ca and EF_CaM.
But, the systems EF_ade_CaM_Ca and EF_ade_Mg_CaM, in
which the adefovir is present and only one ion type is conserved
show large drifts of angle toward smaller angles down to 100◦

or larger angles up to 140◦. Furthermore, the 2D contour plot
describing the joint probability distribution of the gyration radius
and the bending angle (Figure 4) reveals a strong correlation
between the variations of these two parameters for systems
EF_ade_CaM_Ca and EF_ade_Mg_CaM.

The drifts in the bending angle of the central α helix is a
sign of a destabilization of the EF/CaM complex. Indeed, CaM
displays in the EF/CaM complex a relatively unusual extended
conformation (Yamniuk and Vogel, 2004). It was highlighted
in Laine et al. (2008) using normal mode analysis of different
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FIGURE 2 | Coordinate root-mean-square deviations (RMSD: Å) of the backbone heavy atoms of EF and CaM with respect to the PDB structure 1PK0, calculated
along all trajectories. For each trajectory, the black and red curves correspond to the two replicas R1 and R2.

trajectories recorded on EF/CaM that an exact fit of the extended
conformation of CaM to the EF structure is required for the
complex stability. Indeed, in the EF/CaM complex, the extended
structure of CaM is used to push away the helical domain
from the remaining part of EF. The variation of bending angle
in CaM central helix has a direct influence on the extension
of the conformation of CaM and therefore on its adjustment
to the activated EF. On the other hand, the variation of
gyration radius of the whole complex corresponds to a major
perturbation and perturbs the catalytic site and catalytic activity
of EF. Thus the correlation observed between the gyration
radius and the bending angle (Figure 4) proves that the fit of
extended CaM to the complex EF/CaM has an influence on the
EF function.

Overall, the removal of ions induces perturbations in the
EF/CaM complex, which displays important conformational
changes highlighted by variations of the gyration radius. These
perturbations are visible through the atomic fluctuations as well
as the correlated variations of gyration radius and CaM central
α helix bending. The bending of the central helix α of CaM,
due to the local environment, is related to the radius of gyration,

describing the general shape of the complex, thus highlighting a
long-distance effect.

CaM Conformation Inside the EF/CaM
Complex Conserves Features of the
Isolated CaM
The CaM conformation will be analyzed and compared to the
literature (Crivici and Ikura, 1995) information in order to
assess the fitting of CaM to the interaction with EF. CaM is
an extremely flexible protein (Bertini et al., 2004; Anthis et al.,
2011), its conformation being strongly modulated by the loading
of Calcium ions (Finn B.E. et al., 1995; Zhang et al., 1995; Komeiji
et al., 2002). This allows CaM to bind various target proteins
and peptides involved in the signaling processes (Ikura et al.,
1992).

In CaM, the EF-hand domains are helix-loop-helix motifs
responsible for Calcium binding. The Calcium ions bound to the
C-CaM lobe, are coordinated by the carbonyl oxygen of residue
Y99 and side chain carbonyl groups of residues D93, D95, and
E104 in the EF-hand 3, and by the carbonyl oxygen of residue
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FIGURE 3 | Coordinate root-mean-square fluctuations (RMSF: Å) of the backbone heavy atoms of the complex EF/CaM, each frame being superimposed on the
chains A and D of the PDB entry 1PK0. For each trajectory, the black and red curves correspond to replicas R1 and R2. The N terminal residue of CaM is indicated by
a vertical dashed line, the EF and CaM regions are labeled on the top of each plot. The N-CaM and C-CaM regions are labeled Nt and Ct for sake of clarity.

Q135 and side chain carbonyl groups of residues D131, D133,
and E140 in the EF-hand 4. The average coordination distances
reveal that the ions keep similar coordination geometry along
all trajectories (Supplementary Table 1). Side chain atoms Oδ

from residues D93, D95 and residues D131, D133 show weaker
coordination than the other coordinated residues.

It is well-known from the literature that the presence of
Calcium ions has a strong influence on the conformation of the
isolated CaM. The angles between the α helices of EF hands in
CaM increase, as well as the accessible surfaces of hydrophobic
patches, upon Calcium loading (Finn B.E. et al., 1995; Zhang
et al., 1995; Yamniuk and Vogel, 2004). In addition, in the
absence of Calcium ions, the central α helix is more disordered
(Barbato et al., 1992; Komeiji et al., 2002). These variations of
CaM conformation in the presence of Calcium ions allows a
better interaction of CaM with peptides involved in Calcium
signaling (Ikura et al., 1992; Crivici and Ikura, 1995).

Using as definition of the hydrophobic patches the residues
previously listed in section 2, the surfaces of hydrophobic patches
of N-CaM and C-CaM (Figure 5) display quite different trends.

The C-CaM patch, corresponding to EF-hands loaded with
ions Ca2+, displays profiles mostly concentrated around 200
Å2, with some replica displaying few jumps up to 900 Å2. By
contrast, the N-CaM patch show much more diversity spanning
a range of 200–600 Å2. Similar trends have been observed for
accessible surfaces of methionines in previous simulations of
the literature (Yang et al., 2004), with a cumulative exposed
surface of N-CaM Met of about 26 Å2 in apo-form and 88
Å2 with Calcium, whereas the C-CaM methionines displayed
cumulative exposed surfaces of 45Å2 in apo-form and 124 Å2

with Calcium (Table 4 of Yang et al., 2004). The paradoxical
behavior of the C-CaM patch which is blocked at a smaller
accessible surface value than the N-CaM patch can be explained
by the presence of the CA region of EF which blocks the motions
of C-CaM, as C-CaM is inserted between helical domain and CA.
At the contrary, one side of N-CaM interacts with the helical
domain, whereas the opposite side of N-CaM is free, which
allows more mobility of the N-CaM patch. The variations of
hydrophobic patches in the complex EF/CaM are not similar
to those described for the isolated CaM. Indeed, in the isolated
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FIGURE 4 | Contour plots describing the variation of the gyration radius (Å) with respect to the bending angle of the CaM central α-helix (deg) determined as the
angles between axes of α helices IV (residues 66-73) and V (residues 83-92). The contour lines describe the joint probability distribution of these two parameters. For
each trajectory, the black and magenta contours correspond to replicas R1 and R2.

CaM, the variations of hydrophobic patches favor the CaM
interaction with signaling peptides, but this aspect is not relevant
in the case of EF/CaM interaction.

In isolated CaM, EF hands show a trend to open when CaM
is loaded with calcium (Finn B.E. et al., 1995; Zhang et al., 1995).
Similarly, in previous MD simulations of the EF/CaM complex
(Laine et al., 2008), the C-CaM EF-hands, loaded with Ca2+,
display more open α helices than the N-CaM EF-hands. Such
behavior is also observed in the present simulations (Figure 6). In
the present work, the EF-hands 3 and 4, located in C-CaM loaded
with Ca2+ ions, display quite stable values around, respectively
80 and 90◦, corresponding to open conformations. The EF-
hand 4 fluctuates slightly more than the EF-hand 3, specially
for some trajectories in which Calcium or Magnesium ions
are absent (trajectories EF_ade_CaM and EF_ade_Mg_CaM).
By contrast, the angles of EF-hands 1 and 2, located in N-
CaM, display much wider variations among trajectories. The
angle of EF-hand 1 is located in the 40–80◦ range for most
of the trajectories, corresponding to conformations of the hand
oscillating between closed and semi-open configurations. The

angle of EF-hand 2 display the largest variations in the range
20–80◦. For EF_ade_Mg_CaM trajectories (green curves), the
EF-hand 2 explores open conformations with angles larger
than 80◦ and, for one replica of EF_ade_Mg_CaM_Ca (black
curves), EF_ade_CaM (yellow curves), and EF_CaM (cyan
curves), displays equilibrium between closed and semi-open
conformations. These EF-hands are located in the N-CaM lobe,
which is not loaded with Calcium ions and interacts also in a
much less intricate way with EF as only one side of N-CaM
interacts with EF helical domain. For these two reasons, the
angles between the two α helices are muchmore variable between
the different conditions of simulations as well as between replicas
of a given condition. In addition, the EF-hand 2 shows greater
variability than the EF-hand 1, because it is farther away from the
helical domain.

The overview of the CaM conformations reveals that the
EF hands of N-CaM, which are not loaded with calcium ions,
show much more heterogeneity in conformations, and populate
conformations corresponding to closed and semi-open EF hand
configurations. Otherwise, the overall conformations of CaM as
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FIGURE 5 | Distribution of accessible surface (Å2) of the hydrophobic patch of N-CaM and C-CaM. The N-CaM patch is defined by the residues A10, F12, A15, L18,
F19, L32, M36, L39, M51, V55, M71, M72, M76. The C-CaM patch is defined by the residues I85, A88, V91, F92, L105, M109, L112, L116, M124, F141, M144,
M145, A147. For each trajectory, the plain and dashed curves correspond to replicas R1 and R2.

well as the coordination of calcium are not strikingly modified
among the trajectories recorded here.

A Network of Amino-Acid Interactions
Connect the EF Catalytic Site With CaM
The EF activity has been investigated according to the accessible
surface of the catalytic site, calculated as the sum of solvent
accessible surfaces of residues H351, K353, S354, K372, R329,
K346, L348, D491, D493, H577, G578, T579, D582, N583, E588,
F586, and T548. This accessible surface varies in the 400–1,200 Å2

range (Figure 7, left). This range of values agrees with the average
catalytic surfaces of EF previously observed in MD studies (Laine
et al., 2008), as: 928 Å2 in the complex with 2 Calcium-loaded
CaM, 866 Å2 in the complex with the 4 Calcium-loaded CaM
and 501 Å2 in the complex with the apo CaM. Noticeably, in the
presence of adefovir (black, yellow, magenta, and green curves)
the surfaces are smaller around 400–800 Å2. This corresponds
to a more closed catalytic site, in agreement with the inhibitory
effect of adefovir. Removal of ion Mg2+ or removal of ions
Ca2+ and Mg2+ in the presence of adefovir (magenta and yellow
curves) induces a certain shift toward larger values, but the largest
shifts toward the 800–1,200 Å2 range, is observed if adefovir is
removed (cyan and blue curves). The trajectories EF_CaM_Ca

(blue curves) corresponding to the activated EF display the most
open catalytic site, which supports the use of accessible surface as
an estimator of the EF catalytic activity.

The two following aspects concerning the interface between
CaM and EF have been analyzed: (i) the accessible surface of the
pocket SABC, (ii) the variation of interactions along a residue
network spanning from the catalytic site to CaM.

The SABC pocket, previously used for the virtual screening
having conducted to the discovery of thiophen ureoacids (Laine
et al., 2010a), is formed by residues, A496, P499, I538, E539,
P542, S544, S550, W552, Q553, T579, Q581, L625, Y626, Y627,
N629, and N709, belonging to the three switches A, B, and C
(Drum et al., 2002). The accessible surface of the SABC pocket
(Figure 7, right) varies in a much smaller range of 200–800 Å2

than the catalytic pocket. Although the two pockets are defined
by a similar number of residues, large differences are nonetheless
observed for pocket SABC, sign of significant reorganizations in
this region, resulting in some cases in the disappearance of a large
accessible surface.

Initial analysis of the X-ray crystallographic structure 1PK0
(Shen et al., 2004b) has revealed a network of hydrogen bonds
connecting adefovir and residues from catalytic site with EF
residues at the EF/CaM interface and residues from CaM
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FIGURE 6 | Angle of the EF-hands (deg) calculated between axes of α helices including residues 8-19 (helix I), 31-37 (helix II), 46-53 (helix III), 66-73 (helix IV), 83-92
(helix V), 103-110 (helix VI), 119-127 (helix VII), 139-145 (helix VIII). The angle of EF-hand 1 is the angle between helices I and II. The angle of EF-hand 2 is the angle
between helices III and IV. The angle of EF-hand 3 is the angle between helices V and VI. The angle of EF-hand 4 is the angle between helices VII and VIII.

(Figure 1B). This network displays hydrogen bond and stacking
interactions which have been monitored along trajectories
(Supplementary Table 2). The contacts involve the residues
T519, T548, Q553, G578, D582, N583 starting from the catalytic
site and expanding to CaM. These residues are located in
the switches A (residues 502-551), B (residues 578-591), and
C (residues 630-659) (Figure 1B). Interestingly, in the X-ray
structures of EF (Drum et al., 2002), these switches undergo a
major reorganization between the inactive state and the active
state of EF.

Overall, the proportion of formed interactions strongly
decreases as soon as ions are removed from the system. In
particular, the interactions involving ion Mg2+ are strongly
reduced. In the initial X-ray crystallographic structure (PDB
entry: 1PK0), the ion Yb3+ is penta-coordinated by three
atoms from adefovir (O1-EMA, P3-EMA, O2-EMA) and two
atoms from EF (Nǫ2-H577, O-Y492). In the MD trajectories,
only the contact between Mg2+ and Nǫ2-H577 is stable
along the trajectories EF_ade_CaM_Ca and EF_ade_Mg_CaM
(Supplementary Table 2) and only three contacts are still present
in the trajectory EF_ade_Mg_CaM_Ca: the ones withO2-ade and
Nǫ2-H577 at a significant level and the one with O-Y492 at a
negligible frequency. This loss of contacts could be due to the

reduction of the charge and of the van der Waals radius between
ions Yb3+ and Mg2+.

Among the interactions between adefovir and protein present
in the structure 1PK0, only three (hydrogen bonds ade-H6/O-
T548, ade-H7/O-T579, and stacking ade/N583) are still present
along the trajectory EF_ade_Mg_CaM_Ca. Among them, the
stacking between the indole part of adefovir and the aliphatic
part of N583 is the only interaction significantly present along
all trajectories (Supplementary Table 2). Nevertheless, as soon
as the ions are removed from the system, the interaction
frequency is reduced in one replica of EF_ade_Mg_CaM (B),
EF_ade_CaM_Ca (C), and in all replicas of EF_ade_CaM (D).
The adefovir hydrogen bonds conserved with protein mainly
involve protons of the amine groups on the indole part. The
contacts involving the phosphate group P1 in the structure 1PK0
are completely lost along all trajectories. This destabilization of
the adefovir/protein contact and Magnesium contacts as soon
as the ion Yb3+ is replaced by the ion Mg2+ could support an
artifactual character of the structure 1PK0, in which the stability
of adefovir in the catalytic site was obtained by the presence of
the non-biological ion Yb3+.

The hydrogen bond and stacking interactions involving
EF and CaM residues are reduced between trajectories
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FIGURE 7 | (Left) Distribution of accessible catalytic surface (Å2) of EF, calculated as the sum of the accessible surfaces of residues H351, K353, S354, K372, R329,
K346, L348, D491, D493, H577, G578, T579, D582, N583, E588, F586, T548 of EF. (Right) Distribution of accessible surface (Å2) of the pocket SABC, calculated as
the sum of the accessible surfaces of residues A496, P499, I538, E539, P542, S544, S550, W552, Q553, T579, Q581, L625, Y626, Y627, N629, and N709 of EF.
For each trajectory, the plain and dashed curves correspond to replicas R1 and R2.

EF_ade_Mg_CaM_Ca (A) and EF_ade_Mg_CaM (B) and
between trajectories EF_ade_CaM_Ca (C) and EF_ade_CaM
(D), when the ions Ca2+ are removed from the system. Overall,
the removal of Ca2+ ions has more influence to reduce the
contact stability as the removal of Mg2+. Indeed, six interactions
decrease under a formation percentage of 10% if Ca2+ ions are
removed, whereas no interaction decreases below this percentage
in the absence of Mg2+. Interestingly, this influence is visible for
hydrogen bonds established between the side chain guanidino
group of R630 from EF and the side chain carboxyl groups of
residues E84 and E87 from CaM, for the hydrogen bond between
the sidechains of R540 from EF and the carboxyl groups of E87
from CaM, and also for the stacking between F628 from EF and
R90 from CaM. Noticeably, since the CaM residues E84, E87,
and R90 are located at the C terminal part of the α helix V, just
before the EF-hand 3 in C-CaM, the presence or absence of Ca2+

ions in this lobe has a direct effect on the interaction EF/CaM.
Analysis of the EF/CaM interface, as well as the interactions

within the catalytic site, highlight the influence of the variation
in the composition of the system on the accessible surface of
the catalytic site, impacting the enzymatic activity. In addition, a
network of interactions between EF and CaM residues detected
in the initial X-ray crystallographic structure, undergo strong

destabilization when co-factors are removed: this network could
be considered as a plausible communication path for allosteric
correlation between CaM and the EF catalytic site.

Analysis of Cavities Deformation to Detect
Allosteric Pockets
In this section, we investigate the possibility to use the cavity
tracking implemented in the software mkgridXf (Monet et al.,
2019) along EF MD trajectories in order to predict allosteric
sites in the EF/CaM complex. This approach is motivated by
the following reasons. As already quoted in the introduction,
several approaches for prediction of allosteric sites are based on a
measure of the deformation of the protein described by an elastic
network (Panjkovich andDaura, 2014; Guarnera and Berezovsky,
2016) or described by a normal mode perturbation (Greener and
Sternberg, 2015). Also, a recent analysis of a large set of protein
structures containing ligands showed (Alfayate et al., 2019) that
the binding sites of allosteric ligands display larger deformations.
Similarly, several bioinformatics approaches predict allosteric
pockets as the ones on which ligand binding induces the
largest variations in protein structures (Panjkovich and Daura,
2014; Guarnera and Berezovsky, 2019). Allostery has been thus
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repeatedly associated to larger local or global deformability.
Beside, cavity tracking of mkgridXf (Monet et al., 2019) along
MD trajectories made possible to correlate deformations of
individual cavities to the principal components of the proteins
global motions (Desdouits et al., 2015). The association of the
observation made by Desdouits et al. (2015) with the literature
approaches conducted us to investigate in the present work on
the reliability of analyzing the cavity deformation to predict
allosteric sites.

A systematic analysis and tracking of the cavities present in
the complex was performed along trajectories using mkgridXf
(Desdouits et al., 2015; Monet et al., 2019). The cavities were
determined by rolling probes as described in section 2. Each
cavity was tracked along MD trajectories using a description
based on a consensus list of protein atoms delineating the
cavities (Monet et al., 2019).

From each trajectory, only proteins EF and CaM have
been kept, water molecules, ions and adefovir being removed.
One frame every 40 was kept over the time interval 120–
200ns of the trajectories EF_ade_CaM_Ca, EF_ade_CaM,
EF_ade_Mg_CaM_Ca, EF_ade_Mg_CaM, EF_CaM_Ca and
EF_CaM, and then concatenated. The two trajectory replicas
series were then analyzed independently with mkgridXf in order
to probe the reproducibility of the cavity analyses.

The deformations of protein cavities have been monitored
through the variations of their volumes. The volumes of each
cavity averaged along each trajectory are plotted as points along
the cavity index, the points being colored according to the
trajectory (Figure 8). For most of the cavities, the volumes are
smaller than 100Å3 for all trajectories. Few of them (indexes #5,
#64, #83, #97, #130, #136, #140) display larger volumes up to
2,500Å3 as well as large variations among the various trajectory
conditions. The consensus residues defining each of these cavities
have been determined using a cutoff of 2.5 on the residue score
and are listed in Supplementary Table 3.

For both replicas, the cavity #140, located inside the catalytic
site, is among the most variable cavities. Other very variable
cavities are located at the interface between different CaM and
EF regions. The CaM regions are the EF-hand 1 (#5, #130),
the EF-hand 3 (#136), the EF-hand 4 (#97), and the central
α-helix (#64). The EF regions are the helical region (#5, #64,
#83, #97, #130) and the region CA (#136). Two cavities located
at the interface between the EF-hands and the region CA (#97
and #136) display smaller volumes. According to the rationale
exposed at the beginning of the section and which we explore
on the EF/CaM complex, the “variable cavities” cited above and
located at the interface between CaM and different EF regions are
allosteric cavity candidates.

In order to probe this proposition, we compared the approach
proposed here to current approaches in the literature. The initial
conformation of the EF/CaM complex was thus processed with
different web servers able to predict druggable or allosteric
pockets (Figure 9). The servers PARS (Panjkovich and Daura,
2014), Deepsite (Jiménez et al., 2017), FTMap (Kozakov et al.,
2015), POCASA (Yu et al., 2010), and CavityPlus (Xu et al.,
2018) were used. Globally, the mkgridXf cavities 140 and 64,
located respectively in the catalytic site and at the EF/CaM

interface, correspond to predicted druggable pockets. The cavity
130, located in the helical domain, is present in some of the
predicted sets of druggable pockets. Then, the server CavityPlus
allows to identify the location of allosteric sites, using the CorrSite
method (Ma et al., 2016). Using the catalytic site as the orthosteric
site, the corresponding allosteric pockets predicted by CavityPlus
correspond to the mkgridXf cavities 64, 130, and 83, located
at the EF/CaM interface and in the helical domain of EF.
To summarize, the set of mkgridXf cavities with large volume
variation contain druggable pockets, and three of the mkgridXf
cavities are predicted to be allosteric pockets with respect to
the catalytic site. This last result supports the existence of an
allosteric communication between the EF/CaM interface and the
catalytic site.

As described in the introduction, a theoretical frame
for detection of allostery has been developed during the
last 5 years: the structure-based statistical mechanical
model of allostery (SBSMMA) (Guarnera and Berezovsky,
2019), based on a description of the protein as an elastic
network between Cα. The effect of ligand is implicitly
modeled through an additional energetic term added to the
harmonic energy of the elastic network. The initial EF/CaM
complex conformation has been processed on the AlloSigMA
server (allosigma.bii.a-star.edu.sg/home) (Tan et al., 2020)

implementing the SBSMMA model. The 1h
(m↑)
i energy values,

describing the allosteric communication between protein
residues have been plotted for all residues involved in the
mkgridXf cavities 5, 64, 83, 97, 130, 136, and 140 (Figure 10).
The probe residues sample the cavity residues (filled triangles)

and, for all cavities except 140, positive 1h
(m↑)
i values describing

a free energy change are observed for several residues located
in the catalytic site (filled rectangle). The AlloSigMA results
thus agree with an allosteric communication between mkgridXf
cavities 5, 64, 83, 97, 130, 136, and the catalytic site.

The allosteric communication demonstrated by the variability
of cavity volumes as well as by the energetics of the elastic
network, is also supported by the variation of the network
of interactions described in the previous section between
the catalytic site and the helix V of CaM. This network is
a plausible candidate for a communication path within the
EF/CaM structure.

The cavities present in the EF/CaM complex were tracked
along MD trajectories recorded with various perturbation
conditions related to functional aspects of EF activity. In
that way, the EF/CaM interface has been pointed out as
a region containing pockets allosteric with respect to the
orthosteric catalytic site. The targeting of these pockets by virtual
screening has higher chances to conduct to the discovery of
allosteric ligands.

DISCUSSION

In the present work, MD trajectories were recorded from the
1PK0 crystallographic structure of the EF/CaM complex, in the
presence of various sets of co-factors: ions Ca2+ and Mg2+ and
ligand adefovir.
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FIGURE 8 | (Top) Averaged volumes (Å3) of the cavities detected by mkgridXf plotted along the cavity index. The two plots correspond to the two replicas series of
the trajectories. The points are colored according to the trajectory on which the volume was averaged: EF_ade_CaM_Ca (black), EF_ade_CaM (magenta),
EF_ade_Mg_CaM_Ca (green), EF_ade_Mg_CaM (cyan), EF_CaM_Ca (orange), and EF_CaM (blue). The cavities for which at least one volume larger than 250 Å3 has
been observed, are labeled with the cavity number and annotated according to the cavity location: Hel, helical domain; cata, catalytic site; Hel/CaM, interaction
interface between helical domain and CaM. (Bottom) Opposite views of the complex EF/CaM with CaM colored in dark gray. The cavities labeled on the plots are
drawn in surfaces and colored in pink. CaM is colored in dark gray.

The main finding from the comparison of trajectories is that
the removal of ions has a strong effect on the conformations of the
complex, at local and global levels. Indeed, the removal of Mg2+

ion destabilizes the interactions between EF and adefovir, but also
affects contacts between EF and CaM. Similarly, the removal of
Ca2+ ions destabilizes the interaction of EF with CaM, but also
the geometry of the catalytic site and the EF/adefovir interactions
even in the presence of ion Mg2+. This distant influence of ions
agrees with the existence of a network of hydrogen bonds and
stacking interactions which connects the catalytic pocket with

the EF/CaM interface and which is destabilized if co-factors
are removed. Noticeably a similar network of hydrogen bonds
has been observed and validated using MD and mutagenesis
(Selwa et al., 2014) in the adenylyl cyclase (AC) toxin from
Bordetella pertussis.

Another observation is that the replacement of the ion Yb3+,
observed in the initial X-ray crystallographic structure 1PK0
(Shen et al., 2004b), by the more biologically relevant Mg2+

ion induces a destabilization of numerous contacts between
adefovir, ion and residues of the catalytic pocket. Consequently,
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FIGURE 9 | Prediction of pockets druggability or allostery on the initial EF/CaM structure 1PK0 using several methods: (A) PARS (bioinf.uab.cat/cgi-bin/pars-cgi/
pars.pl), prediction of the druggable pockets, three of them correspond to mkgridXf cavities: 64 (blue), 130 (orange), and 140 (brown). (B) Deepsite (www.
playmolecule.com/deepsite), prediction of two druggable pockets, displaying scores of 0.999 and corresponding to mkgridXf cavities: 64 (blue) and 140 (brown). (C)
FTMap (ftsite.bu.edu), prediction of two druggable pockets, corresponding to mkgridXf cavities: 64 (blue) and 140 (brown). (D) POCASA (altair.sci.hokudai.ac.jp/g6/
Research/POCASA_e.html), prediction of five druggable pockets, two of them corresponding to the mkgridXf cavity 140 (brown), and two others to the mkgridXf

cavities: 64 (blue) and 130 (orange). (E) CavityPlus (www.pkumdl.cn:8000/cavityplus/index.php), prediction of the allosteric pockets influenced by the orthosteric
pocket located in the catalytic site (brown). Four allosteric pockets are predicted with the corresponding scores: Cavity1 (3.36), Cavity5 (1.50), Cavity10 (0.75), Cavity4
(0.70). These cavities correspond to the mkgridXf cavities: 64 (blue), 130 (orange/magenta), 83 (green).

the establishment of interactions due to the presence of Yb3+

ion could have enforced the binding of adefovir inhibitor to the
catalytic site or induced the specific conformation of adefovir
in the site. Previous computational analyses (Martínez et al.,
2009, 2011) already highlighted the artifactual character of
some ions observed in the catalytic site of various EF X-ray
crystallographic structures.

The analysis of CaM conformations in the EF/CaM revealed
that the removal of ions Ca2+ induces an unfitting of the
conformation of CaM to its position in the complex as it is visible
by the CaM central helix bending. The angles of the EF hands also
show greater variations in N-CaM than in C-CaM, which could
be related to a weaker interaction between EF and N-CaM.

The tracking of mkgridXf cavities in the EF/CaM complex
along MD trajectories revealed large variations of cavity volumes
in two regions: (i) the catalytic site and (ii) the interface between
EF and CaM. The analysis of initial EF/CaM complex structure
in the frame of the model SBSMMA (Guarnera and Berezovsky,
2019) has shown that the residues located in the mkgridXf
cavities at the interface between EF and CaM, display allosteric

communication with residues in the catalytic site. The procedure
followed in the present manuscript has several points in common
with the structure-based statistical mechanical model of allostery
(SBSMMA). Indeed, SBSMMA states that the allostery can be
quantitatively demonstrated using a model of elastic network
which is deformed when the protein undergoes transition
between unperturbed and perturbed states. In the present work,
the unperturbed state is the MD trajectories recorded on the
EF/CaM complex in presence of all co-factors, and the perturbed
states are the MD trajectories recorded when one or more
co-factors have been removed. In the frame of SBSMMA, the
deformable cavities located at the interface between CaM and EF
qualify them as being related in an allosteric way to the catalytic
site and thus to the catalytic function of EF. Consequently,
ligands designed to bind such cavities could have an allosteric
effect on the catalytic activity of EF. In that respect, one should
note that an inhibitor of EF, the compound 10506-2A, has been
claimed to bind to the helical region (Lee et al., 2004).

During the last decade, many approaches have been developed
for detecting pockets susceptible to bind allosteric ligands, and
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FIGURE 10 | Plot of free energy 1h
(m↑)
i (kcal/mol) profile, where the probe residue m samples the residues defining each of the selected cavities

(Supplementary Table 3), and i samples all residues of the complex (x-axis). The average free energy profile is plotted in red with range of values drawn in gray. The
residues defining the cavity (Supplementary Table 3) are shown with filled triangles, and the residues 329, 346, 372, 577, 491, 493, 548, 578, 579, 583 of the
catalytic site are shown with filled rectangles. The dashed line corresponds to the zero energy value.

allosteric paths through protein structures (Daily and Gray,
2009; Mitternacht and Berezovsky, 2011; Bowman and Geissler,
2012; Panjkovich and Daura, 2014; Greener and Sternberg, 2015;
Clarke et al., 2016; Guarnera and Berezovsky, 2016; Pfleger
et al., 2017; Song et al., 2017; Huang et al., 2018; Abrusan
and Marsh, 2019). These approaches are mostly based on a
graph description of protein structures. The graphs are then
analyzed either from the point of view of protein rigidity
and graph theory, or from a more physical point of view of
normal mode or elastic network analysis. In the present analysis,
we decided to focus on the protein cavities. The relationship
found here between the variability of mkgridXf cavity volumes
and protein long distance communication is not surprising
since such correlation has been observed previously (Desdouits
et al., 2015) between mkgridXf cavities deformation and protein
functional motions.

The proposition of using the volume variability of cavities for
detection of allosteric communication has been only used here

on the EF/CaM system. It is obvious that the application on a
unique system does not constitute a general proof of concept.
Nevertheless, use of cavities tracking along MD trajectories
presents some advantages with respect to methods based on
the modeling of protein via an elastic interaction network
(Panjkovich and Daura, 2014; Guarnera and Berezovsky, 2016).
Indeed, by contrast with the network where only one atom
(generally Cα) per residues is included in the calculation, the
cavity calculation and tracking take information about all atoms
into account, as well as their mutual interactions and their
interaction with the solvent and co-factors. Moreover, the model
for internal dynamics of the complex is more realistic than the
quadratic energy surface of the elastic network model. Finally,
perturbing the system by removing co-factors, as ions, highly
involved in the EF function, makes the observation of protein
deformation more specifically related to the inhibition of EF
function. However, all these improvements are accessible at the
cost of a very intense computational effort.
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Molecular docking is central to rational drug design. Current docking techniques suffer,
however, from limitations in protein flexibility and solvation models and by the use of
simplified scoring functions. All-atom molecular dynamics simulations, on the other
hand, feature a realistic representation of protein flexibility and solvent, but require
knowledge of the binding site. Recently we showed that coarse-grained molecular
dynamics simulations, based on the most recent version of the Martini force field, can be
used to predict protein/ligand binding sites and pathways, without requiring any a priori
information, and offer a level of accuracy approaching all-atom simulations. Given the
excellent computational efficiency of Martini, this opens the way to high-throughput drug
screening based on dynamic docking pipelines. In this opinion article, we sketch the
roadmap to achieve this goal.

Keywords: molecular dynamics, coarse-grain, ligand-protein, protein-protein interaction, Martini, dynamic
docking, high-throughput screening, drug design

INTRODUCTION

Structure-based drug design has been extensively used by pharmaceutical companies and academic
research groups to reduce the cost and time necessary for the discovery of new drugs. The approach
relies on the knowledge of the atomistic structure of the biological target, obtained by experiments
(e.g., X-ray crystallography, NMR spectroscopy, cryo-electron microscopy) or modeling (e.g., based
on homology). Standard pipelines often start with in silico docking experiments, used for virtual
screening of thousands of compounds or molecular fragments (Sliwoski et al., 2014; Leelananda
and Lindert, 2016; Duarte et al., 2019). After a significant reduction of the chemical space, a
selected group of molecules can be optimized by all-atom (AA) molecular dynamics (MD) based
simulations (Jorgensen and Thomas, 2008; Jorgensen, 2009; Vivo et al., 2016; Limongelli, 2020). AA
MD simulations can be used not only to improve the prediction of the binding pose and affinity,
but also to get insight into (un)binding rates and pathways (Dror et al., 2011; Shan et al., 2011;
Limongelli et al., 2013; Tiwary et al., 2015; Copeland, 2016; Bruce et al., 2018). As a third step,
further selection can be performed considering predictions of absorption, distribution, metabolism,
excretion and toxicity (ADMET) (Van De Waterbeemd and Gifford, 2003; Cheng et al., 2013). The
obtained lead compounds need to be validated by in vitro assays and structurally improved – lead
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optimization – to achieve drug candidates, which are tested
in animal models and eventually enter clinical trials before
final approval. Despite the rapid advances in computer-aided
drug discovery methods, the limitations of such approaches
are still major. Docking assays remain to date the first option
in the drug discovery pipeline thanks to their capability of
“virtually” testing thousands of molecules in a short time.
However, docking accuracy is poor due to limitations in
simplified energy (“scoring”) functions, sampling ligand and
protein flexibility (Grinter and Zou, 2014), and representation
of the environment – crucial in hydrated binding pockets and
in transmembrane proteins, that represent a large fraction of the
pharmaceutically relevant protein targets. AA MD simulations
can tackle these limitations, but they are still computationally
prohibitively expensive (Durrant and McCammon, 2011; Liu
et al., 2018; Miller et al., 2020), due to relatively long time scales
of conformational dynamics in proteins. Moreover, predictions
of dissociation pathways and rates are extremely challenging, and
require high performance computing and enhanced sampling
techniques (Limongelli et al., 2013; Casasnovas et al., 2017;
Brotzakis et al., 2019; Schuetz et al., 2019). Peptide and protein
design for biopharmaceutical applications have similar pitfalls,
with the current approaches reasonably successful in predicting
protein structures (Hutson, 2019; Callaway, 2020) and rigid-body
protein-protein interactions (Siebenmorgen and Zacharias, 2020)
but with limitations in the design of conformational changes
(Feldmeier and Höcker, 2013; Yang and Lai, 2017; Perkel, 2019;
D’Annessa et al., 2020).

Coarse-grained (CG) modeling is a computationally cheaper
alternative to high-resolution atomistic approaches (Ingólfsson
et al., 2014; Kmiecik et al., 2016), as it reduces the computational
cost by grouping atoms into effective interaction sites. Numerous
CG models have been developed during the past two decades,
with different levels of coarsening and different mathematical
representations. CG models have been successfully applied to
study a large range of processes in biology (Yen et al., 2018;
Bruininks et al., 2020; Lucendo et al., 2020) and materials
science (Casalini et al., 2019; Alessandri et al., 2020; Li
et al., 2020; Vazquez-Salazar et al., 2020). Applications such
as structure-based drug design are particularly challenging for
CG modeling because of the severe requirements: (1) high
chemical specificity (i.e., allowing to distinguish most chemical
groups); (2) capability to represent all possible components of
the system (proteins, cofactors, nucleic acids, drug candidates,
waters, lipids, etc.) in a coherent way; (3) realistic representation
of conformational flexibility of each molecule in the system;
and (4) accurate thermodynamics and kinetics of binding.
Currently, none of the CG force fields available fulfills all
the requirements above, but the Martini CG force field fulfills
at least some (Marrink et al., 2007; Marrink and Tieleman,
2013), as it allows modeling all main biomolecules (Monticelli
et al., 2008; López et al., 2009; de Jong et al., 2013, 2015;
Uusitalo et al., 2015, 2017; Wassenaar et al., 2015) with
relatively high chemical specificity, and proteins may still retain
reasonable conformational flexibility (Periole et al., 2009; Melo
et al., 2017; Poma et al., 2017). As in AA MD simulations,
most of the details of the environment can be included in

Martini CG simulations, for instance an explicit solvent model
or a complex bilayer composition (Ingolfsson et al., 2015;
Marrink et al., 2019).

Although Martini-based CG MD simulations have been used
to study a wide range of biomolecular processes, examples
of protein–ligand binding are still scarce (Negami et al.,
2014, 2020; Delort et al., 2017; Ferré et al., 2019; Jiang
and Zhang, 2019; Dandekar and Mondal, 2020). Studies
of protein-protein interactions are more common, although
usually restricted to membrane environments (Baaden and
Marrink, 2013; Castillo et al., 2013; Lelimousin et al., 2016;
Sun et al., 2020). In some cases, binding of lipids to sites
deeply buried inside the protein can be obtained by brute
force Martini MD (Arnarez et al., 2013; Van Eerden et al.,
2017; Corradi et al., 2019). Overall, some limiting factors
hampered the use of Martini in small-molecule and protein
design: (1) chemical specificity to reproduce the broad chemical
space of drugs; (2) the thermodynamics of ligand-protein
and protein-protein interactions are generally overestimated
(Stark et al., 2013; Javanainen et al., 2017; Alessandri et al.,
2019); and (3) introduction of conformational flexibility in
proteins requires case-by-case optimization (Negami et al.,
2020; Ahalawat and Mondal, 2021). A new version of the
Martini force field, named Martini 3 (Souza et al., 2021),
partly solves these issues: it can represent a broader variety
of chemical compounds, and it features improved molecular
packing and optimized molecular interactions (along with
specific interactions mimicking H-bonding and electronic
polarizability). Recently, Martini 3 was successfully applied to
a range of protein-ligand system examples, from the well-
characterized T4 lysozyme to members of the GPCR family and
nuclear receptors to a variety of enzymes (Souza et al., 2020).
In addition, combination of Martini 3 and Gō-like potentials
can substantially improve the modeling of protein flexibility
(Poma et al., 2017; Souza et al., 2019). Combined, these new
features open the possibility of computer-aided drug design
based on CG models.

In this perspective, we sketch a possible roadmap for a drug
design pipeline using Martini, where no a priori information
about the target pocket is necessary. Competition between ligands
for different pockets and environments can be included in the
screening. Protein flexibility can be incorporated to a certain
degree, allowing the possible discovery of cryptic (hidden)
pockets (Kuzmanic et al., 2020). Ligand (un)binding pathways
are accessible via enhanced sampling techniques (Raniolo and
Limongelli, 2020), and enable for the first time the possibility of
a “dynamic” drug screening based not only on ligand binding
modes, but also on kinetically relevant states – that is considering
binding affinity and dissociation rates (i.e., drug residence time).
The next sections detail the key steps of this pipeline.

LIGAND DATABASES:
COARSE-GRAINING THE LIGANDS

The very first step to develop a Martini drug design pipeline is
to create curated and validated databases containing hundreds
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to thousands of small-molecule models. This CG database needs
to include molecular moieties usually found in drugs, such
as halogens, heterocycles, and sulfamides. Alternatively, the
databases of low-molecular-weight molecules (∼150 Da) can
also be created for fragment-based drug discovery campaigns
(Rognan, 2012). Parameters for molecules/fragments of
pharmaceutical interest need to be validated by comparison
between CG, AA and, if available, experimental data for
a subset of relevant target systems. Once validated, all the
models will be made available via the open-access Martini
Database (MAD) web server1. The initial CG databases are
also the foundation to develop and calibrate automatic tools
to generate parameters for new CG models. Such automatic
tools should perform AA to CG mapping [as performed by
auto-martini (Bereau and Kremer, 2015)], bead assignment (i.e.,
the choice of the CG interaction parameters), and determination
of the bonded parameters [as PyCGTOOL (Graham et al.,
2017) or Swarm-CG (Empereur-mot et al., 2020)], allowing
further coverage of chemical space. The creation of accurate
databases and integration of automatic tools is currently
one of the main bottlenecks hampering high-throughput
screening with Martini.

VIRTUAL SCREENING: MARTINI
DYNAMIC DOCKING

Virtual screening is the core of the drug design pipeline,
and usually relies on docking algorithms. The use of Martini
CG models will enable a new approach: dynamic docking
with no a priori knowledge of the binding pocket in the
target structure. The concept here is to sample protein–
ligand interactions with CG MD simulations, which is around
300 to 1,000 times faster than atomistic MD (Souza et al.,
2020). A practical example of such speed up can be given
for propranolol binding to β2 adrenergic receptor, which has
been simulated in atomistic (Dror et al., 2011) and coarse-
grained (Souza et al., 2020) resolution. Atomistic simulations
showed one binding event every 11.9 µs, which for a single
simulation would take 84 days of computing time (using
the 4 CPUs and 1 GPU in a computer/conditions described
in the performance tests of Souza et al., 2020). The same
system in CG simulations showed roughly the same number
of binding events per µs (considering a normalization based
in the different concentration of ligands), and would take 2
to 7 h of computing time, on the same hardware. We remark
that a fair comparison between coarse-grained and atomistic
simulation time is not trivial, since this should consider the
different simulation conditions (e.g., ligand concentration) and
parameters (Souza et al., 2020).

Multiple strategies are possible to accelerate sampling even
more, with different computational costs and different levels
of sophistication. Unbiased MD simulations could be applied
in certain cases, to obtain not only binding poses but also
estimates of binding affinities, as recently demonstrated for

1mad.ibcp.fr

T4 lysozyme (Souza et al., 2020). However, for a general
approach to virtual screening, faster methods are necessary. One
possibility is to combine CG models with enhanced sampling
techniques that do not depend on prior knowledge of the
binding pathways. Examples are Gaussian accelerated molecular
dynamics (GaMD) (Miao et al., 2015; Pang et al., 2017), and
Hamiltonian Replica Exchange Molecular Dynamics (H-REMD)
(Wang et al., 2013; Luitz and Zacharias, 2014). Computational
performance can be straightforwardly increased by optimizing
ligand concentration, to increase the probability of binding. The
approach was already tested with atomistic simulations in a
variety of systems (Dror et al., 2011; Shan et al., 2011; Decherchi
et al., 2015; Schneider et al., 2016; Mondal et al., 2018). To
avoid ligand aggregation, artificial repulsive interactions among
ligands may be used (Shan et al., 2011). Similar strategies
are also extensively used in so-called mixed-solvent (or co-
solvent) approaches, where high concentrations of fragments
are used to identify and stabilize cryptic pockets (Guvench
and MacKerell, 2009; Bakan et al., 2012; Schmidt et al., 2019;
Kuzmanic et al., 2020). Another idea is to only use isolated
beads as probes representing chemical groups or fragments,
to predict the chemical topology in pockets and generate
pharmacophore models (Michelarakis et al., 2018; Michelarakis,
2019). The combination of CG models, enhanced sampling, and
ligand/fragment concentration strategies will allow simulations
of competitive binding assays.

An advantage of Martini dynamic docking approach is
the improved representation of protein flexibility via Gō-like
potentials (Poma et al., 2017; Souza et al., 2019). Although some
docking strategies can also include protein flexibility (Amaro
et al., 2018; Evangelista Falcon et al., 2019), they usually depend
on prior sampling of the protein conformational space, followed
by docking in a specific chosen pocket. In the strategy proposed
here, no a priori selection of the binding pocket is needed.
Both induced-fit and conformational-selection mechanisms are
included in MD simulations, as recently demonstrated (Souza
et al., 2020); however, accuracy will depend on the quality of the
protein CG model.

Another major advantage is the possibility to include complex
environments, such as multicomponent membranes, crowded
protein solutions, or other relevant in vivo-like conditions,
allowing more realistic predictions. Competition with the
environment may be relevant for proper interpretation of ligand
biological activity. For instance, lipid membrane composition
may affect kinetic rates and (un)binding constants in GPCRs
(Vauquelin, 2010; Sykes et al., 2014, 2019; Yuan et al., 2018) by
altering ligand partitioning to the membrane where the target
protein is located. Atomistic MD simulations of such complex
systems are computationally very costly, while they are already
within reach with Martini (Marrink et al., 2019).

Combining “standard” docking algorithms with Martini
provides a computationally cheap alternative to all-atom docking.
As recently demonstrated by HADDOCK (Honorato et al., 2019;
Roel-Touris et al., 2019), docking with Martini can be one order
of magnitude faster than atomistic docking. This would allow
to routinely explore very large ligand datasets (Lyu et al., 2019)
or even to use massive docking with grids covering the whole
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the protein, or exploring multiple proteins/conformations at the
same time. However, common problems of docking approaches
(mentioned above) still would be present; probably Martini MD
approaches represent a better compromise between accuracy and
computational performance.

LEAD OPTIMIZATION: BACKMAPPING
AND COARSE GRAINING IN CHEMICAL
SPACE

Accurate predictions of ligand binding poses and affinities
are key aspects for lead optimization (Jorgensen, 2009; Vivo
et al., 2016). In atomistic pipelines, MD simulations can
be used as a post-processing tool to validate and/or refine
the binding poses from docking (Vivo et al., 2016). After
this first check, more rigorous estimates of ligand binding
affinities can be achieved by free energy perturbation (FEP)
or thermodynamics integration (TI) (Jorgensen and Thomas,
2008; Jorgensen, 2009) – methods based on conversion of
one ligand to another, allowing to add or replace substituents,
in order to optimize ligand-protein interactions. In a Martini
drug design pipeline (step 3A of Figure 1), one could simply
convert the CG representation to all-atom (“backmapping”
procedure) to verify and refine the CG docking poses. Currently,
the most reliable approach for backmapping is the geometric
projection implemented in Backward (Wassenaar et al., 2014).
The main disadvantage is the need for mapping files for each
ligand. After obtaining the atomistic structures, any MD-based
simulations can be straightforwardly used. Careful equilibration
is necessary to allow relaxation of the system, in particular,
the water molecules may need to fill small cavities in pockets
not accessible to CG water. One possibility is to model buried
water molecules or ions using smaller beads, as previously
showcased (Souza et al., 2020). Such difficulties are also common
in standard docking approaches, as they usually do not include
water molecules.

An alternative possibility for lead optimization in Martini
would be to reverse the order of the steps, performing first
a preliminary set of FEP/TI calculations at the Martini CG
level. Such approach would allow to explore a broader portion
of the chemical space. On top of the default computational
efficiency of CG models, additional speed up could be obtained.
First, given the smoother potential surface, the replacement of
one bead for another (representing different chemical groups)
could be performed in less FEP/TI windows. Additionally, as
Martini CG beads generally represent more than one chemical
fragment (Menichetti et al., 2019; Bereau, 2020), the exploration
of chemical space increases computational efficiency by an
additional factor 103–104 (Menichetti et al., 2019; Bereau, 2020)
thanks to the reduction in the size of chemical space. Each
bead of the CG model can be transformed into different
chemical groups, for instance by using different mapping files
for each bead in the Backward code (Wassenaar et al., 2014).
With this alternative lead optimization approach, backmapping
would be performed as the last step, to increase accuracy of
the predictions.

FIGURE 1 | One of the possible pipelines for high-throughput dynamic
docking based on Martini coarse-grained modeling. (1) The first step in the
pipeline is the automatic conversion of input libraries of small compounds to
Martini models. The library includes drug-like compounds and small-sized
rigid molecules, useful for fragment-based drug discovery. (2) In the second
step, thousands of parallel simulations are automatically set up, to sample
small-molecule binding to pockets in the target protein. Competition in silico
assays with endogenous ligands are possible in this step. Performance can
be straightforwardly increased by optimizing the ligand concentration as well
as by employing enhanced sampling techniques. At the end, automatic
analysis and ranking of ligands is performed, to obtain estimates of binding
affinity in relation to different pockets and environments (e.g., binding to
protein in relation to water and/or bilayer). (3A) After defining the pocket and a
set of candidates, the accuracy of the prediction can be improved in third
step: backmapping to the atomistic models can be performed, providing
high-resolution details of the binding modes. Additionally, free energy
perturbation (FEP) or thermodynamic integration (TI) estimating the energetic

(Continued)
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FIGURE 1 | cost of converting certain chemical groups into others can allow
further optimization of the molecular structure. Here, coarse-graining in the
chemical space is possible, as Martini CG moieties can represent more than
one chemical fragment at the same time. (3B) An alternative or
complementary third step, based on binding affinity and kinetics, is also
considered here. Analysis of trajectories obtained in step 2 can help to identify
the drug (un)binding pathways, which can be used in methods as
Funnel-Metadynamics to provide lowest energy binding modes and
dissociation rates koff (drug residence time) states determining. (4) The
combined analysis of steps II and III can be used for predictions of activity,
which in combination with ADMET predictions leads to the final rankings and
selection of the lead compounds for in vitro assays. Part of the figure is
adapted from Souza et al. (2020).

ALTERNATIVE ROUTE: LIGAND BINDING
PATHWAYS, BINDING AFFINITIES, AND
KINETIC RATES

Drug discovery is historically focused on the elucidation and
optimization of the ligand binding mode and binding affinity.
However, in vivo drug activity is quantitatively correlated to
the drug residence time – i.e., dissociation constant rate koff –
more than binding affinity Kb (Copeland et al., 2006). The idea
of integrating kinetic data in drug screening has been around
since the beginning of 2000s (Limongelli, 2020; Nunes-Alves
et al., 2020). However, ligand binding kinetics is determined
by rare events, crossing ephemeral, high-energy states, elusive
to both experiments, and computations (Copeland, 2016). The
recent proof of concept with Martini 3 (Souza et al., 2020)
opens the possibility of including information on ligand binding
pathways in drug design pipelines (step 3B of Figure 1). The
data coming from unbiased CG MD simulations should be
integrated in a rigorous theoretical framework. One possibility
would be to use Markov state models (Husic and Pande,
2018) based on Martini dynamic docking screening (step 2
of in Figure 1). The method has proven useful in atomistic
ligand binding simulation studies (Buch et al., 2011) but it
shows difficulties in defining the macrostates of the process,
the choice of lag-time, and the sampling necessary to ensure
statistical significance. An attractive strategy is to combine
CG MD with Funnel-Metadynamics (Limongelli et al., 2013;
Raniolo and Limongelli, 2020) that has emerged as a powerful
method to reproduce binding mechanisms in ligand/protein
and ligand/DNA complexes, identify crystallographic binding
modes and predict binding free energies (Troussicot et al., 2015;
Comitani et al., 2016; Moraca et al., 2017; Saleh et al., 2017; Yuan
et al., 2018; D’Annessa et al., 2019). During FM simulations, the
whole drug binding mechanism is reproduced, from the fully
solvated state to the final binding mode, allowing to disclose
important aspects of the binding process such as (i) the presence
of alternative binding modes; (ii) the role of the solvent; and
(iii) the kinetically relevant states (Tiwary et al., 2015; Brotzakis
et al., 2019; Raniolo and Limongelli, 2020). CG-FM allows
quantitative predictions of koff and Kb, ligand binding modes, and
rate determining steps (Figure 1). This advance will represent
a paradigm shift in drug design, as medicinal chemists would
optimize the structure of drug candidates not only based on the

static representation of the ligand binding mode, but also on
the structures of kinetically relevant states. We point out that
the reduction of friction from the missing atomistic degrees of
freedom speeds up CG dynamics and affects kinetic estimates.
However, estimating trends may be useful enough for ligand
screening, while realistic kinetics rates might be recovered from
estimates of the friction reduction (Español and Zúñiga, 2011).

FURTHER CONSIDERATIONS AND
DISCUSSION

We described a new vision of high-throughput drug screening
based on Martini CG models. Although most of the recent
efforts in new drug design approaches focused on artificial
intelligence (AI), the development of new methods covering gaps
in standard approaches is equally important. Machine learning
and other AI approaches have great advantages when tackling
problems with enough experimental data to be used as training
dataset. In situations where this is not the case, physics-based
approaches (such as CG molecular dynamics) can perform better.
In particular, structural databases of transmembrane proteins are
still limited. The same is also true for databases that include
dynamic information, which can be important to elucidate
hidden allosteric pockets, to properly model fit-induced ligand
binding process or to determine ligand association/dissociation
pathways. More than complementary, AI and physics-based
approaches can be combined, with CG MD simulations being
used for the training of AI models or for the further refinement
of AI predictions.

The proposed Martini drug design workflow (Figure 1)
could be applied in full, or specific modules could be adapted
in more traditional virtual screening campaigns. Screening of
drugs based on ligand binding pathways and dissociation rates
is currently out of reach for all-atom descriptions, due to
the prohibitively high computational cost. Flexible proteins in
complex environments are also too costly for all-atom docking
approaches. Martini greatly reduces the computational costs of
MD, while offering reasonable accuracy and structural detail.
Accuracy will be further improved with the implementation of
polarizable models (Yesylevskyy et al., 2010; de Jong et al., 2013;
Michalowsky et al., 2017, 2018; Khan et al., 2020). Additionally,
protonation state changes and pH effects can be included
with Titratable Martini approaches (Grünewald et al., 2020).
Also within reach is the design of epitopes and nucleic acids,
useful for rational vaccine development (Kulp and Schief, 2013;
Hodgson, 2020; Norman et al., 2020). In this context, even
CG MD simulations may be overly expensive, as the approach
demands scanning of protein-protein and protein-nucleic acid
interfaces. Here, combination with standard docking is already
a reality, as recently implemented in HADDOCK (Honorato
et al., 2019; Roel-Touris et al., 2019). Overall, we believe dynamic
docking with CG models has great innovation potential, both in
academic and private sectors, and we hope this Perspective will
contribute to motivate the modeling community to expand the
efforts in this area.

Frontiers in Molecular Biosciences | www.frontiersin.org 5 March 2021 | Volume 8 | Article 65722251

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-657222 March 23, 2021 Time: 15:41 # 6

Souza et al. Dynamic Docking With Martini

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

PCTS wrote the first draft of the manuscript and prepared
the figure. All authors contributed to the conception of the
perspective article, manuscript revision, read, and approved the
submitted version.

FUNDING

VL acknowledges the support from the European Research
Council (ERC Consolidator Grant “CoMMBi”), the Swiss
National Science Foundation (Project No. 200021_163281),
the Italian MIUR-PRIN 2017 (2017FJZZRC), and the Swiss
National Supercomputing Centre (CSCS). SM acknowledges
funding from the ERC through an Advanced grant “COMP-
MICR-CROW-MEM.” LM acknowledges the Institut National
de la Santé et de la Recherche Medicale (INSERM)
and the Agence Nationale de la Recherche (ANR) for
funding (Grant Nos. ANR-17-CE11-0003 and ANR-20-
CE13-0030-03).

REFERENCES
Ahalawat, N., and Mondal, J. (2021). An appraisal of computer simulation

approaches in elucidating biomolecular recognition pathways. J. Phys. Chem.
Lett. 12, 633–641. doi: 10.1021/acs.jpclett.0c02785

Alessandri, R., Sami, S., Barnoud, J., Vries, A. H., Marrink, S. J., and Havenith,
R. W. A. (2020). Resolving donor–acceptor interfaces and charge carrier energy
levels of organic semiconductors with polar side chains. Adv. Funct. Mater.
30:2004799. doi: 10.1002/adfm.202004799

Alessandri, R., Souza, P. C. T., Thallmair, S., Melo, M. N., de Vries, A. H., and
Marrink, S. J. (2019). Pitfalls of the Martini model. J. Chem. Theory Comput. 15,
5448–5460. doi: 10.1021/acs.jctc.9b00473

Amaro, R. E., Baudry, J., Chodera, J., Demir, Ö, Andrew McCammon, J., Miao, Y.,
et al. (2018). Ensemble docking in drug discovery. Biophys. J. 114, 2271–2278.
doi: 10.1016/j.bpj.2018.02.038

Arnarez, C., Mazat, J.-P., Elezgaray, J., Marrink, S.-J., and Periole, X. (2013).
Evidence for cardiolipin binding sites on the membrane-exposed surface
of the cytochrome bc1. J. Am. Chem. Soc. 135, 3112–3120. doi: 10.1021/
ja310577u

Baaden, M., and Marrink, S. J. (2013). Coarse-grain modelling of protein–protein
interactions. Curr. Opin. Struct. Biol. 23, 878–886. doi: 10.1016/j.sbi.2013.09.
004

Bakan, A., Nevins, N., Lakdawala, A. S., and Bahar, I. (2012). Druggability
assessment of allosteric proteins by dynamics simulations in the presence
of probe molecules. J. Chem. Theory Comput. 8, 2435–2447. doi: 10.1021/
ct300117j

Bereau, T. (2020). Computational Compound Screening of Biomolecules and Soft
Materials by Molecular Simulations. Available online at: http://arxiv.org/abs/
2010.03298 (accessed November 20, 2020).

Bereau, T., and Kremer, K. (2015). Automated parametrization of the coarse-
grained Martini force field for small organic molecules. J. Chem. Theory
Comput. 11, 2783–2791. doi: 10.1021/acs.jctc.5b00056

Brotzakis, Z. F., Faidon Brotzakis, Z., Limongelli, V., and Parrinello, M. (2019).
Accelerating the calculation of protein–ligand binding free energy and
residence times using dynamically optimized collective variables. J. Chem.
Theory Comput. 15, 743–750. doi: 10.1021/acs.jctc.8b00934

Bruce, N. J., Ganotra, G. K., Kokh, D. B., Kashif Sadiq, S., and Wade, R. C. (2018).
New approaches for computing ligand–receptor binding kinetics. Curr. Opin.
Struct. Biol. 49, 1–10. doi: 10.1016/j.sbi.2017.10.001

Bruininks, B. M., Souza, P. C., Ingolfsson, H., and Marrink, S. J. (2020). A molecular
view on the escape of lipoplexed DNA from the endosome. eLife 9:e52012.
doi: 10.7554/eLife.52012

Buch, I., Giorgino, T., and De Fabritiis, G. (2011). Complete reconstruction of an
enzyme-inhibitor binding process by molecular dynamics simulations. Proc.
Natl. Acad. Sci. U. S. A. 108, 10184–10189. doi: 10.1073/pnas.1103547108

Callaway, E. (2020). “It will change everything”: DeepMind’s AI makes gigantic leap
in solving protein structures. Nature 588, 203–204. doi: 10.1038/d41586-020-
03348-4

Casalini, T., Limongelli, V., Schmutz, M., Som, C., Jordan, O., Wick, P.,
et al. (2019). Molecular modeling for nanomaterial–biology interactions:

opportunities, challenges, and perspectives. Front. Bioeng. Biotechnol. 7:268.
doi: 10.3389/fbioe.2019.00268

Casasnovas, R., Limongelli, V., Tiwary, P., Carloni, P., and Parrinello, M. (2017).
Unbinding kinetics of a p38 MAP kinase Type II inhibitor from metadynamics
simulations. J. Am. Chem. Soc. 139, 4780–4788. doi: 10.1021/jacs.6b12950

Castillo, N., Monticelli, L., Barnoud, J., and Tieleman, D. P. (2013). Free energy of
WALP23 dimer association in DMPC, DPPC, and DOPC bilayers. Chem. Phys.
Lipids 169, 95–105. doi: 10.1016/j.chemphyslip.2013.02.001

Cheng, F., Li, W., Liu, G., and Tang, Y. (2013). In silico ADMET prediction: recent
advances, current challenges and future trends. Curr. Top. Med. Chem. 13,
1273–1289. doi: 10.2174/15680266113139990033

Comitani, F., Limongelli, V., and Molteni, C. (2016). The free energy landscape
of GABA binding to a pentameric ligand-gated ion channel and its disruption
by mutations. J. Chem. Theory Comput. 12, 3398–3406. doi: 10.1021/acs.jctc.
6b00303

Copeland, R. A. (2016). The drug–target residence time model: a 10-year
retrospective. Nat. Rev. Drug Discov. 15, 87–95. doi: 10.1038/nrd.2015.18

Copeland, R. A., Pompliano, D. L., and Meek, T. D. (2006). Drug–target residence
time and its implications for lead optimization. Nat. Rev. Drug Discov. 5,
730–739. doi: 10.1038/nrd2082

Corradi, V., Sejdiu, B. I., Mesa-Galloso, H., Abdizadeh, H., Noskov, S. Y., Marrink,
S. J., et al. (2019). Emerging diversity in lipid–protein interactions. Chem. Rev.
119, 5775–5848. doi: 10.1021/acs.chemrev.8b00451

Dandekar, B. R., and Mondal, J. (2020). Capturing protein–ligand recognition
pathways in coarse-grained simulation. J. Phys. Chem. Lett. 11, 5302–5311.
doi: 10.1021/acs.jpclett.0c01683

D’Annessa, I., Di Leva, F. S., La Teana, A., Novellino, E., Limongelli, V., and Di
Marino, D. (2020). Bioinformatics and biosimulations as toolbox for peptides
and peptidomimetics design: where are we? Front. Mol. Biosci. 7:66. doi: 10.
3389/fmolb.2020.00066

D’Annessa, I., Raniolo, S., Limongelli, V., Di Marino, D., and Colombo, G. (2019).
Ligand binding, unbinding, and allosteric effects: deciphering small-molecule
modulation of HSP90. J. Chem. Theory Comput. 15, 6368–6381. doi: 10.1021/
acs.jctc.9b00319

de Jong, D. H., Liguori, N., van den Berg, T., Arnarez, C., Periole, X., and Marrink,
S. J. (2015). Atomistic and coarse grain topologies for the cofactors associated
with the photosystem II core complex. J. Phys. Chem. B 119, 7791–7803. doi:
10.1021/acs.jpcb.5b00809

de Jong, D. H., Singh, G., Bennett, W. F. D., Arnarez, C., Wassenaar, T. A., Schäfer,
L. V., et al. (2013). Improved parameters for the Martini coarse-grained protein
force field. J. Chem. Theory Comput. 9, 687–697. doi: 10.1021/ct300646g

Decherchi, S., Berteotti, A., Bottegoni, G., Rocchia, W., and Cavalli, A. (2015).
The ligand binding mechanism to purine nucleoside phosphorylase elucidated
via molecular dynamics and machine learning. Nat. Commun. 6:6155. doi:
10.1038/ncomms7155

Delort, B., Renault, P., Charlier, L., Raussin, F., Martinez, J., and Floquet, N. (2017).
Coarse-grained prediction of peptide binding to G-protein coupled receptors.
J. Chem. Inf. Model. 57, 562–571. doi: 10.1021/acs.jcim.6b00503

Dror, R. O., Pan, A. C., Arlow, D. H., Borhani, D. W., Maragakis, P., Shan, Y.,
et al. (2011). Pathway and mechanism of drug binding to G-protein-coupled

Frontiers in Molecular Biosciences | www.frontiersin.org 6 March 2021 | Volume 8 | Article 65722252

https://doi.org/10.1021/acs.jpclett.0c02785
https://doi.org/10.1002/adfm.202004799
https://doi.org/10.1021/acs.jctc.9b00473
https://doi.org/10.1016/j.bpj.2018.02.038
https://doi.org/10.1021/ja310577u
https://doi.org/10.1021/ja310577u
https://doi.org/10.1016/j.sbi.2013.09.004
https://doi.org/10.1016/j.sbi.2013.09.004
https://doi.org/10.1021/ct300117j
https://doi.org/10.1021/ct300117j
http://arxiv.org/abs/2010.03298
http://arxiv.org/abs/2010.03298
https://doi.org/10.1021/acs.jctc.5b00056
https://doi.org/10.1021/acs.jctc.8b00934
https://doi.org/10.1016/j.sbi.2017.10.001
https://doi.org/10.7554/eLife.52012
https://doi.org/10.1073/pnas.1103547108
https://doi.org/10.1038/d41586-020-03348-4
https://doi.org/10.1038/d41586-020-03348-4
https://doi.org/10.3389/fbioe.2019.00268
https://doi.org/10.1021/jacs.6b12950
https://doi.org/10.1016/j.chemphyslip.2013.02.001
https://doi.org/10.2174/15680266113139990033
https://doi.org/10.1021/acs.jctc.6b00303
https://doi.org/10.1021/acs.jctc.6b00303
https://doi.org/10.1038/nrd.2015.18
https://doi.org/10.1038/nrd2082
https://doi.org/10.1021/acs.chemrev.8b00451
https://doi.org/10.1021/acs.jpclett.0c01683
https://doi.org/10.3389/fmolb.2020.00066
https://doi.org/10.3389/fmolb.2020.00066
https://doi.org/10.1021/acs.jctc.9b00319
https://doi.org/10.1021/acs.jctc.9b00319
https://doi.org/10.1021/acs.jpcb.5b00809
https://doi.org/10.1021/acs.jpcb.5b00809
https://doi.org/10.1021/ct300646g
https://doi.org/10.1038/ncomms7155
https://doi.org/10.1038/ncomms7155
https://doi.org/10.1021/acs.jcim.6b00503
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-657222 March 23, 2021 Time: 15:41 # 7

Souza et al. Dynamic Docking With Martini

receptors. Proc. Natl. Acad. Sci. U. S. A. 108, 13118–13123. doi: 10.1073/pnas.
1104614108

Duarte, Y., Márquez-Miranda, V., Miossec, M. J., and González-Nilo, F. (2019).
Integration of target discovery, drug discovery and drug delivery: a review
on computational strategies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
11:e1554. doi: 10.1002/wnan.1554

Durrant, J. D., and McCammon, J. A. (2011). Molecular dynamics simulations and
drug discovery. BMC Biol. 9:71. doi: 10.1186/1741-7007-9-71

Empereur-mot, C., Pesce, L., Bochicchio, D., Perego, C., and Pavan, G. M.
(2020). Swarm-CG: automatic parametrization of bonded terms in coarse-
grained models of simple to complex molecules via fuzzy self-tuning particle
swarm optimization. ACS Omega 5, 32823–32843. doi: 10.26434/chemrxiv.1261
3427.v2

Español, P., and Zúñiga, I. (2011). Obtaining fully dynamic coarse-grained models
from MD. Phys. Chem. Chem. Phys. 13, 10538–10545. doi: 10.1039/c0cp02826f

Evangelista Falcon, W., Ellingson, S. R., Smith, J. C., and Baudry, J. (2019).
Ensemble docking in drug discovery: how many protein configurations from
molecular dynamics simulations are needed to reproduce known ligand
binding? J. Phys. Chem. B 123, 5189–5195. doi: 10.1021/acs.jpcb.8b11491

Feldmeier, K., and Höcker, B. (2013). Computational protein design of ligand
binding and catalysis. Curr. Opin. Chem. Biol. 17, 929–933. doi: 10.1016/j.cbpa.
2013.10.002

Ferré, G., Louet, M., Saurel, O., Delort, B., Czaplicki, G., M’Kadmi, C., et al.
(2019). Structure and dynamics of G protein-coupled receptor–bound ghrelin
reveal the critical role of the octanoyl chain. Proc. Natl. Acad. Sci. U. S. A. 116,
17525–17530. doi: 10.1073/pnas.1905105116

Graham, J. A., Essex, J. W., and Khalid, S. (2017). PyCGTOOL: automated
generation of coarse-grained molecular dynamics models from atomistic
trajectories. J. Chem. Inf. Model. 57, 650–656. doi: 10.1021/acs.jcim.7b00096

Grinter, S., and Zou, X. (2014). Challenges, applications, and recent advances of
protein-ligand docking in structure-based drug design. Molecules 19, 10150–
10176. doi: 10.3390/molecules190710150

Grünewald, F., Souza, P. C. T., Abdizadeh, H., Barnoud, J., de Vries, A. H., and
Marrink, S. J. (2020). Titratable Martini model for constant pH simulations.
J. Chem. Phys. 153:024118. doi: 10.1063/5.0014258

Guvench, O., and MacKerell, A. D. Jr. (2009). Computational fragment-based
binding site identification by ligand competitive saturation. PLoS Comput. Biol.
5:e1000435. doi: 10.1371/journal.pcbi.1000435

Hodgson, J. (2020). The pandemic pipeline. Nat. Biotechnol. 38, 523–532. doi:
10.1038/d41587-020-00005-z

Honorato, R. V., Roel-Touris, J., and Alexandre, M. J. (2019). Martini-Based
Protein-DNA Coarse-Grained HADDOCKing. Front. Mol. Biosci. 6:102. doi:
10.3389/fmolb.2019.00102

Husic, B. E., and Pande, V. S. (2018). Markov state models: from an art to a science.
J. Am. Chem. Soc. 140, 2386–2396. doi: 10.1021/jacs.7b12191

Hutson, M. (2019). AI protein-folding algorithms solve structures faster than ever.
Nature doi: 10.1038/d41586-019-01357-6

Ingólfsson, H. I., Lopez, C. A., Uusitalo, J. J., de Jong, D. H., Gopal, S. M.,
Periole, X., et al. (2014). The power of coarse graining in biomolecular
simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 225–248. doi: 10.1002/
wcms.1169

Ingolfsson, H. I., Tieleman, P., and Marrink, S. (2015). Lipid organization of the
plasma membrane. Biophys. J. 108:358a. doi: 10.1016/j.bpj.2014.11.1962

Javanainen, M., Martinez-Seara, H., and Vattulainen, I. (2017). Excessive
aggregation of membrane proteins in the Martini model. PLoS One
12:e0187936. doi: 10.1371/journal.pone.0187936

Jiang, Z., and Zhang, H. (2019). Molecular mechanism of S1P binding and
activation of the S1P1 receptor. J. Chem. Inf. Model. 59, 4402–4412. doi: 10.
1021/acs.jcim.9b00642

Jorgensen, W. L. (2009). Efficient drug lead discovery and optimization. Acc. Chem.
Res. 42, 724–733. doi: 10.1021/ar800236t

Jorgensen, W. L., and Thomas, L. L. (2008). Perspective on free-energy
perturbation calculations for chemical equilibria. J. Chem. Theory Comput. 4,
869–876. doi: 10.1021/ct800011m

Khan, H. M., Souza, P. C. T., Thallmair, S., Barnoud, J., de Vries, A. H., Marrink,
S. J., et al. (2020). Capturing choline-aromatics cation-π interactions in the
Martini force field. J. Chem. Theory Comput. 16, 2550–2560. doi: 10.1021/acs.
jctc.9b01194

Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A. E., and Kolinski, A.
(2016). Coarse-grained protein models and their applications. Chem. Rev. 116,
7898–7936. doi: 10.1021/acs.chemrev.6b00163

Kulp, D. W., and Schief, W. R. (2013). Advances in structure-based vaccine design.
Curr. Opin. Virol. 3, 322–331. doi: 10.1016/j.coviro.2013.05.010

Kuzmanic, A., Bowman, G. R., Juarez-Jimenez, J., Michel, J., and Gervasio, F. L.
(2020). Investigating cryptic binding sites by molecular dynamics simulations.
Acc. Chem. Res. 53, 654–661. doi: 10.1021/acs.accounts.9b00613

Leelananda, S. P., and Lindert, S. (2016). Computational methods in drug
discovery. Beilstein J. Org. Chem. 12, 2694–2718. doi: 10.3762/bjoc.12.267

Lelimousin, M., Limongelli, V., and Sansom, M. S. P. (2016). Conformational
changes in the epidermal growth factor receptor: role of the transmembrane
domain investigated by coarse-grained metadynamics free energy calculations.
J. Am. Chem. Soc. 138, 10611–10622. doi: 10.1021/jacs.6b05602

Li, C., Iscen, A., Sai, H., Sato, K., Sather, N. A., Chin, S. M., et al. (2020).
Supramolecular–covalent hybrid polymers for light-activated mechanical
actuation. Nat. Mater. 19, 900–909. doi: 10.1038/s41563-020-0707-7

Limongelli, V. (2020). Ligand binding free energy and kinetics calculation in 2020.
WIREs Comput. Mol. Sci. 10:e1455. doi: 10.1002/wcms.1455

Limongelli, V., Bonomi, M., and Parrinello, M. (2013). Funnel metadynamics
as accurate binding free-energy method. Proc. Natl. Acad. Sci. U. S. A. 110,
6358–6363. doi: 10.1073/pnas.1303186110

Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., and Yao, X. (2018). Molecular dynamics
simulations and novel drug discovery. Expert Opin. Drug Discov. 13, 23–37.
doi: 10.1080/17460441.2018.1403419

López, C. A., Rzepiela, A. J., de Vries, A. H., Dijkhuizen, L., Hünenberger,
P. H., and Marrink, S. J. (2009). Martini coarse-grained force field: extension
to carbohydrates. J. Chem. Theory Comput. 5, 3195–3210. doi: 10.1021/
ct900313w

Lucendo, E., Sancho, M., Lolicato, F., Javanainen, M., Kulig, W., Leiva, D., et al.
(2020). Mcl-1 and Bok transmembrane domains: unexpected players in the
modulation of apoptosis. Proc. Natl. Acad. Sci. U. S. A. 117, 27980–27988.
doi: 10.1073/pnas.2008885117

Luitz, M. P., and Zacharias, M. (2014). Protein-ligand docking using hamiltonian
replica exchange simulations with soft core potentials. J. Chem. Inf. Model. 54,
1669–1675. doi: 10.1021/ci500296f

Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., et al. (2019). Ultra-
large library docking for discovering new chemotypes. Nature 566, 224–229.
doi: 10.1038/s41586-019-0917-9

Marrink, S. J., Corradi, V., Souza, P. C. T., Ingólfsson, H. I., Peter Tieleman, D., and
Sansom, M. S. P. (2019). Computational modeling of realistic cell membranes.
Chem. Rev. 119, 6184–6226. doi: 10.1021/acs.chemrev.8b00460

Marrink, S. J., Jelger Risselada, H., Yefimov, S., Peter Tieleman, D., and de Vries,
A. H. (2007). The MARTINI force field: coarse grained model for biomolecular
simulations. J. Phys. Chem. B 111, 7812–7824. doi: 10.1021/jp071097f

Marrink, S. J., and Tieleman, D. P. (2013). Perspective on the Martini model. Chem.
Soc. Rev. 42:6801–6822. doi: 10.1039/c3cs60093a

Melo, M. N., Arnarez, C., Sikkema, H., Kumar, N., Walko, M., Berendsen, H. J. C.,
et al. (2017). High-throughput simulations reveal membrane-mediated effects
of alcohols on MscL gating. J. Am. Chem. Soc. 139, 2664–2671. doi: 10.1021/
jacs.6b11091

Menichetti, R., Kanekal, K. H., and Bereau, T. (2019). Drug-membrane
permeability across chemical space. ACS Cent. Sci. 5, 290–298. doi: 10.1021/
acscentsci.8b00718

Miao, Y., Feher, V. A., and McCammon, J. A. (2015). Gaussian accelerated
molecular dynamics: unconstrained enhanced sampling and free energy
calculation. J. Chem. Theory Comput. 11, 3584–3595. doi: 10.1021/acs.jctc.
5b00436

Michalowsky, J., Schäfer, L. V., Holm, C., and Smiatek, J. (2017). A refined
polarizable water model for the coarse-grained MARTINI force field with long-
range electrostatic interactions. J. Chem. Phys. 146:054501. doi: 10.1063/1.
4974833

Michalowsky, J., Zeman, J., Holm, C., and Smiatek, J. (2018). A polarizable
MARTINI model for monovalent ions in aqueous solution. J. Chem. Phys.
149:163319. doi: 10.1063/1.5028354

Michelarakis, N. (2019). Towards Dynamic Pharmacophore Models Through the
Use of Coarse Grained Molecular Dynamic Simulations, Dissertation. Oxford:
University of Oxford.

