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Editorial on the Research Topic

Machine Learning in Clinical Decision-Making

The “Machine Learning in Clinical Decision-Making” Research Topic assimilates evidence and
perspectives from researchers and thought leaders that are pursuing the safe, effective development,
and clinical application of machine learning systems to augment clinical decision-making across a
wide array of specialties including cardiology, neurology, audiology, intensive care, and oncology.
This editorial summarizes key points from the Research Topic.

Electronic health record (EHR) systems have become widespread amongst health care systems
globally. The resulting EHR databases have generated large, heterogeneous datasets that offer new
opportunities to design and implement smarter health care systems by minimizing manual data
entry, introducing objectivity where hypothetical-deductive reasoning fails, and providing accurate
predictions and classifications that tailor care to individual patients’ needs. Despite the promising
role for artificial intelligence (AI) techniques and technologies to improve patient care, several
substantial barriers to clinical adoption remain.

Many ethical dilemmas surround the use of AI in healthcare. Machine learning algorithms
trained to optimize a certain endpoint may make medically sound recommendations without
reflecting a patient’s ultimate goals of care, which often differ from textbook medical outcomes.
Additionally, algorithms trained on biased data sets may produce biased outputs, which may be
detrimental if the target population demographics and other characteristics are misaligned. There
is also a lack of transparency regarding how many AI algorithms arrive at predictions, which has
important implications for care delivery. Currently, despite impressive efficacy in retrospective and
observational studies, there is limited level I evidence supporting the use of health care AI for
decision support, suggesting a need for more high-level evidence, especially randomized trials.

Electrocardiography (ECG) is an efficient, easily accessible, and commonly performed method
for screening and diagnosing cardiovascular disease, a major contributor to potentially preventable
mortality and morbidity. Among cardiovascular diseases, heart failure is particularly difficult
to recognize due to heterogeneity of underlying pathology and clinical manifestations. Grun
et al. demonstrate the ability of AI to accurately predict heart failure from standard 12-lead
ECGs, highlighting the potential for AI to promote early diagnosis and treatment using routine
clinical data.

Electroencephalography (EEG) is used in the diagnosis, monitoring, and prognostication of
many neurological ailments including seizure, coma, sleep disorders, brain injury, and behavioral
abnormalities. Similar to cardiovascular disease, these neurologic diseases are heterogenous and
often present with diagnostic uncertainty. Saba-Sadiya et al. propose a flexible, unsupervised
model that applies to novel EEG data for a variety of clinical decision tasks, including coma
prognostication and neurodegenerative illness detection. This work represents an important
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foundation for future investigations. Epilepsy affects 50 million
people worldwide; approximately one third of all cases are
refractory to medications. If a discrete cerebral focus is identified,
then neurosurgical resection can be curative. Alim-Marvasti et
al. provide evidence that machine learning models trained on a
combination of chronological clinical seizure manifestations and
an imaging feature can enhance epileptogenic lobe localization,
which is a necessary step in achieving optimal surgical outcomes
for medication-refractory epilepsy.

In audiology, large amounts of patients’ data are measured
but are distributed primarily over local clinical databases with
unique structures, data elements, and variable names, which
hinders external validation and multi-center investigations.
Saak et al. illustrated the feasibility of automatically predicting
common audiological functional parameters from audiological
measures using separate lasso regression, elastic net, and
random forest algorithms, which had similar, strong predictive
performance. The trained models underlie a prototype for
a broadly applicable audiology clinical decision-support
system that would function well across local clinical
databases despite their unique structures, data elements,
and variable names.

Intensive care units (ICUs) serve critically ill patients who
require near-continuous surveillance or advanced organ support.
Medication dosing can be challenging for critically ill patients
because they are often affected by gastrointestinal, hepatic,
and renal dysfunction, which affect medication absorption,
metabolism, and excretion. Several data-driven medication
dosing models have been proposed but have limited ability to
assess inter-individual differences and compute individualized
doses. Eghbali et al. developed a sedation management agent
using deep reinforcement learning which was associated with
improved ICU blood pressure management compared with
clinicians’ performance. The framework proposed by the authors
holds promise for automating dosing for other medications
commonly used in ICUs.

Smartphones, wearables, and other devices providing
medically relevant information generated directly by individuals
outside the healthcare system are an emerging trend and
can augment existing EHR data for model training purposes.
Kyriazakos et al. describe how physiological, psychological,
social, and environmental biomarkers can be used to train
machine learning algorithms to determine the quality of life
of cervical cancer patients and identify novel treatments.

Shickel et al. explored the benefits of incorporating novel
measurements from wrist-worn activity sensors into EHR
data and using resulting datasets and temporal deep learning
models to predict patients’ illness severity. These results
demonstrate the power of non-traditional patient data for
making predictions and classifications that have the potential to
enhance clinical decision-making.

The editors hope you enjoy the “Machine Learning in Clinical
Decision-Making” Research Topic and that your clinical and
research efforts in this realm are enriched by the evidence and
wisdom shared by the contributing authors.
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By Filiberto AC, Leeds IL, and Loftus TJ. (2023) Front. Digit. Health. 3:784495. doi: 10.3389/
fdgth.2021.784495

Given the success of the Research TopicMachine Learning in Clinical Decision-Making published

in Frontiers in Digital Health, we—the editors of the Research Topic—were pleased to expand the

Topic by adding manuscripts that highlight dynamic prediction of mortality among critically ill

patients, machine learning models for individualized antimicrobial use duration, electronic

health record (EHR) tokenization approaches to patient acuity predictions, and a review of

specific artificial intelligence (AI) applications, limitations, and requisites in the United States.

These are important Research Topic additions because they embody the principles that

clinicians make complex decisions under time constraints and uncertainty using hypothetical-

deductive reasoning and individual judgement, which vary from clinician to clinician. Time

constraints are imposed by acute diseases and high clinical workloads in which uncertainty

results from insufficient knowledge, data, and evidence regarding possible diagnoses and

treatments. Clinical decision-support systems often require time-consuming manual data

acquisition and entry, which limit their ready adoption by physicians working in high acuity

environments with critically ill patients. This General Commentary summarizes key points from

the work by Patel, Giordiano, Bolton, Shickel, and their colleagues.

Patients in an intensive care unit (ICU) require close monitoring with a plethora of data

points collected in an EHR that are updated frequently. Models predicting mortality have

traditionally been used for research purposes rather than individual patient risk assessment

at the bedside, and do not consider dynamic clinical status of individual patients. These

risk scores are often calculated to produce a score at a single timepoint, overlooking subtle

yet important updates in patients’ physiology. Despite the rapidly expanding use of EHR

data for model training purposes in research environments, current monitoring strategies

in clinical use remain limited in their ability to accurately represent changes in patient status.

In volume two of this Research Topic, Patel and colleagues introduce a novel study designed

to assess the performance of a dynamicmethodof updatingmortality risk every three hours using

a criticality index mortality (CI-M) neural network methodology (1). The data were collected

from 2018 to 2020 at the Children’s National Hospital, comprising 72 pediatric ICU beds.

EHR data were extracted and ICU courses were stratified into three-hour intervals, using a

neural network to predict outcomes. The CI-M uses a neural network which incorporates

physiology, therapy, and intensity of care to compute a morality risk for pediatric ICU

patients in a clinically relevant model using updated data every three hours. The area under
01 frontiersin.org7
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the receiver operating characteristic curves had a minimum value of

0.778 (95% confidence interval 0.689–0.867) at hour three and a

maximum value of 0.885 (0.841,0.862) at hour 81. The ten most

important variables for risk prediction were duration of ICU stay,

ventilator-free days, hours on mechanical ventilation, coma scores,

age, and neutrophil counts. The CI-M has the potential to enhance

prognostic assessments of critically ill pediatric patients, toward

improving clinical decision-making and care. Ideally, this risk model

will be externally validated and applicable to other institutions.

Bacterial antimicrobial resistance is a global threat and is associated

with increased risk of mortality not only for index patients who develop

resistant infections, but also for other patientswho suffer collateral harm

from spread of resistant organisms, often through healthcare worker

vectors. Clinical decision support systems have the potential to

increase antimicrobial stewardship, thus mitigating antimicrobial

resistance. Bolton et al. use a machine learning and synthetic control-

based approach to estimate patients’ length of stay (LOS) and

mortality outcomes for any given day if they were to stop vs. continue

antibiotic treatment (2). Comparisons between decision support

system use and control experiences demonstrated minimal difference

for both stopping and continuing scenarios, indicating that decision

support estimations were reliable (average LOS differences of 0.24 and

0.42 days, respectively). Their approach is novel, can assist with

individualized antibiotic cessation, and establishes the safety of

patient-specific shortening of antibiotic treatment durations.

Shickel et al. describe their use of a transformer-based patient

acuity prediction framework in the critical care setting with a data

embedding scheme that captures both concept and corresponding

measurement values of many disjoint clinical descriptors (3). The

authors introduce a mechanism for combining both absolute and

relative temporality as an improvement over traditional positional

encoding. They highlight the future of this promising approach

while noting that more research is needed to emphasize analyzing

self-attention distributions between input variables and clinical

outcomes to further the clinical understanding and enhance the

trust of clinicians using transformers in healthcare settings.

In a comprehensive review of peer-reviewed literature describing

access to AI for clinical decision making, Giordano et al. highlight

the use of machine learning models for risk stratification, early

warning of acute decompensation, potential bias in machine

learning algorithms, and the paradigm shift in medical training

towards emerging biomedical informatics applications (4). With

the widespread adoption of EHRs there are vast repositories of

data sets that are ideal for AI training and testing, and many

healthcare disciplines have developed and validated promising

solutions for improved risk stratification and optimization of
Frontiers in Digital Health 028
patient outcomes. Healthcare workers will be expected to

comfortably work within this new AI frontier and, in turn, relate

it to their patients. This review provides an optimal overview and

introduction to the novel methods that should be considered.

We hope that you have enjoyed and learned from these

important additions to the Machine Learning in Clinical

Decision-Making and Machine Learning in Clinical Decision-

Making—Volume II Research Topics published in Frontiers in

Digital Health.
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The application of machine learning for the development of clinical decision-support

systems in audiology provides the potential to improve the objectivity and precision

of clinical experts’ diagnostic decisions. However, for successful clinical application,

such a tool needs to be accurate, as well as accepted and trusted by physicians. In

the field of audiology, large amounts of patients’ data are being measured, but these

are distributed over local clinical databases and are heterogeneous with respect to the

applied assessment tools. For the purpose of integrating across different databases,

the Common Audiological Functional Parameters (CAFPAs) were recently established

as abstract representations of the contained audiological information describing relevant

functional aspects of the human auditory system. As an intermediate layer in a clinical

decision-support system for audiology, the CAFPAs aim at maintaining interpretability

to the potential users. Thus far, the CAFPAs were derived by experts from audiological

measures. For designing a clinical decision-support system, in a next step the CAFPAs

need to be automatically derived from available data of individual patients. Therefore,

the present study aims at predicting the expert generated CAFPA labels using three

different machine learning models, namely the lasso regression, elastic nets, and random

forests. Furthermore, the importance of different audiological measures for the prediction

of specific CAFPAs is examined and interpreted. The trained models are then used to

predict CAFPAs for unlabeled data not seen by experts. Prediction of unlabeled cases is

evaluated by means of model-based clustering methods. Results indicate an adequate

prediction of the ten distinct CAFPAs. All models perform comparably and turn out to

be suitable choices for the prediction of CAFPAs. They also generalize well to unlabeled

data. Additionally, the extracted relevant features are plausible for the respective CAFPAs,

facilitating interpretability of the predictions. Based on the trained models, a prototype

of a clinical decision-support system in audiology can be implemented and extended

towards clinical databases in the future.

Keywords: CAFPAs, clinical decision-support systems, machine learning, audiology, interpretable machine

learning, precision diagnostics
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INTRODUCTION

Clinical decision-making is a complex and multi-dimensional
process which comprises gathering, interpreting, and evaluating
data in the context of a clinical case, in order to derive an
evidence-based action (1). Due to the complexity of the process,
clinical decision-making is obviously prone to errors. Their
rates in general practice have been estimated as high as 15%
(2). Arguably, wrong clinical decisions can have considerable
negative impact on the quality of life of the affected individuals
(3). This is also true for decision-making in audiology.
Considering that [1] about 5% of the world population and one
third of individuals aged above 65 years suffer from disabling
hearing loss (4), [2] that the age group above 65 years is the
fastest growing population (5), and [3] that decisions are prone
to error also in audiology, it is important to continuously
improve the precision of clinical decision-making in
this domain.

Flaws in clinical decision-making are partly caused by
individual differences between physicians with respect to their
level of expertise, the subjective nature of the decision-making

process, as well as environmental factors. For instance, highly
experienced physicians tend to bemore accurate in their choice of
treatment as compared to novices (6). Furthermore, also experts,

similarly to novice physicians, like humans in general, are

susceptible to cognitive processing biases. Most often occurring
distortions were described as the availability bias, confirmation
bias, and premature closure, amongst others (7). Lastly, different
physicians may have access to different measurements (data)
because different clinics may use different test batteries in their
assessment kits which can vary with respect to their measurement
precision and validity (8). Additionally, it is possible that in
the longitudinal evaluation of a patient, required data from
previous potential examinations is missing, or inconsistencies in
the administered tests entail difficulties for a physician newly
involved in the case (8). In summary, the aforementioned
factors arguably lead to variability in the clinical decision-making
process across physicians and clinics, and facilitate distortions in
diagnostic outcomes. To improve the objectivity, precision and
reproducibility of physicians’ decision-making, clinical decision-
support systems (CDSS) have received an increased attention in
many health care domains.

CDSS are information systems that aim to improve
clinical decision-making by providing relevant information
on relationships between measurements and diagnosis to
physicians, patients, or other individuals involved in the
clinical context (9). They aim to reduce the information load of
physicians by summarizing it through the extraction of patterns
and predictions from large amounts of data (10). For instance,
physicians can be informed with probabilities of certain medical
findings and treatment recommendations, based on imputed
case-relevant data which can help to achieve well-informed
judgements (9). In addition, CDSS can rule out subjectivity
in clinical judgements. Not only can they reduce the impact
of processing biases on diagnostic outcomes, but also support
novice physicians in their decision-making process to eliminate
inter-physician variability in diagnostic outcomes.

The advantage of CDSS has been demonstrated in many
previous studies. Just to exemplify with a few, Paul et al. (11)
introduced a computerized CDSS for antibiotic treatment. Based
on a sample of 2,326 patients in three different countries,
the study demonstrated that TREAT improved the hits for
an appropriate antibiotic treatment to 70% as compared with
physicians who only achieved 57% hits. Another example for a
successful CDSS was provided by Dong et al. (12). The authors
developed a rule-based CDSS for the classification of headache
disorders which correctly identified several types of conditions
with an accuracy above 87.2%.

Despite the demonstrated potential of using CDSS, in practice
a widespread usage is oftentimes lacking. Developed CDSS may
not go beyond the trial stage and physicians may choose not to
adopt them (13). Consequently, research has tried to identify
potential reasons that lead physicians to refrain from using a
CDSS. The Technology Acceptance Model developed by Davis
(14) aims to explain this problem of users acceptance with respect
to Information Technology in general. It concludes that user’s
acceptance is influenced by design features, perceived usefulness,
and perceived ease of use. The perceived ease of use represents
how effortless a system can be adopted and it will causally affect
the perceived usefulness. This, in turn, entails how such a system
would benefit the user and enhance his or her performance.
However, it is believed that physicians may be more prone to
assess a system based on trust, rather than its usefulness or ease
of use (15). Wendt et al. (16) state that the extent to which
users are convinced of the validity of the information provided
by the CDSS is crucial for acceptance. On the one hand, this
can be achieved by including physicians in the development
of such CDSS, by means of interviewing physicians along with
extensive piloting. This could lead towards a CDSS that addresses
the physicians needs and, additionally, incorporate it in such a
way that it fits into the physician’s workflow. On the other hand,
enabling physicians to understand how the CDSS works may
further increase their trust towards them. As a result, physicians
evaluate and interpret the system’s output and determine its
validity, enhancing the level of comfort in utilizing the CDSS
(17). Consequently, black box CDSS are rarely accepted, so that
understandable algorithms need to be established for achieving
physician’s trust.

In the medical discipline of audiology, in addition to
the aforementioned issues, the heterogeneity of the applied
assessment tools among different clinics leads to further
challenges in clinical decision-making (8). As a result,
comparability in audiological diagnostics and treatment
recommendations across clinics is compromised. This in turn
may lead to some of the errors that occur in provided diagnostic
decisions. Moreover, the differences in applied audiological
measures may turn out to pose challenges for the development
of a CDSS, aiming to enhance diagnostic precision. This is
because data from different measurement sources need to be
accounted for and integrated in a CDSS. Thus far, the use
of machine learning and CDSSs in the field of audiology is
restricted to automatizing audiological measures (18, 19),
predicting specific diseases, e.g. vertiginous disorders (20), or for
a broad classification of individuals into auditory profiles (21).
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For instance, Song et al. (18) proposed an automated audiometry
based on machine learning that resulted in similar estimates at
audiogram frequencies, while requiring fewer samples than the
traditional manual procedure. Further, Sanchez Lopez et al. (21)
identified four different auditory profiles using unsupervised
learning, which differ on the dimension of audibility and
non-audibility related distortions and may be used for the
development of audiological test batteries. However, to the best
of our knowledge, no CDSS was yet proposed aiming to support
physicians in their general diagnostic endeavor for a variety of
audiological findings.

To address this issue and to work out the relevant constituents
of a more generally applicable CDSS in the field of audiology
that are transparent to the physicians with respect to their
underlying properties, Buhl et al. (8) developed the Common
Audiological Functional Parameters (CAFPAs). The CAFPAs aim
to represent the functional aspects of the human auditory system
in an abstract and measurement-independent way. They can
act as an interpretable intermediate representation in a CDSS,
i.e. CAFPAs are estimated from audiological measures, and the
CAFPAs can be used to infer probabilities of audiological findings
or treatment recommendations. In other words, the CAFPAs aim
to integrate audiological data from a variety of sources, next
to allowing physicians to interpret and validate them. This is
achieved through ten different parameters, describing relevant
conditions which help to determine hearing disorders (8).

Due to their characteristic of being an abstract representation
that does not depend on specific audiological measures, the
CAFPAs provide a common framework for physicians, regardless
of environmental factors, i.e. differences in audiological measures
and clinical expertise. In addition, the CAFPAs were defined in
an expert-driven way, through discussions among experts (8)
and by considering the statistical analysis performed by Gieseler
et al. (22). By including audiological experts into the development
process of the CAFPAs, the crucial aspect of users involvement,
here physicians, has been addressed. In summary, the need for
a CDSS with decision-making steps that become transparent
to physicians is addressed by the CAFPA framework aiming to
act as interpretable intermediate layer in a CDSS. This property
ensures that a future CDSS based upon the CAFPAs will not be a
black box.

Buhl et al. (8) already demonstrated the general feasibility of
the CAFPAs to be used as abstract representation of audiological
knowledge. By an expert survey conducted in the opposite
direction as compared with the typical diagnostic process,
audiological experts rated outcomes of audiological measures
and CAFPAs for given diagnostic cases (i.e., audiological
findings as well as treatment recommendations). This resulted
in audiologically plausible distributions. As a next step towards
a CDSS for audiology, Buhl et al. (23) built a labeled data set in
the typical direction of audiological diagnostics, i.e. experts rated
audiological findings, treatment recommendations, and CAFPAs
based on individual patients’ data from audiological measures.
The suitability of the given data set as a training distribution for
future algorithmic audiological classification tasks was assessed
and confirmed. Hence, Buhl et al. (23) provided a data set with
expert-derived CAFPAs for given audiological measure data in

a sample of individual patients. Based on this data set, machine
learning models for the automatic estimation of CAFPAs from
audiological measures can now be built and evaluated as a next
step towards a CDSS in audiology.

The current study therefore aims at:

1. Predicting expert determined CAFPAs for given audiological
measures using machine learning models;

2. Identifying the most relevant features for the prediction
of ten different CAFPAs from the audiological measures,
in order to ensure the interpretability of the models
and increase physicians’ future acceptance of automatically
derived CAFPAs;

3. Evaluating the potential of the trained models in predicting
CAFPAs for unlabeled data i.e., unlabeled patient cases from
available databases.

METHOD

Data Set
As outlined above, CommonAudiological Functional Parameters
(CAFPAs) are intended as intermediate representations between
audiological measures and diagnostic decisions in a CDSS. To
empirically instantiate CAFPAs, Buhl et al. (23) conducted an
expert survey on a data set containing audiological measures
(Ntotal = 595) provided by the Hörzentrum Oldenburg GmbH
(Germany). Thus, given the audiological data, experts were asked
to assess CAFPAs, as well as to provide diagnostic decisions for
N labeled = 240 patients. The remaining data of Nunlabeled = 355
patients will be used as unlabeled cases for further evaluations
of the trained algorithms. With the labeled data set we intend to
quantify the link from audiological measures to CAFPAs.

Common Audiological Functional Parameters
The CAFPAs describe functional aspects of the human auditory
system and are thereby independent of the choice of audiological
measures. The covered functional aspects are summarized in
Table 1 and Figure 1A.

In a CDSS for audiology, the CAFPAs are planned to act as
an interpretable intermediate layer. They should be determined
from audiological measures. Subsequently, a classification of
audiological findings, diagnoses, or treatment recommendations
for the provision with hearing devices could be performed based
on their basis. The CAFPAs are defined on a continuous scale
in the interval [0 1], indicating the degree of impairment. Their
scale can be graphically displayed in a traffic-light-like color
scheme (cf. Figure 1B), where for the respective functional aspect
green [0] represents “normal” and red [1] represents “maximally
pathological” status.

Expert Survey
The database of the Hörzentrum Oldenburg GmbH (Germany)
contains audiological measures, cognitive tests, and self-reports
on multiple questionnaires from more than 2,400 patients.
Complete data on main variables relevant for the expert survey
was available for 595 patients. A detailed description of this
database was published by Gieseler et al. (22). In the expert survey
by Buhl et al. (23), a part of this database was labeled for the
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TABLE 1 | Overview and description of CAFPAs.

Functional

aspects

CAFPA Description

Hearing

Threshold

CA1

CA2

CA3

CA4

The CAFPAs CA1-CA4 refer to the hearing

threshold at increasing frequencies. Hearing

threshold refers to the minimum sound level

that is required to hear a sound. It is indicated

as the threshold at which a sound is detected

at least 50% of the time. The hearing

thresholds are given in decibels of the hearing

level (dB HL) for given frequencies in

comparison to the normal population. Values

between 0 and 20 dB HL are considered to be

within the normal range, whereas increasing dB

HL values correspond to increasing hearing

loss for the given frequencies (24).

Suprathreshold

deficits

CU1

CU2

These components refer to deficits at levels

above the threshold (24) for lower (CU1) and

higher frequencies (CU2). Even if hearing

threshold levels are within the normal range,

deficits may still be present in the

suprathreshold range, e.g. with deficits in

speech recognition (25).

Binaural hearing CB Binaural hearing reflects processes taking

place in the central nervous system, which

enables hearing with two ears simultaneously

(24, 26). On the one hand, this entails the ability

to perceive different signals that reach the two

ears as one, termed binaural fusion (24). On the

other hand, binaural hearing allows spatial

hearing and sound localization (26, 27).

Neural

processing

CN This CAFPA broadly defines the involvement of

neural components in the hearing process,

such as the cochlear and auditory neurons (24).

Cognitive

components

CC Cognitive components play a role in hearing

deficits. Studies have widely indicated a

correlation between age-related hearing loss

and cognitive decline, even though the causal

mechanisms remain unclear (28). Cognitive

decline may reduce available cognitive

resources for auditory processing. Conversely,

reduced auditory input caused by hearing loss

may lead to a degradation of inputs to the

brain, causing cognitive decline. In any case, a

strong association between cognitive measures

and hearing loss has been found (29).

Socio-economic

status

CE This CAFPA contains information regarding the

socio-economic status of an individual, which

is a combined measure of economic and social

status, found to be positively associated with

better health (30).

purpose of linking CAFPAs to audiological diagnostics. Thereby,
audiological experts were asked to label individual cases from the
database. They were asked to indicate expected CAFPA values
as well as audiological findings and treatment recommendations
on a one-page survey sheet on which the patients’ data were
displayed in a graphical manner.

The following audiological measures and subjective patients’
reports were displayed to the experts. The audiogram (for
air and bone conduction), which characterizes the hearing
threshold of a patient, i.e. which minimum sound pressure

level can be perceived at different frequencies. The adaptive
categorical loudness scaling [ACALOS; (31)] which aims to assess
the loudness perception of the patient. Furthermore, speech
intelligibility was captured with the Goettingen sentence test
[GOESA; (32)]. The Vocabulary test [German: Wortschatztest
(WST); (33)] was used as a measure of verbal intelligence.
Information regarding the socio-economic status was assessed
with the Scheuch-Winkler index [SWI; (34)]. The DemTect (35)
was selected as a measure of cognitive performance which also
serves as a screening measure for dementia. Finally, self-reports
on age, gender, first language, the presence of tinnitus in the
left/right ear, and hearing problems in quiet and in noise were
additionally displayed to the experts.

Experts were asked to indicate expected CAFPA values on
a continuous color bar based on their clinical experience in
audiology. Furthermore, they had to tick diagnostic cases from
a provided list of options. Audiogram and loudness scaling
results were available for both ears. If there was an asymmetry
between the ears in a given case, experts were instructed to
consider only the worse ear for estimating respective CAFPAs
and diagnostic classes. According to the above procedure, expert
labels were obtained for 240 different patient cases. Out of these,
for consistency check, a subset was given to multiple experts.
Thus, in total 287 labeled expert survey sheets were available. The
mean age of the sample including labeled cases was 67.5 (SD =

11.3). For the present analyses, the expert labels provided for the
CAFPAs are assumed to reflect the ground clinical truth. They
will be denoted as ‘labeled’ CAFPAs in the following.

Model-Building
CAFPAs, which serve as labels, are defined on a continuous
scale, leading to a regression problem to be solved for automatic
generation of CAFPA values given the above mentioned
audiological data (features) for the patients (data points). The
model space of the given regression problem contains the
lasso regression, elastic nets, and random forests approaches.
These predictors will be applied and evaluated in comparison
with regard to the loss function. The model space covers
the range between higher interpretability and lower flexibility
(lasso regression, elastic net) and lower interpretability and
higher flexibility [random forests; see (36)]. The comparative
evaluation aims at capturing the well-known trade-off between
interpretability and potentially higher predictive performance
accuracy, whereby the first is a similarly crucial feature for a CDSS
in order to be accepted in applied context.

We use a 10-fold Cross-Validation (CV) in themodel-building
process. The data set for the prediction of each CAFPA was
randomly split into training (80% of the sample, containing the
validation set) and test sets (20%). The validation set is used for
hyperparameter tuning. In contrast, the test set is not being used
in the model-building process, but for evaluating the model with
respect to prediction accuracy for future cases.

Features and Labels
Each of the ten CAFPAs was treated as individual label.
Features are the audiological measures as used in the expert
survey (Table 2). If an audiological measure includes several
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FIGURE 1 | Common Audiological Functional Parameters (CAFPAs). (A) Functional aspects of the human auditory system represented by the CAFPAs. (B) Exemplary

CAFPA representation. The color bar corresponds to the interval [0 1]. The respective value of each CAFPA is indicated by the color of the area, as well as by the

vertical line within the color bar.

TABLE 2 | Overview of audiological measures and features.

Measure Number of

Features

Features

Audiogram (air

conduction)

11 Frequencies: {0.125, 0.25, 0.5, 0.75, 1.0, 1.5,

2.0, 3.0, 4.0, 6.0, 8.0} kHz; worse ear

(according to PTA) selected

Audiogram (bone

conduction)

7 Frequencies: {0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0}

kHz worse ear (according to PTA) selected

Asymmetry score 1 Difference of pure-tone average (PTA) hearing

loss for left and right ear in dB

Adaptive categorical

loudness scaling

(ACALOS)

12 With 1.5 & 4 kHz narrowband noise; worse ear

selected

– Lcut (juncture point between linear parts of the

loudness function)

– Mlow (slope of first linear part)

– Mhigh (slope of second linear part)

– L2.5 (hearing threshold level)

– L25 (medium-loudness level)

– L50 (uncomfortable level) (37)

Goettingen sentence

test (GOESA)

3 SRT (speech reception threshold) Slope SI

(speech intelligibility) (32)

Vocabulary test

(WST)

1 Sum of correct answers (33)

DemTect 1 Sum score of five tests (08: suspect of

dementia; 912: slight cognitive impairment;

1318: normal cognitive behavior) (35)

Hearing problems

(HP)

2 quiet; noise 0 (no hearing loss) to 5 (very severe)

Scheuch-Winkler

Index (SWI)

1 Sum score for categories profession,

education, and income (34)

Age 1 Age in years

Language 1 Native speaker (German); non-native speaker

Gender 1 Male; female

Tinnitus 2 Presence; right and left ear

measurement variables (e.g., the audiogram is measured for
different frequencies), each of these variables is used as feature.
In total, 44 features were used for modeling. Corresponding to

FIGURE 2 | Schematic overview of the model-building pipeline. Numbers in

brackets indicate dimensions. (A) Pre-processing and generation of 20 data

sets based on multiple imputation of missing values. (B) Building models on

each imputed data set for each CAFPA. (C) Prediction of CAFPAs with the

three selected models on each imputed data set. Evaluation of prediction

accuracy using the Mean Absolute Error (MAE), and R² averaged across

multiple data sets.

the instruction in the expert survey to rate CAFPAs for the worse
ear in case of an asymmetric hearing loss, only audiogram and
adaptive categorical loudness scaling data for the respective worse
ear of each patient are included as features. To retain information
regarding the asymmetry between ears, an asymmetry score
serves as an additional feature. This score reflects the absolute
difference in dB between the pure-tone average hearing loss
(PTA; audiogram (air conduction) averaged over the frequencies
0.5, 1, 2, and 4 kHz) of the left and right ear [e.g., (38)]. Figure 2
depicts the general analysis pipeline for predicting the CAFPAs.

Pre-processing
To avoid statistical dependency due to multiple evaluations of
certain patients by multiple experts, for all analyses we randomly
selected the CAFPA results of one experts’ response only. For all
features, but for hearing problems in quiet and noise (74.3%),
at least 94.2% of the data were available. Where necessary,
we imputed missing data on features by using Multivariate
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Imputation with Chained Equations [MICE; (39)]. MICE is an
approach in which missing values on one feature are estimated
based on the remaining features included into the imputation
model. Missing values are replaced by predicted values with
an added random error term. To minimize potential bias due
to one single addition of the random error, the imputation
process is repeated multiple times. Imputed values are updated
in each iteration, resulting in a given imputed data set. By
generating multiple such imputed data sets, MICE accounts
for the uncertainty that stems from predicting missing values
(39). It is a superior missing data technique as compared with
single imputation methods, such as mean or predicted values
imputation (40). We used 20 iterations for each imputed data
set and generated a total amount of 20 imputed data sets. This
amount was shown to be sufficient for successful estimation of
the missing data (39, 41). The plausibility of the imputed values
was visually inspected across iterations and imputed data sets,
as well as through a density plot of the imputed values for each
feature. Modeling was carried out on each of the 20 imputed data
sets, instead of averaging the data prior to the model-building
process (41). Thus, we averaged the predicted CAFPAs after being
estimated over multiple data sets.

Missing labels were not imputed. For the prediction of each
CAFPA label only those cases were included for which the
corresponding CAFPA label was available. In total, 97.5% of the
labeled CAFPAs were available. Thus, for each predicted CAFPA,
only minor sample size differences occurred.

Lasso Regression and Elastic Net
Lasso regression and elastic net are both linear regression
models that are closely related to each other. As with linear
regression, coefficients are estimated, such that the Residual
Sum of Squares (RSS) is minimized. Both lasso regression and
elastic net perform feature selection by introducing a penalty
for the size of the coefficients (36). By feature selection, a more
parsimonious model is being achieved, so that model flexibility
and interpretability is optimized. Lasso regression and elastic nets
use different penalties. Whereaslasso regression introduces the
l1 penalty (Equation 1), elastic nets combine the l1 with the l2
penalty (Equation 2).

RSS + λ

p
∑

j=1

∣

∣βj

∣

∣ (1)

RSS + λ

p
∑

j=1

β2
j (2)

With l1, the model will penalize the sum of the absolute values
of the regression coefficients depending on the tuning parameter
λ and thus, sparse models result because coefficients can be
shrunken exactly to zero. The size of the selected λ determines
the strength of the penalty, with larger values of λ corresponding
to a stronger regularization (36). The tuning parameter is
being selected by cross-validation in the model-building process
(see below).

In contrast, the l2 penalty does not eliminate coefficients,
but shrinks irrelevant features towards zero, next to grouping

correlated features together by assigning them similar coefficient
sizes (36). Combining both penalties, as in elastic nets, will have
three consequences: Irrelevant features will be eliminated, less
important features will be shrunken towards zero and correlated
features will be grouped together. The relative contribution of
each penalty can be fine-tuned with α, a tuning parameter
ranging on a scale from [0 1]. As part of the model building
process features were standardized for both lasso regression and
elastic net, to ensure an equal impact on all coefficients.

For lasso regression, we evaluated λ values that cover the
range between the least squares estimate (simple linear regression
including all features, λ = 0) to the null model (including no
feature and using the mean of the labels as predicted value, λ →

inf). The λ value minimizing the loss function of the validation
set was selected by means of 10-fold CV separately for each
imputed data set.

For elastic net, we performed a grid search of the length 10
for α and λ, using the caret train() function in R. That is, we
considered a combination of ten potential values for both α and
λ in the grid. Values for α and λ minimizing the loss function on
the validation set were selected with 10-fold CV for each imputed
data set (cf. Figure 4).

Random Forests
Random forests combine multiple decision trees for improving
the accuracy and robustness of predictions as compared to
those achieved by a single decision tree. Decision trees perform
recursive binary splitting of the feature space, that is, a feature
that leads to the largest reduction of the RSS is being selected for
a split, such that two distinct regions are obtained at every step
of the tree building process. In every step, the splitting procedure
is repeated based on other features, such that multiple regions
in the multivariate space of the observed data are obtained.
The prediction is different for each determined region and it
corresponds to the mean of the observed response variable in the
respective regions. For random forests, multiple trees are built.
To avoid building the same decision tree multiple times, only a
specified number of features was considered at each split. This
enforces different structures of the achieved decision trees and it
has the effect of de-correlating the trees before being averaged for
the final prediction. As such, the variance of the prediction for
future cases (test data) is being minimized (36).

For the current analyses, we tuned the number of features
considered at each split (mtry) using the tuneRF() function from
the randomForest package in R (42). TuneRF() searches for
optimal values for mtry given the data. The final number of
features selected at each split was then determined using the
proposed mtry values for the 500 trees built for each fold of the
10-fold CV.

Model Evaluation Based on Labeled Cases
Prediction of the CAFPAs
We evaluated the models’ performance using the Mean Absolute
Error (MAE) as loss function and the coefficient of determination
(R²) between labeled and predicted CAFPA values. As mentioned
above, for each of the ten CAFPAs, 20 imputed data sets exist.
Accordingly, we built all models (lasso, elastic net and random
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FIGURE 3 | Feature importance (FI) analysis pipeline. FI Method indicates the

specific method for each model to extract the relevant features.

forest) multiple times on each imputed data set. This resulted
in 20 × 3 models for each CAFPA [20 × 3 × 10]. For final
model evaluation, we then averaged the MAE and R² values
acrossmultiple estimations for each CAFPA [3× 10]. In addition,
the correlation between the labeled and predicted values were
estimated and plotted. Density plots for labeled and predicted
values are provided as well. The null model was chosen as a
general baseline to improve upon.

Feature Importance
For assessing feature importance, we randomly selected one
of the 20 imputed data sets, as we did not expect significant
differences between the data sets. Furthermore, we did not
observe differences when inspecting the standard deviation of
the predicted CAFPAs across multiple imputed data set. The
selected data set was used to build all three models using Leave-
One-Out-Cross-Validation (LOOCV) for each CAFPA [1 × 3 ×
10]. LOOCV performs CV by leaving out one observation to be
considered as validation set. No additional test set was set aside
(differently from the prediction of the CAFPAs), considering that
no predictions on future data are made. Figure 3 depicts the
feature importance analysis pipeline.

Feature importance assessment is identical for lasso regression
and elastic net and it directly follows from the definition of the
methods. Due to the different approaches of feature selection that
characterize the specific models, selected features differ across
models. We used the selection frequency of each feature across
all LOOCV models to determine feature importance. Features
selected for more than 50% of the LOOCV models are candidate
features to be considered relevant.

For each random forest model, we calculated a feature
importance measure. For each tree (n = 500) in the random
forest, 2/3 of the data was used for resampling with replacement.
The remaining 1/3 of the data is termed out-of-bag (OOB).
Predictions for each data point i were made by averaging all trees
in which i was part of the OOB sample. The loss function can be
calculated from the resulting predictions (36). Subsequently, the
importance of a given feature p was determined by calculating
the loss function for each tree in the forest, including all features,
next to calculating them with a permuted feature p’ (36). The
average difference between the two loss functions was then
normalized and scaled to range from 0 to 100, with 100 being the
most important (43). Here, all features with importance values

above 50 were considered candidate features. Features selected
as candidates by all three models were taken as most relevant
features for the prediction of a respective CAFPA.

Model Application to Unlabeled Cases
Our aim was to obtain a model that allows predicting CAFPAs
in the context of a CDSS. Thus, it is crucial that the obtained
model(s) are accurate at estimating CAFPAs on unlabeled cases.
Therefore, the models were applied to the additional 355 cases
(mean age = 67.6, SD = 12.3) of our data set (Ntotal = 595)
for which no expert labels on CAFPAs are available. To evaluate
the predictions on unlabeled cases, we applied model-based
clustering (section Prediction of CAFPAs and Clustering for the
Unlabeled Data Set). Ideally, we should find the same number
of clusters in the CAFPAs predicted by the models from the
unlabeled data set, as on the labeled data set.

Pre-processing
For the purpose of imputing missings in the unlabeled data set
using MICE, we merged this data set with the labeled, previously
imputed data set. Because in the future CAFPAs should be
predicted for individual cases as part of a CDSS for audiology,
potential missing data in single patients will have to be imputed
on the basis of larger databases. Thus, merging the unlabeled
data set with the labeled one to deal with missingness is in line
with procedures suitable for a prospective CDSS. Apart from
merging the data sets, the imputation procedure for the features
was identical to the one described before. After imputation, we
separated the two data sets. In contrast to the model-building
analysis, for clustering purposes missing data on CAFPAs
were also imputed. However, the imputation was performed
exclusively on the basis of the available labeled CAFPAs without
considering the features in the imputation model.

To obtain a comparable data set to the labeled one with respect
to its size as well as demographic characteristics of the cases
(i.e., age, gender, and first language), we applied propensity score
matching [PSM; (44)]. The propensity score is defined as the
conditional probability that a data point belongs to a treatment
group (e.g., in our case to the labeled vs. unlabeled sample) given
a set of covariates. It can be estimated by logistic regression (45).
Data points with a similar propensity score in the labeled vs.
unlabeled data are matched according to the Nearest Neighbor
(NN) matching technique (46). NN refers to matching each
propensity score from the treatment group (unlabeled data) with
the nearest propensity from the control group (labeled data). As
a result of the PSM, the unlabeled data set used for unsupervised
prediction of the CAFPAs and for subsequent evaluation with
model-based clustering consists of 240 cases (mean age = 67.4,
SD = 11.8) that are maximally similar to the labeled cases with
respect to demographic features.

Prediction of CAFPAs and Clustering for the

Unlabeled Data Set
We predicted CAFPAs for the unlabeled cases using the three
previously trained models (lasso, elastic net, random forests),
each containing 20 models, resulting from the 20 imputed
data sets in the model-building part of the present analysis.

Frontiers in Digital Health | www.frontiersin.org 7 December 2020 | Volume 2 | Article 59643315

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Saak et al. Predicting CAFPAs for Audiological Decision-Support

FIGURE 4 | Hyperparameter selection for lasso regression and elastic net using 10-fold CV, exemplarily for CA2 and a randomly selected imputed data set. Both plots

display the mean-squared error (MSE) as a function of log(λ). The dotted line indicates the values leading to the smallest MSE. (A) Tuning of λ for lasso regression. The

standard error of λ across CV-folds is shown. (B) Tuning of λ for different levels of α with elastic net.

To evaluate the predictions for unlabeled cases, we applied
model-based clustering to [1] the labeled CAFPAs and [2]
predicted CAFPAs from the data not containing labels. Model-
based clustering assumes the data to stem from a mixture of
gaussian distributions, where each cluster k is represented by
a cluster specific mean vector µk and a covariance matrix Σk

(38). The covariance matrix determines the shape, volume, and
orientation of the clusters (e.g., varying or equal shape, volume,
and orientation). Thus, to determine the most suitable number of
clusters for given data, model-based clustering applies different
parameterizations of the covariance matrix for different numbers
of components [see (47) for the different parameterizations of
the covariance matrix]. Accordingly, multiple clustering models
can be compared with regard to their properties (i.e., covariance
structure and number of components) and the best fitting
model selected for the cluster analysis. Model selection can
be performed by means of the Bayesian Information Criterion
(BIC), which evaluates the likelihood of the model given the data
and parameterization, with larger BIC values indicating better fit
of a model (48).

To select the optimal model and number of clusters
for the data set including labeled CAFPAs, we inspected
the BIC to choose the parameterization of the covariance
matrix. Thereafter, we determined the optimal number of
clusters via visual inspection of the resulting average CAFPA
patterns for each cluster. That is, the largest number of
clusters differentiating labeled CAFPA patterns was selected
(cf. Supplementary Figures 6, 7). As the clusters exist in a
multidimensional space, i.e. the ten CAFPA dimensions, we
applied principle component analysis (PCA) to visualize the
clusters. PCA is a dimensionality reduction method that linearly
combines features to result in a new set of orthogonal principle
components (PCs). The PCs are ordered with regard to variance,
i.e. the first PC explains the largest amount of variance in the
data (49). This allows a visualization of clusters in a 2D space

(PC1 and PC2), while retaining a large amount of variance
existing in the data (50). We then intended to reproduce
the same number of clusters of CAFPAs estimated, in the
unlabeled data set using the same covariance parameterization,
for the purpose of providing comparability between labeled and
predicted clusters.

RESULTS

Model Evaluation Based on Labeled Cases
Model-Building
Figure 4 illustrates the CV results from tuning λ for lasso
regression, as well as α and λ for the elastic net, exemplarily, for
CA2 of a randomly selected imputed data set. Values for α and
λ were selected that lead to the largest error reduction in the
validation set, as indicated by the dotted line. The results for the
remaining CAFPAs for the given imputed data set are provided
in the Supplementary Figures 1, 2. Figure 5 depicts the MAE of
the trained models for the training and test set across CAFPAs, in
comparison to the MAE of the null model. The performance of
the lasso regression and the elastic net is comparable. The test
error for random forest is slightly higher as compared to the
training error but not yet indicative of overfitting.

Prediction of CAFPAs
Figure 6 displays the models’ performance at predicting the
CAFPAs. In case of all three models, the predicted CAFPAs in
the test set were averaged over the imputed data sets. Figure 6A
shows the mean absolute error (MAE) between labeled and
predicted CAFPAs for the three models as compared with the
null model. Although different models perform best for different
CAFPAs as indicated by the color bars, the performance across
models is comparable, and all models improve upon the null
model. The average reduction of MAE over CAFPAs is also
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FIGURE 5 | Training and test set loss function (MAE) across CAFPAs for the three models (A) lasso regression, (B) elastic net, and (C) random forest. MAE values

correspond to a randomly selected imputed data set.

FIGURE 6 | Model-specific predictive performance accuracy for the CAFPAs on the test set, averaged over multiple imputed data sets. Different models are

color-coded. (A) Mean absolute error (MAE) for each CAFPA. indicates the predictive performance of the null model, and the foremost bar color denotes the model

with best predictive performance. (B) Mean and standard deviation of the MAE reduction as compared to the null model, averaged over CAFPAs. (C) Coefficient of

determination (R²) for each CAFPA. The depicted bar color indicates the model with the best predictive performance. The symbols denote the performance of the

respective comparison models.

similar for the different models (Figure 6B), with the random
forests performing slightly worse.

Figure 6C shows the coefficient of determination (R²) for
labeled CAFPAs in the test set. In line with the MAE results,
the plot indicates that the performance of lasso regression, elastic
net, and random forests was very similar. However, the random
forest performed slightly worse for some CAFPAs (CA3, CB,
CE). In comparison over CAFPAs, larger differences in predictive

performance occurred. The audiogram-related CAFPAs CA1-CA4

were predicted best, while performance accuracy was lowest for
the suprathreshold CAFPA CU2 and the neural CAFPA CN.

With Figure 7 we provide a more detailed view on the
models’ predictive performance for different CAFPAs. The scatter
plots (Figure 7A) indicate the labeled vs. predicted CAFPAs for
individual patients. In addition to the depicted correlations, the
range of the labeled and predicted CAFPA values with regard
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FIGURE 7 | Detailed overview on model performance for different CAFPAs. LR (lasso regression); EN (elastic net); RF (random forests) (A) Predicted vs. labeled

CAFPA values (for the test set, averaged over imputed data sets) for all CAFPAs. The three models are color-coded. The Pearson correlation r and corresponding

linear associations are depicted in the corresponding color. The level of significance p is indicated by *, **, ***, for p < 0.05, p < 0.01, p < 0.001, respectively. The

dotted line indicates perfect prediction. (B) Absolute frequency density plots (bandwidth = 0.015) for the, ten CAFPAs. Different rows depict the distributions of the

labeled CAFPAs, next to the distributions achieved by the three models. The x-axis indicates the CAFPA values; the y-axis the absolute frequency of the labeled

CAFPAs and those predicted by the respective model. In the background, the color codes corresponding to the CAFPA interval [0 1] are depicted (cf. Figures 1B, 9).

to the interval [0 1] is being visualized in the plot. Except
for the neural CAFPA CN and the cognitive CAFPA CC, all
labeled CAFPAs cover the complete range of potential values. The
predicted CAFPAs for all three models generally cover a smaller
range of potential CAFPA values, that is, very high values are
rarely predicted by the models. Only for the audiogram-related

CAFPAs CA2-CA4 both labeled and predicted values span the
complete interval [0 1].

