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Gliomas are the most common primary brain cancers. In recent years, IDH mutation and
1p/19q codeletion have been suggested as biomarkers for the diagnosis, treatment,
and prognosis of gliomas. However, these biomarkers are only effective for a part of
glioma patients, and thus more biomarkers are still emergently needed. Recently, an
electrochemical communication between normal neurons and glioma cells by neuro-
glioma synapse has been reported. Moreover, it was discovered that breast-to-brain
metastasis tumor cells have pseudo synapses with neurons, and these synapses
were indicated to promote tumor progression and metastasis. Based on the above
observations, we first curated a panel of 17 synapse-related genes and then proposed
a metric, synapse score to quantify the “stemness” for each sample of 12 glioma
gene expression datasets from TCGA, CGGA, and GEO. Strikingly, synapse score
showed excellent predictive ability for the prognosis, diagnosis, and grading of gliomas.
Moreover, being compared with the two established biomarkers, IDH mutation and
1p/19q codeletion, synapse score demonstrated independent and better predictive
performance. In conclusion, this study proposed a quantitative method, synapse score,
as an efficient biomarker for monitoring gliomas.

Keywords: glioma, synapse, biomarker, survival, WHO grade

INTRODUCTION

Brain and other nervous system cancers are estimated to take up 1.4% of new cancers but 2.9%
of cancer deaths in 2019 (Brain and Other Nervous System Cancer, 2019). Gliomas are the most
frequent of these cancers, including astrocytoma (including glioblastoma), oligodendroglioma,
ependymoma, oligoastrocytoma (mixed glioma), malignant glioma, not otherwise specified (NOS)
glioma, and a few rare histologies (Ostrom et al., 2016). The World Health Organization (WHO)
classified gliomas into grades I to IV and introduced biomarkers of IDH mutation and 1p/19q
codeletion in the 2016 edition (Louis et al., 2007; Wesseling and Capper, 2018). Glioblastoma
(WHO grade IV) accounts for about half of gliomas, with a median survival of less than 2 years
(Gramatzki et al., 2016; Ostrom et al., 2016). Gliomas with lower grade have a diverse prognosis,
either progressing to be as poor as glioblastoma or living more than 10 years after effective treatment
(Ruda and Soffietti, 2017).
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Over the years, with the fast improvement of omics and big
data technology, RNA sequencing has been developing toward
lower cost and higher throughput, producing a large amount of
biological and medical data, which provides great convenience
for life science research (Bolouri et al., 2016). Impelled by
advantage of big data analysis, numerous biomarkers have been
found in the diagnosis and prognosis of gliomas (Kros et al.,
2015). Gene set enrichment analysis (GSEA) provides a facility
to extract effective information from a large number of RNA
expression data (Subramanian et al., 2005). Moreover, single
sample GSEA (ssGSEA) can calculate without group information
and give every sample an enrichment score (Barbie et al., 2009).
The Biomarkers such as IDH mutation and 1p/19q codeletion
provided help for monitoring the development and prognosis of
gliomas but are only effective for a part of patients (Aibaidula
et al., 2017). Therefore, given the enormous severity of gliomas,
more biomarkers are emergently needed.

It is recently reported that neuron and glioma have
electrochemical communication through AMPA receptor-
dependent synapses between presynaptic neurons and
postsynaptic glioma cells (Venkataramani et al., 2019; Venkatesh
et al., 2019). These observations suggest that the neural synaptic
electrochemical connections promote glioma progression.
Simultaneously, an appearance of glutamatergic “pseudo-
tripartite” synapses between breast-to-brain metastasis tumor
cells and neurons was observed (Zeng et al., 2019). Based on
these anatomical and cytological findings, we hypothesized that
the synapse-related genes can be used as a biomarker for glioma
prognosis. To confirm this hypothesis, here we first curated
a list of genes involved in synapse-related functions and then
performed ssGSEA analysis for glioma gene expression datasets
from the Cancer Genome Atlas (TCGA), the Chinese Glioma
Genome Atlas (CGGA), and the Gene Expression Omnibus
(GEO). Strikingly, these synapse-related genes were found to be
an independent and effective biomarker for gliomas.

MATERIALS AND METHODS

Gene Expression Datasets and Analysis
RNAseq data, normalized in fragments per kilo-base per million
mapped fragments, as well as sample and clinical information
were obtained from TCGA data portal1. WHO grade, IDH
mutation status, and 1p/19q codeletion status were obtained from
the study by Ceccarelli et al. (2016). CGGA2 provides tumor gene
expression data for thousands of glioma patients (including one
microarray and two RNAseq batches), as well as corresponding
clinical data. The calculation and presentation of the results
will be conducted separately due to different platforms and
batches. In addition, glioma microarray gene expression profiling
data (GSE4290, GSE16011, GSE50161, GSE52009, GSE54004,
GSE61374, and GSE107850) were available at GEO datasets3.
Gene expression data were structured with gene symbols as row

1https://portal.gdc.cancer.gov/
2http://www.cgga.org.cn/
3https://www.ncbi.nlm.nih.gov/gds/

names and sample IDs as column names; duplicate gene symbols
were averaged using their median value.

Synapse-Related Genes Screening
Gene ontology (GO) terms, which were related to synapse,
neuron, neurotransmitter transport, glutamate receptor, or cell
junction, were selected from NCBI4. Using ssGSEA, we calculated
enrichment scores (ESs) for each GO term and each sample
in two CGGA RNAseq batches. The ssGSEA algorithm was
performed by python (v3.6.8) package gseapy (v0.9.13), which is
a python wrapper for GSEA and ssGSEA. The minimum number
of genes in the gene set was set as 10, and the maximum was 1,000.
As a result, 163 of 581 terms were retained. Cox regression models
were used to calculate the hazard ratios (HRs) and p-values for
ESs of each GO term. We used CoxPHFitter from python package
lifelines (v0.23.7) to fit Cox models. Default parameters were used
except the data frame and the column names of survival times
and events. P-values were adjusted using Benjamini-Hochberg
method. The false discovery rates (FDRs) of the two batches
are multiplied to calculate the combined FDR (Supplementary
File S1). The terms with different directions in two batches
(HR < 1 in one batch and HR > 1 in the other) were excluded.
Terms with top 10 smallest combined FDR values, except
“peripheral nervous system neuron development” (GO:0048935)
as gliomas are located in the central nervous system, are used
for subsequent analysis (ionotropic glutamate receptor signaling
pathway, AMPA glutamate receptor complex, regulation of short-
term neuronal synaptic plasticity, dopaminergic synapse, synapse
maturation, excitatory postsynaptic potential, parallel fiber to
Purkinje cell synapse, synapse organization, and regulation of
AMPA receptor activity). Next, we evaluated the HRs and
p-values of 171 genes (eight genes are not in the datasets)
from these nine GO terms and calculated the combined FDRs
(Supplementary File S2). One hundred forty-four genes were
filtered out with the same directions in two data batches. Then
we obtained ESs of genes with top n (n = 1, 2, . . ., 144) smallest
combined FDRs for each sample in two data batches. After we
evaluated the combined FDRs of every gene set, the gene set with
the top 17 genes were selected (Supplementary File S3). Finally,
using this synapse-related 17-gene set, we performed ssGSEA
(default parameters) and calculated ESs for samples of TCGA,
CGGA, and GEO datasets. We defined the ES as synapse score.

Statistical Analysis
Kaplan–Meier (K–M) curves and Cox proportional hazards
regression were performed by R packages survival (v2.44-1.1)
and survminer (v0.4.6) and python package lifelines (v0.23.7).
Log rank test was used to calculate the difference between two
K–M curves. Significance of difference between two groups of
continuous variables was analyzed by two-sided Wilcoxon rank
sum test. Receiver operating characteristic (ROC) curve and area
under ROC curve (AUROC) were processed by R package pROC
(Robin et al., 2011) (v1.15.3). All statistical significances above
were calculated by R (v3.5.2). Spearman’s correlation analysis was

4https://ftp.ncbi.nih.gov/gene/DATA/
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applied to evaluate the correlation using python package scipy
(v1.2.1). P-values < 0.05 were considered significant.

RESULTS

The Screening of Synapse-Related
Genes
In order to investigate whether synapse-related genes can be
biomarkers for glioma patients, we first curated a list of GO terms
associated with synapse, neuron, neurotransmitter transport,
glutamate receptor, or cell junction. After excluding the terms
with less than 10 or more than 1,000 genes, 163 terms were
retained. Then we evaluated the survival prediction performances
of these gene sets in two CGGA RNAseq batches using ssGSEA
and Cox regression (Supplementary File S1). Most (118/163) of
the terms were found to have HR < 1 in both data batches. The
10 best performed terms were further selected, and “peripheral
nervous system neuron development” (GO:0048935) is excluded

as gliomas are located in the central nervous system (Figure 1A).
As a result, 171 genes were collected.

Afterward, we assessed the prognostic performances of these
genes using Cox regression (Figure 1B and Supplementary File
S2). 144 genes were filtered out with the same directions (both
HRs < 1 or both HRs > 1) in two data batches. To further trim
the gene set, we calculated ESs of gene sets which include the top
n (n = 1, 2, . . ., 144) best performed genes and evaluated their
survival prognostic abilities (Figure 1C and Supplementary File
S3). In most (142/144) cases, the gene sets performed better than
any of the 144 genes on its own. Finally, the gene set with 17
genes was selected (Figure 1B and Supplementary Table S1),
including profilin 1 (PFN1), SH3 and multiple ankyrin repeat
domains 2 (SHANK2), calcium voltage-gated channel auxiliary
subunit gamma 2 (CACNG2), tenascin R (TNR), shisa family
member 7 (SHISA7), cholinergic receptor nicotinic beta 2 subunit
(CHRNB2), glutamate ionotropic receptor NMDA type subunit
3A (GRIN3A), mitogen-activated protein kinase eight interacting
protein 2 (MAPK8IP2), glutamate ionotropic receptor delta type

FIGURE 1 | The screening of synapse-related genes. (A) The survival prognostic performances of 163 synapse-related gene ontology terms. The chosen terms
were labeled. (B) The prognostic performances of 171 collected genes. The finally selected genes were labeled. (C) The prognostic performances of gene sets with
different sizes. Minonegene: the best performance of single collected gene. The prognostic performances were evaluated by hazard ratios (HRs) of Cox regression.
FDRs were calculated by Benjamini-Hochberg method. (D) The distribution of combined FDRs of 10,000 random 17-gene sets. Arrow: the combined FDR of our
synapse-related 17-gene set.

Frontiers in Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 8226

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00822 August 7, 2020 Time: 19:2 # 4

Ji et al. Synapse Related Genes Predict Gliomas

subunit 1 (GRID1), unc-13 homolog A (UNC13A), LDL receptor-
related protein 4 (LRP4), syntabulin (SYBU), solute carrier
family 16 member 3 (SLC16A3), dystrophin-related protein 2
(DRP2), glutamate ionotropic receptor kainate type subunit 4
(GRIK4), glutamate ionotropic receptor NMDA type subunit 2C
(GRIN2C), and immunoglobin superfamily member 21 (IGSF21).

As the next few gene sets, neurotransmitter uptake
(GO:0001504), glutamate receptor signaling pathway
(GO:0007215), NMDA selective glutamate receptor complex
(GO:0017146), and glutamate receptor activity (GO:0008066)
have combined FDRs of similar magnitudes (<5 × 10−35); the
choice of top 10 terms could be too arbitrary. It may be useful
to include them in subsequent analyses. We took these terms
into consideration one by one and performed the same steps of
screening and trimming described above. The inclusion of the
term neurotransmitter uptake did not change the final result, and
the same 17 genes were screened out. As for the other three terms,
they all resulted in a 20-gene set, adding potassium voltage-gated
channel subfamily B member 1 (KCNB1), nicastrin (NCSTN),
and phospholipase C beta 1 (PLCB1) to the previous 17-gene
set. But its combined p-value (2.38 × 10−64) was a little worse
than the previous 17-gene set (3.70× 10−66). Although there are
still many significant terms, like focal adhesion (GO:0005925) at
#15, we could not consider more due to the time complexity of
subsequent screening and trimming. Finally, we decided to use
the 17-gene set for future validations.

To further verify the efficiency of the 17-gene set, a
permutation experiment was performed. After randomly
selecting 10,000 sets with 17 genes from all the 23,271 genes
that exist in both batches of datasets, we tested their prognostic
abilities by ssGSEA and Cox regression. As a result, the combined
FDR of the selected 17-gene set ranked first in all random gene
sets ascendingly (Figure 1D and Supplementary File S4).

The Panel of Synapse-Related Genes
Serves as a Novel Biomarker for Gliomas
Using the 17 collected synapse-related genes, we performed
ssGSEA to TCGA, CGGA, and GEO datasets, and the ESs,

defined as synapse score, were used for survival analysis. The
results show that glioma patients with higher synapse scores
have longer overall survival time (Figure 2). Cox regression
analysis also shows the same results (Table 1). Moreover,
patients with higher WHO grade have significantly lower
synapse scores (Figure 3 and Supplementary Figure S1),
which agrees with the survival analysis. In addition, it is
worthy to mention that there were normal brain samples in
datasets GSE4290 (Figure 3C), GSE16011 (Figure 3D), and
GSE50161 (Supplementary Figure S1c). The synapse scores of
normal samples were significantly higher than glioma samples,
suggesting that the synapse score shows an ability to distinguish
between glioma and normal brain tissue by giving a cutoff
value, which reveals a potential diagnostic application of synapse
score. ROC analyses were further used to evaluate the diagnostic
ability; the areas under the curve (AUCs) of GSE4290, GSE16011,
and GSE50161 datasets are 0.89, 0.94, and 0.99, respectively
(Supplementary Figure S2).

Comparison of Synapse Score With
Established Biomarkers
IDH mutation and 1p/19q codeletion are two established
biomarkers for gliomas. Both biomarkers provided great help
for monitoring glioma development, but both are effective on
only some patients. Therefore, it is interesting to explore whether
synapse score is an independent biomarker and whether synapse
score is better than the established biomarkers or not. For doing
so, we first analyzed the relationship of synapse scores with IDH
mutation and 1p/19q codeletion status. We found that IDH-
mut gliomas were associated with significantly higher synapse
scores than IDH-wt ones (Supplementary Figures S3a–d). And
1p/19q codeletion gliomas represent higher synapse scores than
non-codeletion ones (Supplementary Figures S3e–h). Moreover,
after removing the effects of the two established biomarkers using
multivariate Cox regression model, we revealed that synapse
score is an independent biomarker for predicting prolonged
overall survival in gliomas (Table 1). In addition, the grading
ability of synapse score is also independent of IDH mutation

FIGURE 2 | Kaplan–Meier curve of overall survival. (A) TCGA lower grade glioma (LGG) and glioblastoma multiforme (GBM). (B) CGGA Microarray. (C) GSE107850
from GEO datasets. Group was separated by the median value of synapse scores. Differences between two curves were estimated by log-rank test.
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and 1p/19q codeletion (Supplementary Figure S4). Finally, we
compared the survival predictive performance of synapse score,
IDH mutation, and 1p/19q codeletion status (Supplementary
Table S2). In most instances, synapse score outperforms IDH
mutation and 1p/19q codeletion.

DISCUSSION

Given the recently revealed roles of neuro-glioma synapse in
glioma development, here we curated a panel of 17 synapse-
related genes and proposed the synapse score as a biomarker for
the prognosis, grading, and diagnosis of gliomas. The synapse
score was validated by more than 3,000 samples of 12 datasets
from TCGA, CGGA, and GEO.

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid) receptor, one type of glutamate receptors, was
focused on in recent studies of neuron-glioma synapses
(Venkataramani et al., 2019; Venkatesh et al., 2019).
In our study, several AMPA glutamate receptor-related
terms, such as ionotropic glutamate receptor signaling
pathway (GO:0035235), AMPA glutamate receptor complex
(GO:0032281), and regulation of AMPA receptor activity
(GO:2000311), were filtered out to have strong survival
predictive capacities, suggesting a significant role of AMPA
receptor in gliomas.

In addition to AMPA receptor, other ionotropic glutamate
receptor genes are also used in the 17-gene set, including
N-Methyl-D-aspartate (NMDA) receptor [GRIN3A (Marco
et al., 2013), GRIN2C (Collingridge et al., 2009)], kainate
receptor [GRIK4 (Arora et al., 2018)], and non-classical
glutamate receptor such as glutamate delta-1 receptor [GRID1
(Gupta et al., 2015)], suggesting that other ionotropic
glutamate receptors also perform important functions in
gliomas. Meanwhile, a gene from other synaptic receptors
such as nicotinic acetylcholine receptor [CHRNB2 (Diaz-
Otero et al., 2008)] was also collected. More genes do not
belong to receptors, and they perform neuronal-specific
synthesis and glycosylation [TNR (Woodworth et al., 2004)],
signal transduction [MAPK8IP2 (Kennedy et al., 2007)],
neurotransmission [UNC13A (Reddy-Alla et al., 2017), LRP4
(Sun et al., 2016)], synapse formation [LRP4 (Karakatsani et al.,
2017)], inhibitory synapse differentiation [IGSF21 (Tanabe
et al., 2017)], and other functions in synapses (Supplementary
Table S1).

Many of the selected genes have been found to be associated
with neurological diseases, including autism [SHANK2
(Monteiro and Feng, 2017; Won et al., 2012)], chronic pain
[CACNG2 (Bortsov et al., 2019; Nissenbaum et al., 2010)],
epilepsy [CHRNB2 (Diaz-Otero et al., 2008)], Huntington’s
disease [GRIN3A (Marco et al., 2013)], and neurodegenerative
diseases [SYBU (Bereczki et al., 2018)] (Supplementary
Table S1). However, only a few genes have been studied in
gliomas. For example, PFN1 has been found to be involved
in tumor angiogenesis in glioblastoma (Fan et al., 2014) and
was also found to be associated with poor prognosis in our
study (HR > 1) (Figure 1B). According to a proteomics
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FIGURE 3 | Synapse scores were significantly lower in higher grade gliomas. (A) TCGA lower grade glioma (LGG) and glioblastoma multiforme (GBM). (B) CGGA
RNAseq batch 1. (C) GSE4290. (D) GSE16011. Significances of difference between two groups were analyzed by two-side Wilcoxon rank sum test. *p < 0.05,
**p < 0.01, ***p < 0.001.

study of gliomas (Bi et al., 2017), TNR is down-regulated in
glioblastomas. A similar result was found in our study, that
low expression of this gene was correlated with poor prognosis
(HR < 1). These studies validate our findings and suggest
the research and application values of other synapse-related
genes in gliomas.

When screening GO terms, there are 17 terms with the
opposite directions (HR > 1 in one batch and HR < 1 in
the other). Interestingly, all of these terms are negative in
the batch 1 dataset and positive in the batch two dataset.
There are 4 terms that are not significant in both datasets
(FDR ≥ 0.05), which may be random effects. In addition, 10
terms are only significant in batch one, while one term is
only significant in batch two, which may be caused by batch
effect and differences of samples. Moreover, there are two terms
that are significant but have opposite directions in two batches
(neuroblast proliferation and neuron maturation). Given their
low FDR ranking (FDR1: 140th, FDR2: 126th for neuroblast
proliferation, FDR1: 144th, FDR2: 121st for neuron maturation
out of 163 terms, ascendingly), these could be false positives.
The practical effects of these terms need to be widely validated
in future studies.

There are 121 significant (FDR1 < 0.05 and FDR2 < 0.05)
synapse-related terms with the same direction of HRs in two
batches of datasets, suggesting important roles of synapse-
related genes in gliomas. But we could not consider all of
the terms and genes due to time complexity. Finding the
best gene set is a non-deterministic polynomial-time (NP)
hard problem. In this paper, we used heuristic algorithms to
find the optimal gene set by adding genes one by one in
ascending order of combined FDR. It is known that heuristic
algorithms do not always get the best results. There could
be a gene set and a machine learning method with better
prognostic ability using the synapse-related genes. Although
our 17-gene set may not be the best result, it is still
validated by a permutation experiment and 10 additional
datasets and showed better prognostic capability than traditional
biomarkers, IDH mutation, and 1p/19q codeletion, revealing

the extensive research and application value of synapse-related
genes in gliomas.

In spite of its ability as glioma biomarker for the identified
synapse-related gene panel, it should be especially noted that
the result seems the opposite of existing knowledge. That
is, it was reported that neuro-glioma synapse could promote
tumor progression and metastasis (Venkataramani et al., 2019;
Venkatesh et al., 2019; Zeng et al., 2019), which thus can
infer that synapse-related genes should result in a poorer
prognosis. However, we revealed it is associated with a better
but not poorer prognosis. One possible reason is that the
more severe the disease is, the less the normal neurons exist.
Molecular processes may play different roles in various cells,
organs, and diseases. For example, as an important discovery
in glioma research, IDH mutation is identified as one of the
early events of gliomas, and the epigenetic changes caused by
IDH mutation are considered as a main tumor driver (Turkalp
et al., 2014). Nevertheless, clinical studies have found that IDH
mutation can lead to a longer survival time (Cancer Genome
Atlas Research Network et al., 2015). Similarly, immunotherapy,
which has been widely used, was criticized for producing
serious side effects (Moslehi et al., 2018). These instances
suggest that the synapse-related gene panel could also have
multiple aspects.

Analogously, IDH-mut and 1p/19q codeletion are typically
biomarkers that promote glioma progression but benefit
prognosis. Existing studies have focused on mechanisms
that promote glioma, but the reasons for better prognosis
are generally reported by clinical studies, such as better
chemoradiotherapy sensitivity (Chen et al., 2017). We
conjectured that synapses, IDH mutation, and 1p/19q codeletion
shared a part of the mechanism that resulted in the observed
phenomenon. The causations in synapses, mutations, and
gliomas remain to be explored.

In summary, although the mechanism is unclear, we
revealed that the proposed synapse score is an independent
and potentially better biomarker for glioma overall survival
and shows a predictive capacity in different grade gliomas

Frontiers in Neuroscience | www.frontiersin.org 6 August 2020 | Volume 14 | Article 8229

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00822 August 7, 2020 Time: 19:2 # 7

Ji et al. Synapse Related Genes Predict Gliomas

and normal brain tissues, which could be useful in the prognosis,
grading, and diagnosis of gliomas.
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Zhengzhou, China, 4 Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic
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Recent reports suggest that microRNAs (miRNAs) may serve as prognostic biomarkers

in osteosarcoma. Due to osteosarcoma’s early metastasis and poor prognosis, it is very

important to find novel prognostic biomarkers for improving osteosarcoma’s prognosis.

Herein we propose ameta-analysis for serummiRNA’s prognostic value in osteosarcoma.

In this study, the literature available from PubMed, Web of Science, Embase, and

Cochrane Library databases was reviewed. The pooled hazard ratios (HRs) with their

95% confidence intervals (CIs) were calculated to evaluate miRNAs prognostic values.

A total of 20 studies investigating serum miRNAs were included in this meta-analysis;

the initial terminal point of these reports included overall survival (OS), progression-free

survival (PFS), disease-free survival (DFS), and recurrence-free survival (RFS). For

prognostic meta-analyses, the pooled HR for terminal events of higher expression of

miRNAs and lower expression of miRNAs were 5.68 (95% CI 4.73–6.82, P < 0.05)

and 3.78 (95% CI 3.27–4.37, P < 0.05), respectively. Additionally, subgroup analyses

were conducted based on the analysis methods applied and clinicopathological features

reported. In the pooled analyses, the miRNA expression levels are associated with poor

prognosis according to both univariate and multivariate analyses. Furthermore, serum

miRNAs (miRNA-195, miRNA-27a, miRNA-191, miRNA-300, miRNA-326, miRNA-497,

miRNA-95-3p, miRNA-223, miRNA-491-5p, miRNA-124, miRNA-101, miRNA-139-5p,

miRNA-194) were associated with poor OS and found to be closely correlated with

clinical stage and distant metastasis in osteosarcoma. The results illustrate that low or

high expression of these specific miRNAs are both potentially useful as prognostic serum

biomarkers in osteosarcoma, and miRNAs (miRNA-195, miRNA-27a, miRNA-191,

miRNA-300, miRNA-326, miRNA-497, miRNA-95-3p, miRNA-223, miRNA-491-5p,

miRNA-124, miRNA-101, miRNA-139-5p, miRNA-194) may indicate clinical stage and

metastasis in this form of cancer.
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INTRODUCTION

Patient survival in osteosarcoma has improved in recent
decades. Osteosarcoma is the most common malignant bone
tumor, with a worldwide incidence of approximately one
to three cases annually per million (Kansara et al., 2014).
Current therapies include surgical resection and combination
neoadjuvant chemotherapy, which is reported to have a curative
effect in ∼70% of patients (Collins et al., 2013). Metastasis and
recurrence are common challenges in refractory osteosarcoma,
that worsen patient prognosis (Bielack et al., 2002). The highly
malignant nature of osteosarcoma, as well as its high rates
of recurrence and lung metastasis represent strong concerns
(Jones et al., 2012; Ogawa et al., 2013). Clinically, histological
examination of the biopsy specimens is preferred for the
diagnosis or prognostic evaluation of osteosarcoma. However,
such invasive tests may be burdensome when monitoring the
progression of the disease, and the accuracy of diagnosis
and prognostic evaluation may vary because of differences
in sample collection and personnel. Therefore, it is essential
to develop novel approaches for the timely diagnosis of
osteosarcoma in order to achieve better prognosis (Gu et al.,
2014).

MiRNAs are small (about 21-nucleotide-long) non-coding
RNAs which can regulate gene expression (Filipowicz
et al., 2008). Elevated or downregulated miRNAs may act
as oncogenes or tumor suppressors in various cancers
(Hayashita et al., 2005; He et al., 2005; Kent and Mendell,
2006; Tian et al., 2019). Additionally, miRNAs that are stable
in serum or plasma, or in other biological samples, may have
potential utility as diagnostic or prognostic biomarkers
in different cancers (Calin and Croce, 2006; Esquela-
Kerscher and Slack, 2006; Mitchell et al., 2008; Zhou et al.,
2016). These findings show that miRNAs warrant attention
as potential novel biomarkers for diagnosis or prognosis
in osteosarcoma.

Although numerous recent studies have reported a correlation
between prognosis in osteosarcoma andmiRNA expression, none
have demonstrated sufficient evidence for clinical translation
of their findings. For instance, two previous meta-analyses
have concluded the prognostic value of miRNA expression in
osteosarcoma (Cheng et al., 2017; Kim et al., 2017); however,
in these studies, either tissue or both tissue and blood were
used as samples. Tissue samples’ obtainment are invasive for
patients than serum samples. To optimally obtain samples from
patients and increase patients’ acceptability, it is important
for us to find novel serum biomarker for osteosarcoma. To
the best of our knowledge, very few studies have provided
robust evidence on the potential prognostic utility of serum
miRNAs in osteosarcoma. Therefore, in the present work,
we conducted a meta-analysis of studies in which serum
samples were analyzed, to explore the prognostic value of
miRNAs in osteosarcoma. Following which, subgroup analyses
included analysis method and clinicopathological features
were also explored to better analyze the prognostic value of
various groups.

METHODS

This study was implemented according to the guidelines of
the Meta-analysis of Observational Studies in Epidemiology
(MOOSE) (Stroup et al., 2000), and the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines (Moher et al., 2009). We have completed the
prognostic value of serum microRNA. In constructing the
prognostic value of serum microRNA, we comply with the
population, interventions, comparators, out-comes, and study
designs (PICOS) principle to complete the research design.

Selection of Studies
The literature available in PubMed, Web of Science, Embase,
and Cochrane Library databases, up to June 20, 2020, was
investigated. The combination of search terms used was
(osteosarcoma OR osteogenic sarcoma) AND (microRNA OR
miRNA OR miR) AND (prognosis OR survival OR prognostic
OR outcome). Only studies of the Chinese population published
in English were included, and studies analyzing samples other
than serum were excluded.

Inclusion and Exclusion Criteria
Inclusion criteria for studies in this review were as follows:
(1) studies investigating the utility of miRNAs for evaluating
prognosis in osteosarcoma, (2) serum miRNAs’ assay method
based on quantitative real-time polymerase chain reaction,
(3) studies presenting sufficient data to allow calculation of
HR and 95% CI, and (4) studies in which a cut-off value
was defined. Studies were subject to the following exclusion
criteria: (1) studies reporting duplicate data; studies in non-
Chinese populations, (2) non-English publications, review
articles, or meta-analysis, (3) studies reporting insufficient data
for pooled analysis, and (4) studies of tissue, cell lines, or
animal experiments.

Quality Assessment and Data Extraction
For prognostic meta-analyses, the quality of included studies
was assessed using the Newcastle–Ottawa Scale (NOS), based on
the following categories: selection, comparability, and outcome;
the highest score was 9, with scores ≥6 indicating studies of
high quality (Stang, 2010). The extracted data and information
included were as follows: the first author, the year of publication,
the country of origin, osteosarcoma sample size, sample type,
cut off value, miRNAs characteristics, analysis methods, clinical
outcomes, and detection methods. Two investigators retrieved
and assessed the literature, respectively, and disagreements were
resolved by extensive discussion.

Statistical Methods
All analyses were performed using STATA 12.0 software. Based
on the information provided in the included studies, the pooled
HRs with 95% CIs were calculated using this meta-analysis
model. Forest plots were used to estimate the effect of miRNA
expression on overall survival (OS), progression-free survival
(PFS), disease-free survival (DFS), and recurrence free-survival
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(RFS) (Hong et al., 2014; Zhang et al., 2014a,b; Cai et al., 2015;
Tang et al., 2015; Wang N. G. et al., 2015; Wang T. et al.,
2015; Yang et al., 2015; Cao et al., 2016; Dong et al., 2016; Liu
et al., 2016; Niu et al., 2016; Pang et al., 2016; Wang S. N.
et al., 2017; Wang Z. et al., 2017; Cong et al., 2018; Li et al.,
2018; Yao et al., 2018; Zhou et al., 2018; Shi et al., 2020). I2

index was used to assess the between-study heterogeneity, with
I2 > 50% indicating a large degree of heterogeneity; in this
case, a random effect model was applied. I2 ≤ 50% implied that
there was no significant heterogeneity, and the fixed effect model
was used. Next, subgroup analyses were conducted to identify
potential sources of heterogeneity and assess the prognostic

value of different subgroups; the level of significance was set at
P < 0.05. In addition, Begg’s test (Begg and Mazumdar, 1994)
and Egger’s test (Egger et al., 1997) were performed to assess
the publication bias; values of P < 0.05 indicated significant
publication bias.

RESULTS

Characteristics of the Included Studies and
Quality Assessment
The screening process for the studies is shown in detail in
Figure 1. A primary search of the PubMed, Web of Science,

FIGURE 1 | Flow-process diagram of the study selection process.

Frontiers in Genetics | www.frontiersin.org 3 August 2020 | Volume 11 | Article 78914

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Luo et al. Serum miRNAs as Osteosarcoma Biomarkers

Embase, and Cochrane Library databases, using the search
strategy described, identified 2,596 articles. The innovative
contribution of this work is focused on studies which using
serum sample, herein studies using plasma or tissue were
excluded, as such, all included studies examined serum samples.
The data extracted from the included studies, the quality of
the reports and heterogeneity are shown in Tables 1, 2. The
osteosarcoma sample size ranged from 60 to 185 subjects. The
assaymethod was based on qRT-PCR. Cut off values were defined
in the included studies to differentiate between high-expression
miRNAs and low-expression miRNAs, and multivariate or
univariate analyses were performed. The quality of each study
was high according to the NOS (Stang, 2010). A total of 20
studies and 2,242 osteosarcoma patients were included in this
prognostic meta-analysis.

Prognostic Accuracy and Subgroup
Analyses
To analyze the prognostic value of miRNA expression in
osteosarcoma, forest plots of data from the 19 studies, in
accordance with HRs and their 95% CIs, are shown in Figure 2.
The HRs were calculated on the basis of low-expression or high-
expression miRNAs, respectively. HR >1 or <1 implied poor
or good prognosis for patients with osteosarcoma, respectively.

The pooled HRs for low- and high-expression miRNAs were
3.78 (95% CI 3.27–4.37, P < 0.05) and 5.68 (95% CI 4.73–6.82,
P < 0.05), respectively, and both tended to be associated with
a poorer outcome. Additionally, low-expression miRNAs were
stratified by outcomes, including OS (pooled HR = 3.59, 95%
CI 3.02–4.26, P < 0.05), DFS (pooled HR = 4.25, 95% CI 3.14–
5.76, P < 0.05), and RFS (pooled HR = 4.34, 95% CI 2.48–7.60,
P < 0.05). Furthermore, high-expression miRNAs were classified
by outcomes, including OS (pooled HR = 5.98, 95% CI 4.58–
7.80, P < 0.05), DFS (pooled HR = 4.80, 95% CI 3.53–6.53,
P < 0.05), RFS (pooled HR= 6.82, 95% CI 2.13–21.88, P < 0.05),
and PFS (pooled HR = 6.95, 95% CI 4.34–11.12, P < 0.05),
and these miRNAs were also associated with poor prognosis
in osteosarcoma.

Subgroup analyses were performed according to analysis
method and clinicopathological features in order to explore the
correlation of miRNA expression on prognosis in osteosarcoma,
as shown in Figures 3, 4, respectively. As shown in Figure 3A,
subgroup analyses reveal that low expression levels of
miRNA were significantly correlated with poor prognosis
in osteosarcoma according to both multivariate (pooled HR
= 3.88, 95% CI 3.29–4.58, P < 0.05) and univariate analyses
(pooled HR = 3.47, 95% CI 2.57–4.68, P < 0.05). Similar results
are shown in Figure 3B: multivariate (pooled HR = 5.28, 95%

TABLE 1 | The extracted data and quality assessment of literature on the prognostic utility of miRNAs in osteosarcoma.

Author/miRNA Year Country Sample

size

Sample

type

Cut off value miRNA

expression with

poor prognosis

Assay

method

Analysis

method

Outcome NOS

score

Hong miRNA-29a/29b 2014 China 80 Serum 2.85/3.27 High qRT-PCR M OS, DFS 8

Zhang miRNA-196a/196b 2014 China 100 Serum 4.86/5.48 High qRT-PCR M OS, DFS 8

Cai miRNA-195 2014 China 166 Serum 1.44 Low qRT-PCR M OS, DFS 8

Zhang miRNA-133b/206 2014 China 100 Serum 2.66/2.84 Low qRT-PCR M OS, DFS 8

Yang miRNA-221 2015 China 108 Serum 2.42 High qRT-PCR M RFS, OS 7

Wang miRNA-152 2015 China 80 Serum NR Low qRT-PCR M OS 6

Tang miRNA-27a 2015 China 166 Serum 3.70 High qRT-PCR M OS, DFS 8

Wang miRNA-191 2015 China 100 Serum 3.56 High qRT-PCR M OS, DFS 7

Dong miRNA-223 2016 China 112 Serum 1.21 Low qRT-PCR M OS 6

Liu miRNA-300 2016 China 114 Serum NR High qRT-PCR U/M OS/DFS 6

Cao miRNA-326 2016 China 60 Serum Mean level Low qRT-PCR M OS 6

Niu miRNA-95-3p 2016 China 133 Serum 0.75 Low qRT-PCR M OS 7

Pang miRNA-497 2016 China 185 Serum 4.80 Low qRT-PCR U/M OS 7

Li miRNA-542-3p 2017 China 76 Serum 0.87 High qRT-PCR U/M OS, PFS 7

Wang miRNA-491 2017 China 102 Serum Mean level Low qRT-PCR U/M OS 7

Wang miRNA-491-5p 2017 China 72 Serum NR Low qRT-PCR M OS, DFS 6

Cong miRNA-124 2017 China 114 Serum 0.37-fold Low qRT-PCR M OS, DFS 6

Yao miRNA-101 2018 China 152 Serum Median level Low qRT-PCR U/M OS, RFS 6

Zhou miRNA-139-5p 2018 China 98 Serum Median level Low qRT-PCR U/M OS 7

Shi miRNA-194 2020 China 124 Serum Median level Low qRT-PCR M OS,DFS 7

M, Multivariate analysis; U, Univariate analysis; DFS, Disease-free survival; OS, Overall survival; RFS, Recurrence-free survival; PFS, Progression-free survival; NR, Not reported; high,

high expression; low, low expression.
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TABLE 2 | Prognostic value of the microRNAs expression profile mentioned in the literature.

microRNA HR (95% CI) Heterogeneity test Sample size Expression Outcome Number of

microRNA
I2 (%) Chi2 (P)

miR-133b 5.53 (2.58–11.83) 0.0% 0.939 100 Low expression OS/DFS 2

miR-206 5.66 (2.69–11.88) 0.0% 0.914 100 Low expression OS/DFS 2

miR-133b/206 9.48 (4.59–19.57) 0.0% 0.953 100 Low expression OS/DFS 2

miR-195 4.23 (2.31–7.73) 0.0% 0.568 166 Low expression OS/DFS 2

miR-152 0.13 (0.02–0.70) – – 80 Low expression OS 1

miR-223 4.59 (1.84–11.45) – – 112 Low expression OS 1

miR-326 3.90 (1.13–12.53) – – 60 Low expression OS 1

miR-95-3p 4.22 (2.31–8.07) – – 133 Low expression OS 1

miR-497 3.96 (2.39–6.58) 0.0% 0.868 185 Low expression OS 2

miR-491 3.06 (1.56–6.00) 0.0% 0.928 102 Low expression OS 2

miR-124 3.73 (2.27–6.12) 0.0% 0.841 114 Low expression OS/DFS 2

miR-491-5p 2.68 (1.66–4.32) 0.0% 0.951 72 Low expression DFS/OS 2

miR-101 4.16 (2.80–6.19) 0.0% 0.995 152 Low expression OS/RFS 4

miR-139-5p 3.03 (2.17–4.23) 0.0% 0.707 98 Low expression OS 2

miR-29a 5.68 (2.50–12.92) 0.0% 0.903 80 High expression OS/DFS 2

miR-29b 5.71 (2.58–12.67) 0.0% 0.904 80 High expression OS/DFS 2

miR-196a 6.59 (3.08–14.11) 0.0% 0.896 100 High expression OS/DFS 2

miR-196b 6.64 (3.09–14.24) 0.0% 0.900 100 High expression OS/DFS 2

miR-196a/196b 9.99 (4.82–20.69) 0.0% 0.979 100 High expression OS/DFS 2

miR-221 7.26 (3.29–16.04) 0.0% 0.886 108 High expression RFS/OS 2

miR-27a 3.36 (1.90–5.95) 0.0% 0.851 166 High expression OS/DFS 2

miR-191 3.05 (1.75–5.31) 0.0% 0.593 100 High expression OS/DFS 2

miR-300 5.07 (3.41–7.54) 0.0% 0.958 114 High expression OS/DFS 4

miR-542-3p 7.83 (5.41–11.34) 0.0% 0.431 76 High expression OS/PFS 4

miR-194 4.01 (2.53–6.36) 0.0% 0.695 124 Low expression OS/DFS 2

DFS, Disease-free survival; OS, Overall survival; RFS, Recurrence-free survival; PFS, Progression-free survival; –, Not available.

CI 4.29–6.51, P < 0.05) and univariate analyses (pooled HR
= 7.23, 95% CI 4.93–10.59, P < 0.05) both indicate that high
expression of miRNA are correlated with poor prognosis in
osteosarcoma. Additionally, as shown in Figure 4, the level of
expression of serum miRNAs is closely correlated with distant
metastasis (pooled HR = 3.30, 95% CI 2.77–3.94, P < 0.05), and
clinical stage (pooled HR = 3.48, 95% CI 2.91–4.15, P < 0.05)
in osteosarcoma.