Frontiers in Molecular Biosciences | www.frontiersin.org 7 March 2021 | Volume 8 | Article 65722253

https://doi.org/10.1073/pnas.1104614108
https://doi.org/10.1073/pnas.1104614108
https://doi.org/10.1002/wnan.1554
https://doi.org/10.1186/1741-7007-9-71
https://doi.org/10.26434/chemrxiv.12613427.v2
https://doi.org/10.26434/chemrxiv.12613427.v2
https://doi.org/10.1039/c0cp02826f
https://doi.org/10.1021/acs.jpcb.8b11491
https://doi.org/10.1016/j.cbpa.2013.10.002
https://doi.org/10.1016/j.cbpa.2013.10.002
https://doi.org/10.1073/pnas.1905105116
https://doi.org/10.1021/acs.jcim.7b00096
https://doi.org/10.3390/molecules190710150
https://doi.org/10.1063/5.0014258
https://doi.org/10.1371/journal.pcbi.1000435
https://doi.org/10.1038/d41587-020-00005-z
https://doi.org/10.1038/d41587-020-00005-z
https://doi.org/10.3389/fmolb.2019.00102
https://doi.org/10.3389/fmolb.2019.00102
https://doi.org/10.1021/jacs.7b12191
https://doi.org/10.1038/d41586-019-01357-6
https://doi.org/10.1002/wcms.1169
https://doi.org/10.1002/wcms.1169
https://doi.org/10.1016/j.bpj.2014.11.1962
https://doi.org/10.1371/journal.pone.0187936
https://doi.org/10.1021/acs.jcim.9b00642
https://doi.org/10.1021/acs.jcim.9b00642
https://doi.org/10.1021/ar800236t
https://doi.org/10.1021/ct800011m
https://doi.org/10.1021/acs.jctc.9b01194
https://doi.org/10.1021/acs.jctc.9b01194
https://doi.org/10.1021/acs.chemrev.6b00163
https://doi.org/10.1016/j.coviro.2013.05.010
https://doi.org/10.1021/acs.accounts.9b00613
https://doi.org/10.3762/bjoc.12.267
https://doi.org/10.1021/jacs.6b05602
https://doi.org/10.1038/s41563-020-0707-7
https://doi.org/10.1002/wcms.1455
https://doi.org/10.1073/pnas.1303186110
https://doi.org/10.1080/17460441.2018.1403419
https://doi.org/10.1021/ct900313w
https://doi.org/10.1021/ct900313w
https://doi.org/10.1073/pnas.2008885117
https://doi.org/10.1021/ci500296f
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1021/acs.chemrev.8b00460
https://doi.org/10.1021/jp071097f
https://doi.org/10.1039/c3cs60093a
https://doi.org/10.1021/jacs.6b11091
https://doi.org/10.1021/jacs.6b11091
https://doi.org/10.1021/acscentsci.8b00718
https://doi.org/10.1021/acscentsci.8b00718
https://doi.org/10.1021/acs.jctc.5b00436
https://doi.org/10.1021/acs.jctc.5b00436
https://doi.org/10.1063/1.4974833
https://doi.org/10.1063/1.4974833
https://doi.org/10.1063/1.5028354
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-657222 March 23, 2021 Time: 15:41 # 8

Souza et al. Dynamic Docking With Martini

Michelarakis, N., Sands, Z. A., Sansom, M. S. P., and Stansfeld, P. J. (2018). Towards
dynamic pharmacophore models by coarse grained molecular dynamics.
Biophys. J. 114:558a. doi: 10.1016/j.bpj.2017.11.3050

Miller, E., Murphy, R., Sindhikara, D., Borrelli, K., Grisewood, M., Ranalli, F., et al.
(2020). A reliable and accurate solution to the induced fit docking problem
for protein-ligand binding. ChemRxiv [Preprint]. doi: 10.26434/chemrxiv.
11983845.v2

Mondal, J., Ahalawat, N., Pandit, S., Kay, L. E., and Vallurupalli, P. (2018). Atomic
resolution mechanism of ligand binding to a solvent inaccessible cavity in T4
lysozyme. PLoS Comput. Biol. 14:e1006180. doi: 10.1371/journal.pcbi.1006180

Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Peter Tieleman, D., and
Marrink, S.-J. (2008). The MARTINI coarse-grained force field: extension to
proteins. J. Chem. Theory Comput. 4, 819–834. doi: 10.1021/ct700324x

Moraca, F., Amato, J., Ortuso, F., Artese, A., Pagano, B., Novellino, E., et al.
(2017). Ligand binding to telomeric G-quadruplex DNA investigated by funnel-
metadynamics simulations. Proc. Natl. Acad. Sci. U. S. A. 114, E2136–E2145.
doi: 10.1073/pnas.1612627114

Negami, T., Shimizu, K., and Terada, T. (2014). Coarse-grained molecular
dynamics simulations of protein-ligand binding. J. Comput. Chem. 35, 1835–
1845. doi: 10.1002/jcc.23693

Negami, T., Shimizu, K., and Terada, T. (2020). Coarse-grained molecular
dynamics simulation of protein conformational change coupled to ligand
binding. Chem. Phys. Lett. 742:137144. doi: 10.1016/j.cplett.2020.137144

Norman, R. A., Ambrosetti, F., Bonvin, A. M. J. J., Colwell, L. J., Kelm, S., Kumar,
S., et al. (2020). Computational approaches to therapeutic antibody design:
established methods and emerging trends. Brief. Bioinform. 21, 1549–1567.
doi: 10.1093/bib/bbz095

Nunes-Alves, A., Kokh, D. B., and Wade, R. C. (2020). Recent progress in molecular
simulation methods for drug binding kinetics. Curr. Opin. Struct. Biol. 64,
126–133. doi: 10.1016/j.sbi.2020.06.022

Pang, Y. T., Miao, Y., Wang, Y., and McCammon, J. A. (2017). Gaussian accelerated
molecular dynamics in NAMD. J. Chem. Theory Comput. 13, 9–19. doi: 10.
1021/acs.jctc.6b00931

Periole, X., Cavalli, M., Marrink, S.-J., and Ceruso, M. A. (2009). Combining an
elastic network with a coarse-grained molecular force field: structure, dynamics,
and intermolecular recognition. J. Chem. Theory Comput. 5, 2531–2543. doi:
10.1021/ct9002114

Perkel, J. M. (2019). The computational protein designers. Nature 571, 585–587.
doi: 10.1038/d41586-019-02251-x

Poma, A. B., Cieplak, M., and Theodorakis, P. E. (2017). Combining the MARTINI
and structure-based coarse-grained approaches for the molecular dynamics
studies of conformational transitions in proteins. J. Chem. Theory Comput. 13,
1366–1374. doi: 10.1021/acs.jctc.6b00986

Raniolo, S., and Limongelli, V. (2020). Ligand binding free-energy calculations
with funnel metadynamics. Nat. Protoc. 15, 2837–2866. doi: 10.1038/s41596-
020-0342-4

Roel-Touris, J., Don, C. G., Honorato, R. V., João, P. G. L., and Bonyin, A. M. J.
(2019). Less is more: coarse-grained integrative modeling of large biomolecular
assemblies with HADDOCK. J. Chem. Theory Comput. 15, 6358–6367. doi:
10.1021/acs.jctc.9b00310

Rognan, D. (2012). Fragment-based approaches and computer-aided drug
discovery. Top. Curr. Chem. 317, 201–222. doi: 10.1007/128_2011_182

Saleh, N., Ibrahim, P., Saladino, G., Gervasio, F. L., and Clark, T. (2017). An
efficient metadynamics-based protocol to model the binding affinity and the
transition state ensemble of G-protein-coupled receptor ligands. J. Chem. Inf.
Model. 57, 1210–1217. doi: 10.1021/acs.jcim.6b00772

Schmidt, D., Boehm, M., McClendon, C. L., Torella, R., and Gohlke, H. (2019).
Cosolvent-enhanced sampling and unbiased identification of cryptic pockets
suitable for structure-based drug design. J. Chem. Theory Comput. 15, 3331–
3343. doi: 10.1021/acs.jctc.8b01295

Schneider, S., Provasi, D., and Filizola, M. (2016). How oliceridine (TRV-130) binds
and stabilizes a µ-opioid receptor conformational state that selectively triggers
G protein signaling pathways. Biochemistry 55, 6456–6466. doi: 10.1021/acs.
biochem.6b00948

Schuetz, D. A., Bernetti, M., Bertazzo, M., Musil, D., Eggenweiler, H.-M.,
Recanatini, M., et al. (2019). Predicting residence time and drug unbinding
pathway through scaled molecular dynamics. J. Chem. Inf. Model. 59, 535–549.
doi: 10.1021/acs.jcim.8b00614

Shan, Y., Kim, E. T., Eastwood, M. P., Dror, R. O., Seeliger, M. A., and Shaw, D. E.
(2011). How does a drug molecule find its target binding site? J. Am. Chem. Soc.
133, 9181–9183. doi: 10.1021/ja202726y

Siebenmorgen, T., and Zacharias, M. (2020). Computational prediction of protein–
protein binding affinities. WIREs Comput. Mol. Sci. 10:e1448 doi: 10.1002/
wcms.1448

Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W. (2014). Computational
methods in drug discovery. Pharmacol. Rev. 66, 334–395. doi: 10.1124/pr.112.
007336

Souza, P. C. T., Alessandri, R., Barnoud, J., Thallmair, S., Faustino, I., Grunewald,
F., et al. (2021). Martini 3: a general purpose force field for coarse-
grain molecular dynamics. Nat. Methods. doi: 10.1038/s41592-021-01098-3

Souza, P. C. T., Thallmair, S., Conflitti, P., Ramírez-Palacios, C., Alessandri, R.,
Raniolo, S., et al. (2020). Protein-ligand binding with the coarse-grained Martini
model. Nat. Commun. 11:3714. doi: 10.1038/s41467-020-17437-5

Souza, P. C. T., Thallmair, S., Marrink, S. J., and Mera-Adasme, R. (2019). An
allosteric pathway in copper, zinc superoxide dismutase unravels the molecular
mechanism of the G93A amyotrophic lateral sclerosis-linked mutation. J. Phys.
Chem. Lett. 10, 7740–7744. doi: 10.1021/acs.jpclett.9b02868

Stark, A. C., Andrews, C. T., and Elcock, A. H. (2013). Toward optimized potential
functions for protein–protein interactions in aqueous solutions: osmotic second
virial coefficient calculations using the MARTINI coarse-grained force field.
J. Chem. Theory Comput. 9, 4176–4185. doi: 10.1021/ct400008p

Sun, F., Schroer, C. F. E., Palacios, C. R., Xu, L., Luo, S.-Z., and Marrink, S. J.
(2020). Molecular mechanism for bidirectional regulation of CD44 for lipid
raft affiliation by palmitoylations and PIP2. PLoS Comput. Biol. 16:e1007777.
doi: 10.1371/journal.pcbi.1007777

Sykes, D. A., Parry, C., Reilly, J., Wright, P., Fairhurst, R. A., and
Charlton, S. J. (2014). Observed drug-receptor association rates are
governed by membrane affinity: the importance of establishing “micro-
pharmacokinetic/pharmacodynamic relationships” at the β2-adrenoceptor.
Mol. Pharmacol. 85, 608–617. doi: 10.1124/mol.113.090209

Sykes, D. A., Stoddart, L. A., Kilpatrick, L. E., and Hill, S. J. (2019). Binding
kinetics of ligands acting at GPCRs. Mol. Cell. Endocrinol. 485, 9–19. doi:
10.1016/j.mce.2019.01.018

Tiwary, P., Limongelli, V., Salvalaglio, M., and Parrinello, M. (2015). Kinetics of
protein–ligand unbinding: predicting pathways, rates, and rate-limiting steps.
Proc. Natl. Acad. Sci. U.S.A. 112, E386–E391. doi: 10.1073/pnas.1424461112

Troussicot, L., Guillière, F., Limongelli, V., Walker, O., and Lancelin, J.-M. (2015).
Funnel-metadynamics and solution NMR to estimate protein–ligand affinities.
J. Am. Chem. Soc. 137, 1273–1281. doi: 10.1021/ja511336z

Uusitalo, J. J., Ingólfsson, H. I., Akhshi, P., Peter Tieleman, D., and Marrink, S. J.
(2015). Martini coarse-grained force field: extension to DNA. J. Chem. Theory
Comput. 11, 3932–3945. doi: 10.1021/acs.jctc.5b00286

Uusitalo, J. J., Ingólfsson, H. I., Marrink, S. J., and Faustino, I. (2017). Martini
coarse-grained force field: extension to RNA. Biophys. J. 113, 246–256. doi:
10.1016/j.bpj.2017.05.043

Van De Waterbeemd, H., and Gifford, E. (2003). ADMET in silico modelling:
towards prediction paradise? Nat. Rev. Drug Discov. 2, 192–204. doi: 10.1038/
nrd1032

Van Eerden, F. J., Melo, M. N., Frederix, P. W. J. M., Periole, X., and Marrink,
S. J. (2017). Exchange pathways of plastoquinone and plastoquinol in the
photosystem II complex. Nat. Commun. 8:15214. doi: 10.1038/ncomms15214

Vauquelin, G. (2010). Rebinding: or why drugs may act longerin vivothan expected
from theirin vitrotarget residence time. Expert Opin. Drug Discov. 5, 927–941.
doi: 10.1517/17460441.2010.512037

Vazquez-Salazar, L. I., Selle, M., de Vries, A. H., Marrink, S. J., and Souza, P. C. T.
(2020). Martini coarse-grained models of imidazolium-based ionic liquids:
from nanostructural organization to liquid–liquid extraction. Green Chem. 22,
7376–7386. doi: 10.1039/d0gc01823f

Vivo, M. D., De Vivo, M., Masetti, M., Bottegoni, G., and Cavalli, A. (2016). Role of
molecular dynamics and related methods in drug discovery. J. Med. Chem. 59,
4035–4061. doi: 10.1021/acs.jmedchem.5b01684

Wang, K., Chodera, J. D., Yang, Y., and Shirts, M. R. (2013). Identifying ligand
binding sites and poses using GPU-accelerated Hamiltonian replica exchange
molecular dynamics. J. Comput. Aided Mol. Des. 27, 989–1007. doi: 10.1007/
s10822-013-9689-8

Frontiers in Molecular Biosciences | www.frontiersin.org 8 March 2021 | Volume 8 | Article 65722254

https://doi.org/10.1016/j.bpj.2017.11.3050
https://doi.org/10.26434/chemrxiv.11983845.v2
https://doi.org/10.26434/chemrxiv.11983845.v2
https://doi.org/10.1371/journal.pcbi.1006180
https://doi.org/10.1021/ct700324x
https://doi.org/10.1073/pnas.1612627114
https://doi.org/10.1002/jcc.23693
https://doi.org/10.1016/j.cplett.2020.137144
https://doi.org/10.1093/bib/bbz095
https://doi.org/10.1016/j.sbi.2020.06.022
https://doi.org/10.1021/acs.jctc.6b00931
https://doi.org/10.1021/acs.jctc.6b00931
https://doi.org/10.1021/ct9002114
https://doi.org/10.1021/ct9002114
https://doi.org/10.1038/d41586-019-02251-x
https://doi.org/10.1021/acs.jctc.6b00986
https://doi.org/10.1038/s41596-020-0342-4
https://doi.org/10.1038/s41596-020-0342-4
https://doi.org/10.1021/acs.jctc.9b00310
https://doi.org/10.1021/acs.jctc.9b00310
https://doi.org/10.1007/128_2011_182
https://doi.org/10.1021/acs.jcim.6b00772
https://doi.org/10.1021/acs.jctc.8b01295
https://doi.org/10.1021/acs.biochem.6b00948
https://doi.org/10.1021/acs.biochem.6b00948
https://doi.org/10.1021/acs.jcim.8b00614
https://doi.org/10.1021/ja202726y
https://doi.org/10.1002/wcms.1448
https://doi.org/10.1002/wcms.1448
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1038/s41592-021-01098-3
https://doi.org/10.1038/s41467-020-17437-5
https://doi.org/10.1021/acs.jpclett.9b02868
https://doi.org/10.1021/ct400008p
https://doi.org/10.1371/journal.pcbi.1007777
https://doi.org/10.1124/mol.113.090209
https://doi.org/10.1016/j.mce.2019.01.018
https://doi.org/10.1016/j.mce.2019.01.018
https://doi.org/10.1073/pnas.1424461112
https://doi.org/10.1021/ja511336z
https://doi.org/10.1021/acs.jctc.5b00286
https://doi.org/10.1016/j.bpj.2017.05.043
https://doi.org/10.1016/j.bpj.2017.05.043
https://doi.org/10.1038/nrd1032
https://doi.org/10.1038/nrd1032
https://doi.org/10.1038/ncomms15214
https://doi.org/10.1517/17460441.2010.512037
https://doi.org/10.1039/d0gc01823f
https://doi.org/10.1021/acs.jmedchem.5b01684
https://doi.org/10.1007/s10822-013-9689-8
https://doi.org/10.1007/s10822-013-9689-8
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-657222 March 23, 2021 Time: 15:41 # 9

Souza et al. Dynamic Docking With Martini

Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Peter Tieleman, D., and
Marrink, S. J. (2015). Computational lipidomics with insane: a versatile tool
for generating custom membranes for molecular simulations. J. Chem. Theory
Comput. 11, 2144–2155. doi: 10.1021/acs.jctc.5b00209

Wassenaar, T. A., Pluhackova, K., Böckmann, R. A., Marrink, S. J., and Tieleman,
D. P. (2014). Going backward: a flexible geometric approach to reverse
transformation from coarse grained to atomistic models. J. Chem. Theory
Comput. 10, 676–690. doi: 10.1021/ct400617g

Yang, W., and Lai, L. (2017). Computational design of ligand-binding proteins.
Curr. Opin. Struct. Biol. 45, 67–73. doi: 10.1016/j.sbi.2016.11.021

Yen, H.-Y., Hoi, K. K., Liko, I., Hedger, G., Horrell, M. R., Song, W., et al. (2018).
PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of
G-protein coupling. Nature 559, 423–427. doi: 10.1038/s41586-018-0325-6

Yesylevskyy, S. O., Schäfer, L. V., Sengupta, D., and Marrink, S. J. (2010).
Polarizable water model for the coarse-grained Martini force field. PLoS
Comput. Biol. 6:e1000810. doi: 10.1371/journal.pcbi.1000810

Yuan, X., Raniolo, S., Limongelli, V., and Xu, Y. (2018). The molecular mechanism
underlying ligand binding to the membrane-embedded site of a G-protein-
coupled receptor. J. Chem. Theory Comput. 14, 2761–2770. doi: 10.1021/acs.
jctc.8b00046

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Souza, Limongelli, Wu, Marrink and Monticelli. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 9 March 2021 | Volume 8 | Article 65722255

https://doi.org/10.1021/acs.jctc.5b00209
https://doi.org/10.1021/ct400617g
https://doi.org/10.1016/j.sbi.2016.11.021
https://doi.org/10.1038/s41586-018-0325-6
https://doi.org/10.1371/journal.pcbi.1000810
https://doi.org/10.1021/acs.jctc.8b00046
https://doi.org/10.1021/acs.jctc.8b00046
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


MD Simulations on a Well-Built
Docking Model Reveal Fine
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Dependent Dissociation of
Mac-1/GPIbα Complex
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Interaction of leukocyte integrin macrophage-1 antigen (Mac-1) to platelet glycoprotein Ibα
(GPIbα) is critical for platelet–leukocyte crosstalk in hemostasis and inflammatory
responses to vessel injuries under hemodynamic environments. The mechano-
regulation and its molecular basis for binding of Mac-1 to GPIbα remain unclear,
mainly coming from the lack of crystal structure of the Mac-1/GPIbα complex. We
herein built a Mac-1/GPIbα complex model through a novel computer strategy, which
included a flexible molecular docking and system equilibrium followed by a “force-ramp +
snapback”molecular dynamics (MD) simulation. With this model, a series of “ramp-clamp”
steered molecular dynamics (SMD) simulations were performed to examine the
GPIbα–Mac-1 interaction under various loads. The results demonstrated that the
complex was mechano-stable for both the high rupture force (>250 pN) at a pulling
velocity of 3 Å/ns and the conformational conservation under various constant tensile
forces (≤75 pN); a catch-slip bond transition was predicted through the dissociation
probability, examined with single molecular AFM measurements, reflected by the
interaction energy and the interface H-bond number, and related to the force-induced
allostery of the complex; besides the mutation-identified residues D222 and R218, the
residues were also dominant in the binding of Mac-1 to GPIbα. This study recommended a
valid computer strategy for building a likely wild-type docking model of a complex,
provided a novel insight into the mechanical regulation mechanism and its molecular
basis for the interaction of Mac-1 with GPIbα, and would be helpful for understanding the
platelet–leukocyte interaction in hemostasis and inflammatory responses under mechano-
microenvironments.
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INTRODUCTION

Interaction of platelet glycoprotein receptor I bα (GPIbα) with
αMβ2 (Mac-1) integrin mediates crosstalk between platelets and
leukocytes in hemostasis and inflammatory responses to the
vessel damages (Diamond et al., 1995). In platelet recruitment
and thrombus formation, the circulating platelets first tether to,
then roll on, and lastly adhered at the injured vessel sites,
companying with platelet activation (Rahman and Hlady,
2019). The activated platelets recruit and activate leukocytes to
prevent infection caused by an injury (Von Hundelshausen and
Weber, 2007; Karshovska et al., 2013; Schrottmaier et al., 2015).
Binding of P-selectin on activated platelet to P-selectin
glycoprotein ligand 1 (PSGL-1) mediates adhesion of
leukocytes to the platelets and further induces activation of
Mac-1 integrin on leukocytes. The activated Mac-1 integrin
enhances firm adhesion of leukocytes to platelets through
binding with GPIbα (Diacovo et al., 1996; McEver and
Cummings, 1997). The interaction of Mac-1 to GPIbα may be
force dependent, especially under pathological flow environments
(Kruss et al., 2013).

Mac-1 integrin, a heterodimeric protein, includes α and β
subunits, regulates leukocyte functions, including crawling
(Phillipson et al., 2006; Sumagin et al., 2010), chemotaxis
(McDonald et al., 2010), survival (Whitlock et al., 2000),
apoptosis (Coxon et al., 1996), and neutrophil extracellular
trap (NET) formation (Behnen et al., 2014; Silva et al., 2020).
The major binding site locates at the inserted (I) domain of the
αM subunit (Diamond et al., 1993), like the A1 domain of von
Willebrand factor (VWF) (Sadler et al., 1985). GPIbα is
composed of an N-terminal, a transmembrane, and an
intracellular domain. The N-terminal domain exhibits a
narrow and curved shape, and eight leucine-rich repeats
(LRRs) constitute the central region of the molecule, belonging
to the typical LRR protein (Kobe and Kajava, 2001). Binding of
N-terminal region (F201–G268) of GPIbα to the I-domain of
Mac-1 induces stable association of platelets with neutrophils
(Simon et al., 2000; Wang et al., 2005), while deletion or
inhibition of either Mac-1 or GPIbα suppresses interaction of
platelets with neutrophils or monocytes under inflammatory
conditions (Hidalgo et al., 2009). Mutation experiments
suggest that the four residues, such as T211, T213, R216, and
R244 on Mac-1, locate at the binding site of the complex, and so
do the residues R218, R222, and N223 on GPIbα (Simon et al.,
2000; Ehlers et al., 2003; Wang et al., 2005; Morgan et al., 2019).
Mutations of the residues T213 and R216 onMac-1 cause delay of
thrombosis after carotid and cremaster muscle microvascular
injury (Ehlers et al., 2003), suggesting promotion of GPIbα–Mac-
1 interaction to thrombosis.

Studies in vitro have shown that increasing wall shear stress in
the range from 0.1 to 5 dyn/cm2 reduces the attachments of
neutrophils on GPIbα-coated substrates (Kruss et al., 2013), but
less knowledge is about mechano-regulation on the interaction of
Mac-1 with GPIbα. Lack of crystal structure of the complex
makes the molecular basis of Mac-1/GPIbα interaction unclear,
despite the main crystallized structures of Mac-1 and GPIbα have
respectively been solved (Ehlers et al., 2003; Li and Emsley, 2013).

Molecular docking is demonstrated to be a powerful tool in
building a computer model of ligand–receptor complex for
various adhesive molecular systems, while a very likely bad
thermo- and mechano-stability make the docking model
unreliable (Zeng et al., 2013). However, AFM measurements
reveal successfully various force-dependent ligand–receptor
interactions of adhesive (Lee et al., 2016; Li et al., 2018) and
so do the molecular dynamics (MD) simulations (Fang et al.,
2012; Fang et al., 2018).

We herein built a model of theMac-1/GPIbα complex through
a novel computer strategy, in which a flexible molecular docking
follows a “force-ramp + snapback”MD simulation (Methods and
Materials) (Smith et al., 2005; Torchala et al., 2013). This model
was predicted to be a likely wild-type one for its thermo- and
mechano-stability and used to examine the mechano-regulation
mechanism and its molecular basis of interaction of Mac-1 to
GPIbα by running a series of “ramp-clamp” steered molecular
dynamics (SMD) simulations. A biphasic force-dependent
dissociation of Mac-1 from GPIbα was predicted by MD
simulations, examined through AFM measurements, and
demonstrated to be relative to force-induced allostery of the
complex. The present computer strategy for optimizing the
docking model with the treatment of “force-ramp + snapback”
SMD simulation might be served as a novel powerful tool in
building a likely wild-type docking model of complex for various
adhesive molecular systems. Besides, the present study provides a
novel insight into the mechano-regulation mechanism and its
molecular basis for the interaction of Mac-1 to GPIbα, and
further is helpful to understand the effects of force on
platelet–leukocyte crosstalk in hemostasis and inflammatory
responses under flows.

MATERIALS AND METHODS

AFM Bond Lifetime Measurement
Experiments
Recombinant human integrin αMβ2 (Mac-1) and recombinant
human CD42b (GPIbα) were purchased from R&D Systems.
Anti-6× His tag antibody was purchased from Abcam
(Supplement Material). MnCl2 and BSA were purchased from
Sigma-Aldrich. To measure the interaction of Mac-1–GPIbα, a
cantilever tip (MLCT; Bruker AFM Probes) was incubated with
30 μl of 15 μg/ml Mac-1 overnight at 4°C. 30 μl of GPIbα (15 μg/
ml) was adsorbed on a small spot on a petri dish overnight at 4°C.
After rinsing with PBS, the tip of the cantilever was incubated
with HBSS containing 2% BSA and 1 mM Mn2+ for an hour at
room temperature to obtain activated Mac-1. After rinsing with
PBS, the petri dish was incubated for 30 min at room temperature
with HBSS containing 2% BSA to block nonspecific adhesion.
Notably, Mac-1 and GPIbα were also immobilized on a cantilever
tip and a petri dish surface by the anti-6× His tag antibody
capturing to examine the effect of molecule orientations on
interactions (Supplement Material). During each measurement
cycle, a petri dish was driven by the piezoelectric translator to
contact with a cantilever tip to reach the set-point (0.5 V), and
then immediately retracted slightly and held close to the tip for
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0.5 s to allow bond formation and retracted along the z direction
at a speed of 200 nm/s. A feedback system was applied in the
experiments. During the retraction, if a tensile force was detected
(adhesion) and reached the preset level, the retraction would stop
to clamp the force at that level until the tensile force broke and
further retracted to its initial position. If no tensile force was
detected (no adhesion) or a tensile force did not reach the preset
level, the petri dish was directly retracted to its initial position.
The number of adhesion events and bond lifetimes at desired
forces were measured from the force–time curves.

Molecular Docking
Flexible docking of I-domain of Mac-1 (residues 131–A317; PDB
code 1JLM) to GPIbα (residues 1-267; PDB code 1P9A) was
performed with SWARMDOCK server web (version 15.04.01)
(https://bmm.crick.ac.uk/∼svc-bmm-swarmdock/submit.cgi)
(Jain, 2003). In docking, seven residues, four (T211, T213, K244,
and R216) on Mac-1 and others (R218, R222, and N223) on
GPIbα, were designated as binding site residues because of the
mutation data (Simon et al., 2000; Wang et al., 2005). The N- and
C-terminal in either of Mac-1 and GPIbαwas set to be neutral. All
docking results (444 complex structures) were grouped into ten
clusters, in which each was defined as an ensemble of at least two
complex models with ligand interface Cα RMSD <6 Å. The
docking model with the lowest binding energy and the
specified essential residues participating in the receptor–ligand
interaction was considered as the best one. Each complex model
was visually inspected by visual molecular dynamics (VMD), and
only one was selected as the best model by the following criteria:
the N- and C-terminal of Mac-1 could not be bound with the LRR
domain of GPIbα because of the binding of theMac-1 legs to both
the N- and the C-terminus, and the model had not only the
largest number of designated interface residues but also the lowest
SWARMDOCK score. The best complex model, the so-called
Model I, was selected from docking results and used for
subsequent analysis.

System Setup and Equilibrium
We herein used two software packages, VMD for visualization
and modeling (Humphrey et al., 1996) and the NAMD 2.13
program for molecular dynamics simulations (Phillips et al.,
2005). The Model I was solvated with TIP3P water molecules
in a rectangular box (6.54 nm × 11.6 nm × 8.4 nm). The system
was neutralized by adding 118 Na+ and 126 Cl− (150 mM
concentration) to mimic the actual physiological environment
and consisted of 103,164 atoms. MD simulations were performed
with periodic boundary condition and 2 fs time step as well as the
CHARMM27 all-atom force field (MacKerell et al., 1998), along
with cMAP correction for backbone, particle mesh Ewald (PME)
algorithm for electrostatic interaction, a 12 Å cutoff for
electrostatic, and Van der Waals interaction. All bonds were
restrained using SHAKE to allow the time step of 2 fs. The system
was energy minimized first for 15,000 steps with heavy or non-
hydrogen protein atoms being fixed, and then for another 15,000
steps with all atoms free. The energy-minimized systems were
heated gradually from 0 to 310 K in 0.1 ns first, and then
equilibrated once for 100 ns with pressure and temperature

control. The temperature was held at 310°K using Langevin
dynamics, and the pressure was held at 1 atmosphere by the
Langevin piston method. The equilibrated structure of Model I
with better thermal stabilization was used as the initial
conformation for the subsequent steered molecular dynamics
(SMD) simulations (Supplementary Figure S1).

Steered Molecular Dynamics Simulation
The SMD simulations in “force-ramp,” “force-ramp + snapback,”
and “ramp + clamp” modes were performed for testing the
mechanical strength, optimizing the structure of Model I, and
the mechano-regulated structure–function interaction of the
complex of Mac-1 with GPIbα, respectively. In the force-ramp
MD simulation, the N-terminal Cα atom of GPIbα was fixed, and
the C-terminal Cα atom of Mac-1 was pulled with constant
pulling velocity (3 nm/ns) along the line between the steered
and fixed atom (Supplementary Figure S1C) (Simon, 2012). The
dummy atom and the steered atom were linked by the virtual
spring with a spring constant of 13.89 pN/Å. The rupture force of
the complex was read from the peak in the force–time pattern
simulated with the force-ramp mode and used to scale the
mechanical strength of the complex.

It is assumed that a rational docking model for the Mac-1/
GPIbα complex should have both, a better thermal stabilization
and stronger mechanical strength. To making Model I be more
rational, we here developed a computer strategy of docking
model optimizing (DMO) via the so-called force-ramp +
snapback SMD simulations because the poor mechanical
strength of the complex Model I was demonstrated by its low
complex rupture forces. In a run with the “force-ramp +
snapback” mode, an SMD simulation of 5 ns with constant
pulling velocity (3 nm/ns) was performed first, then the
system was mechanically unloaded but followed with
equilibrium of 100 ns or 40 ns for the snapback complex.
Through MD simulation with one or several mechanically
loading–unloading cycles, as described above, the Model I
might be remodeled and optimized as a more rational model,
named Model II or Model III, for its better structural
stabilization.

The so-called ramp-clamp SMD simulations, a force-clamp
MD simulation followed a force-ramp one, were performed thrice
on the equilibrated system with the Model II of the complex to
examine the force-induced unbinding and conformation
changing of the GPIbα bound with Mac-1. For each
simulation, the complex was first pulled until the tensile force
arrived at a given value, such as 25, 50, or 75 pN, and then, the
SMD simulation was transformed from the force-ramp mode to a
force-clamp one, at which the complex was stretched with the
given constant tensile force for the following 40 ns.

Data Analysis for MD Simulations
All analyses were treated with VMD tools. The Cα root mean
square deviation (RMSD) and the solvent accessible surface area
(SASA) (with a 1.4 Å probe radius) were used to characterize the
conformational change and the hydrophobic core exposure,
respectively. The binding energy, consisting of van der Waals
energy and electrostatic energy, was calculated through the
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NAMD energy plugin in VMD. A hydrogen bond was formed if
the donor–acceptor distance and the donor-hydrogen–acceptor
angle were less than 3.5 Å and 30°, respectively. A salt bridge was
built up once the distance between any of the oxygen atoms of
acidic residues (Asp or Glu) and the nitrogen atoms of basic
residues (Lys or Arg) was within 4 Å. An occupancy (or survival
rate) of an H-bond or a salt bridge was scaled with the percentage
of bond survival time in the simulation period. As a reflection of
the mechanical strength of receptor–ligand complex (Grubmüller
et al., 1996), the rupture force was read from the maximum of the
force spectrum in a force-ramp run with constant pulling velocity.
All visual inspections and molecular images were completed by
using VMD. The formation or breakage of each hydrogen bond
on the binding site was assumed to be an independent event not
related to other bonds.

As a scale for the residue–residue interactions across
binding site, pij, the probability of the ith ligand residue
binding with the jth receptor residue, was evaluated by the
following equation:

pij � 1 −∐
Mij

l�1
(1 − ωij,l), i � 1, 2, . . . ,ML; j � 1, 2, . . . ,MR;

l � 0, 1, . . . ,Mij, (1)

where ωij,l was the survival ratio of the lth H-bond between
the ith ligand residue and the jth receptor residue, Mij(≥ 0)
denoted the numbers of H-bonds between the ith ligand
residue and the jth receptor residue, and ML(≥ 1) and
MR(≥ 1) were, respectively, the total numbers of ligand
and receptor residues involved in binding. Thus, Pj,L (the
probabilities of the jth ligand residue binding to the receptor)
and Pj,R (the probabilities of the jth receptor residue binding
to the ligand) were, respectively, estimated by the following
equations:

Pj,L � 1 −∏
MR

i�1
(1 − pji) (2)

and

Pj,R � 1 −∏
ML

i�1
(1 − pij). (3)

Furthermore, PD, the dissociation of ligand from receptor,
could be estimated by the following equation:

PD � 1 −∏
ML

j�1
(1 − Pj,L) � 1 −∏

MR

j�1
(1 − Pj,R). (4)

And, the mechano-regulation factor or the normalized
complex dissociation fD was the ratio of PD at tensile force of
f0 and of PD at zero tensile force, that was given by the following
equation:

fD � PD

∣∣∣∣∣∣∣
f � f0
PD

∣∣∣∣∣∣∣
f�0
, (5)

where f expressed the tensile force on the complex and f0 was
a given tensile force. Regardless of the geometrical and
timescale effects on complex dissociation PD, it was

expected that fD should be comparable with our AFM
experiment data.

RESULTS

A Likely Wild-Type Model of Mac-1–GPIbα
Complex Was Well Built Up Through
Molecular Docking With Treatment of the
“Force-Ramp + Snapback” MD Simulations
To gain a likely wild-type conformation for the complex of Mac-1
with GPIbα, we built three structural models (Models I, II, and
III) for complex of Mac-1 with GPIbα, through SWARMDOCK
program (Torchala et al., 2013) with and without a DMO
treatment (Materials and Methods), respectively. With the
lowest SWARMDOCK energy score and the most mutation-
identified residues in the binding site, the Model I was picked out
from 444 poses generated by docking of Mac-1 to ligand-free
GPIbα and equilibrated by performing a system equilibrium of
100 ns or 40 ns along with the same protocol of energy
minimization (see Material and Methods). Models II and III
(Figure 1A) were built up, respectively, by remodeling Model I
with the so-called force-ramp + snapback SMD simulation of
105 ns or 45 ns, in which 5 ns was spent for the SMD simulation
with a pulling velocity of 3 nm/ns, and the other 100 ns or 40 ns
was contributed to a system re-equilibration for the unloaded or
snapped-back complex (Materials and Methods). Models I, II,
and III should be equilibrated because the time courses of the
total energy, and the root mean square deviation (RMSD) of Cα-
atoms fluctuated on their respective stable levels with small
relative derivations (Supplementary Figure S2A,B,E). Among
the all fourteen observed H-bonds across the complex interface in
Model II (Table 1; Supplementary Table S1), the first seven
existed also in Model I, but others did not (Figures 1B,C); and
except the 7th bond, the other six in Model I had lower
occupancies than those in Models II and III. It suggested that
the missed or undervalued H-bonding events on the interface in
Model I might emerge and be valuation-rational through
treatment with “force-ramp + snapback” SMD simulation.

The mean Cα-RMSD, binding energy (E), the interface
H-bond number (NHB), and the interface buried SASA for
complex in equilibrium of 40 ns showed that the Cα-RMSD
value climbed from 2 Å to a quasi-plateau of 6 Å for the
Model I but remained almost at a low level of 2 Å for Models
II and III (Figure 2A; Supplementary Figure S2B), suggesting a
higher thermo-stabilization of Models II and III in comparison
with Model I (Figure 2A); Models II and III rather than Model I
should be energy favorable because the binding energies (−398 ±
53 kcal/mol, −369 ± 50 kcal/mol) in Models II and III were far
lower than that (−293 ± 75 kcal/mol) in Model I (Figure 2B); the
mean number of H-bonds on the binding site over a simulation
time of 40 ns for Models I, II, and III were 4.8, 6.9, and 5.8
(Figure 2C), respectively, showing a stable linkage between Mac-
1 and GPIbα for Models II and III rather than Model I; and the
mean interface buried SASA was read to be 730 Å2 for Model I,
840 Å2 for Model II, and 800 Å2 for Model III (Figure 2D),
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meaning the closer contact between Mac-1 and GPIbα in Models
II and III than that in Model I. The dissociation probabilities (fD)
of complex were estimated to be 0.02, 0.0005, and 0.0009 for
Models I, II, and III (Figure 2E), showing that the Mac-1 affinity
to GPIbα for the Model I was down estimated and could be
restored to the quasi-actual level by a DMO treatment based on a
“force-ramp + snapback” MD simulation. These results
demonstrated that in comparison with Model I, Models II and

III were more energy-rational and more thermostable. And, we
further performed the so called force-ramp SMD simulations
thrice with constant pull velocity (3 nm/s) for Models I, II, and III
(Materials and Methods) to evaluate the mechanical strength of
the models. The force–time curves exhibited that the rupture
force of the complex was 150 pN about for Model I but 300 pN
about for Models II and III, suggesting a high mechano-strength
in Models II and III rather than in Model I (Figure 2F;
Supplementary Figure S2E). Under pulling with a constant
velocity of 3 Å/ns, the Mac-1/GPIbα complex remained
structure-stable under a pulling force <250 pN for Models II
and III or 100 pN for Model I (Supplementary Figure S2E;
Supplementary Videos S1, S2). These results demonstrated that
in comparison with Model I, Models II and III were more energy-
rational, more thermo- and mechano-stable in modeling the
Mac-1/GPIbα complex. For these reasons, Model II was
regarded as the likely wild-type model of the Mac-1/GPIbα
complex and used as an initial conformation for the
subsequent “ramp-clamp” SMD simulations.

Dissociation of the Stretched Mac-1–GPIbα
Complex Was Biphasic Force Dependent
To examine the mechano-regulation on the interaction of Mac-1
with GPIbα, we performed a series of “ramp-clamp” SMD
simulations of 40 ns thrice with Model II under constant

FIGURE 1 | The likely wild-type molecular docking model and some representative involved hydrogen bonds on the binding site of the Mac-1/GPIbα complex. (A)
The snapshot of the likely wild-type molecular docking model, which was built up by treating Model I of the Mac-1/GPIbα complex with a “ramp-snapback” MD
simulation (Material and Methods) and shown in new cartoon diagram. Mac-1 and GPIbα were colored with cyan and orange, respectively. The hydrophobic pocket of
GPIbα consists of six β sheets (from β1 to β6), seven α helixes (from α1 to α7), and loops to link any two adjacent α or β structures. (B) The three intrinsic hydrogen
bonds, which were contributed by the residue pairs such as K244-D18 and Y51-R64 as well as S288-D235 and detected from either of Model I and II. (C) The three
newly formed hydrogen bonds, which were the linkers between the other three residues (R216-D63, K278-Q66, and E261-237) and occurred just at Model II. The
hydrogen bonds at the complex interface were shown as dashed black lines and labeled on the structure in VDW mode. The orange spheres represent the residue on
Mac-1 and the green spheres represent the residue on GPIbα.The labels here see reference (Kobe and Kajava, 2001).

TABLE 1 | Hydrogen bonds on the binding site of the complex.

No Residue pair Occupancy

Mac-1 GPIbα Model I Model II Model III

1 K244 D18 0.39 0.77 0.74
2 E282 K19 0.62 0.66 0.67
3 S288 D235 0.23 0.52 0.57
4 E242 K19 0.35 0.44 0.43
5 E252 S39 0.31 0.44 0.53
6 Y251 R64 0.17 0.34 0.53
7 K278 E40 0.67 0.32 0.28
8 E261 K237 0 0.54 0.59
9 R216 D63 0 0.31 0.25
10 K278 Q66 0 0.27 0.23
11 D259 K231 0 0.23 0.15
12 K278 R64 0 0.16 0.12
13 H294 K231 0 0.16 0.2
14 K289 K231 0 0.16 0.18
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tensile forces of 0, 25, 50, and 75 pN (Materials and Method). Just
a bit force-induced conformational change of complex is shown
in Figure 3, meaning that Model II was reliable for its fine
mechanical stability. And, the mechanical stability of the complex
was also demonstrated by the very slight tension-induced
increasing of the Cα-RMSD of the complex (Figure 4A) and
distance between the pulled- and fixed-atom (Figure 4B), while
the sampled structural space was regarded as quasi-perfect
because the H-bond number obeyed the Gaussian distribution
(Figure 4C), meaning that the complex conformations sampled
within a simulation time of 40 ns under each given constant
tensile force were enough in gaining information of the
structure–function relation of the complex.

The interaction energies, the buried SASA, and the H-bonds
(or salt bridges) on the binding site for the complex under
constant tensile forces were sampled through the “ramp-
clamp” SMD simulations with Model II (Materials and
Method). Plots of the mean interaction energy (E), the mean
buried SASA, and the mean number of the H-bonds (NHB) (or

salt bridges) on the binding site over 40 ns for three runs against
tensile force exhibited that E decreased first and then increased
with F, and the force threshold occurred at 25 pN (Figure 4D),
demonstrating a biphasic force-dependent energy preference for
the stretched GPIbα–Mac-1 complex; on the contrary, NHB

increased first and then decreased with F (Figure 4E),
illustrating a transition from force-enhanced to force-
weakened linkage between GPIbα and Mac-1; as a result, fD,
the normalized complex dissociation probability, decreased first
and then increased F (Figure 4F), suggesting a catch-slip bond
transition in Mac-1 dissociation from GPIbα. All the transition
points for E, NHB, fD, and the mean buried SASA occurred at a
tensile force of 25 pN, as it should be. These results were in
keeping with our single molecular AFM measurement data,
which exhibited a catch-slip bond transition with a force
threshold of about 31 pN (Figure 5; Supplementary Figure
S3) for interaction between Mac-1 with GPIbα. The catch-slip
bond transition had been measured by AFM and BFP as well as
flow chamber experiments for various adhesive molecule systems,

FIGURE 2 | Comparison of the complex characters in Model II (light gray) and Model III (dark gray) with those in Model I (black). (A) The mean Cα-RMSD, (B) the
mean binding energy E (−293 ± 75 kcal/mol for Model I, -398 ± 53 kcal/mol for the II, and −369 ± 50 kcal/mol for Model III), (C) the mean interface H-bond number NHB

(4.8 ± 2 for Model I, 6.9 ± 1.4 for Model II, and 5.8 ± 1.5 for Model III), (D) the mean buried SASA (730 Å2 for Model I, 840 Å2 for Model II, and 800 Å2 for Model III), and (E)
the dissociation probability fD for complex in 40 ns equilibrium. (F) The mean rupture force (120 pN about for Model I, 300 pN for Model II, and 313 pN for Model III)
in “force-ramp” SMD simulations thrice on complex with a velocity of 3 Å/ns. The p-values of the unpaired two-tailed Student’s t test were shown to indicate the statistical
difference significance (****p < 0.0001), or lack thereof. Data were shown with mean ± S.D.

FIGURE 3 | The conformations of Mac-1/GPIbα complex (Model II; new cartoon) after 40 ns “clamp-force” SMD simulation with tensile forces 0 (A), 25 (B), 50 (C),
and 75 pN (D). Mac-1 and GPIbα were shown as cyan and orange, respectively. The main conformation changes of β-switch, which were marked with a red box,
where shown in (A–D).
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such as von Willebrand factor with GPIbα (Yago et al., 2008),
ADMAMTS13 (Wu et al., 2010), PSGL-1 with P-, E-, and
L-selectins as well as the PSGL-1-actin cytoskeleton linker
protein ezrin/radixin/myosin (ERM) (Marshall et al., 2003;
Yago et al., 2004; Li et al., 2016), and so on.

It signed that the computer strategy with “ramp-clamp” SMD
simulation was practicable in examining the mechano-regulation on
receptor–ligand interactions, as done in our previous work for the

interaction of PSGL-1withERM(Feng et al., 2020) orKindlin 2with β3
integrin (Zhang et al., 2020) andModel II, a dockingmodel treatedwith
“force-ramp+ snapback” SMD simulation, was suitable in studying the
structure–function relation for the complex of Mac-1 with GPIbα.

Force-Induced Allostery in Mac-1
Dissociation From GPIbα
To scale the force-induced allostery of the Mac-1 bound with
GPIbα, we hereinmeasured θ (Figure 6A), themean angle between
α1 and α7 helix of the ligated Mac-1 over 40 ns simulation time
thrice under each tensile force. The angle θ increased remarkably
first and then decreased with F (Figure 6B), was correlative
negatively to the normalized complex dissociation probability fD
(Figure 4F) and the interaction energyE (Figure 4D) but positively
to the H-bond number NHB (Figure 4E) and the mean buried
SASA (Figure 6C), suggesting that the force-induced allostery of
the ligated Mac-1 might be responsible for the catch-slip bond
transition in the interaction of Mac-1 with GPIbα. An observation
for the α7 helix of Mac-1 exhibited a descent of Mac-1 affinity to
GPIbα due to the downward change of the α7 helix (Figure 6A).

Besides, we measured LMB, the distance from the Cα atom of the
residue D235 in the β-switch to the mass center of GPIbα
(Figure 6D), to scale the deviation of the β-switch from its
neighbor subdomains under various tensile forces. Plots of LMB

against tensile force (Figure 6F) said that increasing tensile force
made LMB lengthened significantly first and then shortened
slightly, and the turning point occurred at the tensile force of
25 pN too, demonstrating that a limit on Mac-1 dissociation from
GPIbα might be provided through the β-switch deviating from
GPIbα body. Together with the force-induced allostery of the

FIGURE 4 | Variations of the structural stability and interface interaction of the complex versus constant tensile force. Data were read from the thrice 40-ns “force-
clamp” SMD simulations on Model II of the Mac-1–GPIbα complex. (A) The representative time courses of the Cα-RMSD of complex at tensile forces of 0 (blue), 25
(green), 50 (red), and 75 pN (black). The Cα-RMSD fluctuated in a range from 1.0 to 2.5 Å for each tensile force. (B) The distance–time plot at tensile forces of 0, 25, 50,
and 75 pN. The distance between the pulled- and fixed-atom fluctuated with an amplitude <5Å around a plateau for each tensile force. (C) Gaussian fitting of the
NHB frequencies from thrice 40-ns runs at various tensile forces. (D) and (E) The variations of the mean binding energy E and the mean H-bond number NHB on binding
site over 40 ns for three runs versus the tensile force. (F) The normalized dissociation probability fD of complex under various tensile forces. Pearson correlation
coefficients for E,NHB, and fD are -0.832, 0.879, and -0.987 if 0 ≤ force ≤ 25 pN but take values of 0.595,−0.766, and 0.749 as 25 pN < force ≤ 75 pN, respectively, with
p < 0.05, statistically demonstrating the dependences of E, NHB, and fD on the tensile force. The data in (D), (E), and (F) were shown as the mean ± SD.

FIGURE 5 | Variation of lifetimes of Mac-1–GPIbα bonds versus force. All
data were from single molecular AFM measurements and shown as mean ±
SEM. At least 325 single-bond rupture force data at each group were
collected and analyzed using a force bin of 7.5 pN. Cantilever tip and
petri dish were functionalized through coating with 15 μg/ml Mac-1 and
GPIbα, respectively (Materials and Methods).
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ligated Mac-1 (Figures 6A,B), the force-mediated deviation of the
β-switch (Figure 6E) also might be responsible for the force-
dependent mean buried SASA of the binding sites and the
dissociation of Mac-1 from GPIbα.

The Key Residues in the Biphasic
Force-Dependent Mac-1-GPIbα Interaction
To reveal the structural basis of the biphasic force-dependent
Mac-1–GPIbα interaction mentioned above, we examined the
H-bonding interactions on the binding site through “force-
clamp” SMD simulation of 40 ns thrice under tensile forces of

0, 25, 50, and 75 pN, and evaluated the probabilities for
unbinding of either the residues in Mac-1 from GPIbα or the
residues in GPIbα from Mac-1 (Materials and Methods). The
variation of the H-bond occupancy versus tensile force (Table 2)
demonstrated that the residue–residue interactions on the
binding site were mechano-sensitive, and increasing tensile
force might make H-bonding occurred, broken, strong, or
week, exhibiting a diversity for the H-bonds in response to the
tensile force. Of all detected H-bonds, those with mean
occupancies >0.20 had eleven members (Table 2;
Supplementary Table S2) which could be clustered into four
groups in responding to the tensile force with modes of the “slip-
bond type,” the “catch-slip bond” type, the “slip-catch-slip bond,”
and the “catch-slip-catch bond” type, respectively. The first group
was contributed by K19 on GPIbα with its two partners E243 and
E282 on Mac-1; the second was consisted of those such as D235
on GPIbα paired with S288, K278, and E261 on Mac-1 paired
with their respective partners E40 and K237 on GPIbα, as well as
E252 on Mac-1 with its three partners K37, S39, and R64 on
GPIbα; the third included those of K244 and Y251 on Mac-1
paired with their respective partners, D18 and R64 on GPIbα; and
the fourth was contributed only by D259 on Mac-1 paired with
K231 on GPIbα (Table 2). These suggested that the force-induced
changes of conformation and function for either Mac-1 or GPIbα
in complex should be mediated by the cooperative interaction of
the H-bonds in responding to the tensile force with
different modes.

Based on the contributions on strong interface H-bonding
with high occupancies (>50%), the six residues, such as K244,

FIGURE 6 | The force-induced conformational change of the Mac-1–GPIbα complex. (A) The cross angle θ between α7- and α1-helix of the ligatedMac-1. The four
representative conformations of α1- and α7-helix under various tensile forces of 0, 25, 50, and 75 pN were colored in blue, cyan, yellow, and green, respectively. The
superposition of these different conformations showed a force-induced down-movement of α7 helix tail. (B) The plot of θ against tensile force. θ was averaged over the
simulation time of 40 ns for three runs. The mean values are 64.5, 66.5, 64.4, and 62.3 degrees, respectively. (C) Variation of the mean buried SASA over the thrice
40-ns runs versus tensile force. (D) The distance LMB (dashed black line) between the two green spheres, which were located respectively at the centroid and the D235
residue in the bound GPIbα. (E) Superposition of four representative conformations of β-switch (residues 227–241) of GPIbα under various tensile force of 0 (blue), 25
(cyan), 50 (yellow), and 75 pN (green). A force-induced down-movement of the β-switch was shown in the structural superposition. (F) Variation of LMB versus the tensile
force. Pearson correlation coefficients for θ, SASA, and LMB are 0.852, 0.408, and −0.735 if 0 ≤ force ≤ 25 pN but take values of −0.606, −0.612, and 0.885 as 25 pN <
force ≤75 pN, respectively, with p < 0.05, statistically demonstrating the dependences of E, NHB, and fD on the tensile force. The data in (B), (C), and (F) were shown as
the mean ± SD.

TABLE 2 | H-bonds (with occupancies in top 11) on the binding site of the
complex under various tensile forces.

No Residue Pair Occupancy

Mac 1 GPIbα 0 (pN) 25 (pN) 50 (pN) 75 (pN)

1 E252 K37 0.08 0.19 ± 0.11 0.43 ± 0.15 0.03 ± 0.009
2 E252 S39 0.44 0.67 ± 0.12 0.83 ± 0.03 0.39 ± 0.18
3 E252 R64 0.10 0.74 ± 0.03 0.48 ± 0.23 0.49 ± 0.20
4 E261 K237 0.54 0.58 ± 0.01 0.57 ± 0.03 0.39 ± 0.19
5 K278 E40 0.32 0.62 ± 0.04 0.55 ± 0.08 0.56 ± 0.007
6 S288 D235 0.52 0.79 ± 0.08 0.77 ± 0.04 0.62 ± 0.05
7 K244 D18 0.77 0.61 ± 0.14 0.66 ± 0.03 0.58 ± 0.14
8 Y251 R64 0.34 0.14 ± 0.03 0.28 ± 0.08 0.16 ± 0.09
9 D259 K231 0.23 0.48 ± 0.03 0.25 ± 0.12 0.33 ± 0.16
10 E243 K19 0.44 0.37 ± 0.08 0.24 ± 0.14 0.19 ± 0.08
11 E282 K19 0.66 0.64 ± 0.06 0.47 ± 0.1 0.48 ± 0.13
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E252, E261, K278, E282, and S288 on Mac-1, might be
responsible for the force-dependent interaction of Mac-1 with
GPIbα, despite just K244 in these residues was mutation-
identified (Simon et al., 2000; Wang et al., 2005). Other three
mutation-identified residues, such as T211 and T213 as well as
R216 on Mac-1 (Simon et al., 2000; Wang et al., 2005), did not
emerge from the above six key interface residues because of either
nothing for T211 and T213 or less contribution for R216 to
H-bonding on the complex interface. This inconsistency of the
mutation-experimental data and the computational results might
come from the timescale effects on milliseconds MD simulations
in predicting the receptor–ligand interaction in a period of 1 s or
its tenth (Schwantes et al., 2014).

DISCUSSION

It was believed that MD simulation might predict druggable
binding site on complex interface, while providing a valuable
dynamics insight to receptor–ligand interaction mechanism.
However, a near-native docking model should be required for
a meaningful MD simulation, under the lack of solved structural
data of the complex. A rational assumption said that Mac-1/
GPIbα complex should be thermo- and mechano-stable, like the
GPIbα–VWF complex because of the structural similarity
between the two complexes. However, it is still a technical
challenge to make a complex docking model near-native. We
herein proposed a novel computer strategy to make the Model I
(the docking model of Mac-1/GPIbα complex) more near-native
or rational. This strategy for structural improvement included a
system equilibrium followed a “force-ramp + snapback” SMD
simulation of 105 ns, in which 5 ns was spent for SMD simulation
with a constant pulling velocity of 3 nm/ns and the other 100 ns
for a system re-equilibration for the unloaded or snapped-back
complex (Materials and Methods). The interface H-bonds in
Model II were more and stronger than those in Model I,
saying that the present computer strategy with a treatment of
“force-ramp + snapback” MD simulation might be feasible for
improving a docking model, and meaning that the barrier in the
transition from a nonnative complex conformational model to a
near-native one might overcome through adding a mechano-
perturbation on the complex. However, the effectiveness and
efficiency of our “force-ramp + snapback”methodology relies on
a suitable choice of fixed and pulled atoms, as well as pulling
velocity and direction. We have shown that given a rational
choice of these parameters, our methodology can improve the
quality of a modeled dimer. To conclusively demonstrate the
general applicability of our methodology, tests on multiple
docked models of different dimers should be carried out.

As a key event in hemostasis and inflammatory responses to
vessel injuries, the crosstalk between platelet and neutrophil
would be mediated by GPIbα–Mac-1 interaction in
hemodynamic environments. Lack of crystal structural data
led to less knowledge on the mechano-regulation and its
molecular basis on GPIbα–Mac-1 interaction under shear
stress conditions, despite those mutation-identified residues,
such as T211, T213, K244, and R216 on Mac-1, were

demonstrated to be crucial for binding of Mac-1 to GPIbα
(Simon et al., 2000; Wang et al., 2005). In mediating adhesion
and accumulation of circulating platelets, GPIbα–vWF
interaction was governed by a catch-slip bond mechanism,
saying a force-induced prolongation of bond lifetime for
complex under loads below a force threshold (Da et al., 2014).
This catch-slip bond was also observed herein not only from
AFM measurements for GPIbα–Mac-1 interaction but also from
a series of “ramp-clamp”mode SMD simulations withModel II of
the GPIbα–Mac-1 complex under various tensile forces
(Figure 4). It might come from the structural similarity
between Mac-1 I-domain and VWF-A1 domain with the
major binding site for GPIbα (Diamond et al., 1993). This
better consistency of the experimental data and computational
predictions might provide another support to Model II of the
GPIbα–Mac-1 complex, despite that the catch-slip bond
transition occurred at 31 pN in AFM experiments but 25 pN
in the “ramp-clamp” SMD simulations. The catch-slip bond
phenomenon in GPIbα–Mac-1 interaction was observed in
various adhesive molecular systems, such as selectins with
PSGL-1 (Marshall et al., 2003), β2 integrin (αLβ2, αMβ2) with
ICAM-1 (Kong et al., 2009; Chen et al., 2011), and VWF-A1 with
GPIbα (Yago et al., 2008; Lining et al., 2015).

The force-induced allostery of the mutually constrained
Mac-1 and GPIbα was stable for a given tensile force
(Figure 3) and might synergize beneficially to induce the
“catch-slip bond” phenomenon in the interaction of Mac-1
and GPIbα. We obtained that the catch bond in the
interaction of Mac-1 to GPIbα might be derived from an
increasing flexibility of the αM domain α1 helix and a force-
induced downward movement of the αM domain α7 helix of the
bound Mac-1, similar to the α7 helix shifting downward and the
outward movement of the α1 helix in the force-induced
conformational transition of the ICAM-1–bound LFA-1
(Chen et al., 2011). The force-induced change of angle
between α1 and α7 helix came from the swing of α7 tail
spiral (Figures 6A,B), suggesting that α7 helix was
responsible for the affinity of the bound Mac-1. The force-
induced change of the GPIbα-binding pocket (the β-switch)
might regulate the GPIbα affinity to Mac-1 (Figures 6D–F), in
consistency with the interaction of VWF A1 domain with
GPIbα.

Usually, MD simulation results at the atom level were not
comparable to the single molecular measurement data. The
barriers might mainly come from the timescale effects on MD
simulation results in predicting receptor–ligand interactions, due
to that affinity change and conformation evolution of adhesive
molecules would undergo a period far longer than the simulation
timescale from nanoseconds to milliseconds (Schwantes et al.,
2014). These timescale effects might be overcome through a
suitable computer strategy such as the “ramp-clamp” SMD
simulation, as shown in the better consistency of AFM
experimental data with MD simulation results. With Model II
of the Mac-1/GPIbα complex, the identified residues D222 and
R218 on Mac-1 were predicted to be the key, showing the
rationality of Model II and the availability of the present
computer strategy. However, the random feature and the
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initial-state dependence of conformational evolution might lead
to fail in detecting the identified residues (T211 and T213) on
Mac-1 and N223 on GPIbα herein, but enough simulations in
parallel might be beneficial in locating this residue.

In conclusion, a rational dockingmodel (Model II) for theMac-1/
GPIbα complex was built herein through the present computer
strategy, and shown to be thermo- and mechano-stable. A slip-catch
bond transition phenomenon was observed not only from the
“ramp-clamp” SMD simulations with Model II under various
tensile forces but also from AFM experiments. The force-
enhanced interaction of Mac-1 to GPIbα under force below a
force threshold might be required for stable crosstalk between
platelets and neutrophils in mechano-microenvironments around
the injured vessel sides. The present work provided not only an
effective computer strategy to build a likely wild-type model of Mac-
1 bound to GPIbα but also a novel insight into the mechano-
regulation mechanism and its molecular structure basis for Mac-
1–GPIbα interaction and should be helpful for understanding the
force-dependent platelet–leukocyte interactions in hemostasis and
inflammatory responses under flows.
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Millions of deaths caused by Mycobacterium tuberculosis (Mtb) are reported worldwide
every year. Treatment of tuberculosis (TB) involves the use of multiple antibiotics over a
prolonged period. However, the emergence of resistance leading to multidrug-resistant
TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) is the most challenging aspect
of TB treatment. Therefore, there is a constant need to search for novel therapeutic
strategies that could tackle the growing problem of drug resistance. One such strategy
could be perturbing the functions of novel targets in Mtb, such as universal stress
protein (USP, Rv1636), which binds to cAMP with a higher affinity than ATP. Orthologs of
these proteins are conserved in all mycobacteria and act as “sink” for cAMP, facilitating
the availability of this second messenger for signaling when required. Here, we have
used the cAMP-bound crystal structure of USP from Mycobacterium smegmatis, a
closely related homolog of Mtb, to conduct a structure-guided hunt for potential binders
of Rv1636, primarily employing molecular docking approach. A library of 1.9 million
compounds was subjected to virtual screening to obtain an initial set of ∼2,000 hits. An
integrative strategy that uses the available experimental data and consensus indications
from other computational analyses has been employed to prioritize 22 potential binders
of Rv1636 for experimental validations. Binding affinities of a few compounds among the
22 prioritized compounds were tested through microscale thermophoresis assays, and
two compounds of natural origin showed promising binding affinities with Rv1636. We
believe that this study provides an important initial guidance to medicinal chemists and
biochemists to synthesize and test an enriched set of compounds that have the potential
to inhibit Mtb USP (Rv1636), thereby aiding the development of novel antitubercular
lead candidates.

Keywords: virtual screening, molecular docking, universal stress protein, Rv1636, anti-tubercular compounds,

computational drug discovery, MM-GBSA, experimental insights
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INTRODUCTION

Tuberculosis (TB), a contagious and airborne disease caused
by the pathogen Mycobacterium tuberculosis (Mtb), was one
of the top 10 causes of deaths worldwide in the year 2019
as per World Health Organization (WHO) global TB report
2020 (WHO, 2020). It is also a major cause of deaths in
HIV patients and deaths due to antimicrobial resistance. The
WHO has identified a gap of over USD 1.2 billion per year
for TB research in its global TB report 2019 (WHO, 2019).
The economic distress due to the ongoing coronavirus disease
2019 (COVID-19) pandemic is further threatening to stall or
reverse the progress that has been achieved (WHO, 2020).
Therefore, the reduction in TB disease burden calls for the
scientific community’s attention to contribute toward finding
rational solutions for improving the current scenario. While
isoniazid, rifampicin, pyrazinamide, and ethambutol are effective
against drug-susceptible TB (DST-TB), multidrug resistant-TB
(MDR-TB) infections do not respond to at least isoniazid and
rifampicin. Extensively drug-resistant TB (XDR-TB) is a more
serious problem that is resistant not only to the two key first-
line drugs (isoniazid and rifampicin) but also to fluoroquinolones
and second-line aminoglycosides leaving only limited options
of treatment with reserved third-line drugs that possess higher
toxicities. Totally drug-resistant TB (TDR-TB) correspond to
the most severe forms of the infection, where all the first and
second line of drugs fail to produce any response (Bahuguna and
Rawat, 2020). As of August 2020, there were 22 drugs in different
stages of clinical trials, including 13 new compounds: BTZ-
043, delpazolid, GSK-3036656, macozinone, OPC-167832, Q203,
SQ109, SPR720, sutezolid, TBAJ-876, TBA-7371, TBI-166, and
TBI-223. Six approved antimicrobial drugs, namely, clofazimine,
levofloxacin, linezolid, moxifloxacin, rifampicin (high dose), and
rifapentine, are also undergoing trials for repurposing against
TB. Host-directed therapies such as auronofin, CC-11050 (AMG
634), and everolimus are also being evaluated (WHO, 2020).
Understanding the mechanism of action (MOA) of these drugs
is important to formulate novel drug regimens well-tolerated
by patients with comorbidities, improve cost effectiveness, and
reduce therapy time. The MOA of some of the anti-TB drugs
currently in the clinical pipeline has been reviewed elsewhere
(Shetye et al., 2020). The introduction of promising novel anti-
TB drugs like bedaquiline and delamanid in the last decade has
brought new rays of hope (Koul et al., 2007; Lakshmanan and
Xavier, 2013; Xavier and Lakshmanan, 2014). Unfortunately, the
emergence of resistance to these drugs has also been reported
(Bloemberg et al., 2015; Ghodousi et al., 2019; Nieto Ramirez
et al., 2020). This calls for a constant effort to devise strategies
for combating the emerging global problem of drug resistance.

An effective way to tackle drug resistance can be by targeting
novel proteins that are involved in critical biological pathways in
the organism and have not been targeted in the past, such as the
cAMP signaling pathways. The presence of cAMP in both slow-
and fast-growing mycobacteria was first noticed in the 1970s
(Lowrie et al., 1975, 1979; Padh and Venkitasubramanian, 1976).
These studies also showed that a large portion of cAMP (∼80%
for Mycobacterium microti) was secreted in the culture medium

(Lowrie et al., 1975). Lowrie et al. first showed the involvement
of this molecule in the pathogenicity of mycobacteria. They
observed a correlation between the increase in cAMP levels
and the absence of phagolysosomal fusion within macrophages.
This increase in cAMP was not seen upon infection with latex
beads or heat-killed mycobacteria (Lowrie et al., 1975, 1979).
The genome sequences of mycobacteria further endorse the
importance of cAMP in their survival and virulence. Compared
to other bacteria, these organisms encode a wide array of adenylyl
cyclases: 16 in M. tuberculosis and 31 in M. marinum—in stark
contrast to the one adenylyl cyclase of Escherichia coli (Cole et al.,
1998; Stinear et al., 2008). M. tuberculosis also encodes 11 cAMP
binding proteins, further emphasizing the significance of the
second messenger in the organism (Shenoy and Visweswariah,
2006). Studies with Mycobacterium smegmatis showed that
synthesis of cAMP was not an exclusive characteristic of slow-
growing, pathogenic mycobacteria. cAMP levels inM. smegmatis
were found to be highest during its exponential phase along with
a considerable amount of secretion (Dass et al., 2008). During the
infection of host alveolar macrophages, cAMP levels inside host
cells increase by several folds, possibly due to secretion of cAMP
as a “toxin” by the bacteria. The different fates of pathogenic vs.
non-pathogenic mycobacteria within host macrophages can also
be explained by changes in host’s cAMP levels—non-pathogenic
M. smegmatis causing a sustained elevation of cAMP, whereas
pathogenic M. avium causing a transient elevation (Yadav et al.,
2004). Singh et al. also observed a similar “cAMP burst” in
macrophages when infected with pathogenic M. tuberculosis
H37Rv, in contrast to a constantly elevated cAMP level when
infected with non-pathogenicM. tuberculosisH37Ra (Singh et al.,
2012). Kalamidas et al. showed that cAMP interrupts phagosomal
actin assembly and, thus, prevents fusion of lysosome with
phagosome and its acidification (Kalamidas et al., 2006).