The range of the predicted CAFPAs is further visualized
in Figure 5B. Frequency density plots for all CAFPAs are
depicted for labeled and predicted values. The labeled CAFPAs
are generally distributed over the whole interval [0 1], with a
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FIGURE 8 | Feature importance for predicting CAFPAs. CAFPAs are displayed in the center of the figure; features in the upper and bottom parts. Measurement

parameters are represented by white boxes (cf. Table 1 for abbreviations and units). Black lines displayed as connections between the measures and the CAFPAs

indicate features selected by all three models to be relevant for the prediction of the respective CAFPA.

tendency towards lower (green) values especially for the CAFPAs
CA1, CA2, CU1, and CC which characterizes the expert ratings,
but also the underlying audiological data. To conclude on a
sound prediction of CAFPAs, in addition to a high correlation
between labeled and predicted CAFPA values and an overlapping
value range of the two, the shape of the predicted CAFPA
distribution should be similar to the one of the labeled CAFPA
scores (see Figure 7B). For most CAFPAs and models, the
label distributions are well reproduced by the distributions
of the predicted CAFPA scores. Differences between models
are smaller than differences between CAFPAs. The strongest
similarity between labeled and predicted scores is obtained for the
audiogram-related CAFPAs CA1-CA4. However, the distributions
for CN and CC are limited to a restricted CAFPA range as
compared with the label distributions. For example, the two
maxima of the label CN distribution are not covered by the
distributions of the predicted scores.

Feature Importance
For all models, we assessed feature importance using Leave-One-
Out-Cross-Validation (LOOCV). Figure 8 provides a summary
of the most relevant features for predicting the different
CAFPAs. All features (audiological measures) included in
the data set (cf. Table 2) are represented in the plot, and
those measures that were selected as relevant features by all
three models are connected with the respective CAFPA. The
candidate features for each model separately are provided in the
Supplementary Figures 3–5.

The most important features for the audiogram-related
CAFPAs CA1-CA4 are air and bone conduction audiogram for
plausible frequencies, i.e., frequencies that increase over the
four CAFPAs defined for different frequency ranges. For the
cognitive CAFPA CC and the socio-economic CAFPA CE, the
models agreed on only one respective feature, namely DemTect
and the Scheuch-Winkler-Index, respectively. In contrast, the
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FIGURE 9 | CAFPA clusters estimated using model-based clustering. Rows depict the clusters for labeled CAFPAs (labeled data set), as well as the predicted

CAFPAs for matched, unlabeled patients, originating from the models lasso regression (LR), elastic net (EN), and random forest (RF), respectively (unlabeled data set).

(A) CAFPA patterns for five estimated clusters (columns). The average CAFPAs assigned to each cluster are depicted by the color of the respective area as well as by

the vertical line in the color bar. Standard deviations are depicted by horizontal lines in the color bars. N indicates the number of patients assigned to each cluster.

(B) Combined representation of the five estimated clusters. For visualization purposes, the clusters are displayed in the plane given by the first and second principal

component (PC) estimated for the respective CAFPA data. The percentage of explained variance by PC1 and PC2 is indicated on the respective axis. Different colors

of data points and two-dimensional Gaussian distributions correspond to the different clusters in the columns of (A).

selected features for the suprathreshold CAFPAs CU1 and
CU2, as well as the binaural CAFPA CB and neural CAFPA
CN are more widely distributed over different audiological
measures. Some audiological measures such as ACALOS at
4.0 kHz or tinnitus, and demographic information as well as
the asymmetry score were not selected by all of the models
for any CAFPA as relevant features, but at least by one model
(see Supplementary Figures 3–5).

Model Evaluation Based on Unlabeled
Cases
Next, we applied the three models to unlabeled cases for the
purpose of investigating the feasibility of predicting plausible
CAFPAs also for unlabeled cases. This is an important step
toward a CDSS for audiology. Model-based clustering was then
used to estimate distinguishable clusters in the ten-dimensional
CAFPA data. According to a combination of visual inspection
and the BIC, the labeled CAFPAs were best characterized by
five clusters using the model λkAk with the identifier VVI.
Accordingly, the distribution of the covariance matrix Σk is

diagonal, with varying volume and shape, and an orientation
aligned with the coordinate axes (51). Six clusters with the
same covariance parameterization reached a marginally higher
BIC value (BIC = 1698.8) as compared to five clusters (BIC
= 1695.3, Supplementary Figure 6). The additional cluster,
however, mainly leads to a separation of the healthy patients
into two clusters with higher and lower values for the socio-
economic CAFPA CE (Supplementary Figure 7). As separating
healthy patients solely on socio-economic status is undesirable,
we argue for using five clusters for further analysis. We then
applied the same clustering method to the CAFPAs for the
240 matched, unlabeled cases which we predicted using the
previously trained lasso regression, elastic net, and random
forest. The obtained clusters are depicted in Figure 9A using the

typical CAFPA representation that was introduced and used in

Buhl et al. (8, 23). Figure 9B additionally displays a combined
representation of the five clusters for assessing how well the
clusters can be distinguished.

From the left to the right, the labeled CAFPA patterns
(labeled data set; first row of Figure 9A) indicate an increasing
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degree of hearing loss which is expressed by increasing
average CAFPA values. The largest differences between the
clusters occur for the audiogram-related CAFPAs CA1-CA4.
In comparison to the CAFPA distributions published in Buhl
et al. (23), the obtained clusters are in line with normal
hearing (cluster 1), different degrees of high-frequency hearing
loss (cluster 24), and a more severe, broadband hearing loss
(cluster 5). The corresponding plot in Figure 9B shows five
distinguishable clusters.

The clusters for predicted CAFPAs on unlabeled cases using
the three models (unlabeled data set; second to fourth row in
Figure 9A) show CAFPA patterns that are very similar to the
labeled CAFPA patterns. However, different numbers of cases
were associated to the different clusters, with generally more
patients allocated to the clusters with lower CAFPAs. The largest
deviation in terms of patients’ allocation frequency occurred for
random forest, where cluster 5 includes more patients, but on
average with less severe hearing loss. This is consistent with
the generally lower CAFPA values that the models predicted,
in contrast to labeled CAFPAs (cf. Figure 7B). Clusters 2 and
3 for random forest are very similar, with the main difference
in the socio-economic CAFPA CE. Cluster 3 only contains 12
patients, which is also visible in Figure 9B. In general, similar
clusters were obtained for the threemodels, i.e. themodels agreed
on the cluster allocation for most of the cases. The agreement
between lasso regression and elastic net amounts to 96% and
for both lasso regression and random forests and elastic net and
random forests to 68%. Further, this similarity becomes evident
in Figure 9B), where clusters are displayed on a similar plane
in the dimensions of the two first principal components, i.e.,
PC1 and PC2 are explaining similar amount of variance. In
contrast to the clusters for lasso regression and elastic net, the
clusters for random forest are depicted with opposite sign with
respect to PC2, which is however the same due to symmetry
of principal component analysis. Here, the clusters 2 and 3
overlap considerably.

DISCUSSION

The present study proved the feasibility of automatically
predicting Common Audiological Functional Parameters
(CAFPAs) from audiological measures. For developing a clinical
decision-support system (CDSS) using CAFPAs as interpretable,
intermediate representation of audiological knowledge, the
automatic prediction of CAFPAs comprises the last step towards
a full working first prototype of such a system. We predicted
CAFPAs on the expert-determined data from Buhl et al.
(23) using lasso regression, elastic net, and random forests.
Interpretability of the model predictions was assessed by feature
importance measures, and the potential of predicting CAFPAs
for unlabeled cases was evaluated using model-based clustering.

Prediction of CAFPAs
The three models worked reasonably well in predicting the
CAFPAs, even though optimal predictive performance cannot
yet be achieved. One reason is the limited amount of available

data, especially in the range of hearing deficits, and second the
choice of the models to some extent. That is, due to the small
number of available labeled clinical cases, it was plausible to start
with rather simple models to avoid overfitting. As soon as more
data becomes available, model flexibility and complexity could be
increased, and the here trained methods can be further evaluated
to determine which of them turns out to be optimal for CAFPA
prediction within a CDSS. Given the available data, the prediction
accuracy of the three models was similar, while larger differences
occurred between the different CAFPAs, i.e. not all CAFPAs were
equally well predicted.

One explanation for performance differences among CAFPAs
could be that some CAFPAs are more directly related to
the audiological measures than others. This aspect is further
discussed in the next section, where we turn to feature
importance. A second explanation may be that experts more
strongly agree when labeling some of the CAFPAs. Especially
given a continuous scale, experts’ ratings can be expected to differ
from each other to some extent. For example, a meta-analysis
of inter-rater reliability on performance status assessment in
cancer patients indicated good agreement between raters for
about half of the studies; the other half achieved only low
to moderate agreement (52). Another study investigated the
inter- and intra-rater reliability of audiologists in the estimation
of hearing thresholds in newborns, using auditory brainstem
response (53). The intra-class correlation of 0.873 was concluded
to be satisfactory. However, this value indicates that differences
between raters exist. Thus, labels provided by experts, as in the
current study, may introduce some bias themselves, although
Buhl et al. (23) qualitatively found a good agreement among
experts for two reference cases which were given to multiple
experts. Such experts’ biases, in turn, could lead to less optimal
predictions for some of the CAFPAs by using statistical models.
To account for these biases and to measure the extent of error
introduced by experts, future studies are needed to generate labels
by multiple experts for the same cases.

Model Interpretability via Feature
Importance Assessment
By analyzing feature importance, we gained crucial insights into
the model-building process as well as into the relationships
between audiological measures and CAFPAs. Without exception,
all models selected audiologically plausible features for predicting
different CAFPAs. This means that the automated generation
of CAFPAs could be demonstrated to build upon similar
audiological measures like physicians are expected to use in their
decision making. Thus, the differences in predictive performance
of the models for different CAFPAs (cf. section Prediction of
CAFPAs) can be assumed to be due to the measures contributing
to the respective CAFPA, as indicated by feature importance.
For example, the threshold-related CAFPAs CA1 and CA2 are
among the best-predicted ones. These are closely related to the
audiogram (8). For predicting them, the models selected suitable
audiogram frequencies, as well as the hearing threshold level
L2.5 at 1.5 kHz from the adaptive categorical loudness scaling
(ACALOS). In contrast, the CAFPAs that were not as well
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predicted (e.g., neural CAFPA CN; binaural CAFPA CB) may be
more vaguely related to the measures. That is, impairment in
the neural and binaural domain cannot be directly inferred from
a single audiological measure, but rather from a combination
of audiological measures. Thus, for these CAFPAs, additional
measures that better characterize the respective functional aspect
need to be included in future test batteries.

In several regards, assessing feature importance contributes
to interpretability of the decision-making process. In model-
building, it gives access to information with respect to features
which were selected by the model. Thereby, it also allows
analyzing how experts derived the CAFPAs in the current study,
as well as characterizing the data set itself. In addition, being
provided with audiological measures (as input of the model)
and the derived CAFPAs (output), physicians may be able to
understand and trust the automatized generation of the CAFPAs
in a CDSS. Therefore, feature importance also helps to achieve
physicians trust towards the diagnostic system and could ensure
the physician about the validity of decisions provided by the
model. Both are crucial for enhancing acceptability and for
reinforcing future implementations of an audiological CDSS
into the clinical routine (15, 16). The models considered in
this study all belong to “intrinsically interpretable” models
according to Jung and Nardelli (45), that is, the selected features
directly provide interpretability to the experts. However, if in the
future more complex models are used, explanations of model
predictions that are most informative to specific users could be
constructed using the probabilistic model described in Jung and
Nardelli (45).

Additionally, by demonstrating that the CAFPAs can be
predicted by plausible audiological measures, assessed by
commonly used test batteries, here, we provide further empirical
support for the concept of the CAFPAs as an abstract
representation of the human auditory system. That is, machine
learning models were generally capable to learn the underlying
relation between audiological measures and the CAFPAs. This is
especially relevant for future applications of a CDSS employing
the CAFPAs, since predictions in the medical field need to
be grounded on available knowledge in the given domain to
avoid flawed predictions (54). For instance, in Cooper et al.
(55) a neural network predicted low or high risk of in-hospital
mortality for pneumonia patients. Subsequent studies analyzing
feature importance, however, have revealed that the model
assumed asthma to be a protective factor, even though in
reality the opposite is true. The prediction error was caused
by asthma patients being more carefully treated, due to their
higher mortality risk (56). Clearly, this example highlights the
importance of the interpretability of predictions within a CDSS in
general, and together with the presented results it demonstrates
the benefit of the interpretability of the CAFPA predictions
that we could achieve in this work. Based on our hitherto
available results on CAFPAs, physicians can be provided with
the audiological measures that are most influential for the
respective CAFPA prediction. As a next step towards a CDSS for
audiology, it will be of interest to further enhance interpretability,
i.e. by providing physicians with the exact proportions of
measurement importance.

Model Evaluation on the Unlabeled Data
Set
A future CDSS would have to be applied to unlabeled cases.
Thus, it must be possible to evaluate if plausible CAFPAs can be
predicted for unlabeled cases. For this purpose, we applied the
trained models on a demographically matched data set of cases
for which no labeled CAFPAs were available. Subsequently, we
applied model-based clustering on the predicted CAFPAs and
obtained five distinguishable clusters that resemble the clusters
contained in the labeled CAFPAs.

In clinical practice, different audiological findings occur,
such as cochlear hearing loss related to inner ear dysfunction,
conductive hearing loss related to middle ear dysfunction, or
central hearing loss related to impaired transmission of neuronal
signals to the brain. As the data set used in this study consists
of a rather small number of clinical cases, it seems plausible
that not all audiological findings are well represented in the
data set. In particular, the most frequent cases in the current
data set are high-frequency hearing loss patients, broadband
hearing loss patients, and normal hearing individuals. Thus, the
five clusters represent the most frequent audiological findings
in the underlying data set well, including different degrees of
hearing loss (23). Consequently, it can be assumed that collecting
a sufficient amount of more severe clinical cases for additional
audiological findings would allow differentiating more clusters.

The performance differences between models for different
CAFPAs are reflected in the resulting clusters, as these models
were used for the prediction of the CAFPAs for unlabeled
cases. If prediction accuracy can be improved in the future for
certain CAFPAs, e.g., by including larger data sets and more
measures, the separation of audiological findings by the clustered
CAFPA patterns will further improve. However, already with
the current prediction accuracy, plausible and distinguishable
patterns were demonstrated.

Finally, assessing the obtained clusters using the graphical
representation of CAFPA patterns, which was introduced by Buhl
et al. (8), allows for direct comparability of audiological findings,
and it contributes to interpretability of the CDSS by providing a
visualization of the functional aspects which describe the group
of patients belonging to the respective cluster.

Clinical Decision-Support System Using
CAFPAs
On the way of setting up a CDSS using CAFPAs as interpretable,
intermediate layer, the current study closes the gap towards
a CDSS working with the input data from a single patient:
The prediction models trained here can be used in the
future to automatically generate CAFPAs, based on which
a classification of audiological findings can be performed.
The classification performance could be compared to the
classification performance based on the labeled CAFPAs from the
expert data set (57).

Most potential for improving toward a testable CDSS lies in
applications of the here described models and their extension
to larger clinical databases in the model-building process. This
is because currently we obtained different performance for
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different CAFPAs. The analysis of feature importance revealed
that the CAFPAs were backed up by different amounts of
appropriate audiological measures. Hence, data sets are needed
that contain a higher number of patients for all clinically
relevant audiological findings, which are characterized by a test
battery with information about all functional aspects covered by
CAFPAs. In addition, feature importance analysis could also be
used in the future to identify redundant audiological measures
contained in test batteries used in clinical settings.

For the purpose of integrating data from different clinical
test batteries comprising different audiological measures, the
CAFPAs act as abstract representation and data standardization
format which is independent from the exact choice of measures.
Especially data from electronic health records (EHR), i.e. digitally
available data from different clinics, could be easily integrated
as training data, if CAFPA labels are available for at least some
of them. Expert-based estimations of CAFPAs are arguably the
most time-consuming. Our future aim is to estimate CAFPAs
by a combination of algorithmic generation and expert-coding.
For example, experts could confirm and revise automatically
estimated CAFPAs instead of labeling each patient case based on
audiological data alone.

CONCLUSION

In the current study, we applied three modeling approaches,
lasso regression, elastic net, and random forests, for the
prediction of Common Audiological Functional Parameters
(CAFPAs). As all three models provide similar predictive
performance, currently all appear suitable choices for an
algorithmic prediction of the CAFPAs. We demonstrated that
it was possible to estimate CAFPAs as intermediate layer in a
clinical decision-support system for audiology, that is, as abstract
and interpretable representation for potential users of a CDSS for
audiological decision-making.

In line with the aim of setting up an interpretable CDSS for
audiology, different aspects provide interpretability to the future
users of the tool. First, the CAFPAs themselves act as interpretable
representation of audiological knowledge which is independent
of the exact choice of measurements, that is, the user can assess
the functional aspects that are responsible for the classification
of a certain audiological finding. Second, the analysis of feature
importance helps the user to reproduce which measures are
influential to the estimation of CAFPAs.

Finally, the reported cluster analysis allowed assessing CAFPA
prediction performance on unlabeled cases. This is an important
property to be covered in a future CDSS. The achieved cluster

similarity between labeled and predicted CAFPAs revealed that
the trainedmodels generalize well to unlabeled cases, which could
also be visually assessed by the CAFPA patterns. Building upon
previous work by Buhl et al., the present work is a substantial step
towards a CDSS for audiology. However, the models still need
to be applied and evaluated on new, larger and more variable
clinical data sets in the future. Interpretability needs to be always
maintained, even if the models described here might become
more flexible when tuned and applied to future data.
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Electroencephalography (EEG) is used in the diagnosis, monitoring, and prognostication

of many neurological ailments including seizure, coma, sleep disorders, brain injury, and

behavioral abnormalities. One of the primary challenges of EEG data is its sensitivity

to a breadth of non-stationary noises caused by physiological-, movement-, and

equipment-related artifacts. Existing solutions to artifact detection are deficient because

they require experts to manually explore and annotate data for artifact segments. Existing

solutions to artifact correction or removal are deficient because they assume that the

incidence and specific characteristics of artifacts are similar across both subjects and

tasks (i.e., “one-size-fits-all”). In this paper, we describe a novel EEG noise-reduction

method that uses representation learning to perform patient- and task-specific artifact

detection and correction. More specifically, our method extracts 58 clinically relevant

features and applies an ensemble of unsupervised outlier detection algorithms to identify

EEG artifacts that are unique to a given task and subject. The artifact segments are then

passed to a deep encoder-decoder network for unsupervised artifact correction. We

compared the performance of classification models trained with and without our method

and observed a 10% relative improvement in performance when using our approach.

Our method provides a flexible end-to-end unsupervised framework that can be applied

to novel EEG data without the need for expert supervision and can be used for a

variety of clinical decision tasks, including coma prognostication and degenerative illness

detection. By making our method, code, and data publicly available, our work provides

a tool that is of both immediate practical utility and may also serve as an important

foundation for future efforts in this domain.

Keywords: electroencephalography, artifact rejection, brain computer interface, unsupervised learning, artifact

removal

1. INTRODUCTION

Electroencephalography (EEG) devices are pervasive tools used for clinical research, education,
entertainment, and a variety of other domains (1). However, most EEG applications remain
limited by the low signal to noise ratio inherent to data collected by EEG devices. EEG noise
sources includemovement artifacts, physiological artifacts (e.g., from perspiration), and instrument
artifacts (resulting from the EEG device itself). While researchers have developed a number of

26

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://doi.org/10.3389/fdgth.2020.608920
http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2020.608920&domain=pdf&date_stamp=2021-01-22
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sadiyasa@msu.edu
https://doi.org/10.3389/fdgth.2020.608920
https://www.frontiersin.org/articles/10.3389/fdgth.2020.608920/full


Saba-Sadiya et al. Unsupervised EEG Artifact Detection and Correction

methods to identify specific instances of these artifacts (2) in EEG
data, most methods require manual labeling of exemplary artifact
segments1 or special hardware, such as Electrooculography
electrodes that are placed around the eyes, or large data-sets of
templates, such as independent component scalp maps (3).

Manual annotation of artifacts in EEG data is problematic
because it is time-consuming and may even be untenable if the
specific profiles of artifacts in the EEG data vary as a function of
the task, the subject, or the experimental trial within a given task
for a given subject, as they so often do. These realities quickly
scale the complexity of the artifact annotation problem and make
the use of a one-size-fits-all artifact detection method infeasible
for many practical use cases.

Even if artifacts could be identified with perfect fidelity, their
simple removal (e.g., by deletion of the corrupted segment)
may introduce secondary analytic complications that confound
the performance of downstream methods that leverage these
data. For instance, methods that rely on the stationarity of
EEG segments will be confounded by simple removal of
the artifact segments. Even the simplest approaches, such as
averaging many EEG trials before extracting features (4), may
be less effective if artifact occurrence is correlated with the
trail type or experimental condition, thereby increasing the
likelihood of a type II error and the consequent reduction in
experimental power.

An essential challenge of artifact detection in EEG processing
is that the definition of “artifact” depends on the specific task at
hand. That is, a given EEG segment is an artifact if and only if it
impacts the performance of downstreammethods by manifesting
as uncorrelated noise in a feature space that is relevant to those
methods. For instance, muscle movement signatures confound
comma-prognostic classification but are useful features for sleep
stage identification (5).

The task-specific nature of artifacts makes their detection
especially suitable for data-driven unsupervised approaches as
the only requirement for the identification of artifacts using
such methods is that the artifacts are relatively infrequent.
That is, when mapping our data into feature spaces that are
relevant to the specific EEG task, artifacts should stand out as
rare anomalies. Indeed, many state-of-the-art approaches use
unsupervised methods for the detection of specific artifact types
under specific circumstances. For instance, the Blink algorithm
described by Agarwal et al. is a fully unsupervised EEG artifact
detection algorithm (6) that is effective for the detection of eye-
blinks. While existing methods provide excellent performance
for specific artifact types, there is a need for additional progress
toward generalized artifact detection approaches, that make no
assumptions about the task, subject, or circumstances.

It is also possible to go beyond artifact detection to correct the
EEG trial by removing the artifact signal. EEG artifact removal
is one instance of a more general class of noise reduction
problems. The removal of noise from signal data has been a
topic of scientific inquiry since Shannon laid the foundation for
information theory in the 1940s (7); over the years, multiple

1Which may be used as “templates” by statistical or rule-based methods for the

identification (and potential rejection) of noisy data epochs.

signal processing approaches to this problem have found their
way into EEG research. One such technique for artifact removal
that is ubiquitous for EEG processing is Independent Component
Analysis (ICA). This method and its modern derivative remain
popular among the research community for unsupervised artifact
correction. However, ICA still requires EEG experts to review the
decomposed signals and manually classify them as either signal
or noise. Furthermore, while ICA is undeniably an invaluable
tool for many EEG applications, it also has limitations that are
particularly poignant when the number of channels is low; ICA
can only extract as many independent components as there are
channels and will therefore be unable to isolate all independent
noise components if the total number of independent noise
components and signal sources exceeds the number of EEG
electrodes (8).

Artifact removal is an especially common practice for a
particular artifact type: the electrode “pop.” These artifacts
result from abrupt changes in impedance, often due to loose
electrode placement or bad conductivity (9, 10). Unlike muscle
and movement artifacts, electrode pop is extremely localized,
often affecting only one electrode channel. Channel interpolation
is the process of replacing the signal of a corrupted channel
with one that is interpolated from surrounding clean channels.
Patrichella et al. demonstrated that knowing specific electrode
locations (namely the exact electrode locations for each subject),
and the distances between them can improve interpolation
results (11, 12). However, this type of additional information is
rarely available and often requires special dedicated hardware.
Recently, Sadiya et al. proposed a deep learning convolutional
auto-encoder based approach to learn task and subject-specific
interpolation (13). By iteratively occluding channels in the input
and using original data as the ground truth, the model learned
how to interpolate channels in a self-supervised manner with
no human annotation. Moreover, not only was the model able
learn idiosyncratic information, such as subject-specific electrode
location, beating state-of-the-art models, it was also possible
to use transfer learning to improve performance on previously
unseen tasks and subjects.

In this paper, we extend the aforementioned state-of-the-art
approaches in artifact detection and rejection by building an
end-to-end pipeline that solves both the detection and rejection
problems together without making any assumptions concerning
the task or artifact type.

Our artifact detection approach uses a collection of
quantitative EEG features that are relevant for a wide variety of
tasks including coma prognostics (14), diagnosing mental-illness
(15), decoding mental representations (16), decoding attention
deployment (17), and brain–computer interface design (18).
Unsupervised outlier detection algorithms utilize these extracted
features to identify artifacts in the EEG data. These unsupervised
algorithms only require an estimate of the frequency of artifacts
in the data, and can detect any artifact type, irrespective of
the task. To guarantee that our results accurately represent the
capabilities of these unsupervised outlier detectors we carefully
selected algorithms that are qualitatively different from each
other (for instance relying on local vs global characteristics of the
data distributions) and explored hundreds of different possible
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FIGURE 1 | Our methodological approach. The EEG data is first segmented into epochs (see A1, A2, A3). Next, 58 features are extracted and an ensemble of

unsupervised outlier detection methods are used (see B1, B2, B3) to identify EEG epochs that are artifact-ridden and require interpolation (see A2 and B2). The

artifact-ridden epochs are then interpolated by an ensemble of deep encoder-decoder networks (see red line in C).

configurations. Sub-section 2.2.1 provides a comprehensive
review of the feature extraction process. Sub-section 2.2.2 details
our experimentation with different outlier detection algorithms.

Our artifact correction approach uses a deep encoder-decoder
network to correct artifacts that are not restricted to only
one channel. Specifically, we frame our learning objective as a
modified “frame-interpolation” task. Frame interpolation is the
filling in of missing frames in a video (19). To the best of our
knowledge, this is the first work that takes this approach to
EEG artifact correction. The proposed approach is also unique
in that it does not require the maintenance of any large data-
set of templates or annotated data similarly to other state-of-
the-art artifact removal methods (6). The model architecture as
well as the exact objective formulation are discussed in detail
in subsection 2.3.

The data-sets used in this work are discussed in detail in
subsection 2.1. The results of the different experiments we
conducted can be found in section 3. Finally, we discuss our
findings, their broad implications, and the limitations of our
approach in section 4.

2. METHODS

In this paper, we propose an end-to-end pre-processing
pipeline for the automated identification, rejection, and
removal/correction of EEG artifacts using a combination of

feature-based and deep-learning models which is intended for
use as a general-purpose EEG pre-processing tool. To begin, we
provide a brief overview of the data and methodological pipeline,
calling out the specific subsections where the full details of each
component of the pipeline are discussed.

In Figure 1 we provide a visualization of our proposed
pre-processing pipeline; our method begins by performing
unsupervised detection of epoched EEG segments in a 58-
dimensional feature space (subsection 2.2). The trials that
were not rejected in this initial stage are used to train a
deep encoder-decoder network designed to correct artifacts
segments (subsection 2.3).

While we demonstrate this method on a particular data set
(described below), it is applicable (with no modifications) for
any EEG pre-processing work. The methods are presented in the
order of their processing within our proposed pipeline.

2.1. Data-Sets
2.1.1. Data Acquisition
Our aim is to demonstrate that unsupervised anomaly detection
is successfully used to identify artifacts in EEG data and that these
artifacts can be corrected via representation learning methods
(see section 2.3). To demonstrate the feasibility of our approach,
it is necessary to not only have ground truth artifact annotations
but also the ground truth labels for all trials, including those
that were annotated as artifacts. While the artifact annotations
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allow us to test the unsupervised outlier detection methods,
the trial labels allow us to verify that corrected EEG data
can indeed be used in conjunction with that regular data for
downstream analytic tasks (e.g., training a classification model).
Unfortunately, available data sets usually do not contain rejected
trials, and even when these annotations are available the original
trial label is not included2. Therefore, our work is validated on
two data-sets, hereinafter referred to as the orientation and color
data-sets, that were previously collected by Saidya et al. (20). We
briefly describe these datasets here; additional information about
the data-sets is provided in the Supplementary Material.

Both experiments were passive viewing tasks. The orientation
task stimulus consisted of 6 oriented gratings, the color task
stimulus consisted of random dot fields in six different colors.
The stimulus was generated using MGL, a library running in
Matlab (Mathworks). The data was collected using a 32-electrode
actiCHamp cap at 1,000 Hz. For each task, we collected data from
seven subjects (four male) for a total of ∼10,000 EEG Trials.
All subjects reported normal or corrected to normal vision.
The data were examined for noisy trials by expert annotators.
Fully annotated and anonymized data-sets will be made available
online. Participants gave informed consent and compensated at
the rate of 15$ per hour. The experimental procedures were
approved by the Michigan State University Institutional Review
Board and adhered to the tenets of the Declaration of Helsinki.

2.2. Unsupervised Artifact Detection
To benchmark the different outlier detection methods we
collected a list of common features used in EEG research
in different domains and applied various unsupervised outlier
detection algorithms. Our main objective was to thoroughly
investigate the feasibility of unsupervised artifact rejection
for EEG.

2.2.1. Feature Extraction
Building on the previous work of Ghassemi et al. (21), we
reviewed the EEG literature and constructed a permissive list of
several features that are commonly used for EEG classification
tasks. In total, we identified and extracted 58 features. The code
that extracts these features was written to allow for parallelization
of the calculations and is accessible as a downloadable python
3.5 package3. See Table 1 for breakdown and references for
all 58 features.

These features can be grouped into three categories
that measure the complexity, continuity, and connectivity
of EEG activity. Before continuing to discuss our
pipeline we will provide high-level intuition behind the
inclusion of each category. We encourage the interested
reader to refer to the previous work of Ghassemi
et al. for a more detailed discussion of the specific
features (21).

2.2.1.1. Complexity features (n = 25)
These features measure the complexity of the EEG signal
from an information-theoretic perspective and are known to

2For instance BCI competitions data: http://bbci.de/competition/.
3Code available at: https://github.com/sari-saba-sadiya/EEGExtract.

correlate with impaired cognitive functions and the presence
of degenerative illnesses. Our first set of features is therefore
a collection of information-theoretic complexity measures. Of
special interest are the first three features shown in Table 1

as they are particularly prominent in EEG research: Shannon’s
entropy has been associated with neurological outcomes in post-
anoxic coma patients (14); the entropy of the decomposed EEG
wavelet signals (known as the Subband Information Quantity)
have similarly been used in cardiac arrest studies (36, 37). Tsalis
entropy is a generalization of Shannon’s entropy that does not
make assumptions about the independence of data channels (as
Shannon’s entropy does) and has been shown to be particularly
useful for the characterization of complexity in EEG data (23).

2.2.1.2. Continuity features (n = 27)
These features capture the regularity and volatility of EEG
activity. Bursts, spikes, and unusual changes in the mean and
standard deviation in the frequency and power domains are
examples of continuity features that are relevant for a variety of
clinical tasks. See Hirsh et al. for an in-depth review of continuity
and it’s relevance to clinical care (38).

2.2.1.3. Connectivity features (n = 6)
. These features reflect the statistical dependence of EEG signal
activity across two or more channels. Functional connectivity
networks are established features of normal brain functioning.
We draw on the rich literature on measuring connectivity from
EEG signals (39) extracting features that have previously been
used for designing brain computer interfaces (18) as well as in
mental illness, perception, and attention research [see (15), (16),
and (17), respectively].

2.2.2. Outlier Detection Methods
We explored a set of ten algorithms for unsupervised artifact
detection; the explored algorithms were inspired by the work of
Zhao et al. (40). The algorithms can be divided into two general
groups: statistical methods and representation learning methods;
they are described in more detail in the “Statistical Methods” and
“Representation Learning Based Methods” sections below. The
hyper-parameters of each method were determined by randomly
exploring the hyper-parameter space and choosing the settings
that yielded the best performance of the methods on the data
according to our artifact annotations.

2.2.2.1. Statistical methods
Statistical methods identify anomalies based on statistical
measures extracted from the data, thereby producing an
“anomaly score” for each trial. The Histogram-Based Outlier
detection (HBOS) method uses histograms with dynamic bin
widths to detect clusters and anomalies in different feature
dimensions. Despite the simplicity of the approach it has been
shown to work well on a variety of data types (41). The Local
Outlier Factor (LOF) method similarly calculates an “outlier
score”; however, instead of global measures, it relies on the local
density of the data as it’s main indicator (42). Another popular
local algorithm, the Angle-Based Outlier Detector (ABOD),
calculates the cosine similarity of data points with their neighbors
and uses the variance of these scores to generate anomaly

Frontiers in Digital Health | www.frontiersin.org 4 January 2021 | Volume 2 | Article 60892029

http://bbci.de/competition/
https://github.com/sari-saba-sadiya/EEGExtract
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Saba-Sadiya et al. Unsupervised EEG Artifact Detection and Correction

TABLE 1 | EEG Features.

Signal Descriptor References Brief description

Complexity features Degree of randomness or irregularity

Shannon entropy (22) Additive measure of signal stochasticity

Tsalis entropy (n = 10) (23) Non-additive measure of signal stochasticity

Information quantity (δ,α, θ ,β, γ ) (24) Entropy of a wavelet decomposed signal

Cepstrum coefficients (n = 2) (25) Rate of change in signal spectral band power

Lyapunov exponent (26) Separation between signals with similar trajectories

Fractal embedding dimension (27) How signal properties change with scale

Hjorth mobility (28) Mean signal frequency

Hjorth complexity (28) Rate of change in mean signal frequency

False nearest neighbor (29) Signal continuity and smoothness

ARMA coefficients (n = 2) (30) Autoregressive coefficient of signal at (t-1) and (t-2)

Continuity features Clinically grounded signal characteristics

Median frequency The median spectral power

δ band power Spectral power in the 0–3 Hz range

θ band power Spectral power in the 4–7 Hz range

α band power Spectral power in the 8–15 Hz range

β band power Spectral power in the 16–31 Hz range

γ band power Spectral power above 32 Hz

Standard deviation (31) Average difference between signal value and it’s mean

α/δ ratio (14) Ratio of the power spectral density in α and δ bands

Regularity (burst-suppression) (14) Measure of signal stationarity/spectral consistency

Voltage < (5, 10, 20 µ) Low signal amplitude

Diffuse slowing (32) Indicator of peak power spectral density <8 Hz

Spikes (32) Signal amplitude exceeds µ by 3σ for 70 ms or less

Delta burst after spike (32) Increased δ after spike, relative to δ before spike

Sharp spike (32) Spikes lasting <70 ms

Number of bursts Number of amplitude bursts

Burst length µ and σ Statistical properties of bursts

Burst band powers (δ,α, θ ,β, γ ) Spectral power of bursts

Number of suppressions Segments with contiguous amplitude suppression

Suppression length µ and σ Statistical properties of suppressions

Connectivity features Interactions between EEG electrode pairs

Coherence – δ (14) Correlation in 0–4 Hz power between signals

Mutual information (18) Measure of dependence

Granger causality – All (33) measure of causality

Phase lag index (34) Association between the instantaneous phase of signals

Cross-correlation magnitude (35) Maximum correlation between two signals

Cross-correlation – lag (35) Time-delay that maximizes correlation between signals

The 58 EEG features fell into three EEG signal property domains: Complexity features (25 in total), Category features (27 in total), Connectivity features (six in total).

scores (43). Finally, we also trained a One Class SVM Detector
(OCSVM), a classic algorithm for outlier detection (44). In
this algorithm, an SVM is trained on the entire data-set and
afterwards every instance is scored based on its distance from the
class boundary; the intuition is that the infrequent outliers will
contribute less to the decision boundary calculation and will be
more likely to be on the margin of the learned boundary.

As previously mentioned, we selected these detectors to
be different in the type of statistical measurements they use.
Therefore, it makes sense to also train ensemble classifiers to
further improve the outlier detection accuracy. Specifically, we

trained five hundred Locally Selective Combination in Parallel
(LSCP) Outlier Ensembles (45) with different combinations of
the algorithms mentioned above.

2.2.2.2. Representation learning based methods
Unlike statistical methods, representation-learning-based
outlier detectors do not simply calculate statistical properties
of featurized data. The most basic classifier uses auto-
encoder (AUTO) based deep learning architectures to learn
a lower-dimensional representation of the data that enables the
best possible reconstruction of the original signal; the embedding
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would be optimized for the common regular data points thereby
producing distinctly noisy reconstructions for the outlier trials
(46). This classifier can be viewed as a modern update of similar
classic outlier detection methods that use methods, such as
PCA reconstruction instead of training a deep auto-encoder
(PCA) (47). A more sophisticated approach uses Variational
Auto-Encoders (VAE). This class of algorithms tries to ensure
that the learned embedding captures the structure of the original
data by penalizing the classifier if the embedding does not follow
a standard normal distribution (48). Finally, we also examine a
Generative Adversarial Active Learning (GAAL) outlier detector
(49), which uses generative adversarial networks to generate
outliers. This method can be used to improve any of the statistical
methods described in 2.2.2.1. We also use an extension of the
original method to learn multiple generators (MGAAL).

2.3. Artifact Correction
As previously mentioned, encoder-decoder based deep learning
methods have proven useful for channel interpolation (13).
In this section we discuss an extension of this approach that
utilizes the same framework for artifact correction. Namely,
given an EEG data segment with an isolated artifact we remove
the corrupted segment and use the data samples preceding
and proceeding it to fill in the resulting void. This problem is
equivalent to the “frame-interpolation” task of filling in missing
frames in a video (19).

2.3.1. The Model

2.3.1.1. Input representation
The channel interpolation model proposed in Saba-Sadiya et al.
(13) represented the EEG as a time series of 2D topologically
organized arrays. This reflects the spatial nature of the EEG
channel interpolation issue; the interpolated values at different
time points are treated as independent. To the best of the author’s
knowledge, this is a standard assumption for EEG interpolation
algorithms. For instance, Petrichella et al. and Courellis et al.
calculate the interpolated values of the missing data at each time
point separately (11, 12). However, research on convolutional
neural networks for EEG decoding and visualization have shown
performance benefits from presenting the input as a column of
electrodes unfolding in time, as this facilitates the learning of
temporal modulations (50). Since artifact correction is first and
foremost a process of completing gaps across time we decided
to depart from Saba-Sadiya et al. (13) and use a 2D array
representation with the number of time steps as the width of
the array.

2.3.1.2. Architecture
The best frame interpolation models involve calculating object
trajectory and accounting for possible occlusion (e.g., if one
object moves behind another). With these “flow computations”
and a stack of the frames before and after the missing
image a convolutional encoder-decoder can generate realistic
intermediate images (19). Unlike video, EEG data have only one
spatial dimension (see subsection 2.3.1.1) and are not analogous
to local phenomena, such as occlusion or object movement; these
can occur as EEGmodulations and are often thought of as mostly

global in nature (50). Therefore, we only concern ourselves
with a stacked convolutional auto-encoder. This architecture is
shared by previously discussed state-of-the-art algorithms for
both frame interpolation and channel interpolation (13, 50).

The interpolation of each frame is done separately, thus to
predict n frames it is necessary to train n networks. Technically
this is equivalent to training one ensemble model, however, by
separating the networks we allow for easier parallelization of
the training process. Specifically, given a series of EEG frames
x1, x2, . . . , xn where xt is a vector of all the channel values at
time t, and assuming that the series is missing all frames between
time points tb and te, our network learns to predict xtq from the
two stacks, xtb−h, xtb−h+1, . . . , xtb and xte , xte+1, . . . , xte+h where
tq ∈ (tb, te) and h is some small positive integer representing
how many frames before and after the missing segment can be
perceived. Every network is trained to predict the value at one
specific value of q. Every network takes the same 2h frames (half
preceding the missing segment and half following it) to calculate
the value at a given frame.

2.4. Model Validation Approach
2.4.1. Artifact Detection Method
The performance of the artifact detection methods was assessed
by inspecting the agreement between the artifact detection
approach and the expert annotations from the two data sets
(color and orientation). More specifically, the agreement was
measured using the f-score and Cohen’s Kappa (first and second
values in each cell, respectively). We compared the performance
of our model against the expected performance of a classifier
with knowledge of the exact number of artifacts; this random
classifier is expected to have an f-score of 0.172 and a Kappa of
0.029. We ran the detection algorithms in two configurations,
for each subject separately and for the entire aggregated data.
We hypothesize that the performance will drop when using
the aggregated configuration, as each individual setup for an
EEG recording is likely to introduce unique artifacts (due
to loose connections or subject-specific circumstances, such
as perspiration).

2.4.2. Artifact Correction Method
To optimize the parameters of the artifact correction model, we
produced training data from trials that were marked as artifacts
free by our unsupervised artifact detection method (section
2.2.2) and randomly removed a segment from the middle of
the trial. The h samples proceeding the removed segment and h
samples preceding it were used as input for the model while the
removed segment was the ground truth (hwas a hyper-parameter
optimized on the training set). For the purposes of validating the
artifact correctionmodel, all EEG data were re-sampled to 200Hz.
The reconstructed segments were 200ms each.

2.4.3. End-to-end Assessment Approach
We ran a number of tests to examine if the trials reconstructed
by our artifact correction method could be used to enhance the
performance of downstream EEG tasks. More specifically, we
trained two SVM models to predict the label of the trial from
the color data-set: one SVM was trained using the raw data, and
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TABLE 2 | Comparison of the different unsupervised outlier detection methods

when applied to each subject separately.

Statistical methods HBOS LOF ABOD OCSVN LSCP

Orientation 0.564

0.473

0.218

0.065

0.11

0.06

0.41

0.29

0.577

0.489

Color 0.5

0.4

0.241

0.091

0.1

−0.08

0.36

0.23

0.51

0.411

Representation learning AUTO PCA VAE GAAL MGAAL

Orientation 0.53

0.44

0.527

0.426

0.477

0.368

0.429

0.311

0.428

0.309

Color 0.51

0.42

0.477

0.367

0.478

0.368

0.241

0.086

0.389

0.263

We calculated the mean f-score and Cohen’s Kappa (first and second row in every

cell) across all subject. HBOS, Histogram based outlier detection; LOF, Local outlier

factor Method; ABOD, Angle-based outlier detector; OCSVM, One class support vector

machine; LSCP, Locally selective combination of parallel outlier Ensembles; AUTO, Auto-

encode based method; VAE, Variational auto-encoder based method; GAAL, Generative

Adversarial Active Learning; MGAAL, Multi-object Generative Adversarial Active Learning.

the other was trained using the raw data after artifact correction.
Both models were validated using 5-fold cross-validation, and
the performance of the models on the test set (µ and σ )
was reported.

We also evaluated the impact of our artifact correction
method on downstream EEG tasks when applied to clean trials,
exclusively; this evaluation allowed us to test for inadvertent
degeneration in signal quality of clean segments when processed
by our method. More specifically, we applied our artifact
correction method to 20% of clean trials and used the resulting
data to train an additional SVMmodel.

3. RESULTS

This section presents the results of the two main components
in our pipeline, the artifact detection method and the artifact
correction method on the data described in 2.1.

3.1. Artifact Detection Results
In Table 2, we compare the average performance of the outlier
detection methods described in section 2.2.2 when applied
to each subject separately. Therefore, each value is the mean
of the algorithm’s performance across subjects. As previously
mentioned, the expected performance of a baseline random
classifier with knowledge of the exact number of artifacts
is an f-score of 0.172 and a Kappa of 0.029. Hence, all
models other than the ABOD classifier performed significantly
better than the baseline (one tailed t-test with a p = 0.05
significance level).

Unsurprisingly, the best outlier detector was an LSCP
ensemble classifier that performed 16.86x better than the baseline
method, and 1.03x better than the next best approach; the best
performing configuration of the classifier consisted of two HBOS
classifiers and one OCSVM. While it is difficult to interpret

TABLE 3 | The performance of the models trained on data aggregated from all the

subjects.

Statistical methods HBOS LOF ABOD OCSVN LSCP

Orientation 0.502

0.4

0.246

0.095

0.07

−0.11

0.362

0.234

0.537

0.441

Color 0.476

0.35

0.305

0.15

0.09

−0.108

0.377

0.238

0.463

0.332

Representation learning AUTO PCA VAE GAAL MGAAL

Orientation 0.488

0.338

0.448

0.338

0.447

0.336

0.383

0.246

0.393

0.258

Color 0.414

0.283

0.437

0.312

0.436

0.31

0.185

0.022

0.393

0.258

The f-score and Cohen’s Kappa are presented in the first and second row in every cell.

ensemble classifiers it is worth noting that the two histogram-
based classifiers diverged quite substantially; one using a high
number of histogram bins and a rigid outlier scoring policy
(tol = 0.1) while the other using a smaller number of bins and
more relaxed policy (tol = 0.5). A simple auto-encoder was the
best representation learning algorithm, closely followed by the
PCA algorithm. We speculate that the auto-encoder could have
possibly had better performance if more data were available for
each subject. See our Supplementary Material for a breakdown
of trial and artifact numbers for each subject.

In Table 3, we compare the performance of the outlier
detection methods described in section 2.2.2 when applied to
the subjects aggregated data; that is, subject were not considered
separately as they were in the results from Table 2. When
compared to the results shown in Table 2, the performance
decreased for most models. This is not surprising as the
fundamental assumption of unsupervised methods is that the
data are homogeneous with the exceptions of the outliers.
Here again, the LSCP method performed the best of the tested
approaches. A comparison of the results in Tables 2, 3 provide
motivation for the development of subject-specific anomaly
detection approaches. Moreover, the comparison also highlights
that the unsupervised algorithms and the features we extracted
can successfully capture both common EEG artifacts and subject-
specific idiosyncrasies.

