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The type I interferon system plays a critical role in host defense in health, and a growing 
body of literature suggests that type I interferon is a critical mediator of human autoimmune 
disease. Type I interferons function as a bridge between the innate and adaptive immune 
systems, and as such play an important role in setting thresholds for response against self 
antigens. Many investigators have focused on the role type I interferons play in autoimmune 
disease. This fascinating and rapidly growing body of literature encompasses many different 
autoimmune diseases, including systemic lupus erythematosus, type I diabetes, multiple 
sclerosis, and others. In this Research Topic, we provide a comprehensive overview of 
the various roles type I interferons play in autoimmune diseases, with a focus on human 
immunology.
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Activation of the type I interferon system in systemic lupus erythematosus (Copyright: Ko K, 
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The type I interferon system plays a critical role in host defense
in health, and a growing body of literature suggests that type I
interferon is a critical mediator of human autoimmune disease
(1). Type I interferons function as a bridge between the innate
and adaptive immune systems, and as such play an important
role in setting thresholds for response against self antigens. Many
investigators have focused on the role type I interferons play in
autoimmune disease. This fascinating and rapidly growing body
of literature encompasses many different autoimmune diseases,
including systemic lupus erythematosus, type I diabetes, multi-
ple sclerosis, and others. Type I interferons play differing roles in
human autoimmune conditions. For example, in the autoimmune
diseases, systemic lupus erythematosus and Sjogren’s syndrome,
increased interferon alpha signaling plays a pathogenic role (2,
3). Interestingly, interferon beta is used as a therapeutic in mul-
tiple sclerosis, an autoimmune disease of the central nervous
system (4). Both interferon alpha and beta signal through the
same type I interferon receptor and share many similarities in
downstream signaling, suggesting that the disparate activities of
type I interferons in lupus and multiple sclerosis relate to differ-
ences in the underlying disease processes and immunoregulation
in these two diseases. In this Research Topic, a series of articles
provides a comprehensive overview of the various roles type I
interferons play in autoimmune diseases, with a focus on human
immunology.

This Research Topic features a number of Original Research
Articles, including a study by Mavragani et al. examining type
I interferon levels in the organ-specific autoimmune disorders
type I diabetes and autoimmune thyroid disease (5). They demon-
strate high type I interferon levels in both of these autoimmune
conditions, supporting the idea that high levels of type I inter-
feron are detectable in organ-specific autoimmune conditions in
addition to systemic autoimmune disorders. Clark et al. inves-
tigate genetic polymorphisms in the interferon regulatory factor
5 (IRF5) gene (6). This gene has been associated with suscep-
tibility to systemic lupus erythematosus (7), and they demon-
strate four distinct promoter regions have differential activity.
Ko et al. study type I interferon-induced gene expression in
patients with systemic lupus erythematosus (8). They demon-
strate that the expression of type I interferon-induced genes in
lupus immune cells differs significantly between ancestral back-
grounds, which corresponds to clinical differences in the dis-
ease between ancestral backgrounds. A Methods article by Feng

et al. examines public domain gene expression data to doc-
ument patterns of type I interferon-induced gene expression
and infer both positive and negative regulation by transcription
factors (9).

The Research Topic also features a number of Review Articles
focusing on various disease states. Liu et al. review murine mod-
els of systemic lupus erythematosus that are interferon-inducible,
providing model systems of autoimmunity related to type I inter-
feron (10). Wu et al. review the role of type I interferon in systemic
sclerosis, a distinct autoimmune disease characterized by thick-
ening and fibrosis of the skin, which shares a type I interferon
signature with other autoimmune conditions (11). Li et al. review
the evidence supporting a role for type I interferon in the patho-
genesis of Sjogren’s syndrome, spanning genetic associations, gene
expression studies, and clinical features of the disease (12). Reder
et al. review the contrasting role of type I interferon in multiple
sclerosis and systemic lupus erythematosus and other autoim-
mune conditions (13). In multiple sclerosis, type I interferon
levels are low (14), and administration of recombinant type I
interferon is an effective treatment. They review the evidence sup-
porting multiple sclerosis as a low interferon autoimmune disease,
and speculate on immunological features that might underlie this
striking difference. Shrivastav et al. review the role of nucleic acid
receptors in type I interferon generation in systemic lupus erythe-
matosus (15), a disease characterized by pathological activation
of the type I interferon pathway. These articles taken together
provide an overview of many of the ways type I interferons have
been implicated in human autoimmune disease, providing a fas-
cinating window into the biology of the human immune system
gone wrong.
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Background: Activation of the type I interferon (IFN) pathway has been implicated in the
pathogenesis of systemic autoimmune disorders but its role in the pathogenesis of organ-
specific autoimmunity is limited. We tested the hypothesis that endogenous expression
of type I IFN functional activity contributes to the pathogenesis of autoimmune thyroid
disease (ATD) and type I diabetes (T1DM).

Methods: We studied 39 patients with ATD and 39 age and sex matched controls along
with 88T1DM patients and 46 healthy matched controls respectively. Available clinical and
serological parameters were recorded by chart review, and thyroid ultrasound was per-
formed in 17 ATD patients. Type I IFN serum activity was determined in all subjects using
a reporter cell assay. The rs1990760 SNP of the interferon-induced helicase 1 gene was
genotyped in ATD patients.

Results: Serum type I IFN activity was increased in patients with ATD and T1DM com-
pared to controls (p-values: 0.002 and 0.04, respectively). ATD patients with high type I IFN
serum activity had increased prevalence of antibodies against thyroglobulin (anti-Tg) and
cardiopulmonary manifestations compared to those with low IFN activity. Additionally, the
presence of micronodules on thyroid ultrasound was associated with higher type I IFN lev-
els. In patients withT1DM, high IFN levels were associated with increased apolipoprotein-B
levels.

Conclusion: Serum type I IFN activity is increased in ATD and T1DM and is associated
with specific clinical, serological, and imaging features. These findings may implicate type
I IFN pathway in the pathogenesis of specific features of organ-specific autoimmunity.

Keywords: type I interferon, autoimmune thyroid disease, organ-specific autoimmunity, type I diabetes

INTRODUCTION
Autoimmune thyroid diseases (ATD), including Hashimoto’s thy-
roiditis (HT) and Graves’ disease (GD), as well as type I Diabetes
Mellitus (T1DM) are prototype organ-specific autoimmune dis-
orders characterized by loss of immunological tolerance against
thyroid and β-cell pancreatic antigens, lymphocytic infiltration of
the thyroid gland and the insulin producing pancreatic islands,
and various degrees of organ dysfunction (1, 2).

Autoimmune thyroid disease and T1DM share common fea-
tures with systemic autoimmune disorders, such as multifacto-
rial etiology involving both genetic and environmental factors,
female predominance (ATD), and familial aggregation associ-
ated with other organ-specific or systemic autoimmune disor-
ders (3–5). Despite the fact that ATD is classically considered
as a disease that predominantly affects the thyroid gland, non-
specific systemic features such as musculoskeletal complaints, sicca

symptomatology, pregnancy loss, and various neurological man-
ifestations may also occur (6). Taken together, these observations
suggest that clinically different autoimmune phenotypes might
share common pathogenetic pathways.

While increasing evidence over the last few years suggests a
dominant role for the type I interferon (IFN) pathway in the patho-
genesis of many systemic autoimmune disorders such as systemic
lupus erythematosus (SLE) and Sjogren’s syndrome (7, 8), limited
data are available regarding the role of the IFN-α pathway in the
pathogenesis of organ-specific autoimmune disorders (5). Recent
studies have suggested that the Ala946Thr polymorphism of the
interferon-induced helicase 1 gene (IFIH1) (SNP ID rs1990760)
is associated with type I diabetes (T1DM), GD, and Addison’s dis-
ease (9, 10). Recent data also support the protective role of rarer
IFIH1 alleles against T1DM (10). The IFIH1 gene, also known
as the melanoma differentiation-associated 5 (MDA-5), encodes
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a putative RNA helicase implicated in sensing of viral RNA and
generation of antiviral responses (11). In SLE, risk alleles of the
IRF5, IRF7, and IFIH1 genes have been associated with high type
I IFN levels and distinct autoantibody profiles (12, 13).

Given that development of thyroid autoimmunity and to a
lesser extent T1DM, either separately or in combination, has been
previously described after IFN-α treatment (14–18), we hypothe-
sized that activation of the type I IFN pathway may contribute to
the pathogenesis of these organ-specific autoimmune disorders.
To test this hypothesis, type I IFN activity was measured in sera
of patients with ATD, T1DM, and healthy controls (HC), using a
sensitive functional assay, and its presence was related to various
clinical, biochemical, morphological, and genetic indices.

PATIENTS AND METHODS
STUDY PARTICIPANTS
Thirty-nine patients with ATD (13 with GD and 26 with HT)
and 39 age and sex matched HC without evidence of under-
lying autoimmune disease along with 88 patients with T1DM
and 46 HC matched for sex and age were studied. Study par-
ticipants were followed in the Department of Pathophysiology,
University of Athens (ATD patients), and the General Pediatric
Hospital Ag.Sophia (TIDM patients) (19). Study subjects signed
an informed consent form prior to enrollment in the study.
All patients underwent a complete medical history and physi-
cal examination. Baseline hematological and biochemical profiles
were performed and detailed medical therapy was recorded in all
patients.

All ATD participants completed a specific questionnaire
addressing symptoms/signs related to systemic autoimmune dis-
eases. Symptoms/signs and parameters recorded included skin
manifestations, musculoskeletal features, Raynaud’s phenomenon,
sicca symptoms, renal involvement, hematological manifestations
(autoimmune hemolytic anemia, leucopenia, thrombocytopenia)
cardiovascular and/or pulmonary features (pulmonary hyperten-
sion, pulmonary fibrosis, pleuritis, pericarditis, coronary artery
disease), and neurological complications (headaches, stroke, white
matter microangiopathy, transverse myelitis, cranial/peripheral
neuropathy). The presence or absence of autoantibodies to thy-
roid antigens, including antibodies to thyroglobulin (anti-Tg)
and thyroid peroxidase (anti-TPO), thyroid stimulating hormone
receptor (TSHR), as well as thyroid stimulating hormone (TSH)
levels at the time of diagnosis were also recorded. The normal
range of TSH values was 0.5–5 (mU/L). On this basis, TSH levels
were defined as high and low (>5 and <0.5 mU/L, respectively).

Patients with T1DM were suffering from no other disease
and/or DM related complications and were not taking any med-
ications other than insulin. Biochemical parameters that were
particularly recorded in patients with T1DM included cholesterol,
triglycerides, HbA1c, apolipoprotein-A and -B as well C-reactive
protein (CRP) levels.

Serum from ATD and T1DM patients and controls was col-
lected and stored at −80°C until assayed. Informed consent was
obtained from ATD patients and controls as well as from the
parents of both diabetic and healthy subjects, according to the
Declaration of Helsinki. The study has been approved by the Ethics
Committee of Athens University Medical School.

SERUM TYPE I IFN ACTIVITY
Type I IFN activity was measured in sera derived from ATD,
T1DM, and HC using a reporter cell assay, which measures the
ability of serum to upregulate IFN-inducible genes in an IFN sen-
sitive cell line as previously described (20). In brief, cells of the
WISH epithelial cell line (ATCC) express the type I IFN receptor
and are highly responsive to type I IFN. WISH cells were plated
at a density of cells/mL in 96 well plates in Minimal Essential
Media (Cellgro, Herndon, VA, USA) with 10% fetal calf serum
(FCS). The cells were then cultured with 50% patient serum for
6 h. Recombinant human IFN-α (IFNaA; BioSource International,
Camarillo, CA, USA) and media were used as positive and negative
controls respectively. Subsequently, total cellular mRNA was puri-
fied from stimulated cells at the end of the culture period using
the Qiagen TurboCapture oligo-dT coated 96 well plate system as
per manufacturer protocol (Qiagen, Valencia, CA, USA) and was
reverse-transcribed to cDNA immediately following purification
using the Superscript III reverse transcriptase system from Invitro-
gen (Carlsbad, CA, USA). Quantitative real-time polymerase chain
reaction (PCR) was then used to quantify specific cDNAs using
the Bio-Rad SYBR Green intercalating fluorophore system with
a Bio-Rad I-cycler thermocycler and fluorescence detector (Bio-
Rad, Hercules, CA, USA). Primers for genes highly induced by type
I IFN signaling-interferon induced with tetratricopeptide repeats
1 (IFIT-1, Forward CTCCTTGGGTTCGTCTATAAATTG; Reverse
AGTCAGCAGCCAGTCTCAG), Protein kinase R (PKR) (Forward
CTTCCATCTGACTCAGGTTT; Reverse TGCTTCTGACGGTAT-
GTATTA), interferon-induced protein with tetratricopeptide
repeats 3 (IFIT-3, Forward GGCAGACAGGAAGACTTCTGAA-
GAACA; Reverse TGACTGCCCTCT-GTGTCTCTGCT), myx-
ovirus (influenza virus) resistance 1 (MX-1, Forward TACCAGG
ACTACGAGATTG-Reverse TGCCAGGAAGGTCTATTAG) were
used in the PCR reaction on the WISH cell derived cDNAs.
The housekeeping gene Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH, Forward CAACGGATTTGGTCGTATT; Reverse
GATGGCAACAA-TATCCACTT) was also quantified in the cDNA
samples to control for background gene expression. The type I
IFN-induced genes are compared with housekeeping gene expres-
sion to determine relative expression. The relative expression is
then normalized to the relative expression of the respective genes
in unstimulated cells from the same population. Type I IFN activity
was calculated as the average relative expression of IFN-inducible
genes (IFIT-1 and PKR in the thyroid cohort and IFIT-3, PKR,
MX-1 in the diabetes cohort). The cut-off for high serum type I
IFN activity among patient samples was defined as the mean plus
1 SD of the IFN activity score of sera from healthy donors (HD)
(cut-off for high activity= 1.29, for ATD patients and 0.87 for
T1DM patients).

IFIH1 GENOTYPING
The rs1990760 SNP in IFIH1 was genotyped in ATD patients using
real-time PCR with Applied Biosystems Assays-by-Design Taqman
primer and allele specific fluorescent labeled probes. Reactions
were run using 10 ng of genomic DNA along with primers and
probes on an ABI 7900HT PCR machine per manufacturer proto-
col. Genotype calls were made from clustering diagrams at >99%
certainty, and the call rate was >90%.
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AUTOANTIBODY ASSAYS
Anti-Ro/SSA and anti-RNP/Sm antibodies in the ATD patients
were determined by commercial ELISA (Diamedix, FL, USA).
Anti-Tg and anti-TPO autoantibodies were measured in the same
laboratory using a two-site immunoluminometric assay (Dia-
Sorin, LIASON analyzer, normal range: <100 and <25 IU/mL
respectively). TRAbs were measured using commercial kit (Dia-
Sorin Inc., Stillwater, MN, USA, cut-off value: 10%).

THYROID ULTRASONOGRAPHY
Thyroid ultrasonography was carried out in 17 ATD patients using
a high-resolution apparatus (Logic-Book XP, General Electric Co.,
USA) equipped with a 6–11 MHz broadband linear array probe by
a single operator who was unaware of the diagnosis.

High-sensitivity color flow Doppler sonography was used to
estimate the intraparenchymal blood flow pattern. The vascular-
ity index and the hypoechogenicity index were calculated for all
images as previously described (21). Thyroid volume was mea-
sured and the presence of nodules was also recorded [micronod-
ules (diameter <10 mm) and macronodules (diameter >10 mm)].
In addition, thyroid blood flow was also measured at the inferior
thyroid artery (16).

STATISTICAL ANALYSIS
Two-group comparisons of continuous data were assessed using
unpaired t -test on non-parametric Mann–Whitney test for nor-
mally or not normally distributed data respectively. Fisher’s exact
two-tailed test was used for categorical variables. Correlations
between quantitative variables were performed by Spearman’s rho
test. Our multivariate analysis consisted of a stepwise logistic
regression that was used to identify independent variables that
could be associated with high or low type I IFN serum activity in
ATD patients. The variables entered in the multivariate model were
those shown to be statistically significantly different between high
and low IFN groups based on the bivariate analysis (p < 0.05).

RESULTS
ATD COHORT
Type I IFN activity in ATD patients and controls
In order to explore whether activation of the type I IFN pathway
occurs in the context of ATD, type I IFN serum activity was deter-
mined by a reporter cell assay (please see Patients and Methods for
details) in 39 ATD patients (26 with HT, 12 with GD) and 39 HC of
similar age, sex, and race distribution (Table 1). Patients with ATD
had increased type I IFN activity compared to HC (mean± SD:
1.2± 0.4 vs. 0.9± 0.4, p= 0.002) (Figure 1A). Following these
findings patients with ATD were subdivided further according to
type I IFN activity into those with “high” (13 patients) and “low”
(26 patients) IFN score.

Clinical and serological correlates of type I IFN activity among ATD
patients
In order to determine whether high serum type I IFN activity
is associated with the presence of any clinical and serological
parameters, we compared the “high” and “low”-IFN score ATD
patients using bivariate analysis. Comparisons between the two
groups were performed for demographic variables, systemic man-
ifestations, thyroid function, and antibodies. As shown in Table 2,

Table 1 | Demographic characteristics of the study subjects.

ATD patients

(n = 39)

Healthy

controls

(n = 39)

p-Value

No. of subjects 39 39

Mean age±SD (years) 48.9±14.4 47.6±11.2 ns

Female to male ratio 4.6:1 4.6:1 ns

Mean disease duration±SD (years) 5±5.2 NA NA

% Caucasians 100 100 1

No of patients with GD 12 NA NA

No of patients with Hashitoxicosis 1 NA NA

No of patients with HT 26 NA NA

GD, Grave’s disease; HT, Hashimoto’s disease; ATD, autoimmune thyroid disease;

SD, Standard Deviation; NA, not applicable; ns, no significant.

anti-Tg antibodies were present in almost all patients of the “high”
IFN group, compared to less than 50% of the “low” IFN patients
(p= 0.013).

Cardiopulmonary manifestations were significantly more fre-
quent in the “high”-IFN ATD group (46 vs. 8%, p= 0.011) and
included shortness of breath on exertion in two individuals
(possibly related to heart failure), pericarditis in one individ-
ual, asthma in two cases, and interstitial lung disease in another
one. In the low IFN group two cases of asthma were reported.
Autoantibodies against Ro/SSA and RNP/Sm nucleoproteins, pre-
viously shown to be associated with high type I IFN activity in
SLE patients (22), were negative in all ATD subjects (data not
shown). No correlations were found between type I IFN levels
and autoantibodies to TSHR (r =−0.163, p= 0.396) by Spear-
man’s correlation test. Logistic regression analysis revealed an
independent association of high IFN-α activity with the presence
of anti-Tg antibodies (OR= 17.69, 95% CI: 2.05–560.9) and car-
diopulmonary manifestations (OR= 15.34, 95% CI: 1.95–335.5)
respectively.

Type I IFN activity and thyroid ultrasonographic pattern
We next sought to explore whether type I IFN activity serum
levels were associated with ultrasonographic parameters of the
thyroid gland. While no significant associations were detected
between type I IFN levels and the various ultrasonographic
indices examined including thyroid volume, vascularity and
hypogenicity indexes, macronodules and inferior thyroid artery
blood flow (data not shown), higher type I IFN activity was
found in patients with ATD and thyroid micronodules (p= 0.04)
(Figure 1B).

IFIH1 genotypes and IFN levels in ATD patients
To determine whether the IFIH1 risk variant is associated with
higher type I IFN levels, the rs1990760 SNP in IFIH1 was geno-
typed. No association was found between genotypes and type
I IFN levels (data not shown). However, a trend toward higher
prevalence of the T risk allele among patients with low TSH levels
compared to those with high TSH levels (77.7 vs. 50%, OR= 3.5,
CI: 0.9–13.3, p= 0.07) was found, consistent with the previously
reported association of the T allele of the IFIH1 with GD (10).
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FIGURE 1 | (A) Increased type I interferon (IFN) activity in patients with
autoimmune thyroid disease (ATD) compared to healthy donors (HD). Serum
type I IFN activity was assessed using a sensitive reporter cell assay in 39
patients with autoimmune thyroid disease (ATD) and 39 age-sex matched
healthy controls (HC). Results are expressed as an IFN score, as described in
materials and methods. Symbols represent individual subjects; horizontal
lines represent the mean; p-values were calculated by unpaired t -test. (B)
Significantly higher serum type I IFN activity levels in ATD patients with

ultrasonographic presence of thyroid micronodules. Serum type I IFN activity
assessed using a sensitive reporter cell assay was found to be higher in ATD
patients characterized by the presence of micronodules on ultrasound (n=8)
compared to those without such nodules (n=7). Data are shown as box
plots. Each box represents the 25–75th percentiles. Lines inside the box
represent the median. Lines outside the box represent the 10th and the 90th
percentiles; p-values were calculated by unpaired t -test. Micronodules (+):
presence of micronodules, micronodules (−): absence of micronodules.

T1DM COHORT
Type I IFN activity in T1DM patients and controls-clinical and
laboratory correlates
In order to investigate whether type I IFN pathway is activated in
the setting of T1DM, serum type I IFN activity was determined
in 88 pediatric T1DM patients and 46 controls of similar age,
sex, and body mass index (BMI) distribution (Table 3) by the
previously described reporter cell assay. As shown in Figure 2,
type I IFN activity was found to be significantly increased in
pediatric patients with T1DM compared to age-sex matched con-
trols (mean± SD:1.1± 2.2 vs. 0.6± 0.3, p= 0.04). Of interest,
apolipoprotein-B levels were higher in T1DM patients with high
type I IFN activity. No other associations with clinical and/or
serological data were observed (Table 4).

DISCUSSION
While several lines of evidence suggest a central role for the
type I IFN pathway in the pathogenesis of a number of systemic
autoimmune disorders, more limited data are available regarding
its contribution to the pathogenesis of organ-specific autoim-
mune disease and its potential association with distinct clinical
or serological phenotypes. The current study provides evidence
of elevated serum type I IFN activity in approximately one third
of patients with ATD and one fifth of those with T1DM, using a
functional IFN assay.

Designation of ATD and T1DM patients as patients with “high”
or “low” type I IFN activity allowed us to test the hypothesis
that type I IFN pathway activation identifies ATD and T1DM
patients with distinct clinical and serological characteristics. Fol-
lowing both bivariate and multivariate analysis, the presence of
anti-TG, but not anti-TPO was associated with a high IFN sta-
tus among ATD patients. Of interest, a recent study identified

SNP (_1623A/G) of the TG gene – previously identified as a
major ATD susceptible variant – to modify a binding site for the
IFN-induced transcription factor interferon regulatory factor-1
(IRF-1), leading to increased promoter activity and increased TG
levels, a major antigenic target for ATD (23). However, the presence
of such genetic variant was not assessed in our patient popula-
tion. Additionally, stimulation of rat thyroidal cells with IFN-α has
been shown to lead to persistent (up to 48 h) increase of TG lev-
els through TG promoter activation suggesting that IFN-induced
upregulation of the TG autoantigen could lead to generation of
antigen specific serum reactivities. Though upregulation of TPO
was also observed, this was limited to 24 h and seemed to be
independent from the activation of the TPO promoter (24). As
no antibodies against Ro/SSA and RNP/Sm antigens were found,
those antibodies cannot be implicated in the induction of type I
IFN, as has been proposed for SLE (22).

Interestingly, high IFN status was also associated with increased
prevalence of cardiopulmonary features. Although IFN-α has been
previously linked to atherosclerotic risk and a negative effect of
IFN-α on vascular endothelial cells has been demonstrated (25,
26), the pathophysiological implication of this association in ATD
will require further investigation. ATD patients with increased type
I IFN levels exhibited mostly micronodular sonographic appear-
ance which is related to the presence of lymphocytic aggregates
with germinal centers and/or transformed follicular oxyphilic cells
(27). Given that type I IFN has been previously associated with
B-cell activation and immunoglobulin class switching (28), the
relation of micronodulation to type I IFN activity could reflect the
contribution of the latter in the pathophysiology of ATD disease.
Whilst no significant associations were detected between levels of
type I IFN activity and genotypes of the IFIH1 gene, a trend toward
increased prevalence of the T risk allele among patients with low
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Table 2 | Comparison of ATD patients with low or high type I IFN

activity in bivariate analysis.

Variable Type I IFN activity

Low

(n = 26)

High

(n = 13)

p

Mean type I IFN activity score 0.98±0.19 1.6±0.23 <0.0001

DEMOGRAPHICS

Age, years 47.08±15.16 52.91±12.33 0.278

Disease duration, years 4.32±4.78 6.54±6.03 0.318

No of females 22/26 (84.6%) 10/13 (76.9%) 0.666

SYSTEMIC MANIFESTATIONS

Skin manifestations 8/25 (32%) 7/13 (53.8%) 0.295

Musculoskeletal manifestations 7/25 (28%) 6/13 (46.1%) 0.30

Oral ulcers 6/25 (24%) 0/11 (0%) 0.147

Raynaud’s phenomenon 4/25 (16%) 1/13 (7%) 0.642

Sicca symptoms 5/25 (20%) 3/13 (23.1%) 1

Cardiopulmonary 2/25 (8%) 6/13 (46.1%) 0.011

Renal 0/25 (0%) 0/12 (0%) 1

Hematological 0/24 (0%) 0/11 (0%) 1

Neurologic

Headaches 13/25 (52%) 2/13 (15.3%) 0.039

Other* 2/25 (8%) 1/13 (7.7%) 1

ABS AGAINSTTHYROID ANTIGENS

Positive anti-Tg autoAbs 12/25 (48%) 11/12 (91.6%) 0.013

Positive anti-TPO autoAbs 21/25 (84%) 11/12 (91.6%) 1

TYPE OFTHYROID DISORDER

Graves’ disease 8/26 (30.7%) 4/13 (30.7%) 1

Hashimoto’s/Hashitoxicosis 18/26 (69.3%) 9/13 (69.3%) 1

THYROID FUNCTIONTESTS

High TSH 12/26 (46.1%) 8/13 (61.5%) 0.5

Low TSH 9/26 (34.6.9%) 4/13 (30.7%) 1

Other* (includes stroke, white matter microangiopathy, transverse myelitis,

cranial/peripheral neuropathy).

Table 3 | Characteristics of theT1DM patients and healthy subjects.

Healthy

subjects

(n = 46)

T1DM

patients

(n = 88)

p

Age (years) 10.53±0.64 12.12±0.57 ns

Female to male ratio 0.8:1 1.1:1 ns

Body mass index (kg/m2) 21.16±0.20 20.79±0.58 ns

Diabetes duration (months) – 57.82±7.83 (0–184) NA

ns, no significant; NA, not applicable.

TSH levels (defined as <0.5 IU/mL) compared to those with high
TSH levels was noted. This finding is consistent with the previ-
ously reported association of the T risk allele of the IFIH1 with
GD (10).

The association between type I IFN and thyroid disease was
first appreciated in 1985 in patients treated with IFN-α for breast
cancer (29). Since then, a large number of studies have revealed a
high incidence of thyroid abnormalities in IFN-α treated patients,

           p=0.04

T1D
M

(n
=8

8)

H
D
(n

=4
6)

0.1

1

10

100

T
y
p

e
 I

 I
F

N
 a

c
ti

v
it

y

FIGURE 2 | Increased type I IFN activity in patients with type 1
diabetes mellitus (T1DM) (n = 88) compared to healthy donors (HD)
(n = 46). Serum type I IFN activity was assessed using a sensitive reporter
cell assay as previously described. Symbols represent individual subjects;
horizontal lines represent the mean; p-values were calculated by
non-parametric Mann–Whitney test.

Table 4 | Comparison ofTIDM patients with low or high type I IFN

activity in bivariate analysis.

Variable Type I IFN activity

Low

(n = 72)

High

(n = 16)

p

Mean type I IFN activity score 0.57±0.15 3.06±4.86 <0.0001

Age (years) 11.96±0.74 13.00±1.03 0.500

Female to male ratio 1.2 1.3 1

Body mass index (kg/m2) 20.90±0.67 20.21±1.43 0.640

Diabetes duration (months) 59.19±9.25 48.45±17.26 0.583

Total cholesterol (mg/dL) 165.51±5.31 167.27±7.61 0.869

HDL (mg/dL) 59.16±1.74 59.55±2.94 0.915

LDL (mg/dL) 91.95±4.06 90.00±5.48 0.810

Total triglycerides (mg/dL) 70.51±6.31 73.00±10.03 0.847

Lipoprotein (a) (mg/dL) 12.86±1.84 13.50±3.62 0.873

Apolipoprotein-A (mg/dL) 126.46±4.85 137.57±10.70 0.305

Apolipoprotein-B (mg/dL) 81.63±4.16 91.43±1.62 0.037

Urine microalbumin (mg/L) 7.33±0.99 6.83±1.73 0.813

Serum creatinine (mg/dL) 0.64±0.021 0.65±0.06 0.977

Serum urea (mg/dL) 29.59±1.08 31.73±4.94 0.681

CRP (mg/dL) 5.00±1.21 5.91±3.03 0.744

HbA1c (%) 8.08±0.27 7.77±0.42 0.599

ranging from development of thyroid autoantibodies to overt ATD
such as GD or HD (30). IFN-α treatment has been shown to exac-
erbate preexisting thyroid autoimmunity by increasing the titers
of antithyroid antibodies (31). Although unclear, the potential
mechanisms through which IFN-α might promote the develop-
ment of thyroid autoimmunity are multiple, including facilitation
of antigen presentation through increased expression of the adhe-
sion and costimulatory molecules ICAM-1, B7.1, and MHC class I
antigens on thyrocytes, activation of cytotoxic T-cells, promotion
of autoantibody production through direct and indirect effects
on B-cell and immunoglobulin class switching, upregulation of
thyroid specific antigens, and direct toxicity on thyroidal cells
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(18, 24). Recently, functional sensors detecting both exogenous
and endogenous signals were detected in thyroid cells promot-
ing induction of innate immune responses including activation
of type I IFN pathway. In particular, stimulation of thyroid cells
with Toll-like receptor ligands led to activation of the interferon-
beta (IFN-β) promoter (32). Though therapeutic administration
of IFN-α in patients with HCV infection has been mainly asso-
ciated with induction of ATD, several reports derived from the
multiple sclerosis (MS) literature suggest IFN-β as an inducer of
ATD among MS patients possibly through stimulation of CXCL10
secretion by thyrocytes (33, 34). Unfortunately, in the present
study, exploring whether type I IFN activity was mainly related
to IFN-α or IFN-β components was not included in the initial
design of the study.

Recent findings have revealed an upregulation of IFN-α
inducible genes in peripheral blood mononuclear cells in patients
with GD, which correlated with TSHR messenger RNA and pro-
tein levels of HLA-DR and IFN-α (35). Although stimulation
of primary cultured thyrocytes with recombinant human IFN-α
resulted in increased expression of MHC-II antigens and TSHR
in these patients, no serum IFN type I activity was detected
in the samples tested. IFN-α levels – measured by a commer-
cially available enzyme immunoassay – were also found to be
increased in a small cohort of patients with several thyroid dis-
orders including 12 Grave’s disease and four patients with HT.
No associations with distinct clinical, serological, or imaging find-
ings were reported (36). Finally, data from a recent report revealed
heightened levels of the type I IFN-inducible myxovirus resistance
protein A in thyroid tissue derived from early HT patients fur-
ther reinforcing the implication of the type I IFN pathway in ATD
pathogenesis (37).

Activation of the type I IFN pathway was also confirmed in
our pediatric diabetic cohort – the largest so far tested, with
approximately 20% of patients demonstrating raised serum type
I IFN levels, by a sensitive bioassay. The contribution of type
I IFN in the pathogenesis of autoimmune T1DM has been
previously postulated in both human and animal studies (38–
40). Earlier data from a relatively small cohort of mixed adult
and pediatric populations demonstrated raised IFN-α in periph-
eral blood at the mRNA and protein level which correlated
well with blood enteroviral RNA, implying a role of enterovi-
ral infection in the pathogenesis of T1DM (39). No clinical
or serological associations of type I IFN pathway with disease
related biomarkers were reported in that study. On the other
hand, endogenous nucleic acids derived from apoptotic pancre-
atic β cells were also proposed as potential triggers of IFN-α
production by plasmacytoid dendritic cells, leading to activation

of autoreactive CD4+ T-cells which ultimately lead to destruction
of insulin producing pancreatic islets (41). Of interest, in a
recently reported animal model of virus induced T1DM, defec-
tive function of viral sensors with impaired type I responses was
associated with development of the disease and was related to
defective clearance of a virus directed against the beta cells of the
pancreas (42).

In the current study, apolipoprotein-B levels – previously
shown to be associated with pronounced atherosclerotic risk (43,
44) – were increased in the high IFN group in our T1DM cohort.
Of interest, apolipoprotein-B is a member of the APOBEC fam-
ily of proteins, many of which are regulated by type I interferons
and particularly IFN-α (45, 46). Whilst it is not known whether
increased apolipoprotein-B levels are directly induced by type I
IFN, such a probability remains, providing an additional mecha-
nism by which type I IFN might contribute to the pathogenesis of
atherosclerosis (47).

The demonstration of type I IFN activity in serum of patients
with ATD and T1DM, supports its role in the pathogenesis of both
organ-specific and systemic autoimmune disorders. While the rea-
sons for the tissue specificity in the autoimmune process remain
elusive, the identification of the type I IFN pathway as a common
pathogenetic denominator among distinct and diverse autoim-
mune phenotypes may explain the similarities found in patients
with IFN-related disorders, such as strong familial aggregation
and female predominance, and contribute to the identification
of unifying underlying determinants of autoimmunity. Familial
aggregation of both high IFN and ATD in SLE families could
support a case for IFN being causal in both (48).

In conclusion, the findings of the present study support a role
for type I IFN in the pathogenesis of organ-specific autoimmune
disorders, particularly in ATD and T1DM patients. These data
extend our current list of type I IFN-related autoimmune disor-
ders and may provide insight into shared pathogenic factors and
suggest new targets for therapeutic intervention.
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Background: In systemic lupus erythematosus (SLE), antibodies directed at RNA-binding
proteins (anti-RBP) are associated with high serum type I interferon (IFN), which plays an
important role in SLE pathogenesis. African-Americans (AA) are more likely to develop SLE,
and SLE is also more severe in this population.We hypothesized that peripheral blood gene
expression patterns would differ between AA and European-American (EA) SLE patients,
and between those with anti-RBP antibodies and those who lack these antibodies.

Methods: Whole blood RNA from 33 female SLE patients and 16 matched female con-
trols from AA and EA ancestral backgrounds was analyzed on Affymetrix Gene 1.0 ST gene
expression arrays. Ingenuity Pathway Analysis was used to compare the top differentially
expressed canonical pathways amongst the sample groups. An independent cohort of 116
SLE patients was used to replicate findings using quantitative real-time PCR (qPCR).

Results: Both AA and EA patients with positive anti-RBP antibodies showed over-
expression of similar IFN-related canonical pathways, such as IFN Signaling (P=1.3×10−7

and 6.3×10−11 in AA vs. EA respectively), Antigen Presenting Pathway (P=1.8×10−5

and 2.5×10−6), and a number of pattern recognition receptor pathways. In anti-RBP neg-
ative (RBP−) patients, EA subjects demonstrated similar IFN-related pathway activation,
whereas no IFN-related pathways were detected in RBP−AA patients. qPCR validation
confirmed similar results.

Conclusion: Our data show that IFN-induced gene expression is completely dependent on
the presence of autoantibodies in AA SLE patients but not in EA patients. This molecular
heterogeneity suggests differences in IFN-pathway activation between ancestral back-
grounds in SLE. This heterogeneity may be clinically important, as therapeutics targeting
this pathway are being developed.

Keywords: systemic lupus erythematosus, interferon alpha, autoantibodies, ancestral background, interferon
gamma

INTRODUCTION
Systemic lupus erythematosus (SLE) is a heterogeneous disease
characterized by complex genetic contributions and activation of
a number of immune system pathways (1–3). Recent advances
in human genetic studies have helped us better understand the
immunopathogenesis of the disorder (4, 5). Multiple candidate
gene association studies and genome wide association studies have
led to discovery of more than 30 susceptibility loci throughout the
whole genome, most of which are involved in three main pathways

Abbreviations: AA, African-American; ANA, antinuclear antibodies; Anti-dsDNA,
anti-double-stranded DNA; Anti-RBP, anti-RNA-binding protein; Anti-RNP, anti-
ribonucleoprotein; Anti-Sm, anti-smith; EA, European-American; HA, Hispanic-
American; IFIGs, IFN-inducible genes; IFN, interferon; IPA, ingenuity pathway
analysis; PRRs, pattern recognition receptors; qPCR, quantitative real-time PCR;
RBP+, anti-RBP antibody positive; RBP−, anti-RBP antibody negative; RLRs, RIG-
I like receptors; SLE, systemic lupus erythematosus; TLR, toll-like receptor; UCMC,
University of Chicago Medical Center.

in lupus pathogenesis: abnormal clearance of nuclear debris and
immune complexes, over-activation of innate immune system
through Toll-like receptor (TLR) and type I interferon (IFN) sig-
naling, and aberrant adaptive immune response through B and T
cell signaling (6, 7). Moreover, gene expression microarray studies
have been instrumental in defining important aspects of the com-
plex immunological pathogenesis in human subjects (8, 9). Several
gene expression analyses in SLE have found up-regulation of IFN-
inducible genes (IFIGs) in more than 50% of patients (10–13),
and others have shown differential expression of genes involved in
several pathways including inflammation, apoptosis, DNA repair,
and T cell activation (12, 14–17).

Interferon-α is a pleiotropic type I IFN which plays a key path-
ogenic role in lupus development (18). It is an anti-viral cytokine
which is regulated by endosomal pattern recognition receptors
(PRRs) such as TLRs or cytosolic PRRs like RIG-I like receptors
(RLRs) (18, 19). It has the potential to break self-tolerance by
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inducing dendritic cell differentiation which in turn leads to acti-
vation of autoreactive T and B cells, thus linking innate and
adaptive immune systems (20, 21). IFN-α is a heritable risk factor
in SLE (22, 23) and some people who have received recombinant
human IFN-α as a treatment for viral hepatitis C or malignancy
have developed de novo SLE which resolves upon discontinuation
of the IFN-α treatment (24). These data strongly support a causal
role for IFN-α in SLE pathogenesis. Increased activity of IFN-
α has been associated with presence of various SLE-associated
autoantibodies, both anti-double-stranded DNA (anti-dsDNA)
and anti-RNA-binding protein (anti-RBP) antibodies along with
different organ involvement such as hematologic, renal, and cen-
tral nervous systems (10, 25, 26). However, longitudinal studies
have not confirmed the association between increases in IFIG
expression and disease flare (27, 28). It seems that patients with
high IFN-α have more severe disease and a higher rate of flare on
average, but the changes in IFN-α levels in circulation do not cor-
relate closely or quantitatively with changes in measures of disease
activity over time.