Publication Bias and Sensitivity Analysis
The P-values for Begg’s tests of low-expression miRNAs and
high-expression miRNAs were 0.028 and 0.602, respectively,
and the corresponding P-values for Egger’s tests were 0.544
and 0.283. Furthermore, the funnel plots of Begg’s and Egger’s
are all symmetrical demonstrating that there is no significant
publication bias in this research (Figure 5). Sensitivity analyses
revealed that none of the studies were outliers, suggesting that
the pooled results of this research are credible.

DISCUSSION

Although osteosarcoma is the common malignant bone tumor
(Kansara et al., 2014) and extensive progress has been
made in the development of effective therapies (Bielack
et al., 2002; Collins et al., 2013), patient prognosis remains
unsatisfactory. Therefore, for improved treatment, management,
and patient prognosis in osteosarcoma, the identification
of novel prognostic biomarkers is critical. The potential
utility of circulating miRNAs as non-invasive biomarkers
has been demonstrated in several types of cancers (Zhou
et al., 2016; Tan et al., 2019). Furthermore, blood testing
is more easily accepted by patients than other invasive
tests. Therefore, we conducted a meta-analysis of studies
investigating the prognostic capacity of serum miRNAs in
osteosarcoma. A more detailed subgroup analysis was also
conducted to further examine the association between analysis
methods, clinical stage, metastasis, and miRNA expression level
in osteosarcoma.
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FIGURE 2 | Forest plot for miRNA expression and prognosis in osteosarcoma, stratified by outcomes included (OS, DFS, RFS, PFS). (A) Low-expression miRNAs

correlated with poor prognosis in osteosarcoma, stratified by outcomes (OS, DFS, RFS). (B) High-expression miRNAs correlated with poor prognosis in

osteosarcoma, stratified by event times (OS, DFS, RFS, PFS).

FIGURE 3 | Forest plot for miRNA expression and prognosis of osteosarcoma, stratified by analysis method. (A) Low-expression miRNAs correlated with poor

prognosis in osteosarcoma, stratified by analysis method (M and U). (B) High-expression miRNAs with poor prognosis in osteosarcoma, stratified by analysis method

(M and U). The p-values for heterogeneity of HR by subgroup, and overall, are shown. M, Multivariate analysis; U, Univariate analysis.

We investigated 20 studies on 23 different miRNAs in
osteosarcoma in this meta-analysis; these included 9 highly
expressed miRNAs (miRNA-29a, miRNA-29b, miRNA-196a,

miRNA-196b, miRNA-221, miRNA-27a, miRNA-191, miRNA-
542-3p, and miRNA-300) (Hong et al., 2014; Zhang et al.,
2014a; Tang et al., 2015; Wang T. et al., 2015; Yang et al.,
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FIGURE 4 | Forest plot of the correlation between metastasis, clinical stage, and miRNA expression in studies with poor overall survival. (A) Correlation between

miRNA level and tumor metastasis in osteosarcoma with poor overall survival, stratified by miRNAs expression (high-expression miRNA or low-expression miRNA). (B)

Correlation between miRNA level and clinical stage in osteosarcoma with poor overall survival, stratified by miRNA expression (high-expression miRNA or

low-expression miRNA).

FIGURE 5 | Forest plot of the publication bias. (A) Begg’s funnel plot of publication bias for the association between miRNA low expression and poor prognosis. (B)

Egger’s test of publication bias for the association between miRNA low expression and poor prognosis. (C) Begg’s funnel plot of publication bias for the association

between miRNA high expression and poor prognosis. (D) Egger’s test of publication bias for the association between miRNA high expression and poor prognosis.
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2015; Li et al., 2018), and 14 miRNAs with low expression
(miRNA-195, miRNA-223, miRNA-497, miRNA-491, miRNA-
124, miRNA-101, miRNA-139-5p, miRNA-326, miRNA-133b,
miRNA-206, miRNA-152, miRNA-95-3p, and miRNA-491-5p,
miR-194) (Cai et al., 2015; Cao et al., 2016; Dong et al., 2016;
Pang et al., 2016; Wang S. N. et al., 2017; Cong et al., 2018;
Yao et al., 2018; Zhou et al., 2018; Shi et al., 2020). A previous
meta-analysis has reported that aberrant expression of miRNAs,
in terms of both elevated and downregulated expression, are
associated with poor prognosis in osteosarcoma (Cheng et al.,
2017). Similar to the above findings, our data confirm the
observation that serum miRNAs with aberrantly elevated or
downregulated levels of expression are strongly correlated with
poor prognosis for osteosarcoma. Among osteosarcoma patients,
high expression of serum miRNAs (miRNA-196a and miRNA-
196b) and combined expression of miRNA-196a/miRNA-196b
were independent prognostic factors for OS and DFS (Zhang
et al., 2014a). Further, Frampton et al. (2014) reported that
miRNA-21, miRNA-23a, and miRNA-27a are highly expressed
in pancreatic tumor, and their combination could serve as
a prognostic biomarker in this tumor. The above results
suggest that the development of an optimal panel of miRNA
expression would be useful biomarker to improve prognosis
in osteosarcoma.

The levels of miRNA-27a, miRNA-191, miRNA-195, miRNA-
497, miRNA-223, miRNA-124, miRNA-101, miRNA-139-5p,
miRNA-326, miRNA-95-3p, miRNA-491-5p, and miRNA-300,
miRNA-194 (Cai et al., 2015; Tang et al., 2015; Wang T. et
al., 2015; Cao et al., 2016; Dong et al., 2016; Liu et al., 2016;
Niu et al., 2016; Pang et al., 2016; Wang Z. et al., 2017; Cong
et al., 2018; Yao et al., 2018; Zhou et al., 2018; Shi et al.,
2020) are potentially associated with clinical stage as well as
the tumor metastasis in osteosarcoma. miRNA-27a, miRNA-191,
and miRNA-300 are highly expressed in osteosarcoma, while
miRNA-195, miRNA-497, miRNA-223, miRNA-124, miRNA-
101, miRNA-139-5p, miRNA-326, miRNA-95-3p, miRNA-194,
and miRNA-491-5p are expressed at low levels. In particular,
the high expression of miR-191 may affect cancer progression
through various pathways, and is associated with therapeutic
outcomes or poor prognosis in cancers (Elyakim et al., 2010;
Li et al., 2017). As such, miR-27a and miR-191 serve as
regulatory factors in osteosarcoma. Low expression of miR-
195 may act as a regulator in hepatocellular carcinoma cells,
with potential utility in cancer therapy (Xu et al., 2009). In
addition, low expression of serum miR-497 may be associated
with tumor development (Kong et al., 2015). miR-124 was
found to be expressed at low levels and correlated with invasion
and metastasis in hepatocellular carcinoma (HCC), which may
predict poor prognosis (Zheng et al., 2012). Low expression of
miR-101 has been shown to inhibit the progression of bladder
transitional cell carcinoma, and may serve as a tumor suppressor
gene in this disease (Friedman et al., 2009). miR-139-5p has
been shown to be expressed at low levels, and is considered to
act as a regulator of cell proliferation, metastasis, apoptosis, and
the cell cycle (Zhang et al., 2014c). In glioblastomas, miR-326
shows low expression and acts as a tumor suppressor (Nawaz
et al., 2016). These results demonstrate, at a molecular level,

that miRNAs have diagnostic or prognostic utility that could be
extended to other tumors. miR-195, miR-497, miR-223, miR-124,
miR-101, miR-139-5p, and miR-326 act as tumor suppressors
in cancers, which is consistent with the results obtained in our
study. Therefore, the conclusions that high-expression or low-
expressionmiRNAs are potential novel biomarkers for predicting
prognosis in osteosarcoma are reliable.

However, this study has some limitations. All relevant
publications may not have been included in the databases,
and specific subgroup analyses showed mild heterogeneity.
HRs and RRs were merged into HRs in the included
literature, potentially leading to slight logical errors, finally
the included studies’ population limited to Chinese. Despite
these limitations, this study suggests that miRNAs have
potential utility as novel prognostic markers in osteosarcoma.
Further investigation of the dynamic expressional profile
of miRNAs during the entire course of the development
and treatment of osteosarcoma is needed for clinical
implementation of miRNAs as biomarkers in either diagnosis
or prognosis.

Despite these limitations, the results of this study suggest
that serum miRNAs represent excellent biomarkers of
prognosis in osteosarcoma. We conclude that miRNAs
in this systematic review with aberrantly low or high
expression are indicative of poor prognosis in osteosarcoma.
Further, the expression of miRNAs(miRNA-195, miRNA-
27a, miRNA-191, miRNA-300, miRNA-326, miRNA-497,
miRNA-95-3p, miRNA-223, miRNA-491-5p, miRNA-124,
miRNA-101, miRNA-139-5p, miRNA-194) is correlated
with clinical stage and tumor metastasis in this disease.
However, the implementation of miRNAs as biomarkers for
monitoring cancer progression, clinical stage and distant
metastasis and guiding therapeutic interventions improving
poor prognosis. Future studies should aim to address these
critical aspects.
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Non-coding RNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)
have been found to be indispensable factors in carcinogenesis and cancer development.
Numerous studies have explored the regulatory functions of these molecules and
identified the synergistic interactions among lncRNAs or miRNAs, while those between
lncRNAs and miRNAs remain to be investigated. In this study, we constructed and
characterized an lncRNA–miRNA synergistic network following a four-step approach
by integrating the regulatory pairs and expression profiles. The synergistic interactions
with more shared regulatory mRNAs were found to have higher interactional intensity.
Through the analysis of nodes in the network, we found that lncRNAs played roles
that are more central and had similar synergistic interactions with their neighbors when
compared with miRNAs. In addition, known colon adenocarcinoma (COAD)-related
RNAs were found to be enriched in this synergistic network, with higher degrees,
betweenness, and closeness. Finally, we proposed a risk score model to predict the
clinical outcome for COAD patients based on two prognostic hub lncRNAs, MEG3 and
ZEB1-AS1. Moreover, the hierarchical networks of these two lncRNAs could contribute
to the understanding of the biological mechanism of tumorigenesis. For each lncRNA–
miRNA interaction in the hub-related subnetwork and two hierarchical networks, we
performed RNAup method to evaluate their binding energy. Our results identified two
important lncRNAs with prognostic roles in colon cancer and dissected their regulatory
mechanism involving synergistic interaction with miRNAs.

Keywords: non-coding RNA, synergistic interaction, colon cancer, biological mechanism, prognostic
biomarker
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INTRODUCTION

Colon adenocarcinoma (COAD) has emerged as one of the
leading causes of cancer-related deaths worldwide, with an
increasing prevalence (Dienstmann et al., 2015). COAD is a
complex disease, whose initiation and progression is closely
related with mechanisms of regulation of gene expression (Liu
et al., 2017). In recent years, with the development of next-
generation sequencing technologies, studies suggested that less
than 2% of the human genome encoded protein-coding genes,
whereas non-coding RNAs represented most of the human
transcriptome (Tay et al., 2014; Levy and Myers, 2016). Non-
coding transcripts are divided into various classes, among which
long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)
have attracted increasing attention. Notably, lncRNAs have been
implicated in a diverse range of biological processes, including
proliferation, migration, or genomic stability (Mercer et al., 2009;
Fatica and Bozzoni, 2014). For instance, some lncRNAs have
been reported to regulate gene expression through binding to
PRC2 and acting as important controllers of cellular functions
(Lee, 2012). miRNAs are small non-coding RNAs that also play
a key role in gene regulation (Xu et al., 2019). miRNAs regulate
gene expression mainly by binding to the 3′-untranslated regions
of mRNAs and leading to their degradation or inhibition, and
various studies have demonstrated that aberrant gene expression
is closely linked to tumorigenesis, metastasis, and specific tumor
stages (Liu et al., 2009).

Previous studies have demonstrated that lncRNAs interact
with miRNAs to act on biological traits (Zhang et al., 2019):
for example, Kallen et al. (2013) found that the lncRNA H19
modulated miRNA let-7 by performing in vivo crosslinking
combined with affinity purification experiments. In summary,
lncRNAs and miRNAs could interact by regulating mRNAs, thus
playing critical roles in the pathological processes involved in
disease development (Liao et al., 2019). However, the biological
roles and functions of lncRNA–miRNA synergistic interactions
have not yet been described in COAD and should be investigated
to improve the efficiency of early diagnosis and treatment in the
tumorigenesis and progression of this disease.

In this study, we constructed and characterized the lncRNA–
miRNA synergistic network involved in COAD by integrating
the lncRNA/miRNA–mRNA regulation pairs and the expression
profiles of these RNA molecules. In total, we identified
305 positive and 294 negative synergistic lncRNA–miRNA
interactions with significantly shared mRNAs. We observed that
some of the synergistic lncRNAs and miRNAs were significantly
enriched with cancer RNAs, and COAD-related lncRNAs were
more important than COAD-related miRNAs. Finally, we
proposed a risk score model to predict the clinical outcome
of COAD patients based on two prognostic hub lncRNAs,
MEG3 and ZEB1-AS1, which were identified by univariate Cox
regression analysis. The biological mechanism involving these
two lncRNAs was further analyzed. For synergistic lncRNA–
miRNA interactions in the hub-related subnetwork and two
prognostic lncRNAs related interactions, we provided the
total free energy of binding evaluated by RNAup method.
Altogether, our analysis provides new insight for exploring

the molecular mechanisms of lncRNA–miRNA synergistic
interactions and uncovering candidate lncRNA biomarkers for
the prognosis of COAD.

MATERIALS AND METHODS

The lncRNA/miRNA–mRNA Regulation
Pairs
The miRNA–mRNA target data were downloaded and filtered
from StarBase (Li et al., 2014). We chose the miRNA–mRNA
interactions which were predicted by at least three of seven
target-predicting programs. These seven target-predicting
programs included PITA, RNA22, miRmap, DIANA-microT,
miRanda, PicTar, and TargetScan. Recent advances in high-
throughput sequencing of immunoprecipitated RNAs after
cross-linking (CLIP-Seq, HITS-CLIP, PAR-CLIP, CLASH, iCLIP)
provide powerful ways to identify biologically relevant RNA-
target interactions. To obtain the high-quality miRNA–mRNA
datasets, we further selected the miRNA–mRNA interactions
which were validated by at least three CLIP-seq data from above
interactions as the final miRNA–mRNA interactions. Similarly,
we obtained the lncRNA–mRNA interactions that have at least
two interactions and supported by at least three CLIP-seq
data (Supplementary Table S1). Moreover, we downloaded
the experimentally validated lncRNA–mRNA interactions
from LncReg and LncRNA2Target databases (Supplementary
Table S1; Zhou et al., 2015; Cheng et al., 2019). Integrating
the lncRNA–mRNA interactions downloaded from these three
databases, we obtained the final lncRNA–mRNA interactions.
This way, we obtained 1,336 lncRNA–mRNA and 202,712
miRNA–mRNA high-quality non-redundant interactions.

Expression Profiles and Clinical Data of
COAD Samples
The lncRNA, miRNA, and mRNA expression data for COAD
patients were downloaded from the Cancer Genome Atlas
(TCGA) database (Tomczak et al., 2015). For each expression
profile, RNAs with missing values in more than 30% samples were
removed and each of the remaining missing value was imputed
by the KNN Imputation. Then all expression values were log2
transformed to obtain the final expression profiles. We chose
sample-matched miRNA and lncRNA/mRNA expression profiles
for further analysis. The clinical data of COAD patients was also
obtained from TCGA.

CpG sites with missing values in more than 30% samples were
removed and each of the remaining missing value was imputed
by the KNN Imputation.

Collection of COAD-Related lncRNAs
and miRNAs
The COAD-related lncRNAs were downloaded from
LncRNADisease (Bao et al., 2019) and lnc2Cancer (Gao et al.,
2019). Similarly, we collected the COAD-related miRNAs from
several databases, including miR2Disease (Jiang et al., 2009),
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HMDD (Huang et al., 2019), SM2miR (Liu et al., 2013), and
OncomiRDB (Wang et al., 2014).

Construction of the lncRNA–miRNA
Synergistic Interaction Network
To identify the synergistic lncRNA–miRNA interactions, we
developed a four-step computational method by integrating
lncRNA–mRNA interactions, miRNA–mRNA interactions, and
expression profiles of lncRNA, miRNA, and mRNA in COAD
samples (Supplementary Figure S1).

First, high-quality lncRNA–mRNA and miRNA–mRNA
interactions were downloaded from several databases and
processed to obtain the non-redundant data as described above.
Second, the regulatory networks of lncRNA–mRNA and miRNA–
mRNA were constructed by filtering the lncRNA/miRNA–mRNA
pairs obtained from StarBase with their expression profiles. The
regulatory correlation between lncRNA/miRNA and mRNA
was evaluated by Pearson correlation coefficient based on the
matched lncRNA/miRNA and mRNA expression profiles. The
pairs with significant correlation were saved as the lncRNA–
mRNA (p-adjusted < 0.05) and miRNA–mRNA (R < -0.4,
p-adjusted < 0.05) interactions in COAD patients. Third,
we identified the co-regulated lncRNA–miRNA pairs by
evaluating the significance of their shared regulated mRNAs
(hypergeometric-test, p-adjusted < 0.01). Fourth, we used
Pearson correlation to evaluate the synergistic direction and
synergistic power of each co-regulated lncRNA–mRNA pair,
and the pairs with p < 0.05 were considered the final synergistic
lncRNA–mRNA pairs. Finally, after assembling the synergistic
lncRNA–mRNA pairs, we obtained the lncRNA–miRNA
synergistic interaction network. Two types of nodes were
involved in the network (lncRNAs and miRNAs), with positive
or negative synergistic regulations.

Survival Analysis According to the Risk
Score Model
We evaluated the clinical outcomes for COAD patients by our
risk score model based on the expression levels of MEG3 and
ZEB1-AS1. We first divided the COAD samples into training
(70% of the samples) and test (30% of the samples) sets. The
risk score model was constructed by considering the individual
power of MEG3 and ZEB1-AS1 evaluated by the univariable Cox
regression analysis and their expression levels in training samples
as follows:

Risk score =
2∑

i=1

coefi × expi

where expi is the expression level of MEG3 or ZEB1-AS1
and coefi is the regression coefficient of MEG3 or ZEB1-AS1
estimated by univariate Cox regression analysis. As a result, the
risk score for each COAD patient was computed by the formula:

Risk score =
(
0.4933× expression value of MEG3

)
+ (1.1077× expression value of ZEB1− AS1 (1)

The median risk score value in the training samples was
chosen as the cut-off value to classify patients into high-risk

and low-risk groups from the training and test sets, respectively.
Survival analyses were performed to assess the difference in
clinical outcome between the high-risk and low-risk groups, and
statistical significance was evaluated by a log-rank test using the
R package “survival.”

Network Visualization
The networks were visualized by Cytoscape 3.3.0 (Shannon
et al., 2003), including the synergistic lncRNA–miRNA network,
the hub-related subnetwork and the MEG3/ZEB1-AS1-related
hierarchical networks.

RESULTS

Construction and Characterization of the
Synergistic lncRNA–miRNA Network
Based on the lncRNA/miRNA–mRNA regulation pairs
downloaded from databases and expression profiles of lncRNA,
miRNA, and mRNA, we constructed a synergistic lncRNA–
miRNA network in the context of COAD (Figure 1A). As
described in the ‘Materials and Methods’ section, we constructed
this network in four steps. In the first step, we obtained 455
lncRNA–mRNA and 28,639 miRNA–mRNA COAD-specific
regulation pairs (Table 1). Then, we identified 1,368 co-regulated
lncRNA–miRNA pairs with significantly shared mRNAs by
a hypergeometric test (Table 1). Finally, Pearson correlation
analysis was used to filter the co-regulated lncRNA–miRNA
pairs, and we obtained 305 positive and 294 negative synergistic
lncRNA–miRNA interactions, covering 88 lncRNA and 161
miRNAs (Table 1, Figure 1B and Supplementary Table S2).

To explore the architecture and features of the synergistic
network, its topological properties were analyzed. Through
the analysis of node degree distribution, we found that the
majority of nodes had few synergistic interactions, while a small
portion had many interactions. This fits with the power-law
distribution, suggesting that the synergistic lncRNA–miRNA
network was scale-free and different from randomly generated
networks (R2 = 0.82, Figure 1C). Moreover, we compared
the clustering coefficient between our synergistic network and
random networks. The result showed that the lncRNAs and
miRNAs in our network had tight synergistic interactions
(p < 0.001, Figure 1D). The synergistic lncRNA–miRNA pairs
share varying numbers of mRNAs. In order to explore the
relationship between their synergistic intensity and the number
of shared mRNAs, we compared the co-expression significance
with different numbers of shared mRNAs. The result showed
that those lncRNA–miRNA pairs with more shared regulated
mRNAs tended to be more significantly co-expressed to achieve
coordinated regulation (R = 0.97, p = 0.026, Figure 1E).

lncRNAs Are More Likely to Have Similar
Synergistic Interactions With Its
Neighbors
The lncRNAs and miRNAs in our network had positive and
negative synergistic interactions. Therefore, we counted and
computed the ratio of positive and negative miRNA neighbors
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FIGURE 1 | The synergistic long non-coding RNAs (lncRNA)-microRNAs (miRNA) network in the context of colon adenocarcinoma (COAD). (A) Global view of the
synergistic network. Orange and purple nodes represent lncRNAs and miRNAs, respectively. Red and green edges represent positive and negative synergistic
relationships. Larger nodes represent higher degrees. (B) Statistics of nodes and edges in the synergistic network. (C) Degree distribution of the synergistic network.
(D) The mean path length of the synergistic network is higher than randomization test. The arrow represents the mean path length in the real network. (E) The
synergistic lncRNA–miRNA pairs with more co-regulated mRNAs show more significantly synergistic regulatory relationship. The white circles represents the outlier
points in boxplots.

for each lncRNA. The results indicated that each lncRNA had
1∼55 lncRNA neighbors, including 0∼50 positive and 0∼26
negative neighbors (Figure 2A). After calculating the neighbor
ratio of each lncRNA, we found that 82.95% of the lncRNAs
tended to have the same synergistic direction as most (≥ 80%) of
its miRNA neighbors. Among these lncRNAs, 48 and 52% were

TABLE 1 | The statistic of COAD specific regulation pairs.

COAD specific
pairs

Number of node 1 Number of node 2 Number of
edges

lncRNA–mRNA 169 (lncRNA) 313 (mRNA) 455

miRNA–mRNA 289 (miRNA) 6,392 (mRNA) 28,639

Co-regulated
lncRNA–miRNA

113 (lncRNA) 194 (miRNA) 1,368

Synergistic
lncRNA–miRNA

88 (lncRNA) 161 (miRNA) 305 (positive)
294 (negative)

long non-coding RNAs (lncRNAs); microRNAs (miRNAs); colon
adenocarcinoma (COAD).

likely to have positive and negative synergistic interactions with
miRNAs, respectively (Figure 2B). Examples of such lncRNAs are
MALAT1, DANCR, and AGAP2-AS1 (Figure 2C).

Similarly, we counted and computed the neighbors of each
miRNA, and discovered that each miRNA had 1∼14 lncRNA
neighbors with 0∼10 positive and 0∼7 negative lncRNA
neighbors (Figure 2D). As opposed to lncRNAs, only 43.48% of
the miRNAs had the same synergistic direction as most (≥ 80%)
of its lncRNA neighbors, while other miRNAs such as hsa-miR-
106b-5p and hsa-miR-20a-5p had mixed synergistic relationships
with their lncRNA neighbors (Figures 2E,F).

The Cancer-Related lncRNAs in the
Synergistic Network Have Centralized
Roles
Many cancer-related genes have been discovered, and to explore
the relationship between our synergistic network and COAD, we
obtained COAD-related lncRNAs and miRNAs from databases
as described in the ‘Materials and Methods’ section. In total, we

Frontiers in Genetics | www.frontiersin.org 4 September 2020 | Volume 11 | Article 57298325

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-572983 September 12, 2020 Time: 19:39 # 5

Zhao et al. Synergistic ncRNAs Network for COAD

FIGURE 2 | The synergistic interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). (A) The number of positive and negative miRNA
neighbors for each lncRNA. Dark red and dark green represent positive and negative interactions, respectively. (B) The ratio of positive and negative miRNA
neighbors for each lncRNA. (C) The synergistic interactions for three lncRNAs: MALAT1, DANCR, and AGAP2-AS1. (D) The number of positive and negative lncRNA
neighbors for each miRNA. (E) The ratio of positive and negative lncRNA neighbors for each miRNA. (F) The synergistic interactions for two miRNAs:
hsa-miR-106b-5p and hsa-miR-20a-5p.

obtained 116 COAD-related lncRNAs and 134 miRNAs. After
mapping these known COAD-related RNAs to our synergistic
network (Figure 3A), we found that the synergistic lncRNAs
and miRNAs were significantly enriched with the cancer-related
RNAs (p < 2.2 × 10−16 for lncRNAs and p = 6.36 × 10−10

for miRNAs, Figure 3B). Then, we compared the topological
properties of cancer-related RNAs with other RNAs in the
synergistic network. The results showed that COAD-related
genes had significantly higher degrees, betweenness centrality,
and closeness centrality than other nodes in the synergistic
network (p = 7.27 × 10−10, 4.46 × 10−06, and 3.77 × 10−05

for COAD-related lncRNAs; p = 1.67 × 10−03, 6.28 × 10−03,
and 3.65 × 10−04 for COAD-related miRNAs; Figures 3C–E).
These results suggest that cancer-related lncRNAs and miRNAs
have more centralized roles when compared to other RNAs.
Moreover, COAD-related lncRNAs appear to be more important
than COAD-related miRNAs.

Identification of Two Central and
Prognostic lncRNAs
Numerous studies have reported hub genes as playing key roles
in cancer (Chen et al., 2017; Das et al., 2017; Yin et al., 2019).
To identify the hub lncRNAs and miRNAs in our synergistic

network, we computed a degree for each node and sorted them
in a descending order. Then, we chose 10% of the nodes with
the highest degrees as the hub RNAs, including 18 lncRNAs
and seven miRNAs (Figure 4A). When comparing the ratio of
hub lncRNAs among all lncRNAs with the ratio of hub miRNAs
among all miRNAs, we found that a greater ratio of lncRNAs
were identified as the hub RNAs (20% vs. 4%, Figure 4B),
suggesting important roles of lncRNAs in the synergistic network
and in accordance with our previous results. Moreover, we
found that the majority of the hub RNAs were known COAD-
related RNAs, and this ratio was higher than that in non-hub
RNAs (80% vs. 56%, Figure 4C). The COAD-related hub RNAs
included 18 lncRNAs and seven miRNAs. Next, we extracted
the edges that connected two hub RNAs and found that all
hub RNAs were connected, except for one lncRNA: UCA1.
The hub subnetwork is depicted in Figure 4D. In accordance
with the synergistic network described above, we found that the
lncRNAs and miRNAs in the hub subnetwork were likely to
interact with their neighbors in similar and different directions,
respectively (Figure 4D).

Considering that hub RNAs have key roles in the development
of cancer, in our next step we evaluated the prognostic ability
of each hub RNA. Through univariate Cox regression analysis,
we identified two risk lncRNAs in COAD patients, MEG3 and
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FIGURE 3 | Known colon adenocarcinoma (COAD) related RNAs in synergistic network. (A) Known COAD related RNAs were mapping to the synergistic network.
Node color and edge color are same as Figure 1A. Nodes with dark red border represent the known COAD related RNAs. (B) Enrichment of known COAD related
long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in network. P-values are computed by hypergeometric test. (C) COAD related lncRNAs and miRNAs
have higher degrees than other nodes. (D) COAD related lncRNAs and miRNAs have higher betweenness than other nodes. (E) COAD related lncRNAs and miRNAs
have higher closeness than other nodes. P-values are calculated based on Wilcoxon rank sum test.

ZEB1-AS1 (HR = 1.52 and p = 0.03 for MEG3, HR = 3.19 and
p = 2.13 × 10−05 for ZEB1-AS1, Figures 4E,F). Furthermore,
we combined these two lncRNAs using the risk score model to
predict the clinical outcome of COAD patients. The risk score
model was constructed according to Equation 1, with 0.4933 as
the regression coefficient for MEG3 estimated by the univariate
Cox regression analysis, and 1.1077 as the regression coefficient
for ZEB1-AS1. The median risk score of training samples was
used as the cut-off value (1.22) to separate the high-risk and
low-risk groups. Survival analysis revealed a significant difference
in overall survival between these two groups (log-rank test
p = 0.00255, Figure 5A). Furthermore, we computed the risk
score of samples in the test set based on the risk score model
and divided these samples into high-risk and low-risk groups.
Comparing the clinical outcome of samples between the two
groups, we found that low-risk samples in the test set also showed
significantly better prognosis (log-rank test p = 0.021, Figure 5B).
In addition, we randomly selected different sample sets (70∼90%
of all COAD samples and the 70∼90% of the test samples),
computed their risk scores, and compared the survival difference

between high-risk and low-risk groups. The results showed that
the risk score model could predict the clinical outcome of COAD
patients (Supplementary Figure S2). This result illustrated the
robust prognostic ability of the MEG3 and ZEB1-AS1 lncRNAs.

To explore the roles of MEG3 and ZEB1-AS1 during cancer
progress, we compared the expression values of MEG3 and ZEB1-
AS1 in cancer samples and normal samples. As a result, we
found that MEG3 presented similar expression levels in both
contexts (p = 0.66), while ZEB1-AS1 showed a significantly higher
expression in cancer samples (p = 3.983 × 10−09, Figure 5C).
In addition, we compared the expression levels of these two
lncRNAs in high-risk and low-risk samples: results showed that
MEG3 and ZEB1-AS1 had significantly higher expression values
in high-risk samples (all p < 2.2 × 10−16, Figure 5D). We also
downloaded two GEO lncRNA expression datasets associated
with colon diseases, including GSE77013 and GSE67106 (Mirza
et al., 2015; Padua et al., 2016). The expression of MEG3
and ZEB1-AS1 were found to be highly expressed in disease
samples compared with control samples (t-test, P = 0.09, 0.016,
and 1.23e-08, Supplementary Figure S3). Due to the lack of
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FIGURE 4 | Identification and characterization of hub RNAs. (A) Degree of hub RNAs. Orange bars and purple bars represent degree of long non-coding RNAs
(lncRNAs) and microRNAs (miRNAs), respectively. (B) The ratio of hub and non-hub RNAs in lncRNAs and miRNAs, respectively. (C) The ratio of known colon
adenocarcinoma (COAD) related lncRNAs and mRNAs in hub and non-hub RNAs. (D) Hub subnetwork extracted from the synergistic network. Color of node and
edge are same as Figure 3A. (E) The result of univariable Cox regression for each hub lncRNA. The prognostic lncRNAs are marked in red. (F) The result of
univariable Cox regression for each hub miRNA.

ZEB1-AS1 probes in GSE77013, we didn’t compare its expression
values between disease and control samples. These results
demonstrate that the high expression of these two lncRNAs
is associated with colon disease. Summarizing these results,
we believe that MEG3 played a role in cancer development
while ZEB1-AS1 could act in both carcinogenesis and cancer
development. These results were consistent with previous studies
(Fu and Cui, 2017; Gong et al., 2017; Liu et al., 2019; Hu et al.,
2020; Ni et al., 2020).

Hierarchical Networks for Elucidating
the Biological Mechanism of MEG3 and
ZEB1-AS1
To contribute to the understanding of the synergistic interactions
of MEG3 and ZEB1-AS1, we proposed hierarchical models to
systematically illustrate the regulatory process. As shown in
Figure 6, MEG3 or ZEB1-AS1 regulate mRNAs by synergistic
interactions with miRNAs, and further participate in cancer
biological processes. Among the miRNAs that have synergistic
interactions with MEG3, 14 out of 20 miRNAs were known
COAD-related miRNAs. These miRNAs, along with MEG3,
further regulate 11 mRNAs, including CASP3, CASP8, and
vascular endothelial growth factor (VEGFA). Previous studies

have indicated that polymorphisms in CASP3 and CASP8 are
related to colon cancer (Goodman et al., 2006; Choi et al.,
2012), and the VEGFA was also significantly associated with
rectal cancer (Slattery et al., 2014). In this study, we uncovered
their upstream regulatory factors, which were MEG3 and its
synergistic miRNAs. This result might be another indication
of the roles of these mRNAs in carcinogenesis. Through the
integration of annotation information on mRNAs, we found that
MEG3 and its synergistic miRNAs were mainly associated with
cancer-related processes such as immune system development,
cell development, tissue development, cell differentiation, protein
metabolism, and other processes.

Regarding the synergistic miRNAs related to ZEB1-AS1, 15
out of 20 were found to be known COAD-related miRNAs.
ZEB1-AS1 and these miRNAs synergistically regulated six genes,
such as CyclinD1 (CCND1) and zinc finger E-box binding
homeobox 1 (ZEB1). CCND1 is a key cell cycle regulatory
protein and its polymorphism has been found to be significantly
associated with overall COAD risk (Xie et al., 2017). Li
et al. (2012) reported that IL-1β may promote colon tumor
growth and invasion through the activation of colon cancer
stem cell self-renewal and epithelial-mesenchymal transition
(EMT), and ZEB1 plays a critical role in these two processes.
Moreover, we observed that the mRNAs regulated by ZEB1-AS1
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FIGURE 5 | (A) Kaplan–Meier curves of overall survival in high-risk and low-risk groups in training set. (B) Kaplan–Meier curves of overall survival in high-risk and
low-risk groups in test set. P-values were calculated by the log-rank test. (C) The colored boxes and circles represents expression values of MEG3 and ZEB1-AS1 in
cancer and normal samples. ‘can’ represent ‘cancer’ and ‘nor’ represent ‘normal’. (D) The colored boxes and circles represents expression values of MEG3 and
ZEB1-AS1 in high-risk and low-risk samples. ‘hr’ represent ‘high-risk’ and ‘lr’ represent ‘low-risk’. P-values are calculated by Wilcoxon rank sum test.

and its synergistic miRNAs were annotated to cancer-related
gene ontology (GO) terms such as cell differentiation, cell
proliferation, and developmental processes.

In light of these results, we believe that MEG3 and ZEB1-AS1
play important roles in the initiation and progression of colon
cancer, through their synergistic interactions with cancer-related
miRNAs and finally regulating cancer-related mRNAs that were
associated with cancer biological processes. Our results could
contribute to the understanding of important roles of synergistic
lncRNA–miRNA interactions in tumorigenesis, expand the
complexity of the ncRNA–mRNA regulatory network, and
provide potential therapeutic targets for colon cancer treatment.

DISCUSSION

Colon adenocarcinoma is the third most common cancer
worldwide and has become a widespread health issue for

its highly mortality and morbidity (Bertotti et al., 2015;
Marmol et al., 2017). Recent studies suggested that interactions
between lncRNAs and miRNAs in the regulation of mRNA
expression played important regulatory roles in the initiation
and progression of COAD (Yu et al., 2017). However,
the regulatory mechanisms through which lncRNA–miRNA
interactions are involved in the progression of this disease are stil
unclear.

Long non-coding RNAs–miRNA synergistic interactions are
critical for many biological functions and exploring these
interactions contributes to a further understanding of the
process of tumorigenesis and development of COAD (Guil and
Esteller, 2015; Wang et al., 2019a). More importantly, increasing
evidence shows that the lncRNA–miRNA interaction network
is implicated in several pathophysiological processes, including
human cancers (Lin et al., 2019). In this work, we constructed
and characterized the lncRNA–miRNA synergistic network
by integrating lncRNA–mRNA interactions, miRNA–mRNA
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FIGURE 6 | Two hierarchical models of prognostic long non-coding RNAs (lncRNAs). (A) Hierarchical model of MEG3 related synergistic regulatory interactions.
(B) Hierarchical model of ZEB1-AS1 related synergistic regulatory interactions. The models are exhibited hierarchically by three levels, including synergistic
lncRNA–microRNAs (miRNA) interactions, regulatory mRNAs and annotated gene ontology (GO) biological processes of mRNAs. GO terms annotated to at least
seven mRNAs and five mRNAs are showed in (A,B), respectively. Orange, purple and green nodes represent lncRNAs, miRNAs and mRNAs, respectively. Gray
nodes represent the GO terms.

interactions, and the expression profiles of lncRNA, miRNA,
and mRNA in COAD samples. The analysis of this synergistic
network allowed the detection of complicated features and
functions of RNA regulatory interactions and how lncRNAs
and miRNAs could play regulatory roles in the tumorigenesis
and progression of COAD (Wang et al., 2020). Our results
indicated that the synergistic lncRNAs and miRNAs were
significantly enriched with cancer-related RNAs. In addition,
COAD-related lncRNAs and miRNAs had significantly higher
degrees, betweenness centrality, and closeness centrality than
other nodes in the synergistic network. Further analysis showed
that cancer-related miRNAs, especially lncRNAs, had more
centralized roles when compared with other RNAs. Altogether,
our study of lncRNA–miRNA interactions could contribute
with crucial information in the understanding of the regulatory
mechanisms through which ncRNAs act, as well as with
the identification of molecular targets for the diagnosis and
treatment of COAD.

Reliable prediction of RNA–RNA binding energies is crucial.
RNAup is an effective method, which involved two energy
contributions, including (1) the energy necessary to ‘open’ the
binding site and (2) the energy gained from hybridization. To
improve the medical effectiveness of our results, we performed
RNAup to compute the potential binding possibility between
lncRNAs and miRNAs. The sequence of lncRNA transcripts and
miRNA were downloaded from Ensemble and miRBase database,
respectively (Supplementary Table S3; Kozomara et al., 2019;
Yates et al., 2020). For interactions in the hub-related subnetwork
and two hierarchical networks, we provided the total free energy
of binding for each lncRNA–miRNA interaction (Supplementary
Tables S4, S5). Based on the total free energy of binding we
provided, users can acquire both direct and indirect interactions
by their own cutoffs. This way, we expect to provide results that
have higher potential medical usefulness.

Accumulating evidence revealed that lncRNAs acted as
prognostic biomarkers and regulated cell functions in colorectal
cancer (Yin et al., 2015; Wang et al., 2019b). Through analyses
of node degree and univariate Cox regression analysis, we
identified two important lncRNAs: MEG3 and ZEB1-AS1. We
further proposed two hierarchical models to systematically
illustrate the regulatory process of these two lncRNAs. In
the hierarchical models, most miRNAs which have synergistic
interactions with MEG3 or ZEB1-AS1 were found to be known
COAD-related miRNAs. Moreover, we found that some mRNAs
regulated by the lncRNAs and miRNAs were reported to be
associated with COAD. Our results proposed another indication
of the roles of these mRNAs in carcinogenesis. We believe
that other ncRNAs and mRNAs in the hierarchical models
were also COAD-related RNAs. Our results provide potential
therapeutic targets for colon cancer treatment. Finally, we
proposed a risk score model to predict the clinical outcome
of COAD patients and demonstrated the utility of lncRNAs as
promising biomarkers.

DATA AVAILABILITY STATEMENT

All datasets generated in this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

HY conceived and designed the experiments. BZ, XQ, XL, QW,
DB, FY, XZ, ZJ, JN, GX, and YF collected and analyzed data. HY
and BZ wrote this manuscript. All authors read and approved the
final manuscript.