3.2. Artifact Correction Results
3.2.1. Network Optimization
Our first step was to optimize the network hyper-parameter
configurations. This included testing different sizes of both the
layers and convolution filter, as well as exploring different hyper-
parameters, such as optimization algorithms, dropout rates,
and activation functions. To train the network we followed
the method discussed in section 2.2.2: we randomly extracted
104 samples from the data, the first and last 32 samples were
stacked and used as the input to the model, and the sample
at position i from the remaining 40 samples was used as the
ground truth. Essentially we are training a network to predict
the values after removing 40 samples (200ms) using the 32
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TABLE 4 | Mean accuracies of simple SVM classifiers.

Original

EEG

EEG with random

correction

EEG with artifact

correction

All trials 0.3 0.31 0.33

Rejected trials 0.23 0.23 0.29

A simple t-test confirmed that all accuracies were significantly above chance level (1/6

for six different colors) at a p = 0.05 level. Original EEG: The Original EEG data. EEG with

Random Correction: The EEG data after random artifact free trials were “corrected.” EEG

with artifact correction: The data after we applied the EEG artifact correction on the trials

that were marked as artifact ridden.

samples that before and after the removed segment. The best
performing network (lowest loss) was different for different ts.
The optimal topology for reconstructing sample 20 is available
in the Supplementary Material as a reference of the type of
convolutional U-net architecture used.

3.2.2. End-to-End Assessment
In Table 4 we compare the classification accuracy of a 5-fold
SVM model trained to perform a downstream classification of
trial type using down-sampled EEG data with three different
configurations of the data: (1) the raw EEG data, (2) the data
after correction of artifact segments, and (3) the data following
“correction” of a random 40 samples of 20% of the non-artifact
segments. Note that while simple this type of analysis is used in
actual EEG research (4).

The performance remained comparable after using the artifact
correction on trials that did not contain any artifacts. This is a
strong indication that the model is indeed able to learn how to
reconstruct the original EEG signal. When using the corrected
trials with EEG artifacts the classification accuracy improved
by 10% overall and over 20% for trials that were marked
as containing artifacts. These results successfully demonstrate
that our unsupervised end-to-end artifact correction pipeline
improves down-stream analysis.

4. DISCUSSION

4.1. Significance of Our Results
In this paper, we presented an end-to-end pipeline that is capable
of unsupervised artifact detection and correction. Our results
demonstrate that data-driven approaches for unsupervised
outlier detection can be extremely useful when applied to the
problem of EEG artifact detection. Interestingly, the classifiers
with the best performance (HBOS, OCSVM, and the best
performing LSCP) are global classifiers; this might indicate that
EEG artifacts are better discriminated by global characteristics.
This supports our previous observation that artifacts are task
specific and infrequent occurrences of uncorrelated noise. It is
worth noting that, as demonstrated in Table 3, the classifiers we
trained were able to learn subject-specific idiosyncrasies.

While the accuracy and agreement between the annotators
and the detectors were far from perfect, the Cohen Kappa of
the best performing algorithm was comparable to the inter-rater
agreement levels of expert annotators reported in the literature;

for instance, when asked to annotate, “periodic discharges” (a
specific type of artifact) and “electrographic seizure” annotators
had a Cohen’s Kappa of 0.38 and 0.58, respectively (51). Our
results indicate that an unsupervised outlier detection is a feasible
approach for generalized EEG artifact detection.

4.2. The Data-Sets
We validated our framework on two novel data-sets. To test the
impact of artifact correction algorithms on downstream analysis
it is necessary to have ground truth artifact annotation as well
as knowledge of the labels of all trials, including those that
are artifact ridden. Unfortunately, public data-sets often exclude
trials that contain artifacts. Even in the rare occasions in which
these trials are made available, the labels are often replaced with
a special identifier for rejected trials4. We hope our data-sets
inspire other researchers to adopt more thorough data publishing
practices as data-availability is perhaps the primary limiting
factor in artifact correction research.

4.3. The Strength of Unsupervised
End-to-End Methods
The accuracy of simple classifiers improved modestly after
artifact removal. It is possible that replacing our deep-learning-
based artifact removal components with an ICA artifact removal
algorithm (52) could yield better results. However, two important
distinctions should be made: First, the proposed method
does sidestep many weaknesses inherent to ICA (8) (such
as the number of independent components being limiting by
the number of channels, which is particularly problematic
for lightweight commercial EEG setups). Secondly, while the
independent component deconstruction itself is data driven and
unsupervised, the ICA method still requires visual inspection
and analysis of the decomposed signal by human experts. In
contrast, our method can be put into effect without any human
intervention, making it is suitable for online EEG applications or
as a no-cost first step before a more thorough analysis. In general,
supervised methods unquestionably out-perform unsupervised
ones and we fully acknowledge that the pipeline proposed in
this work is no different. It is therefore useful to consider
unsupervised methods not as replacements of currently existing
algorithms but as complimentary additions to the toolbox of the
EEG researcher. With this in mind, we intentionally designed
our end-to-end pipelines to be highly modular; An experienced
researcher can easily substitute our last component with an
ICA artifact removal algorithm, and in contrast, researchers that
have access to artifact annotations (for instance by virtue of
employing specialized hardware during data acquisition) will be
able to use their method in conjunction with ours or sidestep the
first processes completely and apply only the artifact correction
component before carrying on with the analysis process.

4.4. Limitations
We did not formally evaluate the reconstruction performance
of the model because (1) there is not an authoritative literature

4For an example of standard EEG publishing practices see the BCI Competition

data-sets.
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baseline, and (2), insofar as the reconstruction enhances the
ability of the downstream classification model to perform their
intended classification tasks, the reconstruction is valid and
valuable. There are a few limitations that we hope to address in
future work. First and foremost, this artifact detection method
can only be used if the frequency of the artifacts is low enough
for them to be considered outliers. While this is indeed the
case for the vast majority of EEG use cases, tasks, such as
seizure detection often involve long periods of unusually low
signal to noise ratio. Additionally, the performance of our
artifact correction network would likely benefit from introducing
more complex component into the architecture. For instance,
introducing temporal dependencies via an LSTM component
would guarantee that the corrected frame at time t influences the
frame at time t + 1. Finally, our method is in dire need of being
validated on additional tasks and data-sets.

Despite the challenges described above, we believe that our
work demonstrates the feasibility of an EEG pre-processing
pipeline which if adopted could facilitate and expedite the
often tenuous process of artifact annotation and removal, and
could therefore be extremely beneficial for the general EEG
research community.

5. CONCLUSION AND FUTURE WORK

The applications of EEG are numerous and diverse, and
while this impacts the particularities of what components are
classified as part of the signal vs. artifacts, data homogeneity
is a common concern in this area of research. Building on
this data science perspective, in this work we appropriated
state-of-the-art data-driven methods to construct an end-to-
end unsupervised pipeline for general artifact detection and
correction. We introduced two new data-sets and demonstrated
that the inter-rater reliability of our artifact detection component
against expert annotators is comparable to reported inter-human
levels. Furthermore, we demonstrated how applying the complete
pipeline on a data-set can improve the performance of common
downstream analysis. The pipeline makes use of a wide range
of handcrafted clinically relevant features, and we believe the
released python package will be of use to many in the EEG
research community.
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Background: Epilepsy affects 50 million people worldwide and a third are refractory

to medication. If a discrete cerebral focus or network can be identified, neurosurgical

resection can be curative. Most excisions are in the temporal-lobe, and are more

likely to result in seizure-freedom than extra-temporal resections. However, less

than half of patients undergoing surgery become entirely seizure-free. Localizing the

epileptogenic-zone and individualized outcome predictions are difficult, requiring detailed

evaluations at specialist centers.

Methods: We used bespoke natural language processing to text-mine 3,800 electronic

health records, from 309 epilepsy surgery patients, evaluated over a decade, of whom

126 remained entirely seizure-free. We investigated the diagnostic performances of

machine learning models using set-of-semiology (SoS) with and without hippocampal

sclerosis (HS) on MRI as features, using STARD criteria.

Findings: Support Vector Classifiers (SVC) and Gradient Boosted (GB) decision trees

were the best performing algorithms for temporal-lobe epileptogenic zone localization

(cross-validated Matthews correlation coefficient (MCC) SVC 0.73 ± 0.25, balanced

accuracy 0.81 ± 0.14, AUC 0.95 ± 0.05). Models that only used seizure semiology

were not always better than internal benchmarks. The combination of multimodal

features, however, enhanced performancemetrics includingMCC and normalizedmutual

information (NMI) compared to either alone (p < 0.0001). This combination of semiology

and HS on MRI increased both cross-validated MCC and NMI by over 25% (NMI, SVC

SoS: 0.35 ± 0.28 vs. SVC SoS+HS: 0.61 ± 0.27).

Interpretation: Machine learning models using only the set of seizure semiology (SoS)

cannot unequivocally perform better than benchmarks in temporal epileptogenic-zone

localization. However, the combination of SoS with an imaging feature (HS)
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enhance epileptogenic lobe localization. We quantified this added NMI value to be

25% in absolute terms. Despite good performance in localization, no model was able

to predict seizure-freedom better than benchmarks. The methods used are widely

applicable, and the performance enhancements by combining other clinical, imaging and

neurophysiological features could be similarly quantified. Multicenter studies are required

to confirm generalizability.

Funding: Wellcome/EPSRC Center for Interventional and Surgical Sciences

(WEISS) (203145Z/16/Z).

Keywords: epilepsy surgery, machine learning, semiology, hippocampal sclerosis, epileptogenic zone, temporal

lobe epilepsy, gradient boost classifier, linear support vector classifier

INTRODUCTION

Fifty million people have epilepsy world-wide, and one third
are refractory to two or more appropriate antiepileptic drugs,
with recurrent seizures and impairment of quality of life.
Neurosurgical resections in focal epilepsy may be curative
and have been shown to improve health status (1–3). The
Epileptogenic Zone (EZ) is defined as the region that when
resected, renders the patient seizure-free. Understanding the
symptoms, signs and semiology (chronological clinical seizure
manifestations) at the onset of seizures is key to determining
the site of seizure onset in the brain; but this may be imprecise
(4). Despite an extensive literature on semiology, imaging and
electroencephalographic (EEG) features for EZ-localization, no
definitive method exists to determine the EZ (5). Concordance
is sought with brain imaging: MRI, functional imaging (SPECT,
FDG-PET); scalp EEG video-telemetry and neuropsychology.
The results are discussed in a multidisciplinary team (MDT)
conference, to localize the EZ and minimize risks, prior to
consideration of resection. Despite this, many patients do not
become seizure-free after surgery (6).

The value of any particular clinical feature or investigation
result in contributing to a patient’s differential diagnosis depends
on its overall univariate association with the EZ (prior) and
any other factors which may interact with it. Clinical judgement
and acumen arise through experience, when there may not be
objective data. Although one can assess the value of clinical
features through Bayesian-belief elicitation, in the absence of
grounded-objectives, responses would be capturing subjective
clinical values (7). Well-designed machine learning methods
using ground-truth target labels and all relevant features perform
well in capturing data patterns to predict targets, akin to clinical
intuition. The so-called “AI chasm” notes that algorithms are
only clinically useful if they improve clinical outcomes, not just
diagnostic accuracy (8).

A study in 2015 evaluated 830 patients and the value
of semiology in predicting the EZ (9). Conditional inference
trees’ localization accuracy among five ictal onset areas was
56.1%. Accuracy for binary mesial temporal lobe epilepsy
(mTLE) or lateral temporal-EZ was 71% (unquoted naïve
accuracy of 63%) (9). Despite the large numbers, the supervised
learning method suffered from inadequate ground-truth labels:

the EZ was often labeled by clinicians on the presence or
absence of a particular semiology, making the evaluation logic
circular and results were reported without cross-validation
or test sets, compromising generalizability. A review in 2017
showed algorithmic identification of EZ brain networks and the
propagation of seizures remains an open issue. Combinations
of multimodal features have not been used on large-scale high-
quality patient data (10). Currently there are no clinically utilized
algorithms to augment EZ-localization or quantify the value of
multimodal features presented in MDTs.

In this study, we set out to objectively assess the value of
combining clinical features for temporal-lobe (TL) epileptogenic
zone localization – the most common form of drug refractory
epilepsy with the best surgical outcomes. We investigated set of
seizure semiology (SoS, devoid of sequence information) and
hippocampal sclerosis (HS), as this imaging finding is specific
to the TL, is the most frequent imaging finding, and provides
a good univariate benchmark. HS is a scar in the medial
temporal lobe and the most common pathology underlying
drug-resistant TL epilepsy. These features are important in
clinical evaluations and can be extracted from electronic
health record texts. We used machine learning models with
strong ground-truths and also assessed values in predicting
surgical outcomes.

METHODS

Study Design and Participants
Our objective was to determine the value of clinical-semiology,
hippocampal sclerosis and their combination for the binary
localization of the EZ to the temporal or extratemporal brain.
The value of combining these features was quantified for both
relative diagnostic performance (Step 1) and subsequently using
the model from Step 1 for post-surgical prognosis (Step 2) as
well as training independent models for the direct prediction of
surgical outcomes (Step 3).

Retrospective text analysis of 3,800 mixed data-type electronic
health records (EHRs) pertaining to adults with refractory focal
epilepsy admitted for presurgical assessment for epilepsy surgery
from 2001 to 2011 was undertaken at the National Hospital for
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TABLE 1 | Frequency of Features and Targets.

Variable Frequency in seizure-free

patients

(n = 126) (%)

Frequency in all operated

patients

(n = 309) (%)

Temporal-EZ (target) 112 (89%) 256 (mix of seizure-free and

not seizure-free) (83%)

Dialeptic/loss of

awareness (LOA)

92 (73%) 223 (72%)

Tonic-clonic 84 (67%) 224 (72%)

Hippocampal sclerosis

(imaging feature)

70 (56%) 147 (48%)

Oral automatisms 58 (46%) 140 (45%)

Other automatism

(unspecified)

57 (45%) 138 (45%)

Olfactory-gustatory 56 (44%) 141 (46%)

Upper limb automatism 49 (39%) 108 (35%)

Tonic 47 (37%) 126 (41%)

Aphasia 46 (37%) 100 (32%)

Fear-Anxiety 37 (29%) 91 (29%)

Head Turn 30 (24%) 73 (24%)

Clonic 30 (24%) 77 (25%)

Epigastric 28 (22%) 61 (20%)

Autonomous-

vegetative

26 (21%) 66 (21%)

Psychic 23 (18%) 57 (18%)

Non-specific aura 22 (17%) 52 (17%)

Dysphasia 21 (17%) 71 (23%)

LOC 17 (13%) 46 (15%)

Astatic 15 (12%) 38 (12%)

Other simple motor 14 (11%) 32 (10%)

Vocalization 13 (10%) 33 (11%)

Somatosensory 12 (10%) 39 (13%)

Nose-wiping 10 (8%) 18 (6%)

Dystonic 10 (8%) 26 (8%)

Head version 10 (8%) 27 (9%)

Grimace 10 (8%) 19 (6%)

Blink 9 (7%) 27 (9%)

Hypermotor 8 (6%) 19 (6%)

Dacrystic 8 (6%) 14 (5%)

Vestibular 7 (6%) 26 (8%)

Other complex motor 6 (5%) 13 (4%)

Auditory 4 (3%) 10 (3%)

Gelastic 4 (3%) 7 (2%)

Eye Version 3 (2%) 8 (3%)

Hypomotor (behavioral

arrest)

3 (2%) 11 (4%)

Visual 3 (2%) 12 (4%)

Coprolalia 3 (2%) 3 (1%)

Figure of 4 2 (2%) 5 (2%)

Atonic 2 (2%) 6 (2%)

Ictal pout 1 (1%) 1 (0.3%)

Myoclonic 1 (1%) 2 (1%)

Spitting 1 (1%) 7 (2%)

Asymmetric tonic 1 (1%) 4 (1%)

(Continued)

TABLE 1 | Continued

Variable Frequency in seizure-free

patients

(n = 126) (%)

Frequency in all operated

patients

(n = 309) (%)

Fencing 0 1 (0.3%)

Lower limb automatism 0 1 (0.3%)

Palilalia 0 0

Aphemia 0 0

Drinking 0 0

Cough 0 0

Whistling 0 0

Frequency of patients with Semiology, imaging feature and temporal resections. By

“hypomotor” we mean behavioral arrest during a seizure and not the semiology specific

to the pediatric population.

Neurology and Neurosurgery, London. SoS, HS, and temporal-
EZ features were extracted (Table 1). Univariate statistics were
computed and machine learning models were trained to predict
temporal-EZ and subsequently prognosis.

We used set-of-semiology (SoS), because these are
more readily available from a clinical history than precise
symptom chronology. We restricted MRI-identifiable TL
pathology to HS as this represented 92% of temporal
lesions (n= 70).

Procedures
EHRs were pseudo-anonymised, pre-processed and text-mined
for the presence of 49 semiology features and a single
imaging feature (HS) using regular expressions as a taxonomy
replacement. This taxonomy replacement was a bespoke
expansion of major semiological categories presented elsewhere
(4). The anonymised keys and identifiers were stored in
secure NHS systems and checks for data-mining integrity on
a subsample showed <5% binary-feature error compared to
manual feature-extraction by a consultant neurologist. The
Pandas DataFrame was sparse and multi-one-hot encoded. EHRs
were cross-referenced to a database containing EZ-localization
labels (resected lobes) alongside their post-operative year-by-year
ordinal score on the ILAE epilepsy surgery outcome scale, and
whether they had intracranial electrode recordings, curated since
1990, as previously reported (6). Intracranial electrodes were
collected only as a univariate benchmark for negative prognostic
value in epilepsy surgery, as their presence is a clinical indicator
of uncertain EZ.

EHRs from 870 cases were available, 335 of which underwent
epilepsy-surgery after assessment. 324 cases were from unique
patients, of which 309 had one resection only, excluding
hemispherectomies and corpus callosotomies, consistent with
previous methodology (11).

Statistical Analysis
Fisher’s exact and Mann-Whitney U-tests were performed at
three levels of uncorrected type I error (alpha = 0.05, 0.005, and
0.0005) with Bonferroni corrections for multiple comparisons for
181 tests (Fisher’s: 51 for Step 1, 53× 2 for Step 3; MWU: 24 tests)
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(p < 2.76 × 10−4
=

∗, p < 2.76 × 10−5
=

∗∗, p < 2.76 × 10−6

=
∗∗∗, respectively). Theil’s U (asymmetric normalized mutual

information, NMI) was used to check for categorical correlations
and model performance.

Machine Learning
We used multivariate binary Logistic Regression (LR), Gradient
Boosted Trees (GB), and Linear Support Vector Classifiers (SVC)
(implemented in Scikit-learn v 0.19.2) (12) as suggested by
previous studies (9, 13). We chose these specific algorithms
as LR is widely used in predictive models, SVC performs
well if the target can be linearly separated by a high-
dimensional hyperplane in feature space, and GB ensemble
models leverage multiple weak classifiers into a strong classifier
with each individual component utilizing a different feature
subset, akin to clinical MDTs. GB are more likely to succeed
with more data and complexity, but are less interpretable
than SVC or LR. For binary features and binary outcomes as
in our study, LR without regularization can have a decision
boundary that asymptotically approaches that of SVC (14),
which can further help assess if the targets are linearly
separable. Feature selection was performed using both univariate
and recursive feature elimination with 5-fold cross-validation
(RFECV) methods (15). No other hyperparameter tuning
was performed.

The models were compared to benchmarks in localizing
temporal-EZ (Step 1). We also made indirect assessments if
improved diagnostic accuracy translated to enhanced outcome

predictions (Step 2), and separately trained models to directly
predict outcomes (Step 3). For Step 1, we chose a binary
localization target containing the most common focal epilepsy,
temporal-lobe vs. extra-temporal (ET) EZ, and models were
trained on patients who were entirely seizure-free at all follow-
up years (ESF). For Steps 2 and 3, outcome was assessed at two
binary levels: seizure-freedom at 1-year (ILAE1), and ESF. In
Step 2, the Step 1 model was used to predict outcomes on all
data. In Step 3, new models were trained to predict outcomes.
ILAE 2 and above were considered not seizure-free (NSF) due to
residual epileptogenic tissue resulting in auras or seizures with
impaired awareness.

Although we report many metrics (using 1,000 × 5 repeated
stratified CV with means and standard deviations in Table 3,
or medians and IQR), due to an unbalanced dataset, we focus
on Matthews-correlation-coefficient (MCC) as one of the most
suitable metrics for binary classification evaluations which can be
interpreted as a discretization of Pearson’s-correlation-coefficient
(16, 17). NMI was used to quantify information gains between
features, models, and the ground truth EZ.

Role of the Funding Source
The Wellcome/EPSRC Center for Interventional and Surgical
Sciences had no role in the study design; collection, analysis or
interpretation of data; writing of report; nor in the decision to
submit for publication.

This study was approved by the Research Ethics Committee
for UCL and UCLH (20/LO/0149).

TABLE 2 | Benchmarks for Step 1 Temporal-EZ Localization.

Feature Number with

TL-EZ/number with

feature (n = 126)

Number with

TL-EZ/number with

feature (n = 309)

Odds ratios (n = 126,

n = 309)

p-values (n = 126, n = 309)

Temporal-EZ features

Hippocampal sclerosis 70/70 144/147 DBZ**, 21*** 4.2 × 10−6**, 6.3 × 10−13***

All Automatisms (combined) 82/84 186/206 16.4*, 4.4*** 3.0 × 10−5*, 2.2 × 10−6***

Oral automatisms 58/58 131/140 DBZ*, 5.1** 9.7 × 10−5*, 3.5 × 10−6**

Other automatism (unspecified) 55/57 127/138 5.8, 3.8* 0.020, 0.00012*

Upper limb automatism 49/49 100/108 DBZ, 3.6 0.00082, 0.00077

Fear-anxiety 37/37 84/91 DBZ, 3.2 0.010, 0.0045

Dialeptic/LOA 85/92 195/223 3.1, 2.9 0.054, 0.0012

Epigastric NS 58/61 NS, 4.9 NS, 0.0039

Aphasia NS 90/100 NS, 2.3 NS, 0.024

Extratemporal-EZ features

Intracranial electrodes NS 50/89 NS, 0.09 NS, 7.1 × 10−4

Hypomotor (behavioral arrest) 0/3 6/11 0, 0.16 0.0011, 0.0045

Somatosensory 8/12 25/39 0.19, 0.30 0.029, 0.0024

Clonic 23/30 57/77 0.26, 0.47 0.040, 0.023

Head version NS 16/27 NS, 0.25 NS, 0.0021

Eye version NS 3/8 NS, 0.11 NS, 0.0046

Asymmetric tonic NS 1/4 NS, 0.07 NS, 0.017

Fisher’s exact test for Step 1 Temporal-EZ localization in postoperative seizure-free patients (n = 126, strong ground truths) and all operated patients (n = 309, 256 weakly labeled as

temporal, 53 as extratemporal). All features with p < 0.05 are shown; *Represents significance at alpha 5% after Bonferroni correction. **at 0.5% after Bonferroni correction. ***at 0.05%

after Bonferroni correction. DBZ, Division By Zero. NS: p > 0.05.
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TABLE 3 | Machine Learning Models for Temporal EZ-Localization (Step 1).

Model-RFECV Naïve

benchmark

Automotor

semiology

univariate

benchmark

HS imaging

univariate

benchmark

LR SoS LR SoS+HS Linear

support

vector

classifier

SoS

Linear

support

vector

classifier

SoS+HS

GB SoS GB SoS+HS

5-CV

metric

+/-std (refit)

# of features (min equivalent) N/A 1 1 16 25 (18) 40 (30) 9 27 17

F1 average macro N/A 0.61 ± 0.06 0.59 ± 0.06 0.68 ± 0.17

(0.88)

0.75 ± 0.16

(0.88)

0.72 ± 0.16

(0.88)

0.85 ± 0.14

(0.91)

0.66 ± 0.15 0.81 ± 0.14

(0.98)

Balanced accuracy 0.5 0.67 ± 0.07 0.75 ± 0.04 0.65 ± 0.13

(0.82)

0.72 ± 0.15

(0.82)

0.70 ± 0.15

(0.82)

0.81 ± 0.14

(0.86)

0.65 ± 0.14 0.80 ± 0.15

(0.96)

Accuracy 0.83 ± 0.04 0.71 ± 0.05 0.63 ± 0.05 0.92 ± 0.03

(0.96)

0.93 ± 0.03

(0.96)

0.92 ± 0.04

(0.96)

0.96 ± 0.03

(0.97)

0.89 ± 0.05 0.93 ± 0.04

(0.99)

Sensitivity/recall 1 0.73 ± 0.06 0.56 ± 0.06 1.0 ± 0.004 0.995 ±

0.015

0.98 ± 0.03 1.0 ± 0.006

(1.0)

0.96 ± 0.04 0.97 ± 0.04

(1.0)

Specificity 0 0.62 ± 0.14 0.94 ± 0.06 0.30 ± 0.26

(0.64)

0.44 ± 0.29

(0.64)

0.42 ± 0.29

(0.64)

0.61 ± 0.28

(0.71)

0.35 ± 0.27 0.62 ± 0.29

(0.93)

PPV 0.83 ± 0.04 0.90 ± 0.04 0.98 ± 0.02 0.92 ± 0.03

(0.96)

0.94 ± 0.03

(0.96)

0.93 ± 0.03

(0.96)

0.95 ± 0.03

(0.97)

0.92 ± 0.03 0.95 ± 0.03

(1.0)

NPV 0 0.32 ± 0.09 0.31 ± 0.07 0.64 ± 0.48

(1.0)

0.77 ± 0.39

(1.0)

0.67 ± 0.40

(1.0)

0.93 ± 0.25

(1.0)

0.51 ± 0.39 0.76 ± 0.31

(1.0)

AUROC N/A N/A N/A 0.89 ± 0.11 0.95 ± 0.06 0.83 ± 0.14 0.95 ± 0.05 0.81 ± 0.14 0.95 ± 0.07

Average Precision N/A N/A N/A 0.98 ± 0.02 0.99 ± 0.01 0.97 ± 0.03 0.99 ± 0.01 0.97 ± 0.03 0.99 ± 0.01

MCC [bootstrap refit] 0 [0.28± 0.12] [0.38± 0.08] 0.41 ± 0.33

[0.76 ± 0.22]

(0.78)

0.55 ± 0.31

[0.76 ± 0.22]

(0.78)

0.48 ± 0.32

[0.76 ± 0.22]

(0.78)

0.73 ± 0.25

[0.81 ± 0.19]

(0.83)

0.36 ± 0.30 0.64 ± 0.27

[0.96 ± 0.09]

(0.96)

NMI symmetric [asymmetric

bootstrap refit]

0 [0.10± 0.07] [0.21± 0.08]

(0.28)

0.31 ± 0.26

[0.57 ± 0.29]

(0.53)

0.42 ± 0.28

[0.57 ± 0.29]

(0.53)

0.35 ± 0.28

[0.57 ± 0.29]

(0.53)

0.61 ± 0.27

[0.65 ± 0.29]

(0.604)

0.23 ± 0.23 0.48 ± 0.29

[0.91 ± 0.19]

(0.87)

Step 1 CV performance metrics. Mean and standard deviation of 1,000 × 5 CV scores. Benchmark std given by bootstrapping 2,000 × 5 CV. Brackets represent model-refit (training)

scores. Square brackets show bootstrapped refit results. CV, cross-validation; RFECV, Recursive Feature Elimination with CV; std, standard deviation; PPV/NPV, Positive/Negative

Predictive Value; AUROC, Area under receiver operating curve; MCC, Matthews Correlation Coefficient; NMI, Normalized Mutual Information. See Supplementary Materials for

expanded table and distribution of MCC and NMI scores.

RESULTS

Patients and Outcomes
Of the 309 patients, 126 (41%) were ESF at all follow-
up years (median follow-up 7 years, IQR = 5–10,
Supplementary Figure 9), indicating correct EZ-resections.
Labels were unbalanced; 112/126 (88.9%) were temporal-EZ, and
14 extratemporal.

Features
Forty-two semiology features were present in the ESF-set.
Automatisms (oral, manual and other) were merged to a single
category, leaving 40 SoS features. There were 76 temporal-lobe
lesions in the ESF group and HS as the single imaging feature
constituted 92% (70/76) of these. In addition, there were three
cavernomas, one dysembryoplastic neuroepithelial tumor, one
cyst and one focal cortical dysplasia in the temporal lobes.

Table 1 shows frequency of occurrences in the 126-ESF-set
and all 309 operated patients.

Table 2 shows univariate benchmarks for features associated
with temporal-EZ. The statistically significant features after
multiple-comparisons correction on two-by-two Fisher’s exact
tests were seizures with automatisms and HS. The highest odds-
ratios were for presence of HS, automatisms, and fear-anxiety.

The performance metrics of the best univariate features, as
benchmarks, are summarized in Table 3.

Step 1: EZ Cross-Validated Results
The learning curves for the GB and SVCmodels show overfitting
for SoS features alone that improved with combined SoS+HS
features (Figure 1). Table 3 shows semiology and imaging
enhanced performance above that of benchmarks using the best
features obtained from RFECV (Figures 2, 3), most of which
were found in the univariate analysis (Table 2). Figure 4 shows
that combined features also enhance training-set performance.

GB betters SVC when refit to the ESF-set (Figure 4); whereas
cross-validated results (Figure 1, Table 3) show the models
perform more similarly: mean and median MCC with and
without the imaging feature are:

• Best benchmark (imaging-HS): mean = 0.38 ± 0.08, median
= 0.38, IQR= 0.33–0.43

• GB-SoS: mean= 0.36± 0.30, median= 0.35, IQR= 0.0–0.55
• GB-SoS+HS: mean = 0.64 ± 0.27, median = 0.66, IQR

= 0.55–0.80
• SVC-SoS: mean = 0.48 ± 0.32, median = 0.55, IQR =

0.34–0.69
• SVC-SoS+HS: mean = 0.73 ± 0.25, median = 0.80, IQR

= 0.55–0.80.

Frontiers in Digital Health | www.frontiersin.org 5 February 2021 | Volume 3 | Article 55910341

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Alim-Marvasti et al. Machine Learning and Seizure Semiology

FIGURE 1 | Learning Curves using accuracy score, with standard deviations. The test-fold accuracies (in green) are more representative of model performances on

prospective data, showing enhanced learning by combining semiology and HS. (A,C) SoS has limited test-fold learning (green) with increasing training samples. (B,D)

SoS+HS improves test-fold accuracies after about 70 samples. See Supplementary Materials for comparison with logistic regression.

Comparing GB and SVC-models:

• with semiology alone, although SVC performed better,

the two models performed similarly with overlap of
interquartile ranges.

• with SoS+HS, there was also significant overlap between the

models; the SVC-model again had a better median MCC.

Compared to SoS alone, when combining features:

• SVC mean, median, lower and upper quartiles were

enhanced by between 10 to 25%. This suggests the support
vectors are better defined with HS and that temporal

lobe EZ are linearly separable in binary semiology-HS

feature space.
• in the GB-model, there was also significant improvements in

lower-quartile (55%), median (30%) and upper-quartile (25%)
MCC and no overlap in interquartile ranges.

• LR (Table 3) shows similar improvements in metrics, except

the median MCC remains at 0.55.

These affirm the value of combining multimodal features,

irrespective of the model.

Step 2: Indirect Surgical Outcome Results
Of the 183 NSF patients, 144 had temporal resections (54 ILAE
1 at 1-year, median of patient ILAE outcome medians = 2,
IQR = 1–4) and 39 extratemporal resections (seven ILAE 1
at 1-year, median = 4, IQR = 2–4). Temporal resections were
associated with better outcomes at 1-year post-resection (ILAE
1, OR = 2.7, p = 0.035) and better median ILAE outcomes
(Mann-Whitney U = 2,057, p = 0.004). None of the machine
learning models’ congruent predictions with actual resections
were significant in improving upon this naïve benchmark
(Supplementary Figures 10–13).

Step 3: Direct Surgical Outcome Results
Although direct (n = 309) benchmarks for ESF included having
had a temporal-resection (OR = 2.2, p = 0.02), having been
seizure-free-at-1-year, presence of HS (OR = 1.7, p = 0.02),
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FIGURE 2 | Gradient Boosting Classifier GB SoS+HS Feature Importance.

From the 41 combined features, RFECV was used to determine the most

relevant features for the model.

FIGURE 3 | Support Vector Classifier SVC SoS+HS feature ranking using

RFECV. In blue are features which predict temporal, and in red extratemporal

EZ. All SVC features are also used by the GB model, except “Hypermotor”

semiology.

and dysphasia (OR = 0.53, p = 0.039), and benchmarks for
predicting seizure-freedom at 1-year included presence of HS
(OR = 1.9, RR = 1.29, p = 0.005), temporal-lobe-resection (OR
= 2.8, p = 0.001) and presence of intracranial EEG (OR = 0.46,
p = 0.003), only seizure-freedom-at-1-year as a predictor of ESF
was statistically significant after multiple comparisons correction

(Theil’s U = 0.43). No model was able to exceed naïve or feature
benchmarks on any metric.

DISCUSSION

Our main findings were that models localized the epileptogenic-
zone to the temporal lobe when using multimodal semiology
and MRI report of HS, and were better than semiology, HS
or other benchmarks in isolation. Support vector machines
had a slight edge over Gradient Boosted trees, but there was
considerable overlap in performances (Step 1). No method
was able to predict seizure-freedom at 1-year or ESF better
than benchmarks (Steps 2 and 3). Multicenter case records are
required to confirm generalizability, and expanded features are
necessary to determine if epilepsy surgical outcomes can be
predicted at all.

EZ-Localization Algorithms (Step 1)
Our study addresses a subset of the open issue of algorithmic
identification of EZ networks (10), namely temporal-EZ,
and provides univariate and algorithmic benchmarks with
single (SoS) or two-modalities (SoS and HS). Models with
multimodal features outperform semiology-only models
(Figure 1) and univariate benchmarks (Table 3) using features
that are significant on univariate analysis (Table 2) and those
that are not (Figures 2, 3). The strength of the GB model lies
in its ability to combine an ensemble of weak-learners, and
out-perform individual univariate benchmarks, including the
strongest, HS, as assessed on both training-set (Figure 4) and
CV-folds (Table 3). SVC strength lies in classifying temporal-
EZ by defining borderline cases as class-dividing support
vectors. Support vectors are the feature-states of the cases
which lie at the margins of the optimum hyperplane separating
the temporal vs. extratemporal EZs. The SVC-model has 26
support vectors which determine the classifiers hyperplane.
Alterations to any of these cases, but not others, can result in
a different SVC classifier altogether. This makes the algorithm
more robust to slight sample changes during cross-validation.
The coefficients in Figure 3 represent the projections of a
vector orthogonal to the classifying hyperplane onto each
feature (15).

Clinical Features of Temporal-EZ (Step 1)
The following cardinal semiologies of temporal lobe seizures have
been described: (18)

• Prodromes
• Auras
• Altered Consciousness (dialeptic)
• Amnesia
• Automatisms (oral, manual, dacrystic, gelastic,

and leaving-behaviors).

Hippocampal sclerosis is present in more than 80% of surgically
treated TLE. The published semiologies in mTLE, commonly
associated with HS include:

• Rising epigastric sensation
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FIGURE 4 | Theil’s U for features, models and temporal-EZ localization. The columns represent the known (Bayesian prior) variable, and the rows the target entropy

coefficient. For example, “Figure of 4” semiology in the column is a subset of “Asymmetric Tonic” in the row with high coefficient, whereas the reverse association is

smaller in magnitude. The naïve algorithm would show zero association with all the variables with a column of zeros (and is undefined in row due to division by zero).

All four models are more predictive of a temporal-EZ than any of the univariate features, with 1 (intense red) representing 100% of the information in the target being

predicted by the column. With the addition of Imaging HS to Semiology SoS (n = 126, refit to training set) SVC and GB show a graded improvement in the proportion

EZ-localization entropy accounted for.

• Affective (fear)
• Experiential (including déjà vu)
• Automatisms
• Head Turns
• Autonomic phenomenon.

These semiologies are confirmed by univariate analysis (Table 2),
and from the 17 retained features post-RFECV (Figure 2).
A notable exception is rising epigastric sensation. Epigastric
sensation is non-significant for the ESF patients used to train the
data (Table 2) and not present as a feature after RFECV for either
the SVC or GB models (Figures 2, 3).

There are conflicts and overconfidence in reporting the
localizing values of semiology in the literature, using small
samples of clinical cases and often no ground-truths to
objectively assess labels or effects on surgical outcomes. The

localizing values of semiologies may be stated without measuring
confidence or variation e.g., postictal cough localizing to the
temporal lobe (18), unilateral upper-limb automatisms reported

to both have an ipsilateral seizure onset (19, 20) and no

lateralizing value in isolation (21). Such discrepancies may arise

due to lack of ground-truths, small numbers, ignoring time to

onset of the semiology and excluding relevant features. When

value is assessed, this is usually performed in a univariate

manner, e.g., in one example series the trend that hypermotor

seizures occur earlier in frontal lobe epilepsy than extra-frontal

epilepsies was assessed by univariate Fisher’s exact test, showing
that chronology is valuable for EZ-localization; but did not
reach significance and only 17 surgical patients were seizure-free
(ground-truth labels), limiting the power of the analysis (22).
The GB algorithm (Figure 2) shares all the SVC-model features
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(Figure 3) except hypermotor, which only features in the SVC-
model, potentially making the SVC model more capable of
identifying frontal-lobe (extratemporal) seizures.

Quantifying Value of Multimodal Features
Although studies that look at single modality data can quantify
the value of semiology compared to naïve benchmarks, they
cannot assess the value of multimodal features, as are utilized
clinically in MDTs (9). Clinical, demographic, imaging and
neurophysiological features applied in machine learning have
been purported to be capable of predicting mTLE outcomes
(with or without HS), but this value has not been quantified nor
applied to EZ-localization (13). Multimodal features of EEG and
semiology enhance EZ-lateralisation accuracy (23), and although
it is known that integration of clinical data also enhance EZ-
localization (20), datamining studies have not quantified the
incremental value of multimodal data (13).

Different methods may be used to assess incremental
multimodal value; for any given model, the convergence rate
of the learning curve, choice of performance metric, and
maximum or average performance. We highlighted the value
of semiology and imaging using all of these methods, and used
suitable summarymetrics in unbalanced datasets, MCC andNMI
(Table 3). In both the GB SoS+HS and SVC SoS+HS models,
multimodal features improve MCC and NMI average scores by
over 25% compared to the best univariate benchmark of HS,
and compared to the SoS-only models. Therefore, although SoS
is not more valuable than univariate markers, when combined
with the imaging feature (HS) it enhances epileptogenic
lobe localization.

Outcome Prediction (Steps 2 and 3)
In Step 2 we evaluated model performance in indirectly
predicting outcomes on the 183 non-seizure free patients. We
assessed the veracity of these EZ-labels using the model as
the predictor of true labels. The null hypothesis was that if
there was a mismatch between the actual resection (weakly
labelled EZ) and prediction, the ILAE outcomes should not
be significantly different to when there is congruence of
prediction. A naïve benchmark which predicts all resections
to be temporal outperforms models from Step 1, therefore
the EZ-localization performance does not translate to
better outcomes.

Step 3 directly used all 309 patients’ features to predict
seizure-freedom, and the training curves showed overfitting
as the models performed much better on the training set,
but were no better than benchmarks on cross-validation
folds (Supplementary Figure 12). Features which could localize
temporal-EZ within the context of the above algorithms are thus
insufficient for outcome prediction, which limits their clinical
utility (8). Many other factors besides the EZ may determine
outcomes, including whether there are indicators of multifocal
epilepsy, unaccounted clinical (24) and genetic features, lesion
histology (25), EEG patterns, and extent of surgical resection
(11, 26–29). Our model did not account for these, nor the precise
structures within the temporal lobe that were resected.

Table 2 suggests that invasive EEG is more likely to be used
in extra-temporal-EZ, but is not associated with better outcomes,
reflecting selection bias, in that invasive EEG would only be used
if localization was unclear on non-invasive investigations.

We were not able to predict outcomes with our chosen
features using GB, SVC, or other models, as reported previously
(30). However, other studies have purported to be capable of
predicting mTLE binary post-surgical outcomes using various
models and features in cross-validated studies: naïve-Bayes and
SVC (max accuracy 95%) (13), neural networks and wide manual
data abstraction (accuracy 92%); neural networks and diffusion-
tensor imaging (PPV of 88 ± 7%) (31, 32). The smaller studies
are likely to be overfitting the data and not generalizable, and
even accurate prognostication does not help improve clinical
outcomes (33).

Limitations
The mean CV score is considered an unbiased estimate of
performance. The standard deviation estimates for the CV scores
are however not unbiased (34); these are particularly large due
to different training samples within each fold (e.g., SVC is
sensitive to the support vector cases), and some folds predicting
no extratemporal EZs due to class imbalance, resulting in larger
variances for NPV and specificity (Table 3). As we tuned the
number of features using RFECV, the mean CV score is also
biased, therefore multicenter prospective data is required to
assess generalizability and ascertain which model is inherently
more suited to localizing temporal-EZ. The learning curves also
suggest further data may enhance results.

We used the complete set of available ictal symptoms
and not only the semiology presenting at seizure-onset or a
sequential Markov model, which together with omitted imaging,
electrophysiological and neurophysiological features may yield
better results.

We did not model propagation networks in which similarly
located lesions may differentially straddle inherent brain
networks. Dichotomous assumption of temporal vs. extra-
temporal lobe epilepsy may be only good insofar as the majority
of resections are anterior temporal resections. Our labels do
not differentiate between lateral or mesial temporal-lobe EZ or
indeed the extent of resection.

The PPV and specificity of both semiology and HS are
higher than the models in predicting temporal-EZ, although the
training-scores are comparable. The GB SoS+HS model has a
more balanced metric profile, as reflected in F1-macro, MCC and
NMI scores (Table 3).

A strength of our study is the inclusion of only patients
who remained ESF for epileptogenic zone localization, despite
the good results for localization, this doesn’t translate to better
outcomes, the so-called AI chasm is thus not surmounted.

Further work is required to validate this localization model
prospectively. Expanding the number of training samples and
features in a multicenter approach may allow the use of
these models to localize epileptogenic networks to a greater
level of detail, and allow investigation of the extent that
surgical outcomes can or cannot be predicted with all available
multimodal data.
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Accurate prediction and monitoring of patient health in the intensive care unit can inform

shared decisions regarding appropriateness of care delivery, risk-reduction strategies,

and intensive care resource use. Traditionally, algorithmic solutions for patient outcome

prediction rely solely on data available from electronic health records (EHR). In this pilot

study, we explore the benefits of augmenting existing EHR data with novel measurements

from wrist-worn activity sensors as part of a clinical environment known as the Intelligent

ICU. We implemented temporal deep learning models based on two distinct sources

of patient data: (1) routinely measured vital signs from electronic health records, and

(2) activity data collected from wearable sensors. As a proxy for illness severity, our

models predicted whether patients leaving the intensive care unit would be successfully

or unsuccessfully discharged from the hospital. We overcome the challenge of small

sample size in our prospective cohort by applying deep transfer learning using EHR

data from a much larger cohort of traditional ICU patients. Our experiments quantify

added utility of non-traditional measurements for predicting patient health, especially

when applying a transfer learning procedure to small novel Intelligent ICU cohorts of

critically ill patients.

Keywords: machine learning, deep learning, transfer learning, intensive care unit, electronic health records,

intelligent ICU

1. INTRODUCTION

Patients admitted to a hospital’s intensive care unit (ICU) have life-threatening conditions or the
propensity to develop them at any moment. An estimated 5.7 million adults are admitted to ICUs
in the United States annually, and their precarious and often rapidly-changing state of health
necessitates increasedmonitoring and hospital resources that costs the U.S. healthcare systemmore
than 67 billion dollars every year (1).

A typical ICU stay occurs in an environment of high-frequency patient monitoring involving
a wide variety of physiological measurements such as vital sign tracking, bedside nursing
assessments, and laboratory test results. These clinical data points serve as a window into
patient illness severity, and taken over time can indicate improving or worsening physiological
health. The robust clinical data generated during an ICU stay can aid caregivers in diagnosis
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and influence clinical decision-making regarding medication
administration, appropriateness of clinical procedures and
surgery, and duration and resource requirement of intensive care.

The rich data associated with a typical ICU stay is routinely
captured in modern electronic health record (EHR) systems. As
of 2017, more than 99% of U.S. hospitals use some form of
EHR (2). These longitudinal systems store a large magnitude
of patient information including demographics and admission
information, vital signs, diagnoses and procedures, laboratory
tests, prescriptions andmedications, bedside assessments, clinical
notes, and more. While inherently useful for care delivery and
administrative hospital tasks like billing, EHR systems also
function as a rich source for more automated data-driven patient
monitoring applications.

Given the potential for health instability commonly associated
with patients undergoing intensive care, the timely and accurate
assessment of illness severity is invaluable and can inform
shared decision-making among patients, families, and providers.
Traditionally, overall patient acuity can be measured using
a variety of manual, threshold-based scoring systems such
as Sequential Organ Failure Assessment (SOFA) (3), Acute
Physiology And Chronic Health Evaluation (APACHE) (4),
Simplified Acute Physiology Score (SAPS) (5, 6), Modified
Early Warning Score (MEWS) (7), and others. More recently,
clinical informatics research has demonstrated the validity and
accuracy of more automated machine learning approaches using
the rich data from EHR systems (8–12). In particular, modern
algorithmic techniques using deep learning have been shown to
outperform traditional bedside severity scores for predicting in-
hospital mortality as a proxy for real-time patient acuity (13).
Automated approaches for assessing patient illness severity can
help eliminate reliance on overburdened providers, improve the
precision of personalized acuity estimates, and be computed in
real-time when combined with streaming EHR platforms.