Systemic lupus erythematosus is both more prevalent and more
severe in African-American (AA) populations than in European-
American (EA) populations, and disease manifestations are vari-
able amongst different ancestral backgrounds (29–32). AA and
Hispanic-American (HA) patients are likely to have more active
SLE, with an earlier age at onset, than EA patients (31, 32). Anti-
ribonucleoprotein (anti-RNP) and anti-Smith (anti-Sm) antibod-
ies are more prevalent in AA patients than in EA and HA (30,
32), and a number of genetic variants are associated with autoan-
tibody profiles in different ancestral groups (33, 34). Moreover,
compared to EA patients, HA, and AA patients have a higher inci-
dence of SLE-related renal disease, associated with anti-dsDNA
and anti-RNP antibodies (31,35). Additionally, some of the genetic
factors associated with SLE are not shared between AA and EA
patients (36–39). These data all support the idea that molecular
and biological differences should exist in SLE patients of different
ancestral backgrounds. We have shown that overall serum IFN-α
activity is higher in SLE patients of non-European ancestry as com-
pared to European ancestry, either directly or indirectly through
an increased prevalence of anti-RBP antibodies (40, 41). In this
study, we compare peripheral blood gene expression between AA
and EA SLE patients taking into account the differences in autoan-
tibody profile, and we find a striking difference in the activation
of the IFN pathway between the two groups.

MATERIALS AND METHODS
PATIENTS, SAMPLES, AND DATA COLLECTION
Serum samples were obtained from 149 female SLE patients from
the University of Chicago Medical Center (UCMC) (n= 119) and
NorthShore University Health System (n= 30). All cases fulfilled
the American College of Rheumatology criteria for the diagnosis of
SLE (1, 42), and the data regarding the presence or absence of these
criteria as well as of SLE-associated autoantibodies [anti-nuclear
antibodies (ANA), and anti-Ro, anti-La, anti-Sm, anti-RNP, and
anti-dsDNA antibodies] were available for all patients. Forty-nine
unrelated females who were screened by medical record review
for the absence of autoimmune disease were used as controls.
They were of similar age (P = 0.21) as the SLE cases. All subjects

provided informed consent, and the study was approved by the
institutional review boards at the Mayo Clinic and University of
Chicago.

DETECTION OF AUTOANTIBODIES
Antibodies to Ro, La, Sm, and RNP for all samples were measured
by ELISA methods (INOVA Diagnostics, San Diego, CA, USA) at
UCMC at the time of serum and RNA sampling, and standard
clinical laboratory cutoff points were used to categorize them as
positive or negative. Anti-dsDNA antibodies were measured using
Crithidia luciliae immunofluorescence at UCMC, and detectable
fluorescence was considered positive.

GENE EXPRESSION ANALYSIS
Thirty-three SLE cases and 16 age-matched controls were selected
for microarray gene expression analysis. The cases were subdivided
into AA and EA patients, and those with positive anti-RBP anti-
bodies and those without as described in Table 1. Whole blood
from the subjects was collected in PAX gene tubes (Qiagen), and
RNA was purified in spin columns per manufacture recommen-
dations. The RNA was analyzed on Affymetrix Gene 1.0 ST gene
expression arrays, which were run in the University of Chicago
Microarray Core facility. These intensity data were normalized
through Affymetrix Expression Console software. Data from the
microarray experiment have been deposited in the GEO database,
accession number GSE50635.

Quantitative real-time PCR (qPCR) was used to validate the
hypotheses generated from the microarray data with an indepen-
dent replication cohort. The RNA of whole blood from 60 AA SLE
patients, 47 anti-RBP antibody positive (RBP+), and 13 anti-RBP
antibody negative (RBP−), and 56 EA SLE patients, 21 RBP+ and
24 RBP− along with 25 AA and 8 EA controls was purified using
Qiagen RNeasy kit. cDNA was synthesized from total mRNA, and
qPCR was used to measure relative transcript expression using
SYBR Green dye on an ABI 7900HT thermal cycler.

STATISTICAL ANALYSIS
For each ancestry, the anti-RBP antibody status was used as
a dichotomous variable, and each subgroup was compared to
respective controls from the same ancestral background. Following
normalization, the mean microarray gene expression values along

Table 1 | Samples and data collection for microarray analysis*.

SLE cases** Non-autoimmune

controls

RBP+ RBP−

European-American Female 8 8 8

African-American Female 9 8 8

*There was no difference in age amongst the groups.

**All SLE cases fulfilled the ACR criteria for SLE. Anti-RBP (anti-Ro, anti-La, anti-

Sm, and anti-RNP) antibodies were measured by ELISA, and anti-dsDNA antibody

levels were measured using Crithidia luciliae immunofluorescence.

RBP+, anti-RNA-binding-protein (RBP) antibody positive; RBP−, RBP antibody

negative.
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with standard deviations were calculated for each subgroup and
used to calculate the fold changes between subjects and controls.
Values were compared between the groups using the two-tailed
Student’s unpaired t -test. Similar comparisons were made with
the qPCR data, but this time, all group results were expressed in
medians and compared using Mann–Whitney tests as they did
not follow Gaussian distributions. For both microarray and qPCR
analyses, P values less than 0.05 were considered significant.

CANONICAL PATHWAY ANALYSIS
From the microarray data, the differentially expressed genes with
a cutoff P value of 0.05 along with their respective fold changes
were analyzed further through Ingenuity Pathway Analysis (IPA)
(Ingenuity® Systems, www.ingenuity.com) to compare the top
canonical pathways amongst the sample groups (Table 1). The
IPA canonical pathway analysis identified the pathways from the
IPA Knowledge Base that were most significant to the data set. The
significance of the association between the data set and the canon-
ical pathway was measured in two ways: (1) A ratio of the number
of molecules from the data set that map to the pathway divided by
the total number of molecules that map to the canonical pathway
was displayed. (2) Fisher’s exact test was used to calculate a P value
determining the probability that the association between the genes
in the dataset and the canonical pathway was explained by chance
alone.

RESULTS
DEMOGRAPHICS AND PRESENCE OF ANA AND ANTI-dsDNA
ANTIBODIES
The average age of all subjects included in the microarray portion
of the study was 43.5± 10.6 years. When the subjects and con-
trols were divided into subgroups according to ancestry and the
presence of anti-RBP antibodies (Table 1), there was no statis-
tical difference in age amongst the subgroups including controls.
There was lower prevalence in anti-dsDNA antibodies in RBP−AA
patients (77% of RBP+ vs. 31% of RBP− had anti-dsDNA anti-
bodies, P = 0.005). In EA subjects, this difference was much less
pronounced, and was not statistically significant (66% of RBP+
vs. 54% of RBP− had anti-dsDNA antibodies, P = 0.4). This is
in concordance with our previous large-scale analyses in SLE, in
which we have also found that anti-RBP and anti-dsDNA anti-
bodies are more correlated in AA as compared to EA SLE patients
(40). All subjects were female and all tested positive for ANA.

IFN-RELATED CANONICAL PATHWAY ACTIVATION IN AA vs. EA SLE
PATIENTS
Top 10 canonical pathways from each subgroup are shown in
Table 2. Many immune system associated pathways were asso-
ciated with the cases, and similar to previous studies, type I
IFN-related pathways were the most differentially expressed when
comparing cases vs. controls except in RBP−AA group. We exam-
ined in greater detail the six canonical pathways which were type I
IFN-related across patients from the two different ancestral back-
grounds studied. As shown in Table 3, the microarray analysis of
all SLE cases vs. controls demonstrated all six IFN-related canon-
ical pathways significantly involved. The same pattern was also
observed for all EA cases vs. controls. However, to our surprise,

the associations between the IFN-related canonical pathways and
AA SLE cases were not as strong as only three out of six path-
ways were found to be significant. This is despite that fact that
high circulating levels of type I IFN are more common in AA SLE
patients (40).

IFN-RELATED CANONICAL PATHWAY ACTIVATION IS NOT SEEN IN
RBP− AA PATIENTS
To explore this further, we looked at the associations between IFN-
related canonical pathways within SLE patient subgroups stratified
by both ancestry and the presence or absence of anti-RBP antibod-
ies. As shown in Table 4, all six type I IFN-related pathways were
activated in both AA and EA RBP+ patients. The key pathway dif-
ference was found between AA and EA patients who were RBP−.
RBP− EA patients demonstrated activation of all six IFN-related
canonical pathways, whereas not a single type I IFN pathway was
significantly involved in the RBP− AA patients.

IFN-INDUCED GENE EXPRESSION PATHWAY DIAGRAMS IN AA vs. EA
PATIENTS
In Figure 1, we show pathway diagrams generated in IPA software
of the type I and type II IFN pathways, with genes that were up-
regulated in cases vs. controls shaded red. It is striking that none
of the genes illustrated downstream of the type I and type II IFN
receptors are up-regulated in the RBP− AA patients, while in the
RBP− EA patients, many IFN-induced genes are over-expressed.
It is also interesting that STAT1 over-expression is observed in the
RBP+ subjects regardless of ancestral background, and this is not
observed in the RBP− patients from either ancestral background.

REPLICATION STUDY CONFIRMS THE DEPENDENCE OF IFN-INDUCED
GENE EXPRESSION UPON PRESENCE OF ANTI-RBP ANTIBODIES IN AA
PATIENTS, BUT NOT EA PATIENTS
Three IFIGs (IFIT1, MX1, and PKR) were selected for qPCR analy-
sis to replicate the microarray observation with regards to the
association between anti-RBP antibodies and IFN-related gene
expression across different ancestral backgrounds. These genes
were quantified in whole blood mRNA from an independent
cohort of 116 SLE patients and 33 controls. As shown in Figure 2,
the pattern observed mirrors the microarray data. All three genes
were up-regulated in both EA and AA RBP+ patients. In the
RBP−patients, there is essentially no increase in IFN-induced gene
expression in AA patients, while the expression of these genes, in
particular PKR, is increased in the RBP− EA SLE patients. Because
anti-dsDNA antibodies have been associated with high IFN-α (25,
26), it is important to determine whether anti-dsDNA antibodies
are contributing to the induction of IFN-induced gene expres-
sion we observe in our RBP− EA patients. As noted above, the
RBP−EA subjects were more likely to have anti-dsDNA antibodies
than the RBP− AA subjects. When we looked at the RBP negative
patients in the qPCR replication cohorts with regard to presence
or absence of anti-dsDNA antibodies, there was no significant dif-
ference in IFIT1, MX1, or PKR over-expression in the AA subjects.
In RBP− EA patients, however, over-expression of IFN-induced
genes (IFIT1 and PKR) was observed in the anti-dsDNA antibody
positive patients but not in the anti-dsDNA antibody negative
group (Figure 3). Thus, in RBP− EA subjects, the anti-dsDNA
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Table 2 |Top 10 canonical pathways from each subgroup vs. matching controls through IPA from microarray data.

All cases All EA All AA EA RBP+ EA RBP− AA RBP+ AA RBP−

EIF2 signaling Interferon signaling EIF2 signaling Interferon

signaling

Antigen

presentation

pathway

EIF2 signaling Regulation of IL-2

expression in

activated and

anergic T

lymphocytes

Interferon signaling Antigen presentation

pathway

Activation of IRF

by cytosolic

pattern

recognition

receptors

Activation of IRF

by cytosolic

pattern

recognition

receptors

OX40 signaling

pathway

Regulation of

eIF4 and p70S6K

signaling

Glucocorticoid

receptor signaling

Antigen presentation

pathway

Role of pattern

recognition

receptors in

recognition of

bacteria and viruses

Angiopoietin

signaling

Antigen

presentation

pathway

Autoimmune

thyroid disease

signaling

mTOR signaling CD28 signaling in

T helper cells

Activation of IRF by

cytosolic pattern

recognition

receptors

Retinoic acid

mediated apoptosis

signaling

Regulation of

eIF4 and p70S6K

signaling

Role of pattern

recognition

receptors in

recognition of

bacteria and

viruses

Allograft rejection

signaling

Activation of IRF

by cytosolic

pattern

recognition

receptors

T cell receptor

signaling

IL-12 signaling and

production in

macrophages

Activation of IRF by

cytosolic pattern

recognition

receptors

Hypoxia signaling

in the

cardiovascular

system

IL-15 production Interferon

signaling

Interferon

signaling

Glycosphingolipid

biosynthesis -

globoseries

mTOR signaling Graft-vs.-host

disease signaling

Role of RIG1-like

receptors in

antiviral innate

immunity

Retinoic acid

mediated

apoptosis

signaling

Graft-vs.-host

disease signaling

Apoptosis

signaling

Biosynthesis of

steroids

Role of pattern

recognition

receptors in

recognition of

bacteria and viruses

Dendritic cell

maturation

mTOR signaling Role of RIG1-like

receptors in

antiviral innate

immunity

Cytotoxic T

lymphocyte-

mediated

apoptosis of

target cells

Colorectal cancer

metastasis

signaling

April mediated

signaling

TNFR2 signaling IL-15 production Hereditary breast

cancer signaling

Communication

between innate

and adaptive

immune cells

Crosstalk

between

dendritic cells and

natural killer cells

TNFR2 signaling Reelin signaling in

neurons

Production of nitric

oxide and reactive

oxygen species in

macrophages

Autoimmune thyroid

disease signaling

Role of PI3K/AKT

signaling in the

pathogenesis of

influenza

Dendritic Cell

maturation

Type I diabetes

mellitus signaling

IL-8 signaling Glycosphingolipid

biosynthesis –

neolactoseries

IL-15 production Communication

between innate and

adaptive immune

cells

TNFR2 signaling Starch and

sucrose

metabolism

Dendritic cell

maturation

P2Y purigenic

receptor signaling

pathway

Mitotic roles of

polo-like kinase

IPA, ingenuity pathway analysis; EA, European-American; AA, African-American; RBP+, anti-RNA-binding-protein (RBP) antibody positive; RBP−, RBP antibody neg-

ative; eIF2, eukaryotic initiation factor 2; IRF, interferon-regulatory factor; mTOR, mammalian target of rapamycin; TNFR2, tumor necrosis factor receptor 2; eIF4,

eukaryotic initiation factor 4; RIG1, retinoic acid-inducible gene 1; PI3K, phosphatidylinositol 3-kinase; OX40=CD134.
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Table 3 | P values for IPA IFN-related canonical pathways from microarray data.

All SLE cases

(n=33)

EA SLE cases

(n=16)

AA SLE cases

(n=17)

Interferon signaling 1.53×10−10 6.55×10−12 0.29

Activation of IRF by cytosolic pattern recognition receptors 6.14×10−5 2.74×10−5 8.46×10−5

Role of RIG1-like receptors in antiviral innate immunity 1.63×10−4 5.85×10−7 0.044

Role of PKR in interferon induction and antiviral response 0.020 0.038 0.091

Role of pattern recognition receptors in recognition of bacteria and viruses 0.0097 0.0064 0.0011

Communication between innate and adaptive immune cells 0.0098 0.0013 Not listed

IPA, ingenuity pathway analysis; IFN, interferon; SLE, systemic lupus erythematosus; EA, European-American; AA, African-American; IRF, interferon-regulatory factor;

RIG1, retinoic acid-inducible gene 1; and PKR, protein kinase R.

Table 4 | P values from IPA IFN-related canonical pathways from microarray data.

EA RBP+ EA RBP− AA RBP+ AA RBP−

Interferon signaling 5.8×10−11 10.6×10−5 1.3×10−7 0.063

Activation of IRF by cytosolic pattern recognition receptors 1.1×10−6 0.016 2.86×10−8 0.25

Role of RIG1-like receptors in antiviral innate immunity 2.0×10−5 0.030 0.0014 Not listed

Role of PKR in interferon induction and antiviral response 0.0073 0.042 9.0×10−4 Not listed

Role of pattern recognition receptors in recognition of bacteria and viruses 1.8×10−4 0.028 5.8×10−4 0.31

Communication between innate and adaptive immune cells 0.0043 0.0064 0.023 Not listed

IPA, ingenuity pathway analysis; IFN, interferon; EA, European–American; AA, African-American; RBP+, anti-RNA-binding-protein (RBP) antibody positive; RBP−, RBP

antibody negative; IRF, interferon-regulatory factor; RIG1, retinoic acid-inducible gene 1; and PKR, protein kinase R.

antibody status did have an effect on expression of IFIGs, and thus
anti-dsDNA antibodies are contributing to the IFN-induced gene
expression in this group. Strikingly, anti-dsDNA antibodies had
no impact upon IFN-induced gene expression in the RBP− AA
group. This was somewhat unexpected and reinforces the idea of
RBP antibody dependence in the AA ancestral background.

DISCUSSION
To our knowledge, this was the first study to show differential gene
expression patterns in various subgroups of SLE patients strati-
fied by ancestral background and presence or absence of anti-RBP
antibodies. Through microarray whole genome expression with
pathway analysis followed by independent qPCR validation, we
demonstrated that activation of IFN-related pathways depended
on presence of anti-RBP antibodies in AA patients, but not in EA
patients. The results also support the model suggested by our pre-
vious study in which African ancestry increases the likelihood of
SLE-associated autoantibody formation, leading to higher IFN-α
activity (41). In the present study, we observe a similar dependence
of IFN-induced gene expression upon anti-RBP antibodies in AA
patients, and this is not shared with the EA patients, and this novel
observation should be confirmed in larger cohorts.

Autoantibody immune complexes present in SLE patients have
been implicated as major endogenous IFN-inducers, likely via the
endosomal TLR and IFN regulatory factor pathways (43–45). Our
data would suggest that the classical activation of IFN-related path-
ways observed in SLE patients is highly dependent upon anti-RBP
antibodies in AA SLE patients, and this dependence is not shared by
EA SLE patients. The additional IFN-pathway activation observed

in EA subjects is partly due to the presence of anti-dsDNA anti-
bodies. As shown in Figure 3 there are a number of anti-dsDNA
and anti-RBP negative EA patients that show over-expression of
IFN-induced genes, while in AA SLE patients lacking RBP anti-
bodies, IFN-induced gene expression resembles the AA control
population. This heterogeneity in the dependence of IFN-related
pathways on autoantibody profile may reflect differential activa-
tion of the TLR pathway is SLE patients of different ancestral
backgrounds. Anti-RBP antibodies would be expected to activate
the RNA-sensing TLRs, while anti-dsDNA antibody immune com-
plexes would be expected to activate TLR 9. Genetic variations in
the TLR pathway genes such as IRF5 and IRF7 have been associated
with risk of SLE, and with gain of function within the type I IFN
pathway (46, 47). In our previous study looking at genetic varia-
tion at the IRF7/PHRF1 locus, we observed two different high IFN
genetic effects in AA subjects, while we saw only one in EA sub-
jects (46). This example demonstrates genetic diversity between
world populations in the TLR/IRF system, and could support the
idea that this pathway may more prominent in AA subjects and
help to explain the findings we report here. Additionally, many of
the genetic polymorphisms we have discovered that are associated
with increased type I IFN in SLE patients differ between ancestral
backgrounds (34, 48), and this would also support the idea that
the pathway will be more or less prominent in different ancestral
backgrounds.

There were EA SLE patients that had increased expression
of IFN-induced genes who did not have either anti-RBP or
anti-dsDNA autoantibodies. These data suggest that IFN-related
pathways may be activated through different mechanisms in this
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FIGURE 1 | Pathway diagram illustrating the type I and type II IFN
pathways in SLE patient subsets. Genes which are up-regulated are
shaded red, with increasingly dark red shading indicating a greater
degree of over-expression in cases as compared to controls of the same

ancestral background. AA, African-American; EA, European-American;
RBP+, anti-RNA-binding-protein (RBP) antibody positive; and RBP−, RBP
antibody negative. Pictures generated using Ingenuity Pathway Analysis
software.

ancestral background. All patients in our study had ANA, and it
may be that other nuclear antigen/autoantibody complexes could
have triggered the TLR/RLR system leading to IFN-pathway acti-
vation in these subjects. It is also possible that other molecules
such as HMGB1, which can bind with immune complexes, may
be activating an inflammatory cascade in plasmacytoid dendritic
cells resulting in activation of IFN pathways (49). Another possi-
bility is that there is an increased sensitivity to IFN signaling or
a downstream activator of IFN-induced gene expression in these
patients. We have observed some SLE patients in previous stud-
ies that have high IFN-induced gene activity in their PBMC with
essentially normal circulating type I IFN activity from the same
sample (50, 51).

This surprising diversity in IFN-pathway activation between
different SLE patient subgroups is relevant to clinical care, as ther-
apeutics directed at IFN or IFN-related pathways are being actively
developed (52). It seems likely that these IFN-pathway targeting

therapeutics will be characterized by heterogeneity in treatment
response, and our results may suggest some groups that are likely
to be better responders that could be predicted without having to
run a gene expression chip prior to therapy. The RBP− AA group
is very interesting in this regard, as it seems that this patient group
may represent a distinct subset of SLE patients which is not as
IFN-dependent as other groups of SLE patients. This may repre-
sent a significant difference in disease pathogenesis, which could
be important in planning targeted therapies.

CONCLUSION
Systemic lupus erythematosus is a heterogeneous disease with
differences in disease incidence, clinical manifestations, serolog-
ical findings, and genetic risk factors between ancestral back-
grounds (7, 29–32, 36–39). Perhaps it is not very surprising
to find heterogeneity in the activation of molecular pathways
between ancestral groups, and it seems likely that different
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FIGURE 2 |Type I IFN-induced gene expression in SLE patient subgroups
and controls. Expression of three genes (IFIT1, MX1, and PKR) are shown in
both patients with anti-RNA-binding protein antibodies (RBP+), and those

who lack those antibodies (RBP−). Central tendency shown is a median, with
error bars representing the interquartile range. P values generated by
Mann–Whitney U test.

FIGURE 3 |Type I IFN-induced gene expression in RBP−SLE patient
subgroups and controls in regards to of anti-dsDNA antibodies.
Expression of three genes (IFIT1, MX1, and PKR) are shown in both patients

with anti-dsDNA antibodies (DNA+), and those who lack those antibodies
(DNA−). Central tendency shown is a median, with error bars representing
the interquartile range. P values generated by Mann–Whitney U test.

pathogenic factors will be relevant in RBP− AA patients as
compared to the RBP+ SLE patients. SLE is a complex autoim-
mune disease, and understanding heterogeneity in the molecular
pathogenesis in lupus will be crucial in informing therapeu-
tic and diagnostic strategies. This study demonstrates the rele-
vance of careful patient characterization and including patients
from more than one ancestral background in biological studies
of SLE.
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Introduction: Autoimmune diseases such as systemic lupus erythematosus, rheumatoid
arthritis, and multiple sclerosis affect millions of people worldwide. Interferon regulatory
factor 5 (IRF5) contains polymorphisms associated with these autoimmune diseases.Two
of these functional polymorphisms are found upstream of the IRF5 gene. rs2004640, which
is a single nucleotide polymorphism and the CGGGG insertion/deletion (indel) were studied.
IRF5 uses four different promoters for its four first exons: 1A, 1B, 1C, and 1D. Each promoter
was analyzed, including functional differences due to the autoimmune-risk polymorphisms.

Results: IRF5 promoters were analyzed using ChIP-Seq data (ENCODE database) and the
FactorBook database to define transcription factor binding sites.To verify promoter activity,
the promoters were cloned into luciferase plasmids. Each construct exhibited luciferase
activity. Exons 1A and 1D contain putative PU.1 and NFkB binding sites. Imiquimod, a
Toll-like receptor 7 (TLR7) ligand, was used to activate these transcription factors. IRF5
levels were doubled after imiquimod treatment (p < 0.001), with specific increases in the
1A promoter (2.2-fold, p=0.03) and 1D promoter (2.8-fold, p= 0.03). A putative binding
site for p53, which affects apoptosis, was found in the promoter for exon 1B. However,
site-directed mutagenesis of the p53 site showed no effect in a reporter assay.

Conclusion:The IRF5 exon 1B promoter has been characterized, and the responses of each
IRF5 promoter to TLR7 stimulation have been determined. Changes in promoter activity
and gene expression are likely due to specific and distinct transcription factors that bind to
each promoter. Since high expression of IRF5 contributes to the development of autoim-
mune disease, understanding the source of increased IRF5 levels is key to understanding
autoimmune etiology.

Keywords: IRF5, alternative promoters, autoimmune disease risk, interferon, systemic lupus erythematosus

INTRODUCTION
Alternative splicing is a method of making different transcripts
from one genomic region. One type of alternative splicing involves
the use of multiple first exons. This is termed alternative pro-
moter splicing, since each first exon must have its own promoter.
Alternative promoter splicing occurs in around half of human
genes (1).

The gene interferon regulatory factor 5 (IRF5) is a transcrip-
tion factor which controls immune signaling, cytokine expression,
the cell cycle, and apoptosis (2–5). It exhibits alternative promoter
splicing and has four different first exons that are currently known.
The start codon for IRF5 is in exon 2, therefore the use of different
first exons does not directly alter the protein sequence. Instead the
four alternative promoters are four pathways to make the same
protein. The first exons are 1A, 1B, 1C, and 1D.

The IRF5 gene contains several GWAS-identified polymor-
phisms associated with autoimmune diseases. Among them, most
do not have an assumed effect. Although IRF5 contains several
polymorphisms associated with autoimmunity, only four have

been identified as functional polymorphisms (6). Two of these are
in the promoter or untranslated regions of IRF5 where the poly-
morphisms may have a direct effect on IRF5 expression: a single
nucleotide polymorphism (SNP) near exon 1B called rs2004640,
and a copy-number variant near exon 1A called rs77571059
(Figure 1). The rs77571059 polymorphism is an insertion/deletion
(indel) of 5 bp, and is commonly referred to as a CGGGG indel.
This study examines the promoters of IRF5, with information
on how these two functional polymorphisms play a role in IRF5
expression. A general trend of these polymorphisms is to increase
levels of IRF5.

The rs2004640 SNP is a G or T polymorphism near the 3′ end
of exon 1B. The SNP is within the splice junction, such that when
the G allele is present, the splice junction is not recognized and
exon 1B cannot be spliced onto exon 2 (8). Unspliced transcripts
are usually targeted by non-sense mediated decay (9). The risk T
allele at this locus is associated with systemic lupus erythematosus
(SLE) in multiple ethnic groups (8, 10–13) rheumatoid arthritis
(14, 15), systemic sclerosis (16), multiple sclerosis (17), ulcerative
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FIGURE 1 | Interferon regulatory factor 5 mRNA and the position of the
rs2004640 SNP and CGGGG indel. (A) rs2004640 is at the splice acceptor
site for exon 1B, and the CGGGG indel is 64 bp upstream from the
transcription start site for exon 1A. The genomic region of IRF5 is drawn to
scale, but with introns reduced in size 10:1. The protein coding and
untranslated regions are shown above. Only one first exon is used per RNA
transcript; therefore each first exon corresponds to the untranslated region for
that transcript. (B) The position of the rs2004640 SNP on pre-mRNA. Before
splicing, the messenger RNA has either a U (encoded by the risk T allele) or
G. The colored letters shown in the WebLogo (the nucleotide stacks of varying
heights represent the consensus recognition sites for the spliceosome. The
height of the stack represents how often those nucleotides are found at that

position, and thus the high GT represents a strong preference for recognizing
GT at the intron boundary. This matches in the risk T allele (GT at the intron
boundary), but not the protective allele (GG at the intron boundary). A person
homozygous for the protective allele cannot splice IRF5 mRNA that begins
with exon 1B. Instead of a functional protein, the resultant mRNA would
encode a non-functional protein and be targeted for non-sense mediated
decay. Splice junction WebLogos are from Stephens and Schneider (7).
(C) The CGGGG indel is an insertion/deletion of a CGGGG repeat upstream of
exon 1A, and it is part of exon 1A’s promoter. When there are four copies,
additional SP1 transcription factors (which bind to GGCGG) can bind to the
promoter, altering transcription levels. UTR, untranslated region; SNP, single
nucleotide polymorphism.

colitis (18), and Sjögren’s syndrome (19). Autoimmune-risk hap-
lotypes that include rs2004640 exhibit high IRF5 levels (6, 20), as
well as high levels of IFNα and TNFα (21, 22).

The CGGGG indel (rs77571059) is found 64 bp upstream of
the transcription start site for exon 1A. Each allele has either three
(3×) or four copies (4×) of the CGGGG repeat sequence. The
4× copy-number variant allows binding of additional SP1 tran-
scription factors (23). This 4× variant is associated with SLE (10),
Sjögren’s syndrome (24), multiple sclerosis (17), Crohn’s disease
and ulcerative colitis (18), and acute coronary syndrome (25). The
CGGGG 4× variant is associated with increased expression of IRF5
itself (23), as well as TNFα, IL-12p40, IL-8, IL-1b, and IL-10 (22).

Interferon regulatory factor 5 exons 1A, 1B, 1C, and 1D each
have a distinct transcriptional start site, and as is the case with
every first exon, each exon 1 of IRF5 has its own promoter. IRF5’s
four promoters have not been thoroughly characterized, although
previous studies on the 1A and 1C exons’ promoters revealed

that they are controlled in part by an IRF element (IRFE) and
an interferon stimulatory response element (ISRE), respectively
(26). Herein, we identify and characterize a putative promoter for
exon 1B, and hypothesize that the 1B promoter would be active
and regulated by stimuli that activate IRF5. We further hypothesize
that the 1B promoter would be regulated by p53.

Autoimmune diseases are caused by environmental triggers in
those with a genetic propensity. Increases in IRF5 expression due
to these promoter polymorphisms could lead to an autoimmune-
risk state. A hallmark of lupus and those at genetic risk for lupus
is the presence of heightened levels of interferon and interferon-
response genes; the interferon signature (27). IRF5 is a key gene in
the interferon response to viral infection. IRF5 is a transcription
factor whose activation leads to the interferon signature and the
control of multiple genes involved in inflammation and immunity
(28). It is primarily expressed in B cells, monocyte-derived cells,
and plasmacytoid dendritic cells (pDCs) (2).
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For SLE, an environmental trigger is likely to be Epstein–Barr
virus (EBV) infection (29, 30). EBV infection affects IRF5 and
IRF7 signaling, and has been associated with lupus through several
different mechanisms (30–32). Interestingly, EBV infection alters
IRF5 splicing to produce a dominant negative variant, suppress-
ing the interferon response (33). For these studies, EBV-infected B
cells are used, because cells with the appropriate genotypes can be
immortalized and used in multiple experiments. As B cells, these
cells are relevant to autoimmune disease and express IRF5. The
incorporation of EBV into the model cells means that our results
must be interpreted with caution, as it is possible that the major
effects of these risk polymorphisms regulate or alter EBV infec-
tion, not IRF5 directly. These results must therefore be interpreted
with caution. However, if it is found to be the case that these
IRF5 polymorphisms affect EBV infection, that would likely pro-
vide even more exciting directions to pursue given the potential
relationship between EBV infection and lupus.

RESULTS
IRF5’S FOUR PROMOTERS
Interferon regulatory factor 5 uses one of four first exons for each
molecule of mRNA – 1A, 1B, 1C, or 1D. Whether or not one of
the four first exons of IRF5 would be actively transcribed depends
on the cellular transcription factors that are able to bind it. A
putative IRF5 exon 1B promoter sequence was identified by using
the encyclopedia of DNA elements chromatin immunoprecipita-
tion sequencing (ENCODE ChIP-Seq) data set (34). This analysis
includes a list of transcription factors known to bind to the puta-
tive promoter sequence. An analysis of the promoters for each
of the other three first exons of IRF5 was performed using the
same database. This list represents results from many experiments
which show transcription factors that bind to this genomic region
of DNA (Figure 2A).

The transcription factors listed have also been associated
with specific binding sites. WebLogos, which visualize consensus

A B

C

FIGURE 2 | Promoter analysis of each first exon of IRF5. (A) ENCODE data
shows results of ChIP-Seq analyses in the promoter region of IRF5. (B) The
consensus search terms generated from FactorBook, with the TCF12
consensus binding site as an example (35). This data was used to manually
define the nucleotide search terms shown. (C) The final analysis of potential
binding sites is shown along the genomic DNA promoter sequences, with

color-coded boxes representing the binding sites or transcription factors
shown in the key. AP, activator protein; BRE, B-response element; CTCF,
CCCTC binding factor; TCF, transcription factor; EBF, early B cell factor; IRF,
interferon regulatory factor; NFκB, nuclear factor kappa light chain enhancer
of activated B cells; PAX, paired box; PU, purine rich; SP, specificity protein;
STAT, signal transducer and activator of proteins; TATA, thymidine adenine.
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binding sites (36), were generated de novo for each ENCODE
transcription factor tested, and compiled in the online database
FactorBook (35). The consensus sites were converted manually
into an ambiguous DNA code search term, where for example W
(weak) represents an A or a T nucleotide (Figure 2B). The consen-
sus search term was then used to search the proximal promoters
(∼200 bp upstream from the +1 sites) to encounter a proposed
binding site. Consensus search term screening was performed
using MEGA (37).

Several transcription factors’ binding sites were found in
the regions upstream of transcription start sites (Figure 1C).
The start sites were taken from reference sequences for exons
1A, 1B, and 1C, and the sequence for variant 12 of IRF5
for exon 1D (no reference sequence exists at present for exon
1D). The source sequences are GenBank IDs NM_002200.3,
NM_032643.3, NM_001098627.2, and EU258897.1 for exons 1A,
1B, 1C, and 1D, respectively. The workflow and results are
shown in Figure 2, with transcription factor 12 (TCF12) as an
example.

EACH IRF5 PROMOTER EXHIBITS TRANSCRIPTIONAL ACTIVITY
The promoters for the four first exons of IRF5 contain different
potential transcription factor binding sites. The 1A promoter con-
tains putative binding sites for paired box 5 (PAX5), PU.1, SP1,
and TCF12 which binds to enhancer boxes (E boxes). An extra
SP1 binding site appears in those with the CGGGG 4× indel.
Exon 1B’s promoter was the only IRF5 promoter with a p53 bind-
ing site. This is discussed in more detail below. 1B also has SP1,
TCF12, IRF4, and early B cell factor (EBF) sites. The 1C promoter
was the only promoter with STAT2, activator protein 1 (AP1),
and Myc binding sites; it also has SP1 and IRF4 sites. The 1D
promoter evaluation showed potential binding sites for only four

transcription factors: SP1, CCCTC binding factor (CTCF), IRF4,
and NFκB.

To determine activity levels of each promoter, they were cloned
using PCR and inserted into luciferase reporter plasmids. In addi-
tion to the 1B, 1C, and 1D promoters, there are two distinct
versions of the 1A promoter, representing the two rs77571059
polymorphisms. One has the 4× variant of the CGGGG indel
(1Arisk), and the other has the 3× variant (1Aprotective). The 1B
promoter was cloned using nested PCR to avoid an inverted repeat
sequence located ∼2 kbp upstream. The inverted repeat is 1.8 kbp
in length, and the two copies have 82.8% identity (34).

A luciferase assay was performed using the pGL4 plasmid.
The promoters of IRF5 were inserted upstream of the luciferase
gene and promoter activity was evaluated by measuring lumines-
cence. The activity levels of the promoters were analyzed in several
cell types since distinct transcription factors would be active in
different cell types. Three types of immune cells were used: lym-
phoblastoid cell lines (LCLs), EBV-transformed human B cells
that were generated from three healthy volunteers; U937 cells,
a commercially available human monocyte cell line; and Jurkat
cells, a commercially available human T cell line. Jurkat cells were
used as the negative control, since T cells do not express high
levels of IRF5. Cells were electroporated with each of the IRF5
promoter luciferase plasmids. A second plasmid, which expresses
enhanced green fluorescent protein (eGFP), was cotransfected as
a transfection control for each construct (38). Values for luciferase
expression were then normalized to the fluorescence level to
account for transfection efficiency.

Luciferase assay results showed that the 1A promoters (1Arisk

and 1Aprotective) demonstrated significantly higher transcriptional
activity than the other three promoters in LCL and Jurkat cells
(p= 0.0009 and p= 0.016, respectively) (Figure 3). As expected,

FIGURE 3 | Interferon regulatory factor 5 promoter activity in immune
cells. The luciferase plasmids were transfected by electroporation of three
cell types: LCL, U937 cells, and Jurkat cells. A control GFP-encoding
plasmid was also used in each sample to normalize transfection efficiency.
ANOVA analysis revealed statistically significant variation between groups
(p=0.014); therefore t -tests were used to determine where the variation
was found. The levels of transcription were significantly lower in Jurkat cells
compared to LCL and U937 cells (p < 0.01). IRF5 is not highly expressed in
T cells such as Jurkat cells, but is normally expressed in B cells and

monocytes (39). The 1A promoters (1Arisk and 1Aprotective) displayed higher
activity than the 1B, 1C, or 1D promoters in LCL and Jurkat cells
(p=0.0009 and p=0.016, respectively). In LCLs the 1Arisk promoter activity
was higher than 1Aprotective promoter activity (p=0.019). The putative 1B
promoter acted like the 1A promoter in that expression was significantly
higher in LCLs than in Jurkat cells (p=0.027). LCL, lymphoblastoid cell line;
RLU, relative luminescence units; RFU, relative fluorescence units. In some
samples, the first exon was not detectable, which is why there is some
variation in sample number.
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expression from all IRF5 promoters was significantly lower
(p < 0.01) in Jurkat cells when compared to U937 or LCL cells.
When comparing LCL to U937 cells, there was no significant
difference in IRF5 promoter activity (p= 0.38).

The autoimmune-risk polymorphisms affected the activity of
the promoters. In LCLs the 1Arisk promoter activity was signifi-
cantly higher than 1Aprotective promoter activity (p= 0.019). The
1B promoter, which is only relevant when the risk allele rs2004640
is present, showed activity in LCLs and U937 cells, indicating
that it is an active promoter in the same cell types as the other
promoters.

THE 1A AND 1D PROMOTERS ARE AFFECTED BY TLR7 LIGATION
The levels of IRF5 expression increase due to several signaling
pathways, one of which is the Toll-like receptor 7 (TLR7) pathway.
Endosomal TLRs such as TLR7 require the ligand to first be endo-
cytosed into the cells, and then merged with the endosome that
contains TLR7. Most endosomal TLRs bind to nucleic acids.

Toll-like receptor 7 ligation is an important method of acti-
vation for pDCs (40, 41). pDCs can produce large amounts of
interferon alpha in response to immunostimulatory molecules
such as nucleic acids. This is an important activation pathway
in autoimmune disease (42). Single stranded RNA is the natural
agonist for TLR7. TLR7 can also be activated by small synthetic
compounds such as the imidazoquinolines, namely imiquimod
and resiquimod. Imiquimod is a TLR7 ligand and resiquimod
is a ligand for TLR7 and TLR8 (43). Imiquimod is used clini-
cally as a topical cream as a form of treatment for genital warts
and certain cancers. It activates the immune system, recruiting
inflammatory mediators to kill the virus-infected or cancerous
cells (44).