Previously, we reported that a significant fraction of
intracellular cAMP is bound to a mycobacterial universal stress
protein (USP), Rv1636, that is abundantly expressed in both
slow-growing as well as fast-growing mycobacteria (Banerjee
et al., 2015). Rv1636 could possibly act as a “sink” for cAMP
and release these second messengers on demand to facilitate
signaling processes when required. Thorough biochemical and
thermodynamic characterization of Rv1636 was subsequently
performed, and the crystal structure of M. smegmatis USP
(MSMEG_3811, a close homolog of Mtb USP, Rv1636) bound
to cAMP was determined (Banerjee et al., 2015). Presuming that
cAMP is extremely crucial for the survival and virulence of Mtb,
targeting Rv1636 with an inhibitor could perturb overall cAMP
signaling in the pathogen leading to reduced virulence.

The available chemical space to search for a potential
compound that might bind to a target of interest is huge and
requires high throughout compound screenings. Computational
screening pipelines serve as useful tools to rationally narrow
down the chemical search space in a comparatively shorter time.
Furthermore, careful design of virtual chemical libraries prior
to screening also generally reduces the risk of failures of drug
discovery programs triggered due to toxicity (Walters et al., 1998;
Mohs and Greig, 2017). In the current study, we have used
the crystal structure of cAMP-bound MSMEG_3811 (PDB code:
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5AHW) (Banerjee et al., 2015) as a guide to derive important
knowledge about critical protein–ligand interactions. A workflow
primarily driven by in silico approach integrated with available
experimental data helped us prioritize 22 compounds that have
the potential to bind to Mtb USP (Rv1636). These compounds
were identified by computationally screening large libraries
of chemical compounds (∼1.9 million), including synthetic
and natural compounds. Two natural compounds identified
from the virtual screening have shown promising results in
in vitro experiments. Additionally, a library of approved drugs
was screened virtually to identify potential drugs that can be
repurposed against Rv1636. Therefore, this study provides many
potential starting points for design, synthesis, and testing of a new
class of antitubercular compounds that might bind Rv1636.

MATERIALS AND METHODS

Our search for potential binders ofMtb USP involved a rigorous
virtual screening workflow (Figure 1) comprising of four major
steps, which are elaborated below.

In silico Analyses
Target Structure Selection
It is known that protein binding site residues can show structural
deviations in their ligand-bound state (holo) compared to the
ligand-free (apo) state. Such structural deviations can alter the
binding site’s shape and volume, modulating the protein–ligand
recognition pattern (Fradera et al., 2002; Cozzini et al., 2008;
Clark et al., 2019). Earlier studies have shown that preformed
protein binding sites in holo conformation are more likely to
best distinguish between binders and non-binders in virtual
screenings implemented through molecular docking protocols
(McGovern and Shoichet, 2003; Rueda et al., 2010).

The structure of any inhibitor/native ligand (cAMP)-bound
Mtb USP (Rv1636; holo conformation) is currently not available
in the Protein Databank (PDB) (Berman et al., 2000). The
only experimentally determined structure of Rv1636 in the PDB
is an apo crystal structure (PDB code: 1TQ8) (Rajashankar
et al., 2004). However, a crystal structure of M. smegmatis
USP (MSMEG_3811; PDB code: 5AHW, 2.15Å), which is a
close homolog of Rv1636 (sequence identity: 70%; Figure 2) is
available. The crystal structure of MSMEG_3811 is bound to the
native ligand, cAMP. Comparative analysis of the cAMP binding
site residues reveal that the binding sites of MSMEG_3811 and
Rv1636 are highly conserved (Figure 2). Interestingly, overlay
of the cAMP-bound MSMEG_3811 structure on to the apo
Rv1636 structure revealed that a few binding sites residues show
considerable backbone and side-chain deviations due to a shift
of a stretch of residues (residues 117–146 in 5AHW) toward the
cAMP binding pocket in the holo conformation as compared
to the apo state (Supplementary Figure 1). Furthermore, when
compared to the crystal structure 5AHW, residues equivalent to
positions 44–64 are missing in the electron density map of all
the chains of the crystal structure 1TQ8. One of these residues
(Met61 in 5AHW, which is equivalent to Val60 in 1TQ8) lines the
cAMP binding site and can thus influence the interaction profile
of docked ligands. The electron density map of one of the chains

(chain C) of 5AHW has no missing residues. Therefore, the
crystal structure of holo MSMEG_3811 with a preformed pocket
that hosts cAMP (with no missing residues in the binding site of
chain C) is more suited than the apo Rv1636 structure to screen
for potential binders that can target the cAMP-binding pocket
of Mtb USP. Therefore, here, we have used chain C of 5AHW
for the docking study. Importantly, our earlier studies indicated
that cAMP exhibits comparable binding affinities with Rv1636
andMSMEG_3811 (Banerjee et al., 2015). Thus, a compound that
binds to the cAMP binding site of MSMEG_3811 is likely to bind
to Rv1636.

Target Structure Preparation
The reliability of the predictions from docking studies is largely
dependent on the accuracy of the atomic coordinates of the input
structures. For a structure determined by X-ray crystallography,
a good fit of the atomic model to observed electron density
ensures the reliability of the position of the atoms. Earlier
studies revealed instances of overenthusiastic interpretation of
ligand density (Deller and Rupp, 2015). Therefore, the quality
of the ligand and binding site residues of the input structure
(PDB code: 5AHW) was inspected using the EDIA (electron
density score for individual atoms) tool (Meyder et al., 2017).
The structure was also visually inspected against its electron
density map. Supplementary Table 1 shows that the quality of
the binding site residues and bound cAMP in the chain C of
5AHW is satisfactory.

The binding site of cAMP in MSMEG_3811 is away from
the interface of the protomers. Thus, only one chain of the
homo-multimeric protein was chosen for docking experiments
(Supplementary Figure 2). In the chain C of 5AHW, Val113,
a residue lining the cAMP binding pocket has been modeled
with dual conformations; each conformer has an occupancy
of 0.5, indicating that both these conformers have equal
influences on modulating ligand interactions and, thus, can
differentially influence the outcomes of virtual screening
(Supplementary Figure 2). Hence, during target preparation,
both the conformers of Val113 were considered by fixing the
coordinates of each conformer of the residue one at a time in
two separate protein models, hereafter referred to as conformer I
and conformer II. To minimize the chances of missing potential
hits favored by only one of the two conformers, we docked the
ligand library against both the available conformers (I and II).
Ligands that fit well to the binding sites of both the conformers
could also be identified and prioritized for testing, as these ligands
are likely to have higher chances of binding to the protein at the
specified site.

Protein preparation wizard available in the Schrödinger
software package was used for the target preparation (Sastry
et al., 2013). Hydrogen atoms were added to the structure.
Water molecules and other unwanted crystallization aids were
deleted from the binding site. The protonation states of the
bound ligand, cAMP, were generated using Epik (Shelley et al.,
2007; Greenwood et al., 2010) at pH 7.0 ± 0.5, and the protein
was prepared at pH 7.4. Hydrogen bonding network in the
structure was subjected to optimization followed by a restrained
minimization so that heavy atoms converge to RMSD 0.3 Å,
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FIGURE 1 | Virtual screening workflow adopted in this study. Approximately 1.9 million compounds were collated from three different libraries (ChEMBL,
InterBioScreen-natural, and DrugBank-approved). ChEMBl and InterBioScreen-natural compound libraries were subjected to filtering to discard molecules that are
less likely to be good drug candidates. A clean library of ∼0.9 million compounds that includes the DrugBank-approved library was then subjected to hierarchical
modes of docking simulations (HTVS, SP, XP). Nearly 2,000 hits obtained from this screening step were subjected to analyses to prioritize 22 promising compounds
for further investigation as potential Mtb USP (Rv1636) binders. *The DrugBank-approved drugs library was not subjected to this filtering step as discussed in the text.

and the hydrogen atoms were fully optimized. This was done
to ensure that strains in the structure are relieved alongside full
relaxation of the hydrogen bonding network.

Ligand Library Generation and Preparation
A library of 1.9 million compounds was generated by
collating compounds from three databases: ChEMBL, version
24.1 (Mendez et al., 2018); InterBioScreen-natural compounds
(downloaded in September 2018; https://www.ibscreen.com/
natural-compounds); and DrugBank, version 5.1.1 (approved
molecules) (Wishart et al., 2006). The compounds from the
ChEMBL and InterBioScreen library were subjected to cleaning
by using the (i) structural and (ii) molecular property filters
offered by Canvas (Duan et al., 2010; Sastry et al., 2010).
The structural filters aided in removing compounds following
the Rapid Elimination of Swill (REOS) (Walters et al., 1998)
and Pan-Assay Interference Compounds (PAINS) (Baell and
Holloway, 2010) concepts to enrich the library with molecules
that are less likely to be toxic and promiscuous. The molecular
property filters eliminated compounds (with molecular weight

>500 Da, hydrogen bond acceptor and donor count more than
10 and 5, respectively, and AlogP > 5) that are less likely to
be successful oral drugs (Lipinski et al., 1997; Lipinski, 2000).
From the DrugBank database, the subset of approved small-
molecule drugs was included in our library. Thesemolecules were
not subjected to pre-filtering, as the known information on the
safety and usages of these drugs could be exploited in prioritizing
compounds for testing as discussed later. Finally, a clean library
comprising of 0.9 million compounds was prepared by desalting
and generating tautomers and stereoisomers at pH 7 ± 1 using
the LigPrep module of Schrödinger package.

Additionally, we prepared a library of 14 compounds that
demonstrated or were predicted to bind to Rv1636 through
experimental or computational approaches, respectively. Two
out of the 14 compounds include cAMP and ATP, where cAMP
is known to bind to Rv1636 with a 10-fold higher affinity than
ATP (Banerjee et al., 2015). cAMP and ATP served as the
control compounds for our docking studies. The remaining 12
compounds include 10 polyphenolic compounds and 2 approved
drugs (amikacin and kanamycin). We refer to the library of these
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FIGURE 2 | Full-length sequence alignment of Rv1636 (Mtb USP) and MSMEG_3811 (M. smegmatis USP). The sequences have been aligned using the EMBL-EBI
online tool, EMBOSS (Madeira et al., 2019), and the alignment has been viewed using ESPript 3.0 (Robert and Gouet, 2014). The columns with identical residues are
highlighted in red box. Similar residues are indicated in red font. The black rectangles enclose the binding site residues. The yellow stars are placed above the residues
that are shown to be hydrogen bonded with cAMP in the crystal structure of PDB code: 5AHW. The arrows indicate non-identical but similar residues in the binding
site. The numbers above the residues at the end of each block indicate the particular residue position in the sequence of Mtb USP (Rv1636).

12 compounds as the secondary library. The 10 polyphenolic
compounds were suggested to be potential binders of Mtb USP
(Rv1636) by Aanandhi et al. (2014) based on their docking
studies, where the compounds were docked at a site different
from the cAMP binding site. We were interested in checking the
possibility of binding of these compounds at the cAMP binding
site. In a study by Sharma et al. (2016), it has been observed that
Rv1636 is overexpressed in amikacin- and kanamycin-resistant
Mtb isolates. They further performed docking studies to show
that both the mentioned drugs have the potential to bind to the
conserved USP domain of Rv1636. Docking of the control and
secondary library of compounds was performed to ensure the
validity of our protocol in reproducing the pose of the bound
native ligand, cAMP, understand whether the results from our
docking studies correlate with previously reported experimental
binding affinities of cAMP and ATP toward MSMEG_3811, and
compare the predicted binding affinities of the compounds in
our primary library with those of the control and secondary
library compounds.

Molecular Docking
Molecular docking of all the prepared chemical compounds was
performed using Glide implemented in the virtual screening
workflow (VSW) of Schrödinger software package (Friesner et al.,
2004, 2006; Halgren et al., 2004). The grid box for docking the
compounds was generated for both conformers I and II. Default
settings in the Glide Receptor Grid Generationmodule were used
for generating the two grid boxes enclosing the cAMP binding
site in conformers I and II, which involve specifying the centroid
of the bound cAMP as center of the grid box and choosing a box
size that accommodates ligands similar to the size of the bound
ligand. The van der Waals radii scaling factor for non-polar

atoms of the protein was kept at 1.0 with a partial charge cut-
off of 0.25. The percentage of output compounds from each stage
of the hierarchical VSW protocol was specified in such a way so
that not more than 1,000 top-scoring compounds were reported
in the hit list after the final stage of screening the ChEMBL
library. Similarly, the initial number of virtual hits obtained
from the screening of the InterBioScreen-natural compound and
DrugBank-approved drugs libraries were restricted to 50 and 20
top scoring compounds, respectively.

The hierarchical docking modes in VSW include the following
stages: (i) high throughput virtual screening (HTVS), (ii)
standard precision (SP), and (iii) extra precision (XP). The
first stage performs HTVS, which is the fastest of the three
stages and trades sampling exhaustiveness for higher speed. The
ligands that are retained are passed on to the second stage,
which performs SP docking. The Glide SP docking performs
more exhaustive sampling than HTVS stage. Both HTVS and
SP docking use the same scoring function (SP GlideScore) to
rank order the ligand poses. This score is a “softer” function that
aims to minimize false negatives during the virtual screening of
a large database of compounds. The ligands that survive after
the SP docking stage are then passed on to the third stage, XP
docking, for a more rigorous sampling. The XP docking uses
a “harder” scoring function that penalizes poses that violate
expected physical chemistry principles, such as large desolvation
of polar and charged groups. The third stage in the VSW reduces
the false positives that SP docking lets through. Thus, the three
stages of screening lead to rational funneling of a large library of
compounds to a small set of candidate ligands ranked on their
predicted ability to bind to the specified conformation of the
protein of interest at a given site (Friesner et al., 2004, 2006;
Halgren et al., 2004).
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Compound Selection
From an initial hit list of ∼2,000 compounds (∼1,000 for
each conformer), 22 compounds were selected for experimental
testing (18 compounds from the ChEMBL library, 2 each
from the InterBioScreen-natural and DrugBank-approved drug
libraries). MMGBSA (implemented in Prime v3 of Schrödinger
software package) calculations were performed on all the initial
hits (∼2,000 compounds; ∼1,000 initial hits from each of the
two conformers) to estimate the relative binding affinities of
these ligands in the implicit solvent model against the respective
conformer (I and II) of the protein. The VSGB solvent model
was used, which employs the variable-dielectric generalized
Born model, incorporating a residue-dependent effect, where
the solvent is water. While the Glide dock scores are based
on empirical scoring functions that distinguish binders from
non-binders, Prime-MMGBSA is a physics-based method that
computes relative binding free energies (dGbind) of bound
and unbound molecules as per Equation 1, where Ecomplex
is the minimized energy of the protein–ligand complex, and
the Eligand and Ereceptor are the individual minimized energies
in uncomplexed form. The absolute values calculated are not
necessarily in agreement with experimental binding affinities.
However, it has been shown earlier that ranking of ligands based
on MMGBSA dGbind scores agree reasonably with experimental
binding energies and outperform empirical docking scores,
especially in case of congeneric series of ligands (Lyne et al.,
2006). These scores could serve as one of the guiding parameters
for prioritizing analogous compounds while testing in an
experimental setting. The docked poses of the ligands obtained
from Glide-XP docking (final stage of VSW) served as the
starting ligand structures for the Prime-MMGBSA calculations.
The prepared protein structure for each of the two conformers
used for docking the ligand library was taken as the input protein
structure for the Prime-MMGBSA calculations. While the
ligands’ docked poses were subjected to relaxation, the protein
atoms were kept rigid during the Prime-MMGBSA calculations.

dGbind = Ecomplex − (Eligand + Ereceptor) (1)

From the initial hit list of ∼2,000 compounds obtained from the
ChEMBL library, 100 top-scoring compounds based on docking
scores were prioritized for further analysis. The poses and
interaction profiles of each compound were visually scrutinized
to ensure that the docked compounds fit well into the desired
binding pocket and most of the important binding site residues
(such as Ala40, Gly10, Ser14, Ser16, Gly114, Val116, Thr146)
are engaged in hydrogen-bond interactions with the docked
compounds. The mentioned residues are hydrogen bonded
with bound cAMP in the crystal structure (PDB code: 5AHW;
Supplementary Figure 3). While the residues Ala40, Gly10,
Gly114, and Val116 establish hydrogen bonds with cAMP
through backbone carbonyl oxygen or amide nitrogen or both,
the remaining residues are engaged in side-chain-mediated
hydrogen bonding with cAMP. It has been shown earlier
that mutation of Gly10 and Gly114 (which corresponds to
Gly113 in Rv1636) to Thr and Ala, respectively, significantly
compromise the binding of cAMP and ATP to MSMEG_3811

(Banerjee et al., 2015). Therefore, engagement of these residues in
interactions with other compounds might inhibit cAMP binding
to the protein.

In addition, available information on the bioactivity of
the shortlisted compounds was fetched from ChEMBL and
or PubChem (Kim et al., 2018). The compounds that are
already known to be effective against tuberculosis infection were
assigned a higher priority for testing and designated as “biased
set” compounds. The remaining compounds (“Blind set”) were
chosen based on chemical diversity (as indicated by “Tanimoto
coefficient”) to ensure that representative compounds from each
cluster of chemical compounds are tested in an experimental
setup. The Canvas module available with Schrödinger software
package was used to calculate 2D Tanimoto coefficient (Syuib
et al., 2013) and subsequently for the chemical diversity analysis.

From the virtual screening of InterBioScreen-natural
compound library, 50 top scoring hits were subjected to
MMGBSA calculations, and interaction profile analysis was
performed in a similar way as mentioned for the ChEMBL
library. Two compounds were selected for testing from this
library. Two out of the 20 approved drugs as obtained from
screening the DrugBank library were selected based on the
consensus docking results against conformers I and II followed
by interaction profile analysis coupled with analysis of the
data pertaining to known primary targets of the compounds as
available in DrugBank. Besides, curcumin from the secondary
library was selected for testing.

Since docking scores predicted approximate binding affinities
between the protein and ligands and Prime-MMGBSA dGbind
scores are approximate relative binding energies between the
bound and unbound state of the molecules, more negative scores
indicate the possibility of stronger binding.

OPLS3e force field (Roos et al., 2019) was used throughout the
entire computational study.

The non-covalent interactions between the protein and the
docked compounds were visualized in Maestro GUI available
with Schrödinger suite of programs. The geometric criteria
used for the detection of these interactions are presented
in Supplementary Table 2. The sketches of the chemical
compounds provided in Table 1 are made using the 2D sketcher
implemented in Maestro GUI (Schrödinger, LLC, New York).
The figures of protein–ligand complexes were generated using
Maestro GUI and PyMOL (Schrödinger, LLC).

In vitro Analysis
Purification of Rv1636 and Microscale

Thermophoresis
His-tagged Rv1636 was purified from E. coli SP850 cyc– strain
in a buffer containing 50mM Tris–Cl (pH 7.5), 100mM NaCl,
5mM 2-ME, and 10% glycerol as described earlier (Banerjee
et al., 2015). Microscale thermophoresis (MST) was performed
on a Nanotemper Technologies Monolith R© NT.115 instrument
(Munich, Germany). The protein was labeled with NT-495-NHS
fluorescent dye in a buffer containing 10mM HEPES (pH 7.5),
100mM NaCl, 10% glycerol, and 0.05% Tween20. Labeled His-
Rv1636 (100 nM) was added to varying concentrations of the
ligand in buffer containing 50mM Tris–Cl (pH 7.5), 100mM
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TABLE 1 | Results of molecular docking and Prime-MMGBSA calculation of 22 shortlisted candidates.

Sl. No. Compound Docking score

(kcal/mol)

Prime-MMGBSA dGbind

score (kcal/mol)

Interacting residues*

1 −11.8 −77.1 V9, G10, T11, D12, S17, A20, A38, T39,
A40, Y41, F42, K60, M61, A62, P95, L99,
V113, G114, N115, V116, G117, L118,
G123, G127, S128, V129, P130, T146

2 −11.8 −61.0 V9, G10, T11, D12, S14, S16, S17, A20,
A38, T39, A40, Y41, F42, E57, M61, A62,
A94, P95, L99, V112, V113, G114, N115,
V116, G117, L118, S128, V129, P130,
V133, T146

3 −11.6 −68.9 V9, G10, T11, D12, S17, A20, A38, T39,
A40, Y41, F42, E57, K60, M61, A62, I67,
V91, G93, A94, P95, A98, L99, V113,
G114, N115, V116, V129, P130

(Continued)
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TABLE 1 | Continued

Sl. No. Compound Docking score

(kcal/mol)

Prime-MMGBSA dGbind

score (kcal/mol)

Interacting residues*

4 −11.1 −70.5 V9, G10, T11, D12, S14, S16, S17, A20,
V21, A38, T39, A40, Y41, F42, E57, K60,
M61, A62, G63, P95, L99, V113, G114,
N115, V116, V129, P130, T146

5 −11.1 −70.3 V9, G10, T11, D12, S14, S16, S17, A20,
A38, T39, A40, Y41, M61, P95, L99,
V112, V113, G114, N115, V116, G117,
L118, S128, V129, P130, T146

6 −11.0 −67.4 V9, G10, T11, D12, S14, S17, A20, V21,
A38, T39, A40, Y41, F42, E57, K60, M61,
A62, A94, P95, L99, V112, V113, G114,
N115, V116, G117, L118, S128, V129,
P130, T146

(Continued)
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TABLE 1 | Continued

Sl. No. Compound Docking score

(kcal/mol)

Prime-MMGBSA dGbind

score (kcal/mol)

Interacting residues*

7 −10.9 −61.6 G10, T11, D12, S16, S17, A38, T39, A40,
Y41, F42, E57, G58, K60, M61, A62, I67,
A94, P95, L99, V113, G114, N115, V116,
G117, S128, V129, P130, T146

8 −10.8 −59.4 V9, G10, T11, D12, S14, S16, S17, A20,
A38, T39, A40, Y41, M61, A62, P95, L99,
V112, V113, G114, N115, V116, V129,
P130, V133, T146

9 −10.7 −47.6 G10, T11, D12, G13, S14, S16, S17, A20,
A38, T39, A40, Y41, F42, E57, K60, M61,
A62, I67, G93, A94, P95, L99, V113,
G114, N115, V116, G117, L118, S128,
V129, P130

(Continued)
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TABLE 1 | Continued

Sl. No. Compound Docking score

(kcal/mol)

Prime-MMGBSA dGbind

score (kcal/mol)

Interacting residues*

10 −10.7 −61. 6 G10, T11, D12, S14, S17, A38, T39, A40,
Y41, F42, E57, K60, M61, A62, A67, G93,
A94, P95, L99, V113, G114, N115, V116,
G117, L128, V129, P130, T146

11 −10.7 −52.5 G10, T11, D12, S17, A38, T39, A40, Y41,
F42, E57, K60, M61, A67, G93, A94, P95,
L99, V113, G114, V116, G117, L128,
V129, P130

12 −10.5 −69.6 G10, T11, D12, S14, S16, S17, A20, A38,
T39, A40, M61, A62, V91, P95, A98, L99,
V113, G114, N115, V116, G117, L118,
G123, L126, G127, S128, V129, P130,
N132, T146

(Continued)
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TABLE 1 | Continued

Sl. No. Compound Docking score

(kcal/mol)

Prime-MMGBSA dGbind

score (kcal/mol)

Interacting residues*

13 −10.5 −50.8 V9, G10, T11, D12, S14, S16, S17, A20,
V21, A38, T39, A40, Y41, M61, A62, V91,
P95, L99, V112, V113, G114, N115,
V116, G117, S128, V129, P130, V133,
T146, S147

14 −10.4 −63.7 V9, G10, T11, D12, S14, S16, S17, A20,
V21, A38, T39, A40, Y41, M61, P95, L99,
V112, V113, G114, N115, V116, G117,
L118, S128, V129, P130, T146

15 −10.3 −62.0 V9, G10, T11, D12, S17, A20, A38, T39,
A40, Y41, F42, M61, P95, L99, V113,
G114, N115, V116, G117, L118, G123,
G127, S128, V129, P130, T146

(Continued)
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TABLE 1 | Continued

Sl. No. Compound Docking score

(kcal/mol)

Prime-MMGBSA dGbind

score (kcal/mol)

Interacting residues*

16 −10.2 −54.3 G10, T11, D12, G13, S14, S17, A38, T39,
A40, Y41, F42, E57, K60, M61, A62, I67,
V91, P95, A98, L99, V113, G114, N115,
V116, G117, L118, S128, V129, P130

17 −10.1 −45.0 G10, T11, D12, G13, S14, S16, S17, A20,
A38, T39, A40, Y41, F42, E57, K60, M61,
A62, A67, P95, L99, V112, V113, G114,
N115, V116, G117, S128, V129, P130,
V133, T146, S147

18 −10.1 −45.0 G10, T11, D12, S17, A38, T39, A40, Y41,
F42, E57, K60, M61, A62, V91, P95, L99,
V113, G114, N115, V116, G117, S128,
V129, P130

(Continued)
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TABLE 1 | Continued

Sl. No. Compound Docking score

(kcal/mol)

Prime-MMGBSA dGbind

score (kcal/mol)

Interacting residues*

19 −11.1 −58.2 V9, G10, T11, D12, S14, S16, S17, A38,
T39, A40, Y41, F42, E57, G58, K60, M61,
A62, I67, A94, P95, L99, V113, G114,
N115, V116, G117, L118, V129, P130,
V133, T146

20 −8.4 −48.1 V9, G10, T11, D12, S14, S16, S17, A20,
A38, T39, A40, S41, S61, V91, P95, L99,
V112, V113, G114, N115, V116, G117,
L118, G123, G127, S128, V129, P130,
V133, T146, S147

21 −11.1 −60.4 V9, G10, T11, D12, S14, S16, S17, A20,
A38, T39, A40, S61, A62, P95, L99,
V112, V113, G114, N115, V116, G117,
L118, S128, V129, P130, T146

(Continued)
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TABLE 1 | Continued

Sl. No. Compound Docking score

(kcal/mol)

Prime-MMGBSA dGbind

score (kcal/mol)

Interacting residues*

22 −8.8 −52.6 V9, G10, T11, D12, S14, S16, S17, A20,
A38, T39, A40, S41, M61, P95, L99,
V113, G114, N115, V116, G117, L118,
S128, V129, P130, V133, T146

*This column holds the information on all binding site residues (within 5 Å) based on the docked pose of the ligand. The residue names in bold are involved in hydrogen bonding. Other
residues provide favorable contacts to the ligand. Further details on other types of interaction could be found in Supplementary Table 3.

The alphanumeric code indicated below each compound’s structure correspond to the original identification number of the compound in the respective databases. The Compound

identification numbers represented in bold are the biased set molecules.

NaCl, 10% glycerol, and 0.05% Tween20. Samples were incubated
at room temperature for 10min, loaded into capillaries, and
placed in the MST block. Thermophoresis was measured at
an ambient room temperature of 25◦C and performed using
60% excitation power for the nanoblue filter and medium MST
IR-laser power. Fluorescent migration used to determine Kd
was measured from 1.5 to 2.5 s and then normalized to initial
fluorescence (−1.0 to 0 s). The data from three independent
replicates were analyzed using MO Affinity Analysis software
v2.3 and fit to the standard Kd fit model, which describes a
molecular interaction with a 1:1 stoichiometry according to the
law of mass action.

RESULTS

Control Library
This library consists of the two known binders of Rv1636 and
MSMEG_3811, viz., cAMP and ATP. The redocking experiment
yielded a reproducible binding pose for cAMP as observed in
5AHW.The two poses (experimental and predicted) perfectly
superimpose on each other (Supplementary Figure 3), thus
validating our docking protocol. The docked pose of cAMP has
a docking score of −10.5 kcal/mol. The docking score of ATP
against MSMEG_3811 is −1.7 kcal/mol. This result corroborates
the earlier experimental observations (Banerjee et al., 2015).
In the current study, too, the binding affinity of cAMP to
Rv1636 has been verified through MST assay (Table 2 and
Supplementary Figure 4).

Primary Library
Compounds from three different sources (ChEMBL,
InterBioScreen-natural, and DrugBank-approved) have been

collated in this library, as mentioned earlier. Docking results of
selected compounds from these libraries are presented below.

ChEMBL Library
The initial set of ∼2,000 compounds obtained from screening
the ChEMBL library yielded compounds whose docking score
range from −11.8 to −8.2 kcal/mol. The top 100 compounds
(range of docking scores, −11.8 to −10.1 kcal/mol) were
subjected to in-depth analysis (Supplementary Table 3). The
Prime-MMGBSA dGbind scores of these 100 compounds range
from−82.2 to−29.8 kcal/mol. As mentioned earlier, the absolute
values calculated here might not agree with experimental binding
energies (for details on relevance of Prime-MMGBSA dGbind
scores, refer to Materials and Methods). The docking and
Prime-MMGBSA dGbind scores calculated in our study indicate
favorable binding of the top 100 compounds. Some of these
compounds are theoretically better binders than cAMP (as
indicated by the scores). Analyzing the interaction profiles of top
100 compounds revealed that most of these docked compounds
are engaged in hydrogen bonding with multiple critical binding
site residues (like Gly10, Ala40, Ser16, Gly114, etc.). Some of
the compounds are also involved in other types of electrostatic
interactions (such as salt bridges, aromatic CH–π interactions,
π-π stacking, and halogen bonds) with Thr11, Asp12, Phe42,
Asp57, etc. Information on the known anti-tubercular property
could be obtained from database search for 3 out of the 100
top compounds. These three compounds comprise the “biased”
subset of molecules that were shortlisted for experimental
investigations. From the remaining 97 compounds, 18 chemically
diverse compounds were prioritized for testing that formed
the “blind” subset (Table 1). The analyses of the docked poses
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TABLE 2 | Binding affinity (Kd) of experimentally tested compounds as determined by MST assays.

Sl. No. Name of the

compound

Library Docking score

(kcal/mol)

Prime-MMGBSA dGbind score

(kcal/mol)

Kd (µM)

1 cAMP Control (positive) −10.5 −60.5 2.68 ± 0.07

2 STOCK1N42384 Primary (InterBioScreen-natural
compound)

−11.1 −58.2 998 ± 82

3 STOCK1N74667 Primary (InterBioScreen-natural
compound)

−8.4 −48.1 1717 ± 731

4 Curcumin Secondary (literature search) −6.6 −58.8 17.37 ± 0.8

FIGURE 3 | Overlay of docked pose of selected compounds on to the bound pose of cAMP (green stick) as reported in 5AHW. The protein binding site is depicted as
gray surface, and the ligands are shown in ball and stick representation: (A) ChEMBL3133832 (pink carbon), (B) ChEMBL2109743 (yellow carbon), (C)
STOCK1N-42384 (cyan carbon), (D) STOCK1N-74667 (white carbon). Nitrogen, oxygen, chlorine, and sulfur atoms are shown in blue, red, dark green, and yellow,
respectively. Hydrogen atoms were not displayed during image generation to maintain visual clarity.

of two selected in silico hits from the ChEMBL library are
furnished below.

(a) ChEMBL3133832 (IUPAC name: 3-[[6-[4-(2-
hydroxyethyl)piperazin-1-yl]sulfonyl-9H-pyrido[2,3-b]indol-
4-yl]amino]phenol): This compound is one of the best
hits from the ChEMBL library with the best docking score
(−11.8 kcal/mol) among the ∼0.9 million compounds that
were subjected to docking. It also has the best MMGBSA
score (−77.1 kcal/mol) among all the compounds that have
been selected for testing (Table 1). The compound is well-
accommodated in the cAMP binding cavity of MSMEG_3811
and is predicted to be hydrogen-bonded with key residues,
such as Gly10, Ala40, Gly114, Val116, and Val129 (Figure 3
and Supplementary Figure 5).

(b) ChEMBL2109743 (IUPAC name: N-[3-[3-[3-(2-
aminoethyl)phenyl]-1H-pyrrolo[2,3-b]pyridin-5-
yl]phenyl]methanesulfonamide): This compound (also
referred as GSK581005A) is from the biased subset.
Phenotypic screening at GlaxoSmithKline (GSK) led to

the identification of ChEMBL2109743/GSK581005A to
be effective against Mtb H37Rv [minimum inhibitory
concentration (MIC) < 10µM] with low human cell-
line toxicity (Ballell et al., 2013). Owing to the known
antitubercular property of ChEMBL2109743, we have selected
it for testing. The docked pose of the compound in cAMP
binding site of MSMEG_3811 indicates that it is well-
accommodated in the binding pocket (docking score=−10.9
kcal/mol; MMGBSA dGbind score = −61.6 kcal/mol) and is
also predicted to be hydrogen bonded with critical binding
site residues (Figure 3, Supplementary Figure 6, Table 1, and
Supplementary Table 3).

InterBioScreen-Natural Library
The 50 initial hits reported from the hierarchical docking
exercises have docking scores that range from −11.6 to
−7.3 kcal/mol. The relative binding energies of all these
50 compounds were calculated using the Prime-MMGBSA
approach. Visual inspection of the poses of all the compounds
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revealed that only a few of the compounds from this library
are engaged in hydrogen bonding with the important binding
site residues. Only one compound, STOCK1N-42384 (IUPAC
name: 2-((4-aminobutyl)amino)-9,10-dimethoxy-6,7-dihydro-
4H-pyrimido[6,1-a]isoquinolin-4-one), has a docking score
better than cAMP. Given the importance of natural compounds
and their analogs in medicinal chemistry (Mushtaq et al., 2018;
Atanasov et al., 2021), two compounds, STOCK1N-42384 and
STOCK1N-74667 (IUPAC name: (R)-2-(3-(4-chloro-1H-indol-
1-yl)propanamido)-5-ureidopentanoic acid), were prioritized for
laboratory testing (Table 1). STOCK1N-42384 and STOCK1N-
74667 demonstrated a Kd of ∼1 and ∼1.7mM, respectively,
against Rv1636 (Table 2 and Supplementary Figure 4).
The analyses of the docked poses of the two selected
compounds from the InterBioScreen-natural library are
presented below.

(a) STOCK1N-42384: This compound engages one of the
key binding site residues, Ala40, in hydrogen bonding
(Figure 3 and Supplementary Figure 7). Additionally, it is
also hydrogen bonded with Glu57. Several binding site
residues offer favorable contacts to this compound in its
predicted pose, thus contributing to a docking score (−11.1
kcal/mol) comparable to some of the top-scoring virtual
hits from the ChEMBL library (Table 1, Figure 3, and
Supplementary Figure 7).

(b) STOCK1N-74667: This compound has a docking score of
−8.4 kcal/mol and is predicted to be engaged in hydrogen
bonding with Gly114, one of the critical residues for cAMP
binding as demonstrated in our previous mutagenesis
studies and discussed earlier. It is also predicted to
be hydrogen bonded to Ser16, Val116, and Thr146.
Furthermore, several residues housed by the cAMP
binding site offer favorable contacts to the docked pose
of STOCK1N-74667 in MSMEG_3811 (Table 1, Figure 3, and
Supplementary Figure 8).

DrugBank Library
A list of 20 initial reported hits were obtained upon screening the
library of approved drugs against both the protein conformers.
The docked poses of all the hits were analyzed, and two
compounds were prioritized for experimental testing: esculin and
vidarabine (Table 1). While esculin (https://go.drugbank.com/
drugs/DB13155) is a glycosyl compound used as a vasoprotective
agent, vidarabine is a known antiviral drug with established
safety records (https://www.drugbank.ca/drugs/DB00194). The
primary target of esculin is a human protein (androgen receptor).
In addition, esculin is a coumarin derivative, and promiscuity
of this chemical class of compounds is well-known (Stefanachi
et al., 2018). Therefore, anticipating esculin could interfere
with the functions of undesired human proteins, vidarabine
was assigned a higher priority for further investigations. While
docking studies predicted favorable interactions of vidarabine
and esculin with critical binding site residues (Table 1), in
vitro binding assays performed on both these compounds
against Rv1636 did not show encouraging results (data
not shown).

Secondary Library
The 10 polyphenolic natural compounds from this library (that
includes curcumin) have docking scores between −7.3 and
−4.8 kcal/mol, which indicate that the binding affinities of
these polyphenolic compounds are likely to be weaker than
the native ligand, cAMP (Supplementary Table 4). MST assays
revealed a Kd of 17µM for curcumin against Rv1636 (Table 2
and Supplementary Figures 4, 9). The two other approved
drugs from the secondary library, amikacin and kanamycin,
although predicted to be favorably accommodated (−9.5 and
−8.9 kcal/mol, respectively) in Rv1636, have docking scores
poorer than most of the compounds that we have selected for
experimental validations. The majority of the compounds in the
secondary library failed to establish hydrogen bonds with the
critical binding site residues (Supplementary Table 4).

DISCUSSION

This study has shortlisted potential binders ofMtbUSP (Rv1636)
using a rigorous computational protocol primarily employing
molecular docking simulations. Although docking scores are
important parameters to find “needles” (potential binders) from
the “haystack” (of non-binders in a large chemical universe),
it is well-known that the scoring functions can have their own
limitations (Huang et al., 2010). Therefore, to derive meaningful
insights from computational studies, we have integrated other
physics-based methods like the Prime-MMGBSA calculations
and the available experimental knowledge in our workflow to
ensure that the high confidence virtual hits are taken forward
for experimental validations. A molecule with more negative
docking and Prime-MMGBSA dGbind scores and also predicted
to be hydrogen bonded with the critical binding site residues
(as shown previously through mutagenesis experiments) are
expected to be better candidates. Furthermore, when such a
candidate is also reported as hits against both conformers I and
II, the confidence associated with that compound is higher as
explained earlier (Supplementary Table 3). It is to be noted that
the ChEMBL and InterBioScreen-Natural compound libraries
of molecules have been filtered through REOS, PAINS, and
Lipinski’s rule of five filters as a prescreening step. Therefore,
all the shortlisted candidates from these libraries are drug-like
molecules and, in general, can be assumed to be safe. The targeted
pocket in Rv1636 is suited for binding nucleotide scaffolds.
Therefore, any molecule with a nucleotide containing moiety or
its analog targeting this pocket has a chance to cross-talk with
host nucleotide-binding proteins, such as the protein kinases
(Taylor et al., 2012). Nevertheless, ChEMBL2109743, while
known to inhibit human serum and glucocorticoid-regulated
kinase 1 (SGK-1) (James et al., 2009), has been observed to have
low cellular toxicity in the GSK tuberculosis screening.

Corroboration Between Our in silico

Studies and Experimental Findings
cAMP and ATP (Control Library)
As mentioned earlier, cAMP binds to the conserved USP
domain of Rv1636 by engaging some key binding site residues
in hydrogen bonding confirmed through structure-guided
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mutagenesis studies. Furthermore, cAMP has been found to
bind to this protein with almost 10 times higher affinity than
ATP (Banerjee et al., 2015). Similar observations have also
been noted in our computational studies, as discussed earlier
(Supplementary Figure 3 and Supplementary Table 3).

Biased Subset (ChEMBL Library)
ChEMBL2109743/GSK581005A is one of the interesting hits that
we identified by screening the ChEMBL library of compounds.
In a study by Mugumbate et al., it has been suggested through
chemogenomic studies that Mtb dihyrofolate reductase (DHFR)
could be a target of this compound (Mugumbate et al., 2015). Our
virtual screening results suggest that GSK581005A is a potential
binder of Rv1636 and is predicted to be hydrogen-bonded with
critical binding site residues (Figure 3, Supplementary Figure 6,
Table 1, and Supplementary Table 3). It is worthy to note
that chemogenomic tools used in the mentioned study were
trained on the ChEMBL database of known target–ligand pairs.
Therefore, all predicted targets are biased toward well-studied
proteins that are already included to the ChEMBL database
(Mugumbate et al., 2015). Hence, it is unlikely that such methods
would predict Rv1636 as a target of any query compound. Given
that GSK581005A is already privileged with respect to its cell
permeability, there is merit in future in vitro testing of this
compound against Rv1636 (Manjunatha and Smith, 2015).

Two other compounds (ChEMBL3195891 and
ChEMBL17272847) have been reported to be tested against
an Mtb target. Both these compounds were reported to be
active in a counter-screening for inhibitors of the fructose-
bisphosphate aldolase (FBA) (https://pubchem.ncbi.nlm.n
ih.gov/compound/135470622#section=Biological-Test-Results).
However, a detailed report that can aid in making the informed
decisions could not be found.

STOCK1N-42384 and STOCK1N-74667

(InterBioScreen-Natural Library)
Both these natural compounds shortlisted from our virtual
screening bound Rv1636 in the MST assays (Table 2 and
Supplementary Figure 4). Further investigations with analogs
of these compounds that establish hydrogen bonds with the
critical cAMP binding residues (such as Gly 10 and Gly114
for STOCK1N-42384; Gly10 and Ala40 for STOCK1N-74667)
could improve the binding affinities of these natural compounds
(Table 1, Figure 3, and Supplementary Figures 5, 6).

Curcumin (Secondary Library)
A previously published report (Aanandhi et al., 2014) indicated
curcumin to be a potential binder of Rv1636 at a site
different from the cAMP binding site. Analysis of the
docking score and hydrogen-bonding profile of curcumin
at cAMP binding site in our study hints that curcumin
is unlikely to be a strong binder (Supplementary Table 4

and Supplementary Figure 9). Contrary to our expectation,
curcumin demonstrated a high binding affinity toward Rv1636
(Kd ∼17µM) (Table 2 and Supplementary Figure 4). Therefore,
curcumin may interact with Rv1636 through a site different
from the cAMP binding site. Notably, curcumin and other

polyphenolic compounds are highly promiscuous and are flagged
as pan-assay interference compounds (PAINS) that often act
by non-drug-like mechanisms. Attempts to optimize PAINS as
drug candidates in the past have proven futile, and we do not
encourage medicinal chemists to consider curcumin as a good
starting point for designing an inhibitor against Rv1636 or any
other drug targets (Baell, 2010; Baell and Holloway, 2010; Baell
and Walters, 2014).

A close inspection of the cAMP binding site in 5AHW reveals
that the site can be grossly divided into five subpockets (P1, P2,
P3, P4, and P5) (Supplementary Figure 10). The P1 comprises a
mixture of hydrophobic and polar residues (Gly10, Thr11, Asp12,
Ser14, Val113, Gly114, Asn115, and Val116). The P2 (Ala38,
Thr39, Ala40, and Leu99), P3 (Met61 and Pro95), and P4 (Ala20,
Val129, Pro130) are predominantly hydrophobic. Interestingly,
the backbones of some of the hydrophobic residues in P1 and
P2 are directed toward the ligand-binding cavity, thus facilitating
the formation of hydrogen bonds with cAMP. The residues in P3
and P4 offer favorable hydrophobic contacts to the bound cAMP.
The P5 is formed by three polar residues, viz., Ser16, Ser17, and
Thr146. Ser16 and Thr146 are involved in side-chain-mediated
hydrogen-bonding interactions with bound cAMP in 5AHW
(Supplementary Figure 10). Analysis of the docked poses of
the top 100 compounds shows that most of the compounds
in our library do not establish hydrogen bonds with the P5
residues (Supplementary Table 3). Introduction of functional
groups at appropriate sites on the ligand that help form
hydrogen bonds with P5 residues may contribute to improving
the binding affinities of the compounds against Rv1636. In
the future, such chemical modifications of the shortlisted
compounds that show promising activity in experimental testing
can be explored. Furthermore, molecular dynamics studies on
promising in vitro hits would provide important insights into
compound optimization.

The in silico-driven approach employed in this study has
helped in shortlisting 22 virtual hits that can potentially bind
to Mtb USP (Rv1636). This is the first report of screening a
large library of publicly available compounds (∼1.9 million)
to identify potential binders of Rv1636. An overall analysis of
the results on the shortlisted candidates suggests that these
compounds are likely to be better candidate binders of cAMP
binding site in Rv1636 than earlier reported polyphenolic
compounds. In vitro testing of a few shortlisted compounds
has demonstrated promising candidates from the natural
compound library. Corroboration between our computational
and experimental studies emphasizes the strength of a carefully
designed protocol used in selecting an enriched set of potential
compounds from vast chemical libraries. Relevant details of
the shortlisted compounds that might help medicinal chemists,
biochemists, and other researchers make an informed decision
for selecting, testing, and designing experiment protocols have
been provided (Tables 1, 2 and Supplementary Tables 3, 5).
To conclude, the findings reported in this study can serve as
important starting points in the drug discovery pipeline of
antitubercular leads targeted against Rv1636. It can be expected
that successful inhibition of this protein combined with other
established anti-tubercular therapeutic approaches could open
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new avenues for effective disease management and tackling the
emerging problem of drug resistance. Finally, the integrative
in silico pipeline presented in this study is a generalized one
and, in principle, can be used for any target-centric ligand
screening ventures.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

SC designed and performed the computational studies. MC
and AB performed experiments. SC prepared the manuscript
with inputs from all the authors. SC, NS, and SV finalized
the manuscript.

FUNDING

This research was supported by Mathematical Biology program
and FIST programs sponsored by the Department of Science
and Technology (DST), the DBT-IISc Partnership Program
Phase-II (BT/PR27952/INF/22/212/2018/21.01.2019) and a DBT
grant to SV (BT/PR15216/COE/34/02/2017). Support fromUGC,
India—Centre for Advanced Studies and Ministry of Human
Resource Development, India is gratefully acknowledged. The
authors acknowledge the support from DBT-Bioinformatics
and Computational Biology Centre. SC acknowledges DST-
INSPIRE for her research fellowship and MC was supported
by a Senior Fellowship from the Council for Scientific and
Industrial Research.

ACKNOWLEDGMENTS

The authors are thankful to Dr. Arka Banerjee and Dr.
Sachchidanand for useful discussions. Prof. R. Sowdhamini was
acknowledged for providing access to the Schrödinger suite of
programs at NCBS, Bengaluru. The authors thank Dr. Pritesh
Bhat and his team at Schrödinger, Bengaluru for the technical
assistance received in facilitating local access to the software
package at the IISc campus. NS and SV are J. C. Bose National
Fellows and SV was a Margadarshi Fellow supported by the DBT
Wellcome Trust India Alliance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.
2021.599221/full#supplementary-material
Supplementary Figure 1 | Structural comparison of apo Rv1636 (PDB code:
1TQ8) and cAMP bound MSMEG_3811 (PDB code: 5AHW). (A) Superimposition
of chain C of 5AHW (cyan cartoon) on to chain A of 1TQ8 (violet cartoon). The
overall RMSD between the aligned residues in these two chains as calculated
using DALI (Holm, 2020) is 3.1Å. The residues within 5Å of bound cAMP (depicted
in dot representation with green carbon atoms) are shown in magenta in both

5AHW and 1TQ8. The parts of the protein chains that superimpose well are
shown as translucent cartoons whereas the parts showing deviations are shown
as opaque cartoons. The regions that show structural deviations of the secondary
structures are encircled with black dashes. The region encircled with orange
dashes could be seen only in 5AHW. The protein residues in the equivalent region
are missing the electron density map of 1TQ8. (B) For better visualization, only the
parts that show deviations are shown; the rest of the parts in the two proteins that
superimposes well were not displayed during image generation. (C)
Superimposition of all the binding site residues surrounding cAMP (represented as
sphere with green carbon atoms). (D) The pair of residues which show structural
deviations are shown (Y41:Y53; P95:P107; L99:L111; N115:N127; V129:V141;
P130:P142; V133:V145; T146:T158; S147:T159). The co-ordinates of the residue
equivalent to M61 (of 5AHW) are missing in the electron density map of 1TQ8. In
(C,D) protein residues are shown as thin sticks; 1TQ8: violet, 5AHW: magenta.
The residue identifiers are also color-coded as per the color of the
corresponding residues.

Supplementary Figure 2 | Analysis of crystal structure of cAMP bound
MSMEG_3811 (PDB code: 5AHW). (A) The six chains of MSMEG_3811 are
shown in surface representation (chain A: green, chain B: blue, chain C: cyan,
chain D: yellow, chain E: wheatish, chain F: white). The binding site of cAMP
(represented as dots; green carbon atoms) in chain C is shown in magenta (also
indicated by a black arrow). As can be seen in the figure, the magenta region only
spans within the chain C and is away from the interface of the protomers. (B)
cAMP in the binding site (shown as magenta translucent surface) of chain C of
5AHW. The residue V113 in the binding site is shown as gray stick. The atoms CA,
CB, CG1, and CG2 of V113 have dual occupancies and thus two different
orientations of the side chain could be seen. (C) The side-chain orientation of
conformer I of V113 with respect to bound cAMP in chain C. (D) The side-chain
orientation of conformer II of V113 with respect to bound cAMP in chain C. cAMP
is shown in stick representation in panel B, C, and D with green carbon atoms.
Nitrogen, oxygen, and phosphorous atoms are shown in blue, red and
orange, respectively.

Supplementary Figure 3 | cAMP in MSMEG_3811 binding pocket (PDB code:
5AHW). (A) Superimposition of experimentally determined bound pose of cAMP
(green) on to the re-docked pose of cAMP (yellow) in the binding pocket (gray
surface) of the protein. (B) cAMP (green ball and stick model with gray transparent
surface) bound to the protein binding site. The residues (within 5Å of the ligand) in
the binding pocket are shown as thin sticks and color-coded based on their
physicochemical properties (cyan: polar; green: hydrophobic; red: charged and
negative; white: glycine). (C) 2D-interaction diagram of cAMP with residues in the
binding pocket. Hydrogen bonds are shown in pink arrows. The residue identifiers
are depicted as leaves, where the base of the leaves indicate the residue
backbone, and the tip of the leaves indicate the direction in which the side-chains
of the residues are pointed. Nitrogen, oxygen, sulfur, and phosphorus atoms are
shown in blue, red, yellow and orange, respectively. Hydrogen atoms were not
displayed during image generation to maintain visual clarity.

Supplementary Figure 4 | Micro-scale thermophoresis to study interaction of
fluorescent tagged-His-Rv1636 (100 nM) with varying concentration of: (A) cAMP,
(B) STOCK1N-42834 and STOCK1N-74667, (C) Curcumin.

Supplementary Figure 5 | 2D interaction map of docked pose of
ChEMBL3133832 with the binding site residues of MSMEG_3811. For details
related to color code, please refer to the legend to Supplementary Figure 3.

Supplementary Figure 6 | 2D interaction map of docked pose of
ChEMBL2109743 with the binding site residues of MSMEG_3811. For details
related to color code, please refer to the legend to Supplementary Figure 3.

Supplementary Figure 7 | 2D interaction map of docked pose of
STOCK1N-42384 with the binding site residues of MSMEG_3811. For details
related to color code, please refer to the legend to Supplementary Figure 3.

Supplementary Figure 8 | 2D interaction map of docked pose of
STOCK1N-74667 with the binding site residues of MSMEG_3811. For details
related to color code, please refer to the legend to Supplementary Figure 3.

Supplementary Figure 9 | Analysis of docked pose of Curcumin with the binding
site residues of MSMEG_3811. (A) Overlay of docked pose of curcumin (violet
stick) onto bound pose of cAMP (green stick). Nitrogen, and oxygen atoms are
shown in blue and red, respectively. Hydrogen atoms were not displayed during
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image generation to maintain visual clarity. (B) 2D interaction map of docked pose
of curcumin with the binding site residues of MSMEG_3811. For details related to
color code, please refer to the legend to Supplementary Figure 3.

Supplementary Figure 10 | Sub-pockets in cAMP binding site of MSMEG_3811
(PDB code: 5AHW). The five sub-pockets are marked P1, P2, P3, P4, and P5.
The group of residues in each sub-pocket is encircled. For details related to color
code, please refer to the legend to Supplementary Figure 3.

Supplementary Table 1 | EDIA report for cAMP and the binding site residues in
chain C of 5AHW.

Supplementary Table 2 | Geometric criteria used for detecting non-covalent
interactions between protein and the docked ligands.

Supplementary Table 3 | Docking and Prime-MMGBSA results with molecular
properties of top 100 compounds screened from the ChEMBL library.

Supplementary Table 4 | Docking and Prime-MMGBSA results of compounds
from secondary library.

Supplementary Table 5 | Chemical similarity (expressed as Tanimoto
coefficients) matrix of top 100 compounds from ChEMBL library.
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Leprosy, caused by Mycobacterium leprae (M. leprae), is treated with a multidrug
regimen comprising Dapsone, Rifampicin, and Clofazimine. These drugs exhibit
bacteriostatic, bactericidal and anti-inflammatory properties, respectively, and control
the dissemination of infection in the host. However, the current treatment is not cost-
effective, does not favor patient compliance due to its long duration (12 months)
and does not protect against the incumbent nerve damage, which is a severe
leprosy complication. The chronic infectious peripheral neuropathy associated with
the disease is primarily due to the bacterial components infiltrating the Schwann
cells that protect neuronal axons, thereby inducing a demyelinating phenotype. There
is a need to discover novel/repurposed drugs that can act as short duration and
effective alternatives to the existing treatment regimens, preventing nerve damage
and consequent disability associated with the disease. Mycobacterium leprae is an
obligate pathogen resulting in experimental intractability to cultivate the bacillus in vitro
and limiting drug discovery efforts to repositioning screens in mouse footpad models.
The dearth of knowledge related to structural proteomics of M. leprae, coupled with
emerging antimicrobial resistance to all the three drugs in the multidrug therapy, poses
a need for concerted novel drug discovery efforts. A comprehensive understanding of
the proteomic landscape of M. leprae is indispensable to unravel druggable targets that
are essential for bacterial survival and predilection of human neuronal Schwann cells. Of
the 1,614 protein-coding genes in the genome of M. leprae, only 17 protein structures
are available in the Protein Data Bank. In this review, we discussed efforts made to model
the proteome of M. leprae using a suite of software for protein modeling that has been
developed in the Blundell laboratory. Precise template selection by employing sequence-
structure homology recognition software, multi-template modeling of the monomeric
models and accurate quality assessment are the hallmarks of the modeling process.
Tools that map interfaces and enable building of homo-oligomers are discussed in the
context of interface stability. Other software is described to determine the druggable
proteome by using information related to the chokepoint analysis of the metabolic
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pathways, gene essentiality, homology to human proteins, functional sites, druggable
pockets and fragment hotspot maps.

Keywords: Mycobacterium leprae, amino acid substitution, chokepoint reactions, drug binging sites, homology
(comparative) modeling, protein interface

INTRODUCTION

Mycobacterium leprae causes leprosy in about 200,000 people
each year globally. Leprosy is a dermato-neurological infectious
disease with varied clinical manifestations, often resulting in
peripheral sensorimotor/demyelinating neuropathy leading
to permanent nerve damage and disability. The World
Health Organization currently recommends a combinatorial
therapy [multidrug therapy (MDT)] with Dapsone, Rifampicin
(Rifampin) and Clofazimine to treat leprosy (Manglani and Arif,
2006). MDT has proven effective in reducing the prevalence
and controlling the incidence from about 5 million new cases
in the 1990s to ∼200,000 new cases from the year 2005 (after
India declared the elimination of leprosy). However, with the
emergence of single and multidrug-resistant strains of M. leprae,
novel therapies are essential to curb ongoing transmission of the
disease. Also, the current therapy duration with MDT is 1 year
leading to reduced treatment compliance and increased defaulter
rates globally (Cambau et al., 2018).

Mycobacterium leprae is phylogenetically the closest bacterial
species to Mycobacterium tuberculosis (M. tuberculosis).
However, the M. leprae has a reduced genome of 3.2 Mbp,
compared to 4.4 Mbp in M. tuberculosis, and survive with only
1,614 protein coding genes which are largely annotated based
the features of their homologues in M. tuberculosis and other
mycobacterial species (Cole et al., 2001). Dapsone interacts with
bacterial dihydropteroate synthase, an enzyme essential for folic
acid biosynthesis in bacteria. It is absent in humans (Cambau
et al., 2006). Rifampin interacts with RNA polymerase, an enzyme
critical for DNA dependent RNA synthesis (transcription) in
M. leprae. These drugs are either bacteriostatic or bactericidal.
However, they do not interfere with predilection of M. leprae for
human nerve cells, which is a significant cause for demyelinating
neuropathy in leprosy (Lockwood and Saunderson, 2012). Newer
antibacterial agents that can effectively treat the disease within a
short duration of time and prevent nerve damage are essential
to reduce morbidity associated with the disease (Rao and Jain,
2013). Currently known drugs for leprosy, their drug target
proteins and references related to their mechanisms of action are
listed in Table 1.

Knowledge of the structural components of the proteome
of M. leprae is critical for identifying drug target proteins and
deciphering their essential roles in the survival of the pathogen.
Key enzymes that catalyze chokepoint reactions can act as
potential drug targets for antimycobacterial discovery. However,
information related to 3D structures of these proteins is scarce
for M. leprae, necessitating a more focussed structural genomics
effort to unravel the druggable proteomic landscape of this
bacillus long known to humankind.

Software tools that predict stability and affinity changes in
drug-target proteins due to substitution mutations are discussed

in the context of antimicrobial resistance. While the emphasis
is on deciphering the druggable proteome, we provide a brief
overview of the structure-guided virtual screening tools and
methods that facilitate the chemical expansion of fragment-like
small molecules to lead-like or drug-like compounds in the active
or allosteric sites of the target protein.

Proteome Modeling in
Mycobacterium leprae and Its Relevance
to Structure-Guided Drug Discovery
Of the 1,614 annotated genes that are expressed in M. leprae,
the structures of only 17 proteins are available (see Table 2)
to date in the publicly available databases [Protein Data
Bank (PDB) (Berman et al., 2000)], as opposed to around
1,277 entries for Mycobacterium tuberculosis. Solving the
crystal/cryoEM structures of all the potential drug targets in
M. leprae requires costly and labor intensive effort. Given
the high sequence identity of many of the M. leprae proteins
with their homologous counterparts in M. tuberculosis with
solved structures in the PDB, employing computational
tools to perform comparative modeling of proteins in
M. leprae can be a robust alternative for acquiring a
preliminary understanding of the functional sites and small
molecule interactions.

Different groups have made several attempts to model
the proteins of M. leprae. Table 3 lists two web-resources
where such information is available. Computational protein
structure modeling can reduce the sequence-structure gaps
and enable genome-scale modeling of infectious pathogens
(Bienert et al., 2017). Although the paucity of structural
proteomics information for M. leprae in the publicly available
databases is a challenge, the software developed in the
Blundell laboratory will be useful in performing proteome scale
modeling pipeline (Vivace) for proteomes of Mycobacterial
pathogens and other bacterial species (Skwark et al., 2019).
Vivace optimizes template selection, enables sequence-structure
alignments, and constructs optimal quality models in both
apo- and ligand-bound states. To facilitate multi-template
modeling, protein structures from the entire PDB are initially
organized in a structural profile database named TOCCATA
(Ochoa-Montaño et al., 2015). Protein structures within
each profile are classified based on domain annotations in
CATH (Sillitoe et al., 2019) and SCOP (Andreeva et al.,
2020) databases, pre-aligned and functionally annotated with
information derived from UniProt (The UniProt Consortium,
2021) and PDB. The query protein sequence is aligned with
representative structures from each cluster using a sequence-
structure alignment tool named FUGUE (Shi et al., 2001).
FUGUE recognizes distant homologues by sequence-structure
comparison using environment-specific substitution tables and
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structure-dependent gap penalties. Alignments generated by
FUGUE are fed into Modeler 9.24 (Webb and Sali, 2016) for
model building. The ligands and other small molecules are
modeled into corresponding protein structure models at sites
recognized from the ligand-bound templates. Multiple models
are generated based on the number of cluster hits, ranging
from 3 to ∼1,000 models per query sequence in the M. leprae
proteome. These models are of different states (ligand-bound and
apomeric) and of varying quality based on the templates used in
each profile.

Once modeled, each of the protein structure models
undergoes a rigorous quality assessment by employing methods
such as NDOPE, GA341 (Shen and Sali, 2006), GOAP
(Zhou and Skolnick, 2011), SOAP (Webb and Sali, 2016),
Molprobity (Chen et al., 2010) and secondary structure

agreement score (Eramian et al., 2006). Models with extensive
chain clashes, poorly resolved loops and improperly fitted
ligands are ranked low in the consensus quality scoring
process described in CHOPIN—a web resource for structural
and functional proteome of Mycobacterium tuberculosis
(Ochoa-Montaño et al., 2015).

Vivace is being used to model the proteome of M. leprae.
Sequence and structural features at the genome-scale are being
analyzed to identify essential enzymes that drive chokepoint
metabolic reactions. Models in apomeric, ligand-bound
and oligomeric (discussed in the later sections) states are
being generated and analyzed for surface topology, cavities
(Binkowski et al., 2003) and fragment hotspots (sites for
potential small molecule binding) (Radoux et al., 2016). The
schematic workflow shown in Figure 1 illustrates the modeling

TABLE 1 | Drugs and their corresponding target proteins in M. leprae.

Drug Target proteins/Ribosomal subunits Gene (gene name) References

Dapsone Dihydropteroate synthase (DHPS) folP1 (ML0224) Williams et al., 2000

Rifampin β-subunit of the DNA-dependent RNA polymerase rpoB (ML1891) Lin et al., 2017

Clofazimine Unknown - Lechartier and Cole, 2015

Fluoroquinolones DNA gyrase subunit A gyrA (ML0006) Blower et al., 2016

DNA gyrase subunit B gyrB (ML0005) Yamaguchi et al., 2016

Macrolides 50S subunit (23S rRNA in particular) - Ji et al., 1996

Minocycline 30S ribosomal subunit, blocking the binding of
aminoacyl-tRNA to the 16S rRNA

- Ji et al., 1996

Thioamides Enoyl-ACP-reductase inhA (ML1806) Wang et al., 2007

Bedaquiline Proton pump of ATP synthase atpE (ML1140) Guo et al., 2021

Epiroprim Dihydrofolate reductase folA (ML1518) Dhople, 2002

TABLE 2 | List of protein structures available for M. leprae in Protein Data Bank

Gene Id PDB Id Description References

ML2441 4EO9 Crystal structure of a phosphoglycerate mutase gpm1 from Mycobacterium leprae Baugh et al., 2015

ML0210 4ECP X-ray crystal structure of Inorganic Pyrophosphate PPA from Mycobacterium leprae Unpublished

ML0560 4J07 Crystal structure of a PROBABLE RIBOFLAVIN SYNTHASE, BETA CHAIN RIBH
(6,7-dimethyl-8-ribityllumazine synthase, DMRL synthase, Lumazine synthase) from Mycobacterium leprae

Unpublished

ML1382 5IE8 The pyrazinoic acid binding domain of Ribosomal Protein S1 from Mycobacterium tuberculosis* Huang B. et al., 2016

ML0482 1BVS RUVA Complexed to a Holliday Junction Roe et al., 1998

ML2684 3AFP Crystal structure of the single-stranded DNA binding protein from Mycobacterium leprae (Form I)” Kaushal et al., 2010

ML2640 2CKD Crystal structure of ML2640 from Mycobacterium leprae Graña et al., 2007

ML0380 1LEP Three-Dimensional Structure of the Immunodominant Heat-Shock Protein Chaperonin-10 of
Mycobacterium Leprae

Mande et al., 1996

ML1962 3I4O Crystal Structure of Translation Initiation Factor 1 from Mycobacterium tuberculosis* Hatzopoulos and
Mueller-Dieckmann, 2010

ML2428A 5O61 The complete structure of the Mycobacterium smegmatis 70S ribosome* Hentschel et al., 2017

ML1485 4WKW Crystal Structure of a Conserved Hypothetical Protein from Mycobacterium leprae Determined by Iodide
SAD Phasing

Unpublished

ML2174 3R2N Crystal structure of cytidine deaminase from Mycobacterium leprae Baugh et al., 2015

ML1806 2NTV Mycobacterium leprae InhA bound with PTH-NAD adduct Wang et al., 2007

ML2684 3AFQ Crystal structure of the single-stranded DNA binding protein from Mycobacterium leprae (Form II) Kaushal et al., 2010

ML2069 4EX4 The Structure of GlcB from Mycobacterium leprae Unpublished

ML2640 2UYO Crystal structure of ML2640c from Mycobacterium leprae in an hexagonal crystal form Graña et al., 2007

ML2640 2UYQ Crystal structure of ML2640c from Mycobacterium leprae in complex with S-adenosylmethionine Graña et al., 2007

*The solved region of the protein structure is 100% in sequence identity with M. leprae.
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TABLE 3 | Web resources with models of M. leprae proteins (modelled using single templates).

Web resource Description Availability References

ModBase A database of annotated comparative protein structure
models and associated resources

https://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi Pieper et al., 2011

SwissModel
Repository

A database of annotated 3D protein structure models
generated by the SWISS-MODEL homology-modeling
pipeline

https://swissmodel.expasy.org/repository Bienert et al., 2017

procedures adopted by our group to model proteomes of
mycobacterial pathogens.

Approaches to Predict
Homo/Hetero-Oligomeric Complexes
Protein-protein interactions (homo/hetero) govern a majority
of the cellular processes. Structure determination of these
complexes is crucial for understanding their functions. Usually,
the experimental techniques used to unravel interacting protein
partners are time consuming, challenging and expensive.
There have been significant advances in the development
of computational methods and tools to identify interacting
pairs and predict the structures of protein-protein complexes
(Das and Chakrabarti, 2021).

The computational tools for predicting protein-protein
interactions developed over the years can be classified into the
knowledge-based or de novo prediction methods. If the structures
of the interacting partners are known, the interactions can be
predicted using template-based, or template free and/or restraint-
based docking. Template-based docking can provide the multi-
component modeled complex but requires the presence of multi-
component template structures (Ogmen et al., 2005; Mukherjee
and Zhang, 2011). If the homologous multi-component template
is unavailable, protein-protein docking approaches can be used
to sample the conformational space and predict the docked
complexes which are further scored using different schemes
to discriminate native-like conformations from a pool of
docked solutions. These different approaches for computational
modeling of protein interactions were recently reviewed by Soni
and Madhusudhan (2017).

Recently, tools have been developed which can make use of the
wealth of sequence information available for protein sequences
to predict/model interactions accurately. Machine learning
approaches including deep learning have played a significant
role in training models which can predict the interactions using
the features derived from protein sequences alone (Huang Y.-
A. et al., 2016; Du et al., 2017; Sun et al., 2017; Chen et al.,
2019). The inspection of co-evolving sites in two protein partners
can provide strong signals to elucidate interacting partners (Yu
et al., 2016). A recent method CoFex (Hu and Chan, 2017)
used co-evolutionary features to predict protein interactions.
Ensemble based approaches which use multiple machine learning
methods to vote for predictions have been reported to achieve
high sensitivity and accuracy (Zhang et al., 2019; Li et al., 2020).
Deep learning has also been employed to train a convolutional
neural network (CNN) to predict the protein interacting pairs
with high accuracy (Wang et al., 2019; Torrisi et al., 2020).

However, in-silico approaches can often give false positive
or negative results as well, hence one also needs validation
strategies to assess the quality of predicted interactions. Efforts in
the community such as CASP (Critical Assessment of Structure
Prediction) and CAPRI (Critical Assessment of Prediction of
Interfaces) competitions, aim to assess the field and the state-
of-the-art methods and their ability to “correctly” model protein
structures and their interactions, respectively. They define and
use multiple scores for assessing the quality of protein structure
and interfaces in the modeled complexes. CASP14 is the present
ongoing competition, where deep learning approach-AlphaFold2
has outperformed and were able to accurately predict the protein
structures (AlQuraishi, 2019).

To illustrate the modeling process adopted by Vivace, Figure 2
depicts the models of three potential drug targets in M. leprae,
the menB [1,4-dihydroxy-2-naphthoyl-CoA synthase (ML2263)],
menD [2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-
1-carboxylate synthase (ML2270)] and coaA [Pantothenate
kinase (ML1954)].

The gene product of menB converts o-succinylbenzoyl-CoA
(OSB-CoA) to 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA)
and its homologue in M. tuberculosis (Rv0548c) is reported as
essential (DeJesus et al., 2017). We built the model using the
structure of its orthologous protein in M. tuberculosis (PDB Id:
4QII) as the template with sequence identity of 93% and sequence
coverage of 100% (Figure 2A). The gene product of menD
catalyzes the thiamine diphosphate-dependent decarboxylation
of 2-oxoglutarate. Its homologue in M. tuberculosis (Rv0555) is
noted to be essential for bacterial survival. We modeled menD
of M. leprae using the structure of the M. tuberculosis orthlogue
(PDB Id: 5ESD) as the template with the sequence identity of
86% and sequence coverage of 99% (Figure 2B). Finally, we
modeled coaA which synthesizes coA from (R)—Pantothenate.
CoaA has been recognized as a drug target in tuberculosis
(Chiarelli et al., 2018). We modeled coaA using its orthologue in
M. tuberculosis (PDB Id: 2GET) as the template with sequence
identity of 93% and sequence coverage of 98% (Figure 2C).

Structural Implications of Substitution
Mutations
Development of drug resistance is recognized as one of the
major hurdles to disease management and control. For M. leprae,
it is even more challenging as it relies on mouse footpad
models (Vedithi et al., 2018). Antimicrobial resistance was noted
in Dapsone, Rifampicin and Ofloxacin (a second-line drug).
Treating and managing the disease is a big hurdle due to
emerging drug resistance for these three drugs and lack of
alternative effective treatments.
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FIGURE 1 | Workflow for modeling mycobacterial proteomes and developing web databases.

FIGURE 2 | Oligomeric models of three potential drug targets in M. leprae. (A) The homohexameric model of M. leprae menB complexed with Salicylyl CoA. (B) The
homotetrameric model of M. leprae menD bound to magnesium ions. (C) The homodimeric model of M. leprae coaA in complex with coenzyme A derivative.
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The drug-resistance mutations when mapped on to the three-
dimensional structure of the drug target can provide crucial
insights into effects on protein structure and function. There
are several available software/web servers that can predict the
impacts of mutation on protein stability and interactions with
other proteins, ligands and nucleic acids. We have provided
a list of some of the commonly used software tools for
investigating the effects of mutations on protein structure and
function (Table 4).