One potential disadvantage of automated patient monitoring
solutions is that such systems are limited to physiological data
that is recorded in EHR databases. This common paradigm
omits important aspects of patient care, including environmental
factors (such as noise, light, and sleep), facial expressions that can
indicate pain, agitation, or affective state, and aspects of patient
mobility and functional status.

Currently, patient pain can be measured by scoring systems
such as the Non-Verbal Pain Scale (NVPS) (14) and the
Defense and Veterans Pain Rating Scale (DVPRS) (15), and
patient activity can be assessed by scoring systems such as the
Progressive Upright Mobility Protocol (PUMP) Plus (16) and the
ICU Mobility Scale (IMS) (17). However, these manual scores
are much less granular than the corresponding physiological
measurements and require either self-reporting or repetitive
observations by ICU staff (18, 19). The reduced frequency and
granularity of these types of patient data can hinder timely
intervention strategies (20–25).

To overcome the limitations of current approaches to
automated patient monitoring, recent studies have begun to
explore the benefits of intensive care units augmented with
continuous and pervasive sensing technology. In a study dubbed
the Intelligent ICU, Davoudi et al. augmented traditional

EHR-based data with patient-worn accelerometer sensors,
room-equipped light and sound sensors, and a patient-facing
camera (26) (Figure 1). Their initial pilot study demonstrated
the positive impact of these novel clinical data streams in
characterizing delirium in a small prospective cohort of ICU
patients. While these non-traditional ICU data sources have
shown promise for improving modeling of critically ill patients,
Intelligent ICU rooms equipped with pervasive sensors are still
in early stages of research.

In this study, we build upon the work of Davoudi et al. by
utilizing the data generated by Intelligent ICUs for automated
patient acuity assessment using deep learning techniques. In
particular, we show that by augmenting existing EHR data with
continuous activity measurements via wrist-worn accelerometer
sensors, models are better able to capture illness severity by way
of more accurate predictions of hospital discharge disposition.
We overcome the issue of small sample size in the Intelligent
ICU cohorts by employing transfer learning techniques, where
learned knowledge and representations from a much larger
cohort of EHR-only patients is used as a starting point for
subsequent incorporation of the non-traditional data streams. By
combining transfer learning with augmented ICU monitoring,
our work demonstrates the utility, efficacy, and future promise
for using Intelligent ICUs for more personalized and accurate
illness severity assessments.

2. MATERIALS AND METHODS

2.1. Study Aims
The primary goal of our study is to characterize the effectiveness
of augmenting traditional EHR patient data with a novel
Intelligent ICU data source as it pertains to patient acuity
assessment using machine learning techniques. Specifically, we
combine datasets consisting of several common vital signs with
continuous measurements from a wrist-worn activity sensor,
and use these augmented datasets to make predictions of a
patient’s eventual successful or unsuccessful hospital discharge
as a proxy for illness severity. In this study, we consider a
discharge to home or rehabilitation facility as successful, with in-
hospital mortality or transfer to another hospital or hospice being
considered unsuccessful.

Our second aim is the evaluation of transfer learning as a
solution to cope with the issue of small sample size in our
prospective Intelligent ICU patient cohort. We hypothesized that
building upon algorithmic patient representations from a much
larger cohort of traditional ICU stays would result in improved
predictive performance in the smaller cohort of interest.

2.2. Study Cohorts
Our primary cohort of interest, which we refer to as the
Intelligent ICU cohort, includes 51 distinct ICU admissions
at University of Florida Health between September 2015 and
February 2020. These intensive care episodes were made up of
51 unique patients undergoing 51 unique hospital encounters,
and occurred within specialized intensive care units outfitted
with several unconventional monitoring systems (Figure 1). The
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FIGURE 1 | Intelligent ICU room introduced by Davoudi et al. (26). In this study, we augment traditional vital signs from electronic health records with novel activity

data from wrist-worn accelerometer sensors.

Intelligent ICU cohort included 33 successful discharges (64.7%)
and 18 unsuccessful discharges (35.3%).

For transfer learning experiments, we constructed a much
larger second cohort of 48,400 distinct ICU admissions occurring
at University of Florida Health between January 2011 and July
2019. We refer to these admissions as the Conventional ICU
cohort, as it comes from standard intensive care units that
contain only the data available in typical EHR systems. These ICU
admissions included 32,184 patients undergoing 45,147 unique
hospital encounters. The Conventional ICU cohort included
36,392 successful discharges (75.2%) and 12,008 unsuccessful
discharges (24.8%).

This study was approved by University of Florida Institutional
Review Board by IRB 201900546. A summary and comparison of
admission and demographic descriptors for each cohort is shown
in Table 1.

2.3. Data Extraction and Processing
2.3.1. Traditional EHR Data
Whether receiving care in an Intelligent ICU or conventional
ICU room, all patients have the same set of data recorded into
their electronic health records. In this study, for both cohorts we
extracted all ICU measurements of six commonly recorded vital
signs: diastolic blood pressure, systolic blood pressure, heart rate,
respiratory rate, oxygen saturation (SpO2), and temperature.

A multivariate time series of vital signs was constructed
for each ICU stay by temporally ordering measurements and
resampling to a fixed 1-h frequency, where the mean value was
taken if multiple measurements existed in the same 1-h window.

We extracted measurements from the entirety of each ICU stay,
thus each vital sign sequence was variable length based on the
number of hours a patient was in the ICU.

2.3.2. Intelligent ICU Data
The novel environmental and pervasive sensing technology
was unique to the 51 ICU stays occurring in our Intelligent
ICU cohort. Among all available non-traditional data sources
(Figure 1), in this pilot study we opted to explore the added
utility of wrist-worn activity sensors. Since this is the first study
of its kind, we intentionally chose to limit the inclusion of novel
data sources as a starting point for exploring and discussing the
potential benefits of Intelligent ICU rooms for enhanced patient
acuity assessment. While, we provide a brief summary of the
technology and data streams contained within Intelligent ICUs,
we refer interested readers to the work of Davoudi et al. (26) for
a more comprehensive overview.

Patient activity data was collected from an Actigraph GT3X
sensor (ActiGraph, LLC. Pensacola, Florida) placed on the
patient’s dominant wrist when possible, and on the opposite wrist
when medical devices prevented ideal placement. These sensors
generate activity based on magnitude of wrist motion (27) and
sample at a frequency of 100 Hz. In this study, we aggregated
accelerometer data into 24-h intervals, and extracted nine
statistical features from each consecutive 24-h window after ICU
admission. These features included minimum, maximum, mean,
variance, standard deviation, immobile count, interquartile range
(IQR), root mean square of successive differences (RMSSD), and
standard deviation of RMSSD.
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TABLE 1 | Summary of Intelligent ICU and Conventional ICU cohorts.

Descriptor Intelligent ICU Conventional ICU

(n = 51) (n = 48,400)

Patients, n 51 32,184

Hospital encounters, n 51 45,147

Hospital length of stay (days), median

(25th, 75th)

14.9 (9.0, 21.7) 7.3 (4.2, 12.9)

Successful hospital discharge, n (%) 33 (64.7) 36,392 (75.2)

Unsuccessful hospital discharge, n (%) 18 (35.3) 12,008 (24.8)

ICU stays, n 51 48,400

ICU length of stay (days), median (25th,

75th)

10.3 (6.4, 13.9) 3.0 (1.6, 6.0)

Age (years), median (25th, 75th) 63.2 (43.3, 73.0) 61.2 (48.8, 70.9)

Body mass index, median (25th, 75th) 27.3 (22.9, 33.2) 27.1 (23.1, 32.1)

Charlson comorbidity index, median

(25th, 75th)

2.0 (0.0, 4.0) 2.0 (0.0, 4.0)

Sex

Female, n (%) 18 (35.3) 20,188 (44.7)

Male, n (%) 33 (64.7) 24,959 (55.3)

Race

White, n (%) 44 (86.3) 34,702 (76.9)

Black, n (%) 5 (9.8) 7,615 (16.9)

Other, n (%) 2 (3.9) 2,830 (6.2)

Ethnicity

Hispanic, n (%) 1 (2.0) 1,677 (3.8)

Not Hispanic, n (%) 50 (98.0) 42,989 (96.2)

Language

English, n (%) 51 (100.0) 44,396 (98.3)

Non-English, n (%) 0 (0.0) 751 (1.7)

Marital status

Married, n (%) 24 (55.8) 20,513 (48.3)

Single, n (%) 14 (32.6) 13,606 (32.1)

Divorced, n (%) 2 (4.7) 4,149 (9.8)

Widowed, n (%) 1 (2.3) 3,341 (7.9)

Separated, n (%) 2 (4.7) 545 (1.3)

Life partner, n (%) 0 (0.0) 292 (0.7)

Provider

Medicare, n (%) 27 (57.5) 23,203 (53.9)

Private insurance, n (%) 13 (27.7) 10,707 (24.9)

Medicaid, n (%) 4 (8.5) 6,612 (15.4)

Uninsured, n (%) 3 (6.4) 2,550 (5.9)

Smoking status

Smoker, n (%) 7 (15.6) 8,514 (21.1)

Former smoker, n (%) 21 (46.7) 15,779 (39.1)

Never smoker, n (%) 17 (37.8) 16,060 (39.8)

A summary of all features used in our models for both the
Intelligent ICU and Conventional ICU cohorts is shown in
Table 2.

2.3.3. Final Data Preprocessing
For both sequences of patient data, outliers were capped at the
1st and 99th percentiles, with cutoff points determined by the

TABLE 2 | Summary of features used in our experiments.

Feature
Intelligent ICU Conventional ICU

(n = 51) (n = 48,400)

Median (25th, 75th) Median (25th, 75th)

Vital signs

Diastolic blood pressure, mmHg 62.3 (53.0, 73.0) 63.0 (54.0, 73.0)

Systolic blood pressure, mmHg 123.0 (110.0, 139.0) 121.0 (107.0, 137.5)

Heart rate, beats/min 91.0 (80.0, 103.0) 85.0 (74.0, 97.0)

Respiratory rate, breaths/min 18.3 (15.0, 22.5) 18.0 (15.0, 21.0)

Oxygen saturation (SpO2), % 98.0 (95.0, 100.0) 97.0 (95.0, 99.0)

Temperature, ◦C 37.0 (36.7, 37.5) 36.9 (36.7, 37.3)

Wrist activity, action counts

Minimum 0.0 (0.0, 0.0) N/A

Maximum 62.7 (39.5, 97.1) N/A

Mean 2.9 (1.2, 6.3) N/A

Variance 58.6 (16.3, 135.5) N/A

Standard deviation 7.7 (4.0, 11.6) N/A

IQR 1.8 (0.0, 8.0) N/A

RMSSD 7.1 (4.2, 11.6) N/A

RMSSD standard deviation 1.0 (0.9, 1.1) N/A

Number immobile 0.6 (0.4, 0.8) N/A

development set of each individual experiment. Any missing
extracted feature values in the resulting sequences were imputed
with the previous sequence value, if it existed, otherwise with
the feature median based on each experiment’s development
set. Finally, each feature was standardized to zero mean and
unit variance based on values from the development set of
each experiment.

2.4. Models
In this study, we employ single-layer recurrent neural networks
(RNN), a class of deep learning algorithms that are well-suited to
processing sequential data and have been validated in literature
as accurate clinical models for patient acuity assessment (13). In
particular, our RNN models utilize gated recurrent units (GRU)
and a linear prediction layer that is used to make a discharge
prediction after processing each 24-h data window (Figure 2). As
each sequential window’s features are made available, the model
learns a real-time cumulative representation of patient state that
is used to predict patient illness severity.

Our study involved the training of two distinct families
of recurrent neural networks that were designed to handle
either only traditional ICU data, or traditional data augmented
with the multi-modal Intelligent ICU data. When using the
augmented dataset of both EHR and Intelligent ICU data, we
utilized a parallel RNN architecture comprised of two recurrent
neural networks that independently processed each data source
on separate time scales, with the concatenation of hidden
representations passed to the linear prediction layer for assessing
final predicted hospital discharge status.
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FIGURE 2 | Collapsed (A) and expanded (B) view of a single-layer recurrent neural network with gated recurrent units (GRU) used as building blocks in our model.

After processing multi-resolution sequences of vital signs and activity sensor data, a final hospital discharge prediction was made using the final hidden representation.

2.5. Experiments
Corresponding to our aims in section 2.1, we sought to evaluate
the effectiveness of augmenting traditional EHR data with
Intelligent ICU data formaking predictions of eventual successful
or unsuccessful hospital discharge in our cohort of patients
undergoing care in Intelligent ICU rooms. Given the small
sample size of our Intelligent ICU cohort (n = 51), we also
sought to explore the potential benefits of applying the technique
of transfer learning, whereby a source model, typically trained
on a larger dataset, is used to initialize a smaller model that is
subsequently fine-tuned on the smaller dataset of interest. In
our transfer learning experiments, we first trained a recurrent
neural network on the Conventional ICU cohort (n = 48,400),
and transferred its internal RNN weights and biases to a separate
model for predicting illness severity in the Intelligent ICU cohort.
This transfer learning process is shown in Figure 3.

This study includes four experimental variants designed to
evaluate our study aims, all using the same discharge disposition
targets. All results are reported on the target cohort of 51 ICU
encounters occurring in Intelligent ICU rooms.

First, we sought to evaluate predictive performance in the
target cohort without the application of transfer learning. The
first of these experiments involved the training of a single RNN
model on only the EHR data available in the target cohort. Next,
we performed a similar experiment using a parallel RNN model
with both the EHR and Intelligent ICU data available in the
target cohort. These two experimental settings were designed to
characterize potential benefits of augmenting traditional EHR
data with more novel Intelligent ICU data streams.

We then repeated the above two experiments in conjunction
with a transfer learning procedure. In each of these two transfer
learning experiments, we first trained a single RNN model on
the EHR data from the large Conventional ICU cohort of 48,400
ICU stays. Upon completion of training this source model, we

initialized the RNN weights and biases in the EHR portion of
the Intelligent ICU models using the final trained RNN weights
and biases from the Conventional ICU models (Figure 3). The
Intelligent ICU models were then trained as normal using the
data available in the target Intelligent ICU cohort, in a process
known in transfer learning literature as fine-tuning. In both
transfer learning experiments, only the final RNN designed
to process EHR data was initialized with pre-trained weights,
as the Conventional ICU cohort did not contain any novel
data sources. Consequently, the final RNN for processing the
novel data sources was always trained starting with randomly
initialized values.

All experiments on the target Intelligent ICU cohort were
performed using 100 repeated trials of randomized five-fold
cross-validation stratified by discharge target labels. Within each
of the 100 cross-validation experiments, we retained the mean
area under the receiver operating characteristic curve (AUROC)
across all five validation set folds. 95% confidence intervals
were obtained based on percentiles from these 100 averaged
AUROC results. When training the large source model on the
Conventional ICU cohort, we used the final chronological 20% of
ICU stays as validation data, and obtain confidence intervals via
100 bootstrapped iterations based on validation set predictions.

When training a deep learning model, we used a random 20%
of the development set for early stopping. Our deep learning
models used hidden units of 128 dimensions across all layers, and
were trained in batches of 32 samples with an Adam optimizer
with learning rate 10−3 and L2 weight decay of 10−3. All layers
used 25% dropout.

3. RESULTS

Training the single RNNmodel on 80% of the large Conventional
ICU cohort and evaluating on the remaining 20% validation set
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FIGURE 3 | Overview of transfer learning procedure. Our final Intelligent ICU model incorporates pre-trained representational knowledge from a source deep learning

model trained only on electronic health records data from a large cohort of traditional ICU stays (n = 48,400).

resulted in an AUROC of 0.752 (95% CI: 0.743–0.763). This
trained model was used in all later transfer learning experiments,
where the recurrent weights and biases were transferred to the
final Intelligent ICU model as shown in Figure 3.

The single-cohort and single-RNN Intelligent ICU model
using EHR data alone resulted in an AUROC of 0.734
(95% CI: 0.622–0.830). Augmenting the input data with
both novel Intelligent ICU data sources and combining
with the parallel RNN model resulted in an AUROC of
0.743 (95% CI: 0.644–0.842).

After the application of transfer learning using the model
trained on the Conventional ICU cohort, the single-RNN
model using only EHR data from the Intelligent ICU cohort

resulted in an AUROC of 0.828 (95% CI: 0.557–0.951). The
transfer learning model using the augmented dataset of EHR
and Intelligent ICU data sources resulted in an AUROC of
0.915 (95% CI: 0.772–0.975).

Results for all experimental settings are summarized in
Table 3.

4. DISCUSSION

In this study, we have provided the first attempts at incorporating
cutting-edge pervasive sensing technology for patientmonitoring
and precise acuity assessments in the intensive care unit. Based
on data from the Intelligent ICU environment of Davoudi et al.
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TABLE 3 | Hospital discharge prediction results for all experimental settings.

Target cohort Input data Training scheme AUROC (95% CI)

Conventional ICU EHR data Single cohort 0.752 (0.743–0.763)

Intelligent ICU EHR data Single cohort 0.734 (0.622–0.830)

Intelligent ICU EHR + Intelligent data Single cohort 0.743 (0.644–0.842)

Intelligent ICU EHR data Transfer learning 0.828 (0.557–0.951)

Intelligent ICU EHR + Intelligent data Transfer learning 0.915 (0.772–0.975)

(26), we explored the performance impact of augmenting deep
learning models with two novel data streams for the prediction
of successful vs. unsuccessful hospital discharge as a measure of
patient illness severity.

Several important takeaways can be gleaned from the
performance results summarized in Table 3. When comparing
single-cohort models trained on EHR data alone, the model
trained on the larger Conventional ICU cohort of 48,400 ICU
stays relatively outperformed a similar model trained on the
much smaller Intelligent ICU cohort of 51 ICU stays (AUROC:
0.752 [95% CI: 0.743–0.763] vs. 0.734 [95% CI: 0.622–0.830]).
While not unexpected given the large disparity in cohort sample
sizes, the relatively small magnitude of difference between the
cohorts is an interesting outcome, as one might expect an
even larger discrepancy in model accuracy. While potentially
attributable to a variety of factors, these results might suggest
clear input patterns associated with improving or worsening
health condition that yield diminishing returns as the sample size
exponentially increases.

Given the results in Table 3, it is also clear that augmenting
traditional EHR data with novel activity features in our
single-cohort Intelligent ICU model marginally improved its
predictive performance (AUROC: 0.743 [95% CI: 0.644–0.842]
vs. 0.734 [95% CI: 0.622–0.830]).

Model accuracy was greatly improved using both input
dataset variants after the application of transfer learning. When
considering EHR data alone, transfer learning increased model
accuracy from an AUROC of 0.734 (95% CI: 0.622–0.830) to
an AUROC of 0.828 (95% CI: 0.557–0.951). Compared with
the results yielded by the single-cohort model in the large
Conventional ICU cohort (AUROC: 0.752 [95% CI: 0.743–
0.763]), the final accuracy of the Intelligent ICU cohort was much
higher. We speculate that these performance improvements
point to the power of proper weight initialization in deep learning
models, especially for clinical applications using relatively small
patient cohorts. We note that although transfer learning with
EHR data alone resulted in substantial gains in model accuracy
over the model trained on the large Conventional ICU cohort,
the prediction confidence interval in the small Intelligent ICU
cohort was much wider (95% CI: 0.557–0.951 vs. 0.743–0.763),
highlighting the large variability among the cross-validation
repetitions. We speculate that this instability was due to the small
size of the prediction cohort (n = 51). Given that this is a pilot
study demonstrating transfer learning feasibility, we place less

emphasis on the fact that absolute accuracy in the smaller cohort
was greater than in the larger Conventional ICU cohort, which
we partially attribute to sample size disparities. Instead, we focus
on the relative performance increase in the same Intelligent ICU
cohort, which clearly show the benefits of transfer learning in
clinical situations where samples are not readily available.

Maximumoverall performance was achieved when combining
traditional EHR data with the novel Intelligent ICU data
and a transfer learning approach (AUROC: 0.915 [95% CI:
0.772–0.975]). These results indicate the utility of augmenting
traditional EHR data with pervasive sensing, and suggest that
further research and incorporation of even more novel data
streams could be beneficial to the real-time acuity estimation of
critically ill patients. These results indicate the power of applying
transfer learning in clinical settings with small patient cohorts.
It was only when using transfer learning that the predictive
benefits of augmented patient data truly became apparent.
Similar to the experiments using only EHR data, we focus
on the relative performance increase compared with the same
augmented dataset in the Intelligent ICU cohort, which show
clear benefits for using transfer learning to properly initialize
model weights corresponding to electronic health record data
from a much larger cohort of conventional ICU patients.

In all experiments using our target Intelligent ICU cohort of
51 ICU stays, the wide AUROC confidence intervals underscore
the large variability among the repeated applications of cross-
validation. This was not unexpected given the very small size of
the Intelligent ICU cohort, especially when used with complex
deep learning model architectures. However, when averaged
over 100 repeated cross-validation trials, a more clear picture
begins to emerge: predictive power is increased both when
augmenting traditional vital signs with activity data, and when
applying transfer learning, with optimal results achieved after
implementing both techniques. We present these results as
a pilot study indicating the feasibility of applying transfer
learning to small cohorts of patients monitored with non-
traditional data streams. While the small sample size of our
target Intelligent ICU cohort is less than ideal, we speculate
that relative performance increases within the same cohort show
future promise for more extensive studies once more Intelligent
ICU data becomes available.

Intelligent ICU rooms such as those used in our study are
unfortunately rare in practice. However, we feel that pervasive
sensing could play an important role in developing a more
comprehensive and personalized representation of patient health,
and we expect additional types of novel patient monitoring to
become more common in future automated patient monitoring
applications. Our preliminary results in predicting successful
or unsuccessful hospital discharge using a subset of available
Intelligent ICU data streams demonstrate the power of non-
traditional patient data. As these novel clinical environments
become more prevalent, our results also show the necessity of
transfer learning approaches to jump-start models using these
small augmented cohorts.

Non-traditional patient monitoring data that is not
routinely measured in electronic health records as part of
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a typical hospital encounter provides a unique opportunity
for enhancing clinical decision-making. As we have shown,
the accuracy of automated methods for assessing illness
severity can be improved when considering such types of
novel sensing data. As pervasive sensing becomes more
common in traditional intensive care settings, modern machine
learning approaches can begin to better understand inherent
patterns of data such as patient activity, facial expressions,
environmental factors, and more. Augmented patient data
can improve clinical decisions such as allocation of clinical
resources, altering the characteristics of the ICU room
environment, and can help provide objective measures of a
patient’s affective state and activity that can better inform
clinical caregivers regarding appropriateness of medications
or procedures.

This study was limited by the use of data from a single
institution. Additionally, only a subset of EHR data and
Intelligent ICU data was used in this preliminary study.
Future work will incorporate all available novel sensing
and EHR data, and will focus on even more granular
illness severity estimations using higher frequency sensor
measurements without aggregation to generate predictions on
hourly or sub-hourly time scales. As temporal deep learning
techniques continue to evolve, we believe their application to a
wide array of both conventional EHR and sensor-based patient
health data will lead to large improvements in clinical decision-
making and patient outcomes as health trajectories become
more accurately predicted and monitored using a more complete
perspective on patient health.
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Introduction: Electrocardiography (ECG) is a quick and easily accessible method for

diagnosis and screening of cardiovascular diseases including heart failure (HF). Artificial

intelligence (AI) can be used for semi-automated ECG analysis. The aim of this evaluation

was to provide an overview of AI use in HF detection from ECG signals and to perform a

meta-analysis of available studies.

Methods and Results: An independent comprehensive search of the PubMed and

Google Scholar database was conducted for articles dealing with the ability of AI to

predict HF based on ECG signals. Only original articles published in peer-reviewed

journals were considered. A total of five reports including 57,027 patients and 579,134

ECG datasets were identified including two sets of patient-level data and three with ECG-

based datasets. The AI-processed ECG data yielded areas under the receiver operator

characteristics curves between 0.92 and 0.99 to identify HF with higher values in ECG-

based datasets. Applying a random-effects model, an sROC of 0.987 was calculated.

Using the contingency tables led to diagnostic odds ratios ranging from 3.44 [95%

confidence interval (CI) = 3.12–3.76] to 13.61 (95% CI = 13.14–14.08) also with lower

values in patient-level datasets. The meta-analysis diagnostic odds ratio was 7.59 (95%

CI = 5.85–9.34).

Conclusions: The present meta-analysis confirms the ability of AI to predict HF from

standard 12-lead ECG signals underlining the potential of such an approach. The

observed overestimation of the diagnostic ability in artificial ECG databases compared

to patient-level data stipulate the need for robust prospective studies.

Keywords: artificial intelligence, heart failure, diagnosis, ECG, meta-analysis
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INTRODUCTION

Heart failure (HF) is a common, yet unfavorable, cardiac
condition. Up to 20% of all individuals in developed countries
develop HF within their lifetime, and a large proportion of
patients hospitalized for HF dies within 1 year of diagnosis (1).

Evaluation of symptoms suggestive of HF currently demands
physicians to valuate various parameters including imaging
and laboratory data and the electrocardiogram (ECG). Besides
a standard examination that includes an ECG, imaging
information, such as echocardiography or magnetic resonance
imaging, is seen as gold standard in diagnosis of HF (2).
Nevertheless, an adequate use of such imaging data is associated
with relevant technical infrastructure and medical expertise.
The ECG is a well-established, quick, and easily accessible
method for diagnosis and screening of various cardiovascular
diseases. It provides specific features that indicate presence of
HF or prognosis in HF patients especially to rule out HF
in case of a normal ECG (3, 4). However, use of an ECG
as primary diagnostic instrument often only yields insufficient
diagnostic specificity (5). Further, general practitioner–based
ECG reporting has varying results, introducing further diagnostic
uncertainty (6).

Devices providing medically relevant information generated
directly by individuals outside the healthcare system such as
smartphones with health applications or wearables including
smartwatches are an emerging trend. This development promises
that a growing number of, e.g., ECG data generated at home will
be available for a diagnostic screening. Such data have already
shown potential in computer-aided decision support systems to
warn patients of rhythmic abnormalities (7). Management of this
quantity of data, however, might be a challenge for the individual
healthcare professional, as well as for the healthcare system itself.
The potentially beneficial use of artificial intelligence (AI) in
cardiology in general has been discussed already, e.g., as a tool
for clinicians that could facilitate precision in daily practice and
even might improve patient outcomes (8). AI might also be able
to help in interpretation of ECG signals and could therefore be
used to analyze ECG data in specific cases and on a large scale for
early identification of cardiovascular diseases such as HF (9). Few
studies have performed analyses of AI systems to detect HF from
ECG data. In these studies, the methods and patient numbers
vary strongly. The aim of the present evaluation was to perform
a meta-analysis on these studies and thereby give an overview
on the current possibilities of the use of AI in automated HF
detection from ECG signals.

METHODS

A comprehensive literature search for original articles on
the ability of AI to predict HF based on ECG signals was
conducted using the databases PubMed and Google Scholar
on May 13, 2020. These two databases were searched using
the following keyword combinations as search query: (“heart
failure” OR “ejection fraction” OR “systolic dysfunction”
OR “diastolic dysfunction”) AND (“computer-aided diagnosis”
OR “ai” OR “artificial intelligence” OR “deep learning” OR

“machine learning” OR “neural network”) AND (“ecg” OR “ekg”
OR “electrocardiogram” OR “electrocardiography”). The term
“computer-aided” was added to the query to not miss articles
that use a more general title potentially not revealing an AI
approach as basis for a computer-based classification algorithm.
This search query led to a list of 118 titles that were further
screened and selected by three of the authors (D.G., F.R., and
T.K.). As primary endpoints, the criteria congestive HF and
reduced left ventricular ejection fraction [left ventricular ejection
fraction (LVEF)≤40%] were used. Identification of this endpoint
had to be based on ECG time-series data as input by an AI
approach. Artificial neural networks, support vector machines,
random forest classifiers, and k-nearest neighbor algorithms
qualified as an AI approach in this context. The screening and
selection process was carried out in three steps: first a title,
then an abstract, and finally a full text screening and selection.
Evaluation of studies within the first and second steps was
conducted by the three mentioned investigators independently.
A study was selected for evaluation within the next step if at least
two of the three investigators selected the individual study. After
abstract classification, a total of 23 studies were selected for full
text assessment. The subsequent third step was conducted by the
same three investigators independently, followed by a discussion
within the investigator team and a consensual selection of the
articles to be evaluated within the meta-analysis. Within this
third step, the quality of the studies was assessed oriented on the
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) statement (10). Further, data availability of the
needed information, e.g., reporting of a confusion matrix, was
checked. The final set of studies consisted of five articles that
fulfilled the defined criteria and provided sufficient information
for the subsequent data extraction enabling the meta-analysis.
This selection process including the applied criteria is also
depicted with a flowchart as Figure 1.

To assess the heterogeneity between the selected studies, the
DerSimonian-Laird estimator (τ 2) and I2 statistics were used (11,
12). Within the meta-analysis, principal measurement of effect
size was the diagnostic odds ratio (DOR) after natural logarithmic
transformation (lnDOR) with 95% confidence interval (CI). For
univariate analyses, a random-effects model was used. For the
bivariate analyses, a summary receiver operating characteristics
(sROC) curve was constructed, and a summary area under
the ROC curve was calculated. For descriptive reasons, for the
studies that did not provide these data, an AUC was estimated
based on the respective contingency table (13–15). All statistical
analyses were carried out using R3.6.0 with the meta (V4.12-0)
and the mada (V0.5.10) packages (R Foundation for Statistical
Computing, Vienna, Austria).

RESULTS

The five evaluated studies comprise a total of 57,027 patients and
579,134 ECG datasets. Two of these studies, both published by
Attia et al. are based on patient-level data with large cohort sizes
of 3,874 and of 52,870 individuals, reflecting a clinical application
of an AI-based diagnostic approach (16, 17). These cohorts
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FIGURE 1 | Flowchart summarizing the literature screening and study selection process.

comprised unselected patients who underwent routine ECG and
available echocardiographic data with the endpoint LVEF ≤35%.
The other three studies used large numbers of ECG datasets as
basis stemming from only a small number of individuals (33–
107). These ECG datasets were taken from different existing
databases such as the publicly available Fantasia or BIDMC
database used in all three evaluated publications (18–20). Here,
endpoint was the classification as congestive HF provided within
these databases.

Four studies used the raw ECG time-series data as input with
500 to 12× 1,000 features comprising the input of the respective
algorithms (14–17), whereas one study used five extracted
features as input (13). The proposed respective computer-
aided diagnostic algorithms used a convolutional neural network
(CNN) in three publications (14, 16, 17), a CNN plus long short-
term memory network in one publication (15), and a dual-tree
complex wavelet transform (DTCWT) model in one publication

(13). The latter was accepted as an AI approach for this meta-
analysis as all other criteria were fulfilled even if DTCWT itself
would not qualify according to the predefined AI methods.

The algorithms of the five evaluated studies were associated
with sensitivities ranging from 83 to 100% and specificities
ranging from 86 to 100% identifying HF with higher values in
ECG dataset–based studies. Table 1 provides an overview of the
five evaluated studies.

As meta-analysis, we calculated a combined DOR of 7.59
(95% CI= 5.85–9.34) after log transformation. This high lnDOR
reflects the lnDORs of the individual studies starting from 3.44
(95% CI = 3.12–3.76) up to 13.61 (95% CI = 13.14–14.08) with
lower diagnostic performance in patient-level datasets (Figure 2).
For the bivariate analysis, an sROC curve was calculated, leading
to a combined area under the curve of 0.987. Again, the
diagnostic performance was lower in patient-level studies with an
area under the curve of 0.92 and 0.93 compared to 0.96, 0.99, 0.99,
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TABLE 1 | Summary of the studies included in the meta-analysis.

Study Classification

method

Input features Outcome

measure

No. of

patients

No. of ECGs Classification performance

Sudarshan et al.

(13)

DTCWT Five features based on

2-s segments of

one-lead long-term

ECG recordings

CHF Set1: 55

Set2: 33

Set1: 82,427

Set2: 84,952

Sens (1): 1.00 (95% CI =

1.00–1.00)

Spec (1): 1.00 (95% CI =

1.00–1.00)

Sens (2): 0.97 (95% CI =

0.97–0.97)

Spec (2): 0.99 (95% CI

= 0.99–0.99)

Acharya et al. (14) CNN 500 features based on

2-s segments of

one-lead long-term

ECG recordings

CHF Set1: 33

Set2: 55

Set1: 100,308

Set2: 140,000

Sens (1): 0.97 (95% CI0.96–0.97)

Spec (1): 0.96 (95% CI =

0.96–0.96)

Sens (2): 0.99 (95% CI =

0.99–0.99)

Spec (2): 0.99 (95% CI

= 0.99–0.99)

Attia et al. (17) CNN 12 × 1,000 features

(zero-padded to

1,024) based on a 2-s

segment from 10-s

12-lead ECG

recordings

Low LVEF 52,870 52,870 Sens: 0.83 (95% CI = 0.78–0.87)

Spec: 0.87 (95% CI = 0.86–0.88)

Attia et al. (16) CNN 12 × 1,000 features

(zero-padded to

1,024) based on a 2-s

segment from 10-s

12-lead ECG

recordings

Low LVEF 3,874 3,874 Sens: 0.86 (95% CI = 0.85–0.87)

Spec: 0.86 (95% CI = 0.85–0.86)

Lih et al. (15) CNN-LSTM 2,000 features based

on 2-s segments of

one-lead long-term

ECG recordings

CHF (+ MI,

CAD)

107 114,703 Sens: 0.99 (95% CI = 0.99–0.99)

Spec: 0.98 (95% CI = 0.98–0.98)

DTCWT, dual-tree complex wavelet transform; CNN, convolutional neural network; LSTM, long short-term memory; CHF, congestive heart failure; LVEF, left ventricular ejection fraction;

MI, myocardial infarction; CAD, coronary artery disease; Sens, sensitivity; Spec, specificity.

0.98, and 0.99 (Figure 3). This observed heterogeneity between
the individual studies is reflected by a τ 2 of 5.52 and I2 of 100%
(p < 0.001).

DISCUSSION AND CONCLUSIONS

The observed diagnostic information of an AI approach
using ECG data to identify HF in our meta-analysis
confirms the potential of computer-aided decision-making
using ECG data in diagnoses other than arrhythmias. Our
analysis further shows a relevant heterogeneity between
studies based on ECG data and studies based on patient-
level datasets suggesting that a meta-analysis incorporating
both study types might not be as meaningful as desired.
Further limitation for a meta-analysis of these five studies
is the varying endpoint. Still, the individual results of
the studies itself all show promising results pointing
in the same direction supporting the information of
the meta-analysis.

Three publications of our meta-analysis are based on cases
from one-lead long-term ECG recordings of the BIDMC

congestive HF database, which consists of only 15 patients (13–
15). Those recordings were segmented into short 2-s intervals to
artificially increase the number of datasets.

In contrast, the studies of Attia et al. used 2-s segments
stemming from standard 12-lead ECGs with a length of 10 s
obtained in 3,874 and 52,870 individual patients, respectively
(16, 17). These datasets might better depict real-life data as
analyses of the segmented ECGs seem to overestimate the ability
of AI to detect HF in comparison. These patient-based datasets
still show a clinically relevant diagnostic information with an
AUC of > 0.8. This assumption is further supported by a study
by Kwon et al. who reported comparable patient-based dataset
AUCs of 0.843 and 0.889 for two datasets (3,378 and 5,901
patients) (21). Interestingly, the used datasets, here patient-based
vs. ECG-based, had a larger impact on the model performance
compared to a difference in input features. Using ECG datasets,
the study by Sudarshan et al. (13) with only five features, yielded a
comparable classification performance to the studies by Acharya
et al. (14) with 500 input features, and Lih et al. (15) with 2,000
input features.

ECG characteristics are known to vary according to ethnicity,
possibly impacting the accuracy of an AI algorithm that was
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FIGURE 2 | Forest plot of the selected studies showing the ability to identify heart failure using artificial intelligence–processed ECG data. Data presented as a

univariate analysis using a random-effects model with diagnostic odds ratio after natural logarithmic transformation (lnDOR) with respective confidence interval (CI).

FIGURE 3 | Cumulative summary receiver operating characteristic curve

(sROC) of an artificial intelligence–processed ECG approach to detect heart

failure. Individual studies are shown as gray circles. Summary point is shown

as red triangle. The area of interest is magnified on the right side. lnDOR

denotes diagnostic odds ratio after natural logarithmic transformation,

sAUROC denotes area under the sROC curve; CI, confidence interval.

trained with datasets stemming from specific geographical
regions. Using the same dataset as Attia et al. (16, 17),
Noseworthy et al. found that, while varying accuracies between
ethnic groups are present, their network performed consistently
across multiple ethnicities (22).

Besides ECG data, other information available after a
recommended clinical diagnostic workup (2) might also be a
valid input for an AI approach. Here, the use of data stemming
from classical imaging techniques such as chest X-rays (23) or

from the gold-standard imaging method of echocardiography
(24) has shown a relevant potential. Also, traditional diagnostic
methods, not relying on a complex infrastructure, like the
evaluation of heart sound via a computer-aided approach (25),
might be of use in the evaluation of HF patients. Further,
combination of such different modalities as input features
compared to a single diagnostic method might increase model
precision in a real-world setting. Such an idea is supported by
data showing that various information taken from electronic
health records within a machine learning approach is able
to predict HF before it is clinically obvious (26). With the
inhomogeneous nature regarding features as well as outcome
measures in AI-aided HF diagnosis, this analysis focuses on
ECG time series as input variable. Nevertheless, other input
parameters and the combination of different modalities have to
be addressed by future studies.

The present meta-analysis, as well as the published data,
underlines the need for robust large patient-level data–
based studies to better appraise the value of AI in ECG
interpretation in the context of HF. Here, the ongoing ECG AI-
Guided Screening for Low Ejection Fraction (EAGLE) cluster
randomized trial (NCT04000087) will provide useful prospective
insights representing a real-life setting (27, 28).

Recently, technology and acceptance of wearables, smart-
health devices, and applications have widely improved. The
growing processing power and system memory will diminish
technical limitations. Especially, one-lead ECG assessment has
been implemented as feature into several devices. Supporting
our observations regarding different types of ECG input,
promising data on the transferability of a neural network
trained with 12-lead ECGs to a one-lead ECG–enabled device
have been presented at the annual meeting of the American
Heart Association in 2019 underlining the potential of such an
approach (29).

To conclude, the data of this meta-analysis confirm a
substantial ability of AI to predict HF or a reduced LVEF from
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standard ECG signals. With the current advances of mobile
devices capable of ECG recording, AI might be a powerful future
tool in screening for HF or even diagnosis of other diseases of
the heart.
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Introduction: Developing reliable medication dosing guidelines is challenging because

individual dose–response relationships are mitigated by both static (e. g., demographic)

and dynamic factors (e.g., kidney function). In recent years, several data-driven

medication dosing models have been proposed for sedatives, but these approaches

have been limited in their ability to assess interindividual differences and compute

individualized doses.

Objective: The primary objective of this study is to develop an individualized framework

for sedative–hypnotics dosing.

Method: Using publicly available data (1,757 patients) from the MIMIC IV intensive care

unit database, we developed a sedation management agent using deep reinforcement

learning. More specifically, we modeled the sedative dosing problem as a Markov

Decision Process and developed an RL agent based on a deep deterministic policy

gradient approach with a prioritized experience replay buffer to find the optimal policy.

We assessed our method’s ability to jointly learn an optimal personalized policy for

propofol and fentanyl, which are among commonly prescribed sedative–hypnotics for

intensive care unit sedation. We compared our model’s medication performance against

the recorded behavior of clinicians on unseen data.

Results: Experimental results demonstrate that our proposed model would assist

clinicians in making the right decision based on patients’ evolving clinical phenotype. The

RL agent was 8% better at managing sedation and 26% better at managing mean arterial

compared to the clinicians’ policy; a two-sample t-test validated that these performance

improvements were statistically significant (p < 0.05).

Conclusion: The results validate that our model had better performance in maintaining

control variables within their target range, thereby jointly maintaining patients’ health

conditions and managing their sedation.

Keywords: medication dosing, personalized medicine, deep reinforcement learning, propofol, sedation

management
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INTRODUCTION

Intensive care units (ICUs) serve patients with severe health
issues who need continuous medical care and monitoring
(1). In the course of their treatment within ICUs, patients
generate a wide variety of data that are stored in electronic
health record systems including computed tomography scans,
care-provider free-text notes, clinician treatment decisions, and
patient demographics. The task of a clinician is to carefully
consider these data to infer the latent disease state of their
patients and (given this state) apply an optimal treatment policy
(a set of actions) that will maximize the odds of short-term
patient survival and longer-term patient recovery. This sequential
inference process used by clinicians during care is one instance of
a greater class of problems referred to as reinforcement learning
(RL) in the artificial intelligence community.

Interest in the applications of RL to healthcare has grown
steadily over the last decade. Within the last few years, numerous
works have demonstrated the potential of RL methods to help
manage sensitive treatment decisions in sepsis (1–5), sedation
regulation (6, 7), mechanical ventilation (1, 8), and medication
dosing (9–11). Refer to the works of Liu and Prescott (12)
and Yu et al. (1) for a recent systematic review of RL models
in critical care and healthcare. In this article, we demonstrate
the use of deep RL for the regulation of patient sedation.
Sedation is essential for invasive therapies such as endotracheal
intubation, ventilation, suction, and hemodialysis, all of which
may result in patient pain or discomfort when conducted without
the assistance of sedatives (13, 14); it follows that sedation
management is an important component of effective patient
treatment in critical care environments.

Sedation management is particularly challenging because ICU
patients enter treatment for a variety of health reasons (often
with incomplete medical records) and may require prolonged
periods of sedation as they recover (15, 16). Overdosing sedatives
has been associated with several negative health outcomes
including longer recovery times, increased need for radiological
evaluation, increased odds of long-term brain dysfunction, and
death (7, 17). Conversely, underdosing sedatives may result
in untreated pain, anxiety, and agitation, which have been
associated with patient immunomodulation and posttraumatic
stress disorder (13). Hence, great care must be taken in the
delicate process of sedation management (14), where patients
may exhibit unique pharmacological responses for the same
dose of a given medication. This results in pharmacokinetic or
pharmacodynamic variations for the same drug administered
with the same frequency in different individuals (18, 19). In
order to address this issue, a growing number of clinical
studies have proposed automated methods based on patients’
evolving clinical phenotypes to deliver safe and effective sedation
regulation (6, 16, 20).

RL is a promising methodological framework for sedation

regulation because it can learn nuanced dosing policies that
consider variation in disease intensity, drug responsiveness, and

personal patient characteristics (1, 20). In the past few decades,

several RL-based models have been proposed to regulate sedation
in the ICU (6, 7, 21–29). However, most sedation management

methods exhibit one or more of the following limitations: (1)
incomplete physiological context or patient response variability,
(2) use of simulated data for validation, (3) failure to account
for common clinical practices such as attempts to minimize the
total dosage of sedatives (17), and (4) assumption of discrete
state and action spaces resulting in sensitivities to heuristic
choices of discretization levels (5). Lastly, most of the prior work
has focused on a specific medication—propofol—which has no
intrinsic analgesic effect and must be coadministered with an
opioid or other analgesic for ICU patients (30).

Our work herein extends previous studies by employing an
RL framework with continuous state-action spaces to identify an
optimal dosing policy for both a common sedative and opioid
medication together (propofol and fentanyl). Our proposed
model considers interindividual differences to reach the target
level of sedation as measured by the Riker Sedation–Agitation
Scale (SAS), while also minimizing the total sedative amount
administered. Although our sedation measure is based on patient
behaviors, which do not directly reflect the brain, they are useful
as an optimization target for both their reliability and ease
of collection (31); the SAS is a progressive sedation–agitation
indicator with excellent interrater reliability (32).

MATERIALS AND METHODS

In this section, the critical care data set and our preprocessing
approach are introduced. The decision-making framework and
its associated RL components are discussed afterward.

Data
Database
All data for this study were collected from the Medical
Information Mart for Intensive Care (MIMIC-IV), a freely
accessible ICU data resource that contains de-identified data
associated with more than 60,000 patients admitted to an ICU
or the emergency department between 2008 and 2019 (33, 34).

Key Variables
We extracted 1,757 patients from MIMIC who received a
commonly used sedative (propofol) and opioid (fentanyl) during
their ICU stay; for each of these patients, we also extracted
a time series of sedation level according to SAS. SAS is a 7-
point ordinal scale that describes patient agitation: 1 indicates
“unarousable,” 4 indicates “calm and cooperative,” and 7 indicates
“dangerous agitation” levels. SAS serves as our therapeutic target
for this work; it has been shown previously that optimization of
patients’ level of sedation is associated with decreased negative
outcomes, such as time spent on mechanical ventilation (17). We
note that our study population excluded all patients diagnosed
with severe respiratory failure, intracranial hypertension, status
epilepticus traumatic brain injury, acute respiratory distress
syndrome, and severe acute brain injury (including severe
traumatic brain injury, poor-grade subarachnoid hemorrhage,
severe ischemic/hemorrhagic stroke, comatose cardiac arrest,
status epilepticus) because sedation management approaches for
such patients are idiosyncratic (35, 36).
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TABLE 1 | Summary of data set.

Gender % Survivors Mean age (y) Mean hours in ICU No. of patients

Female 100 75 157 806

Male 100 65 146 1,301

Total population 100 69 149 1,757

TABLE 2 | Summary statistics of selected features based on different levels of sedation [Riker Sedation–Agitation Scale (SAS)]. Last row presents the proportion of data in

each level.