To verify that imiquimod treatment was stimulating the cells
through TLR7, gene expression of interferon-response genes and
cytokine gene expression were monitored using real-time PCR.
Imiquimod stimulation led to significantly increased expression
of the interferon-induced genes CCR7 and NOXA, while expres-
sion of the calreticulin was not significantly affected (Figure 4).
Expression of the genes for the cytokine IL-6 was substantially
upregulated (71-fold increase, p= 0.028). IL-6 expression is a
common readout for stimulation through TLR7 (45, 46). Expres-
sion of the cytokine IL-10 is also significantly, though slightly,
increased (1.5-fold, p= 0.038) after treatment with imiquimod
(Figure 4). These results indicate that imiquimod treatment did
in fact stimulate the cells.

Imiquimod treatments were performed to determine the effects
of stimulation on the activity of each IRF5 promoter. First exon-
specific quantitative PCR was used to determine changes in the
levels of each first exon after imiquimod stimulation. Cells were
treated with imiquimod at 25 µg/ml for 24 h, and then cDNA
was prepared from an RNA extract of treated cells. This was
done for LCLs generated from 20 healthy individuals. As expected,
IRF5 levels increased when cells were treated with imiquimod –
a 1.9-fold increase when normalized to the housekeeping gene,
β-glucuronidase (β-GUS) (Figure 5A).

The amounts of each first exon were also measured and com-
pared to β-GUS by quantitative PCR. Several samples yielded
undetectable levels of first exon transcripts, and were thus not
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FIGURE 4 | Imiquimod stimulates LCLs to express cytokines and
interferon-response genes. LCLs were generated by EBV infection of cells
from healthy volunteers. Cells were treated with imiquimod. (A) Expression
of the interferon-response genes CCR7, NOXA, and Calreticulin were
measured using SYBR Green real-time PCR. The figure shows the fold
increase in gene expression after imiquimod stimulation for each gene.
CCR7 and NOXA were significantly upregulated after imiquimod stimulation
(p=0.008 and p=0.003, respectively). (B) Expression of cytokine RNA
was measured using SYBR Green real-time PCR. IL-6 expression was
upregulated by 71-fold after imiquimod stimulation (p=0.028). IL-10
expression was also significantly upregulated (p=0.038), although to a
much lesser extent, at 1.5-fold. N =12 for each experiment.

included in the analysis, resulting in the variation in sample num-
ber noted in Figure 5. The levels of exons 1A and 1D increased by
at least twofold after treatment with imiquimod when compared
to β-GUS (Figure 5B).

The effect of the rs2004640 polymorphism on imiquimod stim-
ulation on was examined using real-time PCR. LCLs with risk or
protective genotypes were stimulated with imiquimod, and the
change in expression of interferon-stimulated genes was compared
between risk and protective cells. IRF5 expression was higher in
risk cells by nearly 1.7-fold (p-0.021). CCR7 did not increase as
much after imiquimod stimulation in the risk cells compared to
the protective (0.77-fold, p= 0.05). However, the risk cells demon-
strated a small increase in NOXA expression after imiquimod
stimulation,and the Calreticulin levels decreased less (by 1.35-fold,
p= 0.05) in the risk cells than in the protective (Figure 6). These
results show a small, but consistent increase in responsiveness to
imiquimod stimulation in the cells with the risk allele.
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FIGURE 5 | Imiquimod caused increased IRF5 transcription through
exons 1A and 1D. All mRNA levels were measured in LCLs generated from
healthy individuals. Levels were determined by TaqMan-based quantitative
PCR using the 2−∆∆CT method. (A) The levels of IRF5 were 1.9-fold higher in
treated cells (p=0.0002). (B) The levels of exon 1A increased 2.2-fold
(p=0.030) and exon 1D increased by 2.8-fold (p=0.033). All fold-increase

values were normalized to the β-GUS housekeeping gene. The numbers in
parentheses indicate the sample size. Analysis of variance was performed
including each first exon and stimulation state as groups. This analysis
revealed statistically significant variation (p < 0.0001). Statistical significance
between individual groups was determined by paired t -test. IRF, interferon
regulatory factor.

The effect of EBV infection on IRF5 expression and imiquimod
stimulation were analyzed. Ramos cells, a B cell line that is simi-
lar to LCL but is EBV negative, were stimulated with imiquimod
and expression of IRF5 was compared to IRF5 expression in LCLs.
After two experiments, there was a <1.2-fold difference in IRF5
expression between the EBV positive and EBV-negative cell lines.
After imiquimod stimulation, there was similarly only a very small
difference between the EBV positive LCL and EBV-negative Ramos
cells (Figure 6B).

THE rs2004640 SNP’S ROLE IN p53 BINDING AND ACTIVATION
Mutagenesis of the 1B promoter p53 binding site did not alter
transcriptional activity.

The promoter analysis described above revealed a potential p53
binding site. p53 binds as a tetramer to two copies of the sequence
rrrCwwGyyy, with a spacer of 0–13 nt between the copies (189).
A close match to this sequence was found in the 1B promoter
(Figure 7B). This is suggestive because of the potential role IRF5
may play in apoptosis dysregulation in SLE. IRF5 is also proapop-
totic in a p53-independent manner (47), and thus if p53 activates
IRF5, apoptosis levels would be additively altered. Should p53 can
control the 1B promoter, apoptosis would be altered in rs2004640
risk cells because the 1B promoter is only used in cells with the
rs2004640 risk allele.

To test whether activated p53 protein can indeed bind to the
p53 binding site, the plasmid which contains the 1B promoter was
mutated using site-directed mutagenesis. Mutations were made
to the wild-type sequence such that p53 should not be able to
bind. The consensus binding site contains four conserved C or
G bases which were mutated to A or T on the luciferase plas-
mid (Figure 7B). The wild type and p53-mutant luciferase plas-
mids were transfected by electroporation into three different LCLs

generated from healthy volunteers. After 24 h to allow for plasmid
expression, cells were either treated with etoposide or left untreated
for 48 h. The levels of luciferase activity stayed fairly constant in
the wild-type plasmid when treated with the etoposide. However,
when the p53 binding site was mutated, thus inhibiting binding
of p53, there is an slight, but non-significant increase in activ-
ity when treated with the etoposide versus being left untreated
(Figure 7A). This finding suggests that if p53 does in fact bind
to the IRF5 exon 1B promoter, it is likely inhibitory rather than
stimulatory.

DISCUSSION
The CGGGG indel polymorphism within the 1A promoter has
previously been shown to alter transcription factor binding. When
cells have the 4× variant, an additional SP1 binding site is cre-
ated. This has been shown to increase IRF5 in PBMCs (48), but
decrease 1A-specific IRF5 transcripts in thymic cells (49). Both
versions of the 1A promoter showed activity in HEK293T cells
and Raji cells. As expected, SP1 sites were found in our analysis
of the 1A promoter, including an extra SP1 binding site in those
with the CGGGG 4× indel. SP1 is active during development, cell
growth, apoptosis, differentiation, and immune and DNA damage
responses (50).

The 1A promoter has a PAX5 binding site, a gene that activates
B cells at early, but not late stages of development (51). There is an
E box, and TCF12 is a member of the basic helix-loop-helix group
of transcription factors which binds to E boxes (52). TCF12 was
shown to bind somewhere in the promoter region of IRF5 in the
ENCODE dataset (34), and the putative E box in 1A’s promoter is
a likely site. TCF12 is known to be expressed in B cells and T cells
(39). A PU.1 site is in the 1A promoter as well; PU.1 activates gene
expression during B cell development and in myeloid cells (53).
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FIGURE 6 |The 2004640 risk allele affects responsiveness toTLR7
stimulation. (A) LCLs with either risk or protective genotypes were treated
with imiquimod to stimulate TLR7. Expression of interferon-response genes
before and after stimulation was compared using SYBR Green real-time
PCR. RNA input was normalized for each sample using the housekeeping
gene GAPDH. Increase after imiquimod stimulation for risk and protective
cells is shown. IRF5 expression is higher after imiquimod stimulation in the
risk cells, by 1.67-fold (p=0.021). Although Calreticulin expression
decreases in both the risk and protective cells, it does so less in the risk
cells (p-0.05). CCR7 increases less in the risk cells after imiquimod
treatment (p=0.05) N =12 (B). EBV status does not dramatically effect
IRF5 levels. IRF5 expression was compared between LCLs and Ramos
cells, a Burkitt’s lymphoma-derived B cell line that is EBV negative. IRF5
levels were not dramatically different between cell lines N =2.

The 1A promoter showed increased activity when cells were
stimulated with the TLR7 agonist imiquimod. This may be
through the PU.1 site through IRF7. IRF7 is known to be acti-
vated by TLR7 (54), and PU.1 binds to a similar GAAN(N)GAA
motif to IRFs. Further work is necessary to determine in which
cell types or with which stimuli the 1A promoter is most active,
and in what instances the CGGGG 4× variant alters this activity.

A previous report by Mancl et al. evaluated the 1A and 1C
promoters (26). The 1A promoter was activated by herpes sim-
plex, Newcastle disease and vesicular stomatitis viruses in PBMCs,
Daudi, and THP-1 cells; respectively; as evidenced by increased
transcription of IRF5. A luciferase reporter gene assay also showed
that IRF5’s 1A promoter is constitutively active and contains an
IRFE consensus binding site. However, the promoter region used
was a 596-bp region determined by a 5′ rapid amplification of
cDNA ends (5′RACE) experiment and is 939 bp upstream of the
GenBank reference sequences for exon 1A, and even extends past
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FIGURE 7 | Interferon regulatory factor 5 1B promoter activity is not
regulated by direct p53 binding. (A) Different LCLs generated from
healthy volunteers were electroporated with the 1Bwt or the 1Bp53*

promoter luciferase plasmid. Cells were treated with 0.5 mM etoposide or
left untreated. Despite the presence of a putative p53 binding site, DNA
damaging treatment did not affect promoter activity; neither did mutation of
the p53 site. (B) The putative p53 binding site in IRF5’s exon 1B promoter,
with a WebLogo of the p53 consensus binding site (29) to indicate
important bases and matches. The height of the base represents the
frequency of that nucleotide. Site-directed mutagenesis was performed to
mutate the binding site at the critical C and G bases as shown. UV,
ultraviolet; wt, wild type; *, mutant.

the 1D exon by 714 bp. The results of their luciferase assay can-
not therefore be compared with the promoter analysis performed
in this work. This work narrows the DNA regions studied and
separates them into each of the four unique promoter elements,
demonstrating that each are active promoters. This work also con-
firms that the 1A promoter is the strongest and is activated by
imiquimod, and that the 1D promoter is also strongly activated by
this stimulus.

The ability of a cell to use and splice the 1B exon is indepen-
dent of its promoter usage. The 1B promoter is active in persons
with both the risk and protective polymorphisms at rs2004640,
yet the protective sequence would result in a non-sense transcript,
as splicing would not be possible. The risk T allele allows for the
exon 1B transcript to be spliced onto exon 2 and this is evidenced
by the correlation between the risk T allele and increased levels of
both IRF5 and exon 1B usage. The effects of the ability to use the
1B promoter can also be seen in the increased responsiveness of
the cells containing the risk allele to imiquimod.
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Interferon regulatory factor 5’s 1B promoter was predicted
to contain a p53 binding site. The only promoter tested which
increased in activity after inducing DNA damage was the 1B pro-
moter. The others showed a reduction in luciferase activity (data
not shown). The mutated version of the 1B promoter, which con-
tained an altered p53 binding site, showed a slight increase in
luciferase activity instead of a decrease, likely suggesting that any
p53 binding to this promoter region is inhibitory. The 1B pro-
moter contains SP1, IRF4, TCF12, and EBF binding sites. EBF is a
B cell-specific transcription factor (55). Further work is necessary
to reveal the stimuli or cell types that use the 1B promoter, as well as
the combinations of transcription factors that drive transcription.

During cloning experiments dealing with exon 1B and its
promoter, several sequencing reactions showed <100% sequence
identity to the target. It was soon discovered that the primers were
annealing to an upstream inverted repeat sequence. This repeat
necessitated nested PCR for cloning the 1B promoter. The repeat
length is 1.8 kbp, and the two copies have 82.8% identity (56). The
function of this repeat is unknown, but repeated sequences can act
as decoys for transcription factors, lowering transcription of the
intended target (57).

Usage of exon 1C is lower in cells with the rs2004640
autoimmune-risk factor. The 1C promoter contains putative SP1,
IRF4, and EBF sites. It was the only promoter with AP1, Myc, and
STAT2 binding sites. AP1 is a heterodimer of Fos and Jun proteins,
among others, which are common in immune signal transduction
(58). Myc is a proto-oncogene, and is essential for B cell prolifera-
tion (59). STAT2, when complexed with STAT1 and IRF9, is known
to be activated by type I interferon (60). The STAT2 binding sites
agree with a previous report on the 1C promoter of IRF5 by Mancl
et al. which said the promoter is interferon responsive (61). The
current analysis identified the same STAT2 binding site in the 1C
promoter. The difference in the two analyses is the assumed place-
ment of the initiation site. The analysis by Mancl et al. uses 5′RACE
to determine the initiation site and they calculate the STAT2 bind-
ing site is 96 bp downstream of that transcription initiation site.
According to our initiation site – taken from the GenBank refer-
ence sequences which use exon 1C – the site was 47 bp upstream
of the initiation site. Also of note, cells treated with imiquimod
had lower 1C levels in proportion to the total IRF5.

Usage of exon 1D is lower in cells with the rs2004640 T allele and
in cells with the CGGGG 4× allele. The 1D promoter evaluation
showed only four transcription factors’ binding sites: CTCF, IRF4,
NFκB, and SP1. NFκB is a target of TLR7 (62), and thus the pro-
moter should be activated by imiquimod treatment. This was the
case, and the 1D promoter nearly tripled in usage after imiquimod
treatment. The IRF5 promoter analysis also showed a CTCF bind-
ing site. It is interesting that the 1D promoter is the furthest exon in
the 5′ direction, and has putative CTCF sites, since CTCF is known
to block the spread of CpG methylation by acting as an insulator
(63). This may keep the other first exons – which are downstream
and have high GC content – free from heterochromatin.

Interferon regulatory factor 5 is proapoptotic in a p53-
independent manner (64, 65). This does not preclude modulation
by p53, and a p53 enhancer site in exon 2 of IRF5 has been shown
to activate IRF5 (66). p53 is a main regulator of apoptosis. Exon
1B’s promoter was the only one with a putative p53 binding site,

and cells with the rs2004640 risk T allele are the only cells that can
use exon 1B. Also, p53 can act as both a repressor and activator
of transcription depending on local factors (67). However, in our
assay, p53 did not significantly regulate the 1B promoter.

Epstein–Barr virus infection is a necessary complicating factor
when using LCLs as B cell lines. This is especially important since
EBV has been shown to affect IRF5 function (33, 68). The effect
of EBV in this study was limited by using EBV-infected LCLs as
both our risk and protective cell lines. Since cell lines of both geno-
types are transformed with EBV, the differences observed should
be comparable and the effect of EBV excluded. However, given
the importance of EBV infection in IRF5 activity and the devel-
opment of lupus, viral effects cannot be simply discounted. There
is a chance that differential effects of the risk polymorphisms on
EBV infection processes are affecting IRF5 activity. These effects
would be difficult to differentiate from direct effects on IRF5 activ-
ity. Either way, however, the results would be interesting and merit
further investigation.

Autoimmune diseases are complex, multifactorial disorders
with both genetic and environmental influences. The promoter
variations examined in these experiments are strongly linked to
risk for autoimmune diseases, including lupus, multiple sclero-
sis, and rheumatoid arthritis. Despite much effort, there has not
been a dramatic effect associated with these polymorphisms, or
really, most of the polymorphisms associated with autoimmune
disease. Rather than diminishing their importance, however, the
somewhat small effects observed here speak to the fine balance of
the immune system. It is likely that even relatively small changes
in gene regulation can lead to an imbalance in tolerance or activa-
tion of immune cells. Also, these genes are intertwined with other
pathways and systems to provide a complex fabric controlling the
level of immune responsiveness.

MATERIALS AND METHODS
PLASMID CONSTRUCTION AND LUCIFERASE ASSAY
All vectors were sequenced to confirm the proper sequence. The
plasmid pMax-GFP (Clontech) expresses the eGFP fluorescent
protein, and it was used to measure transfection efficiency. Elec-
troporations were performed using a Nucleofector device (Lonza).
The electroporation buffer was 5 mM KCl, 15 mM MgCl2, 15 mM
HEPES, 140 mM Na2HPO4, pH 7.2. Transfected cells were lysed
and assayed for fluorescence levels before assaying luciferase activ-
ity using the Luciferase Assay System (Promega) on a Fusion
αHT plate reader (Packard). Luciferase activity was evaluated in
proportion to the transfection efficiency.

CELL LINES
Peripheral blood samples were obtained from healthy volunteers
after informed consent following a protocol approved by the IRB
at Brigham Young University. Peripheral blood mononuclear cells
were isolated using lymphocyte separation medium (Mediatech).
These cells were induced to form LCLs by incubation with EBV
(B95-8 strain) and 2 ng/ml cyclosporin A (Tocris Biosciences).
U937 and Jurkat cells were a kind gift from Dr. Kim O’Neill. Cell
lines were maintained in RPMI (Sigma) with 10% fetal bovine
serum (PerBio) with penicillin/streptomycin/amphotericin (Cal-
biochem) at 5% CO2 and passaged at least weekly.
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GENOTYPING OF VOLUNTEERS AND FORMATION OF PAIRED SAMPLES
Genomic DNA was extracted (Qiagen) from peripheral blood
mononuclear cells and genotyped using TaqMan reagents Applied
Biosystems (ABI) on a StepOnePlus real-time PCR machine (ABI)
at the rs2004640 SNP (ABI SNP Assay C9491614). Homozygous
risk or protective individuals were matched by gender and ethnic-
ity. Heterozygotes were not included in the study. The primers and
PCR conditions are in Table A1 in Appendix.

CELL TREATMENTS
The TLR7 ligand imiquimod (R-837) was used to stimulate cells
for some experiments. Cells were treated for 24 h with 25 µg/ml
imiquimod (InvivoGen). cDNA preparation, quantitative PCR,
primers, probes, and conditions are described elsewhere in the
Section “Materials and Methods.” Etoposide was used at 0.1 and
1 mM concentrations and applied for 48 h. 5FU was used at
1.5 mg/ml, and the activating antibodies to TRAIL and Fas were
used at 1 and 5 µg/ml, respectively. All treatments used 106 cells
per milliliter.

cDNA LIBRARIES AND PCR
About 8× 106 cells were used for each condition in each exper-
iment. cDNA preparations were made by extracting RNA using
the RNaqueous system (Ambion), followed by DNase treatment
(Promega). One thousand nanograms RNA was per condition was
then reverse transcribed using SuperScript III reverse transcriptase
(Invitrogen Life Technologies). One hundred nanograms cDNA
preparations were used as template for quantitative PCR using
TaqMan reagents (ABI), or SYBR green reagents For gene expres-
sion studies, input RNA levels were normalized using primers to
the housekeeping gene GAPDH for SYBR green experiments and
β-GUS for TaqMan experiments. For cloning of 5′UTRs and pro-
moters the template genomic DNA from Section “Genotyping of
Volunteers and Formation of Paired Samples” was used, with the
NEB High GC PCR kit. Primers were purchased from Integrated
DNA Technologies. Sequences and PCR conditions are available
in Table A1 in Appendix.

SEQUENCING
Plasmid sequencing used purified plasmid DNA and a primer
upstream of the insertion site. Sequencing reactions used Big
Dye terminator reagents and the 3730xl DNA analyzer (ABI). See
Table A1 in Appendix for primers.

STATISTICAL ANALYSIS
A paired t -test was used to compare means for mRNA expres-
sion. Paired t -test was used for luciferase levels. An alpha value
of 0.05 and two-tailed p values were used in all cases. For exper-
iments using more than two comparisons, ANOVA was used to
determine if statistically significant differences were present. Sta-
tistical analysis was performed using Data Analysis Plus software
(Keller Statistics). ANOVA was performed using the CSBJU online
calculator (http://www.physics.csbsju.edu/stats/).

PROMOTER ANALYSIS
An analysis of the promoters for each of the four first exons of
IRF5 was performed using the ENCODE ChIP-Seq data set (34)

for determining actual binding factors on the genomic region, fol-
lowed by determining a consensus site using the WebLogo data
in FactorBook (35). The consensus site was then used to search
the proximal promoters (∼200 bp upstream from the +1 sites)
to encounter a proposed binding site. Consensus site screening
was performed using a custom searches of ambiguous nucleotides
with MEGA (37). This involved searching using the find func-
tion, which allows for searching using the ambiguous nucleotide
code. For example, a search for GAW would highlight both GAA
and GAT.
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APPENDIX
Table A1 | List of primers and PCR conditions.

TAQMAN-BASED QUANTITATIVE PCR PRIMERS
IRF5 exon 2 RT fwd: CCACCTCAGCCCTACAAGAT
IRF5 probe: FAM-TCCAATGGCCCTGCTCCCAC-TAMRA
IRF5 exon 3 RT rev: CTCCTCTCCTGCACCAAAAG
IRF5 1A TaqMan RT fwd: ACGCAGGCGCACCGCAGACA
IRF5 1B RT fwd: AGCTGCGCCTGGAAAGCGAGC
IRF5 1C TaqMan RT fwd: AGGCGGCACTAGGCAGGTGCAAC
IRF5 1D RT fwd: GAGGCTCAGCCCGGATCTGC
IRF5 exon 1 probe: FAM-CCATGAACCAGTCCATCCCAGTGGCTCCCACC-
TAMRA
IRF5 exon 2 common RT rev: TCGTAGATCTTGTAGGGCTGAGGTGGCA
β-Glucuronidase fwd: CTCATTTGGAATTTTGCCGATT
β-Glucuronidase probe: FAM-TGAACAGTCACCGACGAGAG-TAMRA
β-Clucuronidase rev: CCGAGTGAAGATCCCCTTTTTA
Conditions: 52°C, 95°C for 10 min, 52 cycles of (95°C for 15 s, 65°C* for
1 min) with 500 nM primers, 250 nM probe
SYBR green quantitative PCR primers and conditions
GAPDH fwd: TGCACCACCAACTGCTTAGC
GAPDH rev: GGCATGGACTGTGGTCATGAG
CCR7 fwd: GCTCCAGGCACGCAACTT
CCR7 rev: GACCACAGCGATGATCACCTT
Calreticulin fwd: GCAGCAGAAGGGGGTGGTGT
Calreticulin rev: GTCCTGGGGGCAGGGGAGAA
NOXA fwd: GCTGTCCGAGGTGCTCCAGTT
NOXA rev: AGCGTTCTTGCGCGCCTTCT
IRF5 fwd: CCACCTCAGCCCTACAAGAT
IRF5 rev: CTCCTCTCCTGCACCAAAAG
Conditions: 95°C for 10 min, 40 cycles of (95°C for 15 s and 60°C for 1 min)
PROMOTER CLONING PRIMERS

†

IRF5 1A prom fwd: CTGCgctagcCAGGTCAGTGCGGGGC
IRF5 1A prom rev: CCTGagatctACTTCCGCGTCTTGCCGC
Conditions: 94°C for 30 s, 40 cycles of (94°C for 15 s, 62.0°C for 1 min,
68°C for 30 s), 68°C for 5 min
IRF5 1B prom fwd: GCGCgctagcGACAGGTGGGTCCCGGCCGC
IRF5 1B prom rev: GCAGagatctGCGGACCCCGCCCTACTCCA
Nested PCR first round: IRF5 1A prom fwd+ IRF5 1B prom rev
Conditions: 94°C for 30 s, 40 cycles of (94°C for 15 s, 59.3°C for 1 min,
68°C for 30 s), 68°C for 5 min
Nested PCR second round: IRF5 1B prom fwd+ IRF5 1B prom rev
Conditions: 94°C for 30 s, 40 cycles of (94°C for 15 s, 66.0°C for 1 min,
68°C for 30 s), 68°C for 5 min
IRF5 1C prom fwd: TAGTgctagcGCTGGTTTCCTCAGGTCCT
IRF5 1C prom rev: CAGAagatctCAGCCCTGCCCTGGCCT
Conditions: 94°C for 30 s, 40 cycles of (94°C for 15 s, 60.8°C for 1 min,
68°C for 2 min), 68°C for 5 min
IRF5 1D prom fwd: ACATgctagCACCTGCTGCCTGTTGACC
IRF5 1D prom rev: TGGCagatctGTCATTTGACAACCCC
Conditions: 94°C for 30 s, 40 cycles of (94°C for 15 s, 59.4°C for 1 min,
68°C for 1 min), 68°C for 5 min
pGL4 sequencing fwd: CTAGCAAAATAGGCTGTCCC

*Primer annealing temperatures were 60°C for β-glucuronidase; 65°C for IRF5,
1A, and 1B; 66°C for 1C and 69°C for 1D.
† PCR for these GC-rich promoters was performed using a high-GC kit (NEB)
according to package instructions, with 10% enhancer solution included for all
reactions except exon 1D.
All are listed in 5′ to 3′ orientation. Restriction enzyme cut sites or overhangs
are indicated in lowercase. FAM, fluorescein amidite; IRF5, interferon regulatory
factor 5; RT, real time; TAMRA, carboxytetramethylrhodamine.
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Patients with systemic lupus erythematosus (SLE) and Sjögren’s syndrome (SS) display
increased levels of type I interferon (IFN)-induced genes. Plasmacytoid dendritic cells
(PDCs) are natural interferon producing cells and considered to be a primary source of
IFN-α in these two diseases. Differential expression patterns of type I IFN-inducible tran-
scripts can be found in different immune cell subsets and in patients with both active
and inactive autoimmune disease. A type I IFN gene signature generally consists of three
groups of IFN-induced genes – those regulated in response to virus-induced type I IFN,
those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated
kinase (MAPK/ERK) pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-
3K) pathway. These three groups of type I IFN-regulated genes control important cellular
processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated,
contribute to autoimmunity. With the recent generation of large datasets in the public
domain from next-generation sequencing and DNA microarray experiments, one can per-
form detailed analyses of cell-type specific gene signatures as well as identify distinct
transcription factors (TFs) that differentially regulate these gene signatures. We have per-
formed bioinformatics analysis of data in the public domain and experimental data from
our lab to gain insight into the regulation of type I IFN gene expression. We have found
that the genetic landscape of the IFNA and IFNB genes are occupied by TFs, such as
insulators CTCF and cohesin, that negatively regulate transcription, as well as interferon
regulatory factor (IRF)5 and IRF7, that positively and distinctly regulate IFNA subtypes. A
detailed understanding of the factors controlling type I IFN gene transcription will signif-
icantly aid in the identification and development of new therapeutic strategies targeting
the IFN pathway in autoimmune disease.

Keywords: type I interferons, bioinformatics, autoimmunity, transcriptional regulation, transcription, genetic

INTRODUCTION
Patients with autoimmune diseases, such as systemic lupus ery-
thematosus (SLE) and Sjögren’s syndrome (SS), display increased
expression of type I interferon (IFN)-induced genes. Plasmacy-
toid dendritic cells (PDC), as natural IFN-producing cells, are
considered to be a primary source of IFN-α in such diseases (1,
2). The type I IFN family consists of multiple members, includ-
ing 14 IFN-α subtypes, -β, -ε, -κ, -ω, -δ, and -τ. These members
may have autocrine effects on the IFN-producing cells them-
selves, such as PDCs, and paracrine effects on neighboring cells, as
well as systemic effects on distant immune cells (3). IFNs can be
added directly to cell cultures and molecular profiling performed
to understand their biologic effect. For instance, the direct treat-
ment of peripheral blood mononuclear cells (PBMCs) with 0.6 pM
of IFN-α, -β, or IFN-ω led to the increased expression of about
200 genes (4). Broadly speaking, an IFN gene signature should
include all of these genes. These genes can be functionally classi-
fied into antiviral pathways, apoptosis control, cell surface receptor

expression, chemokine/cytokine expression, and components of
IFN signaling pathways.

Although methods of bioinformatics analysis are not yet inten-
sively used in immunology research, the field is changing fast
and significant information can now be obtained from the pub-
lic domain for the analysis of mechanisms controlling type I IFN
gene expression. This report explores several elements of transla-
tional bioinformatics analysis, specifically addressing the biologi-
cal questions relevant to how type I IFN expression is regulated in
autoimmune disease. We collected publically available microarray
gene expression datasets in Gene Expression Omnibus (GEO) at
the National Center for Biotechnology Information (NCBI) and
performed data mining and pathway analysis. With the grow-
ing datasets in public repository that are shared in the research
community, the integrative analysis of experimental data and dis-
ease profiling data sets has become an important approach to our
understanding of autoimmune disease pathology at the molecu-
lar level. In this study, we have also used human datasets from
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the Encyclopedia of DNA Elements (ENCODE) to understand the
epigenetic codes that control the type I IFN gene cluster. This infor-
mation can be used as a reference to guide future experiments that
focus on epigenetic changes in more relevant human immune cell
populations such as monocytes and dendritic cells. Understanding
the regulation and epigenetic control of type I IFN expression will
be useful for the development of new therapeutic interventions
targeting the IFN pathway in autoimmune disease.

MATERIALS AND METHODS
MATERIALS
Gene expression microarray data were retrieved from NCBI’s GEO
through series accession numbers GSE17762 and GSE10325. Data
were loaded with GEO query and limma R packages from the Bio-
conductor project. Alternatively, GEO2R, an interactive web tool,
was used. Next-generation sequencing datasets from multiple cell
lines and cell types were retrieved from the ENCODE Project1.

METHODS
In brief, for the analysis of microarray data, gene symbols and
value of log fold changes for individual genes were extracted
from NCBI’s GEO and Ingenuity IPA software was used to per-
form pathway analysis. For next-generation sequencing datasets,
ENCODE offers a few software tools for analyzing the data. One
relevant tool is factor book, which organizes all the informa-
tion associated with individual transcription factors (TFs) (5).
Although useful, it should be noted that the current lack of infor-
mation on human primary immunocytes limits one’s ability to
analyze individual genes/gene clusters and therefore limits the
value and/or relevance of some of these datasets.

The following information provides a brief summary of
methods used for the analysis of next-generation sequenc-
ing data. For example, the epigenome analysis of the
IFNA gene cluster was performed using a variety of
resources for data visualization. In brief, the genetic region
was located and retrieved in UCSC genome browser
using URL http://genome.ucsc.edu/cgi-bin/hgTracks?position=
chr9:21000000-21550000. Methylated/unmethylated CpGs data
was retrieved using Methylation-sensitive restriction enzyme
sequencing (MRE-seq) and MeDIP-seq loaded from http://
genome.ucsc.edu/cgi-bin/hgTrackUi?g=ucsfBrainMethyl. Methyl
Reduced Representation Bisulfite Sequencing (RRBS) tracks
were loaded from http://genome.ucsc.edu/cgi-bin/hgTrackUi?g=
wgEncodeHaibMethylRrbs, samples used include all cells in the
following list: http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=
342586899&c=chr9&g=wgEncodeRegTfbsClusteredV2. Histone
modification data, including H3K4me3 was loaded from
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=342586899&c=
chr9&g=wgEncodeReg. For the analysis of CTCF and other rel-
evant TFs, we selected TFs and cell types by adding tracks from
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEnco
deAwgTfbsUniform. TF binding peaks were either calculated using
ENCODE pre-processed data with a False Discovery Rate of 1% or
mapped to human genome hg37 using CLC Genomics Workbench

1http://genome.ucsc.edu/ENCODE/

software 5.5, followed by peak calling using Model-based Analysis
for ChIP-Seq (MACS).

RESULTS AND DISCUSSION
RELATIONSHIP BETWEEN THE TYPE I IFN GENE SIGNATURE AND
CLINICAL AUTOIMMUNE BIOMARKERS
We have performed an in depth bioinformatics analysis of genes
regulated by type I IFNs, as well as the mechanisms controlling
type I IFN expression, in autoimmune diseases using publically
available datasets. In many cases, we found that IFN-induced
genes directly explain the presence of clinical biomarkers that
appear in patients with autoimmune diseases. For example, we
found that IFN-α increases the expression of interleukin (IL)-
15 and its receptor IL-15Rα in PBMCs. IL-15, that is primarily
expressed by activated monocytes and dendritic cells, binds to IL-
15Rα (CD359) on accessory cells and is trans-presented to T cells
that express functional IL-15Rα, composed of IL-2/15Rβ (CD122)
and γc chains. Several groups have reported elevated IL-15 levels
in the sera of SLE patients, however, the functional consequence
of IL-15Rα activation in SLE remains to be studied (6). In addi-
tion to IL-15 and IL-15Rα, IFN-β moderately upregulates IL-7
and CD59 transcripts in PBMCs. IL-7 is a survival factor for
naïve, early effector, and memory CD4+ and CD8+ T cells. It
is primarily produced by fibroblastic reticular cells (FRCs), a mes-
enchymal cell population found in the stromal environment of
lymphoid organs. In SLE patients, soluble (s)IL-7R concentrations
were found to be elevated in the serum and raised levels of sIL-7
were detected in patients with lupus nephritis (LN) that reflected
activation of kidney tissue cells (7). Receptor blockade by anti-IL-
7Rα in MRL-Faslpr lupus mice resulted in alleviation of dermatitis,
lymphadenopathy, splenomegaly, and total serum IgG2a; yet, only
a marginal reduction in IgG2a autoantibodies was found (8).
CD59 are glycosylphosphatidylinositol-anchored proteins with
complement inhibitory properties that prevent the terminal poly-
merization of the membrane attack complex. Increased numbers
of CD55- and CD59-lymphocytes and CD59-granulocytes were
found in SLE patients as compared with controls (9).

PATHWAY ACTIVATION BY TYPE I IFNs
Type I IFNs may play a pathological role in autoimmune disease
through their ability to regulate key signaling pathways impor-
tant in the innate immune response. For instance, we found that
IFN-α upregulates the expression of Toll-like receptors (TLR)-3
and TLR-7, as well as the critical cofactor myeloid differentiation
primary response protein 88 (MyD88). IFN-α also enhances the
expression of interferon regulatory factor (IRF)2, which compet-
itively inhibits IRF1-mediated transcriptional activation of IFNA
and B genes. As compared to IFN-α, the effect of IFN-β on
gene expression extends to TLR-1, TRAF/TANK, IRF4, and IRF1.
We also found in our analysis that the human dual specificity
mitogen-activated protein kinase kinase 5 (MAP2K5) can be up-
regulated by IFN-α/IFN-β and mitogen-activated protein kinase
kinase 8 (MAP3K8) can be induced by IFN-β. Since p38 MAPK
acts up-stream of type I IFN-induced STAT (signal transducers and
activators of transcription) 1 signaling (10, 11), the up-regulation
of MAP3K8 or MAP2K5 may provide further hints toward the
biologic effects of type I IFN on cells. For example, MAP3K8 has
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been shown to promote the production of tumor necrosis fac-
tor (TNF)-α and IL-2 during T lymphocyte activation. It is also
known that addition of IFN-α with anti-CD3 antibodies results in
enhanced T helper (Th)1 responses that associate with enhanced
phosphorylation of STAT1 (12).

It is well-known that IFN-α has pro-apoptotic effects in many
cancer cell types including myeloma (13), renal cell carcinoma
(14), and glioma (15). It is also known that monocytes stimulated
with IFN-α express functional TNF-related apoptosis-inducing
ligand (TRAIL), which is capable of killing myeloma cells (16).
IFN-α also increases the expression of functional FasL exclusively
on natural killer (NK) cells (17). The functional clustering of
genes regulated by IFN-β, using DAVID tools, revealed a num-
ber of genes that control apoptosis, including caspase 1, 8, and
10, TRAIL (TNFSF10), and FADD [Fas (TNFRSF6)-associated via
death domain].

THE TYPE I IFN GENE SIGNATURE IN SLE B CELLS AND T CELLS
Disease biomarkers or disease gene signatures provide important
clues for our understanding of disease pathogenesis and aid in
the identification and development of new therapeutic strategies
for treatment. High-throughput screening technologies, such as
DNA microarrays, have been used to profile disease signatures
in PBMCs from SLE patients (18), and subsequently, in specific
subsets such as monocytes, neutrophils, T cells, and B cells. The
presence of a type I IFN gene signature in PBMC of SLE patients
has been recognized for nearly 35 years now (19). However, not
all IFN-inducible genes that have been identified by in vitro assays
can be detected in vivo in PBMCs isolated from SLE patients.
About 20 IFN-inducible genes were consistently found to be highly
expressed in PBMC from SLE patients (18). In our analysis of
SLE B and T cells, we found that approximately 10 IFN-inducible
genes were consistently and highly expressed. The gene transcrip-
tional signatures that appear to overlap between cell types include
Mx1, ISGF-3, PRKR, IFIT1, and IFI44 in cells that have been either
exposed to type I IFNs in vivo or in vitro. This gene signature has
been used as a readout for the type I IFN bioassay and is consid-
ered a measure of the “IFN-α activity score” in patients with SLE
and other inflammatory or autoimmune diseases (19, 20).

Intensive pathway analyses with KEGG2, BioCarta3, and Gen-
MAPP4 have shown up-regulated activation markers on SLE T cells
and genes that correlate with STAT1 expression (21). Using IPA5

analysis of independent datasets, we also found groups of genes
in the network that strongly correlate with STAT1, suggesting a
persistent and strong effect downstream of type I IFNs in SLE
T cells. Furthermore, IFN response factor consensus sequences
(ISREs) can be found up-stream of the start sites of each of the
genes in the type I IFN gene signature. Our independent analysis
also indicated groups of up-regulated genes in SLE T cells that
can be modulated by STAT4. Genome-wide mapping of STAT4
and IRF 5 occupancy in immune cells from SLE patients by
chromatin immunoprecipitation combined with next-generation
sequencing (ChIP-seq) revealed the possible cooperation of high

2www.genome.ad.jp
3www.biocarta.com
4www.genmapp.org
5www.ingenuity.com

mobility group-I/Y, specificity protein 1, and paired box 4 with
IRF5 and STAT4 in transcriptional regulation (22). As noted above,
IFN-regulated pathways derived from in vitro data do not always
align with microarray datasets obtained from primary cells of
SLE patients. In this regard, short-term IFN treatment has been
shown to promote apoptosis signaling via TRAIL pathways. How-
ever, anti-apoptotic signatures, including elevation of caspase 8
and FADD-like apoptosis regulator (CFLAR), were identified in
lupus T cells (21). Our bioinformatics pathway analysis identified
additional genes, such as BIRC5, that participate in the B cell anti-
apoptotic pathway in cells isolated from SLE patients. Given that
apoptosis and the clearance of apoptotic material have been impli-
cated in SLE pathogenesis, further research detailing the in depth
analysis and mapping of these anti-apoptotic pathways in PBMC
subsets will be of significant importance to our understanding of
SLE pathogenesis.