Our own group have developed over the past decade
the mCSM suite of computer programmes that use ML/AI
approaches to predict the impacts of amino acid mutations
not only on protomer stability (Pires et al., 2014a) but also
on protein-protein, protein nucleic acid and protein-ligand
interactions (Pires et al., 2016; Pires and Ascher, 2017).
Recently, there have been further developments in the field
where machine learning (ML)-based methods are gaining

popularity. Many more recent ML methods also use features
derived from protein structure and/or sequence to predict
the effect of mutations (Hopf et al., 2017). A recent review,
summarizes the performance of different ML methods and
emphasizes the need for selecting reliable training dataset
and informative features (Fang, 2020). Deep learning is an
advanced training which is composed of multiple layers to
learn different features from the input data and is proven
to learn from the high-dimensional data. Recently, a method
called DeepCLIP (Grønning et al., 2020) has been proposed
which can predict protein binding to RNA using only
sequence data. Another recently developed deep learning
framework-MuPIPR (Zhou et al., 2020) (Mutation Effects in
Protein–protein Interaction Prediction Using Contextualized
Representations), can predict the effects of mutation on protein-
protein interactions in terms of changes in buried surface area
and binding affinity.

TABLE 4 | Some of the commonly used tools for predicting the effect of mutations on protein structure and function.

Software Description Availability References

SIFT Amino acid substitution effect on protein function https://sift.bii.a-star.edu.sg/ Ng and Henikoff, 2003

PolyPhen-2 Amino acid substitution effect on protein structure and
function using protein sequence

http://genetics.bwh.harvard.edu/pph2/ Adzhubei et al., 2010

SNPs3D Amino acid substitution effect on protein structure and
function using SVM based model

http://snps3d.org/ Yue et al., 2006

MutPred2 Machine learning approach to quantify pathogenicity of
mutation

http://mutpred.mutdb.org/index.html Pejaver et al., 2020

PROVEAN Impact of mutation on protein function by using multiple
sequence alignment

http://provean.jcvi.org/index.php Choi and Chan, 2015

mCSM Effect of mutation on protein structure and interactions
using graph-based signatures

http://biosig.unimelb.edu.au/mcsm/ Pires et al., 2014a

SDM2 Effect of mutation on protein structure and interactions
using environment-specific amino-acid substitution
frequencies

http://marid.bioc.cam.ac.uk/sdm2 Pandurangan et al., 2017, 2

DUET Consensus prediction of mCSM and SDM2 for protein
stability

http://biosig.unimelb.edu.au/duet/ Pires et al., 2014b

PoPMuSiC-2 Effects of mutation on protein stability using statistical
potentials

http://dezyme.com/en/Services Dehouck et al., 2009

FoldX Change in free energy using force fields-based method http://foldxsuite.crg.eu/ Schymkowitz et al., 2005

Hunter Predicting protein stability upon mutation using side
chain interactions

http://bioinfo41.weizmann.ac.il/hunter/ Potapov et al., 2010

MAESTRO Measures changes in free energy upon mutation using
machine learning

https://pbwww.che.sbg.ac.at/?page_id=416 Laimer et al., 2015

I-Mutant3.0 SVM based prediction of protein stability change upon
mutation using either sequence and/or structure

http://gpcr2.biocomp.unibo.it/cgi/predictors/I-
Mutant3.0/I-Mutant3.0.cgi

Capriotti et al., 2008

MUPro SVM and neural network-based prediction of changes
in protein stability

http://mupro.proteomics.ics.uci.edu/ Cheng et al., 2006

iStable Change in free energy using SVM based predictor http://predictor.nchu.edu.tw/istable/ Chen et al., 2013

MutaBind Change in free energy using force fields, statistical
potentials and side-chain optimisation methods

https://www.ncbi.nlm.nih.gov/research/mutabind/
index.fcgi/

Li et al., 2016

BeAtMuSiC Impact of mutations on protein-protein interactions
using statistical potentials

http://babylone.ulb.ac.be/beatmusic/ Dehouck et al., 2013

SNAP2 Predict functional impacts of mutations using neural
network-based model

https://rostlab.org/services/snap2web/ Hecht et al., 2015

Envision Supervised, stochastic gradient boosting algorithm to
quantify the effect of mutation

https:
//envision.gs.washington.edu/shiny/envision_new/

Gray et al., 2018

EVmutation Unsupervised statistical method to predict effect of
mutations using residue dependencies between
positions

https://marks.hms.harvard.edu/evmutation/
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In-silico Saturation Mutagenesis
Using the tools described above, computational efforts exploiting
recent growth in the availability of computing power can be
immensely helpful to perform saturation mutagenesis, which can
be used as a surveillance tool for drug resistance in leprosy.
These mutational scanning exercises can provide crucial insights
into the structure-function relationships by exploring all possible
substitutions at a given site. This can provide a glimpse into
the functional consequences of mutations in antimicrobial-
resistance phenotypes. The extensive quantitative data from
computational saturation mutagenesis experiments can guide
experimental approaches and prove helpful for validation and/or
engineering purposes. Recently published HARP (a database
of Hansen’s Disease Antimicrobial Resistance Profiles) database
(Vedithi et al., 2020) is a comprehensive repository of in-silico
mutagenesis experiments for three important drug targets for
M. leprae namely dihydropteroate synthase, RNA polymerase and
DNA gyrase. A consensus impact for all the possible mutations
on protein stability and function of these drug targets is provided
in this database.

Druggability
Mycobacterium leprae genome is reduced to 3,268,203 bp
preserving only 1,614 ORFs (Cole et al., 2001; Liu et al., 2004)
of the Mycobacterial genus. The genome reduction is due to
evolutionary adaptation of this intracellular obligate bacillus to
Schwann and macrophages cells. Gene essentiality in M. leprae is
deciphered based on essentiality of homologous genes, mainly in
M. tuberculosis that are determined by experiments (Sassetti et al.,
2003; DeJesus et al., 2017). Because of the evolutionary loss of
non-essential genes by pseudogenization, only 65% of the existing
total of M. leprae genes have been demonstrated to be essentials
(Borah et al., 2020). In order to identify potential drug targets,
a chokepoint reaction analysis helps to find proteins that are
either consumers of unique substrates, or are unique producers
of metabolites. It is predicted that the inhibition of chokepoint
proteins produces an interruption of essential cell functions (Yeh
et al., 2004). Determining the druggability of protein targets is
important to avoid intractable targets. A druggable protein has
the ability to bind with high affinity to a drug. In leprosy, the

dihydropteroate synthase (DHPS), RNA polymerase (RNAP) and
DNA gyrase (GYR) are known druggable proteins as they are
the targets of Dapsone, Rifampicin and Ofloxacin, respectively.
Nevertheless, protein druggability properties can be predicted by
different bioinformatics tools based on the 3D structure /model
of the protein. For example, the α-1,2-mannosyltransferase
and mannosyltransferase proteins related to lipoarabinomannan
pathway were identified as a possible drug targets using CASTp
(Computer Altas of Surface Topography of proteins) (Gupta
et al., 2020). CASTp determines the volume and the area of
each cavity and pocket. Furthermore, for each pocket the solvent
accessible surface and the molecular surface are calculated. Small-
molecule virtual screening is another in-silico strategy used
to ascertain druggability of the protein target. This approach
provides an understanding of the physicochemical features of
the binding sites and potential ligands that bind at these sites.
In Mycobacterium tuberculosis, 2,809 proteins are identified as
druggable using this in-silico approach (Anand and Chandra,
2014). Mammalian cell entry proteins of the class mce1A-E have
been reported in M. leprae to facilitate bacterial entry into human
nasal epithelial cells (Fadlitha et al., 2019).Mce1A has a significant
role in the cell predilection and a comprehensive understanding
of the structure and druggability of this protein can provide
insights into host pathogen interactions and transmission in
leprosy (Sato et al., 2007). In the case of ML2177c, this
gene encodes for uridine phosphorylase and shows significantly
high expression during leprosy infection. This is predicted
as druggable using fragment-hotspot-map analysis (Malhotra
et al., 2017). The fragment hotspots contain a juxtaposition of
charge and lipophilicity that are essential for effective ligand
binding through both enthalpic and entropic contributions. The
hotspot map software uses different molecular probes (toluene,
aniline and phenol) to calculate affinity maps that provide a
visual guide of the pocket (Radoux et al., 2016). Figure 3
illustrates the recommended pathway to target prioritization in
mycobacterial drug discovery.

Structure-Guided Virtual Screening
Structure-guided virtual screening is a cost-effective
computational tool for preliminary screening of proteins
that are potential drug targets with chemical libraries ranging

FIGURE 3 | Workflow for drug target prioritization in M. leprae.
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from small core fragments to large macrocyclic compounds in
size and scaling from a few hundred molecules to billions (used
in ultra-large-scale virtual screening campaigns). Since physical
synthesis of drug molecules is not required, millions of virtual
chemical entities can be swiftly docked into the active site of the
protein structure/model and appropriate chemical scaffolds that
fit with high scores and form relevant stabilizing interactions can
be shortlisted for experimental validations. Virtual screening can
be applied to novel drug discovery and also in drug repositioning
experiments (screening with existing approved drugs to identify
new target-protein interactions). A repurposing screen of LipU,
a lipolytic protein that is conserved across mycobacterial species
and noted to be essential for survival of M. leprae, revealed high
docking scores for anti-viral drugs and anti-hypertensive (Kaur
et al., 2019). Molecular docking software, such as Glide (Friesner
et al., 2006), CCDC-GOLD (Jones et al., 1997), Autodock
(Goodsell and Olson, 1990), Ledock (Wang et al., 2016), FlexX
(Kramer et al., 1999), and SwissDock (Grosdidier et al., 2011)
are used in virtual screening campaigns. Each algorithm has a
unique scoring function to assess the fitness, number of stable
interatomic interactions, and changes in energy landscape.

DISCUSSION AND CONCLUSION

Here, we have reviewed the tools and the advances made
in protein structure prediction, modeling of genomes and
impacts of amino acid replacements on protein structure
and function. We have discussed these areas particularly
focusing on the mycobacterial genomes, more specifically
M. leprae. Given the paucity of information related to structural
proteomic studies in leprosy, we discussed a multi-task protein
modeling pipeline that enables proteome-scale template-based
modeling of individual proteins encoded by various annotated
genes in M. leprae. Homology-based structural and functional
annotation of these protein models (Ochoa-Montaño et al.,
2015; Skwark et al., 2019) using appropriate computational
tools for modeling and druggability assessment can expedite
characterization of the structural proteome of M. leprae and
accelerate structure-guided novel drug discovery to combat nerve
damage associated with leprosy.

Using the latest advancements in the field of protein
structure bioinformatics, we describe our attempts to perform
proteome scale modeling of mycobacterial genomes using in-
house databases and pipelines. The modeled protein monomers
or (homo/hetero) oligomers are subjected to multiple state-
of-the-art validation scores. These models can be very helpful

and provide useful insights to understand protein structure and
function, identify drug targets and unravel their functional roles
in the pathogen. The structures of selected drug targets can
also help in experimental design and prioritizing the protein
targets for validation.

The emergence of drug resistance to the multidrug therapy is
a major challenge in treating mycobacterial infections especially
leprosy where structural features of drug-target interactions are
poorly understood. To complement the computational findings,
our group has employed cryoEM methods to understand the
impact of mutations on the structure of catalase peroxidase in
M. tuberculosis (Munir et al., 2019, 2021). Protein sequences and
structures can be used to model the impacts of drug resistance
mutation on protein structure and function. We have described
various software available for predicting the impacts of mutations
using protein sequence or structure or both. In-silico saturation
mutagenesis experiments can guide the experimental design and
help in saving the time and labor required to conduct laboratory
experiments on animal models. Structure-based drug design
(Blundell et al., 2002; Blundell and Patel, 2004) is a way forward
and is a promising approach to design new drugs and treatments.
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This work investigated the interaction of indole with SARS-CoV-2. Indole is widely
used as a medical material owing to its astounding biological activities. Indole and
its derivatives belong to a significant category of heterocyclic compounds that have
been used as a crucial component for several syntheses of medicine. A straightforward
one-pot three-component synthesis of indole, coupled with Mannich base derivatives
1a–1j, was synthesized without a catalyst. The products were confirmed by IR, 1H-
NMR, 13C-NMR, mass spectra, and elemental analysis. The indole derivatives were
tested for cytotoxic activity, using three cancer cell lines and normal cell lines of
Human embryonic kidney cell (HEK293), liver cell (LO2), and lung cell (MRC5) by
MTT assay using doxorubicin as the standard drug. The result of cytotoxicity indole
compound 1c (HepG2, LC50−0.9 µm, MCF−7, LC50−0.55 µm, HeLa, LC50−0.50 µm)
was found to have high activity compared with other compounds used for the same
purpose. The synthesized derivatives have revealed their safety by exhibiting significantly
less cytotoxicity against the normal cell line (HEK-293), (LO2), and (MRC5) with
IC50 > 100 µg/ml. Besides, we report an in silico study with spike glycoprotein (SARS-
CoV-2-S). The selective molecules of compound 1c exhibited the highest docking score
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−2.808 (kcal/mol) compared to other compounds. This research work was successful
in synthesizing a few compounds with potential as anticancer agents. Furthermore,
we have tried to emphasize the anticipated role of indole scaffolds in designing and
discovering the much-awaited anti-SARS CoV-2 therapy by exploring the research
articles depicting indole moieties as targeting SARS CoV-2 coronavirus.

Keywords: indole, Mannich base, cytotoxic activity, COVID-19, spike protein

INTRODUCTION

Coronavirus has proved to be the most deadly of the 21st-century
epidemics by being responsible for emergent communicable
disorders. It first manifested its presence through the onset of
dangerous pneumonia, started by the (SARS-CoV) infestation
in 2003 (Rahman et al., 2020). In December 2019, many lung
fever patients infected by a novel coronavirus were announced in
Wuhan, China (Chan et al., 2020; Li et al., 2020; Zhu et al., 2020).
The SARS-CoV-2 has been the cause of greater than 1.27 million
deaths as of November 11, 2020 (Lu et al., 2020; Wu et al., 2020;
Zhou et al., 2020). The acronym for coronavirus, namely, SARS-
CoV-2, was assigned by the World Health Organization (WHO)
on February 11, 2020 (Gorbalenya et al., 2020). SARS-CoV-2 has
become a global health crisis involving around 212 countries
(World Health Organization, 2020). Several drug mixtures are
still being used.

However, the remedial outcome has been meager with
secondary response (Cao et al., 2020). Adenosine triphosphate
(ATP) analog was used as an antiviral drug to counter the
effects of COVID-19, but more statistics are required to
demonstrate its efficiency (Cohen, 2020; Holshue et al., 2020;
Wang et al., 2020). On August 11, 2020, Russia became
the first nation to approve a vaccine (sputnik V) to protect
against infection by COVID-19 (Talha, 2020). The inherent
RNA of coronaviruses and its structure information is described
and discussed by other researchers (Hussain et al., 2005;
Chen et al., 2020). In the biorhythms of coronaviruses,
some functional and non-functional proteins are involved
(Ramajayam et al., 2011; Ren et al., 2013). The emergence
of drug-resistance for antiviral activity and defective antiviral
drugs stimulates a great demand to develop a less toxic
and more potent antiviral agent. In this regard, researchers
have recently focused on naturally available indoles and
their derivatives.

The inclusion of indole is the most significant structural
modification in drug development, and it is labeled as one
of the “privileged scaffolds” (Evans et al., 1988; deSa Alves
et al., 2009; Welsch et al., 2010). The enlargement of a new
technique for the pattern of C-N and C-C bonds that evade
the pore functional group is tremendously significant in current
organic chemistry (Ricci, 2008). Amino methylation is a crucial
method for direct carbon–carbon and carbon-nitrogen bond-
forming reactions (Hwang and Uang, 2002). Usually, amino
methylation is done by the Mannich reaction using aldehyde as
a methylene group source (Mannich and Krosche, 1912). Indole
is perhaps the most ubiquitous motif in nature (Humphrey and
Kuethe, 2006). Many natural and synthetic indole derivatives

have been in great demand in medical and pharmaceutical
applications since they can bind with high affinity to many
receptors (Sundberg, 1970, 1996; Lounasmaa and Tolvanen, 2000;
Horton et al., 2003; Gu and Hamann, 2005; Somei and Yamada,
2005; Shiri, 2012). Previously reported natural products of indole
derivatives are shown in Figure 1 (Chen et al., 2019), and the
biological activities of indole derivatives are offered in Figure 2
(Kumari and Singh, 2019). Indole regulates numerous aspects
of microorganism physiology, including reproductive structure
formation, body stability, resistance to medication, biofilm
formation, and virulence (Chadha and Silakari, 2017). Based on
the above properties, we prepared new indole derivatives 1a–
1j via the Mannich reaction. As the indole compounds have
been rigorously involved in ailments including viral infections
and cancer, there exists a profound scope of exploring these
multiple nuclei to curb coronaviruses (Zhang et al., 2015). Here
we demonstrated that the indole moiety potently blocked the
infectivity of SARS CoV-2 by targeting glycoproteins. They
also potently block the enzymatic activity of SARS CoV-2 and
replication of coronavirus (Hattori et al., 2021). Therefore,
through this, indole derivatives developed against SARS-CoV-
2 epidemics using in vitro and in silico approaches may be of
immense value at this hour of global emergency and in the future.

EXPERIMENTAL

General
All the chemicals were purchased from Merck. The melting
point was determined using an open capillary tube, and it
is uncorrected. The IR spectra were recorded in KBr on a
Shimadzu 8201pc (4000–400 cm−1). 1H and 13C-NMR spectra
were recorded on Bruker Avance II NMR spectrometer 300 MHz
with DMSO-d6 as solvent using tetramethylsilane (TMS) as an
internal standard. Mass spectra were recorded using Clarus SQ8
(Perkin Elmer), and the elemental analysis (C, H, and N) was
performed on a Varian EL III instrument.

General Procedure for the Synthesis of Compounds
1a–1j
We compounded Furan-2-ylmethylenehydrzine (0.01 mol),
indole (0.01 mol), and substituted aldehydes (0.01 mol)
in ethanol solution to give a yellow solution with light
brown color precipitate. The residue was recrystallized with
ethanol. The obtained compound was purified by thin-layer
chromatography (TLC). Hexane was used as eluting and solvent
in TLC. All the synthesized compounds were separated by
column chromatography.
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Ajmalicine

FIGURE 1 | Natural products of indole derivatives.

FIGURE 2 | Biological activities of indole derivatives.

(E)-1-((2furan-2ylmethylene)hydrazinyl)phenyl)methyl)
1H-indole (1a)
Light yellowish brown solid: mp 250◦C; IR (KBr) (cm−1)
3440 (NH str), 3080 (CH-str Ar-ring), 1623 (C = N),
1092 (N-CH-N). 1H NMR (DMSO-d6), δ (ppm) J (Hz):
8.41 (s, 1H, CH = N), 7.99–7.79 (d, 2H, indole), 7.82–
6.70 (m, 3H, furan), 7.40–6.95 (m, 9H, Ar), 7.08 (s, 1H,
NH), 7.08 (s, 1H, CH); 13C NMR (DMSO-d6) δ(ppm):
150.46, 145.73, 118.96, 113.43 (4C, Furyl ring), 143.52, 128.57,
127.78, 126.95, 126.90, 125.25 (6C, Ph ring), 136.25, 126.62,
125.23, 121.69, 120.09, 118.23, 111.57, 110.76 (8C, indole
ring), 135.23 (1C, C = N), 40.59 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 315.14 (M++, 20); Elemental analysis:
Anal.C20H17N3O: C, 76.20; H, 5.45; N, 13.35; Found C, 76.25;
H, 5.55; N, 13.28.

1-((2furan-2ylmethylene)hydrazinyl)3-nitrophenyl)
methyl)1H-indole (1b)
Light brown solid: mp 258◦C; IR (KBr) (cm−1) 3435
(NH str), 3058 (CH-str Ar-ring), 1590 (NO2

−), 1623

(C = N), 1094 (N-CH-N). 1H NMR (DMSO-d6), δ

(ppm) J (Hz): 8.33–6.75 (m, 9H, Ar), 8.10 (s, 1H,
CH = N), 7.95–7.82 (d, 2H, indole), 7.69–6.74 (m, 3H,
furan), 7.09 (s, 1H, NH), 6.73 (s, 1H, CH); 13C NMR
(DMSO-d6) δ (ppm): 150.62, 145.64, 118.96, 113.50
(4C, Furyl ring), 147.75, 135.85, 127.84, 126.69, 114.20,
114.12 (6C, Ph ring), 136.53, 126.62, 125.25, 121.62,
120.16, 118.25, 111.48, 110.70 (8C, indole ring), 135.27
(1C, C = N), 40.54 (1C, N-CH-N); EI-MS (Relative
intensity %): m/z 360.12 (M+, 20); Elemental analysis:
Anal.C20H16N4O3: C, 66.67; H, 4.49; N, 15.56; Found C,
66.62; H, 4.55; N, 15.48.

1-((2furan-2ylmethylene)hydrazinyl)1H-indole-1-
yl)methyl)phenol (1c)
Brown solid: mp 272◦C; IR (KBr) (cm−1) 3585 (OH), 3449
(NH str), 3086 (CH-str Ar-ring), 1629 (C = N), 1091 (N-
CH-N). 1H NMR (DMSO-d6), δ (ppm) J (Hz): 10.24 (s, 1H,
OH), 8.52 (s, 1H, CH = N), 7.95–7.52 (d, 2H, indole), 7.68–
6.97 (m, 3H, furan), 7.42–6.72 (m, 9H, Ar), 7.06 (s, 1H,
NH), 6.74 (s, 1H, CH); 13C NMR (DMSOd6) δ (ppm): 176.36
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(1C, Ph-OH), 150.25, 145.24, 118.42, 113.47 (4C, Furyl ring),
142.18, 129.48, 129.50, 114.25, 114.22 (5C, Ph ring), 136.04,
127.89, 125.24, 121.67, 120.15, 118.29, 111.52, 110.76 (8C,
indole ring), 135.29 (1C, C = N), 40.51 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 331.13 (M+, 20); Elemental analysis:
Anal.C20H17N3O2: C, 72.50; H, 5.18; N, 12.69; Found C, 72.45;
H, 5.24; N, 12.65.

1-((4-chlorophenyl)2-furan-2ylmethylene)hydrazinyl)
methyl)-1H-indole (1d)
Light brown solid: mp 260◦C; IR (KBr) (cm−1) 3442 (NH
str), 3082 (CH-str Ar-ring), 1626 (C = N), 1094 (N-CH-
N), 818 (C-Cl). 1H NMR (DMSO-d6), δ (ppm) J (Hz):
8.11 (s, 1H, CH = N), 7.98–7.81 (d, 2H, indole), 7.84–
6.74 (m, 3H, furan), 7.32–6.70 (m, 9H, Ar), 7.06 (s, 1H,

TABLE 1 | Physicochemical data of synthesized compounds (1a-1j).

Compounds R Product Solvent Yield (%)

1a EtOH 89

1b EtOH 86

1c EtOH 82

1d EtOH 95

1e EtOH 88

1f EtOH 85

1g EtOH 80

1h EtOH 78

1i EtOH 67

1j HCHO EtOH 75
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NH), 6.74 (s, 1H, CH); 13C NMR (DMSO-d6) δ (ppm):
150.31, 145.35, 118.85, 113.40 (4C, Furyl ring), 136.10, 131.67,
130.50, 129.8, 129.59, 129.57 (6C, Ph ring), 136.25, 127.78,
125.26, 121.59, 120.10, 118.20, 111.59, 110.73 (8C, indole
ring), 135.21 (1C, C = N), 40.50 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 349.10 (M+, 20); Elemental analysis:
Anal.C20H16ClN3O: C, 68.68; H, 4.62; N, 12.03; Found C, 68.65;
H, 4.63; N, 12.05.

1-((2furan-2ylmethylene)hydrazinyl)4-methoxyphenyl)
methyl)1H-indole (1e)
Light yellowish brown solid: mp 275◦C; IR (KBr) (cm−1)
3444 (NH str), 3056 (CH-str Ar-ring), 2854 (OCH3), 1618
(C = N), 1089 (N-CH-N). 1H NMR (DMSO-d6), δ (ppm)
J (Hz): 8.22 (s, 1H, CH = N), 7.96–7.86 (d, 2H, indole),
7.62–6.80 (m, 3H, furan), 7.47–6.69 (m, 9H, Ar), 7.09 (s,
1H, NH), 6.75 (s, 1H, CH). 3.86 (s, 3H, OCH3); 13C
NMR (DMSO-d6) δ (ppm): 158.62 (1C, Ph, OCH3), 150.24,
145.62, 118.94, 113.48 (4C, Furyl ring), 136.51, 126.61, 125.27,
121.60, 120.18, 118.28, 111.50, 110.72 (8C, indole ring), 135.83,
127.82, 126.67, 114.18, 114.09 (5C, Ph ring), 135.29 (1C,
C = N), 55.74 (1C, OCH3), 40.54 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 345.15 (M+, 20); Elemental analysis:
Anal.C21H19N3O2: C, 73.04; H, 5.55; N, 12.16; Found C, 70.59;
H, 5.60; N, 12.30.

2-((2-furan-2-ylmethylene)hydrazinyl)(1H-indol-1-
yl)methyl)phenol (1f)
Light brown solid; mp 265◦C; IR (KBr) (cm−1) 3447
(NH str), 3089 (CH-str Ar-ring), 2915 (C-OCH3), 1628
(C = N), 1090 (N-CH-N). 1H NMR (DMSO-d6), δ (ppm)
J (Hz): 9.82 (s, 1H, OH), 8.25 (s, 1H, CH = N), 8.22–
6.83 (m, 9H, Ar), 7.97–7.81 (d, 2H, indole), 7.71–6.49
(m, 3H, furan), 7.19 (s, 1H, NH), 6.71 (s, 1H, CH); 13C
NMR (DMSO-d6) δ (ppm): 148.90, 144.45, 119.08, 113.06
(4C, Furyl ring), 139.89 (1C, Ph, OH), 136.56, 126.79,
128.41, 121.07, 120.79, 119.82, 109.76, 100.24 (8C, indole
ring), 131.01, 126.02, 120.42, 118.92, 116.05 (5C, Ph)
134.19 (1C, C = N), 40.49 (1C, N-CH-N); EI-MS (Relative
intensity %): m/z 331.37 (M+, 20); Elemental analysis:
Anal.C20H17N3O2: C, 72.50; H, 5.72; N, 12.69; Found C,
72.40; H, 5.51; N, 12.48.

4-((2-furan-2-ylmethylene)hydrazinyl)1H-indol-1-
yl)methyl)-2-Methoxyphenol (1g)
Brown solid: mp 289◦C; IR (KBr) (cm−1) 3442 (NH str),
3082 (CH-str Ar-ring), 2910 (C-OCH3), 1626 (C = N),
1094 (N-CH-N). 1H NMR (DMSO-d6), δ (ppm) J (Hz):
10.48 (s, 1H, OH), 8.93 (d, 1H, J = 6.1 Hz, Furyl ring),
8.16 (s, 1H, methylene), 7.92–7.80 (d, 2H, J = 7.6 Hz,
indole), 7.87 (d, 1H, J = 6.7 Hz, Furyl ring), 7.20, 7.18,
6.84, 6.75 (m, 4H, indole ring), 7.09 (s, 1H, NH), 6.64
(t, 1H, Furyl ring), 6.65–6.74 (m, 2H, Ar-CH), 6.71 (s,
1H, CH), 3.85 (s, 3H, OCH3) 3.50 (s, 1H, CH); 13C
NMR (DMSO-d6) δ (ppm): 150.21, 145.38, 118.82, 113.41
(4C, Furyl ring), 147.52, 146.82, 142.30, 126.37, 120.18,
115.39, 56.09 (7C, Ph ring), 136.15, 127.79, 125.23, 121.49,

120.00, 118.28, 111.52, 110.71 (8C, indole ring), 135.22
(1C, C = N), 40.51 (1C, N-CH-N); EI-MS (Relative
intensity %): m/z 349.10 (M+, 20); Elemental analysis:
Anal.C21H19N3O3: C, 69.75; H, 5.31; N, 11.66; Found C,
69.69; H, 5.20; N, 11.53.

4-((2-furan-2-ylmethylene)hydrazinyl)(1H-indol-1-
yl)methyl)-N,N-dimethylaniline (1h)
Light brownish yellow solid; mp 270◦C; IR (KBr) (cm−1)
3440 (NH str), 3085 (CH-str Ar-ring), 2946 (NH2),
1620 (C = N), 1096 (N-CH-N). 1H NMR (DMSO-d6),
δ (ppm) J (Hz): 8.29 (s, 1H, CH = N), 7.93–7.83 (d,
J = 7.0, 2H, indole), 7.72–6.54 (m, 3H, furan), 7.46–
6.68 (m, 9H, Ar), 7.13 (s, 1H, NH), 6.76 (s, 1H, CH),
3.80–3.12 (s, 3H, N-CH3); 13C NMR (DMSO-d6) δ

(ppm): 149.17, 128.13, 127.87, 127.80, 112.75, 112.72
(6C, Ph) 149.10, 144.43, 118.93, 112.67 (4C, Furyl
ring), 136.57, 128.92, 128.51, 121.75, 120.77, 119.78,
109.57, 100.84, (8C, indole ring), 134.61 (1C, C = N),
41.29 (2C, N-CH3) 40.58 (1C, CH); EI-MS (Relative
intensity %): m/z 331.37 (M+, 20); Elemental analysis:
Anal.C22H22N4O: C, 73.42; H, 6.20; N, 15.63; Found C,
73.22; H, 6.09; N, 15.43.

2-(furan-2-ylmethylene)hydrazinyl)-3,7-dimethylocta-
2,6-dien-1-yl)-1H-indole (1i)
Light brown solid; mp 280◦C; IR (KBr) (cm−1) 3446 (NH str),
3080 (CH-str Ar-ring), 1620 (C = N), 1094 (N-CH-N). 1H NMR
(DMSO-d6), δ (ppm) J (Hz): 8.30 (d, 1H, J = 6.2 Hz, furyl
ring), 7.58–7.53 (d, 2H, J = 7.0, indole ring), 7.40, 7.31, 7.06,
6.58 (m, 4H, indole ring), 7.12 (s, 1H, NH), 6.90, 6.48 (m, 2H,
Furyl ring), 6.68 (s, 1H, CH), 5.47, 5.30 (d, 2H, J = 7.7 Hz,
citral), 2.00 (d, 2H, J = 6.3, citral), 2.04 (d, 2H, J = 6.0,
citral), 1.82–1.71 (s, 9H, citral);13C NMR (DMSO-d6) δ (ppm):
149.98, 144.38, 118.97, 112.68 (4C, Furyl ring), 136.52, 128.91,
127.83, 121.68, 120.75, 119.81, 109.65, 100.95 (8C, indole ring),
135.52, 132.02, 123.52, 118.76, 39.45, 26.41, 24.61, 18.63, 16.10
(9C, citral) 134.62 (1C, C = N), 40.60 (1C, N-CH-N); EI-MS
(Relative intensity %): m/z 361.22 (M+, 20); Elemental analysis:
Anal.C23H27N3O: C, 76.43; H, 7.54; N, 11.63; Found C, 76.66;
H, 7.43; N, 11.42.

1-((2-furan-2-ylmethylene)hydrazinyl)methyl)-1H-indol
(1j)
Brown solid; mp 285◦C; IR (KBr) (cm−1) 3442 (NH str),
3082 (CH-str Ar-ring), 1626 (C = N), 1092 (N-CH-N). 1H
NMR (DMSO-d6), δ (ppm) J (Hz): 8.24 (s, 1H, CH = N),
7.78–6.59 (d, J = 6.2 Hz, 3H, Furan), 7.62–7.59 (m, 2H,
indole), 7.47–6.45 (m, 9H, Ar), 7.16 (s, 1H, NH), 5.54
(d, J = 6.2Hz, 2H, CH2); 13C NMR (DMSO-d6) δ (ppm):
149.17, 145.02, 118.91, 112.62 (4C, Furyl ring), 136.49, 128.98,
127.89, 121.76, 120.72, 119.86, 109.67, 100.91 (8C, indole
ring), 134.62 (1C, C = N), 40.59 (1C, CH2); EI-MS (Relative
intensity %): m/z239.27 (M+, 20); Elemental analysis: Anal.
C14H13N3O: C, 70.29; H, 5.49; N, 17.57; Found C, 70.35;
H, 5.78; N, 17.88.
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FIGURE 3 | 1H-NMR spectrum of compound-1c.

FIGURE 4 | 13C-NMR spectrum of compound-1c.

Scheme 1 | Synthesis of indole derivatives.

Biological Screening
Cytotoxic Activity
The cytotoxicity experiment was performed according to the
United States NCI protocol, previously reported method.
A detailed experimental procedure was given in Supplementary
Material (Premnath et al., 2015).

Molecular Docking
Molecular docking was performed to confirm the molecular
interaction with Covid-19 spike core protein to ensure the
secondary biological mechanism based on the molecular
pose on the binding moiety. The molecular structure of
the selected ligand was drawn using Chem. Draw. Before
it being considered for molecular interaction, it was 2D
optimized by the energy minimization process. The 3D molecular
protein crystal structure of spike glycoprotein of SARS-CoV-
2 PDB ID 6WPT protein was downloaded. The protein
structure was prepared using Schrodinger 12.4 software to
remove water molecules and optimize the structure to become
suitable to execute flexible docking. In protein preparation,
hydrogen atoms were added to increase the hydrophilicity,
and already existed co-crystal molecules, and missed loops
were optimized (Boyd and Paull, 1995). The ligand preparation
module optimized the ligand 3D structure of selected molecules
to remove unwanted atomic orientation by molecular and
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TABLE 2 | Cytotoxic activity of synthesized compounds (1a–1j).

Cpds HepG2 MCF-7 HeLa

GI50 (µm) TGI (µm) LC50 (µm) GI50 (µm) TGI (µm) LC50 (µm) GI50 (µm) TGI (µm) LC50 (µm)

1a 43.2 78.3 >100 – – >100 – – 100

1b 42.2 23.1 56.8 46.1 85.1 >100 51.0 89.2 >100

1c 36.3 65.3 0.9 – – 0.55 41.3 87.2 0.50

1d 01.0 0.25 54.0 0.89 09.3 65.0 08.9 06.8 0.50

1e 15.9 38.2 44.8 24.4 59.3 66.3 34.2 72.1 >100

1f 29.1 46.8 57.5 18.6 41.8 42.3 21.6 54.7 77.4

1g 48.0 61.3 59.3 34.0 67.4 30.5 37.9 51.9 58.9

1h 21.3 41.0 72.1 12.9 45.3 10.3 52.9 81.3 >100

1i 19.3 28.3 >100 45.6 56.0 59.3 49.0 49.3 55.0

1j 40.3 45.3 66.8 56.0 49.3 78.6 2.3 58.3 48.3

Doxorubicin (standard) 0.01 0.13 0.58 0.02 0.21 0.74 0.05 0.41 0.88

TABLE 3 | In vitro cytotoxicity of indole derivatives (1a–1j) on normal cellsa.

Compounds MRC5 HEK-293 LO2

IC50 (µm) IC50 (µm) IC50 (µm)

1a 76.36 70.06 67.48

1b 67.21 62.12 72.17

1c 86.66 81.14 87.10

1d 56.25 79.14 66.24

1e 72.76 57.09 56.01

1f 51.24 66.17 68.24

1g 62.61 58.24 70.54

1h 66.32 67.01 58.22

1i 79.41 77.44 66.70

1j 75.14 52.71 70.12

aEach compound was tested in triplicate. All error bars represent mean ± SD from
three independent experiments.

quantum mechanics. Molecular docking, with flexible SP
followed by XP, was executed. The grid-based technique,
evaluation, and minimization of grid approximation procedure
were followed by Premnath et al. (2016) and Muthiah et al.
(2020). The confirmation of the best interactive molecule
with 6WPT protein was concluded based on the G score
and number of hydrogen bonds and bonding efficiency
and binding energy.

RESULTS AND DISCUSSION

Chemistry
The one-pot Mannich reactions of substituted benzaldehyde,
indole, and Furan-2-lymethylenehydrzine were done by reflux for
2 h using ethanol, a solvent, without any catalyst. The obtained
solid 1-((2furan-2ylmethylene)hydrazinyl)phenyl)methyl)1H-
indole (1a) was washed with cooled water and recrystallized using
ethanol. It was purified by TLC. Hexane was used as an eluting
solvent in TLC. All the synthesized compounds were separated
by column chromatography. A similar procedure was carried out
to synthesize the other nine compounds (1b–1j) Physicochemical

data of synthesized compounds (1a–1j) are given in Table 1.
The Figure 3 indicates 1H-NMR spectra of compound 1c, and
Figure 4 displays 13C-NMR spectra of compound 1c. Scheme 1
represents the synthesis of compounds 1a–1j.

All the newly synthesized indole derivatives were
characterized by FT-IR, which showed various functional
groups. The 1H-NMR spectra of compounds (1a–1j) indicate
frequency observed at 7.16–7.07 and 6.79–5.54, corresponding to
the NH-CH and CH-Ph protons. The 13C -NMR spectra exhibit
the peak at 144.42–118.76 and 40.60–40.53, corresponding to the
NH-CH and CH-Ph carbon, respectively.

Cytotoxic Activity
The newly prepared compounds 1a–1j are examined for their
cytotoxic activity according to the United States NCI protocol,
which was a previously reported method (Chadha and Silakari,
2017). The 50% growth inhibition (GI50), tumor growth
inhibition (TGI), and lethal concentration (LC50) values were
determined. The compounds 1c were a significant activity against
(HepG2, LC50-0.9 µm, MCF-7, LC50-0.55 µm, HeLa, LC50-
0.50 µm). Doxorubicin was used as a standard drug. None of
the tested derivatives had shown significant activity toward the
cancer cell lines. The compounds were also evaluated for their
possible cytotoxicity in human embryonic kidney cells (HEK-
293), lung cells (MRC-5), and liver cells (LO2) by employing
MTT assay. The assay results suggested that these compounds did
not significantly affect normal kidney cells’ growth (As most of
the compound’s IC50 values are >100). Hence, these compounds
revealed their safety for the normal cells, and the compound
1c can be taken as lead compounds for further development of
more potent agents for HepG2 (Liver), MCF-7 (Breast), HeLa
(Cervical) cancer cell lines. The results of cytotoxic screening
of compounds (1a–1j) are shown in Table 2, and in vitro
cytotoxicity of indole derivatives (1a–1j) on normal cells are
shown in Table 3.

None of the tested derivatives had shown significant activity
toward the cancer cell lines. The compounds were also evaluated
for the possible cytotoxicity in human embryonic kidney
cells (HEK-293), lung cells (MRC5), and liver cells (LO2) by
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Figure 5 | Compound-1c has a high affinity with 6WPT subunit. (B–D) Surface protein structure with hydrogen bonding interaction between (C) 6WPT interactive
molecular pocket and ligand binding with series of ligands using a 3D molecular structure while panel (A) shows 2D binding pockets interactive sites.

TABLE 4 | Docking results of synthesized compounds.

Entry Name Glide g score Glide e model Glide energy XP H-Bond Bonded Amino acid Bond length A

3 (1c) −2.808 −37.395 −29.608 −1.33 VAL 722 2.18

7 (1g) −2.715 −38.457 −27.458 −0.7 THR 724 ALA 944 1.91 2.08

5 (1e) −2.174 −28.608 −24.17 −0.641 VAL 722 2.37

2 (1b) −1.912 −35.298 −30.366 −0.7 LYS 947 ALA 944 2.51 1.80

1 (1a) −1.636 −31.767 −26.491 −0.7 ALA 944 2.03

6 (1f) −1.537 −32.323 −25.423 −0.7 THR 724 1.98

4 (1d) −1.213 −35.839 −28.794 −0.37 SER 937 2.10

8 (1h) −1.18 −30.149 −29.338 −1.29 THR 724 1.94

9 (1i) −0.499 −31.625 −26.095 −1.56 THR 724 1.99

employing MTT assay. The assay results suggested that these
compounds did not significantly affect the growth of normal cells
(as most of the compounds IC50 > 100). Hence this compounds

revealed their safety for the normal cells and the compound
1c can be taken as lead compound for further development of
more potential agent for HepG2 (Liver), MCF-7 (Breast), HeLa
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(Cervical) cancer cell lines, and in vitro cytotoxicity of indole
derivatives (1a–1j) on normal cells are shown in Table 3.

Molecular Docking
PAT binds 6WPT with strong affinity via computer docking
studies
Bimolecular interaction studies were used to characterize the
interaction between selected drug-like molecule and protein
biomolecular binding sites. The protein interaction study
was executed to forecast the interactive visualization modes
and binding of small molecule and their respective protein
receptors. An investigation of the interactive molecular complex
of ligand series disclosed very informative and important
connections between the drug like molecular series and the
(6WPT) protein receptor. The two-dimensional and three-
dimensional protein molecular structural images were perfectly
visualized using Schrodinger integrative python software to
analyze the molecular interaction between the selective ligand
series and protein macromolecule (6WPT) (Figure 5). The
overall optimized G score for binding ligands is predicted
as −2.808 kcal/mol. This is taken to indicate an expected
favorable reaction. Ligand 3 (1c) were perfectly interacted
and formed close molecular interactions with amino acid
residues on the predicted selective binding sites of VAL367,
LEU368, PHE342, GLY339, GLY112, ARG55, LEU47, ASN343,
ASP115, TYR32 of receptor protein (6WPT) (XXX) during
different biochemical communications of hydrogen bonding, and
hydrophobic interaction (Pinto et al., 2020). The binding score of
(1c) to 6WPT was moderately burly with a predictable affinity
of −2.808 kcal/mol. The docking analysis characterization of
novel synthesized molecules are shown in Table 4. Further,

ligand series bonded with 6WPT through interactions with
hydrogen bonding interaction and Pi-Pi interaction, Pi-Pi
stacking interactive protein amino acids side chains of valine
(Val), threonine (Thr), serine (Ser), alanine (Ala), and lysine
(Lys) were analyzed and predicted important interactive bioactive
binding site molecules. The molecular interaction analysis
with selected small molecules of (1c) with 6WPT protein
was much stronger than other series of selected ligands
with a predictable affinity of −2.808 kcal/mol (Figure 5).
The pathway mechanisms of spike protein interactions with
highly active compound 1c are shown in Scheme 2. All
the 2D structures of synthesized compounds are given in
Supplementary Materials.

Structure Activity Relationship
A structure-activity relationship analysis (SAR) was performed
to find the link between the chemical structure of a dynamic
molecule and its cytotoxic activity. SAR analysis makes it
possible to identify the chemical group/atom that plays
a critical function in modulating the cytotoxic activity of
compounds within the specific system. Using the cytotoxic
activity results of the indole Mannich base derivatives,
preliminary SARs could be evaluated. The data of the
selected indole Mannich base derivatives (1a–1j) showed
that compound 1c is the most effective (HepG2, LC50-
0.9 µm, MCF-7, LC50-0.55 µm, HeLa, LC50-0.50 µm)
control doxorubicin.

Due to the presence of an indole ring fused to a hydroxyl
benzaldehyde, it was found that the compound acquires a high
cytotoxic activity against cancer cell lines. This was due to the
presence of electron releasing hydroxyl group on phenyl ring

Scheme 2 | Pathway mechanism of compound-1c interacting with spike protein.

Frontiers in Molecular Biosciences | www.frontiersin.org 9 May 2021 | Volume 8 | Article 637989106

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-637989 August 3, 2021 Time: 18:30 # 10

Gobinath et al. In silico Screening on SARS CoV-2 With Indole Derivatives, Cytotoxic Activity

attached with an indole skeleton. The rest of the compounds
demonstrate feeble cytotoxic activity against all the tested
cancer cell lines.

Moreover, from the docking results, it can be assumed that the
docking score for indole derivatives (1a–1i) have an acceptable
range except 1j compound along with essential interaction which
can stabilize the compound in the active site of a protein.
Compound 1j has no active site because of an absence of electron
withdrawing /electron releasing group on it. From the results, the
compound 1c has exhibited the highest docking score of −2.808
(Kcal/mol) compared to other compounds.

CONCLUSION

We have reported a facile, high-yielding, one-pot procedure for
the synthesis of (1a–1j) via Mannich reaction using various kinds
of protected aldehydes which was successfully employed and
gave very high yields. Moreover, there were no requirements
for dry solvents or protective gas atmospheres. All the newly
synthesized compounds (1a–1j) were screened for in vivo
cytotoxicity activities against Hep-G2 (Liver), HeLa (Cervical),
and MCF-7 (Breast) cancer cell lines and normal cell lines in
Human embryonic kidney cell (HEK293), liver cell (LO2), and
lung cell (MRC5). Among the indole derivatives, compound 1c
(HepG2, LC50-0.9 µm), (MCF-7, LC50-0.55 µm), and (HeLa,
LC50-0.50 µm) was that the most active compound against the
Doxorubicin standard. All other compounds were less active
against the standard. The synthesized derivatives revealed a
high safety level by exhibiting very low cytotoxicity against the
normal cell line (HEK-293), (LO2), and (MRC5). Furthermore,
we report in silico molecular docking studies against SARA-
CoV-2 spike proteins and the biological characterization of the
results reveal that compound 1c (−2.808 Kcal/mol) has the
best multiple biological activities and can be used as a model
for future derivatives based on the 1c molecular structure.
It may identify the route to develop the best drug against
Covid-19.
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Cryo-EM Map–Based Model
Validation Using the False Discovery
Rate Approach
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Significant technological developments and increasing scientific interest in cryogenic
electron microscopy (cryo-EM) has resulted in a rapid increase in the amount of data
generated by these experiments and the derived atomic models. Robust measures for the
validation of 3D reconstructions and atomic models are essential for appropriate
interpretation of the data. The resolution of data and availability of software tools that
work across a range of resolutions often limit the quality of derived models. Hence, the final
atomic model is often incomplete or contains regions where atomic positions are less
reliable or incorrectly built. Extensive manual pruning and local adjustments or rebuilding
are usually required to address these issues. The presented research introduces a
software tool for the validation of the backbone trace of atomic models built in the
cryo-EM density maps. In this study, we use the false discovery rate analysis, which
can be used to segregate molecular signals from the background. Each atomic position in
the model can be associated with an FDR backbone validation score, which can be used
to identify potential mistraced residues. We demonstrate that the proposed validation
score is complementary to existing validation metrics and is useful especially in cases
where the model is built in the maps having varying local resolution. We also discuss the
application of the score for automated pruning of atomic models built ab-initio during the
iterative model building process in Buccaneer. We have implemented this score in the
CCP-EM software suite.

Keywords: cryo-EM, model validation, FDR map, CCP-EM, automated model building

INTRODUCTION

Improvements in cryo-EM data collection and processing techniques in recent years have enabled
structure determination at near-atomic resolutions (Subramaniam, 2019). For structure
interpretation, a number of tools for ab-initio model building have been developed and used in
recent years (Hoh et al., 2020; Terwilliger et al., 2020; Pfab et al., 2021; Lawson et al., 2021). Despite
the resolution revolution, the majority of maps (92%) deposited in the EM Data Bank (https://www.
ebi.ac.uk/pdbe/emdb/) are at resolutions worse than 3 Å, and the average resolution of maps this year
is around 5 Å (https://www.ebi.ac.uk/pdbe/emdb/statistics_sp_res.html/). Moreover, some local
areas in the cryo-EM map can be poorly resolved. These issues may result in some parts of the
derived atomic model being incorrectly built or traced into background noise. Model validation tools
that are based on the analysis of stereochemical properties of the atomic model, such as MolProbity
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(Williams et al., 2018), CaBLAM (Prisant et al., 2020), or
Ramachandran plots, detect potential issues with the geometry
of the model. The users can inspect the possible incorrect regions
of the model and attempt to fix these in interactive visualization
tools like Coot (Emsley et al., 2010).

Another set of validation tools evaluate the agreement of the
atomic model with the cryo-EM map. Some of these scores can
estimate the agreement of each residue against the area of the map
covered by the residue. The agreement is either quantified as
Manders’ overlap coefficient in SMOC (Joseph et al., 2016), real
space cross-correlation coefficient in PHENIX local CCC
(Afonine et al., 2018), or a score of atomic resolvability in
MapQ (Pintilie 2020). One of the observations from the recent
model challenge is that the absolute values of some of these
metrics are sensitive to the map resolution (Lawson et al., 2021).
One reason is the underlying sensitivity of the metric toward
differences in the shape of map distributions at different
resolutions. Another reason is the fact that the synthetic map
calculation from the model may not be optimal to represent
experimental data at different resolutions.

The recently introduced FSC-Q score allows us to assess the
local agreement of a model with the cryo-EM density map, and is
normalized to account for local resolution variation (Ramírez-
Aportela et al., 2021). The map-model local Fourier shell
correlation (FSC) is normalized with respect to the local FSC
obtained from the halfmaps. The FSC-Q score is calculated as the
difference between these two and the values fluctuates around 0.
A threshold of +/− 0.5 is recommended to detect poorly fitted
atoms. Although the FSC-Q calculation is not directly affected by
the B-factor values used for map sharpening, the mask applied
can have an effect in the local FSC calculation.

MapQ scores atoms in the residues by comparing the distance-
dependent map value fall-off against a Gaussian-like reference
derived from a map of apoferritin resolved at 1.54 Å and an
associated well-fitted atomic model. The Q-score is calculated as a
correlation between the map values and the reference Gaussian.
Values close to 1 indicate that the atom is well resolved (Pintilie,
2020).

Metrics such as the atom-inclusion score (Lagerstedt et al.,
2013), implemented as part of EMDB validation analysis, identify
atoms in the model that are outside a selected map contour. The
score is hence very sensitive to the choice of map contour, which
is often subjective. Also, in cases where the local resolution varies
across the map, a single contour may not be optimal to cover the
entire molecular volume without including the background noise.

The resolution of cryo-EM maps may vary as a result of
molecular flexibility, partial occupancy, non-uniform particle
orientation, and other factors associated with the
reconstruction process. Often, the resolution is better in the
core and it gradually worsens toward the edges or other
flexible parts of the molecular assembly. The statistical analysis
used in the false discovery rate (FDR) approach allows associating
confidence in distinguishing molecular signals from the
background and detecting weak features in the map based on
the statistical significance estimate. The FDR calculation (Beckers
et al., 2019) generates confidence maps with values at each voxel
reflecting the fraction of voxels expected to contain molecular

signals at this threshold (the voxel value). The 1% FDR threshold
(confidence map threshold of 0.99) was demonstrated to reliably
discriminate voxels associated with the molecular volume from
the background noise over a wide resolution range, including
maps at near-atomic resolutions to 6.8 Å and the subtomogram
averages in the resolution range 7–90 Å.

In this study, we present a tool for validating the backbone
trace of an atomic model by estimating the confidence that the
backbone atoms are in the molecular volume rather than the
background. Each residue in the model are assigned scores based
on the confidence map calculated using the FDR approach. We
demonstrate the utility of the approach to detect mistraced
residues, using datasets from the EMDB model challenges
2015/16 and 2019, and compare it against other metrics used
in the field for estimating local fit to maps.

This procedure is also useful for pruning mistraced regions of
the model generated by ab-initio modeling tools like Buccaneer
(Hoh et al., 2020). Especially at areas of the map with resolution
worse than 3.5 Å, it is not uncommon that the chain may be
mistraced into the background. Also, Buccaneer often traces a few
polypeptide fragments in the background areas with noisy
features or artifacts from map reconstruction and
postprocessing. These fragments are not connected with the
main chains of the model and usually are only of a few
residues long. Currently, there is no automated tool to locate
and remove mistraced residues. Where possible, the pruned
models can then be extended with one of the automated
model building tools or rebuilt in an interactive tool like Coot.

Initial results indicate that our approach is effective in
detecting mistraced regions of the model and for automated
pruning of models as part of Buccaneer. The FDR backbone
validation score assesses whether the backbone coordinates are
within the molecular volume and is complementary to existing
validation tools that either assess the model quality or evaluate
agreement with the map. The described tool is implemented and
available as a part of the CCP-EM (Burnley et al., 2017)
software suite.

METHODS

The FDR backbone validation method assesses positions of the
atoms in the input model based on the confidence map derived
using the FDR approach (Beckers et al., 2019). For the confidence
map calculation, a processed/sharpened but unmasked map is
preferred. Masked maps that exclude the majority of solvent
background are not useful for confidence map calculations. The
procedure estimates the background noise distribution from four
density cubes placed outside of the particle volume in the x, y, and
z central axes by default. Each voxel of the map is then compared
against the background estimate to detect significant deviations
and a p-value is associated to quantify significance. To account for
the number of voxels and their dependencies, the p-values are
further adjusted using false discovery rate (Benjamini and
Yekutieli, 2001). Each voxel is assigned with an FDR-adjusted
significance score between 0 and 1, 0 refers to noise only and 1 to
a clear molecular signal. A score of 0.99 indicates that a maximum
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of 1% of voxels (1% FDR) is expected to be background noise,
beyond this threshold.

We use the following steps to calculate the FDR backbone
score:

(1) The minimal input for the FDR-validation is the pdb or cif/
mmcif format file of the atomic model and the confidence
map calculated using the FDR control approach. The
confidence map can be calculated using the “confidence
map” implementation in the CCP-EM software suite or
using a standalone installation from the source (https://git.
embl.de/mbeckers/FDRthresholding).

(2) The input model coordinates are extracted and mapped
onto the confidence map grid by associating the voxel(s)
around the atomic coordinate (within 1 Å).

(3) Each atom of the model is then associated with the
corresponding map value from the confidence map. In
the default mode, the FDR backbone score of each residue is
calculated as an average of map values at the coordinates of
the C-alpha, C, and N atoms. We use this approach
primarily to detect mistraced residues based on the
positions of backbone coordinates in the map. We
exclude the backbone carbonyl oxygen as they are often
associated with weak map information at resolutions worse
than 3 Å. This approach can be used to detect misplacement
of the side chains as well, although missing map data at the
ends of acidic and highly flexible side chains can lead to false
detections. For nucleic acids, the average score is calculated
based on the C1′, C2′, C3′, C4′, C5′, O3′, O4′, O5′, and P
atoms positions. For ligands and waters, all of the atoms are
taken into consideration. The users can also choose an
optional validation mode based solely on the Cα positions
of the residues and C1′ for nucleic acids. This mode is useful
with models with only Cα atoms, usually built in low-
resolution cryo-EM maps.

(4) Additionally, this tool offers an option to prune the atomic
model, which can be used to automatically remove the
residues with a score lower than 0.9 as well as the preceding
and following residues. A model pruned this way can be
used in the next stages of the iterative model building
procedures, where the missing segments can be extended
or rebuilt. This is useful when dealing with the ab-initio
models from the automated model building tools. In some
cases, particularly when building in areas of the map with a
local resolution worse than 3.5 Å, parts of the chains can be
traced into the background.

(5) As an output, we provide a CSV format file containing the
list of residues with the associated FDR backbone scores.
The models after pruning will have the low scoring residues
removed. They are saved in the selected folder with the
original model names with a suffix “pruned” added
depending on the mode used. We also provide an
attribute file that can be used to associate the FDR score
for each residue in the atomic model in UCSF Chimera
(Pettersen et al., 2004). The model can then be colored
using the FDR score attribute to identify areas with low
scores.

The FDR backbone validation tool is written in Python 3. To
handle the I/O model files in pdb and cif/mmcif format the
GEMMI package (Wojdyr, 2017) is used. The map files are
processed with the mrcfile python package (Palmer, 2016).
The tool also requires NumPy (tested with v1.16.2 (NumPy
v1.16 Manual’ 2019)). The GUI implementation with CCP-EM
software suite was done using PyQt (‘PyQt 4.9.4 Reference Guide’
2011).

In this study, we compare the FDR backbone validation
approach against other metrics for estimating local fit to maps.
For a fair comparison, the other metrics were also calculated only
on the backbone atoms of the models. The map deposited in
EMDB as a “primary” map was used for the analysis, the FSC-Q
score calculation also requires the half-maps.

The Q-score values for the backbone atoms were calculated
using the MapQ plugin (v1.6) for UCSF Chimera, at the
resolution reported for the deposited primary map.

The FSC-Q score was calculated using the tool (validate fsc-q)
integrated in the Scipion v3.0.7-Eugenius. The FSC-Q value for
the backbone is calculated as an average for the C, N, and
Cα atoms.

The SMOC and SCCC scores were calculated using the
score_smoc.py script available from TEMPy1 in CCP-EM v1.5,
for the minimal backbone of the models (C, N, and Cα atoms).
The script was run with the “-distance” mode option which uses
distance from the atoms for identifying voxel-covered. SMOC
estimates the Manders’ overlap coefficient while SCCC calculates
the cross correlation coefficient.

The PHENIX map/model CCC (v1.18.2) scores were
calculated on the models obtained from 10 cycles of atomic
B-factor refinement with REFMAC5 (Murshudov et al., 2011)
(using the keyword option “refi bonly”). This was done to ensure
that the atomic B-factors are refined as PHENIX uses the atomic
B-factors as part of the map calculation from the atomic model.

The box size of the input map was trimmed wherever possible
to improve the speed of the computations. The FDR-validation
requires a sharpened but unmasked map, with the background
features present in order to estimate the noise distribution.

RESULTS

To demonstrate the application of our approach, we used the
following examples, the majority of which are models submitted
to the EMDBmodel challenges for target maps resolved at a range
of resolutions. In each case, we compare the FDR backbone scores
against other metrics that estimate local fit to map. Using a set of
residues detected as “mistraced” by the FDR backbone score, we
assess agreement with other scores and also highlight cases where
there is a disagreement. We use the reference model from the
model challenge to compare the backbone conformation and fit
to map. Please note that the reference model does not always have
the best fit to map for all residues in the model, and often several
of the models submitted to the challenge have a better fit (Lawson
et al., 2021). In some cases, there are obvious backbone misfits in
the reference model, as discussed below. In such cases, we also
compare the model of interest against other models reported with
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a higher rank higher in the model challenge based on a number of
validationmetrics (https://model-compare.emdataresource.org/).

Alcohol Dehydrogenase (2.9Å, Target
T0104)
We computed per-residue backbone scores based on different
metrics for the chain A of model T0104EM060_2 submitted to
the Model Challenge 2019 for the target alcohol dehydrogenase
map (EMD-0406) resolved at 2.9 Å resolution (Herzik et al. 2019;
Figure 1A). We checked residues either associated with lower

confidence scores (0.95 or lower) or where the scores disagree in
detecting a mistrace, and compared against the reference model
used in the model challenge (PDB ID: 6nbb). The reference
structure has 10 models representing local conformational
variability. We chose the second model (6nbb.2) for our
analysis as it has a relatively better fit with the map when
inspected in UCSF Chimera, for cases we discuss in Figures 1,
2, especially at the N-terminus (Figure 2B). The metrics used for
comparison includes Q-score, SMOC, SCCC, PHENIX local
CCC, and FSC-Q, calculated only for the backbone atoms (see
Methods). The residues highlighted in red boxes in Figure 1A

FIGURE 1 | Comparison of local assessment metrics for the atomic model of alcohol dehydrogenase (color bar shows the correspondence with the FDR scores
assigned, residues in red have FDR scores around 0.8 or worse, yellow around 0.9, and green around 1.0). The metrics are calculated only for the backbone atoms. (A)
Per-residue plot of MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone scores for the chain A of the atomic model T0104EM060_2 from the EMDB model
challenge, the red boxes highlight the residues selected for detailed analysis in the panels below. For Gly 86 (B), Leu 116 (C), Ala 162 (D), and Asn 259 (E), the panel
shows a table with values of scores obtained with each metric and corresponding Z-scores; the residue fit in the target map (EMD-0406, gray) displayed at the
recommended contour level and rendered in UCSF Chimera; and the residue fit in map as modeled in the reference (PDB ID: 6nbb.2).
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indicate some of the regions where the scores differ. We provide a
detailed analysis of these residues. Figures 1B–E show a table
with the values of each metric and corresponding Z-scores, along
with a snapshot of the residue colored by the FDR backbone
score. Also, the corresponding view of the residue from the
reference model 6nbb.2 ((Herzik et al., 2019), model 2) is
provided. The models are overlaid with the deposited cryoEM
density map EMD-0406 (Herzik et al., 2019) and rendered at the
author-recommended contour level 0.02 (0.6σ).

Compared to a few other models submitted to the model
challenge, the model T0104EM060_2 is ranked lower by the

validation metrics used in the challenge (https://model-
compare.emdataresource.org/2019/cgi-bin/em_multimer_results.
cgi?target_map�T0104emd_0406). Plot of per-residue backbone
scores for the chain A (Figure 1A), also shows that many residues
in this model are associated with lower scores (drops in the plot).
We investigated a few residues including cases where the metrics
disagree. Gly86 is highlighted as a potential mistrace by the FDR
backbone score of 0.83 (Figure 1B). The residue in the reference
model has a high FDR score (0.991) and the backbone shows
better fit to map with a different conformation involving a shift
and differences in backbone dihedrals. Z-scores computed for

FIGURE 2 |Comparison ofmetrics for the atomicmodel of alcohol dehydrogenase (color bar shows the correspondencewith the FDR scores assigned, residues in
red have FDR scores around 0.8 or worse, yellow around 0.9, and green around 1.0). The metrics are calculated only for the backbone atoms. (A) Per-residue plot of the
scores from MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone score for the chain A of the atomic model T0104EM028_1 from the EMDB model; the red
boxes highlight the residues selected for detailed analysis in the panels below. For Ser1 (B), Glu 74 (C), Gly 201 (D), and Gly 270 (E), the panel shows a table with
values of scores obtained with each metric and corresponding Z-scores; the residue fit in the target map (EMD-0406, grey) displayed at the recommended contour level
and rendered in UCSF Chimera; and the residue fit in map as modeled in the reference (PDB ID: 6nbb.2).
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different metrics reflect that none of the other scores identify this
mistrace with any significance (absolute value of Z-scores < 1).
Note that the Z-scores for FDR backbone assessment are less
reliable, especially because the majority of the residues often have
a score of 1.0 and the distribution is not close to normal. We
recommend using the absolute values of this score to detect
potential mistraces.

Figure 1C shows Leu116 associated with a low FDR backbone
score of 0.65. It can be seen that the backbone Cα and C are out of
the map at the recommended contour level. In comparison, the
reference model shows a better fit of backbone atoms. The
mistrace is also detected by the MapQ score (0.31, Z-score
−2.27), while PHENIX-CCC (0.63, Z-score −1.33) and FSC-Q
(0.70, Z-score 0.96) have lower scores but associated with
relatively low significance (Z-scores of −1.33 and 0.96,
respectively).

Another residue Ala162 is located at a relatively disordered or
low-resolution area of the map (Figure 1D), and the backbone is
partly out of the map contour when compared to the reference
model. All the scores identify the mistrace with significance
(absolute Z-scores > 2.0), and the residue is associated with a
low FDR backbone score of 0.05. Even though the map at the
recommended contour level does not fully support the backbone,
the reference model shows a better fit and has an FDR backbone
score of 0.978. This reflects that the FDR backbone score detects
voxels covering molecular volume even in the low resolution
areas of the map.

Figure 1E shows Asn259 associated with an FDR backbone
score of 0.83 with part of the backbone outside the contoured
map. The reference model shows a better fitted backbone
conformation (Figure 1E). MapQ also points to the potential
mistrace in the submitted model with a Q-score of 0.46 although
with a less significant Z-score of −1.19. The other metrics fail to
identify this issue with the backbone fit. Hence, in comparison to
other metrics tested in this study, the FDR backbone score detects
cases of mistrace where one or more backbone atoms are
displaced into background noise.

Figure 2 presents a similar analysis of the model
T0104EM028_1 submitted to the same target map. Ser1 at the
N-terminus of chain A is associated with an FDR backbone score
of 0.67, clearly indicating a potential mistrace. Ser1 is associated
with a disordered area of the map with no prominent map
information at the recommended contour (Figure 2B).
PHENIX_CC (0.75, Z-score −2.11) and MapQ (0.62, Z-score
−1.73) scores also suggest poor agreement with data. The map
trace is more obvious at a lower contour level (Supplementary
Figure S1), and the terminal N atom is outside the map even at
this level. Hence, there is less confidence associated with the
backbone atom positions and this is also highlighted by
PHENIX_CC and MapQ scores.

Figure 2C highlights Glu74 with both backbone and side
chain atoms out of the recommended contour. The residue, as
modeled in the reference, shows better fit with backbone atoms
(and most of the side chain) inside the recommended contour.
The lack of map information for the end of side chain is a
common trait observed in cryo-EM maps for negatively charged
side chains. FSC-Q and MapQ indicate a backbone mistrace with

Z-score values less than −2.0 (>2.0 in case of the FSC-Q score).
The other metrics also highlight this, although with a relatively
lower significance (Z-score < −1.5).

Gly201 is associated with an FDR validation score of 0.92.
Other scores do not seem to indicate mistrace with any
significance (all Z-scores were between −1 and 1) (Figure 2D).
This residue has a different backbone conformation in the
reference model and is associated with an FDR backbone
score of 1.0. The backbone has a better fit in the reference
with all atoms except carbonyl oxygen inside the
recommended contour. Another case where only the FDR-
validation score detects a mistrace of backbone is Gly270,
where the reference model shows a better fit with the map
with a slight shift in atom positions (Figure 2E). The
backbone residue shifted outside of the map density is
presented in Figure 2E. These cases highlight that the FDR
backbone score can work in complementarity to the scores
that quantify agreement with the map.

The structure of alcohol dehydrogenase has zinc ions bound
but the ions are not modeled in all of the structures submitted to
the model challenge. Supplementary Figure S2A presents a
comparison of two models submitted (Model Challenge IDs:
T0104EM010_1 on the left panel and T0104EM028_1 on the
center) where the zinc atoms are modeled, along with the
reference model (PDB ID: 6nbb) on the right. In the model
T0104EM010_1, the zinc atom is highlighted as a potential misfit
based on our approach, and no obvious map data can be seen at
this position. It can be seen that the ligands in both the model
T0104EM028_1 and the reference structure are placed in a
position justified by map density and supported by the higher
FDR backbone scores. It is worth mentioning that many of the
automated model building software do not support ligand fitting,
and therefore this is often done interactively. The presented
validation technique can be useful for validating the modeled
ligands in cryo-EM maps.

T20s Proteasome (2.8Å)
Another set of models used for the evaluation of the FDR
backbone validation approach were chosen from those
submitted to the model challenge for the target map of the
T20s proteasome (EMD-6287), resolved at 2.8 Å resolution.
Figure 3A presents the comparison of scores from difference
metrics obtained for the chain L of the model T0002EM133_1.
Again, the areas where the scores disagree were inspected closely.

Several residues in this model are associated with lower score
values as evaluated by different metrics (Figures 3B–E). In this
case, the Z-scores are less meaningful as the distribution of scores
is likely to deviate significantly from normal because of the
presence of several low-scoring residues (outliers). Therefore,
we considered a less stringent absolute Z-score cutoff of 1.0 to
associate significance to the scores. Again, as the FDR scores do
not follow a normal distribution (often many residues have a
score of 1.0 and a few scoring lower), the Z-scores are less useful.
We recommend using the absolute FDR scores to detect potential
mistraces.

Val14 is associated with a low FDR score of 0.83, also
supported by a lower MapQ score of 0.32 (Z-score −1.73)
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(Figure 3B). The backbone N atom is out of the map contoured at
the recommended level. The reference model (PDB ID: 3j9i)
shows a better fit and has an FDR score of 1.0. Hence, the FDR
backbone score and MapQ detect the mistrace with a greater
significance compared to other metrics.

Figure 3C shows Gly128 which has been scored lower by
MapQ (0.23, Z-score: −2.20), and FSC-Q has a score of 0.39,
although with a relatively less significant Z-score of 1.09. The
backbone of this residue is associated with an FDR backbone
score of 0.91. Visual inspection of the backbone shows that the Cα
and carbonyl C atoms are partly out of the contoured map. The

reference model shows a better fit of this residue with a higher
FDR score of 0.99.

Tyr180 is assigned a low FDR backbone score of 0.83
(Figure 3D), and the other scores do not highlight a backbone
misplacement with all absolute Z-score values less than 0.5. The
backbone N atom of the modeled residue is partly outside the
contoured map. The reference model (chain B) shows a better
backbone and a side chain fit and has an FDR backbone score of
0.99. Hence, the FDR score detects backbone misplacements
compared to other metrics used in this study and is thus
effective in identifying mistraced residue backbone.

FIGURE 3 | Comparison of metrics for the atomic model of T20s proteasome, calculated only for the backbone atoms. (A) Comparison of the per-residue scores
from MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone score for the chain L of the atomic model T0002EM133_1 from the EMDB model; the red boxes
highlight the residues selected for detailed analysis in the panels below. For Val 14 (B), Gly 128 (C), Tyr 180 (D), and Lys 220 (E), the panel shows a table with values of
scores obtained with each metric and corresponding Z-scores; the residue fit in the target map (EMD-6287, grey) displayed at the recommended contour level
0.025 (3.3σ) and rendered in UCSF Chimera; and the residue fit in map as modeled in the reference (PDB ID: 3j9i).
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This is another case where the scores disagree is Lys220
(Figure 3E), which is associated with a low FDR backbone
score of 0.75, while the other scores do not highlight a
mistrace with significance. The MapQ score is relatively lower
with a value of 0.51 (Z-score: −0.70). A closer inspection and

comparison with reference suggests that the residue has a better
placement in the reference with a shift of backbone atoms
accompanied by better positioning of side chain. The residue
backbone in the reference was assigned an FDR score of 0.92 and
the residues on either side of Lys220 also score low. This

FIGURE 4 | Comparison of metrics for the atomic model of γ-secretase, calculated only for the backbone atoms. (A) Comparison of per-residue scores from
MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone score for the chain C of the atomic model T0007EM192_2 from the EMDBmodel challenge; the red boxes
highlight the residues selected for detailed analysis in the panels below. For Gly 15 (B), Phe 21 (C), Gly 126 (D), and Trp 188 (E), the panel shows a table with values of
scores obtained with each metric and corresponding Z-scores; the residue fit in the target map (EMD-3061, grey) displayed at the recommended contour level and
rendered in UCSF Chimera (first row); the residue fit in map asmodeled in the reference (PDB ID: 5a63, center), and the fit of model T0007EM119_2 in the map (last row).
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highlights the possibility of further improvement of backbone
atom placement in this segment of the reference.

γ-Secretase (3.4Å, Target T0007)
The FDR backbone validation tool was used to assess another
model (Model Challenge ID: T0007EM192_2) submitted to the
EMDB Model Challenge 2015/2016 (Lawson and Chiu, 2018) for
the gamma secretase map EMD-3061, solved at 3.4 Å resolution
(Bai et al., 2015). Figure 4 shows the comparison of different
scores associated with residues in the chain C of the model.
Figures 4B–E provide a closer look into some of the areas of the
model where the scores disagree. As discussed below, the
reference model (PDB ID: 5a63) does not show a better fit for
most of these cases. Hence, we also compared the backbone fit
against T0007EM119_2, which is another model submitted to the
model challenge for this target and ranked higher than the
reference by multiple metrics used in the challenge.

Gly15 is associated with an FDR backbone score of 0.87
(Figure 4B) and MapQ also associates a low score of 0.39
with the backbone (Z-score: −1.53). Other scores do not
highlight a mistrace of backbone atoms for this residue. Visual
inspection shows that the N and Cα atoms are outside the map at
the recommended contour. In the reference model (PDB ID:
5a63), the backbone shows a slight shift of the backbone toward
the map volume. In the model T0007EM119_2, which scored
higher than the reference in the model challenge, the atoms are
shifted well into the map and Gly15 has an FDR score of 1.0.
Hence, the slight backbone misplacement is highlighted by FDR
and MapQ scores in this case.