Features

SAS SAS = 1

Unarousable

SAS = 2

Very sedated

SAS = 3

Sedated

SAS = 4

Calm,

cooperative

SAS = 5

Agitated

SAS = 6

Very agitated

SAS = 7

Dangerous

agitation

Noninvasive blood pressure

mean

74 ± 17 72 ± 16 74 ± 17 76 ± 71 79 ± 18 79 ± 19 81 ± 17

Diastolic blood pressure 59 ± 15 60 ± 19 60 ± 23 64 ± 418 69 ± 625 65 ± 18 66 ± 15

Heart rate 86 ± 21 88 ± 19 89 ± 477 88 ± 213 91 ± 21 94 ± 18 94 ± 19

Respiration rate 21 ± 7 21 ± 38 20 ± 8 20 ± 9 21 ± 6 21 ± 6 22 ± 7

Arterial PH 7 ± 0 7 ± 0 7 ± 0 7 ± 0 7 ± 0 7 ± 0 7 ± 0

Positive end-expiratory

pressure set

7 ± 4 9 ± 5 7 ± 3 5 ± 3 5 ± 3 6 ± 3 6 ± 2

Oxygen saturation pulse

oximetry (Spo2)

96 ± 7 96 ± 6 97 ± 5 97 ± 40 97 ± 3 96 ± 6 97 ± 3

Inspired oxygen fraction (Fio2) 52 ± 18 54 ± 17 47 ± 13 46 ± 70 46 ± 15 47 ± 16 55 ± 21

Arterial oxygen partial

pressure

137 ± 69 126 ± 65 123 ± 57 120 ± 53 120 ± 58 122 ± 57 117 ± 44

Plateau pressure 21 ± 6 23 ± 8 20 ± 6 18 ± 4 19 ± 5 20 ± 6 19 ± 3

Average airway pressure 12 ± 5 14 ± 6 11 ± 12 7 ± 3 9 ± 13 9 ± 4 8 ± 3

Mean arterial pressure (MAP) 80 ± 20 79 ± 25 83 ± 74 88 ± 42 89 ± 41 100 ± 63 85 ± 29

Proportion of data % 3.32 6.37 20.47 53.15 5.94 0.45 0.06

Measures Utilized
According to the American Society of Anesthesiologists,
current recommendations for monitoring sedation include blood
pressure (diastolic blood pressure and mean noninvasive blood
pressure), respiration rate, heart rate, and oxygen saturation pulse
oximetry (SpO2) (37); we utilized these measures in our modeling
approach. Additionally, we utilized measures based on studies
conducted by Yu et al. (1) and Jagannatha et al. (38), including
arterial pH, positive end-expiratory pressure (PEEP), inspired
oxygen fraction (FIO2), arterial oxygen partial pressure, plateau
pressure, average airway pressure, mean arterial pressure (MAP),
age, and gender.

A total of 14 features were used to describe patients in
our data: diastolic blood pressure, mean noninvasive blood
pressure, respiration rate, heart rate, SpO2, arterial pH, PEEP,
FIO2, arterial oxygen partial pressure, plateau pressure, average
airway pressure, MAP, age, and gender (dichotomized, with male
coded as 0). Prior to modeling, all continuous measures were
zero-mean variance normalized.

Table 1 presents summary information about the final data
set, which contained a total of 1,757 subjects, with a 100% survival
rate, a mean age of 68.5 years, and a mean ICU stay of 149.8 h.
Table 2 provides summary statistics of the measures based on
different levels of sedation defined by SAS. The final row presents

the proportion of data available in each level, which exhibits a
Gaussian distribution with the mean at SAS level 4 out of 7 (calm
and cooperative).

Preprocessing and Time Windowing
For each patient, we divided the ICU stay duration into hourly
contiguous windows. A given window may contain multiple
recordings of a given measure. In windows with more than
one recording, the mean of the recording was used. To address
missing data, we removed entries where data for all measures, or
the SAS outcome, were missing and applied the sample-and-hold
interpolation technique. We imputed any remaining missing
values with the mean value of the missing measure calculated
across the training data.

Training, Validation, and Testing Set Partition
We partitioned our data at the subject level into a training (60%,
1,055 subjects, 156,303 time windows), validation (20%, 351
subjects, 49,997 time windows), and test set (20%, 351 subjects,
55,493 time windows). The training data set was used to identify
model parameters; the validation set was used to identify model
hyperparameters, and the testing set was used to evaluate the
model’s ability to generalize to data unseen during training.
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FIGURE 1 | DDPG procedure: [1] The agent observes patient’s state st and

transfers it to the actor network. [2] The actor network receives st as an input

and outputs the dosage amount plus a small noise (action); the purpose of the

noise is to promote exploration of the action space. [3] The agent observes a

reward rt, and patient’s next clinical state st+1; the tuple of < st, at, rt, st+1 >

is retained in an experience pool. [4] From the experience pool, a batch of N

tuples will be selected to learn the optimal policy. [5] The temporal difference

loss function is computed. [6] The critic network is updated by minimizing the

temporal difference loss. [7] The actor network is updated using the

deterministic policy gradient theorem.

Model Architecture
The sedation dosing problem can be cast as a Markov Decision
Process (MDP) where the purpose is to find an optimal dosing
policy that, given the patient’s state, specifies the most effective
dosing action (1, 9). Our RL model is based on a deep
deterministic policy gradient (DDPG) approach introduced by
(39). DDPGs benefit from the advantages of deterministic policy
gradients (DPGs) (40) and deep Q networks (41), which robustly
solve problems in continuous action spaces. In order to learn the
optimal policy, we used an off-policy RL algorithm that studied
the success (and failures) of the clinicians’ policies in our data set.
In the following sections, the proposed method is elaborated.

Policy
We modeled the sedation management problem as an MDP
described by the tuple (S, A, P, R), in which

• st ∈ S is the patient state containing the 14 dimensional feature
vector described above in a given hourly window t;

• at ∈ A is a two-dimentional action vector corresponding to
the quantity of propofol and fentanyl administered in a given
hourly window.

• P (st+1| st , at) is the probability of the next state vector given
the current state vector and the action taken.

• r(st, at) ∈ R is the observed reward following a state transition
at time window t that is related to how closely the SAS
and blood pressure of the patient match the optimal value
(discussed in Reward).

Given our formulation of the sedation management problem, we
trained an RL agent that (1) observes the current patient state st,
(2) updates the medication doses with an optimal action at, and
(3) receives a corresponding reward r(st, at) before moving to
the next state st+1 and continuing the process. For the agent to
maximize its cumulative reward over several state-action pairs,

it must learn a policy π–a function that maps states (patient’s
state) to actions (drug dosages): a = π(s). In training, the RL
agent uses a sequence of observed state-action pairs (st , at), called
a trajectory (τ ), to learn the optimal policy π

∗

by maximizing the
following objective function:

J (π)= E
[

R(τ )
]

= Es[

∫

a
p(τ |π)R(τ )dτ ] (1)

where R (τ ) = rt + γrt+1 + γ 2rt+2 + γ 3rt+3 + . . .+ γ Trt+T is a
sum of discounted rewards, γ is a discount factor that determines
the relative weight of immediate vs. long-term rewards, and θ

denotes the set of model parameters learned during RL training.
If γ is close to 0, the agent is biased toward short-term rewards; if
γ is close to 1, the agent is biased toward longer-term rewards.
In our case, the value of γ was 1E-3 and was determined
by exploring several values of γ and retaining the value that
maximized the model’s performance on the validation set.

In our case, the specific formulation of π
∗

is determined via
DDPG, which employs four neural networks to ultimately learn
the optimal policy from the trajectories: a Q network (critic),
a deterministic policy network (ac), a target Q network, and a
target policy network. The “critic” estimates the value function,
while the “actor” updates the policy distribution in the direction
suggested by the critic (for example, with policy gradients).
The target networks are time-delayed copies of their original
networks that slowly track the learned networks and greatly
improve the stability of learning. Similar to deep Q learning,
DDPG utilizes a replay buffer to https://www.powerthesaurus.
org/collect/synonymscollect experiences for updating neural
network parameters. During each trajectory, all the experience
tuples (state, action, reward, next state) will be stored in a finite-
sized cache called “replay buffer.” At each time window, the
actor and critic are updated by sampling a minibatch from
the buffer. The replay buffer allows the algorithm to benefit
from learning across a set of uncorrelated transitions. Instead of
sampling experiences uniformly from replay buffer, we have used
prioritized experience reply (42) to replay important transitions
more frequently, thereby learning more efficiently. In our case,
the next state st+1, is computed by a neural network consisting
of three fully connected layers with ReLu activation functions
in the first two layers and a linear activation in the final layer.
Batch normalization was used during training. Models were
implemented in Pytorch 1.6.0 and used Adam optimization
(43). We illustrate the procedure of DDPG for finding the
optimal policy for medication dosing in Figure 1 and describe
the procedure below:

(1) The agent observes the patient’s state st and transfers it to the
actor network.

(2) The actor network receives st as an input and outputs the
dosage amounts plus a small noise (actions); the purpose of
the noise is to promote exploration of the action space.

(3) The agent observes a reward rt and the patient’s next clinical
state st+1. The tuple of < st, at, rt, st+1 > is stored in a pool
of experiences.

(4) From the pool of experiences, a batch of N tuples will be used
to learn policies.
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(5) The loss function [temporal difference (TD)] is
then computed.

(6) The critic network is updated by minimizing the loss.
(7) The actor network is updated using the DDPG theorem.

Reward
In order to learn from the trajectories, our RL agent requires
a formal definition of reward based on deviations from the

control variables (SAS, MAP). Propofol administration lowers
sympathetic tone and causes vasodilation, which may decrease
preload and cardiac output and consequently lower theMAP and
other interrelated hemodynamic parameters. Therefore, ensuring
a desired range of MAP is an essential consideration of propofol
infusion (7, 44). Moreover, efforts should be made to minimize
the sedative dosage (17). Under these premises, the reward issued
to the sedationmanagement agent at each time window is defined
with the purpose of keeping SAS and MAP measurements at the
clinically acceptable and safe range while penalizing increases
in dose; for our purposes, these ranges are described by the
following equations:

rMAP =
2

1+e−(MAPt−65)
−

2

1+e−(MAPt−85)
−1 (2)

rRSS =
2

1+e−(SASt−3)
−

2

1+e−(SASt−4)
−1 (3)

where rMAP assigns value close to 1 when MAP values fall
within the therapeutic range of 65–85 mmHg and negative
values elsewhere; rRSS assigns value close to 1 when SAS value
falls within the therapeutic range of 3–4 and negative values
elsewhere. Target therapeutic ranges are selected based on
Hughes et al. (17) and Padmanabhan et al. (7), respectively.

Next, let Dt describe deviations from the clinically acceptable
and safe range of SAS and MAP in time window t with the static
lower target boundary (LTB) and upper target boundary (UTB)
described above:

Dt

(

control variable
)







if measured value for control variable is in target range , 0

if measured value for control variable < LTB , LTB −measured value for control variable
if measured value for control variable > UTB , UTB −measured value for control variable

(4)

From this deviation, we may compute the total error in time
window t from both control variables as follows:

errort =Dt (MAP)+Dt (SAS) (5)

If et+1 (deviation from target range for MAP and SAS at time
window t + 1) is ≥ et, then we assign rt+1 = 0, which serves to
penalize a “bad” action.

rt =

{

rSAS+rMAP−0.02 rdosage if et<et−1

0 otherwise
(6)

where rdosage is the amount of the medications provided.

Performance Evaluation Approach
We compared the performance of our model to the recorded
performance of the clinical staff with the reasonable assumption
that the clinical staff intended to keep patients within the
therapeutic range during their ICU stay. For this purpose, the
performance error is defined for each trajectory (hours spent in
ICU) as follows:

PEci =
patient i ICU duration − time control variable c is in target range

patient i ICU duration
× 100 (7)

Equation 7 captures the proportion of the total ICU stay
hours that patient i spent outside the therapeutic range for
the control variable c ∈ {SAS, MAP}. If the measured
value falls within the target interval, the difference between
the measured value and the target value will be zero;
otherwise, the difference will be computed based on the target
interval boundaries. More specifically, to assess the sedation
management performance of the trained agent against the
clinical staff, the root mean square error (RMSE), mean
performance error (MPE), and median performance error
(MDPE) were compared for chosen actions under both
our model policy and the clinicians’ policy (24). MDPE
gives the control bias observed for a single patient and is
computed by:

MDPEci = median
(

PEci
)

(8)

RMSEci is the RMSE for each patient and control variable, which
is computed using

RMSEci =

√

∑N
t=1 (Dt (c))

2

N
(9)

where N represents ICU stay duration in hours, and
t iterates over the set of hourly measurements for each
patient i.

RESULTS

For assessment purposes, we applied our model to the held-out
test set (351 patients, 55,493 h); patients in the test set had a mean
ICU duration of 158 h.

In Table 3, we present the performance for both the
learned sedation management policy and clinicians’ policy
(as reflected by the data). Table 3 indicates that MDPE and
RMSE for our model are lower than that of clinicians; this
means that our learned sedation management policy may
reduce the amount of time a patient spends outside the
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TABLE 3 | Performance metrics for control variables SAS (Riker Sedation–Agitation Scale) and MAP (mean arterial pressure).

Performance metric Control variables

Learned policy Clinician’s policy

MAP SAS MAP SAS

MPE % 17.82 ± 9.22 8.69 ± 1.14 44.66 ± 23.18 17.43 ± 21.54

MDPE % 15.0 0 45.45 0.69

Mean RMSE 23.45 0.08 46.38 0.71

Mean Values 74.99 ± 4.47 3.42 ± 0.07 85.26 ± 28.4 3.47 ± 1.04

Mean propofol dosage 10.49 ± 60 24.23 ± 132

Mean fentanyl dosage 15.9 ± 8.9 15.1 ± 2.3

The MPE (mean performance error), MDPE (median performance error), and RMSE (root mean square error) values for learned policy are lower for both control variables, which means

our model had a better performance in keeping these variables in their target range.

therapeutic range when compared to the clinicians. As seen
in Table 3, the measured values for SAS and MAP are within
the target range for 91.3% and 82.2% of the patient ICU
duration, respectively. These results correspond to a 26%
(MAP) and 8% (SAS) improvement in MPE, compared to
the clinicians’ policy. A two-sample t-test validates that the
reduction of performance error and RMSE in our model is
significant (p < 0.05) compared to the clinicians’ policy;
the results validate that our model had better performance in
maintaining control variables within their target range, thereby
jointly maintaining patients’ health condition and managing
their sedation.

In Figure 2, we compare the SAS andMAP value distributions
using a boxplot; the green box corresponds to our model’s
results. The figure indicates that that our policy has promising
results for sedationmanagement while keepingMAP in the target
range. The lower SAS values predicted by our model, as seen in
Figure 2, are reasonable as our model suggests less medication,
on average, which therefore leads to lower levels of sedation
(lower SAS).

In Table 3, we show the mean medication amount for
patients for both the learned policy and clinicians’ policy. We
assessed the ability of our model to lower the total amount
of medication administered while maintaining the therapeutic
status of patients. More specifically, for each patient trajectory,
we computed the medication administered by our policy,
compared to the clinicians. A two-sample t-test indicated
a statistically significant reduction in the total amount of
medication administered by our RL agent (p < 0.03) compared
to the clinicians. Thus, we conclude that dosage amounts
administered to patients following our model is lower than the
clinician’s prescription.

In Figure 3, we illustrate the RL-based closed-loop sedation

scenario for three randomly selected patients. The figure shows

the variation in SAS and MAP values for three randomly selected
patients during ICU stay; dashed lines depict the changes when
using the clinician’s policy, constant lines represent our proposed
policy, and the green area represents the target range. Figure 3
illustrates the ability of our model to drive SAS values to
the therapeutic range without drastic deviation from the MAP

FIGURE 2 | Evaluating policy in terms of SAS (A) and MAP (B) boxplots. Left

boxplots (blue) correspond to our model, whereas the right boxplots are

clinicians’ results. Highlighted areas identify the target range.

therapeutic range for these three randomly selected patients. The
evaluation results confirm that the RL agent is able to maintain
the SAS value and MAP value in the target ranges while lowering
the medication amount.
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FIGURE 3 | Variation in SAS (A) and MAP (B) values for three randomly selected patients during ICU stay. Dashed lines depict the changes when using clinician’s

policy, while constant lines are related to learned policy, and the highlighted area is the target range.

DISCUSSION

In this study, we proposed a deep RL method based on
a DDPG approach to manage propofol administration while
considering the dynamic observations that were available in
patient’s electronic medical records. We utilized RL because it
is an effective framework for deriving optimal and adaptive
regulation of sedatives for patients with different responses to
the same medication and is able to learn an optimal sequence of
decisions from retrospective data. Moreover, RL-based methods
can be practically applied to real clinical practice by taking simple
steps. RL has two main components: the environment (patient)
and the agent (our sedative regulator). Every time the agent

performs an action (recommends dosage), the patient gives a

reward to the agent, which can be positive or negative depending
on how appropriate the dosage was from that specific state of a
patient. The goal of the agent is to learn what dosage maximizes
the reward, given every possible state of the patient. States are the
observations that the agent receives at each step in the patients’

care process. Using retrospective data from medical records,
our agent will learn from the set of patient states, administered
dosage, response to the doses, and the reward it gets. After initial
training of the agent, it is able to generalize over the state space to
recommend doses in situations it has not previously encountered.
In a practical setting, the state observed by the agentmay be either
extracted from the electronic medical record directly or provided
by the clinician through a user interface.

This work extends previous studies in a number of ways. First,
our trained agent operates in a continuous action space; this
distinguishes it from prior models that utilized Q learning for
medication dosing with an arbitrary discretization of the action
space. Second, we used the SAS to assess the patient’s sedation
level, which is one of the most widely used sedation scales in
the ICU, but instead of merely regulating sedation level, we also
trained our agent to consider hemodynamic parameters (MAP)
by reflecting them in the reward function. Third, in practical
clinical settings, it is common to minimize the sedative dosage,
which is unaccounted for in prior works on medication dosing
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using RL. To address this limitation, we penalized the increase
in medication dosage while learning the optimal policy. Our
test results confirm the ability of our model to manage sedation
while also lowering the dosage in comparison to clinicians’
prescriptions. Therefore, our policy leads to lower administration
of sedatives in comparison to the clinicians’ policy; the sedation
level during sedative administration is close to the lower target
SAS boundary, which corresponds to higher sedation.

Administration of sedatives such as propofol can have adverse
effects on the hemodynamic stability of patients. Specifically,
propofol causes vasodilation leading to a decrease in MAP
(7). Our results indicate a notable improvement (26%) in
MAP management compared to the recorded performance of
clinicians. This achievement is important because if MAP drops
below the therapeutic range for an extended period, end-organ
manifestations such as ischemia and infarction can occur. If MAP
drops significantly, blood will not perfuse cerebral tissues, which
may result in loss of consciousness and anoxic injury (45).

We conclude that our sedation management agent is a
promising step toward automating sedation in the ICU.
Furthermore, our model parameters can be tuned to generalize to
other commonly used sedatives in ICU and will work with other
sedation monitoring scales such as bispectral index or Richmond
Agitation and Sedation Scale.

Further efforts need to be taken in order for the method
described herein to be effective enough for real-world
deployment. Long-term anesthetic infusion often results in

drug habituation, and hence, a patient’s pharmacologic response
may change over the course of their treatment (44); future
approaches may need to account for the effects of habituation.
Additionally, future work in this domain would benefit by
accounting for other factors that confound sedation in the ICU
environment including adjunct therapies such as clonidine,
ketamine, volatile anesthetics, and neuromuscular blockers. We
validated our model based on an assumption that clinicians were
dosing patients with an intention to achieve the target sedation
level (as defined by ICU protocols). However, this could be
untrue in some cases; for example, some procedures performed
in the ICU require a deeper sedation level, which contradicts
our assumption of keeping patients in light sedation. We believe
that combining our model with the clinician-in-loop paradigm
presented by (11) may help address this issue in future works.
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Advancements in computing and data from the near universal acceptance and

implementation of electronic health records has been formative for the growth of

personalized, automated, and immediate patient care models that were not previously

possible. Artificial intelligence (AI) and its subfields of machine learning, reinforcement

learning, and deep learning are well-suited to deal with such data. The authors in

this paper review current applications of AI in clinical medicine and discuss the most

likely future contributions that AI will provide to the healthcare industry. For instance,

in response to the need to risk stratify patients, appropriately cultivated and curated

data can assist decision-makers in stratifying preoperative patients into risk categories,

as well as categorizing the severity of ailments and health for non-operative patients

admitted to hospitals. Previous overt, traditional vital signs and laboratory values that

are used to signal alarms for an acutely decompensating patient may be replaced by

continuously monitoring and updating AI tools that can pick up early imperceptible

patterns predicting subtle health deterioration. Furthermore, AI may help overcome

challenges with multiple outcome optimization limitations or sequential decision-making

protocols that limit individualized patient care. Despite these tremendously helpful

advancements, the data sets that AI models train on and develop have the potential

for misapplication and thereby create concerns for application bias. Subsequently,

the mechanisms governing this disruptive innovation must be understood by clinical

decision-makers to prevent unnecessary harm. This need will force physicians to change

their educational infrastructure to facilitate understanding AI platforms, modeling, and

limitations to best acclimate practice in the age of AI. By performing a thorough narrative

review, this paper examines these specific AI applications, limitations, and requisites while

reviewing a few examples of major data sets that are being cultivated and curated in

the US.

Keywords: data curation, decision making, deep learning, artificial intelligence, electronic health record, machine

learning
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INTRODUCTION

Healthcare systems around the world have rapidly and
pervasively adopted electronic health record (EHR) systems.
Many countries report adoption rates higher than 90%, and the
US is among this group with a reported 96% use as of 2017
(1–3). Currently, nearly 80% of all US office-based physicians
have also adopted an EHR system to satisfy the specifications
and requirements set forth by the US Department of Health and
Human Services for such systems (4). The resulting underlying
databases created by EHR systems contain large heterogeneous
data sets that combine structured and formatted data elements
such as diagnoses (International Classification of Diseases-
10), procedures (Current Procedural Terminology R© code), and
medications (RxNorm), but also rich unstructured data such
as clinical narratives, which represent over 80% of the data in
EHRs (5).

Large healthcare systems realized the importance of this
data early on and created data warehouses, now used both for
research purposes and guiding evidence-based clinical practice.
Such data warehouses not only contain EHR data, but also
are often enriched with claims data, imaging data, “omics”-
type data (e.g., genetic variants associated with a disease or a
specific drug response), patient-generated data such as patient-
reported outcomes (Patient-Reported Outcomes Measurement
Information System R©) (6) and wearable-generated data (e.g.,
nutrition, at-home vitals monitoring, physical activity status)
from smartphones and watches. One example of the warehousing
of large clinical data for research is the OneFlorida Clinical
Research Consortium (7), funded by the Patient-Centered
Outcomes Research Institute (PCORI). The OneFlorida Clinical
Research Consortium is one of nine clinical data research
networks funded by PCORI and aggregates, which harmonizes
clinical data from 12 healthcare organizations that care for nearly
15 million Floridians in 22 hospitals and 914 clinical practices
across all 67 counties of the state of Florida. This data repository
functions alongside additional data warehouses that connect
to larger systems that share healthcare data across different
countries. The phenomenon of data sharing in healthcare is
worldwide. For instance, the European Medical Information
Framework (EMIF) contains EHR data from 14 countries,
harmonized into a common data model to facilitate cohort
discovery and research.With virtually unlimited capacity for data
storage and advances in computational power for data analysis,
the bottleneck is now in the development of appropriate methods
to discover new knowledge to improve care.

Artificial intelligence (AI) methods, in particular machine
learning (ML), reinforcement learning, and deep learning, are
particularly well-suited to deal with both the data type and
looming questions in healthcare. AI can aide physicians in
the complex task of risk stratifying patients for interventions,
identifying those most at risk of imminent decompensation, and
evaluating multiple small outcomes to optimize overall patient
outcomes. Integrating physicians into model development and
educating physicians in this field will be the next paradigm
shift in medical education. For example, the complexity of AI
methodologies varies greatly, in turn impacting the ease of

physician understanding and interpretation of results. Physicians
frequently use decision trees as tools; however, they are effectively
tied to the initial tree structure and thus somewhat static (8).
On the other hand, deep learning models such as convolution
neural networks are less easily interpretable, and may make it
more difficult to establish a causal link (9); thus, the development
of such models requires the active involvement of clinicians (10).
Neural networks commonly used to decipher images collected
from patients coupled with the corresponding interpretations
often require involvement from radiologists to curate appropriate
imaging data for training (11). A priori discussions by AI
developers and medically informed physicians are necessary to
define the levels of accuracy and interpretability that are required
in each clinical context.

Despite methodological, societal, and ethical concerns (12),
big datamethods are being broadly adopted in healthcare systems
for evidence-based clinical decision-making. In this paper, we
discuss some of the major opportunities for how AI can assist
healthcare workers in clinical decision-making. To prepare for
this disruptive innovation, certain facets of medicine will be
impacted earlier and more substantially than others. In this
paper, we performed an narrative review of specific aspects of
healthcare that we predict will most likely be first impacted by
AI and how that impact can influence everyday clinical practice.
Furthermore, this review includes the potential risks incurred
by adopting AI as well as the requisite educational curricula
changes and knowledge base needed to avert biases and prevent
unsound decision-making.

METHODOLOGY

We performed a comprehensive literature search using the
databases PubMed, EMBASE, and Cochrane Review using
the keywords (including alternative keywords): artificial
intelligence, machine learning, deep learning, perioperative
medicine, perioperative clinical decision making, preoperative
risk stratification, machine learning and multi-objective
optimization, machine learning and warning, machine learning
and bias, and machine learning in medical education. Literature
search included articles published between 2010 and 2020.
Inclusion criteria were articles that focused on adult surgical
patients, randomized controlled trials, observational studies,
review articles, systematic reviews, and meta-analyses. Exclusion
criteria were articles that focused on non-surgical encounters,
editorials, letters to the editors, commentaries, books and book
chapters, conference proceeding, and pediatric surgical patients.
The scope of this review is perioperative clinical decision-
making, including settings in the intensive care unit. In addition,
we highlight the impact of AI on the future of medical education.

RESULTS

An overview of the study’s methodology and results is presented
in Figure 1. The literature search yielded 1,072 abstracts, of
which 185 were duplicates. The authors screened 887 abstracts
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FIGURE 1 | PRISMA flow diagram of accessing artificial intelligence for clinical decision-making.

and 589 were excluded based on the above exclusion criteria.
The authors reviewed 289 full articles for eligibility and 186
articles were excluded because they did not meet inclusion
criteria. The literature summary focused on 103 full articles.
Upon completion of the literature review, we found that there
were five main themes related to the role of machine learning,
artificial intelligence, and clinical decision-making. The ever-
increasing applications of AI methods and tools have potential
in nearly every aspect of the clinical decision-making process. In
this review, the scope was narrowed to three main promising AI
application areas, the potential risks of implementation, and the
requisite need for additional education. Specifically, the areas of
application include: (1) risk stratification, (2) patient outcome
optimization, (3) early warning of acute decompensation, (4)
potential bias in ML, and (5) future medical training. These
five areas were chosen based on consensus among the authors,
who are familiar with recent literature and currently work and
research within the AI space. Additionally, these areas reflect
contemporary discussion points among clinicians, scientists,
engineers, and policymakers given the continued public health
burdens of acute illness, as well as the readily available detailed

time series data for many at-risk patients. For a more detailed
and granular review of AI and deep learning application, which
is outside the aims of this review, please see (13, 14).

DISCUSSION

Risk Stratification
ML models that can risk-stratify patients in preparation for
surgery will help clinicians identify high-risk patients and
optimize resource use and perioperative decisions. ML and
AI can help clinicians, patients, and their families efficiently
process all available data to generate informed, evidence-based
recommendations and participate in shared decision-making
to identify the best course of action. ML algorithms can be
incorporated into several areas across the spectrum of care,
either for disease management or in perioperative settings
(15). Risk-prediction models have been used in healthcare
practice to identify high-risk patients and to make appropriate
subsequent clinical decisions. Appropriate risk stratification
should result in proper resource use in this era of value-
based care. Most risk-prediction tools are historically built
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based upon statistical regression models. Examples include the
Framingham risk score, QRISK3 (for coronary heart disease,
ischemic stroke, and transient ischemic attack), and National
Surgical Quality Improvement Program (NSQIP). Unfortunately,
many of these risk stratification methods are either non-specific
and lack patient-level precision or require trained clinicians to
review the records and specifically assess the risk. Healthcare
systems have increasingly sought to use ML to assist in risk
stratification, and these ML models may outperform statistical
models in calibration and discrimination. A growing nationwide
effort is seeking to enhance preoperative and perioperative
support for high-risk patients and high-cost populations (16,
17). Preoperative evaluation clinics focusing on evaluating high-
risk patients have shown improvement in 30-day postoperative
outcomes (18). However, identifying these patients is challenging
because of the difficulty in timely access to patient data coupled
with the lack of robust predictivemodels. Many traditionally used
models have been created to predict postoperative complications
but with limited applicability at an individual patient level.
Any predictive risk score is dependent on the underlying data
and the technology used to process the data. In order to
create a better prediction, high-quality, continuous data from
multiple domains are required. Also, advancements in health
data processing, biosensors, genomics, and proteomics will help
provide a complete set of data that will enable perioperative
intelligence (19). Furthermore, risk stratification is not limited
to the preoperative setting. Incorporating intraoperative data for
early detection of complications or clinical aberrations could
also prevent inflammatory reactions that exacerbate the injury
or high-risk interventions that may lead to iatrogenic injuries.
Therefore, clinicians can use ML technology to build proactive
systems to avoid these potentially destructive processes.

Multiple ML models that risk-stratify patients with a disease
or prepare patients for surgery have been recently developed
and validated (16, 20–25). These ML models have been shown
to better predict mortality than conventional logistic regression
after liver cancer surgery, aortic aneurysm surgery, and cardiac
surgery. Other ML models have also been developed and
validated to predict the risk of super-utilization and plan
accordingly, starting in the preoperative setting in an increased
effort to enhance value-based care (17). ML models to predict
perioperative risk need to be accurate, locally calibrated, and
clinically accessible. Changes in patient condition throughout
the perioperative period can be included to update the risk
assessment. The advantage of ML models in risk prediction is
its automation capability, which is less burdensome compared
to current tools (e.g., NSQIP). ML models allow for continuous
recalculation of risk longitudinally over time, which can act
as early-warning systems alerting clinicians to sudden changes.
Incorporation of intraoperative data and interventions, such
as hypotension, enable further interventions that enhanced
recovery after surgery pathways emphasize. Another advantage
is the promise that the use of ML in medicine will facilitate
an understanding of what features drive outcomes (26). In
perioperative medicine, ML can maximize the benefits of
technology to provide safe, timely, and affordable healthcare. The
key is integration of all data-generating platforms throughout all

phases of patient care with collaboration to identify risks, detect
complications early, and offer timely treatment (19).

Patient Outcome Optimization
Optimization for each or the multiple potential patient outcomes
is vital to the clinical decision-making process and the ensuing
patient care. Typically, the requisite optimal steps, their
timing, and the best sequence are determined by healthcare
providers in consultation with family members. Despite best
intentions, such decisions occasionally lead to suboptimal
care due to the complexity of patient care, the increasing
responsibilities of healthcare providers, or simply because of
human error. The clinical decision-making process is often
strictly based on standard guidelines and protocols that satisfy
safety and accountability requirements. However, deviation from
established protocols in complex care environments can be
beneficial for the patient to adapt treatments for a more
personalized regimen. In such dynamic settings, ML methods
can be valuable tools for optimizing patient care outcomes in
a data-driven manner, especially in acute care settings. ML and
modern deep-learning techniques typically optimize an objective
function (e.g., medication dosage) based on complex and
multidimensional data (e.g., patient medical history extracted
from EHRs). ML tools for optimizing care outcomes have been
used in various settings, including critical care for optimizing
sepsis management (27), management of chronic conditions
(28), and optimizing surgical outcomes (29). Optimizing patient
outcomes can be based on relatively simple yet efficient tools,
such as decision trees in conjunction with the domain expertise to
systematically codify accepted understanding of disease models
and common treatments for patients. Although helpful in
assisting with single-step decisions, these tools fail to consider the
importance of sequential decision-making, which include many
decisions that are dependent on previous actions.

Another more sophisticated approach is to use sequential
decision-making tools that draw inspiration from related fields,
such as operation research. For example, deep reinforcement
learning models (30, 31) are based on well-known concepts such
as the Markov decision process (MDP) (32) and Q-learning
(33) adapted to neural networks. Reinforcement learning
models learn to identify optimal policies based on a reward
function. The policies are defined as a series of actions that
culminate in the greatest reward, hence identifying the optimal
policy. Recently, reinforcement learning and deep reinforcement
learning have been used in several clinical settings, including
optimal dosing and choice of medications, optimal timing of
interventions, and optimal individual target laboratory values
(34). For example, Nemati et al. used deep reinforcement
learning to optimize medication dosing (35), and Prasad et
al. (36) used a reinforcement learning approach to weaning
mechanical ventilation in the intensive care unit. Although
such tools hold great potential in optimizing the patient care
process, safety and accountability is paramount. This could
be complicated by the black-box nature of modern deep-
learning approaches. The resulting policies may be dynamic
and personalized, but their rationale may be challenging to
interpret and explain. Additionally, unlike typical simulation
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and gaming environments, applying reinforcement learning in
clinical settings is much more challenging. It is not trivial to
identify the most suitable reward structure, and the effects
of treatments can be non-deterministic. In such settings, it
is difficult to solve the credit assignment problem, i.e., to
demonstrate that deviations from the protocol based on a
reinforcement learning suggestion were beneficial for the patient.
Future approaches also could examine different time scales. For
example, although early interventions (e.g., early antibiotics) may
not lead to immediate improvements, they could culminate in the
greatest ultimate reward (e.g., higher survival rate).

Patient outcome optimization such as reinforcement learning
methods can ultimately provide a tool to help standardize
care at health systems of different scales. This could provide
a more equitable healthcare system, especially in rural and
remote settings.

Early Warning of Acute Decompensation
Acute decompensation is uncommon, but it is typically
accompanied by increasing physiologic derangements and
worse outcomes. Intervening early may mitigate poor outcomes;
however, it is often difficult to identify this patient population
before significant hemodynamic compromise with our
traditional standard monitoring and commonly used early-
warning scores. Six to eight hours may precede such acute
patient decompensation, which can easily provide ample time
for interventions to be made (37). The EHR contains a large
amount of data that may be useful to identify patients at the
highest risk of decompensation if the data are evaluated over
time (37, 38). Multivariate regression-based models or AI-based
early-warning systems have the potential to detect subtle trends
in physiologic parameters over time to provide precision and
reliability (38–41).

Vital sign monitoring and associated alarms were one of
the earliest methods to detect patient decompensation (40).
They are effective in alerting providers to discrete vital sign
abnormalities in real time; however, early or isolated vital
sign abnormalities also may fail to signal to providers an
impending decompensation (40). Once it becomes evident that
a patient is decompensating, the initial response is often directed
toward correcting one or more abnormalities until an etiology
is determined. The Modified Early Warning Score (MEWS),
Rothman Index, Sequential Organ Failure Assessment Score
(SOFA), and quick SOFA (qSOFA) were developed to incorporate
multiple vital sign abnormalities to identify at-risk patients before
decompensation occurs. The drawbacks to these scores are that
even if they are automated and incorporated into the medical
record, they rely on discrete data points of pre-existing vital
sign changes and are subject to reporting error. Additionally,
because of their high sensitivity but low discriminatory ability,
these scores identify a large number of patients as “at risk”
when the actual number is far lower (38). Furthermore, because
interventions often involve their own risks, they may not be
implemented until it becomes clear that a patient’s condition
is rapidly deteriorating. At that point, immediate and possibly
emergent interventions that are themselves high risk and invasive
must be performed. Preventative measures may be taken earlier

and with more accuracy if AI metrics are implemented as
opposed to the traditional risk-evaluation scores (40, 42). AI-
based monitoring incorporated into the EHR can facilitate the
use of large volumes of data for all patients more efficiently and
precisely than a physician could, enabling AI to identify patients
who are most at risk.

The operating room may be one of the most challenging
areas for early detection, workup, and treatment of acute
decompensation. The Hypotension Prediction Index (HPI;
Edwards Lifesciences, Irvine, CA) is an algorithm created
to aid in the early detection of intraoperative hypotension,
defined as mean arterial pressure <65 mmHg for non-cardiac
surgeries (41, 43, 44). It is now incorporated into the Edwards
monitoring system. It was developed using an ML, logistic
regression-based model analyzing components of the arterial
waveform (41, 43, 44). One advantage is that in addition to
early notification of hypotension, this tool also identifies some
of the most likely causes for the predicted hypotensive event,
e.g., vasoplegia, hypovolemia, or possibly conditions related to
cardiac contractility. Initial studies, although small, single center,
and not without bias, indicate that the HPI and implementation
of the monitor were reasonably effective in preventing clinically
significant hypotensive events. Although developed with AI,
this monitor and associated alarm rely on the data that it was
trained and developed on, and they do not learn and adapt with
each patient.

Using AI to effectively create an early-warning score using
time series data from the EHR presents many challenges. An ideal
score would identify patients before an obvious decompensation.
It would have excellent discriminatory ability so that physicians
would have confidence implementing appropriate interventions
as well as transparency to identify the sources of risk and
the reasons for decompensation. Incorporating appropriate
treatments and their effects on risk reduction remains a weakness
of all existing early-warning systems. AI-based algorithms using
time series data from the EHR are in development with
strong results. Shickel et al. used a modified recurrent neural
network model on temporal intensive care unit data to develop
deepSOFA, a real-time mortality risk prediction score based on
the traditional SOFA score (38). Its predictive ability performed
well in identifying increased risk of mortality. Lauritsen et al.
developed the explainable AI early-warning score (xAI-EWS).
It is meant to be incorporated into the EHR and uses a
temporal convolutional network and deep Taylor explanation
model to provide predictions. It has demonstrated feasibility
using predictions for risk of acute injury, sepsis, and acute lung
injury (39).

Potential for Bias in ML
As AI becomesmore pervasive in both public and personal health
across diverse populations, there have been increasing concerns,
and related examples, of AI solutions leading to inadvertent bias
of modeling results (45–48). Broadly, such bias can originate
from the data used for model training and testing, as well as
the mechanics of the model itself (49). Bias originating from
data can be pernicious; for instance, work by Weber et al. found
that simply filtering for “complete” EHRs, a common strategy for
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managing missing data, introduced a bias toward older patients
who were more likely female (50).

Less pernicious examples include reference imaging datasets
in which more than 80% of subjects were light-skinned
individuals (51). With respect to modeling mechanics, the non-
linearities, extensive interactions among variables, and difficulties
interpreting how ML models arrived at their results, ML
also presents many new challenges to addressing sources of
inadvertent bias that differ from classifiers that enforce linear
models of independent variables in smaller, more manageable
datasets. Under the rubric of decision support, an unfair
algorithm has been defined as “one whose decisions are
skewed toward a particular group of people” (49). Verma
and Rubin have clarified several definitions of algorithmic
fairness, where definitions are based on objective probabilistic
assessments (52). These definitions help provide a platform
for promoting algorithmic fairness by creating neutral models
through approaches addressing anti-classification, classification
parity, and model calibration on protected attributes (53).
Notably, these solutions may present their own ethical issues.
McCradden et al. (54) suggest that some solutions to algorithmic
fairness can instead reinforce health inequities and even
exacerbate harms to vulnerable groups. Until more robust
solutions to the challenges of algorithmic fairness can be
identified and implemented, physicians should remain vigilant
for how ML models, built on training samples from general
populations, may be misapplied to their own patients. This
appreciation of ML building and application will require a new
level of professional development and commensurate medical
education curricula, which will be discussed in the next section.

Paradigmatic Shift in Medical Training
Applying advances in biomedical informatics and ML models to
patient care will require clinicians to reconsider their educational
training and infrastructure. Wartman et al. noted that the
practice of medicine is transitioning from the Age of Information
to the Age of AI (55). Traditionally, medical curriculum has
been founded on memorizing a massive curriculum, applying
it to a learned clinical experience, and determining the validity
of ensuing information as it becomes published. Similarly,
understanding principles of normal variants of anatomy and
physiology, followed by an examination of pathophysiologic
variants, presents students with a model-based rubric in which
to incorporate each new wave of information learned through
personal experience as well as throughout the medical literature.
This paradigm has also permitted physicians to extrapolate
previous understanding by logic and experience to novel
diagnostic reasoning and therapeutic approaches by extension
of previous models. However, the amount of information has
become insurmountable. The time for medical information
to double was 50 years in 1950, 7 years in 1980, 3.5 years
in 2010, and a staggering estimate of 73 days in 2020 (56).
Humans are not only incapable of this level of exposure
or retention, but the magnitude has also created substantial
levels of stress-induced mental illness among learners (57).
Fortunately, advances in biomedical informatics point to new
approaches that can seamlessly synthesize old and new medical

information. These advances will provide the foundation for
AI advances to recognize patterns of patient information to
help diagnose, treat, and manage patients. This transition
will require the development of new knowledge, skills, and
attitudes by healthcare workers. Furthermore, it will require
a rethinking of the medical school curriculum, in which new
data analytics methods are carefully integrated with traditional
medical education. In an extremely busy curriculum and at a time
of numerous other considerations, such as climate change (58),
incorporating AI will present challenges.

Many of the AI subfields such as ML and deep learning
use complex algorithms that generate outputs from seemingly
opaque non-linear functions that most physicians likely find
difficult to understand or incorporate into their existing
approaches to evidence-based medicine. Subsequently, this
black-box phenomena (10) will be difficult for physicians to trust,
and it will also be a challenge for the doctor-patient relationship
since many physicians will find themselves unable to explain
the diagnosis, prediction, or therapy (59). This challenge will
increase with the stakes and timeliness of the given issue; for
instance, outcome assessments involving the withdrawal of care
may pose heightened anxiety regardless of the model’s accuracy.
Therefore, physicians will need to develop a basic understanding
of how input data are aggregated, analyzed, and generated
into specific pathways of care for individualized patients.
Furthermore, these algorithms will require physicians to have a
better understanding of calculus and linear algebra, manipulation
of data sets (curation, provenance, quality, integration, and
governance), and model performance metrics fundamental in
grading AI algorithmic decision-making. This knowledge will
allow physicians to recognize when AI algorithms are being
used on inappropriate patient populations, when AI tools have
become outdated and need updating, or when aggregated data
is biased. These new AI clinical decision-support systems have
limitations in their application to patient populations, contextual
changes, and therapeutic variances that will require a stronger
appreciation of probabilities and confidence ratings (59). It will
also be important to understand when physicians are justified
in deviating from AI-inspired treatment protocols. Physicians
will need to update their understanding of evidence-based
medicine principles to include modern approaches to analyzing
and assessing causality to ensure a robust understanding of how
patients, social determinants of health, and healthcare systems
interact to inform health-related outcomes. Physicians practicing
in the age of AI should be competent in the effective integration
and data use that emerges from an endless array of sources.

The emerging need for understanding how AI data platforms
function and generate predictions is juxtaposed with the ever-
important traditional need for communication skills, empathy,
and teamwork. Translating the predictions from complex AI
algorithms into meaningful and personalized information for
patients will require strong communication skills as well as
compassion. Compounding this resurgence of social skills
requisition for medical practice will be the application of
cognitive psychology principles. Understanding this need for
social skills will help identify biases and heuristics that
impact decision-making as well as help physicians frame
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choices, understand context, and have neutral but meaningful
conversations with patients (55).

CONCLUSIONS

The ubiquitous adoption of EHRs in healthcare systems around
the world has created vast repositories of personalized data
sets that are perfectly fitted for AI to examine, develop,
and predict upon. The subfields of ML and deep learning
networks have shown success in providing solutions to the
healthcare questions of risk stratification and optimizing patient
outcomes. Use of this technology will exponentially expand
as it is increasingly integrated into large healthcare systems.
AI capabilities will aide physicians in weighing competing
healthcare goals and numerous risks by facilitating multiple
outcome optimization of outcomes that are too difficult to
recognize and navigate on an individual and isolated basis.
Healthcare workers will be expected to comfortably work within
this new AI frontier and in turn relate it to their patients.
Furthermore, physicians must be able to interpret the predictions
of these AI algorithms as well as deconstruct the models from
which they ebb. In addition, physicians will need to recognize
plausible bias and the appropriate patient population application
that stems from understanding the training cohort used to
create the model. This understanding will require additional
medical education and professional development for current

practitioners and a revamped curriculum for all new learners
currently in medical school. Most importantly, physicians must
maintain and cultivate emotional intelligence and compassion
when relaying results and recommending interventions from
these complex models to uncertain and vulnerable patients who
want to make informed decisions for themselves or a family
member’s well-being.
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Discovery of biomarkers is a continuous activity of the research community in the clinical

domain that recently shifted its focus toward digital, non-traditional biomarkers that often

use physiological, psychological, social, and environmental data to derive an intermediate

biomarker. Such biomarkers, by triggering smart services, can be used in a clinical trial

framework and eHealth or digital therapeutic services. In this work, we discuss the

APACHE trial for determining the quality of life (QoL) of cervical cancer patients and

demonstrate how we are discovering a biomarker for this therapeutic area that predicts

significant QoL variations. To this extent, we present how real-world data can unfold a

big potential for detecting the cervical cancer QoL biomarker and how it can be used

for novel treatments. The presented methodology, derived in APACHE, is introduced by

Healthentia eClinical solution, and it is beginning to be used in several clinical studies.

Keywords: digital biomarkers, machine learning, ai clinical trials, Healthentia, real world data, e-clinical platform

INTRODUCTION

The field of clinical research is undergoing a “data revolution.” The transformation of large volumes
of medical records to an electronic format, and the remarkable growth in the data collected by
health registries and during clinical studies provide opportunities to make risk prediction and
intervention selection more precise. This increasing availability of the so-called “Big Data” has
brought about a growing interest in machine learning (ML) algorithms for extracting knowledge
from observations, typically conceptualized as datasets, and for constructing personalized risk
prediction models.