GENETIC LANDSCAPE OF THE TYPE I IFN CLUSTER
The human type I IFN gene cluster spans approximately 450 kb
on chromosome 9p22. IFNB and IFN ε define the boundaries of
the cluster, with all other type I IFN genes, except IFNk, dis-
tributed between these borders. This gene cluster also contains
KLHL9, which is a substrate-specific adaptor of the BCR (BTB-
CUL3-RBX1) E3 ubiquitin ligase complex that functions in cell
division. Studies of virus-induced type I IFN production in murine
fibroblasts indicates the presence of an immediate-early response
gene, IFNA4, which is induced rapidly and without the need for
ongoing protein synthesis, and IFNA2, 5, 6, and 8, that display
delayed induction, are induced more slowly, and require cellu-
lar protein synthesis. In CpG-stimulated human PDCs, IFNA5,
IFNA10, IFNA4, 1/13, 21, 14, 16, and 6 transcription can be
detected within 2 h. IFN21 and IFNA16 levels are dramatically up-
regulated further after 8 h suggesting an efficient positive feedback
loop regulating expression of these two genes. Recent analysis of
data from the ENCODE Consortium suggests that this important
gene cluster may be controlled by epigenetic regulation supporting
new mechanistic insight and a basis for the design of experiments
focused on this aspect of type I IFN gene regulation.

Methylation
Indeed, there has already been significant data in the litera-
ture to support the mechanism(s) of epigenetic regulation in
autoimmune diseases. In particular, DNA from SLE T cells was
found to be less methylated than control DNA from normal T
cells by measuring the cellular deoxymethylcytosine content (23).
Interestingly, non-T cells from lupus patients displayed normal
DNA methylation levels (24). Decreased DNA methyltransferase
(DNMT) activity in lupus T lymphocyte nuclear proteins was
considered to be responsible for the observed DNA hypomethy-
lation in lupus T cells. Patients with lupus had significantly
lower levels of DNMT1 mRNA, but not DNMT3A or DNMT3B,
as compared with healthy controls (25). A preliminary analysis
of microarray data from immature monocyte-derived dendritic
cells (MDDCs) revealed that they express abundant amounts
of DNMT1, which is downregulated after LPS stimulation. The
methylation status of DNA from SLE PDCs and the levels of
DNMT1 expression in this important IFN-α producing cell type
are not currently known.
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Feng and Barnes Analysis of IFN gene cluster

In general, hypermethylation in the promoter of a gene is asso-
ciated with gene suppression, while hypomethylation is linked
to gene expression; methylation within the gene body is also
associated with gene expression. Two next-generation sequencing
technologies have recently been developed for the analysis of gene
methylation – methylated DNA immunoprecipitation sequencing
(MeDIP)-seq, to detect methylated CpGs (26, 27), and MRE-seq,
to detect unmethylated CpGs (28). Integrative methodologies that
combine both MeDIP-seq and MRE-seq can differentiate hyper-
methylation, intermediate, and hypomethylation regions of DNA.
An integrative analysis of KLHL9 indicates that the CpG islands of
the KLHL9 promoter are highly hypomethylated (Figure 1). These
islands are highly conserved since they were found to be present in
virtually all cell types queried. Combining these data with ChIP-
seq histone modification data in the same tissues, we found that
hypomethylated CpGs of KLHL9 are occupied by significant levels
of trimethylated lysine 4 on histone H3 (H3K4me3) (Figure 1).
Two other hypomethylated regions in the type I IFN cluster, located
in the genomic region between IFNA2 and IFNA8,have relative low
levels of enrichment for H3K4me3 peaks (Figure 1). H3K4me3 is
a histone modification that accumulates at the transcription-start
site (TSS) of active genes and is believed to be important for tran-
scription activation. Loss of H3K4me3 occurs at TSSs and leads to
gene transcriptional inactivation as a result of promoter hyperme-
thylation. The occupancy of H3K4me3 in the promoter of KLHL9
may ensure the protection of CpG islands from methylation. In
contrast, the other two hypomethylated sites that are located quite
far from the TSSs of IFNA2 and IFNA8, may not be functional
for transcription. DNA methylation by RRBS from various cell
types, including B cells, failed to reveal strong methylation signals

in the IFNA gene cluster. One exception to this is that MeDIP-seq
defined methylation peaks were found to be distributed between
IFNA genes from brain tissue.

Thus far, data do not support that methylation is the likely
major mechanism by which IFNA gene expression is suppressed in
most non-IFN-producing cells. Further experimental studies will
be necessary to determine whether constructive hypomethylation,
as well as H3K4me3 occupancy, is important for regulating IFNA
gene transcription in IFN-producing cells such as monocytes,
and PDCs.

Chromatin structure
There are multiple IFNA and IFNB genomic regions that have open
chromatin structure in an evolutionally conserved pattern across
species and most human cell types. Since DNase I hypersensitive
sites (DHSs) reflect the local openness and accessibility of chro-
matin, chromatin structure or accessibility of IFNA clustering may
be similar among different cells. In general, hypersensitive sites are
found only in the chromatin of cells in which the associated gene
is being expressed, and do not occur when the gene is inactive.
Therefore, mapping DHSs within nuclear chromatin is a powerful
method of identifying genetic regulatory elements (29). However,
the distribution of DHSs in promoters and other gene regions of
similarly expressed genes differs among different chromosomes.
Furthermore, silenced genes have a more open chromatin struc-
ture than previously thought and DHSs in 3′-untranslated regions
(3′-UTRs) have been shown to negatively correlate with gene
expression levels (30), thus going against the standard dogma.
Bioinformatics analysis of DHSs in the IFN gene cluster between
different cell types revealed a highly conserved pattern (Figure 2);

FIGURE 1 | H3K4me3 peaks and methylation tracks on the type I IFN gene cluster. Members of the type I IFN gene cluster are shown and illustrated
proportionally according to Human (Homo sapiens) Genome hg19. H3K4me3 peaks and UCSC DNA methylation tracks are shown for a human B cell line.

FIGURE 2 | DNase I hypersensitivity sites in the type I IFN gene cluster
are highly conserved between cell types. Members of the type I IFN gene
cluster are shown and illustrated proportionally according to Human (Homo
sapiens) genome hg19. Cell lines and cell types analyzed are listed on the left
side. Short vertical lines below the gene track indicate the open chromatin

position marked by DNaseI hypersensitivity sites from
ENCODE/OpenChromatin (Duke University) for each cell type. Red lines
indicate the novel sites identified between cell types. The DNase I
hypersensitivity signal peaks for CD14+ monocytes are shown at the bottom
for reference to chromatin marks.
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Feng and Barnes Analysis of IFN gene cluster

however, we found additional DHSs in CD14+ monocytes that
can produce type I IFNs. We also found that CD34+ stem cells
have more DHSs close to promoters within the IFN gene cluster
(Figure 2). These data support the presence of unique cell-specific
chromatin structures which may play important regulatory roles
in the control of type I IFN expression.

Histone modification
Modifying the chromatin template at a particular gene locus can
also serve as an important mechanism of gene transcriptional
activation that exhibits cell-type specific expression patterns. The
functional importance of histone acetylation in type I IFN pro-
duction has been supported by studies that show increased IFN-β
expression in cells treated with histone deacetylase inhibitors, such
as Trichostatin A (TSA) (31), and decreased IFN-β expression
in murine macrophages where the binding of bromodomain-
containing BET (bromodomain and extraterminal) transcrip-
tional regulators to acetylated histones was inhibited (32). Di-
or tri-methylation of H3K9 is capable of suppressing gene expres-
sion not only passively, by inhibiting acetylation, but also actively,
by recruiting transcriptional repressors of the heterochromatin
protein 1 (HP1) family. We found that H3K9me2 occupancy at
IFN and ISG promoters is inversely correlated with gene expres-
sion. Furthermore, human MDDCs that are capable of producing
type I IFNs, as compared with human lung fibroblasts that do
not, show decreased H3K9me2 occupancy at the IFNB promoter.
In the absence of G9A, a methyltransferase for H3K9me2, non-
professional IFN-producing cells were shown to be converted into
potent IFN-β producers (33). Together, these data support the
importance of histone modifications in the regulation of type I
IFN expression.

H3K27me3, on the other hand, are found to be associated with
the repression of gene transcription in a cell-type specific manner.
Polycomb Repressive Complex 2 (PRC2) is a histone methyltrans-
ferase that catalyzes tri-methylation of Histone 3 at Lysine 27
(H3K27me3) (34). A detailed profile of H3K27me3 peaks reveal
that broad peaks at TSS are associated with transcriptional sup-
pression while skewed peaks up-stream of the TSS may not be
suppressive (35). Indeed, we found that IFNA regions in B cells,
which are incapable of producing IFN-α, are widely occupied with
H3K27me3, as shown by the substantive peaks found along the
gene cluster (Figure 3). In contrast, ChIP-seq data from monocytes
demonstrate that H3K27me3 peaks occupy some IFNA genes, such
as IFNA2, IFNA14, and intergenic regions between IFNA2 and
IFNA8, while the remaining IFNA genes were not suppressed by
H3K27me3.

As mentioned above, current dogma holds that H3K4me3 rep-
resents a chromatin landmark that is present at the TSS for genes

that are either actively transcribed or permissive for gene tran-
scription. However, H3K4me3 are not sufficient to license cells to
produce IFN-α. For example, multiple H3K4me3 occupancy peaks
can be identified in the IFN regulatory regions in B cells that do
not express IFN-α. A good comparison would be with PDCs, yet
the histone codes are not yet available for this cell type. In PDCs,
TLR-7 signaling quickly turns on transcription of IFNB, IFNA2,
IFNA8, and IFNA14 genes at 30 min post-stimulation with peak
levels being achieved at this time point. In comparison, peak levels
of IFNA5, IFNA6, IFNA10, IFNA13, and IFNA21 were observed
around 4 h post-stimulation (36). Based on our bioinformatics
analysis,we reason that transcriptional suppression by H3K27me3,
if it exists in PDCs in a pattern similar to that found in CD14+

monocytes, may not be functional in PDCs or can quickly be
replaced by H3K4me3 after TLR-7 activation. Alternatively, the
IFN gene cluster in PDCs may not have H3K27me3 markers. It is
not known whether chromatin change is necessary for IFNA tran-
scriptional activation or whether chromatin status is responsible
for differentially transcribed type I IFN genes. Further studies in
human PDCs will be required to address this.

Transcription factors regulating basal repression of IFNA gene
expression
The transcriptional repressor CTCF (11-zinc finger protein) or
CCCTC-binding factor is thought to regulate the 3-dimensional
(3D) structure of chromatin by binding strands of DNA together
and forming DNA loops (37). CTCF represses gene expression
by blocking the interaction between enhancers and promoters
(38). This phenomenon may serve as a chromatin barrier to
block the spread of heterochromatin structures and set boundaries
between active chromatin regions marked by histone H2A acetyl
Lys5 (H2AK5ac) and repressive regions marked by H3K27me3
(39). The cohesin complex, consisting of cohesion proteins SMC1,
SMC3, SCC3, and the α-kleisin SCC1, may contribute to CTCF-
mediated repression. Many CTCF/cohesin binding sites are located
at promoter regions suggesting a joint regulatory role for these
factors (40). Although most cohesin sites overlap with CTCF, a
significant proportion of each factor’s sites are independent of the
other, implying CTCF-independent functions of cohesin as well
as cohesin-independent CTCF functions. Bioinformatics analysis
of CTCF ChIP-seq data from ENCODE cell lines identified sev-
eral CTCF insulators that are basally located in the promoters and
intergenic regions of IFNA5, A1, A2, and A8 (Figure 4A). In gum
fibroblast cells (AG09319), we found five CTCF binding sites in
the region covering IFNA14, A17, A16, A10, A7, and A4. There is
only one CTCF/SMC3 binding site in the IFNB gene. The regula-
tory region of the IFNA2 gene contains two CTCF binding sites.
The second CTCF site yields co-binding with SMC3, suggesting

FIGURE 3 | H3K27me3 peaks on the type I IFN gene cluster. Members of the type I IFN gene cluster are shown and illustrated proportionally according to
Human (Homo sapiens) Genome hg19. H3K27me3 peaks were found along the entire region of the IFN gene cluster in the human B cell line GM128.
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Feng and Barnes Analysis of IFN gene cluster

FIGURE 4 | Differential occupancy for insulators CTCF and cohesin on the
IFNA8 and IFNB genes. (A) The genomic regions of IFNA8 and IFNA1 are
shown proportionally according to Human (Homo sapiens) Genome hg19.
CTCF (blue circles) and cohesin (purple circles) occupancy positions are
marked according to transcription factor ChIP-seq datasets from ENCODE.
Orange squares indicate positions enriched with H3K4Me3 signals. (B) The

genomic region of IFNB is shown with transcription factor binding sites from
the ENCODE database. Experimentally verified CTCF binding sites are shown
by the blue circles, with the darker shades of blue denoting signal intensity;
light blue – low intensity, dark blue – high intensity. IFN-stimulated response
elements (ISRE) are labeled with black squares. Peaks showing H3K4me3
signals are shown.

the cohesin complex may function in this IFN genomic region.
Based on these data, we speculate that CTCF may indeed function
as an IFNA suppressor and block promoter activation.

Within the IFNA gene cluster, we have yet to identify any other
TF in the ENCODE datasets that basally occupies the promoter
regions between TSSs and the proximal CTCF sites. In contrast,
multiple TFs, such as NF-κB and PU.1 (in B cells), do constitutively
occupy regions up-stream of CTCF sites that control individual
IFNA genes. CTCF binding sites are not conserved but cell-type
specific. While the majority of cells show CTCF occupancy up-
stream of the IFNA2 gene, binding is absent in fibroblast cells.
Similarly, at the IFNB promoter, CTCF binding was identified in
some B cells lines, HeLa cells, MCF-7, and osteoblast cells, but not
in any fibroblast cell lines or A549 lung carcinoma cells. Lack of
binding of this insulator may render fibroblast cells to produce
type I IFNs upon the appropriate stimulation, such as viral infec-
tion, thus supporting that CTCF binding to the IFNA gene may
be regulated. In this regard, dexamethasone treatment in A549
cell lines induces CTCF to bind to the IFNA8 promoter. Finally,
the discrepancy of CTCF binding patterns in Epstein–Barr virus
(EBV)-transformed B cell lines suggests that viral infection may
interfere with CTCF function. It is known that CTCF/cohesin
occupancy is essential for IFN-gamma (IFNg ) gene transcrip-
tion (41). Thus, this complex may have a similar function and
be important for regulating IFNB gene transcription via main-
taining the 3D chromatin structure of the IFNB locus in fibroblast
cells (Figure 4B). Based on these data, we propose that the DNA
regions in the IFN gene cluster that contain CTCF occupancy may
be subject to control by this factor to ensue IFNA transcription
during viral or viral-like challenges in IFN-producing cells. This

region may also be used as a landmark to demarcate the pro-
moter region that spans from a TSS to the CTCF binding sites and
enhancer regions located up-stream of CTCF binding site.

Transcription factors that regulate induction of IFNA gene
expression
Interferon regulatory factors, as their name suggests, have been
long known to regulate type I IFN gene expression (42). Of the
nine mammalian IRF family members currently identified to date,
IRF7 has garnered the most attention for its role in regulating IFNA
gene expression (3). IRF7 is highly expressed in human PDCs and
allows bypass of the classic autocrine feedback loop that is reg-
ulated by IFN-β (43). IRF7 was also shown to be required for
murine PDCs to produce an antiviral IFN immune response (44).
Similarly, IRF5 has been implicated in the regulation of type I IFN
gene expression (45). Early data in human cell lines revealed the
regulation of type I IFN genes and IFN-stimulated genes (ISGs)
by IRF5 in response to virus (46). Later data in mice supported
these findings. For example, splenic PDCs from mice lacking Irf5
were shown to produce less type I IFNs in response to virus
infection (47). IRF5 has also been recently reported to regulate
IFN-β production in myeloid dendritic cells downstream of the
mitochondrial antiviral-signaling protein (MAVS) (48). Further-
more, recent studies demonstrate that IRF5 and NF-κB p50 are
key co-regulators of IFN-β and IL-6 expression in TLR9-mediated
activation of human PDCs (49). Although both of these IRF
family members have been implicated as key regulators of IFN-α
production,no ChIP-seq data is available to support these findings.
Interestingly, data from the aforementioned STAT4/IRF5 ChIP-seq
datasets in PBMCs did not support the direct regulation of type I
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IFN expression by IRF5 since no peaks were detected in the IFN
gene cluster after immunoprecipitation with anti-IRF5 antibodies
(22). In this case, PBMCs were stimulated with either IFNa2 or SLE
immune complexes before immunoprecipitation with anti-IRF5
or anti-STAT4 antibodies. In the case of IRF7, a cursory review
of the literature and publicly available datasets indicate that no
ChIP-seq data is currently available for this TF. We have recently
performed IRF5 and IRF7 ChIP-seq in human PDCs stimulated
with virus. Our unpublished data indicate that these two TFs bind
to different regions in the IFNA gene cluster (Figure 5). These data
support the distinct and differential roles for IRF5 and IRF7 in type
I IFN gene regulation (45, 49). With regard to autoimmune dis-
eases such as SLE and SS that display a pathogenic type I IFN gene
signature, determination of the mechanisms by which these two
IRF family members cooperatively and distinctly regulate IFNA
subtype expression in the critical IFN-α producing cell types will
be important for the design of new therapeutic strategies targeting
these two factors.

CONCLUDING REMARKS
With the recent generation of large datasets in the public domain
from next-generation sequencing and DNA microarray experi-
ments, others and we have begun to perform detailed analyses of
cell-type specific gene signatures as well as identify distinct TFs
that differentially regulate these gene signatures in a cell type- and
disease-specific manner. This report describes a sample workflow
and method of integrative analysis to inspect, clean, and model
data from GEO and ENCODE with the goal of highlighting infor-
mation and knowledge discovery at the gene cluster level. We
demonstrate that this method can extract valuable information
including downstream pathway analysis, DNA methylation, chro-
matin structure, histone modification, and TF binding to a gene of
interest (in our case, type I IFNAs). This report summarizes data
from our bioinformatics analysis of the type I IFN gene cluster

FIGURE 5 | Differential binding of IRF5 and IRF7 to the IFNA2 gene in
human primary PDCs stimulated with virus. The genomic region of
IFNA2 is shown with IRF5 and IRF7 ChIP-seq peaks plotted according to
their enrichment positions. Briefly, human primary PDCs were stimulated
with Herpes simplex virus (HSV) for 4 h and cells cross-linked and harvested
for immunoprecipitations with anti-IRF5 or anti-IRF7 antibodies.

using data in the public domain and experimental unpublished
data from our lab (Tables 1 and 2). We have found that the genetic
landscape of the IFNA and IFNB genes are occupied by TF, such as
insulator CTCF and cohesin, that negatively regulate transcription,
as well as IRF5 and IRF7, that positively and distinctly regulate the
IFNA subtypes. This information can be used as a reference to
guide future experiments that focus on proving and/or disapprov-
ing these novel regulatory mechanisms that control type I IFN
expression. A detailed understanding of the factors controlling
type I IFN gene transcription will significantly aid in the identi-
fication and development of new therapeutic strategies targeting
the IFN pathway in autoimmune disease.

Table 1 | Results from computational pathway analysis of microarray

data sets.

Genes and

pathways

Ex vivo type

I IFN treatment

In SLE patients

IL-15 and its receptor

IL-15Rα

Up-regulated Up-regulated

IL-7 Up-regulated Up-regulated

CD59 Up-regulated Up-regulated

MAP kinase MAP kinase (ERK2) activity

at up-stream of STAT1,

MAP2K5, MAP2K5 are

up-regulated

Unknown

TLR pathway (TLR-3, 7,

1, TRAF/TANK, IRF4,

and IRF1)

Up-regulated TLR-7 up-regulateda

STAT STAT1 STAT1, STAT4

Apoptotic pathways Up-regulated caspase 1, 8,

and 10, TRAIL, FADD

Up-regulated

anti-apoptotic genes

including BIRC5

aIndicates data from Ref. (50).

The following list of genes and pathways were predicted to be active in PBMCs

treated with type I IFN ex vivo and in SLE patients.

Table 2 | Results from the computational analysis of ENCODE

next-generation sequencing data on the type I IFN gene cluster.

Epigenetic markers Factors that affect type I IFN gene cluster

Chromatin structure Monocytes display more DNase I

hypersensitivity sites within gene cluster

Methylation Methylation not found in non-IFN-producing

cells; hypomethylated CpG island identified

in cluster

Histone modification H3K4Me3, H3K27me3, H3K9me2

Conserved transcription

factor binding site

HMR conserved transcription factor binding

sites computed with the Transfac Matrix

Database (v7.0) identified ISRE sites

Transcription factors IRF5, IRF7

Insulator CTCF, SMC3, cohesin complex
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Systemic Sclerosis (Scleroderma, SSc) is an autoimmune disease characterized by vascu-
lopathy, inflammation, and fibrosis that can lead to loss of organ function.Type I interferons
(IFNs) are family of cytokines that mitigate the deleterious effects of viral and bacterial
infections in the innate immunity system. Past several years, research efforts have been
focused on the role of type I IFN and IFN-inducible genes in the pathogenesis of SSc.
Polymorphisms in the Interferon regulatory factor (IRF )-5, IRF7, and IRF8 are associated
with SSc, Similarly, polymorphism of SignalTransducer and Activator ofTranscription (STAT)-
4, has been established as a genetic risk factor of SSc. IRFs and STAT4 proteins are key
activators of type I IFN signaling pathways. An IFN signature (increased expression and acti-
vation of IFN-regulated genes) has been observed in the peripheral blood and skin biopsy
samples of patients with SSc. Furthermore, a plasma IFN-inducible chemokine score cor-
related with markers of disease severity and autoantibody subtypes in SSc. In this review,
we summarize our current knowledge of the role of type I IFNs and IFN-inducible genes
in the pathogenesis of SSc and their potential role as biomarkers and therapeutic targets.

Keywords: systemic sclerosis, innate immunity, type 1 IFN, interferon regulatory factor, IFN-inducible cytokines and
chemokines

INTRODUCTION
Systemic sclerosis (Scleroderma, SSc) is characterized by immune
dysregulation, fibrosis, and vasculopathy although its pathogenesis
is not completely understood (1). Disease morbidity and mor-
tality remain high (2, 3). There is no definite cure for SSc and
the available treatments have limited efficacy. The major hur-
dle in developing effective therapies for SSc is an incomplete
understanding of disease pathogenesis. A better understanding of
SSc pathogenesis is important for identifying more targeted and
effective therapeutic approaches.

Recently, there has been an increasing interest in the role of type
I interferons (IFNs) in pathogenesis and severity of SSc. IFNs are
a heterogeneous family of multifunctional cytokines. They were
originally identified as proteins responsible for induction of cel-
lular resistance to viral infections. Type I IFNs include IFN-α,
-β, and -ω, and alleviate the effects of viral and bacterial infec-
tions in the innate immunity system (4, 5). Type I IFN subtypes-α
and -β share common multicomponent, cell surface receptors, and
elicit a similar range of biological responses, including antiviral,
anti-proliferative (6), and immune modulatory activities.

In this review, we summarize the current knowledge about the
role of type I IFN and its inducible genes in the SSc pathogenesis
and biomarker development.

INNATE IMMUNITY AND SSc
The innate immune system is the first line of host defense against
pathogens. It plays an important part in triggering inflamma-
tion and promoting development of fibrosis in many organ sys-
tems. The dominant cellular components of innate immunity
are mainly neutrophils, macrophages, and dendritic cells. These
cells sense pathogens and destroy them, followed by secretion of
pro-inflammatory chemokines and cytokines to activate T cells

and other components of adaptive immune system. There is an
increasing evidence for activation of the innate immune system
in SSc. Cells involved in the innate immune system are detected
at the end organ damage site of SSc (7, 8). Being the first cells in
line in the defense against pathogens of any sort, the antigen pre-
senting cells (APCs) are often considered the most influential cell
of the innate immune system. The specific nature of these APC
and how they contribute to the development of fibrosis is still
unclear. The perivascular infiltrates in the non-lesional skin of SSc
patients mainly consists of macrophages/monocytes and CD4+ T
cells suggesting that the aberrant or dysregulated immune system
precedes fibrosis (9–11). Alternatively activated macrophages are
present in SSc skin biopsies (8, 12, 13), this type of macrophages
are potentially important source of profibrotic cytokines includ-
ing transforming growth factor β (TGF-β) which contribute to
resolving inflammation and promoting wound healing (14). The
sub-classification of macrophages into classically activated M1
macrophages and alternatively activated M2 macrophages is also of
special interest in SSc because the M1 type is clearly more inflam-
matory and the M2 type is thought to be more involved in tissue
remodeling and profibrotic phenotypes. M2 macrophages highly
express several receptors such as hemoglobin scavenger receptor
(CD163), class A scavenger receptor (CD204), and mannose recep-
tor (CD206) (15, 16). SSc patients show significantly higher serum
soluble CD163 levels, and the number of CD163+ and CD204+

activated M2 macrophages is significantly greater in SSc skin (17,
18). The role of M2 macrophages for the development of fibrosis
in SSc is still speculative, further studies are needed to clarify the
potential mechanism of M2 macrophages in this disorder.

In this non-specific immune system, mast cells, basophils,
and natural killer (NK) T cells play more specialized immune
functions. For instance, dermal mast cell number density was
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significantly higher in diffuse SSc patients than in unaffected
controls (19, 20). Electron microscopy (EM) with immunogold
labeling in skin biopsy samples revealed that patients with pro-
gressive SSc (worsening skin thickening and/or organ function in
the year preceding biopsy) had higher number of mast cells. Fur-
thermore, mast cell vesicles containing active TGF-β in patients
with SSc showed higher level of degranulation than those from
unaffected controls (21). The number of basophils, a circulating
counterpart of mast cells was increased in SSc patients. Sponta-
neous histamine releasability, its reactivity to IgE and response
to IL-3 were increased in basophiles from patients with SSc (22).
On the other hand, the absolute number and proportion of NK T
cells were decreased in patients with SSc which possibly can lead to
down-regulation of the normal immune response (23). Altogether,
these observations implicate a dysregulated immune system in the
pathogenesis of SSc.

In line with those observations, large efforts have been made to
find the genetic risk factors for abnormal immune system in SSc.
These studies independently replicated genetic risk factors such as
STAT4 (24–26), BLK (27–30), BANK1 (31, 32), Interferon regu-
latory factor (IRF)-5 (33, 34), IRF-7, and -8 (35–38), and the T
cell receptor zeta-chain (CD247 ) (26) which are involved in innate
and adaptive immune system.

TYPE I IFNs AND SSc
Type I IFNs are important key regulators of the innate immune sys-
tem. They modulate immune cell differentiation and proliferation,
as well as inflammatory cytokine production. Recent studies have
provided considerable evidence that implicates a dysregulation in
type I IFN and IFN-inducible genes in the pathophysiology of
autoimmune diseases including SSc (39–43). SSc shares this com-
mon characteristic with systemic lupus erythematosus (SLE) (44).
Anti-IFNα mAb, sifalimumab, was evaluated in a phase Ia study
with an open-label extension of 67 SLE patients with moderately
active disease. Sifalimumab caused dose-dependent inhibition of
type I IFN-induced mRNAs in whole blood and corresponding
changes in related proteins in affected skin. Exploratory analyses
showed consistent trends toward improvement in disease activity
(44). In a follow-up phase Ib randomized, controlled trial with
161 SLE patients, no statistically significant differences in clinical
activity between sifalimumab and placebo were observed. How-
ever, when adjusted for excess burst steroids, change in disease
activity, and complement levels from baseline showed a positive
trend over time (45).

Approximately, half of SSc patients have an increased expres-
sion of IFN-regulated genes (termed the “IFN signature”) in their
peripheral whole blood cells (46). Recent studies demonstrated
activation of type I IFN system was present in SSc sera and plas-
macytoid dendritic cells (pDCs) were the main source of IFN-α
production (47, 48). Tan et al. first reported a distinct transcript
pattern of dysregulated type I IFN-inducible genes in periph-
eral blood cells (whole blood) from patients with SSc (40). This
finding was subsequently confirmed in peripheral blood mononu-
clear cells (41). The development of SSc has been reported in
patients undergoing IFN treatment (49). Furthermore, a random-
ized, placebo-controlled trial of subcutaneous IFN-α injection in
patients with early SSc showed that treatment with IFN-α resulted

in worsening lung function and a smaller degree of improvement
in skin thickening scores compared to placebo (50). Although the
presence of an activated IFN system could be demonstrated, the
exact mechanism by which the dysregulated type I IFN signal-
ing contributes to the pathophysiology of fibrosis in SSc is still
unknown.

The innate immune system responds rapidly to the presence of
certain motifs or patterns that microbes possess commonly such as
unmethylated DNA rich in CpG dinucleotides, dsRNA, and bacte-
rial cell wall components via pattern recognition receptors (PRRs)
(51). These PRRs are widely expressed on cells of the immune
system, as well as endothelial, epithelial, and mesenchymal cells
including fibroblasts. Some of the most prominent PRRs are the
Toll-like receptors (TLRs). TLRs located on various cellular mem-
branes to sense exogenous and endogenous danger-associated
molecular patterns (DAMPs) and pathogen-associated molecu-
lar patterns (PAMPs), and play a critical role in innate immune
responses. TLR activation triggers production and secretion of
several inflammatory cytokines including type I IFNs (52, 53). The
TLR family includes both extracellular and endosomal receptors.
The first is based on the cell surface like TLR-2, -4, -5, and -6 and
recognize patterns found primarily on bacteria, mycobacteria, fun-
gal, and parasitic organisms (54), the latter is located in endosome
like TLR-7 and -8. TLR-9 is localized in the endoplasmic reticulum
and translocated to the endosome upon response to bacteria DNA.
They recognize a wide variety of pathogen components, and all the
TLRs except TLR3 signal through the adaptor molecule MyD88,
activate and stimulate type I IFN production. Bhattacharyya et al.
reported that TLR4 was overexpressed in the skin and lung tissues,
as well as explanted skin fibroblasts from patients with SSc (55).
Our recent findings revealed that TLR3 expression was upregu-
lated in patients with SSc and IFN-α2 induced an up-regulation
of TLR3 in human dermal fibroblasts which is more prominent in
SSc patients than in unaffected control subjects (56). These find-
ings are suggesting an important role for TLR activation via type
I IFNs in fibroblast biology.

INTERFERON REGULATORY FACTORS AND SSc
Interferon regulatory factors are best characterized as transcrip-
tional regulators of type I IFNs and IFN-inducible genes and play
a pivotal role in regulation of many facets of innate and adaptive
immune response (57). This family is composed of nine members:
IRF1, IRF2, IRF3, IRF4 (also known as LSIRF, PIP, or ICSAT),
IRF5, IRF6, IRF7, IRF8 (also known as ICSBP), and IRF9 (also
known as ISGF3γ) (58, 59). As transcriptional factors, each IRF
contains a well-conserved DNA-binding domain which is located
at the amino terminus and forms a helix-turn-helix-motif. This
region recognizes a consensus DNA sequence known as the IFN-
stimulated response element (ISRE) in the promoters of targeted
genes (59–61). These IRFs coordinate the expression of type I
IFNs and type I IFN-inducible genes (57). Several genetic poly-
morphisms have been associated with SSc in multiple case–control
studies and a few family studies (Table 1). Some of these genetic
variants are associated with susceptibility for development of SSc,
while others act as disease modifiers. Recent genome-wide associa-
tion studies (GWASs) also confirmed IRFs as genetic susceptibility
loci in autoimmune diseases.
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Table 1 | Polymorphisms in the interferon regulatory factors associated with systemic sclerosis.

IRF Chromosome (human) Expression cells SSc associated SNPs Reference

IRF5 7q32 B cells; DCs; monocytes rs2004640; rs2280714;

rs10954213; rs3757385

Radstake et al. (26), Dieude et al.

(31), Sharif et al. (33)

IRF7 11p15.5 B cells; fibroblasts; pDCs;

monocytes

rs1131665; rs4963128;

rs702966; rs2246614

Carmona et al. (35)

IRF8 16q24.1 B cells; macrophages;

CD8α + DCs; pDCs; T cells

rs11642873; rs2280381 Gorlova et al. (36), Terao et al. (37),

Martin et al. (38)

IRF5 is a transcription factor which induces the transcription
of IFN-α and other early pro-inflammatory cytokines (62, 63).
In vitro experiments have shown that in virus-infected cells, IRF5
is activated by phosphorylation, resulting in nuclear transloca-
tion and stimulation of IFN-α (64). Initial analysis of the role
of IRF5 in the innate antiviral response utilizing IRF5 mutant
mice showed impairment of interleukin-6 (IL-6) and TNF-α pro-
duction in splenic dendritic cells. IRF5 mutant mice are highly
sensitive to viral infection and show lower levels of type I IFN
in the serum. IFN production was also impaired in the infected
macrophages from IRF5 mutant mice (65, 66). Genetic variants of
IRF5 are associated with SSc susceptibility (67–69).

The minor allele of the IRF5 single-nucleotide polymorphism
(SNP) rs4728142 was shown to be predictive of longer survival in
the two independent SSc cohorts. The association of this SNP with
survival was independent of age at disease onset, disease type, and
autoantibody profiles (33). This minor allele was also associated
with lower IRF5 transcript expression in monocytes of patients
and controls suggesting functional relevance of rs4728142 or it
associated SNPs for IRF5 expression.

IRF7 is one of transcription factors involved in IFN signaling
pathways which is activated by TLRs TLR3/7/9 or retinoic acid-
inducible gene 1 (RIG-1) in response to nucleic acid (both DNA
and RNA) immune complexes. Activated IRF7 leads to secretion of
a large amount of type I IFN (70). Its expression can potentially be
enhanced via a positive feedback loop through IFN receptor and
ISGF3 activation, leading to increased IRF7 over-expression and
subsequently additional IFNα, transcription (71). IRF7 is essen-
tial for the induction of IFN-α/β genes via the virus-activated,
MyD88-independent pathway and the TLR-activated, MyD88-
dependent pathway (72). Inactive IRF7 resides in the cytoplasm.
With pathogenic stimulation, IRF7 is phosphorylated, activated,
and translocated into the nucleus, where it forms a transcriptional
complex with other co-activators and binds to promoter regions
of target genes including IFN-α/-β (73, 74). IRF7 also regulates
the pro-inflammatory cytokine IL-6 in pDCs and monocytes (75,
76). The viral induction of MyD88-independent IFN-α/β genes is
severely impaired in IRF7 null fibroblasts. Consistently, markedly
decreased serum IFN-α level were also observed in IRF7 null mice
(72). These studies demonstrated the importance of IRF7 depen-
dent systemic IFN response for the innate immunity. Furthermore,
recent genetic studies have established IRF7 as a susceptibility locus
in SLE (77–80). Similarly, our group recently reported that a func-
tional variant in the IRF7 exonic region, rs1131665 was associated
with SSc (35). These findings support that IRF7 may represent a

common risk factor for systemic autoimmune disease processes,
including SSc. Microarray studies revealed up-regulation of IRF7
mRNA level in whole peripheral blood cells from SSc patients with
early diseases (40). Another independent study showed no statis-
tically significant difference in IRF7 transcript levels in PBMCs of
SSc patients compared to controls by quantitative PCR analysis
(81). However, patients with late stage disease and a smaller sam-
ple size were investigated in this study. Further investigations are
needed to determine the contributory role of IRF7 in pathogenesis
of SSc.

IRF8 is another immune cell specific IRF family member. It
participates in the MyD88-dependent signaling pathway through
interaction with TRAF6 (82). IRF8 is required for the induction
of Type I IFN genes by viruses and TLR ligands in DCs (83). IRF8
is known to be involved in the development of dendritic cells (84).
IRF8 also promotes B cell differentiation (85). Recently, the IRF8
SNP, rs11642873 was identified as a risk factor for limited and
anti-centromere positive SSc patients in a large GWAS follow-up
study conducted in European and North-American cohorts (36).
Another independent study identified rs2280381 polymorphism
in IRF8 as a susceptibility locus of SSc in the Japanese population
(37). The association of IRF8 genetic variants with SSc supports
possible involvement of B cells and dendritic cells in the devel-
opment of SSc. However, the role and importance of B cells or
dendritic cells in the fibrotic component of SSc has not been well
established (86–88).

Further fine-mapping and functional studies are crucial for elu-
cidating the role of genetic variants in the IRFs in the pathogenesis
of SSc.

INTERFERON INDUCIBLE CYTOKINES AND CHEMOKINES IN
SCLERODERMA
Interleukin-6 is one of the most prominent cytokines activated by
IFN pathway. It is involved in the pathogenesis of many immune-
mediated diseases including SSc (89–91). IL-6 is a classic inflam-
matory cytokine produced by various cells and involved in B cell
differentiation, induction of acute phase proteins in liver cells, pro-
liferation, and differentiation of T cells (92, 93). By binding to the
IL-6 receptor (IL-6R)-α chain and the signal transducing com-
ponent gp130 (CD130), pleiotropic IL-6 activates downstream
signaling mediated by STAT1 or STAT3 through tyrosine phospho-
rylation. Previous studies have shown that IL-6 plays an important
role in the initiation and promotion of fibrosis (94, 95). Pro-
duction of IL-6 and soluble IL-6R by cultured peripheral blood
mononuclear cells were significantly higher in patients with SSc
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and soluble IL-6R levels significantly correlated with the severity
of pulmonary fibrosis in patients with SSc (96). Serum IL-6 lev-
els might be predictive of disease progression in Interstitial lung
disease associated with SSc (97). IL-6 shifts T cells from regula-
tory response to pathogenic Th17 response (98), and promotes
the differentiation of CD4+ cells to a profibrotic Th2 type while
suppressing Th1 differentiation (99). IL-6 stimulation induces
increased collagen production in dermal fibroblasts (100, 101).
These studies demonstrate that IL-6 is involved in the pathogene-
sis of SSc and may contribute to progression of fibrosis and disease
severity in SSc.

A combined score of the plasma IFN-inducible chemokines,
IFNγ-inducible protein 10 (IP-10/CXCL10), and IFN-inducible
T cell α chemoattractant (I-TAC/CXCL11) highly correlated with
the IFN gene expression signature in SSc patients in the Genetics
versus Environment in Scleroderma Outcome Study (GENISOS)
cohort study (102). As expected, SSc patients had higher IFN-
inducible chemokine scores than age-, gender-, and ethnicity-
matched controls. Among 266 SSc patients, the IFN-inducible
chemokine score was associated with presence of anti-U1 RNP
antibodies while patients with anti-RNA polymerase III anti-
bodies had lower levels of this chemokine score. The lower IFN
chemokine levels in patients with anti-RNA polymerase III anti-
bodies might be of important biological significance because
these antibodies are associated with presence of diffuse cuta-
neous involvement and absence of severe interstitial lung dis-
ease. The IFN-inducible chemokine score was not associated
with disease duration, disease type, or other auto-antibodies.
The chemokine score correlated positively with the concomitantly
obtained scores on the Medsger Severity Index for muscle, skin,

and lung involvement, as well as creatine kinase levels in SSc. There
was also a negative correlation with forced vital capacity and dif-
fusing capacity for carbon monoxide. These results support the
aforementioned findings that the IFN activation is associated with
the more severe form of SSc. There was no significant change
observed in the IFN-inducible chemokine score over time in SSc
patients. The fact that the IFN chemokine score did not show a
consistent trend of change and that it was not associated with dis-
ease duration at the baseline visit indicates that the IFN signature
is a stable marker for the more severe subtype of disease rather
than a time-dependent immune dysregulation that improves after
the initial phase of SSc (102).