Phe21 is also associated with a low FDR validation score of
0.67 and MapQ associates a relatively lower Q-score of 0.41
(Z-score: 1.35) (Figure 4C). The reference model shows similar
backbone atom positions but associated with a lower FDR
backbone score (0.58). Upon closer inspection of the model at
a higher contour level, we find that the carbonyl C atom is out of
the map. In the model T0007EM119_2, the residue shows a
slightly better fit with the backbone shifted into the map, and has
an FDR backbone score of 0.83. Multiple metrics (the FDR score
and MapQ) point to a potential backbone misfit and further
investigation is required in this case to establish this and check for
improvement upon refitting.

Figure 4D shows Gly126 with the Cα atom outside the map at
the recommended contour. The modeled residue is detected as
potential mistrace with an FDR backbone validation score of 0.83
and a lower SMOC score of 0.74 (Z-score −2.18). Other scores do
not highlight this with a significant Z-score. The backbone of
Gly126 in the reference model (PDB ID: 5a63) is also partly
outside the contouredmap and associated with a lower FDR score
(0.75). In the model T0007EM119_2, a similar scenario was
found where the Cα atom is partly outside the map contour.
Both the FDR score and SMOC identify a misfit in this case
reflecting a potential for improvement of the backbone fit. In the
absence of a good reference fit, further investigation and refitting
is required to confirm the backbone misplacement.

Another residue associated with a low FDR backbone score of
0.49 is Trp188 (Figure 4E). The backbone mistrace is evident in
this case when compared to the reference structure (PDB ID:

5a63), where Trp188 is better fitted in the map (Figure 4E) and
has an FDR backbone score of 1.0. FSC-Q and MapQ scores also
detect the backbone misplacement with significant Z-scores. The
model T0007EM119_2 also shows a well-fitted backbone with an
FDR score of 0.995. Hence, in this case, the FDR score works in
complementarity with the metrics that calculate CCC or similar
(SMOC).

Supplementary Figure S2B highlights another segment of the
model (T0007EM192_2) with a polysaccharide, where the atomic
positions in the terminal monosaccharide units have relatively
lower FDR scores. The FDR validation score is calculated as an
average of scores of the atoms in each unit. These terminal units
of the carbohydrate are expected to be more flexible and the range
of values of the score reflects this as well, suggesting higher
uncertainty of the positions at the edges for being associated with
molecular signals. The terminal monosaccharide unit in the
reference model (PDB ID: 5a63) is also associated with lower
FDR validation scores.

RNA Polymerase Complex From
SARS-CoV-2 (2.5Å)
We also applied our approach to assess the atomic model (PDB
ID: 7bv2) deposited with the recently published structure of RNA
polymerase complex (EMD-30210, 2.5 Å) from SARS-CoV-2
virus (Yin et al., 2020). A few residues in the model have
lower confidence scores assigned (Figure 5A).

Figure 5 shows a comparison of the validation metrics for
residues in the chain B of the model. The FSC-Q score was not
calculated for this case as the half maps were not available from
EMDB. Figures 5B–D provide insights into selected regions of
the model, fitted in the map contoured at the recommended level
0.058 (4.3σ). At this contour the map data corresponding to most
of the backbone of low-scoring residues at the N-terminus is
disconnected, possibly indicating relatively lower local
resolutions. We also assessed the backbone atom placement at
a lower contour level (0.035) (Figures 5B–D, second row). To
check whether the disconnected map data is due to local over-
sharpening (often resulting from a global sharpening factor
applied to the map), we calculated a locally sharpened map
using LocScale (Jakobi et al., 2017) implemented in the CCP-
EM software suite (Figures 5B–D, last row).

Figure 5B shows Val83 highlighted as a potential mistrace by
the FDR score with a value of 0.67 and MapQ (0.45, Z-score
−2.30). The poor quality of fit is also indicated by other metrics
including SMOC (0.69, Z-score −1.27), SCCC (0.51, Z-score
−1.80), and PHENIX (0.58, Z-score −1.81). It can be seen that
this residue backbone is not fully supported by the map even at a
lower contour level (Figure 5B, second row) and the backbone
peptide N atom is partly out of the map. As expected, the locally
sharpened map from LocScale is less disordered with the peptide
N atom at the edge of the map contour. The peptide N has a low
FDR score of 0.0 compared to Cα and carbonyl C which have
scores of 1.0. In this case, the backbone is likely to be misplaced as
highlighted by multiple scores.

A similar case involving Leu98 is presented in Figure 5C.
Leucine 98 scores low with all other metrics (Z-scores lower than
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−2.0) and this residue has an FDR score of 0.92. The position of
carbonyl C atom is not fully supported by the map even at a lower
contour and this atom has an FDR score of 0.75. In this case,
multiple metrics highlight a potential backbonemisfit and require
further investigation to explore the possibility of improving the
fit. The locally sharpened map also shows disconnected map trace

at the selected contour, with the carbonyl C atom placed outside
the contour. In the absence of a good reference fit for this residue,
Asn109 on the other hand, is highlighted as a misfit by MapQ
(0.12, Z-score −5.57), SCCC (0.49, Z-score −2.02), and PHENIX
(0.58, Z-score −1.86) (Figure 5D). However, the FDR validation
score assigns a value of 1.00 (Z-score 0.13) for this residue

FIGURE 5 | Comparison of backbone validation metrics for the atomic model of the RNA polymerase complex (PDB ID: 7bv2). (A) Comparison of the per-residue
scores from MapQ, SMOC, SCCC, PHENIX, and FDR backbone score for the chain B of the atomic model, the red boxes highlights the residues selected for detailed
analysis in the panels below. For Val 83 (B), Leu 98 (C), and Asn 109 (D), the panel shows a table with values of scores obtained with each metric and corresponding
Z-scores; the residue fit in the target map (EMD-30210, grey) displayed at the recommended contour level and rendered in UCSF Chimera; the residues fit in the
map rendered at a lower contour level.
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backbone, suggesting no mistrace of the backbone. A closer
inspection of this position in the model shows that the
lower contour level covers most of the backbone atoms of
the residue, except carbonyl C atom where the map is still
disconnected. The locally sharpened map is smoother with
no disorder and shows a better coverage of backbone atoms.
The residue is located at a low resolution area of the map and

it is likely that the backbone is within the molecular volume
but the atoms are misfitted, as highlighted by the other
metrics.

Supplementary Figure S2C shows an area of the modeled
RNA where the terminal nucleotide has a lower FDR score. The
map density is also disordered at this position likely due to the
higher flexibility of this part of the RNA.

FIGURE 6 | Pairwise correlations of different metrics: MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone score for the atomic models: (A) Chain A of
alcohol dehydrogenase T0104EM060_2, (B) chain A of T0104EM028_1, (C) chain L of T20s proteasome T0002EM133_1, (D) chain C of γ-secretase T0007EM192_2,
and (E) chain B of the RNA polymerase complex model 7bv2.
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Correlation Between Different Metrics
In the cases discussed above, we show a number of cases where
different metrics disagree in the detection of backbone mistrace
and cases where the FDR backbone scores can be complementary.
To check how different metrics rank models based on local
backbone fit to maps, we scored ten of the models submitted
to the 2019Model Challenge for the target alcohol dehydrogenase
map (EMD-0406), and nine of them were built using ab-initio
model building approaches. For each model, the number of
residues of chain A associated with a Z-score lower than −2.0
were counted (Table 1). The table also shows the number of
residues with the FDR backbone score less than 0.9. The models
in the table are sorted by the global CCC scores derived from the
assessment results of the model challenge (https://model-
compare.emdataresource.org/2019/cgi-bin/em_multimer_
results.cgi?target_map�T0104emd_0406). No two metrics
completely agree in the ranks assigned to the models based on
the number of potential backbone misfits. However, there is a
general agreement on best scoring the models and those with the
lowest ranks. Note that the Z-scores are less meaningful in cases
where the distribution of the score is far from normal. This is
expected to affect the ranks, especially in the case of FSC-Q and
MapQ where the outliers have significantly lower scores than the
rest of the distribution.

To further investigate the pairwise agreement between
metrics, we computed pairwise correlations between scores
for the case studies discussed above. Figures 6A–E present the
correlation matrices highlighting pairwise correlations
between metrics for each case (corresponding to Figures
1–5). In a general scenario where an atomic model fits well
overall in a map but includes a few mistraced residues, the
majority of the residues have FDR scores of 1.0 and we expect
lower scores for mistraced residues. Hence, the FDR score
being less variable relative to other scores, the pairwise
correlations involving the FDR score are expected to be low.
Indeed, we observe this for most of the models except for
T0104EM060_2 and T0002EM133_1 where many of the
residues are associated with low backbone scores (Figure 4).
In these two cases, the FDR score shows better correlation with
MapQ with pairwise correlation coefficients of 0.66 and 0.84,

respectively. MapQ scores also correlate with SCCC and
PHENIX_CC scores for these two cases.

Overall, SCCC and PHENIX CCC show a good correlation in
most cases with pairwise correlations in the range 0.64 to 0.87,
which is expected as both scores involve calculation of cross
correlation coefficient. SCCC and SMOC scores are largely
correlated as well with pairwise correlations spread between
0.37 and 0.94. These two scores use similar underlying
procedures for synthetic map generation from model and
identification of voxels covered by atoms. FSC-Q does not
correlate with any of the other scores as the score reflects the
model-map (andmap-model) differences, unlike the other scores.

Pruning Ab-Initio Built Models
The proposed approach was used to prune models generated by
Buccaneer (Cowtan, 2006) which is an ab-initio model building
tool that works by an iterative process involving finding backbone
seed positions, growing them to fragments, connecting and
pruning fragments to chains and pruning the resulting chains.
Often the final model from Buccaneer needs to be pruned
interactively in Coot to remove any fragments and fix any
obvious mistraces. Identifying parts of the model that are
fitted into low confidence regions of the map enables
automated pruning of the models.

We tested this using the ab-initio model built using the
Buccaneer software for the 2.9 Å reconstruction of alcohol
dehydrogenase (EMD-0406). Figure 7A shows the model built
from four Buccaneer cycles. The confidence map–based approach
identifies fragments built into the background noise outside the
molecular density (highlighted in red). The zoomed area provides
a closer look at the loop where one of the residues is mistraced
and backbone atoms are out of the contoured map. Figure 7B
shows the same model after pruning based on our approach. All
the fragments and mistraced residues were removed. Residues on
either side of the low scoring residue are also removed while
pruning. This helps to rebuild this whole region in the next round
of the automated model building. Figures 7C,D shows the
confidence scores for the same segment from the model
T0104EM028_1 and the reference model (6nbb.2),
respectively. The residues of these models have higher

TABLE 1 | Outlier detection by different metrics for ten of the models submitted to the 2019 Model Challenge for the target alcohol dehydrogenase map (EMD-0406). For
each model, the table number of residues of chain A associated with Z-scores lower than −2.0. For the FDR backbone score, the table also shows the number of
residues with an FDR backbone score less than 0.9

ModelID CC Method FDR_score
<0.9

FDR_score MapQ SMOC SCCC PHENIX FSC-Q FSC-Q

Z-score < −2 Z-score
< −2

Z-score
< −2

Z-score
< −2

Z-score
< −2

Z-score > 2 Z-score
< −2

T0104EM035_1 0.32 Ab-initio 3 6 15 9 8 8 12 7
T0104EM027_1 0.32 Ab-initio 8 7 15 11 9 10 10 6
T0104EM010_1 0.32 Ab-initio 7 9 14 8 13 6 11 7
T0104EM041_1 0.32 Ab-initio 10 10 10 9 13 9 13 5
T0104EM090_1 0.31 Ab-initio 21 19 12 13 12 12 12 0
T0104EM028_1 0.31 Ab-initio 9 15 13 12 10 10 14 2
T0104EM025_1 0.31 Optimized 8 9 12 17 14 11 14 5
T0104EM082_1 0.31 Ab-initio 9 9 15 18 18 12 12 2
T0104EM060_2 0.28 Ab-initio 39 66 17 14 14 16 8 0
T0104EM054_1 0.27 Ab-initio 83 26 17 16 18 17 18 3
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confidence scores and the residues are fitted better in the
contoured map.

DISCUSSION

The majority of cryo-EM reconstructions in EMDB are
determined at resolutions worse than 3 Å and often the
local resolution varies significantly in maps that are
otherwise resolved at higher resolutions on an average.
Hence, the chances of errors in the model are higher and
validation tools that can detect errors and areas with high
uncertainty, are necessary. In this study we tested an
approach that evaluates the backbone trace of atomic
models based on the local molecular signal (compared to
background noise) in the map. The confidence scores
calculated per voxel from the original map using the FDR
control approach (Beckers et al., 2019) are mapped to
individual backbone atoms in the model.

For the purpose of testing the approach, we used examples
covering a range of reported resolutions from 2.5 to 3.4 Å. The
residue backbones that have an FDR score less than 0.9 are
included in Supplementary Table S1. Most of these models are
built using model building and refinement tools commonly used
in the field, as part of the EMDB model challenges. These
challenges act as platforms to assess models derived using a
wide range of modeling techniques and compare metrics
which can be used to evaluate these atomic models. It also
provides a repository of models built from a range of map
targets and a reference model to compare against, which can
be extremely useful for development and testing of new validation
software.

We show that the FDR backbone score is complementary to
existing model evaluation tools. The proposed score evaluates
only the atomic positions and not the model agreement with the
map. Hence, it is not useful for detecting any misfits within the
molecular contour. Also, the current implementation of the score
does not identify side chain rotamer misfits. However, as seen in

FIGURE 7 | Results from pruning the model built ab-initio with the Buccaneer software tool on the map of alcohol dehydrogenase (EMD-0406). (A) Ab-initio built
model where residues associated with low confidence scores are in red. Potential misfit of residue 107 (chain A) is highlighted, and fragments built into the background
noise outside the molecular density are also associated with low confidence scores. (B)Model after pruning; the misfitted residue in the chain A is removed along with the
preceding and following residues (Gly106-Asn108), and fragments in the background are also removed. (C) The model T0104EM028_1 with residues in this
segment with higher confidence scores. (D) Reference model (PDB ID: 6nbb) with the segment highlighted.
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many of the cases discussed in results, often backbone mistraces
are associated with side chain misfits as well.

On the other hand, as demonstrated in results, some residues
where one or more atoms are fitted into the background noise
may still have fit-to-map scores within tolerable limits. This
misplacement of backbone atoms is evident when compared to
the reference, where a better backbone fit can be found. In such
cases, the FDR backbone score works in a complementary
manner.

Potential backbone mistraces involving a number of glycine
residues were detected by the FDR backbone score (see Results),
and not by other metrics. One explanation could be that glycine is
often seen in flexible loops associated with low-resolution areas of
the map, and some of these scores are sensitive to map resolution.
In general, limiting the score calculations to backbone atoms,
might also affect some of the scores like CCC, where a sufficiently
large distribution of values is expected for meaningful estimation
of mean and standard deviation and hence a reliable score
calculation.

We also show that the approach detects weak molecular
signals that are at low resolution areas of the map and not
otherwise obvious. We recommend that residues associated
with FDR scores less than 0.95 usually require attention and
residues with scores less than 0.9 usually reflect clear cases of
backbone mistrace.

We also demonstrate that the approach is useful in detecting
residue mistraces in a model. Hence, the tool is useful as part of
iterative model building pipelines or to evaluate the final model.
Automated pruning of models based on this approach can be a
useful step in the iterative model building and refinement process.
Models after pruning can be also a starting point for extending or
iterative building with the Buccaneer model building tool. As
presented in the results, the approach is useful to validate ligands,
carbohydrates, and nucleic acids as well.

The implementation of this score as a tool in the CCP-EM
software suite makes it easily accessible for the cryo-EM
community. The described software tool is available from the
CCP-EM suite as “FDR validation task” confidence map

FIGURE 8 | Integration of the presented tool with the CCP-EM software suite. (A) Input interface for the FDR-validation task. The original map (preferably
unmasked) or a precalculated confidence map and a model are required as inputs. If the original map is provided as input, a confidence map will be calculated internally.
Users have access to the advanced setup options for confidencemap job. (B)Overview of the launcher tab listing the output files. (C)Results tab with the FDR backbone
scores plots for each chain. (D)Resulting models colored according to calculated confidence score, overlaid with the confidencemap in UCSF Chimera (accessible
from the results tab of the CCP-EM task).
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calculation can be run as part of this task, where the user has to
provide the original map (preferably unmasked) and the model to
validate. As an option, the user can adjust the size of the noise box
used for calculation of background statistics. In some cases,
especially if the specimen is significantly elongated in one
direction, users should also check the preview of the noise
boxes to make sure that the noise box does not contain any
part of the molecular volume. The extended options for the
confidence maps section allows to set the advanced parameters
for the FDR maps calculation (Figure 8A).

If the user has already generated the FDR map, it can be used
directly as an input (Figure 8B). Instead of a confidence map, any
custom map can be used as well and residues will be assigned
scores based on values in the map. Validation based on the scores
of backbone atoms is run by default, users can additionally choose
to validate only the CA positions. Optionally, the model can be
pruned further to remove residues associated with low confidence
scores. A model file with atomic b-factors replaced by the
confidence scores and a CSV file containing the confidence
scores for each residue are generated as outputs. If the option
to prune the model was chosen, a pruned model is provided as the
additional output, along with a text file containing the list of all
removed residues. Figure 8C shows the launcher tab with a list of
output files generated from the job. On the results tab, a link is
included to open the resulting models directly in UCSF Chimera
with the model colored based on the confidence scores. Figure 8D
shows the results open directly inUCSFChimera with the resulting
model colored according to the confidence score.

For a confidence map of size 192 × 192 × 192 voxels, the
assignment of FDR scores to residues takes about 0.22 s on a PC
with specification: Intel(R) Core(TM) i5-8250U CPU@ 1.60 GHz
x 8, 8 GB RAM. The latest CCP-EM nightly release available
from https://www.ccpem.ac.uk/download.php includes the
implementation of “FDR validation task” The source code of
the tool for evaluating atomic models based on confidence maps
is available from (https://github.com/m-olek/FDR-validation).

CONCLUSION

In this study, we present a tool for validating atomicmodels derived
from cryoEM maps. It works based on the calculation of the
confidence maps, which estimates molecular signal to noise at
every voxel, and also detects weak signals from the low resolution
areas of the map. This helps to assess atomic positions based on the

local information in the map and identify mistraced residues in the
model. This approach is complementary to other validation tools
that quantify agreement with the map, as it evaluates atom
positions based on the local map information. We believe that,
with the integration with the CCP-EM software suite, the presented
tool will be a useful addition to the existing validation tools.
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The interaction between two proteins may involve local movements, such as small

side-chains re-positioning or more global allosteric movements, such as domain

rearrangement. We studied how one can build a precise and detailed protein-protein

interface using existing protein-protein docking methods, and how it can be possible

to enhance the initial structures using molecular dynamics simulations and data-driven

human inspection. We present how this strategy was applied to the modeling of

RHOA-ARHGEF1 interaction using similar complexes of RHOA bound to other members

of the Rho guanine nucleotide exchange factor family for comparative assessment. In

parallel, a more crude approach based on structural superimposition and molecular

replacement was also assessed. Both models were then successfully refined using

molecular dynamics simulations leading to protein structures where the major data from

scientific literature could be recovered. We expect that the detailed strategy used in this

work will prove useful for other protein-protein interface design. The RHOA-ARHGEF1

interface modeled here will be extremely useful for the design of inhibitors targeting this

protein-protein interaction (PPI).

Keywords: PPI, protein-protein docking, molecular dynamics simulation, ARHGEF1, RHOA

1. INTRODUCTION

Precise interactions between proteins allow a tight control on many functions and pathways,
eventually leading to gene expression or silencing, to protein release or degradation, and even
to cell death. To date, there are between 130,000 and up to 650,000 protein-protein interactions
(PPIs) described (Ottmann, 2015), but only a fraction of PPIs is validated experimentally, ranging
from 14,000 (Rolland et al., 2014) to 125,000 PPIs (http://interactome3d.irbbarcelona.org/, Mosca
et al., 2013). This structural gap comes from the difficulties of obtaining experimentally full-
length interacting proteins and then to resolving their structures using crystallography, NMR,
or electron microscopy (EM). As a result, in most cases for a specific PPI, one has to combine
existing incomplete experimental structures with in silico approaches. This virtual step is even
critical for drug discovery, as examplified with the successful targeting of 50 PPIs by small molecules
(Skwarczynska and Ottmann, 2015). When no protein-protein structure is available, one has thus
to perform protein-protein docking predictions.
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The binding mode prediction of two proteins is very
challenging since: (i) minor to major local structural
rearrangements may be triggered upon protein recognition,
(ii) one protein may recognize multiple proteins, and (iii)
cofactors/nucleic acids may be involved to enhance or stabilize
the interaction. The analysis of the various existing protein-
protein interfaces available in the Protein Data Bank indicates
also that (i) the interface area varies greatly between protein
families, (ii) the composition in amino acids in this interface
may be biased, and (iii) the binding lifetime is transient. Due to
the complexity of modeling these diverse PPIs, there are many
methods developed, and a global evaluation called CAPRI is
performed periodically. We use the most robust and successful
methods validated in this competition for protein-protein
docking evaluation of the optimal binding mode of our example
(Lensink et al., 2007, 2018, 2019).

To illustrate the process of modeling a protein-protein
interface, we selected a protein complex where some unbound
and bound experimental structures are available, and a complex
between other members of the family is available. The first
protein partner in our study is RHOA (gene RHOA), the
second protein partner is Rho Guanine nucleotide Exchange
Factor 1 (gene ARHGEF1). RHOA is a member of the
RAS superfamily of small GTPases recognized as a master
regulator of the actin cytoskeleton, thus driving multiple cellular
processes, such as cell contraction, migration, proliferation,
and gene transcription. While basal and controlled RHOA
activity is required for homeostatic functions in physiological
conditions, its uncontrolled overactivation plays a causative
role in the pathogenesis of several diseases, such as cancer,
neurodegenerative, or cardiovascular diseases (Guilluy, 2010;
Cherfils and Zeghouf, 2011; Vetter, 2014; Loirand, 2015; Prieto-
Dominguez et al., 2019; Arrazola Sastre et al., 2020). RHOA
is a molecular switch that couples cell surface receptors to
intracellular effector pathways by cycling between a cytosolic
inactive state bound to guanosine 5′-diphosphate (GDP), and
an active GTP-bound state that translocates to the membrane.
The activation of RHOA is mediated by Rho nucleotide guanine
exchange factors (GEFs) that promote the exchange of GDP
for GTP, which are themselves turned on by the activation of
upstream membrane receptors (Cherfils and Zeghouf, 2013).
ARHGEF1 is the Rho GEF responsible for the activation
of RHOA by angiotensin II through type 1 angiotensin II
receptor in vascular smooth muscle cells (Loirand and Pacaud,
2010; Luigia et al., 2015). This signaling pathway participates
in the physiological control of the vascular tone and blood
pressure, and is causally involved in the pathophysiology of
hypertension (Guilluy, 2010).

Small GTPases structure consists of a six-stranded β-sheet (β
strands B1 to B6) linked by helices and loops (Ihara et al., 1998).
In RHOA, the β-sheet is made up of the anti-parallel association
of B1 and B2 and the parallel association of B3, B1, B4, B5, and
B6, and there are five α helices (A1, A3, A3′, A4, and A5) and
three 310 helices (H1–H3). RHOA possess two hinge regions, a

Abbreviations: RMSD, root mean square deviation; SAS, solvent
accessible surface.

loop called switch I (29–42) and an helix called switch II (62–
68), which are described to be more flexible than the core β-
sheet (Dvorsky and Ahmadian, 2004), as shown in Figure 1 for
various bound and unbound experimental structures. RHOGEF
proteins catalyze the exchange of GDP with 5′-triphosphate
(GTP) on RHOA (Felline et al., 2019). Two domains on these
proteins, Pleckstrin Homology (PH) and Dbl Homology (DH),
are involved in the nucleotide exchange mechanism, the RHOA-
bound DH domain being more rigid than the PH domain
(Figure 1C). The DH domain consists of six α-helices arranged
in an oblong shape, which interact with switch I and switch II
regions of RHOA. The PH domain contains seven antiparallel
β-strands forming a roll architecture, connected to helix α6 of
the DH domain. The mechanism of nucleotide exchange involves
large displacements of the PH domain relative to the DH-RHOA
interaction (Felline et al., 2019).

In this article, we show how to combine virtual approaches
with experimental data to predict reliably the formerly non-
existing structure of a PPI. By using a rough structural
superimposition or more advanced protein-protein docking
methods, we build, analyze, and refine the RHOA-ARHGEF1
model and discuss the strengths and weaknesses of this approach.
We, then, derive general recommendations to reproduce our
approach to model other PPIs.

2. MATERIALS AND METHODS

2.1. Sequence Analysis
A BLAST sequence search on the Non-Redundant (NR) database
with RHOA or ARHGEF1 sequence as query was performed in
June, 2018. The resulting sequences were aligned using clustal
Omega (Madeira et al., 2019), amino acids conservation was
estimated using Jalview (Waterhouse et al., 2009) and in-house
scripts in Biopython (Cock et al., 2009). The phylogenetic analysis
of human conserved sequences was performed in Genious
version 2019.0.4 (http://www.geneious.com/).

2.2. Structure and Interface Analysis
We used all structures of RHOA complexed with all ARHGEFs
available in the Protein Databank (Berman et al., 2003) in January
2018 and their respective unbound form when available. Only
one representative chain by crystallographic structure was taken
as reference (Supplementary Table 1). Experimental structures
were analyzed using PDBePISA version 1.54 (Krissinel and
Henrick, 2007; Krissinel, 2010). Two methods were selected
to analyze protein-protein interfaces in order to obtain useful
insights of the important residues involved in the interaction.
The first one was 2P2I Inspector, version 2.0 (http://2p2idb.
cnrs-mrs.fr/2p2i_inspector.html) (Basse et al., 2016) which
computes a series of 51 chemical and physical descriptors from
three-dimensional (3D) structures. The second one, PPCheck
(http://caps.ncbs.res.in/ppcheck/) is a webserver for quantifying
the strength of a protein-protein interface (Sukhwal and
Sowdhamini, 2013). It can also be used to predict hotspots,
perform computational alanine scanning, and to differentiate
possible native-like conformations from the non-native ones
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FIGURE 1 | Representation of the major structural changes described for the unbound form of RHOA (1FTN, in white surface), and for the ARHGEF members. (A)

Location of switch I (loop, 29–42) and switch II (alpha helix, 62–68) with representative residues indicated and green arrows to indicate their orientation. The GDP

nucleotide is indicated in orange, blue, and red sticks, the magnesium is shown as a green sphere. (B) Diversity of switch I and switch II position as found in

representative crystallographic structures. The most mobile Switch I is represented in the tube for the unbound RHOA (green: 1FTN, yellow: 5EZ6, unpublished), and

in salmon when bound to the GAP domain of MgcRacGAP (5C2K, unpublished). (C) Superimposition on the DH domain of ARHGEF8 (4XH9, yellow), ARHGEF11

(3T06, cyan), ARHGEF12 (1X86, orange), and RHGEF25 (2RGN, gray). The PH domain is highlighted with an oval shape. (D) Orientation of RHOA (green surface) on

ARHGEF11 (cyan surface) with important conserved residues shown as spheres (see text). Only switch I and switch II on RHOA and DH domain of ARHGEF11 are

indicated for clarity.

given a set of decoy ensembles as obtained through the protein-
protein docking as it computes the strength of non-bonded
interactions between any two proteins/chains present in the
complex. Robetta Server was used to perform virtual alanine
scanning of the interface (Kortemme et al., 2004). Models
from docking or molecular dynamics simulations were visually

assessed and analyzed in The PyMOL Molecular Graphics
System, Version 1.8 Schrödinger, LLC. Root Mean Square
Deviation (RMSD) was computed using the PyMOL rms_cur
command. As RMSD is a global measure, we use two specific
measures for rigid body docking and molecular dynamics
simulations interface analysis as described in Takemura and
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Kitao (2019): (i) Ligand-RMSD (L-RMSD) where one protein
is Fixed (F) and the second protein is Mobile (M) to compute
the L-RMSD. First the Fixed protein is superimposed on the
same structure in the crystallographic reference, then the RMSD
is computed on the Mobile (M) protein alone. (ii) Interface-
RMSD (i-RMSD): in this case, only the amino acids known to
be involved in the interface between both proteins are evaluated.
Again, a first step consists of superimposing the one protein
(RHOA or the PH domain of ARHGEFs) on the reference
crystallographic structure to remove translation and rotation
degrees of freedom potentially coming from the dockingmethods
process. The angle between helices is computed using a plugin by
Thomas Holder, which computes the angle between two vectors
created from the coordinates of the Cα atoms of each helix.

2.3. Superimposition Model of
RHOA-ARHGEF1
A preliminary structure of RHOA bound to ARHGEF1 was
derived from the co-crystal of RHOA-ARHGEF11 (PDB id:3T06)
(Bielnicki et al., 2011). The complexes were created by
superimposition of ARHGEF1 (3ODO) (Chen et al., 2011) on
ARHGEF11 in PyMOL. This superimposition was submitted to
MolProbity (Williams et al., 2018) for analysis and steric clashes
were removed using Chiron (Ramachandran et al., 2011). Chiron
performs rapid energy minimization of protein molecules using
discrete molecular dynamics with an all-atom representation for
each residue in the protein, this process allows to remove most of
the steric clashes.

2.4. Protein-Protein Docking
The binding mode prediction was done in default mode for
all methods using their respective webservers: (i) ATTRACT
ff2g (http://chemosimserver.unice.fr/attract/) (Chéron et al.,
2017), (ii) ClusPro version 2 (https://cluspro.bu.edu/home.php)
(Kozakov et al., 2017), (iii) Haddock (van Zundert et al., 2016),
(iv) PyDockWeb, Oct 2017 (https://life.bsc.es/servlet/pydock/
home/) (Jiménez-García et al., 2013), (v) ZDOCK version 3.0.2f
(Pierce et al., 2014).

2.5. Molecular Dynamics Simulation
All-atom simulations of unbound and bound proteins were
performed using GROMACS 2016.3 (Abraham et al., 2015),
the starting structures are detailed in Supplementary Table 1.
Each system was prepared with the AMBER forcefield FF99SB-
ILDN (Lindorff-Larsen et al., 2010) in explicit solvent (TIP3P)
(Jorgensen et al., 1983) with a specific attention to protonation
states as reported in PROPKA. A NVT followed by the
anisotropic pressure coupling (NPT ensemble) protocol was
applied until equilibration was reached and the full molecular
dynamics simulation was computed for 500 ns up to 1µs.
All simulations were run on the CCIPL cluster facility at the
University of Nantes using GPUs. The force field parameters
for GDP and GTP were gathered from the AMBER parameters
database (http://research.bmh.manchester.ac.uk/bryce/amber)
and converted to GROMACS format files using acpype (da Silva
and Vranken, 2012). The resulting trajectories were visualized in
the VMD version 1.9.1 (Humphrey et al., 1996), and GROMACS
tools were used for various measurements.

TABLE 1 | Description of the protein-protein docking methods evaluated.

ATTRACT Ab-initio protocol using a

coarse-grained forcefield (ff2g) and

manage to predict an estimation of

the binding energy between the two

proteins.

Chéron et al., 2017

CLUSPRO FFT based program PIPER (pairwise

potential based on the decoy at the

reference approach) for the docking

and using RMSD based clustering for

filtering models then scoring using

four different Scoring functions

Kozakov et al., 2017

HADDOCK High Ambiguity-Driven DOCKing

allows the use of external data, either

experimental or from bioinformatics

analysis to drive the modeling process

van Zundert et al., 2016

PyDockWeb Rigid-body docking using FTDock,

Gabb et al. (1997) and

Jiménez-García et al. (2013) then an

energy scoring based on empirical

potential composed by of

electrostatic and desolvation terms.

Cheng et al., 2007

ZDOCK Fast Fourier Transform based protein

docking program, version 3.0.2f

(IFACE Statistical Potential, Shape

Complementarity, and Electrostatics)

Pierce et al., 2014

PyContact was used to analyze protein contacts type, strength,
and lifetime throughout the simulations (Scheurer et al.,
2018). These contacts were plot with the R package MDplots
(Margreitter and Oostenbrink, 2017).

3. RESULTS

In order to determine which docking method was the best for
our specific needs, we have evaluated their performance (i) on
recovering existing crystallographic structures of RHOA bound
to a GEF, a process called re-docking, and (ii) on assembling the
bound RHOA from a given crystallographic with a GEF from
another crystallographic structure, this process being known
as cross-docking.

3.1. Protein-Protein Docking Strategies
3.1.1. Z-Dock Is the Best Method for Building Our

Complex
As docking strategies are based on different methods, it is difficult
to determine a priori which method will produce the most
reasonable starting complex for further studies. We assessed the
top five performing docking software from CAPRI assessment,
briefly introduced in Table 1, to produce RHOA/ARHGEF1
complexes: ATTRACT, ClusPro, HADDOCK, PyDockWeb,
and ZDOCK.

3.1.2. Assessment of Webserver Performance in

Re-docking Experiments
We evaluated the performance of each software according to its
ability to recover the existing structure of bound RHOA and
ARHGEFs. This method called re-docking allows to discriminate
the accuracy of the algorithm studied on our system. The web
servers define the first input protein given as the receptor, so
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it stays fixed (F) and considers the second protein provided
as the mobile protein (M). We performed our analysis with
the small GTPase or the GEF as (F) or (M). The results are
presented in Table 2. We computed the L-RMSD of the predicted
complex by superimposing the Fixed protein with the same
protein in the crystallographic structure and by computing
the RMSD on the Mobile protein to assess the performance
of each method. When comparing individually the predicted
pose against the reference, ATTRACT and PyDockWeb perform
equally with lower L-RMSD values for ATTRACT on its best
predictions. ZDOCK and ClusPro present more diverse results
and larger deviations. Although it should not be important, we
observed that the input order of the fixed and mobile protein
was affecting the prediction. This is of limited importance
for ATTRACT and PyDockWeb, these methods are, therefore,
less sensitive to the size of the mobile protein (RHOA being
200 AA long and GEF DH/PH domains being 600 AA long).
We observe that for 4XH9, there is a dramatic decrease in
the quality of the prediction although the calculations were
performed three times. It is also possible to determine which
models ranks the best among all poses and not only the first one:
ZDOCK and ATTRACT proposes 10 binding modes, ClusPro
offers multiple weights for their scoring functions for clusters
of poses, and PyDockWeb presents the 100 best binding poses.

TABLE 2 | Analysis of docking software performance for complex formation using

small GTPase (RHOA) or GEF (ARHGEF 8/11/12/25) as a mobile (M) or fixed (F)

structure.

GEF(F). RHOA(M)/

GEF(M). RHOA(F)

ZDOCK ATTRACT ClusPro PyDockWeb

3T06 1.60/1.92 0.70/0.97 3.21/7.10 1.66/1.34

4XH9 1.99/3.06 20.25/14.09** 4.27/1.80 1.52/1.53

1X86 2.61/3.23 1.11/1.71 3.32/5.81 1.44/0.92

2RGN 2.14/3.00 1.46/2.24 3.93/3.01 0.92/0.80

Computing time 24 h 24 h 24 h 1 week

The L-RMSD values are in (Å). The best prediction analyzed is the first of the best 10

poses or the best cluster of poses classified by each method. The best predictions are in

bold, the wrong predictions are in italics. HADDOCK could not be evaluated at this stage

since we chose to not use data guidance. Computing time is indicative of one docking

experiment.

**Calculation were performed independently in triplicate to exclude any temporary issue.

All the poses identified as close to the crystallographic structure
with a global RMSD under 2 Å were present in the top 10
solutions of the best cluster for each method. Altogether, this
lead us to consider the PyDockWeb at the end of the re-
docking study, although its computation time is significantly
higher than the other methods (Table 2). As ZDOCK and
PyDockWeb provided more reliably poses close to the original
crystallographic structures, these two methods were kept for the
following analysis.

3.1.3. Assessment of the Best Performing Methods in

Cross-Docking Experiments
We verified the dependence on the initial structure for the
protein-protein binding mode prediction. We applied a cross-
docking experiment where each bound RHOA in one crystal
structure is evaluated against another GEF partner. We used
the free RHOA structure as a sensitivity control for our
cross-docking measurements. There is no dependence for the
docking result linked to the pdb input for RHOA or GEF.
The results are available in Table 3: as one would expect, it is
more complicated to build hybrid complexes than re-docking
complexes. Out of the 12 combinations of partners for the cross-
docking, ZDOCK is better for six predictions, PyDockWeb for
five, and their prediction is good and close in one case. For
two cases, pydockweb finds a very different orientation than
the crystal structure : RHOA: 1X86/GEF: 2RGN (30.27 Å),
RHOA: 4XH9/GEF: 1X86 (34.25 Å), where ZDOCK finds a
close conformation (3.19/3.31). For both methods, the docking
of the unbound RHOA produces very unrealistic protein-protein
interfaces, indicating the sensitivity of the method toward switch
I and II adaptations of RHOA for GEF binding although the
RMSD between bound RHOA (3T06) and unbound RHOA
(1FTN) is small (0.7 Å).

Considering the results of the re/cross-docking, we selected
ZDOCK as the best method to predict themore favorable binding
mode between RHOA and ARHGEF1 (Figure 2).

3.1.4. Evaluation of the Best Models Based on Known

Interactions to Select the Best RHOA Candidate

Structure
Since no experimental structure of the RHOA-ARHGEF1
interface is available, we used the crystallographic structures

TABLE 3 | Analysis of the crossdocking performance for the ZDOCK and PyDOCKweb. RHOA was considered as the ligand (M), and each GEF was fixed (F).

ZDOCK/pydockweb GEF

GEF11 (3T06) GEF8 (4XH9) GEF12 (1X86) GEF25 (2RGN)

Bound

RHOA

3T06 1.60/1.66 2.15/2.10 3.22/1.86 3.51/2.46

4XH9 3.35/5.58 1.99/1.52 3.31/34.25 2.59/3.56

1X86 3.15/2.46 2.66/2.02 2.61/1.44 3.19/30.27

2RGN 3.01/5.38 2.39/3.38 2.53/2.16 2.14/0.92

Free RHOA 1FTN 14.42/29.35 17.02/16.39 31.08/38.60 14.44/38.13

The RMSD value (in Å) for the mobile part is displayed for the best prediction in the first 10 poses. The results for re-docking experiments, underlined, are identical to Table 2. The best
predictions are in bold.
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FIGURE 2 | Comparison of the ZDOCK results for 3T06. (Left) Superimposition of the first ranked complex (cyan) on the crystallographic structure (green), the

interface between RHOA and ARHGEF11 is indicated by an orange plane. (Right) Zoom on representative RHOA residues determined from multiple sequence

alignments to be important for the interface between RHOA and the members of the ARHGEF family. Number in parenthesis indicate the Root Mean Square Deviation

on the whole complex or for the selected residues.

of other GEF paralogs bound to RHOA to determine which
amino acids are shared in all complexes. The amino acids
mapping to RHOA and ARHGEF1 was done using use
multiple sequence alignments comparison (data not shown).
Four residues are conserved in GEFs interfaces, namely, E423,
Q563, R551, and N603 in ARHGEF1. As can be seen in
Figure 3, these shared residues for all GEF interfaces can be
split in zones or individual amino acids contacts. By analogy
to existing complexes, ARHGEF1 E423 has to be present close
to Y34/T37/V38 (a region called switch I in RHOA), R551 has
to be close to V43/D45/E54 of RHOA, and N603 has to be
close to D67/R68/L69 (a region called switch II in RHOA).
Only one amino acid in RHOA, N41 seems to bind exclusively
to Q563. It is well-established that RHOA is very rigid due
to the strong structural requirements imposed by the GTP
recognition and hydrolysis mechanism (Dvorsky and Ahmadian,
2004). Only two regions called switch I and switch II are
more flexible with or without binding partners, as seen in
Figure 1. Our study allows a more detailed understanding of

the interaction between amino acids pairs important for the
RHOA-ARHGEF binding.

As done for ARHGEF1, we also analyzed the interface residues
of the other GEFs present in each crystallographic structures
in the complex with RHOA and assessed their amino acids
conservation using multiple sequence alignments. Four residues
of ARHGEF1 are present at the interface, and 10 for RHOA.
As can be seen in Table 4, we have listed all amino acids
present in interaction between both proteins, i.e., at least one
amino acid of RHOA is in contact with one amino acid or
more of a given ARHGEF. On average, the number of contact
pairs recovered after docking represents at least half of the
residues known to be present on both sides of the interface.
This indicates that our docking strategy allows to build a
reasonable starting structure for the RHOA-ARHGEF1 complex.
As sequence conservation on the DH+PH domains modeled
here is the most important among ARHGEF11, ARHGEF12,
and ARHGEF1 (Supplementary Table 2), and provided the
docking validation steps showed that ARHGEF11 docking
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FIGURE 3 | Conserved contacts in the interface between RHOA and all its GEFs. (Top) Diagram of conserved contacts by amino acids, amino acids E423, Q563,

R551, and N603 in ARHGEF1, and residues linked by arrows pertaining to RHOA. (Bottom) Split view of ARHGEF1 (cyan) RHOA (green) with matching residues

between proteins highlighted in yellow, white, red, blue, and purple, the rest of the interface is indicated in pale yellow.

allowed to recover more contacts than with ARHGEF12 docking,
we chose the RHOA structure found in 3T06 to dock it
using ZDOCK with the unbound structure of ARHGEF1
(3ODO). The resulting complex will be referenced thereafter as
complexD (Docking).

3.2. Template-Based Complex Modeling
Since there are some experimental structures of RHOA bound
to ARHGEF1 homologs, we also predicted the bound structure
of both proteins with a simpler approach, based on structural
superimposition in PyMOL. We first used a rhoA-bound
crystal structure and superimposed the free ARHGEF1 on
all the homologous GEFs. By doing so with rigid models,
we could not take into account the concerted induced-fit
required for finely tuning the interaction. We used a webserver
from Dokholyan Team named Chiron which allows to relax

the most important steric clashes (http://redshift.med.unc.edu/
chiron/) (Ramachandran et al., 2011). In order to solve all the
bumps, many rounds were necessary. A preliminary structure
of RHOA bound to ARHGEF1 was derived from the RHOA-
ARHGEF11 crystal structure (3T06). The complexes were created
by superimposition of ARHGEF1 (3ODO) on ARHGEF11 in
PyMOL. This superimposition was submitted to MolProbity for
analysis, and steric clashes were removed using Chiron. From
there, we used classical descriptors to evaluate the resulting
complex (delta SAS, RMSD, . . . ) with a special look into the
interface size. This interface was analyzed with PDBePISA. The
best binding was found when using ARHGEF1 from 3ODO and
RHOA from 3T06: the interface is 2,949 Å2 corresponding to
around 5% of the total surface of ARHGEF1 and to around
11% of RHOA total surface area. In the complexD, this interface
comprises amino acids 3 to 181 from RHOA and 392 to 761
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TABLE 4 | Numbers of amino acids determined to be in interaction between both proteins at the interface, numbers from RHOA (x/10) or its complexed ARHGEF (y/4), as

found in the different binding mode generated by ZDOCK during the crossdocking experiments, while the ARHGEF partner was kept fixed.

ARHGEF12 (1X86) ARHGEF25 (2RGN) ARHGEF11 (3T06) ARHGEF8 (4XH9)

RHOA (1X86) 5/10-3/4 5/10-2/4 2/10-1/4 3/10-1/4

RHOA (2RGN) 3/10-3/4 6/10-3/4 8/10-4/4 5/10-2/4

RHOA (3T06) 5/10-1/4 7/10-3/4 6/10-3/4 6/10-2/4

RHOA (4XH9) 3/10-3/4 4/10-2/4 1/10-1/4 7/10-3/4

RHOA (1FTN) 0 0 0 0

FIGURE 4 | Plot of the interface area between RHOA and ARHGEF1 during molecular dynamics simulation of complexD dock computed using the GROMACS

SAS tool.

from ARHGEF1, for a total interface size of 2,830 Å2. Those
values are smaller than the values found for the homologs
complexes where this interface area is on average 3,371 Å2.
Before exploring further the complexD and complexT, we verified
our models with PPcheck, which decomposes the interaction
energy in three terms: (i) hydrogen bonding (Ehyd), (ii) inter-
chain van der Waals interactions (Evw), and (iii) inter-chain
electrostatic interactions (Eele). The total stabilizing energy
is then divided by the total number of interface residues to
obtain the energy per residue. No significant deviation requiring
further refinements with the Chiron webserver was present
in both models.

3.3. Molecular Dynamics Simulation
Refinement for ComplexT and ComplexD
Both complexes were modeled using molecular dynamics
simulations to determine if the interface could be refined
during this procedure. The initial surface area in complexD,
2,830 Å2 at the beginning of the simulation, stabilizes to

3,056 Å2 between 200 and 1,000 ns of the simulation
(Figure 4). The molecular dynamics simulation of RHOA-
ARHGEF1 complexT also remained stable for most of the
time with a rapid initial increase in the interface area followed
by a plateau after 250 ns. The average interface size in
this plateau is 3,150 Å2 (data not shown). Starting with
two different models, we observe an augmentation in protein
surface contact driven by local adjustments. When considering
individually each protein at the RMSD level, there is a higher
deviation for RHOA than ARHGEF1, implying that RHOA
undergoes most of the conformational changes, as we will see in
details below.

3.4. Interface Contacts Evolution Over
Time
To understand the evolution of interface complex during the
simulations, we analyzed the hydrogen bonds between the
two partners. The result is shown in Figure 5 where we only
plotted hydrogen bonds with a lifetime in the simulation
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over 15%. With this plot, we can identify which amino acids,
side chains are seeing important rotations. For instance, an
important hydrogen bond is conserved between RHO1-ARG5
and ARHGEF1-GLU544 or ARHGEF1-ASP556. The most stable
contact is RHOA-ARG68—ARHGEF1-ASN603/ASP611, since
it is observed for 900 ns, or 90% of the simulation time.
For others contacts, some were present from the beginning

of the simulation, others appeared and disappeared. Since
it may take time to stabilize contacts, we observe that an
important interaction appears between RHOA-GLN61 and
ARHGEF1-GLN563 at 500 ns. Interestingly, some of these
hydrogen bonds are members of the very conserved list of
amino acids listed above, for instance, for RHOA-ARG68
and ARHGEF1-ASN603.

FIGURE 5 | Hydrogen bonds lifetime during molecular dynamics simulation on the complexT, the hydrogen bonds were defined using the hbond routine in

GROMACS and analyzed using the MDplot package in R.

FIGURE 6 | Example of local rearrangements observed at the interface of both proteins. The initial position displayed in cartoon and sticks representation are in green,

and the optimized positions are in blue. (A,B) Reorientation of E423 (ARHGEF1) and K27 (RHOA) seen from different orientations, (C) Green, blue, and purple:

representative discrete positions of GNL563 (ARHGEF1) and TYR34 (RHOA).
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4. DISCUSSION

Since no experimental structure of RHOA-ARHGEF1 was
available from X-ray studies, NMR, or EM studies, we had to
model it. Using the protein sequences of Rho and GEF families,
and the existing protein structures of bound homologs RHOA-
ARHGEF8 (Petit et al., 2018), RHOA-ARHGEF11 (Bielnicki
et al., 2011), RHOA-ARHGEF12 (Kristelly et al., 2004), and
RHOA-ARHGEF25 (Lutz et al., 2007), we analyzed to determine
which amino acids were shared at the interface of the complex
(Figure 3). This sequence and structure-based information was
important to assess the validity of our models.

4.1. Initial Models of RHOA-ARHGEF1
Complex
The prediction of protein-protein interface using docking
methods is still an important field of research (Smith and
Sternberg, 2002; Lensink et al., 2007) but the predictive power
of these methods greatly varies depending on the protein
families (Bendell et al., 2014; Wang et al., 2017). As no GEF

or RHOA experimental structure was used as target to assess
the methods in recent CASP experiments, we benchmarked
how these methods could perform on our specific case,
using re-docking and cross-docking experiments. We selected
ZDOCK after a careful quantification and inspection of the
re-docking/cross-docking experiments since its results were
the most robust across most predictions and in agreement
with our sequence+structure derived data. The best model
(complexD) selected from ZDOCK contains 5 out of 10
shared amino acids in RHOA and 3 out of 4 shared amino
acids from ARHGEF1, with an interface surface area of
2,830 Å2.

As the docking experiments are time-consuming and contain
also uncertainties, we did also a more crude approach
using PyMOL. We analyzed the existing structures of RHOA
bound to other members of the ARHGEF family to find
the best starting template for our structural comparison. A
superimposition of ARHGEF1 (3ODO) on RHOA-ARHGEF11
(3T06) was then performed in PyMOL and further refined using
Chiron (Ramachandran et al., 2011). This modeled interface

FIGURE 7 | Orientation of RHOA relative to ARHGEF1. (Left) Comparison of RHOA in complexT (blue) and RHOA in complexD (green) at the beginning of the

simulation (T0). Only the surface of ARHGEF1 (gray) of complexT is shown for clarity. The center of one helix of RHOA is displayed in red stick to illustrate the

clockwise movement observed during the simulation, with an angle of 22.47◦ and a distance of 15.2Å between the top of the helix. (Right) Same orientation with the

same angle and distance between the last snapshot of complexT (yellow) and complexD (black), the shift in both complexes is only 8.66◦ for a distance of 6.6Å.

ARHGEF1 of complexT is displayed in transparent gray surface, since ARHGEF1 proteins are aligned on the PH domain, the difference in the bottom of the figure

comes from the movement of the DH domain.
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(complexT) allowed to correctly find the position of 2 out
of 10 amino acids in RHOA and 2 out of 4 amino acids
from ARHGEF1.

Both methods allowed to define comparable starting
complexes of the RHOA-ARHGEF1 interface from rigid
templates. Major steric clashes were carefully examined using
Chiron (Ramachandran et al., 2011) and visual inspection, but
no further amino acids adjustment was required. The RMSD
difference between both models is 0.4 Å for ARHGEF1 and
9.5 Å for RHOA. This larger difference in RHOA position
comes from an alternate orientation of the protein relative to
ARHGEF1 with a clockwise rotation of 22◦ between RHOA in
complexT and RHOA in complexD (Figure 7). This alternative
positioning of RHOA in comparison to other members of
the GEF family is also present in crystallographic structures.
Both complexT and complexD seemed therefore reasonable
starting complexes, with a comparable building time of 1
day for both protocols: instant for PyMOL superimposition
plus 1 day for removal of clashes in Chiron and 1 day for
ZDOCK prediction.

4.2. Molecular Dynamics Interface
Refinement
A classical method to enhance protein models is molecular
dynamics simulations (MD) (Mirjalili et al., 2014).We performed
MD on complexT and complexD for 1µs each. During this
simulation of the complexT, the interface area in the complex
increased (3,480 Å2) in comparison to the initial complex
(2,949 Å2). We identified amino acids conserved in all
RHOA-ARHGEF complexes by combining structural sequence
analysis (Figure 3A). These contacts are stable throughout the
simulation (R5, R68/E544, D556, N603, and D611). Interestingly
new contacts are observed K27-E423, R68-D611 led by local
rearrangements of amino acids, in particular K27, Y34 (RHOA),
and E423 (ARHGEF1) (Figure 6).

Both complexT and complexD lead to a similar RHOA-
ARHGEF1 interface at the end of the simulation. At the
beginning of the simulation (t = 0 ns), ComplexD and complexT
only have a global RMSD difference of 1.4 Å between them, but at
the end (t = 1,000 ns), the RMSD rises to 3.7 Å. Since the RMSD is
a global measure of the movements, i.e., both proteins moved, it

FIGURE 8 | Energy contribution of RHOA amino acids present at the interface for different snapshots of the simulation, when important shifts in hydrogen bond

networks were observed. The displacement is computed as a virtual alanine scanning using the Robetta webserver.
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is important to understand how proteins evolved independently
during the simulations.

When each trajectory is taken individually, we observe
that ComplexD moved more (5.1 Å) from its initial structure
than complexT (2.9 Å). This apparent difference comes
mostly from a larger movement of the PH domain in the
complexD simulation since the RMSD between the initial
structure and the end of the simulation concerning only the
ARHGEF1 protein is 18 Å. This apparently large difference
in ARHGEF1 position for complexD is the consequence of
two movements: (i) the local rearrangements of the DH
domain (the core RHOA binding domain of GEFs), which is
similar in both complexD and complexT (6 Å), and (ii) a
larger movement of the PH domain which may be involved
in the nucleotide exchange. When aligning the DH domain
in both trajectories, we, therefore, see a more important
rotation of RHOA relative to ARHGEF1 for complexD (6
Å) than for complexT (3.5 Å) as illustrated in Figure 7.
The main interface enhancements thus appear locally at the
ARHGEF1-RHOA interface, mostly on the DH domain of
ARHGEF1, and more globally with a clockwise (+22◦) rotation
in the complexT, and a slighter anti-clockwise (−3◦) rotation
in complexD.

Both complexes are refined after molecular dynamics
simulations, many important amino acids saw an increase
in contact frequency and the position of RHOA relative
to ARHGEF1, either inherited from the superposition onto
ARHGEF11 or from the docking studies with ZDOCK, led to
a strong convergence of the interaction. This study confirms

the interest of using molecular dynamics simulation to increase
model quality.

4.3. Validation of the Binding Mode
To validate the binding mode from the simulations, we used the
interactions as a starting point and analyzed specific interaction
of this complex found in the literature. We found back couples
of interactions, which have a lifetime of over 15%, are conserved
in all RHOA/GEFs binding modes, with some interactions
specific to the RHOA-ARHGEF1 interface. We observed that
the complex tends to go toward a more stable conformation
when the PH domain moves to enclose RHOA, with an
increase in the number of interactions, with a mean SAS going
over 3,100 Å2, the mean surface area for all complexes of
RHOA/GEFs available so far. We could identify some specific
contacts for RHOA-ARHGEF1 from the complexT, namely
D59-K567, Q63-T566, which were not described previously
(Hoffman and Cerione, 2002; Derewenda et al., 2004). In the
complexD, the specific contacts E97-S746 has already been
described by Gasmi-seabrook (Gasmi-Seabrook et al., 2010)
as an essential contact in the nucleotide exchange for PDZ-
ARHGEF1 and RHOA. This contact is not observed in the
complexT simulation. Starting from two complexes built with
different strategies, we were able to have a perfect compatibility
between experimental predictions and our in silicomethods. The
identified additional contacts, specific for the RHOA-ARHGEF1,
will require experimental exploration since there were differences
from the two simulations, potentially coming for the overall
dynamics of the interface. To guide experimental validations, we

FIGURE 9 | Energy contribution of ARHGEF1 amino acids present at the interface for different snapshots of the simulation, when important shifts in hydrogen bond

networks were observed. The displacement is computed as a virtual alanine scanning using the Robetta webserver.

Frontiers in Molecular Biosciences | www.frontiersin.org 12 May 2021 | Volume 8 | Article 643728136

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Gheyouche et al. RHOA-ARHGEF1 Binding Mode Prediction

studied via virtual alanine scanning if some amino acids could be
qualified as hotspots (Kortemme et al., 2004; Jiang et al., 2017)
of the interface (Figures 8, 9). Only three amino acids seem to
contribute strongly to the binding of both proteins: (1) N41
for RHOA, already identified by multiple sequence alignments
and structure comparison, (2,3) I558 and A605 in ARHGEF1.
These residues seems to be robustly involved in the interface
during all the simulations, either starting with the complexD or
the complexT.

4.4. Selection of the Best Model
The knowledge acquired with our strategies helped us to
understand the most relevant elements for the binding of the
two partners altogether with insights for selecting/computing
relatively good refined models. In the initial models after
minimization for complexT, there were already 5 over the
10 conserved (E423, Q563, and N603) contacts and for the
complexD 4 over 10 (mostly with E423). After simulation for
complexT, we can see 8 over 10 conserved contacts and for
complexD, there are 6 over 10 contacts during a short time
frame where the interface SAS is the highest. Some contacts
are seen only thanks to the simulations and one question
rises, what is more important to select for qualifying the
best model? Its higher number of contacts or the presence

of conserved/important contacts? In our case, both models
show conserved/important contacts and new contacts specific
to each model. The amino acids detected as hotspots are not
conclusive since they are present in both trajectories. During the
simulations, even if starting from somewhat different structures,
the interaction between ARHGEF1 and RHOA converges. Our
model building strategy clearly indicates that a molecular
dynamics simulation, starting from rationally designed PPI,
improves the initial models.

4.5. Comparison of the MD Model With
Information-Driven HADDOCK Docking
HADDOCK is very efficient for protein-protein docking when
experimental/bioinformatics constraints can be added for driving
the docking. As we had determined the important residues for
the binding interface, we used them in HADDOCK webserver
first for redocking experiments on the 3T06 crystal structure
as shown for other methods in Table 2, and obtained a RMSD
of 0.75 Å with 90% of the structure in the first same cluster,
better than all other protein-protein docking methods. We then
did the prediction of the interaction model using ARHGEF1
from 3ODO and RHOA from 3T06. This prediction gave us
nine clusters, and after careful analysis only two seemed to
have the expected binding mode: cluster 1 and cluster 5. When

FIGURE 10 | Comparison of the HADDOCK webserver cluster 1 model built from 3T06 RHOA and 3ODO ARHGEF1 (yellow), complexT (light cyan), and complexD

(green).
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FIGURE 11 | Protocol for producing a protein-protein complex where close homologs of the proteins of interest can be identified.
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cluster 1 is compared to ZDOCK’s derived complexD (without
information driven construction), this cluster 1 has a RMSD of
0.62 Å, also very close to complexT with a RMSD value of 0.65 Å
(Figure 10). Qualitatively, the cluster1 model displays 6 over 10
of the contacts given as input. If experimental data are available,
for instance, coming frommutagenesis experiments, HADDOCK
allows their incorporation to guide the binding mode. In this
situation, HADDOCK is certainly the best strategy to build
a PPI, provided these data can be transformed in sufficient
constraints as input. However, the resulting model provided by
HADDOCK in 1 day compared to other docking methods is
very interesting. The interface area for cluster 1 is 1,478 Å2,
slightly better than complexD model before refinement (1,420
Å2), but far from the refined interface obtained after molecular
dynamics simulations (>3,000 Å2). Even if it is possible to build
a reliable model by integrating various data in HADDOCK, a
long molecular dynamics simulation, with a simulation time
above 250 ns is still required to enhance the quality of a
PPI (Feig and Mirjalili, 2016).

5. CONCLUSION

Most biological processes involve transient protein-protein
interactions, in particular for cellular signaling. The RHOA-
ARHGEF1 interaction is responsible for the activation of RHOA
downstream of type 1 angiotensin II receptor signaling in
vascular smooth muscle cells, thereby controlling vascular tone
and blood pressure (Loirand, 2015).

Our study aims at exemplifying how one can model a protein-
protein interaction when sufficient experimental structures are
present, but only experimental data for close homologs are
available. We set up two different strategies summarized in
Figure 11. One has first to identify the close homologs. If
the members of the family have a standardized name, they
should rapidly be identified directly in the Protein Data Bank
(Berman et al., 2003). If not, a search on the National Center
for Biotechnology Information (NCBI) structure service, in
the Protein Families Database (Mistry et al., 2021), or in the
PALI database (Balaji et al., 2001) should help in finding close
homologs. If not, the protocols described in our work should be
considered with caution.When the close homologs are identified,
it is possible to apply the protocols previously described. The
first one, based on structural superimposition of partners, allows
a rapid building of the complex, but provides required local
adjustments to avoid steric clashes. We expect it to be useful
for a preliminary study of how the proteins interact. The second
strategy based on most advanced methods combining the search
of the best binding mode via the assessment of the results
of protein-protein docking, followed by the refinement of the
best docked model using molecular dynamics simulations. This
model showed not only increased shape complementarity and

increased contacts but also provides insights into the dynamics of
the detailed amino acids interactions between the partners. This
more advanced strategy is probably only accessible to experts and
should only be required for atomic-level analysis andmechanistic
studies. In our study, both strategies gave close initial models,
but we do not expect the results on RHOA-ARHGEF1 to be
amenable for general purpose. We, therefore, recommend to
use a protein-protein rigid-body docking study (complexD) for
producing the initial interaction mode. In our study, ZDOCK
was better if precision, robustness, and time are taken altogether
into consideration. When possible, we recommend to perform
long molecular dynamics simulations to enhance the network of
interaction between both proteins and to get a better overview of
the lifetime of each interaction. More generally, we expect these
strategies will be successfully applied to a variety of targets where
a partial structural coverage of both partners is known, provided
the complex tomodel has characteristics comparable with the two
proteins described in this article.
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CRISPR-Cas9 is a powerful tool for target genome editing in living cells. Significant
advances have been made to understand how this system cleaves target DNA.
However, due to difficulty in determining active CRISPR-Cas9 structure in DNA cleavage
state by X-ray and cryo-EM, it remains uncertain how the HNH and RuvC nuclease
domains in CRISPR-Cas9 split the DNA phosphodiester bonds with metal ions and
water molecules. Therefore, based on one- and two-metal-ion mechanisms, homology
modeling and molecular dynamics simulation (MD) are suitable tools for building an
atomic model of Cas9 in the DNA cleavage state. Here, by modeling and MD, we
presented an atomic model of SpCas9-sgRNA-DNA complex with the cleavage state.
This model shows that the HNH and RuvC conformations resemble their DNA cleavage
state where the active-sites in the complex coordinate with DNA, Mg2+ ions and water.
Among them, residues D10, E762, H983 and D986 locate at the first shell of the RuvC
active-site and interact with the ions directly, residues H982 or/and H985 are general
(Lewis) bases, and the coordinated water is located at the positions for nucleophilic
attack of the scissile phosphate. Meanwhile, this catalytic model led us to engineer
new SpCas9 variant (SpCas9-H982A + H983D) with reduced off-target effects. Thus,
our study provides new mechanistic insights into the CRISPR-Cas9 system in the DNA
cleavage state, and offers useful guidance for engineering new CRISPR-Cas9 editing
systems with improved specificity.

Keywords: Gene editing, CRISPR-Cas9, DNA cleavage mechanism, Molecular dynamics, off-target effects

INTRODUCTION

The RNA-guided CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpCas9) has been
widely used as a powerful and versatile tool for genome engineering (Hsu et al., 2014;
Wang et al., 2016; Chen and Doudna, 2017). Guided by a pre-designed sgRNA with a 20-
base long sequence for targeting DNA, SpCas9 could cleave corresponding complementary
sequences in the genome through RNA: DNA hybridization (Jinek et al., 2012; Cong
et al., 2013). Many studies have demonstrated that this cleavage process includes: first, the
Recognition lobe (REC) domains of SpCas9 interact with the common sgRNA scaffold to
form an Ribonucleoprotein (RNP) complex for recognizing the N is any one of bases
(Adenine, Thymine, Cytosine, or Guanine), G is Guanine (NGG) motif just downstream
the 20-mer targeting sequence, and then mediates the formation of the RNA: DNA
heteroduplex; next, the HNH and RuvC endonuclease domains catalyze the hydrolysis of two
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DNA phosphodiester bonds in the complementary and non-
complementary strands, respectively (Anders et al., 2014; Jinek
et al., 2014; Nishimasu et al., 2014; Jiang et al., 2015, 2016).
Although significant advances have been made in the past years,
a complete understanding of the DNA hydrolysis mechanisms
of the HNH and RuvC active sites, especially those of the RuvC
domain is still lacking.

Structural and biochemical studies have suggested that the
catalytic residues in the HNH active sites are D839, H840,
and N863, which may employ the one-metal-ion mechanism to
hydrolyze the complementary strand of the target DNA (Jinek
et al., 2012; Nishimasu et al., 2014), in agreement with recent
research (Zhu et al., 2019). Also, some studies reported that D10,
E762, H983, and D986 are the catalytic residues of the RuvC
domain, and then suggested that they utilize the two-metal-ion
hydrolysis mechanism to split the non-complementary (non-
target) strand (De Vivo et al., 2008; Ho et al., 2010; Nishimasu
et al., 2014; Palermo et al., 2015; Chen and Doudna, 2017).
However, unlike those of the HNH residues, the precise roles of
these RuvC residues in the DNA cleavage remain debated. For
example, for the HNH domain, it has been firmly established
that H840 acts as the general (Lewis) base to activate the
water molecule for nucleophilic attack of the scissile phosphate
(Nishimasu et al., 2014). For the RuvC domain, in contrast,
several views considered that H983 is the general base for the
DNA hydrolysis (Zuo and Liu, 2016; Chen and Doudna, 2017),
and others proposed that this residue plays a role in coordinating
the metal ion (Fernandes et al., 2016). To clarify such mechanistic
problems, direct structural information about the wild-type HNH
and RuvC active-sites in the DNA cleavage state is critical.
So it becomes very important to obtain the cleavage-activating
structure of SpCas9 in complex with sgRNA and the target DNA.

Unfortunately, similar to structural studies of many enzymes,
it is currently difficult to use the wild-type, active SpCas9
protein to form a stable complex with a full-length target DNA;
alternatively, activity-dead mutants were often used for the
structural determination (Anders et al., 2014; Jinek et al., 2014;
Nishimasu et al., 2014; Jiang et al., 2016; Huai et al., 2017).
Probably due to such a technical limitation, available x-ray crystal
structures of the mutants were often resolved in the cleavage-
inactive states, in which the HNH active-site was found far
from the scissile bond of the complementary strand (>13 Å)
(Nishimasu et al., 2014; Jiang et al., 2016). Also, in most of the
resolved structures, certain numbers of nucleotides from the 20-
mer non-target sequence are missing (Anders et al., 2014; Jiang
et al., 2016). These made it difficult to build atomic models in
the DNA cleavage state. To address this problem, we previously
used cryo-EM to capture the active conformations of SpCas9,
and obtained a structure of the SpCas9–sgRNA–DNA ternary
complex in which the HNH active-site is nearest to the split bond
of the complementary strand among all the available structures
(Huai et al., 2017). However, this structure did not enable us to
accurately build atomic models for the wild-type active-sites with
metal ions and water molecules. Even though the current studies
have obtained two cryo-EM structures (6O0Y and 6VPC) around
3.3 Å, the atomic models of their active sites in the cleavage
(catalytic) state cannot be completely and accurately built due to

their HNH and RuvC domains are not in the cleavage (catalytic)
state at the same time: among them, the conformation of the
HNH active sites in 6O0Y resembles catalytic state (Zhu et al.,
2019), whereas the conformation of the RuvC active sites in 6VPC
is in the catalytic state (Zhu et al., 2019; Lapinaite et al., 2020).
Thus, how the HNH and RuvC active sites in a sharing structure
organize with Mg2+ ions and water molecules to hydrolyze the
DNA phosphodiester bonds remains open.

Here, we further refined the cryo-EM structure of the SpCas9–
sgRNA–DNA ternary complex to be in the DNA cleavage state,
and thereby rebuild the atomic model for the active complex
by molecular modeling according to one- and two-metal-ion
mechanisms. For this, we will present the model of the wild-type
HNH and RuvC active-sites in complex with DNA, Mg2+ ions,
and water molecules, and obtain a refined cryo-EM structure
of SpCas9 in DNA cleavage state. Meanwhile, our mechanistic
models indicate that the residues D10, E762, H983, and D986
are in the first coordination shell of the RuvC active-site with
the ions, suggesting that H983 coordinates with the Mg2+

ion, and that the general base for the RuvC catalysis is likely
H982 or/and H985.

RESULTS AND DISCUSSION

Atomic Models of Nuclease Active-Sites
SpCas9 can cleave DNA by RNA guiding and has developed a
powerful genome-editing tool that is widely used in many fields
(Hsu et al., 2014; Wang et al., 2016; Chen and Doudna, 2017). To
understand the conformational changes of SpCas9 in the atomic
level and its interaction with nucleic acids, researchers used x-ray
or cryo-electron microscopy to resolve SpCas9 structures with
various forms, including SpCas9 monomer (4CMP) (Jinek et al.,
2014), SpCas9–sgRNA binary complex (4ZT0) (Jiang et al., 2015),
and SpCas9–sgRNA–DNA ternary complexes (4OO8, 4UN3,
5F9R, 5Y36, 6O0Y, and 6VPC) (Anders et al., 2014; Nishimasu
et al., 2014; Jiang et al., 2016; Huai et al., 2017; Zhu et al.,
2019; Lapinaite et al., 2020; Supplementary Figure 1). However,
the aforementioned atom models are not all-atom structures
of SpCas9 in the DNA shearing-active state and are thereby
limitations of our understanding of the precise roles of the critical
sites in the SpCas9 catalytic centers, especially the key sites in
the RuvC active center. To overcome the difficulties of resolving
an active structure with a high resolution for elucidating the
precise roles of the key sites in the RuvC catalytic center, based on
the currently available structures of SpCas9, through homology
modeling, and molecular dynamics simulation, we intended to
rebuild a model of SpCas9–sgRNA–DNA ternary complex in the
DNA cleavage state from theories.

To screen out suitable atom models as the structural
templates for constructing SpCas9 in shearing active state, we
aligned and analyzed the protein structures of the SpCas9–
sgRNA–DNA ternary complexes (Anders et al., 2014; Nishimasu
et al., 2014; Jiang et al., 2016; Huai et al., 2017; Zhu et al.,
2019; Lapinaite et al., 2020), and observed that the structural
orientations of SpCas9 were highly consistent below the oblique
axis, while those above the oblique axis were slightly different
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(Supplementary Figure 2). This indicated that any single atomic
model among SpCas9 structures can also be selected as a
template to build the structure of REC1 and PI domains, but
the construction of REC2, REC3, HNH, and RuvC domains
needs to be analyzed and screened further. Considering the
structural characteristics of these three atomic models (5Y36,
6O0Y, and 6VPC) (Huai et al., 2017; Zhu et al., 2019; Lapinaite
et al., 2020) in the existing structures, they are the only active
structures of SpCas9 so far. Among them, 5Y36 has magnesium
ions in the catalytic centers and the atomic structure of the
full-length DNA, while 6O0Y and 6VPC displayed the catalytic
states of the HNH and RuvC domains in the DNA cleavage,
respectively. Therefore, we presumed that SpCas9–sgRNA–DNA
ternary complex in the DNA cleavage state might be rebuilt
from theories, through selecting these three atomic models
as references and using complementary strategies among their
structures. First, we aligned these three structures and saved
the coordinates of their relative positions; Next, we extracted
atomic coordinates of nucleic chains and magnesium ions from
5Y36 (Huai et al., 2017); Subsequently, we transferred the atomic
coordinates of REC2 and RuvC domains in 6VPC and the atomic
coordinates of REC1, REC3, PI, and HNH domains in 6O0Y to
the aforementioned nucleic chains (Zhu et al., 2019; Lapinaite
et al., 2020). Finally, these structural fragments were assembled
into a complete-initial structure of the SpCas9–sgRNA–DNA
ternary complex (Figure 1A). To obtain the structure of ternary
complex in the active state, the aforementioned ternary complex
was accommodated into two cryo-EM densities maps (end-
21308.map and end-0584.map, respectively) (Zhu et al., 2019;
Lapinaite et al., 2020), which was processed by Situs-3.1 and
Rosetta programs (Ashworth and Baker, 2009; Wriggers, 2010).
This result showed that secondary structural elements in the
ternary complex matched well into the EM density maps
(Supplementary Figure 3). And in this active structure of the
ternary complex, we observed that the locations of the key sites in
the HNH and RuvC catalytic centers were consistent with those
of 6O0Y and 6VPC (Supplementary Figure 4; Zhu et al., 2019;
Lapinaite et al., 2020), respectively. In addition, in the two-metal
center, the Nδ atom of H983 points toward the Mg2+ ion A, thus
H983 may have a potential ability to stabilize the Mg2+ ion A
(Supplementary Figure 5), rather than a general. Thus these data
suggested that we successfully refined the structure of SpCas9 in
the active state by the structural-complementary strategy.