The concepts of real-world data (RWD) and real-world evidence (RWE) have come to be
fashionable, along with those that describe outcome and experience from the perspective of the
patient [Patient-Reported Outcome Measures (PROMs), Patient-Reported Experience Measures
(PREMs)]. The advent of wearable technologies has made the objective measurement of lifestyle
possible to an unprecedented scale of dimensionality, and the collection of subjective information
about outcome and experience as PROMs and PREMs.
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However, in spite of the use of RWD/RWE (and
PROMs/PREMs) one important shortcoming in clinical research
is that the actual outcome of trials is usually different from
the expected one, and often not reproducible (1, 2). Evidence
included in the access-to-market dossier of any intervention,
pitched to a lesser extent with respect to the expected one, leads
to an economic loss in different ways, such as: (i) the tag price
agreed upon by regulators at the moment of pricing negotiations
drops due to the worse intervention results; (ii) the marketed
solution loses competitiveness; and (iii) the overall benefits to
the citizens are reduced.

Factors like trial-protocol adherence and compliance, dropout
rate, and surveillance of adverse effects have been traditionally
outlined as the most significant reasons behind this outcome
difference, and several types of interventions aimed at reducing
their impact have been put into place (3).

To mitigate unexpected results from clinical trials, along with
adherence and compliance issues, digital solutions as clinical
diaries have flourished and are vastly used in the running of
clinical trials to collect information on how patients are coping
through the trial itself by focusing on PROMs. These digital
solutions are termed ePRO.

ePROs generally do not take into account the impact of the
lifestyle and habits of the patient that can be measured using
wearables (the RWDas objectivelymeasured) on the effectiveness
of the intervention and focus, instead, on the PROMs and
PREMs. In addition to that, lifestyle has not yet been aggregated
into actionable predictors, or used to generate simulated models
to derive predictors, on outcomes and experiences.

The processing of patient-centered RWD represents an
innovative challenge for modern personalized medicine. Today,
various patient-well-being dimensions can be satisfactorily met,
using merely a multidimensional data collection approach. Data
collection platforms, able to collect, manage, and interpret RWD
of the patients, eventually supported by artificial intelligence (AI),
are fundamental.

In this study, we attempt to establish patient lifestyle and
behavior as the driving force of an effective treatment, by
addressing the following hypotheses:

1. Objectively-measured RWD correlate to PROMs and PREMs
and thus can predict them.

2. The impact of behavior/lifestyle, as expressed by measured
RWD, on PROMs and PREMs can be simulated by utilizing
biomarkers in models of patients and testing intervention
on them.

3. Groups of biomarkers identified via simulation of trials lead
to behavior/lifestyle phenotypes that can be used as clinical
endpoints and eligibility criteria in clinical trials.

4. Coaching on behavior/lifestyle can complete traditional
interventions in everyday practice.

This paper is organized around seven sections. Following the
paper, after the abstract and introduction, the subjective and
objective RWD as clinical outcomes are discussed in section
Subjective and Objective RWD as Clinical Outcomes, including
definitions and the role of RWD, RWE, and ePROs. section
Lifestyle Behavior as a Biomarker With Clinical Value and Types

of RWD presents the concept of lifestyle as a biomarker with
clinical value, and in section AI Technologies for Defining,
Modeling, and Simulating Lifestyle we present how AI can
support the discovery and extraction of such biomarkers during
clinical studies. Furthermore, in section Pilot Study to Evaluate
the Hypothesis, we present elements from a series of clinical
studies that utilize the Healthentia eClinical platform (4) to
capture insights that can lead to advanced services, and section
Expected benefits, Early Findings and Next Steps presents the
expected benefits, the early findings, and discusses the next steps.
Finally, the conclusions are drawn in section Conclusions.

SUBJECTIVE AND OBJECTIVE RWD AS

CLINICAL OUTCOMES

New Extended Meanings for Old Medical

Definitions
A biomarker (5) is the value of a quantity that characterizes
the outcome (of a disease) or diagnoses a disease stage. Digital
biomarkers (5) are biomarkers whose method of collection
involves sensors and computational tools implemented in
software or hardware. Traditionally, biomarkers have been split
into direct and indirect (6). A direct biomarker is a single
measurement of one of the factors or products of the disease
that allows diagnosing a disease outcome or stage. Direct
biomarkers are usually biochemical, measured obtrusively in a
lab. An indirect biomarker is also a single measurement, obtained
easily using ubiquitous devices, indirectly associated but highly
correlated with a factor or product of the disease. For example,
body temperature T is an indirect biomarker for flu if:

T − 37◦C > 0

Is body temperature the only biomarker for the flu? No, but it
certainly is a good standalone one. Is body mass a biomarker
for obesity? Consider a person with a body mass of 120 kg. That
person is obese only if their height is <2m, based on their
body mass index (7). Any standalone measurement can give
indications on some disease, but the full power of measurements
comes into effect when they are combined together into a
composite biomarker. A composite biomarker (6) is thus the
usually non-linear combination of multiple measurements into a
single metric used in disease diagnosis or outcome prediction. In
simple cases, the combination can be done analytically, e.g., the
body mass index already mentioned is a composite biomarker for
obesity that non-linearly combines the height h and mass m of a
person as:

m

h2
− 30 > 0

Such simple cases are the exceptions. Usually, there are many
measurements forming a vector x and the biomarker non-
linearly combines them into F (x). Discovering the non-linear
combination function F( ) is not done manually, resulting in an
equation. Instead, it is done using an ML algorithm that learns
F( ) for the measurements x, yielding the metric to be evaluated
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for disease diagnosis or outcome prediction. In ML terminology,
x is the feature vector, and F( ) is the discriminant function of
the classifier (8). Hence composite biomarker discovery is about
training a classifier or regressor using some ML algorithm.

Finally, a contextualized composite biomarker (6) is
the combination of intrinsic factors (that comprise the
composite biomarkers) and extrinsic factors, that is, the
environment, providing a metric (classifier or predictor output)
for personalized disease management.

In sections AI Technologies for Defining, Modeling and
Simulating Lifestyle and Pilot Study to Evaluate the Hypothesis
of this paper, we are detailing a methodology to discover digital
contextualized composite biomarkers in RWD with outcome
prediction capabilities.

RWD and RWE: Definition and Usefulness

in Clinical Research
The 21st century Cures Act of 2016, a harbinger of the increasing
use of electronic health records (EHRs) and insurance claims
data for medical research in the United States, required the Food
and Drug Administration (FDA) to develop guidance on the use
of RWE in the studies of medical product safety and outcomes
for both postapproval studies and studies of new indications of
approved drugs. Hence, FDA has issued the following definition:
RWD are “data related to patient health status and/or the delivery
of health care routinely collected from EHRs, claims and billing
data, data from product and disease registries, patient-generated
data including home-use settings, and data gathered from other
sources that can inform on health status, such as mobile devices.”
(9). The European Medicine Agency address the same items
accordingly, in Organization for Economic Co-Operation and
development (OECD)/World health Organization (WHO) (10).

Real-world data are analyzed to create RWE, which is clinical
evidence about “the usage, and potential benefits or risks, of a
medical product derived from analysis of RWD.” (9).

Compared with evidence collected in randomized
controlled trials, RWE better reflects the actual clinical
environments, in which medical interventions are used,
including patient demographics, comorbidities, adherence, and
concurrent treatments.

When RWE is intended as the data generated in an
observational trial, we notice that there is a significant increase in
the number and quality of this type of trial with the consequence
of a very significant increase of data assets. It is also well-known
that when EHRs are used as a source of RWE, the vast majority of
this data, up to 80%, is unstructured. Moreover, insurance claims
are a rich source of information and they can cover ontologies
not normally included in EHRs, such as the experience of the
patients, extensive information on comorbidities (that in EHR
is normally highly unstructured), etc., but they are not good for
measuring disease severity, biomarkers and, in general, detailed
clinical information. In this setting of increasing dimensionality
and heterogeneity of data, ML methods are gaining traction as
tools to analyze massive and complex datasets (11). When RWE
coming from EHRs has been analyzed with ML techniques to
create predictive models vs. outcome, these have outperformed

traditional ones (12) even in real-time analysis executed, for
example, in the emergency setting (13). Some concerns are raised,
however, regarding the readiness of EHRs systems to support
machine-learning methods from a data quality standpoint (12).

In general, the value of RWE has been well-understood, to the
point that many initiatives (and national registries) are amassing
insurance claims and EHR curated data.

Real-world evidence derived from observational clinical trials
is traditionally collected, objectively as such as data stemming
from experimental trials. However, in the observational trials, the
setting is entirely uncontrolled and this makes the advancing of
“causal learning” to identify direct causes of a certain outcome
more difficult. This uncertainty can be overcome by means
of modern AI techniques that have proven to be effective, as
well, in the setting of synthetic data created by simulation (14).
Last but not the least, AI has been proven to mitigate the
issue represented by missing data that can impact the process
of learning of the causal structure (risk/intervention/outcome).
Missing data in real world, moreover, are a significant threat to
the understanding of the inference and they are very common;
however, AI techniques (in particular Bayesian Networks) do not
need complete information on any single record (case/patient) to
derive a response variable (15).

To the best of our knowledge, RWD stemming from lifestyle
have never been used to train AI-powered simulators alone or
along with RWE.

Patient Reported Outomes: Definition and

Usefulness in Clinical Research
The FDA deffinition of Patient Reported Outomes (PROs) is “any
report of the status of the patient’s health condition that comes
directly from the patient, without interpretation of the patient’s
response by a clinician or anyone else” (16). Indeed, PROs may
be referred to symptoms related to a disease, functional statuses
or multidimensional constructs such as, for example, the health-
related quality of life, as defined in Revicki et al. (17).

PROs are currently used as clinical trial endpoints following a
constant increase of their recognition as such over the last two
decades. Along with PROs, other measurements related to the
patient–reported experience and patient-reported behavior are
being used more and more as endpoints in clinical trials.

Structured and validated PROs reduce significantly the
heterogeneity of the responses of patients making possible, to a
higher extent, the understanding of the real differences in the
perception of the outcome, as compared with the information
collected via open-end questions. In this setting, the value of
PROs is not only recognized by the regulator and competent
authorities but, as well, by many scientific societies.

PROs can be used as primary, secondary, or even
exploratory/tertiary endpoints for the hypothesis generation.
Interventional trials experimenting with a new medicinal
product do have PROs, normally, as secondary endpoints,
whereas palliative care trials or rehabilitation ones can have
PROs as primary endpoints.

Following the lines of simplification and according to (18), the
benefits of including PROs into clinical trials are:
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1. Better understanding of the cost/benefits of a treatment;
2. Better understanding of the patients’ experience beyond the

biomedical outcomes, especially in the domains of pain,
fatigue and inconvenience from any other symptom;

3. Better tools to improve methodologies of trials.

From the regulatory perspectives, the strength of the
methodology PROs used in the trial could allow the achievement
of the status of “PRO labeling” for approved products, which, in
turn, allows PRO-supported claims.

We consider PROs, thus defined and characterized as very
reliable endpoints, to measure, in conjunction with the impact
on the PROs themselves, the variations in the lifestyle behaviors;
these are discussed in the following paragraph under the
assumption that they may be considered as biomarkers with
clinical value.

LIFESTYLE BEHAVIOR AS A BIOMARKER

WITH CLINICAL VALUE AND TYPES OF

RWD

Lifestyle behavior includes all features that characterize the daily
living of people, without considering possible diseases in a direct
manner. The importance of observing lifestyle behavior lies
upon the evidence that lifestyle is a health determinant and
has a two-way link with the disease. A patient with a chronic
disease can see the health deteriorationmapped into their lifestyle
behavior, whereas changes in daily living can have a significant
contribution to health, besides any intervention provided.

Lifestyle and Health
There are several studies that provide solid evidence about the
relation of lifestyle with health. A study related to diabetes
prevention (18) suggests that lifestyle behaviors are important to
the outcomes in youth and adults, with evidence that obesity in
adults has risen from <5% to more than 40% in some states, and
similar increases in prevalence have been seen in type 2 diabetes, a
disease that has increased in prevalence over the last 20–30 years.

Another study (19) shows that good-health-promoting
lifestyle behavior, especially health responsibility, physical
activity, and stress management behavior are determinants of
overweight and obesity, which are major risk factors for the
development of cardiovascular diseases, type II diabetes, and
some form of cancer.

We quantify lifestyle by obtaining RWD in four fields:
physiological, psychological, social, and environmental.
Information in all these fields can be objectively measured using
devices, or can be subjectively reported by people by answering
questionnaires. This information will form the constituents of
our proprietary composite biomarker, making up the feature
vector to be used as an input to the underlying ML algorithm
implementing this biomarker. Not everything we are discussing
in the following subsections will be used in the final biomarker.
As it is presented in section Composite Lifestyle Biomarker
Discovery, domain-knowledge, and feature-importance analysis
of the biomarker design process will drive the selection on a
per-case basis, but here we give the extensive list.

Types of RWD
We have identified several types of RWD that can be grouped
into four categories. In the physiological category of RWD,
we mainly encounter RWD that are mostly measured using
activity trackers and/or smartphones. Activity-related features
are steps walked, distance, elevation, energy dissipation, time
spent in different activity intensity zones (e.g., mild, moderate,
and high intensity physical activity, as it is formally defined as a
function of age) and exercise activities (walking, running, cycling,
etc.), and their distribution in the day. Presence indoors or
outdoors is also of importance. Specialized physical activity is also
measured via composite tests like the 6-min walk, the frailty test,
or games specifically designed to measure muscular responses
(taping on a mobile phone screen for Parkinson’s disease or
performing other exercises which are monitored and analyzed
by depth cameras to measure features important in stroke or
accident rehabilitation). All these tests are scripted and hence can
be measured using sensors and audiovisual instructions to the
people on their smartphones. Heart-related features include the
continuous measurements of the heart rate variability, the time
spent in different heart rate zones, and the daily resting heart
rate measurement. Sleep-related features include continuous
measurements on the time spent in the different sleep stages
(awake in bed, light, REM, deep sleep). More physiological
aspects are reported. We collected reported symptoms (e.g.,
headache, body temperature, blood pressure, pains, diarrhea,
fatigue, nausea), including their intensity. We regularly collected
reported weight and height also. Nutrition is paramount, starting
at a higher level with the number of meals in the day and themain
ingredient of the meal (plant vs. meat-based meal), but a more
detailed analysis can also be used when available. Water, coffee,
and alcohol intake are reported, and so are toilet visits. Finally,
the menstrual cycle is also of importance.

Most RWD types in the psychological category are reported
and include a high-level simple emotional state self-assessment
or the 11 aspects of the OECD better life index (20), but
when deemed necessary the collected information goes deeper
using standardized reports from professional therapists who
are monitoring the patients. Measurements can also be used
to indirectly capture psychological aspects. Emotion can be
recognized from the face video, the voice audio, or the social
media text posts. Places visited (which, how diverse they are)
are also an indication of the psychological state. Aspects like
the weather or spending unusual time in commuting can have
some importance.

Real-world data in the social category can be measured
indirectly from the usage of the phone (diversity, duration,
and frequency of calls) and social media (diversity, number,
and frequency of interactions). More direct information can be
reported using questionnaires on activities with friends, family,
or co-workers.

Real-world data in the environmental category include
environmental indicators for the assessment of the quality of life
(QoL) that can be reported by the patients using questionnaires.
Precise measurements of living or working environment quality
can be obtained by integrating relevant commercial devices (e.g.,
for air quality analysis).
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AI TECHNOLOGIES FOR DEFINING,

MODELING, AND SIMULATING LIFESTYLE

Risk and outcome predictions in clinical medicine have become
more precise due to the remarkable growth in the data collected,
and with RWE and the growing interest in AI techniques, the
construction of personalized risk and outcome predictionmodels
is now more robust.

Composite Lifestyle Biomarker Discovery
Our digital biomarkers are composite contextual ones, in the
sense, that they comprise numerous diverse (usually) indirect
measurements, including environmental aspects (5). In Guthrie
et al. (21) a methodology for discovering digital biomarkers is
introduced that comprises choices on outcomes, features and
modeling techniques, and model validation and explanation.
Our biomarker discovery is a variation of this methodology.
We propose a workflow of specifically designed trials where
our biomarker discovery is done in three stages (definition,
RWD selection, and iterative design), followed by performance
assessment. Our contribution is the introduction of the iterative
design where we follow the steps of Guthrie et al. (21) in
validating and explaining the models, but we also use the results
of this explanation to redefine our RWD selection and retrain the
model in iterations.

During the biomarker definition stage, the domain experts
select the clinically significant outcomes that need to be predicted
by the biomarker(s). In most cases, the investigators are
interested in whether these outcomes are reached or not by the
patients. Then the biomarker is implemented as a binary classifier
that predicts success or failure in reaching the outcome (21).
There can also be cases where it is interesting to predict the
actual values of the different outcome quantities. Then, either
a classifier with discrete states predicts outcome value ranges
(21), or a regressor predicts an outcome value (22). In essence,
this definition stage leads to the number of biomarkers needed,
and the underlying ML algorithm family (predictor—binary or
multiclass, or regressor) to be employed for implementing each
of them.

Other aspects that have to do with training the ML algorithms
are also defined at this stage: Primarily, based on the different
algorithmic needs and the clinical considerations, the ideal
amount of data that needs to be collected is established by
deciding on the number of trial people participants and the
duration of the trial. If the biomarker is expected to be used
during the trial, then the training period of the biomarker needs
to be defined. During this training period information is collected
to train the ML algorithm but no prediction is attempted. If the
purpose of the trial is to discover the biomarker for future use,
then the split of the trial population into training, validation, and
testing datasets is defined. The design stage is carried out prior to
the trials, and the choices made are reflected in their protocols.

In the biomarker RWD selection stage, domain knowledge is
applied to manually narrow down the list of RWD in all four
fields discussed in section Lifestyle Behavior as a Biomarker
With Clinical Value and Types of RWD, into those that are
relevant to the disease/condition in question. Only established

irrelevant RWD are omitted at this stage, since one purpose
of the biomarker discovery is to establish if some aspects of
RWDdiscussed in section Lifestyle Behavior as a BiomarkerWith
Clinical Value and Types of RWD do impact the condition in
question. Another factor for the RWD selection is the ease of
measurement. RWD that are collected unobtrusively are usually
in the initial selection, since its collection does not impact
the everyday life of the participant. RWD requiring manual
input using complicated questionnaires needs to be adequately
justified. A user-centric design of the interface of the ePRO
greatly helps at this stage, since it can remove the burden
of collecting certain RWD. The outcome of this stage is the
identification of the initial constituents of the feature vectors
to be used as input to the ML algorithms implementing the
biomarkers. This stage is also carried out prior to the trials to
finalize their protocols.

The core of our biomarker discovery workflow is the
biomarker iterative design stage. It involves the iterative
retraining of the classifier or regressor implementing the
biomarker. In this loop, the ML algorithm is used to train the
biomarker using the current version of the feature vector. After
training, the results are analyzed to refine the feature vector
and repeat the process as long as the validation results are
improved. The initial training happens when the first outcomes
are collected after the end of the training period. Such outcomes
can be intermediate ones, or even the final ones, meaning that
the biomarker discovery cannot enter phase three before the end
of the trial. At the end of the process, the feature vectors of all
people are collected, together with the actual outcomes for the
duration of the trial. During the iterations of this design stage,
the training set is used to train the ML algorithm of choice. The
choice depends on the problem at hand, the most determining
factors being the size of the training set and the dimensionality of
the feature vector. Classifiers that are able to uncover nonlinear
decision surfaces are preferred, namely subclass linear methods
(23–25), Kernel methods (26), random forests (27), and (deep)
neural networks (28). The validation set is used in iterations
to tune the parameters of the underlying ML algorithm of the
biomarker and determine which of the feature vector elements
strongly contribute to the predictions of the biomarker (either
toward positive or negative outcomes). Such an analysis can be
done using Pearson correlation coefficients (29, 30) or, more
importantly, Shapley additive explanations (SHAP) analysis (31–
33). SHAP analysis is applied on every feature vector instance,
yielding the effect of each feature vector element toward a positive
or negative prediction. Via SHAP analysis, we identify those
feature vector elements that are consistently not contributing to
either positive or negative predictions, and those feature vector
elements whose value groups (large, medium, or small) do not
consistently push toward a positive or negative prediction.

Cases of SHAP values are shown as rows of point clouds
in Figure 1. Each point cloud (row) corresponds to a feature
vector element, whose importance in the overall decision is
being assessed. Each point in the clouds corresponds to the
corresponding element of one feature vector on which the
decision is based. The color of the point indicates the value of
the element (from small values in blue to large values in red).
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The placement of the point on the horizontal axis corresponds
to the SHAP value. Values close to zero correspond to feature
vector elements with negligible effect on the decision, whereas
large positive or negative values correspond to feature vector
elements with large effect. The vertical displacement of the point
within its row indicates how many feature vectors fall into the
particular range of SHAP values. Thus, thick point cloud areas
correspond to many feature vectors. The point clouds marked

FIGURE 1 | Example SHAP values from a Random Forest classifier predicting

weekly health variation.

as (a) correspond to feature vector elements that have a large
impact on decisions (either positive or negative). The point cloud
marked as (b) corresponds to a feature vector element whose
large, medium, or small value seems to push the decision to
random directions. The point cloud marked as (c) corresponds
to a feature vector element that has a small impact on decisions.
Feature vector elements falling in any of the categories marked
as (b) or (c) are candidates to be dropped in the next iteration of
biomarker retraining.

The performance of the biomarker is assessed at the biomarker
performance assessment stage that follows after the iterative
process. The RWD test set is used at this stage. It needs to
be noted that for biomarkers predicting final trial outcomes,
there are only as many feature vectors as there are patients
in the trial. When the number of participants is low, then the
validation stage is done using the test set itself, or in more
tight cases the process is run repeatedly employing the “leave
one out for testing” method, where all features are individually
used to test classifiers or estimators trained and tuned using all
the rest. The three biomarker-discovery phases and the resulting
biomarker assessment are summarized in our proposed workflow
for biomarker discovery trials, shown in Figure 2.

Using the Biomarkers for Digital

Therapeutics
By employing AI discovered biomarkers that successfully predict
clinically significant outcomes, it is possible to drive decisions
in digital therapeutics (DTx) (21, 34, 35). When a disease
is considered, then the aim is to drive the intervention.
The biomarker predictions indicate intervention strength (drug
dosage), which usually is not one of the feature vector elements.

FIGURE 2 | Proposed biomarker discovery and application trial workflow.
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The usage of a biomarker in DTx involves balancing the trade-
off between its specificity (its ability to correctly identify those
patients who do not achieve the desired clinical outcome) and
its sensitivity (the ability to correctly identify those patients that
achieve the desired clinical outcome). Usually, high specificity is
required not to reduce the intervention to patients who actually
need it. If at that high specificity the biomarker also yields high
sensitivity, that is, identifies the patients who should receive less
strong intervention, then the biomarker is a successful one. This
is usually quantified by the area under the receiver operating
characteristic (ROC) curve.

Digital therapeutics is also applied in themore general, disease
agnostic, and well-being areas. In this area, a biomarker is used
to drive behavioral change in a virtual coaching setup. The
explainable AI elements already discussed in the previous section
determine the elements of the feature vector of the particular
patient who had the most positive and negative influence on
the probability of a successful outcome. Then the person is
coached in these elements. The virtual coach selects the feature
vector elements of the strong influence that are related to the
behavior (physiological, psychological, and social aspects) and
to the environment. If they have a strong negative influence, it
coaches the person to change behavior. If they have a strong
positive influence, it encourages the person to keep up the good
lifestyle in those aspects.

While recently the use of ePRO and digital monitoring devices
in clinical trials is ever-increasing, and many of those aim at
deriving digital biomarkers (6), to the ’knowledge of the author
there are no trials that already have evaluated DTx applications.
It is our hypothesis that our digital biomarkers and the SHAP
analysis of their individual decisions can be applied in a DTx
context by driving coaching of the patients.

PILOT STUDY TO EVALUATE THE

HYPOTHESIS

Study Description
The study APACHE, which is an advanced patient monitoring
and AI-supported outcomes assessment in cervical cancer using
Internet of things technologies, is a cofinanced monocentric
observational study using a remote monitoring device for
patients affected by locally advanced cervical cancer. Patients are
considered as such if staged larger than or equal to IB2 according
to the FIGO staging system (an international staging system for
locally advanced cervical cancer), with primary lesions larger
than 4 cm. The patients undergo chemoradiotherapy (CRT)
followed by either radical surgery or brachytherapy boost and
are treated in Fondazione Policlinico Universitario “A. Gemelli”
IRCCS of Rome, Italy. The foreseen study duration is 24 months.
The study protocol foresees inclusion and exclusion criteria. The
inclusion criteria require the patients to be younger than 70 years,
be clinically able to use portable technologies, and be able to
understand and sign informed consent. The exclusion criteria
involve a major psychiatric disorder, inadequate performance
status (larger than 3 according to the Eastern Cooperative
Oncology Group score, that is, capable of only limited selfcare;

confined to bed or chair for more than 50% of waking hours), and
ongoing pregnancy or breastfeeding. Patient enrolment began in
October 2020 and continues to date. A total of 50 patients are
foreseen for this exploratory study. The selection procedure of
patients adhering to the study protocol criteria foresees only a
brief interview during the first visit to the advanced radiation
therapy center of Gemelli for the initial radiotherapy treatment.
During the interview, the informed consent is acquired by the
attending physician, and papers describing the trial and expected
role of the patient are provided. If the patient is motivated
and computer literate, the whole procedure does not take more
than 15–20min. Please note that the initial inclusion criteria on
cervical cancer has been widened to include other pelvic cancers,
as discussed in section Expected Benefits, Early Findings, and
Next Steps.

The primary objective of the study is to assess the experience
of patients using Healthentia (see section Healthentia Platform)
and a wearable tracker during the multimodal oncological
therapies and follow-up period. The study has three secondary
objectives. Firstly, to compare PROs with corresponding clinical
records about toxicity, instrumental activities of daily living
(IADLs), and stress/coping levels. Secondly, to profile patients
based on their scores and activity, and lastly, to trainmodels using
ML on the patient-reported and monitored data.

Patients have received a state-of -the-art wearable device
(Fitbit INSPIRE) during their first visit prior to CRT start, that
collects at a daily basis RWD like activity (i.e., steps per day),
sleep, and vital signs. During the whole observation period,
patients are asked to report their weekly well-being by completing
dedicated questionnaires sent to the ePRO App on their phone.
A dedicated research nurse will flank the patients enrolled in the
study in filling the e-questionnaires in case of need and follow up
the correct flow of the questionnaires.

The following scoring systems are selected to assess specific
aspects of the experience of the patient during the multimodal
treatment period:

1. Early and late toxicity will be assessed using the NCI-PRO-
CTCAETM ITEMS-ITALIAN Version 1.0 for the cutaneous,
gastro-intestinal, and genito-urinary sections

2. Therapy impact on instrumental daily activities will be
assessed using the Lawton Brody IADL

3. QoL will be assessed using the EORTC QLQ C30
4. Nutritional status will be assessed using the malnutrition

screening tool
5. Psychological status will be assessed through self-administered

tests, namely the distress thermometer, DT6 for distress
evaluation and theMental Adjustment to Cancer Scale, MINI-
MAC 7, Italian version for coping evaluation

6. User experience and technology acceptance will be assessed
using a customized questionnaire on the Healthentia App on
enjoyment, aesthetics, control, trust in technology, perceived
usefulness, and intention to use.

The collected data are transferred through the Healthentia app
on the smartphone of the patient to Healthentia platform.
Clinicians can monitor lifestyle behavioral patterns, detect
changes in the health status, and be informed on clinical
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endpoints via the Healthentia portal web application. More
information on the Healthentia eClinical solution is given in
section Healthentia Platform.

The collected RWD, i.e., objective data from wearable
devices and subjective data collected from questionnaires (e.g.,
IADLs, toxicity, QLQ, etc.) are fused together and define a
multidimensional vector for each patient that consists of steps,
resting heart-rate, sleep, etc., which characterizes their behavior
throughout the day. After the models are trained from the
RWD collected over an initial period, it is possible to predict
outcomes and system scoring of the above scoring systems i.e.,
IADLs or QLQ, by feeding the system with the automatically
collected vectors.

The RWD that is being collected is currently grouped into
five lifestyle aspects described in Table 1. Most of the aspects
can be considered generic (applicable to people in general,
not just cervical cancer patients). Only the aspect on QoL,
since it focusses on low toxicity adverse effects, is dedicated to
the particular condition under study in APACHE. Each aspect
is measured via a set of parameters (different measurements
of questions). The parameters are concatenated into a set
of scores, as described in the section on the manual RWD
selection stage. It is through these scores that the five aspects
are quantified.

Manual RWD Selection Stage
Each of the five lifestyle aspects (see Table 1) combines multiple
parameters (measurements or questionnaire answers). In most
cases, these parameters are aggregated into one or more scores
quantifying the performance in the respective lifestyle aspect.
The physiological lifestyle aspect parameters are measured on
a daily basis using Fitbit activity trackers. Four scores are
derived from these measurements. A sleep score is derived
from the total sleep duration, and the REM and deep sleep
durations, the sleep efficiency (ratio of time being asleep, over

TABLE 1 | Lifestyle aspects grouping of the Real-World Data collected in

APACHE, their parameters, and their scores.

Lifestyle

aspect

Questionnaire/

measurement

Parameters/score

Physiological Fitbit activity

measurements

16 parameters, aggregated into

4 scores: sleep quality, steps,

activity score, resting heart rate

Independence Instrumental Activities of

Daily Life (IADL)

8 parameters, aggregated into 1

score

QoL (Low

toxicity adverse

effects)

EORTC QLQ (CX24,

CX30)

25 parameters aggregated into 4

scores

NCI/DRO/CTCAE 45 parameters, aggregated into

5 scores

Psychological Mini Mac Scale 40 parameters, aggregated into

5 scores

Distress thermometer 1 parameter/score

Nutrition Nutrition score 1 parameter/score

the total time in bed), sleep disturbances (count of wake-
up times), and the bedtime alignment to the habits of the
patient. An activity score is determined by the active vs.
inactive time (excluding sleep), positive or negative deviation
from habits, and auto-detected training count. Steps are used
as a standalone score since they are the most usual activity
tracking metric and are easy to compare against different
activity trackers. Finally, the resting heart rate is another
standalone score due to its clinical importance as a biomarker on
body condition.

The independent lifestyle aspect is reported on a weekly basis
using the IADL questionnaire. There are eight questions covering
telephone use, shopping, food preparation, housekeeping,
laundry, transportation, medication adherence, and finances
management. Each of these parameters contributes equally to the
overall independence score.

The QoL lifestyle aspect is assessed using two questionnaires.
The EORTC QLQ assesses parameters on symptom experience
(15 parameters, assessed weekly), body image (three parameters,
assessed weekly), sexual/vaginal functioning (four parameters,
assessed weekly), and sexual worry/activity/enjoyment (three
parameters, assessed monthly). These four groups are the four
scores from EORTC QLQ, three of them obtained weekly and
one monthly.

The NCI/DRO/CTCAE questionnaire collects 45 parameters
on a weekly basis, all having to do with different symptoms
(their occurrence, frequency, and/or distress level). They are
grouped into five categories, the gastrointestinal (16 parameters),
the skin (13 parameters), the neuro (2 parameters), the sexual
(2 parameters), and the urinary (8 parameters). There are also
two parameters that cannot be classified in the above groups
of interest and are ignored by our scoring of the APACHE
outcomes. They have not been removed from the data collected
to maintain the integrity of the questionnaire used. These
five categories are the five scores from NCI/DRO/CTCAE,
obtained weekly.

The psychological lifestyle aspect is also assessed using
two questionnaires. The Mini Mac Scale assesses (every
3 months) parameters that are aggregated into scores (all
parameters contributing equally to their respective scores) on
the fighting spirit (16 parameters), helplessness/hopelessness (six
parameters), anxious preoccupation (nine parameters), fatalism
(eight parameters), and denial/avoidance (one parameter).

The distress thermometer comprises a single parameter
forming a score on a weekly basis. Finally, the nutrition lifestyle
aspect comprises a single parameter on malnutrition score
collected on a weekly basis.

Summarizing, the biomarkers discovered in APACHE
utilize 66 parameters and/or their grouping into 12 scores
as a feature vector. They are being trained to predict
significant variations in the three scores quantifying
QoL from the EORTC QLQ questionnaire. Training is
done on anonymized APACHE data using proprietary
scripts built on top of well-established implementations
of ML algorithms found in the Scikit Learn and
Tensorflow libraries.
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FIGURE 3 | Healthentia architecture.

Healthentia Platform
Healthentia (4) is an eClinical solution that facilitates
clinical trial optimization by accelerating the trial
processes, reducing the failure rate, and validating
drug/intervention efficacy and effectiveness with RWD
insights. In this way, pharmaceutical companies can
achieve cost savings, accelerate the drug approval
process, and obtain useful insights to develop drugs and
interventions of higher efficacy. Its architecture is shown in
Figure 3.

The Healthentia solution extends the use of a traditional
ePRO/eCOA application by adding behavioral and health-related
data collected from Internet of Things (IoT) devices. Utilizing
ML on this data, it is possible to discover behavioral biomarkers
and cluster patients into behavioral phenotypes, which allows the
activation of smart services to predict clinical outcomes, generate
prevention alarms, and link phenotypes with drug/intervention
efficacy. In addition, based on reported outcomes, the AI module
generates automatic alerts in case of adverse events. These
automatic and prevention alarms support decisionmaking by the
investigator during the clinical trial, for the benefit of the health
of the individual patient. For the AI module to do so online, the
biomarker needs to be trained first as discussed in sectionManual
RWD Selection Stage.

On top of in vivo clinical studies, Healthentia allows the
running of in silico trials that use the deep phenotyping outcomes
together with legacy data, to create synthetic control arms and
support pharmaceutical companies to design optimized studies.

Healthentia is available for clinical studies, under a strict
regulatory framework, and a SaaS environment, which is open
to the wider community. The SaaS version includes further
features, such as eRecruitment, eConsent, and Virtual Coaching.
Healthentia is already in use in APACHE, and we have received
ethical clearance for its use in more studies with a top
pharmaceutical company and a hospital. Results from its AI
module (for biomarker training) have been published (36), albeit
in a completely different domain.

EXPECTED BENEFITS, EARLY FINDINGS,

AND NEXT STEPS

The APACHE study has been running for a few weeks now,
albeit with lower enrolment rates than expected. The first RWD
are being collected, as shown in Figure 4, where the real-
time monitoring functionalities of Healthentia offer investigators
views of the RWD, like the depicted physical activity and MINI-
MAC cancer scale.

In the APACHE study, we have introduced new patient-
centered variables for risk stratification (i.e., toxicity onset,
malnutrition, or mental coping issues), allowing the prospective
setup of rapid and fully personalized therapeutic approaches.
The integration of such variables into clinical nomograms and
multidimensional predictive models is contributing to realizing
decisional support systems. The study contributes to the active
monitoring of toxicity and therapy-related side effects, aiming
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FIGURE 4 | (A) Monitoring of physical activity, and (B) low toxicity events in APACHE trial.

at their reduction, and in the optimization of monitoring and
follow-up strategies of the patients. Finally, the use of Healthentia

enhances self-awareness of the patients about global clinical
status and participated clinical decision making.
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Clinicians expect different benefits from the use of such
advanced monitoring techniques. First of all, the reduction
of toxicities may hamper QoL of the patient and their
compliance to the oncological multimodal treatments, thanks
to the identification of alert signs and early symptoms that
may be overlooked during the visits or considered negligible
by the patients themselves and not properly reported to the
attending physician. This may be translated into an active
personalization of the ongoing treatments (i.e., radiotherapy
replanning secondary to bowel toxicity) with significant expected
advantages in terms of treatment quality and overall clinical
outcomes. Furthermore, the use of this monitoring approach
may represent a key resource for coping strategies enhancement,
especially in hospitals where a psychoncology service is
not available.

As the volume of collected RWD increases, our next steps in
the analysis side have to do with modeling the different scores
and discovering a biomarker for the predictions of the QoL ones.
Due to conflicting studies that do not allow to run multiple trials
on the same cohort of patients, the enrollment has been slow, and
therefore an amendment has been proposed to enlarge the cohort
and grant the success of the trial. At the time being, patients
affected by other pelvic cancer undergoing CRT are allowed in the
study (e.g., endometrial, vaginal, vulvar, and rectal cancer). This
expansion of the inclusion criteria is justified by the similarities
of cervical to the other pelvic cancers in terms of treatment
(there is a radiotherapy does overlap) and most importantly the
common types of possible toxicity (linked to the irradiation of
the same pelvic organs, i.e., bowel, bladder, rectum) that allow
the reuse of the same questionnaires and eliminate differences in
data analysis.

The limitation of the APACHE study lies with the automatic
measurements. These need the compliance of the study
participant, whose familiarity with activity trackers significantly
declines with their age. The participant needs to understand
the importance of the physiological data being collected and
make sure their activity tracker is worn and is charged. Working
with the unavoidable gaps in the collected physiological data is
something we are investigating.

Scoring Considerations
In section Study Description we presented the study design,
which is complemented by the scoring mechanisms that we have
been prepared prior to the launch of the study. The physiological
scores combine diverse parameters, and their combination
weights will be investigated to obtain meaningful results. All the
other scores combine parameters that carry similar weights and
hence there are three combination options:

A linear combination does not discriminate between number
of events or their severity. As an example, consider four
parameters with values 0–4, 4 indicating maximum severity. An
average score of 1 is obtained with four 1’s or three 0’s and one
4. There are cases where the latter is more alarming than the
former. Some of the questionnaires used in APACHE do have
formal scoring suggestions (37–41), following the linear case.

Non-linear combination, on the other hand, allows the
investigator to put more weight on either the number of events

or their severity. Consider a set of possible events xn, each with a
value of zero if there is no symptom and integer values larger than
zero indicating increased severity of the symptom. The events are
combined into a single score s using:

s =
1

N

(

N
∑

n=1

xan

)1/a

Selecting a > 1 the investigator has a score that puts emphasis on
event severity vs. event count. On the other hand, selecting a < 1
puts the emphasis on the event count. Selecting a = 1 leads to the
linear case.

As already mentioned, the formal scoring of most of the
questionnaires is linear. This is followed to facilitate clinical
research. But to facilitateML, we also experiment with non-linear
scoring in APACHE. We are selecting the value of the exponent
for each combination leading to the different scores, based on
what the investigators need to emphasize with each one of them.

Iterative Design Stage
The iterative design phase has recently started with an initial
algorithm selection. Since there are 50 patients in the trial,
there are 50 feature vector instances to train and evaluate the
biomarkers. For this reason, algorithms like neural networks are
not expected to be used. The biomarkers will most probably
be based on a decision-tree classifier or random forests. Linear
methods (with careful feature engineering) will be used as
a baseline, together with their multiclass variants, since the
decision boundaries are not expected to be linear.

The biomarkers will be trained using the leave-one-out
method, each time keeping one patient for testing, training with
45 and using the remaining four for hyper-parameter tuning
during validation. The performance will be reported as the
number of correctly identified patients out of the 50 leave-one-
out experiments.

Early Findings and Next Steps
At the definition stage of the APACHE biomarkers discovery,
the clinically significant outcomes that need to be predicted by
the biomarker are selected. These are dictated by the goal of
APACHE, that is, the QoL in terms of low toxicity adverse effects,
as is quantified by the three scores of the lifestyle aspect. As
APACHE trial starts producing RWD, we will be training our
biomarker to predict significant variations of these scores. At
some milestone of the trial (currently planned for its end on
the 52nd week) the predictors of the biomarker will be able to
determine if a significant improvement of the 3 scores associated
with the QoL of the patients is to be expected.

Having trained the biomarker, we will be exploiting the
explainable AI techniques described in section Composite
Lifestyle Biomarker Discovery to determine the aspects in the life
of the patient to coach in favor or against. This way, as discussed
in section Using the Biomarkers for Digital Therapeutics, we will
be driving DTx in this therapeutic area.

Although the RWD collection and scoring presented in this
study is customized to the needs of the APACHE trial for cervical
cancer, the methodology for capturing and combining data, and
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most importantly, that for discovering biomarkers, is applicable
to other conditions as well. Preliminary results are available for
the application of this methodology on RWD for obesity, where
the discovered biomarker predicts significant short-term weight
variations and general well-being, where the biomarker classifies
the health outlook of general population, aiming at using it
for risk assessment and the analysis of its decisions in virtual
coaching.We have published these early results in Pnevmatikakis
et al. (36), and our next steps in biomarker discovery research
involve applying the discoverymethodology in the APACHE data
to predict the low-toxicity events.

CONCLUSIONS

The APACHE study addresses a very important milestone, that
is represented by the clinical validation of AI technologies
when creating models based on PROMs capable of predicting
any outcome of clinical value. In this modeling, endeavor the
clinical validation still represents a bottleneck. In particular,
the complexity of promoting RWE from basic clinical decision
support (needs validation from an accountable “real doctor”) to a
fully validated (rather “qualified”) digital biomarker RWD-from-
lifestyle-raw-material based is quite significant. The challenge is
represented by the robust regulatory framework set to qualify a
classical biomarker, herein adopted to evaluate a digital one vs.
strictly technological standards, requirements, and credentials.
If we consider the privacy endeavor (related to innovative
data capture and handling solutions) and the cyber-sec one,
these alone represent entirely new dimensions entering the
ethical/regulatory dialog.

In our perspective, extracting evidence with predictive values
from lifestyle in a very homogeneous cohort (and a technological
endeavor ethically and regulatory robust) of subjects undergoing
state-of-the-art treatment magnifies its value by offsetting this
RWE toward a very stable, and to a certain extent expected,
clinical outcome progression (observational nature of the
approach). In other words, a study like this creates the idea
sandbox to evaluate the training of an ML algorithm in a low
noise setting.

Clinically, extracting such RWE has significant implications.
Lifestyle-driven and outcome-connected digital biomarkers with
the predictive value could enrich the diagnostic tools with

agile (and relatively inexpensive) indicators (easy to collect in
a continuous fashion), for example, of the onset of significant
toxicity from an oncological treatment.

Training cycle by training cycle, moreover, these digital
biomarkers could pave the way to smart coaching that, in turn,
could be promoted toward validated digital content as an active
ingredient in a DTx perspective.
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estimation with longitudinal EHR
tokenization and flexible
transformer networks
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Azra Bihorac1,4 and Parisa Rashidi2,4*
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Transformer model architectures have revolutionized the natural language
processing (NLP) domain and continue to produce state-of-the-art results in text-
based applications. Prior to the emergence of transformers, traditional NLP
models such as recurrent and convolutional neural networks demonstrated
promising utility for patient-level predictions and health forecasting from
longitudinal datasets. However, to our knowledge only few studies have explored
transformers for predicting clinical outcomes from electronic health record (EHR)
data, and in our estimation, none have adequately derived a health-specific
tokenization scheme to fully capture the heterogeneity of EHR systems. In this
study, we propose a dynamic method for tokenizing both discrete and continuous
patient data, and present a transformer-based classifier utilizing a joint embedding
space for integrating disparate temporal patient measurements. We demonstrate
the feasibility of our clinical AI framework through multi-task ICU patient acuity
estimation, where we simultaneously predict six mortality and readmission
outcomes. Our longitudinal EHR tokenization and transformer modeling
approaches resulted in more accurate predictions compared with baseline
machine learning models, which suggest opportunities for future multimodal data
integrations and algorithmic support tools using clinical transformer networks.

KEYWORDS

transformer, deep learning, electronic health records, critical care, patient acuity,

clinical decision support

1. Introduction

Through the course of a typical intensive care unit (ICU) admission, a variety of

patient-level data is collected and recorded into electronic health records (EHR)

systems. Patient data is diverse, including measurements such as vital signs, laboratory

tests, medications, and clinician-judged assessment scores. While primarily used for ad-

hoc clinical decision-making and administrative tasks such as billing, patient-centric

data can also be used to build automated machine learning systems for assessing overall

patient health and predicting recovering or worsening patient trajectories.
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Patient mortality risk is often used as a proxy for overall ICU

patient acuity, both in traditional illness severity scores like SOFA

(1, 2) and more recent machine learning approaches such as

DeepSOFA (3). Whether manually calculated or algorithmically

computed, nearly all of these systems rely on measurements

from a set of handpicked clinical descriptors thought to be

most indicative of overall patient health. Given the breadth of

data available in modern EHR systems, there is untapped

potential for enhanced patient modeling contained in the large

amount of unused patient data.

Several recent studies have demonstrated the predictive

accuracy and patient modeling capacity of deep learning

implementations in healthcare, using models such as recurrent

neural networks (RNN) (3–8) and convolutional neural

networks (CNN) (9, 10).

Recently, Transformer models (11) have garnered increased

attention in the deep learning community due to their state-of-

the-art results on a variety of natural language processing (NLP)

tasks, particularly when using schemes such as Bidirectional

Encoder Representations from Transformers (BERT) (12).

There are also more recent advances in analyzing frequency of

data in Frequency Enhanced Decomposed Transformer Zhou

et al. (13) that exploits the sparseness of time series data.

From a temporal perspective, one advantage the Transformer

offers is its parallel processing characteristics. Rather than

processing data points sequentially, the Transformer views all

available data at once, modeling attention-based relationships

between all input time steps. In contrast, models such as RNNs

require distinct temporal separation within input sequences,

and usually demand a regular sample interval between adjacent

time steps. As clinical EHR data is recorded at highly irregular

frequency and is often missing measurements, a large amount

of data preprocessing is typically required in the form of

temporal resampling to a fixed frequency, and an imputation

scheme to replace missing values. Furthermore, given that

several EHR measurements are often recorded at the same

timestamp, typical machine learning workflows aggregate

temporally adjacent measurements into mean values contained

in resampled time step windows, or perform random shuffling

procedures before training models. Given its parallel and

fundamentally temporally agnostic attributes, the Transformer

is capable of distinctly processing all available measurements,

even those occurring at the same timestamp. Additionally, the

Transformer is able to process whichever data happens to be

available, reducing the need for potentially bias-prone

techniques to account for data missingness.