Frontiers in Genetics | www.frontiersin.org 9 September 2020 | Volume 11 | Article 57298330

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-572983 September 12, 2020 Time: 19:39 # 10

Zhao et al. Synergistic ncRNAs Network for COAD

FUNDING

This work was supported by scientific research project
of Heilongjiang Health and Family Planning Commission
[2014-242].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.572983/full#supplementary-material

REFERENCES
Bao, Z., Yang, Z., Huang, Z., Zhou, Y., Cui, Q., and Dong, D. (2019).

LncRNADisease 2.0: an updated database of long non-coding RNA-associated
diseases. Nucleic Acids Res. 47, D1034–D1037.

Bertotti, A., Papp, E., Jones, S., Adleff, V., Anagnostou, V., and Lupo, B. (2015). The
genomic landscape of response to EGFR blockade in colorectal cancer. Nature
526, 263–267.

Chen, P., Wang, F., Feng, J., Zhou, R., Chang, Y., Liu, J., et al. (2017). Co-expression
network analysis identified six hub genes in association with metastasis risk
and prognosis in hepatocellular carcinoma. Oncotarget 8, 48948–48958. doi:
10.18632/oncotarget.16896

Cheng, L., Wang, P., Tian, R., Wang, S., Guo, Q., Luo, M., et al. (2019).
LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs
in human and mouse. Nucleic Acids Res. 47, D140–D144.

Choi, J. Y., Kim, J. G., Lee, Y. J., Chae, Y. S., Sohn, S. K., Moon, J. H., et al. (2012).
Prognostic impact of polymorphisms in the CASPASE genes on survival of
patients with colorectal cancer. Cancer Res. Treat. 44, 32–36. doi: 10.4143/crt.
2012.44.1.32

Das, S., Meher, P. K., Rai, A., Bhar, L. M., and Mandal, B. N. (2017). Statistical
approaches for gene selection, hub gene identification and module interaction
in gene co-expression network analysis: an application to aluminum stress in
soybean (Glycine max L.). PLoS One 12:e0169605. doi: 10.1371/journal.pone.
0169605 doi: 10.1371/journal.pone.0169605

Dienstmann, R., Salazar, R., and Tabernero, J. (2015). Personalizing colon cancer
adjuvant therapy: selecting optimal treatments for individual patients. J. Clin.
Oncol. 33, 1787–1796. doi: 10.1200/jco.2014.60.0213

Fatica, A., and Bozzoni, I. (2014). Long non-coding RNAs: new players in cell
differentiation and development. Nat. Rev. Genet. 15, 7–21. doi: 10.1038/
nrg3606

Fu, J., and Cui, Y. (2017). Long noncoding RNA ZEB1-AS1 expression predicts
progression and poor prognosis of colorectal cancer. Int. J. Biol. Markers 32,
e428–e433.

Gao, Y., Wang, P., Wang, Y., Ma, X., Zhi, H., Zhou, D., et al. (2019). Lnc2Cancer
v2.0: updated database of experimentally supported long non-coding RNAs in
human cancers. Nucleic Acids Res. 47, D1028–D1033.

Gong, H., Wen, H., Zhu, X., Lian, Y., Yang, X., Qian, Z., et al. (2017).
High expression of long non-coding RNA ZEB1-AS1 promotes colorectal
cancer cell proliferation partially by suppressing p15 expression. Tumour Biol.
39:1010428317705336.

Goodman, J. E., Mechanic, L. E., Luke, B. T., Ambs, S., Chanock, S., and Harris,
C. C. (2006). Exploring SNP-SNP interactions and colon cancer risk using
polymorphism interaction analysis. Int. J. Cancer 118, 1790–1797. doi: 10.1002/
ijc.21523

Guil, S., and Esteller, M. (2015). RNA-RNA interactions in gene regulation: the
coding and noncoding players. Trends Biochem. Sci. 40, 248–256. doi: 10.1016/
j.tibs.2015.03.001

Hu, D., Zhang, B., Yu, M., Shi, W., and Zhang, L. (2020). Identification of
prognostic biomarkers and drug target prediction for colon cancer according
to a competitive endogenous RNA network. Mol. Med. Rep. 22, 620–632. doi:
10.3892/mmr.2020.11171

Huang, Z., Shi, J., Gao, Y., Cui, C., Zhang, S., Li, J., et al. (2019). HMDD v3.0: a
database for experimentally supported human microRNA-disease associations.
Nucleic Acids Res. 47, D1013–D1017.

Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009).
miR2Disease: a manually curated database for microRNA deregulation in
human disease. Nucleic Acids Res. 37, D98–D104.

Kallen, A. N., Zhou, X. B., Xu, J., Qiao, C., Ma, J., Yan, L., et al. (2013). The
imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell. 52, 101–112.
doi: 10.1016/j.molcel.2013.08.027

Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). miRBase: from
microRNA sequences to function. Nucleic Acids Res. 47, D155–D162.

Lee, J. T. (2012). Epigenetic regulation by long noncoding RNAs. Science 338,
1435–1439. doi: 10.1126/science.1231776

Levy, S. E., and Myers, R. M. (2016). Advancements in next-generation sequencing.
Annu. Rev. Genomics Hum. Genet. 17, 95–115.

Li, J. H., Liu, S., Zhou, H., Qu, L. H., and Yang, J. H. (2014). starBase v2.0: decoding
miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from
large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97.

Li, Y., Wang, L., Pappan, L., Galliher-Beckley, A., and Shi, J. (2012). IL-1beta
promotes stemness and invasiveness of colon cancer cells through Zeb1
activation. Mol. Cancer 11:87. doi: 10.1186/1476-4598-11-87

Liao, J., Wang, J., Liu, Y., Li, J., and Duan, L. (2019). Transcriptome sequencing
of lncRNA, miRNA, mRNA and interaction network constructing in coronary
heart disease. BMCMed. Genomics 12:124. doi: 10.1186/s12920-019-0570-z

Lin, C., Yuan, G., Hu, Z., Zeng, Y., Qiu, X., Yu, H., et al. (2019). Bioinformatics
analysis of the interactions among lncRNA, miRNA and mRNA expression,
genetic mutations and epigenetic modifications in hepatocellular carcinoma.
Mol. Med. Rep. 19, 1356–1364.

Liu, B., Li, J., Tsykin, A., Liu, L., Gaur, A. B., and Goodall, G. J. (2009). Exploring
complex miRNA-mRNA interactions with Bayesian networks by splitting-
averaging strategy. BMC Bioinformatics 10:408. doi: 10.1186/1471-2105-1-408

Liu, H., Ye, D., Chen, A., Tan, D., Zhang, W., Jiang, W., et al. (2019). A pilot
study of new promising non-coding RNA diagnostic biomarkers for early-stage
colorectal cancers. Clin. Chem. Lab. Med. 57, 1073–1083. doi: 10.1515/cclm-
2019-0052

Liu, R., Zhang, W., Liu, Z. Q., and Zhou, H. H. (2017). Associating transcriptional
modules with colon cancer survival through weighted gene co-expression
network analysis. BMC Genomics 18:361. doi: 10.1186/s12864-017-3761-z

Liu, X., Wang, S., Meng, F., Wang, J., Zhang, Y., Dai, E., et al. (2013). SM2miR: a
database of the experimentally validated small molecules’ effects on microRNA
expression. Bioinformatics 29, 409–411. doi: 10.1093/bioinformatics/bts698

Marmol, I., Sanchez-De-Diego, C., Pradilla Dieste, A., Cerrada, E., and Rodriguez
Yoldi, M. J. (2017). Colorectal carcinoma: a general overview and future
perspectives in colorectal cancer. Int. J. Mol. Sci. 18:197. doi: 10.3390/
ijms18010197

Mercer, T. R., Dinger, M. E., and Mattick, J. S. (2009). Long non-coding RNAs:
insights into functions. Nat. Rev. Genet. 10, 155–159.

Mirza, A. H., Berthelsen, C. H., Seemann, S. E., Pan, X., Frederiksen, K. S., Vilien,
M., et al. (2015). Transcriptomic landscape of lncRNAs in inflammatory bowel
disease. Genome Med. 7:39.

Ni, X., Ding, Y., Yuan, H., Shao, J., Yan, Y., Guo, R., et al. (2020). Long non-coding
RNA ZEB1-AS1 promotes colon adenocarcinoma malignant progression via
miR-455-3p/PAK2 axis. Cell Prolif. 53:e12723.

Padua, D., Mahurkar-Joshi, S., Law, I. K., Polytarchou, C., Vu, J. P., Pisegna, J. R.,
et al. (2016). A long noncoding RNA signature for ulcerative colitis identifies
IFNG-AS1 as an enhancer of inflammation. Am. J. Physiol. Gastrointest. Liver
Physiol. 311, G446–G457.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
et al. (2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/
gr.1239303

Slattery, M. L., Lundgreen, A., and Wolff, R. K. (2014). VEGFA, FLT1, KDR and
colorectal cancer: assessment of disease risk, tumor molecular phenotype, and
survival. Mol. Carcinog. 53(Suppl. 1), E140–E150.

Tay, Y., Rinn, J., and Pandolfi, P. P. (2014). The multilayered complexity of ceRNA
crosstalk and competition. Nature 505, 344–352. doi: 10.1038/nature12986

Tomczak, K., Czerwinska, P., and Wiznerowicz, M. (2015). The Cancer Genome
Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19,
A68–A77.

Frontiers in Genetics | www.frontiersin.org 10 September 2020 | Volume 11 | Article 57298331

https://www.frontiersin.org/articles/10.3389/fgene.2020.572983/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.572983/full#supplementary-material
https://doi.org/10.18632/oncotarget.16896
https://doi.org/10.18632/oncotarget.16896
https://doi.org/10.4143/crt.2012.44.1.32
https://doi.org/10.4143/crt.2012.44.1.32
https://doi.org/10.1371/journal.pone.0169605
https://doi.org/10.1371/journal.pone.0169605
https://doi.org/10.1371/journal.pone.0169605
https://doi.org/10.1200/jco.2014.60.0213
https://doi.org/10.1038/nrg3606
https://doi.org/10.1038/nrg3606
https://doi.org/10.1002/ijc.21523
https://doi.org/10.1002/ijc.21523
https://doi.org/10.1016/j.tibs.2015.03.001
https://doi.org/10.1016/j.tibs.2015.03.001
https://doi.org/10.3892/mmr.2020.11171
https://doi.org/10.3892/mmr.2020.11171
https://doi.org/10.1016/j.molcel.2013.08.027
https://doi.org/10.1126/science.1231776
https://doi.org/10.1186/1476-4598-11-87
https://doi.org/10.1186/s12920-019-0570-z
https://doi.org/10.1186/1471-2105-10-408
https://doi.org/10.1515/cclm-2019-0052
https://doi.org/10.1515/cclm-2019-0052
https://doi.org/10.1186/s12864-017-3761-z
https://doi.org/10.1093/bioinformatics/bts698
https://doi.org/10.3390/ijms18010197
https://doi.org/10.3390/ijms18010197
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1038/nature12986
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-572983 September 12, 2020 Time: 19:39 # 11

Zhao et al. Synergistic ncRNAs Network for COAD

Wang, D., Gu, J., Wang, T., and Ding, Z. (2014). OncomiRDB: a database
for the experimentally verified oncogenic and tumor-suppressive
microRNAs. Bioinformatics 30, 2237–2238. doi: 10.1093/bioinformatics/bt
u155

Wang, W., Lou, W., Ding, B., Yang, B., Lu, H., Kong, Q., et al. (2019a). A
novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network
associated with prognosis of pancreatic cancer. Aging 11, 2610–2627. doi:
10.18632/aging.101933

Wang, W., Xie, Y., Chen, F., Liu, X., Zhong, L. L., Wang, H. Q., et al. (2019b).
LncRNA MEG3 acts a biomarker and regulates cell functions by targeting
ADAR1 in colorectal cancer. World J. Gastroenterol. 25, 3972–3984. doi: 10.
3748/wjg.v25.i29.3972

Wang, Y., He, R., and Ma, L. (2020). Characterization of lncRNA-associated ceRNA
network to reveal potential prognostic biomarkers in lung adenocarcinoma.
Front. Bioeng. Biotechnol. 8:266. doi: 10.3389/fbioe.2020.00266

Xie, M., Zhao, F., Zou, X., Jin, S., and Xiong, S. (2017). The association between
CCND1 G870A polymorphism and colorectal cancer risk: a meta-analysis.
Medicine 96:e8269. doi: 10.1097/md.0000000000008269

Xu, J., Meng, Q., Li, X., Yang, H., Xu, J., Gao, N., et al. (2019). Long Noncoding RNA
MIR17HG Promotes Colorectal Cancer Progression via miR-17-5p. Cancer Res.
79, 4882–4895. doi: 10.1158/0008-5472.can-18-3880

Yates, A. D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez-Jarreta, J., et al.
(2020). Ensembl 2020. Nucleic Acids Res. 48, D682–D688.

Yin, D. D., Liu, Z. J., Zhang, E., Kong, R., Zhang, Z. H., and Guo, R. H. (2015).
Decreased expression of long noncoding RNA MEG3 affects cell proliferation
and predicts a poor prognosis in patients with colorectal cancer. Tumour Biol.
36, 4851–4859. doi: 10.1007/s13277-015-3139-2

Yin, K., Zhang, Y., Zhang, S., Bao, Y., Guo, J., Zhang, G., et al. (2019). Using
weighted gene co-expression network analysis to identify key modules and hub
genes in tongue squamous cell carcinoma. Medicine 98:e17100. doi: 10.1097/
MD.0000000000017100

Yu, Y., Nangia-Makker, P., Farhana, L., and Majumdar, A. P. N. (2017). A novel
mechanism of lncRNA and miRNA interaction: CCAT2 regulates miR-145
expression by suppressing its maturation process in colon cancer cells. Mol.
Cancer 16:155. doi: 10.1186/s12943-017-0725-5

Zhang, W., Tang, G., Zhou, S., and Niu, Y. (2019). LncRNA-miRNA interaction
prediction through sequence-derived linear neighborhood propagation method
with information combination. BMC Genomics 20:946. doi: 10.1186/s12864-
019-6284-y

Zhou, Z., Shen, Y., Khan, M. R., and Li, A. (2015). LncReg: a reference resource for
lncRNA-associated regulatory networks. Database 2015:bav083. doi: 10.1093/
database/bav083

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zhao, Qu, Lv, Wang, Bian, Yang, Zhao, Ji, Ni, Fu, Xin and Yu.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics | www.frontiersin.org 11 September 2020 | Volume 11 | Article 57298332

https://doi.org/10.1093/bioinformatics/btu155
https://doi.org/10.1093/bioinformatics/btu155
https://doi.org/10.18632/aging.101933
https://doi.org/10.18632/aging.101933
https://doi.org/10.3748/wjg.v25.i29.3972
https://doi.org/10.3748/wjg.v25.i29.3972
https://doi.org/10.3389/fbioe.2020.00266
https://doi.org/10.1097/md.0000000000008269
https://doi.org/10.1158/0008-5472.can-18-3880
https://doi.org/10.1007/s13277-015-3139-2 
https://doi.org/10.1097/MD.0000000000017100
https://doi.org/10.1097/MD.0000000000017100
https://doi.org/10.1186/s12943-017-0725-5
https://doi.org/10.1186/s12864-019-6284-y
https://doi.org/10.1186/s12864-019-6284-y
https://doi.org/10.1093/database/bav083
https://doi.org/10.1093/database/bav083
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-572663 September 15, 2020 Time: 19:16 # 1

ORIGINAL RESEARCH
published: 17 September 2020

doi: 10.3389/fgene.2020.572663

Edited by:
Xiaofeng Dai,

Jiangnan University, China

Reviewed by:
Fengfeng Zhou,

Jilin University, China
Gary David Lopaschuk,

University of Alberta, Canada

*Correspondence:
Jintao Zhang

zhangjt_66@126.com

Specialty section:
This article was submitted to

Systems Biology,
a section of the journal

Frontiers in Genetics

Received: 15 June 2020
Accepted: 26 August 2020

Published: 17 September 2020

Citation:
Zhao Q, Zhang Z, Li J, Xu F,

Zhang B, Liu M, Liu Y, Chen H, Yang J
and Zhang J (2020) Lysine Acetylome

Study of Human Hepatocellular
Carcinoma Tissues for Biomarkers

and Therapeutic Targets Discovery.
Front. Genet. 11:572663.

doi: 10.3389/fgene.2020.572663

Lysine Acetylome Study of Human
Hepatocellular Carcinoma Tissues
for Biomarkers and Therapeutic
Targets Discovery
Qianwei Zhao1,2, Zhendong Zhang1, Jinxia Li3, Fang Xu1, Bingxia Zhang4,
Mengduan Liu1, Yixian Liu1, Huiping Chen1, Junxia Yang1 and Jintao Zhang1*

1 BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China,
2 Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, China, 3 School of Basic
Medical Sciences, Zhengzhou University, Zhengzhou, China, 4 School of Life Sciences, Zhengzhou University, Zhengzhou,
China

Lysine acetylation is a vital post-translational modification (PTM) of proteins, which
plays an important role in cancer development. In healthy human liver tissues, multiple
non-histone proteins were identified with acetylation modification, however, the role
of acetylated proteins in hepatocellular carcinoma (HCC) development remains largely
unknown. Here we performed a quantitative acetylome study of tumor and normal
liver tissues from HCC patients. Overall, 598 lysine acetylation sites in 325 proteins
were quantified, and almost 59% of their acetylation levels were significantly changed.
The differentially acetylated proteins mainly consisted of non-histone proteins located
in mitochondria and cytoplasm, which accounted for 42% and 24%, respectively.
Bioinformatics analysis showed that differentially acetylated proteins were enriched in
metabolism, oxidative stress, and signal transduction processes. In tumor tissues, 278
lysine sites in 189 proteins showed decreased acetylation levels, which occupied 98%
of differentially acetylated proteins. Moreover, we collected twenty pairs of tumor and
normal liver tissues from HCC male patients, and found that expression levels of SIRT1
(p = 0.002), SIRT2 (p = 0.01), and SIRT4 (p = 0.045) were significantly up-regulated in
tumor tissues. Over-expression of possibly accounted for the widespread deacetylation
of non-histone proteins identified in HCC tumor tissues, which could serve as promising
predictors of HCC. Taken together, our work illustrates abundant differentially acetylated
proteins in HCC tumor tissues, and offered insights into the role of lysine acetylation
in HCC development. It provided potential biomarker and drug target candidates for
clinical HCC diagnosis and treatment.

Keywords: hepatocellular carcinoma, lysine acetylation, non-histone proteins, sirtuins, biomarker candidates,
drug discovery

INTRODUCTION

HCC is one of the most common human cancer types and accounts for about 90% of primary
liver cancer (El-Serag and Rudolph, 2007). Because of its high degree of malignancy, recurrence,
metastases, and poor prognosis, HCC is the second deadliest human cancer in the world. The
5-year survival rate of HCC patients at advanced stage is less than 10% while patients at early
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stage can experience significantly improved survival
(Hiwatashi et al., 2015). To explore effective biomarkers for
HCC diagnosis at early stage, multiple kinds of omics studies
have been performed with samples from HCC patients or
HCC cell lines, such as genomics, transcriptomics, proteomics,
metabolomics, and so on. These omics studies provided huge
number of molecules including circulating tumor DNA (ctDNA),
circulating miRNAs, proteins, and metabolites as biomarker
candidates for clinical HCC diagnosis (Tang et al., 2016; Zhou
et al., 2011; Dittharot et al., 2018; Gao et al., 2019). Based on
the data from omics studies, several effective biomarkers were
identified and validated in clinical samples from HCC patients,
among which AFP was the most widely used protein biomarker
for early diagnosis of HCC (Marrero et al., 2009). However,
clinical studies showed that the sensitivity and specificity of
one protein marker was limited in detecting HCC at early stage
(Sun et al., 2008).

In recent years, with the development of biotechnology
and its application in omics study, different types of protein
PTM were identified and researches indicated that protein
PTM was closely associated with disease development. Protein
PTM was usually evolutionarily conserved and regulated protein
stability, localization, function, protein-protein interaction, and
protein-nucleic acid interaction. Omics studies of protein PTM
including ubiquitination, methylation, glycosylation, acetylation,
crotonylation, and lactylation showed significant difference
between tumor and normal samples, which indicated that
protein PTM played an important role in cancer development
(Zhang et al., 2019; Wan et al., 2019; Zhong and Huang,
2016; Sun et al., 2006; Chen et al., 2018). For example,
studies showed that the glycosylation levels of proteins
significantly changed in different types of tumor tissues, and
some glycosylated proteins were promising biomarkers for
diagnosis of HCC at early stage (Wang et al., 2017; Block
et al., 2005). Therefore, omics study of protein PTM was of
great importance because it not only provided new insight
into mechanism study of proteins in cancer development, but
also served as new candidates for biomarker and therapy
target discovery.

Lysine acetylation was a kind of protein PTM that is
involved in various cellular processes, such as metabolic
pathways, signal transduction, cell proliferation, migration and
apoptosis. Increasing evidence showed that lysine acetylation
participated in development of multiple kinds of cancers
(Martile et al., 2016; Gil et al., 2017). For example, Lysine
acetylation on histones could change local chromatin structure
for transcription factors to bind and initiate gene transcription
(Jin et al., 2011). Lysine acetylation on non-histone proteins
including enzymes and transcription factors induced metabolic
rewiring and gene transcription, and affected cell proliferation,
apoptosis, and metastasis (Leo et al., 2019; Thangjam et al.,
2016; Wang B.et al., 2020; He et al., 2019). These findings
indicated that lysine acetylation was an important factor
in cancer development. In human liver tissues, more than
1000 acetylation sites in proteins were identified, among
which metabolic enzymes accounted for a large amount
(Zhao et al., 2010). Increasing evidence showed that lysine

acetylation modification on enzymes played a vital role in
metabolic processes during liver disease development (Weems
and Olson, 2011; Cao et al., 2017; Hu et al., 2017; Gu
et al., 2020). Besides, most members of histone acetylase
(HAT) and histone deacetylase (HDAC) families were reported
to be aberrantly expressed in HCC tumor tissues, which
were associated with clinical stage, prognosis, and survival
rate, and some HDACs inhibitors were taken as candidates
for clinical HCC treatment (Li et al., 2011; Quint et al.,
2011; Freese et al., 2019; Hu et al., 2019; Inagaki et al.,
2016). Taken together, it showed that lysine acetylation was
playing an important role in HCC initiation and development.
Therefore, it is necessary to study lysine acetylation in liver
tissues of HCC patients thoroughly. Here, we performed lysine
acetylome study of HCC tumor and normal liver tissues, and
identified multiple proteins with differential acetylation levels.
The differentially acetylated proteins mainly consisted of non-
histone proteins located in mitochondria and cytoplasm. Besides,
SIRT1, 2, and 4 showed increased expression levels in tumor
tissues, which probably accounted for widespread deacetylation
of the non-histone proteins, and may serve as diagnostic
predictors of HCC.

MATERIALS AND METHODS

Experimental Design and Statistical
Rationale
The tissue samples were selected from HCC male patients
(stage II) with an average age of 43 (41–47), who had not
been treated before. The para-carcinoma normal liver tissues
around the tumor tissues from the same HCC patients were
selected as control samples. Principal Component Analysis
(PCA) method was used to represent the correlation between
tumor and normal liver tissues (Supplementary Figure S1).
The acetylation intensity of tissue samples was quantified by
four full-quantitative quantitative experiments. First step, we
calculated differential abundance of the acetylation between the
cancer and normal tissue samples. In brief, we firstly calculated
the average value of the quantitative values of each sample in
four biological replicates, and then we calculated the ratio of
the average values between the cancer and normal samples.
The ratio was taken as the final quantitation. Next step, the
significant p value of differential expression between two samples
was calculated. The relative quantitative values of each sample
were taken as log2 transform (so that the data conforms to
the normal distribution), and p value was calculated by the
two-sample two-tailed T-test method. Among the differentially
expressed proteins (with a corrected p value < 0.05), it was
considered as significant up-regulation or down-regulation when
the fold change was greater than 1.5 or less than 0.67. Raw
abundance ratios of acetylation sites were normalized based on
the corresponding protein ratio. Negative logarithm (-log10)
transformation was carried out for p value (obtained from Fisher’s
exact test) to indicate the significance of GO, KEGG, and protein
domain enrichment.
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Sample Preparation
Five pairs of tumor and para-carcinoma normal liver tissues
from HCC patients were surgically resected in the First
Affiliated Hospital of Zhengzhou University, with approval from
the Research Ethics Committee of Zhengzhou University and
consent from the patients. The tumor tissues were washed in
PBS and surrounding tissues were removed. The para-carcinoma
normal liver tissues were managed with the same method. The
whole process took place on ice, and it was finished within 30 min
after the surgery. The collected tissues were divided into small
pieces and stored in 1.5 ml tubes, which were kept in liquid
nitrogen. The selected samples were renamed with codes (A1, A2,
C1, C2, D1, D2, E1, E2, F1, F2, the number 1 represented tumor
tissues while 2 represented normal tissues) instead of the patient

′

s
name in this study.

Protein Extraction and Digestion
Samples were homogenized by a high intensity ultrasonic
processor (Scientz, Germany) in 1 mL lysis buffer (8 M urea,
3 µM TSA, 50 mM NAM, 2 mM EDTA, and 1% Protease
Inhibitor Cocktail). Then the lysate was centrifuged at 12000 g
for 10 min at 4◦C, and the supernatant was transferred to
new tubes. The concentration of the protein was determined
by BCA Protein Assay Kit (Sangon Biotech, China) before
use. For digestion, the protein was first reduced with DTT
(5 mM) for 30 min at 56◦C. Then iodoacetamide was added
to the protein to make its final concentration of 11 mM, and
the mixture was incubated for 15 min at room temperature
in the dark. Finally, the concentration of urea in the protein
solution was diluted to less than 2 M by adding triethyl
ammonium bicarbonate (TEAB, 100 mM). The protein was
digested by trypsin with a trypsin/protein mass ratio of 1/50
at 37◦C overnight, and then additional trypsin was added to
the protein with a trypsin/protein mass ratio of 1/100 and
incubated at 37◦C for 4 h.

TMT Labeling and Affinity Enrichment of
Acetylated Peptides
Tryptic peptides were freeze-dried after being desalted by using
Strata X C18 (Phenomenex, United States). Then the peptides
were dissolved in TEAB (0.5 M) to be labeled by TMT tag
according to the protocol of the TMT labeling kit (Thermo,
United States). TMT reagents were thawed and reconstituted
in acetonitrile. The peptide mixtures were incubated for 2 h
at room temperature, and then desalted and dried by vacuum
centrifugation. Next, TMT labeled peptides were dissolved in
NETN buffer (100 mM NaCl, 1 mM EDTA, 50 mM Tris–HCl,
0.5% NP-40, pH = 8.0), and the supernatant was collected and
incubated with agarose beads coupled to anti-acetyl antibody
PTM-104 (PTM Bio, Jingjie, China) overnight at 4◦C with
gentle shaking. After, the beads were washed with NETN
buffer four times, and then twice with ddH2O. Finally, the
bound peptides were eluted with 0.1% trifluoroacetic acid. The
eluent was vacuum-dried and then desalted by C18 ZipTips
(Millipore, United States) according to the manufacturer’s
instruction. The TMT labeled peptides were freeze-dried

for Liquid chromatography-tandem mass spectrometry (LC-
MS/MS) analysis.

Protein Identification and Quantification
by LC-MS/MS Analysis
LC-MS/MS analysis was performed according to the literature
procedure. The EASY-nLC 1000 UPLC system was used to
separate peptides dissolved in 0.1% formic acid (FA). The mobile
phase consisted of buffer A (0.1% FA and 2% acetonitrile in
ddH2O) and buffer B (0.1% FA and 90% acetonitrile in ddH2O);
it was eluted with a linear gradient of eluent, starting with 10%
buffer B which was increased to 25% in 40 min, and then from
25% to 38% for 12 min, and later from 38% to 80% for 4 min,
finally, it was kept at 80% buffer B for 4 min. The flow rate was
700 nL/min. The peptides were subjected to the NIS ion source
and then performed MS/MS analysis by Orbitrap FusionTM

(Thermo, United States) system. The electrospray voltage applied
was 2.0 kV. For MS1 scan, it was set at a resolution of 60,000 with
a scan ranging from 350 to 1550 m/z. For MS2 scan, it was set at a
resolution of 30,000 (100 m/z). Data were generated by using the
Data-Dependent Acquisition (DDA) strategy.

Database Search
The MS/MS data was performed by Maxquant search engine
(v1.5.2.8), and tandem mass spectra was searched against
SwissProt Human (20130 sequences) database. FurtheMore,
additional libraries were added for false discovery rate (FDR)
calculation and elimination of contaminated protein

′

s influence.
Trypsin/P was specified as the cleavage enzyme allowing up to
4 missing cleavages, 7 modifications per peptide and 5 charges.
Mass error was set to 10 ppm and 5 ppm for precursor ions of first
and main searches, respectively, and mass error for fragment ions
was set to 0.02 Da. Carbamidomethyl on Cys was specified as fix
modification, while oxidation on Met and acetylation on Lys and
N-terminal of protein were specified as variable modifications.
Quantitative method was set to TMT-10plex. FDR thresholds for
protein, peptide and modification sites were specified at 1%.

Bioinformatics Analysis
Gene Ontology (GO) annotation proteome was performed from
the UniProt-GOA database1, and proteins were classified into
three categories: biological process, cellular component and
molecular function. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was based on database2. Subcellular
location was derived from the software named WoLF PSORT.
Protein domain was annotated by soft InterProScan based on
InterPro domain database3. Motif-x software was employed to
analyze the model of sequences constituted with amino acids in
specific positions of acetyl-21-mers (10 amino acids upstream
and downstream of the site) in all the protein sequences. Protein-
protein interaction (PPI) network analysis was performed by
STRING 10.54.

1https://www.ebi.ac.uk/GOA/
2http://www.genome.jp/kegg/
3http://www.ebi.ac.uk/interpro/
4https://string-db.org/cgi/input.pl
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Western Blot Analysis
About 100 mg tumor or normal liver tissues were acquired
and digested in 1 mL RIPA lysis buffer on ice for 30 min.
The lysate was centrifuged for 20 min, 12000 rpm at 4◦C,
protein extraction samples were collected and concentration were
detected with a microplate reader. Samples were boiled at 95◦C
for 5 min and directly loaded onto a 10% SDS-PAGE gel. Then
proteins were transferred to a PVDF membrane. The membrane
was incubated within 5% non-fat dry milk in TBS with 0.1%
Twee-20 (TBS-T) to block the protein spots, and then it was
incubated with primary antibodies (SIRT1, 2, and 4 from BBI,
China) at 4◦C overnight. The membrane was washed with TBS-
T for three times and incubated in secondary antibody. Signals
were detected with the Amersham Imager 600 System (General
Electric Company, United States). GAPDH was used as internal
control. The expression levels were quantified by measuring the
intensity of each band with Image J software.

RESULTS

Identification and Analysis of Acetylated
Proteins in HCC Tumor and Normal Liver
Tissues
To profile the protein lysine acetylation of liver tissues during
HCC development, five pairs of primary tumor and para-
carcinoma normal liver tissues were surgically resected from
HCC patients. Four pairs of qualified tissues were selected
for further analysis after quality test. Proteins were extracted
from the collected liver tissues and then digested into peptides
by trypsin. After being labeled with TMT tag, the digested
peptides with lysine acetylation sites were enriched and analyzed
by LC-MS/MS. Based on the human Uniprot database, we
identified 792 acetylation sites in 415 proteins, among which
598 acetylation sites in 325 proteins were quantified. Compared
to the normal liver tissues, 278 acetylation sites in 189 proteins
were down-regulated while three acetylation sites in three
proteins (EP300, GRHPR, and GLDC) were up-regulated with
significant differences in tumor tissues (Supplementary Table S1;
Figure 1A). In a previous acetylation proteomics study, more
than 1000 acetylated proteins were identified in human liver
tissues (Zhao et al., 2010). By comparison of these two studies,
we found that about 31% of proteins with differential acetylation
levels identified in our study were present in the previous
study (Figure 1B). It indicated that the spectrum of acetylated
proteins was highly conserved in human liver tissues, and
the proteins with aberrant acetylation levels in tumor tissues
probably participated in HCC development.

Then we investigated the distribution of identified lysine
acetylation sites in proteins by calculating the number of
acetylation sites per protein. As shown in Figure 1C, most of
the proteins contained no more than three lysine acetylation
sites, which accounted for 87%, while 13% of them contained
three more sites. Next, distribution of acetylated lysine sites
and proteins were analyzed (Figure 1D), it showed that
acetylated proteins were mainly associated with mitochondria

(31%), nucleus (24%), and cytoplasm (22%). Besides, among the
remaining 23% proteins, most of them were located in organelles
including endoplasmic reticulum and peroxisome. To explore
the relationship between lysine acetylation sites and protein
secondary structures, a structure analysis of the acetylated lysine
sites and all lysine sites was performed. As shown in Figure 1E,
the α-helix and coil probabilities of acetylated lysine sites were
significantly different from that of all lysine sites, while there
was no obvious difference in β-strand probabilities between the
acetylated lysine sites and all lysine sites. Additionally, surface
accessibility of lysine acetylation sites analysis showed that about
38.55% of acetylated lysine sites were exposed to protein surfaces,
compared to 38.88% of all lysine sites (Figure 1F). Therefore,
lysine acetylation seemed to have little effect on surface property
of identified proteins in HCC liver tissues.

We also analyzed the amino acids from the -10 to + 10
positions surrounding the identified lysine acetylation sites
and searched for occurrences of amino acid motifs. Of all
the acetylated peptides, 417 were matched to six conserved
motifs, including KK.,.KH., . . .. . .. . ..K. . .KA. . .. . .. . ..,
. . .. . .. . ..KR. . .. . .. . .., . . .. . .. . ..KN., and K.K (K indicates
the acetylated lysine, and H, A, R, N represent histidine,
alanine, arginine, and asparagine, respectively) (Figure 2A).
In Figure 2B, local sequence context around the lysine
acetylation sites was analyzed and it indicated that positively
charged amino acids (K, H, and R) were almost completely
excluded from the -1 position, while they were enriched in
the + 1 position. This data suggested that according to the
heat map of the amino acid compositions surrounding the
acetylation sites, the frequency of G (G indicates glycine) in
position -1 was the highest, and the frequency of K and A
from the -10 to + 10 positions was mainly kept at a higher
level in the motifs. Acetylated peptides containing motif.
KK. accounted for 35% of all the identified peptides, while
peptides containing motifs. KR.,.K.K., . . .. . .. . ..KH. . .. . .. . ..,
. . .. . .. . ..KN. . .. . .. . .., and . . .. . ..K.KA. accounted for 17.3%,
14.6%, 13.7%, 13.7%, and 5.8%, respectively (Figure 2C).
In addition, the distribution of different motifs in cellular
compartments were assessed, and results showed that acetylated
peptides were predominantly associated with cytoplasm and
mitochondria, where the motifs were similar, but different from
nuclear motifs (Figures 2D–F).

Functional Enrichment and Subcellular
Location of Differentially Acetylated
Proteins
To characterize the role of lysine acetylome in HCC development,
we performed GO analysis on the differentially acetylated
proteins based on biological process, cellular component, and
molecular function (Figures 3A–C). Biological processes analysis
indicated that acetylated proteins were enriched in cellular
process (17%), single-organism process (16%), metabolic process
(16%), biological regulation (9%) and response to stimulus
(9%). Besides, according to cellular component analysis, there
were 24% and 23% acetylated proteins located in cell and
organelle, respectively, 15% in membrane-enclosed lumen,
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FIGURE 1 | Bioinformatics analysis of lysine acetylation sites identified in liver tissues of HCC patients. (A) Volcano plot showing the distribution of acetylation sites
rations (Tumor vs. Normal). (B) Comparison of two acetylation proteomic studies in human liver tissues: this study and reference (Zhao et al., 2010). (C) Statistic
analysis of acetylated sites in the acetylated proteins. (D) Distribution of acetylated sites and proteins in different cellular components. (E) Distribution of lysine
acetylation sites in protein secondary structures. (F) Predicted surface accessibility of acetylation sites.

15% in extracellular region, 11% in membrane, and 8% in
macromolecular complex. Molecular function analysis showed
that 45% and 40% acetylated proteins were involved in
binding and catalytic activities, respectively, which accounted
for most of the acetylated proteins. Taken together, GO analysis

revealed that differentially acetylated proteins were enriched
in metabolic, catabolic, and signal transduction processes.
Consistently, subcellular location showed that differentially
acetylated proteins were primarily associated with mitochondria
and cytoplasm, which accounted for 42% and 24%, respectively.
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FIGURE 2 | Motif analysis of acetylated peptides. (A) Acetylation motifs and amino acids surrounding the lysine acetylation sites. (B) Heat map representing the
amino acids composition of the lysine acetylation sites. (C) Distribution of motifs in acetylated peptides. (D–F) Distribution of motifs in acetylated peptides associated
with different cellular compartments.

Less acetylated proteins were in located in endoplasmic
reticulum and peroxisome (11%), nucleus (7%), membrane and
cytoskeleton (4%), and extracellular (3%) (Figure 3D).

To better understand the cellular processes regulated by
differentially acetylated proteins in HCC tumor tissues, GO

and KEGG pathway enrichment analysis were carried out. As
shown in Figure 4A, it showed that differentially acetylated
proteins were markedly involved in epithelium development,
mitochondria function, and intracellular metabolic processes. In
agreement with this finding, KEGG pathway enrichment analysis
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FIGURE 3 | GO (A–C) and subcellular localization (D) analysis of differentially acetylated proteins. (A) Biological process. (B) Cellular component. (C) Molecular
function.

demonstrated that differentially acetylated proteins participating
in glucose, fatty acid, and amino acids metabolism pathways
were mostly enriched (Figure 4B). Besides, protein domain
enrichment analysis showed that CIpP/crotonase-like, Thiolase-
like, Thiolase, N-terminal, and Thiolase, C-terminal domains
were mainly enriched (Figure 4C). All these domains were
involved in enzymatic activities, especially lipid metabolism.
Additionally, the differentially acetylated proteins were subjected
to PPI network analysis based on the STRING database, and
it showed that proteins were clustered into three categories
including metabolism, oxidative stress and DNA repair, and the
ubiquitin proteasome system (UPS) (Figure 5).

Disorder of Lysine Acetylation
Modification on Metabolic Enzymes in
HCC Tumor Tissues
Among the differentially acetylated proteins identified in
this research, metabolic enzymes represented a significant

proportion, and they mainly participated in processes such
as glycolysis, gluconeogenesis, the TCA cycle, fatty acid
oxidation, glutamine metabolism, and the urea cycle (Figure 5).
According to the statistical analysis, proteins participating in
glucose, fatty acid and amino acid metabolism accounted for
46%, 39%, and 15%, respectively. In the glucose metabolic
process, most differentially acetylated enzymes directly
participated in glycolysis (GAPDH, PGK1, PGAM2, LDHA,
DLAT, PDHA1), TCA cycle (IDH1/2, DHTKD1, SDHA,
FH, MDH1/2), and oxidative phosphorylation (NDUFB3,
SDHA, UQCRC1, ATPase, COX5B) processes (Figure 6A).
Additionally, in fatty acid metabolic process (Figure 6B), about
60% of enzymes contained more than one lysine sites with
differential acetylation levels. For example, we identified five
lysine acetylation sites in HADHA, four lysine acetylation
sites in HADHB, and three lysine acetylation sites in both
ACADVL and PCCA, all of which showed lower acetylation
levels in tumor tissues. Besides, several acetylated proteins
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FIGURE 4 | GO enrichment (A), KEGG pathway enrichment (B), and protein domain enrichment (C) analysis of differentially acetylated proteins.
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FIGURE 5 | PPI network analysis of differentially acetylated proteins in HCC tumor tissues.

with decreased lysine acetylation levels were located in
peroxisome, where the main function was to catalyze the
oxidation of fatty acid. Moreover, several pivotal enzymes
involved in amino acid metabolism process and urea cycle
were identified with decreased lysine acetylation levels in
HCC tumor tissues, such as GLUD1, ASL, GOT2 and so on
(Figure 6C). GLUD1 plays an important role in glutamine
consumption, which is a common feature of HCC liver
tissues and provides energy for tumor growth (Dang, 2013).
Here we identified five lysine acetylation sites in GLUD1,
and all the acetylation levels were down-regulated in tumor
tissues. In general, most of the acetylation levels of lysine
sites in enzymes decreased in tumor tissues (Figure 6D).
Additionally, some of the lysine-acetylated peptides were
confirmed by MS/MS spectra, with their relative intensities
in HCC tumor and normal liver tissues (Supplementary
Figures 2A–C).