In our atom model, we observed that the key sites of HNH
and RuvC active centers, including residues D839, N863, E762,
H983, and D986, embraced Mg2+ ions, consistent with the
previous report (Nishimasu et al., 2014). Therefore, the result
suggested that these residues are critical sites of the active
centers in SpCas9, which is supported by an alanine scan. As
shown in Figure 1B, alanine (Ala) substitution of D839, N863,
E762, H983, or D986 may convert the wild-type SpCas9 into
a nickase. Compared with the wild-type (lanes 3 and 8 in
Figure 1B), the cleavage activities of the mutants D839A and
N863A are sharply reduced and disappeared, respectively (lanes
4 and 5 in Figure 1B). Likewise, the cleavage activities of the
mutants E762A, H983A, and D986A are significantly weakened
(lanes 9, 10, and 11 in Figure 1B). Thus, these residues are

essential for binding the metal ion and catalyzing the target DNA.
However, we did not know whether this model is a catalytic
state in DNA cleavage. To obtain the atomic model of SpCas9
in the DNA catalytic cleavage state, based on the one- and
two-metal principles (Steitz and Steitz, 1993; Yang, 2008), we
fixed magnesium ions and the coordination residues around
them to resemble an octahedral symmetry, and performed
molecular dynamics (MD) simulation for this. With coordination
fixation, we set up coordination distances (near 2.0 Å) between
magnesium ions and the corresponding coordination residues
in the catalytic centers. After MD, in the HNH catalytic center,
we observed that an Mg2+ ion is surrounded by D839 and
N863, water molecules, and the phosphate group (Figure 1C).
The Mg2+ ion coordinates with the Oδ atoms of D839 and
N863, the O atoms of water molecules and the phosphate group;
and the coordination geometry between the Mg2+ ion and the
oxygen atoms is a near octahedral symmetry with the ligand-
to-mental ion distance between 1.8 and 2.0 Å (Figure 1C);
these features are almost consistent with those of one-metal-
ion model (Yang, 2008). Meanwhile, the Nδ atom of H840 in
the second structural shell points toward the corresponding
phosphate group (Figure 1C), and could act as the general base
to activate the water molecule for the nucleophilic attack on the
phosphodiester bond. Similarly, in the RuvC catalytic center, two
Mg2+ ions are enclosed by D10, E762, D986, and H983, water
molecules, and the phosphate group (Figure 1D). In line with the
two-metal-ion active-site model (Steitz and Steitz, 1993; Nowotny
and Yang, 2006; Yang, 2008), these two Mg2+ ions are about
3.2 Å apart, and jointly coordinate with the Oδ atoms of D10,
E762, and D986, the Nδ atom of H983, and the O atoms of water
molecules and the phosphate group (Figure 1D). The distance
between the ligands and corresponding Mg2+ ion is about 2.0 Å,
which forms two near octahedrons (Figure 1D). At the same
time, in this active state, the Root mean square deviation (RMSD)
of the ternary complex was minor and stable, approximately
3 Å (Supplementary Figure 6). Thus, we succeed in refining
the atomic model of the SpCas9 in cleavage (catalytic) state and
revealing the potential catalysis roles for the key sites of the HNH
and RuvC catalytic centers in hydrolyzing DNA.

Catalytic Role of RuvC Residue H983
Previous studies have shown that the active sites of the RNase H
[Protein data bank (PDB) ID: 1ZBL] consist of four conserved
residues (D71, E109, D132, D192), and coordinate with two metal
ions (Nowotny and Yang, 2006). Meanwhile, earlier studies also
revealed that the function of the RNase H is similar to those
of the RuvCs (PDB IDs: 4LD0, 1HJR, and 4UN3), and mainly
cleaves nucleic acid chains by the two-metal-ion mechanism
(Ariyoshi et al., 1994; Nowotny et al., 2005, 2007; Chen et al.,
2013; Gorecka et al., 2013; Nishimasu et al., 2014). To investigate
the catalytic role of H983 in the RuvC active center, we performed
structure superpositions on the above four PDBs. In their
catalytic domains, aside from the secondary structures (αββ),
the orientations of these key catalytic residues are semblable,
for example, site-1, site-2, site-3, and site-4 (D192, D138, H143,
and H983) (Supplementary Figure 7). Therefore, the function of
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FIGURE 1 | Atomic model of the ternary complex in the DNA cleavage state. (A) The structural assembly of SpCas9–sgRNA–DNA ternary complex. Domains HNH,
REC1, REC3, and PI come from atomic model 6O0Y, and domains REC2 and RuvC derive from atomic model 6VPC. (B) In vitro cleavage activities of SpCas9 and
its mutants. These mutation sites are located in the HNH and the RuvC domains, respectively. The target DNA molecules are cleaved into two products (product-1
and -2). (C,D) The Mg2+ ion coordination of the catalytic centers (HNH and RuvC, respectively). The distances between ligands and corresponding Mg2+ ions are
about 2.0 Å.
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FIGURE 2 | The coordination configurations of the catalytic centers. (A–C) The stereoviews of the two-metal catalytic centers in the atomic models (PDB IDs: 1ZBL,
4LD0, and 5Y36, respectively). The Mg2+ ions are coordinated by the ligands (amino acids, phosphate groups, and water molecules). (D) In vitro cleavage activities
of SpCas9 and its mutants. The target DNA molecules are cleaved into two products (product-1 and -2).

the residue H983 in the SpCas9 may be to coordinate with the
Mg2+ ion A.

To identify the catalytic role of H983 in the RuvC active
site, we analyzed whether the conformations of residues H983
(5Y36), H143 (4LD0), and D192 (1ZBL) are consistent in the
Mg2+ coordination by MD simulation after inserting Mg2+

into active centers (Figure 2). In the 1ZBL or the 4LD0, the
distance between these two Mg2+ ions is about 5.0 Å; the scissile
phosphorus is nearly located between the Mg2+ ions A and B;
the D192 or H143 and at least one water molecule coordinate
with the Mg2+ ion A (Figures 2A,B). Similarly, in the 5Y36,
these two Mg2+ ions are spaced 3.0 Å apart; the Mg2+ ions A
and B are bisected by the scissile phosphorus; the H983 and two
water molecules coordinate with the Mg2+ ion A (Figure 2C).
Thus, these results suggest that H983 of SpCas9 may be involved
in immobilizing (anchoring) the Mg2+ ion A to maintain the
reaction conformation of the catalytic center, consistent with the
previous suggestion (Fernandes et al., 2016).

Since structure studies have shown that the action of the H983
in the SpCas9 is equivalent to that of the D192 in the RNase
H, we presumed that the His mutation into Asp (H983D) at
site 983 may retain the native cleavage activity; in contrast, the

cleavage activity with the His mutation into Ala (H983A) will be
weakened or may disappear. As expected, the cleavage activity
of the mutant H983D is similar to that of the wild-type SpCas9
(lanes 3 and 4 in Figure 2D), in agreement with the cleavage
activity of the mutant H983N (data not shown); and that of the
mutant H983A was sharply reduced (lane 5 in Figure 2D). Thus,
these results demonstrate that H983 can stabilize the Mg2+ ion
A during SpCas9 cleaving the DNA, rather than the general base
as the previous deductions (Chen and Doudna, 2017; Palermo,
2019). Moreover, the distance analysis between the Mg2+ ions
A and B in the SpCas9 and its mutants also supports this view
(Supplementary Figure 8), because the substitution of H983 with
Ala (A) or Asp (D) affects the stability of the Mg2+ ion A.

Lewis (General) Bases of RuvC
Active-Site
The above results indicate that the RuvC residue H983
coordinates with the Mg2+ ion, and is not a general base
(Chen and Doudna, 2017; Palermo, 2019). Therefore, it might
be other residues to serve as general bases during the RuvC
domain hydrolyzing the No-target strand (NTS). To confirm
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FIGURE 3 | The Lewis bases in the SpCas9 catalytic centers. (A) The Lewis bases in the HNH and the RuvC. H840 is the Lewis base in the one-metal domain;
H982 and H985 are the potential Lewis bases in the two-metal domain. (B) In vitro cleavage activities of the SpCas9 mutants. The target DNA molecules are cleaved
into two products (product-1 and -2). (C) The two-metal-ion model of the RuvC domain. Reactant conformation: the cooperative motion of two metal ions.
Transition state: the high-energy intermediate. Product release: the cleavage and breakage of the target DNA strands.

this, referring to the distance (7.8 Å) between the Cα atom
of the general base H840 and the corresponding scissile
phosphorus, we analyzed residues around the scissile phosphorus
in the RuvC catalytic center. As shown in Figure 3A, we
observed that the Cα atoms of the residues H982 and H985
and the corresponding scissile phosphorus are 7.3 and 9.6 Å
apart, respectively; meanwhile, Nδ atoms of their imidazole
groups point toward the scissile phosphorus. Therefore, these
two amino acids might be general bases. To identify the
roles of these residues, through site-directed mutagenesis and
cleavage activity detection, we first confirmed whether they

are critical during the NTS hydrolysis. In our results, the
mutant H982A is still able to cleave the target DNA and
almost maintains the same cleavage activity as the wild-
type SpCas9 (lanes 3 and 4 in Figure 3B). In contrast, the
cleavage activity of the mutant H985A is significantly decreased
(lane 6 in Figure 3B). Therefore, H985 is a key residue
in the RuvC catalytic center and appears to play a more
critical role than H982.

To further clarify the precise roles of the H982 and H985,
we continued to examine the cleavage activities of several
mutants, including H983A + H985A, H982A + H983A,
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FIGURE 4 | The movement of the non-target strands (NTS) in the PAM distal ends. (A) In the RuvC active centers of SpCas9 mutants, the NTSes of the PAM distal
ends are shifted due to the comformational change of the RuvC catalytic centers (especially magnesium ions). (B) The model of reducing off-targets of SpCas9. In
these mutants (H982A, H983D, and H982A + H983D), when sgRNAs are not mathed with the NTS of the substrate DNA (in abnormal state), the DNA may be not
cleaved by SpCas9 mutants.

H982A+H985A, H982A+H983D, H982A+H983A+H985A,
and H982A + H983D + H985A (Figure 3B). Among them,
the cleavage activity of the mutant H983A + H985A is
still partly retained (lane 7 in Figure 3B). Therefore, H982
could be a general base to activate the water molecule for
the nucleophilic attack of the phosphodiester bond. However,
the cleavage activity of the mutant H982A + H983A is
removed (lane 8 in Figure 3B). This seems to indicate that
the H985 is not a Lewis base. But, it is because the distance
between the H985 and the scissile phosphorus is too far in
the mutant H982A + H983A that the H985-activated water
molecule may not complete the nucleophilic attack of the
scissile phosphorus (Supplementary Figure 9). This is also
supported by site-directed mutagenesis because the lost activity
of the mutant H982A + H983A is reversed by the mutant
H982A + H983D (lane 15 in Figure 3B). Thus, H985 could be
also a general base like H982.

Meanwhile, in the RuvC catalytic center, to rule out the
possibility of independence on a general basis during the NTS
hydrolysis, we evaluated the cleavage activities of the mutants
H982A + H985A and H982A + H983D + H985A. These two
mutants could not cleave the target DNA (lanes 9 and 10 in
Figure 3B), similar to the mutant H982A + H983A + H985A

(lane 16 in Figure 3B). Therefore, in the RuvC domain
of SpCas9, the cleavage of the NTS is dependent on the
general bases. Moreover, the chemical rescue by imidazole also
supports this point (Supplementary Figure 10), because the
lost activity of SpCas9 mutant H982A + H983D + H985A
can be recovered by adding imidazole. Thus, the hydrolyzing
of the NTS needs the residues of acting as the general bases
besides the residues of stabilizing the Mg2+ ions. In the
earlier studies, although the understanding of the RuvC domain
has made significant advances, the residue H983 has always
been regarded as a pseudo general base (Nishimasu et al.,
2014; Jiang et al., 2016; Zuo and Liu, 2016; Palermo, 2019).
However, the general bases could be residues of H982 and
H985 from our studies. Taken together, the above results
indicate that the H983 acts as a stabilizer of the Mg2+ ion,
and reveal that both H982 and H985 serve as general bases
to activate water molecules for the nucleophilic attack of the
phosphodiester bond.

Based on the above results and the two-metal-ion mechanism
(Steitz and Steitz, 1993; Yang, 2008), we propose a revised model
for the RuvC catalytic center to hydrolyze the NTS (Figure 3C).
First, two Mg2+ ions are jointly coordinated by the phosphate
group of the NTS (between bases –3 and –4), water molecules,

Frontiers in Molecular Biosciences | www.frontiersin.org 7 April 2021 | Volume 8 | Article 653262148

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-653262 June 17, 2021 Time: 11:13 # 8

Tang et al. Active-Site Models of SpCas9

FIGURE 5 | The detection of the in vitro off-target effects. (A) The sequences of the sgRNA and its mutants. The on-target sequence of the sgRNA shows in No. 0;
the off-target sequences show in Nos. 1, 2, 3, 4, 5, 6, 7, and 8. (B–E) The detection of the off-target effects for the wild-type SpCas9 and its mutants. The target
DNA molecules are cleaved into two products (product-1 and -2).

and four residues (D10, E762, H983, and D986). Among them,
the Mg2+ ions A and B are about 4 Å apart, and the distances
between Mg2+ ions and the corresponding ligands are about
2 Å. This coordination architecture facilitates the RuvC catalytic
center and the phosphate backbone to get close to each other
and then forms the reaction conformation for the nucleophilic
attack on the scissile phosphodiester (reactant conformation in
Figure 3C). Then, the imidazole groups of H982 and/or H985
capture the proton of the coordinated water and generate the
nucleophile; meanwhile, two Mg2+ ions move toward each other
to facilitate the activated water to attack the phosphodiester
bond (pro-Rp oxygen). Subsequently, the nucleophile and the

leaving group moieties are transiently bonded to the phosphorus
for forming a transition state (transition state in Figure 3C).
Finally, the nucleophile attacks the phosphorus (P5′) and
the leaving groups depart simultaneously (product release in
Figure 3C).

SpCas9 Variants With Reduced
Off-Target Effects
During studying for the functions of the residues H982,
H983, and H985, we have obtained three mutants with the
DNA cleavage activity: H982A, H983D, and H982A + H983D.
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Interestingly, in these mutants, the MD simulations showed
that the conformation changes of the RuvC catalytic centers
remarkably cause a shift of the NTS that interacts with
the Target strand (TS) of the PAM-distal end (Figure 4A),
comparison of that of wild type; Also, stability shift assay
showed that the stability of these mutants become high, especially
H982A + H983D (Supplementary Figure 12). For this, we
proposed a model: in the active center where the conformation
of the key sites was changed, when sgRNA combined to DNA, if
sgRNA completely matched with NTS in DNA, the DNA may be
cleaved by SpCas9 variants; on the contrary, the DNA may not be
sheared by SpCas9 variants (Figure 4B). Therefore, we speculated
that these mutants may hinder complete hybridization between
the sgRNA and the DNA to improve their specificity when there
are no highly matched Watson–Crick base pairs between the
sgRNA and the TS.

To clarify this, we detected the off-target effects of the
mentioned mutants by agarose gel electrophoresis (Figure 5). As
seen, for the wild-type, all sgRNAs can guide the DNA cleavage
(Figure 5B), indicating that the off-target effects of the wild-type
SpCas9 are very severe. For the mutants H982A and H983D,
only sgRNAs 1, 2, 3, and 4 can guide them to cleavage the target
DNA (Figures 5C,D), demonstrating that the mutants H982A
and H983D could reduce the off-target effects. For the mutant
H982A + H983D, only sgRNAs 1 and 4 are capable of guiding
the DNA cleavage (Figure 5E), illustrating that this mutant
greatly decreases the off-target effects. In addition, to evaluate
the kinetics of these mutants, we also performed the time-course
cleavage reaction, and qualitatively observed that their reaction
rates had the following trend: SpCas9 > H982A > H983D ≈
H982A + H983D (Supplementary Figure 13). In general, in
the three mutants, the mutant H982A + H983D may have
more potential application value. Despite it being necessary to
conduct in vivo studies for these mutants, it is not the focus of
the thesis; thus, in vivo studies related to these mutants will be
exhibited in future work.

In the previous studies, the strategies to decrease the SpCas9
off-target effects mainly include the following several aspects: (1)
using a pair of catalytic-inactive SpCas9 nucleases which fused to
a FokI nuclease domain (Tsai et al., 2014); (2) truncating the guide
sequence of the sgRNA at 5′ end (Fu et al., 2014); (3) decreasing
the number of the active SpCas9 in the cell (Hsu et al., 2013);
(4) using a pair of SpCas9 nickase mutants to produce double
nicks for DNA (Ran et al., 2013); and (5) neutralizing positively
charged residues within the NTS groove (Slaymaker et al., 2016).
Nevertheless, few studies focused on the relationship between the
specificity of SpCas9 and the residue types of its catalytic center.
In our results, we found that the SpCas9 mutants may possess
high catalytic specificity by changing the catalytic residues of the
RuvC catalytic center.

CONCLUSION

In summary, we refined the cryo-EM structure of the SpCas9–
sgRNA–DNA complex in the DNA cleavage state. This active

structure presents an atomic model for the HNH and RuvC
active-sites in complex with DNA, Mg2+ ions, and water
molecules, and thereby identifying the catalytic roles of the
residues D10, E762, H982, H983, H985, and D986 in the
RuvC active sites. Moreover, our catalytic model led to a new
engineered SpCas9 variant (SpCas9-H982A + H983D) with
reduced off-target effects. Hence, this study not only provides
new mechanistic insights into the DNA cleavage by CRISPR-Cas9
but also offers useful guidance for engineering new CRISPR-Cas9
systems with improved specificity.

MATERIALS AND METHODS

Expression and Purification of Cas9
Proteins
The sequences of encoding SpCas9 and its mutants (primers in
Supplementary Table 1, mutants in Supplementary Table 2)
were inserted between the restriction sites (NdeI and XhoI) of
the plasmid pET-21, and their N-terminals were fused with a
His × 6 tag and Tobacco etch virus (TEV) protease cleavage site
(Huai et al., 2017). The integrative plasmid was transformed into
Rosetta (DE3) competent cells (TANGEN), which were cultivated
in Terrific Broth (Sangon Biotch, Shanghai, China) containing
antibiotics (100 µg/ml Amp and 30 µg/ml Cm) at 37◦C on a
200 rpm shaker. When the absorption value (OD600) of the
cell concentration in the bacteria solution was approximately
0.8–1.0 (Huai et al., 2017), a.5 mM-IPTG was added to the
bacteria solution to induce protein expression at 16◦C on a 160
rpm shaker for approximately 20 h. Next, harvest cells were
collected by centrifugation at 4◦C and 5,000 rpm for 10 min
and were lysed by sonication (power output 5, pulse-on 3 s,
pulse-off 3 s, for a total of 10 min) to release the protein in
the lysis buffer (20 mM HEPES, 500 mM KCl, pH = 7.5, 0.2
µm filtered and degassed) (Huai et al., 2017). Then, the protein
was bound to Ni-NTA agarose beads (Qiagen, Shanghai, China)
in the ice bath on a 150 rpm shaker for at least 1.5 h, was
washed by the wash buffer (20 mM HEPES, 500 mM KCl, 1%
sucrose, pH = 7.5, 0.2 µm filtered and degassed) at 2 ml/min,
and eluted by the eluent buffer (wash buffer with 20, 30, 50,
100, and 250 mM imidazole, respectively; pH = 7.5,0.2 µm
filtered and degassed) at 2 ml/min (Anders et al., 2014; Huai
et al., 2017). Subsequently, the protein was incubated with TEV
protease overnight at 4◦C to remove the 6× His tag. Finally, the
protein was further purified by SP Sepharose HiTrap column
(elution with a linear gradient of 0.1–1 M KCl) and Superdex
200 16/60 column from GE Life Sciences (elution with 20 mM
HEPES, 500 mM KCl, pH = 7.5) (Anders et al., 2014; Jiang
et al., 2016; Huai et al., 2017), and was concentrated by 100 kDa
MWCO centrifugal filter (Merck Millipore) to store in the storage
buffer (20 mM HEPES, 150 mM KCl, 1 mM DTT, glycerol 50%,
pH = 7.5) (Huai et al., 2017). All proteins were detected by
SDS-PAGE (SDS-PAGE image of part proteins are shown in
Supplementary Figure 11).

Note: The base sequences (Supplementary Table 3) of SpCas9
were mutated using the Muta-diretTM site-Directed Mutagenesls
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Kit (Beijing SBS Genetech Co, Ltd., Beijing, China1, cat.no.SDM-
15) to obtain every mutant (Supplementary Table 2) in the
present text. Reaction system (50 µl) includes 10 × reaction
buffer (5 µl), sample plasmid (10 ng/µl, 2µl), primer F/R
(10 pmol/µl, 1µl), dNTP mixture (each 2.5 mM, 2 µl),
ddH2O (38 µl), Muta-directTM enzyme (1 µl). A reaction
is ended under the conditions (95◦C 30 s, 55◦C 30 s, 72◦C
10 min, 15–18 cycles), MutazymeTM (10 U/µl, 1 µl) was added
to the reaction system to digest methylated plasmids; Then,
mutant plasmids in the reaction system were transformed into
competent cells.

Preparation of Nucleic Acids
A 98-nt sgRNA was in vitro transcribed and purified using
the MEGAshortscript T7 Transcription Kit and the MEGAclear
Transcription Clean-Up Kit from Thermo Fisher Scientific
(China) Co., Ltd., Pudong New Area, Shanghai, China. A 920-
bp target DNA contained PAM (TGG) was amplified by the Ultra
HiFidelity PCR Kit (TIANGEN, Sichuan, China) at the following
conditions (94◦C 30 s, 55◦C 30 s, 72◦C 1.5 min, 30 cycles),
and was purified using the AxyPrepTM DNA Gel Extraction Kit
(Axygen Biotechnology, Taizhou, China). The purified sgRNA
and DNA were resuspended using the desired solution and
volume, and stored at−80◦C.

Activity Detection of Cas9 Proteins
Methods of activity can be detected in three ways: (1) In vitro
activity assays: the mole numbers (200 nM, 1 µl) of Cas9
proteins (Supplementary Table 2) are equal to that of sgRNA,
and both cas9 protein and sgRNA were mixed and incubated
in the buffer (20 mM HEPES, 100 mM KCl, 1 mM DTT,
0.5 mM EDTA, 2 mM MgCl2, 5% glycerol, pH = 7.5) at
37◦C for 30 min; the buffer was added with 100–150 ng
target DNA, and incubated another 1.5 h at 37◦; the cleavage
products were detected by gel electrophoresis on 1% agarose
gel stained with 1 × GeneGreen nucleic acid dye (TIANGEN).
(2) Chemical rescue of His982 and His985 by imidazole: this
process was similar to (1), with the only difference being the
addition of a step: “the solution was mixed with 2 µl imidazole
(500 mM) and incubated overnight at 37◦C” before the detection
of products. (3) In vitro detection of the off-target effects: the
process was similar to (1), with the difference being sgRNA
(continuous mutation with two bases as a unit in 20-nt sequence
for target DNA) and the incubation time (4 h) after adding
target DNA.

Building and Refinement of Atomic
Models
The atomic model of the ternary complex (SpCas9–sgRNA–
DNA) was built according to the cryo-EM density maps
(end-21308.map and end-0584.map) (Zhu et al., 2019;
Lapinaite et al., 2020), and the previous conformation of
SpCas9 (PDB IDs: 5Y36, 6O0Y, and 6VPC) (Huai et al., 2017;
Zhu et al., 2019; Lapinaite et al., 2020). First, the initial model

1http://www.sbsbio.com

of the all-atom ternary complex was constructed through
the homology modeling method MODELLER using the
aforementioned PDBs as templates (Fiser and Sali, 2003; Huai
et al., 2017; Zhu et al., 2019; Lapinaite et al., 2020). Next, the
initial position of the HNH domain was modified based on
reference structures (PDB ID 6O0Y) and its cryo-EM density
(end-0584.map) (Zhu et al., 2019); at the same time, the RuvC
domain was amended using 6VPC and its cryo-EM density
(end-21308.map) as references. Then, the position of the Mg2+

ions in the active sites was confirmed by NAMD with a 12–6–
4-type multisite model to obtain the experimental coordination
patterns (Li and Merz, 2014; Liao et al., 2017). Finally, the
initial all-atom model of the ternary complex was automatically
refined by Situs-3.1, Rosetta macromolecular modeling suite,
and MD simulations (Wriggers, 2010; Leaver-Fay et al., 2011;
Mirjalili et al., 2014).

Molecular Dynamics Simulations
The MD simulations with explicit water models were conducted
using NAMD (Phillips et al., 2005). The CHARMM36 force field
(Hart et al., 2012) and the TIP3P water (Jorgensen et al., 1983)
model were employed to model the simulation system of the
ternary complex with the water solvent. To build a simulation
system, some simulation parameters were adjusted: the all-atom
structure of the ternary complex was solvated in the center of
a cubic water box with a minimum distance of 12 Å from
the complex surface to the edge of the box; the Na+ and Cl−
ions were used to mimic an ionic concentration of.15 M in
the system, including the certain number of additional Na+
ions that neutralize the net negative charge of the complex.
To conduct the simulations, periodic boundary conditions were
used; the van der Waals interactions were treated with a cut-
off distance of 10 Å using a smooth switching function from
8 Å; the electrostatic interactions were calculated with particle
mesh Ewald (PME) method using a local interaction distance
of 10 Å; the SHAKE algorithm was employed to constrain
bonds involving hydrogen atom, and thereby a time step of
2.0 fs was used. Ultimately, the simulations were performed in
the isobaric-isothermal (NPT) ensemble, at a constant pressure
of 1 bar and a constant temperature of 298 K controlled by
Langevin dynamics.
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Conformational Characterization of
the Co-Activator Binding Site
Revealed the Mechanism to Achieve
the Bioactive State of FXR
Anita Kumari 1,2, Lovika Mittal 1, Mitul Srivastava1, Dharam Pal Pathak2,3 and
Shailendra Asthana1*

1Translational Health Science and Technology Institute (THSTI), Faridabad, India, 2Department of Pharmaceutical Chemistry,
Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India, 3Delhi Institute of Pharmaceutical Sciences
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FXR bioactive states are responsible for the regulation of metabolic pathways, which are
modulated by agonists and co-activators. The synergy between agonist binding and ‘co-
activator’ recruitment is highly conformationally driven. The characterization of conformational
dynamics is essential for mechanistic and therapeutic understanding. To shed light on the
conformational ensembles, dynamics, and structural determinants that govern the activation
process of FXR, molecular dynamic (MD) simulation is employed. Atomic insights into the ligand
binding domain (LBD) of FXR revealed significant differences in inter/intra molecular bonding
patterns, leading to structural anomalies in different systems of FXR. The sole presence of an
agonist or ‘co-activator’ fails to achieve the essential bioactive conformation of FXR. However,
the presence of both establishes the bioactive conformation of FXR as theymodulate the internal
wiring of key residues that coordinate allosteric structural transitions and their activity.Weprovide
a precise description of critical residue positioning during conformational changes that elucidate
the synergy between its binding partners to achieve an FXR activation state. Our study offers
insights into the associated modulation occurring in FXR at bound and unbound forms.
Thereafter, we also identified hot-spots that are critical to arrest the activation mechanism of
FXR that would be helpful for the rational design of its agonists.

Keywords: farnesoid X receptor, agonist, molecular dynamics simulation, binding free energy calculations, principal
component analysis

INTRODUCTION

Upon bile acid (BA) binding, FXR regulates a network of genes in synthesis, uptake, and secretion
along with intestinal absorption, thus regulating the level of BAs in the cells. An abnormal BA
metabolism is associated with liver injury, metabolic disorders, cardiovascular and cardiovascular
and digestive system diseases (Li and Chiang, 2014; Chiang, 2017). FXR is a nuclear receptor that
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belongs to the NR superfamily and is predominantly found in
the liver, intestine, and kidney (Makishima et al., 1999; Parks
et al., 1999; Wang et al., 1999; Aranda and Pascual, 2001). FXR is
essential in regulating the network of genes involved in
maintaining BA and lipid homeostasis (Sinal et al., 2000;
Kumari et al., 2020) and, therefore, has a considerable
pharmacological relevance (Zhang and Edwards, 2008;
Hollman et al., 2012; Arab et al., 2017). Significant work has
been carried out to discover many synthetic molecules viz.
steroidal and non-steroidal agonists for the FXR.
Accordingly, the first-in-class FXR agonist 6α-ethyl-CDCA (2,
6-ECDCA, INT-747, obeticholic acid, OCA) has gained
approval for primary biliary cirrhosis (PBC) and is
undergoing development for several other liver-related
disorders such as NASH and NAFLD (Mudaliar et al., 2013;
Neuschwander-Tetri et al., 2015). It is reported that the
chemical manipulation on CDCA (chenodeoxycholic acid)
scaffold helps to improve potency, efficacy, and metabolic
stability of bile acid ligands (Di Leva et al., 2013; Sepe et al.,
2015; Festa et al., 2017). Among them, the introduction of an
ethyl group at C6 in CDCA makes the 6-EDCA (‘OCA’)
(Figures 1A,B) approximately 100-fold more potent than
CDCA (Pellicciari et al., 2002). ‘OCA’ is the “first in class”
selective agonist for FXR having anti cholestatic and
hepatoprotective properties (Abenavoli et al., 2018; Connolly
et al., 2018). In addition to this, hepatic inflammation and
intestinal inflammation can be inhibited by ‘OCA’ induced
FXR activation. However, these effects could be problematic
in a patient population with an elevated risk for cardiovascular
diseases (Hirschfield et al., 2015; Neuschwander-Tetri et al.,
2015; Bowlus, 2016; Pencek et al., 2016). Recently, it was
reported that ‘OCA’ failed to achieve a first therapy against
NASH (AuthorAnonymous, 2020), as it was reported that the
complete FXR activation inhibits metabolic cholesterol
breakdown and limits bile acid production, resulting in
increased cholesterol levels in ‘OCA’ clinical studies
(Neuschwander-Tetri et al., 2015). Therefore, it seems that
complete and/or pronounced agonism possibly not favorable.
Hence, it is essential to discern the binding mechanism,
dynamics and determinants of FXR at molecular level.

Similarly to other NRs, the FXR protein exhibits a modular
structure and contains few autonomous functional domains. It
includes an N-terminal region with a ligand-independent
activation function (AF1), a highly conserved zinc-finger
DNA-binding domain (DBD) that is connected to the LBD by
a flexible hinge region (Massafra et al., 2018). Additionally, the
LBD contains two well-conserved regions. A signature motif and
the AF2 motif are located at the C-terminal end of the LBD,
responsible for the ligand-dependent transactivation function. In
recent years, a considerable number of crystallographic structures of
the LBD of several NRs have appeared in the literature, which
suggested that upon agonist binding to FXR, it results in a large
conformational rearrangement of FXR, causing the dissociation of
co-repressors and the recruitment of ‘co-activator’ which promote
the transcriptional initiation (Downes et al., 2003; Costantino et al.,
2005;Merk et al., 2019). The crystal comparison of apo- and agonist-
bound structures help to identify the key residues and structural
determinants for FXR agonism. The static picture from the X-ray
structures indicates that significant conformational changes were
observed to establish a connection between the apo form and the
active state of FXR (bounded with agonist and ‘co-activator’).
The co-crystal structure of FXR with ‘OCA’ (PDB-ID: 1OSV)
has revealed that helix H12 adopts the https://www.sciencedirect.
com/topics/biochemistry-genetics-and-molecular-biology/agonist
agonistic conformation and stabilizes the ‘co-activator’ peptide
binding (Mi et al., 2003). The binding of ‘OCA’ recruits the helix
H12 against the helices 3, 4, and 10, corresponding to the “active
state” of FXR, where the helix H12 stabilizes the binding of the ‘co-
activator’ (Figure 1C). It seems that the ‘OCA’ has a higher affinity
between BAs due to the placement of the 6α-ethyl group into a
hydrophobic cavity between the side chains of I359, F363 and Y366
(Pellicciari et al., 2002). This analysis indicates that the binding of the
‘co-activator’ significantly contributes to the stabilization of the
FXR+OCA complex and thereby affects the conformation. It has
been observed that the recruitment of that agonist and ‘co-activator’
binding are necessary to produce these significant conformational
changes and induces a loss or gain of interaction networks stabilized
through hydrogen bonding and vdW interactions in FXR. Also, the
architecture of ‘co-activator’ site and its dynamical synergy with
agonist site is not explored in details. Therefore, we are exploring the

GRAPHICAL ABSTRACT | The dynamical synergy between ‘co-activator’ and agonist binding site for FXR activation.
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dynamical changes of FXR with ‘co-activator’ in the presence and
absence of agonists (i.e., ‘OCA’) through molecular dynamics
simulations. The precise description of the positioning of critical
residues during conformational changes will help to elucidate the
synergy with its binding partners and how FXR is able to achieve its
activation state using MD simulations, MM-GBSA free energy
calculations, essential dynamics, and thermodynamic analysis.

MATERIALS AND METHOD

Structure Retrieval
The X-ray structures of the FXR complexes with ‘OCA’ only with
a ‘co-activator’ and without any binder (APO) (Supplementary
Table S1) were retrieved from Protein Data Bank (Bank, 2021).
The crystal structure of human FXR (PDB-ID: 5Q0K) bound with
a ‘co-activator’, and rat FXR (PDB-ID: 1OSV) which is bound
with ‘OCA’ and ‘co-activator’ both is used for comparative analysis.

Since the binding of the coactivator SRC1 (KDHQLLRYLLDKD)
in human FXR is similar the binding of ‘co-activator’ GRIP-1
(ENALLRYLLDKD) in rat FXR and both ‘co-activators’ share the
high homology between them (Wang et al., 1998; Soisson et al.,
2008). These peptides shared the conserved LXXLL motif in the
sequence. There are also crystal structures available for human FXR
with GRIP-1 (Kudlinzki et al., 2019;Merk et al., 2019). Therefore, we
have considered the ‘co-activator’ of rat FXR with human FXR for
the study to maintain uniformity. Thus, the FXRwithout ‘OCA’ and
‘co-activator’ is System A and the FXR with ‘co-activator’ is System
C. The FXR with ‘OCA’ is System B and FXR with ‘OCA’ and ‘co-
activator’ is System D. The ‘OCA’ without protein is System E. The
details of all FXR systems are given in Supplementary Table S1. The
LBD of FXR consists of 230 amino acids in structure (total length).
The residues involved in the interaction are conserved from the
comparative analysis of the binding pocket in both human and rat
FXR, which were well studied earlier (Downes et al., 2003; Mi et al.,
2003; Kemper, 2011).

FIGURE 1 | The schematic presentation of the OCA and overlay of the system A and Systems D. (A,B) The 2D and 3D representations of ‘OCA’. The different
regions of ‘OCA’ were highlighted in different colors. (C) The structure of ligand binding domain of FXR. The binding of ‘OCA’ (VDW: white) and ‘co-activator’ (cartoon:
blue) are highlighted. (D) The superimposition of crystal structures of SystemC (PDB: ID 5Q0K: in lime) and SystemD (PDB: ID 1OSV: ice blue) and induce changes in the
structure are mentioned.
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Protein Structure Preparation
Here, we have explored four systems, APO-protein of FXR
(System A), APO+agonist (System B), APO + ‘co-activator’
(System C), and APO+Agonist + ‘co-activator’ (System D), to
identify the transition dynamics between the different
conformational states of FXR with its binding partners. Before
MD simulation, each targeted protein structure was prepared
using the Protein PreparationWizard encoded in the Schrodinger
3.5 suite (Sastry et al., 2013; Anang et al., 2018; Sarkar et al., 2021).
The crystal waters were also removed, and hydrogens were added.
The breaks in the crystal structures were interpolated by using the
Prime (Sastry et al., 2013) module of the Schrodinger Suite. The
capping was done to the uncapped -N and -C termini of the FXR
protein. The hydrogen bond optimization was performed using
PROPKA (Rostkowski et al., 2011) at pH7, and the restrained
minimizations were also done for the systems using OPLS3
(Optimized Potentials for Liquid Simulations) force field
(Harder et al., 2016). To study the sequence similarity between
the human FXR and rat FXR crystal structures, the multiple
sequence alignment (MSA) was performed by using the PRIME
module of Maestro (Proteins, 2004; Mittal et al., 2020).

MD Simulations
All the systems defined above were subjected to MD simulations.
The details of the simulated systems are listed in Supplementary
Table S2. In total, we have generated 6.5 µs long MD simulations
including the triplicates for each system of FXR. The general
Amber force field (GAFF) and Amber ff14SB force field were used
for ligand, ‘co-activator’, and protein. The antechamber was used
to automatically calculate charges and atom types for the ligand
(‘OCA’) using GAFF (Wang et al., 2004). The different protein
systems for FXR were prepared for simulations using the LEaP
program implemented in the Amber package (Pradhan et al.,
2018). All the energy minimization and MD simulations are
carried out by using the sander and pmemd modules of
AMBER16, respectively (Case et al., 2005). In LEaP, the
AMBER ff14SB (Maier et al., 2015) force field was assigned to
the protein. Counter ions were added to neutralize the system and
the protein system was solvated using a TIP3P water model in an
orthorhombic box with a span 10 Å from the periphery of the
protein. Each system was neutralized by adding counterion ions.
Periodic boundary conditions and particle mesh Ewald methods
were employed to treat long-range electrostatic interactions
(Darden et al., 1993). Hydrogen bonds were constrained by
applying the SHAKE algorithm (Ryckaert et al., 1977). The
integration time step for all MD simulations was set at 2 fs.
The nonbonded cutoff was 8 Å. The solvated models were first
minimized with the module sander in constant volume by 2,000
cycles of steepest descent minimization followed by 1,000 cycles
of conjugate gradient minimization. The systems were then
equilibrated for 500ps at 300 K and 1 atm pressure. For MD
simulations, isobaric (NPT) conditions were maintained with the
target pressure of 1 bar utilizing the Berendsen barostat. The
temperature was regulated using a Langevin thermostat. MD was
eventually run for 500 ns, and atomic coordinates were saved
every 5ps as snapshots. In addition, the study of MD simulation
trajectories was carried out. The simulations have been performed

using the GPU version of AMBER16. The last 150ns stable
trajectories for all four systems were used for the analysis. To
evaluate the stability and dynamics of the FXR systems, triplicate
all-atom MD simulations were performed using AMBER 16.

MD Trajectory Analysis
The root mean square deviations (RMSD) of backbone atoms,
root mean square fluctuations of Cα atoms (RMSF), salt bridges,
solvent-accessible solvent area (SASA), and radius of gyration
(Rg) were calculated for whole trajectories by the Tcl scripts
implemented in (visual molecular dynamics) VMD (Humphrey
et al., 1996) to assess the overall molecular systems stability and
fluctuation in the systems. To explore the systems in terms of
compactness, the Rg was calculated. SASA was computed for
different systems of FXR bound and unbound with ‘OCA’ and
‘co-activator’. Hydrogen bond (HB) analysis was done using
CPPTRAJ of AMBER to search the bonds with in the two
selection criteria that is an acceptor-donor distance of 3.5 Å,
and acceptor . . . H-donor . . . Angle cutoff is 120°. We have
calculated the HB for the stable of MD trajectories of the
simulation. The CPPTRAJ of Amber16 was used for secondary
structure analysis (DSSP), principal component analysis (PCA)
analysis, and dynamic cross-correlation matrix (DCCM) plot. The
DCCM map and the DSSP plots were generated by using the Cα
atoms of all FXR systems throughout the MD simulation (Roe and
Cheatham, 2013; Manjula et al., 2019). Following that, we have
used the plugin for Pymol (Molecular Graphics System, Version
2.0 Schrödinger, LLC), xPyder, which is an interface that provides
the 3D depiction of cross-correlations between residues in
dynamics (Pasi et al., 2012). The graphs were plotted using
XMGRACE (Turner, 2005). To calculate cation–π interaction
between the residues W466 and H444, the angle between the
atoms of CD1@W466-CE1@H444-CH2@W466 were calculated in
all systems of FXR (Khandelia and Kaznessis, 2007).

Cavity Volume Calculations
As the pocket analysis is useful for the study of structural dynamics
of the proteins, therefore we have performed the pocket volume
analysis of all FXR systems with the help of the POVME2 (Pocket
VolumeMeasurer) algorithm (Durrant et al., 2014; Srivastava et al.,
2018). All water molecules and counterions were stripped from the
trajectory. Thereafter, the trajectory was aligned, and the frames
were extracted from VMD for all the systems, which is used as
initial input for this method. Next, we defined the inclusion and
exclusion regions where the inclusion region entirely encompassed
all the binding-pocket conformations of the trajectory while the
exclusion region is an area that does not associate with the pocket.
In our systems, we chose Cα atoms of residuesM325 and F365 that
lie at the center of a cavity and protrude inwards to it to define the
inclusion sphere. The volume of a whole pocket was calculated by
simply summing the individual volumes associated with each grid
point in the inclusion spheres.

Free Energy Calculations
The free energies for FXR systems were calculated by using the
MM-GBSAmethod in AMBER tools and AMBER16 (Chipot and
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Pohorille, 2007; Suri et al., 2014; Mittal et al., 2019). For this, the
frames were extracted from the most stable state from the MD
trajectories of all FXR systems. The binding free energy (ΔGbind)
on each system is evaluated by using the following equation:

ΔGbind � Gcom − (Grec+Glig) (1)

where Gcom, Grec, and Glig are the absolute free energies of a
complex, receptor, and ligand, respectively, arranged over the
equilibrium trajectory. The calculations are performed as per
Scheme 1. The free energy, G, for each species can be calculated
by using MM-GBSA and MM-PBSA approaches and can be
calculated as follows:

G � Egas + Gsol − TS (2)

Egas � Eint + Eele + Evdw (3)

Gpolar, PB(GB) � Eele + Gsol−polar, PB(GB) (4)

Gnon−polar, PB(GB) � Evdw + Gsol−np, PB(GB) (5)

Gsol � GPB(GB) + Gsol−np (6)

Gsol−np � γSAS (7)

Where G is described as a Gibbs free energy, Egas is the gas phase
energy which is the sum of internal energy (Eint), electrostatic
interaction (Eele), and the van der Waals interaction (Evdw). Gsol

is the solvation free energy is the sum of polar [GPB(GB)] and
nonpolar contributions (Gsol-np). It is computed using the
parameters defined in the Amber ff14SB force field. Gsol-polar,
PB (GB) is the contribution of polar solvents determined by
solving the equations Poisson-Boltzmann (PB) and Generalized-
Boltzmann (GB) (Genheden and Ryde, 2015). The overall polar
contributions were determined as a summation of the contribution
from electrostatics (Eele) and polar solvation [Gsol-polar, PB(GB)]. The
sum of the obtained total nonpolar interaction contributions by Evdw
and Gsol-np, PB(GB). Gsol-np is the non-polar solvent contribution
measured using 0.0072 kcal/mol Å−2 (value of constant c) and using
a water probe radius of 1.4 Å to determine the solvent-accessible
surface area (SASA) (Sitkoff et al., 1994). The dielectric constants
were set to 1 and 80, respectively, for solute and solvents. Free energy
decomposition in terms of contributions from structural subunits of
both binding partners provides insight into the origin of binding on
an atomic level.

Principal Component Analysis
In this work, the PCA, also known as essential dynamics (ED)
analysis, is used to study the broad concerted motions in FXR-LBD
in their bound and unbound state (Kumari et al., 2021; Mittal et al.,
2021; Singh et al., 2021). The analysis was carried out to identify the
large-scale averagemotion of an FXR in all systems by the CPPTRAJ
module of AmberTools. The frames were taken from the MD
simulation trajectories after the evolution of the systems. To
obtain the proper trajectory matrix in PCA, the overall
translation or rotation motion was removed by fitting the
coordinate data to the average structure. Only the backbone
atoms were included during the PCA study. The elements of the
positional covariancematrix C are defined by the following equation:

Cij � 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉 (i, j � 1, 2, 3 . . . . . . ., 3N)
(8)

where xi and xj are the Cartesian coordinates of the ith and jth Cα
atom, N is the number of Cα atoms considered, and 〈xi〉 and 〈xj〉
represent the time average over all the configurations obtained in
the MD simulation (van Aalten et al., 1995; Ivetac and
McCammon, 2009). The <> sign indicates the ensemble
average of the atomic position in the Cartesian space. Major
protein motion that contributes to the overall motion was
visualized using the Normal Mode wizard plugin in VMD.

Free Energy Landscape
The protein global minimum energy can be derived from Free
Energy Landscape (FEL). The FEL represents a mapping of all
possible conformations which a molecule can adopt during a
simulation, together with their corresponding energy typically
reported as the Gibbs free energy. The calculation was carried out
using the first two principal components (PC1and PC2) obtained
from individual trajectories. The first two PCs of the respective
systems served as reaction coordinates to generate two-
dimensional FEL plots for all FXR systems. This was
implemented using the g_sham module of Gromacs (Van Der
Spoel et al., 2005).

Gα � −kTlnP(qα)/Pmax(q) (9)

where k is the Boltzman constant, T is the temperature of
simulation, P (q α) estimates the probability density function

SCHEME 1 | The scheme is used for the calculation of binding energy of ‘OCA’ in presence and absence of ‘co-activator’ in both Systems B and D. The total
binding energy of the ‘co-activator’ and ‘OCA’ for System D.
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obtained from a histogram of the MD data, and P max(q) is the
probability of the most populated state.

Computational Alanine Scanning
We have carried out CAS for the highlighted residue-wise energy
decomposition results to confirm the hot-spot amino acids in
FXR. The calculations were run on the stable MD trajectory by
using the MM-GBSA approach. The amino acid of interest is
replaced with alanine, and absolute binding free energy is
recalculated. Finally, the difference in the binding free energies
of the wild type and mutant, ΔΔG bind, was computed as follows:

ΔΔGbind � ΔGbind[Wild Type] − ΔGbind[Mutant] (10)

Negative values of ΔΔG bind indicate the favorable contributions
of residues in wild type while positive values indicate the
unfavorable contributions. The mutant models of all the hot-
spot residue were generated by using the maestro module.

RESULTS

As of now, several FXR-LBD crystal structures have been
resolved in complex with a range of distinct ligands, which
reveals that FXR possesses a highly flexible binding pocket
wherein binder dependent conformational changes play an
indispensable role to achieve the activation state of FXR (Merk
et al., 2019). The reported crystal structures contained only
LBD along with agonists/partial-agonists/antagonists and/or
co-activators/co-repressors. Since the co-crystal structure
represents only a single snapshot of a dynamic binding
equilibrium of agonist, ‘co-activator’, or both, it was not
sufficient to gain mechanistic understanding.

It remained unclear whether agonist, ‘co-activator’, or both
altered the internal wiring of FXR and modulated the structure
and function. Further understanding of FXR regulation requires a
more in-depth knowledge of the interactions between FXR and its
binding partner. It is always interesting to explore the structural
determinants responsible to convert active protein to inactive or
vice versa. The conformational changes that occur during the
binding or unbinding processes of different binders induce the
essential conformational changes which are required for the
transitions of the protein from their different biological states.
In total, 13 MD simulations were performed as in triplicates for
each system of FXR and we report the outcomes from the
consensus of the three simulations (triplicates).

Exploration of Conformational Changes in
the Presence and Absence of ‘OCA’
The structure of ‘OCA’ comprises one 5-membered ring and
three six-membered rings fused in Figure 1A. The 2D steroidal
rings are named as core region, the OH group as head, and the
carboxylic group as a tail region (Figure 1A). The ‘OCA’ displays a
convex hydrophobic and a concave hydrophilic face as shown in
Figure 1B. Figure1C clearly shows that ring A of the ‘OCA’ faces the
C-terminal of helix H12, and this orientation is opposite in other
receptors like progesterone, estrogen, testosterone, and

glucocorticoids as their ring D faces the helix H12 (Brzozowski
et al., 1997; Shiau et al., 1998; Williams and Sigler, 1998; Sack et al.,
2001; Bledsoe et al., 2002).

The superimposition of System C and D has shown an average
RMSD of backbone atoms of 1.65 Å, indicating the deviations in
the backbone atoms of both systems. We have found that helices
(H2, H6, and H12) and loops between [H1 andH2 (L: H1/H2), H2
and H3 (L: H2/H3), H5 and H6 (L: H5/H6), and H11 and H12 (L:
H11/H12)] have shown deviations in System D relative to the
SystemC. The loop L: H11/H12 is not crystallized in SystemC, due
to low electron density (Figure 1D). It has also been reported that
the loop L: H11/H12 is very essential for the stability of the helix
H12 position, and the presence of agonists and ‘co-activators’
makes this loop stable in the whole NR family (Costantino et al.,
2005). In System D, the helices H2 and H6 were shortened
compared to System C, which resulted in significant variations
in the loops (L: H2/H3 and L: H5/H6) in the respective systems
(Figure 1D). Since these conformational changes in helices and
loops reported an impact on binding of ‘OCA’ and ‘co-activator’
therefore, the MD simulations were implemented to discern their
mechanism of action (Supplementary Table S1).

The Dynamical Exploration of FXR in Four
Different Systems
The time-dependent RMSD of backbone atoms of each simulated
system was used to analyze the stability of the systems. As the
simulation progressed, each of the systems evolved for a short
period of time, from 5 to 40ns, and after that the systems
converged, however, the plateau are achieved after 200ns which is
consistent till the end of the simulation (Figure 2A). The resulting
average values of RMSD are remarkably similar, as expected for each
systemof three runs, where the backbone atoms of SystemCappear the
most stable (Supplementary Figure S1). The RMSD plots suggest that
the binding of ‘OCA’ alone (System B) causes the deviations in the
backbone atom from its initial state while the ‘co-activator’ tries to
stabilize the FXR protein both as alone and with ‘OCA’ (System C and
D). The Rg plot showed that System A became more compact during
the simulation as compared to other systems (Figure 2B and
Supplementary Table S3). Since System A was formed by
removing the ‘co-activator’, its initial Rg was like other systems until
∼100ns but afterward became relatively more compact. This hints that
the presence of any binder (‘co-activator’ and/or ligand) causes
conformational changes that decrease the compactness of the protein.

Furthermore, the RMSF calculation (of Cα atoms) was
performed to identify the regions with high fluctuations, and
their average values are summarized in Figure 3A and
Supplementary Table S3. The overall RMSF profile reflects
that all systems have minimal Cα fluctuations with average
values ranging from 0.97 Å to 1.18 Å (Supplementary Table
S3). Upon comparing all FXR systems, fluctuations have been
observed in helix H2, and loops L: H5/H6 and L: H9/H10
exhibited higher flexibility in Systems B (Figures 3B–E). In
System D, the loops L: H1/H2 and L: H2/H3 showed higher
fluctuation than the other systems (Figures 3B,C). It seems that
‘OCA’ alone induced fluctuations in helix H2 and in loop areas L:
H5/H6, L: H9/H10, whereas the presence of ‘OCA’ with ‘co-
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activator’ tends to decrease these variations, but the presence of
both raises the fluctuation in loops L: H1/H2 and L: H2/H3
(Figures 3B–E). However, the helix H11 and loop L: H11/H12
showed higher fluctuation in System C but these regions
experienced the lowest fluctuations in System D (Figures
3F–G). It is also seen that helix H12 has the least fluctuation
in System D and highest in System A (Figure 3H). It reflects that
binding of ‘OCA’ significantly minimizes the fluctuations in
helices H11, H12, and loop L: H11/H12 in the presence of a
‘co-activator’. We also found that the high fluctuation in helix
H12 is mainly due to the absence of ‘OCA’ and ‘co-activator’ in
System A than other systems (Figure 3H).

Thus, the overall analysis demonstrated that the dynamicity of
the FXR highly depends upon the binding of ‘OCA’ and ‘co-

activator’ that causes the conformational changes in the FXR.
This suggests that the agonist is required to induce a
conformational shift in helix H12 so that the ‘co-activator’ can
be correctly positioned in the FXR.

Secondary Structural Changes During the
Simulation
To assess secondary structural stability, the secondary structure
transitions in each of the FXR systems were analysed during the
MD simulation (Supplementary Figure S2). We observe that
secondary structure content was retained in all the systems,
except the residues located in the helices H2, H6 and loops L:
H1/H2, L: H2/H3, L: H5/H6, and L: H11/H12 region of FXR as

FIGURE 2 | Time series evolution of FXR systems. (A) Backbone RMSD during simulation for System A (black), System B (red), System C (green) and System D
(blue). (B) The Rg plot for all FXR systems.

FIGURE 3 |Quantitative analysis of fluctuation from theMD simulation. (A)RMSF of Cα atoms of all FXR Systems. The values were presented during the 500ns MD
simulations time (ns) scale. The different regions of fluctuations observed in the RMSF plot are mentioned. The region-wise RMSF plots were shown in (B) for loop L:H1/
H2 and helix H2 region, (C) loop between helices 2 and 3 regions (L:H2/H3), (D) Loop between helices H5 and H6 region (L:H5/H6), (E) loop between H9 and H10 (L:H9/
H10), (F) helix H11, (G) loop between helix 11 and 12 (L:H11/H12) region, and (H) helix H12 regions.
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shown in Supplementary Figures S3–S5. The residues of the
loop L: H2/H3 and helix H2 form the stable coil during the
simulation in Systems A and C (Supplementary Figure S3). The
residues of the loop L: H1/H2 change from the coil to bend
secondary structure in System A and B and form the stable
secondary structure in Systems C and D. In System B, the residues
of the loop L: H2/H3 interchange turn to bend throughout the
simulation. Whereas, in System D,these residues form the bend
and turn up to 200ns and eventually form the stable structure
until the simulation’s end. Similarly, the helices H5, H6 form
stable structures in all the systems of FXR (Supplementary
Figure S4). The residues of loops L: H5/H6 changes from turn
or loop to coil and then bends throughout simulation in System B
as compared to other systems. The loop L: H11/H12 shows the
characteristic fluctuation in the different systems of FXR
(Supplementary Figure S5). These residue forms a pi helix
and bends in System A and B, respectively. However, in
System C, the loop residues change from loop to pi helix then
bend and eventually gain loop form towards the end. In SystemD,
the residue forms the bend and then eventually regains its turn or
loop form during the end of the simulation as depicted in
Supplementary Figure S5. It is noticeable that this change in
regions was not highlighted earlier for ‘OCA’ (Costantino et al.,
2005). The secondary structure analysis indicated the presence of
‘OCA’ caused the significant conformational changes in the loops
forming the binding cavity of FXR. The ‘co-activator’ binding
stabilized these loops and systems showed the minimum
secondary structure changes in these regions.

Conformational Flexibility in LBD of FXR
The conformations accessed by LBD are very flexible with
different binding partners. To explore it we have performed
PCA analysis. The PCA reflects the collective motions of a
protein during simulation (Maisuradze et al., 2009). We have
shown the cumulative contribution with respect to the PC
components for each system (Supplementary Figure S6A). It
can be observed that overall contributory motion in System B is
more than 72% of total fluctuation due to the first 10 PCs, while
the top 10 PCs contribute 65, 65, and 64% of total motion
respectively in the other Systems A, C, and D (Supplementary
Figure S6B). This observation suggests that System B shows the
highest fluctuation among the other systems as well as RMSD
and RMSF plots. On the other hand, System D has shown the
least fluctuation, which signifies that both ‘OCA’ and ‘co-
activator’ binding stabilize the overall FXR systems. In
addition, the fractional contribution plot of the top 10
PCs, the first two PCs, PC1 and PC2 appear to capture the
notable variations between the systems (Supplementary
Figure S6B).

Understanding the structural dynamics of FXR complexes is
important therefore, we constructed FEL along with the first two
PCs as reaction coordinates in the 2D plot that reflect specific
properties of the systems and measure conformational variability
(Figure 4). The size and shape of the minimal energy area (basin:
in blue) indicate the stability of a system. Smaller and more
centralized basins suggest that the corresponding complex is
more stable. Porcupine plots utilizing PC1 and PC2 are

constructed in Figure 4 to indicate the locations with high
atomic fluctuations and their directionality in the FXR
simulated systems. System A reflects one deep basin
(Minima1) (Figure 4A). These basins correspond to the
conformational changes in helices H6, H12, and loops L: H2/
H3, L: H5/H6, L: H11/H12 (Figure 4B) and based on the
direction and magnitude of the porcupine vector, the highest
fluctuation is seen in loop L: H11/H12 and anticorrelated
movement to loops L: H2/H3, L: H5/H6, and helix H6 along
PC1 (Figure 4C). PC2 captured the highest fluctuation in helix
H12 and loop L: H11/H12 (Figure 4D). This shows that in
absence of any binder, these regions constituting the binding
pocket of agonist are flexible and move inward, resulting in
reduced gyration and binding pocket volume as in
concordance with the above-discussed sections. In System B,
we observed three low-energy basins (Minima I, Minima II, and
Minima III) along PC1, but the deepest is the Minima II and III
(Figure 4E).

These basins correspond to the conformational changes in
loops L: H1/H2, L: H2/H3, L: H5/H6, and helix H2 (Figure 4F).
In porcupine plots, the helix H2 and loops L: H1/H2 and L: H5/
H6 show the anticorrelated movement with each other and
capture the highest fluctuation along PC1 (Figure 4G). The
slight outward movement in loop L: H9/H10 was also
observed along PC1. In PC2 the higher fluctuations were
captured in loop L: H5/H6 (Figure 4H). The superimposition
of crystal structure and the representative structures from each
minimum were compared in terms of deviation from each other
through RMSD analysis (Supplementary Table S4). This
signifies that the binding of ‘OCA’ caused the subtle changes
in these regions and significant stabilization is seen in the loop L:
H11/H12 and helix H12. In System C, the FEL plot revealed three
low-energy basins (Minima I, Minima II, and Minima III) along
PC1, but the deepest basin was Minima I (Figure 4I). The
superimposition of the structures reflects the conformational
changes in loops L: H9/H10 and L: H11/H12 (Figure 4J).
Despite the presence of a ‘co-activator’ in the porcupine plot
of System C, it shows the highest fluctuation in the loop L: H11/
H12 as compared to the other systems along PC1 (Figure 4K).
The PC2 shows the fluctuation in loop L: H9/H10 higher
(Figure 4L). This indicates that the binding of the ‘co-
activator’ and ‘OCA’ alone causes the internal fluctuation in
the FXR which is far away from the binding region of ‘OCA’
and ‘co-activator’. In System D, we observed the two basins
(Minima I and Minima II), out of which the minima II is a
deep basin along PC2 (Figure 4M). Upon comparing
conformation changes, we found the significant changes in
helix H2 and loops L: H1/H2, L: H2/H3, and L: H5/H6 in
System D (Figure 4N). The porcupine plot for PC1 shows
inward movements in the helix H2, loops L: H2/H3, and L:
H2/H3 shows the anti-correlated motion with the loop L: H5/H6
(Figure 4O). PC2 captured the highest fluctuation in the helix H2
and loop L: H2/H3 (Figure 4P).

In System D the represented structure does not deviate much
from the crystal structure as compared to System B
(Supplementary Table S4). In general, the binding of the
agonist to FXR the helix H12 adopts the conformation and
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stabilizes ‘co-activator’ peptide binding (Mi et al., 2003).
However, the ‘co-activator’ can bind with the FXR in the
absence of ‘OCA’ with the weaker binding affinity and causes
more fluctuation in loop L: H11/H12 which can be seen in System

C compared to other systems. The ‘OCA’ and ‘co-activator’
binding alone as in Systems B and C bring out the subtle
changes in the helix H2 and loop regions of the LBD of FXR,
while binding of both to the FXR stabilizes the system.

FIGURE 4 | Essential Dynamics of FXR LBD systems. The panel (A,E,I,M) show the 2D free energy plot along PC1 and PC2 for the System A, B, C, and D,
respectively. The represented minima for each system depicting the significant conformational changes with respect to crystal are shown in panel (B,F,J,N) for all
systems. The represented minima for each system of FXR were extracted as minima 1 (magenta), minima II (pink), minima III (orange) and compared with the crystal
conformation of System C (lime) and System D (ice blue). The porcupine plots represent the principal motions along the direction of PC1 and PC2. The panel
(C,G,K,O) and (D,H,L,P) described the significant motion in the different systems of FXR along PC1 and PC2, respectively. The PCA component represents the atomic
fluctuation of protein around its mean structure. The direction of motion is represented by an arrow, while the length of the arrow characterizes the movement strength.
The protein is depicted in tube representation and coloured in blue–white-red, whereas red represents the maximum Cα displacement. The variations in the region were
highlighted in the dotted arrow.
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Binding Site Analysis of ‘OCA’ With/Without
‘Co-Activator’

FXR’s LBD comprises a hydrophobic pocket leading to lipophilic
molecules such as BAs. As per the previously described results, it is
noticed that the binding ‘OCA’ and ‘co-activator’ causes the
conformational changes in the LBD of FXR. The binding site of
FXR is known to have considerable flexibility to accommodate the
various chemotypes (Massafra et al., 2018). To discern this
dynamic of the binding site of ‘OCA’, we have explored the
binding site RMSD, SASA, and pocket volume throughout the
MD simulation. The backbone RMSD distribution plot for the
binding site of ‘OCA’ alone in System B has a wider distribution
with multiple peaks with most of the population at nearly 3.0 Å as
compared to other simulated systems (Figure 5A, Supplementary
Table S5). This confirms the flexible nature of the FXR pocket.
The SASA distribution plot of the binding site of System B is
found to be more solvent-exposed than the other three systems
(Figure 5B, Supplementary Table S5), which signify that the
binding of ‘co-activator’make the pocket more stable. Further,
it is also seen that the presence of ‘OCA’ and ‘co-activator’
increased the pocket volume which significantly reduced in
System A indicating that the agonist increases the pocket
volume of LBD of FXR (Figure 5C, Supplementary Table S5).

Upon multiple sequence alignment of rat and human FXR
sequences, the similarity and identity are 96 and 92%,
respectively, (we have shown similarity here) however, binding
site residues are 100% conserved in rats and humans within 4.0 Å
of from the center of ‘OCA’ (Supplementary Figure S7A)
(Downes et al., 2003; Mi et al., 2003). The helices and loops
which are involved in the binding are highlighted in
Supplementary Figure S7B. The ‘OCA’ binding is mediated
by the 25 residues mainly involving the hydrophobic
interaction, among which only 5 residues, R328, S329, Y358,
Y366, and H444, are involved in the establishment of the HBs
with ‘OCA’ (Supplementary Figure S7C and Table 1).

Upon superimposition of the binding pocket of Systems C and
D, there were significant conformational changes were observed
in residues M262, M287, M325, F326, R328, S329, F333, Y358,
Y366, M447, and W451 in System D that are responsible to
accommodate ‘OCA’ in the binding pocket of FXR
(Supplementary Figure S7D). The changes in configurations
of the HBs forming residues in both Systems C and D are shown
in Supplementary Figure S7E. We have divided the 2D structure
of ‘OCA’ (Figure 1A) to explore the residue-wise contribution,
marked as three main regions, the head includes only one OH
group, core (steroidal rings), and tail (carboxyl group). In the
crystal (System D), the head moiety was surrounded by residues

FIGURE 5 | Analysis of binding site. (A) The RMSD distribution plot, (B) SASA distribution, and (C) pocket volume for the binding site of System A (black), System B
(red), System C (green), and System D (blue) were shown throughout the MD trajectory. (D) The occupancy plot of residue H444 forming the water bridge interaction
(wHB) with the ‘OCA’ is shown in Systems B and D.
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Y358, H444, M447; core region is near to residues I283, L284,
V322, M325, F326, S329, F333, I345, I349, I354, I359, M362,
F363, Y366, W451, and Y466; while the tail region is lined by
residues M262, M287, A288, H291, R328 and I332
(Supplementary Figure S7D). The RMSF plot for ‘OCA’ in
Systems B and D showed significant fluctuation in its different
functional groups. Although both follow the same pattern, ‘OCA’
experienced more atomic fluctuation (atom 1–23) in System B
than System D (Figure 6A).

Furthermore, the comparison of the binding site of the
representative structures from the MD simulations sheds light
on important residue displacements which are crucial for the
binding phenomenon (Figures 6B,C). In System D, we observed

that ‘OCA’ retained the HB interaction with the residues S329
(91.92%), Y358 (76%), Y366 (88.75%), and H444 (88.16%) and
lost the interaction with residue R328 with respect to the crystal
structure (Figure 6A, Table 2). However, in the absence of the
‘co-activator’, the ‘OCA’ lost its interaction with the residue H444
(17.34%), Y358, and R328 in System B. It gained water-mediated
interaction (wHB) with the residue H444 with the occupancy of
74% as compared to System D (Figures 5D, 6C and Table 2).
However, in System B the ‘OCA’ form the HB with the residues
S329 (97.75%), and Y366 (92.29%) during the simulation
(Figure 6C and Table 2). During MD, we found that the new
residues P263, Q264, and T267 surround the tail region of the
‘OCA’ in System B, whereas in System D, the residue I294 is
found in the vicinity of ‘OCA’ (Supplementary Figures S8A,
S8B), which is not yet reported in previous FXR based studies
This is due to the significant fluctuation in the helix H2, loop L:
H1/H2 of System B than the System D. The interaction between
‘OCA’ and residues M262 and T267 possibly transient, however,
seem important for their movements between stable states. We
have also observed the time-line conformational changes in the
interacting residues M262, T267, Y358, and H444 in both the
systems (Figures 6D,E). In the case of System D, we observe the
least changes in the conformation of the residues Y358, H444, and
in ‘OCA’ as compared to System B, therefore form the stable
interaction with it (Figure 6D). Both the residues are cryptic in
nature as their interactions were missing in the initial state but
came into light at intermediate state and eventually got stabilized
(Figure 6D). In System B the conformational changes in the ‘OCA’
and the residue Y358 is more from the initial state which causes the
loss of interaction between the residue Y358 and the ‘OCA’ and

TABLE 1 | Interaction analysis of the FXR complex system with ‘OCA’ within the
4.0 Å area of the pocket.

Helices involved Types of interaction Residue Number

L:H1/H2 Hydrophobic M262

H3 Hydrophobic L284, M287, A288

Polar H291

H5 H-bond S329, R328,
Hydrophobic M325, F326, I283, I332, F333

H6 Hydrophobic L345, I349

L:H6/H7 Hydrophobic I354

H7 H-bond Y358, Y366

Hydrophobic I359, M362, F363

H11 H-bond H444

Hydrophobic M447

L:H11/H12 Hydrophobic W451

H12 Hydrophobic W466

FIGURE 6 | The change in the residual positioning of the LBP (ligand binding pocket) of FXR. (A) The ligand RMSF plot for System B (red) and System D (blue)
highlighting the difference in their values. The atomic fluctuations in the head and core regions of ‘OCA’ are higher in System B than SystemD. (B,C) the panels represent
HB interaction between the FXR residues and ‘OCA’ for Systems D and B, respectively. The red dotted line is the distance between the ‘OCA’ and the residue of the FXR
protein. The panels (D,E) represent the conformational sampling for these residues in Systems D and B during MD simulation shown in time step coloring method.
The representatives of initial state (red: 0 ns), intermediate state (white: 250 ns) and final state (blue: 500 ns) are shown in licorice representation while the beads
representation shows the sampling of these residues throughout the trajectory by the stride of 1,000 frames at equal interval.
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gain the transient interaction with the residues M262 and T267
(Figure 6E). The changes in the conformation of ‘OCA’ give a
place for water mediate wHB interaction with the residue H444
and stabilize it in the pocket of System B. HB trajectories depicting
time-dependent bond distance variations are illustrated in Systems
B and D (Supplementary Figures S8C, S8D). As we observed the
ligand and pocket flexibility for FXR, we speculated next about
changes in the torsion angle distribution of the ‘OCA’ (tail region)
in Systems B, D, and E, (Supplementary Figures S9A, S9B, see the
details in supplementary results Section 3.1). Although the ‘OCA’
tail region is free to move in System D but unable to form the bond
with residues M262 and T267, due to stable core region (1–23)
interaction (Figure 6A). This indicates that in the presence of
protein and ‘co-activator’, the ‘OCA’ behave differently and these
differences in angle play a certain role in the conformational
diversity of ligand ‘OCA’ (Supplementary Figures S9A, S9B).
This mainly provides insights into the conformational strain
undergone to maintain the protein-bound conformation.

Role of Cation–π Interactions Between the
Residues H444 and W466 (Activation
Trigger Zone)
The stabilization of FXR in active conformation is based upon
the interaction established between an aromatic triad
tyrosine-histidine-tryptophan (Y358/H444/W466) i.e. called
the (“activation trigger”) and the ring A of the ‘OCA’
(Figure 7A) (Gioiello et al., 2014; Massafra et al., 2018). It
involves the HB interaction between the residues Y358 (H7) and
H444 (H11) with the ‘OCA’ and the Cation–π interaction
between the NE@H444 atom with the center of the indole
ring of residue W466 (H12) shown in Figure 7A. It is also
known that active conformation of the LBD requires the
stability of loop L: H11/H12 than helix H12 which is
achieved by the physical constraint in residue H444
(Costantino et al., 2005). The HBs formed between the 3-OH
group of ‘OCA’s and the residue H444 and Y358. These
interactions restrict the mobility of residue H444 and
stabilize the trigger zone. The loss of their interaction would

remove the necessary support for helix H12 in its active position
(Mi et al., 2003). As we have discussed above, the interaction
between the residues Y358 and H444 with ‘OCA’ is more stable
in System D than B (Figure 7B). We also found the least
fluctuation in the loop L:H11/H12 and helix H12 in System
D than the other systems. Secondly, cation–π interactions
between the indole ring of the residue W466 and NE2 atom
on perpendicularly oriented residue H444 have been known to
stabilize the helix H12 (Mi et al., 2003). This is the T-shaped
conformation where the two planes are perpendicular, and the
angle fluctuates between 45° and 145° (Khandelia and Kaznessis,
2007). To calculate cation–π interaction, throughout the
dynamics, we calculate the angle between the atoms of
CD1@W466-CE1@H444-CH2@W466. We also computed the
Cα distance between the H444:W466 and H444:Y358 residues
(Figure 7B). We noticed that the angle in all three Systems B, C,
and D fluctuated within a range of 45°–75° during the
simulation. In System A, the distance between these atoms
increases during the simulation due to which the angle
decreases and fails to maintain the required criteria for the
angle formation (Figure 7B). This signifies that the angle
between the residue H444 and W466 is stable in the presence
of both ‘OCA’ and ‘co-activator’ in comparison to the APO form
of FXR.