CONCLUSION
There are many distinct immunological and molecular mecha-
nisms that can contribute to pathogenesis and progression of SSc.
Dysregulated innate and adaptive immune responses are major
contributors to fibrosis and disease severity of SSc. This review
summarized a possible role of type I IFN and IFN-inducible
genes in pathogenesis of SSc, and provides support for a link
between type I IFN and fibrosis in SSc. Potential role of type
I IFN or IFN-inducible genes as treatment targets or biomark-
ers in SSc need to be further explored. A better understand-
ing of the relationship between type I IFN and fibrosis could
bring us closer to the ultimate goal of reversing or slowing the
fibrotic process and regenerating the normal end organ tissue
in SSc.
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Studying the action of mechanisms of type I interferon (IFN) provides the insight to elu-
cidate the cause and therapy for autoimmune diseases. There are high IFN responses in
some diseases such as connective tissue diseases, but low responses in multiple sclero-
sis. Distinct IFN features lead us to understand pathology of a spectrum of autoimmune
diseases and help us to search genetic changes, gene expression, and biomarkers for
diagnosis, disease progression, and treatment response.
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PROLOGUE
EVOLUTION OF TYPE I INTERFERONS: IMPLICATIONS FOR
AUTOIMMUNITY AND CELL PROTECTION
Interferons (IFNs) were present in early bony fish during the
Devonian Period, 400,000,000 years ago. Fish have branched into
more species than all other vertebrates combined, and changes
in their proteins evolved in parallel with taxonomic diversity.
Sequence and structural similarities in fish IFNs suggest that there
was an earlier ancestor in common with mammals. Present-day
fish IFN has introns and in that way resembles human IFN-lambda,
a type III IFN. Mammalian type I IFN has no introns, and may
have arisen from retrotransposition of spliced RNA to intron-
less DNA with the same sequence as the parent gene (1). DNA
without introns is more easily duplicated, leading to many sub-
types. Transcription from DNA without introns is rapid and can
bypass mechanisms that can be derailed by virus infections. Anti-
viral IFN genes would therefore have a selection advantage during
fevers.

Interferons vary widely between species of present-day fish.
Salmon have 11 subtypes of type I and III IFN; zebrafish have two
group 1 and two group 2 subtypes. Subtypes of IFN likely evolved
to effectively target different viruses in vertebrates. Viruses bind
toll-like receptors (TLRs) 3, 7, 8, and 9 and retinoic acid-inducible
gene-I (RIG-I) receptors. These fish receptors then induce IFNs
which activate or induce type I IFN receptors (IFNARs), and
in turn, signaling proteins (JAK1, TYK2), transcription factors
(STAT1), and many IFN-stimulated gene (ISG) proteins (such as
IRF, MxA, PKR, and viperin) (2). All are present in humans.

The human type I IFN family comprises 13 IFN-α, 1 IFN-β, 1
IFN-κ (keratinocytes), 1 IFN-ω (Table 1). IFN-τ is a related vari-
ant found only in the ruminant trophectoderm, important early in

pregnancy. IFN-δ is produced by pig trophoblasts. IFN-ζ/limitin
is present in mice.

Humans have three type III IFN-λs (aka IL-29, IL-28A, and
IL-28B) which bind a different receptor (IL-10Rβ and IL-28Rα

chains), often on epithelial cells and liver cells. IFN-lambda has
introns. Only restricted cell types express the unique type III
IFNAR, and thus it may have fewer side effects. It is produced
by plasmacytoid dendritic cells (pDCs) and induces IL-6, IL-8,
and IL-10, and activates type II monocytes. It is anti-proliferative,
but only for several tumor cell subtypes.

Viruses were likely to have been early targets of IFNs in evo-
lutionary history. There is intense selective pressure to rapidly
destroy viruses and virus-infected cells. Human interferons induce
proinflammatory cytokines and chemokines such as CXCL10
(IP10), and turn on hundreds of anti-viral genes such as MxA,
viperin, 2′,5′-OAS, and PKR. IFNs also activate cytolytic T cells,
NK cells, Th1 cells, macrophages, and cells from other tissues, and
induce apoptosis of infected cells. (Control of inflammation is
discussed below.)

Interferons regulate a 1000 genes (3, 4). Many of these genes
are not anti-viral. Some IFN-regulated genes shape the innate and
adaptive immune systems, some modify transcription, some are
anti-proliferative and pro-apoptotic to combat cancer, other genes
control fertility, fatty acid oxidation, free radical neutralization,
energy metabolism, and cell protection and tissue repair. These
functions are a leap beyond the anti-viral role of IFNs. Virus-
independent benefits suggest that IFN responses evolved to “clean
up the mess” after a virus infection (Ed Croze, personal communi-
cation, 2007). Subnormal IFN levels, as in multiple sclerosis (MS),
could disturb immune regulation and also diminish cell protec-
tion. Therapy of MS with type I IFNs reverses these disturbances.
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Table 1 | Interferons in mice vs. humans.

Mouse Man

Type I IFNs 14 IFN-α genes 13 IFN-α genes (12 proteins)

19 kDa, 165–166 aa Four have alleles that differ between strains

10 Glycosylated 2 Glycosylated

IFN-α4 promoter binds IRF3 IFN-α4 promoter binds IRF3

20 kDa, 22 kDa glycosylated, 166 aa 1 IFN-β 1 IFN-β

IFN-β promoter binds IRF3 IFN-β promoter binds IRF3

22 kDa and glycosylated, 187 aa 1 IFN-ε 1 IFN-ε

25 kDa, 180 aa 1 IFN-κ 1 IFN-κ

20 kDa, 172 aa 1 IFN-ω None

19 kDa, 182 aa 1 IFN-ζ (limitin) 1 IFN-ζ (limitin)

Type II IFN 1 IFN-γ 1 IFN-γ

17 kDa

Type III IFN

21 kDa, 26–35 glycosylated None IFN-l1 (IL-29)

22 kDa, 24 glycosylated IFN-l2 (IL-28A) IFN-l2 (IL-28A)

21 kDa, 24 glycosylated IFN-l3 (IL-28B) IFN-l3 (IL-28B)

Signaling P-STAT proteins P-STAT proteins

STAT1a 91 kDa P-Y701-STAT1 P-Y701-STAT1

P-S727-STAT1 P-S727-STAT1

STAT1b 84 kDa P-Y701-STAT1 P-Y701-STAT1

STAT2 113 kDa P-Y689-STAT2 P-Y690-STAT2

No Y833 – truncated (76)* P-Y833-STAT2

No Y841 – truncated P-Y841-STAT2

No STAT2 induction of P-STAT4 (76) P-STAT2 induces P-STAT4

STAT4 86 kDa Type I IFNs induce Th1 P-STAT4 induces IFN-g, Th1

Type I IFNs induce Th1, but reports in MS are mixed

EAE vs. MS EAE MS

The target Antigen-induced No known antigen (ADEM is Ag-induced)

Therapy Improvement with pure IFN-β Most improve with IFN-β therapy (∼85% have a low

IFN signature) (∼15% have higher IFN signature; less

response to IFN-β therapy)

*“Humans do not provide a good model for mouse immunology” from Ref. (76).

IFN SIGNALING, KINETICS, AND SPECIES DIFFERENCES
The primary source of IFN is from pDCs (IFN-α > IFN-β produc-
tion), fibroblasts – the major producers of IFN-β (IFN-β > IFN-α),
macrophages, and endothelial cells. pDC are only 1% of DC.
Myeloid dendritic cells (mDCs) secrete IL-12 and other cytokines,
but only small amounts of IFN.

Interferons signal through a rapid cascade. Type I IFN is
secreted within an hour of stimulation with virus or poly(IC),
a synthetic analog of viral double-stranded RNA (dsRNA). Viral
nucleic acids are recognized by pattern receptors (described below)
that activate IRF3, which then turns on IFN-β and IFN-α1 syn-
thesis. These first subtypes of IFN bind IFNARs and activate
IRF7 in surrounding cells to induce multiple other type I IFN
subtypes/species.

The cell surface type I IFNAR has two-chains, IFNAR1 and
IFNAR2 which activate TYK2 and JAK1. Phospho-JAK1 and
TYK2 then phosphorylate STAT1 (P-Tyr701-STAT1) and STAT2
(P-Tyr-STAT2) proteins which complex with IRF9 (p48) (ICSBP)

to form IFN-stimulated gene factor 3 (ISGF3). Like type I IFNs,
IFN-lambda induces ISGF3. Within 10 min after IFN activates
its receptor, the ISGF3 binds the IFN-stimulated response ele-
ment (ISRE) of a large group of gene promoters. DNA-bound
P-Y-STAT1 is sometimes then phosphorylated on serine 727
within ∼10 min (forming P-S-STAT1) (5) which boosts the sig-
nal for a subset of IFN-regulated genes. STAT2 has no serine
phosphorylation site.

TYPE I IFN REGULATION AND LOCALIZATION OF IFN
PRODUCTION
Once the receptors above are activated, a sequence of intra-
cellular signals amplifies IFN secretion. IRF3 is phosphory-
lated, binds to DNA promoters, and then IFN-β and IFN-α1
(IFN-α4 in mice) are rapidly secreted. These two IFNs then
bind the type I IFNAR on the same and other cells and acti-
vate IRF7 which binds to promoters for other IFN-α sub-
types.
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Other intracellular signal transduction molecules modify the
JAK-STAT pathway, including, PI3K, CRKL, RAP1, PKC-δ and ε,
and p38 in the MAPK cascade (6). These converging proteins are
cell-specific. These pathways enhance effects of type I IFNs, but
perhaps the most important interaction is with IFN-γ.

Type II IFN-γ is the prototypic immunoregulatory Th1
cytokine, but it is only distantly related to type I IFNs and has only
weak anti-viral effects. It activates STAT1 on tyrosine. P-Y-STAT1
homodimers bind to the gamma-activated site (GAS), present in
a set of promoters that are different from the type I IFN ISRE that
is activated by the STAT1/STAT2/IRF9 complex. IFN-γ-activated
P-Y-STAT1 can interact with IFN-β-induced P-Y-STAT1. Preincu-
bation with IFN-γ “primes” cells for a more vigorous response to
IFN-β.

Interferon signaling differs between mice and men. In humans,
activation of STAT2 then phosphorylates STAT4, which can turn
on more cytokine genes. In some mouse strains, however, STAT2
is truncated, and does not activate STAT4 (Table 1). Thus, the
murine experimental allergic encephalomyelitis (EAE) model of
MS suffers from being an antigen-specific model of a disease with
no known antigen, and because inflammation in EAE is regulated
by interferon signaling that is missing part of the human signaling
cascade.

Some downstream genes are rapidly induced (e.g., anti-viral
and immunoregulatory genes); others take longer to plateau (e.g.,
genes with secondary induction, e.g., dual oxidase 2) (4). Kinet-
ics also vary between cells. For instance, IL-10 mRNA production
by activated monocytes is maximal at 4–8 h and is inhibited by
IFN-β. In activated T cells, the peak is at 24 h and IL-10 mRNA is
amplified by IFN-β (7).

Interferon-β, compared to the individual subtypes of IFN-α,
induces a larger number of genes in human fibrosarcoma cells, and
does so more quickly (3). IFN-β binds to the IFNAR for a longer
time than IFN-α (8), explaining the differential gene induction.
Perhaps because of the greater number, but more balanced port-
folio, of induced genes, IFN-β has fewer side effects than equivalent
anti-viral doses of IFN-α. IFN-β is also more effective than IFN-α
in some therapies. Despite the traditional use of IFN-α subtype to
treat some forms of cancer, IFN-β is actually more potent against
several types of cancer at equivalent anti-viral titers of both IFNs
(9). It is also more effective in MS therapy. (Cytoprotective effects
are discussed with MS, below.)

Does IFN-β cross the blood-brain barrier (BBB)? Although CSF
IFN levels are only 1/1000 of serum levels in a normal monkey
(10), the damaged BBB in MS and EAE could allow IFN to cross.
In humans, circumstantial evidence suggests that IFN-β has direct
effect on the CNS. IL-10 levels in CSF rise after IFN-β-1a therapy
(11) and black hole formation is reduced by IFN-β-1b (12). In
mice with EAE, IFN-induced mRNA is clearly present in the CNS,
after controlling for the effects of EAE and IFN-induced mRNA
outside the CNS (13). Thus, IFN-β may have direct effects on brain
cells in MS.

TRIGGERS FOR TYPE I IFN PRODUCTION
Virus components that induce type I IFNs include exogenous
virus RNA or DNA and associated proteins, vaccines which are
attenuated viruses or contain virus components, and endogenous

retroviruses that make up ∼8% of human DNA. Exuberant
responses to viruses or to abnormally processed DNA from
dying cells and their nucleic acids can activate the immune sys-
tem and lead to autoimmune diseases such as systemic lupus
erythematosus (SLE).

Receptor families recognize conserved pathogen-associated
molecular patterns (PAMPs; i.e., “danger” from viral nucleic acids
and other motifs) and viruses. These receptors include TLR,
RIG-I, melanoma differentiation-associated protein 5 (MDA5),
CD11b/CD18 (Mac1), STING (DNase II), as well as the Trex
system. Each virus can be detected by multiple PAMP receptors.

Toll-like receptors were originally characterized in fruit flies,
where they recognize a developmental growth factor and con-
trol antimicrobial responses in adult flies. In humans, 10 types of
TLR recognize bacterial components, RNA, and DNA. Fibroblasts
express TLR3 on their surface. Other, intracellular, sensors detect
viruses after they are internalized or generated inside cells. They
also sense abnormally processed nucleic acids in connective tissue
diseases after Fc receptors internalize DNA-Ab complexes. TLR3
is endosomal in monocytes and mDCs (TLR3 is not in pDC).
Virus RNA is recognized after phagocytosis and internalization,
or after enveloped viruses penetrate the cell by endocytosis. After
binding dsRNA or pIC, human TLR3 is activated within acidi-
fied cytoplasmic endosomes (14). TLR3 activates TRIF, and then
kinases (IKKε, TBK1) that phosphorylate IRF3 and IRF7 (below).
TLR7 and TLR8 bind single-stranded RNA (ssRNA), poly-IC,
and imiquimod. TLR9 binds intracytoplasmic viral or bacterial
CpG-rich DNA. TLR7, 8, and 9 are present in pDC.

The RNA helicases, RIG-I and MDA5, bind short and long
viral dsRNA, or pIC. Homologs of all of these receptors, with the
exception of the OAS system, are present in fish where they sense
pathogens and induce IFNs and many ISG.

IRF3 is constitutively expressed at high levels in most cells. IRF7
is present at only low levels,mainly in immune cells especially pDC,
but is necessary for the initial induction of IFNs. Activated IRF3
induces IFN-β and IFN-α1 (IFN-α4 in mice) which prime the type
I IFN system for a much stronger response. After virus exposure,
rapidly secreted IFN-β binds the IFNAR and induces and activates
intracellular IRF7 (at 4 h), while IRF3 is degraded. IRF7 broadens
the response by inducing multiple IFN-α genes in pDC which and
activate pDC, T cytolytic, Th1, and NK cells. In parallel, virus-
exposed conventional DC and monocytes secrete cytokines such
as IL-12 plus low amounts of IFN-α1 and IFN-β.

TLR7, 8, and 9 are expressed at high levels in pDC, and activate
MyD88. These TLRs activate IRF7 which induces transcription
of some IFN-β plus high levels of multiple types of IFN-α in
pDC (15). Ligation of RIG-I and MDA5 activate transcription
factors IRF3 and NF-κB, which travel to the nucleus and initiate
transcription of type I IFNs.

CONSEQUENCES OF EXCESS STIMULATION BY DNA, RNA,
BACTERIA, AND CYTOKINES
Influenza infections elevate type I IFNs in serum and pulmonary
secretions. In Sjögren’s syndrome, foci of inflammation in salivary
glands are positive for IFN-α, and serum IFN levels are elevated.
In SLE and Sjögren’s disease, high interferon levels and lack of
immune regulation cause damage to target organs. Surprisingly,
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because it is an immunologically privileged site, the brain also
exhibits IFN expression or binding. An early paper showed IFN-
α-positive macrophages, IFN-γ-positive astrocytes and microglia,
and occasional IFN-β-positive astrocytes and macrophages, within
active chronic MS brain lesions (16). During chronic hepatitis C
therapy, IFN-α (5 MU TIW) reduces PET activity by 10% in the
pre-frontal cortex (17), and 3 MU TIW causes gradual slowing of
VEP over 1 year (18). Hepatitis C in these patients may have had
additive effects with IFN-α. In contrast, VEP slowing is likely not
seen with IFN-β therapy, as P300 potentials are stable or improved
(19). Excessive CNS IFN levels cause encephalopathy in Aicardi–
Goutières syndrome, Cree encephalitis, and cerebral malaria, v.i.
(20), and possibly in SLE and Sjögren’s disease.

The Trex system is an intracellular monitor for products of
endogenous retroviruses. Trex1 (DNAse III) is the major 3′,5′-
exonuclease in humans. The single-exon gene codes for a cytosolic
protein that is induced by the IRF3-dependent IFN-stimulated
response to foreign DNA (21). It edits DNA by stripping off
one stand of ssDNA and metabolizes intranuclear DNA; resid-
ual ssDNA that escapes from the nucleus can trigger an immune
response. Remnants of ancient retroviruses human endogenous
retrovirus (hERV) that have incorporated into the DNA comprise
∼8% of the human genome, and retroelements may outnumber
our genes by 100-fold (21). These hERV are not complete virions,
but portions can be transcribed, and do generate ssDNA fragments
and proteins. hERV DNA is degraded by Trex1. In Trex1 knock-
out mice, 22% of the DNA in inflamed myocardium is coded by
endogenous retroviruses, vs. 7% in wild type mice (21), indicating
that Trex1 is needed to destroy these retroviral genes. Reverse-
transcribed DNA that induces IFN production is the principle
cause of autoimmunity in these mice. Defects in Trex1 lead to
high circulating levels of foreign DNA, which triggers type I IFN
production and autoantibody production.

Trex1 deficiency causes constitutive activation of the systems
that control ATM-dependent double-strand breaks and cell cycle
checkpoints. Induction of ATM for DNA-damage monitoring also
activates p53 and BRCA1, leading to fewer tumors, self-renewal of
hematopoietic stem cells, thymocyte survival, but less apoptosis
of autoreactive immune cells. This could amplify autoimmune
disease.

A defective Trex1 gene is common in Canadian Cree Indi-
ans, and causes excessive interferon production. This leads to
Cree Indian Encephalopathy, or Aicardi–Goutières syndrome,
an encephalopathy associated with lupus-like symptoms (22).
Excessive CSF IFN-α (42 IU/ml) in affected children (Pierre
Lebon, Paris) mimicked congenital viral infection, but associated
chilblains (pernio) pointed to SLE and autoimmunity, and IFN-α.
These children have: (1) progressive microcephaly and failure to
attain neurodevelopmental milestones, beginning in early infancy;
(2) recurrent viral, bacterial, and fungal infections; (3) cerebral
atrophy, white matter attenuation, and calcifications of basal gan-
glia, white matter, and/or cerebellum on CT scan; (4) perivascular
chronic inflammatory infiltrates in cerebral hemisphere white
matter and hyperplasia of vascular endothelial linings; and (5)
polyclonal hypergammaglobulinemia. They sometimes have cor-
roborative features such as: (1) dystonic posture; (2) systemic
autoimmune abnormalities – high ALT and Abs to cardiolipin,

ssDNA, dsDNA, and RNA-protein complexes; (3) splenomegaly
and lymphadenopathy; (4) CSF pleocytosis with high CSF IFN-α
and Ig; high blood CD8 “suppressor” and B cells; (5) intermit-
tent hyperpyrexia; (6) chronic active Epstein–Barr virus (EBV) or
CMV infection or persistent viral excretion; (7) similarly affected
siblings; and (8) acrocyanosis with autoamputation (23, 24). With
this “chilblain lupus” from Trex1 deficiency, cold exposure causes
cyanosis of toes and fingers because of damage to capillaries.
Eighty percent of families with Aicardi–Goutières syndrome have
mutations in one of four nuclease genes – the exonuclease Trex1
[chromosome 3p21 (AGS1)] or the genes for all three components
of the ribonuclease H2 enzyme complex (AGS2, 3, and 4).

In SLE, apoptotic products of PMN, T cells, and macrophages
are not cleared correctly by macrophages. Apoptotic blebs con-
tain modified chromatin, and neutrophil extracellular traps are
released by dying neutrophils (NETosis). Abnormally processed
nucleic acid-containing debris circulates as phospho-DNA that
is recognized as a virus, or Ab-DNA neoantigens, that activate
FcR and TLR of DC and the BCR of B cells. Chromatin, double-
stranded DNA, and RNA-binding ribonucleoproteins activate an
autoimmune circuit and production of IFN-α/β by pDCs and
anti-dsDNA Abs by autoreactive B cells.

Excess local IFN-α damages the CNS. Encephalopathy develops
when IFN-α is overexpressed in astrocytes (25). Transgenic mice
develop early mineralization around blood vessels in the thala-
mus at 2 months, calcium crystals in cerebellum at 12 months, and
perivascular CD4+ T cell infiltrates in the CNS. Some pediatric
infections lead to high CSF IFN-α (“TORCH,” from Toxoplasmo-
sis, Other, Rubella, CMV, HSV), with sequelae of CNS calcifica-
tions and brain atrophy. Chronic exposure to IFN-α in cultured
astrocytes increases GFAP expression, reduces proliferation, and
causes hypertrophy and activation (25, 26), reflecting the changes
from high CNS IFN-α in Aicardi–Goutières syndrome.

In MS, HERV DNA and antibodies to HERV proteins appear in
serum, CSF, and brain (27). Activated immune cells release HERV
nucleic acids into the cytosol. This could induce type I IFNs in
immune cells or the CNS in some MS patients.

“Interferon inducers” also generate non-IFN cytokines and
proteins. For instance, pIC is a potent stimulus for lympho-
cyte production of ACTH and other proteins processed from the
pro-opiomelanocortin (POMC) precursor molecule (28). IFN-α2
triples serum ACTH and cortisol 5 h after injections in patients
with hepatitis B; flu-like symptoms do not correlate with induc-
tion (29). In contrast, IFN-β-1b therapy of MS does not elevate
cortisol (30).

Environmental agents and drugs can modify IFN effects. Vit-
amin A activates STAT1 and synergizes with IFN-β (31). Oral
vitamin D3 regulates 63 genes, 62 of these were also regulated by
IFN-β-1b therapy in early MS (Munger, uncorrected data analy-
sis of BENEFIT study; personal communication, CSMC, 2013).
Statins, which lower cholesterol and are anti-inflammatory, sur-
prisingly block IFN signaling. They reduce formation of P-Y-
STAT1 and IFN-β-induced MxA production in vitro and in vivo
(32), and allow attacks of MS when added to ongoing IFN-β-1a
therapy (33) (below).

The response to exogenous or endogenous triggers has to be
tightly controlled, or unchecked immune responses will destroy

Frontiers in Immunology | Molecular Innate Immunity September 2013 | Volume 4 | Article 281 | 54

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Reder and Feng Interferon in autoimmunity and MS

the host (34). Excessive responses to influenza, as in the 1918
pandemic, lead to death from severe pneumonitis. Weak immune
responses, as in never-exposed youths or in octogenarians, do not
control the virus. Prior immune education usually allows rapid
clearance, manageable immune reaction, and tolerance/regulation
that allows the inflammation to subside. Tolerance should be
under stronger selective pressure than the actual anti-pathogen
response (34, 35). As a virus is cleared, the immune system tem-
pers inflammation with regulatory T cells, inhibitory receptors
for immunoglobulin Fc on immune effector cells, apoptosis and
autophagy of target cells, anti-inflammatory cytokines, and induc-
tion of intracellular suppressors of cytokine signaling (SOCS)
proteins. IFNs regulate each of these immune functions, and
regulation of each, had to evolve over eons.

Prevention of anti-self responses in an individual are honed
over a lifetime by environmental events which generate a complex
immune repertoire to combat danger. If the environmental guid-
ance is missing, holes in the repertoire can trigger autoimmunity
to self antigens. If certain antigens or levels of interferon are in
excess, immune responses could be excessive and can cross react
with self, triggering autoimmunity.

DISEASE WITH HIGH SERUM TYPE I IFN LEVELS AND HIGH
RESPONSES TO IFN: SLE, CNS SJÖGREN’S SYNDROME,
NMO, AND A MINORITY OF MS PATIENTS
Early reports identified a unique “acid labile” type I IFN in serum
of patients with SLE and HIV infection (36). Type I IFN is resis-
tant to pH 2, but IFN-γ is destroyed on exposure to acid. Acid
sensitivity may be from have aberrant glycosylation of some sub-
types of IFN-α in connective tissue disease and HIV. More recent
studies of patients with SLE demonstrate significant increases in
serum type I IFN activity (37, 38) and excessive signatures for
IFN-induced RNA in white blood cells [in Ref. (37)]. Responses
to self DNA or viruses are inappropriately regulated in hered-
itable complex traits linked to single nucleotide polymorphisms
(SNPs) in IFN-regulatory genes (TYK2, IRF5, STAT4, TNFAIP3,
and TREX1) and diverse mutations in Trex1 in 0.5–3%. In sup-
port, lupus-prone mice that are transgenic for TLR7.1 and have
excessive levels of TLR7 have more autoantibodies and early severe
lupus. High IFN-α levels correlate with SLE disease activity and
severity in some studies (24). Clinically relevant, therapy with type
I IFN causes de novo SLE or worsening of preexisting disease.

Nearly all parts of the body can be affected in SLE from the anti-
nuclear antibodies and symptoms derived from high serum IFN
levels. A constellation of damage affects skin, mucocutaneous tis-
sue, joints, kidneys, lungs, heart, and blood vessels – with immune-
complex vasculitis and thrombotic occlusions. CNS lesions are
rare, but occasionally lupus myelopathy develops with devastat-
ing vasculitis, inflammation, swelling, and demyelination over
many cord segments. In addition, serum type I IFN levels are
elevated. SLE problems that are possibly related to high serum
IFN levels include lymphopenia, myalgia and muscle weakness,
joint pain with modest infusions, significant constitutional symp-
toms – headache, body ache, malaise, and fatigue that can herald
neuropsychiatric problems (poor memory, mood swings, seizures,
and psychosis – without strokes or vasculitis, although there is
underlying small vessel vasculopathy in SLE brains). Cognitive

problems are often unrelated to SLE exacerbations, suggesting a
second mechanism of damage. Perhaps high levels of type I IFN,
and abnormally processed nucleic acids induce autoantibodies
that are specific to certain regions of the brain and interfere with
neuronal function (39) (Table 2). With disruption of the BBB
by stress or epinephrine, neurons in the amygdala are damaged
by Abs (anti-NR2) to orphan NMDA receptors. With BBB dis-
ruption from infections, auto-Abs damage hippocampal neurons
and disrupt spatial memory. In both cases the damage is excito-
toxic, without inflammation, due to Ab-mediated stimulation of
the NMDA receptor.

Interferon levels are high in serum and salivary glands in Sjö-
gren’s disease, a connective tissue disorder with dry eyes and mouth
(sicca) from inflammation of the lacrimal and salivary glands,
along with synovitis, vasculitis, and neuropathy. Classic primary
Sjögren’s syndrome typically appears in middle-aged women. CNS
involvement is usually not part of primary Sjögren’s, but a CNS
variant was recently described (Javed, below). Secondary Sjö-
gren’s syndrome coexists with SLE, polyarteritis nodosa, rheuma-
toid arthritis, scleroderma, polymyositis, and neuromyelitis optica
(NMO) (below). Glands are infiltrated by foci of memory CD4 T
cells (secreting IL-10 and IFN-γ),macrophages, and mast cells near
activated epithelial cells (IL-1β, IL-6, TNF-α). A small number of
infiltrating activated B cells produce high levels of immunoglob-
ulin, some directed against rheumatoid factor, SSA/Ro, SSB/La,
anti-nuclear antigens, aquaporin 5, and the M3 muscarinic recep-
tor. The surprising overlap between CNS Sjögren’s syndrome and
NMO (often considered an “MS variant”) is discussed below.

MULTIPLE SCLEROSIS: EPIDEMIOLOGY, IMMUNOLOGY, AND
ROLE OF IFN
Multiple sclerosis is an inflammatory CNS disease with no clear
etiology, pleomorphic clinical and MRI appearance, and huge vari-
ation in clinical course, with a transition from bi-yearly relapses
and remissions to a progressive form after ∼8–15 years (40). Clin-
ical attacks plus the 10× more frequent subclinical events seen
on MRI cause cumulative damage. Attacks last 2–6 weeks, affect
any part of the CNS, and often resolve to near-baseline func-
tion. MRI lesions enhance with Gd, from leakage through the
BBB and perhaps pinocytosis by activated endothelial cells of
post-capillary venules. Lesions enhance for a month, then the
residual high-water T2 signal fades slowly or becomes a permanent
black hole reflecting damage to axons, neurons, and oligoden-
droglia. Therapy with IFN-β and some other drugs prevent Gd+
lesions but also prevent black hole formation after Gd+ lesions
appear. This suggests that MS therapies may have neuroprotective
effects.

Multiple sclerosis is more likely to arise when a first degree rel-
ative has MS (10- to 20-fold increase), and in smokers, the obese
(2×), in those with little exposure to sunlight or with low vitamin
D levels (2×), and when first EBV infection is delayed to ado-
lescence. Once MS develops, exacerbations are more frequent in
smokers (1.6×), and after infections by many different viruses or
after vaccination with certain attenuated live viruses such as yellow
fever (41). IFN-β therapy does not prevent virus infections, but it
does diminish the residual clinical deficit after a virus-induced
exacerbation of MS (42).
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Table 2 | Characteristics of demyelinating disease.

MS (40) SLE CNS Sjögren’s (58) NMO (77, 78)

MRI brain lesions Periventricular, Dawson’s fingers Gray and white matter

lesions

Centrum seniovale Hypothalamic and

periventricular in <10%

“Random” WM+GM, but predilection

for certain areas

Small to large lesions Small WM, rare large

vasculitic, and CVA lesions

Small lesions Medium to large

lesions, later in course

MRI cord lesions <1 Segment Rare extensive myelopathy >3 Segments, also

smaller lesions (58)

>3 Segments;

longitudinally extensive

Often subpial or acentric Central cord Central cord

Relapse rate q 2 year ∼Once per 5 year, on

therapy

Similar to NMO Frequent (∼2×/year)

early in the course for

NMO+patients

Progression PPMS at onset in 10% Stepwise and gradual

multi-organ failure

Progressive sicca

symptoms

None

RRMS becomes SPMS @ 8–15 year ∼Once per 5 year, on

therapy

Pathology CNS Demyelination > axonal loss “Vasculopathy” > cognitive

changes

Demyelination < axonal

damage

Demyelination < axonal

damage

Many lesions will repair Rare arteriopathy Vasculopathy Vasculopathy

Destruction by CD8 T cells and

monocytes

Cells include PMN and Eos Severe Severe and destructive

No repair

Serum marker No marker Anti-dsDNA SSA/SSB 40% Anti-AQP-4 60–75%

Anti-AQP-4 50%

Target Ag Unknown Abnormally processed

DNA and RNA

Nucleic acids, AQP-5 AQP-4
Minor salivary gland

inflammation in 100%

Serum type I IFN Low IFN-α/β High IFN-α/β High IFN-α/β High IFN-α/β

IFN-β Response by MNC Low High High High

CSF High IgG ∼Normal ∼Normal ∼Normal

OGCB 90% 10% ∼10% 20%

Triggers for exacerbation Virus, vaccination for yellow fever Virus Virus, possibly Virus; UTI (AQP-Z) (79)

Type I IFNs Possibly type I IFNs Possibly type I IFNs

Low vitamin D Sunlight

Smoking: MS onset and exacerbations Smoking: SLE onset and

exacerbations

Possibly smoking Possibly smoking

Therapy IFN-β, glatiramer, natalizumab,

fingolimod, fumarate, teriflunomide,

alemtuzumab, rituximab, laquinimod

Hydroxychloro-quine,

steroids, chemotherapy

Rituximab, steroids,

chemotherapy

Rituximab, steroids,

chemotherapy

Sunlight; vitamin D potentiates IFN-β-1b

GI parasites

Gout is rare

Pregnancy Benefit, perhaps from estriol Worse Unknown Unknown

Linked diseases ?Thyroid Connective tissue

diseases

Connective tissue

diseases

Connective tissue

diseases

?Ulcerative colitis Aicardi–Goutieres

AQP, aquaporin; GI, gastrointestinal; GM, gray matter; NMO, neuromyelitis optica; UTI, urinary tract infection; WM, white matter.
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Multiple sclerosis usually begins in the reproductive years and
is thee times more common in women than men. A subset of
patients, perhaps 25%, has a high IFN signature as well as more
clinical and MRI attacks before therapy, and these patients often do
not respond to IFN-β therapy (43, 44). They have excessive acti-
vation of monocytes and mDCs and a high type I IFN-induced
gene signature that predicts 70% of non-responders compared
to patients with normal IFN signatures. Non/poor-response was
defined as one or more attacks of 2 years on therapy (43) or three
or more new or worse MRI lesions (44). However, since high dis-
ease and MRI activity predicts more future activity, these patients
should be considered partial-responders, in the absence of an
untreated control group.

Immune studies and SNPs on GWAS implicate many genes
involved in immunoregulation or IFN signaling. HLA-DR2 has
the strongest GWAS odds ratio at 2.0; others are only 1.1–1.4, but
do include IFN-regulated genes such as Tyk2, 2′,5′-oligoadenylate
synthase (OAS1), IRF5, MxA, and many IFN-affected immune
response genes (40, 45). This suggests that environmental influ-
ences and the education of the immune system are critical in the
development of MS and its course. A Th1 bias is characteristic of
MS. As a consequence, cancers, virus infections, and allergies is less
frequent than expected in MS patients (40). A shift to Th2 immu-
nity, seen with glatiramer therapy or after parasite infestation,
reduces exacerbations of MS. IFN-β, however, does not simply
cause a shift to Th2 immunity – type I IFNs typically enhance Th1
immunity (46). In the CSF of IFN-β treated patients, however, IL-
10 is elevated (11), perhaps from IFN-β stimulation of activated T
cells (7).

It would seem that MS and connective tissue disease could have
a common etiology because they are “autoimmune.” However, MS
only rarely coincides with SLE (47), NMO is a separate entity, and
the majority of MS patients benefit from IFN-β therapy instead of
worsening (48). Importantly, the vigorous signature in SLE, Sjö-
gren’s, and NMO, contrasts with the subnormal serum type I IFN
activity and WBC responses to IFN in most MS patients (Table 2).

MULTIPLE SCLEROSIS: LOW SERUM TYPE I IFN ACTIVITY
AND WEAK RESPONSES TO IFN
The first patients that were placed on commercially available IFN-β
showed induction of IFN-g (Th1), IL-10 (Th2) (46), and the IFN-
stimulated proteins IRF-1, IRF-2, and 2′,5′-oligoadenylate syn-
thetase (2′,5′-OAS) in mononuclear cells (MNCs) (49) (Figure 1).
However, before any therapy, IFN regulation is abnormal in MS.
Levels of these ISG products were actually low, and after IFN-β
injections, levels rose only to levels seen in unstimulated con-
trol MNC. It was apparent that IFN responses were subnormal
in MS, and that IFN-β therapy corrected IFN-induced protein lev-
els back to the normal range. Extensive experiments using flow
cytometry of IFNAR expression, Western blots of P-Y-STAT1, gel
shift assays (EMSA), transfection of MNC with an IFN-responsive
human ISRE reporter gene, and SHP levels to measure poten-
tial dephosphorylation of P-tyrosine, all showed that P-Y-STAT1
levels and P-STAT1 binding to DNA were normal and or above
normal [Reder et al., 2000, unpublished and (32)] (Figure 2).
Despite normal levels of P-Y-STAT1, however, induction of the
above-mentioned ISG and MxA, an IFN-induced anti-influenza
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FIGURE 1 | Basal IFN-regulated mRNA levels in therapy-naïve stable
RRMS (black bars) are lower than in healthy controls (white). IFN-β
therapy induces mRNA production in MS MNC (Pre-Rx vs. IFN Rx), but
levels are still at or below levels in unstimulated normal MNC (white). MNC
assayed before and 3 months after in vivo IFN-β-1b (8 MU sq qod). Early
genes are IFN-regulatory factor-1 (IRF-1; enhances signaling) and IRF-2
(negative regulator), and later gene is 2′,5′-oligo-adenylate synthetase
(2′,5′-OAS, an IFN-α/β-induced anti-viral enzyme). (Pre vs. Rx: IRF-1 and
IRF-2, p < 0.02; 2′,5′-OAS, p < 0.03; paired t -test). (Avg±SEM for
IFN-stimulated gene/HPRT; RT-PCR) N =5 RRMS patients for IRFs, and 10
for 2′,5′-OAS, vs. 9 normal (46).

protein, was subnormal. It was later discovered there was a second
STAT1 phosphorylation site at serine 727 (50). In unstimulated
MNC from therapy-naive patients, P-S-STAT1 levels were low in
MS (32). P-S-STAT1 was also poorly induced by IFN-β in cultured
MNC, and this low P-S-STAT1 correlated with low levels of ISG.
This indicated that there is a fundamental defect in IFN regula-
tion that underlies MS, and that is likely to have consequences for
immune regulation, therapy, and CNS repair.

P-S-STAT1 levels are low in MNC during exacerbations and
progression (32). In vitro, induction of therapy-naïve MNC with
IFN-β induces phosphorylation of STAT1 on serine in healthy
controls and in patients with stable RRMS. In contrast, P-S-STAT1
is not induced during exacerbations and progression. A subset of
downstream genes are not induced during the IFN-resistant state
seen in active MS. MxA and viperin induction is diminished, but
other ISG such as PKR have normal expression (32, 38).