Involvement of Acetylated Proteins in
Signal Transduction Process and
Oxidative Stress in HCC Tumor Tissues
Besides metabolic enzymes, transcription factors accounted for
another large part of non-histone substrates of HATs and
HDACs. Transcription factors usually function on genomic
DNA and play important roles in genes transcription. In
this research, nearly 10% of differentially acetylated proteins
were located in nuclear, and most of them were involved in

gene transcription process, such as chromatin organization,
telomere dynamics, DNA/RNA binding, and mRNA splicing
(Supplementary Figure S3). To evaluate the importance of
these acetylated nuclear factors during HCC progression, here
we performed PPI network analysis. Results in Figure 7A
showed that most of the acetylated nuclear factors had
direct and close interaction with important factors in HCC
signal pathways, such as p53, PI3K, and c-Myc. Among the
nuclear factors, EP300 is a transcriptional co-activator of which
the K1550 site showed increased acetylation level in tumor
tissues. Besides, as a member of HATs, EP300 had direct
association with multiple non-histone proteins, among which
several proteins identified in this study were included, such
as HSD17B4, EHHADH, LDHA, SLC25A5, NCL, SMAD4,
HSPA8, and so on.

HCC development usually accompanies oxidative stress, and
antioxidant stress system deficiency is a common feature in
tumor cells. In this study, most proteins involved in reactive
oxygen species (ROS) and oxidative stress contained lysine
acetylation sites, such as SOD1, SOD2, PRDX1, PRDX3,
PRDX6, HSD17B4, PECR, GSTA1, TXN, and CAT. Compared
to the normal liver tissues, the acetylation levels of lysine
sites in these proteins were generally down-regulated in
tumor tissues. As a response to oxidative stress and ROS,
the damaged proteins are mainly degraded by the UPS,
which is to protect cells from ROS damage (Marques
et al., 2006). Consistently, several lysine sites of proteins
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FIGURE 6 | Involvement of differentially acetylated proteins in metabolic pathways. (A–C) Schematic representation of differentially acetylated enzymes (shown in
blue) in glucose, fatty acid, and amino acid metabolism. (D) Distribution of lysine acetylation sites rations in metabolic enzymes (Tumor vs. Normal).

involved in UPS showed decreased acetylation levels in tumor
tissues (Supplementary Table 2). Moreover, heat shock
proteins (HSPs) including HSPA8, HSPA9, and HSPD1
in tumor tissues displayed aberrant lysine acetylation
modification. HSPs are molecular chaperones that play
key roles in refolding denatured proteins. HSPs promoted
tumorigenesis, tumor growth, and metastasis, and blockade
of HSPs and activation of UPS induced protein degradation
and prevented tumor development (Calderwood, 2018).
Finally, twenty acetylated proteins were analyzed in a
PPI network (Figure 7B), and it showed close interaction

among proteins associated with oxidative stress in HCC
tumor tissues.

SIRT1, 2 and 4 Were Up-Regulated in
HCC Tumor Tissues
According to the bioinformatics analysis, differentially acetylated
proteins mainly consisted of non-histone proteins located in
mitochondria and cytoplasm, most of which displayed decreased
lysine acetylation levels in tumor tissues. Among HDACs, SIRT1-
5 accounted for deacetylation of non-histone proteins and several
acetylated proteins identified in tumor tissues were substrates
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FIGURE 7 | PPI network analysis of differentially acetylated nuclear factors (A) and oxidative stress associated proteins (B) in HCC tumor tissues. (C) Protein
expression levels of SIRT1, 2, and 4 in tumor and normal liver tissues from HCC patients. *p < 0.05 and **p < 0.01 indicate significant differences.

of SIRT1-5. Therefore, we put forward the hypothesis that the
widespread deacetylation of lysine sites in non-histone proteins
identified in HCC tumor tissues was possibly associated with
the function of SIRT1-5. Then we detected expression levels of
SIRT1-5 in four pairs of tumor and normal liver tissues from
HCC patients. Results showed that SIRT1, 2, and 4 were up-
regulated in tumor tissues while SIRT3 and 5 displayed decreased
expression levels (Supplementary Figure S4). Furthermore, we
collected another twenty pairs of tumor and normal liver tissues
from HCC male patients. The age of patients ranged from 35 to
67, and about 57% of them were HBV positive. We detected the
expression levels of SIRT1, 2, and 4 by western blot and results
in Figure 7C showed that the frequencies of over-expression
of SIRT1, 2, and 4 in tumor tissues were 85%, 80%, and 72%,
respectively. Compared to normal liver tissues, SIRT1 (p = 0.002),
SIRT2 (p = 0.01), and SIRT4 (p = 0.045) were significantly
up-regulated in tumor tissues. These results indicated that up-
regulation of SIRT 1, 2, and 4 in HCC tumor tissues possibly
accounted for the deacetylation of non-histone proteins located
in mitochondria and cytoplasm. Besides, it provided sirtuins as

promising biomarker and therapeutic target candidates for HCC
diagnosis and cure.

DISCUSSION

In recent years, with the development of LC-MS/MS technique
and its application in proteomics study, an increasing number
of lysine acetylation sites in non-histone proteins were identified
in liver tissues (Zhao et al., 2010; Lundby et al., 2012). More
and more evidence showed that lysine acetylation played an
important role in metabolic function and signal transduction
during HCC development (Ding et al., 2017; Guo et al., 2018). To
better understand the function of lysine acetylation during HCC
development, we performed lysine acetylome study and identified
a large number of lysine sites in proteins with differential
acetylation levels in HCC tumor and normal liver tissues.

In this study, the differentially acetylated proteins mainly
consisted of non-histone proteins that were normally located
in mitochondria and cytoplasm, where metabolic enzymes
accounted for a large amount. Lysine acetylation was vital to an
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enzyme’s function, and disordered lysine acetylation level lead to
enzyme dysfunction and metabolic syndrome (Lin et al., 2016).
Metabolic rewiring including Warburg effect, enhanced fatty acid
metabolism and glutamine consumption was a common feature
of HCC, which provided energy for tumor growth and metastasis
(Kitamura et al., 2011; Mashek et al., 2015; Infantino et al.,
2019; Daye and Wellen, 2012). Consistently, the GO and KEGG
pathway analysis showed that differentially modified proteins
mainly participated in metabolic processes. For example, pivotal
enzymes participating in glycolysis, glutaminolysis, and fatty acid
oxidation processes such as PGAM2, GLUD1, HADHA, and so
on, displayed aberrant acetylation levels. Besides, some of them
contained more than one lysine sites with different acetylation
levels in HCC tumor and normal liver tissues. Lysine acetylation
modification was an important PTM that was associated with
active sites and advanced structure formation. These findings
provided us a new way for mechanism study of metabolic
enzymes during HCC development. Besides, the differentially
acetylated enzymes could serve as potential biomarkers for
clinical HCC diagnosis at early stage.

In addition, we found that almost all of the proteins involved
in oxidative stress showed decreased acetylation levels in HCC
tumor tissues. Moreover, as the main manners for degradation
and refolding of damaged and denatured proteins, proteins
from the UPS and HSPs displaying disturbed lysine acetylation
levels were closely connected with oxidative stress associated
proteins. Oxidative stress was induced by excessive amounts of
ROS produced from metabolic processes, and the antioxidant
stress system was usually damaged or deficient in tumor tissues,
which were vital factors for HCC initiation and progression
(Birben et al., 2012; Ma-On et al., 2017). These finding not
only proved the involvement of metabolic disorder and oxidative
stress in promoting HCC development, but also implied the
participation of acetylated proteins in ROS production and
elimination processes, which might be a pivotal way for oxidative
stress regulation in HCC tumor tissues.

Taken together, the lysine acetylome study provided a large
amount of non-histone proteins with decreased acetylation levels
in tumor tissues. Meanwhile, we found that the expression
levels of SIRT 1, 2, and 4 increased in tumor tissues. Among
HDACs, SIRT1, 2, and 4 were mainly located in mitochondria
and cytoplasm, and they were closely related to metabolic
process and oxidative stress during cancer development (Min
et al., 2018; Watanabe et al., 2018; Lee et al., 2018). Besides
histones, increasing numbers of non-histone proteins were
identified as substrates of sirutins, which included several
metabolic enzymes identified in this study (Wang L.T.et al.,
2020; Xu et al., 2014). Therefore, up-regulation of SIRT 1,
2, and 4 in tumor tissues was probably responsible for the
widespread deacetylation of non-histone proteins. Furthermore,
researches showed that over-expression of HDACs was closely
associated with cancer development, some of which were
potential predictors for diagnosis and prognosis of HCC
(Quint et al., 2011). HDACs inhibitors could inhibit HCC
cells growth in various states including apoptosis, cell cycle
arrest, and inhibition of cell migration/invasion, which made
HDACs as hopeful therapeutic targets for HCC treatment

(Freese et al., 2019). Therefore, over-expression of SIRT1, 2, and
4 in tumor tissues provided new promising biomarkers and drug
targets for clinical HCC treatment.

In conclusion, our findings served as an important resource
for the functional study of acetylated proteins in HCC
development. It made insights into the association of sirtuins
with widespread deacetylation of non-histone proteins in HCC
tumor tissues, and provided promising diagnostic biomarkers
and therapeutic targets for clinical HCC treatment.
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Hepatocellular Carcinoma
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Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, China, 4 Henan Institute of Medical and 
Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China

Karyopherin α2 (KPNA2) was reported to be overexpressed and have unfavorable 
prognostic effects in many malignancies including hepatocellular carcinoma (HCC). 
Although its contributions to inflammatory response were reported in many studies, its 
specific associations with immune infiltrations and immune pathways during cancer 
progression were unclear. Here, we aimed to identify new markers for HCC diagnosis and 
prognosis through KPNA2-associated immune analyses. RNA-seq expression data of 
HCC datasets were downloaded from The Cancer Genome Atlas and International Cancer 
Genome Consortium. The gene expressions were counts per million normalized. The 
infiltrations of 24 kinds of immune cells in the samples were evaluated with ImmuCellAI 
(Immune Cell Abundance Identifier). The Spearman correlations of the immune infiltrations 
with KPNA2 expression were investigated, and the specific positive correlation of B-cell 
infiltration with KPNA2 expression in HCC tumors was identified. Fifteen genes in KEGG 
(Kyoto Encyclopedia of Genes and Genomes) B-cell receptor signaling pathway presented 
significant correlations with KPNA2 expression in HCC. Among them, GRB2 and NRAS 
were indicated to be independent unfavorable prognostic factors for HCC overall survival. 
Clinical Proteomic Tumor Analysis Consortium HCC dataset was investigated to validate 
the results at protein level. The upregulation and unfavorable prognostic effects of KPNA2 
and GRB2 were confirmed, whereas, unlike its mRNA form, NRAS protein was presented 
to be downregulated and have favorable prognostic effects. Through receiver operating 
characteristic curve analysis, the diagnostic potential of the three proteins was shown. 
The RNA-binding proteins (RBPs) of KPNA2, NRAS, and GRB2, downloaded via The 
Encyclopedia of RNA Interactomes, were investigated for their clinical significance in HCC 
at protein level. An eight-RBP signature with independent prognostic value and 
dysregulations in HCC was identified. All the RBPs were significantly correlated with MKI67 
expression and at least one of KPNA2, GRB2, and NRAS at protein level in HCC, indicating 

47

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.593273&domain=pdf&date_stamp=2020-10-26
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.593273
https://creativecommons.org/licenses/by/4.0/
mailto:shashafan0225@hunnu.edu.cn
mailto:lpdai@zzu.edu.cn
mailto:jzzhanghnyz@126.com
https://doi.org/10.3389/fgene.2020.593273
https://www.frontiersin.org/articles/10.3389/fgene.2020.593273/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.593273/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.593273/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.593273/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.593273/full


Zhang et al. KPNA2-Associated Immune Analyses in HCC

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 593273

their roles in HCC progression and the regulation of the three proteins. We concluded 
that KPNA2, GRB2, NRAS, and their RBPs might have coordinating roles in HCC 
immunoregulation and progression. They might be new markers for HCC diagnosis and 
prognosis predication and new targets for HCC immunotherapy.

Keywords: hepatocellular carcinoma, immune infiltration, KPNA2, GRB2, NRAS, prognosis, RNA-binding protein

INTRODUCTION

Liver cancer is the seventh most common cancer and the 
third leading cause of cancer death worldwide (Bray et  al., 
2018). Hepatocellular carcinoma (HCC) is the predominant 
type of primary liver malignancies, with a 5-year overall survival 
(OS) rate of less than 20%, mainly due to its late diagnosis. 
Although great advancement has been made in HCC screening 
and treatment during the last few decades, the effectiveness 
still remains unsatisfactory. It was reported that for patients 
with early-stage HCC, the 5-year survival rate was greater 
than 70% (Siegel et  al., 2018), much better than that of late-
stage patients, calling for effective markers of its early diagnosis 
and prognostic predication.

Karyopherin α2 (KPNA2), also named importin α1, is a 
member of karyopherin α family and plays crucial roles in 
nucleocytoplasmic transport (Goldfarb et  al., 2004). In 
rheumatoid arthritis, KPNA2 was shown to be  a trigger of 
interleukin 6 (IL-6) secretion, colocalized with T cells and 
neutrophils, and could be upregulated via tumor necrosis factor 
α stimulation (Liu et  al., 2015). It was also demonstrated to 
play crucial roles in the negative regulation of regulatory T 
cells (Tregs) differentiation through its interaction and 
translocation of proinflammatory molecule NLRP3 (Park et al., 
2019). In a study of vaccinia virus (VACV), the positive effects 
of KPNA2 on immunoregulation was shown in the induction 
of VACV specific CD8+ T-cell memory via its interaction with 
p65 (Pallett et al., 2019). In another study, KPNA2 downregulation 
was reported to be  associated with enterovirus 71-induced 
innate immune response (Peng et  al., 2018), indicating its 
negative immunoregulatory roles.

In recent years, The dysregulation and/or prognostic roles 
of KPNA2 were reported in many tumors including esophageal 
squamous cell carcinoma (Song et  al., 2019), breast cancer 
(Groheux et al., 2018; Wang et al., 2019a), myeloma (Kriegsmann 
et al., 2019; Tachita et al., 2020), clear cell renal cell carcinoma 
(Müller et  al., 2019), oral cancer (Wang et  al., 2018), bladder 
cancer (Jeong et  al., 2017), and colorectal cancer (Ostasiewicz 
et  al., 2016; Jeong et  al., 2017). The immune-related roles of 
KPNA2 were also shown in tumors. In colorectal cancer cells, 
upregulated KPNA2 was demonstrated to be  associated with 
immunogenic cell death (Song et  al., 2016). In breast cancer, 
KPNA2 knockdown could suppress the inflammatory responses 
and malignant progression of the tumor cells induced by IL-6 
(Duan et  al., 2020). In HCC, KPNA2 overexpression and its 
prognostic effects were also reported in several studies (Jiang 
et al., 2014; Yang et al., 2017b; Chen et al., 2019; Guo et al., 2019; 
Liu et  al., 2019; Yue et  al., 2019; Yu et  al., 2020). In fact, its 

tumor-promoting activities were also shown (Gao et  al., 2018; 
Lin et  al., 2018; Zan et  al., 2019) in HCC. However, although 
the correlations between KPNA2 expression and immune 
infiltrations were investigated in a recent study (Hua et  al., 
2020), its associations with immune response in HCC were 
not clearly illustrated. Furthermore, with only one dataset and 
only six kinds of immune cells included, the reliability of the 
results was limited.

Considering the close relationship between inflammation 
and HCC (El-Serag et  al., 2008), we  speculated that KPNA2 
upregulation might participate in or associate with specific 
immune pathways during HCC progression. In this study, 
we  evaluated the correlations between KPNA2 expression and 
infiltrations of 24 kinds of immune cells in HCC tumors and 
normal liver tissues from The Cancer Genome Atlas (TCGA) 
and International Cancer Genome Consortium (ICGC) HCC 
datasets to identify the specific correlations between KPNA2 
expression and immune infiltration in HCC tumors in contrast 
to those in normal liver tissues. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) B-cell receptor (BCR) signaling 
pathway genes were analyzed and validated for their correlations 
with KPA2 expression and their independent prognostic effects 
in HCC. Considering the crucial roles of RNA-binding proteins 
(RBPs) in RNA splicing, RNA translation, and RNA degradation 
(Mohibi et  al., 2019), the RBPs of KPNA2 and its correlated 
BCR signaling pathway genes with prognostic values were 
further investigated to find their roles in the dysregulations 
of the identified genes/proteins and their diagnostic value and 
prognostic effects in HCC. The results here might provide 
new clues for the roles of KPNA2  in immunoregulation, new 
markers for HCC early diagnosis and prognostic predication, 
and new targets for HCC immunotherapy.

MATERIALS AND METHODS

Data Collection
RNA-seq data of HCC tumors and normal liver tissues in 
HCC datasets with the clinical information were downloaded 
from Genomic Data Commons data portal (TCGA-LIHC dataset, 
called TCGA-HCC in this study) and ICGC database (ICGC-
HCC dataset). There were 371 primary tumors and 50 normal 
liver tissues from 371 HCC patients in the TCGA-HCC dataset 
and 223 primary tumors and 202 normal tissues from 223 
HCC patients in the ICGC-HCC dataset. The clinical features 
of the patients are shown in Table  1. The gene expression 
read count data of the two datasets were counts per million 
(CPM) transformed for normalization for further analyses.
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Correlation Analyses Between KPNA2 
Expression and Immune Cell Infiltrations 
and the Investigation of Prognostic Roles 
of B-Cell Infiltration in HCC
With their gene expression data, the infiltrations of 24 kinds 
of immune cells including 18 T-cell subsets [CD4+, CD8+, CD4+ 
naive, CD8+ naive, central memory T (Tcm), effector memory 
T, Tr1, iTreg, nTreg, TH1, TH2, TH17, Tfh, cytotoxic T, MAIT, 
exhausted T (Tex), gamma delta T (γδ T), and natural killer 
T (NKT) cells] and six other important immune cells [B cells, 
macrophages, monocytes, neutrophils, dendritic cell (DC), and 
NK cells] in the HCC tumors and normal liver tissues from 
the TCGA-HCC and ICGC-HCC datasets were evaluated with 
ImmuCellAI (Immune Cell Abundance Identifier; Miao et  al., 
2020). The correlations between KPNA2 expression and the 
immune cell infiltrations of the HCC tumors and normal liver 
tissues were evaluated individually. Spearman correlation analysis 
was used, and a |correlation coefficient|  >  0.15 with p  <  0.01 
was considered as statistically significant.

Kaplan-Meier survival analysis was used to evaluate the 
prognostic effects of B-cell infiltration on HCC OS with a 
cutoff value of B-cell infiltration identified from survminer 
package in R.1 To investigate the independent prognostic effects 
of B-cell infiltration HCC OS, multivariable Cox regression 
analysis with ezcox package (Wang et  al., 2019b) in R was 
performed and the gender-, age-, and stage-corrected prognostic 
effects of B-cell infiltration were evaluated in the TCGA-HCC 

1 https://CRAN.R-project.org/package=survminer

and ICGC-HCC datasets individually. For survival analyses, 
only the patients with survival time >0 were included.

Identification of KPNA2-Correlated BCR 
Signaling Pathway Genes
KEGG BCR signaling pathway (hsa04662) genes (n  =  75) were 
investigated through KEGG database.2 Their expressions were 
analyzed for their correlations with KPNA2 expression in HCC 
samples form TCGA-HCC and ICGC-HCC datasets. Spearman 
correlation analysis was used, and a |correlation coefficient| > 0.15 
with p  <  0.01 was considered as statistically significant.

Differential Expression Analyses and 
Prognostic Effects Evaluation of the 
KPNA2-Correlated BCR Signaling Pathway 
Genes in HCC
The BCR signaling pathway genes with significant correlations 
with KPNA2 expression were selected, and their expression 
profiles and prognostic roles were investigated in the TCGA-HCC 
and ICGC-HCC datasets. Gene expression comparisons between 
HCC tumors and normal liver tissues were performed with 
Wilcoxon test. Univariable Cox regression analysis was performed 
to evaluate the prognostic effects of the genes. The independent 
prognostic values were investigated through multivariable Cox 
regulation analysis with ezcox package (Wang et  al., 2019b) 
in R software with the gene expressions as covariates and 
gender, age, and stage as controls. Only the BCR signaling 
pathway genes with prognostic effects independent of gender, 
age, and stage were selected for further analyses. For the 
analyses, p  <  0.05 was considered significant.

Validation of the Dysregulation and 
Prognostic Effects of KPNA2, GRB2, and 
NRAS at Protein Level
To validate the results above, the HCC proteomic data of a 
Chinese cohort from Clinical Proteomic Tumor Analysis 
Consortium (CPTAC; Gao et  al., 2019) was investigated. The 
tumor samples (n = 159) and their paired liver tissues (n = 159) 
from 159 HCC patients were included. The clinical information 
of the patients is shown in Supplementary Table S1. The 
expressional differences of the proteins were evaluated with 
paired-samples Wilcoxon test. The diagnostic power of the 
proteins was evaluated through receiver operating characteristic 
(ROC) curve analysis with pROC package (Robin et  al., 2011) 
in R. The area under the curve (AUC) and the sensitivity and 
specificity at the cutoff point with the biggest Youden index 
(sensitivity  +  specificity  −  1) were evaluated. The correlations 
of the protein expressions were investigated through Spearman 
correlation analysis. The prognostic effects of KPNA2, GRB2, 
and NRAS on HCC OS were investigated through Kaplan-
Meier survival analysis for which survminer package in R was 
used to get the cutoff value for grouping the patients.3 

2 https://www.genome.jp/kegg/
3 https://CRAN.R-project.org/package=survminer

TABLE 1 | Clinical features of the patients in the TCGA-HCC dataset (n = 371) 
and ICGC-HCC (n = 223) dataset.

Variables TCGA-HCC

(n = 371), n (%)

ICGC-HCC

(n = 223), n (%)

Gender
 Male 250 (67.4%) 164 (73.5%)
 Female 121 (32.6%) 59 (26.5%)
Age

 ≤60 177 (47.7%) 47 (21.1%)
 >60 193 (52.0%) 176 (78.9%)
 NA 1 (0.3%) 0 (0%)
TNM stage

 I 171 (46.1%) 36 (15.7%)
 II 86 (23.2%) 102 (45.7%)
 III 85 (22.9%) 67 (30.5%)
 IV 5 (1.3%) 18 (8.1%)
 NA 24 (6.5%) 0 (0%)
Grade

 G1 55 (14.8%) 20 (9.0%)
 G2 177 (47.7%) 128 (57.4%)
 G3 122 (32.9%) 56 (45.5%)
 G4 12 (3.2%) 1 (0.4%)
 NA 5 (1.3%) 18 (8.1%)
Survival status

 Alive 240 (64.7%) 181 (81.2%)
 Dead 130 (35.0%) 42 (18.8%)
 NA 1 (0.3%) 0 (0%)

HCC, hepatocellular carcinoma; ICGC, International Cancer Genome Consortium; NA, 
not available; TCGA, The Cancer Genome Atlas.
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A B

FIGURE 1 | Spearman correlation analysis between KPNA2 expression and 
B-cell immune infiltrations in HCC. (A) KPNA2 expression was positively 
correlated with B-cell immune infiltration in HCC tumors while negatively 
correlated with B-cell infiltration in normal liver tissues in the TCGA-HCC 
dataset. (B) KPNA2 expression was positively correlated with B-cell immune 
infiltration in HCC tumors while negatively correlated with B-cell infiltration in 
normal liver tissues in the ICGC-HCC dataset. Spearman correlation analysis 
was used. |R| > 0.15 with p < 0.01 was considered statistically significant. 
R, correlation coefficient.

Furthermore, ezcox package (Wang et  al., 2019b) in R was 
used to evaluate the age-, gender-, and tumor size-corrected 
prognostic effects of the proteins. For all the analyses, p < 0.05 
as statistically significant.

Exploration of the Potential Roles of 
KPNA2, GRB2, and NRAS in HCC 
Proliferation
To explore the associations of KPNA2, GRB2, and NRAS with 
HCC proliferation, these correlations with cell proliferation 
MKI67 (Gerdes et al., 1983; Scholzen and Gerdes, 2000; Booth 
et  al., 2014) were evaluated in HCC tumor samples through 
Spearman correlation analysis, and p  <  0.05 was considered 
statistically significant.

Further Investigation of the Prognostic 
Effects and Dysregulation of RBPs of 
KPNA2, GRB2, and NRAS in HCC
RBP binding at specific target sites could impact the expression 
of functionally coordinated sets of mRNAs and regulate their 
function in the cell (Sternburg and Karginov, 2020). Here, through 
The Encyclopedia of RNA Interactomes (ENCORI),4 the RBPs 
of KPNA2 and its correlated BCR signaling pathway genes (GRB2 
and NRAS) were also investigated. The gender-, age-, and tumor 
size-corrected prognostic effects of the RBPs were analyzed through 
multivariable Cox regression analysis with ezcox package (Wang 
et  al., 2019b) in R software. The RBPs with prognostic effects 
independent of gender, age, and tumor size, as well as KPNA2, 
GRB2, and NRAS, were then applied to the least absolute shrinkage 
and selection operator (LASSO) Cox regression to get an effective 
risk model for the prognostic predication of HCC. The risk score 
of each patient was evaluated with the formula as follows:

 risk score coefficient expression= ( )∗ ( )
=
∑
i

n
i i

1

where n is the number of selected proteins, coefficient(i) is 
the coefficient of the protein i, and expression(i) is the expression 
level of protein i. The accuracy of the model in the survival 
status predication of HCC patients was investigated through ROC 
curve analysis, and the AUC was evaluated. Then, the HCC 
patients were than divided into high‐ and low-risk groups with 
the median risk score as the threshold. Through Kaplan-Meier 
survival analysis, the survival differences between high‐ and low-risk 
patients were visualized. The independent prognostic value of the 
model was also evaluated through Kaplan-Meier survival analysis 
in the high‐ and low-risk patients of different tumor size groups, 
different gender groups, and different age groups individually.

For the RBPs in the model above, their expressional differences 
between HCC tumors and their paired normal liver tissues 
were investigated through paired-samples Wilcoxon test, and 
their diagnostic value was investigated through ROC curve 
analysis with pROC package (Robin et  al., 2011) in R. To 
further investigate their potential roles in the dysregulation of 
KPNA2, GRB2, and NRAS, their Spearman correlations in HCC 
were also evaluated. Furthermore, to investigate their associations 

4 http://starbase.sysu.edu.cn/index.php

with HCC proliferation, their correlations with proliferation 
marker MKI67 were evaluated through spearman correlation 
analyses. For these analyses, p < 0.05 was considered significant.

RESULTS

Positive Correlation of B-Cell Infiltration 
With KPNA2 Expression and Its Prognostic 
Roles in HCC
For the TCGA-HCC dataset, as shown in Supplementary  
Figure S1, 10 of the immune cell infiltrations were shown 
to be  negatively (R  <  −0.15 and p  <  0.01: CD4+ naive, TH17, 
Tfh, MAIT, NK, and CD4+ T infiltrations) or positively correlated 
(R > 0.15 and p < 0.01: Tex, nTreg, DC, and B-cell infiltrations) 
with KPNA2 expression in HCC tumors in the TCGA-HCC 
datasets. In the normal liver tissues of the TCGA-HCC dataset, 
the negative correlations (R  <  −0.15 and p  <  0.01) of CD4+ 
naive and B-cell and the positive correlation (R  >  0.15 and 
p  <  0.01) of DC infiltration with KPNA2 expression were 
shown. Interestingly, B-cell infiltration was shown to 
be  positively correlated (R  =  0.397, p  <  0.01) with KPNA2 
expression in HCC tumors while negatively correlated 
(R = −0.416, p < 0.01) with KPNA2 expression in the normal 
liver tissues (Figure  1A).
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For the ICGC-HCC dataset, as shown in 
Supplementary Figure S2, six kinds of immune cells including 
CD4+ naive, Tfh, MAIT, monocyte, NK cell, and CD4+ T 
cell were shown to be  significantly negatively correlated 
(R  <  −0.15 and p  <  0.01), while DC and B-cell infiltrations 
were positively correlated (R > 0.15 and p < 0.05) with KPNA2 
expression in HCC tumors. In the normal liver tissues, negative 
correlations (R  <  −0.15 and p  <  0.01) of CD4+ naive, B cell, 
NK, γδ T, and CD4+ T infiltrations, whereas positive correlations 
(R  >  0.15 and p  <  0.01) of Tcm, DC, and macrophage 
infiltrations with KPNA2, were shown. Noticeably, opposite 
correlations of B-cell infiltration with KPNA2 expression in 
HCC tumors (R  =  0.289, p  <  0.01) and the normal liver 
tissues (R  =  −0.226, p  <  0.01) were also obvious here 
(Figure  1B), consistent with the results in the TCGA-HCC 
dataset, indicating the specificity of the positive correlation 
between KPNA2 expression and B-cell infiltration in the HCC 
tumors in contrast to the normal controls.

Through Kaplan-Meier survival analysis (Figures 2A,B) and 
multivariable Cox regression analysis (Figures  2C,D), the 
unfavorable prognostic effects of B-cell infiltration on HCC 
OS were shown both in the TCGA-HCC and ICGC-HCC 

datasets, indicating its potential in HCC prognosis predication. 
BCR is a master regulator of B cells. Through BCR, the B 
cells recognize foreign antigen, leading to maturation of the 
B-cell into either a memory B-cell or an effector (plasma) 
B-cell (Puri et  al., 2013; Skånland et  al., 2020). We  speculated 
that there might be  also associations between BCR signaling 
pathway genes and KPNA2, and they might play important 
roles during HCC progression.

Correlations Between KPNA2 Expression 
and BCR Signaling Pathway Genes in HCC
There were 27 BCR signaling pathway genes negatively or 
positively correlated with KPNA2 at mRNA level in HCC 
tumors of the TCGA-HCC and ICGC-HCC datasets individually 
(Supplementary Table S2). Among them, seven genes including 
GRB2, NRAS, NFKBIE, MAPK3, BCL10, NFATC2, and PIK3R2 
were positively correlated (R  >  0.15 and p  <  0.01), whereas 
eight genes including BLNK, IFITM1, AKT3, FOS, AKT1, 
NFKBIA, CD81, and PLCG2 were negatively correlated 
(R  <  −0.15 and p  <  0.01) with KPNA2 expression in HCC 
in both TCGA-HCC dataset (Figure  3A) and ICGC-HCC 
dataset (Figure  3B).

A

C D

B

FIGURE 2 | Prognostic effects of B-cell infiltration in HCC. (A) Significant shorter survival in the HCC patients with high B-cell infiltration than the patients with low 
B-cell infiltration in the TCGA-HCC dataset. (B) Significant shorter survival in the HCC patients with high B-cell infiltration than the patients with low B-cell infiltration 
in the ICGC-HCC dataset. (C) Prognostic effects of B-cell infiltration on HCC overall survival when adjusted for gender, age, and stage in the TCGA-HCC dataset. 
(D) Prognostic effects of B-cell infiltration on HCC overall survival when adjusted for gender, age, and stage in the ICGC-HCC dataset. Kaplan-Meier survival analysis 
with log-rank test and multivariable Cox regression analysis were used for evaluation of the prognostic effects of B-cell infiltration. For all the analyses, p < 0.05 was 
considered statistically significant.
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A

B

FIGURE 3 | Significant correlations between BCR signaling pathway gene expressions and KPNA2 expression in HCC. (A) Significant positive correlations of GRB2, 
NRAS, NFKBIE, MAPK3, BCL10, NFATC2, and PIK3R2 and negative correlations of BLNK, IFITM1, AKT3, FOS, AKT1, NFKBIA, CD81, and PLCG2 with KPNA2 
expression in HCC in the TCGA-HCC dataset. (B) Significant positive correlations of GRB2, NRAS, NFKBIE, MAPK3, BCL10, NFATC2, and PIK3R2 and negative 
correlations of BLNK, IFITM1, AKT3, FOS, AKT1, NFKBIA, CD81, and PLCG2 with KPNA2 expression in HCC in the ICGC-HCC dataset. The x-axis and y-axis represented 
the relative expression of KPNA2 and BCR signaling pathway genes, respectively. The gene expressions were CPM normalized and log2(x + 0.001) transformed. BCR, 
B-cell receptor; R, correlation coefficient; CPM, count per million. Spearman correlation was used, and |R| ≥ 0.15 with p < 0.01 was considered significant.

Differential Expression and Prognostic 
Effects of KPNA2 and Its Correlated BCR 
Signaling Pathway Genes in HCC
As shown in Figure  4, besides the overexpression of KPNA2  in 
HCC tumors, among the seven-KPNA2 positively correlated 

BCR signaling pathway genes, six genes including GRB2, NRAS, 
NFKBIE, MAPK3, and NFATC2 were shown to be  higher 
expressed, whereas NFATC2 was lower expressed in the HCC 
tumors than the normal liver tissues (p < 0.05) in both TCGA-HCC 
dataset (Figure  4A) and ICGC-HCC dataset (Figure  4B).  
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However, BCL10 was shown to be  downregulated in the 
TCGA-HCC tumors (p  <  0.05) but not statistically significant 
in the ICGC-HCC tumors (p  >  0.05). For the eight-KPNA2 
negatively correlated BCR signaling pathway genes, all of them 
were shown to be  downregulated in HCC tumors comparing 
with the normal liver tissues in the two datasets (p  <  0.05).

Through univariable Cox regression analysis (Figures  5A,B), 
besides the unfavorable prognostic effects of KPNA2 
(HRTCGA-HCC  =  1.823, HRICGC-HCC  =  2.234, p  <  0.05), two of its 
positively correlated BCR signaling pathway genes (NRAS: 
HRTCGA-HCC  =  1.775, HRICGC-HCC  =  2.664, p  <  0.05; GRB2: 
HRTCGA-HCC  =  1.901, HRICGC-HCC  =  2.470, p  <  0.05) and one of 
its negatively correlated genes (BLNK: HRTCGA-HCC  =  0.771, 
HRICGC-HCC = 0.786, p < 0.05) were shown to be prognostic factors 
both in the TCGA-HCC patients and ICGC-HCC patients. For 
the other 12 genes, their prognostic effects were shown in only 
one of or neither of the two datasets. Then, KPNA2 and the 
three BCR signaling pathway genes (GRB2, NRAS, and BLNK) 
with consistent prognostic effects in the two datasets were selected 
for further investigation of their independent prognostic values. 
When their prognostic effects were adjusted for gender, age, and 
tumor stage, the unfavorable effects of KPNA2 (HRTCGA-HCC = 1.78, 

HRICGC-HCC  =  2.45, p  <  0.05; Figures  5C,G), GRB2 
(HRTCGA-HCC  =  1.67, HRICGC-HCC  =  1.97, p  <  0.05; Figures  5D,H), 
and NRAS (HRTCGA-HCC  =  1.59, HRICGC-HCC  =  2.39, p  <  0.05; 
Figures  5E,I) on HCC OS also existed in both TCGA-HCC and 
ICGC-HCC datasets, indicating their potential in the predication 
of HCC prognosis. However, although the independent favorable 
prognostic effect of BLNK in the TCGA-HCC (HR  =  0.80, 
p  <  0.05; Figure  5F) was shown, it was not so significant in 
the ICGC-HCC dataset (HR  =  0.82, p  >  0.05; Figure  5J).

Validation of Dysregulations, Correlations, 
and Prognostic Effects of KPNA2, GRB2, 
and NRAS in HCC at Protein Level
At protein level, through CPTAC-HCC analysis, KPNA2 
(p  <  0.001; Figure  6A) and GRB2 (p  <  0.001; Figure  6B) 
were found to be  higher expressed in HCC tumors than their 
normal liver tissues, consistent with their upregulation in HCC 
tumors at mRNA level. However, in contrast to its overexpression 
in HCC tumors at mRNA level, NRAS protein was shown to 
be  lower expressed in HCC tumors than their normal liver 
controls (p  <  0.001; Figure  6C). Upon ROC curve analysis 

A

B

FIGURE 4 | Expressional comparisons of KPNA2 and its correlated BCR signaling pathway genes between HCC tumors and normal livers. (A) Expressional 
differences of GRB2, NRAS, NFKBIE, MAPK3, BCL10, NFATC2, PIK3R2, BLNK, IFITM1, AKT3, FOS, AKT1, NFKBIA, CD81, and PLCG2 between HCC tumors and 
normal livers in the TCGA-HCC dataset. (B) Expressional differences of GRB2, NRAS, NFKBIE, MAPK3, BCL10, NFATC2, PIK3R2, BLNK, IFITM1, AKT3, FOS, 
AKT1, NFKBIA, CD81, and PLCG2 between HCC tumors and normal livers in the ICGC-HCC dataset. The x-axis and y-axis represented the sample groups and the 
relative expressions of the genes, respectively. The gene expressions were CPM normalized and log2(x + 0.001) transformed. BCR, B-cell receptor; CPM, count per 
million. Wilcoxon test was used for comparisons, and p < 0.05 was considered significant.
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FIGURE 5 | Prognostic effects of KPNA2 and its correlated BCR signaling pathway genes in HCC. (A) Prognostic effects of KPNA2 and its correlated BCR signaling 
pathway genes on overall survival of the TCGA-HCC patients through univariable Cox regression analysis. (B) Prognostic effects of KPNA2 and its correlated BCR 
signaling pathway genes on overall survival of the ICGC-HCC patients through univariable Cox regression analysis. (C–F) The gender-age-stage-corrected prognostic 
effects of KPNA2, GRB2, NRAS, and BLNK on OS of the TCGA-HCC patients, respectively. (G–J) The gender-age-stage–corrected prognostic effects of KPNA2, 
GRB2, NRAS, and BLNK on overall survival of the ICGC-HCC patients, respectively. For (A,B), univariable Cox regression analysis was used. For (C–J), multivariable 
Cox regression analysis was performed. The analyses were performed with R software, and p < 0.05 was considered statistically significant.

(Figures  6D–F), the diagnostic power of the three proteins in 
discriminating HCC from normal controls was shown with 
AUCs of 0.896, 0.740, and 0.719 for KPNA2, GRB2, and NRAS, 
respectively. At the optimal cutoff points, the sensitivity was 
0.761, 0.553, and 0.579, and the specificity was 0.899, 0.843, 
and 0.868 for KPNA2, GRB2, and NRAS, respectively.