In this study, we showcase the feasibility of a highly flexible

Transformer-based patient acuity prediction framework in the

critical care setting. Our contributions can be summarized by

the following:

• Our flexible system design incorporates a diverse set of EHR

input data that does not require a priori identification of
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clinically relevant input variables, and can work with any

data contained in EHR platforms.

• In contrast to recent Transformer approaches that either use

discrete medical concepts (14–16) or continuous

measurements from a handpicked set of features (17), we

introduce a data embedding scheme that jointly captures

both concept and corresponding measurement values of a

wide variety of disjoint clinical descriptors.

• In our novel embedding module, we introduce a mechanism

for combining both absolute and relative temporality as an

improvement over traditional positional encoding.

• We present an input data scheme with minimal

preprocessing, obfuscating the need for potentially biased

temporal resampling or missing value imputation common

in many other sequential machine learning approaches.

• We expand BERT’s [CLS] token for classification into several

distinct tokens for predicting multiple-horizon patient

mortality and ICU readmission in a novel multi-task

learning environment.

• Rather than typical concatenation with sequential

representation, we incorporate static patient information in

a novel way using a global self-attention token so that

every sequential time step is compared with the static pre-

ICU representation.

• We show that the Longformer (18) can be applied to long

EHR patient data sequences to minimize required

computation while retaining superior performance.

2. Methods

2.1. Cohort

The University of Florida Integrated Data Repository was

used as an honest broker to build a single-center longitudinal

dataset from a cohort of adult patients admitted to intensive

care units at University of Florida Health between January 1st,

2012 and September 22nd, 2019. Our project was approved by

the Institutional Review Board of the University of Florida

and the University of Florida Privacy Office (IRB201901123).

Full cohort statistics is described in Table 1.

We excluded ICU stays lasting less than 1 h (to reduce EHR

data artifacts and provide predictive models with adequate

patient data) or more than 10 days, to limit outliers based on

tokenized sequence length and following several existing

studies using ICU encounters for predictive modeling (19).

Excluding patients based on length of stay resulted in roughly

95% of the original ICU cohort. Our final cohort consisted of

73,190 distinct ICU stays from 69,295 hospital admissions and

52,196 unique patients. The median length of stay in the ICU

was 2.7 days.

We divided our total cohort of ICU stays into a

development cohort of 60,516 ICU stays (80%) for training

our models, and a validation cohort of 12,674 ICU stays
frontiersin.org
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TABLE 1 Summary statistics for experimental ICU cohorts.

Development
cohort

(n = 60, 516)

Validation
cohort

(n = 12, 674)

Patients, n 41,881 10,315

Hospital encounters, n 57,168 12,127

Age, years, median (25th, 75th) 61.0 (49.0, 71.0) 62.0 (49.0, 73.0)

Female, n (%) 27,380 (45.2) 5,616 (44.3)

Body mass index, median (25th,
75th)

26.9 (23.0, 32.0) 27.3 (23.3, 32.2)

Hospital length of stay, days,
median (25th, 75th)

6.7 (3.6, 12.1) 6.4 (3.3, 11.5)

ICU length of stay, days, median
(25th, 75th)

2.8 (1.5, 5.1) 2.9 (1.6, 5.5)

Time to hospital discharge, days,
median (25th, 75th)

1.9 (0.0, 4.8) 1.1 (0.0, 4.1)

Hispanic, n (%) 2,130 (3.5) 539 (4.3)

Non-English speaking, n (%) 1,092 (1.8) 233 (1.8)

Marital status, n (%)

Married 26,084 (43.1) 5,457 (43.1)

Single 21,844 (36.1) 4,931 (38.9)

Divorced 11,905 (19.7) 2,142 (16.9)

Smoking status, n (%)

Never 20,180 (33.3) 4,653 (36.7)

Former 19,378 (32.0) 4,167 (32.9)

Current 12,094 (20.0) 2,326 (18.4)

Insurance status, n (%)

Medicare 31,447 (52.0) 6,543 (51.6)

Private 13,115 (21.7) 2,912 (23.0)

Medicaid 10,208 (16.9) 1,999 (15.8)

Uninsured 5,746 (9.5) 1,220 (9.6)

Comorbidities, n (%)

Charlson comorbidity index,
median (25th, 75th)

2.0 (0.0, 4.0) 2.0 (0.0, 4.0)

Myocardial infarction 7,537 (12.5) 1,985 (15.7)

Congestive heart failure 14,897 (24.6) 3,380 (26.7)

Peripheral vascular disease 10,005 (16.5) 2,185 (17.2)

Cerebrovascular disease 8,981 (14.8) 1,720 (13.6)

Chronic pulmonary disease 17,938 (29.6) 3,473 (27.4)

Metastatic carcinoma 3,377 (5.6) 812 (6.4)

Cancer 8202 (13.6) 1,808 (14.3)

Mild liver disease 4,745 (7.8) 960 (7.6)

Moderate/severe liver disease 1,856 (3.1) 374 (3.0)

Diabetes without
complications

14,137 (23.4) 2,395 (18.9)

Diabetes with complications 5,052 (8.3) 1,736 (13.7)

AIDS 442 (0.7) 53 (0.4)

Dementia 1,692 (2.8) 559 (4.4)

Paraplegia/hemiplegia 3,465 (5.7) 769 (6.1)

Peptic ulcer disease 1,110 (1.8) 187 (1.5)

Renal disease 11,878 (19.6) 2,493 (19.7)

(continued)

TABLE 1 Continued

Development
cohort

(n = 60, 516)

Validation
cohort

(n = 12, 674)

Rheumatologic disease 1,794 (3.0) 342 (2.7)

Neighborhood characteristics,
median (25th, 75th)

Total population, n� 103 17.0 (10.6, 26.4) 17.6 (10.6, 26.7)

Distance to hospital, km 39.3 (17.9, 69.1) 42.4 (20.2, 76.5)

Median income, dollars �103 40.1 (33.8, 46.7) 40.1 (35.1, 47.4)

Poverty rate, % 19.6 (14.0, 27.7) 19.3 (13.7, 26.7)

Rural area, n 22543 (37.3) 4691 (37.0)

Clinical outcomes, n (%)

ICU readmission before
hospital discharge

3,583 (5.9) 613 (4.8)

Inpatient mortality 5,813 (9.6) 1,131 (8.9)

7-day mortality 5,237 (8.7) 1,022 (8.1)

30-day mortality 7,056 (11.7) 1,380 (10.9)

90-day mortality 9,197 (15.2) 1,785 (14.1)

1-year mortality 12,991 (21.5) 2,288 (18.1)
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(20%) for evaluating their predictive performance. 10% of the

development set was used for within-training validation and

early stopping. The cohort was split chronologically, where

the earliest 80% of ICU stays was used for training, and the

most recent 20% used for evaluation. To ensure the same

patient did not appear in both development and validation

sets, all ICU stays of patients with multiple admissions

spanning the cohort threshold were grouped into the

development cohort.
2.2. Data

We extracted patient data from several EHR data sources:

sociodemographics and information available upon hospital

admission, summarized patient history, vital signs, laboratory

tests, medication administrations, and numerical assessments

from a variety of bedside scoring systems. We did not target

or manually select any specific ICU variables, instead using all

such data contained in our EHR system. A full list of

variables used in our experiments is shown in Table 2.

Static data: For each ICU stay, we extracted a set of non-

sequential clinical descriptors pertaining to patient

characteristics, admission information, and a summarized

patient history from the previous year. Patient-level features

included several demographic indicators, comorbidities,

admission type, and neighborhood characteristics derived

from the patient’s zip code. Patient history consisted of a

variety of medications and laboratory test results up to one

year prior to hospital admission (Table 2). Historical patient
frontiersin.org
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TABLE 2 Summary of variables used in Transformer experiments.

Variable Type

Patient demographics

Age Static

Sex Static

Ethnicity Static

Race Static

Language Static

Marital status Static

Smoking status Static

Insurance provider Static

Patient residential information

Total population Static

Distance from hospital Static

Rural/Urban Static

Median income Static

Proportion black Static

Proportion hispanic Static

Percent below poverty line Static

Patient admission information

Height Static

Weight Static

Body mass index Static

17 comorbidities present at Admission Static

Charlson comorbidity index Static

Presence of chronic kidney disease Static

Admission type Static

Patient history: medicationsa

ACE inhibitors Static

Aminoglycosides Static

Antiemetics Static

Aspirin Static

Beta blockers Static

Bicarbonates Static

Corticosteroids Static

Diuretics Static

NSAIDS Static

Vasopressors/Inotropes Static

Statins Static

Vancomycin Static

Nephrotoxic drugs Static

Patient history: laboratory test resultsb

Serum hemoglobin Static

Urine hemoglobin Static

Serum glucose Static

Urine glucose Static

Urine red blood cells Static

Urine protein Static

Serum urea nitrogen Static

(continued)

TABLE 2 Continued

Variable Type

Serum creatinine Static

Serum calcium Static

Serum sodium Static

Serum potassium Static

Serum chloride Static

Serum carbon dioxide Static

White blood cells Static

Mean corpuscular volume Static

Mean corpuscular hemoglobin Static

Hemoglobin concentration Static

Red blood cell distribution Static

Platelets Static

Mean platelet volume Static

Serum anion gap Static

Blood pH Static

Serum oxygen Static

Bicarbonate Static

Base deficit Static

Oxygen saturation Static

Band count Static

Bilirubin Static

C-reactive protein Static

Erythrocyte sedimentation rate Static

Lactate Static

Troponin T/I Static

Albumin Static

Alaninen Static

Asparaten Static

ICU vital signs

Systolic blood pressurec Temporal

Diastolic blood pressurec Temporal

Mean arterial pressurec Temporal

Heart rate Temporal

Respiratory rate Temporal

Oxygen flow rate Temporal

Fraction of inspired oxygen (FIO2) Temporal

Oxygen saturation (SPO2) Temporal

End-tidal carbon dioxide (ETCO2) Temporal

Minimum alveolar concentration (MAC) Temporal

Positive end-expiratory pressure (PEEP) Temporal

Peak inspiratory pressure (PIP) Temporal

Tidal volume Temporal

Temperature Temporal

ICU Assessment Scoresd

ASA physical status classification Temporal

Braden scale Temporal

(continued)
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TABLE 2 Continued

Variable Type

Confusion assessment method (CAM) Temporal

Modified early warning score (MEWS) Temporal

Morse fall scale (MFS) Temporal

Pain score Temporal

Richmond agitation-sedation scale (RASS) Temporal

Sequential organ failure assessment (SOFA) Temporal

ICU laboratory testse

106 distinct lab tests present in EHR system Temporal

ICU medicationse

345 distinct medications present in EHR system Temporal

aExtracted features included total counts of administered medications up to

one year prior to hospital admission.
bExtracted features included total counts of recorded laboratory test results

and minimum, maximum, mean, and standard deviation of measurement

values up to one year prior to hospital admission. Both serum and urine-

based tests extracted separately when available.
cInvasive and non-invasive readings for systolic blood pressure, diastolic blood

pressure, and mean arterial pressure were treated as distinct event tokens.
dFor assessment scores with multiple sub-components, each component was

treated as a distinct timestamped measurement, resulting in 30 such

assessment measurements.
eWe retained distinct laboratory tests and medications that were administered

in at least 1% of the training cohort of ICU stays.

Shickel et al. 10.3389/fdgth.2022.1029191
measurement features were derived from a set of statistical

summaries for each descriptor (minimum, maximum, mean,

standard deviation).

Temporal data: For each ICU stay, we extracted all available

vital signs, laboratory tests, medication administrations, and

bedside assessment scores recorded in our EHR system while

the patient was in the ICU (Table 2). We refer to each

extracted measurement as a clinical event. Each event was

represented as a vector containing the name of the

measurement (e.g. “noninvasive systolic blood pressure”), the

elapsed time from ICU admission, the current measured

value, and eight cumulative value-derived features

corresponding to prior measurements of the same variable

earlier in the ICU stay (mean, median, count, minimum,

maximum, standard deviation, first value, elapsed time since

most recent measurement). For bedside assessment scores

with multiple sub-components, we treated each sub-

component as a distinct measurement. Invasive and

noninvasive measurements were treated as distinct tokens. We

excluded ICU stays with sequence lengths longer than 12,000

tokens, and the resulting mean sequence length in our cohorts

was 1,996.

Data processing: Categorical features present in the pre-

ICU static data were converted to one-hot vectors and

concatenated with the remaining numerical features. Missing

static features were imputed with training cohort medians, but

no such imputation was required for the tokenized temporal

ICU data. Binary indicator masks were computed and
Frontiers in Digital Health 05
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concatenated with static features to capture patterns of

missingness.

Static features were standardized to zero mean and unit

variance based on values from the training set. For each

variable name in the temporal ICU data, corresponding

continuous measurement value features were individually

standardized in the same manner. ICU measurement

timestamps were converted to number of elapsed hours from

ICU admission, and were similarly standardized based on

training cohort values.

ICU measurement names were converted to unique

integer identifiers in a similar manner to standard

tokenization mapping procedures in NLP applications. Each

temporal clinical event was also associated with an integer

position index. While similar to the positional formulations

in NLP applications, we introduce one key distinction that

is more suitable for Transformers based on EHR data: we

do not enforce the restriction that positional indices are

unique, and if two clinical events occurred at the same EHR

timestamp, they are associated with the same sequential

position index.

Each temporal measurement token consisted of integer

positional identifier, integer variable identifier, continuous

elapsed time from ICU admission, and eight continuous

features extracted from current and prior measurement values.

Following data extraction and processing, each ICU stay was

associated with two sets of data: (1) a single vector xs [ R718�1

of 718 static pre-ICU features, and (2) a matrix of T temporal

ICU measurements xt [ RT�12 including token position and

identifier. Across our entire population, the temporal ICU

measurements included 19 unique vital signs, 106 unique

laboratory tests, 345 unique medication administrations, and

29 bedside assessment score components; however, each ICU

stay only included a subset of such total variables, and its

corresponding temporal sequence only included what was

measured during the corresponding ICU stay. One of the

benefits of our proposed EHR embedding framework is the

lack of resampling, propagation, imputation, or other such

temporal preprocessing typically performed in related

sequential modeling tasks.
2.3. Clinical outcomes

For each ICU stay, we sought to predict six clinical

outcomes related to patient illness severity: ICU readmission

within the same hospital encounter, inpatient mortality, 7-day

mortality, 30-day mortality, 90-day mortality, and 1-year

mortality. Our model is formulated as a multi-task design,

and simultaneously estimates risk for all six clinical prediction

targets.
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2.4. Model architecture

The primary driver behind our ICU patient acuity

estimation model is the transformer encoder (11). Our

modified model utilizes the global and sliding window

mechanism introduced by the Longformer (18) along with

special classification tokens from BERT (12). Figure 1 shows

a high-level overview of our Transformer architecture. Our

longitudinal tokenization pipeline and Transformer modeling

architecture code will be available upon request for interested

researchers.

Novel embedding: In typical Transformer implementations,

one-dimensional input sequences consist of integer-identified

tokens (such as textual tokens or discrete clinical concepts)

that are embedded using a lookup table, after which a

positional encoding vector is added to inject local temporality.

For existing applications of Transformers with EHR data, the

values of a given measurement are not factored into its

representation.
FIGURE 1

Overview of our proposed generalized EHR Longformer network for simul
information includes summarized history of patient medications and labo
hospital admission. Temporal ICU measurements take the flexible form o
timestamp; t, elapsed time from ICU admission, f, unique measurement ide
values). Task-specific [CLS] tokens are assigned t = time of prediction and ~

of Longformer layers with sliding self-attention windows. Global attention
concatenation of each layer’s [CLS] representations are used for a given
feedforward network and nonlinear activations. FC: fully-connected layers.
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Our embedding scheme introduces three novelties that offer

improvements for clinical prediction tasks. First, positional

indices are derived from EHR record times and are not

unique (see Section 2.2), allowing for multiple tokens to share

the same positional index and resulting positional encoding.

Rather than enforce an arbitrary sequence order or implement

a random shuffling procedure for simultaneous tokenized

events, this modification is more flexible with respect to

clinical workflows.

Second, in addition to novel framing of relative and local

temporal relationships through positional encoding

modifications, each clinical event token also explicitly includes

absolute temporality in the form of a feature indicating the

elapsed hours from ICU admission. We hypothesized that the

injection of both relative and absolute temporality would

allow the Transformer to better model patient trajectories.

Finally, each clinical event in our tokenized input sequences

consists of several continuous measurement values in addition

to the discrete token identifiers (see Section 2.2). To our
taneously predicting multiple patient outcomes in the ICU. Pre-ICU
ratory tests, sociodemographic indicators, and features relating to
f tuples: (p, non-unique positional index of clinical event based on
ntifier integer; ~v, set of continuous features derived from measured
v ¼ 0. Tokens are individually embedded and passed through a stack
is applied to static feature representation and prediction tokens. The
task to predict the desired mortality risk. Not shown: Transformer
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knowledge, no other work integrates both discrete and

continuous data in this manner, with the majority of recent

research opting for discrete medical codes only (Section 4.2).

We augment discrete variable tokens with continuous

measurement values into our embedding to better capture

recovery or worsening trends as a patient progresses through

an ICU stay.

Our embedding module consists of (1) a traditional lookup

table used for measurement name identifier, (2) a sinusoidal

positional embedding table, and (3) a single fully-connected

layer for embedding absolute time and value-derived features.

The final sequence embedding is the summation of three

embedded vectors: (1) the embedding of absolute time with

corresponding cumulative values, (2) the measurement token

identifier embedding, and (3) a traditional sinusoidal

positional encoding. In our implementation, the sinusoidal

positional encoding is based on the position of unique

measurement times in the input sequence: for an example

sequence of measurement hours [0:1, 0:2, 0:2, 0:3, 0:3], the

positional indices are computed as [0, 1, 1, 2, 2].

Novel multi-task global tokens: In the original BERT

implementation, a single special [CLS] token is prepended to

input sequences that is meant to capture a global

representation of the entire sequence. We extend this notion

by prepending each sequence with 6 such special tokens: one

for each of our clinical outcomes. As each token in our data

scheme consists of a (time, name, values) 12-tuple, we set

time of each [CLS] token equal to the total ICU length of stay

and all values equal to zero. The special token identifiers are

embedded in a similar fashion to other ICU measurement

tokens. In our experiments, we include an additional

prediction target for long-term hospital readmission that is

used for regularization, but not included in our patient acuity

estimation. In the Longformer implementation in our

encoder, we set each of the multi-task tokens to compute

global attention, so that self-attentions are computed among

all sequence elements for each clinical outcome token.

Novel inclusion of static patient data: In many sequential

models for clinical prediction, a final encounter representation

is obtained by concatenating the pre-sequence static patient

representation with the sequential representation. In our

work, we prepend each ICU sequence with the representation

obtained from passing the static patient information vector

through a fully-connected network. We assign this static

token as global, so that every time step computes attention

with the static data. We hypothesized that this more fine-

grained injection of patient information at every time step

would improve the capacity of our model to learn important

and more personalized patient trajectory patterns.

Model details: Our final model consisted of an embedding

layer, followed by 8 Longformer layers, and a separate linear

prediction layer for each of our 6 clinical outcomes. For

making a task-specific prediction, the task-specific linear layer
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uses the concatenation of representations corresponding to its

special [CLS] token at each of the 8 layers. In our initial

Longformer implementation, we used a hidden size of 128, a

feedforward size of 512, 8 attention heads, a sliding window

of size 128, dropout of 0.1, and a batch size of 21.

Hyperparameters were chosen with respect to hardware

constraints; hyperparameter optimization will be a focus of

future work.

Experiment details: Models were trained using a

development set of 60,516 ICU stays corresponding to 80% of

our total ICU cohort. 10% of this development set was used

for early stopping based on the mean AUROC among all six

clinical outcomes and a patience of four epochs. All

experiments were conducted on a local Linux server equipped

with two i7-7820X 3.6 GHz CPUs, 3 NVIDIA GeForce RTX

2080Ti GPUs, 512GB SSD storage, and 128GB RAM. Models

were designed and run using the PyTorch and Hugging Face

Python libraries.

In this feasibility study, we compared performance against

six other ICU prediction models:

• Longformer using tokenized data sequences with only

discrete code identifiers. In this variant of our proposed

framework, we do not include the continuous

measurement values in the representation of each event

token.

• Recurrent neural network (RNN) with gated recurrent units

(GRU) using continuous multivariate time series inputs. In

this experiment, the flexibility of our tokenization scheme

is removed, and more traditional “tabularized” input data

sequences were constructed where each variable is assigned

a distinct column. Sequences were constructed with

continuous current values and resampled to 1-hour

frequency to align with common practice found in

literature. Multi-task predictions were drawn from the final

hidden state of the GRU encoder. Static patient

information was concatenated with the sequence

representation and fed through fully-connected layers

before classification.

• GRU with attention mechanism. This variant is identical to

the above, but with the addition of a simple attention

mechanism over the hidden states of the GRU. States are

weighted by alignment scores and summed to yield a final

attention-based sequential representation.

• Tokenized GRU with attention. In this final experimental

setting, we used the same novel EHR embedding and

tokenization approach as with our Transformer model

architecture (see Section 2.2), but instead use a GRU with

attention mechanism in place of the Transformer model.

• CatBoost (20) gradient boosting algorithm. The algorithm

employs gradient boosting on decision trees for both

regression and classification tasks. Gradient boosting

algorithms have shown benefits over random forests and
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require comparatively less hyperparameter tuning for

optimal performance. For this experiment, the embedding

layers are removed and the CatBoost model is trained on

samples containing both the pre-ICU information and

concatenated ICU measurements.

• XGBoost (21) gradient boosting algorithm. This experiment

and associated data processing is identical to CatBoost,

except an XGBoost model is used for prediction.
3. Results

At present time, the primary aim of our novel mortality

prediction model is not to show state-of-the-art improvements

in model accuracy; rather, we present this work as a feasibility

study for future research. We believe our novel modifications

of existing Transformer architectures for use in clinical EHR

applications will result in highly flexible and more

personalized patient representations and predictions across a

variety of clinical tasks.

In this first iteration of our experiments, we did not perform

any hyperparameter optimization, instead choosing sensible

settings that both highlight the novel aspects of the

architecture and work with our hardware constraints. In

passing, we note that often parameter tuning is an essential

component of enhancing performance, and future iterations

of this work will focus on optimizing crucial parameters such

as learning rate, dropout, number of self-attention heads,

number of self-attention layers, hidden dimension, and size of

the sliding self-attention window.

Our results are shown in Table 3. Our Transformer

architecture with novel EHR embedding and tokenization

scheme yielded slightly superior mean AUROC (0.929) across

all six clinical prediction tasks, with individual task AUROC

ranging from 0.843 (ICU readmission) to 0.983 (7-day

mortality). The Transformer using tokenized embeddings that

omit continuous measurement values resulted in the lowest

mean AUROC (0.773) and worst performance across most of

the clinical outcomes, ranging from 0.512 (ICU readmission)
TABLE 3 Multi-task prediction results expressed as area under the receiver

Model Data Mean

Transformer Tokenized events (discrete only) 0.773

Transformer Tokenized events + continuous measurement values 0.929

GRU Resampled multivariate time series 0.900

GRU with attention Resampled multivariate time series 0.909

GRU with attention Tokenized events + continuous measurement values 0.927

CatBoost Tokenized events + continuous measurement values 0.863

XGBoost Tokenized events + continuous measurement values 0.836
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to 0.900 (7-day mortality). It outperformed the XGBoost

model for inpatient and 7-day mortality.

In terms of GRU baseline models, the traditional model and

data processing scheme resulted in the lowest baseline accuracy,

with mean AUROC of 0.900 and task AUROC ranging from

0.750 (ICU readmission) to 0.972 (7-day mortality). The

augmentation of this model and data scheme with traditional

attention mechanism improved the performance to a mean

AUROC of 0.909.

The best GRU baseline model used our novel EHR

embedding, tokenization, and representation pipeline. This

model yielded a mean AUROC of 0.927 with individual task

AUROC ranging from 0.831 to 0.982. It performed best for

predicting 30-day mortality and 90-day mortality, although

the relative difference compared with the transformer is

minimal. For the gradient boosting algorithms, CatBoost

outperformed XGBoost across all outcomes (mean AUROC:

0.863 vs. 0.836) except for predicting ICU readmission

(AUROC: 0.759 vs. 0.762). The CatBoost model performed

similarly to the baseline GRU model for all other outcomes.

The tree-based models were predominantly outperformed by

GRU models with attention.

Across all models and data representation schema, ICU

readmission proved the most difficult task. Among the

multiple prediction horizons for patient mortality, models

were best able to predict 7-day mortality, followed by

inpatient mortality, 30-day mortality, 90-day mortality, and 1-

year mortality.
4. Discussion

4.1. Principal findings

This work presents a novel ICU acuity estimation model

inspired by recent breakthroughs in Transformer

architectures. Our proposed model framework incorporates

several novel modifications to the existing Transformer

architecture that make it more suitable for processing EHR
operating characteristic curve (AUROC).

Readmission Mortality

ICU Inpatient 7-
Day

30-
Day

90-
Day

1-
Year

0.512 0.889 0.900 0.831 0.777 0.727

0.843 0.978 0.983 0.953 0.923 0.892

0.750 0.960 0.972 0.938 0.907 0.872

0.770 0.965 0.975 0.946 0.914 0.882

0.831 0.977 0.982 0.954 0.925 0.891

0.759 0.901 0.915 0.890 0.868 0.847

0.762 0.867 0.878 0.859 0.833 0.817

frontiersin.org

https://doi.org/10.3389/fdgth.2022.1029191
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Shickel et al. 10.3389/fdgth.2022.1029191
data of varying modalities. Through initial feasibility

experiments, our model was on par with, or outperformed,

common variants of RNN baselines, and we feel our approach

holds promise for incorporating additional EHR-related

outcome prediction tasks and additional sources of EHR input

data.

One of the advantages of our work is that input elements are

treated as distinct. For example, if heart rate, respiratory rate,

and SPO2 were recorded at the same timestamp in an EHR

system, our framework operates on these individual elements,

rather than combining them into a single aggregated time step

as in similar RNN or CNN-based work. From an

interpretability standpoint, combined with the inherent self-

attention mechanisms of the Transformer, isolation of inputs

allows for improved clarity with respect to important or

contributing clinical factors. While one area of recent

sequential interpretability research involves multivariate

attribution for aggregated time steps (5, 22), Transformer-

based approaches such as ours obfuscate the need for

multivariate attribution, as attentional alignment scores are

assigned to individual measurements. This property highlights

the potential for EHR Transformers to shed increased

transparency and understanding for clinical prediction tasks

built upon complex human physiology.

Furthermore, while many sequential applications of deep

learning to EHR (including recent implementations of

Transformer techniques) make use only of discrete clinical

concepts, our proposed framework extends the

representational capacity by integrating continuous

measurement values alongside these discrete codes and events.

The inclusion of continuous measurement values represents

an important step forward, as the measured result of a clinical

test or assessment can provide crucial information alongside a

simple presence indicator that can help complex models

develop a better understanding of patient state and overall

health trajectory.

Given the flexible nature of our Transformer framework,

each patient input sequence only contains the measurements

that were made during the ICU encounter. The advantages

for EHR applications are twofold. First, in traditional RNN or

CNN-based work, the distance between time steps is assumed

to be fixed, and this is typically achieved by resampling input

sequences to a fixed frequency by aggregating measurements

within resampled windows, and propagating or imputing

values into windows without present values. Such a scheme

has the potential for introducing bias, and when using our

novel EHR embedding paradigm and Transformer-based

modeling approach, the problem of missing values is made

redundant given the explicit integration of both absolute and

relative temporality for each irregularly measured clinical

event. Additionally, in typical deep sequential applications

using EHR data, the number of input features at each time

step must be constant. This is achieved by an a priori
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identification and extraction of a subset of clinical descriptors

thought to be relevant indicators for a given prediction task.

As we have shown, when using a Transformer-based

approach with our flexible tokenization scheme, any and all

EHR measurements can be easily incorporated into the

prediction framework, even when some types do not exist for

a given patient or ICU encounter, and do not necessitate bias-

prone imputation techniques.

While the Transformer offers several benefits over existing

sequential deep learning models such as the RNN, it is not

without drawbacks. Because the self-attention mechanism is

highly parallelizable and does not require step-wise iterative

processing of a sequence (unlike the RNN), there is a tradeoff

between faster computation and a much larger memory

footprint (complexity O(n2) without scope modifications). As

such, Transformers may be infeasible to implement in

training environments with limited computational resources.

In our approach, we introduced a novel method for

incorporating static, pre-sequential patient information and

patient history into the overall prediction model. Typically,

such static information is concatenated with a final sequential

representation before making a prediction. We instead include

static information as a distinct token in the input sequence,

and assign global attention using the Longformer self-

attention patterns. In effect, static patient-level information is

injected into the self-attention representation of every ICU

measurement, allowing more fine-grained and personalized

incorporation of changes in overall patient health trajectories.

Another novel contribution we feel can be applied to even

non-EHR tasks is the expansion of the special BERT

classification token into a separate token per classification

target in a multi-task prediction setting. Given the global self-

attention patterns between all task tokens and every sequential

input element, such a scheme allows the model to develop

task-specific data representations that can additionally learn

from each other.

As with other retrospective machine learning models for

predicting patient outcomes from longitudinal data, our

transformer framework offers the potential for augmenting

clinical decision-making with dynamic data-driven risk

estimations that can be used to help forecast patient trajectory

and guide treatment and care strategies. Intended not to

mandate particular course of action, tools such as ours can

complement existing standards of care and provide clinicians

with additional support.
4.2. Related work

4.2.1. Transformer models
First introduced by Vaswani et al. (11) for machine

translation tasks, the Transformer is a deep learning

architecture built upon layers of self-attention mechanisms.
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The Transformer views attention as a function of keys K,

queries Q, and values V. In the work of Vaswani et al. (11),

all three elements came from the same input sequence, and is

why their style of attention is referred to as self-attention. In

a similar manner to previously described works, compatibility

between a key and query is used to weight the value, and in

the case of self-attention, each element of an input sequence

is represented as a contextual sum of the alignment between

itself and every other element. Similar to the memory

networks of Sukhbaatar and Szlam (23), the Transformer also

involves the addition of a positional encoding vector to

preserve relative order information between input tokens.

An end-to-end Transformer architecture typically includes

both an encoder and decoder component. While critical for

many NLP tasks such as machine translation, our architecture

utilizes only the Transformer encoder, which encodes input

sequences into hidden representations that are subsequently

used for predicting patient mortality.

A comprehensive overview of the Transformer and BERT is

beyond the scope of this section; we refer interested readers to

Vaswani et al. (11) and Devlin et al. (12), respectively.

Briefly, the first stage of a Transformer encoder typically

includes an embedding component, where each input sequence

element is converted to a hidden representation that is fed into

the remainder of the model. In its original NLP-centered

design where inputs are sequences of textual tokens, a

traditional embedding lookup table is employed to convert

such tokens into continuous representations. Unlike similar

sequential models like RNNs or CNNs, the Transformer is

fundamentally temporally agnostic and processes all tokens

simultaneously rather than sequentially. As such, the

Transformer embedding module must inject some notion of

temporality into its element embeddings. In typical

Transformer implementations, this takes the form of a

positional encoding vector, where the position of each element

is embedded by sinusoidal lookup tables, which is subsequently

added to the token embeddings. The primary aim of such

positional embeddings is to allow the model to understand

local temporality between nearby sequence elements.

At each layer of a Transformer encoder, a representation of

every input sequence element is formed by summing self-

attention compatibility scores between the element and every

other element in the sequence. Typical with other deep

learning architectures, as more layers are added to the

encoder, the representations become more abstract.

The recent NLP method BERT (12) is based on

Transformers, and at present time represent state of the art in

a variety of natural language processing tasks. In addition to

its novel pretraining scheme, BERT also prepends input

sequences with a special [CLS] token before a sequence is

passed through the model. The goal of this special token is to

capture the combined representation of the entire sequence,

and for classification tasks is used for making predictions.
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Transformers are also being used in computer vision as well,

with great success. For example, videos especially benefit from

Transformers which can learn the temporal and spatial

features of vision data. They have shown to before the same

or better for vision tasks, while also reducing vision-specific

induction bias Han et al. (24). For video data, they can be

used for trajectory tracking of objects like balls Patrick et al.

(25) using attention on objects in images, as well as

approximate self attention to reduce quadratic dependency.

While the Transformer is in one sense more efficient than

its sequential counterparts due to its ability to parallelize

computations at each layer, one of the main drawbacks is its

required memory consumption. Since each input element of a

sequence of length n must be compared with every other

input element in the sequence, typical Transformer

implementations require memory on the order of O(n2).

While acceptable for relatively short sequences, the memory

consumption quickly becomes problematic for very long

sequences. Decreasing the memory requirement of

Transformers is an area of ongoing research.

One potential solution was proposed by Beltagy et al. (18) in

their Longformer architecture. Rather than computing full n2

self-attentions, they propose a sliding self-attention window of

specified width, where each input sequence element is

compared only with neighboring sequence elements within

the window. They extend this to include user-specified global

attention patterns (such as on the special [CLS] tokens for

classification) that are always compared with every element in

the sequence. Through several NLP experiments, they

demonstrate the promising ability of the Longformer to

approximate results from a full Transformer model.

4.2.2. Transformers in healthcare
Given the similarity between textual sequences and

temporal patient data contained in longitudinal EHR records,

several works have begun exploring the efficacy of

Transformers and modifications of BERT for clinical

applications using electronic health records. In terms of

patient data modalities, existing implementations of

Transformers in a clinical setting tend to fall under three

primary categories:

Perhaps the most aligned with the original BERT

implementation, several studies adapt and modify BERT for

constructing language models from unstructured text

contained in clinical notes. The ClinicalBERT framework of

Huang et al. (26) used a BERT model for learning continuous

representations of clinical notes for predicting 30-day hospital

readmission. Zhang et al. (27) pretrained a BERT model on

clinical notes to characterize inherent bias and fairness in

clinical language models.

Song et al. (17)’s SAnD architecture developed Transformer

models for several clinical prediction tasks using continuous

multivariate clinical time series.
frontiersin.org

https://doi.org/10.3389/fdgth.2022.1029191
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Shickel et al. 10.3389/fdgth.2022.1029191
The majority of existing EHR Transformer research has

focused on temporal sequences of discrete EHR billing codes.

Li et al. (16)’s BEHRT framework modified the BERT

paradigm for predicting future disease from diagnosis codes.

Med-BERT (15) demonstrated the performance advantages of

a contextualized clinical pretraining scheme in conjunction

with a BERT modification. RAPT (28) used a modified

Transformer pretraining scheme to overcome several

challenges with sparse EHR data. SETOR (29) utilized neural

ordinary differential equations with medical ontologies to

construct a Transformer model for predicting future

diagnoses. RareBERT (30) extends Med-BERT for diagnosis of

rare diseases. Meng et al. (31) used Transformers for

predicting depression from EHR. Hi-BEHRT (16) extends

BEHRT using a hierarchical design to expand the receptive

field to capture longer patient sequences. Choi et al. (32) and

Shang et al. (33)’s G-BERT architecture capitalize on the

inherent ontological EHR structure.

In contrast to the isolated data modalities implemented in

existing EHR Transformers, the novel embedding scheme

utilized in our models combines both discrete and continuous

patient data to generate a comprehensive representation of

distinct clinical events and measurements.
4.5. Limitations

This feasibility study has several limitations and is intended

as a methodological guiding framework for future multimodal

and multi-task EHR Transformer research. Our retrospective

dataset is limited to patients from a single-center cohort.

Future work will evaluate performance in external validation

cohorts such as MIMIC-IV (34). We also present results with

parameters that maximize our limited hardware capacity;

future work will focus on several hyperparameter tuning and

model selection procedures. The baseline models we present

for comparison are drawn from simplified implementations

found in clinical deep learning research, and more recent

approaches may offer enhanced predictive performance. From

the results in Table 3, one might conclude that our EHR

embedding procedure had a larger impact than use of the

Transformer architecture, given the competitive AUROC of

the attentional GRU baseline when implementing our

tokenization pipeline for estimating risk of patient mortality.

Future work will focus on disentangling the relative impacts

of both model and data representation designs.
4.6. Conclusions and next steps

We feel there is still great potential for exploring additional

benefits of our approach with diverse EHR data for a variety of

clinical modeling and prediction tasks, especially in the realm of
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clinical interpretability. Given our promising pilot study results,

future versions of this work will perform hyperparameter

optimization with a focus on maximizing predictive accuracy.

Additionally, since transformers are fundamentally composed

of attention mechanisms, they can be analyzed with respect to

particular outcomes, time points, or variables of interest to

highlight important contributing factors to overall risk

estimation. Future research will emphasize analyzing self-

attention distributions between input variables and clinical

outcomes to further the clinical explainability and enhance

the clinical trust of Transformers in healthcare. We believe

there is great potential for multimodal patient monitoring

using flexible EHR frameworks such as ours. Future research

will also focus on augmenting our multi-modal datasets with

additional clinical data modalities such as clinical text and

images, and pre-training our Transformer architectures with

self-supervised prediction schemes across a variety of input

data and clinical outcomes.
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The decision on when it is appropriate to stop antimicrobial treatment in an
individual patient is complex and under-researched. Ceasing too early can
drive treatment failure, while excessive treatment risks adverse events. Under-
and over-treatment can promote the development of antimicrobial resistance
(AMR). We extracted routinely collected electronic health record data from the
MIMIC-IV database for 18,988 patients (22,845 unique stays) who received
intravenous antibiotic treatment during an intensive care unit (ICU) admission.
A model was developed that utilises a recurrent neural network autoencoder
and a synthetic control-based approach to estimate patients’ ICU length of
stay (LOS) and mortality outcomes for any given day, under the alternative
scenarios of if they were to stop vs. continue antibiotic treatment. Control
days where our model should reproduce labels demonstrated minimal
difference for both stopping and continuing scenarios indicating estimations
are reliable (LOS results of 0.24 and 0.42 days mean delta, 1.93 and 3.76 root
mean squared error, respectively). Meanwhile, impact days where we assess
the potential effect of the unobserved scenario showed that stopping
antibiotic therapy earlier had a statistically significant shorter LOS (mean
reduction 2.71 days, p-value <0.01). No impact on mortality was observed. In
summary, we have developed a model to reliably estimate patient outcomes
under the contrasting scenarios of stopping or continuing antibiotic treatment.
Retrospective results are in line with previous clinical studies that demonstrate
shorter antibiotic treatment durations are often non-inferior. With additional
development into a clinical decision support system, this could be used to
support individualised antimicrobial cessation decision-making, reduce the
excessive use of antibiotics, and address the problem of AMR.

KEYWORDS

antimicrobial resistance, artificial intelligence, clinical decision support systems,

decision-making, individualised antimicrobial prescribing, precision prescribing,

antibiotic cessation, outcome estimation
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Introduction

Bacterial antimicrobial resistance (AMR) is a global threat

(1, 2), which resulted in an estimated 1.27 million deaths in

2019 (3). One key strategy to tackle AMR is to optimise

antimicrobial use and prolong current antimicrobials’

therapeutic life. Clinical decision support systems (CDSSs) are

software designed to provide information to healthcare

professionals, patients, or other individuals in order to make

informed clinical decisions. With the advent of artificial

intelligence (AI) and the ever increasing prevalence of

electronic health records (EHRs), numerous CDSSs utilising

machine learning (ML) trained on historical patient data have

been developed to assist with managing infections (4). Recent

research has focused on the diagnoses of bacterial infections

(5–7), resistance prediction (8), and antimicrobial therapy

selection (9, 10).

One challenge when treating a patient who has a bacterial

infection is determining when it is appropriate to stop

antibiotic treatment (11). The decision to cease antibiotics too

early can result in the patient’s condition worsening, while

unnecessary exposure increases the risk of toxicity (12) and

drives the evolution of AMR (13). Even over-treating for a

short duration can have a significant impact on a population

level and enhances the development of resistance (14).

Furthermore, excessive treatment is responsible for most

avoidable antibiotic adverse events including gastrointestinal

distress and allergic reactions (15, 16). Numerous studies have

shown that on a population level, shorter treatment durations

are often non-inferior to longer ones (17–21). The challenge

is that the resulting recommendations do not take into

account the individual patient’s characteristics or specific

scenarios. It is difficult for clinicians to have confidence in

individualised treatment decisions for their patient, when

there is a poor understanding of the factors that facilitate or

inhibit an individual from receiving a short duration of

antibiotic therapy. Therefore, durations are often unnecessarily

extended (22) and decided by habit or arbitrarily based on

population evidence. Antibiotic cessation should be a

collective, data-driven decision, given choices are made in a

more favourable environment once time has passed from

presentation and significant amounts of information have

been gathered. Despite this, systems to help support

individualised antibiotic duration and cessation decision-

making are often neglected and under-researched with little

innovation in this area (23, 24).

Given the current standard of care uses clinical factors to

determine if a patient should stop antibiotics or not, we

hypothesise that an AI-based CDSS using routinely collected

EHR data may be able to support individualised antibiotic

cessation decision making and overcome prescriber concerns

of poor patient outcomes that is likely a major driver of over
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treatment (25, 26). We approach this problem by estimating

clinical outcomes under alternative scenarios with the aim of

showing non-inferiority or a direct benefit of antibiotic

cessation. More specifically, a machine learning and synthetic

control-based approach was developed to estimate patients’

LOS and mortality outcomes for any given day, if they were

to stop vs. continue antibiotic treatment. Figure 1 shows a

graphical abstract of the approach and methodology employed

in this retrospective research study.
Methods

Dataset

MIMIC-IV is a large de-identified real-world clinical

dataset that is publicly available for clinical research (27, 28).

It contains EHR information for over 40,000 patients

admitted to the Beth Israel Deaconess Medical Center

(BIDMC) in Boston, MA, Unites States, between 2008 and

2019. The patient population was filtered to those who

received intravenous antibiotic treatment for a duration

between 1 and 21 days during an ICU stay. Input features

were extracted, analysed, and selected based on prevalence,

correlation, as well as infectious disease doctors and critical

care consultants advice. Length of stay (LOS) (continuous

value) and mortality (binary) labels were extracted for each

patient stay; however, it should be noted that these are not

temporally dynamic. An overview of statistics for each dataset

is shown in Table 1

Some features were calculated based on other variables.

Cumulative overall antibiotic treatment length was determined

for each day of each ICU stay that considered consecutive

treatment days irrespective of the antibiotic given. In addition,

whether the patient had received re-treatment for antibiotics

or not and their age at the time of ICU admission were also

computed. Standard pre-processing was applied to features

including outliers being removed and values normalised, as

well as missing values forward filled or highlighted. Features

were aggregated by day for each unique stay to create a

regular temporal dataset. In general, there was a high degree

of missingness, and so patients with greater than 50% of

values missing each day were removed. The resulting dataset

contained 43 input features (supplementary Table S1)

including lab test results, clinical parameters, ventilation

settings, and demographics.
Model architecture

The objective of our model is to estimate the patients’ LOS

and mortality outcomes for any given day, if they were to stop
frontiersin.org
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FIGURE 1

Overview of the steps taken in this research study to develop a model for antimicrobial cessation synthetic outcome estimation.
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vs. continue antibiotic treatment. It uses a bi-directional long

short-term memory (LSTM) autoencoder, which takes in a

sequence of patient input features (xh1i, xh2i . . . xhTi), creates
an embedding representation, and outputs a sequence of

reconstructed features (~xhTi . . . ~xh2i, ~xh1i). This autoencoder is

trained through two loss functions (29), which are summed

together to create a combined loss for backpropagation. First,

the reconstruction loss Lr is calculated by the root mean

squared error (RMSE) between outputs that are trying to

reproduce the inputs and the real input data. Second, a
Frontiers in Digital Health 03
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supervised learning loss Ls is calculated by doing a linear

transformation of the embedding representation (~Y) to try

and predict the real label (Y) and taking either the RMSE loss

for the LOS outcome or the binary cross-entropy loss for

mortality classification. Ls ensures that the embedding space

created by the autoencoder is a good linear predictor of the

outcome of interest, which is important for the subsequent

adapted synthetic control method. Overall, an embedding

representation is created that considers a patient’s past and is

representative of their state on that day.
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TABLE 1 Datasets statistics.

Dataset

Statistic Overall Train Validation Test Pneumonia UTI

Number of stays 22,845 15,991 3,427 3,427 2,473 923

Mortality rate 18.60 18.47 18.30 19.52 24.02 18.96

Mean LOS 5.63 5.62 5.74 5.55 9.05 5.50

LOS standard deviation 4.23 4.24 4.31 4.15 5.19 4.32

Mean length of treatment 4.38 4.38 4.48 4.30 6.95 4.77

Length of treatment standard deviation 3.32 3.32 3.48 3.18 4.28 3.55

Spearman’s correlation between LOS and treatment length 0.72 0.72 0.72 0.73 0.73 0.74

Percentage of patients that stopped treatment during their ICU stay 41.56 41.64 41.17 41.55 31.95 26.54

LOS, length of stay; ICU, intensive care unit; UTI, urinary tract infection.

Bolton et al. 10.3389/fdgth.2022.997219
Once the antoencoder is trained and an embedding

representation for each antibiotic day in all patient stays have

been created, an adapted synthetic control approach (30) is

utilised, where the act of stopping or continuing treatment on

a particular day is considered an intervention and each

patient acts as a singular unit. This method is useful when

evaluating an intervention using randomised controlled trials

is challenging, as is the case with antibiotic cessation, and

hence retrospective observational data are assessed. Synthetic

controls have frequently been applied to understand public

health interventions (31, 32), but their use within digital

health research is limited. In this study, we want to know

what are the predicted outcomes if a given patient was to stop

vs. continue antibiotics on a given day within their ICU stay.