The subdued IFN response that underlies clinical disease activ-
ity in therapy-naïve MS patients has consequences for immune
regulation, and may also predict future disease activity. The IFN-
resistant state appears to be corrected by IFN-β therapy. IFN-β
injections increase IRF-1, IRF-2, 2′,5′-OAS, MxA, and viperin to
near normal levels (Figures 1 and 2) (32, 46). Type I IFNs, them-
selves, are important IFN-stimulated proteins. IFN-β injections
cause a rise in serum IFN-β that peaks at 30 min and then declines.
This elevation is soon followed by a second, prolonged rise in
serum type I IFN activity, presumably from newly induced IFN-
α plus more IFN-β (38). Finally, IFN-β therapy of MS restores
defective CD8 regulatory cell function (51), increases expression
of the inhibitory ILT3 protein on monocytes (52), and reduces
expression of costimulatory molecules on B cells (53).
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FIGURE 2 | (A) P-S-STAT1 is markedly reduced in MNC from therapy-naïve,
clinically active MS at baseline (left of dashed line), and after stimulation with
160 U/ml IFN-β (right of dashed line). (B) Area under curve of IFN-β-induced

P-S-STAT1 is high in stable RRMS and healthy controls (NL) at 60′ vs. active
MS (8 NL, 7 RRMS-s, 7 RR+SPMS-a) (p < 0.001 active/progressive MS vs.
NL; ANOVA with repeated measures) (32).

Interferon-β-treated patients with ostensibly stable MS, yet
weak responses to their IFN injections, are more likely to
have attacks in the future (54). These weak responses paral-
lel the effect of neutralizing antibodies (NAbs) to IFN-β, where
high-titer serum NAb correlate with more MRI lesions dur-
ing IFN therapy, presumably from lower circulating IFN-β lev-
els. However, effects on clinical activity are difficult to demon-
strate, likely due to complex pharmacokinetic effects of Abs to
IFN (55).

Would more frequent or higher doses of IFN-β reverse the IFN
signaling defect in those patients refractory to conventional doses
of IFN-β? In a very large study, patients with stable RRMS did not
have fewer relapses or MRI lesions from double doses of every-
other-day IFN-β-1b. Thus, the approved (single) dose of IFN-β is
optimal in early, stable RRMS. However, the higher dose was more
effective in preventing black hole development (12). The IFN sig-
naling defect is less common in stable RRMS than during active
and progressing MS (12). With thrice-weekly IFN-β-1a, there is
no difference in outcome between 22 and 44 µg doses in RRMS
with low EDSS (early MS), but when the EDSS is >3.5 (later or
more severe MS), the 44-µg dose is superior in preventing relapses
and progression (56). This suggests complex interactions between
IFN-β dose and injection frequency, NAb, and form or severity
of MS.

Unexplored issues remain with effects of excessive or defec-
tive IFN signature and responses to therapy. Is the incidence of
infections and cancer reduced by IFN therapy? In a large, but
only 2-year, study, there were fewer bladder infections and cancers
in the intramuscular IFN-β-1a subgroup compared to placebo
and fingolimod (57). Does correction of low IFN levels restore
immunity and promote neuroprotection? Is the aging process
slowed with normal or high levels of IFN-β, a protein that is
cell-protective?

IFN REGULATION IN SLE, SJÖGREN’S SYNDROME, AND NMO
IS OPPOSITE OF REGULATION IN MS
Neuromyelitis optica is a demyelinating disease that until recently
was simply considered a severe variant of MS. We have argued that

NMO is actually much closer to SLE and Sjögren’s syndrome, and
that it differs fundamentally from MS (Table 2) (47, 58).

CNS Sjögren’s syndrome affects younger women, 18–40 years-
old, predominantly non-white, whereas the primary form affects
45–55-year-old women. The clinical appearance is similar to NMO
(Devic’s disease), with devastating spinal cord or optic nerve
lesions. Onset of devastating CNS symptoms is over hours to days,
may follow infections, and recovery is often incomplete. Spinal
cord lesions in CNS Sjögren’s syndrome and NMO span 3 or more
vertebral segments, are central or holocord, are demyelinating but
also necrotic, are sometimes so severe that there is spinal cord
swelling. Optic nerve lesions are also highly destructive, and can
have bilateral onset. In contrast, MS lesions are smaller, are <1
cord segment long, are often acentric or subpial, are not necrotic,
and typically recover partially or completely, and optic neuritis is
unilateral.

The type I IFN signature is supra-normal in NMO, but dimin-
ished in MS (38). NMO patients who were partially treated with
low-dose steroids or plaquenil have normal levels of serum type
I IFN activity (6× greater than in MS), and in vitro induction of
P-Y-STAT-1, MxA, and viperin is excessive compared to healthy
controls (Figure 3). In contrast, therapy-naïve MS patients have
low levels of type I IFN activity and subnormal responses to IFN-β
in vitro.

Neuromyelitis optica is now defined by MRI criteria – longitu-
dinally extensive cord MRI lesions, and by serology – NMO-IgG
positive. However, some cord lesions are too short on MRI and
less devastating than expected, and only 60–70% of suspected
NMO patients are NMO-IgG positive. Moreover, there is signifi-
cant clinical overlap with CNS Sjögren’s disease, but here only 50%
are NMO-IgG positive. Using serum type I IFN activity as a dis-
criminator, ROC analysis shows a 35-fold ability to discriminate
between NMO/CNS Sjögren’s and MS. This and other tests that
could help discriminate between NMO and MS would aid in ther-
apeutic decisions. This is important because disease mechanisms
and responses to therapy differ between the two. For instance,
IFN-β does not benefit or worsens NMO, but IFN-β is therapeutic
in MS.
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FIGURE 3 | (A) Serum IFN-α/β activity is low in MS vs. NL, and high in SLE.
IFN-α/β activity was obtained from real-time PCR of three expressed genes in
WISH epithelial cells. N =272 SLE on minimal Rx, 150 healthy controls, 57
stable RRMS naïve to Rx. Red bars= log median± interquartile range
(Kruskal–Wallis test). Medians=3.1 for SLE, 0.4 for NL, and 0.1 for MS.

Ninety percent of MS levels are <0.5 U/ml. In NMO, IFN-α/β is in the normal
or SLE range. IFN-α/β detection is 0.1–0.5 U/ml, i.e., 20× more sensitive than
many available assays (38). (B) P-S-STAT1 levels in MNC from SLE, stable
NMO on minimal therapy, normal controls, stable RRMS, and active RRMS.
Unpaired t -test with equal variance.

IFN-β THERAPY OF MS: COGNITIVE BENEFITS, PROLONGED
SURVIVAL, INDUCTION OF ANTIOXIDANTS AND POSSIBLE
NEUROPROTECTION
One third of patients with pediatric-onset MS and clinically
isolated demyelinating syndromes (CISs) are abnormal on neu-
ropsychological testing. Untreated MS patients have significant
cognitive loss over time, to the point of falling several z-scores
below expected levels over 20 years (59). IFN-β improves cogni-
tion and slows cognitive loss in MS. The benefit was significant
in the 2-year pivotal trials and later studies for all three forms of
IFN-β-1. In the original IFN-β-1b trial, 32 patients tested over
2 years showed a dose-dependent improvement in visual-spatial
performance compared to placebo (19). Benefit correlated with
diminished MRI activity. The periventricular predilection of MS
lesions could selectively disrupt the input and output of the cal-
carine cortex. We hypothesized that IFN-β quelled inflammation
in these sites to enhance visuospatial performance (60).

Sixteen of these patients were studied in a long-term follow-
up, 16 years after starting IFN-β (61). They did not remain in the
original placebo, 50 µg, and 250 µg qod subgroups for more than
3 years, because at study end in 1993, all of these patients remained
on IFN-β or started IFN-β de novo when the drug was approved.
Fifteen of 16 patients were taking IFN-β at the 16-year point. The
natural history of progressive decline of cognition in MS would
lead one to expect loss of cognitive function after this long period,
but there was no or only minimal cognitive decline at 16 years.
This indicates that IFN-β-1b had a pronounced long-term benefit
on cognition in active RRMS.

Interferon-β-1b therapy prevents death. In the pivotal IFN-β-
1b study, there was a 5-year randomized disparity in placebo vs.
IFN-β treatment, and then all patients started standard-of-care
treatments. Five years of IFN-β therapy increased later survival by
7 years over a 21-year observation, a 47% reduction in mortality

(62). What is the mechanism of the profound effect of IFN-β on
survival in MS? Baseline pre-therapy male sex, high T2 MRI bur-
den of disease, and high EDSS all were increased in those who
died, but IFN-β-1b had an independent effect (nearly 50% reduc-
tion in mortality) for each variable. On-study responses such as
new relapses, T2 lesions, or neutralizing Ab titers, did not signif-
icantly change mortality. This suggests that IFN-β has effects on
MS that are beyond the usual trial readouts of relapses and MRI
lesions.

Over the first 16 years of this study, those who were on IFN-β-1b
therapy for >80% of the time (restricted to a subset of the original
250 µg IFN-β group), compared to those treated only <10% of
the time (a subset of the original placebo) were ∼60% less likely to
require a cane or wheelchair or to develop SPMS (63). The delay
of onset of SPMS in the low medication usage group was 12 year,
vs. 18 year in the high medication usage group. Note that these
data are based on correlations, and other factors could influence
medication use.

Interferon-β’s benefit on mortality in MS cannot be explained
by a simple Th1–Th2 shift. Could IFN-β induce genes that would
protect or repair brain cells? The likelihood that type I IFNs evolved
to have cytoprotective and neuroprotective effects was introduced
in the Prolog. Can we measure gene induction after IFN-β therapy?

Multiple sclerosis patients with carefully defined clinical dis-
ease activity who had been on prolonged IFN-β-1b therapy were
studied more than 60 h after their last injections, and then exactly
4, 18, and 42 h after an injection of IFN-β. RNA from MNC was
run on Affymetrix Hu133A and also all-exon arrays. IFN caused a
rapid (4 h) and intermediate (18 h) induction of ISGs at 4 and 18 h,
and levels then fell back to baseline at 42 h (33). Surprisingly, after
the 60-h washout, there remained an RNA signature for upregula-
tion of scores of genes that control fatty acid oxidation, apoptosis,
energy metabolism, and cytoprotection, such as Nrf2 (64). These
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patients had been on IFN-β-1b therapy for 2–18 years. It is likely
that long-term IFN-β therapy alters the set-point for control of
cell metabolism and neuroprotection in blood and CNS cells. Glu-
cocorticosteroids, stress, smoking, and obesity increase oxidative
stress. Some of these environmental factors increase MS sever-
ity. Perhaps induction of cytoprotective genes explains some of
the benefits of IFN-β-1b therapy on MRI black hole formation,
cognition, and survival.

Multiple sclerosis brain lesions are an ominous predictor of
shorter survival (62). MRI lesions predict mortality in untreated
and treated MS patents. IFN-β therapy reduces new MRI T2 and
new Gd+ lesions by 85% (48, 65) and reduces formation of perma-
nent T1 MRI lesions (“black holes”) (12). Black holes are a marker
for inflammatory damage as well as lack of repair. IFN-β ther-
apy prevents inflammation and may enhance repair. IFN-β also
increases NAA concentration in brain neurons on MRS imaging
(66), presumably by rescuing unhealthy neurons from death. IFN-
β-1b therapy in MS has delayed benefits on cognition (19). Though
speculative, fewer MRI lesions during therapy may increase sur-
vival. CNS lesions could disrupt trophic outputs to the rest of
the body or disrupt immune regulation. For instance, sympa-
thetic nerves bathe the spleen and secondary lymphoid organs
with inhibitory catecholamines and neuropeptides. Spinal cord
lesions that disrupt these SNS pathways will disinhibit the immune
system, provoke and amplify autoimmune disease, and correlate
with presence of progressive forms of MS (67, 68). Thus, new MRI
lesions, permanent T1 black holes, cold purple feet from SNS dam-
age in SPMS, cognitive loss, and even death may be interrelated
phenomena and appear to be thwarted by IFN-β therapy.

COMBINATION THERAPY WITH OTHER AGENTS CAN
PERTURB THE IFN SIGNALING PATHWAY
Intrinsic or disease-specific responses to IFN can modify the
course of an autoimmune disease, but can be altered by exogenous
triggers or by IFN-β therapy. Viruses for instance, cause exacer-
bations of MS, likely by activating not just IFNs, but many other
facets of immunity. Could other agents modify intrinsic IFN lev-
els or the effects of therapy? Two examples include statins and
vitamin D.

Statins lower cholesterol, but are also anti-inflammatory. It
would seem reasonable to combine statins with IFN-β to treat the
inflammation of MS. Statins appeared to reduce MRI lesions (69).
However, only active patients entered this uncontrolled study, and
the 41% reduction in MRI activity is what would be expected due
to regression to the mean without any therapy (70). Several small
studies seemed to show benefit of combining statins and IFN-β.
However, a controlled trial of RRMS patients on subcutaneous
IFN-β-1a therapy who were then randomized to IFN-β alone or
IFN-β plus high-dose atorvastatin (40–80 mg/day) showed that
the combination provoked MRI and clinical exacerbations (33).
A larger study of IFN-β-1a± atorvastatin showed similar trends,
especially in a composite score of MRI and clinical MS activ-
ity (71). The presumed synergy between two anti-inflammatory
agents did not materialize because statins actually block IFN sig-
naling. In vitro, statins cause a dose- and time-dependent block
of IFN-β-induced phosphorylation of STAT1 (38) (Figure 4).
In vivo, patients on various IFN-β therapies plus various forms
of statin were tested after washing out both drugs and then per-
forming IFN-β induction kinetics after: (1) adding IFN-β alone,
and later repeating with (2) IFN-β plus high-dose statins. A dose
of statins blocked IFN-β formation of P-Y-STAT, but not P-S-
STAT1, and inhibited production of downstream proteins such
as MxA and viperin. This cautionary tale suggests that statins
could block the benefit of IFN-β, and that if both are needed,
then the posology of therapy should be adjusted so statins are
given at a time when they will have the least effect on the IFN
injection.

Vitamin D has pleiotropic effects on immunity. It enhances
macrophage function, but also induces IL-10. Serum vitamin D
levels vary, due to lifestyle, skin color, and seasonal sunlight. Low
levels are linked to onset of MS, and exacerbations once MS
has developed. Could this inexpensive, sometimes free, agent be
added to IFN-β? Several small studies show no additive effects,
including one that was designated as class I evidence by the jour-
nal, Neurology (72). Unfortunately, a significant mismatch in
the baseline demographics favored IFN-β monotherapy and the
results are not at all conclusive. Another study showed no additive
effect with subcutaneous IFN-β-1a (73). In a larger controlled
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FIGURE 4 | (A) In vitro atorvastatin reduces IFN-β effects. MNC from 21
therapy-naïve RRMS were pretreated 24 h with 10 µM atorvastatin, then
induced with 160 U/ml IFN-β-1b for 45 min (phosphorylated/activated P-STAT
transcription factors) and for 24 h (induced unphosphorylated STAT1, STAT2,
also MxA and IRF-1). Proteins quantified with Western blots, normalized with
actin. Percentage change= statin-treated vs. no-statin (100%). *p < 0.05,

**p < 0.001 vs. no-statin control. MEV=100 µM mevalonate to reverse statin
effect. Mean±SEM; 21 replications (38). (B) In vivo statins reduce IFN-β
therapy induction of serum type I IFN activity. Sera were obtained at 8 a.m.
after statin washout or long-term statin alone, and then exactly 4 h after IFN-β
injections or high-dose statins plus 4 h IFN-β. Fourteen stable RRMS.
**p < 0.001 vs. IFN alone (paired t -test). Mean±SEM (38).
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study, however, vitamin D3 added to IFN-β-1b reduced new
MRI lesions compared to IFN-β alone (74). IFN-β also appears
to increase serum vitamin D levels (75). Many other studies
of vitamin D plus IFN-β in MS, and vitamin D alone in SLE,
are in progress. It is hoped that current, partially effective and
expensive, therapies will be enhanced by a second inexpensive
agent.

SUMMARY
• Type I Interferons (IFN-α/β) control viruses, cancer, cell

proliferation, and immunity
• Type I IFNs were present in early fish, 400 million years ago
• Interferons evolved complex responses to viruses over eons; ver-

tebrate survival likely was enhanced by cytoprotective effects of
IFNs
• Interferons regulate ∼1000 genes
• Plasmacytoid dendritic cells produce IFN-α and some IFN-β;

fibroblasts produce IFN-β
• The IFNAR activates the STAT1 transcription factor on tyrosine,

allowing DNA binding
• Some genes are further induced by a second phosphorylation

on serine (P-S-STAT1)
• Viruses bind TLR, RIG-I, and MDA5. These activate IRF3, then

IFN-β and IFN-α1, then IRF7, then many subtypes of IFN-α

• Viruses, exogenous, and perhaps endogenous, trigger IFN
production
• High serum and organ IFN levels are linked to SLE, Sjögren’s

syndrome, Aicardi–Goutières, and Cree encephalitis, as well as
CNS Sjögren’s and NMO
• Interferon-α treatment triggers and amplifies SLE
• Serum IFN levels are low in MS
• Responses to in vitro IFN-β are low in MNCs from untreated

MS patients during clinical activity and progression
• Responses to in vivo IFN-β therapy are low in MS during clin-

ical activity and progression, measured by gene induction and
activation of transcription factors
• Low responses to IFN during clinically active MS are linked to

low levels of P-S-STAT1
• Interferon-β is therapeutic in MS, and may be most effective in

patients with low IFN responses
• Some drugs such as statins, block type I IFN signaling, and

worsen MS
• The high IFN responses in NMO and CNS Sjögren’s disease can

be used to differentiate them from the low responses in MS
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The characteristic serologic feature of systemic lupus erythematosus (SLE) is autoantibod-
ies against one’s own nucleic acid or nucleic acid-binding proteins – DNA and RNA-binding
nuclear proteins. Circulating autoantibodies can deposit in the tissue, causing inflamma-
tion and production of cytokines such as type 1 interferon (IFN). Investigations in human
patients and animal models have implicated environmental as well as genetic factors in
the biology of the SLE autoimmune response. Viral/Bacterial nucleic acid is a potent stim-
ulant of innate immunity by both toll-like receptor (TLR) and non-TLR signaling cascades.
Additionally, foreign DNA may act as an immunogen to drive an antigen-specific antibody
response. Self nucleic acid is normally restricted to the nucleus or the mitochondria, away
from the DNA/RNA sensors, and mechanisms exist to differentiate between foreign and
self nucleic acid. In normal immunity, a diverse range of DNA and RNA sensors in different
cell types form a dynamic and integrated molecular network to prevent viral infection. In
SLE, pathologic activation of these sensors occurs via immune complexes consisting of
autoantibodies bound to DNA or to nucleic acid-protein complexes. In this review, we will
discuss recent studies outlining how mismanaged nucleic acid sensing networks promote
autoimmunity and result in the over-production of type I IFN. This information is critical for
improving therapeutic strategies for SLE disease.

Keywords: systemic lupus erythematosus, nucleic acid sensor, type 1 interferon,TLR, DNA, RNA

INTRODUCTION
The normal immune system strikes a delicate balance between
defense against foreign invasion and the prevention of misdi-
rected responses against self-antigens. Sometimes, this intricate
balance becomes faulty due to genetic, environmental, or other
factors leading to breakdown of self-tolerance and the onset of
an autoimmune disorder. Systemic Lupus Erythematosus (SLE)
is a prototype autoimmune disease that affects the skin, kidney,
musculoskeletal, and hematologic systems and is characterized by
presence of various autoantibodies against self-components, espe-
cially double-stranded DNA (dsDNA) and RNA-binding nuclear
proteins. Amongst SLE patients, the female to male ratio is 9:1, sug-
gesting that sex-related factors are important in the development
of the disease (1, 2). Many genetic factors have been strongly asso-
ciated with disease susceptibility (3, 4). Exposure to several viruses
and bacterial infections, and also UV light are known to trigger SLE
(5). Thus, it is considered that SLE occurs when an environmental
trigger acts on a genetically predisposed individual, leading to a loss
of tolerance toward native proteins (6). Multiple immune system
abnormalities contribute to the pathogenesis of SLE, including
abnormal clearance of apoptotic cells and immune complexes,
over-production of type I interferon (IFN), reduced thresholds
for B and T lymphocyte activation, and production of autoanti-
bodies against self-antigens (7). These autoantibodies are directed
against nucleic acids and RNA-binding proteins such as Ro, La,
and Sm (8). Tissue damage is mediated in part by deposition of
immune complexes in the affected organs, followed by activation
of downstream inflammatory pathways mediated by complement

and FcR engagement of innate immune cells (9). Viruses such
as Cytomegalovirus (CMV), Epstein–Barr (EBV), and Parvovirus
B19 are frequently involved as environmental triggers in lupus.
Hypomethylated bacterial and viral DNA are potent inducers of
immune responses through TLR signaling cascade finally leading
to type 1 IFN over-expression, B cell activation, production of
autoantibodies, and interleukin (IL)-6 (10).

Many patients with SLE have high circulating levels of type I
IFN (11). Some individuals treated with IFN-α for chronic viral
infections developed de novo SLE that was resolved when IFN-α
was withdrawn (12, 13). Additionally, within SLE families abnor-
mally high IFN-α levels have been found clustered (14). A recent
genome-wide association study has identified additional novel
genetic loci associated with high serum IFN-α in SLE patients
(15, 16). Taken together, these data support the idea that genet-
ically determined endogenous elevations in IFN-α predispose to
human SLE.

HOW DOES LUPUS START?
The etiology of lupus is considered to be multifactorial involv-
ing multiple genes and environmental factors such as infec-
tions, hormones, and drugs (Figure 1) (17). It is considered that
unrestrained immune response to apoptotic cells and decreased
disposal of apoptotic material are important initiators of the
autoimmune response in SLE. Genomic DNA is not accessible
to the immune system under standard conditions as it is safely
sequestered in the nucleus or in mitochondria under the tight
control of DNA damage and repair response systems. However,
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FIGURE 1 | Factors associated with SLE pathogenesis. Genetic factors, environmental influences such as radiations, repeated infections, hormonal
imbalances, and certain drugs may act on innate immune system and disrupt the intricate balance between protection against foreign invasion and self-defense.

when cells die through apoptosis, apoptotic bodies containing
fragmented cellular material and abnormal surface antigens, cir-
culate in the body enabling the immune system to access new
epitopes (18). Under normal conditions cellular mechanisms exist
to ensure that apoptotic debris is not immunogenic to self, but
these mechanisms can fail. It seems likely that defective clear-
ance of apoptotic material and modifications to DNA such as
hypomethylation can promote SLE (19). Recent reports suggest
that neutrophil extracellular traps (NETs) are a potent stimulus
for type 1 IFN release by plasmacytoid dendritic cells (DCs), and
play an important role in propagation of the lupus phenotype
(20–23). Neutrophils are specialized immune cells that are rapidly
recruited to sites of inflammation in response to microbial infec-
tions. One of the mechanisms of neutrophil action is the formation
of “NETs” (24). NETs are made of processed chromatin bound
to granular and selected cytoplasmic proteins. NETs are released
by neutrophils to control microbial infections (24). This release
of chromatin is the result of a unique form of cell death, called
“NETosis.” Material derived from NETosis can contribute to SLE
by serving as source of autoantigen, propagating inflammation,
and tissue damage (21, 23, 25, 26). In an interesting recent study,
Sangaletti et al. suggested that NETs may provide antigens to DCs
and in this way promote immune responses against neutrophil
antigens in the autoimmune disease small vessel vasculitis, which
is characterized by antibodies against cytoplasmic proteins in neu-
trophils (23). It is possible that NETs may provide nuclear antigens
to immune cells in a similar way in SLE.

Pathways through which our own nuclear material is able to
induce pro-inflammatory responses are a topic of active research.
At least three distinct types of nucleic acid recognition receptors
are recognized: (1) the toll-like receptors (TLRs), which recog-
nize nucleic acids on the plasma membranes and endosomes;
(2) the nucleotide binding and oligomerization domain (NOD)
receptors (NLRs), which monitor the cytosolic compartment

and also interact with TLR pathways; and (3) the retinoid acid
inducible gene (RIG)-I-like receptors that recognize RNA or DNA
in the cytoplasm (RLRs). Many of these receptors may directly or
indirectly participate in the pathogenesis of SLE (27).

TOLL-LIKE RECEPTOR MEDIATED SIGNALING IN LUPUS
Toll-like receptors are major components of the innate immune
system that activate multiple inflammatory pathways and coor-
dinate systemic defense against microbial pathogens. Data from
animal models and human patients suggest that improper engage-
ment of TLR pathways by endogenous or exogenous ligands may
lead to the initiation of autoimmune responses and tissue injury
(28). Endosomal TLRs (TLR-3, -7, -8, and -9) are potent acti-
vators of DCs and B cells. TLR-3 is specific for double-stranded
RNA (dsRNA), TLRs-7 and -8 for single-stranded RNA (ssRNA),
and TLR-9 is specific for dsDNA (29, 30). TLRs are expressed
predominantly in DCs, B cells, macrophages, monocytes, and neu-
trophils. Cell surface receptors, such as the B cell receptor (BCR)
and FcγRIIa, facilitate the endocytosis of nucleic acid containing
material or immune complexes (31, 32). Chromatin-containing
immune complexes can stimulate B cells up to 100-fold more
effectively than complexes without nucleic acids apparently due
to collective engagement of BCR and TLR (31–34). Thus, dual
engagement of the BCR and the TLR can induce abnormal activa-
tion of B cells and break immune tolerance. In human lupus, an
increased proportion of B cells and monocytes expressed TLR-
9 among patients with active SLE compared to patients with
inactive disease (35). TLR activation in combination with T cell
derived IL-21 markedly increased B cell differentiation into plasma
cells (36).

All TLR family members, including TLRs-7, -8, -9 are
type I membrane proteins composed of a ligand-binding
ectodomain containing 18–25 tandem copies of leucine-rich
repeats (LRRs), a transmembrane domain, and a conserved
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cytoplasmic toll/interleukin-1 receptor (TIR) domain. Ligand-
induced dimerization and conformational rearrangement of the
TIR domains leads to the creation of two symmetry-related sites
which allow binding of the cognate signaling adaptor mole-
cules (37, 38). Two main adaptors are utilized by TLRs, namely
Myeloid Differentiation Factor-88 (MyD88) (TLR-7, -8, and -
9) and TIR domain-containing adaptor inducing IFN-β (TRIF)
(TLR-3). These adaptors mediate the recruitment of a series of
kinases that lead to the formation of specific macromolecular
signaling platforms for inflammatory reactions. IL-1 receptor-
associated kinase 4 (IRAK-4) is recruited to MyD88 and is activated
after recruitment (38). IRAK-4, in turn, activates IL-1 receptor-
associated kinase 1 (IRAK 1) via phosphorylation (39, 40). These
activated kinases recruit tumor necrosis factor receptor-associated
factor 6 (TRAF-6), which is an E3 ubiquitin ligase required for acti-
vation of NFκB by freeing it from its inhibitor, I kappa B (IκB) (41).
In addition to this, interferon regulatory factors (IRFs) IRF5 and
IRF7 are recruited to the MyD88/IRAK/TRAF6 complex, where
they become phosphorylated and activated (42, 43). Ultimately,
the transcription factors NFκB and IRF5 and IRF7 are activated
and translocate into the nucleus where they initiate gene transcrip-
tion and production of pro-inflammatory cytokines and type I IFN
(Figure 2) (43–45). Unlike TLR-7, -8, and -9, TLR-3 signaling is
MyD88-independent and utilizes adaptor protein TRIF (46). TRIF

also recruits additional proteins necessary for downstream signal-
ing, including TRAF-family member-associated NFκB-activator-
binding kinase 1 (TBK1), TRAF3, and receptor-interacting protein
1 (RIP1) (40). TRIF interaction with TBK1 is necessary for the
activation of IRF-3, which is a transcription factor involved in the
production of interferon beta (IFNβ). (47). TLR-3 can also activate
NFκB by the interaction of TRIF with TRAF-6 or RIP1 (40, 48)
leading to up-regulated IFNα production and secretion of other
pro-inflammatory cytokines.

GENETIC FACTORS ASSOCIATED WITH TLR-DEPENDENT
IFNα PATHWAY IN LUPUS
One of the most striking immune system abnormalities in SLE
patients is the frequent up-regulation of the type I IFN pathway
(49, 50). IFNα is critical player in SLE progression and severity,
and has been shown to induce the production of autoantibodies
when administered to non-SLE patients (12, 51). An interesting
report describes remission of SLE in a patient which was attrib-
uted to unresponsiveness to both TLR-7 and -9 stimulation after
development of common variable immunodeficiency – (CVID-)
like disease (52). Genetic variations in many of the components
of the TLR signaling pathway have been associated with SLE,
such as TLR-7, IRF5, IRF7, IRF8, IRAK1, and TNFAIP3 (53–59).
Three of the nine genes in the IRF family have been genetically

FIGURE 2 |Toll-like receptor mediated signaling in SLE. Cells use TLRs as
sensors to detect the presence of viruses and apoptotic debris via TLR-3, -7,
-8, and -9. Nuclear material is trafficked to the endosome triggering TLRs
signaling. Binding of cognate ligands to these TLRs recruits MyD88, a main
signaling intermediate involved in TLR-7, -8, and -9 signaling. MyD88 recruits
interleukin-1 receptor-associated kinase (IRAK)-4. IRAK-4 binds and

phosphorylates IRAK-1, which in turn recruits Tumor necrosis factor (TNF)
receptor-associated factor (TRAF) 6. IRF5 and IRF7 are then shuttled to the
nucleus and these events set the stage for the transcription of IFN-α and
other pro-inflammatory cytokines. TLR-3 signaling is MyD88-independent and
utilizes TRIF and TRAF3 as signaling intermediates finally leading to activation
of IRF3 and production of IFN-α and other pro-inflammatory cytokines.
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associated with SLE (60). Additionally, some of these genetic poly-
morphisms have been associated with increased type I IFN in SLE
patients, supporting the idea that these genetic variations modu-
late the output of the TLR pathway (42, 60–64). The implication
of these genes in SLE strongly supports the primary relevance of
the TLR and IFNα pathway in the disease phenotype (63, 65).
Additionally, many of these genetic polymorphisms in the TLR
pathway are associated with the formation of autoantibodies (62–
64, 66), supporting the concept of a feed-forward loop in which
genetic variations in the TLR pathway enhance autoantibody pro-
duction, and then the autoantibodies form immune complexes
which stimulate the TLR pathway and result in increased type
I IFN production in the setting of the same genetic variations.
The TLR pathways are important in B cell maturation, and it is
possible that genetically programed TLR pathway over-activity
could promote autoantibody formation in B cells. Then after
immune complexes are formed, these stimulate the TLR pathway
in DCs and macrophages, and the same polymorphisms promote
increased cytokine output from these cells.

TOLL-INDEPENDENT SIGNALING IN LUPUS
SIGNALING THROUGH RIG-1 LIKE RECEPTORS IN LUPUS
After viruses enter the cytoplasm and start replicating, infected
host cells can sense and activate anti-viral responses in response
to viral nucleic acids. This sensing occurs in the cytoplasm, and
is independent of the cell surface and endosomal TLRs. Thus far,
three cytosolic RNA helicases have been identified, RIG-I (retinoic
acid – inducible gene I), MDA5 (melanoma differentiation – asso-
ciated gene 5), and LGP2 (laboratory of genetics and physiology
2) that act as RNA sensors to mediate TLR-independent IFN-α/β
induction in the presence of replicating RNA viruses (37, 67).
Unlike membrane-bound TLRs, RLRs reside in the cytoplasm and
sense cytoplasmic RNA. RIG-I contains tandem caspase recruit-
ment domain (CARD)-like regions at its N-terminus and the
central DExD/H helicase domain which has an ATP-binding motif
and a C-terminal repressor domain which binds to RNA (68, 69).
MDA5 contains tandem CARD-like regions and a DExD/H heli-
case domain, but it is unknown whether the C-terminal region
of MDA5 really functions as repressor domain. LGP2 contains a
DExD/H helicase domain and a repressor domain, but lacks the
CARD-like region. LGP2 was suggested to be a negative regula-
tor of RNA virus-induced responses, because the LGP2 repres-
sor domain binds to that of RIG-I and suppresses signaling by
interfering with the self-association of RIG-I (70, 71). Findings
suggest that RIG-I and MDA5 have specificities in their detec-
tion of RNA viruses, through recognition of distinct viral RNA
structures. RIG-I can recognize ssRNA bearing a 5′-triphosphate
moiety (72, 73). In the case of self-RNA, 5′-triphosphate struc-
tures are removed or masked by a cap structure, which suggests
a discrimination mechanism between self- and non-self RNA.
RIG-I and MDA5 can distinguish dsRNA by size; RIG-I can bind
short dsRNA whereas MDA5 can bind long dsRNA (74). Although
LGP2 was considered a negative regulator, LGP2-deficient mice
exhibited complicated phenotypes (75) and higher levels of type
I IFN in response to polyinosinic: polycytidylic acid (Poly I:C)
and vesicular stomatitis virus (VSV), but decreased type I IFN fol-
lowing encephalomyocarditis virus (EMCV) infection, suggesting

that LGP2 can negatively or positively regulate RIG-I and MDA5
responses depending on the type of RNA virus (75).

Ligand binding to RLRs induces conformational changes lead-
ing to association with mitochondrial-associated IFN-β promoter
stimulator 1 (IPS-1) through card-card domain interactions (76–
79). IPS-1 then recruits TRAF3, which activates TANK-binding
kinase 1 (TBK1) and IκB kinase (IKK) – related kinases IKKε

(80). This leads to the phosphorylation and nuclear transloca-
tion of IRF-3 and -7 resulting in the transcription of IFN type 1
genes (81, 82) (Figure 3). IPS-1 also interacts with FAS-associated
death domain protein (FADD) and receptor-interacting protein 1
(RIP-1) (76), which activate caspase-8 and caspase-10, resulting
in NF-κB activation and production of inflammatory cytokines
(83, 84). Genetic studies in SLE have strongly implicated the RLR
pathways in SLE susceptibility. Variants in both MDA5 and IPS-1
have been associated with SLE susceptibility and with altered acti-
vation of the type I IFN pathway in SLE patients in vivo (85, 86).
This again supports the idea that multiple nucleic acid recognition
pathways are involved in SLE pathogenesis.

SIGNALING THROUGH NUCLEOTIDE BINDING AND OLIGOMERIZATION
DOMAIN (NLR) RECEPTORS IN LUPUS
The NOD (NLR) family of receptors are key molecules that
drive inflammatory responses by forming a multi-protein complex
called “inflammasome.” The inflammasome drives the processing
and release of cytokines such as the pro-inflammatory cytokines
IL-1β and IL-18. Several inflammasome complexes have been
identified in recent years. Of the known inflammasomes, NLRP3,
absent in melanoma 2 (AIM2), and IFN inducible protein 16
(IFI16) inflammasomes have been linked to immune responses
to intracellular DNA, as well as bacterial and viral infections (87).
IL-1β is important in activating neutrophils, macrophages, DCs,
and T cells, whereas IL-18 is crucial for IFN-γ production by
NK cells and T cells (88). IL-1β and IL-18 are regulated at both
transcriptional and post-translational levels. Upon transcriptional
induction by TLRs and other sensor systems, IL-1β and IL-18 are
synthesized as inactive precursor proteins, which are subsequently
processed by the cysteine protease caspase-1 (IL-1β converting
enzyme) (89). Conversion of procaspase-1 into an enzymatically
active form, caspase-1, occurs upon formation of a multi-protein
inflammasome complex (89). Previous reports have suggested that
the NLRP3 inflammasome is involved in mediating the inflamma-
tory responses to both DNA and RNA viruses (90, 91). In human
SLE macrophages, NETs induce robust activation of the NLRP3
inflammasome (92).

Several groups independently identified AIM2 as a receptor
for cytosolic DNA that leads to caspase-1 activation and IL-1β

secretion (93, 94). AIM2 binds cytosolic DNA of self and non-
self origin, including bacterial, viral, and mammalian DNA, in
a sequence-independent manner (95). Recent evidence indicates
that the AIM2-related protein IFI16 also forms an inflamma-
some complex following Kaposi sarcoma – associated herpes virus
infection of endothelial cells (96). Several groups independently
identified STING as a key component of the DNA-sensing path-
way (97, 98). STING/MITA translocates to perinuclear regions
where it interacts with TBK1 to relay downstream signals to IRF3
(Figure 4). STING deficiency in macrophages or DCs leads to a
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FIGURE 3 | Signaling through RIG-1 like Receptors in lupus. Following
recognition of the cytosolic RNA, RIG-I, and MDA5 associate with the
adapter IPS-1 via CARD-like domains. IPS-1 is localized to the

mitochondrion and initiates signaling leading to activation of IRF3 and NFκB
that finally lead of over-production of type 1 IFN and other inflammatory
cytokines.

FIGURE 4 | Signaling through NLR receptors in lupus. Intracellular DNA
following microbial infection or phagocytosis of immune complexes can
potentially trigger the assembly of NLRs. The nucleic acid-induced signaling

pathway converges on the adaptor STING and the kinase TBK1, which
phosphorylates IRF3 to mediate downstream signaling events leading to
transcriptional induction of type 1 IFN and other inflammatory cytokines.
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markedly impaired type I IFN response to B-DNA and immunos-
timulatory DNA or to infection with DNA viruses, including
HSV-1, human CMV, and vaccinia virus (97, 98). Initial studies
showed that STING also interacted with components of the RNA-
recognition machinery, such as RIG-I, where it was linked to type
I IFN induction in response to VSV, a negative-strand RNA virus
(97, 99). Murine models support the relevance of AIM2 in suscep-
tibility to lupus-like disease in the NZB×NZW mouse (100).

OTHER CYTOSOLIC NUCLEIC ACID SENSORS
DNASE-I, II, AND III
Production of type I IFN and inflammatory cytokines are impor-
tant for protecting the host against infections; however overstimu-
lation of innate immune pathways can induce autoimmune disease
(101). Normally, host nucleic acid is limited to the nucleus and
mitochondria whereas; host cellular DNA/RNA sensors are local-
ized in the cytoplasmic compartment. Thus, accidental activation
of inflammatory cytokine pathways by host defense sensors is
largely averted. However, faulty clearance of self-nuclear mater-
ial from apoptotic/necrotic bodies can cause improper activation
of cytokines including type I IFN production.

One level of self-defense is provided by cellular endonucle-
ases, such as Dnase-I, Dnase-II, and Dnase-III/Trex-1, which are
involved in the clearance of extracellular, lysosomal, and cytoso-
lic DNA, respectively. Genetic deficiencies of Dnase-I have been
identified in SLE patients (102), and Dnase I – deficient mice
develop a lupus-like syndrome (103). Dnase-I defects lead to the
accumulation of extracellular DNA produced by apoptotic and
necrotic cells, which is immunogenic and can lead to type I IFN
production (101, 104). Dnase-II is expressed in lysosomes, where
it degrades DNA from engulfed apoptotic/necrotic cells (105).
Dnase-II knockout mice are embryonically lethal. However, they
are viable on the IFNR1 knockout background, indicating that type
I IFN mediates the lethality of Dnase-II genetic deficiency (101,
106). This finding supports the concept that inefficient nucleic
acid degradation promotes type I IFN excess and subsequent SLE
disease. Dnase-III is another nuclease that is normally involved
in the clearance of cell-intrinsic ssDNA (107, 108). DNAse-III is
3′-5′ exonuclease and is localized to the endoplasmic reticulum.
In the absence of DNAse-III, there is an accumulation ∼60-bp
ssDNA, believed to be produced during replication, which leads to
the activation of ATM-dependent DNA-damage associated check-
point pathways (109). Stetson et al. (110) revealed a role for
DNAse-III in preventing cell-intrinsic initiation of autoimmunity.
Trex-1 substrates are ssDNA, which are either the by-products of
replication and/or reverse transcribed from endogenous retroele-
ments. Loss of function mutations in the human DNAse-III gene
cause Aicardi–Goutieres Syndrome (AGS) (111, 112). Different
rare DNAse-III mutations also cause monogenic chilblain lupus,
and common genetic variations in DNAse-III have also been asso-
ciated with risk of SLE, suggesting that a common mechanism may
underlie these disorders (113–115).