For their correlations, KPNA2 expression was presented to 
be  positively correlated with GRB2 expression (R  =  0.36, 
p  <  0.001; Figure  6G) while negatively correlated with NRAS 
expression (R  =  −0.21, p  <  0.01; Figure  6H). However, no 
significant expressional correlation between GRB2 and NRAS 
was shown (p  >  0.05; Figure  6I).

For their prognostic effects, through Kaplan-Meier analysis, 
at protein level, KPNA2 (p  <  0.001; Figure  7A) and GRB2 
(p  <  0.05; Figure  7B) were shown to be  unfavorable prognostic 
factors for HCC OS, consistent with their unfavorable prognostic 

effects at mRNA level. Interestingly, for NRAS (p < 0.05; Figure 7C), 
at protein level, it was shown to have favorable effects on HCC 
OS, inconsistent with its unfavorable effects on HCC OS. When 
adjusted for gender, age, and tumor size, the prognostic effects 
of KPNA2 (p < 0.001; Figure 7D) and NRAS (p < 0.05; Figure 7F) 
also existed, whereas the independent prognostic value of GRB2 
was not so significant (p  =  0.074, p  >  0.05; Figure  7E).

Associations of KPNA2, GRB2, and NRAS 
With HCC Proliferation
As shown in Figure  6, KPNA2 (R  =  0.7, p  <  0.001; Figure  6J) 
and GRB2 (R  =  0.32, p  <  0.001; Figure  6K) were shown to 
be  significantly positively correlated with MKI67 expression, 
indicating their associations with HCC proliferation. Whereas 
no significant correlation was shown between NRAS expression 
and MKI67 expression in HCC (p  >  0.05; Figure  6L).
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FIGURE 6 | Dysregulations of KPNA2, GRB2, and NRAS proteins and their correlations with MKI67 in HCC. (A) Higher expression of KPNA2 in HCC than the 
normal liver tissues. (B) Higher expression of GRB2 in HCC than the normal liver tissues. (C) Lower expression of NRAS in HCC than the normal liver tissues. 
(D–F) ROC curve analysis of KPNA2, GRB2, and NRAS in discriminating HCC tumors from normal liver tissues, the cutoff point with biggest Youden index was 
labeled, and the corresponding specificity and sensitivity were shown. (G) Significant positive correlation between KPNA2 expression and GRB2 expression in HCC. 
(H) Significant negative correlation between KPNA2 expression and GRB2 expression in HCC. (I) There was no significant correlation between GRB2 expression 
and NRAS expression. (J) Significant positive correlation between KPNA2 expression and MKI67 expression. (K) Significant positive correlation between GRB2 
expression and MKI67 expression. (L) There was no significant correlation between NRAS expression and MKI67 expression. AUC, area under the curve; ROC, 
receiver operating characteristic. For (A–C), the x-axis and y-axis represented the sample groups and the relative expressions of the proteins (the protein abundance 
of the samples, with respect to the pooled reference sample, as log2 ratios), respectively. For (D–F), the x-axis and y-axis represented the specificity and sensitivity 
of the variables in discriminating HCC tumors from the normal liver tissues. For (G–L), the x-axis and y-axis represented the relative expressions of the variables (the 
protein abundance of the samples, with respect to the pooled reference sample, as log2 ratios). Paired-samples Wilcoxon test and Spearman correlation analysis 
were used for expressional comparison and correlation evaluation, respectively. For the analyses, p < 0.05 was considered significant.
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FIGURE 7 | Prognostic roles of KPNA2, GRB2, and NRAS in HCC at protein level. (A) Higher expression of KPNA2 indicated shorter survival in HCC patients. 
(B) Higher expression of GRB2 indicated shorter survival in HCC patients. (C) Higher expression of NRAS indicated longer survival in HCC patients. 
(D–F) Prognostic effects of KPNA2, GRB2, and NRAS on HCC overall survival when adjusted for gender, age, and tumor size. Paired-samples Wilcoxon test was 
used for protein level comparisons. Kaplan-Meier survival analysis with log-rank test and multivariable Cox regression analysis were used for evaluation of the 
prognostic effects of the proteins. For all the analyses, p < 0.05 was considered statistically significant.

Prognostic Effects of RBPs of KPNA2, GRB2, 
and NRAS and Their Potential Roles in 
Dysregulations of the Three Proteins in HCC
As shown in Supplementary Table S3, there were 105, 112, and 
114 RBPs that could bind to KPNA2, GRB2, and NRAS, respectively. 
As 94 of the RBPs were common for the three genes, there 
were 123 unique RBPs that could bind at least one of them. 
Because six RBPs were not available from the CPTAC-HCC 
dataset, only 117 RBPs (Supplementary Table S3) were investigated. 
Through multivariable Cox regression analysis (Supplementary  
Table S4), 16 RBPs were shown to have prognostic effects on 
HCC OS independent of gender, age, and tumor size in the 
CPTAC-HCC dataset (Figure 8A). Then, the 16 RBPs and KPNA2, 

GRB2, and NRAS were further applied to LASSO regression 
analysis, and an eight-RBP signature including AU RNA-binding 
methylglutaconyl-CoA hydratase (AUH), la ribonucleoprotein 4B 
(LARP4B), splicing factor 3b subunit 4 (SF3B4), YTH domain 
family 1 (YTHDF1), DEAD-box helicase 3 X-linked (DDX3X), 
eukaryotic translation initiation factor 4 gamma 2 (EIF4G2), 
pumilio RNA-binding family member 2 (PUM2), and TAR 
DNA-binding protein (TARDBP; Figures  8B,C) was identified. 
Through ROC curve analysis, the signature was shown to be able 
to predicate HCC survival status with an AUC of 0.752 (Figure 8D). 
With the model [risk score  =  (−0.107) * AUHexpression  +  0.047 * 
LARP4Bexpression  +  0.131 * SF3B4expression  +  0.004 * 
YTHDF1expression  +  0.011 * DDX3Xexpression  +  0.132 * 
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EIF4G2expression  +  0.197 * PUM2expression  +  0.105 * TARDBPexpression], 
the risk scores of the HCC patients were evaluated, and through 
Kaplan-Meier survival analysis (Figure  8E), the patients with 
high risk score were shown to have a shorter OS than those 
with low risk score (p  <  0.0001).

The independent prognostic value of the model was also 
investigated. As shown in Figures  9A,B, the prognostic effects 
of the model were shown in both HCC patients with smaller 
tumors (tumor size  ≤  5  cm; p  =  0.004; Figure  9A) and those 
with larger ones (tumor size  >  5  cm; p  =  0.012; Figure  9B). 
In male patients, higher risk score also indicated shorter survival 
(p < 0.01; Figure 9C). Although the survival difference between 
female patients with high and low risk score was not so 
significant (p  =  0.24), there was an obvious shorter survival 
trend in the patients with high risk score than those with 
low one (Figure  9D). In addition, comparing with the HCC 
patients with low risk score, the patients with high risk score 
were shown to survive shorter both in the younger group 
(p  <  0.01; Figure  9E) and older group (p  <  0.01; Figure  9F).

As shown in Figure 10, through Wilcoxon test, the eight RBPs 
in the LASSO regression model above were also presented to 
be  significantly differentially expressed between HCC tumors and 
their paired liver tissue controls. AUH, which was indicated to 
be  a favorable prognostic factor for HCC OS, was shown to 
be  downregulated (p  <  0.01; Figure  10A), whereas the other 

seven unfavorable prognostic factors including LARP4B (p < 0.01; 
Figure  10B), SF3B4 (p  <  0.01; Figure  10C), YTHDF1 (p  <  0.01; 
Figure  10D), DDX3X (p  <  0.01; Figure  10E), EIF4G2 (p  <  0.01; 
Figure 10F), PUM2 (p < 0.01; Figure 10G), and TARDBP (p < 0.01; 
Figure  10H) were shown to be  upregulated in HCC tumors. 
According to the ROC curve analysis (Figures  10I–P), all the 
eight RBPs could discriminate HCC tumors form normal livers 
with an AUC ranging from 0.787 (Figure 10I) to 0.971 (Figure 10L) 
individually. At the optimal cutoff points, their sensitivity ranged 
from 0.717 to 0.925, and the specificity ranged from 0.855 to 
0.987, indicating their diagnostic potential in HCC diagnosis. 
Furthermore, all the eight RBPs were shown to be  negatively or 
positively correlated with MKI67 expression in HCC tumors 
(p < 0.05, Supplementary Figure S3). Interestingly, the significant 
correlations of AUH (Supplementary Figure S3A), SF3B4 
(Supplementary Figure S3C), DDX3X (Supplementary Figure S3E), 
PUM2 (Supplementary Figure S3G), and TARDBP (Supplementary  
Figure S3H) with MKI67 were only shown in the HCC tumors, 
while not in their paired normal liver tissues (p > 0.05), indicating 
the specific associations with HCC progression.

Through Spearman correlation analysis (Supplementary 
Figure S4 and Figure 11), the eight RBPs above were all indicated 
to be correlated with KPNA2 expression at protein level (p < 0.05; 
Figures  11A–H), and five (AUH, YTHDF1, DDX3X, EIF4G2, 
and LARP4B) and four (AUH, SF3B4, TARDBP, and LARP4B) 

A

C D E

B

FIGURE 8 | Identification of prognostic signature with RBPs of KPNA2, GRB2, and NRAS in HCC at protein level. (A) Gender, age, and tumor size corrected 
prognostic effects of RBPs of KPNA2, GRB2, and NRAS on HCC overall survival, and the right part was the visualization of the HR (95% CI). (B) Tuning parameter 
lambda (λ) selection using 10-fold cross validation. (C) Eight RBPs with absolute value of coefficient >0 were included in the LASSO regression model. The x-axis 
represented the coefficients of the RBPs, and the y-axis indicated the RBP variables. (D) The LASSO regression model could predicate the survival status with an 
AUC of 0.752 through ROC curve analysis. (E) HCC patients with higher risk score were indicated to have a shorter survival than those with lower risk score. RBPs, 
RNA-binding proteins; HR, hazard ratio; AUC, area under the curve; ROC, receiver operating characteristic. Ezcox package in R were used for Cox regression 
analysis of the RBPs (A) with the RBP expressions as covariates and age, gender, and tumor size as controls. Kaplan-Meier survival analysis with log-rank test 
(E) was used for the overall survival comparison between patients with high and low risk score, and the median value of the risk score was used as threshold for 
grouping the patients. For the analysis, p < 0.05 was considered significant.
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FIGURE 9 | Prognostic effects of risk score in HCC patient of different gender, age, and tumor size groups. (A,B) Kaplan-Meier survival analysis of risk score in 
HCC patients with small tumors (tumor size ≤5 cm) group and large tumors (tumor size > 5 cm), respectively. (C,D) Kaplan-Meier survival analysis of risk score in 
male HCC patients and female ones, respectively. (E,F) Kaplan-Meier survival analysis of risk score in young HCC patients (≤60 years) and old ones (>60 years), 
respectively. Kaplan-Meier survival analysis with log-rank test was used, and p < 0.05 was considered as significant.

of them were presented to be  significantly correlated with GRB2 
expression (p < 0.05; Figures 11I,K–M,O) and NRAS expression 
(p  <  0.05; Figures  11Q,R,V,W), respectively. In addition, there 
were significant correlations between every two of the RBPs 
(Supplementary Figure S3), indicating their complicated 
associations. RBPs were implicated in RNA splicing, 
polyadenylation, mRNA stability, mRNA localization, and 
translation (Qin et  al., 2020). Here, the dysregulations of RBPs 
might also contribute to the overexpression of KPNA2 and GRB2 
and the underexpression of NRAS at protein level.

DISCUSSION

As a central immunomodulator of body, in liver, there are 
elements that can promote both immune tolerance and antitumor 
immunity, and the deregulation of the immunological network 
was demonstrated to be  associated with chronic inflammation 
and tumor development (Protzer et al., 2012; Keenan et al., 2019). 

In a recent study, it was reported that in contrast to lung 
cancer and melanoma, HCC presented a low response rate to 
immune checkpoint inhibitors (Feng et  al., 2020), indicating 
the complexity in the application of HCC immunotherapy. 
Because HCC occurs almost exclusively in the context of chronic 
inflammation (Ringelhan et  al., 2018), further understanding 
of the associations of immune response would provide new 
clues for HCC diagnosis and therapy.

Although KPNA2 was implicated in many inflammatory 
processes (Liu et al., 2015; Pallett et al., 2019; Park et al., 2019), 
and its tumor-promoting activities in HCC (Gao et  al., 2018; 
Lin et  al., 2018; Zan et  al., 2019) were shown in many studies, 
its associations with immune response in HCC and their clinical 
significance were not clearly illustrated. Here, we  not only 
confirmed the upregulation and unfavorable prognostic effects 
of KPNA2  in HCC, and through further systemic analyses of 
its correlations with immune cell infiltrations in HCC tumors 
and normal liver tissues individually, we  presented the specific 
positive correlation between KPNA2 expression and B-cell 
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infiltration in the tumors. In addition, similar to KPNA2, in 
this study, B-cell infiltration was also shown to be an unfavorable 
prognostic factor for HCC OS, indicating the associations between 
B-cell infiltration and HCC progression.

BCR signaling pathway is crucial for B-cell response to the 
antigens, governing the processes of B-cell activation and fate 
decisions (Kwak et  al., 2019). Here, we  found the significant 
correlations of KPNA2 with many BCR signaling pathway genes 
including GRB2 and NRAS, which were shown to be dysregulated 

both at mRNA and protein levels. As a ubiquitously expressed 
adapter protein, GRB2 is crucial for normal development (Cheng 
et  al., 1998) and implicated in cell proliferation (Downward, 
1994). With its Src homology 2 (SH2) domain, GRB2 can also 
interact with several proteins in oncogenic signaling pathways 
including epidermal growth factor receptor, hepatocyte growth 
factor receptor, platelet-derived growth factor receptor, Bcr/Abl, 
and focal adhesion kinase (Lowenstein et  al., 1992; 
Schlaepfer et al., 1994; Verbeek et al., 1997; Liu and McGlade, 1998; 

A B C D
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M N O P

FIGURE 10 | Expressional comparisons of RBPs of KPNA2, GRB2, and NRAS between HCC and normal liver tissues. (A) Lower expression of AUH in HCC 
tumors than their paired normal liver controls. (B–H) Higher expression of LARP4B, SF3B4, YTHDF1, DDX3X, EIF4G2, PUM2, and TARDBP in the HCC tumors than 
their paired normal liver controls. (I–P) ROC curve analysis of AUH, LARP4B, SF3B4, YTHDF1, DDX3X, EIF4G2, PUM2, and TARDBP in discriminating HCC tumors 
from normal liver tissues; the cutoff point with biggest Youden index was labeled, and the corresponding specificity and sensitivity were shown. AUC, area under the 
curve; ROC, receiver operating characteristic. For (A–H), the x-axis and y-axis represented the sample groups and the protein abundance of the proteins in the 
samples, with respect to the pooled reference sample, as log2 ratios. For (I–P), the x-axis and y-axis represented the specificity and sensitivity of the RBPs in 
discriminating HCC tumors from the normal liver tissues. Paired-samples Wilcoxon test and ROC analysis was used for expression comparisons of the protein levels 
and evaluation of the diagnostic power of the proteins, respectively. For all the analyses, p < 0.05 was considered significant.

59

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. KPNA2-Associated Immune Analyses in HCC

Frontiers in Genetics | www.frontiersin.org 14 October 2020 | Volume 11 | Article 593273

A B C D E F G H

I J K L M N O P

Q R S T U V W X

FIGURE 11 | Correlations between RBPs and KPNA2, GRB2, and NRAS at protein level in HCC. (A–H) Correlations between KPNA2 and AUH, SF3B4, YTHDF1, 
DDX3X, EIF4G2, TARDBP, LARP4B, and PUM2, respectively. (I–P) Correlations between GRB2 and AUH, SF3B4, YTHDF1, DDX3X, EIF4G2, TARDBP, LARP4B, 
and PUM2, respectively. (Q–X) Correlations between NRAS and AUH, SF3B4, YTHDF1, DDX3X, EIF4G2, TARDBP, LARP4B, and PUM2, respectively. The x-axis 
and y-axis represented the abundance of the RBPs in the HCC samples, with respect to the pooled reference sample, as log2 ratios. Spearman correlation analysis 
was used, and p < 0.05 was considered significant.

Fredericks and Ren, 2013). Recently, its tumor-promoting effects 
were shown in many malignancies including lung cancer (Yang 
et  al., 2017a; Jiang et  al., 2018; Mitra et  al., 2018; Wang and 
Wang, 2020), gastric cancer (Ye et  al., 2018), colorectal cancer 
(Ding et al., 2019), ovarian carcinoma (Huang et al., 2018), renal 
cell carcinoma (Gu et  al., 2017), breast cancer (Lim et  al., 2000; 
Haines et  al., 2014; López-Cortés et  al., 2020), and esophageal 
squamous cell carcinoma (Shi et  al., 2018). In addition, in lung 
cancer (Chen et  al., 2020), ovarian cancer (Xu et  al., 2018), 
colorectal cancer (Agrawal et  al., 2019), and breast cancer (Chen 
et  al., 2018), its associations with the resistance of the tumors 
to chemotherapeutic drugs were presented, and its downregulation 
could reverse the resistant status or enhance the sensitivity to 
the drugs, indicating its potential as a chemotherapeutic target 
in the malignancies. Here, we  presented the overexpression of 
GRB2, its positive correlation with cell proliferation marker MKI67, 
and its unfavorable prognostic roles in HCC, indicating its 
associations with HCC development and progression, consistent 
with the tumor-promoting activity of GRB2  in HCC reported 
in recent studies (Yang et  al., 2018; Lv et  al., 2020; Sun et  al., 
2020). Considering its positive correlation with KPNA2 and its 
important role in B-cell activation, we  speculated they might 
play coordinate roles in HCC immunoregulation and progression. 
Besides its potential in HCC diagnosis and prognosis, GRB2 
might be  a target in HCC immunotherapy.

NRAS, a GTPase encoded by NRAS gene, originally identified 
in neuroblastoma cell lines, was considered as the third member 
of RAS family (Shimizu et  al., 1983). Similar to the other two 
RAS members, KRAS and HRAS, NRAS was involved in cell 
growth, differentiation, and proliferation (Parker and Mattos, 2018; 
Murugan et  al., 2019), and its deregulation was implicated in 
the metabolism of tumor cells, microenvironment remodeling, 
and the evasion of tumoral immune response (Mandalà et  al., 
2014). In fact, approximately 15–25% of all metastatic tumors 
were shown to have NRAS mutation (Boespflug et  al., 2017), 
and the associations of NRAS with chemotherapy resistance were 
shown (Nguyen et  al., 2020) in melanoma. In neuroblastoma, 
NRAS status was found to be  associated with the sensitivity to 
SHP2 inhibitors (Valencia-Sama et  al., 2020). In osteosarcoma, 
NRAS was reported to be  associated with cell proliferation, 
migration, invasion, and methotrexate resistance (Li et  al., 2020). 
Interestingly, in colorectal cancer, three NRAS mutants were 
shown  to be  associated with resistance to apoptosis, cytoskeletal 
reorganization, and loss of adhesion, whereas they have no effects 
on obvious effect on cell proliferation and motility (Yu and Garcia, 
2020), indicating the complicated activities of the gene. In this 
study, we  found the upregulation of NRAS and its unfavorable 
prognostic effects in HCC at mRNA level, consistent with a recent 
study that presented the overexpression of NRAS and its prognostic 
value in HCC (Dietrich et  al., 2019). However, here, surprisingly, 
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we found the downregulation of NRAS and its favorable prognostic 
effects in HCC at protein level, opposite to its mRNA level. As 
we  included tumor and paired normal liver samples from 159 
HCC patients for investigation at protein level here, the sample 
size is much larger than the previous study that included 46 
HCC patients (Dietrich et  al., 2019), and the results are reliable. 
In addition, considering the variety of regulatory factors implicated 
in the process of translation (Grafanaki et  al., 2019; Moutinho 
et  al., 2019; Kim et  al., 2020), it is understandable to see the 
inconsistence between the mRNA and protein levels of specific 
genes. As no significant correlation of NRAS with MKI67 was 
shown at protein level in HCC, further studies were needed to 
investigate the specific functions of NRAS in HCC.

RBPs are implicated in various RNA processes including RNA 
splicing, RNA translation, and RNA degradation (Mohibi et  al., 
2019), and to some extent, they can regulate the fate of specific 
mRNAs (Zhang et  al., 2018). In this study, through investigation 
of the RBPs of KPNA2, GRB2, and NRAS, we  identified an 
eight-RBP signature that could predicate HCC OS effectively. Among 
the eight RBPs, AUH was shown to be  downregulated and have 
favorable prognostic effects on HCC OS. Within the 3' untranslated 
region of lymphokines transcripts and some protooncogenes, there 
are many AU-rich elements that contain various numbers of 
reiterated AUUUA pentamers, and as cis elements, they serve as 
signal for rapid mRNA degradation (Chen et  al., 1994). As an 
AU-binding protein, the downregulation of AUH in this study 
might lead to the decrease in the degradation of its binding mRNAs 
and contribute to the upregulation of corresponding mRNAs 
including KPNA2, GRB2, and NRAS. Noticeably, here, we presented 
an inconsistency of NRAS between its mRNA and protein levels. 
Besides its RNA-binding activity, as an enoyl-CoA hydratase, AUH 
also plays key roles in leucine degradation (IJlst et  al., 2002; Ly 
et  al., 2003) and mitochondrial protein synthesis (Richman et  al., 
2014). It was demonstrated that decrease or overexpression of the 
AUH protein in cells could lead to defects in mitochondrial 
translation. Here, NRAS was shown to be downregulated issn HCC 
at protein level, and there was a significant positive correlation 
between NRAS and AUH at protein level. We  speculated that the 
decrease in AUH protein might be associated with the dysregulation 
of NRAS in HCC. However, considering the dual functions of 
AUH in RNA binding and protein translation and its involvement 
in the immune response to lipopolysaccharide (Zhang et al., 2020), 
further investigation is needed for its specific roles in NRAS 
dysregulation and HCC immunoregulation.

YTHDF1, one of the readers of N-6-methyladenosine (m6A) 
RNA methylation (Fu et al., 2014), could promote protein synthesis 
by interacting with translation machinery (Wang et  al., 2015). 
Here, we presented the upregulation of YTHDC1 and its positive 
correlations with KPNA2 and GRB2 at protein level in HCC, 
indicating its associations with the dysregulation of the two 
proteins. In addition, as one element of the eight-PBP prognostic 
signature in HCC in this study, its unfavorable effects were also 
shown, consistent with previous studies (Huang et  al., 2020; Wu 
et  al., 2020). Through the correlation analysis, the significant 
correlations between the RBPs were shown, indicating their 
complicated associations and their coordinating roles during 
HCC progression.

In summary, B-cell infiltration was positively correlated with 
KPNA2 expression and unfavorably prognostic for HCC survival, 
indicating its associations with HCC progression. The significant 
correlations of KPNA2 with BCR signaling pathway indicated 
its association with BCR signaling. The dysregulation of BCR 
signaling pathway genes in HCC tumors indicated the crucial 
roles of BCR signaling pathway in the immune response of 
HCC. GRB2 and NRAS were dysregulated and had prognostic 
roles in HCC at both mRNA and protein levels, and they 
should be  considered during HCC immunotherapy. Among 
the RBPs of KPNA2, GRB2, and NRAS, an eight-RBP signature 
with independent prognostic effects was identified. As all the 
eight RBPs were dysregulated in HCC, they might be  new 
markers for HCC diagnosis and prognosis predication. 
Considering the complicated correlations between the RBPs, 
they might coordinate with each other in various biological 
processes, and their specific roles in the regulation of KPNA2, 
GRB2, and NRAS expressions needed further investigation.
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The lack of a useful biomarker partly contributes to the increased mortality of non-
small cell lung cancer (NSCLC). MiRNAs have become increasingly appreciated in
diagnosis of NSCLC. In the present study, we used microarray to screen 2,549 miRNAs
in serum samples from the training cohort (NSCLC, n = 10; the healthy, n = 10)
to discover differentially expressed miRNAs (DEMs). Quantitative reverse-transcription
polymerase chain reaction (qRT-PCR) assay was applied to validate the expression level
of selected overexpressed DEMs of NSCLC in a validation cohort (NSCLC, n = 30;
the healthy, n = 30). Area under the receiver operating characteristic curve (AUC)
was performed to evaluate diagnostic capability of the DEMs. The expression of the
miRNAs in tissues was analyzed based on the TCGA database. Subsequently, the
target genes of the miR-4687-3p were predicted by TargetScan. Gene Ontology (GO),
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
were tested by R software (ClusterProfiler package). NSCLC cells were transfected
with inhibitor or mimic to down-regulate or up-regulate the miR-4687-3p level. The
function of miR-4687-3p on proliferation, invasion, and migration of lung cancer cells
were investigated through CCK-8 and Transwell assays, respectively. In the results,
we identified serum miR-4687-3p that provided a high diagnostic accuracy of NSCLC
(AUC = 0.679, 95%CI: 0.543–0.815) in the validation cohort. According to the TCGA
database, we found that the miR-4687-3p level was significantly higher in NSCLC
tissues than in normal lung tissues (p < 0.05). GO and KEGG pathway enrichment
analysis showed that postsynaptic specialization and TGF-β signaling pathway were
significantly enriched. Down-regulation of miR-4687-3p could suppress the proliferation,
invasion, and migration of the NSCLC cells, compared with inhibitor negative control
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(NC). Meanwhile, overexpression of miR-4687-3p could promote the proliferation,
invasion, and migration of the NSCLC cells compared with mimic NC. As a conclusion,
our study first discovered that serum miR-4687-3p might have clinical potential as
a non-invasive diagnostic biomarker for NSCLC and play an important role in the
development of NSCLC.

Keywords: NSCLC, miR-4687-3p, microarray, bioinformatics, biomarker

INTRODUCTION

Lung cancer is the most common malignancy and the
leading cause of malignancy-related death in the world, with
an estimated 2.3 million new cases and 1.4 million deaths
(Siegel and Miller, 2019). In addition, lung cancer occupied
the highest incidence and mortality in numerous malignant
cancers in China (Zheng et al., 2019). In the absence of
significant symptoms and practical diagnostic methods, most
patients are at advanced disease (Zheng et al., 2019). In
terms of the pathological type, non-small cell lung cancer
(NSCLC) accounts for about 85% of lung cancer. Therefore,
exploring early detection methods for NSCLC is crucial
to reduce NSCLC-related deaths. Low-dose spiral computed
tomography (LDCT) can detect early lung cancer patients and
reduce lung cancer-related mortality effectively, and pathological
diagnosis provides the gold standard for the diagnosis of
lung cancer. However, high false positive rate limits the
application of LDCT in clinic. Moreover, the pathological
diagnosis belongs to the invasive detection method, which
causes great pain to the patients. Hence, searching for a
convenient and non-invasive method for the diagnosis of
NSCLC can play an essential role in improving the prognosis
of NSCLC (Grilley-Olson et al., 2013). Serum contains types
of molecular markers, and serum test is non-invasive and
cheap, so it is one of the best sources of biomarkers.
Moreover, many serum markers have been applied to detect
lung cancer in clinic, such as CEA and SCC. However,
the serum biomarkers are always limited by low sensitivity
and specificity.

MiRNA, a small non-protein coding RNA, targets to 3’
UTR of mRNA, degrades the mRNA and alters the expression
of the gene and protein encoded (Bartel, 2004). MiRNA
could be released by cancer cells into serum, plasma, or
other body fluids to a participant in carcinogenesis, which
have been reported in multiple cancers, such as hepatoma
carcinoma, NSCLC (Zhang et al., 2015; Zhao et al., 2016;
Usuba et al., 2019; Valihrach et al., 2019). As a biomarker,
serum miRNAs have particular merits: resistant to RNase
digestion and repeated freezing and thawing (Chen et al., 2008;
Mitchell et al., 2008).

Several serum miRNAs with differential expression in patients
with NSCLC and the healthy were reported recently, such as
miR-16 (Fan et al., 2016), miR-504 (Szpechcinski et al., 2019),
and miR-21 (Zhao et al., 2015). As a favorable biomarker
for the disease, the miRNA should possess certain biological
functions. However, most previous studies merely expound
the differential expression of the miRNA in NSCLC and

the healthy, but rarely explore the biological function of
the miRNA in NSCLC.

The present study screened serum miRNA expression profiles
(2,549 miRNAs) in 20 serum samples, and the selected miRNAs
were validated in a cohort (NSCLC, n = 30; the healthy, n = 30).
Moreover, we identified the expression level of tissue miR-4687-
3p in lung adenocarcinoma (LUAD) and squamous cell lung
carcinoma (LUSC) based on the TCGA database. Furthermore,
we explored its function on the proliferation, invasion, and
migration of NSCLC cells. The study design is illustrated in
Figure 1.

MATERIALS AND METHODS

Study Participants
In this study, 50 patients with NSCLC (Table 1)
were recruited at the time of diagnosis, before any
medical or surgical treatment, from the First Affiliated
Hospital of Zhengzhou University (Zhengzhou, China)
between January 2018 and December 2018. Moreover,
50 healthy participants (Table 1) were collected from
health examination populations without pulmonary-
related diseases or other cancers from Zhengzhou
Hospital of Traditional Chinese Medicine (Zhengzhou,
China). Written informed consent was obtained from all
subjects (NSCLC patients and healthy controls) before
the study began, and the study protocol was approved
by Medical Ethics Committee of Zhengzhou University
(Zhengzhou, China). The detailed information of the
participants from training (NSCLC, n = 20; the healthy,
n = 20) and validation cohort (NSCLC, n = 30; the
healthy, n = 30) were illustrated in Supplementary
Tables 1, 2 respectively.

After centrifugation at 3,000 rpm for 5 min, the serum sample
was divided into 500 µL/tube and stored at −80◦C immediately
to avoid repeated freezing and thawing.

Microarray Assay
Human miRNA microarray 2.0 from Agilent Technologies (Santa
Clara, CA) including 2,549 miRNAs were applied to screen
candidate miRNAs for diagnosing NSCLC in 20 serum samples.
The aim was to reduce bias caused by sample heterogeneity,
and sera from two participants were merged as a serum sample.
Total RNA was harvested using TRIzol (Invitrogen) and the
RNeasy Mini Kit (Qiagen), and then labeled and hybridized
on the human miRNA microarray. After microarray washing
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FIGURE 1 | An overview of the workflow of the study design.

TABLE 1 | Characteristics of study participants in the training and
validation cohort.

Factors Subgroup Training cohort No.
of participants (%)

Validation cohort No.
of participants (%)

Healthy 20 30

Age, year

Mean 53.9 54.1

4.3 12.0

Sex

Male 10 (50%) 14 (46.7%)

Female 10 (50%) 16 (53.3%)

NSCLC 20 30

Age, year

Mean 56.1 60.8

5.9 9.5

Sex

Male 10 (50%) 19 (63.3%)

Female 10 (50%) 11 (36.7%)

Histopathological type

LUSC 6 (30%) 13 (43.3%)

LUAD 14 (70%) 17 (56.7%)

Stage

I+II 5 (25%) 1 (3%)

III+IV 10 (50%) 24 (80%)

Undetermined 5 (25%) 5 (17%)

LUSC, Lung Squamous Carcinoma; LUAD, Lung Adenocarcinoma.

and scanning, the data were extracted with Agilent Feature
Extraction Software. The assay was conducted by KangChen
Bio-tech (Shanghai, China).

RNA Extraction and qRT-PCR
Total RNA was harvested from the serum samples using TRIzol
(Takara, Japan) and then used to synthesize cDNA by the stem-
loop method using the PrimeScript RT Master Mix Kit (Promega,
United States). qRT-PCR was carried out by using an ABI Q3
system (Applied Biosystems, Foster City, CA). The primers
used in the study were purchased from Sangya Corporation
(Sangya, China) or RiboBio Corporation (Ribo, China).
Thereinto, U6 primer was using the Bulge-Loop miRNA
qRT-PCR Primer Set (RiboBio, China) according to the
manufacturer’s instructions.

U6 and serum miR-484 (Zhou et al., 2015) expression were
used as a stable endogenous control for normalization in cells and
serum samples, respectively.

TCGA Data Analysis
The Cancer Genome Atlas (TCGA) contains multiple primary
cancer and corresponding normal samples, including lung
cancer. There are two datasets for lung cancer (TCGA LUAD
and TCGA LUSC), which include LUAD (n = 521) with
corresponding normal tissues (n = 46), and LUSC (n = 478)
with corresponding normal tissues (n = 45), respectively.
After we downloaded and normalized the non-transcriptome
expression data of TCGA lung cancer, we compared tissue
miR-4687-3p expression in LUAD, LUSC, and corresponding
normal tissue1.

1http://cancergenome.nih.gov
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FIGURE 2 | (A) Hierarchical clustering and (B) Volcano Plot of the differentially expressed miRNAs (DEMs) in the comparison of NSCLC and the healthy (fold
change > 1.5, p < 0.05).

TABLE 2 | Six differentially overexpressed serum miRNAs in NSCLC.

Name P-value Fold change NSCLC (Raw) Healthy (Raw)

MiR-1915-5p 0.027 3.3 10.2 6.6

MiR-432-3p 0.042 2.3 25.5 18.6

MiR-4488 0.022 2.5 23.7 16.4

MiR-4687-3p 0.010 1.5 470.8 301.1

MiR-520a-5p 0.040 3.1 28.3 23.2

MiR-6087 0.001 1.5 2764.2 1772.4

Target Prediction and Enrichment
Analysis
TargetScan was used to perform the target prediction of miR-
4687-3p. For the target genes, GO and KEGG enrichment analysis
were conducted by R software (ClusterProfiler package) to clarify
the potential function of miRNA.

Cell Culture
Human NSCLC cell lines A549, PC-9, H1299, H1975 were
cultured in RPMI 1640 (BI, Israel) medium with 10% FBS (BI,

Israel) and CALU-3 in DMEM (BI, Israel) medium with 10% FBS.
These cell lines were grown in a cell incubator, and the medium
was replaced every 2 days.

MiRNA Transfection
MiR-4687-3p mimics, inhibitors, and corresponding controls
were obtained from RiboBio (RiboBio, China). Cells were added
into six-well plates with 2.5 × 105 cells per well and cultured
overnight. When the cell confluence reached 30–40%, cells were
transfected with inhibitor negative control (concentration: 100
nM), miR-4687-3p inhibitor (concentration: 100 nM), or mimic
negative control (concentration: 50 nM), miR-4687-3p mimic
(concentration: 50 nM), respectively. LipofectamineTM3000
(Invitrogen, United States) was used as the transfection reagent.

CCK-8 Cell Proliferation Assay
Cells were seeded into 96-well plates (3–4 × 103 cells/well)
and supplemented with corresponding transfection reagents
after 6–8 h. Each group included six parallel wells. After cells

TABLE 3 | Primer sequence of the selected six miRNAs and reference miRNA.

Name Specific reverse primer Forward primer Reverse primer

MiR-1915-5p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGCCCG ATATCGACCTTGCCTTGCTGCC AGTGCAGGGTCCGAGGTATT

MiR-432-3p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGACAT AATCCGCTGGATGGCTCCTCC AGTGCAGGGTCCGAGGTATT

MiR-4488 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGCCGG ATATATCGAGGGGGCGGGCT AGTGCAGGGTCCGAGGTATT

MiR-4687-3p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCCTGC ATATCCGTGGCTGTTGGAGGGG AGTGCAGGGTCCGAGGTATT

MiR-520a-5p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGAAAG CCGCGCTCCAGAGGGAAGTA AGTGCAGGGTCCGAGGTATT

MiR-6087 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCTCGC ATATATCGTGAGGCGGGGGG AGTGCAGGGTCCGAGGTATT

MiR-484 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGATCGGGAG ACACTCCAGCTGGGTCAGGCTC
AGTCCCCT

TGGTGTCGTGGAGTCG
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FIGURE 3 | (A) Scatter diagram exhibited the row intensity of six miRNAs in NSCLC serum samples (n = 10) and healthy serum samples (n = 10) in training cohort.
(B) Scatter diagram exhibited the relative expression of six miRNAs of NSCLC serum samples (n = 30) and the healthy serum samples (n = 30) in validation cohort.
(C–E) Receiver operating characteristic curve analysis of miR-4687-3p, miR-6087, and combined with the two miRNAs for NSCLC diagnosis in the validation cohort.

FIGURE 4 | (A) The expression of miR-4687-3p in LUAD tissues (n = 521) and normal lung tissues (n = 46). (B) The expression of miR-4687-3p in LUSC tissues
(n = 478) and normal lung tissues (n = 45). Data were from TCGA database. LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Cell Carcinomas.
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FIGURE 5 | (A) Plot of the enriched GO terms. Go enrichment analysis for miR-4687-3p-related mRNAs. (B) Plot of the KEGG pathways. KEGG pathway
enrichment analysis for miR-4687-3p-related mRNAs. The bubble color and size represent enrichment significance and the number of target mRNAs enriched in a
GO term or pathway, respectively. p < 0.05 was used as the threshold to select GO and KEGG terms.

were incubated at 37◦C for 24, 48, and 72 h, 100 µL CCK-
8 mixture (Dalian Mellon, China) (CCK-8: DMEM/RPMI1640
medium = 1:9) was added into the wells. The absorbance at
450 nm was measured by microplate reader.

Transwell Invasion and Migration Assay
After incubation for 24 h, the transfected cells were trypsinized
and resuspended in DMEM/RPMI 1640 without FBS. Then 70
µL of Matrigel (BD, United States) (Matrigel: DMEM/RPMI1640
medium = 1:9) was added into the upper chamber and the
transwell plate (Corning, United States) was placed into the
incubator for 30 min. After that, excess unset Matrigel was
removed followed by adding 200 µL cell suspension (5 × 104

CALU-3 cells or 105 PC-9 cells) into the upper chamber when
the lower chamber was filled with DMEM/RPMI1640 medium
containing 20% FBS. The transwell chamber was then placed
into a 24-well transwell plate. After 24 h of incubation, the
chamber was washed by PBS, fixed with 4% paraformaldehyde for
15 min, and stained with 0.1% crystal violet (Solarbio, China) for
30 min. Finally, we photographed the cells under the microscope
and counted the number of cells that passed through the filter
membrane in five random fields.

The process of migration assay was similar to the invasion
assay, except for laying Matrigel into the chamber. In addition,
in the migration assay, we added 1.5 × 104 CALU-3 or 5 × 104

PC-9 cells into the upper chamber, respectively.

Statistical Analysis
The differential expression of miRNAs between NSCLC and
healthy group in the microarray analysis and qRT-PCR analysis
was analyzed by Mann-Whitney unpaired test. Independent
sample T test and analysis of variance (ANOVA) were used
to analyze the data from cell function experiments. GraphPad
prism 5 software (La Jolla, CA, United States) was used to
present the data. The predicted probability of being diagnosed
with NSCLC was used as a surrogate marker to construct
receiver operating characteristic (ROC) curve. Area under the
ROC curve (AUC) was used as an accuracy index for evaluating

FIGURE 6 | Comparison of miR-4687-3p in five NSCLC cells. The PC-9 cells
were used as the control.

the diagnostic performance of the selected miRNAs. The ROC
and regression analysis were performed by SPSS 19.0 software
(IBM, United States). Two sides P < 0.05 was considered
statistically significant.