We observe that the distribution plot for Cα distance between
the residues Y358 and H444 showed the distance is higher in
Systems B and D than in Systems C and A (Figure 7C). However,
the distance between the residues H444 andW466 is substantially
more observed in System A as compared to other systems
(Figure 7D). This indicates the binding of ‘OCA’ and ‘co-
activator’ causing the significant conformational changes in
these residues as binding decreased the distance between the
residues H444 and W466 and stabilized the cation–π interaction
in Systems B, C, and D than System A (Figure 7D). The overall
analysis suggested that the binding of both ‘co-activator’ and
‘OCA’ to the FXR is necessary for the increased binding affinity.
The HB distance pattern between the residues Y358 and H444
with ‘OCA’ as described above and observed in the crystal
structure is maintained during the simulation in System D
only and not achieved in Systems B or C.

‘Co-Activator’ Binding Site Analysis is
Essential to Achieve Activation State of FXR
The FXR’s LBD acts as a molecular switch after ligand binding,
undergoing the conformational changes that result in the
recruitment of the ‘co-activator’ protein by forming the
“charge clamp” and a hydrophobic groove that interact with
the LXXLLmotifs of ‘co-activators’ (Weikum et al., 2018; Merk
et al., 2019). It is reported in the agonistic conformation of FXR,
the ‘co-activator’ (LxxLL motif) is bound by “charge clamp” with
residues K300 (H3) and E464 (H12) (Figure 8A) (Merk et al.,
2019). Therefore, we explored the conformational residual
changes which are responsible for stabilizing helix H12
throughout the dynamics. The ‘co-activator’ binding surface
on FXR comprises the helices H3, H4, H5, and H12. This

TABLE 2 |HBOccupancy (cut-off > 50%) of the interacting residues with ‘OCA’ in
both systems B and D.

System B

Donor Donor atom Acceptor Acceptor atom Occupancy

Y366 OH ‘OCA’ O7 97.75%
‘OCA’ O7 S329 OG 92.29%
‘OCA’ O3 H444 ND1 17.34%

System D

Donor Donor atom Acceptor Acceptor atom Occupancy

‘OCA’ O7 S329 OG 91.92%
Y366 OH ‘OCA’ O7 88.75%
‘OCA’ O3 H444 ND1 88.16%
‘OCA’ O3 Y358 OH 76%

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 65831212

Kumari et al. Conformational Switches for FXR Activation

165

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


analysis have shown that, with the binding of agonist in FXR, the
‘co-activator’ typically forms the four HB with the residues K300,
H310, E311, and E464 of the FXR (Merk et al., 2019). In System
D/C, the ‘co-activator’ forms the HBs with residues K300/307,
H310/317, K318/325, E464/471 and non-bonded contacts with
the FXR residues Q293/300, V296/303, E297/304, F305/312,
Q313/320, I314/321, L317/324, P460/467, L461/468 and E464/
471 (Supplementary Figure S10A and Table 3). We have found
that in System D, HB interaction between the ‘co-activator’
residues N2, L4, L5, and D10 with the FXR residues K318,
E464, and H310, respectively (Figure 8B). We observe that the
residue E311 is not the vicinity of the ‘co-activator’ binding site in
4.5 Å in System D (Supplementary Figure S10A and Table 3).

Further to see the residue interaction with the ‘co-activator’,
we have analyzed the stable state for Systems C and D. The
residues of ‘co-activator’ N2, R6, D12 gain the interaction with
FXR in terms of HBs with K325, E318, and K300 residues
(Figure 8C) and non-bonded interaction with the I472, T306,
I321, I469, T292, V296, V299, L302, V303, Q300, L324 and I321
in System C (Supplementary Figure S9B). In the case of System
D, the residues of the ‘co-activator’ N2, R6, K11, and L8 gain the
HB interaction with FXR residues K318, E464, H310, E311, and
K300 (Figure 8D) and non-bonded with the residues I465, L317,

Q313, I314, T299, R301, Q306, and V292 in System D
(Supplementary Figure S10C). The loss of interaction was
also observed between the residues L4, L5, D12 with the E464
and K300 (Figures 8C,D).

Further, we analyzed the HB distance during dynamics
(Figure 8E). We noticed that the interaction between the
‘co-activator’: FXR atom O@K11: NZ@K300 is most stable
throughout dynamics in System D among the other
interactions (Figure 8E). While this interaction is unstable
in System C. This signifies that possibly the ‘OCA’ helps to
establish the interaction with the “charge clamp” residue more
stable. The interaction between the O@L8: NZ@K300 in
System D is more stable than System C. While the
interaction between OD1@D10:NE2@H310 becomes
unstable during dynamics in both Systems C and D
(Supplementary Figure S9D). In System C, the interaction
between the NH2@R6:OE1@E311 and NH1@R6: OE2@E311
is more stable as compared to System D. This could be the
region of retaining the ‘co-activator’ in the FXR without the
presence of ‘OCA’. In System D, the interaction with OD1@
N2:NZ@318 is comparably stable than System C. However, the
interaction O@N2:OE2@E464, N@L4: OE1@E464, and N@L5:
OE2@E464 is not stable throughout the dynamics in both the

FIGURE 7 | The activation trigger zone analysis. (A) The view of the “activation trigger” zone in the FXR structure involves the interaction between a tyrosine-
histidine-tryptophan (Y358/H444/W466) triad and the ring A of the steroid bile acid backbone. The HB between the Y358 and H444 with the ‘OCA’ is shown in red
dotted line. The cation-pi interaction between the NE@H444 (H10-11) atom with the center of indole ring of residue W466 (H12) is shown in green dotted line. (B) The
time series of angle between the atoms of CD1＠W466-CE1＠H444-CH2＠W466 is depicted. The distribution plot for the distance between Cα atoms of (C)
residues of H444 and W466 (D) residues Y358 and H444, throughout MD simulations. The green and blue dotted lines represent the Cα distances in the crystal
structures of System C and D, respectively.

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 65831213

Kumari et al. Conformational Switches for FXR Activation

166

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


systems (Supplementary Figure S9C). This is interesting to
note that the “charge clamp” residues are playing an important
role in the recruitment of ‘co-activator’. Therefore, we have
calculated the area between the Cα atom of residues K300-
E464-K318 in all systems of FXR (Figure 8G). We take CA@
E464 as an anchor residue linking the K300 and K318 residues.
Throughout MD simulation, we measured the region for all
FXR systems to see shifts in the “charge clamp” forming
residue presence and absence of ‘OCA’ and ‘co-activator’.
During the simulation timescale, the conformational
changes result in a dramatic expansion in the area of the
clamp in System A with respect to other systems (Figure 8H).
This increase in area is due to the high flexibility of the Cα
atom due to the absence of the ‘co-activator’. We found,
however, that the region for System D is least extended; this
could be due to the presence in the FXR of both ‘OCA’ and ‘co-
activator’ binding. System C also has less distribution area than
Systems A and B, which supports that, in the absence of a
ligand, the FXR can retain the ‘co-activator’. While this area

estimation approach is not a precise procedure, it still provides
tentative details on the selection of “charge clamp” residues to
explore the co-activator/co-repressor binding site with or
without binding of ‘OCA’. Laying down an assumption, we
could propose that the agonist binding to the FXR is always
required for the strong binding of the ‘co-activator’ to the FXR.
From MD analysis, we found that the agonists alone or ‘co-
activator’ can bind and retain in their binding site as we have
achieved confident data about their binding. However, they are
unable to achieve their active state.

Per-Residue Wise Free Energy
Contributions to Identify the Critical
Residues in FXR
Binding Free Energy of ‘OCA’ and ‘Co-Activator’
in FXR
The total binding free energies calculated as per Scheme 1 are
listed in Table 4. The total ΔGbind of ‘OCA’ (System B) in the
absence of a ‘co-activator’ is −30.45 kcal/mol, by using the MM-
PBSA method (Table 4). The total ΔGbind of the ‘co-activator’ in
the absence of ‘OCA’ (System C) −50.14 kcal/mol by using the
MM-PBSA method. However, the total ΔGbind of ‘OCA’ and ‘co-
activator’ in FXR (System D) is −86.83 kcal/mol, and their MM-
GBSA values are listed in Table 4. The per residue energy of each
contributing residue is given in Figure 9A. Here, we noticed that
the total ΔG bind of ‘OCA’ is increased in the presence of a ‘co-
activator’. This reflects that binding of ‘OCA’ is more energetically
favored upon binding of ‘co-activator’. The higher contribution to
the ΔGbind in the presence and absence of ‘co-activator’ in
Systems B and D is due to the difference in the ΔGsolv GB

FIGURE 8 | Dynamics analysis of the ‘co-activator’ binding pocket. (A) The view of “charge clamp” K300/307 (H3) and E464/471 (H12) in the stabilization of AF2
(blue) in structure and interacts with the ‘co-activator’. (B) The interacting residues in the binding site of the ‘co-activator’ in FXR crystal. (C,D) The interacting residues of
the FXR stable MD state of System C and D. (E) The depiction of the HB durance throughout MD simulation. (F) The time series plot of distance between the NZ@K318
with OE2@E464 throughout MD simulations. (G) The panel represents the area between the residues K300, K318 and E464. Beads (red color) correspond to the
Cα atom of each residue. (H) Distribution of the area defined by the Cα atoms of the residues throughout dynamics. The green and blue dotted lines indicate the area in
the crystal structures of Systems C and D.

TABLE 3 | Interaction analysis of FXR with peptide within 4.5 Å.

Helices involved Types of interaction Residue number

H3 Hydrophobic V296

Polar Q293, E297, K300

H4 Hydrophobic F305

H5 H-bond K318

Hydrophobic L317, I314

Polar Q313, H310

H12 Hydrophobic P460, L461

H-bond E464
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and ΔGsolv PB. Besides, the ΔGbind differences in System C and D
appeared due to the electrostatic interactions (ΔEele) in the gas-
phase and polarization contributions (ΔGpol), indicating that the
two energetic components had remarkable effects on the binding
free energy between ‘co-activator’ and FXR. The calculated total
ΔGbind for the crystal poses of Systems C and D is −49.54 kcal/
mol and −83.65 kcal/mol, respectively by using the MM-PBSA
method (Figure 9B). In terms of dynamics, it is observed that the

binding free energy of System D is even improved to crystal pose,
indicating the possibility of better structural fit is achieved during
the simulation.

Per Residue Wise Energy Contribution in FXR-‘OCA’
Interactions
Analysis of the residue wise free energy decomposition was
also carried out to analyze the individual energetic

TABLE 4 | The contribution of the binding free energy for ‘co-activator’ in Systems B, C and D. In the bracket, the standard deviation and the standard error of mean values
are specified. The standard error of mean values (i.e., the standard deviation divided by the square root of the number of snapshots) to depict the precision of the MM-
GBSA and MM-PBSA methods to estimate the binding free energies. The bold values indicates the total binding free energy.

Contribution System B (‘OCA’ only) System C (only ‘co-activator’) System D (‘OCA’+ ‘co-activator’)

ΔEint 0 0 0
ΔEvdW −53.99 (3.22 ± 0.05) −53.54 (4.89 ± 0.08) −108.91 (6.45 ± 0.11)
ΔEele −182.24 (11.93 ± 0.22) −209.92 (35.81 ± 0.65) −301.84 (38.30 ± 0.60)
ΔEGB 201.77 (11.66 ± 0.22) 221.75 (33.52 ± 0.61) 339.98 (35.39 ± 0.64)
ΔEsurf −7.23 (0.34 ± 0.006) −8.93 (0.57 ± 0.01) −16.06 (0.83 ± 0.01)
ΔGgas −236.24 (12.75 ± 0.23) −263.47 (36.18 ± 0.66) −410.75 (38.84 ± 0.70)
ΔGsolv GB 194.54 (11.53 ± 0.21) 212.82 (33.33 ± 0.60) 323.92 (35.39 ± 0.64)
ΔGGB −41.67 (3.45 ± 0.06) −50.65 (6.22 ± 0.11) −86.83 (7.86 ± 0.14)
ΔGsolv PB 205.78 (13.85 ± 0.25) −53.54 (4.89 ± 0.08) 325.60 (36.24 ± 0.66)
ΔEPB 210.71 (13.83 ± 0.25) 220.06 (33.35 ± 0.60) 336.56 (36.39 ± 0.66)
ΔEn-polar −4.92 (0.10 ± 0.001) 6.73 (0.26 ± 0.004) −10.96 (0.37 ± 0.006)
ΔGPB −30.45 (6.63 ± 0.12) −50.14 (7.95 ± 0.14) −85.15 (10.90 ± 0.19)

FIGURE 9 | Per residue wise decomposition of the binding energy ΔGbind (kcal/mol) for ‘OCA’ and ‘co-activator’. (A) The residues (cut off >0.5) belonging to the
region in FXR are mentioned in the figure. The highlighted residues in yellow and blue color are interacting residues with the ‘OCA’ and ‘co-activator’, respectively. The
residues Y358, H444, K300 and E464 in the star sign are the residues involved in “activation trigger zone” and “charge clamp”. The residues in System C are different in
residue number. However, the location of the residues is the same. The residues number in Systems D/C are V292/299, Q293/300, V296/306, K300/307, F305/
312, H311/317, I317/321, K318/325, L461/468, L462/469, E464/471 and I465/472. (B) The total energy change in the residue after alanine scanning in both System B
and D. (C) The bar plot represents the total binding free energies of crystal poses and MD-pose in both Systems C and D.
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contributions of each residue involved in the stabilization of
protein-ligand complexes. To understand the interactions at
the atomic level, binding free energy contributions were
determined for each residue for Systems B and D
(Figure 9A, Supplementary Table S6). The residues having
a contribution of (−0.5 kcal/mol) or above were considered
hot-spot amino acids and were positioned to contribute most to
the stability of the complex. As per the cutoff of the residues
M262, P263, Q264, T267, L284, M287, A288, M325, R328,
S329, I332, L345, I349, I354, I359, M362, F363, Y366, and
M447 have shown high energy contribution in System B
(Figure 9A). In the case of System D, the residues M262,
L284, M287, A288, H291, R328, S329, M325, I332, L345, I349,
I354, Y358, I359, M362, Y366, H444, and M447 has shown the
highest contribution in the presence of ‘co-activator’. Most of
the residues are common in both the systems except the M262,
T267, L284, and F363 in System B and H291, H444, and Y358
in System D. The residues M262, Q264, T267, and S329 make
remarkably high free energy contributions hence, making a
considerably enormous contribution to the overall binding
free energy of System B and in System D the residues M325,
S329, and I349 contribute more to the overall binding energy.
To determine the detailed contribution of each important
residue, the binding energy was decomposed into
electrostatic, VdW, solvation (polar and nonpolar), and
total contribution (Supplementary Table S6). The
thermodynamic profiling suggests that the electrostatic and
VdW are the major contributors to the ‘OCA’ net binding. The
residue R328, which forms a HB with ‘OCA’ in the crystal
structure, reveals an unfavorable contribution towards the
total binding free energy, as this interaction was not
sustained in both the systems. In System B the ‘OCA’ also
gained interaction with residues M262 and T267 which can see
their higher contribution in System B than D. Thus, the
thermodynamic profiling suggests that the contribution of
the residue plays a major role in the binding of the ‘OCA’
to FXR. The analysis revealed that ‘OCA’ is stable and gains
substantially favorable interactions with the pocket residues.
However, we further perform the CAS to elucidate their impact
on the binding energy of the systems.

Key Residue Contributions in FXR and ‘Co-Activator’
Interactions
We have calculated residue-wise decomposition to identify
critical residues involved in protein -‘co-activator’ interaction
in Systems C and D and take the same cut-off, shown to be above
−0.5 kcal/mol (Figure 9A, Supplementary Table S7). We
observed the “charge clamp” residue K300/307 and the highest
contribution in total binding energy in the presence (System D)
and absence of ‘OCA’ (System C) (Figure 9A). Besides this, we
found the residues V292/299, V296/306, E311/318, I314/321,
L317/324, K318/321, L461/468, I465/472 contributed higher to
the binding energy (−1.0 kcal/mol). This indicates that the
hydrophobic residues facilitate the repacking of the helix H12
as the non-polar residues V296/306, I314/321, L461/468, I465/
472 contribute the above −2.0 kcal/mol to total binding energy in

FXR (Figure 9A). These values indicated the possibility that the
‘co-activator’ can bind to FXR in the absence of ‘OCA’.

Cross-Validation of Residue Wise
Contribution in the Stability of ‘OCA’ via
Computational Alanine Scanning
To accomplish the contribution of the identified residues to the
total free energy, we performed computational alanine scanning.
The obtained results indicate that the mutation in residues has
significantly dropped the binding energy by more than −1.0 kcal/
mol (cutoff) in both the complexes (Figure 9C). In residues
M287, S329, M325, I349, and I354 typical in the presence and
absence of a ‘co-activator’, a substantial decrease in binding
energy (−2.0 kcal/mol) was observed. The residues T267 and
F363 had a significant reduction in binding energy while they
were interacting in presence of ‘OCA’ alone. The residues Y358
and H444 form the direct interaction with the ‘OCA’ in the
presence of a ‘co-activator’ and have a significant drop in the
(>−2.0 kcal/mol) binding energy. Therefore, one can infer the key
hot-spot residues T267, M325, I349, Y358, S329, F363, Y366, and
H444 important for the ‘OCA’ recognition mechanism in FXR.
The presence of a ‘co-activator’ establishes a stable interaction of
‘OCA’ with the FXR, which is responsible for the activation
mechanism of FXR.

DISCUSSION

To unveil the binding event of ‘OCA’ and ‘co-activator’ at its
functional level, we have evaluated the four systems of FXR and
the possible mechanism for activation at the molecular level by
using the triplicates of MD simulations.

The conformational change of FXR–LBD in response to
different molecular binding, such as agonist and partial agonist
is significant for recruitment of ‘co-activator’ protein and release of
co-repressor. Several studies have been proposed to analyze the
interactions of FXR with agonist, antagonist, or with and without
co-through molecular modeling (Costantino et al., 2005; Meyer
et al., 2005; Zhang et al., 2006; Di Leva et al., 2013). However, here,
we tried to speculate how the active state of FXR has been obtained
at the structural conformational level and how this internal motion
helps to modulate the specific region, which provides the specific
platform for activation of FXR in synergy between the binding sites
of ‘co-activator’ and agonist.

Perturbed Mobility of Loop L: H11/H12 is
Essential for the Activation of LBD
During the simulation, the systems with the binding partner as a
‘co-activator’ alone and with ‘OCA’ remained remarkably stable.
The compactness in the system without ‘co-activator’ and ‘OCA’
signifies that the binding of both disturbs the internal dynamic
behavior of FXR (Figure 2B). Compared to Systems A and C, the
binding of both ‘OCA’ alone and with a ‘co-activator’ had
significantly decreased the RMS fluctuation in loop L: H11/
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H12 and helix H12 (Figures 3G,H). This indicates that the
binding of ‘OCA’ is essential for the conformational changes
at helix H12. The DCCM map revealed that the helix H3 shows
the correlated motion with loop L: H11/H12 and helix H12 in
presence of ‘OCA’ (System B) and both ‘OCA’ and ‘co-activator’
(System D) (Supplementary Figure S11, see the details in
supplementary results Section 3.2). The enhanced correlation
in the agonistic conformation comes from the increased stability
of the loop L: H11/H12 and the helix H12 whose stability is critical
to maintain the agonistic conformation. This is in concordance with
RMSF results as well where the fluctuations in helix H12 and loop L:
H11/H12 get reduced in the presence of ‘OCA’ and ‘co-activator’
both. The essential dynamics also reveal that the presence of ‘OCA’
and ‘co-activator’maintain the stability in loop L: H11/H12, which is
not found in the presence of either ‘co-activator’ or agonist alone
(Figures 4J–L). Since the loop L: H11/H12 controls the flexibility of
helix H12 and a critical determinant for its orientation (Costantino
et al., 2005; Merk et al., 2019). Therefore, the study of this region is
essential to understand the mechanism of different types of ligand
binding in FXR.

Flexibility Allows Reaching the Activate
State Conformation byModulating via ‘OCA’
at Agonist and ‘Co-Activator’ Binding Sites
We observed that ‘OCA’ and ‘co-activator’ are substantially stable
according to the different analyses. The binding of both either
only ‘OCA’ alone or with a ‘co-activator’ caused the higher
fluctuation in helix H2 and loops between L: H1/H2, L: H2/
H3, L: H5/H6, and L: H9/H10 regions which signify the flexible
nature of LBD of FXR. However, the ‘co-activator’ binding
stabilizes the helix H2 and loop L: H2/H3 with ‘OCA’. This is
in concordance with secondary structure analysis results where
the conformational flexibility of these regions is higher in the
presence of ‘OCA’ (Supplementary Figures S3–S5).
Furthermore, we found that in the presence of ‘OCA’ there is
an anticorrelated movement in the helix H2 and loops L: H1/H2,
L: H5/H6 region of FXR, which is absent in the presence of ‘co-
activator’ alone. These changes in loop conformation account for
the increase in SASA and RMSD values of the binding site in the
presence of ‘OCA’ alone which stabilized in the presence of a ‘co-
activator’. The volume of the LBD pocket was shown to vary
significantly during the simulation and revealed the flexible
nature of the pocket of FXR. Combined with RMSF analysis
of the ‘OCA’, one possible explanation is that the core region of
the ‘OCA’ is stable in the presence of a ‘co-activator’, and just
increased the fluctuation at the tail region of ‘OCA’. The binding
of ‘OCA’ induced the significant expansion of the LBD, which is
why for its increased pocket volume.

Changes in Hydrogen-Bond Network Upon
‘OCA’ and ‘Co-Activator’ Binding
The HBs between a protein and ligands provides directionality
and specificity of interaction, an important aspect for molecular
recognition. The considerable changes were observed in the
binding pocket of FXR in the presence of ‘OCA’ and ‘co-

activator’. In our study, the residues S329 and Y366 are
noticed to be common in the presence and absence of a ‘co-
activator’ (occupancy >50%) Table 2. It is surprising that, in the
absence of a ‘co-activator’, the Y358 and H444 residues lose their
contact completely with ‘OCA’ during the simulation and stay in
the pocket. This is attributable to the establishment of the stable
association of wHB with H444 residues (occupancy >70%)
(Figure 5D). In the crystal structure of ‘OCA’ the HB is
formed with R328, which is lost during the simulation, and
it’s tail region also forms the transient interaction with the
M262 and T267 residues, which are absent in the presence of
a ‘co-activator’. The ‘co-activator’ interacting residues with FXR is
also more stable in System D than System C (Figure 8E). Free
energy per residue decomposition and alanine scanning confirm
the contribution of the key residues maximum in System D.
However, the comparable energy contribution from Systems B
and C indicates that achieving the critical orientation is important
for the individual residue.

The Role of “Activation Trigger Zone” and
“Charge Clamp” in Stability of Helix H12
We noted in the presence of ‘OCA’ and ‘co-activator’ the persistent
formation of the angle between the residues Y358, H444, andW466;
while in apo these residues are unable to form this angle during
dynamics. The cα distance between them is also found to be stable in
presence of the ‘OCA’ and ‘co-activator’ compared to APO.
Costantino et al. reported that the HB interaction between the
‘OCA’ and residues Y358 and H444 is not sufficient to stabilize the
helix H12 since it is already in an active conformation in the absence
of ‘OCA’, and there is stable interaction between the residues H444
and W466 (Costantino et al., 2005), and the same was achieved in
our studies. Interestingly, we found that in the presence of ‘OCA’, the
wHB played an important role in restricting the movement of
residue H444 in the LBP of FXR and stabilizing the helix H12
conformation. The residue of “charge clamp” (K300) formed the
stable interaction with the residues L8 and K11 of the ‘co-activator’
in System D than C, which confirms that the binding of ‘OCA’
enhances the association of the ‘co-activator’ with FXR (Figure 8E).
It has been also reported that in the absence of an agonist, the ‘co-
activator’ is inaccessible to FXR due to the formation of a salt-bridge
between the residues K318 and E464 (Costantino et al., 2005). But in
our result, we confirm that there is no stable salt bridge formation
between the residues K318 and E464 during the simulation
(Figure 8F). Henceforth, the FXR can be bound with the ‘co-
activator’ in the absence of ‘OCA’ but the stability of loop L: H11/
H12 is necessary for stabilizing helix H12, which is not consistent.

Key Feature Determining the Binding
of ‘OCA’
The quantitative characterization of binding free energies of
specific residues in protein−ligand binding is critical as these
residues are capable of modulating the internal wiring from
function to non-function state and vice-versa. Here, we have
elucidated the key interaction captured by the ‘OCA’ in the
presence and absence of a ‘co-activator’. Binding free energy
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calculations suggest the ‘OCA’ affinity is highest with ‘co-activator’
binding to FXR. Based on the results of per residue binding free
energy decomposition, we can observe that the number of residues
stabilizing the complex as well as the energetic weight of each
interaction contributes to the main differences in the total binding
free energy. ‘OCA’ is well stabilized in the presence of a ‘co-activator’,
as a result of forming similar interactions with comparable per
residue-free energy contributions to the total binding free energy.

The residues L284, M325, S329, I345, I349, I354, I359, M362,
F363, Y366, and W466 occupied the core region of ‘OCA’ have
shown the higher contribution towards the binding energy alone
and with the presence of a ‘co-activator’. The residues P263,
Q264, T267 near the tail region of ‘OCA’ which gain interaction
during dynamics have a higher contribution in ‘OCA’ at System B.
This signifies the ‘OCA’ stability in the pocket of FXR in absence of a
‘co-activator’. As reported earlier, the 6α-ethyl group (head region) in
‘OCA’ binds into the hydrophobic cavity that exists between the side
chains of residues I359, F363, and Y366 increases the affinity of ‘OCA’
(Pellicciari et al., 2002). We also found that these residues show a
substantial contribution towards the total binding energy in the
presence of ‘OCA’ and confirmed the important role of residues in
themolecular recognition of ‘OCA’ in the FXR pocket. In the presence
of a ‘co-activator’, the residues Y358 and H444 contribution is higher
along with the other residues. However, we did not find any
contribution from the residue F363 in presence of a ‘co-activator’.
This means that ‘OCA’ governs the stability in the FXR pocket in the
presence and absence of ‘co-activator’ differently and only ‘co-
activator’ binding is required for agonist discovery.

Key Feature Determining the Binding of ‘Co-
Activator’
The thermodynamic profiling suggests that the electrostatic and
VdW are the major contributors in the net binding of the ‘co-
activator’ in the presence and absence of ‘OCA’. The residues of
the “charge clamp” formation play an important role in the co-
activator-interacting surface, exist in many NRs, and can stabilize
their active conformations (Nolte et al., 1998; Wang et al., 2017).
In our study, we also noticed the stable interaction with the
“charge clamp” residue K300/307 and the highest contribution in
net binding energy (Figure 9A) in Systems D and C. However, the
lowest contribution came from the residue E464. Furthermore,
Merk et al. had studied that the unliganded form of FXR was also
able to recruit the ‘co-activator’ (Merk et al., 2019). This result
also suggested that the contribution of residue is substantial in
absence of ‘OCA’ and the ‘co-activator’ can bind with the FXR.

Binding Hot Spot for ‘OCA’
Based on the consistent information of interaction analysis and
CAS, a significant drop in the binding energy more than
−2.0 kcal/mol were noticed in the residues T267, M287, S329,
M325, I349, I354, Y358, F363, and H444 in the presence and
absence of ‘co-activator’ (Figure 9C). Overall, these data indicate
that to achieve a specific active state of FXR certain residue
orientation must be targeted to activate the FXR agonism.
Overall, conformational, and residual synergy has been
observed between agonist and ‘co-activator’ binding sites. The

RMSD, SASA plots, and distance variation between residues
H444-Y358 and residues H444-W466 reflect the binder-
dependent dynamical adjustment at the architectures of
binding sites that correlated well with thermodynamic
outcomes. This indicates that both sites and their residual
position must be considered to improve and discover modulators.

CONCLUSION

The complete activation of FXR by OCA blocks the BAs synthesis
and hinders metabolic cholesterol degradation. As a result,
studying FXR conformational changes in the presence and
absence of ‘OCA’ and ‘co-activator’ seems essential to explore.
Here, we have leveraged our understanding in molecular
association between binding sites of ‘co-activator’ and agonist
using detailed dynamics analysis of four comparable systems.

MD simulations divulged profound shifts of the different helices
in the FXR systems. Our work mainly explores the binding
mechanism of ‘OCA’ in FXR. Further, correlation analysis
reveals that a global network of the correlated motions exists in
the FXR, whose components include all regions identified so far to
be critical for the binding of ‘OCA’. The increase in ΔGbind energy
suggested that the presence of a ‘co-activator’ increased the binding
affinity of ‘OCA’ with FXR. The ΔEele energy is more favorable in
presence of both ‘OCA’ and ‘co-activator’ alone. However, theΔEele
is most favorable in binding ‘OCA’ with a ‘co-activator’. The CAS
analysis further confirms the individual contribution to the total
binding energy. Our results pointed to residues M262, T267,
M287, M325, S329, I349, Y358, Y366, and H444, in an FXR,
found to be more crucial for binding of ‘OCA’. The agonist and
‘co-activator’ binding with FXR, an activation state in which the
loop L: H11/H12 and helix H12 are completely stabilized and
the interactions remain intact to keep the architecture of their binding
pockets. The lack of ‘OCA’ in the binding pocket of FXR makes loop
L: H11/H12 extremely unstable. However, the ‘co-activator’ binds to
FXR. It implies that to keep this loop stable, the ‘OCA’ binding is
necessary. In the absence of a ‘co-activator’, the ‘OCA’ loses its
significant interaction with the residues Y358 and H444 which is
necessary for the “activation trigger” in FXR. Thereby improving our
understanding of ‘OCA’ and ‘co-activator’ binding sites in FXR
provide a promising basis for future agonist discovery. Overall, the
conformational characterization and dynamical synergy between the
binding sites and residues of the ‘co-activator’ and agonist could be
explore further for better mechanistic understanding.
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RIGI, TLR7, and TLR3 Genes Were
Predicted to Have Immune Response
Against Avian Influenza in Indigenous
Ducks
Aruna Pal1*, Abantika Pal2 and Pradyumna Baviskar3
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Avian influenza is a disease with every possibility to evolve as a human-to-human
pandemic arising out of frequent mutations and genetic reassortment or recombination
of avian influenza (AI) virus. The greatest concern is that till date, no satisfactory medicine or
vaccines are available, leading to massive culling of poultry birds, causing huge economic
loss and ban on export of chicken products, which emphasizes the need to develop an
alternative strategy for control of AI. In the current study, we attempt to explore the
molecular mechanism of innate immune potential of ducks against avian influenza. In the
present study, we have characterized immune response molecules such as duck TLR3,
TLR7, and RIGI that are predicted to have potent antiviral activities against the identified
strain of avian influenza through in silico studies (molecular docking) followed by
experimental validation with differential mRNA expression analysis. Future exploitation
may include immunomodulation with the recombinant protein, and transgenic or gene-
edited chicken resistant to bird flu.

Keywords: Anas platyrhynchos, avian influenza, RIGI, TLR3, TLR7

INTRODUCTION

Ducks are reported to be relatively resistant to common poultry diseases, including viral disease,
compared to chicken (Pal et al., 2017), and are commonly asymptomatic to avian influenza virus
infection (Kim et al., 2009; Fleming-Canepa et al., 2019; CDC, Centre for Disease control and
Prevention, 2021). There is clear lack of further systematic characterization of the indigenous ducks
at themolecular level. In an effort to understand, we have studied this as a first step. Hence, there is an
urgent need to explore the innate immune response genes, particularly against viral infection.

Avian influenza is caused by single-stranded RNA virus, which is negatively stranded, and belongs
to Orthomyxoviridae family (WHO, 2019). It is commonly known as bird flu since birds are the main
host. Based on the antigenic differences, two surface proteins, namely, hemagglutinin and
neuraminidase of avian influenza virus have been mostly subtyped and the nomenclature is
provided accordingly. Till date, 18 subtypes of HA (H1–H18) and 11NA (N1–N11) have been
detected (Tong et al., 2013; Ying et al., 2014). H5, H7, and H9 were observed to be the most
pathogenic subtypes of bird. Most of the H5 and H7 subtypes were regarded as highly pathogenic
avian influenza (HPAI) virus, owing to the higher incidence and mortality of birds. The greatest
concern is the lack of definite treatment or vaccination due to frequent mutation and reassortment of
viral strain, regarded as antigenic shift and antigenic drift (Webster and Govorkova, 2014; WHO,
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2020). Due to massive culling of birds in the affected area and the
ban on the export of poultry products, the WHO has regarded
avian influenza as one of the most economically effected zoonotic
diseases (WHO, 2018b). It has been reported that in West Bengal
during the 2008 outbreak, there was loss of 500.42 crores, 6
percent of the poultry population was culled, and five lakh
families were affected. In Manipur at the 2007 outbreak, the
loss due to the disease has been found to be 14 per cent of the total
value of livestock outputs in the entire state. More than three lakh
birds were culled, and 24 tonnes of poultry feed was destroyed
post-flu (Otte et al., 2008a). Vietnam estimated the direct losses of
109 village and backyard producers with flock sizes smaller than
50 birds at US$69 (VND1084000) per farm (Otte et al., 2008a).
An average loss of US$22 was estimated per household from the
loss of birds in Egypt (Otte et al., 2008a).

The basic mechanism of host immunity against viral infection
is generally different from that of other infectious agents such as
bacteria and protozoa. Viruses utilize the host immune
mechanism for their infection and further survival, thus
allowing it to act as hijackers. Accordingly, viruses employ the
host cellular machinery for living normal cells through the
process of invasion; multiplication within the host might in
turn kill, damage, or change the cells, and make the individual
sick (Maarouf et al., 2018). The molecular mechanism of
replication of avian influenza virus involves certain proteins.
The HA protein present from the surface of the AI virus aids
in recognition and binding to sialic acid on the surface of host
cells, thereby aiding in the entry of the virus in the host cell
(Matrosovich et al., 2009a). Following the binding, virus particles
are endocytosed, leading to endosome maturation, and pH is
lowered, resulting in the conformational change in HA, thereby
causing fusion of the endosome and virion membranes. The viral
M2 protein (matrix 2) acts as an ion channel for further lowering
of the pH of the viral particle. This leads to the dissociation of the
M1 protein (matrix 1) virion “shell” in such a way that the eight
vRNPs [NP (nucleoprotein)-coated and polymerase complex
(PB1, PA, and PB2)-bound viral RNAs] are released into the
cytosol (Basler and Aguilar, 2008a). In the next step, the viral
RNPs transport into the cell nucleus wherein accessory cellular
components necessary for influenza viral replication and
transcription are present. Following the process of genome
replication, transcription, and protein synthesis, NEP (nuclear
export protein) and M1 act to traffic newly synthesized vRNPs
out of the nucleus, into the cytoplasm, and to the plasma
membrane, leading to the assembly of progeny virions. At this
stage, several viral proteins contribute to budding, including M1
and M2. In the next step, NA aids in the removal of sialic acid
from glycoproteins in both the viral and cell membranes,
resulting in the prevention of the interaction between HA and
host cell receptors, and release of new infectious virus particles
(Medina and García-Sastre, 2011). NS1 (nonstructural protein 1)
plays a role within the infected cell in order to counteract innate
host–cell defense systems, for example, interferon (IFN), which
may otherwise limit efficient virus replication (Hale et al., 2008).

As the virus gets an entry in the body, an immune response is
triggered, followed by local inflammatory signaling. Innate
immune reaction is initially activated by conserved pathogen-

associated molecular pattern (PAMP), pattern recognition
receptors (PRRs), retinoic acid–inducible gene (RIG)-I like
receptors, MDA5, LGP 2, and toll-like receptor (TLRs) such as
TLR3 and TLR7 (Kannaki et al., 2010). Viral nucleic acid binds to
these receptors expressed on macrophages, microglia, dendritic
cells, and astrocytes; releases type-I interferon (IFN-I); and helps
in the production of interferon-stimulated genes (ISGs) (Ali et al.,
2019). Interferon-I upregulates antiviral proteins, and
accordingly, peripheral immune cells are stimulated and alter
endothelial tight junction (Otte et al., 2008b). It has been observed
that the absence of IFN_I signaling leads to the prevention of
microglial differentiation and decrease of peripheral myeloid cell
patrolling (Otte et al., 2008b).

TLR7 is a member of the Toll-like receptor family, which
recognizes single-stranded RNA in endosomes, which is a
common feature of viral genomes (Manglani and McGavern,
2018). TLR7 can recognize GU-rich single-stranded RNA. TRL7
was reported to have influences on viral infection in poultry and
has been regarded as a vital component of antiviral immunity,
particularly in ducks (Manglani and McGavern, 2018). RIG-I
(retinoic acid–inducible gene I) or RIG-I–like receptor dsRNA
helicase enzyme is part of the RIG-I–like receptor family, which
also includes MDA5 and LGP2. These have been reported to
function as a pattern recognition receptor that is a sensor for
viruses such as influenza A, others such as Sendai virus, and
Flavivirus (Matrosovich et al., 2009b). RIG-I typically recognizes
short 5′ triphosphate uncapped double-stranded or single-
stranded RNA (Basler and Aguilar, 2008b). RIG-I and MDA5
are the viral receptors, acting through a common adapter MAVS
and trigger an antiviral response through type-I interferon
response. RIG1 is an important gene conferring antiviral
immunity for ducks, particularly avian influenza (Matrosovich
et al., 2009b).

TLR3 is another member of the toll-like receptor (TLR) family.
Infectious agents express PAMP (pathogen-associated molecular
patterns), which is readily recognized by TLR3, which in turn
secretes cytokines responsible for effective immunity. It
recognizes dsRNA associated with a viral infection, and
induces the activation of IRF3, unlike all other toll-like
receptors which activate NF-κB (Kannakiet al., 2010). IRF3
ultimately induces the production of type I interferons, which
is ultimately responsible for host defense against viruses (Kell and
Gale, 2015). In our lab, earlier we had studied immunogenetics
against bacterial disease with identified immune response
molecule such as CD14 gene in goat (Vercammen et al.,
2008a; Schlee et al., 2009), cattle (Stetson and Medzhitov,
2006), and buffalo (Pal and Chatterjee, 2009; Pal et al., 2013).
We reported for the first time the role of mitochondrial
cytochrome B gene for immunity in sheep (Pal et al., 2011)
and immune-response genes in Haringhata Black chicken (Pal
et al., 2014).

Indigenous duck population in the Indian subcontinent was
observed to have better immunity against viral infections, and so
far, no systematic studies were undertaken. Certain reports
revealed that ducks were mostly asymptomatic and were better
resistant to avian influenza infection. Thus, the present study was
conducted with the aim of molecular characterization of immune
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response genes (TLR3, TLR7, and RIGI) of duck, providing the
initial proteomics study and prediction of the binding site with
multiple strains of avian influenza virus through in silico studies
(molecular docking), establishment of disease-resistant genes of
ducks through quantitative PCR, and experimental validation of
the identified genes through differential mRNA expression
profiling of the identified gene with respect to healthy and
challenged embryonated eggs as in vitro studies.

MATERIALS AND METHODS

Animals, Sample Collection, and RNA
Isolation
Birds
Duck samples were collected from different agro-climatic regions
of West Bengal, India, from farmer’s herd. The chicken breeds
such as Haringhata Black and Aseel were maintained in the
university farm (West Bengal University of Animal and Fishery
Sciences). Samples from other poultry species such as guineafowl
and goose were also collected from the university farm. Samples
from turkey and quail were collected from State Poultry farm,
Animal Resource Development Dept, Tollygunge, Govt. of West
Bengal, India. The birds were vaccinated against routine diseases
such as Ranikhet disease and fowl pox. Six male birds (aged
4–5 months) were considered under each group for this study and
are maintained under uniform managemental conditions.

All experiments were conducted in accordance with relevant
guidelines and regulations of the Institutional Animal Ethics
Committee, and all experimental protocols were approved by
the Institutional Biosafety Committee, West Bengal University of
Animal and Fishery Sciences, Kolkata.

The total RNA was isolated from the ileocecal junction of
duck, Haringhata Black chicken, Aseel, and other poultry species
such as guineafowl and goose, using RiboPure Kit (Invitrogen),
following the manufacturer’s instructions and was further used
for cDNA synthesis (Schlee et al., 2009; Pal et al., 2011).

Materials
Taq DNA polymerase, 10X buffer, and dNTP were purchased
from Invitrogen, and SYBR Green qPCR Master Mix (2X) was
obtained from Thermo Fisher Scientific Inc. (PA, United States).
L-Glutamine (Glutamax 100x) was purchased from Invitrogen
corp., (Carlsbad, CA, United States). Penicillin-G and
streptomycin were obtained from Amresco (Solon, OH,
United States). Filters (Millex GV. 0.22 µm) were purchased
from Millipore Pvt. Ltd., (Billerica, MA, United States). All
other reagents were of analytical grade.

Synthesis, Confirmation of cDNA, and PCR
Amplification of TLR3, RIGI, and TLR7
Genes
The 20 μl reaction mixture contained 5 μg of total RNA, 0.5 μg of
oligo dT primer (16–18 mer), 40 U of ribonuclease inhibitor,
10 M of dNTP mix, 10 mM of DTT, and 5 U of MuMLV reverse
transcriptase in the reverse transcriptase buffer. The reaction

mixture was gently mixed and incubated at 37°C for 1 h. The
reaction was stopped by heating the mixture at 70°C for 10 min
and chilled on ice. The integrity of the cDNA was checked by
PCR. To amplify the full-length open reading frame (ORF) of the
gene sequence, a specific primer pair was designed based on the
mRNA sequences of Gallus gallus by DNASTAR software. The
primers have been listed in Table 1. 25 μl of the reaction mixture
contained 80–100 ng cDNA, 3.0 μl 10X PCR assay buffer, 0.5 μl of
10 mM dNTP, 1 U Taq DNA polymerase, 60 ng of each primer,
and 2 mM MgCl2. PCRs were carried out in a thermocycler
(PTC-200, MJ Research, United States) with the following cycling
conditions: initial denaturation at 94°C for 3 min, denaturation at
94°C for 30 sec, and varying annealing temperature (as mentioned
in Table 1) for 35 sec, and extension at 72°C for 3 min was carried
out for 35 cycles followed by final extension at 72°C for 10 min.

cDNA Cloning and Sequencing
PCR amplicons verified by 1% agarose gel electrophoresis were
purified from gel using Gel Extraction Kit (Qiagen GmbH,
Hilden, Germany) and ligated into a pGEM-T easy cloning
vector (Promega, Madison, WI, United States) following the
manufacturer’s instructions. The 10 μl of the ligated product
was directly added to 200 μl competent cells, heat shock was
given at 42°C for 45 s in a water bath, and cells were then
immediately transferred on chilled ice for 5 min, and SOC was
added. The bacterial culture was pelleted and plated on the LB
agar plate containing ampicillin (100 mg/ml) added to the agar
plate @ 1: 1000, IPTG (200 mg/ml) and X-Gal (20 mg/ml) for
blue-white screening. Plasmid isolation from overnight-grown
culture was done by the small-scale alkaline lysis method.
Recombinant plasmids were characterized by PCR using gene-
specific primers and restriction enzyme digestion based on the
reported nucleotide sequence for cattle. The enzyme EcoR I (MBI
Fermentas, United States) is used for fragment release. Gene
fragment insert in the recombinant plasmid was sequenced by an
automated sequencer (ABI prism) using the dideoxy chain
termination method with T7 and SP6 primers (Chromous
Biotech, Bangalore).

Sequence Analysis
The nucleotide sequence so obtained was analyzed for protein
translation, sequence alignments, and contig comparisons by
DNASTAR version 4.0, Inc., United States. The novel
sequence was submitted to the NCBI GenBank, and the
accession number was obtained, which is available in a public
domain now.

Study of Predicted TLR3, TLR7, and RIG1
Peptides Using Bioinformatic Tools
The predicted peptide sequence of TLR3, TLR7, and RIG1 of
indigenous duck was derived by Edit sequence (Lasergene
Software, DNASTAR) and then aligned with the peptide of
other chicken breed and avian species using Megalign
sequence Programme of Lasergene Software (DNASTAR).
Prediction of the signal peptide of the CD14 gene was
conducted using the software (Signal P 3.0 Sewer-prediction
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results, Technical University of Denmark). Estimation of leucine
percentage was conducted manually from the predicted peptide
sequence. Di-sulfide bonds were predicted using suitable software
(http://bioinformatics.bc.edu/clotelab/DiANNA/) and by
homology search with other species.

The protein sequence-level analysis study was carried out with
specific software (http://www.expasy.org./tools/blast/) for the
determination of leucine-rich repeats (LRRs), leucine zipper,
N-linked glycosylation sites, detection of leucine-rich nuclear
export signals (NESs), and detection of the position of the GPI

anchor. The detection of leucine-rich nuclear export signals
(NESs) was carried out with NetNES 1.1 Server, Technical
University of Denmark. The analysis of O-linked glycosylation
sites was carried out using NetOGlyc 3.1 server (http://www.
expassy.org/), whereas the N-linked glycosylation site was
detected by NetNGlyc 1.0 software (http://www.expassy.org/).
The detection of leucine-zipper was conducted through Expassy
software, Technical University of Denmark (Pal et al., 2020).
Regions for alpha-helix and beta-sheet were predicted using
NetSurfP-Protein Surface Accessibility and Secondary

TABLE 1 | List of primers used for amplification of TLR3, RIG1, and TLR7 genes in indigenous duck.

Gene Primer Product length Annealing temp

Primers used for amplification of TLR3 for duck
Duck TLR3.1 FP: TGGAAAACAATGTCAAATCAG 450 49.9

RP: TCACGGAGGTTCTTCAG
Duck TLR3.2 FP: TCCGTGAGCTTGTGTTGT 460 50.2

RP: AGATGTTTGAGCCTGGAC
Duck TLR3.3 FP: GATAAATTCGCTCACTGG 436 48.8

RP: TCTAAGGCTTGGAACGA
Duck TLR3.4 FP: TCAGCAATAACAACATAGCAAACA 456 51.8

RP: GGGTCGCATTAAGCCAACT
Duck TLR3.5 FP: ATATACCTGGATTGCAGTCTCAGT 650 52.7

RP: CTGGGCTGGCCACTTCAAG
Primers used for amplification of RIG1 for duck
Duck RIG1.1 FP: CTGCAGTGCTACCGCCGCTACATC 460 59.6

RP: TATCCGACCGACAGAGACATTCAA
Duck RIG1.2 FP:AAAGATGTTGACAGTGAAATG 402 50.8

RP: TCCTTGAACAGAGTATCCTT
Duck RIG1.3 FP: CAGGACGAAAGGCGAAAGTT 448 53.8

RP: TGTATGTCAAGGTAGGAGCAGAGA
Duck RIG1.4 FP: ATCCCTTTGCAGCCATTATCC 585 55.2

RP: CGCGCCCCATCAAAACAC
Duck RIG1.5 FP: TAACTACATAAAGCCAGGTG 448 50.4

RP: TACTTTAGGTTTTATTTCTTTC
Duck RIG1.6 FP: CCAGAAGGAAAGAAATAAAACC 416 52.3

RP: TGGTGGGTACAAGTTGGACAT
Primers used for amplification of TLR7 of duck
Duck TLR7.1 FP: TCAAGCATATTCATGAAGACTTT 513 58.4

RP: TGGGCCCCAACCTGACAG
Duck TLR7.2 FP: TTGAGAATGGCAGTTTTG 500 48.8

RP: AGCCTTTGAATGTATCTTA
Duck TLR7.3 FP: ACATTCAAAGGCTTTTTATTCCT 754 52.4

RP: TATTGCATTACCTGACAAGTTGAG
Duck TLR7.4 FP: GATGCCTCAACTTGTCAGGTAATG 751 53.5

RP: TTTTCGGGGAAGCTAGATTTCTT
Duck TLR7.5 FP: CTAGCTTCCCCGAAAATGTCAT 736 54.8

RP: TTCTGCACAGCCTTTTCCTCAG
Duck TLR7.6 FP: AGCGCCTTCTAGATGAAAA 400 48.8

RP: TTTTAGTTTATGAGATTTTATTAT
List of primers used for QPCR study
β-Actin FP: 5′-GAGAAATTGTGCGTGACATCA-3′ 152 60

RP: 5′-CCTGAACCTCTCATTGCCA-3′
TLR2 FP: 5′CATTCACCATGAGGCAGGGATAG-3′ 157 60

RP: 5′-GGTGCAGATCAAGGACACTAGGA-3′
TLR4 FP: 5′-TTCAGAACGGACTCTTGAGTGG-3′ 131 60

RP: 5′-CAACCGAATAGTGGTGACGTTG-3′
TLR7 5′-TTGCTGCTGTTGTCTTGAGTGAG-3′ 182 60

5′-AACAACAGTGCATTTGACGTCCT-3′
Bu-1 5′-GGCTGTTGTGTCCTCACTCATCT-3′ 106 60

5′-CACCACCGACATTGTTATTCCAT-3′

*The final and complete sequence is obtained by joining the fragments of the amplified products of the gene consecutively.
1TLR2, Toll-like receptor 2; TLR4, Toll-like receptor 4; TLR7, Toll-like receptor 7; Bu-1, chicken B-cell marker chB6.

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 6332834

Pal et al. RIGI and TLRs Against Avian-Influenza

178

http://bioinformatics.bc.edu/clotelab/DiANNA/
http://www.expasy.org./tools/blast/
http://www.expassy.org/
http://www.expassy.org/
http://www.expassy.org/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Structure Predictions, Technical University of Denmark (Schlee
et al., 2009; Pal et al., 2018a). Domain linker prediction was done
according to the software developed (Pal et al., 2019a). The LPS-
binding site (Glick, 1977) and LPS-signaling sites (Petersen et al.,
2009) were predicted based on homology studies with other
polypeptide species.

Three-Dimensional Structure Prediction
and Model Quality Assessment
The templates which possessed the highest sequence identity with
our target template were identified by using PSI-BLAST (http://
blast.ncbi.nlm.nih.gov/Blast). The homology modeling was used
to build a 3D structure based on homologous template structures
using PHYRE2 server (Ebina et al., 2009). The 3D structures were
visualized by PyMOL (http://www.pymol.org/), which is an open-
source molecular visualization tool. Subsequently, the mutant
model was generated using the PyMoL tool. Swiss PDB Viewer
was employed for controlling energy minimization. The
structural evaluation along with a stereochemical quality
assessment of predicted model was carried out by using the
SAVES (Structural Analysis and Verification Server), which is
an integrated server (http://nihserver.mbi.ucla.edu/SAVES/). The
ProSA (Protein Structure Analysis) webserver (https://prosa.
services.came.sbg.ac.at/prosa) was used for refinement and
validation of the protein structure (Cunningham et al., 2000).
The ProSA was used for checking model structural quality with
potential errors, and the program shows a plot of its residue
energies and Z-scores which determine the overall quality of the
model. The solvent accessibility surface area of the IR genes was
generated by using NetSurfP server (http://www.cbs.dtu.dk/
services/NetSurfP/) (Muroi et al., 2002). It calculates relative
surface accessibility, Z-fit score, the probability for Alpha-
Helix, probability for beta-strand and coil score, etc. TM align
software was used for the alignment of 3D structure of IR protein
for different species and RMSD estimation to assess the structural
differentiation (Kelley et al., 2015). The I-mutant analysis was
conducted for mutations detected to assess the thermodynamic
stability (Wiederstein and Sippl, 2007). PROVEAN analysis was
conducted to assess the deleterious nature of the mutant amino
acid (Pal et al., 2018b).

Molecular Docking
Molecular docking is a bioinformatic tool used for in silico
analysis for the prediction of the binding mode of a ligand
with a protein 3D structure. PatchDock is an algorithm for
molecular docking based on the shape complementarity
principle (Zhang and Skolnick, 2005). The PatchDock
algorithm was used to predict ligand–protein docking for
surface antigen for avian influenza (H antigen and NA
antigen) with the molecules for innate immunity against viral
infections such as TLR3, TLR7, and RIG1. FireDock was
employed for further confirmation (Capriotti et al., 2005). The
amino acid sequence for the surface antigen (hemagglutinin and
neuraminidase) from different strains of avian influenza was
retrieved from gene bank. Hemagglutinin segment 4 sequence
was collected from the Indian subcontinent as H5N1 (Acc no.

KR021385, Protein id. AKD00332), H4N6 (Acc no. JX310059,
Protein id. AF082958), H6N2 (Acc no. KU598235, Protein id.
AMH93683), and H9N2 (Acc no. 218091, Protein id.
AAG53040). Neuraminidase segment 6 was collected from the
Indian subcontinent as H5N1 (Acc no. KT867346, Protein id.
ALK80150), H4N6 (Acc no. JX310060, Protein id. AF082959),
and H6N2 (Acc no. KU598237, Protein id. AMH93685) to be
employed as the ligand. The receptor molecules employed were
TLR3 (Gene bank accession number KX865107, NCBI, and
derived protein as ASW23003), RIGI (Gene bank accession
number KX865107, protein ASW23002 from NCBI), and
TLR7 (Gene bank Accession no. MK986726, NCBI) for duck
sequenced and characterized in our lab.

Assessment of Antigenic Variability Among
Different Strains of Avian Influenza
MAFFT software (Choi and Chan, 2015) was employed for the
detection of amino acid variability and construction of
phylogenetic tree for different strains of avian influenza
detected in duck in the Indian subcontinent.

The amino acid sequence for the surface antigen
(hemagglutinin and neuraminidase) from different strains of
avian influenza was retrieved from gene bank. Hemagglutinin
segment 4 sequence was collected from the Indian subcontinent
as H5N1 (Acc no. KR021385, Protein id. AKD00332), H4N6 (Acc
no. JX310059, Protein id. AF082958), H6N2 (Acc no. KU598235,
Protein id. AMH93683), and H9N2 (Acc no. 218091, Protein id.
AAG53040).

Neuraminidase segment 6 was collected from the Indian
subcontinent as H5N1 (Acc no. KT867346, Protein id.
ALK80150), H4N6 (Acc no. JX310060, Protein id. AF082959),
and H6N2 (Acc no. KU598237, Protein id. AMH93685.1).

Protein–Protein Interaction Network
Depiction
In order to understand the network of TLR3, TLR7, and RIG1
peptides, we performed analysis submitting FASTA sequences to
STRING 9.1 (Schneidman-Duhovny et al., 2005). Confidence
scoring was used for functional analysis. Interactions with score
<0.3 are considered as low confidence, scores ranging from 0.3 to
0.7 are classified as medium confidence, and scores >0.7 yield
high confidence. The functional partners were depicted.

KEGG analysis also depicts the functional association of TLR3,
TLR7, and RIG1 peptides with other related proteins (KEGG:
Kyoto Encyclopedia of Genes and Genomes–GenomeNet,
https://www.genome.jp/kegg/).

Real-Time PCR
An equal amount of RNA (quantified by Qubit fluorometer,
Invitrogen), wherever applicable, were used for cDNA
preparation (Superscript III cDNA synthesis kit; Invitrogen).
All qRT-PCR reactions were conducted on the ABI 7500 fast
system. Each reaction consisted of 2 µl cDNA template, 5 µl of 2X
SYBRGreen PCRMaster Mix, 0.25 µl each of forward and reverse
primers (10 pmol/μl), and nuclease-free water for a final volume
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of 10 µl. Each sample was run in duplicate. Analysis of real-time
PCR (qRT-PCR) was performed by the delta-delta-Ct (ΔΔCt)
method. The primers used for QPCR analysis have been listed as
per Table 1.

Studies were also conducted for differential mRNA expression
profiling of TLR3, TLR7, and RIGI as an in vitro study in
embryonic fibroblast cell of both chicken (Haringhata Black
breed) and duck (Bengal duck) after the challenge study with
the H5N1 strain of avian influenza virus in comparison to control
in BSL3 lab. Samples were collected after 72 h of infection and
subjected to RNA isolation, and the same steps were followed as
explained earlier.

Comparison of TLR3, TLR7, and RIG1
Structures of Indigenous Ducks With
Respect to Chicken
Nucleotide variation for the proteins was detected from their
nucleotide sequencing, and amino acid variations were estimated
(DNASTAR). The 3D structure of the derived protein was
estimated for both indigenous ducks and chicken by Pymol
software. The PDB structure of the respective proteins was
derived from PHYRE software (Mashiach et al., 2008). We
also employed Modeller software for protein structural

modeling (Katoh and Standley, 2013) for better confirmation.
Alignment of the structure of TLR3, TLR7, and RIGI duck with
chicken was conducted by TM Align software (Szklarczyk et al.,
2015).

RESULTS

Molecular Characterization of TLR3 Gene
Toll-like receptors are a group of pattern recognition receptors
effective against a wide range of pathogens. TLR3 gene of
indigenous ducks has been characterized with 2688 bp
nucleotide (Gene bank accession number KX865107, NCBI)
and derived protein as ASW23003.1. The 3D protein structure
(Figure 1A) with surface view (Figure 1B) has been depicted,
with helix light blue, sheet red, loop pink, and blue spheres as
disulfide bonds.

Posttranslational modification sites for TLR3 of duck have
been depicted in Figures 1C–E. Figure 1C reveals the 3D
structure of TLR3 of duck with the sites for leucine zipper
(151–172 amino acid position, yellow surface), GPI anchor (aa
position 879, red sphere), leucine-rich nuclear export signal (aa
position 75–83, blue sphere), LRRNT (aa position 37–51,
magenta sphere), and LRRCT (aa position 664–687, orange

FIGURE 1 | (A) TLR3 molecule of duck (secondary structure with disulphide bond) as blue sphere. (B) TLR3 molecule of duck (secondary structure with disulphide
bond) surface view. (C) 3D structure of TLR3 of duck: yellow surface: leucine zipper (151–172), red sphere: GPI anchor (879), blue sphere: leucine-rich nuclear export
signal, magenta sphere: LRRNT (37–51), orange sphere: LRRCT (664–687). (D) 3D structure of TLR3 of indigenous duck, blue sphere: TIR (748–890), orange mesh:
leucine-rich receptor-like proteinkinase. (E) 3D structure of TLR3 of duck with leucine-rich repeat.
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sphere). Figure 1D depicts the 3D structure of TLR3 of duck with
the site for TIR (amino acid position 748–890, blue sphere) and
the sites for leucine-rich receptor–like protein kinase (amino acid
position 314–637, orange mesh). Figure 1E represents the sites
for leucine-rich repeats as spheres at aa sites 53–74 (blue), 77–98
(red), 101–122 (yellow-orange), 125–145 (hot pink), 148–168
(cyan), 172–195 (orange), 198–219 (gray), 275–296 (raspberry),
299–319 (split pea), 346–367 (purple-blue), 370–393 (sand),
422–444 (violet), 447–468 (deep teal), 497–518 (olive),
521–542 (green), 553–574 (gray), 577–598 (salmon), and
601–622 (density). The other sites for posttranslational
modification as observed were 16 sites for N-linked
glycosylation, 8 sites for casein kinase 2 phosphorylation, 8

sites for myristoylation, and 9 sites for phosphokinase
phosphorylation.

In comparison for TLR3 among the avian species, 51 amino
acid variations were observed, which contribute to various
important domains of TLR3, including LRR, LRRCT, and TIR
domains (Table 2).

Molecular Characterization of RIGI of Duck
RIGI of duck has been characterized (Gene bank accession
number KX865107, protein ASW23002 from NCBI). The 3D
structure of RIGI of duck is depicted in Figures 2A,B (surface
view). RIGI is an important gene conferring antiviral immunity.
A series of posttranslational modification and various domains
for its important function have been represented.

CARD_RIG1 (caspase activation and recruitment domain
found in RIG1) have been depicted in amino acid positions
2–91 and 99–188. CARD2 interaction site (17–20, 23–24,
49–50, and 79–84), CARD1 interface (100, 103, 130–135, 155,
159, and 161–162), and helical insert domain interface (101,
104–105, 107–108, 110–112, 114–115, 139, 143–145, 147–148,
151, 180, 183–184, and 186 aa) have been depicted at RIG1 of
duck. Figure 3C depicts helicase insert domain (242–800 aa) as
orange mesh, helicase domain interface (polypeptide binding) as
(511–512aa warm pink, 515aa white, 519aa gray). Figure 2D
depicts the double-stranded RNA binding site (nucleotide-
binding) at amino acid positions 832 (red), 855 (green),
876–877 (blue), 889–891 (magenta), and 911 (white). The sites
for RD interface (polypeptide binding) and RIG-I-C (C terminal
domain of retinoic acid-inducible gene, RIG-I protein, a
cytoplasmic viral RNA receptor) have been depicted in
Figure 2E. The site for RIG-I-C as amino acid position
807–921 is represented by a mesh of pale green tints. The sites
for RD interface have been depicted as amino acid positions 519
(red sphere), 522–523 (magenta), 536–537 (orange), and 540
(gray).

Figure 2F depicts the sites for the zinc-binding domain of
RIG1 of duck as amino acid positions 812 (firebrick), 815 (marine
blue), 866 (green), and 871 (hot pink). The sites for RNA binding
have been depicted as 511–512 (hot pink), 515 (cyan-deep teal),
and 519 (gray) in Figure 2G.

Molecular Characterization of TLR7 of Duck
TLR7 gene has been characterized in duck (Gene bank Accession
no. MK986726, NCBI). The 3D structure of TLR7 is depicted in
Figures 3A,B (surface view). TLR7 is rich in leucine-rich repeat
(LRR) as depicted in Figure 3C. The LRR sites are 104–125 (red
sphere), 166–187 (green), 188–210 (blue), 243–264 (yellow),
265–285 (magenta), 288–309 (cyan), 328–400 (orange),
435–455, 459–480 (gray), 534–555 (warm pink), 558–628
(split pea), 691–712 (purple-blue), 715–762 (sand), and
764–824 (deep teal).

The other domains are GPI anchor at 1072 amino acid
position (red sphere), domain linker sites such as 294–317
(green sphere) and 467–493 (split pea sphere) (Figure 3D).
The TIR site had been identified as 929–1076 amino acid
position (blue sphere) and cysteine-rich flanking region, and
C-terminal as 823–874 amino acid position (hot pink) as

TABLE 2 | Amino acid variations for TLR3 gene in duck with other poultry species.

Sl no. Position Duck Chicken Turkey Goose Domain

1 42 K E K K LRRNT
2 61 H L H H LRR1
3 68 C V V C LRR1
4 69 H P P P LRR1
5 70 A E E A LRR1
6 74 R Q E K LRR1
7 77 K N N K LRR2
8 92 Q K Q Q LRR2
9 94 E O E E LRR2
10 106 V K K V LRR3
11 119 A V V T LRR3
12 137 D E E D LRR4
13 166 L L L W LRR5
14 179 C Y Y C LLR6
15 187 K N K K LLR6
16 192 S K K S LLR6
17 200 N N N K LLR7
18 212 F V F F LRR7
19 213 H Q H H LRR7
20 285 Y S S S LRR8
21 299 N K N N LRR9
22 306 K E E K LRR9
24 310 S I I I LRR9
28 317 S L L S LRR9
29 319 Y Y Y H LRR9
30 346 Y H Y Y LRR10
31 355 N N H N LRR10
32 360 R R Q R LRR10
33 370 N K K N LRR11
34 378 S Y Y S LRR11
35 382 I T I I LRR11
36 390 T K K T LRR11
37 423 H Q Q H LRR12
38 435 S N N S LRR12
39 444 K E E K LRR12
40 468 S I I S LRR13
41 497 Q R R Q LRR14
42 521 H H Y H LRR15
43 522 K E K K LRR15
44 539 H C Q H LRR15
45 571 Q H H Q LRR
46 577 F H Q F LRR
47 581 Y D N Y LRR
48 601 T T N T LRR
49 619 E N D V LRR
50 686 V A A A LRRCT
51 766 I T T I TIR1
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depicted. The site for LRRNT (leucine-rich repeat N-terminal
domain) of TLR7 had been identified at amino acid position
75–107 (red surface), TPKR-C2 (tyrosine-protein kinase
receptor C2 Ig-like domain) at amino acid position
823–869 (blue surface) and GPI anchor as a green sphere
(Figure 3E). Figure 3F represents the transmembrane site for
TLR7 of duck.

Molecular Docking of TLR3, RIGI, and TLR7
Peptides With the Antigenic Binding Sites of
H and N Antigens of Avian Influenza Virus
Binding for H and N antigens was observed for different strains of
avian influenza with RIGI, TLR7, and TLR3 (Figure 4).
PatchDock analysis has revealed a high score for
hemagglutinin and neuraminidase antigen for the H5N1 strain
of avian influenza virus. The PatchDock score for H antigen for
RIGI, TLR7, and TLR3 was observed to be 19920, 20532, and
22880, respectively, whereas the PatchDock score for N antigen
for RIGI, TLR7, and TLR3 was 21570, 20600, and 21120,
respectively, as detailed in Supplementary Figure S1. The
binding scores were observed to be sufficiently high. The
highest score was obtained for H antigen with TLR3.

Ligand binding is very much important for the receptor
molecule. In our current study, we had studied only the
surface antigens such as hemagglutinin and neuraminidase
that are involved in binding with the immune molecules.

The binding of RIGI of duck with the hemagglutinin H5N1
strain of avian influenza is being depicted with certain domains
highlighted. The binding site of RIGI with H antigen of the H5N1
strain of avian influenza virus extends from 466 to 900 amino acid
positions as blue spheres (Figure 5A). The red surface indicates
the helicase interface domain (511–512, 515, 519 aa position of
RIGI). Amino acid position 519 is a predicted site for helicase
interface domain as well as a site for RD interface. The site for
helicase interface domain is depicted as the yellow surface.
Another important domain within the site includes zinc
binding domain depicted as the green surface.

The binding of RIGI of duck with the neuraminidase H5N1
strain of avian influenza is being depicted with certain domains
highlighted. The binding site of RIGI with the N antigen of the
H5N1 strain of avian influenza virus extends from lysine 245 to
isoleucine 914 amino acid positions as blue spheres (Figure 5B).
Figure 5B depicts only the aligned region of neuraminidase and
RIGI. The site for RIG-I-C (C terminal domain of retinoic acid-
inducible gene ranging from 807–921 aa position by yellow stick).

An interesting observation was that in the CARD domains
such as CARD_RIG1 (caspase activation and recruitment domain
found in RIG1) and CARD2 interaction site, CARD1 interface
was not involved in binding with both the surface protein
hemagglutinin and neuraminidase of avian influenza virus.
This was proved through the pdb structure of RIGI developed
with Modeller software (Figures 5C,D), respectively, for H- and
N-antigen.

FIGURE 2 | (A) 3D structure of RIG1 of duck. (B) 3D structure of RIG1 of duck, surface view. (C) 3D structure of RIG1 of duck with sites for helicase insert domain,
helicase domain interface (polypeptide binding). (D) 3D structure of RIG1 of duck depicting dsRNA binding site. (E) 3D structure of RIGI of duck with RD interface and RIG
IC. (F) 3D structure of RIG1 of duck for zinc binding site. (G) 3D structure of RIG1 of duck of RNA binding site.
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The binding of TLR3 of duck with the neuraminidase H5N1
strain of avian influenza is being depicted with certain domains
highlighted. The binding site of TLR3 with N antigen of the H5N1
strain of avian influenza virus extends from threonine 34 to
isoleucine 459 amino acid positions as green spheres (Figure 6A).
Identifiable domains within this region include LLR 1 to 12, site
for leucine zipper, leucine-rich nuclear export signal, and
LRRNT. The domains within the 3D structure of TLR3 have
been visualized already in Figures 1A–E.

The binding of TLR3 of duck with the hemagglutinin H5N1
strain of avian influenza is being depicted with certain domains
highlighted. The binding site of TLR3 with the H antigen of the
H5N1 strain of avian influenza virus extends from asparagine 53
to arginine 895 amino acid positions as green spheres
(Figure 6B). The important domains within this region
include LRR region 1–18, site for leucine zipper, GPI anchor,
leucine-rich nuclear export signal, LRRCT, site for TIR, and the
sites for leucine-rich receptor-like protein kinase.

The binding of TLR7 of duck with the neuraminidase H5N1
strain of avian influenza is being depicted with certain domains
highlighted. The binding site of TLR7 with the N antigen of the
H5N1 strain of avian influenza virus extends from valine 87 to
glutamine 645 amino acid positions as orange spheres
(Figure 7A). Identifiable important domains within this region

include LRR region 1–11 and domain linker sites. The detail
visualization of these domains is present in Figures 3A–F in the
molecular visualization tool.

The binding of TLR7 of duck with the hemagglutinin H5N1
strain of avian influenza is being depicted with certain domains
highlighted. The binding site of TLR7 with the H antigen of the
H5N1 strain of avian influenza virus extends from aspartic acid
293 to tyrosine 909 amino acid positions as orange spheres
(Figure 7B). The important domains responsible within this
binding site include LRR 7 to LRR14, domain linker sites, and
cysteine-rich flanking region C-terminal, and TPKR-C2
(tyrosine-protein kinase receptor C2 Ig like domain).

Amino Acid Sequence Variability and
Molecular Phylogeny Among Different
Strains of Avian Influenza
High degree of sequence variability has been observed in
Figures 8A,B in the hemagglutinin segment of avian
influenza and Figures 8C,D in the neuraminidase segment
of avian influenza. The H5N1 strain was observed to be
clustered with the H6N2 strain of avian influenza virus.
The H4N6 strain which is comparatively less virulent and
hence causing LPAI was found to possess certain uniqueness

FIGURE 3 | (A) 3D structure of TLR7 of indigenous duck. (B) 3D structure of TLR7 of duck (surface view). (C) 3D structure of TLR7 of duck with the LRR region. (D)
3D structure for TLR7 of duck domains. (E) 3D structure of TLR7 of duck with LRRNT, TPKRC2, and GPI anchor. (F) Transmembrane helix for TLR7 of duck.
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in amino acid sequence. Deletions of four consecutive amino
acids at positions 65–68 and 140–141 were observed in
hemagglutinin. Likewise, insertion mutations were also

observed at amino acid positions 19–24 and 77–79 in
hemagglutinin. Cysteine residues were observed to be
conserved across the strains (Figure 8B).