OTHER DNA AND RNA SENSORS
DNA-dependent activator of IRFs (DAI) is another cytoplasmic
DNA sensor capable of activating IRF-3 and NF-κB, resulting
in type I IFN production. DAI interacts directly with dsDNA

in vitro and this interaction in turn enhances DAI association
with IRF-3. DAI-induced IRF-3 phosphorylation is dependent on
TBK1 (47, 116). Recently, Zhang et al. (117) reported that DAI
expression is predominantly increased in SLE patients as well
as in activated lymphocyte-derived self-apoptotic DNA (ALD-
DNA)-induced lupus mice. ALD-DNA could induce the dimer-
ization/oligomerization of DAI and activate DAI signaling path-
ways via regulating calcium signaling, thus resulting in aberrant
macrophage activation and lupus nephritis, implying the possible
mechanisms for the recognition and regulation of ALD-DNA-
induced pathological macrophage activation in the context of SLE
disease (117).

Recently, Kondo et al. (118) identified MRE11 as a sensor for
exogenous dsDNA, which is required for STING trafficking and
type I IFN induction. The report reveals that MRE11 contributes to
recognition of a broad spectrum of dsDNA and MRE11-mediated
intracellular DNA recognition is to respond to damaged host cells,
rather than defense against foreign pathogens (118). DDX41 is
another DExD/H-box helicase that can interact with synthetic
dsDNA through the DEAD domain in vitro and DDX41 is required
for DNA-dependent induction of type I IFN in myeloid DCs
through a pathway dependent on STING and TBK1 (119).

Found in the cytoplasm, RNA polymerase III is known to
transcribe AT-rich DNA into dsRNA transcripts characterized by
uncapped 5′-triphosphate moieties. This can act as a ligand for
RIG-I. Subsequently, RIG-I signals via IPS-1 to induce the expres-
sion of type I IFN and other cytokines (72, 120). Ku80 is an
abundant nuclear protein that is known to bind dsDNA with high
affinity.

A recent study (121) identified Ku70, as the newest member
of the cytosolic DNA-sensing machinery with in IFN produc-
tion. Ku70 was identified as a DNA-binding protein in HEK-293
cells by DNA-affinity purification followed by mass spectrome-
try. Notably, Ku70 is involved in the production of type III IFN
(λ1), but not type I IFN (α or β) in response to a variety of trans-
fected DNA (>500 bp) in HEK-293 (121). It seems likely that we
will continue to identify additional DNA and RNA sensors, and
that some of these novel mediators will also play a role in SLE
pathogenesis.

CONCLUSION
In recent years, there has been tremendous progress in under-
standing how cells recognize and respond to microbial threats.
Many DNA and RNA sensors have been identified that are ded-
icated to detection and elimination of microbial infection and
clearing cellular damage. Sometimes these beneficial immune
responses lose their fidelity and thus contribute to pathogen-
esis of autoimmune diseases. It is striking that many of the
classical components of these pathways have been genetically
associated with risk of SLE. This emphasizes the primary impor-
tance of nucleic acid handling and innate immune sensors in
the pathogenesis of SLE. In SLE, it seems likely that stimula-
tion of these pathways occurs via the combined contribution
of microbial nucleic acids as well as self-tissue-derived stimuli.
Work from our group and others supports a model in which
immune complexes containing nucleic acid and free nucleic acid
are a micro-environmental factor that cooperates with genetic
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variation in the nucleic acid sensing pathways to produce immune
system dysregulation and risk of SLE (62). Understanding the
molecular mechanisms of how the innate nucleic acid recogni-
tion system is dsyregulated in SLE will suggest new therapeutic
avenues directed toward the inhibition of nucleic acid recognition
by their sensors, downstream signaling events, and inhibition of
end-stage mediators. This will lead to the new era of molecular

medicine for the treatment of intractable autoimmune diseases
like SLE.
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Sjögren’s syndrome (SS) is a common, progressive autoimmune exocrinopathy distin-
guished by dry eyes and mouth and affects ∼0.7% of the European population. Over-
expression of transcripts induced by interferons (IFN), termed as an “IFN signature,” has
been found in SS patients. Four microarray studies have been published in SS that identified
dysregulated genes within type I IFN signaling in either salivary glands or peripheral blood of
SS patients.The mechanism of this type I IFN activation is still obscure, but several possible
explanations have been proposed, including virus infection-initiated and immune complex-
initiated type I IFN production by plasmacytoid dendritic cells. Genetic predisposition to
increased type I IFN signaling is supported by candidate gene studies showing evidence
for association of variants within IFN-related genes. Once activated, IFN signaling may con-
tribute to numerous aspects of SS pathophysiology, including lymphocyte infiltration into
exocrine glands, autoantibody production, and glandular cell apoptosis.Thus, dysregulation
of IFN pathways is an important feature that can be potentially used as a serum biomarker
for diagnosis and targeting of new treatments in this complex autoimmune disease.

Keywords: interferon signature, Sjögren’s syndrome, gene expression profiling, microarrays, type I interferon,
genetic association, mechanisms, biomarker

INTRODUCTION
Sjögren’s syndrome (SS) is a chronic autoimmune disease that pri-
marily affects middle-aged women with an estimated prevalence of
∼0.7% in European populations (1, 2). SS is characterized by infil-
tration of lymphocytes into glandular tissues, typically the salivary
and lacrimal glands, leading to xerostomia (dry mouth) and ker-
atoconjunctivitis sicca (dry eye). The resulting pathology can be
debilitating, and target organ damage may be so severe that mois-
ture production is virtually non-existent. However, manifestations
of SS are not limited to exocrinopathy; other common extraglan-
dular features include fatigue, arthritis, Raynaud’s phenomenon,
and an increased incidence of non-Hodgkin B cell lymphoma (3).
Two autoantibodies targeting ribonucleoproteins, anti-Ro/SSA,
and anti-La/SSB, are detected in 60–70% of SS patients and are
important to disease diagnosis (4, 5).

The etiology and pathogenesis of SS are still unclear, par-
tially due to the complexity and heterogeneity of disease mech-
anisms. Recently, the dysregulation of interferon (IFN) signaling
pathways, especially upregulation of type I IFN-inducible genes,
has been observed in salivary glands and peripheral blood in a
subset of SS patients (6–10). Type I IFNs, including IFNα and
IFNβ, are key immune mediators involved in viral defense and
activation of immune responses (11). Viral infection has long
been suspected to trigger SS (12), and abnormal elevations in
type I IFN signaling may reflect an important role for viral
infection in disease pathogenesis. Additionally, genetic associ-
ation studies indicate the importance of multiple genetic loci
within IFN pathways. Here, we review the identification of the
type I IFN “signature” through high-throughput techniques, and

discuss potential mechanisms and functions of dysregulated IFN
signaling in SS.

IDENTIFICATION OF THE “IFN SIGNATURE” IN SS
Many powerful, high-throughput techniques have emerged in the
last few decades and have revealed important insights into mech-
anisms of complex human diseases. Gene expression profiling
(GEP) studies using microarrays represent one of the most widely
used approaches to determine global transcriptome differences
between patients and healthy controls.“Signatures”of disease have
been defined that represent clusters of co-expressed genes, often
within a biological network, that may serve as biomarkers for dis-
ease diagnosis, classification, and drug response prediction. The
“IFN signature,” first described in a GEP study of systemic lupus
erythematosus (SLE), has been defined by the overexpression of
type I IFN-inducible genes (13). Subsequent studies have demon-
strated similar signatures in other autoimmune diseases, such as
rheumatoid arthritis (RA), systemic sclerosis (SSc), myositis, and
SS (14).

Four microarray studies have been published in SS to date that
describe the overexpression of type I IFN-inducible transcripts in
minor salivary glands or peripheral blood from SS patients (7–10).
Hjelmervik et al. (7) published the first GEP in SS using a relatively
low-density 16K microarray to identify a whole transcriptome sig-
nature in biopsy samples of minor salivary glands from 10 SS
patients and 10 controls who experienced subjective oral dryness.
They successfully clustered 19 out of the 20 subjects into the cor-
rect group by using the top 200 differentially expressed transcripts,
in which numerous type I IFN-regulated genes were represented,
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including IFI27, ISG12, GBP2, IFITM1, and IRF8. Subsequently,
Gottenberg et al. (8) also identified distinct gene expression pat-
terns involving IFN pathways (both type I and type II) in salivary
glands of SS patients by comparing seven cases and seven con-
trols. Specifically, 23 genes were IFN-inducible, including genes in
the antiviral IFN-induced transmembrane protein (IFITM) family
(IFITM1, IFITM2, and IFITM3) and genes in the Toll-like recep-
tor (TLR) family (TLR8 and TLR9) that play a fundamental role
in pathogen recognition and activation of innate immunity (15).
All showed significantly increased expression in SS patients. Inter-
estingly, the only two known IFN-inducible genes that showed
decreased expression in SS salivary glands, CCL18 and SOCS3, are
involved in the inhibition of inflammatory processes. The overex-
pression of IFN-inducible genes was supported by the detection
of plasmacytoid dendritic cells (pDC), the most potent producer
of type I IFNs (16), in salivary glands of patients with SS, but none
in the glands of controls. These results suggest that pDC activa-
tion may play a role in SS pathogenesis, which is discussed later in
this review.

Upregulation of 11 IFN-inducible genes has been identified
by Pérez et al. (10) through a microarray study of epithelial
cells from salivary glands of nine SS patients and six con-
trols. Notably, three of these genes belong to the IFN regulatory
factor (IRF) family (IRF7, IRF8 or ICSBP1, and IRF9). IRFs
are pivotal transcriptional regulators of type I IFN and IFN-
inducible genes, and are important in cellular differentiation of
hematopoietic cells (17). This GEP study also identified dysreg-
ulation of apoptotic pathways in SS epithelial cells, which are
now thought to be involved in local auto-antigen production
and tissue damage in the salivary glands of SS patients (18, 19).
Additionally, they identified six genetic loci associated with SS

using microsatellite markers, with five of the association sig-
nals falling within regions where differentially expressed genes
were found, such as IL6, CD44, and IRF9. These results sup-
port a genetic contribution to the dysregulated IFN pathways
observed in SS.

The IFN signature has also been observed in peripheral blood
of SS patients. Emamian et al. (9) detected upregulation of IFN-
inducible genes in peripheral blood of a subset of SS patients by
comparing 21 cases and 23 controls followed by replication in an
independent dataset of 17 SS cases and 22 controls. IFI35, MX1,
OAS1, IRF7, and OAS2 were among the top differentially expressed
genes and are known to be induced by IFNs. The authors also
showed that the expression levels of most IFN-inducible genes
were positively correlated with anti-Ro/SSA and anti-La/SSB titers.
Although the relationship between IFN pathway activation and
autoantibody production is unclear, these results provide a link
for both innate and adaptive immune responses to the pathogene-
sis of disease. These results also suggest that the IFN signature can
be potentially used as a disease biomarker for a subgroup of SS
patients with certain clinical features that includes the production
of anti-Ro/SSA and anti-La/SSB.

All of these microarray studies have consistently identified dif-
ferentially expressed genes in IFN-mediated signaling pathways. As
shown in Table 1, there are several differentially expressed genes
found to be common across multiple studies and multiple tissue
types, such as IFITM1, IFI44,MX1, IRF7, and IRF8, suggesting both
local and systemic dysregulation of IFN signaling pathways in SS
patients (Table 1). Each study also revealed unique dysregulated
genes, partially due to the different types of arrays, relatively lim-
ited sample sizes, different quality control processes, and sample
heterogeneity between studies.

Table 1 | Differentially expressed IFN-inducible genes found in common from the gene expression profiling studies in SS.

Hjelmervik

et al. (T score)

Gottenberg et al.

(Fold change)

Pe´rez et al. (Mean

difference with log2 scale)

Emamian et al.

(Average fold change)

Gene function

IFITM1 −4.98 2.52 1.13 1.83 Block early stages of viral replication

IFITM3 1.88 1.96

IFIT2 1.11 2.39 Inhibits expression of viral mRNA lacking

2′-O-methylation

IRF7 0.93 2.18 Important transcription regulators of type

IRF8 −4.40 1.47 I IFN and IFN-inducible genes

IRF9 −5.72 0.74 Important to cell differentiation

IFI16 0.99 1.56 Modulates p53 function and inhibits cell

growth via Ras/Raf pathway

IFI27 −6.29 15.83 Mediates IFN-induced apoptosis

IFI44 −4.74 3.49 Antiproliferative, associated with HCV

infection

MX1 1.15 3.85 A GTPase with antiviral activity against a

wide range of RNA viruses and some

DNA viruses

SP110 −5.05 1.85 Regulates gene transcription
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Additional studies have identified increased activation of type I
IFN-mediated genes in SS patients by candidate gene approaches
(20–24). Increased IFN-inducible gene expression profiles have
been detected in saliva and tears as well as particular cell types
from SS patients (25, 26). However, results for the expression lev-
els of IFNα itself in SS patients are controversial (6, 27). This may
be due to the different techniques used in separate studies, a mix-
ture of cell types in each experiment, and the heterogeneity of SS
patients involved.

MECHANISMS OF ELEVATED IFN-MEDIATED SIGNALING
IN SS
Although virtually all cells can produce type I IFNs in response
to viral and bacterial infection, pDCs are the most potent IFN-
producing cells, making up to 1000-fold more type I IFNs than
other cell types (28). The detection of activated pDCs in salivary
glands of SS patients but not in controls makes pDCs prominent
candidates for the local production of type I IFNs that may pro-
mote the formation of inflammatory foci (8). Activated pDCs have
also been found in the target organs of other autoimmune diseases
(29, 30). Interestingly, Wildenberg et al. (26) found that, although
the number of pDCs is decreased in the blood of SS patients, sup-
posedly due to the migration of pDCs to peripheral sites, the cell
surface activation marker CD40 is significantly overexpressed on
pDCs from SS patients. Possible explanations of sustained acti-
vation of pDCs in SS include chronic exogenous stimulation and
constitutive expression of pro-inflammatory transcription factors,
such as IRF5 and IRF7, in SS patients (31).

Type I IFNs are induced transiently by viral infection and elicit
antiviral effects. The pDCs can be rapidly induced to produce
IFNα upon stimulation by RNA and DNA through TLR7 and
TLR9, respectively (32). Thus, an initial viral infection is sus-
pected to trigger the production of type I IFN by pDCs. The
contribution of viral infection to elevated IFN signaling in SS is
unknown; however, a number of viruses have been thought to con-
tribute to SS pathogenesis, including Epstein–Barr virus (EBV),
cytomegalovirus (CMV), hepatitis B virus (HBV), and hepatitis
C virus (HCV) (12). Several mechanisms have been hypothe-
sized regarding possible infectious triggers of SS, such as antigenic
molecular mimicry. For example, infection with EBV results in
the production of EBV nuclear antigen-1 (EBNA-1). Immune
response against EBNA-1 can generate antibodies that cross-react
with SS-associated autoantigens, such as anti-Ro/SSA (33). These
antibodies may undergo epitope spreading and may ultimately
become pathogenic in SS.

Autoantibodies and autoantigen-specific B cells have been
detected in the salivary glands of SS patients (34, 35) and may
involve in the production the type I IFNs through the forma-
tion of immune complexes. Båve et al. (6) have found that the
combination of autoantibodies to RNA-binding proteins and
material released by apoptotic cells can induce IFNα produc-
tion by pDCs. This event is probably triggered by the inter-
action of RNA-containing immune complexes with Fcγ recep-
tor IIa (FCGRIIA) on the surface of pDCs. Lövgren et al.
(36) have described the production of IFNα by pDCs stimu-
lated using U1 snRNA combined with IgG from patients with
SLE. This response can be inhibited by FCGRIIA antagonists

or RNase, suggesting a role for the RNA component as well
as FCGRIIA in the immune complex-induced IFNα production
by pDCs.

Another role of autoantibodies, especially anti-Ro52, in pro-
moting IFN signaling is based on the function of their target
autoantigens. Ro52, also known as tripartite motif-containing
protein 21 (TRIM21), is an IFN-inducible E3 ubiquitin-protein
ligase that promotes ubiquitination and proteasomal degradation
of IRF3 and IRF7 (37, 38). After induction by IFNs following
TLR signaling, Ro52 exerts a negative role on IFN signaling and
prevents further inflammatory damage. Therefore, autoantibod-
ies against Ro52 may interrupt the negative feedback of type I IFN
signaling. Indeed, anti-Ro52 from SS patients is able to inhibit the
E3 ligase activity of Ro52 by blocking the E3/E2 interface (39).
Additionally, tissue inflammation and systemic autoimmunity in
Ro52 knockout mice is thought to be induced by overproduc-
tion of pro-inflammatory cytokines (40). These results may well
explain the correlation between the IFN signature and autoanti-
body positivity in SS patients (9). However, anti-Ro alone does
not seem sufficient to induce high IFNα activity, given the fact
that patients with disease are more likely to have high serum IFN
activity than asymptomatic individuals with autoantibodies (41).
Therefore, the contribution of autoantibodies to the elevated IFN
signaling warrants further study.

GENETICS RISK FACTORS IN IFN PATHWAYS
A possible model for SS development is that an initial viral infec-
tion induces the production of type I IFNs and genetic suscepti-
bility factors in certain individuals promote prolonged activation
of the IFN system. Genetic predisposition to SS is supported by
family aggregation of disease as well as a few twin studies (42–45).
Genetic risk variants within or near IFN-regulated genes could
possibly predispose patients to increased IFN signaling by (1) the
constitutive expression of IFN-inducible genes or (2) the induc-
tion of loss-of-function inhibitors within IFN pathways. Genetic
studies in SS have relied primarily on candidate gene approaches,
focusing on those genes with biological plausibility for a role in
SS etiology or evidence of association in other autoimmune dis-
eases (46). The most convincing associations outside the HLA in SS
found by candidate gene studies are within the regions of IRF5 and
STAT4 (47–49), both of which are involved in IFN signaling. IRF5
is a transcription factor mediating type I IFN responses in vari-
ous immune-related cells (17). Upon viral infection, IRF5 induces
the transcription of IFNα and other pro-inflammatory cytokines,
including IL12 p40 subunit, IL6, and TNFα (50). Genetic asso-
ciation within the IRF5 region has been established in other
autoimmune diseases, including SLE, RA, ulcerative colitis, pri-
mary biliary cirrhosis (PBC), and SSc (51–55). STAT4 is also a
critical transcription factor involved in signaling initiated by type
I and type II IFNs. It is required for the development of Th1 cells
from naive CD4+ T cells and IFNγ production in response to
IL12 (56, 57). The association of variants in STAT4 has also been
well established in other inflammatory diseases (58–60). Ongo-
ing genome-wide association studies in SS have firmly established
these loci as well as other genes that promote susceptibility to dis-
ease and may contribute to the dysregulation of IFN-inducible
genes (61).
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EFFECTS OF THE OVEREXPRESSION OF TYPE I
IFN-INDUCIBLE GENES IN SS
Type I IFNs are key regulators of human immune systems and
exert a broad effect on immune responses and autoimmunity
(11). Overexpression of type I IFN-inducible genes in the salivary
glands and peripheral blood of SS patients may influence many
aspects of SS pathophysiology. Epithelial cells from the salivary
glands of SS patients play an active role in promoting immune
responses, including increased expression of MHC molecules and
co-stimulatory molecules, such as B7 and CD40 (62–65). Many
T cell-attracting and germinal center-forming chemokines, such as
CXCL10, IL-8, and CXCL13, have also been found to be expressed
in epithelial cells from the salivary glands of SS patients (22, 66,
67). Thus, these cells acquire antigen-presenting characteristics,
mediating the recruitment, activation, and differentiation of the
infiltrating inflammatory cells (68). Many of these molecules are
induced by IFNα and IFNβ.

Another cytokine induced by type I IFNs in both salivary
gland epithelial cells and peripheral blood monocytes is B cell
activating factor (BAFF) (69, 70). BAFF is important in B cell acti-
vation, proliferation, and differentiation and has been found to be
overexpressed in SS patients (71). Increased expression of BAFF
has been observed in salivary gland epithelial cells from SS patients
compared with those from healthy controls upon stimulation by
IFNα, but not IFNγ or TNFα, suggesting a specific role of type I
IFNs in B cell dysfunction in SS (72).

As mentioned above, autoantigen Ro52, or TRIM21 can be
induced by IFNα in cultured human B cells and peripheral blood
mononuclear cells (73). After upregulation, Ro52 translocates
from the cytoplasm to the nucleus and initiates IFNα-induced
apoptosis through intrinsic caspase-3. IFNα can also induce the
expression of pro-apoptotic molecules, including Fas and FasL
(74), and the increased expression of Fas and FasL has been
identified in salivary glands from SS patients (18, 75). But this

effect is not limited to type I IFNs: IFNγ and TNFα are also
potent inducers of these pro-apoptotic molecules in salivary
glands (18, 76). Concordantly, elevated levels of epithelial apop-
totic cell death have been detected in the minor salivary gland
tissues of SS patients (77). In addition, Ro52, Ro60, and La48
redistribute to apoptotic blebs and are exposed to the surface of
cells undergoing apoptosis (78). Thus, apoptotic cells are also a
main source of the autoantigens that form immune complexes
in the salivary gland tissue of SS patients that further boost local
IFNα production.

CONCLUSION
It is widely acknowledged that SS patients have elevated type I IFN
signaling that may contribute to the pathogenesis of this com-
plex disease. Hundreds of genes can be induced by IFNs and are
mediated by IFN-related pathways in different cell types, which
makes it difficult to attribute disease pathology to the malfunc-
tion of a single gene or certain gene family. An efficient approach
for unraveling mechanisms of complex diseases is to use multiple
tools integrated into systems approaches to answer a specific bio-
logical question. High-throughput techniques, such as microarray
and genome-wide genotyping arrays, provide us with excep-
tional opportunities to comprehensively analyze dysregulated IFN
networks.

It is worth noting that the IFN signature is only observed in
a subset of SS patients who tend to be autoantibody positive (9).
This heterogeneity is obviously important to consider and may
explain the controversial results of recent IFN-targeting therapies
and drug trials for SS (79–83). Eventually the IFN signature in SS
may be used as a tool to identify high-risk individuals for preven-
tative strategies, to help diagnose SS through its use as a serum
biomarker in lieu of cumbersome and costly routine diagnostic
processes currently used in research and clinical practice, and to
predict the efficacy of treatment by IFN-related therapies.

REFERENCES
1. Alamanos Y, Tsifetaki N, Voul-

gari PV, Venetsanopoulou AI,
Siozos C, Drosos AA. Epi-
demiology of primary Sjo-
gren’s syndrome in north-west
Greece, 1982–2003. Rheumatology
(Oxford) (2006) 45(2):187–91.
doi:10.1093/rheumatology/kei107

2. Helmick CG, Felson DT, Lawrence
RC, Gabriel S, Hirsch R, Kwoh CK,
et al. Estimates of the prevalence
of arthritis and other rheumatic
conditions in the United States.
Part I. Arthritis Rheum (2008)
58(1):15–25. doi:10.1002/art.23177

3. Jonsson R, Vogelsang P, Volchenkov
R, Espinosa A, Wahren-Herlenius
M, Appel S. The complexity of
Sjogren’s syndrome: novel aspects
on pathogenesis. Immunol Lett
(2011) 141(1):1–9. doi:10.1016/j.
imlet.2011.06.007

4. Vitali C, Bombardieri S, Jonsson
R, Moutsopoulos HM, Alexander
EL, Carsons SE, et al. Classifica-
tion criteria for Sjogren’s syndrome:

a revised version of the European
criteria proposed by the American-
European Consensus Group. Ann
Rheum Dis (2002) 61(6):554–8. doi:
10.1136/ard.61.6.554

5. Hernandez-Molina G, Leal-Alegre
G, Michel-Peregrina M. The mean-
ing of anti-Ro and anti-La anti-
bodies in primary Sjogren’s syn-
drome. Autoimmun Rev (2011)
10(3):123–5. doi:10.1016/j.autrev.
2010.09.001

6. Båve U, Nordmark G, Lovgren
T, Ronnelid J, Cajander S, Elo-
ranta ML, et al. Activation of the
type I interferon system in pri-
mary Sjogren’s syndrome: a possible
etiopathogenic mechanism. Arthri-
tis Rheum (2005) 52(4):1185–95.
doi:10.1002/art.20998

7. Hjelmervik TO, Petersen K,
Jonassen I, Jonsson R, Bolstad
AI. Gene expression profil-
ing of minor salivary glands
clearly distinguishes primary Sjo-
gren’s syndrome patients from
healthy control subjects. Arthritis

Rheum (2005) 52(5):1534–44.
doi:10.1002/art.21006

8. Gottenberg JE, Cagnard N, Luc-
chesi C, Letourneur F, Mistou S,
Lazure T, et al. Activation of IFN
pathways and plasmacytoid den-
dritic cell recruitment in target
organs of primary Sjogren’s syn-
drome. Proc Natl Acad Sci USA
(2006) 103(8):2770–5. doi:10.1073/
pnas.0510837103

9. Emamian ES, Leon JM, Lessard
CJ, Grandits M, Baechler EC,
Gaffney PM, et al. Peripheral blood
gene expression profiling in Sjo-
gren’s syndrome. Genes Immun
(2009) 10(4):285–96. doi:10.1038/
gene.2009.20

10. Pérez P, Anaya JM, Aguilera S,
Urzua U, Munroe D, Molina C, et
al. Gene expression and chromo-
somal location for susceptibility to
Sjogren’s syndrome. J Autoimmun
(2009) 33(2):99–108. doi:10.1016/j.
jaut.2009.05.001

11. Gonzalez-Navajas JM, Lee J, David
M, Raz E. Immunomodulatory

functions of type I interferons. Nat
Rev Immunol (2012) 12(2):125–35.
doi:10.1038/nri3133

12. Igoe A, Scofield RH. Autoimmu-
nity and infection in Sjogren’s
syndrome. Curr Opin Rheumatol
(2013) 25(4):480–7. doi:10.1097/
BOR.0b013e32836200d2

13. Baechler EC, Batliwalla FM, Karypis
G, Gaffney PM, Ortmann WA, Espe
KJ, et al. Interferon-inducible
gene expression signature
in peripheral blood cells of
patients with severe lupus.
Proc Natl Acad Sci USA
(2003) 100(5):2610–5.
doi:10.1073/pnas.0337679100

14. Higgs BW, Liu Z, White B,
Zhu W, White WI, Morehouse
C, et al. Patients with systemic
lupus erythematosus, myosi-
tis, rheumatoid arthritis and
scleroderma share activation
of a common type I inter-
feron pathway. Ann Rheum
Dis (2011) 70(11):2029–36.
doi:10.1136/ard.2011.150326

Frontiers in Immunology | Molecular Innate Immunity September 2013 | Volume 4 | Article 290 | 77

http://dx.doi.org/10.1093/rheumatology/kei107
http://dx.doi.org/10.1002/art.23177
http://dx.doi.org/10.1016/j.imlet.2011.06.007
http://dx.doi.org/10.1016/j.imlet.2011.06.007
http://dx.doi.org/10.1136/ard.61.6.554
http://dx.doi.org/10.1016/j.autrev.2010.09.001
http://dx.doi.org/10.1016/j.autrev.2010.09.001
http://dx.doi.org/10.1002/art.20998
http://dx.doi.org/10.1002/art.21006
http://dx.doi.org/10.1073/pnas.0510837103
http://dx.doi.org/10.1073/pnas.0510837103
http://dx.doi.org/10.1038/gene.2009.20
http://dx.doi.org/10.1038/gene.2009.20
http://dx.doi.org/10.1016/j.jaut.2009.05.001
http://dx.doi.org/10.1016/j.jaut.2009.05.001
http://dx.doi.org/10.1038/nri3133
http://dx.doi.org/10.1097/BOR.0b013e32836200d2
http://dx.doi.org/10.1097/BOR.0b013e32836200d2
http://dx.doi.org/10.1073/pnas.0337679100
http://dx.doi.org/10.1136/ard.2011.150326
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li et al. Interferons in Sjögren’s syndrome

15. O’Neill LA, Golenbock D, Bowie
AG. The history of Toll-like recep-
tors – redefining innate immu-
nity. Nat Rev Immunol (2013)
13(6):453–60. doi:10.1038/nri3446

16. Liu YJ. IPC: professional type 1
interferon-producing cells and plas-
macytoid dendritic cell precur-
sors. Annu Rev Immunol (2005)
23:275–306. doi:10.1146/annurev.
immunol.23.021704.115633

17. Savitsky D, Tamura T, Yanai
H, Taniguchi T. Regulation
of immunity and oncogenesis
by the IRF transcription fac-
tor family. Cancer Immunol
Immunother (2010) 59(4):489–510.
doi:10.1007/s00262-009-0804-6

18. Abu-Helu RF, Dimitriou ID, Kap-
sogeorgou EK, Moutsopoulos HM,
Manoussakis MN. Induction of sali-
vary gland epithelial cell injury in
Sjogren’s syndrome: in vitro assess-
ment of T cell-derived cytokines and
Fas protein expression. J Autoim-
mun (2001) 17(2):141–53. doi:10.
1006/jaut.2001.0524

19. Nordmark G, Alm GV, Ronnblom
L. Mechanisms of disease: primary
Sjogren’s syndrome and the type I
interferon system. Nat Clin Pract
Rheumatol (2006) 2(5):262–9. doi:
10.1038/ncprheum0173

20. Ohyama Y, Nakamura S, Mat-
suzaki G, Shinohara M, Hiroki A,
Fujimura T, et al. Cytokine mes-
senger RNA expression in the labial
salivary glands of patients with Sjo-
gren’s syndrome. Arthritis Rheum
(1996) 39(8):1376–84. doi:10.1002/
art.1780390816

21. Mitsias DI,Tzioufas AG,Veiopoulou
C, Zintzaras E, Tassios IK,
Kogopoulou O, et al. The Th1/Th2
cytokine balance changes with the
progress of the immunopatho-
logical lesion of Sjogren’s syn-
drome. Clin Exp Immunol (2002)
128(3):562–8. doi:10.1046/j.1365-
2249.2002.01869.x

22. Wakamatsu E, Matsumoto I,
Yasukochi T, Naito Y, Goto D,
Mamura M, et al. Overexpression
of phosphorylated STAT-1alpha in
the labial salivary glands of patients
with Sjogren’s syndrome. Arthritis
Rheum (2006) 54(11):3476–84.
doi:10.1002/art.22176

23. Giron-Gonzalez JA, Baturone R,
Soto MJ, Marquez M, Macias I,
Montes de Oca M, et al. Implica-
tions of immunomodulatory inter-
leukins for the hyperimmunoglobu-
linemia of Sjogren’s syndrome. Cell
Immunol (2009) 259(1):56–60. doi:
10.1016/j.cellimm.2009.05.013

24. Szodoray P, Papp G, Horvath IF,
Barath S, Sipka S, Nakken B, et al.

Cells with regulatory function of
the innate and adaptive immune
system in primary Sjogren’s syn-
drome. Clin Exp Immunol (2009)
157(3):343–9. doi:10.1111/j.1365-
2249.2009.03966.x

25. Hu S, Wang J, Meijer J, Ieong S, Xie
Y, Yu T, et al. Salivary proteomic
and genomic biomarkers for pri-
mary Sjogren’s syndrome. Arthri-
tis Rheum (2007) 56(11):3588–600.
doi:10.1002/art.22954

26. Wildenberg ME, van Helden-
Meeuwsen CG, van de Merwe
JP, Drexhage HA, Versnel MA.
Systemic increase in type I
interferon activity in Sjogren’s
syndrome: a putative role for
plasmacytoid dendritic cells. Eur
J Immunol (2008) 38(7):2024–33.
doi:10.1002/eji.200738008

27. Zheng L, Zhang Z,Yu C, Tu L, Zhong
L,Yang C. Association between IFN-
alpha and primary Sjogren’s syn-
drome. Oral Surg Oral Med Oral
Pathol Oral Radiol Endod (2009)
107(1):e12–8. doi:10.1016/j.tripleo.
2008.09.015

28. Theofilopoulos AN, Baccala R,
Beutler B, Kono DH. Type I
interferons (alpha/beta) in immu-
nity and autoimmunity. Annu
Rev Immunol (2005) 23:307–36.
doi:10.1146/annurev.immunol.23.
021704.115843

29. Farkas L, Beiske K, Lund-Johansen
F, Brandtzaeg P, Jahnsen FL. Plas-
macytoid dendritic cells (natural
interferon- alpha/beta-producing
cells) accumulate in cutaneous
lupus erythematosus lesions. Am J
Pathol (2001) 159(1):237–43. doi:
10.1016/S0002-9440(10)61689-6

30. Van Krinks CH, Matyszak
MK, Gaston JS. Characteriza-
tion of plasmacytoid dendritic
cells in inflammatory arthritis
synovial fluid. Rheumatology
(Oxford) (2004) 43(4):453–60.
doi:10.1093/rheumatology/keh115

31. Nordmark G, Eloranta ML,
Ronnblom L. Primary Sjo-
gren’s syndrome and the type I
interferon system. Curr Pharm
Biotechnol (2012) 13(10):2054–62.
doi:10.2174/138920112802273290

32. Fitzgerald-Bocarsly P, Dai J, Singh
S. Plasmacytoid dendritic cells and
type I IFN: 50 years of conver-
gent history. Cytokine Growth Factor
Rev (2008) 19(1):3–19. doi:10.1016/
j.cytogfr.2007.10.006

33. Poole BD, Scofield RH, Harley
JB, James JA. Epstein-Barr virus
and molecular mimicry in systemic
lupus erythematosus. Autoimmu-
nity (2006) 39(1):63–70. doi:10.
1080/08916930500484849

34. Salomonsson S, Wahren-Herlenius
M. Local production of Ro/SSA
and La/SSB autoantibodies in the
target organ coincides with high
levels of circulating antibodies
in sera of patients with Sjo-
gren’s syndrome. Scand J Rheumatol
(2003) 32(2):79–82. doi:10.1080/
03009740310000076

35. Wahren-Herlenius M, Salomonsson
S. Detection of antigen specific B-
cells in tissues. Methods Mol Med
(2007) 136:19–24. doi:10.1007/978-
1-59745-402-5_2

36. Lövgren T, Eloranta ML, Kast-
ner B, Wahren-Herlenius M,
Alm GV, Ronnblom L. Induc-
tion of interferon-alpha by
immune complexes or liposomes
containing systemic lupus ery-
thematosus autoantigen- and
Sjogren’s syndrome autoantigen-
associated RNA. Arthritis
Rheum (2006) 54(6):1917–27.
doi:10.1002/art.21893

37. Higgs R, Ni Gabhann J, Ben Larbi
N, Breen EP, Fitzgerald KA, Jefferies
CA. The E3 ubiquitin ligase Ro52
negatively regulates IFN-beta pro-
duction post-pathogen recognition
by polyubiquitin-mediated degra-
dation of IRF3. J Immunol (2008)
181(3):1780–6.

38. Higgs R, Lazzari E, Wynne C, Ni
Gabhann J, Espinosa A, Wahren-
Herlenius M, et al. Self protection
from anti-viral responses – Ro52
promotes degradation of the tran-
scription factor IRF7 downstream
of the viral Toll-Like receptors. PLoS
ONE (2010) 5(7):e11776. doi:10.
1371/journal.pone.0011776

39. Espinosa A, Hennig J, Ambrosi
A, Anandapadmanaban M,
Abelius MS, Sheng Y, et al.
Anti-Ro52 autoantibodies from
patients with Sjogren’s syndrome
inhibit the Ro52 E3 ligase activity by
blocking the E3/E2 interface. J Biol
Chem (2011) 286(42):36478–91.
doi:10.1074/jbc.M111.241786

40. Espinosa A, Dardalhon V, Brauner
S, Ambrosi A, Higgs R, Quintana FJ,
et al. Loss of the lupus autoantigen
Ro52/Trim21 induces tissue inflam-
mation and systemic autoimmu-
nity by disregulating the IL-23-
Th17 pathway. J Exp Med (2009)
206(8):1661–71. doi:10.1084/jem.
20090585

41. Niewold TB, Rivera TL, Buyon JP,
Crow MK. Serum type I inter-
feron activity is dependent on
maternal diagnosis in anti-SSA/Ro-
positive mothers of children with
neonatal lupus. Arthritis Rheum
(2008) 58(2):541–6. doi:10.1002/
art.23191

42. Scofield RH, Kurien BT,
Reichlin M. Immunologi-
cally restricted and inhibitory
anti-Ro/SSA in monozygotic
twins. Lupus (1997) 6(4):395–8.
doi:10.1177/096120339700600409

43. Sestak AL, Shaver TS, Moser KL,
Neas BR, Harley JB. Familial aggre-
gation of lupus and autoimmunity
in an unusual multiplex pedigree. J
Rheumatol (1999) 26(7):1495–9.

44. Sabio JM, Milla E, Jimenez-Alonso
J. A multicase family with primary
Sjogren’s syndrome. J Rheumatol
(2001) 28(8):1932–4.

45. Houghton KM, Cabral DA, Petty
RE, Tucker LB. Primary Sjogren’s
syndrome in dizygotic adolescent
twins: one case with lymphocytic
interstitial pneumonia. J Rheumatol
(2005) 32(8):1603–6.