RESULTS

MiRNA Screening
A microarray, including probes for 2,549 human miRNAs, was
used to screen the significant differential miRNAs (DEMs) (fold
change > 1.5, p < 0.05) between the NSCLC and the healthy,
which were displayed through the hierarchical clustering and
Volcano Plot in Figure 2. We obtained 53 up-regulated DEMs
and five down-regulated DEMs in NSCLC, compared with the
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healthy (Supplementary Table 3). Taken fold change > 1.5,
p < 0.05, raw value > 5 as a criterion, we screened six miRNAs
(Tables 2, 3) significantly up-regulated in NSCLC, compared with
the healthy. Then, we detected the expression of the selected
miRNAs in the validation cohort via qRT-PCR.

Expression of the Six Selected MiRNAs
Expression of the selected six individual miRNAs according to the
training cohort (Figure 3A) was evaluated with qRT-PCR in 60
serum samples (NSCLC, n = 30; the healthy, n = 30) (Figure 3B).
Serum miR-4687-3p and miR-6087 owned a high expression

FIGURE 7 | (A) CALU-3 cells were transfected with inhibitor control and miR-4687-3p inhibitor, respectively. Cell proliferation was evaluated by the CCK-8 assay at
24, 48, and 72 h. (B) PC-9 Cells were transfected with mimic control and miR-4687-3p mimic, respectively. Cell proliferation was evaluated by the CCK-8 assay at
24, 48, and 72 h. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 8 | (A–C) Transwell invasion assay with Matrigel was performed in miR-4687-3p inhibitor or inhibitor control transfected CALU-3 cells (Magnification ×400).
(D–F) Transwell invasion assay with Matrigel was performed in miR-4687-3p mimic or mimic control transfected PC-9 cells (Magnification ×400). *p < 0.05,
***p < 0.001.
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FIGURE 9 | (A–C) Transwell migration assay without Matrigel was performed in miR-4687-3p inhibitor or inhibitor control transfected CALU-3 cells (Magnification
×400). (D–F) Transwell migration assay without Matrigel was performed in miR-4687-3p mimic or mimic control transfected PC-9 cells (Magnification ×400).
***p < 0.001.

level in NSCLC compared with the healthy. In addition, miR-
4687-3p provided a higher diagnostic accuracy of NSCLC than
the other five miRNAs (AUC = 0.679, 95% CI: 0.543–0.815)
(Figures 3C,D). The AUC of the combination of miR-4687-
3p and miR-6087 using logistic regression model reached 0.780
(95%CI: 0.662–0.898) (Figure 3E).

The Expression of Tissue MiR-4687-3p
Was Validated in TCGA Database
According to the TCGA database of NSCLC, the expression of the
tissue miR-4687-3p was higher both in LUAD (Figure 4A) and
LUSC (Figure 4B) than corresponding normal tissues (p < 0.05).

GO and KEGG Pathway Enrichment
To explore the mechanism in the process of miR-4687-3p
regulating NSCLC cell progression, we predicted the target genes
of miR-4687-3p by using TargetScan, which provided 3,851 target
genes. Meanwhile, we proceeded with GO and KEGG pathway
enrichment analysis for the 3,851 target genes, which showed that
postsynaptic specialization and TGF-β signaling pathway were
significantly enriched (Figures 5A,B).

MiR-4687-3p Promoted the Proliferation,
Invasion, and Migration of the NSCLC
Cells
MiR-4687-3p expression was detected in five NSCLC cell lines
(A549, PC-9, CALU-3, H1299, H1975), which showed that the
CALU-3 and PC-9 cells were the highest and lowest observed
expression of miR-4687-3p, respectively (Figure 6). Therefore,
CALU-3 and PC-9 cells were selected for the next experiments.

MiR-4687-3p inhibitor and miR-4687-3p mimic was
transfected into CALU-3 and PC-9 cells respectively, to
down-regulate or up-regulate the miR-4687-3p level. The
results showed that down-regulation of miR-4687-3p with
inhibitor could markedly suppress the proliferation (Figure 7A),

invasion (Figures 8A–C), and migration (Figures 9A–C)
in CALU-3 cells compared to inhibitor NC, respectively.
Overexpressed miR-4687-3p by using mimic could promote
the proliferation (Figure 7B), invasion (Figures 8D–F), and
migration (Figures 9D–F) of PC-9 cells, compared to the mimic
NC, respectively.

DISCUSSION

In the study, serum miR-4687-3p was discovered up-regulated
in NSCLC, compared to the healthy, and showed a remarkable
differential diagnosis value for the first time. Zsófia Brigitta
Nagy revealed that the plasma miR-4687-3p overexpressed in
colorectal cancer when compared with tubulovillous adenoma,
via microarray screening (Nagy et al., 2019). However, they did
not conduct the further validation.

For diagnosis of NSCLC, compared with biopsy, the serum-
based approach was found to have more advantages, such as easy
to access and acceptable to patients. MiRNAs were demonstrated
to play an important role in carcinogenesis and have the potential
for diagnosis of multiple cancers (Cheng, 2015; Maia et al.,
2015; Gao et al., 2016; Li et al., 2017; Romano and Kwong,
2018). Moreover, endogenous circulating miRNAs have attracted
widespread attention (de Souza et al., 2017).

In the training cohort, microarray assay was used to screen the
serum differentially expressed miRNAs (DEMs) between NSCLC
patients and the healthy, directly. Furthermore, we sorted 60
serum samples to verify the differential expression and found
that serum miR-4687-3p and serum miR-6087 owned a higher
expression in the NSCLC group than that of the healthy. As to
differential diagnostic ability, serum miR-4687-3p (AUC = 0.679)
might be a potential diagnostic biomarker for NSCLC.

Abnormally expressed serum cancer-related miRNAs were
usually closely related to its expression in cancer tissues.
According to the TCGA NSCLC database, compared to the
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corresponding normal lung tissues, the miR-4687-3p was up-
regulated in LUAD and LUSC tissues, which indicated that
miR-4687-3p was NSCLC-related miRNA.

Otherwise, as a favorable NSCLC diagnostic biomarker, it
is vital to certain biological function to participate in the
occurrence and development of the NSCLC. In addition,
serum miR-4687-3p has not been reported as a diagnostic
biomarker in several malignancies. Research of miR-4687-3p
participating in the occurrence and development of tumors has
not been reported yet. Although the specific mechanism of the
miRNA on mRNA was unascertained, it was explicated that
miRNAs triggered target mRNA degradation by complementary
combining to 3’ UTR of mRNA.

By bioinformatics analysis, we revealed that miR-4687-3p
owned 3,851 target genes, which significantly enriched the TGF-
β signaling pathway. Previous researches had reported that the
TGF-β pathway regulated the invasion and migration of cancer
cells via epithelial-mesenchymal transition (EMT) (Xu et al.,
2009; Schneider et al., 2011; Ma et al., 2015; Zhao et al., 2018;
Camerlingo et al., 2019) and TGF-β could form a complex
with Smad4 and translocate into the nucleus to regulate gene
transcription (Wang et al., 2015; Yang et al., 2019), which
suggested that the TGF-β pathway was vital in carcinogenesis.
Some specific molecules served as tumor promoter or suppressor
and can regulate the cancer cells proliferation, invasion, and
migration via the pathway (Colak and Ten Dijke, 2017; Seoane
and Gomis, 2017). In the present study, the target genes
enriched in the TGF-β pathway implied that the miR-4687-
3p might serve as a promoter affected the carcinogenesis of
NSCLC. Moreover, the results proved the above hypothesis.
Down-regulation miR-4687-3p could suppress the proliferation,
invasion, and migration of NSCLC cells, while overexpression
miR-4687-3p had the opposite effects. Importantly, data from the
present study revealed that miR-4687-3p as a tumor promoter
could promote tumor growth.

In conclusion, our results strongly suggested that serum
miR-4687-3p overexpressed in NSCLC and miR-4687-3p could
promote the growth and migration of NSCLC cells, which
demonstrated that serum miR-4687-3p could be a novel and
favorable biomarker for NSCLC. Compared with those studies of
circulating miRNAs in diagnosing NSCLC, our study is unique
for the following reasons. First, we screened a large number of
serum miRNAs via microarrays, which enabled us to identify
potential diagnostic serum miRNAs. Furthermore, we compared
the expression of tissue miR-4687-3p in NSCLC and the healthy
based on the TCGA database. We found that miR-4687-3p
possesses the potency to promote NSCLC cells growth, migration,
and invasion. Our findings suggest that miR-4687-3p functions as
a tumor promoter in NSCLC and holds promise as a prognostic
biomarker and potential therapeutic target for NSCLC.

However, our study has some limitations. Currently, there is
no standard endogenous control for circulating miRNA studies.
The stable control (miR-484) needs to be validated in more
studies. In this research, we evaluated the role of miR-4687-3p
in NSCLC, but we did not identify the underlying molecular
mechanisms. In future research, we will focus on the specific
mechanism of miR-4687-3p.
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Evidence that microRNAs (miRNAs) regulate the various steps of metastasis is
increasing. Several studies have looked at the miRNA expression profile in primary
breast tumors but few have compared primary tumor and sentinel lymph node (SLN)
metastasis. We correlated the expression of miRNAs with the SLN status and the
outcome of axillary lymph node dissection (ALND) in 60 patients with early breast cancer.
We profiled the expression of miRNAs in paired breast tumor samples and SLNs using
the NextSeq500 Illumina platform and key findings were validated by qPCR. MultiMiR
Bioconductor and Reactome pathways analysis were performed to identify target genes
and signaling pathways affected by altered expressed miRNAs. Our results show that
nine miRNAs were differentially expressed in tumor tissues (q ≤ 0.05). In tumor samples,
a 13.5-fold up-regulation of miR-7641-2 (q < 0.001) and a 2.9-fold down-regulation of
miR-1291 (q < 0.001) were associated with tumors with positive SLNs. However, only
down-regulation of miR-1291 (q = 0.048) remained significant in paired SLNs samples.
Interestingly, a 10.5 up-regulation of miR-1291 in SLNs samples was associated with
additional axillary lymph node involvement (q < 0.001). The enrichment analyses
showed that canonical and non-canonical WNT pathways and negative regulation of
various receptor tyrosine kinases signaling pathways were targets of miR-1291 and
supports the role of miR-1291 as a tumor suppressor gene (TSG). Further studies are
warranted to investigate the use of miR-1291 as a surrogate biomarker of SLN node
metastasis in patients with early-stage breast cancer.

Keywords: axillary lymph node dissection, breast cancer, sentinel lymph node, metastasis, microRNAs

INTRODUCTION

MicroRNAs (miRNAs) are a small (19–25 nt) non-coding RNA (ncRNA), expressed in a wide
variety of organisms and highly conserved across species. MiRNAs regulate the expression of target
genes by binding to complementary regions of messenger transcripts to repress their translation
or regulate their degradation. The number of human miRNAs is currently over 1900 and the
number of predicted target genes are in the range of thousands, with some estimates indicating
that miRNAs target over 30% of the human genome. The overall emerging picture is that of a
complex regulation level of gene expression, in which a single miRNA may control hundreds of
targets (Condrat et al., 2020).
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Several studies have shown that the expression signatures
of miRNAs in human cancers are distinct from those in
normal tissues (Janssen et al., 2010). In breast cancer, various
studies have revealed a deregulation of miRNAs with clusters
of miRNAs frequently being either over-expressed or down-
regulated (Nana-Sinkam and Croce, 2011; Condrat et al.,
2020). In addition, many cellular pathways are affected by the
regulatory function of miRNAs and several human pathologies
including cancers, have been associated with deregulation of
the miRNAs (Dai and Ahmed, 2011) and play a pivotal
role in various steps of the metastatic process (Nicoloso
et al., 2009; Valastyan, 2012). Furthermore, analysis of miRNA
expression correlated these with various clinicopathological
factors (Blenkiron et al., 2007). However, few studies have
compared primary tumor and lymph node (LN) metastasis
(Smeets et al., 2011; Gravgaard et al., 2012; Cascione et al.,
2013). Gravgaard et al. (2012) found a differential expression
of miRNA-200 family and miRNA-9 in LN associated with the
metastatic process. Cascione et al. (2013) reported analysis of
173 formalin-fixed paraffin embedded (FFPE) tumors and 53
matched LN in TNBC. They found two miRNA signatures
that were independent predictors for overall survival (OS)
and distant-disease free survival, respectively. In another
study, Smeets et al. (2011) identified eight with measurable
differences in gene and miRNA expression between N0
and N+ patients, suggesting that LN involvement is not a
genetically random process.

Herein, we studied the miRNA expression profile in paired
tumor and sentinel lymph node (SLN) from patients with
early breast cancer. We used the one-step nucleic amplification
(OSNA) assay (Tsujimoto et al., 2007) to accurately measure total
metastatic volume in the SLN (Cserni, 2012), as an alternative
to intraoperative microscopy-based pathological assessment of
the SLN. The OSNA assay is a rapid molecular detection of
SLN metastasis based on the semi-quantification of cytokeratin
19 (CK19) mRNA copy numbers (Tsujimoto et al., 2007).
The CK19 mRNA copy number, also defined as total tumor
load (TTL), has been shown to be a statistically significant
parameter in predicting the risks of further positive axillary
LN (aLN). Thus, only patients diagnosed with more than
two macrometastatic SLN are further treated with axillary
lymph node dissection (ALND) (Peg et al., 2013), the golden
standard procedure for invasive breast cancer. The aLN status
is the most powerful prognostic factor in breast cancer and
knowledge of this is essential for making decisions about adjuvant
therapy (Shek and Godolphin, 1988). However, ALND has
been questioned in recent years because of inherent morbidity
following the procedure without directly contributing to survival
(Giuliano et al., 2010; Jagsi et al., 2014).

In this study, we investigated the potential use of miRNAs as
surrogate biomarkers for the presence of metastases in the SLN
and the outcome of ALND, in patients with early-stage breast
cancer. We found a differential expression of various miRNAs
associated with both the metastatic status of the SLN and the
occurrence of further aLN metastases. This study provides a new
framework to study the role of miRNAs in the regulation of tumor
metastases and their impact on patient outcome.

MATERIALS AND METHODS

Ethics Approval, Consent to Participate
and Institutional Safety Procedures
This study was conducted according to the Declaration of
Helsinki principles, with approval from the Clinical Research
Ethics Committee at “Institut d’Investigacions Biomèdiques Sant
Pau” (IIB Sant Pau). Written informed consent was obtained
from all patients under institutional review board-approved
protocols. All methods were performed in accordance with the
relevant guidelines and regulations.

Patient and Study Samples
This study included 60 patients with early-stage breast cancer
treated with surgery. None of the patients had prior treatment
with chemotherapy or radiation. Patients were chosen on the
basis of paired biological samples availability and confirmed
diagnose based on the histopathology of primary tumors
and OSNA-diagnosed SLNs. Information about completion
of ALND was available for all patients. Samples included
hormone receptor (HR) positive [estrogen receptor (ER) or
progesterone receptor (PR) positive], HER2 positive and triple
negative (TN) tumors. We collected clinical and pathological
parameters and clinical follow-up. Tumor stage was determined
according to the AJCC/UICC system (Webber et al., 2014)
and histological grade was determined using the Elston–Ellis
grading system (Elston and Ellis, 1991). We collected paired
tumor and SLNs for all 60 patients (n = 120 samples). All
samples were classified according to the SLN status as negative
(n = 20) or positive (n = 40). Positive samples were sub-
classified as macrometastatic (n = 20) or micrometastatic (n = 20)
(Tsujimoto et al., 2007).

Sample Processing
Primary tumor samples were collected and processed within
30 min after surgery. A portion of each tumor was rapidly
embedded in Tissue-Tek OCT (Sakura Finetek, Netherlands) and
frozen using a histobath (Thermo Fisher Scientific, Waltham,
MA, United States). Frozen tumor blocks were thin-sectioned
and stained with hematoxylin/eosin and only those that were
judged to contain at least 70% viable tumor by area were
carried on for RNA extraction. Intraoperative SLN were evaluated
by OSNA assay (Tsujimoto et al., 2007). The entire LN was
homogenized in 4 mL of a lysis solution (Sysmex, Spain)
and centrifuged at 10,000 × g at room temperature. A 2 µL
sample of the supernatant was analyzed with the RD-100i
system (Sysmex) and the remaining SLN homogenate was stored
immediately at−80C.

RNA Isolation
Total RNA was purified using TRIzol (Invitrogen) and mirVana
(Ambion) reagents according to manufacturer’s instructions with
some modifications. Briefly, Trizol homogenates were mixed with
1/10 volume of mirVana homogenizing solution to retain low
molecular weight RNA species. The clear fraction containing total
RNA was then purified using the mirVana miRNA isolation kit,
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following manufacturer’s instructions. Total RNA was eluted in
100 µl nuclease-free water.

RNA-Sequencing
Total RNA concentration and purity was measured using
the ribogreen RNA assay kit (Life Technologies) and the
integrity was visualized with a TapeStation Bioanalyzer (Agilent
Technologies, Inc.). Next, RNA pools were precipitated overnight
with 2× volumes of absolute ethanol and 0.1× volume of 0.3
M sodium acetate at −80◦C for cDNA library construction.
Double-stranded cDNA libraries were constructed using the
NEBNext Small RNA library Prep Set for Illumina (New England
Biolabs, Ipswich, MA, United States) following manufacturer’s
instructions. A quality check (QC) and size selection of
the PCR amplified cDNA construct was performed using
6% polyacrylamide gel. Two biological replicates for each
developmental stage were separately sequenced by the MiSeq
(Illumina, San Diego, CA, United States) platform using
sequenced runs of 2 × 75 paired-end reads and 1000× coverage
to ensure proper quantification of the miRNA expression. A total
of 59 tumors and 58 SLNs (117 paired-end, 2 × 75) sequences
were successfully sequenced.

Genome Annotation and Quantification
of MiRNAs
Paired-end (forward-reverse) sample merging and initial
bioinformatics analysis were performed with the CLCBio
Genomics Workbench R© version 8.0.2 (Qiagen, Germany).
A total of 234 fastq input files were generated and used in the
analyses. The CLCBio software was used to align and map the
trimmed reads to the human and mouse miRBases (version 19)
and the Homo_sapiens.GRCh37.57 tracks from Ensembl. Up
to two mismatches were allowed on the sequences. Mapping
options were set as the program’s default. Count tables were
generated with R programming language (R Development Core
Team, 2011) and the EdgeR package (Bioconductor repository)
(Robinson et al., 2010), using non-specific filtering for sequences
having a reads-per-million value higher than 0, in at least half
of the samples included on each experimental comparison.
Transcript per million (TPM) was used as a normalization
procedure to correct for differences in sequencing depth and to
quantified RNA species.

Differential Expression Analysis
Differential expression analyses were performed using the
trimmed mean of M-values normalization method (TMM)
(Robinson and Oshlack, 2010), based on the log-fold and
absolute gene-wise changes in expression between samples.
Differential expression analysis was performed using the
EdgeR statistical software package (Bioconductor1). Principal
component analysis (PCA) was performed using R programming
and TMM-normalized quantifications from defined collections
of samples as input. Volcano plots were constructed plotting
the p-value (−log10) on the y-axis and the expression fold

1http://www.bioconductor.org/

change (log2) between the two experimental groups on the
x-axis. Wherever indicated, we have used fold regulation
throughout the text to represent positive FC values as up-
regulation (fold regulation is equal to 2FC) and negative
FC values to indicate a down-regulation (fold regulation is
equal to 2−FC).

Quantitative Real-Time RT–PCR
Validation Analysis
Selected miRNAs were validated by quantitative real-time RT–
PCR (qPCR) in an ABI Prism 7500 Sequence Detection System
using specific LNA PCR primers (Exiqon). The cDNA was
constructed using the miRCURY LNATM Universal RT cDNA
Synthesis Kit (Exiqon), diluted 40× and assayed in 10 µl PCR
reactions according to manufacturer’s instructions. Each qPCR
was assayed in triplicates and a no-template control (NTC) of
water was purified and profiled like the rest of the samples.
Analysis of the data was performed using the relative miRNA
expression according to the comparative Ct (11Ct) method
using negative metastatic samples as reference. We used the
geNorm (Andersen et al., 2004) or the Normfinder algorithm
(Vandesompele et al., 2002) to select the best combination
of two reference genes based on our qPCR data. Data from
multiples plates were normalized using UniSp3 spike-in as
interplate calibrators.

Gene Targets Prediction and Enrichment
Analysis of Gene Targets
The multiMiR Bioconductor’s package (Ru et al., 2014) was
used to retrieve miRNA-target interactions from 14 external
databases2 and the Reactome pathway database (Jassal et al., 2020)
was use to performed enrichment analysis of target pathways
and genes.3

Statistics
Differentially expressed miRNAs obtained by next generation
sequencing (NGS) were detected by an exact test based on
conditional maximum likelihood (CML) included in the R
Bioconductor package edgeR (Robinson et al., 2010). p-Values
from NGS were corrected (q-values) for multiple testing using
the Benjamini–Hochberg method (Benjamini and Hochberg,
1995). A q-value ≤ 0.05 was considered significant. In all
group comparisons missing expression values were treated as
zero. Differences in total numbers of miRNAs between groups
were analyzed by two-sided parametric t-tests. The analysis of
clinicopathological was performed using the Student’s t-test to
compare quantitative variables, and the X2 or Fisher exact tests
to compared qualitative variables. Disease free survival (DFS)
was defined as the time from diagnosis to date of first relapse
(local, regional, contralateral, or metastatic) or second primary
cancer. OS was defined as the time from sample collection
to death resulting from any cause. Patients lost to follow-
up were censored at the last contact. Kaplan–Meier and log-
rank analyses were used to compare DFS and OS. Differential

2http://multimir.ucdenver.edu
3https://reactome.org/
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expression by qPCR of selected miRNAs was analyzed using
an independent sample t-test with a Levene’s test for equality
of variances. The p-values were calculated using a Student’s
t-test of the replicate 2−1CT values for each miRNA in the
different groups compared. A two-sided p-value ≤ 0.05 was
considered significant.

RESULTS

Patients Characteristics
Patient and tumor characteristics are summarized in Table 1.
We have analyzed 60 patients for whom paired tumor and
SLN samples were available. A total of 20 patients had negative

TABLE 1 | Basic patient and tumor characteristics.

Variable Total (%) LN negative (%) LN positive (%)

N N (%) 60 (100) 20 (100) 40 (100)

Age (years) ≤50 9 (15) 2 (10) 7 (18)

>50 51 (85) 18 (90) 33 (82)

Mean + SD 63.6 ± 14.2 68.8 ± 11.9 60.9 ± 14.7

Median (range) 64 (26-88) 71 (47-87) 60 (26-88)

Tumor stage I 18 (30) 12 (60) 6 (15)

II 40 (67) 8 (40) 32 (80)

III 2 (3) 0 (0) 2 (5)

Tumor status T1 32 (53) 12 (60) 20 (50)

T2 27 (45) 8 (40) 19 (48)

T3 1 (2) 0 (0) 1 (2)

Tumor grade 1 3 (5) 1 (5) 2 (5)

2 35 (58) 14 (70) 21 (52)

3 22 (37) 5 (25) 17 (43)

Node status N0 20 (33) 20 (100) 0 (0)

N+ 40 (67) 0 (0) 40 (100)

SLN OSNA diagnosis Negative 20 (33) 20 (100) 0 (0)

Micrometastasis 20 (33) 0 (0) 20 (50)

Macrometastasis 20 (33) 0 (0) 20 (50)

aLN status* Negative 15 (75) 0 (0) 15 (75)

Positive 5 (25) 0 (0) 5 (25)

CK19 status** Low 12 (60) 0 (0) 12 (60)

High 8 (40) 0 (0) 8 (40)

Tumor type Unifocal 36 (60) 13 (65) 23 (58)

Multifocal 20 (33) 7 (35) 13 (32)

Multicentric 4 (7) 0 (0) 4 (10)

ER status Negative 6 (10) 2 (10) 4 (10)

Positive 54 (90) 18 (90) 36 (90)

PR status Negative 18 (30) 7 (35) 11 (28)

Positive 42 (70) 13 (65) 29 (72)

Receptor status HR-positive 46 (77) 16 (80) 30 (75)

HER-2 positive 9 (15) 3 (15) 6 (15)

TN 5 (8) 1 (5) 4 (10)

Ki67 status >20% 14 (23) 4 (20) 10 (25)

≤20% 46 (77) 16 (80) 30 (75)

Lymphovascular invasion Negative 48 (80) 18 (90) 30 (75)

Positive 12 (20) 2 (10) 10 (25)

Menopausal status Premenopausal 10 (17) 2 (10) 8 (20)

Postmenopausal 50 (83) 18 (90) 32 (80)

Breast affected Left 41 (68) 12 (60) 29 (73)

Right 19 (32) 8 (40) 11 (27)

Breast surgery Mastectomy 19 (32) 5 (25) 14 (35)

Lumpectomy 41 (68) 15 (75) 26 (65)

aLN, axillary lymph node; ER, estrogen receptor; LN, lymph node; PR, progesterone receptor; TN, triple negative.
*CK19 mRNA copy number >15,000 in the subgroup of patients with macrometastatic SLNs.
**Presence of additional aLN in the subgroup of patients with macrometastases.
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SLNs (33%) and 40 patients had positive SLNs (67%). Of those
patients with positive SLNs, 20 (33%) SLNs were diagnosed
as macrometastasis and 20 (33%) SLNs as micrometastasis. All
patients diagnosed with macrometastasis received ALND of
whom 5 (25%) had further aLN involvement. Our study included
46 patients with HR-positive tumors (77%), 9 patients with HER-
2 positive carcinomas (15%), and 5 patients with TN (8%) tumors.

RNA-Sequencing
Prior to sequencing the samples were subjected to a QC. Three
samples (one tumor and two SLNs) were excluded from further
analyses because they did not pass all of the QC metrics,
including the average read quality, the average base quality
and the read length distribution with a Q-score > 30 (99.9%
correct) (Cock et al., 2010). The remaining 59 tumors and
58 SLNs were successfully sequenced resulting in a total of
117 paired samples. All samples were sequenced in nine runs
with a minimum and maximum read number of 0.33 and 34.5
million reads number, respectively. This resulted in a median
2.5 million read number per sample (Supplementary Table 1).
Following sequence trimming, all reads containing identical
insert sequences were collapsed into a single read, which were
passed into the analysis pipeline. On average we obtained 0.92
million reads for each sample resulting in an average genome
mapping rate of 26.9%. The remaining unmapped reads were
usually from degraded RNAs that could not be uniquely mapped.
After mapping and counting to relevant entries in mirbase_20
database, the number of known miRNAs was calculated using
TPM to measure expression.

Differential Expression
To identify differentially expressed miRNAs between paired
samples. First, we performed a data reduction analysis to compare
the miRNA expression profile in paired tumor and SLN samples.
Our results show that the two types of samples separated into two
different groups, suggesting that the miRNA expression profile
between paired tumor and SLNs samples from a same patient is
different. Other prognostic factor such as tumor stage or tumor
grade were in part responsible for grouping the tumor samples
(Supplementary Figure 1). We observed significant differences
in the expression of 9 miRNAs (q < 0.05) in tumors samples
compared to SLNs. Six miRNAs were up-regulated (miR-182,
miR-1291, miR-3651, miR-6240, miR-7641-1, and miR-6516) and
three miRNAs were down-regulated (miR-3653, miR-3535, and
miR-3607) (Figure 1A). We further validated the expression for
all nine miRNAs using specific qPCR assays.

Next, we analyzed tumor and SLN samples independently
in relation to the metastatic SLN status. We first compared
negative (n = 20) vs. positive (n = 40) samples (Figure 1B
and Supplementary Table 2). Our results show a 13.9-fold up-
regulation of miR-7641-2 (q < 0.001) and a fourfold down-
regulation of miR-1291 (q < 0.001) in positive tumor samples.
A non-significant 1.9-fold down-regulation was also observed for
miR-6240 (q = 0.076). In contrast, in positive SLNs samples only
a 2.8-fold down-regulation of miR-1291 remained significant
(q = 0.048). Next, we determined whether the differential
expression of miRNAs observed in positive samples compared

to negative samples was retained when samples were sub-
classified as either macro- or micrometastasis. We observed a
similar deregulation pattern in tumor samples. Macrometastatic
tumors showed an 18.4-fold up-regulation (q < 0.001) of miR-
7641-2, a 3.2-fold down-regulation of miR-1291 (q = 0.014)
and a 2.3-fold down-regulation of miR-6240 (q = 0.038). In
contrast, no differential expression was observed for SLNs
diagnosed as macrometastasis (Figure 1C and Supplementary
Table 2). Similar results were obtained when we compared
micrometastatic and negative tumors or SLNs (Figure 1D
and Supplementary Table 2). Interestingly, no significant
differences were observed when comparing macrometastatic
to micrometastatic tumor or SLNs (Supplementary Table 2),
suggesting that the volume of the metastatic lesion do not
translate in differences in the expression profile of miRNAs.

It has been reported that patients with T1−2N0−1 invasive
non-metastatic breast cancer treated with breast conserving
surgery and randomized to undergo ALND after SLN dissection
vs. SLN dissection alone, showed no significant differences in
local recurrence or regional recurrence (Giuliano et al., 2010;
Jagsi et al., 2014). Therefore, we investigated the expression of
miRNAs in tumors (n = 19) or SLNs (n = 20) from patients
diagnosed as macrometastasis and with additional positive aLNs
(n = 5). Our results show that in SLNs samples, a 10.6-fold up-
regulation of miR-1291 (q< 0.001) was associated with additional
aLN metastases (Figure 1E). In tumor samples, we found a
differential expression of miR-182 (p = 0.013) and miR-7641-
2 (p = 0.029) but none were significant after FDR correction
(q > 0.05) (Figure 1E). We have further analyzed this subset
of samples in relation to the TTL since it has been reported
that a TTL cut-off value >15,000 copies of CK19 is associated
with additional aLN metastasis (Peg et al., 2013). Our results
show a negative correlation of miR-3535 and miR-3653 in tumors
and a positive association of miR-1291in SLNs in relation to the
TTL. However, none of these miRNAs passed the FDR correction
(q > 0.05) (data not shown).

Our tumor samples included 46 HR-positive (77%), 9 HER2-
positive (15%), and 5 TN (8%) tumors (Table 1). No differential
expression of miRNAs was found between molecular subtypes
in tumor samples (n = 59). However, in SLN samples, miR-
1291 showed a 10-fold up-regulation in HER2-positive samples
(q = 0.0046) compared to HR-positive SLNs and a 3.5-fold up-
regulation of miR-3607 in HER2-positive SLNs compared to TN
SLNs (q = 0.033) (Table 2). Next, we investigated the expression
profile of miRNAs according to the molecular subtype and the
SLN metastatic status. In TN tumor samples with positive SLNs,
an 18.1 down-regulation of miR-3535 (q = 0.048) was observed
compared with HR-positive tumors. A similar non-significant
20.2-fold down-regulation was observed when comparing TN
with HER-2 positive tumors with positive LNs (q = 0.06). No
differences were observed in SLN samples (data not shown).

Gene Target Prediction and Enrichment
Analyses
To investigate target genes of miR-1291 we used the multiMiR
Bioconductor’s package to retrieve validated targets from
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FIGURE 1 | MiRNA expression profile in paired tumor and SLN samples from breast cancer patients. (A) Total number of miRNAs with significant differential
expression (q < 0.05) in tumor samples compared to paired SLN samples. Data is expressed as log2 fold change relative to tumor samples. *q < 0.001, **q < 0.05.
The volcano plots show differentially expressed miRNAs in tumor (blue) and SLN (red) samples according to the locoregional metastatic status: positive vs. negative
(B), macrometastasis vs. negative (C), micrometastasis vs. negative (D), and subgroup of patients with macrometastasis that were treated with ALND and grouped
according to the aLN status (positive vs. negative) (E). The data show the relationship between the p-values (y-axis) and the fold change (x-axis) between the
experimental groups. Only miRNAs with q < 0.05 are shown in the plots.
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TABLE 2 | Differential expression of miRNAs in tumor samples (n = 59) and SLN (n = 58) according to the breast cancer molecular subtypes.

Sample Comparison miRNA log2 FC p-Value q-Value Fold regulation

Tumor HR+ vs. HER2+ mir-21 −1.28 0.012 0.175 2.4 Down-regulation

HR+ vs. TNBC mir-3651 1.75 0.053 0.596 3.4 Up-regulation

HER2+ vs. TNBC mir-3651 2.13 0.032 0.352 4.4 Up-regulation

mir-21 1.88 0.050 0.352 3.7 Up-regulation

SLN HR+ vs. HER2+ mir-1291 3.323 0.0005 0.005 10.0 Up-regulation

mir-3607 −0.756 0.032 0.143 1.7 Down-regulation

HR+ vs. TNBC mir-3607 1.03 0.051 0.319 2.1 Up-regulation

mir-6516 1.56 0.074 0.319 3.0 Up-regulation

HER2+ vs. TNBC mir-3607 1.79 0.004 0.033 3.5 Up-regulation

mir-6516 2.27 0.017 0.075 4.9 Up-regulation

mir-3653 1.09 0.044 0.132 2.1 Up-regulation

mir-1291 −1.98 0.073 0.164 3.9 Down-regulation

FC, fold change.

mirecords, mirtarbase, and tarbase databases and predicted
targets from diana-microt, elmmo, microcosm, miranda,
mirdb, pictar, pita, and targetscan databases. A total of 171
validated targets were found (Supplementary Table 3).
To investigate the pathways and genes associated with
miR-1291 we used the Reactome pathway database. The
analyses show the most relevant pathways and the number
of significant target genes within each category (Figure 2A
and Supplementary Table 4), the interactions between these
pathways (Figure 2B) and the targets genes associated with
these pathways and how these genes and signaling pathways
are linked (Figure 2C). Overall, our results show that the top
five significant pathways regulated by miR-1291 are signaling
by WNT, planar cell polarity/convergent extension (PCP/CE)
pathway, β-catenin independent WNT signaling, diseases of
signal transduction and signaling by receptor tyrosine kinases
(RTKs). Interestingly, all target genes within these categories
(Figure 2C) were included in the validated mirtabase and tabase
databases (Supplementary Table 3).

Clinical Status
Our series include 60 patients with early breast cancer and
we reported recurrence in 10/60 (17%) patients. Four patients
had locoregional recurrences (breast) and six patients had
distant metastasis (two cases in the liver and one case
in the lung, pancreas, bone, or brain). At last follow-up,
three patients with recurrences in their breast were reported
alive without any evidence of disease, whereas 5/10 other
recurrences (breast, lung, bone, and pancreas) were alive
with disease. We reported seven deaths in our series, three
deaths were due to complications related to the disease
(two deaths were related to liver metastases and one death
related to lung metastases), and four deaths non-related to
disease (general deterioration related to age and/or associated
comorbidity). We performed a survival analysis using the
expression of miR-1291. The Kaplan–Meier and log-rank
analyses showed that the expression levels of miR-1291 (high vs.
low expression) were not significantly associated with DFS nor
OS (Figure 3).

DISCUSSION

In this study we have correlated the expression of miRNAs
with SLN metastatic status and the outcome of ALND. We
profiled the miRNA expression using NGS and key findings
were validated by qPCR. We analyzed samples from 60 patients
with early breast cancer for whom paired primary tumor and
SLNs were available. Overall, we found a poor correlation
in the miRNA expression profile from SLNs compared to
match primary tumors samples from the same patient. These
differences are likely due to histological differences between the
LN and the tumor. Whereas the SLN is constituted mainly
by lymphoid and monocytes cells the tumor tissue is formed
mostly by epithelial and mesenchymal cells. Nonetheless, we
found nine differentially expressed miRNAs in tumor tissues
compared to SLN (q ≤ 0.05). Of those, only four miRNAs
showed a fold de-regulation ≥2.0 (either up-regulation or down-
regulation). The two most de-regulated miRNAs were miR-
182 (6.2-fold up-regulation, p < 0.001) and miR-3607 (2.1-fold
down-regulation, p < 0.001). Our data agrees with a previous
report showing that miR-182 directly targets MIM (Missing
in Metastasis), which suppresses metastasis by inhibiting Ras
homolog family member A (RhoA) activity and stress fiber
formation in breast cancer cells (Lei et al., 2014). In addition,
miR-182 expression was reported to be higher in primary tumors
with positive SLNs metastasis and correlated with earlier relapse-
free and metastasis-free survivals (Lei et al., 2014). On the other
hand, miR-3607 has been shown to be widely attenuated in
prostate cancer (PCa) patients and low expression levels were
significantly associated with higher PCa stage, Gleason score,
serum PSA levels, tumor progression, and poor survival outcome
(Saini et al., 2014).

Given that paired tumor and SLN samples in our study showed
different miRNA expression profiles, we analyzed both types of
samples independently in relation to the locoregional metastatic
status. We show that down-regulation of miR-1291 in both tumor
and SLN samples was associated with positive SLN metastases.
Interestingly, we found that in the subgroup of positive patients
that underwent ALND and had further aLN metastases the
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FIGURE 2 | Reactome pathway enrichment in miR-1291 targeted genes.
(A) Dot plot graph shows the 15 most significant enriched pathways and the
ratio between the genes that belongs to that category and the total number of
genes in the pathway. The color of the nodes indicates the p-value and the
size of the nodes the number of genes in the data that belong to that pathway
(B) Enrichment map of the top 15 signaling pathways grouped by similarity.
Nodes are colored by p-value and their size reflects the number of genes
found in that term. (C) Network plot of the genes found in the top five enriched
signaling pathways showing the linkages between genes and pathways. The
size of nodes indicates the number of genes found in that pathway.