FIGURE 4 | Alignment/binding of identified immune response molecules with hemagglutinin and neuraminidase for different strains of avian influenza.
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However, in such a case, highly pathogenic H5N1 depicts
certain deletion mutations at amino acid positions 37–45, 53–63,
and 80–82 of neuraminidase (Figure 8D).

Comparative Structural Analysis of TLR3
and TLR7 of Duck With Respect to Chicken
Ducks were reported to be genetically more resistant to chicken,
particularly in terms of viral infections. Accordingly, the
structural alignment of the 3D structure of TLR3 of duck with
chicken has been described (Figure 9A). 3D structural alignment
of TLR7 of duck with chicken has been visualized (Figure 9B). It
was not possible to study the structural alignment of duck RIG-I
since RIGI was not expressed in chicken.

The sites for non-synonymous mutations have been
depicted for TLR3 gene in duck with respect to other
poultry species such as chicken, goose, and guineafowl
(Table 2). 51 sites for amino acid substitutions have been
detected, ranging from amino acid position 42 to 766 in duck
with respect to other poultry species, which actually
contribute to changes in functional domains of TLR3. A
comparison of TLR3 of duck with chicken actually revealed
46 sites of amino acid substitution resulting due to non-
synonymous mutations, which are of much importance to
our present study. Most of the substitutions caused changes in
leucine-rich repeats, which is an inherent characteristic for
pattern recognition receptor such as TLR2. 20 sites of amino
acid substitutions that were specific for anseroides (duck and
goose) were identified.

Protein–Protein Interaction Network
Depiction for TLR3 and TLR7 With Respect
to Other Functional Proteins
Interaction of TLR3 with other proteins has been depicted in
Figure 10A with STRING analysis. Interaction of TLR7 with
other proteins of functional interest has been depicted in
Figure 10B. KEGG analysis depicts a mode of the defense
mechanism of influenza A and the possible role of antiviral
molecules in combating the infection and the role of antiviral
molecules through the TLR signaling pathway.

Differential mRNA Expression Pattern of
TLR7 and Other TLR Genes of Duck With
Respect to Chicken and Other Poultry
Species
We conducted differential mRNA expression profiling of TLR2,
TLR4, and TLR7. Expression profiling of TLR2 and TLR4 was
observed to be better in indigenous chicken (Aseel and
Haringhata Black) and guineafowl than in anseroides (duck and
guineafowl). Both TLR2 and TLR4 are known to impart antibacterial
immunity. Quantitative mRNA expression analysis clearly depicts
TLR7 gene expression was definitely better in duck than in other
poultry species such as goose, guineafowl, and indigenous chicken
breed (Aseel and Haringhata Black chicken) (Figure 11). This gives
an indication that better immune response of indigenous duck may
be due to the increased expression level of TLR7, which confers
antiviral resistance (Figure 11).

FIGURE 5 |Molecular docking of RIGI with surface antigen for avian influenza. (A)Molecular docking image RIG1 of duck with antigen (AI) ligand H antigen-binding
site detection. (B)Molecular docking image RIG1 of duck with antigen (AI) NS antigen ligand (left) and binding site (right). (C)Duck RIGI model binding with H-antigen of
avian influenza virus, with CARD domain—no binding for CARD with virus. (D) Duck RIGI model binding with N-antigen of avian influenza virus, with CARD domain—no
binding for CARD with virus.
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Differential mRNA expression profiling for TLR7, TLR3, and
RIGI genes with respect to infected versus control Bengal duck and
HB chicken have been depicted in Figures 12–14, respectively.
Figures 12A,B depict the TLR7 gene expression level in the
infected condition with respect to healthy control in duck and
chicken, respectively. Similarly, Figures 13A,B represent the TLR3
gene expression level in the infected condition with respect to healthy
control in duck and chicken, respectively. However, Figure 14
represents only the expression of RIGI in duck. In all the cases,
the higher expression level of TLR7, TLR7, and RIGI was detected in
infected cases than in healthy control birds. RIGI was reported to
have significantly pronounced better expression in infected ducks
than healthy control.

Phylogenetic Analysis of Indigenous Ducks
With Other Poultry Species and Other Duck
Population Globally
With an aim for the identification of the status of molecular
evolution of duck, the indigenous duck gene sequence of West
Bengal, India, was compared with other duck sequences globally.

Phylogenetic analysis was performed with respect to TLR7
(Figure 15A) and TLR3 (Figure 15B). Phylogenetic analysis
revealed that ducks of West Bengal were observed to be
genetically more closely related to the duck population of
China (Figure 15A). Ducks were observed to be genetically
closest to goose (Figure 15B). Chicken, quail, and turkey were
observed to be genetically distinct from duck (Figure 12B).

DISCUSSION

Indigenous duck population was characterized to be very hardy,
and usually asymptomatic to common avian diseases. But there is
a paucity of information regarding the systemic genetic studies on
duck involved in its unique immune status. It is evident that duck

FIGURE 6 | (A)Molecular docking -TLR3 of duck with H antigen of Avian
influenza (B) Molecular docking TLR3 of duck with NS antigen of Avian
influenza.

FIGURE 7 | (A)Molecular docking TLR7 of duck with H antigen of avian
influenza. (B) Molecular docking TLR7 of duck with NS antigen of avian
influenza.
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FIGURE 8 | (A) Alignment report for Haemagglutinin antigen for different strains for Avian influenza (B) Alignment report for Haemagglutinin antigen for different
strains for Avian influenza by MAFFT software (MSA viewer) (C) Alignment report for neuraminidase antigen for different strains for Avian influenza (D) Alignment report for
neuraminidase antigen for different strains for Avian influenza by MAFFT software (MSA viewer).
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possesses some unique genetic makeup which enables it to
provide innate immunity against viral infection, particularly
avian influenza.

In this current study, we identified three immune response
molecules, which were earlier known to have immunity against

viral infection such as RIGI, TLR7, and TLR3. We characterized
these proteins of duck, and attempted to identify the SNPs or
variations in nucleotide among duck and chicken. Through
molecular docking, the most promising IR molecules
conferring innate immunity against avian influenza have been
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identified, which were later on confirmed through the wet lab
study as differential mRNA expression profiling. We attempt to
explore the unique genetic constitution of duck immune response
with respect to that of chicken. However, RIGI was reported to be
expressed only in duck, not in chicken; hence, comparison was
not available. TLR7 expression profiling was observed to be
significantly better in duck than in chicken and other poultry
species, indicative of better antiviral immunity in ducks. 53 non-
synonymous mutations with amino acid variations were observed
while comparing amino acid sequence of duck with other poultry
species, including chicken, most of which are confined to the LRR
domain. We had already depicted that LRR is an important
domain for pathogen binding site as in this case of avian
influenza. For the effective antiviral activity, binding of viral
protein with the immune response molecule is the primary
criterion. Leucine-rich repeats (LRRs) were observed to be

important domain involved in binding with hemagglutinin
and neuraminidase surface protein in case of both TLR3 and
TLR7. Similar studies have also reported LRR as the important
domain against bacterial infections in case of CD14 molecule in
cattle (Stetson and Medzhitov, 2006), goat (Vercammen et al.,
2008a; Schlee et al., 2009), and buffalo (Pal and Chatterjee, 2009;
Pal et al., 2013). Other important domains identified were
LRRNT, LRRCT, site for TIR, and the sites for leucine-rich
receptor-like protein kinase, including certain posttranslational
modification sites. Similar reports were also identified in
different species (Stetson and Medzhitov, 2006; Vercammen
et al., 2008a; Pal and Chatterjee, 2009; Schlee et al., 2009; Pal
et al., 2013). An important observation identified was that
although the CARD domain was believed to be an important
binding site for RIGI for some identified virus, it has no binding
ability with avian influenza virus. Other studies have reported

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 63328315

Pal et al. RIGI and TLRs Against Avian-Influenza

189

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


the role of the CARD domain in binding with the MAVS
domain as a part of antiviral immunity (Kelley and
Sternberg, 2009; Šali et al., 2020).

TLR3 (CD283 or cluster of differentiation 283) is a pattern
recognition receptor rich in leucine-rich repeats as revealed in
duck TLR3 of the current study. Other important domains
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include LRRNT, LRRCT, TIR, leucine-rich receptor-like protein
kinase, leucine zipper, GPI anchor, and leucine-rich nuclear
export signal. The other sites for posttranslational modification
as observed were N-linked glycosylation, casein kinase,
phosphorylation, myristoylation, and phosphokinase
phosphorylation. Variability of amino acids in important
domains was observed for duck TLR3 compared to that of
chicken, goose, and turkey. It was observed that genetic
similarity between duck and goose was more than that of
chicken and turkey. Some amino acids which are conserved
for ducks and denote for important domains such as LRR,
LRRCT, and TIR have been identified. In the LRRCT domain,
valine is present in a duck in contrast to alanine in chicken,
turkey, and goose. The current study identified 45 sites of non-
synonymous substitutions between duck and chicken, which
affect important domains for TLR3 as a pattern recognition
receptor. Although it is the first report of characterization of
TLR3 in indigenous duck, earlier studies were conducted in
Muscovy duck, when full-length cDNA of TLR3 was
characterized to be of 2836 bp encoding polypeptide of 895

amino acids (Zhang and Skolnick, 2005). The characterization
of the deduced amino acid sequence contained 4 main structural
domains: a signal peptide, an extracellular leucine-rich repeats
domain, a transmembrane domain, and a Toll/IL-1 receptor
domain (Zhang and Skolnick, 2005), which is in agreement to
our current study. It is to be noted that TLR3 is a PRR, with the
secondary structure being visualized as helix, loop, and sheet with
the sites for disulfide bond being depicted in blue spheres. It
recognizes dsRNA associated with a viral infection, and induces
the activation of IRF3, unlike all other Toll-like receptors which
activate NF-κB. IRF3 ultimately induces the production of type I
interferons, which aid in host antiviral immunity (Morgan et al.,
2019). In the current study, we observed sites for leucine zipper in
duck TLR3, which is an inherent characteristic for dimerization.
Earlier studies have also reported that TLR3 forms a large
horseshoe shape that contacts with a neighboring horseshoe,
forming a “dimer” of two horseshoes (Niu et al., 2019). As
already explained that glycosylation is an important PTM
(posttranslational modification site), it acts a glycoprotein. But
in the proposed interface between the two horseshoe structures,

FIGURE 9 | (A) Comparison of TLR3 of duck and chicken-3D structural analysis (B) Comparison of TLR7 of duck and chicken-3D structural analysis.

FIGURE 10 | (A) String analysis revealing molecular interaction of TLR3 (B) String analysis revealing molecular interaction of TLR7.
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FIGURE 11 | Differential mRNA expression profile of immune response genes of healthy duck with other poultry species.

FIGURE 12 | Differential mRNA expression profiling for TLR7 gene with respect to infected versus control Bengal duck and HB Chicken.
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two distinct patches which are rich in positively charged amino
acids and may be responsible for the binding of negatively
charged viral dsRNA were observed.

RIG1 [also known as DEAD-box protein 58 (DDX58)] is an
important molecule conferring antiviral immunity. Various
important domains have been identified, such as CARD_RIG1
(caspase activation and recruitment domain found in RIG1),
CARD2 interaction site, CARD1 interface, helicase insert
domain, double-stranded RNA binding site, RIG-I-C (C

terminal domain of retinoic acid–inducible gene, RIG-I
protein, and a cytoplasmic viral RNA receptor), RD interface,
zinc-binding domain, and RNA binding. CARD proteins were
observed to be responsible for the recognition of intracellular
double-stranded RNA, a common constituent of a number of
viral genomes. Unlike NLRs, these proteins, RIG-I contain twin
N-terminal CARD domains and C-terminal RNA helicase
domains that directly interact with and process the double-
stranded viral RNA. CARD domains act through the

FIGURE 13 | Differential mRNA expression profiling for TLR3 with respect to infected versus control Bengal duck and HB Chicken.

FIGURE 14 | Differential mRNA expression profiling for RIGI gene with respect to infected versus control Bengal duck and HB Chicken.
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interaction with the CARD motif (IPS-1/MAVS/VISA/Cardiff)
which is a downstream adapter anchored in the mitochondria
(Vercammen et al., 2008b; Botos et al., 2011).

Through the in silico alignment study, it was clearly observed
that TLR3 binds with the H antigen of the avian influenza virus
(H5N1). It was known that avian influenza virus (H5N1) strain is
100–200 nm spherical, enveloped, and includes 500 projecting
spikes containing 80% hemagglutinin and 20% neuraminidase
(Bouvier and Palese, 2008), with genome being segmented
antisense ssRNA. In order to combat the infection, TLR3
binds with the hemagglutinin spikes of the influenza virus.
TLR3 gene was observed to have a role to combat against
Marek’s disease (Said et al., 2018): seven amino acid
polymorphism sites in ChTLR3 with 6 outer part sites and 1
inner part site (Barber et al., 2010). TLR3 cannot act alone. It acts
while interacting with a series of molecules such as TICAM1,
MAP3K7, TAB2, TRAF6, Myd88, IRAK4, IFIH1, and even TLR7.
TLR3 acts through the RIG1-like receptor signaling pathway and
acts through TRIF (Said et al., 2018). Along with in silico studies,
we validated these findings with experimental challenge with
avian influenza virus in embryonated fibroblast cell. The
expression was observed to be more in infected egg than in
healthy control for these genes in duck and chicken.

RIG1 is an important molecule which is only expressed in
ducks, not in a chicken. Duck RIGI transfected cells were

observed to recognize the RIG-I ligand, and a series of
antiviral genes were expressed such as IFN-β, MX1, PKR,
IFIt5, and OASI, and consequently, HPAIV (highly pathogenic
avian influenza virus) titers were reduced significantly (Haunshi
and Cheng, 2014a; Ruan et al., 2015). RIG-I belongs to the IFN-
stimulated gene family, and it acts through the RIG-I–like
receptor signaling pathway. RIG1 detects dsRNA virus in the
cytoplasm and initiates an antiviral response by producing type-I
and Type-III IFN, through the activation of the downstream
signaling cascade. RIG-I is an IFN-inducible viral sensor and is
critical for amplifying the antiviral response (Potter et al., 2008;
Barber et al., 2012). Although RIG1 expression is absent in
chicken; it can produce INFα by another pathway. It has been
observed that IFN-β expression upon influenza infection is
mediated principally by RIG1 (Yoneyama et al., 2004). INFα
expression induced by chicken is unable to protect the host from
avian influenza infection as IFN-β, produced in ducks (Bouvier
and Palese, 2008; Takahasi et al., 2008). This may be one of the
major reasons why ducks are resistant to HPAIV, but not chicken.
Since the RIG1 gene is not expressed in chicken, a comparative
study was not possible. Avian influenza virus was observed to
have surface glycoproteins as hemagglutinin and neuraminidase
spikes on its outer surface (Loo et al., 2008). It was observed that
duck RIG1 can bind with both H antigen and NA antigen of avian
influenza virus. It is interesting to note how RIGI acts on virus

FIGURE 15 | (A)Molecular evolution of ducks reared globally in relation to other poultry species (Based on TLR7) (B)Molecular evolution of ducks reared globally
(Based on TLR3).
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and causes destruction. RIG-I acts through the RIG-I–like
signaling pathway, and secretes NRLX1 and IPS1, leading to
the production of IKKβ, which in turn causes the secretion of
NFκβ and Iκβ (Koemer et al., 2007). These substances ultimately
cause viral myocarditis and the destruction of the virus (Loo and
Gale, 2011). A sequence of reactions occurs such as high fever,
acute respiratory distress syndrome, chemoattraction of
monocytes and macrophages, T-cell activation, and antibody
response (Haunshi and Cheng, 2014b).

TLR7 is another important molecule responsible for antiviral
immunity; it recognizes single-stranded RNA as the genetic
material. It acts through the Toll-like receptor signaling
pathway. However, from the current study, it was observed that
TLR7 binds well with the NA antigen. The identified domains for
TLR7 are mainly LRR (leucine-rich repeat), TIR, cysteine-rich
flanking region, LRRNT (leucine-rich repeat N-terminal domain),
and TPKR-C2 (tyrosine-protein kinase receptor C2 Ig-like
domain). TLR7 releases Myd88, which in turn releases IRAK
(Yamada et al., 2018). Ultimately, IRF7 is released, which causes
viral myocarditis. It is interesting to note that in human and mice,
TLR7 is alternatively spliced and expressed as two protein isoforms
(Brisse and Ly, 2019). Another interesting observation was that
chicken erythrocytes do not express TLR7 (Heil et al., 2003). While
studying the TLR7 expression pattern in different avian species, an
interesting observation in our current study was that TLR 7 gene
expression was significantly better in duck than in other poultry
species, such as indigenous chicken breeds (Aseel and Haringhata
Black chicken), goose, and guineafowl. This is the first report for
such a comparative study. It was reported that chicken TLR7 follow
a restricted expression pattern. TLR7 expression was better in a
macrophage cell line, chicken B-cell–like cell line, but the
expression was observed to be lower in kidney cell line (Philbin
et al., 2005). Following Marek’s disease virus expression, TLR7
expression was observed to be increased in the lungs (St Paul et al.,
2013).

Similarly, increased TLR7 expression was noted in IBDV
(infectious bursal disease virus) (Iqbal et al., 2005). With
regard to avian influenza infection, it was observed that at the
early stage of low pathogenic avian influenza virus (LPAIV)
infection of H11N9, in both duck and chicken, TLR7 is
transiently expressed in peripheral blood mononuclear cells
(PBMCs), while as infection progresses, the expression
declines. Hence, it was observed that in chicken, TLR7
expression depended on the interaction between host and
RNA virus (Abdul-Careem et al., 2009). Thus, differences in
the expression pattern of TLR7 in chicken and duck were
suggested (Abdul-Careem et al., 2009). Even in chicken, the
TLR7 expression pattern was found to vary between HPAIV
and LPAIV. Thus, TLR7 was observed to be an important
immune response gene for avian influenza; TLR7 ligands show
considerable potential for antivirals in chicken (Abdul-Careem
et al., 2009). Although no direct report was available for better
TLR7 expression in a duck than in a chicken, it was reported that
tissue tropism and immune function of duck TLR7 are different
from those of chicken TLR7, which result in a difference in
susceptibility between chicken and duck, when infected by the
same pathogen (Abdul-Careem et al., 2009). A high expression

pattern of duck TLR7 in respiratory and lymphoid tissue was
observed to be different from that of chicken.

TLR3, TLR7, and TLR21 localize mainly in the ER in the
steady-state and traffic to the endosome, where they engage with
their ligands. The recognition triggers the downstream signal
transduction to activate NF-κc or IRF3/7, finally induces
interferon and inflammatory cytokine production (Abdul-
Careem et al., 2009). We can explore these identified and
characterized genes for production of transgenic or gene-
edited chicken resistant to avian influenza as a future control
strategy against avian influenza through immunomodulation,
devoid of side effects as in case of use of drugs (Rauf et al.,
2011). It is to be noted that since the control of avian influenza
virus has been difficult and challenging either through
vaccination (Chen et al., 2013; Rios et al., 2017; Rx List, 2019)
or treatment through antiviral drugs (FDA, 2020; Science News,
2016; Principi et al., 2019; WebMD, 2020) due to frequent
mutation and genetic reassortment (regarded as antigenic shift
or antigenic drift) of the single stranded RNA genome which is
prone to mutations (NHS, 2014; Zhang et al., 2019; Richard et al.,
2002a). An interesting observation revealed that unlike antibodies
(comprising of immunoglobulins) which were highly specific,
arising due to variability of Fab site and variable region (Nguyen,
2020), immune response molecules for innate immunity can bind
Avian influenza virus (H, N antigen), irrespective of strains. As
we analyze the binding sites, some important domains were
identified, which may be involved in antiviral activity. This led
to the finding that the therapeutic approach may be attempted
with the recombinant product corresponding to the identified
domain. Gene editing with gene insert from identified gene may
lead to the evolution of disease-resistant strains/lines of chicken
or duck.

Although the receptors for human influenza and avian
influenza are different, mutations may overcome the barrier.
As a case report in 2018, a human infection with a novel
H7N4 avian influenza virus was reported in Jiangsu, China.
Circulating avian H9N2 viruses were reported to be the origin
of the H7N4 internal segments, unlike both the humanH5N1 and
H7N9 viruses that had H9N2 backbones. The major concern is
that genetic reassortment and adaptive mutation of avian
influenza virus give rise to human influenza virus strain H7N4
(Jiao et al., 2012; Ayora-Talavera, 2018; Karen, 2018; Li et al.,
2020). TheWHO has also warned about the pandemic on human
flu resulting from genetic reassortment of avian influenza (Qu
et al., 2020). We observed in this study that the H5N1 strain of
avian influenza, a highly pathogenic strain, was genetically closer
to H6N2. Recent reports revealed that H6N2 is continuously
evolving in different countries such as South Africa (Quan et al.,
2019), Egypt (WHO, 2018a), India (Worldometer, 2020), and
North America (Zanaty et al., 2019) due to genetic reassortment.
It is gradually evolving from the low pathogenic form to the high
pathogenic form and observed to overcome species barrier with
interspecies genetic assortment (Kumar et al., 2018; Richard et al.,
2002b; Gillim-Ross et al., 2008; FAO, 2019) and every possibility
to evolve as a pandemic for human. Reports are available
depicting human influenza virus arising due to genetic
reassortment of avian influenza in China (Jiao et al., 2012;
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Ayora-Talavera, 2018; Karen, 2018; Li et al., 2020). These findings
highlight the growing importance of the study in the current era,
when the world is suffering from a pandemic.

Although molecular docking analysis is available for the
identification of various drug molecules with avian influenza
virus (Amir et al., 2011; Liu et al., 2015; Khan et al., 2017; Pal
and Chakravarty, 2019b), this is the first report of molecular docking
analysis with the immune response molecules responsible for
antiviral immunity against avian influenza and is the basis for
finding drug for a disease. A series of immune response
molecules are responsible for providing antiviral immunity with
their respective interaction in various pathways as we depicted
through String and KEGG pathway analyses in our current study.

The future outcome for the current study is the possible
utilization of the identified disease resistant genes (RIGI,
TLR3, and TLR7) for the development of avian
influenza–resistant chicken with the identified gene insert
from duck through gene editing or a transgenic approach.

CONCLUSION

RIG1 detects the virus that is present within the cytosol of infected
cells (cell intrinsic recognition), whereas TLR3 detects virus-infected
cells, and TLR7 detects viral RNA that has taken up into the
endosomes of sentinel cells (cell-extrinsic recognition). TLR7 may
be regarded as the promising gene for antiviral immunity with
pronounced expression profiling in duck in contrast to other poultry
birds. Molecular docking revealed RIGI, TLR3, and TLR7 as the
promising genes conferring antiviral immunity against avian
influenza. Point mutations have been detected in chicken TLR3
with respect to that of duck indicative of reduced antiviral immunity
in chicken in comparison to duck utilization of the identified disease-
resistant genes (RIGI, TLR3, and TLR7) for the development of
avian influenza–resistant chicken with the identified gene insert
from duck.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and

accession number(s) can be found in the article/
Supplementary Material.

ETHICS STATEMENT

The animal study was reviewed and approved by the Institutional
Animal Ethics Committee,West Bengal University of Animal and
Fishery Sciences.

AUTHOR CONTRIBUTIONS

ARP has designed the research work, conducted the research
work, analyzed data, and written the manuscript. ABP has
conducted the bioinformatic analysis. PB has analyzed and
revised the article.

FUNDING

The authors are thankful to the Department of Biotechnology,
Ministry of Science and Technology, Govt. of India (Grant
number BT/PR24310/NER/95/649/2017) and SERB, the
Department of Science and Technology, Govt. of India (Grant
no. EMR/2016/003554) for providing financial support.

ACKNOWLEDGMENTS

The technical and financial support by vice-chancellor, West
Bengal University of Animal and Fishery Sciences, is duly
acknowledged. The authors thank the director, AH & VS,
Animal Resource Development Department, Govt. of West
Bengal.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2021.633283/
full#supplementary-material

REFERENCES

Abdul-Careem, M. F., Haq, K., Shanmuganathan, S., Read, L. R., Schat, K. A.,
Heidari, M., et al. (2009). Induction of Innate Host Responses in the Lungs of
Chickens Following Infection with a Very Virulent Strain of Marek’s Disease
Virus. Virology 393, 250–257. doi:10.1016/j.virol.2009.08.001

Ali, S., Mann-Nüttel, R., Schulze, A., Richter, L., Alferink, J., and Scheu, S. (2019).
Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic
Cells Not Always in the Driver’s Seat. Front. Immunol. 10, 778. doi:10.3389/
fimmu.2019.00778

Amir, A., Siddiqui, M. A., Kapoor, N., Arya, A., and Kumar, H. (2011). In Silico
Molecular Docking of Influenza Virus (PB2) Protein to Check the Drug
Efficacy. Trends Bioinformatics 4, 47–55. doi:10.3923/tb.2011,47.5510.3923/
tb.2011.47.55

Ayora-Talavera, G. (2018). Sialic Acid Receptors: Focus on Their Role in Influenza
Infection. Jrlcr Vol. 10, 1–11. doi:10.2147/JRLCR.S140624

Barber, M. R., Aldridge, J. R., Fleming-Canepa, X., Wang, Y. D., Webster, R. G., and
Magor, K. E. (2012). Identification of Avian RIG-I Responsive Genes during
Influenza Infection. Mol. Immunol. 54, 89–97. doi:10.1016/
j.molimm.2012.10.038

Barber, M. R. W., Aldridge, J. R., Webster, R. G., and Magor, K. E. (2010).
Association of RIG-I with Innate Immunity of Ducks to Influenza. Proc. Natl.
Acad. Sci. 107, 5913–5918. doi:10.1073/pnas.1001755107

Basler, C. F., and Aguilar, P. V. (2008). Progress in Identifying Virulence
Determinants of the 1918 H1N1 and the Southeast Asian H5N1 Influenza
A Viruses. Antiviral Res. 79, 166–178. doi:10.1016/j.antiviral.2008.04.006

Basler, C. F., and Aguilar, P. V. (2008). Progress in Identifying Virulence
Determinants of the 1918 H1N1 and the Southeast Asian H5N1 Influenza
A Viruses. Antiviral Res. 79, 166–178. doi:10.1016/j.antiviral.2008.04.006

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 63328322

Pal et al. RIGI and TLRs Against Avian-Influenza

196

https://www.frontiersin.org/articles/10.3389/fmolb.2021.633283/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.633283/full#supplementary-material
https://doi.org/10.1016/j.virol.2009.08.001
https://doi.org/10.3389/fimmu.2019.00778
https://doi.org/10.3389/fimmu.2019.00778
https://doi.org/10.3923/tb.2011,47.5510.3923/tb.2011.47.55
https://doi.org/10.3923/tb.2011,47.5510.3923/tb.2011.47.55
https://doi.org/10.2147/JRLCR.S140624
https://doi.org/10.1016/j.molimm.2012.10.038
https://doi.org/10.1016/j.molimm.2012.10.038
https://doi.org/10.1073/pnas.1001755107
https://doi.org/10.1016/j.antiviral.2008.04.006
https://doi.org/10.1016/j.antiviral.2008.04.006
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Botos, I., Segal, D. M., and Davies, D. R. (2011). The Structural Biology of Toll-like
Receptors. Structure 19 (4), 447–459. doi:10.1016/j.str.2011.02.004

Bouvier, N. M., and Palese, P. (2008). The Biology of Influenza Viruses. Vaccine 26
(Suppl. 4Suppl 4), D49–D53. doi:10.1016/j.vaccine.2008.07.039

Brisse, M., and Ly, H. (20192019). Comparative Structure and Function Analysis of
the RIG-I-like Receptors: RIG-I and MDA5. Front. Immunol. 10. doi:10.3389/
fimmu.2019.01586

Capriotti, E., Fariselli, P., and Casadio, R. (2005). I-Mutant2.0: Predicting Stability
Changes upon Mutation from the Protein Sequence or Structure. Nucleic Acids
Res. 33, W306–W310. Jul 1(Web Server issue): W306–W310. doi:10.1093/nar/
gki375

CDC, Centre for Disease control and Prevention. 2021. Avian Influenza in Birds.
Available at: https://www.cdc.gov/flu/avianflu/avian-in-birds.htm

Chen, S., Cheng, A., and Wang, M. (2013). Innate Sensing of Viruses by Pattern
Recognition Receptors in Birds. Vet. Res. 44, 82. doi:10.1186/1297-9716-44-82

Choi, Y., and Chan, A. P. (2015). PROVEAN Web Server: a Tool to Predict the
Functional Effect of Amino Acid Substitutions and Indels. Bioinformatics 31
(16), 2745–2747. doi:10.1093/bioinformatics/btv195

Cunningham, M. D., Shapiro, R. A., Seachord, C., Ratcliffe, K., Cassiano, L., and
Darveau, R. P. (2000). CD14 Employs Hydrophilic Regions to "Capture"
Lipopolysaccharides. J. Immunol. 164, 3255–3263. doi:10.4049/
jimmunol.164.6.3255

Ebina, T., Toh, H., and Kuroda, Y. (2009). Loop-length-dependent SVM Prediction
of Domain Linkers for High-Throughput Structural Proteomics. Biopolymers
92 (1), 1–8. doi:10.1002/bip.21105

FAO (2019). Chinese-origin H7N9 Avian Influenza Spread in Poultry and Human
Exposure. Available at: http://www.fao.org/3/CA3206EN/ca3206en.pdf.

FDA (2020). H5N1 Influenza Virus Vaccine, Manufactured by Sanofi Pasteur, Inc.
Questions and Answers. Available at: https://www.fda.gov/vaccines-blood-
biologics/vaccines/h5n1-influenza-virus-vaccine-manufactured-sanofi-
pasteur-inc-questions-and-answers.

Fleming-Canepa, X., Aldridge, J. R., Jr, Canniff, L., Kobewka, M., Jax, E., Webster,
R. G., et al. (2019). Duck Innate Immune Responses to High and Low
Pathogenicity H5 Avian Influenza Viruses. Vet. Microbiol. 228, 101–111.
Jan. doi:10.1016/j.vetmic.2018.11.018

Gillim-Ross, L., Santos, C., Chen, Z., Aspelund, A., Yang, C.-F., Ye, D., et al. (2008).
Avian Influenza H6 Viruses Productively Infect and Cause Illness in Mice and
Ferrets. J. Virol. 82, 10854–10863. doi:10.1128/JVI.01206-08

Glick, D. M. (1977). Glossary of Biochemistry and Molecular Biology. Revised
edition. London, UK: Portland Press.

Hale, B. G., Randall, R. E., Ortín, J., and Jackson, D. (2008). The Multifunctional
NS1 Protein of Influenza A Viruses. J. Gen. Virol. 89, 2359–2376. doi:10.1099/
vir.0.2008/004606-0

Haunshi, S., and Cheng, H. H. (2014). Differential Expression of Toll-like Receptor
Pathway Genes in Chicken Embryo Fibroblasts from Chickens Resistant and
Susceptible toMarek’s Disease. Poult. Sci. 93 (3), 550–555. doi:10.3382/ps.2013-
03597

Haunshi, S., and Cheng, H. H. (2014). Differential Expression of Toll-like Receptor
Pathway Genes in Chicken Embryo Fibroblasts from Chickens Resistant and
Susceptible to Marek’s Disease. Poult. Sci. 93 (3), 550–555. doi:10.3382/ps.2013-
03597

Heil, F., Ahmad-Nejad, P., Hemmi, H., Hochrein, H., Ampenberger, F., Gellert, T.,
et al. (2003). The Toll-like Receptor 7 (TLR7)-specific Stimulus Loxoribine
Uncovers a strong Relationship within the TLR7, 8 and 9 Subfamily. Eur.
J. Immunol. 33, 2987–2997. doi:10.1002/eji.200324238

Iqbal, M., Philbin, V. J., and Smith, A. L. (2005). Expression Patterns of Chicken
Toll-like Receptor mRNA in Tissues, Immune Cell Subsets and Cell Lines. Vet.
Immunol. Immunopathology 104, 117–127. doi:10.1016/j.vetimm.2004.11.003

Jiao, P. R., Wei, L. M., Cheng, Y. Q., Yuan, R. Y., Han, F., Liang, J., et al. (2012).
Molecular Cloning, Characterization, and Expression Analysis of the Muscovy
Duck Toll-like Receptor 3 (MdTLR3) Gene. Poult. Sci. 91 (10), 2475–2481.
doi:10.3382/ps.2012-02394

Kannaki, T. R., Reddy, M. R., Shanmugam, M., Verma, P. C., Sharma, R. P., et al.
(2010). Chicken Toll-like Receptors and Their Role in Immunity.World’s Poult.
Sci. J. 66 (04), 727–738. doi:10.1017/s0043933910000693

Karen, S. (2018)Antigenic Drift vs Antigenic Shift. Available at: https://www.
technologynetworks.com/immunology/articles/antigenic-drift-vs-antigenic-
shift-311044.

Katoh, K., and Standley, D. M. (2013). MAFFT Multiple Sequence Alignment
Software Version 7: Improvements in Performance and Usability. Mol. Biol.
Evol. 30 (4), 772–780. doi:10.1093/molbev/mst010

Kell, A. M., and Gale, M. (2015). RIG-I in RNA Virus Recognition. Virology 479-
480, 110–121. doi:10.1016/j.virol.2015.02.017

Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. E. (2015).
The Phyre2 Web portal for Protein Modeling, Prediction and Analysis. Nat.
Protoc. 10, 845–858. doi:10.1038/nprot.2015.053

Kelley, L. A., and Sternberg, M. J. E. (2009). Protein Structure Prediction on the
Web: a Case Study Using the Phyre Server. Nat. Protoc. 4 (3), 363–371.
doi:10.1038/nprot.2009.2

Khan, J., Masood, A., Noor, A., Munir, A., and Qadir, M. I. (2017). Molecular
Docking Studies on Possible Neuraminidase Inhibitors of Influenza Virus. Ann.
Antivir. Antiretrovir 1 (1), 005–007. doi:10.17352/aaa.000002

Kim, J.-K., Negovetich, N. J., Forrest, H. L., and Webster, R. G. (2009). Ducks: The
“Trojan Horses” of H5N1 Influenza. Influenza Other Respir. Viruses 3 (4),
121–128. Jul. doi:10.1111/j.1750-2659.2009.00084.x

Koemer, I., Kochs, G., Kalinke, U., Weiss, S., Staeheli, P., et al. (2007). Protective
Role of Beta Interferon in Host Defense against Influenza A Virus. J. Virol. 81,
2025–2030. doi:10.1128/jvi.01718-06

Kumar, M., Nagarajan, S., Murugkar, H. V., Saikia, B., Singh, B., Mishra, A., et al.
(2018). Emergence of Novel Reassortant H6N2 Avian Influenza Viruses in
Ducks in India. Infect. Genet. Evol. 61, 20–23. doi:10.1016/j.meegid.2018.03.005

Li, X., Sun, J., Lv, X., Wang, Y., Li, Y., Li, M., et al. (2020). Novel Reassortant Avian
Influenza A(H9N2) Virus Isolate in Migratory Waterfowl in Hubei Province,
China. Front. Microbiol., 11, , 2020 13 February2020. doi:10.3389/
fmicb.2020.00220

Liu, Z., Zhao, J., Li, W., Wang, X., Xu, J., Xie, J., et al. (2015). Molecular Docking of
Potential Inhibitors for Influenza H7N9. Comput. Math. Methods Med. 2015,
480764, 2015 . Article ID 480764. doi:10.1155/2015/48076410.1155/2015/
480764

Loo, Y.-M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L.,
et al. (2008). Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate
Immunity. J. Virol. 82, 335–345. doi:10.1128/jvi.01080-07

Loo, Y.-M., and Gale, M., Jr . (2011). Immune Signaling by RIG-I-like Receptors.
Immunity 34 (5), 680–692. doi:10.1016/j.immuni.2011.05.003

Maarouf, M., Rai, K., Goraya, M., and Chen, J.-L. (2018). Immune Ecosystem of
Virus-Infected Host Tissues. Ijms 19, 1379. doi:10.3390/ijms19051379

Manglani, M., and McGavern, D. B. (2018). New Advances in CNS Immunity
against Viral Infection. Curr. Opin. Virol. 28, 116–126. doi:10.1016/
j.coviro.2017.12.003

Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., and
Wolfson, H. J. (2008). FireDock: a Web Server for Fast Interaction
Refinement in Molecular Docking. Nucleic Acids Res. 36, W229–W232. Web
Server issue). doi:10.1093/nar/gkn186

Matrosovich, M. N., Stech, J., and Klenk, H.-D. (2009). Influenza Receptors, Polymerase
and Host Range. Rev. Sci. Tech. OIE 28, 203–217. doi:10.20506/rst.28.1.1870

Matrosovich, M. N., Stech, J., and Klenk, H.-D. (2009). Influenza Receptors,
Polymerase and Host Range. Rev. Sci. Tech. OIE 28, 203–217. doi:10.20506/
rst.28.1.1870

Medina, R. A., and García-Sastre, A. (2011). Influenza A Viruses: New Research
Developments. Nat. Rev. Microbiol. 9, 590–603. doi:10.1038/nrmicro2613

Morgan, B., Ly, H., et al. (2019). Comparative Structure and Function Analysis of
the RIG-I-like Receptors: RIG-I and MDA5. Front. Immunol. doi:10.3389/
fimmu.01586

Muroi, M., Ohnishi, T., and Tanamoto, K.-i. (2002). Regions of the Mouse CD14
Molecule Required for Toll-like Receptor 2- and 4-mediated Activation of NF-
Κb. J. Biol. Chem. 277 (44), 42372–42379. doi:10.1074/jbc.m205966200

Nguyen, H. H. (2020). What Is the Role of Antigenic Shift in the Pathogenesis of
Influenza. Available at: https://www.medscape.com/answers/219557-3453/
what-is-the-role-of-antigenic-shift-in-the-pathogenesis-of-influenza.

NHS. Effectiveness of Tamiflu and Relenza Questioned. Available at: https://www.
nhs.uk/news/medication/effectiveness-of-tamiflu-and-relenza-questioned
(2014).

Niu, B., Lu, Y., Wang, J., Hu, Y., Chen, J., Chen, Q., et al. (2019). 2D-SAR, Topomer
CoMFA and Molecular Docking Studies on Avian Influenza Neuraminidase
Inhibitors. Comput. Struct. Biotechnol. J. 17, 39–48. doi:10.1016/
j.csbj.2018.11.007

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 63328323

Pal et al. RIGI and TLRs Against Avian-Influenza

197

https://doi.org/10.1016/j.str.2011.02.004
https://doi.org/10.1016/j.vaccine.2008.07.039
https://doi.org/10.3389/fimmu.2019.01586
https://doi.org/10.3389/fimmu.2019.01586
https://doi.org/10.1093/nar/gki375
https://doi.org/10.1093/nar/gki375
https://www.cdc.gov/flu/avianflu/avian-in-birds.htm
https://doi.org/10.1186/1297-9716-44-82
https://doi.org/10.1093/bioinformatics/btv195
https://doi.org/10.4049/jimmunol.164.6.3255
https://doi.org/10.4049/jimmunol.164.6.3255
https://doi.org/10.1002/bip.21105
http://www.fao.org/3/CA3206EN/ca3206en.pdf
https://www.fda.gov/vaccines-blood-biologics/vaccines/h5n1-influenza-virus-vaccine-manufactured-sanofi-pasteur-inc-questions-and-answers
https://www.fda.gov/vaccines-blood-biologics/vaccines/h5n1-influenza-virus-vaccine-manufactured-sanofi-pasteur-inc-questions-and-answers
https://www.fda.gov/vaccines-blood-biologics/vaccines/h5n1-influenza-virus-vaccine-manufactured-sanofi-pasteur-inc-questions-and-answers
https://doi.org/10.1016/j.vetmic.2018.11.018
https://doi.org/10.1128/JVI.01206-08
https://doi.org/10.1099/vir.0.2008/004606-0
https://doi.org/10.1099/vir.0.2008/004606-0
https://doi.org/10.3382/ps.2013-03597
https://doi.org/10.3382/ps.2013-03597
https://doi.org/10.3382/ps.2013-03597
https://doi.org/10.3382/ps.2013-03597
https://doi.org/10.1002/eji.200324238
https://doi.org/10.1016/j.vetimm.2004.11.003
https://doi.org/10.3382/ps.2012-02394
https://doi.org/10.1017/s0043933910000693
https://www.technologynetworks.com/immunology/articles/antigenic-drift-vs-antigenic-shift-311044
https://www.technologynetworks.com/immunology/articles/antigenic-drift-vs-antigenic-shift-311044
https://www.technologynetworks.com/immunology/articles/antigenic-drift-vs-antigenic-shift-311044
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1016/j.virol.2015.02.017
https://doi.org/10.1038/nprot.2015.053
https://doi.org/10.1038/nprot.2009.2
https://doi.org/10.17352/aaa.000002
https://doi.org/10.1111/j.1750-2659.2009.00084.x
https://doi.org/10.1128/jvi.01718-06
https://doi.org/10.1016/j.meegid.2018.03.005
https://doi.org/10.3389/fmicb.2020.00220
https://doi.org/10.3389/fmicb.2020.00220
https://doi.org/10.1155/2015/48076410.1155/2015/480764
https://doi.org/10.1155/2015/48076410.1155/2015/480764
https://doi.org/10.1128/jvi.01080-07
https://doi.org/10.1016/j.immuni.2011.05.003
https://doi.org/10.3390/ijms19051379
https://doi.org/10.1016/j.coviro.2017.12.003
https://doi.org/10.1016/j.coviro.2017.12.003
https://doi.org/10.1093/nar/gkn186
https://doi.org/10.20506/rst.28.1.1870
https://doi.org/10.20506/rst.28.1.1870
https://doi.org/10.20506/rst.28.1.1870
https://doi.org/10.1038/nrmicro2613
https://doi.org/10.3389/fimmu.01586
https://doi.org/10.3389/fimmu.01586
https://doi.org/10.1074/jbc.m205966200
https://www.medscape.com/answers/219557-3453/what-is-the-role-of-antigenic-shift-in-the-pathogenesis-of-influenza
https://www.medscape.com/answers/219557-3453/what-is-the-role-of-antigenic-shift-in-the-pathogenesis-of-influenza
https://www.nhs.uk/news/medication/effectiveness-of-tamiflu-and-relenza-questioned
https://www.nhs.uk/news/medication/effectiveness-of-tamiflu-and-relenza-questioned
https://doi.org/10.1016/j.csbj.2018.11.007
https://doi.org/10.1016/j.csbj.2018.11.007
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Otte, J., Hinrichs, J., Rushton, J., Roland-Holst, D., and Zilberman, D. (2008).
Impacts of Avian Influenza Virus on Animal Production in Developing
Countries. CAB Rev. 3, 080. doi:10.1079/PAVSNNR20083080

Otte, J., Hinrichs, J., Rushton, J., Roland-Holst, D., and Zilberman, D. (2008).
Impacts of Avian Influenza Virus on Animal Production in Developing
Countries. CAB Rev. 3, 080, 2008 . 2008. doi:10.1079/PAVSNNR20083080

Pal, A., Chatterjee, P. N., and Sharma, A. (2013). A.Molecular Evolution and
Structural Analysis of Caprine CD14 Deduced from cDNA Clones. Indian
J. Anim. Sci. 83 (10), 1062–1067.

Pal, A., Sharma, A., Bhattacharya, T. K., Mitra, A., and Chatterjee, P. N. (2014).
Sequence Characterization and Polymorphism Detection in Bubaline CD14
Gene. Buffalo Bull. 32 (2), 138–156.

Pal, A., Pal, A., Banerjee, S., Batabyal, S., and Chatterjee, P. N. (2018). Mutation in
Cytochrome B Gene Causes Debility and Adverse Effects on Health of Sheep.
Mitochondrion 46, 393–404. doi:10.1016/j.mito.2018.10.003.46

Pal, A., Pal, A., Banerjee, S., Batabyal, S., and Chatterjee, P. N. (2018). Mutation in
Cytochrome B Gene Causes Debility and Adverse Effects on Health of Sheep.
Mitochondrion 46, 393–404. doi:10.1016/j.mito.2018.10.003.46

Pal, A., Pal, A., Mallick, A. I., Biswas, P., and Chatterjee, P. N. (2019).
Molecular Characterization of Bu-1 and TLR2 Gene in Haringhata Black Chicken.
Genomics 112 (1), 472–483. doi:10.1016/j.ygeno10.1016/j.ygeno.2019.03.010

Pal, A., Abantika, P., Baviskar, P., et al. (2017). “Molecular Characterization by
Next Generation Sequencing and Study of the Genetic Basis of Antiviral
Resistance of Indigenous Ducks,” in the National symposium on National
Symposium on Biodynamic Animal Farming for the Management of Livestock
Diversity under changing climatic scenario and 14 th Annual Convention of
SOCDAB, Mannuthy, Feb 8-10(2017) (CVAS).

Pal, A., and Chatterjee, P. N. (2009). Molecular Cloning and Characterization of
CD14 Gene in Goat. Small Ruminant Res. 82, 84–87. doi:10.1016/
j.smallrumres.2008.11.016

Pal, A., and Chakravarty, A. K. (2019).Genetics and Breeding for Disease Resistance.
Paperback: Academic Press. ISBN: 9780128164068 eBook ISBN:
9780128172674.

Pal, A., Pal, A., Sharma, A., Bhattacharya, T. K., et al. (2020). Mutations in CD14
Gene Causes Mastitis in Different Breeds of buffalo as Confirmed by In Silico
Studies and Experimental Validation. BMC Genet. Under review).
doi:10.21203/rs.2.10779/v1

Pal, A., Sharma, A., Bhattacharya, T. K., Chatterjee, P. N., and Chakravarty, A. K.
(2011). Molecular Characterization and SNP Detection of CD14 Gene of
Crossbred Cattle. Mol. Biol. Int. 2011, 1–13. Article ID 507346, 13 pages.
doi:10.4061/2011/507346

Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M., and Lundegaard, C.
(2009). A Generic Method for Assignment of Reliability Scores Applied to
Solvent Accessibility Predictions. BMC Struct. Biol. 9, 51. doi:10.1186/1472-
6807-9-51

Philbin, V. J., Iqbal, M., Boyd, Y., Goodchild, M. J., Beal, R. K., Bumstead, N., et al.
(2005). Identification and Characterization of a Functional, Alternatively
Spliced Toll-like Receptor 7 (TLR7) and Genomic Disruption of TLR8 in
Chickens. Immunology 114, 507–521. doi:10.1111/j.1365-2567.2005.02125.x

Potter, J. A., Randall, R. E., and Taylor, G. L. (2008). Crystal Structure of Human
IPS-1/MAVS/VISA/Cardif Caspase Activation Recruitment Domain. BMC
Struct. Biol. 8, 11. doi:10.1186/1472-6807-8-11

Principi, N., Camilloni, B., Alunno, A., Polinori, I., Argentiero, A., and Esposito, S.
(2019). Drugs for Influenza Treatment: Is There Significant News? Front. Med.
(Lausanne). doi:10.3389/fmed.2019.00109

Qu, B., Li, X., Cardona, C. J., and Xing, Z. (2020). Reassortment and Adaptive
Mutations of an Emerging Avian Influenza Virus H7N4 Subtype in China. PLoS
ONE 15 (1), e0227597. doi:10.1371/journal.pone.0227597

Quan, C., Wang, Q., Zhang, J., Zhao, M., Dai, Q., Huang, T., et al. (2019). Avian
Influenza A Viruses Among Occupationally Exposed Populations, China, 2014-
2016. Emerg. Infect. Dis. 25 (12), 2215–2225. doi:10.3201/eid2512.190261

Rauf, A., Khatri, M., Murgia, M. V., Jung, K., and Saif, Y. M. (2011). Differential
Modulation of Cytokine, Chemokine and Toll like Receptor Expression in
Chickens Infected with Classical and Variant Infectious Bursal Disease Virus.
Vet. Res. 42 (1), 85. doi:10.1186/1297-9716-42-85

Richard, J., Peter, W., Woolcock, R., Scott, L., Robert, K., Webster, G., et al. (2002).
Reassortment and Interspecies Transmission of North American H6N2
Influenza Viruses. Virology 295, 44–53. doi:10.1006/viro.2001.134

Richard, J., Peter, W., Woolcock, R., Scott, L., Robert, K., Webster, G., et al. (2002).
Reassortment and Interspecies Transmission of North American H6N2
Influenza Viruses. Virology 295, 44–53. doi:10.1006/viro.2001.134

Rios, M. C., Fraga, L. T. S., Nascimento, T. V. S. B. d., Antoniolli, Â. R., Lyra Júnior,
D. P. d., França, A., et al. (2017). Interferon and Ribavirin for Chronic Hepatitis
C: Should it Be Administered in the New Treatment Era? Acta Gastroenterol.
Latinoam. 47, 14–22.

Ruan, W., An, J., and Wu, Y. (2015). Polymorphisms of Chicken TLR3 and 7 in
Different Breeds. PLoS ONE 10 (3), e0119967. doi:10.1371/
journal.pone.0119967

Rx List (2019). Tamiflu. Available at: https://www.rxlist.com/tamiflu-side-
effects-drug center.htm

Said, E. A., Tremblay, N., Al-Balushi, M. S., Al-Jabri, A. A., and Lamarre, D. (2018).
Viruses Seen by Our Cells: The Role of Viral RNA Sensors. J. Immunol. Res.
2018, 1–14. doi:10.1155/2018/9480497

Šali, A., Sánchez, R., et al. (2020). MODELLER A Program for Protein Structure
Modeling. Release 9.24, r11614, 2020 . 10.1385/1-59259-368-2:97.email:
modeller-care AT salilab.org. URL https://salilab.org/modeller.

Schlee, M., Roth, A., Hornung, V., Hagmann, C. A., Wimmenauer, V., Barchet,
W., et al. (2009). Recognition of 5′ Triphosphate by RIG-I Helicase
Requires Short Blunt Double-Stranded RNA as Contained in Panhandle
of Negative-Strand Virus. Immunity 31 (1), 25–34. Epub 2009 Jul 2.
doi:10.1016/j.immuni.2009.05.008

Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H. J. (2005).
PatchDock and SymmDock: Servers for Rigid and Symmetric Docking. Nucleic
Acids Res. 33, W363–W367. 1Web Server issue): W363–W367. doi:10.1093/
nar/gki481

Science News (2016). New NDV-H5nx Avian Influenza Vaccine Has Potential for
Mass Vaccination of Poultry. Available at: https://www.sciencedaily.com/
releases/2016/01/160107131015. htm.

St Paul, M., Paolucci, S., Barjesteh, N., Wood, R. D., and Sharif, S. (2013). Chicken
Erythrocytes Respond to Toll-like Receptor Ligands by Up-Regulating
Cytokine Transcripts. Res. Vet. Sci. 95, 87–91. doi:10.1016/j.rvsc.2013.01.024

Stetson, D. B., and Medzhitov, R. (2006). Type I Interferons in Host Defense.
Immunity, 25, 373–381. Immunity25Elsevier Inc–381. doi:10.1016/
j.immuni.2006.08.007

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas,
J., et al. (20152015). STRING V10: Protein-Protein Interaction Networks,
Integrated over the Tree of Life. Nucleic Acids Res. 43 (Database issue),
D447–D452. doi:10.1093/nar/gku1003

Takahasi, K., Yoneyama, M., Nishihori, T., Hirai, R., Kumeta, H., Narita, R., et al.
(2008). Nonself RNA-Sensing Mechanism of RIG-I Helicase and Activation of
Antiviral Immune Responses. Mol. Cel 29, 428–440. doi:10.1016/
j.molcel.2007.11.028

Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., et al. (2013). NewWorld
Bats Harbor Diverse Influenza A Viruses. Plos Pathog. 9 (10), e1003657–84.
doi:10.1371/journal.ppat.1003657

Vercammen, E., Staal, J., and Beyaert, R. (2008). Sensing of Viral Infection and
Activation of Innate Immunity by Toll-like Receptor 3. Clin. Microbiol. Rev. 21
(1), 13–25. doi:10.1128/CMR.00022-07

Vercammen, E., Staal, J., and Beyaert, R. (2008). Sensing of Viral Infection and
Activation of Innate Immunity by Toll-like Receptor 3. Clin. Microbiol. Rev. 21
(1), 13–25. doi:10.1128/CMR.00022-07

WebMD.Flu Treatment with Antiviral Drugs. Available at: https://www.webmd.
com/cold-and-flu/flu-medications#1(2020).

Webster, R. G., and Govorkova, E. A. (2014). Continuing Challenges in Influenza.
Ann. N.Y. Acad. Sci. 1323 (1), 115–139. doi:10.1111/nyas.12462

WHO. How Pandemic Influenza Emerges. Available at: http://www.euro.who.int/
en/health-topics/communicable-diseases/influenza/pandemic-influenza/how-
pandemic-influenza-emerges(2020).

WHO (2018a). Human Infection with Avian Influenza A(H7N4) Virus – China.
Available at: https://www.who.int/csr/don/22-february-2018-ah7n4-china/en.

WHO (2018b), Influenza (Avian and Other Zoonotic). Available at:.
WHO (2019). Maintenance Break. Available at: https://www.who.int/biologicals/

vaccines/influenza/en.
Wiederstein, M., and Sippl, M. J. (2007). ProSA-web: Interactive Web Service for

the Recognition of Errors in Three-Dimensional Structures of Proteins. Nucleic
Acids Res. 35, W407–W410. Issue suppl_2–W410. doi:10.1093/nar/gkm290

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 63328324

Pal et al. RIGI and TLRs Against Avian-Influenza

198

https://doi.org/10.1079/PAVSNNR20083080
https://doi.org/10.1079/PAVSNNR20083080
https://doi.org/10.1016/j.mito.2018.10.003.46
https://doi.org/10.1016/j.mito.2018.10.003.46
https://doi.org/10.1016/j.ygeno10.1016/j.ygeno.2019.03.010
https://doi.org/10.1016/j.smallrumres.2008.11.016
https://doi.org/10.1016/j.smallrumres.2008.11.016
https://doi.org/10.21203/rs.2.10779/v1
https://doi.org/10.4061/2011/507346
https://doi.org/10.1186/1472-6807-9-51
https://doi.org/10.1186/1472-6807-9-51
https://doi.org/10.1111/j.1365-2567.2005.02125.x
https://doi.org/10.1186/1472-6807-8-11
https://doi.org/10.3389/fmed.2019.00109
https://doi.org/10.1371/journal.pone.0227597
https://doi.org/10.3201/eid2512.190261
https://doi.org/10.1186/1297-9716-42-85
https://doi.org/10.1006/viro.2001.134
https://doi.org/10.1006/viro.2001.134
https://doi.org/10.1371/journal.pone.0119967
https://doi.org/10.1371/journal.pone.0119967
https://www.rxlist.com/tamiflu-side-effects-drug%20center.htm
https://www.rxlist.com/tamiflu-side-effects-drug%20center.htm
https://doi.org/10.1155/2018/9480497
https://doi.org/10.1016/j.immuni.2009.05.008
https://doi.org/10.1093/nar/gki481
https://doi.org/10.1093/nar/gki481
https://www.sciencedaily.com/releases/2016/01/160107131015.%20htm
https://www.sciencedaily.com/releases/2016/01/160107131015.%20htm
https://doi.org/10.1016/j.rvsc.2013.01.024
https://doi.org/10.1016/j.immuni.2006.08.007
https://doi.org/10.1016/j.immuni.2006.08.007
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1016/j.molcel.2007.11.028
https://doi.org/10.1016/j.molcel.2007.11.028
https://doi.org/10.1371/journal.ppat.1003657
https://doi.org/10.1128/CMR.00022-07
https://doi.org/10.1128/CMR.00022-07
https://www.webmd.com/cold-and-flu/flu-medications#1
https://www.webmd.com/cold-and-flu/flu-medications#1
https://doi.org/10.1111/nyas.12462
http://www.euro.who.int/en/health-topics/communicable-diseases/influenza/pandemic-influenza/how-pandemic-influenza-emerges
http://www.euro.who.int/en/health-topics/communicable-diseases/influenza/pandemic-influenza/how-pandemic-influenza-emerges
http://www.euro.who.int/en/health-topics/communicable-diseases/influenza/pandemic-influenza/how-pandemic-influenza-emerges
https://www.who.int/csr/don/22-february-2018-ah7n4-china/en
https://www.who.int/biologicals/vaccines/influenza/en
https://www.who.int/biologicals/vaccines/influenza/en
https://doi.org/10.1093/nar/gkm290
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Worldometer (2020). Coronavirus Death Toll and Trennds. Available at: https://
www.worldometers.info/coronavirus/coronavirus-death-toll.

Yamada, S., Shimojima, M., Narita, R., Tsukamoto, Y., Kato, H., Saijo, M., et al.
(2018). RIG-I-Like Receptor and Toll-like Receptor Signaling Pathways Cause
Aberrant Production of Inflammatory Cytokines/Chemokines in a Severe Fever
with Thrombocytopenia Syndrome Virus Infection Mouse Model. J. Virol. 92
(13), e02246–17. doi:10.1128/JVI.02246-17

Ying, W., Yan, W., Boris, T., Yi, S., George, F. G., et al. (2014). Bat-derived
Influenza-like Viruses H17N10 and H18N11. Trensa Microbiol. 22, 183–191.
doi:10.1016/j.tim.2014.01.010

Yoneyama,M., Kikuchi,M., Natsukawa, T., Shinobu,N., Imaizumi, T.,Miyagishi,M., et al.
(2004). The RNAHelicase RIG-IHas an Essential Function inDouble-StrandedRNA-
Induced Innate Antiviral Responses. Nat. Immunol. 5, 730–737. doi:10.1038/ni1087

Zanaty, A.M., Erfan, A.M., Mady,W. H., Amer, F., Nour, A. A., Rabie, N., et al. (2019).
Avian Influenza Virus Surveillance in Migratory Birds in Egypt Revealed a Novel
Reassortant H6N2 Subtype. Avian Res. 10, 41. doi:10.1186/s40657-019-0180-7

Zhang, Y., Dong, J., Bo, H., Dong, L., Zou, S., Li, X., et al. (2019). Genetic and
Biological Characteristics of Avian Influenza Virus Subtype H1N8 in
Environments Related to Live Poultry Markets in China. BMC Infect. Dis.
19, 458. doi:10.1186/s12879-019-4079-z

Zhang, Y., and Skolnick, J. (2005). TM-align: a Protein Structure Alignment
Algorithm Based on the TM-Score. Nucleic Acids Res. 33, 2302–2309.
doi:10.1093/nar/gki524

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Pal, Pal and Baviskar. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 63328325

Pal et al. RIGI and TLRs Against Avian-Influenza

199

https://www.worldometers.info/coronavirus/coronavirus-death-toll
https://www.worldometers.info/coronavirus/coronavirus-death-toll
https://doi.org/10.1128/JVI.02246-17
https://doi.org/10.1016/j.tim.2014.01.010
https://doi.org/10.1038/ni1087
https://doi.org/10.1186/s40657-019-0180-7
https://doi.org/10.1186/s12879-019-4079-z
https://doi.org/10.1093/nar/gki524
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Advances in Molecular Docking and Structure-Based Modelling
	Table of Contents
	Editorial: Advances in Molecular Docking and Structure-Based Modelling
	Author Contributions
	References

	Evaluation of CONSRANK-Like Scoring Functions for Rescoring Ensembles of Protein–Protein Docking Poses
	Introduction
	Methods
	Docking Decoy Set
	Consensus-Based Rescoring Schemes
	Variations of CONSRANK Scores
	Clustering
	Evaluation
	Implementation

	Results
	Quality of Decoys
	Evaluation of Different Consensus-Based Rescoring Functions
	Combination With ZDOCK Native Scoring Function
	Combining Clusters
	Illustrative Examples

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Identification of the Interactions Interference Between the PH and START Domain of CERT by Limonoid and HPA Inhibitors
	Introduction
	Materials and Methods
	Protein Preparation and Docking Protocol
	Proteins and Ligands Preparation for Molecular Docking
	Molecular Docking Studies
	Stability Evaluation by Molecular Dynamics Simulations (MD)
	MM-PBSA Analysis

	Results and Discussion
	Docking Analysis of START- PH- and START-PH Complex Ligands Interactions
	Stability Evaluation of PH-START Complex by MD Simulations
	Backbone RMSD of the Wild Type and Mutated PH-START Complex
	C-Alpha RMSF of the Wild Type and Mutated PH-START Complex

	Analysis of the Ligands Effect on the PH-START Complex by MD Simulations
	a. Backbone RMSD and C-Alpha RMSF of CERT Structure
	Hydrogen Bond Analysis
	MM-PBSA Analysis


	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Analyzing In Silico the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin
	Introduction
	Materials and Methods
	Preparation of the Systems for MD Simulations
	Recording MD Trajectories
	Analysis of MD Trajectories

	Results
	The Removal of Co-factors Destabilizes the Organization of the EF/CaM Complex
	CaM Conformation Inside the EF/CaM Complex Conserves Features of the Isolated CaM
	A Network of Amino-Acid Interactions Connect the EF Catalytic Site With CaM
	Analysis of Cavities Deformation to Detect Allosteric Pockets

	Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations
	Introduction
	Ligand Databases: Coarse-Graining the Ligands
	Virtual Screening: Martini Dynamic Docking
	Lead Optimization: Backmapping and Coarse Graining in Chemical Space
	Alternative Route: Ligand Binding Pathways, Binding Affinities, and Kinetic Rates
	Further Considerations and Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	MD Simulations on a Well-Built Docking Model Reveal Fine Mechanical Stability and Force-Dependent Dissociation of Mac-1/GPI ...
	Introduction
	Materials and Methods
	AFM Bond Lifetime Measurement Experiments
	Molecular Docking
	System Setup and Equilibrium
	Steered Molecular Dynamics Simulation
	Data Analysis for MD Simulations

	Results
	A Likely Wild-Type Model of Mac-1–GPIbα Complex Was Well Built Up Through Molecular Docking With Treatment of the “Force-Ra ...
	Dissociation of the Stretched Mac-1–GPIbα Complex Was Biphasic Force Dependent
	Force-Induced Allostery in Mac-1 Dissociation From GPIbα
	The Key Residues in the Biphasic Force-Dependent Mac-1-GPIbα Interaction

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Identification of Potential Binders of Mtb Universal Stress Protein (Rv1636) Through an in silico Approach and Insights Into Compound Selection for Experimental Validation
	Introduction
	Materials and Methods
	In silico Analyses
	Target Structure Selection
	Target Structure Preparation
	Ligand Library Generation and Preparation
	Molecular Docking
	Compound Selection

	In vitro Analysis
	Purification of Rv1636 and Microscale Thermophoresis


	Results
	Control Library
	Primary Library
	ChEMBL Library
	InterBioScreen-Natural Library
	DrugBank Library

	Secondary Library

	Discussion
	Corroboration Between Our in silico Studies and Experimental Findings
	cAMP and ATP (Control Library)
	Biased Subset (ChEMBL Library)
	STOCK1N-42384 and STOCK1N-74667 (InterBioScreen-Natural Library)
	Curcumin (Secondary Library)


	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Structure-Guided Computational Approaches to Unravel Druggable Proteomic Landscape of Mycobacterium leprae
	Introduction
	Proteome Modeling in Mycobacterium leprae and Its Relevance to Structure-Guided Drug Discovery
	Approaches to Predict Homo/Hetero-Oligomeric Complexes
	Structural Implications of Substitution Mutations
	In-silico Saturation Mutagenesis
	Druggability
	Structure-Guided Virtual Screening

	Discussion and Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References

	Synthesis and Cytotoxic Activity of Novel Indole Derivatives and Their in silico Screening on Spike Glycoprotein of SARS-CoV-2
	Introduction
	Experimental
	General
	General Procedure for the Synthesis of Compounds 1a–1j
	(E)-1-((2furan-2ylmethylene)hydrazinyl)phenyl)methyl)1H-indole (1a)
	1-((2furan-2ylmethylene)hydrazinyl)3-nitrophenyl)methyl)1H-indole (1b)
	1-((2furan-2ylmethylene)hydrazinyl)1H-indole-1-yl)methyl)phenol (1c)
	1-((4-chlorophenyl)2-furan-2ylmethylene)hydrazinyl)methyl)-1H-indole (1d)
	1-((2furan-2ylmethylene)hydrazinyl)4-methoxyphenyl)methyl)1H-indole (1e)
	2-((2-furan-2-ylmethylene)hydrazinyl)(1H-indol-1-yl)methyl)phenol (1f)
	4-((2-furan-2-ylmethylene)hydrazinyl)1H-indol-1-yl)methyl)-2-Methoxyphenol (1g)
	4-((2-furan-2-ylmethylene)hydrazinyl)(1H-indol-1-yl)methyl)-N,N-dimethylaniline (1h)
	2-(furan-2-ylmethylene)hydrazinyl)-3,7-dimethylocta-2,6-dien-1-yl)-1H-indole (1i)
	1-((2-furan-2-ylmethylene)hydrazinyl)methyl)-1H-indol (1j)

	Biological Screening
	Cytotoxic Activity
	Molecular Docking


	Results and Discussion
	Chemistry
	Cytotoxic Activity
	Molecular Docking
	PAT binds 6WPT with strong affinity via computer docking studies

	Structure Activity Relationship


	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Cryo-EM Map–Based Model Validation Using the False Discovery Rate Approach
	Introduction
	Methods
	Results
	Alcohol Dehydrogenase (2.9 Å, Target T0104)
	T20s Proteasome (2.8 Å)
	γ-Secretase (3.4 Å, Target T0007)
	RNA Polymerase Complex From SARS-CoV-2 (2.5 Å)
	Correlation Between Different Metrics
	Pruning Ab-Initio Built Models

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Structural Design and Analysis of the RHOA-ARHGEF1 Binding Mode: Challenges and Applications for Protein-Protein Interface Prediction
	1. Introduction
	2. Materials and Methods
	2.1. Sequence Analysis
	2.2. Structure and Interface Analysis
	2.3. Superimposition Model of RHOA-ARHGEF1
	2.4. Protein-Protein Docking
	2.5. Molecular Dynamics Simulation

	3. Results
	3.1. Protein-Protein Docking Strategies
	3.1.1. Z-Dock Is the Best Method for Building Our Complex
	3.1.2. Assessment of Webserver Performance in Re-docking Experiments
	3.1.3. Assessment of the Best Performing Methods in Cross-Docking Experiments
	3.1.4. Evaluation of the Best Models Based on Known Interactions to Select the Best RHOA Candidate Structure

	3.2. Template-Based Complex Modeling
	3.3. Molecular Dynamics Simulation Refinement for ComplexT and ComplexD
	3.4. Interface Contacts Evolution Over Time

	4. Discussion
	4.1. Initial Models of RHOA-ARHGEF1 Complex
	4.2. Molecular Dynamics Interface Refinement
	4.3. Validation of the Binding Mode
	4.4. Selection of the Best Model
	4.5. Comparison of the MD Model With Information-Driven HADDOCK Docking

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Active-Site Models of Streptococcus pyogenes Cas9 in DNA Cleavage State
	Introduction
	Results and Discussion
	Atomic Models of Nuclease Active-Sites
	Catalytic Role of RuvC Residue H983
	Lewis (General) Bases of RuvC Active-Site
	SpCas9 Variants With Reduced Off-Target Effects

	Conclusion
	Materials and Methods
	Expression and Purification of Cas9 Proteins
	Preparation of Nucleic Acids
	Activity Detection of Cas9 Proteins
	Building and Refinement of Atomic Models
	Molecular Dynamics Simulations

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Conformational Characterization of the Co-Activator Binding Site Revealed the Mechanism to Achieve the Bioactive State of FXR
	Introduction
	Materials and Method
	Structure Retrieval
	Protein Structure Preparation
	MD Simulations
	MD Trajectory Analysis
	Cavity Volume Calculations
	Free Energy Calculations
	Principal Component Analysis
	Free Energy Landscape
	Computational Alanine Scanning

	Results
	Exploration of Conformational Changes in the Presence and Absence of ‘OCA’
	The Dynamical Exploration of FXR in Four Different Systems
	Secondary Structural Changes During the Simulation
	Conformational Flexibility in LBD of FXR
	Binding Site Analysis of ‘OCA’ With/Without ‘Co-Activator’
	Role of Cation–π Interactions Between the Residues H444 and W466 (Activation Trigger Zone)
	‘Co-Activator’ Binding Site Analysis is Essential to Achieve Activation State of FXR
	Per-Residue Wise Free Energy Contributions to Identify the Critical Residues in FXR
	Binding Free Energy of ‘OCA’ and ‘Co-Activator’ in FXR
	Per Residue Wise Energy Contribution in FXR-‘OCA’ Interactions
	Key Residue Contributions in FXR and ‘Co-Activator’ Interactions

	Cross-Validation of Residue Wise Contribution in the Stability of ‘OCA’ via Computational Alanine Scanning

	Discussion
	Perturbed Mobility of Loop L: H11/H12 is Essential for the Activation of LBD
	Flexibility Allows Reaching the Activate State Conformation by Modulating via ‘OCA’ at Agonist and ‘Co-Activator’ Binding Sites
	Changes in Hydrogen-Bond Network Upon ‘OCA’ and ‘Co-Activator’ Binding
	The Role of “Activation Trigger Zone” and “Charge Clamp” in Stability of Helix H12
	Key Feature Determining the Binding of ‘OCA’
	Key Feature Determining the Binding of ‘Co-Activator’
	Binding Hot Spot for ‘OCA’

	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	RIGI, TLR7, and TLR3 Genes Were Predicted to Have Immune Response Against Avian Influenza in Indigenous Ducks
	Introduction
	Materials and Methods
	Animals, Sample Collection, and RNA Isolation
	Birds
	Materials

	Synthesis, Confirmation of cDNA, and PCR Amplification of TLR3, RIGI, and TLR7 Genes
	cDNA Cloning and Sequencing
	Sequence Analysis
	Study of Predicted TLR3, TLR7, and RIG1 Peptides Using Bioinformatic Tools
	Three-Dimensional Structure Prediction and Model Quality Assessment
	Molecular Docking
	Assessment of Antigenic Variability Among Different Strains of Avian Influenza
	Protein–Protein Interaction Network Depiction
	Real-Time PCR
	Comparison of TLR3, TLR7, and RIG1 Structures of Indigenous Ducks With Respect to Chicken

	Results
	Molecular Characterization of TLR3 Gene
	Molecular Characterization of RIGI of Duck
	Molecular Characterization of TLR7 of Duck
	Molecular Docking of TLR3, RIGI, and TLR7 Peptides With the Antigenic Binding Sites of H and N Antigens of Avian Influenza  ...
	Amino Acid Sequence Variability and Molecular Phylogeny Among Different Strains of Avian Influenza
	Comparative Structural Analysis of TLR3 and TLR7 of Duck With Respect to Chicken
	Protein–Protein Interaction Network Depiction for TLR3 and TLR7 With Respect to Other Functional Proteins
	Differential mRNA Expression Pattern of TLR7 and Other TLR Genes of Duck With Respect to Chicken and Other Poultry Species
	Phylogenetic Analysis of Indigenous Ducks With Other Poultry Species and Other Duck Population Globally

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back cover