To this extent, two synthetic controls are created, one can be

labelled the “stop synthetic control,” which is based on

subjects who stopped antibiotics on that particular day, and

the second labelled the “continue synthetic control,” which is

created from subjects who continue antibiotic treatment on

that particular day. To achieve this for each day (t), two

separate donor pools are created based on subjects associated

embedding representation and antibiotic treatment status. In

other words, those who continue antibiotics on day t are

partitioned into the “continue” embedding space while those

who stop antibiotics are placed in the “stop” embedding

space. In this way, the estimated outcomes for stopping and

continuing on day t are driven by representative donors who

experienced analogous treatment. To create the stop and

continue synthetic controls for a particular patient i, the k

most closely related to embedding representations from each

relevant donor pool are selected based on a distance metric

(in this study k ¼ 10 and Euclidean distance were used for

both stop and continue estimations). Given that

embeddings are representative of the patients’ state, those

selected donors will be similar, giving a considered

insight into potential alternative outcomes under

antibiotic temporality. A ridge regression function
Frontiers in Digital Health 04
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for continue estimations, where d are the

embedding dimensions, j are the donors, and z represents the

particular patient i0s embedding for a given dimension and

time) is then applied to the subject and their respective stop

and continue donor embeddings. This returns two sets of

weights (wS,t
i,j for “stop” and wC,t

i,j for “continue”) that

minimise the square difference between the subject of interest

and the selected units in the donor pools (YS,t
i,j for “stop” and

YC,t
i,j for “continue”). The objective of this L2 regularisation is

to fairly distribute weights across the donors for stop and

continue estimations. Finally, the stop and continue synthetic

control outcomes (~Y
S,t
i and ~Y

C,t
i , respectively) for the

particular patient i are computed from the weighted average

of donor labels. To this extent during outcome estimation for

a given patient i, we assume that we know the outcomes for

all other patients within the dataset. Overall outcomes are

estimated for each patient on each relevant antibiotic day of

their stay if they were to stop vs. continue antibiotic

treatment. An overview of the model’s architecture and this

process for stop and continue outcome estimation is shown in

Figure 2.
Model development and software

The model was applied on the MIMIC-IV EHR dataset,

which was randomly split based on patients’ “stay_id” into

training, validation, and testing sets (70%, 15%, and 15%,

respectively). PyTorch (33) was used to create a bi-directional

LSTM recurrent neural network (RNN) with a custom dataset

class to extract labels and features. In order to address the

mortality class imbalance (Table 1), over-sampling was used

during training. To be specific, those cases with positive

mortality were replicated three times within the custom

dataset class to achieve a more balanced mortality rate of
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FIGURE 2

Model illustration. (A) The encoder is trained using both a supervised loss (Ls) and reconstruction loss (Lr) (3). (B) To estimate outcomes during testing,
an embedding is created for every day of each patient’s stay; embedding spaces are partitioned temporally and based on if the patient stopped or
continued antibiotics. The closest k neighbours are selected as donors from each embedding space and L2 regression returns weights that minimise
the square difference between the patient and the donors. A stop and continue synthetic control outcome is estimated as a weighted average of the
donors’ outcomes.
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51.90% within the train dataset. The Adam optimiser (34) was

used with binary cross-entropy loss for classification, mean

squared error loss for regression, and Ray Tune for

hyperparameter optimisation (35). Training utilised 50

epochs, during which the model with the best performance on

the validation dataset (RMSE or area under the receiver

operating characteristic curve for LOS and mortality

prediction, respectively) was selected as the final model. Two

separate LSTM autoencoder models were trained on the

whole training dataset to create embedding representations

relevant to patients’ LOS and mortality outcomes. Models

were evaluated using functions and metrics from the

TorchMetrics, Scikit-learn, and SciPy libraries. Further details

of the two models’ hyperparameters and their optimisation

are shown in the supplementary material (supplementary

Figure S1 and Table S2).
Model evaluation and metrics

Commonly with the synthetic control method, the delta

difference between the single unit and the counterfactual in

the pre-intervention period is minimised and the treatment

effect is then observed in the post-intervention period. For

our research question, this is not possible due to the nature of

stopping antibiotics being the final event at one point in time,

after which the patient is not applicable to our research

population or question. An analogue can be applied for this

study where we define “control” and “impact” days that are

equivalent to the pre- and post- intervention periods. For

estimating outcomes when continuing antibiotics, all the days

the patient actually continues antibiotics are “control” days

where we expect minimal difference between the true and

estimated outcomes. On the other hand, on the single day the

patient stops antibiotics, we can assess the “impact” if they

were to instead continue. When estimating outcomes upon

stopping antibiotics, the reverse is true, whereby each day

antibiotics were continued the “impact” of stopping can be
Frontiers in Digital Health 05
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assessed and the final day where the patient stops treatment

acts as a “control.” Note that it is not possible to define this

for every patient, given not every individual will stop

antibiotics during their ICU stay. The percentage of patients

who stopped antibiotic treatment during their ICU stay is

shown in Table 1. Outcomes are estimated in the same way

for impact and control days as discussed in the “Model

architecture” subsection. However, for control days, we know

the real outcome and so can compare our estimations, while

for impact days, the real outcome is unknown. Each day,

therefore, acts as both a “control” and “impact” across the

two “stop” and “continue” scenario outcome estimations. An

outline of this is shown in Figure 3 and the number of

continue and stop donors for each day in the test dataset is

illustrated in supplementary Figure S2.

For outcome estimation, the mean delta is calculated to

evaluate the difference between the real labels and the

estimations, through the following formula:

mDS ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 [Y
S,t
i � ~Y

S,t
i ]] for stop

estimations and mDC ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 [Y
C,t
i � ~Y

C,t
i ]]

for continue estimations, where Ti is the number of days that

the patient receives antibiotics. Minimal difference should be

seen on control days where our model aims to reproduce

labels, while on impact days you can assess the effect of the

unobserved scenario. Statistical analysis can be used to

determine if the difference between the true LOS labels and

the estimated outcomes are statistically significant. Given the

non-normal data distribution, the non-parametric Wilcoxon

rank-sum (Mann–Whitney U) test was used with the

alpha set at 0.05. Furthermore, the mean absolute

percentage error (MAPE) and mean absolute error (MAE)

can be calculated through the following notations:

MAPES ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 jYS,t
i � ~Y

S,t
i j=YS,t

i ] and

MAES ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 jYS,t
i � ~Y

S,t
i j], respectively,

for stop estimations and MAPEC ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1

jYC,t
i � ~Y

C,t
i j=YC,t

i ] and MAEC ¼ (1=n)
Pn

i¼1 [(1=Ti)
PTi

t¼1 j
YC,t
i � ~Y

C,t
i j], respectively, for continue estimations. Standard

ML metrics can also be used to evaluate model prediction
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FIGURE 3

Demonstration of the impact and control evaluation process for stop and continue scenarios. An antibiotic day is defined as each day the patient
receives treatment as well as the day they stop. After starting antibiotics, each day the patient receives treatment acts as a stop impact and
continue control. This continues until antibiotic cessation or ICU discharge. If the patient stops antibiotics during their ICU stay, that initial day
where no antibiotics are administered acts as a stop control and a continue impact.
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performance. For LOS regression estimation, the RMSE is used,

while for the mortality classification task, Area Under the

Receiver Operating Characteristic curve (AUROC) is most

appropriate given the class imbalance (Table 1), but accuracy,

precision, recall, sensitivity, F1 score, and Area Under the

Precision Recall curve (AUPRC) can also be calculated.

Metrics were calculated as global averages, across all samples,

meaning every day of antibiotic treatment within each

patients stay is considered equally. 95% confidence intervals

were calculated through 1,000 bootstrapped samples on the

test set with n ¼ 1, 000 for mortality metrics and the sum of

the squared errors method for LOS RMSE.

To validate our findings beyond the hold out test set, we

applied our model to patients who were diagnosed with

pneumonia or a urinary tract infection (UTI). The effects of

short vs. longer antibiotic treatment regimes have been

extensively studied in pneumonia and UTIs. In general,

research supports the notion that shorter antibiotic

treatments durations are non-inferior to longer ones in these

infections, especially for non-complicated cases (19, 36–40).

Based on this evidence and the latest antimicrobial

prescribing guidelines (41, 42), we defined a long treatment

duration as any patient receiving antibiotics for longer than 7

days, and applied our model to estimate their outcomes if

they were to instead stop treatment after 7 days. In addition,

there is increasing evidence that even shorter courses of

antibiotics can be used in such infections, in

particular, pneumonia (19, 41). Hence, we investigated the

estimated outcomes of those patients who received the
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standard of care 7 days treatment, for slightly shorter

treatment durations (5 or 6 days).
Results

Autoencoder

In total, 18,988 patients, associated with 22,845 unique ICU

stays, were included across datasets. Through a linear

transformation of a given patient day embedding, outcome

estimations could be made on the unseen test set (3427

unique ICU stays). The LOS model achieved an RMSE of 3.88

(95% CI 3.84–3.92), while the mortality estimation model

obtained an AUROC of 0.77 (95% CI 0.73–0.80) [accuracy

0.73 (95% CI 0.71–0.75), precision 0.44 (95% CI 0.36–0.46),

recall 0.67 (95% CI 0.61–0.72), specificity 0.75 (95% CI 0.72–

0.78), F1 0.53 (95% CI 0.46–0.56), and AUPRC 0.55 (95% CI

0.42–0.56)] (Figure 4), indicating that the model was

relatively effective at balancing false-positive and false-negative

mortality predictions.
Synthetic outcome estimation

LOS and mortality estimation results on the unseen test set

are shown in Table 2. For LOS estimation on control days, the

mean delta under both stopping and continuing scenarios was

0.24 and 0.42 days, respectively, showing a minimal difference
frontiersin.org
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FIGURE 4

ROC and PRC results for the RNN autoencoder on mortality classification.
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between predictions and the ground truth labels. Furthermore,

a MAPE of 0.26, MAE of 1.32, and RMSE of 1.93 for stop

control days show that the corresponding impact estimations

are more reliable. On impact days, stopping earlier had a

statistically significant shorter LOS (mean difference 2.71

days, p-value <0.01). This indicates that on average LOS

estimations for stopping antibiotics earlier are shorter in

duration than those when the patient continues antibiotics.

For mortality, no impact was observed by stopping or

extending antibiotic treatment. Estimations had modest

performance with an average AUROC of 0.67 and accuracy

of 0.82; however, the model clearly struggled with false-

negative predictions.

Estimations were made for each day of each patient’s stay

within all the extracted data (i.e., train, validation, and testing

sets combined) to understand if results would deviate by

dataset size. For LOS, reliable estimations were once again

obtained (mean stop control difference of 0.33 days and mean

continue control difference of 0.42 days). Continuing showed

no given impact (mean difference of �0.30 days), while

stopping once again showed a significant impact with a mean

reduction of 1.87 days. Little difference in mortality

estimations was seen between stop and continue controls and

impacts (stop impact�0.03, stop control�0.03, continue

control�0.05, continue impact�0.05). Mortality predictions

were relatively reliable with a mean AUROC of 0.72.

To show the importance of the temporality in our predictions,

we created estimations for each antibiotic day of each patients stay,

without segregating the embedding space (by time or by antibiotic

treatment given they are mutually dependent). The resulting

estimations had a mean LOS difference of 2.60 days from the

true labels, an RMSE of 5.05, and a statistically significant

difference in medians (p-value <0.01).
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The performance of the model on subjects towards the

edges of the distribution in terms of the correlation between

LOS and overall antibiotic treatment length was investigated.

Subjects in the 10th and 90th percentiles were selected leading

to a smaller Spearman’s correlation of 0.35. As expected,

given the dataset size (n=686) and donor distribution, results

were quite poor with a mean stop control difference of 2.92

days and a mean continue control difference of 2.13 days. The

impact of stopping early though was still much greater than

the control at 4.36 days mean difference.
Pneumonia and UTIs

A total of 2,473 stays where patients were diagnosed with

pneumonia were identified, with a mean LOS of 9.05 days

and a mean antibiotic treatment length of 6.95 days. Overall

estimation of the results on this whole pneumonia population

reflected the wider dataset and are shown in Table 3. When

focusing on those with long treatment durations and the

question of what if they stopped after 7 days of treatment,

statistically significant results show that average LOS were 2.82

days shorter when stopping earlier. No difference in estimated

mortality was observed; however, estimations were consistent

across groups with an average AUROC of 0.75. No significant

difference in LOS or mortality was estimated for pneumonia

patients who received the standard of care 7 days treatment, if

they had slightly shorter treatment durations of 5 or 6 days.

For UTIs, 923 patient stays were selected having a mean

LOS and antibiotic treatment length of 5.50 and 4.77 days

respectively. Once again, overall estimation results (Table 3)

were similar to previous findings with trustworthy controls,

stopping early being associated with a shorter LOS and no
frontiersin.org

https://doi.org/10.3389/fdgth.2022.997219
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


TABLE 2 Outcome estimation results for patients in the unseen test set.

LOS Mortality

Scenario Day(s) Mean delta (days, p-value) MAPE MAE RMSE Mean delta MAE AUROC

Stop Impact 2.71*, <0.01 0.36 3.30 4.80 0.06 0.25 0.66
Control 0.24, 0.60 0.26 1.32 1.93 0.05 0.15 0.72

Continue Impact �2.09*, <0.01 0.77 2.85 3.16 0.05 0.18 0.67
Control 0.42*, 0.01 0.48 2.72 3.76 0.07 0.24 0.64

*Statistical significance with alpha set at 0.05.

LOS, length of stay; MAPE, mean absolute percentage error; MAE, mean absolute error; RMSE, root mean squared error; AUROC, Area Under the Receiver Operating

Characteristic curve.

TABLE 3 Outcome estimation results for patients with pneumonia and UTIs.

LOS Mortality

Infection Analysis Scenario Day
(s)

Mean delta (days, p-value) RMSE Mean delta AUROC

Pneumonia Whole dataset Stop Impact 3.72*, <0.01 5.87 0.00 0.71
Control 0.26, 0.47 2.14 0.07 0.76

Continue Impact �2.79*, <0.01 3.65 0.10 0.69
Control 0.49*, <0.01 4.01 0.05 0.68

Long treatment durations stopping after 7 days Stop Impact 2.82*, <0.01 4.65 �0.03 0.74
Control 0.43, 0.08 2.11 0.05 0.80

Continue Impact — — — —

Control 0.41, 0.21 3.47 0.05 0.73

UTI Whole dataset Stop Impact 2.36*, <0.01 4.70 0.14 0.63
Control 0.36, 0.89 2.04 0.07 0.87

Continue Impact �1.91*, <0.01 3.26 0.03 0.79
Control 0.38, 0.05 3.82 0.04 0.71

Long treatment durations stopping after 7 days Stop Impact 2.08*, <0.01 4.35 0.30 0.52
Control 1.04, 0.23 2.42 0.17 0.93

Continue Impact — — — —

Control 0.26, 0.05 3.48 0.05 0.76

Results are shown for both the whole population and analysis of what if those who received long treatment durations stopped after day 7.

*Statistical significance with alpha set at 0.05.

LOS, length of stay; RMSE, root mean squared error; AUROC, Area Under the Receiver Operating Characteristic curve; UTI, urinary tract infection.
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difference in mortality but reliable estimations (AUROC

ranging from 0.63 to 0.87). Estimations for stopping after 7

days for those with long treatment durations did show a

positive impact in terms of reduced LOS (mean difference

2.08 days, p-value <0.01). The stop control where we expect

to see minimal difference showed a larger mean deviation of

1.04 days, but statistical analysis showed the medians between

control estimations and labels were not significantly different.

Mortality estimations here were for the most part dependable;

a high predictive performance on stop and continue controls

was achieved with an AUROC of 0.93 and 0.78, respectively,

but a lower score for the stop impact of 0.52. When analysing

those patients who received the standard of care 7 days

treatment, for slightly shorter treatment durations (5 or 6

days). A statistically significant result was observed where

estimated LOS outcomes were on average longer by 1.45 days

if the patients stopped antibiotics slightly earlier (p-value

<0.01, RMSE 2.72).
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Discussion

We demonstrate that our RNN autoencoder and synthetic

control-based approach trained on a large ICU EHR dataset

can estimate patient outcomes under the alternative scenarios

of stopping vs. continuing antibiotic treatment. Results across

experiments were consistent, with stop control days often

showing the greatest performance indicating our stop impact

estimations, which occur on days where the true outcome

upon stopping is unknown, are more reliable. The stop

impact results from this retrospective study show that

stopping antibiotics earlier can be associated with a

statistically significant average LOS reduction of 2.71 days.

Overall minimal impact on mortality was observed, which is

to be expected given death can be caused by a large number

of factors beyond those included as model features. Figure 5

shows some specific illustrative examples of patient LOS and

mortality estimations. The pneumonia dataset demonstrated
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FIGURE 5

LOS and mortality synthetic outcome estimation results for particular patients. These cases were selected as illustrative examples of four distinct
patient scenarios: (A) the patient has a long course of antibiotics, (B) the patient has short course of antibiotics, (C) the patient dies, (D) the
patient survives. In A/B control estimation results show minimal deviation from the true LOS label while the stop impact estimations have a
reduced LOS. Results in C/D indicate mortality estimations are temporally dynamic but with little difference between stop vs. continue.
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particularly positive results with overall and stopping on day 7

analysis indicating antibiotic cessation can have a significant

impact on LOS in this population (mean difference 3.72 and

2.82 days, respectively). This reflects current clinical thinking

that shorter treatments are optimal for this infection (19, 36,

37, 41). However, there is a balance to be made with

antibiotic treatment durations. The UTI analysis indicated

courses shorter than 7 days may be detrimental to the patient

and that the current standard of care treatment duration is

likely appropriate. As such, care must be taken to consider the

patients and the public’s best interests with respect to current

infections and the threat of AMR.

Our methodological approach to the problem of antibiotic

cessation is novel. This model can in principal assist with

individualised antibiotic cessation decisions as it takes into

account numerous patient characteristics and the specific

treatment scenario with regards to patient outcomes, factors

that previously could not be considered together in their

entirety. This study has approached the problem of antibiotic

cessation from the perspective of making a clinically useful

tool designed to support decision-making by estimating direct

measures that may influence clinical decision-making under
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alternative scenarios. We believe it could be useful for

prescribing physicians during their daily clinical round to

compare between stop and continue estimated outcomes and

understand when it is appropriate to cease antibiotic

treatment. In particular, this system should help show shorter

treatment durations can be safe and support individualised

antimicrobial decision-making through hard outcome

estimation. From a behaviour change perspective, this

approach may provide reassurance to support early cessation

of therapy, while promoting improved knowledge and

understanding on the issue of antimicrobial optimisation and

stewardship (43). It should be noted though that too short a

course of antibiotics can cause harm and have negative

knock-on effects. As such, the aim of this research is to

optimise antimicrobial use and determine the most

appropriate antibiotic treatment duration for each individual

patient. One significant outstanding question is how clinicians

treating a patient would adopt recommendations provided by

such a system and if it would influence antimicrobial clinical

decision-making. Holistically, we believe antibiotic cessation is

a collective, data-driven decision, meaning a CDSS in this

area can have a larger influence and acceptance by end users.
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However, the degree to which this tool would be accepted and

work alongside clinical decision-making behaviour requires

investigation.

We have shown that our model is able to reliably estimate

alternative patient outcomes depending on their antibiotic

treatment status. Based on our results, the size and

consistency of the dataset used and, hence, the number of

available donors are strongly related to the reliability of

outputs. Experiments utilising small datasets often led to poor

results given there were not enough suitable patients within a

given embedding space to create an appropriate synthetic

estimation. On the other hand, there does seem to be a

ceiling above which more instances are not necessary. For

example, similar results were obtained across the pneumonia,

test, and whole datasets even though they had sizes of 2,476,

3,427, and 22,845 patient stays, respectively. As such, we can

infer that this method is likely to produce suitable estimations

if several thousand patient examples are available. Although

this should be reasonable for most clinical scenarios, it does

act as a dataset constraint when evaluating less common

infections, where potentially more interesting nuanced

findings could be made.

The quality of the initial autoencoder model is another

significant implication that determines performance. The

standard autoencoder model without the synthetic control

methods applied achieved higher performance on the LOS

prediction task than estimations generated without segregating

the embedding space (RMSE of 3.88 and 5.05, respectively).

This confirms first that the model has been trained to

appropriately represent the patient in the embedding space

with respect to their outcome. Second, the temporal aspect of

the embeddings assists with synthetic outcome estimations

and finally the subsequent synthetic outcome estimation

methodology applied ensures that outputs can be clinically

applicable with regards to antibiotic treatment. As such, the

autoencoder is critical for appropriate temporal

representations and subsequent estimations.

It is important to note that there is a high degree of

correlation between LOS and overall treatment length in the

datasets (Table 1, supplementary Figure S3). This is to be

expected given those patients who are less sick will likely

receive fewer antibiotics and leave the ICU sooner. Although

the model architecture is designed to account for this,

through representative and segregated embeddings, it is still

likely that the model “learned” this association causing some

confounding. Results on outliers when there is reduced

correlation still illustrate that stopping can impact LOS

outcomes, even if the predictions themselves are not reliable

in this situation given the skewed dataset analysed. Numerous

factors influence ICU LOS; hence, even if the model predicts

that stopping antibiotics could be neutral or beneficial, other

random factors may make this an impossibility. Nevertheless,

our results and the strong correlation observed between
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antibiotic treatment length and LOS in this dataset mean this

model can act as a proxy with the ultimate aim of reducing

the unnecessary use of antibiotics.

This study has several limitations. We focused on

addressing what would happen if antibiotic cessation

occurred earlier during a patient’s ICU stay. The synthetic

control methodology was chosen and adapted as it allows

us to address this problem while more traditional causal

discovery seems intractable. MAPE and MAE LOS

estimation results are in the region of days which could

limit clinical utility but are comparable to that of recent

research (44). Unlike most synthetic control applications,

we do not have an extensive pre-intervention period

making confidence in results more challenging.

Furthermore, one of our analogues stop “control” days

would not be available on a patient-specific level during

clinical use due to the nature of cessation occurring after

treatment. Other types of interpretability such as being able

to investigate selected donors to see if they are clinically

meaningful could counteract this. Second, the use of

historical EHR data to estimate the synthetic outcome

means all our estimations are biased based on past

antibiotic prescribing policies. These methodological

approaches were required to answer our question of interest

but mean that historical approaches towards antimicrobial

stewardship govern our model’s outputs. The analysis of

such a large dataset along with estimations being the

weighted average of donors does, however, mitigate this to

some extent. In conjunction with this, the analysis

presented here is of a macro-scale; however, to realise the

potential of this approach for true antimicrobial

optimisation, more nuanced, relative, and individualised

studies will be required, which we plan to conduct in

future. Finally, given the high degree of missingness in the

dataset, a number of clinically important features have to

be excluded. In particular, research shows that

procalcitonin (PCT) and C-reactive protein (CRP) are

useful biomarkers for determining when it is safe and

appropriate to stop antibiotic therapy (45–48). Neither of

these were included as features due to insufficient data. As

such, this approach and the subsequent results could

potentially be more powerful if applied to a complete

dataset focused on a narrow type of infection with defined

variables of interest.

In conclusion, we have developed an AI-driven model to

estimate patient outcomes if they were to stop or continue

antibiotic treatment in the ICU. With further development

into a CDSS, we envisage that this can assist clinicians with

antimicrobial optimisation and reduce the excessive use of

antibiotics to tackle AMR. Future research will investigate

which variables promote or hinder cessation and discern

the ability of this tool to influence antimicrobial decision-

making.
frontiersin.org

https://doi.org/10.3389/fdgth.2022.997219
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Bolton et al. 10.3389/fdgth.2022.997219
Data availability statement

Publicly available datasets were analysed in this study. These

data can be found here: https://physionet.org/content/mimiciv/

1.0/.
Author contributions

WB, TR, BH, RW, and DA contributed to study concept

and design. WB and BH contributed to data acquisition. WB,

BH, and TR contributed to data analysis and accessed and

verified the underlying data. WB, TR, and BH contributed to

the initial manuscript drafting, discussion of the results, and

review of the data. All authors contributed to data

interpretation and final revisions of the manuscript. DA, PG,

and AH contributed to study supervision. All authors

contributed to the article and approved the submitted version.
Funding

WB was supported by the UKRI CDT in AI for Healthcare

http://ai4health.io (Grant No. P/S023283/1).
Acknowledgments

The authors would also like to acknowledge (1) the National
Institute for Health Research Health Protection Research Unit
(NIHR HPRU) in Healthcare Associated Infection and
Antimicrobial Resistance at Imperial College London and (2)
The Department for Health and Social Care funded Centre
Frontiers in Digital Health 11

118
for Antimicrobial Optimisation (CAMO) at Imperial College
London. The views expressed in this publication are those of
the authors and not necessarily those of the NHS, the
National Institute for Health Research or the UK Department
of Health.
Conflict of interest

TR was employed by Sandoz (2020), Roche Diagnostics Ltd

(2021), and bioMerieux (2021–2022). These commercial entities

were not involved in the study design, collection, analysis,

interpretation of data, the writing of this article, or the

decision to submit it for publication. All authors declare no

other competing interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdgth.

2022.997219/full#supplementary-material.
References
1. Nations U. Political declaration of the high level meeting of the general
assembly on antimicrobial resistance: draft resolution/submitted by the president
of the general assembly New York: UN (2016) 6 p.

2. World Health Organization. Global action plan on antimicrobial resistance.
World Health Organization (2015) 28 p.

3. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al.
Global burden of bacterial antimicrobial resistance in 2019: a systematic
analysis. Lancet. (2022) 399:629–55. doi: 10.1016/S0140-6736(21)02724-0

4. Rawson TM, Moore LSP, Hernandez B, Charani E, Castro-Sanchez E, Herrero
P, et al. A systematic review of clinical decision support systems for antimicrobial
management: are we failing to investigate these interventions appropriately? Clin
Microbiol Infect. (2017) 23:524–32. doi: 10.1016/j.cmi.2017.02.028

5. Hernandez B, Herrero P, Rawson TM, Moore LSP, Evans B, Toumazou C,
et al. Supervised learning for infection risk inference using pathology data.
BMC Med Inform Decis Mak. (2017) 17:168. doi: 10.1186/s12911-017-0550-1

6. Rawson TM, Hernandez B, Moore LSP, Blandy O, Herrero P, Gilchrist M,
et al. Supervised machine learning for the prediction of infection on admission
to hospital: a prospective observational cohort study. J Antimicrob Chemother.
(2019) 74:1108–15. doi: 10.1093/jac/dky514

7. Rawson TM, Hernandez B, Wilson RC, Ming D, Herrero P, Ranganathan N,
et al. Supervised machine learning to support the diagnosis of bacterial infection
in the context of COVID-19. JAC-Antimicrob Resist. (2021) 3:dlab002. doi: 10.
1093/jacamr/dlab002

8. Hernandez B, Herrero-Viñas P, Rawson TM, Moore LSP, Holmes AH,
Georgiou P. Resistance trend estimation using regression analysis to enhance
antimicrobial surveillance: a multi-centre study in London 2009–2016.
Antibiotics. (2021) 10:1267. doi: 10.3390/antibiotics10101267

9. Hernandez B, Herrero P, Rawson T, Moore L, Charani E, Holmes A, et al.
Data-driven web-based intelligent decision support system for infection
management at point-of-care: case-based reasoning benefits and limitations. In
Proceedings of the 10th International Joint Conference on Biomedical
Engineering Systems and Technologies – HEALTHINF, (BIOSTEC 2017). (2017).
p. 119–27.

10. Rawson TM, Hernandez B, Moore LSP, Herrero P, Charani E, Ming D, et al.
A real-world evaluation of a case-based reasoning algorithm to support
antimicrobial prescribing decisions in acute care. Clin Infect Dis. (2021)
72:2103–11. doi: 10.1093/cid/ciaa383

11. Tamma PD, Miller MA, Cosgrove SE. Rethinking how antibiotics are
prescribed: incorporating the 4 moments of antibiotic decision making into
clinical practice. JAMA. (2019) 321:139–40. doi: 10.1001/jama.2018.19509

12. Langford BJ, Morris AM. Is it time to stop counselling patients to “finish the
course of antibiotics”? Can Pharm J. (2017) 150:349–50. doi: 10.1177/
1715163517735549
frontiersin.org

https://physionet.org/content/mimiciv/1.0/
https://physionet.org/content/mimiciv/1.0/
http://ai4health.io
https://www.frontiersin.org/articles/10.3389/fdgth.2022.997219/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdgth.2022.997219/full#supplementary-material
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1016/j.cmi.2017.02.028
https://doi.org/10.1186/s12911-017-0550-1
https://doi.org/10.1093/jac/dky514
https://doi.org/10.1093/jacamr/dlab002
https://doi.org/10.1093/jacamr/dlab002
https://doi.org/10.3390/antibiotics10101267
https://doi.org/10.1093/cid/ciaa383
https://doi.org/10.1001/jama.2018.19509
https://doi.org/10.1177/1715163517735549
https://doi.org/10.1177/1715163517735549
https://doi.org/10.3389/fdgth.2022.997219
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Bolton et al. 10.3389/fdgth.2022.997219
13. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A,
et al. Understanding the mechanisms, drivers of antimicrobial resistance.
Lancet. (2016) 387:176–87. doi: 10.1016/S0140-6736(15)00473-0

14. Spellberg B. The new antibiotic mantra—“shorter is better”. JAMA Intern
Med. (2016) 176:1254–5. doi: 10.1001/jamainternmed.2016.3646

15. Curran J, Lo J, Leung V, Brown K, Schwartz KL, Daneman N, et al. Estimating
daily antibiotic harms: an umbrella review with individual study meta-analysis. Clin
Microbiol Infect. (2022) 28:479–90. doi: 10.1016/j.cmi.2021.10.022

16. Vaughn VM, Flanders SA, Snyder A, Conlon A, Rogers MA, Malani AN,
et al. Excess antibiotic treatment duration and adverse events in patients
hospitalized with pneumonia. Ann Intern Med. (2019) 171:153–63. doi: 10.
7326/M18-3640

17. Spellberg B, Rice LB. Duration of antibiotic therapy: shorter is better. Ann
Intern Med. (2019) 171:210–1. doi: 10.7326/M19-1509

18. Yahav D, Franceschini E, Koppel F, Turjeman A, Babich T, Bitterman R,
et al. Seven versus 14 days of antibiotic therapy for uncomplicated gram-
negative bacteremia: a noninferiority randomized controlled trial. Clin Infect
Dis. (2019) 69:1091–8. doi: 10.1093/cid/ciy1054

19. Royer S, DeMerle KM, Dickson RP, Prescott HC. Shorter versus longer
courses of antibiotics for infection in hospitalized patients: a systematic review
and meta-analysis. J Hosp Med. (2018) 13:336–42. doi: 10.12788/jhm.2905

20. Wald-Dickler N, Spellberg B. Short-course antibiotic therapy—replacing
Constantine units with “shorter is better”. Clin Infect Dis. (2019) 69:1476–9.
doi: 10.1093/cid/ciy1134

21. Hanretty AM, Gallagher JC. Shortened courses of antibiotics for bacterial
infections: a systematic review of randomized controlled trials.
Pharmacotherapy. (2018) 38:674–87. doi: 10.1002/phar.2118

22. Janssen RME, Oerlemans AJM, Van Der Hoeven JG, Ten Oever J, Schouten
JA, Hulscher MEJL. Why we prescribe antibiotics for too long in the hospital
setting: a systematic scoping review. J Antimicrob Chemother. (2022) 77(8):
dkac162. doi: 10.1093/jac/dkac162

23. Charani E, McKee M, Ahmad R, Balasegaram M, Bonaconsa C, Merrett GB,
et al. Optimising antimicrobial use in humans: review of current evidence and an
interdisciplinary consensus on key priorities for research. Lancet Reg Health Eur.
(2021) 7:100161. doi: 10.1016/j.lanepe.2021.100161

24. Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure
FX, et al. Machine learning for clinical decision support in infectious diseases: a
narrative review of current applications. Clin Microbiol Infect. (2020) 26:584–95.
doi: 10.1016/j.cmi.2019.09.009

25. Pandolfo AM, Horne R, Jani Y, Reader TW, Bidad N, Brealey D, et al.
Understanding decisions about antibiotic prescribing in ICU: an application of
the Necessity Concerns Framework. BMJ Qual Saf. (2022) 31:199–210. doi: 10.
1136/bmjqs-2020-012479

26. Rawson TM, Charani E, Moore LSP, Hernandez B, Castro-Sánchez E,
Herrero P, et al. Mapping the decision pathways of acute infection management
in secondary care among UK medical physicians: a qualitative study. BMC Med.
(2016) 14:208. doi: 10.1186/s12916-016-0751-y

27. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R. MIMIC-IV
(2021)[Dataset]. doi: 10.13026/s6n6-xd98

28. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG,
et al. PhysioBank, PhysioToolkit, and PhysioNet. Circulation. (2000) 101:e215–20.
doi: 10.1161/01.CIR.101.23.e215

29. Qian Z, Zhang Y, Bica I, Wood A, van der Schaar M. SyncTwin: treatment
effect estimation with longitudinal outcomes. In: Advances in Neural Nnformation
Processing Systems 34 (NeurIPS 2021). Vol. 34. Vancouver Canada: Curran
Associates, Inc. (2021). p. 3178–3190.

30. Abadie A, Gardeazabal J. The economic costs of conflict: a case study of the
Basque country. Am Econ Rev. (2003) 93:113–32. doi: 10.1257/000282803321455188

31. Bouttell J, Craig P, Lewsey J, Robinson M, Popham F. Synthetic
control methodology as a tool for evaluating population-level health interventions.
J Epidemiol Community Health. (2018) 72:673–8. doi: 10.1136/jech-2017-210106
Frontiers in Digital Health 12

119
32. Kreif N, Grieve R, Hangartner D, Turner AJ, Nikolova S, Sutton M.
Examination of the synthetic control method for evaluating health policies with
multiple treated units. Health Econ. (2016) 25:1514–28. doi: 10.1002/hec.3258

33. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch:
an imperative style, high-performance deep learning library. In: Advances in
Neural Information Processing Systems 32 (NeurIPS 2019). Vol. 32. Vancouver
Canada: Curran Associates, Inc. (2019). p. 8024–8035.

34. Kingma DP, Ba J. Adam: a method for stochastic optimization (2014).
Available from: https://arxiv.org/abs/1412.6980

35. Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I. Tune: A
research platform for distributed model selection and training [Preprint] (2018).
Available at: http://arxiv.org/1807.05118.

36. Dimopoulos G, Poulakou G, Pneumatikos IA, Armaganidis A, Kollef MH,
Matthaiou DK. Short- vs long-duration antibiotic regimens for ventilator-
associated pneumonia: a systematic review and meta-analysis. Chest. (2013)
144:1759–67. doi: 10.1378/chest.13-0076

37. Pugh R, Grant C, Cooke RPD, Dempsey G. Short-course versus prolonged-
course antibiotic therapy for hospital-acquired pneumonia in critically ill adults.
Cochrane Database Syst Rev. (2015) (8):CD007577. doi: 10.1002/14651858.
CD007577.pub3

38. Drekonja DM, Trautner B, Amundson C, Kuskowski M, Johnson JR. Effect
of 7 vs 14 days of antibiotic therapy on resolution of symptoms among afebrile
men with urinary tract infection: a randomized clinical trial. JAMA. (2021)
326:324–31. doi: 10.1001/jama.2021.9899

39. de Gier R, Karperien A, Bouter K, Zwinkels M, Verhoef J, Knol W, et al. A
sequential study of intravenous and oral fleroxacin for 7 or 14 days in the
treatment of complicated urinary tract infections. Int J Antimicrob Agents.
(1995) 6:27–30. doi: 10.1016/0924-8579(95)00011-V

40. Peterson J, Kaul S, Khashab M, Fisher AC, Kahn JB. A double-blind,
randomized comparison of levofloxacin 750 mg once-daily for five days with
ciprofloxacin 400/500 mg twice-daily for 10 days for the treatment of
complicated urinary tract infections and acute pyelonephritis. Urology. (2008)
71:17–22. doi: 10.1016/j.urology.2007.09.002

41. National Institute for Health and Care Excellence. Pneumonia (hospital-
acquired): antimicrobial prescribing NICE guideline [NG139]. (2019). Available
from: https://www.nice.org.uk/guidance/ng139

42. National Institute for Health and Care Excellence. Urinary tract infection
(lower): antimicrobial prescribing NICE guideline [NG109]. (2018). Available
from: https://www.nice.org.uk/guidance/ng109

43. Pauwels I, Versporten A, Vermeulen H, Vlieghe E, Goossens H. Assessing
the impact of the Global Point Prevalence Survey of Antimicrobial
Consumption and Resistance (Global-PPS) on hospital antimicrobial
stewardship programmes: results of a worldwide survey. Antimicrob Resist Infect
Control. (2021) 10:138. doi: 10.1186/s13756-021-01010-w

44. Rocheteau E, Liò P, Hyland S. Temporal pointwise convolutional networks
for length of stay prediction in the intensive care unit. Proceedings of the
Conference on Health, Inference, and Learning, CHIL ’21. 2021 April 8 – 10;
New York, NY: Association for Computing Machinery (2021). p. 58–68.
Available at: https://doi.org/10.1145/3450439.3451860

45. Schuetz P, Wirz Y, Sager R, Christ-Crain M, Stolz D, Tamm M, et al.
Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract
infections. Cochrane Database Syst Rev. (2017) 2017:CD007498. doi: 10.1002/
14651858.CD007498.pub3

46. Rhee C. Using procalcitonin to guide antibiotic therapy. Open Forum Infect
Dis. (2016) 4:ofw249. doi: 10.1093/ofid/ofw249

47. Oliveira CF, Botoni FA, Oliveira CRA, Silva CB, Pereira HA, Serufo JC, et al.
Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a
randomized trial. Crit Care Med. (2013) 41:2336–43. doi: 10.1097/CCM.
0b013e31828e969f

48. Coelho L, Póvoa P, Almeida E, Fernandes A, Mealha R, Moreira P, et al.
Usefulness of C-reactive protein in monitoring the severe community-acquired
pneumonia clinical course. Crit Care. (2007) 11:R92. doi: 10.1186/cc6105
frontiersin.org

https://doi.org/10.1016/S0140-6736(15)00473-0
https://doi.org/10.1001/jamainternmed.2016.3646
https://doi.org/10.1016/j.cmi.2021.10.022
https://doi.org/10.7326/M18-3640
https://doi.org/10.7326/M18-3640
https://doi.org/10.7326/M19-1509
https://doi.org/10.1093/cid/ciy1054
https://doi.org/10.12788/jhm.2905
https://doi.org/10.1093/cid/ciy1134
https://doi.org/10.1002/phar.2118
https://doi.org/10.1093/jac/dkac162
https://doi.org/10.1016/j.lanepe.2021.100161
https://doi.org/10.1016/j.cmi.2019.09.009
https://doi.org/10.1136/bmjqs-2020-012479
https://doi.org/10.1136/bmjqs-2020-012479
https://doi.org/10.1186/s12916-016-0751-y
https://doi.org/10.13026/s6n6-xd98
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1257/000282803321455188
https://doi.org/10.1136/jech-2017-210106
https://doi.org/10.1002/hec.3258
https://arxiv.org/abs/1412.6980
https://doi.org/10.1378/chest.13-0076
https://doi.org/10.1002/14651858.CD007577.pub3
https://doi.org/10.1002/14651858.CD007577.pub3
https://doi.org/10.1001/jama.2021.9899
https://doi.org/10.1016/0924-8579(95)00011-V
https://doi.org/10.1016/j.urology.2007.09.002
https://www.nice.org.uk/guidance/ng139
https://www.nice.org.uk/guidance/ng109
https://doi.org/10.1186/s13756-021-01010-w
https://doi.org/10.1145/3450439.3451860
https://doi.org/10.1002/14651858.CD007498.pub3
https://doi.org/10.1002/14651858.CD007498.pub3
https://doi.org/10.1093/ofid/ofw249
https://doi.org/10.1097/CCM.0b013e31828e969f
https://doi.org/10.1097/CCM.0b013e31828e969f
https://doi.org/10.1186/cc6105
https://doi.org/10.3389/fdgth.2022.997219
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores digital innovation to transform modern 

healthcare

A multidisciplinary journal that focuses on how 

we can transform healthcare with innovative 

digital tools. It provides a forum for an era of 

health service marked by increased prediction and 

prevention.

Discover the latest 
Research Topics

See more 

Frontiers in
Digital Health

https://www.frontiersin.org/journals/Digital-Health/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Machine learning in clinical decision-making
	Table of contents 
	Editorial: Machine Learning in Clinical Decision-Making
	Author Contributions
	Funding

	Commentary: Machine learning in clinical decision-making
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Predicting Common Audiological Functional Parameters (CAFPAs) as Interpretable Intermediate Representation in a Clinical Decision-Support System for Audiology
	Introduction
	Method
	Data Set
	Common Audiological Functional Parameters
	Expert Survey

	Model-Building
	Features and Labels
	Pre-processing
	Lasso Regression and Elastic Net
	Random Forests

	Model Evaluation Based on Labeled Cases
	Prediction of the CAFPAs
	Feature Importance

	Model Application to Unlabeled Cases
	Pre-processing
	Prediction of CAFPAs and Clustering for the Unlabeled Data Set


	Results
	Model Evaluation Based on Labeled Cases
	Model-Building
	Prediction of CAFPAs
	Feature Importance

	Model Evaluation Based on Unlabeled Cases

	Discussion
	Prediction of CAFPAs
	Model Interpretability via Feature Importance Assessment
	Model Evaluation on the Unlabeled Data Set
	Clinical Decision-Support System Using CAFPAs

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Unsupervised EEG Artifact Detection and Correction
	1. Introduction
	2. Methods
	2.1. Data-Sets
	2.1.1. Data Acquisition

	2.2. Unsupervised Artifact Detection
	2.2.1. Feature Extraction
	2.2.1.1. Complexity features (n = 25)
	2.2.1.2. Continuity features (n = 27)
	2.2.1.3. Connectivity features (n = 6)

	2.2.2. Outlier Detection Methods
	2.2.2.1. Statistical methods
	2.2.2.2. Representation learning based methods


	2.3. Artifact Correction
	2.3.1. The Model
	2.3.1.1. Input representation
	2.3.1.2. Architecture


	2.4. Model Validation Approach
	2.4.1. Artifact Detection Method
	2.4.2. Artifact Correction Method
	2.4.3. End-to-end Assessment Approach


	3. Results
	3.1. Artifact Detection Results
	3.2. Artifact Correction Results
	3.2.1. Network Optimization
	3.2.2. End-to-End Assessment


	4. Discussion
	4.1. Significance of Our Results
	4.2. The Data-Sets
	4.3. The Strength of Unsupervised End-to-End Methods
	4.4. Limitations

	5. Conclusion and Future Work
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Machine Learning for Localizing Epileptogenic-Zone in the Temporal Lobe: Quantifying the Value of Multimodal Clinical-Semiology and Imaging Concordance
	Introduction
	Methods
	Study Design and Participants
	Procedures
	Statistical Analysis
	Machine Learning
	Role of the Funding Source

	Results
	Patients and Outcomes
	Features
	Step 1: EZ Cross-Validated Results
	Step 2: Indirect Surgical Outcome Results
	Step 3: Direct Surgical Outcome Results

	Discussion
	EZ-Localization Algorithms (Step 1)
	Clinical Features of Temporal-EZ (Step 1)
	Quantifying Value of Multimodal Features
	Outcome Prediction (Steps 2 and 3)
	Limitations

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU
	1. Introduction
	2. Materials and Methods
	2.1. Study Aims
	2.2. Study Cohorts
	2.3. Data Extraction and Processing
	2.3.1. Traditional EHR Data
	2.3.2. Intelligent ICU Data
	2.3.3. Final Data Preprocessing

	2.4. Models
	2.5. Experiments

	3. Results
	4. Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Identifying Heart Failure in ECG Data With Artificial Intelligence—A Meta-Analysis
	Introduction
	Methods
	Results
	Discussion and Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References

	Patient-Specific Sedation Management via Deep Reinforcement Learning
	Introduction
	Materials and Methods
	Data
	Database 
	Key Variables
	Measures Utilized
	Preprocessing and Time Windowing
	Training, Validation, and Testing Set Partition

	Model Architecture
	Policy
	Reward

	Performance Evaluation Approach 

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	References

	Accessing Artificial Intelligence for Clinical Decision-Making
	Introduction
	Methodology
	Results
	Discussion
	Risk Stratification
	Patient Outcome Optimization
	Early Warning of Acute Decompensation
	Potential for Bias in ML
	Paradigmatic Shift in Medical Training

	Conclusions
	Author Contributions
	Funding
	References

	Discovering Composite Lifestyle Biomarkers With Artificial Intelligence From Clinical Studies to Enable Smart eHealth and Digital Therapeutic Services
	Introduction
	Subjective and Objective RWD as Clinical Outcomes
	New Extended Meanings for Old Medical Definitions
	RWD and RWE: Definition and Usefulness in Clinical Research
	Patient Reported Outomes: Definition and Usefulness in Clinical Research

	Lifestyle Behavior as a Biomarker With Clinical Value and Types of RWD
	Lifestyle and Health
	Types of RWD

	AI Technologies for Defining, Modeling, and Simulating Lifestyle
	Composite Lifestyle Biomarker Discovery
	Using the Biomarkers for Digital Therapeutics

	Pilot Study to Evaluate the Hypothesis
	Study Description
	Manual RWD Selection Stage
	Healthentia Platform

	Expected Benefits, Early Findings, and Next Steps
	Scoring Considerations
	Iterative Design Stage
	Early Findings and Next Steps

	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	References

	Multi-dimensional patient acuity estimation with longitudinal EHR tokenization and flexible transformer networks
	Introduction
	Methods
	Cohort
	Data
	Clinical outcomes
	Model architecture

	Results
	Discussion
	Principal findings
	Related work
	Transformer models
	Transformers in healthcare

	Limitations
	Conclusions and next steps

	Data availability statement
	Author’s contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	Machine learning and synthetic outcome estimation for individualised antimicrobial cessation
	Introduction
	Methods
	Dataset
	Model architecture
	Model development and software
	Model evaluation and metrics

	Results
	Autoencoder
	Synthetic outcome estimation
	Pneumonia and UTIs

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Back Cover