FIGURE 3 | Association of miR-1291 expression with patient outcome. The
expression levels of log2-transformed miR-1291 was correlated with (A)
disease-free survival and (B) overall survival. Kaplan–Meier curves and
log-rank tests are shown.

expression of miR-1291 was significantly higher compare to
patient with negative aLNs. However, these results must be
interpreted with caution since only five patients fulfilled those
characteristics in our dataset and thus, further clinical validation
in a larger cohort of patients will be required to establish these
observations. If confirmed, these results would suggest that the
degree of down-regulation might have an effect on how miR-
1291 modulates its target genes and affect various signaling
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pathways. Nonetheless, our study did not correlate the miRNA
expression with the transcriptional expression in the same
samples. Therefore we could not determine if miR-1291 function
as an oncogene as it has been described for hepatocellular
carcinomas and liver cirrhosis patients (Hagag et al., 2020) or in
microvesicles derived from medulloblastoma cell lines with stem-
like properties (Kaid et al., 2020). Nevertheless, our data suggest
the contrary and agrees with previous studies showing that the
expression of miR-1291 is significantly down-regulated in various
human cancers, including pancreatic cancer (Bi et al., 2014; Tu
et al., 2016) esophageal squamous cell carcinoma (ESCC) (Luo
et al., 2015), PCa (Cai et al., 2019) and renal cell carcinoma (RCC)
(Yamasaki et al., 2013). In these studies, loss of tumor-suppressive
miR-1291 have been reported to enhanced cell proliferation,
migration, and invasion through up-regulation of various miR-
1291 targets, whereas restoration of miR-1291 expression in
cancer cell lines and animal models reverted those effects.
For example, miR-1291 restoration repressed tumorigenesis in
prostate and pancreatic xenograft tumor models via inhibition of
Mediator of RNA polymerase II transcription subunit 1 (MED1)
(Cai et al., 2019), N-methylnicotinamide (NMN) (Bi et al.,
2014). In addition, miR-1291 reduced the protein levels of target
genes including ATP Binding Cassette Subfamily C Member 11
(ABCC1), Forkhead box protein A2 (FOXA2), Anterior Gradient
2 (AGR2), methyl CpG binding protein 2 (MeCP2) and carnitine
palmitoyltransferase 1C (CPT1C) resulting in the suppression
of growth and tumorigenesis of human breast and pancreatic
cell lines (Bi et al., 2014; Li et al., 2015; Tu et al., 2016;
Chen et al., 2020). Similar effects have been reported in RCC
through targeting SLC2A1/GLUT1 (Yamasaki et al., 2013) which
it has also been reported to be overexpressed in human breast
carcinomas (da Cunha et al., 2013), in esophageal carcinomas
by inhibiting mucin 1 (MUC1) (Luo et al., 2015), whereas miR-
1291 acts upstream of the Rho GTPase-activating protein 29
(ArhGAP29) to negatively regulate the RhoA/ROCK1 epithelial
mesenchymal transition (EMT) pathway, ultimately leading to
endometrial fibrosis (Xu et al., 2017). Interestingly, our target
prediction analysis identified the reported genes as miR-1291
targets, whereas our enrichment analysis pointed out various
signaling pathways and several miR-1291 target genes that are
commonly overexpressed in breast cancer, suggesting that in fact
miR-1291 acts as a tumor suppressor gene (TSG). For instance,
our data shows that miR-1291 targets genes that are involved in
both canonical and non-canonical WNT signaling and regulate
many aspects of cell polarity, morphogenesis, and development
(Saito-Diaz et al., 2013). In some contexts, both the canonical and
non-canonical WNT signaling contribute to tumor formation
by promoting cell migration, invasiveness, and metastasis (van
Amerongen, 2012; VanderVorst et al., 2019). One of the non-
canonical WNT pathways we identified in relation to miR-1291
is the PCP pathway, which contains core Wnt/PCP components
that are overexpressed in a variety of solid tumors and have
been directly implicated in promoting tumor cell migration and
metastasis (VanderVorst et al., 2018). Our data shows that two of
the Wnt/PCP genes (WNT11 and VANGL2) are targets of miR-
1291 and both have been reported to promote cell motility and
metastasis in breast cancer (Luga et al., 2012). The Frizzled-5

(FDZ5) and FDZ3 are another non-canonical WNT members
targeted by miR-1291 that bind to the FZD receptor and leads
to activation of small Rho GTPases (RAC2) and JNK, which
regulate the cytoskeleton and coordinate cell migration and
polarity (Schlessinger et al., 2009). Overexpression of FDZ5
and FDZ3 has been associated with cancer aggressiveness in
human breast carcinomas (da Cunha et al., 2013; Kazanietz
and Caloca, 2017). Furthermore, we showed that miR-1291 is
associated with negative regulation of various RTKs pathways,
such as the PI3K/AKT, IGFR1, and FGFR3 signaling pathways
that have a pivotal role in the regulation of cancer proliferation,
angiogenesis, and metastasis in breast cancer (Butti et al., 2018).
We have identified several well-known oncogenes that participate
in these pathways, including MAPK3, RAF1, AKT2, or TGFA
as validated targets of miR-1291. Collectively, our data supports
the role of miR-1291 as a TSG in the onset of locoregional
metastasis in early breast cancer patients. Further research
is warranted to investigate the expression of miR-1291 as a
potential surrogate marker of SLN involvement in early breast
cancer patients.

Our results complement other studies that have compared
the miRNA expression profile between primary tumor and LNs
from the same patients (Smeets et al., 2011; Gravgaard et al.,
2012; Cascione et al., 2013). Gravgaard et al. (2012) found a
differential expression of miRNA-200 family and miRNA-9 in
LN associated with the metastatic process. Cascione et al. (2013)
reported the analysis of 173 FFPE tumors and 53 matched
LN in TNBC. They found two miRNA signatures (miR-16,
155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497)
that were independent predictors for OS and distant-DFS,
respectively. In another study, Smeets et al. (2011) identified eight
miRNAs (miR-195, miR-191, miR-132, miR-203, miR-431, miR-
16, miR-30c, miR-30a) with measurable differences in gene and
miRNA expression between N0 and N+ patients. However, the
deregulated miRNAs described here is different from previously
published (Smeets et al., 2011; Gravgaard et al., 2012; Cascione
et al., 2013). Various reasons might explain this discrepancy.
First, the different molecular breast cancer subtypes investigated
in each study. Our cohort of patients comprised mostly luminal
tumors, whereas others analyzed only TNs tumors (Cascione
et al., 2013) or a mix of molecular subtypes (Smeets et al., 2011;
Gravgaard et al., 2012). Second, the type of starting biological
material used in previous studies, which was either archive FFPE
specimens (Gravgaard et al., 2012; Cascione et al., 2013) or frozen
sections (Smeets et al., 2011). In contrast, we used the entire
fresh SLN homogenate employed in the OSNA assay (Cserni,
2012). The OSNA assay was developed as an alternative to intra-
operative microscopy-based pathological assessment of the SLN
because such methods (frozen sections, touch imprints scrapes,
or a combination of these) have a limited ability to accurately
measure total metastatic volume in a LN (Cserni, 2012). Thus,
our study was not limit by sampling bias that might have occurred
from using different parts of the LN. Moreover, the OSNA
technique allows for the immediate sample processing required
to preserve RNA for research purposes. Therefore, we did not
encounter the limitations of using RNA extracted from archival
FFPE tissues, which has often suffered chemical modification,
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cross-linking, and degradation over time as a result of the
fixation and archiving methods (Esteve-Codina et al., 2017).
Finally, a recent study has shown that differences on the protocol
used for the preparation of the NGS libraries results in over-
or underrepresentation of miRNAs in the sequencing library
(Coenen-Stass et al., 2018). The use of different NGS library
preparation kits and protocols could result on an inefficient size-
selection or in an enrichment of other RNA species therefore
decreasing the number of usable miRNAs reads. That could be
our case, given that the library kit used to generate our RNA-
seq data (NEBNext) has been recently reported to produce the
least mirRNA with the greatest coefficient of variation (Coenen-
Stass et al., 2018). In fact, a preliminary analysis of our RNA-seq
data in tumor samples shows an enrichment in small nucleolar
RNAs (snoRNAs) (data not published). Interestingly, several
of the miRNAs described in this study appear to be derived
from snoRNAs small ncRNAs (Thorenoor and Slaby, 2015).
Other studies have reported human snoRNAs fragments that
are annotated as miRNAs, including miR-1291 (SNORA2C),
miR-1259 (SNORD12B), miR-1248 (SNORA81), miR-3535, and
miR3653 (SNORD125), all of which are reported in our study.
Similar reports have described other human snoRNAs showed
miRNA-like processing signatures that can inhibit the expression
of targets genes (Ender et al., 2008; Brameier et al., 2011;
Makarova et al., 2013; Thorenoor and Slaby, 2015). Further
studies are warranted to understand the role of snoRNAs in the
mechanisms of invasion in breast cancer.

CONCLUSION

To summarize, in this study we have analyzed the miRNA
expression profile in paired tumor and SLN from patients with
early breast cancer. We found that miR-1291 is differentially
expressed in breast cancer patients with positive SLN and
further involvement of aLN metastases. Our prediction and
enrichment analyses provides a comprehensive understanding
of the involvement of miR-1291 in promoting metastasis.
Altogether, our data supports the role of miR-1291 as
a TSG. Given the increasing importance of miRNAs in
regulating cellular processes and the clinical success of the
OSNA assay in detecting LN metastases, further research is
warranted to investigate the direct implications of our results
(Condrat et al., 2020) in treatment decision-making and
(Janssen et al., 2010) in developing more effective blood-based
clinical tests.
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Breast cancer (BC) is the leading cause of cancer death among women worldwide.
The molecular mechanisms of its pathogenesis are still to be investigated. In our study,
differentially expressed genes (DEGs) were screened between BC and normal tissues.
Based on the DEGs, a weighted gene co-expression network analysis (WGCNA) was
performed in 683 BC samples, and eight co-expressed gene modules were identified. In
addition, by relating the eight co-expressed modules to clinical information, we found the
blue module and pathological stage had a significant correlation (r = 0.24, p = 1e–10).
Validated by multiple independent datasets, using one-way ANOVA, survival analysis
and expression level revalidation, we finally screened 12 hub genes that can predict BC
progression and prognosis. Functional annotation analysis indicated that the hub genes
were enriched in cell division and cell cycle regulation. Importantly, higher expression of
the 12 hub genes indicated poor overall survival, recurrence-free survival, and disease-
free survival in BC patients. In addition, the expression of the 12 hub genes showed a
significantly positive correlation with the expression of cell proliferation marker Ki-67 in
BC. In summary, our study has identified 12 hub genes associated with the progression
and prognosis of BC; these hub genes might lead to poor outcomes by regulating the
cell division and cell cycle. These hub genes may serve as a biomarker and help to
distinguish different pathological stages for BC patients.

Keywords: breast cancer, WGCNA, progression, cell cycle, prognosis

INTRODUCTION

In 2018, there are approximately 2.1 million new cases of breast cancer (BC) and 630,000 deaths
worldwide (Bray et al., 2018). Although adjuvant therapies have reduced BC-related mortality, up to
25% of patients will develop tumor relapse (Early Breast Cancer Trialists’ Collaborative Group et al.,
2012; Howlader et al., 2014). The mortality of BC is largely due to recurrent tumors (Berry et al.,
2005). BC patients with higher clinical stage are more likely to recurrence and have worse prognosis
(Garcia-Murillas et al., 2015). Genetic mutations have a key role in the progression of BC. About
20% of triple-negative BC patients have BRCA mutation, while BRCA mutations are rarely found
in the healthy population (Trainer et al., 2011). Over 30% of BC patients have overexpressed HER2.
Ki-67 was reported to be associated with disease-free survival of BC (Kontzoglou et al., 2013).
BRAF mutations were present in over 3% of metastatic BC patients (Cejalvo et al., 2016). Although
there have been great advances in the treatment of BC, the ability to treat advanced BC is still
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limited due to the lack of precise molecular targets (Meng et al.,
2016). Therefore, more novel candidate genes are needed to
improve early diagnosis and treatment decisions.

Many studies have suggested that genes were involved in
tumor progression and prognosis (van Kessel et al., 2018;
McFaline-Figueroa et al., 2019). Gene expression profiles such
as microarray and RNA-sequencing are common ways to
determine biomarkers related to progression of various cancers
(Dahinden et al., 2010; Gerlinger et al., 2014). However, most
published studies have focused on the screening of differentially
expressed genes (DEGs), ignoring the high connection between
genes, although genes with similar expression patterns may be
functionally related (Tavazoie et al., 1999). Therefore, it is very
limited to merely focus on DEGs between normal and tumor
cells, and more attention should be paid to combination of gene
expression pattern and clinical features, such as tumor stage,
histological grade, invasiveness, etc.

Co-expression networks are widely used to decipher disease
mechanisms and provide a systematic view of dysregulation
pathways (Nayak et al., 2009). The basic theory of co-expression
analysis is that co-expressed genes may be functionally related.
Weighted gene co-expression network analysis (WGCNA) is
an open source tool to perform co-expression analysis based
on the theory. WGCNA integrates the expression differences
between samples into a higher-order network structure, and
clarifies the relationship between genes based on their co-
expression profiles. The WGCNA algorithm has been used to
investigate the associations between gene modules and clinical
indicators in the field of cancer research (Langfelder and
Horvath, 2008). Specifically, WGCNA was applied to identify
key genes significantly associated with clinical indicators of
tumor progression including tumor stage, grade, and metastasis
(Chen L. et al., 2017; Chen P. et al., 2017). WGCNA has
been used to identify biomarkers related to BC progression in
recent publications. Tang et al. screened several prognostic genes
including CCNB2, FBXO5, KIF4A, MCM10, and TPX2 using
WGCNA (Tang et al., 2018). Another recent study suggested
that four hub genes (FAM171A1, NDFIP1, SKP1, and REEP5)
were identified as candidate biomarkers for BC (Tian et al.,
2020). WGCNA was also used to identify key modules and
pathways in BC. Our study intends to use this algorithm to
identify biomarkers associated with progression of BC. We try
to construct a co-expression network of genes and identify
the network hub genes related to the clinical characteristics of
BC, and use various databases (GEO, TCGA, and STRING) to
verify our results.

MATERIALS AND METHODS

Data Collection
Normalized gene expression data and corresponding clinical
information were downloaded from Gene Expression Omnibus
(GEO)1. Datasets GSE42568 (Cheng et al., 2017) performed
on the platform Affymetrix Human Genome U133 Plus 2.0

1http://www.ncbi.nlm.nih.gov/geo/

Array included gene expression profiling of 104 BC and 17
normal breast biopsies. GSE42568 was analyzed to screen
differential expressed genes (DEGs). Dataset GSE102484 (Kao
et al., 2011) also performed on Affymetrix Human Genome
U133 Plus 2.0 Array included 683 BC samples, which was
used to perform weighted gene co-expression networks. Dataset
GSE20685 (Sabatier et al., 2011b) had gene expression profiles
of 327 BC samples. Dataset GSE21653 (Sabatier et al., 2011a)
had 266 samples and was used for Ki-67 correlation analysis and
module preservation analysis. In addition, 992 BC samples with
RNA-seq data were obtained from the Cancer Genome Atlas
(TCGA) database. GSE20685 and TCGA were both used for
stage validation.

Screening for DEGs
Normalized gene expression matrix and corresponding
annotation files were obtained from GEO database. Firstly,
we used the annotation files to annotate the probes. DEGs
between normal and tumor breast samples were identified by R
package “limma” (Ritchie et al., 2015). The cut-off criteria were
the FDR (false discovery rate) < 0.01 and |log2(fold change)| ≥ 1.

Weighted Gene Co-expression Network
Construction
Based on the expression values of all DEGs of 683 BC samples
and the corresponding clinical information (GSE102484), the
“WGCNA” (Langfelder and Horvath, 2008) R package was used
for the co-expression network (Langfelder and Horvath, 2008).
Before constructing the co-expression network, outlier samples
should be excluded by sample clustering using Pearson’s method.
According to the tutorial of WGCNA, we firstly verified the
qualification of genes and samples. Then we construct the
Pearson correlation matrix, and use the formula amn = |cmn|β
(cmn represents the Pearson correlation between genes, amn
represents the adjacency between genes, β parameter can amplify
the correlation between genes) to obtain the weighted adjacency
matrix. The soft threshold power β is determined based on
the standard scale-free network. Subsequently, we converted the
adjacency relationship into a topological overlap matrix (TOM)
(Yip and Horvath, 2007), and hierarchically clustered genes to
identify modules containing similar genes. In this study, we
selected the minimum size as 30 for the gene dendrogram,
selected the cutting line (0.25) for the modular dendrogram, to
merge some similar modules.

Identify Modules With Clinical
Significance and Functional Annotations
It is of great biological significance to identify modules most
significantly associated with clinical features. Based on the
similarity expressed in samples, gene modules with clinical
significance were identified by correlation analysis. We selected
the gene modules most relevant to clinical features as the modules
of interest, and analyzed their correlation with clinical features.
In addition, in order to further clarify the potential mechanism
of module of interest affecting clinical features, the genes
were uploaded to DAVID (Dennis et al., 2003) (The Database
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for Annotation, Visualization, and Integrated Discovery) for
GO function enrichment analysis. False transmission rate
(FDR) < 0.01 was considered statistically significant.

Module Preservation Analysis
Module preservation analysis was conducted to ensure the
identified gene modules could also be found in the test network
(Langfelder et al., 2011). To evaluate the module preservation,
we applied median rank and Zsummary via permutation testing
in the “WGCNA” package. Considering the computational
complexity involved in the size of our network, the permutation
was executed 200 times. According to the threshold set in a
previous study (Langfelder et al., 2011), modules with ZSummary
scores > 10 indicate preservation, 2–10 indicate weak to
moderate preservation, and < 2 indicate no preservation in the
permutation. The dataset GSE21653 was used for preservation
analysis including 266 BC samples.

Hub Gene Identification and Validation
Hub genes have a significant correlation with clinical
characteristics (Gene significance, GS), and have a high module
characterization (Module Membership, MM) in the module.
Hub genes, also called key genes, are a group of genes with the
highest connectivity, and determine the characteristics of the
gene module. There are two ways to identify the key genes in the
module according to the official tutorial of WGCNA (Langfelder
and Horvath, 2008). The first is to directly determine the key
genes based on GS and MM greater than a certain threshold.
Specifically, the screening criterion with GS greater than 0.2 and
MM of more than 0.8 are often used. The second is to use the
“networkScreening” function, which can be used to calculate the
weighted P-value p.weighted of each gene. Our study chose the
first way to identify hub genes. In order to ensure the reliability
of the hub genes, we used other independent datasets to validate
the expression of hub genes in different tumor stages. We
used BC samples from other independent datasets to compare
hub gene expression at different pathological stages. We also
obtained prognostic data for hub genes and analyzed the survival
time of each gene.

RESULTS

Screening DEGs in BC Tissue Samples
The flow chart of the study is shown in Supplementary Figure S1.
When the cut-off criteria is FDR < 0.05 and |log2 (FC)| ≥ 1,
3046 DEGs were screened between 104 BC and 17 normal breast
biopsies from dataset GSE42568. The heatmap of all DEGs was
shown in Figure 1A. Pathway and functional enrichment analysis
showed that the upregulated DEGs were significantly enriched
in cell proliferation and migration related pathways, including
cell division, positive regulation of cell proliferation, cell–cell
adhesion, cell migration etc. The downregulated DEGs were
associated with metabolism related pathways, such as metabolic
process, glucose homeostasis, and fatty acid beta-oxidation.

Identifying Co-expression Network and
Module Preservation Analysis
Co-expression analysis included 683 BC samples and their
complete clinical data and 3046 differential gene expression
data. Four outlier samples were excluded after the samples were
clustered by correlation analysis (Figure 1C and Supplementary
Figure S2A). We used WGCNA R package and classified
differential genes with similar expression patterns into different
modules by average link clustering. When the soft threshold
β was selected as 8, the genes in the network was scale-
free (Supplementary Figures S2B–E). Different modules were
identified, and the genes in the same module had a similar
co-expression trend. A total of 8 modules were identified after
the modules with a similar co-expression trend were combined
(Figure 2A). The genes in the gray module were not co-
expressed (Figures 2A,B). We did module preservation analysis
by comparing the identified gene modules above with the test
dataset GSE21653 to ensure the repeatability of the modules. As
shown in Figures 3A,B, since the Zsummary statistic of the blue
module was higher than 10 and the median rank statistic was
close to the minimum in the test dataset, the module showed
considerable stability.

Identifying Clinically Significant Gene
Modules
The main purpose of WGCNA is calculating the correlation
between different modules and clinical features, and identifying
the modules most relevant to clinical features, which has
important biological significance. We used Pearson’s correlation
analysis to calculate the correlation coefficients between different
gene modules and clinical features, and found that the blue
module and tumor stage (R = 0.24, p = 1e–10) has the highest
correlation, and it also has a significant correlation with the
tumor T stage (t.stage, R = 0.23, p = 2e–9) Figure 1B. The bar
plot in Figure 2C also showed that the blue module had the
highest gene significance across all modules. Therefore, the blue
module is identified as a clinically significant module for further
analysis. To investigate the functional role of the 504 genes of
the blue module, we performed GO enrichment analysis and
found that the biological process mainly focused on cell cycle and
cell division (all p < 0.01, Figure 3C). Under the threshold of
p < 0.01, Figure 3C showed the genes included in the three top
biological processes including chromosome segregation, mitotic
nuclear division, and organelle fission.

Identification and Validation of Hub
Genes
Different methods were used to identify the hub gene from
the hub module. Firstly, 504 genes in the stage-related module
(blue module) are screened by module membership (MM) and
gene significance (GS). As mentioned in section “Materials
and Methods,” when the absolute value of MM is greater
than 0.8 and the absolute value of GS is greater than 0.2,
36 hub genes were identified (Figure 3E). The PPI network
showed that 62 genes with the top connectivity degree were
identified as hub genes under the cutoff of confidence > 0.4
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FIGURE 1 | Heatmap of the DEGs, GO functional annotation and clustering dendrogram of 683 tumor samples. (A) The heatmap shows the DEGs between 104 BC
and 17 normal breast samples based on the dataset GSE42568. (B) The bubble plot shows the enriched biological processes of the upregulated genes and
downregulated genes. (C) The clustering of 683 BC samples based on all DEGs expression and clinical features. The color intensity represents older age and higher
stage.
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FIGURE 2 | Identifying co-expressed modules and the correlation between modules and the clinical features. (A) Dendrogram of all DEGs clustered based on a
dissimilarity measure (1-TOM). (B) Correlation heatmap showed the correlation coefficients between gene modules and clinical features of BC. (C) The bar plot
showed the distribution of average gene significance at different modules.

and connectivity degree of ≥ 4 (node/edge) (Figure 3D and
Supplementary Figure S6). One-way ANOVA analyses were
performed to validate candidate hub genes in the datasets
GSE102484, GSE20685, and TCGA-BRCA, and 30 of 36 genes
could be verified. As tumor prognosis was always affected by
tumor progression, the candidate hub genes were validated by
overall survival analysis (OS), recurrence-free survival analysis
(RFS), and metastasis-free survival analysis (MFS), which showed
that most of the hub genes had significant P-values in different
test sets (Figures 3F, 6, 7 and Supplementary Figures S4, S5).
We regarded the common genes with statistical significance
in different methods to the candidate hub genes, and 12
genes were finally screened (AURKA, BUB1B, CCNB2, CDK1,
CDT1, HJURP, KIF20A, KIF2C, KIF4A, MELK, TPX2, UBE2C)
(Figures 4A–C). As we all know, MKi67 is a cell proliferation
marker, and the correlation coefficient between the candidate

hub gene and MKi67 was calculated by Pearson correlation. The
results showed that the expression of 12 candidate hub genes was
highly positively correlated with MKi67. In addition, BC samples
with stronger KI67 IHC staining showed higher gene expression
of hub genes (Figures 5A–C).

DISCUSSION

By 2019, about 268,600 invasive BC and 48,100 DCIS cases were
diagnosed among American women, and 41,760 women will die
of the disease. About 13% of women will be diagnosed with
invasive BC (DeSantis et al., 2019). From 2009 to 2015, the 5 years
survival rate for women diagnosed with BC was stage I: 98%, stage
II: 92%, stage III: 75%, and stage IV: 27% (Marinac et al., 2016).
Because TNM staging focuses on the anatomical information of
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FIGURE 3 | Module preservation analysis and functional enrichment of clinically significant module. (A) The medianRank statistics of the module preservation using
independent dataset GSE21653. The medianRank of the modules close to zero indicates a high degree of module preservation. (B) The Zsummary statistics of the
module preservation using independent dataset GSE21653. These horizontal lines represent the Zsummary threshold (Z = 2 and Z = 10), which is used to indicate
strong evidence of preservation (above 10) and low to moderate preservation (above 2). (C) Biological processes of genes in the blue module. The x-axis is the gene
ratio, which is the ratio of enriched genes to the total number of genes in the term. (D) The three top-ranked biological processes and the corresponding genes of
the blue module. (E) Scatter plot shows the gene module membership and gene significance of the blue module. (F) Common genes with statistical significance in
different methods, including survival, one-way ANOVA, Pearson’s correlation, and co-expression analysis.

Frontiers in Genetics | www.frontiersin.org 6 December 2020 | Volume 11 | Article 59788892

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-597888 December 13, 2020 Time: 10:56 # 7

Shi et al. Identifying Biomarkers of BC by WGCNA

FIGURE 4 | Stage validation of hub gene. (A) Relative expression of the 12 hub genes at different stages in the GSE102484. (B) Relative expression of the 12 hub
genes at different stages in TCGA BRCA. (C) Relative expression of the 12 hub genes at different stages in the GSE20685. The medians and dispersions are shown
in the boxplot. One-way ANOVA is used to test statistical significance. *p < 0.05, **p < 0.01, ***p < 0.001.

the tumor, the disease progression and prognosis of BC patients
cannot be fully evaluated. So, our study aimed to find biomarkers
that could adequately predict BC progression and prognosis.

WGCNA has been widely used in the screening of biomarkers
that predict disease progression (Chen L. et al., 2017). WGCNA

is an algorithm for mining gene module information from
expression profile analysis chips, and it has been widely used in
gene expression profile data analysis (Langfelder and Horvath,
2008). In this method, a module is defined as a set of genes, where
genes have similar expression trends in different physiological
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FIGURE 5 | Pearson’s correlation analysis for the expression of Ki67 and the candidate hub genes. (A) The gene expression of the hub genes in Ki-67 IHC staining
high and low BC samples. (B,C) The Pearson’s correlation between the expression of MKi67 and the hub genes.
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FIGURE 6 | Overall survival (OS) analysis of the candidate hub genes. Overall survival analysis of the candidate hub genes based on GSE20685. The red line is the
high gene expression group, and blue line is the low gene expression group. The unit of time is year.

processes or different samples. After identifying gene modules
with WGCNA, the correlation between gene modules and clinical
characteristics such as tumor stage and grade is calculated. In
this way, the gene modules most relevant to clinical features
can be used to explore the main causes of tumor development.
The characteristic of the scale-free network is that there are
some nodes, the connectivity of these nodes is much higher than
that of ordinary nodes, and the “few” nodes genes are defined
as central genes (Niemira et al., 2019). Therefore, the study
on the correlation between the module of interest and certain
clinical features can be simplified to the correlation between
the module of interest and the hub genes, so as to provide
an important molecular basis for studying the mechanism of
disease (Chen L. et al., 2019; Tian et al., 2019; Wang et al.,
2019). By comparing different histological levels of BC, molecular
targets have been identified to distinguish different stages of
BC (Tian et al., 2020). We use systematic biology methods to
identify specific biomarkers of BC based on a large number of
samples. In our study, eight co-expression gene modules were
determined by the dynamic tree cutting method. Correlation
analysis shows that the blue module has the highest correlation
with tumor staging, identifying the hub gene with the highest
connectivity from the hub module. The functional annotations of
clinical related modules suggest focusing on the cell proliferation

related pathways, such as organelle fission, nuclear division, and
chromosome segregation. WGCNA has been used to identify
biomarkers related to BC progression. In comparation with
recent studies, Tang et al. used WGCNA to screen several
prognostic genes, including CCNB2, FBXO5, KIF4A, MCM10
and TPX2. These five genes are all related to cell division, which
is consistent with our results. Among them, three genes are
consistent with the results we found. However, the difference
is that we have more BC samples to discover and validate, and
our results are complementary to their findings. In addition,
we have included more methods, including module preservation
analysis and protein–protein interaction (PPI) to make our
findings convincing.

In this study, 12 pathological hub genes (AURKA, BUB1B,
CCNB2, CDK1, CDT1, HJURP, KIF20A, KIF2C, KIF4A, MELK,
TPX2, and UBE2C) that are significantly related to the
pathological stage were identified and verified, and significant
differences can also be found in the expression value of each
hub gene between different tumor stages and grades. Further
verification also confirmed that the 12 hub genes were positively
correlated with the progression of BC, and their expression was
also related to the prognosis of BC patients. Aurora kinase A
(AURKA), a member of the serine/threonine kinase family, plays
an important role in mitotic cell division and genetic instability
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FIGURE 7 | Disease-free survival (DFS) analysis of the candidate hub genes. Disease-free survival of the candidate hub genes based on GSE21653. The red line is
the high gene expression group, and blue line is the low gene expression group. The unit of time is month.

(Wu et al., 2018). It has been reported to stabilize FOXM1 by
attenuating its ubiquitination in triple-negative breast cancer
(TNBC), thus promoting proliferation of TNBC cells (Gartel,
2017). It has also been found to inhibit autophagy induction,
suggesting that it may be the mechanism of drug-resistant BC cell
apoptosis26. BUB1 mitotic checkpoint serine/threonine kinase
B (BUB1B) encodes is a kinase involved in spindle testing.
This protein plays a key role in the cell cycle (Lee et al.,
2017). Its mRNA level has been found to be associated with
intrachromosomal instability (Lee et al., 2017). Cyclin-dependent
kinase 1 (CDK1) is a mitotic kinase, it mainly mediates tumor-
related cell cycle defects, misregulated CDK1 may cause tumor
cell proliferation and genome instability (Prevo et al., 2018).
It has been reported that CDK1 could directly phosphorylate
AMPK and promote the progress of BC (Galindo-Moreno
et al., 2017). Other hub genes also play an important role in
promoting cancer in BC.

There are still some limitations to our research. First, all
data used in our study were based on publicly available datasets
without validating in prospective clinical trials. Moreover, several
important clinical factors, such as tumor size and lymph node
metastasis, were not provided in these datasets. Finally, the
mechanism between these gene signatures and BC recurrence
still needs further experimental verification. In conclusion,
through high-throughput screening and further screening by the

WGCNA algorithm, we finally identified 12 hub genes that were
significantly related to the progress and prognosis of BC after
layers of validation.
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Adverse drug reactions (ADRs) are a major public health concern, and early detection is

crucial for drug development and patient safety. Together with the increasing availability

of large-scale literature data, machine learning has the potential to predict unknown

ADRs from current knowledge. By the machine learning methods, we constructed a

Tumor-Biomarker Knowledge Graph (TBKG) which contains four types of node: Tumor,

Biomarker, Drug, and ADR using biomedical literatures. Based on this knowledge graph,

we not only discovered potential ADRs of antitumor drugs but also provided explanations.

Experiments on real-world data show that our model can achieve 0.81 accuracy of

three cross-validation and the ADRs discovery of Osimertinib was chosen for the clinical

validation. Calculated ADRs of Osimertinib by our model consisted of the known ADRs

which were in line with the official manual and some unreported rare ADRs in clinical

cases. Results also showed that our model outperformed traditional co-occurrence

methods. Moreover, each calculated ADRs were attached with the corresponding

paths of “tumor-biomarker-drug” in the knowledge graph which could help to obtain

in-depth insights into the underlying mechanisms. In conclusion, the tumor-biomarker

knowledge-graph based approach is an explainablemethod for potential ADRs discovery

based on biomarkers and might be valuable to the community working on the emerging

field of biomedical literature mining and provide impetus for the mechanism research

of ADRs.

Keywords: adverse drug reaction, biomarker, knowledge graph, antitumor drugs, explainable model

INTRODUCTION

Adverse drug reactions (ADRs) are a cause of significant morbidity and mortality in patients
and a source of financial burden in the healthcare system (Patton and Borshoff, 2018). In
tumor patients, pharmacokinetic parameters can be altered by the disease itself, or hepatic
or renal impairment, or reduction of serum-binding proteins due to malnutrition. They
experience a relatively high rate of ADRs from antitumor drugs and more easily experience
rare and severe ADRs, which could seriously impact the quality of life (Shrestha et al., 2017).
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The identification of rare and serious ADRs during the
premarket period is limited due to the limited sample size
and generalizability of clinical trials. Exploring the potential
ADRs is critical to decrease the incidence. Therefore, great
efforts have been devoted to detecting potential ADRs based
on the data mining of literature databases or electronic health
records (Bean et al., 2017; Lee and Chen, 2020). However,
there are still two challenges to achieving good performance: (1)
the unstructured biomedical literature contains many irrelevant
words and contexts, and how to extract ADR-related entities
and fully explore their relations (e.g., tumor-biomarker-drug) is
difficult; and (2) some predicted unseen ADRs are unexpected
and cause confusion, which means explainability and validation
become critically important for automatic detection.

A knowledge graph (Wang et al., 2017a,b) is a data model that
represents facts as nodes and relations between the nodes. Under
a general medical information network, objects such as diseases,
drugs, biomarkers, or treatments can all be linked together
through different types of referential relationships, which enable
the discovery of knowledge on a scale and at a speed that
traditional pharmacologic experiments or clinical trials cannot
approach. Recently, in addition to diagnosis and prognostication,
biomarker (Califf, 2018; Carr and Pirmohamed, 2018) has been

FIGURE 1 | Workflow for adverse drug reaction discovery using the Tumor-Biomarker Knowledge Graph (TBKG). (A) The construction process of TBKG. (B) The

results of ADR discovery based on TBKG. (C) Preclinical verification of the ADR discovery based on TBKG. (D) Clinical validation of the ADR discovery based on

TBKG.

widely in tumor treatment to offer the opportunity to accurately
and specifically predict therapeutic efficacy and safety during
the course of antitumor therapy, which can provide oncologists
with the opportunity to quickly modify a therapeutic regimen
in ways that would provide the best therapy for their patients.
However, there is little biomarker beginning to be applied
to assess the ADRs. The aim of this study is to discover
potential ADRs of anti-tumor drugs and provide explanations
by constructing knowledge graph using literature data source.
Figure 1 summarizes the workflow of our study.

METHODS

Data Source
The biomedical database employed in this study was the

MEDLINE database, which consists of more than 22 million

journal citations and abstracts. The database is maintained by the

National Library of Medicine (NLM). The MEDLINE corpus can
be acquired -in XML format from http://www.nlm.nih.gov/bsd/

licensee/access/medline_pubmed.html. Each citation contains
the bibliographical information of an article, such as the article
ID (PubMed Unique Identifier, PMID), article title, author list,
journal title, venue, publication type, and indexed MeSH terms.
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TABLE 1 | The concept category used to build the dictionary.

Specific categories Category meaning Type in TBKG

T109 Organic Chemical Biomarker-type

T114 Nucleic Acid, Nucleoside, or Nucleotide Biomarker-type

T116 Amino Acid, Peptide, or Protein Biomarker-type

T121 Pharmacologic Substance Drug-type

T123 Biologically Active Substance Biomarker-type

T125 Hormone Biomarker-type

T126 Enzyme Biomarker-type

T129 Immunologic Factor Biomarker-type

T130 Indicator, Reagent, or Diagnostic Aid Biomarker-type

T191 Neoplastic Process Tumor-type

T192 Receptor Biomarker-type

T195 Antibiotic Biomarker-type

T200 Clinical Drug Drug-type

MEDLINE is used as a surrogate for full-text articles. Permission
to access the data were acquired by the 3rd Xiangya Hospital in
China in May 2016.

The Unified Medical Language System (UMLS)
Metathesaurus integrates the information of 216 source
vocabularies and brings together many different types of
biomedical vocabularies, mainly including 25% diagnosis,
25% procedures and supplies, 19% diseases and 14% drugs.
Metathesaurus refines these categories to 127 different
categories. As shown in Table 1, the category description of
T191 is “Neoplastic Process,” therefore, we fit it into tumor-
type nodes. The category descriptions of T121 and T200 are
“Pharmacologic Substance” and “Clinical Drug,” respectively,
we hence fit it into drug-type nodes. For ADR-type nodes, we
use the WHO source dictionary in UMLS because WHO is used
for coding clinical information related to adverse drug reactions
(Supplementary Table 1). Finally, for biomarker-type nodes,
there are many types of biomarker referring to the definition of
biomarker (Carr and Pirmohamed, 2018), including genomic,
immunogenetic, circulating protein, nucleic acid and so on.
Therefore, we fit the corresponding categories T109, T114, T116,
T123, T125, T126, T129, T130, T192, and T195 in Table 1 into
biomarker-type nodes.

Tumor-Biomarker Knowledge Graph-based
ADR Discovery
Entity Extraction
From MEDLINE, we downloaded the abstracts of papers from
1928 to 2020 with “cancer therapy” as the key word. The article
number, title, author, author unit, publication time, MeSH word,
journal title and publication type were saved, and short abstracts
were removed.

Four kinds of entities were extracted from the abstracts:
tumors, biomarkers, drugs, and ADRs. We used the
Metathesaurus 2020AA version provided by UMLS as the
dictionary for entity extraction. Apache’s open source tool
cTAKES, which is a natural language processing system for

FIGURE 2 | Structure of TBKG.

extracting information from medical free texts, was utilized to
extract entities. An entity mentioned positively was seen as an
entity that was related to each abstract. Here, we limited the
minimum frequency of entities to 50.

Relation Discovery
We used the entities extracted above to construct the Tumor-
Biomarker Knowledge Graph (TBKG). TBKG is defined as G
= (V, E), where G stands for TBKG, V is the set of vertices
in G, and E is the set of edges in G. V contains the vertices
of four entity types, namely tumor, biomarker, drug, and ADR.
E contains undirected weighted edges. Each edge connects two
different types of vertices. The weight on the edge represents the
correlation (distance) between the two vertices. A basic schema is
shown in Figure 2. Entities were transformed into matrix form.
Each row of the matrix represented a summary file, and whether
the entity appeared in the summary was represented by 0 and 1;
this matrix data was taken as the input of the model.

A naive Bayesian model (Murphy, 2012) was utilized to
explore correlations. The naive Bayesian model combined the
prior probability and the posterior probability at the same time
when building the graph, which could avoid the subjective bias
from using only the prior probability and avoided the overfitting
phenomenon from using the sample information alone at the
same time. The calculation method for each relationship was
the same, and we mainly used the calculation of the relationship
between tumor and biomarker to illustrate the principle of this
model. The parameter was learned by Maximum Likelihood
Estimation. We learned a model for each tumor, as shown in
Figure 3. An importancemeasure was used to determine whether
there was a relationship between the tumor and biomarker:

IMPTNB = log
(

p
(

xi = 1
∣

∣yj = 1
))

− log
(

p
(

xi = 1
∣

∣yj = 0
))

,(1)

where xi is 0 or 1 to indicate the presence of biomarker i and yj
is 0 or 1 to indicate the presence of tumor j. The reason why we
use the importance measure is that if the presence of a biomarker
makes it more likely that a tumor will be observed, we are more
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FIGURE 3 | Workflow of modeling the relationship between diseases and biomarkers.

confident that there is a relationship between them. Relationship
whose importance was greater than a certain threshold was
considered to exist.

ADR Discovery
For the ADR discovery based on TBKG, we collected all drugs
and determined the corresponding ADR to form drug-ADR pairs
as the calculated ADRs. The Depth First Search (DFS) algorithm
was utilized to find every path between the drug andADR, such as
(drug, biomarker, ADR). Each output of ADR discovery contains
a drug-ADR pair and all corresponding paths.

Experimental Settings
Accuracy With Cross-Validation
Three-fold cross-validation, which is mainly used to prevent
overfitting caused by themodel being too complex, was utilized to
verify the effect of graph construction. The basic idea is to divide
the original data into a training set to train the model and a test
set to test the training results. The original data were randomly
divided into three groups and each time, two groups were selected
as the training set and the remaining group was used as the test
set. This validation was repeated three times, and we took the
average accuracy as the evaluation of the model.

Comparison With Co-Occurrence Analysis
We conducted a co-occurrence analysis (Callon et al., 1986)
on the summaries and performed clinical verification on this
result, which was compared with ADR discovery based on
TBKG. The basic principle of co-occurrence analysis is to
reflect the correlation strength between keywords by counting
the co-occurrence of word pairs or noun phrases in the
literature. According to this principle, we conducted frequency
statistics and sorted the word pairs for all entities. Through
clinical verification, we can compare the difference between the
two results.

Clinical Validation
Clinical validation was performed to validate the efficacy of
our model. Osimertinib is a third-generation epidermal growth

TABLE 2 | Numbers of entities and relationships in TBKG.

Relationships Entity numbers Edge numbers

Tumor-Biomarker 1,179–2,550 30,065

Tumor-Drug 1,179–1,806 21,293

Tumor-ADR 1,179–756 8,913

Drug-Biomarker 1,806–2,550 46,052

Drug-ADR 1,806–756 13,653

Biomarker-ADR 2,550–756 19,278

factor receptor tyrosine kinase inhibitor that is used to treat
non-small-cell lung carcinomas with specificmutations (Odogwu
et al., 2018). This medication was approved as an antitumor
treatment in 2017 by both the Food and Drug Administration
and the European Commission. As a novel antitumor drug,
neither clinical trials nor real-world studies had enough data to
provide an early warning of ADRs after marketing. Thus, we
chose osimertinib as an example.

First, the results of our model was compared with the reported
ADRs from the official manual (Supplementary Table 2) and
EGFR-TKI ADR Management Chinese Expert Consensus (Anti-
Cancer Association, 2019). The ADRs of osimertinib were
calculated for different literature quantities from 10,667 literature
abstracts on “cancer therapy” since osimertinib appears in the
literature in 2014. The ADRs ranked in the top 5% according
to our model were defined as important ADRs, and those
ranked in the bottom 5% were defined as unlikely ADRs. Kappa
index, sensitivity and specificity were used to determine the
reliability of our model with the official manual of osimertinib.
The difference in ADR discovery was evaluated among different
literature quantities, and the difference between our model and
co-occurrence analysis was also measured. All analyses were
performed using SPSS (version 23.0) statistical software.

Second, we also compared the results of our model with
the reported ADRs of all clinical cases from the 3rd Xiangya
Hospital. The clinical data were retrospectively extracted
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FIGURE 4 | A portion of the network extracted from TBKG.

from the structured hospital information system (HIS) of the
3rd Xiangya Hospital, Central South University (Changsha,
China), which provides patient health record information,
e.g., information regarding the Enterprise Master Patient
Index (EMPI), laboratory tests, International Classification
of Disease (ICD-10) clinical diagnosis, medical records and
so on. All patients treated with osimertinib in our hospital
(n = 8) from May 2017 to September 2020 were included
in this study. ADRs (Edwards and Aronson, 2000) refer to
adverse medical events that occur after a patient receives a
drug but that do not necessarily have a causal relationship
with the experimental drug. ADRs that meet the definition
of Common Terminology Criteria for Adverse Events v4.0
(CTCAE) (US Department of Health Human Services, 2009)
include the following: (1) existing exacerbations of chronic
or intermittent diseases, including increased frequency
and/or increased disease severity; (2) new diseases detected
or diagnosed after the administration of the experimental drug,
although they may have existed before the study began; (3)
signs, symptoms or clinical sequelae due to suspected drug

interactions; and (4) signs, symptoms, or clinical sequelae
resulting from suspected overdose of an experimental drug
or combination of drugs (overdose itself is not reported as an
adverse event/serious adverse event). All ADRs of osimertinib
during hospitalization were recorded. The Institutional
Review Board of the 3rd Xiangya Hospital approved this
study (No. 2020-S662).

In addition, the assumption in our study is that drugs have
effects on some biomarkers and that these biomarkers are
associated with the specific ADRs. And we applied TBKG to
discover the adverse reactions of osimertinib and tried to find
relative biomarkers that link the drugs with ADRs.

RESULTS

We constructed the TBKG, which is a weighted heterogeneous
graph with four types of objects extracted from the MEDLINE
corpus: tumor, biomarker, drug, and ADR. Six relationships were
built between them (Table 2). Then, the naive Bayes model was
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FIGURE 5 | The explainable pathway between osimertinib and one of its ADRs. This figure shows the pathways between osimerinib, top 1% related biomarkers and

parts of ADRs. We only highlights the pathways between osimerinib, nephrosclerosis and three biomarkers: “Cytotoxic Granule Protein,” “Epidermal Growth Factor

Receptor,” and “Macrophage-Activating Factors”.

used to determine whether relationship exist. We show a part of
the TBKG in Figure 4.

We use the biomarkers and ADRs related to the drug
“osimertinib” as an example to show the TBKG results.
The correlation between “osimertinib” and one of its ADRs,
“Nephrosclerosis” is 4.31. The correlation result means that
in the case of “osimertinib” appearing, the probability of
“Nephrosclerosis” is 10.4%, while in the case of “osimertinib”
not appearing, the probability of “Nephrosclerosis” is 0.5%. The
greater the correlation, the more likely it is that “osimertinib” but
no other factors will cause ADRs.

Biomarkers which link the drugs with ADRs were found
in TBKG. As shown in Figure 5, the correlations between
“osimertinib” and the biomarkers “Cytotoxic Granule Protein,”
“Epidermal Growth Factor Receptor,” and “Macrophage-
Activating Factors” are 3.49, 3.64, and 4.59, respectively.
The corresponding correlations between these three tumor
factors and the adverse reaction “Nephrosclerosis” are
5.11, 1.44, and 6.25. Compared with epidermal growth
factor receptor and cytotoxic granule protein, macrophage

activating factors seems to mediate the incident of osimertinib
induced nephrosclerosis.

According to the calculations of our model, 775 ADRs were
included in the current study, and the most important ADRs
for osimertinib were ordered as follows: dry skin, paronychia
inflammation, visual field defects, interstitial lung diseases, and
so on. Supplementary Table 3 lists the calculation results. Our
model had moderate consistency with the reports in the official
manual (Kappa= 0.68, Figure 6), and better than co-occurrence
(Kappa = 0.4). And compared with co-occurrence, our model
had better specificity than sensitivity.

Furthermore, our model could find rare and serious ADRs
that had not been reported in the official manual. Eight lung
adenocarcinoma patients had received osimertinib treatment
in our hospital since 2017. The characteristics of the included
patients are shown in Table 3. The mean age of the total
population was 61 years, and 50% of the patients were female.
The median follow-up time was 6 months. The most common
adverse reactions in the clinical cases were lymphocytopenia
(3/8), anemia (3/8), and constipation (3/8). From Figure 7, it
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FIGURE 6 | The concordance evaluation of the ADR discovery based on

TBKG. (A) The Kappa index of TBKG compared with the co-occurrence

analysis. (B) The sensitivity and specificity of TBKG compared with the

co-occurrence analysis.

is worth noting that some serious ADRs that has never been
reported before and could be calculated by our model, for
example, patient 8 developed renal failure and needed dialysis 1
week after taking osimertinib.

DISCUSSION

Our study opens up a new direction for ADR discovery that
combines the following features.

• This is the first knowledge graph-based approach to discover
potential adverse reactions of antitumor drugs. By exploring
the relations among tumors, biomarkers, and drugs in the

knowledge graph, our approach is able to provide explanations
for the potential of supervised machine learning methods.

• We contribute a dataset to study knowledge graphs for ADRs
by entity extraction and relation building. We verified the
efficacy of this approach with clinical data and released the
data and the codes that might be valuable to the community
working on emerging fields of biomedical literature mining.

Multiple scientific disciplines have been addressing the ADRs
discovery problems from different perspectives (Tan et al.,
2016). Not only clinical trials before marketing and reports of
adverse reactions after marketing, but the detection of metabolic
enzyme-related genes has also been used to discover ADRs
with the development of pharmacogenomics (Phillips et al.,
2001). In the data mining area (Rastegar-Mojarad et al., 2016;
Santiso et al., 2018; Shen et al., 2018; Zhang et al., 2019),
leveraged the existing information of the drugs and ADRs
as the input for a machine learning classifier (e.g., logistic
regression, decision tree, and support vector machine), which
outputs a binary prediction. Recently, several methods have
employed deep learning approaches (Fan et al., 2020) to detect
possible ADRs with an effective integration of heterogeneous and
multidimensional drug data sources. However, ADR discovery
should not be as narrow as a simple true or false question. The
reasons behind the ADR in the real world also exist in rich and
variant biomedical literature.

Here, we proposed and verified a knowledge graph method

based on literature data, that can calculate potential ADRs that

never reported before. A knowledge graph is a data model
that represents facts as nodes (e.g., drugs, diseases, tumors, side

effects, and biomarkers) and relations between the nodes (e.g.,

drug-biomarker relations). Graph representations are not only
able to reveal how individual semantic entities are related to each

other but also appealing for human conceptual understanding.
This graph structure opens up a new approach to model the
abundance of ADR-related information and introduces structural
information to determine whether an ADR exists for a tumor
drug. It’s proved to be feasible that knowledge source extraction
and knowledge discovery (Rotmensch et al., 2017; Li et al., 2019;
Malas et al., 2019) (e.g., drug prioritization, drug interaction, rare
disease classification) by constructing health knowledge graphs.
And the experimental results in this study showed that the naive
Bayesian model combined building the knowledge graph could
outperformed the co-occurrence analysis. Moreover, similar to
a few of studies (Guney et al., 2016; Bean et al., 2017), we
calculated the potential ADRs by measuring the distance in the
graph between the drug, biomarkers, diseases and ADRs (i.e., the
drug that cures a disease that are associated with an ADR).The
underlying assumption was that a short distance between drugs
and ADRs meant that the drug was likely to cause the ADRs.

Our findings not only uncover simple ADRs but also provide
explanations, i.e., the paths of “tumor-biomarker-drug” in the
knowledge graph. Capturing detailed ADR informationmay help
to obtain in-depth insights into the underlying mechanisms.
Previous studies focused on the integration of drug structure or
chemical features (Frid and Matthews, 2010; Pauwels et al., 2011)
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TABLE 3 | Clinical characteristics of patients who received osimertinib at the 3rd Xiangya Hospital.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8

Age at osimertinib

treatment (years)

73 49 57 71 48 56 81 55

Sex Male Female Male Female Male Male Female Female

Diagnosis Adenocarcinoma of

right lung

Bronchial

adenocarcinoma

Adenocarcinoma of

right lung

Adenocarcinoma of left

lung

Adenocarcinoma of

right lung

Lung cancer* Lung cancer* Lung cancer*

Duration of cancer

history

1 month 4 months 12 months 12 months 20 months 1 months 10 months 8 months

Complications Benign prostatic

hyperplasia

/ COPD Hypertension CKD; hypertension / Postoperative colon

cancer; gallstone;

remote cerebral

infarction

/

Drug combination Tiotropium bromide,

tamsulosin, finasteride

/ Morphine, ampeptide

elemente

Tramadol, celecoxib Ulbenemax,

mosapride, calcium

malate, montelukast

/ Mecobalamin,

trimetazidine,

magnesium potassium

aspartate, atorvastatin,

aspirin

/

Relative gene Undetected EGFR (–) EGFR (+) EGFR (+) EGFR (+) Undetected EGFR (+) EGFR (–)

Metastasis site Adrenal gland; bone;

mediastinal lymph

nodes; pleura; right

subclavian lymph

nodes

Lung; pleura Mediastinal lymph

nodes; right subclavian

lymph nodes

Bone; liver Lymph nodes;

pericardium; pleura;

enterocoelia

Bone; lung No metastasis Adrenal gland; bone;

brain

Relative gene Undetected EGFR (–) EGFR (+) EGFR (+) EGFR (+) Undetected EGFR (+) EGFR (–)

Start date of

osimertinib treatment

2016/12/28 2019/1/29 2019/12/10 2019/6/20 2019/10/28 2020/4/15 2020/4/22 2019/10/13

Follow-up time 5 months 6 months 2 months 14 months 7 months 1 months 5 months 7 months

* = Without pathological diagnosis; / = Not mentioned in the electronic health records.
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FIGURE 7 | Adverse drug reactions of clinical patients receiving osimertinib. *Not mentioned in the official manual of osimertinib, but mentioned in TBKG.

or gene expression (Wang et al., 2016) or drug target (Párez-
Nueno et al., 2015) to optimize ADR prediction models. Risk
factors of drug-induced organ damage include drug overdose,
drug-drug interactions and drug-related adverse effects, and the
discovery of the early biomarkers and development of accurate
diagnostic methods are effective prevention strategies for organ
damage (Wu and Huang, 2018).

Few studies focus on molecular mechanisms’ interpretability
in ADR discovery (Hristovski et al., 2016). The spread through
relevance in the knowledge graph provides convenience for
interpretability. The assumption in our study is that drugs
have effects on some biomarkers (proteins, enzymes, and so
on) and that these biomarkers are associated with the specific
ADRs. Therefore, we try to find biomarkers link the drugs
with ADRs in TBKG. The quality of the explanations for the
ADRs provided in our approach largely depends on the precision
of this knowledge graph, which have been validated whether
from the model performance or clinical perspective in this
study. Thus, our method can offer better understanding of the
biomarkers of ADRs, which could not only significantly predict
the potential ADRs before the drug development, but can also
provide oncologists with the opportunity to quickly predict
patients’ sensitivity to the ADRs.

Although important discoveries have been revealed by the
current study, there are also limitations. First, the calculated
drug-biomarker combinations cannot distinguish between a
drug-treatment relationship, a drug-ADR relationship, or a “is
not a target drug” type of relationship. However, this is one of
major shifts of the big data mindset–a growing emphasis on
correlations rather than a continuing quest for elusive causality.
In traditional clinical trials, both causal investigations and
correlation analysis begin with a hypothesis that is tested to be
falsified or verified with little data available. In the age of big
data, this type of noncausal analysis will help us understand the
“what” rather than the “why.” Nonetheless, the construction of
relation extraction templates based on the domain knowledge
graph (e.g., increasing risk, causing) is encouraging. Second, this

study lacks the attention to drug-drug interaction. The use of
antitumor drugs often results in the use of other agents to reduce
or prevent ADRs and cancer itself increases the need for more
medications, which could increase the risk of ADRs. Third, this
study focused on ADR discovery based on medical literature.
Although compared with the detection of ADRs using clinical
data alone, the ADR discovery based on literature have the
potential to find the unreported ADR as in our study. For future
research, we will improve this knowledge graph-based approach
by data fusion and knowledge representation. Finally, these
types of recommendations should be assessed by studying the
following questions: How many clinicians read them? Are they
applied? How effective have they been in reducing the incidence
of the complications of hypertension and adverse drug effects?
Further prospective clinical trials evaluating the effectiveness of
this type of decision support will be explored as the next steps.

CONCLUSION

In summary, the approach described a reliable method for
ADR discovery of antitumor drugs and provided explanations
of predicted ADRs by exploring the relations among tumors,
biomarkers, and drugs in the knowledge graph. This study
contributes a dataset to study knowledge graphs for ADRs
by entity extraction and relation building; and releases the
data and the codes that might be valuable to the community
working biomedical literature mining. These findings also
provide impetus for the mechanism research of ADRs and
therefore offer biomarkers to predict ADRs.
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Alpha-enolase, also known as enolase-1 (ENO1), is a glycolytic enzyme that
“moonlights” as a plasminogen receptor in the cell surface, particularly in tumors,
contributing to cancer cell proliferation, migration, invasion, and metastasis. ENO1 also
promotes other oncogenic events, including protein-protein interactions that regulate
glycolysis, activation of signaling pathways, and resistance to chemotherapy. ENO1
overexpression has been established in a broad range of human cancers and is often
associated with poor prognosis. This increased expression is usually accompanied by
the generation of anti-ENO1 autoantibodies in some cancer patients, making this protein
a tumor associated antigen. These autoantibodies are common in patients with cancer
associated retinopathy, where they exert pathogenic effects, and may be triggered
by immunodominant peptides within the ENO1 sequence or by posttranslational
modifications. ENO1 overexpression in multiple cancer types, localization in the tumor
cell surface, and demonstrated targetability make this protein a promising cancer
biomarker and therapeutic target. This mini-review summarizes our current knowledge
of ENO1 functions in cancer and its growing potential as a cancer biomarker and guide
for the development of novel anti-tumor treatments.

Keywords: alpha-enolase, autoantibodies, cancer biomarker, therapeutic target, ENO1

INTRODUCTION

Alpha-enolase (ENO1, 47 kD) has recently emerged as a major driver of tumor metabolism and
progression and is considered a rising cancer biomarker and therapeutic target (Capello et al., 2011;
Hsiao et al., 2013; Principe et al., 2017; Cappello et al., 2018). ENO1 is one of three enolase isoforms
encoded by different genes: ENO1, expressed in most human tissues and upregulated in cancer cells;
gamma-enolase (ENO2), expressed in neuronal cells and neuroendocrine differentiated tumors;
and beta-enolase (ENO3), expressed in muscles (Pancholi, 2001; Isgrò et al., 2015; Ji et al., 2016).
These isoforms show high sequence conservation and similar size, and combine to catalyze the
dehydration of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis. In cancer cells, this
reaction occurs under both aerobic and anaerobic glycolysis, contributing to the Warburg Effect,
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which increases glucose uptake, proliferation, and tumor growth
(Pancholi, 2001; Liberti and Locasale, 2016; Qian et al., 2017).

Alpha-enolase is overexpressed in multiple human cancer
types, contributing to increased glycolysis and tumor growth
(Altenberg and Greulich, 2004; Chang et al., 2006; He et al.,
2007; Tsai et al., 2010; Capello et al., 2011; Song et al., 2014;
Fu et al., 2015; Sun et al., 2017, 2019; Zhan et al., 2017; Yin
et al., 2018; Zhang et al., 2018, 2020; Cheng et al., 2019; Ji et al.,
2019; Qiao et al., 2019; Xu et al., 2019; Chen et al., 2020). ENO1
overexpression is often associated with anti-ENO1 autoantibody
responses and may have prognostic and diagnostic value in
certain cancers (Table 1; Adamus et al., 1998; Tomaino et al.,
2011; Pranay et al., 2013; Hsiao et al., 2015; Griggio et al., 2017;
Zhang et al., 2020). ENO1 is also localized on the surface of cancer
cells where it enhances plasmin formation (Miles et al., 1991;
Redlitz et al., 1995) to promote extracellular matrix degradation,
cell migration, invasion, and metastasis (Hsiao et al., 2013;
Didiasova et al., 2014; Principe et al., 2015, 2017; Zakrzewicz
et al., 2018). These properties make ENO1 a tumor-associated
antigen (TAA) and promising cancer biomarker and therapeutic
target. Below we summarize ENO1’s functions in cancer, growing
potential as a cancer biomarker, and rising opportunities for
targeting this enzyme for cancer treatment.

MULTIFUNCTIONAL ONCOPROTEIN

Alpha-enolase mRNA gives rise to an alternative translation
product of 37 kD called c-MYC promoter binding protein 1
(MBP1) (Figure 1A; Subramanian and Miller, 2000). Although
MBP1 does not have glycolytic activity, it regulates the cellular
response to altered glucose concentration (Sedoris et al., 2007).
ENO1 is upregulated by the c-MYC oncoprotein (Osthus
et al., 2000), and is localized in the cytoplasm and the
cell surface, playing multiple roles (Figure 1B; Diaz-Ramos
et al., 2012; Didiasova et al., 2019). In contrast, MBP1 is
a nuclear protein that represses c-MYC transcription under
cellular stress and low glucose conditions, leading to decreased
cell proliferation (Feo et al., 2000; Subramanian and Miller,
2000; Sedoris et al., 2007; Maranto et al., 2015). The ratio
of ENO1/MBP1 expression in cancer cells is regulated by
glucose, with c-MYC-driven elevated ENO1 expression under
high glucose conditions, and elevated MBP1 expression under
low glucose conditions (Sedoris et al., 2007). Cancer cells
adapt to hypoxia by overexpressing c-MYC, which stimulates
glycolysis and cell proliferation via ENO1 upregulation and
MBP-1 downregulation (Sedoris et al., 2010). The ENO1/MBP-1
ratio influences cancer aggressiveness, as demonstrated in human
breast tumors where overexpression of ENO1 and extracellular
matrix metalloproteinases MMP-2 and MMP-9, concomitant
with MBP-1 downregulation, correlates with worse prognosis
(Cancemi et al., 2019).

Alpha-enolase also plays important roles as a plasminogen
receptor, component of exosomal vesicles, cytoskeleton
reorganizing protein, stabilizer of mitochondrial membrane,
and modulator of oncogenic signaling pathways (Figure 1B;
Diaz-Ramos et al., 2012; Didiasova et al., 2019). These functions

allow overexpressed ENO1 to promote cancer cell proliferation,
survival, clonogenicity, epithelial-mesenchymal transition
(EMT), chemoresistance, extracellular matrix degradation,
migration, invasion, and metastasis. These functions can be
inhibited in cancer cells by ENO1 depletion (Georges et al.,
2011; Song et al., 2014; Fu et al., 2015; Zhu et al., 2015; Capello
et al., 2016; Principe et al., 2017; Qian et al., 2017; Zhan et al.,
2017; Qiao et al., 2018a, 2019; Ji et al., 2019; Sun et al., 2019;
Wang et al., 2019; Xu et al., 2019; Santana-Rivera et al., 2020), or
targeting with antibodies (Hsiao et al., 2013; Principe et al., 2015),
microRNA (miR) (Liu et al., 2018), or long non-coding RNAs
(lncRNAs) (Yu et al., 2018). ENO1 also regulates oncogenic
signaling pathways, including PI3K/Akt (Fu et al., 2015; Sun
et al., 2019; Chen et al., 2020; Zang et al., 2020), v/β-3 integrin
(Principe et al., 2017), β-catenin (Ji et al., 2019), transforming
growth factor beta (Xu et al., 2019), AMPK/mTOR (Zhan et al.,
2017; Dai et al., 2018), and others (Huang et al., 2019).

Acting as a plasminogen receptor, ENO1 “moonlights” on
the surface of tumor cells to facilitate plasminogen conversion
into plasmin (Miles et al., 1991; Redlitz et al., 1995; Capello
et al., 2011; Diaz-Ramos et al., 2012; Ceruti et al., 2013; Hsiao
et al., 2013; Didiasova et al., 2014, 2019). During inflammatory
conditions, plasmin activation leads to fibrinolysis and facilitates
extracellular matrix degradation, a function linked to ENO1’s
ability to promote cancer cell migration, invasion, and metastasis
(Hsiao et al., 2013; Kumari and Malla, 2015). Bacteria and
immune cells take advantage of ENO1’s plasminogen receptor
functions to facilitate tissue invasion (Wygrecka et al., 2009;
Bergmann et al., 2013).

The plasminogen binding activity of ENO1 has been
mapped to the C-terminal peptide 422KFAGRNFRNPLAK434,
Miles et al. (1991) and Redlitz et al. (1995), with another
putative plasminogen binding site located at 250FFRSGK256
(Figure 1A; Kang et al., 2008). ENO1 surface localization is
guided by post-translational modifications (PTMs), particularly
methylation of arginine 50 (Zakrzewicz et al., 2018). Other PTMs,
including citrullination (Lundberg et al., 2008), acetylation, and
phosphorylation (Zhou et al., 2010; Capello et al., 2011; Tomaino
et al., 2011; Sanchez et al., 2016), are also likely to influence ENO1
functions, localization, and immunogenicity (Didiasova et al.,
2019). ENO1 exteriorization is promoted by lipopolysaccharide
(Zakrzewicz et al., 2018), calcium influx (Didiasova et al., 2015),
and interaction with caveolin 1, annexin 2, and heat shock protein
70 (Zakrzewicz et al., 2014; Perconti et al., 2017).

Alpha-enolase interacts in the cell surface with B7-H3, an
immune co-stimulatory molecule with oncoprotein functions,
to promote glycolysis (Zuo et al., 2018). It also interacts with
granulin A (GRN-A), a 6 kDa peptide derived from progranulin
that inhibits ENO1’s ability to promote cancer cell proliferation,
migration, and invasion (Chen et al., 2017). GRN-A synergizes
with cisplatin to induce apoptosis in hepatocellular carcinoma
cells (Qiao et al., 2018b). Overexpressed ENO1 promotes
resistance to cisplatin and other anti-tumor drugs in cancer cells
by increasing glycolysis and cell proliferation (Tu et al., 2010;
Qian et al., 2017; Qiao et al., 2018a; Wang et al., 2019; Santana-
Rivera et al., 2020), interaction with microtubules (Georges et al.,
2011), and cell adhesion (Zhu et al., 2015; Principe et al., 2017).
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TABLE 1 | Potential prognostic and diagnostic value of ENO1 expression in tumors and cancer-associated anti-ENO1 autoantibodies.

Cancer type Molecule Prognostic/diagnostic value References

Bladder ENO1 Prognostic Ji et al., 2019

Breast ENO1 Prognostic Tu et al., 2010; Cancemi et al., 2019

Cancer-associated retinopathy Autoantibodies Prognostic (progressive blinding) Adamus et al., 1998

Chronic lymphocytic leukemia Autoantibodies Prognostic Griggio et al., 2017

Colorectal ENO1 Prognostic Zhan et al., 2017

Gastric cancer ENO1 Prognostic Qian et al., 2017; Qiao et al., 2019; Sun et al.,
2019; Xu et al., 2019

Glioma ENO1 Prognostic Song et al., 2014

Head and Neck Both ENO1 and autoantibodies Prognostic Tsai et al., 2010; Pranay et al., 2013

Liver Both ENO1 and autoantibodies Prognostic/diagnostic Takashima et al., 2005; Hamaguchi et al., 2008;
Zhang et al., 2020

Lung Cancer Both ENO1 and autoantibodies Prognostic/Diagnostic Chang et al., 2006; He et al., 2007; Shih et al.,
2010; Hsiao et al., 2015; Dai et al., 2017; Zhang
et al., 2018; Zang et al., 2019

Multiple myeloma ENO1 Prognostic Ray et al., 2020

Non-Hodgkin’s Lymphoma ENO1 Prognostic Zhu et al., 2015

Pancreatic cancer Both ENO1 and autoantibodies Prognostic Tomaino et al., 2011; Sun et al., 2017; Yin et al.,
2018; Wang et al., 2019

Alpha-enolase has also been implicated in the regulation of
T cell effector functions, including the suppressive functions
of induced regulatory T cells (De Rosa et al., 2015), T cell
activation La Rocca et al. (2017), and the diabetogenic functions
of islet-specific CD4+ T cells (Berry et al., 2015). Gemta et al.
(2019) recently reported that downregulation of ENO1 activity
represses the glycolytic activity of tumor infiltrating CD8+
lymphocytes (CD8+ TILs), leading to their functional exhaustion.
This impaired ENO1 function is unrelated to its expression,
suggesting the involvement of post-transcriptional regulatory
mechanisms such as PTMs influencing ENO1 enzymatic activity
or subcellular localization (Gemta et al., 2019).

TUMOR-ASSOCIATED ANTIGEN

The presence of anti-ENO1 autoantibodies is well documented
in autoimmune diseases such as rheumatoid arthritis (RA)
and autoimmune retinopathy (Adamus, 2017). In RA, these
autoantibodies recognize an immunodominant citrullinated
peptide within the ENO1 N-terminus (Lundberg et al., 2008), and
are clinical diagnostic biomarkers.

Alpha-enolase autoantibodies are also present in
cancer patients, often associated with cancer-associated
retinopathy (CAR) (Adamus, 2017). Unlike in RA, ENO1
autoantibodies from CAR patients do not specifically target
citrullinated peptides but rather recognize several epitopes,
including an immunodominant N-terminal domain peptide,
56RYMGKGVS63, and a C-terminal peptide implicated in
plasminogen binding, 421AKFAGRNF428 (Adamus et al., 1998).
CAR-linked ENO1 autoantibodies promote retinopathy by
inducing retinal cell apoptosis, leading to retinal dysfunction
or degeneration (Adamus, 2018; Adamus et al., 2020). In vitro
treatment of retinal cells with an anti-ENO1 monoclonal
antibody significantly impaired glycolysis, reduced ATP

production, and induced apoptosis (Magrys et al., 2007). ENO1
autoantibodies from patients with autoimmune retinopathy also
target retinal ganglion cells and induce apoptosis in rats (Ren
and Adamus, 2004). Further, the survival of retinal cells treated
with ENO1 autoantibodies from patients with autoimmune
retinopathy and CAR was impaired compared to retinal cells
exposed to sera from healthy controls (Adamus et al., 1998).
While ENO1 autoantibodies are known to trigger pathological
effects through their internalization by retinal cells (Ren and
Adamus, 2004), it cannot be ruled out that they also directly
target cell surface ENO1, leading to glycolysis impairment
and apoptosis. The study of ENO1 autoantibodies in CAR has
uncovered a potential unintended consequence - i.e., antibody-
induced retinal apoptosis- that requires careful consideration as
ENO1-based cancer immunotherapies are developed.

Alpha-enolase autoantibodies are associated with either
improved or poor tumor patient outcomes in different cancer
types, suggesting a context-dependent clinical significance
(Table 1; Shih et al., 2010; Tomaino et al., 2011; Pranay et al.,
2013; Hsiao et al., 2015; Griggio et al., 2017). While these
autoantibodies may occur in cancer patients independent of
CAR, a recent study showed that vision loss and anti-retinal
autoantibodies occur in at least 20 different human cancers,
with ENO1 being the most frequent target of these antibodies
(Adamus et al., 2020). Autoantibodies to other glycolytic enzymes
have also been detected in CAR patients (Adamus et al., 2020),
suggesting that they are induced by immune presentation of
peptides from overexpressed metabolic proteins released from
tumor cells (Adamus et al., 2020).

ENO1 autoantibodies have been included in TAA panels
for cancer immunodiagnosis. For instance, Zang et al. (2019)
examined a panel of four cancer biomarkers (carcinoembryonic
antigen, cancer antigen 125, Annexin A1 autoantibodies, and
ENO1 autoantibodies) for lung cancer detection that yielded high
specificity, sensitivity, and diagnostic accuracy. Dai et al. (2017)
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FIGURE 1 | Structure and functions of human ENO1. (A) Schematic representation of domain structure of ENO1 and its alternative translation variant c-MYC
promoter binding protein 1 (MBP1). Several lysine residues (K256, K422, and K434) have been implicated in the plasminogen binding functions of ENO1, whereas
K343 has been implicated in its catalytic activity, required for the conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis. Citrullination of
arginines 9 (R9) and 15 (R15) generates an immunodominant peptide (residues 5–22) that is targeted by autoantibodies in patients with rheumatoid arthritis.
Methylation of arginine 50 (R50) has been implicated in ENO1 externalization. R50 is also part of an immunodominant epitope recognized by autoantibodies from
patients with cancer associated retinopathy (CAR). Another CAR epitope is located within the plasminogen binding domain. Phosphorylated serine 419 (S419) within
the plasminogen binding domain is recognized of ENO1 autoantibodies in pancreatic cancer patients. While MBP1 shares the catalytic and plasminogen binding
domains of ENO1, it lacks these functions due to its exclusive nuclear localization. MPB1 residues 1–139 (ENO1 96–236) comprise its DNA binding domain, required
for binding to the c-MYC gene promoter, which results in repression of promoter activity and downregulation of c-MYC protein expression. (B) Schematic
representation of the cellular functions of ENO1 and MBP1. MBP1 localizes primarily in the cell nucleus where it represses the c-MYC gene promoter, whose activity
is essential for ENO1 upregulation. ENO1 is primarily localized in the cytoplasm, where it functions in glycolysis, promoting mitochondrial stability and cytoskeleton
reorganization, and regulating oncogenic signaling pathways. This protein is also localized on the cell surface, where it acts as a plasminogen receptor and
interacting partner of various proteins to regulate glycolysis, as well as cancer cell migration, invasion, and metastasis. ENO1 can also be secreted from cells as a
component of exosomal vesicles.

also reported that combining ENO1 autoantibodies with
carcinoembryonic antigen and cytokeratin 19 fragment in a
diagnostic panel increased diagnostic sensitivity for non-small
cell lung cancer. Another study detected ENO1 autoantibodies

at higher frequencies in patients with early stage lung cancer
compared to late stage patients (Zhang et al., 2018).

Post-translational modifications contribute to the generation
of ENO1 autoantibodies, as evidenced by the observation
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that patients with pancreatic ductal adenocarcinoma (PDA)
produce antibodies that specifically target epitopes containing
phosphorylated serine 419 within the plasminogen binding
domain of ENO1 (Figure 1), and correlate with improved
outcome in patients receiving chemotherapy, suggesting a
protective role (Tomaino et al., 2011). It is not clear if, like in RA,
citrullination triggers ENO1 autoantibodies in cancer patients,
although citrullinated ENO1 was reported to elicit anti-tumor
CD4+ T responses in murine tumor xenografts and in ovarian
cancer patients (Cook et al., 2018; Brentville et al., 2020). Our
group and others identified citrullinated ENO1 in cancer cells
(Jiang et al., 2013; Sanchez et al., 2016), suggesting that this PTM
could potentially trigger ENO1 autoantibodies in cancer patients.

We reported that ENO1 autoantibodies occur at higher
frequency in prostate cancer (PCa) patients compared to
controls, showing racial differences in reactivity (Sanchez et al.,
2016). While autoantibodies from European American (EA)
PCa patients reacted strongly with human recombinant ENO1
by ELISA but weakly by immunoblotting against endogenous
ENO1 from PCa cells, autoantibodies from African American
(AA) patients showed the opposite pattern. ENO1 autoantibodies
from AA patients also displayed differential reactivity against
endogenous ENO1 in a panel of PCa cell lines, reacting strongly
with ENO1 in metastatic PCa cell lines by immunoblotting,
whereas autoantibodies from EA patients reacted uniformly
against this protein across the panel. Intriguingly, ENO1
autoantibodies from AA patients lost immunoreactivity in
docetaxel-resistant cells, while autoantibodies from EA patients
retained this reactivity. Proteomics analysis revealed differences
in PTMs (e.g., acetylation, methylation, phosphorylation, and
citrullination) within endogenous ENO1 between chemosensitive
and chemoresistant PCa cells, suggesting that the observed racial
differences in ENO1 autoantibody reactivity in these cell types
might be influenced by PTMs.

In addition to ovarian cancer (Brentville et al., 2020), T cell
responses targeting ENO1 have also been reported in patients
with PDA. ENO1-specific CD8+ T cell responses were detected
in 8 out of 12 PDA patients with circulating anti-ENO1 IgG
autoantibodies, whereas patients without these autoantibodies
lacked these responses, suggesting an integrated humoral and
cellular anti-ENO1 response (Cappello et al., 2009). A later study
reported that phosphorylated ENO1 also triggers CD4+ T cell
responses in PDA patients (Capello et al., 2015).

CANCER BIOMARKER AND
THERAPEUTIC TARGET

The need for new cancer-specific targets that can act as beacons
to localize tumors with high efficiency is a key feature of a robust
biomarker. As mentioned above, growing evidence suggests that
ENO1 is upregulated in a broad range of human tumors, making
it a candidate cancer biomarker. ENO1 localization on the surface
of cancer cells also provides an excellent opportunity to develop
small molecules with high affinity to this protein, which enables
its direct targeting in the tumor surface for diagnostic imaging
and therapeutics.

The diagnostic and prognostic value of ENO1 overexpression
has been confirmed in several tumors (Table 1). For example,
in breast cancer, enhanced ENO1 expression correlated with
greater tumor size, poor nodal status, and a shorter disease-
free interval (Tu et al., 2010). Patients with lung cancer
overexpressing ENO1 also showed poor clinical outcomes, with
shorter overall and progression-free survival, compared to low
expressing patients (Chang et al., 2006; Hsiao et al., 2013).
ENO1 overexpression in hepatocellular carcinoma increased with
tumor de-differentiation and correlated positively with venous
invasion (Takashima et al., 2005; Hamaguchi et al., 2008). These
characteristics position ENO1 as a selective biomarker able to
identify aggressive tumor types with high accuracy.

Alpha-enolase has several key characteristics of an ideal cancer
biomarker: (1) localization in the cell surface where it can
be targeted for imaging and treatment; (2) overexpression in
cancer cells with low expression in normal tissues; and (3)
overexpression correlating with prognosis and clinical outcomes.
Thus, ENO1 can be envisioned as an excellent biomarker to guide
patient management and alter disease timeline. Ultimately, ENO1
surface imaging could potentially be used to screen for occult
cancers. This information could then be translated to improve
prognosis and management of patients diagnosed with cancer by
monitoring disease state, detecting recurrence and progression,
or assessing response to therapy.

Alpha-enolase has a potent three punch combination to
advance cancer progression: (1) promotes tumor glycolysis,
(2) activates cancer signaling pathways, and (3) drives tumor
migration, invasion, and metastasis. These unique characteristics
make ENO1 a strong candidate to deliver targeted therapies to
tumors overexpressing this protein, particularly those tumors
expressing surface ENO1. For instance, molecular imaging of
tumors guided by ENO1-specific small molecule probes could
open the door to new strategies to target this protein in
tumors, leading to early interventions and improved patient
outcomes. Several reports have already provided pre-clinical data
supporting ENO1 therapeutic targeting. As mentioned above,
ENO1 depletion attenuates glycolysis, cell proliferation, EMT,
migration, and invasion, and metastasis in several cancer types
(Fu et al., 2015; Capello et al., 2016; Principe et al., 2017;
Zhan et al., 2017; Ji et al., 2019; Sun et al., 2019). Targeting of
ENO1 in combination with chemotherapy may be beneficial in
patients with drug resistant cancers given, as mentioned earlier,
its emerging role in chemoresistance.

There is a major need for small molecule inhibitors of
ENO1. A promising inhibitor, ENOblock, has been used to
target ENO1 in various disease contexts (Jung et al., 2013;
Cho et al., 2017, 2019; Haque et al., 2017; Polcyn et al., 2020)
but its specificity was disputed (Satani et al., 2016). Another
ENO1 inhibitor was recently reported to enhance anti-multiple
myeloma (MM) immunity in combination with immunotherapy
in pre-clinical models (Ray et al., 2020). In addition, a novel
nanoparticle-delivered peptide targeting ENO1 in combination
with doxorubicin demonstrated strong antitumor activity in pre-
clinical models of PCa (Wang et al., 2018).

The study of immune responses to ENO1 has sparked
the development of novel immunotherapeutic strategies.
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For instance, treatment of lung cancer cells with anti-
ENO1 monoclonal antibodies in vitro suppressed cell-associated
plasminogen and matrix metalloproteinase activation, collagen
and gelatin degradation, and cell invasion (Hsiao et al., 2013).
Interestingly, adoptive transfer of these antibodies to mice
resulted in their accumulation in subcutaneous tumors and
inhibition of lung and bone metastases. Principe et al. (2015)
reported that in vitro and in vivo blockade of ENO1 with
anti-human ENO1 monoclonal antibodies reduced PDA cell
migration and invasion. Further, administration of adeno-
associated virus (AAV) encoding an anti-ENO1 monoclonal
antibody led to a reduction of lung metastasis in mouse PDA
xenografts (Principe et al., 2015). The same group developed an
ENO1 DNA vaccine that significantly inhibited, although did not
eradicate, tumor growth in a mouse PDA model, suggesting that
the effectiveness of this vaccine could be amplified in the context
of combinatorial therapies (Cappello et al., 2013, 2018). Recently,
Mandili et al. (2020) demonstrated that treatment of PDA mice
with combined gemcitabine chemotherapy and ENO1 DNA
vaccination induced a strong CD4+ T cell antitumor activity that
impaired tumor progression, compared with mice that received
vaccine or gemcitabine alone.

CONCLUSION

Alpha-enolase promotes cellular functions associated with
tumor aggressiveness, including increased glycolysis, activation
of oncogenic signaling pathways, chemoresistance, and cell
proliferation, migration, invasion, and metastasis. Therefore,
ENO1 can be considered an oncoprotein critical for maintaining
several “hallmarks of cancer” (Hanahan and Weinberg, 2011),

particularly sustained proliferative signaling, deregulated energy
metabolism, apoptosis resistance, and activation of invasion and
metastasis. ENO1 overexpression in a broad range of human
cancers and targetability make it an attractive cancer biomarker
candidate and therapeutic target. Its localization in the tumor
surface, key metabolic functions, and ability to promote tumor
aggressive properties could be exploited for the development of
novel comprehensive cancer care modalities that combine ENO1
surface imaging with targeted therapeutic interventions.
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