46. Ice JA, Li H, Adrianto I, Lin PC,
Kelly JA, Montgomery CG, et al.
Genetics of Sjogren’s syndrome in
the genome-wide association era. J
Autoimmun (2012) 39(1–2):57–63.
doi:10.1016/j.jaut.2012.01.008

47. Korman BD, Alba MI, Le JM, Ale-
vizos I, Smith JA, Nikolov NP, et al.
Variant form of STAT4 is associated
with primary Sjogren’s syndrome.
Genes Immun (2008) 9(3):267–70.
doi:10.1038/gene.2008.1

48. Nordmark G, Kristjansdottir G,
Theander E, Eriksson P, Brun JG,
Wang C, et al. Additive effects of the
major risk alleles of IRF5 and STAT4
in primary Sjogren’s syndrome.
Genes Immun (2009) 10(1):68–76.
doi:10.1038/gene.2008.94

49. Nordmark G, Kristjansdottir G,
Theander E, Appel S, Eriksson
P, Vasaitis L, et al. Association
of EBF1, FAM167A(C8orf13)-BLK
and TNFSF4 gene variants with
primary Sjogren’s syndrome. Genes
Immun (2011) 12(2):100–9. doi:10.
1038/gene.2010.44

50. Takaoka A, Yanai H, Kondo S, Dun-
can G, Negishi H, Mizutani T, et
al. Integral role of IRF-5 in the
gene induction programme acti-
vated by Toll-like receptors. Nature
(2005) 434(7030):243–9. doi:10.
1038/nature03308

51. Sigurdsson S, Nordmark G, Gor-
ing HH, Lindroos K, Wiman AC,
Sturfelt G, et al. Polymorphisms in
the tyrosine kinase 2 and interferon
regulatory factor 5 genes are asso-
ciated with systemic lupus erythe-
matosus. Am J Hum Genet (2005)
76(3):528–37. doi:10.1086/428480

52. Dideberg V, Kristjansdottir G,
Milani L, Libioulle C, Sigurdsson S,
Louis E, et al. An insertion-deletion
polymorphism in the interferon
regulatory Factor 5 (IRF5) gene

www.frontiersin.org September 2013 | Volume 4 | Article 290 | 78

http://dx.doi.org/10.1038/nri3446
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115633
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115633
http://dx.doi.org/10.1007/s00262-009-0804-6
http://dx.doi.org/10.1006/jaut.2001.0524
http://dx.doi.org/10.1006/jaut.2001.0524
http://dx.doi.org/10.1038/ncprheum0173
http://dx.doi.org/10.1002/art.1780390816
http://dx.doi.org/10.1002/art.1780390816
http://dx.doi.org/10.1046/j.1365-2249.2002.01869.x
http://dx.doi.org/10.1046/j.1365-2249.2002.01869.x
http://dx.doi.org/10.1002/art.22176
http://dx.doi.org/10.1016/j.cellimm.2009.05.013
http://dx.doi.org/10.1111/j.1365-2249.2009.03966.x
http://dx.doi.org/10.1111/j.1365-2249.2009.03966.x
http://dx.doi.org/10.1002/art.22954
http://dx.doi.org/10.1002/eji.200738008
http://dx.doi.org/10.1016/j.tripleo.2008.09.015
http://dx.doi.org/10.1016/j.tripleo.2008.09.015
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115843
http://dx.doi.org/10.1146/annurev.immunol.23.021704.115843
http://dx.doi.org/10.1016/S0002-9440(10)61689-6
http://dx.doi.org/10.1093/rheumatology/keh115
http://dx.doi.org/10.2174/138920112802273290
http://dx.doi.org/10.1016/j.cytogfr.2007.10.006
http://dx.doi.org/10.1016/j.cytogfr.2007.10.006
http://dx.doi.org/10.1080/08916930500484849
http://dx.doi.org/10.1080/08916930500484849
http://dx.doi.org/10.1080/03009740310000076
http://dx.doi.org/10.1080/03009740310000076
http://dx.doi.org/10.1007/978-1-59745-402-5_2
http://dx.doi.org/10.1007/978-1-59745-402-5_2
http://dx.doi.org/10.1002/art.21893
http://dx.doi.org/10.1371/journal.pone.0011776
http://dx.doi.org/10.1371/journal.pone.0011776
http://dx.doi.org/10.1074/jbc.M111.241786
http://dx.doi.org/10.1084/jem.20090585
http://dx.doi.org/10.1084/jem.20090585
http://dx.doi.org/10.1002/art.23191
http://dx.doi.org/10.1002/art.23191
http://dx.doi.org/10.1177/096120339700600409
http://dx.doi.org/10.1016/j.jaut.2012.01.008
http://dx.doi.org/10.1038/gene.2008.1
http://dx.doi.org/10.1038/gene.2008.94
http://dx.doi.org/10.1038/gene.2010.44
http://dx.doi.org/10.1038/gene.2010.44
http://dx.doi.org/10.1038/nature03308
http://dx.doi.org/10.1038/nature03308
http://dx.doi.org/10.1086/428480
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li et al. Interferons in Sjögren’s syndrome

confers risk of inflammatory bowel
diseases. Hum Mol Genet (2007)
16(24):3008–16. doi:10.1093/hmg/
ddm259

53. Sigurdsson S, Padyukov L, Kur-
reeman FA, Liljedahl U, Wiman
AC, Alfredsson L, et al. Asso-
ciation of a haplotype in the
promoter region of the inter-
feron regulatory factor 5 gene
with rheumatoid arthritis. Arthritis
Rheum (2007) 56(7):2202–10. doi:
10.1002/art.22704

54. Dieude P, Guedj M, Wipff J, Avouac
J, Fajardy I, Diot E, et al. Associ-
ation between the IRF5 rs2004640
functional polymorphism and sys-
temic sclerosis: a new perspective for
pulmonary fibrosis. Arthritis Rheum
(2009) 60(1):225–33. doi:10.1002/
art.24183

55. Liu X, Invernizzi P, Lu Y, Kosoy R,
Bianchi I, Podda M, et al. Genome-
wide meta-analyses identify three
loci associated with primary bil-
iary cirrhosis. Nat Genet (2010)
42(8):658–60. doi:10.1038/ng.627

56. Watford WT, Hissong BD, Bream
JH, Kanno Y, Muul L, O’Shea
JJ. Signaling by IL-12 and IL-
23 and the immunoregulatory
roles of STAT4. Immunol Rev
(2004) 202:139–56. doi:10.1111/j.
0105-2896.2004.00211.x

57. Kaplan MH. STAT4: a critical reg-
ulator of inflammation in vivo.
Immunol Res (2005) 31(3):231–42.
doi:10.1385/IR:31:3:231

58. Remmers EF, Plenge RM, Lee AT,
Graham RR, Hom G, Behrens
TW, et al. STAT4 and the risk
of rheumatoid arthritis and sys-
temic lupus erythematosus. N Engl
J Med (2007) 357(10):977–86. doi:
10.1056/NEJMoa073003

59. Rueda B, Broen J, Simeon C, Hessel-
strand R, Diaz B, Suarez H, et al. The
STAT4 gene influences the genetic
predisposition to systemic sclero-
sis phenotype. Hum Mol Genet
(2009) 18(11):2071–7. doi:10.1093/
hmg/ddp119

60. Mells GF, Floyd JA, Morley KI,
Cordell HJ, Franklin CS, Shin SY, et
al. Genome-wide association study
identifies 12 new susceptibility loci
for primary biliary cirrhosis. Nat
Genet (2011) 43(4):329–32. doi:10.
1038/ng.789

61. Nocturne G, Mariette X. Advances
in understanding the pathogenesis
of primary Sjogren’s syndrome. Nat
Rev Rheumatol (2013) 9(9):544–56.
doi:10.1038/nrrheum.2013.110

62. Rowe D, Griffiths M, Stewart J,
Novick D, Beverley PC, Isenberg
DA. HLA class I and II, interferon,
interleukin 2, and the interleukin 2

receptor expression on labial biopsy
specimens from patients with Sjo-
gren’s syndrome. Ann Rheum Dis
(1987) 46(8):580–6. doi:10.1136/
ard.46.8.580

63. Thrane PS, Halstensen TS, Haanaes
HR, Brandtzaeg P. Increased
epithelial expression of HLA-
DQ and HLA-DP molecules
in salivary glands from patients
with Sjogren’s syndrome compared
with obstructive sialadenitis. Clin
Exp Immunol (1993) 92(2):256–62.
doi:10.1111/j.1365-2249.1993.
tb03389.x

64. Manoussakis MN, Dimitriou
ID, Kapsogeorgou EK, Xan-
thou G, Paikos S, Polihronis
M, et al. Expression of B7
costimulatory molecules by
salivary gland epithelial
cells in patients with Sjo-
gren’s syndrome. Arthritis
Rheum (1999) 42(2):229–39.
doi:10.1002/1529-0131(199902)42:
2<229::AID-ANR4>3.0.CO;2-X

65. Dimitriou ID, Kapsogeorgou EK,
Moutsopoulos HM, Manoussakis
MN. CD40 on salivary gland
epithelial cells: high constitu-
tive expression by cultured cells
from Sjogren’s syndrome patients
indicating their intrinsic activa-
tion. Clin Exp Immunol (2002)
127(2):386–92. doi:10.1046/j.1365-
2249.2002.01752.x

66. Amft N, Bowman SJ. Chemokines
and cell trafficking in Sjogren’s syn-
drome. Scand J Immunol (2001)
54(1–2):62–9. doi:10.1046/j.1365-
3083.2001.00970.x

67. Barone F, Bombardieri M, Rosado
MM, Morgan PR, Challacombe SJ,
De Vita S, et al. CXCL13, CCL21,
and CXCL12 expression in sali-
vary glands of patients with Sjo-
gren’s syndrome and MALT lym-
phoma: association with reactive
and malignant areas of lymphoid
organization. J Immunol (2008)
180(7):5130–40.

68. Tsunawaki S, Nakamura S, Ohyama
Y, Sasaki M, Ikebe-Hiroki A, Hiraki
A, et al. Possible function of salivary
gland epithelial cells as nonpro-
fessional antigen-presenting cells
in the development of Sjogren’s
syndrome. J Rheumatol (2002)
29(9):1884–96.

69. Ittah M, Miceli-Richard C, Got-
tenberg JE, Sellam J, Eid P,
Lebon P, et al. Viruses induce
high expression of BAFF by sali-
vary gland epithelial cells through
TLR- and type-I IFN-dependent
and -independent pathways. Eur
J Immunol (2008) 38(4):1058–64.
doi:10.1002/eji.200738013

70. Lavie F, Miceli-Richard C, Ittah
M, Sellam J, Gottenberg JE, Mari-
ette X. B-cell activating factor of
the tumour necrosis factor fam-
ily expression in blood monocytes
and T cells from patients with pri-
mary Sjogren’s syndrome. Scand J
Immunol (2008) 67(2):185–92. doi:
10.1111/j.1365-3083.2007.02049.x

71. Lavie F, Miceli-Richard C, Quil-
lard J, Roux S, Leclerc P, Mari-
ette X. Expression of BAFF (BLyS)
in T cells infiltrating labial sali-
vary glands from patients with Sjo-
gren’s syndrome. J Pathol (2004)
202(4):496–502. doi:10.1002/path.
1533

72. Ittah M, Miceli-Richard C, Eric Got-
tenberg J, Lavie F, Lazure T, Ba N,
et al. B cell-activating factor of the
tumor necrosis factor family (BAFF)
is expressed under stimulation by
interferon in salivary gland epithe-
lial cells in primary Sjogren’s syn-
drome. Arthritis Res Ther (2006)
8(2):R51. doi:10.1186/ar1912

73. Strandberg L, Ambrosi A, Espinosa
A, Ottosson L, Eloranta ML, Zhou
W, et al. Interferon-alpha induces
up-regulation and nuclear translo-
cation of the Ro52 autoantigen as
detected by a panel of novel Ro52-
specific monoclonal antibodies. J
Clin Immunol (2008) 28(3):220–31.
doi:10.1007/s10875-007-9157-0

74. Chawla-Sarkar M, Lindner DJ, Liu
YF, Williams BR, Sen GC, Silverman
RH, et al. Apoptosis and interferons:
role of interferon-stimulated genes
as mediators of apoptosis. Apoptosis
(2003) 8(3):237–49. doi:10.1023/A:
1023668705040

75. Gannot G, Bermudez D, Lillibridge
D, Fox PC. Fas and Fas-mediated
effects on a human salivary cell
line in vitro: a model for immune-
mediated exocrine damage in Sjo-
gren’s syndrome. Cell Death Differ
(1998) 5(9):743–50. doi:10.1038/sj.
cdd.4400414

76. Matsumura R, Umemiya K, Goto
T, Nakazawa T, Ochiai K, Kagami
M, et al. Interferon gamma and
tumor necrosis factor alpha induce
Fas expression and anti-Fas medi-
ated apoptosis in a salivary ductal
cell line. Clin Exp Rheumatol (2000)
18(3):311–8.

77. Polihronis M, Tapinos NI,
Theocharis SE, Economou A,
Kittas C, Moutsopoulos HM.
Modes of epithelial cell death
and repair in Sjogren’s syndrome
(SS). Clin Exp Immunol (1998)
114(3):485–90. doi:10.1046/j.1365-
2249.1998.00705.x

78. Ohlsson M, Jonsson R, Brokstad
KA. Subcellular redistribution

and surface exposure of the
Ro52, Ro60 and La48 autoanti-
gens during apoptosis in human
ductal epithelial cells: a possible
mechanism in the pathogenesis
of Sjogren’s syndrome. Scand J
Immunol (2002) 56(5):456–69.
doi:10.1046/j.1365-3083.2002.
01072_79.x

79. Unoki H, Moriyama A, Tabaru A,
Masumoto A, Otsuki M. Devel-
opment of Sjogren’s syndrome
during treatment with recombi-
nant human interferon-alpha-2b
for chronic hepatitis C. J Gastroen-
terol (1996) 31(5):723–7. doi:10.
1007/BF02347624

80. Cummins MJ, Papas A, Kammer
GM, Fox PC. Treatment of primary
Sjogren’s syndrome with low-dose
human interferon alfa administered
by the oromucosal route: combined
phase III results. Arthritis Rheum
(2003) 49(4):585–93. doi:10.1002/
art.11199

81. Khurshudian AV. A pilot study to
test the efficacy of oral administra-
tion of interferon-alpha lozenges to
patients with Sjogren’s syndrome.
Oral Surg Oral Med Oral Pathol Oral
Radiol Endod (2003) 95(1):38–44.
doi:10.1067/moe.2003.30

82. De Santi L, Costantini MC, Annun-
ziata P. Long time interval between
multiple sclerosis onset and
occurrence of primary Sjogren’s
syndrome in a woman treated with
interferon-beta. Acta Neurol Scand
(2005) 112(3):194–6. doi:10.1111/j.
1600-0404.2005.00455.x

83. Yamada S, Mori K, Matsuo K,
Inukai A, Kawagashira Y, Sobue G.
Interferon alfa treatment for Sjo-
gren’s syndrome associated neu-
ropathy. J Neurol Neurosurg Psy-
chiatry (2005) 76(4):576–8. doi:10.
1136/jnnp.2004.049502

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 08 July 2013; paper pending
published: 26 July 2013; accepted: 04 Sep-
tember 2013; published online: 20 Sep-
tember 2013.
Citation: Li H, Ice JA, Lessard CJ
and Sivils KL (2013) Interferons in
Sjögren’s syndrome: genes, mechanisms,
and effects. Front. Immunol. 4:290. doi:
10.3389/fimmu.2013.00290
This article was submitted to Molecular
Innate Immunity, a section of the journal
Frontiers in Immunology.

Frontiers in Immunology | Molecular Innate Immunity September 2013 | Volume 4 | Article 290 | 79

http://dx.doi.org/10.1093/hmg/ddm259
http://dx.doi.org/10.1093/hmg/ddm259
http://dx.doi.org/10.1002/art.22704
http://dx.doi.org/10.1002/art.24183
http://dx.doi.org/10.1002/art.24183
http://dx.doi.org/10.1038/ng.627
http://dx.doi.org/10.1111/j.0105-2896.2004.00211.x
http://dx.doi.org/10.1111/j.0105-2896.2004.00211.x
http://dx.doi.org/10.1385/IR:31:3:231
http://dx.doi.org/10.1056/NEJMoa073003
http://dx.doi.org/10.1093/hmg/ddp119
http://dx.doi.org/10.1093/hmg/ddp119
http://dx.doi.org/10.1038/ng.789
http://dx.doi.org/10.1038/ng.789
http://dx.doi.org/10.1038/nrrheum.2013.110
http://dx.doi.org/10.1136/ard.46.8.580
http://dx.doi.org/10.1136/ard.46.8.580
http://dx.doi.org/10.1111/j.1365-2249.1993.tb03389.x
http://dx.doi.org/10.1111/j.1365-2249.1993.tb03389.x
http://dx.doi.org/10.1002/1529-0131(199902)42:2<229::AID-ANR4>3.0.CO;2-X
http://dx.doi.org/10.1002/1529-0131(199902)42:2<229::AID-ANR4>3.0.CO;2-X
http://dx.doi.org/10.1046/j.1365-2249.2002.01752.x
http://dx.doi.org/10.1046/j.1365-2249.2002.01752.x
http://dx.doi.org/10.1046/j.1365-3083.2001.00970.x
http://dx.doi.org/10.1046/j.1365-3083.2001.00970.x
http://dx.doi.org/10.1002/eji.200738013
http://dx.doi.org/10.1111/j.1365-3083.2007.02049.x
http://dx.doi.org/10.1002/path.1533
http://dx.doi.org/10.1002/path.1533
http://dx.doi.org/10.1186/ar1912
http://dx.doi.org/10.1007/s10875-007-9157-0
http://dx.doi.org/10.1023/A:1023668705040
http://dx.doi.org/10.1023/A:1023668705040
http://dx.doi.org/10.1038/sj.cdd.4400414
http://dx.doi.org/10.1038/sj.cdd.4400414
http://dx.doi.org/10.1046/j.1365-2249.1998.00705.x
http://dx.doi.org/10.1046/j.1365-2249.1998.00705.x
http://dx.doi.org/10.1046/j.1365-3083.2002.01072_79.x
http://dx.doi.org/10.1046/j.1365-3083.2002.01072_79.x
http://dx.doi.org/10.1007/BF02347624
http://dx.doi.org/10.1007/BF02347624
http://dx.doi.org/10.1002/art.11199
http://dx.doi.org/10.1002/art.11199
http://dx.doi.org/10.1067/moe.2003.30
http://dx.doi.org/10.1111/j.1600-0404.2005.00455.x
http://dx.doi.org/10.1111/j.1600-0404.2005.00455.x
http://dx.doi.org/10.1136/jnnp.2004.049502
http://dx.doi.org/10.1136/jnnp.2004.049502
http://dx.doi.org/10.3389/fimmu.2013.00290
http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li et al. Interferons in Sjögren’s syndrome

Copyright © 2013 Li, Ice, Lessard and
Sivils. This is an open-access article dis-
tributed under the terms of the Creative

Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided

the original author(s) or licensor are
credited and that the original publica-
tion in this journal is cited, in accordance

with accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

www.frontiersin.org September 2013 | Volume 4 | Article 290 | 80

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MINI REVIEW ARTICLE
published: 02 October 2013

doi: 10.3389/fimmu.2013.00306

IFNα inducible models of murine SLE
Zheng Liu and Anne Davidson*

Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, New York, NY, USA

Edited by:
Timothy B. Niewold, Mayo Clinic, USA

Reviewed by:
Carlo Pucillo, University of Udine, Italy
Philippe Georgel, Strasbourg
University, France

*Correspondence:
Anne Davidson, The Feinstein
Institute for Medical Research, 350
Community Drive, Manhasset, New
York, NY 11030, USA
e-mail: adavidson1@nshs.edu

The role of type I interferons (IFNs) in SLE pathogenesis has been a subject of intense
investigation in the last decade. The strong link between type I IFNs and SLE was initially
provided by ex vivo studies showing that exposure of peripheral blood mononuclear cells
to immune complexes from SLE patients elicits a signature of IFN inducible genes and
was then further highlighted by human genetic studies. The mechanisms by which type I
IFNs, especially IFN alpha (IFNα), modulate the immune system and exacerbate SLE have
been largely elucidated through studies in mouse lupus models. In this review, we discuss
the characteristics of several such models in which disease is accelerated by ectopically
expressed IFNα.We also summarize several studies which tested therapeutic interventions
in these models and discuss the advantages and disadvantages of using IFNα accelerated
models to study experimental treatments for lupus.

Keywords: interferon α, lupus, nephritis, mouse model, inflammation

INTRODUCTION
In the last decade, type I interferons (IFNs) have received partic-
ular attention for their role in the pathogenesis of systemic lupus
erythematosus (SLE). The induction of anti-dsDNA antibodies
and development of lupus-like symptoms in a small number of
IFN treated patients with cancer or infectious diseases suggested
a causal link between this cytokine and SLE (1). The discovery of
the “IFNα signature,” which refers to the augmented expression
of a group of IFNα induced genes, in peripheral blood mononu-
clear cells (PBMCs) from active lupus patients further highlighted
the essential role of type I IFNs in the disease (2, 3). The IFN
signature is induced in healthy PBMCs by SLE plasma contain-
ing nucleic acid associated immune complexes and this induction
is inhibited by anti-IFNα antibody (4). Furthermore, polymor-
phisms in several genetic loci that are involved in the toll-like
receptor (TLR)/IFN signaling pathway are associated with SLE
risk (5, 6). These reports establish the important role of IFNα in
the pathogenesis of SLE and are the basis for the development of
drugs that target Type I IFNs or their receptor.

Type I IFNs are produced by several different cell types and
are of major importance in anti-viral defense. In conventional
dendritic cells, Type I IFN production is triggered by a several
mechanisms including activation of endosomal TLR3 and bind-
ing to cytosolic nucleic acid receptors [reviewed (7) – Table 1]. By
contrast, plasmacytoid dendritic cells (pDCs) are a major source
of Type I IFN in SLE. Opsonized apoptotic material or circulat-
ing immune complexes of self-nucleic acids and autoantibodies
are taken up by pDCS through the Fcγ receptor (8) and their
nucleic acid components can then traffic to the endosome where
they interact with TLR7 or TLR9. The adaptor molecule MyD88 is
then recruited and this results in phosphorylation of IRAK1 and
activation of the transcription factor IRF7 that induces IFN pro-
duction. pDCs rapidly produce large amounts of IFNs owing to
their constitutive expression of IRF7 (1, 9–11). Recent studies have
shown that cytosolic DExD/H-Box helicases can sense cytoplas-
mic DNA (12) and initiate type I IFN production in human pDCs

through the IRF7 pathway (13). The interaction between DNA and
TLR9 is facilitated by a nuclear DNA binding protein HMGB1 (14)
which is a component of neutrophil derived neutrophil extracel-
lular traps (NETs) released from dying neutrophils in SLE (15).
Other components of NETs protect nucleic acids from degrada-
tion and enhance their ability to form stable immune complexes
with SLE related autoantibodies (16).

Type I IFNs can be induced in conventional DCS and
macrophages following activation of TNFR1 and LTβR receptors.
In addition, intracytoplasmic nucleic acids may trigger cytoplas-
mic receptors and activate a mitochondrial membrane pathway
culminating in phosphorylation of IRF7 and Type I IFN produc-
tion [reviewed (7)]. A complete description of the molecular path-
ways involved in type I IFN production in SLE is beyond the scope
of this article but is the subject of several recent reviews (7, 17).

Type I IFNs have profound effects on the innate and adaptive
immune systems [reviewed (7, 17, 18) – Table 1]. Serum from
SLE patients induces monocytes from healthy donors to acquire a
DC-like phenotype and become potent activators of T cells (19)
in an IFNα dependent manner. Furthermore, IFNα acts on con-
ventional DCs to enhance their production of an important B
cell survival factor, B cell activating factor (BAFF) (20, 21). IFNα

upregulates TLR7 expression on B cells, which in turn mediates
increased expression of TACI, a receptor for BAFF (22). Its dual
role in promoting BAFF production of DCs and enhancing the
responsiveness of B cells to BAFF makes IFNα an important modu-
lator of the fate of autoreactive B cells. Furthermore, IFNα drives B
cell differentiation into CD138+ plasmablasts; terminal differen-
tiation into Ig-secreting plasma cells is mediated by IL-6, another
cytokine produced by activated pDCs (23). Finally, type I IFNs
stimulate CD4 T cells to enhance antigen-specific B cell responses
and prevent activated T cell death in mice (24, 25). These immuno-
logical features of type IFNs may all contribute to the pathogenesis
of SLE.

Direct evidence for the essential role of IFNs in SLE was
achieved through studies using lupus-prone mice that are
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Table 1 | Induction and pro-inflammatory effects of Type I interferons.

Cell type Effect Mechanisms Reference

B cells Induction of autoantibodies Enhancement of response to TLR activation (18, 35)

Upregulation of MHCII, CD86, CD69

Induction of germinal centers Increased class switch to pathogenic isotypes IgG2a and IgG3

Dysregulation of CD62L expression with increased shuttling of

antigen from the MZ to the follicles

Induction of plasma cells Enhanced crosstalk with IL-6 signaling

Induction of miR-15a and repression of PAX5

Increased expression of BLIMP and XBP

Induction of short-lived plasma cells Decreased bone marrow expression of CXCL12 and VCAM-1 (34)

Conventional

dendritic cells

Release of Type I IFN in response to TLR3

activation

TRAF3 mediated recruitment of TBK1, IKKε, and IRF3, leading to IRF3

phosphorylation

(7, 17)

Release of Type I IFNS through receptors

for cytosolic nucleic acids

RIG-I mediated recruitment of the MAVS adapter and mitochondrial

membrane assembly of a TRAF3, TBK1, and IKKε signalosome

leading to IRF3 phosphorylation

IFI16 mediated induction of a STING, TBK, IRF3-dependent pathway

Priming for antigen presentation Upregulation of MHC and costimulatory molecules

Increased expression of CCR7

Release of cytokines including BAFF TRAF6 mediated NFκB activation

Plasmacytoid

dendritic cells

Rapid release of high concentrations of

Type IFN in response to immune complexes

High levels of endosomal TLR7, 8, and 9 and activation of the MyD88

adaptor

Constitutive expression of IRF7

Formation of late endosomes

T cells CD4 T cell stimulation Increased IFNγ production (7, 24)

Enhanced survival

Priming for induction of CD8 killer cells Increased cross-presentation

Increased gene transcription

Enhanced responsiveness to IL-2 and IL-15

Decreased Treg function Downregulation of intracellular cAMP (62)

genetically deprived of type I IFN signaling or treated with
exogenous type I IFNs. Ifnar1 gene deficiency largely protects
lupus-prone mice from disease onset or attenuates disease severity
(26–29). Conversely, transient overexpression of exogenous IFNα

accelerates disease progression in all lupus-prone mice tested to
date. This makes these models not only useful tools to understand
the role of IFNs in SLE, but also useful platforms to test potential
therapies for SLE.

IFNα ACCELERATED LUPUS MOUSE MODELS
NZB/W F1 MICE
New Zealand black/New Zealand white (NZB/W) F1 mice are a
widely used animal model for lupus; they mimic human lupus
in several aspects including gender specificity, the appearance of
circulating anti-dsDNA antibodies, renal deposition of immune
complexes and the development of fatal glomerulonephritis. They
do not develop skin disease or hematologic manifestations and
thus have been used primarily to study SLE nephritis. NZB/W F1
mice develop proteinuria at a median age of 37 weeks and die by
the age of 1 year (30, 31). Although NZB/W F1 mice do not develop
detectable levels of circulating IFNα (20), the IFN signature can
be detected in splenic cells of pre-autoimmune NZB/W F1 mice

(32). The disease-initiating activities of IFNα in NZB/W F1 mice
were suggested by a report that treatment with poly IC, a TLR3
agonist, accelerates the disease in these mice (33). More recently,
a single injection of an adenovirus expressing IFNα (Ad-IFNα)
has been shown to accelerate the production of circulating anti-
dsDNA antibodies, renal deposition of immune complexes, onset
of proteinuria, and death in NZB/W mice in a dose dependent
manner (20, 34). The accelerated clinical manifestations are asso-
ciated with a vastly enhanced germinal center reaction, increased
serum levels of pro-inflammatory cytokines, and the induction of
T cell expression of IL-21 (34). This pro-inflammatory environ-
ment is associated with expanded B cells, CD4 T cells, and DCs
(34) and loss of B10 cells (35). Furthermore, IFNα virus injection
induces elevated serum levels of BAFF and increased TLR7 expres-
sion on splenic B cells (20–22, 34). Interestingly, although NZB/W
F1 mice normally possess a proportion of long-lived autoreac-
tive plasma cells in the spleen and BM, treatment with Ad-IFNα

skews the differentiation of autoreactive B cells almost completely
toward short-lived plasma cells [(34, 36) reviewed in (37)]. This
appears to be due to a decrease in bone marrow expression of
CXCL12 and VCAM-1, both of which are components of the bone
marrow plasma cell niche (34). Finally, in contrast to conventional
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mice, Ad-IFNα treated NZB/W F1 mice have far less renal intersti-
tial leukocyte infiltration. This is due to reduced renal expression
of pro-inflammatory chemokines such as CXCL13 and intrinsic
defects of leukocyte migration toward these chemokines (38).

Most of these features have also been reported in Ad-IFNα

treated New Zealand Mixed 2328 mice (39). However, despite a
large increase in T cell numbers, these mice do not develop a
preferential expansion of memory T cells following IFN treat-
ment or substantial glomerular macrophage infiltration as they
age, suggesting these two features may not be driven by type I
IFNs. In addition to the immune effects of Type I IFNs in this
model, administration of Ad-IFNα has a detrimental effect on
the vasculature, causing impairment of endothelium-dependent
vasorelaxation, a decrease in maturation of endothelial progeni-
tor cells into mature endothelial cells, increased platelet activation,
and accelerated thrombus formation, suggesting a potential role
for IFN in the accelerated atherosclerosis associated with SLE
(40).

Studies using cell depletion or mice with genetic deficiencies
have shown that disease acceleration by IFN is dependent on T
cells (NZB/W mice) (34), B cells (NZM2328 mice) and BAFF
(NZM2328 mice) (39).

NZW/BXSB MICE
Male NZW/BXSB mice carry two active copies of the TLR7 gene.
They develop anti-RNA and anti-phospholipid autoantibodies,
severe inflammatory nephritis and anti-phospholipid syndrome
with thrombocytopenia, myocardial infarcts, and cardiomyopathy
(41, 42). The survival of these mice is prolonged by prophylac-
tic treatment with anti-IFNAR antibody, suggesting the disease
process is driven by IFNα (43). In contrast, female mice with a
single active copy of TLR7 develop late onset nephritis, but not
anti-phospholipid syndrome (42, 44). Administration of Ad-IFNα

induced high titers of circulating anti-phospholipid, anti-Sm/RNP,
and anti-DNA autoantibodies and markedly accelerated nephri-
tis and death, but not anti-phospholipid syndrome in female
NZW/BXSB mice (44). These IFNα induced effects were accompa-
nied by a striking increase in activated B and T cells in the spleen.
Using female NZW/BXSB mice bearing the site-directed anti-
cardiolipin/DNA autoantibody VH transgene 3H9, IFNα has been
shown to relax the stringency for selection against autoreactivity
of the antigen selected B cell repertoire (45).

B6.SLe123
B6.Sle123 mice, that possess three SLE susceptibility loci, sponta-
neously develop highly penetrant severe systemic autoimmunity
and fatal glomerulonephritis beginning at 6 months of age. Young
pre-autoimmune mice that were treated with IFNα quickly devel-
oped renal immune complex deposition and nephritis, accompa-
nied by increased serum levels of pro-inflammatory cytokines such
as TNFα and IL-6, activation of DCs, B cells, and T cells, as well
as an enhanced germinal center response (46). As in the strains
discussed above, renal leukocyte infiltration was not affected by
IFNα treatment.

Collectively, these studies show that excess IFNα accelerates
progression of glomerulonephritis in most lupus models. The

acceleration and severity of the disease is dose dependent, allow-
ing researchers to control of the duration of their study. IFNα

induces a T dependent and enhanced germinal center response and
exhibits characteristics of the disease in the conventional strain.
For instance, IFNα induces anti-dsDNA antibodies in NZB/W F1
mice and anti-RNA antibodies in BXSB mice, these being the pre-
dominant specificities in the respective strains (20, 34, 44). Of
interest is the skewing of the antibody response from long-lived to
short-lived plasma cells in the NZB/W model, a feature associated
with alterations of the bone marrow environment. However, IFN
acceleration is associated with less renal inflammatory cell infil-
tration compared to its spontaneous counterpart. This is probably
due to the short disease course which does not allow these features
to develop to the same extent as in the conventional mice. It is
also important to note that other major manifestations of human
SLE including skin, hematologic, and neurologic disease cannot
be addressed using these models.

IFNλ ACCELERATION OF SLE
IFNλ is a family of Type III IFNs that mediate their biologic
activities through a receptor that is expressed predominantly on
epithelial cells and induce a similar pattern of gene expression as
Type I IFNs (47). Treatment of NZB/W mice with a continuous
infusion of IFNλ did not exacerbate disease, however the addition
of IFNλ to a low dose of IFNα modestly accelerated proteinuria
onset (35).

ASSOCIATION OF TYPE I IFNs WITH ALTERATION IN miRNAs
Type I IFN production can be regulated by miRNAs. For example,
underexpression of miR-146a was found to correlate with dis-
ease activity and with an IFN signature. miR-146a targets multiple
components of the IFN signaling pathway such that its deficiency
results in overexpression of IFN inducible genes. Importantly,
administration of TLR agonists or of Type I IFN induced expres-
sion of miR-146a indicating a physiologic feedback loop that
may be dysregulated in SLE (48). Delivery of miR-146a to lupus
PBMCs in vitro reduced the expression of IFN inducible genes (48)
and delivery to lupus-prone BXSB mice in vivo reduced the pro-
duction of pro-inflammatory cytokines and autoantibodies (49).
Thus miR-146a reduction is a biomarker for disease activity and
a potential therapeutic target. Another interesting observation in
the NZB/W model is the IFN induced expression of miR-15a in
the spleens of treated mice; this is associated with downregulation
of PAX5 and the emergence of autoantibodies and plasma cells.
Since PAX5 is a negative regulator of miR-15a, the upregulation of
miR-15a may be an early biomarker for IFN induction of plasma
cells (35).

USING THE IFNα ACCELERATED LUPUS MODEL TO TEST
THERAPEUTICS FOR SLE NEPHRITIS
IFNα KINOID
IFNα kinoid is an IFNα derived immunogen that triggers a strong
but transient production of neutralizing antibody against IFNα

(50). In a proof of principle experiment, prophylactic administra-
tion of kinoid delayed IFNα induced immune complex formation,
proteinuria, and death in NZB/W F1 mice (50). It is worth not-
ing that not all kinoid immunized mice mounted a substantial
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humoral response to IFNα and only the ones with antibody levels
above a certain threshold showed delayed clinical manifestations.
Moreover, a sustainable protective effect required prolonged pro-
duction of anti-IFNα antibody, suggesting that periodic booster
injections might be required to achieve a long-term antibody
dependent clinical benefit. The success of this study led to the
development of a human IFNα kinoid that induces antibodies
neutralizing all 13 subtypes of human IFNαs (51). This kinoid
has been shown to reduce the IFNα signature in lupus patients
(52).

BIOLOGIC THERAPIES
TACI-Ig is a fusion protein that inhibits the BAFF/APRIL sig-
naling pathway. The treatment of pre-autoimmune NZB/W F1
mice with TACI-Ig significantly delayed proteinuria onset and
substantially prolonged the survival of the mice (53). TACI-Ig
treatment achieved a similar clinical outcome in IFNα induced
NZB/W F1 mice, although the survival benefit was only apparent
when the treatment was started concomitant with IFN adminis-
tration and was no longer effective if it was delayed until autoan-
tibodies emerged (54). TACI-Ig treatment did not affect germinal
center formation, autoantibody production, renal deposition of
immune complexes, or pro-inflammatory cytokine expression in
lymphoid organs however it was associated with a decrease in
renal inflammation, prevention of activation of resident renal
macrophages, and a decrease in renal and serum levels of TNF
(54).

CTLA4-Ig, a drug that interrupts CD28-B7 interactions, pre-
vents disease onset in NZB/W F1 mice (55, 56). In contrast,
CTLA4-Ig at standard-dose failed to prevent or delay the onset
of nephritis in Ad-IFNα treated mice despite preventing T and B
cell activation, GC formation, and the production of pathogenic
IgG2a anti-dsDNA antibodies (54). Resistance to standard-dose
CTLA4-Ig was associated with the persistence of pathogenic IgG3
autoantibodies that were attenuated only after administration of
high-dose CTLA4-Ig. Although the mice treated with high-dose
CTLA4-Ig eventually died of nephritis, this treatment markedly
delayed proteinuria onset and protected the mice from interstitial
inflammation.

Ad-IFNα treatment in NZB/W F1 mice results in elevated
renal expression and increased serum levels of TNFα concomi-
tant with the onset of nephritis, making these mice an ideal model
to study the efficacy of TNF receptor 2 (TNFR2)-Ig (57). TNFR2-
Ig treatment delayed the onset of nephritis and prolonged survival
of IFN accelerated mice without affecting autoantibody produc-
tion or systemic immune activation. Similar to the observations
with TACI-Ig, the therapeutic effect of TNFR2-Ig was achieved
through inhibiting the renal response to immune complex depo-
sition. The upregulation of a panel of chemokines in response
to renal immune complex deposition was blocked by TNFR2-Ig
treatment, resulting in diminished recruitment of periglomerular
and interstitial F4/80hi macrophages. In addition, renal endothe-
lial cell activation and oxidative stress were decreased in the mice
treated with TNFR2-Ig.

CD137 (4-1BB) is an inducible T cell costimulatory receptor
belonging to the TNF receptor superfamily. It is expressed on
activated CD4 and CD8 T cells, and promotes the proliferation

of these cells. Treatment of NZB/W F1 mice with an agonistic
anti-CD137 antibody significantly delays the onset of nephritis
and prolongs survival (58). The therapeutic benefit is associated
with inhibition of IgG but not IgM anti-dsDNA antibodies (58),
consistent with an effect of anti-CD137 on T cell dependent but
not T cell independent humoral responses (59). In preliminary
experiments, we have shown that anti-CD137 antibody treatment
of IFN induced NZB/W mice markedly delays the formation of
germinal centers and the development of IgG2a and IgG3, but not
IgM anti-dsDNA antibodies and greatly protects the kidneys from
glomerular and interstitial injury (unpublished data), similar to
the observations in NZB/W F1 mice that develop disease spon-
taneously. As with TACI-Ig, maximal benefit was achieved if the
anti-CD137 treatment was started within 1 week of administration
of Ad-IFNα.

REMISSION INDUCTION THERAPIES
Triple therapy with cyclophosphamide (CTX), anti-CD40L, and
CTLA4-Ig induces remission in a high percentage of NZB/W
F1 mice with established nephritis (60). A similar percentage of
Ad-IFNα treated mice entered remission after this therapy but
they relapsed rapidly (54). Mice treated with high-dose Ad-IFNα

relapsed faster than mice treated with low dose Ad-IFNα and
the latter relapsed faster than conventional NZB/W F1 mice (54,
60). Production of anti-dsDNA antibodies and glomerular depo-
sition of IgG immune complex in Ad-IFNα treated NZB/W F1
mice were markedly reduced (54) by triple therapy, consistent
with the observation that IFNα induces predominantly short-lived
plasma cells which are susceptible to cytotoxic reagents (34). Nev-
ertheless, in the high-dose IFN group, new autoreactive plasma
cells formed as soon as the triple therapy drugs dissipated from
the serum and this was associated with reaccumulation of renal
immune complexes and rapid disease relapse. This is in con-
trast to conventional NZB/W F1 mice whose renal deposition of
immune complexes was not reversed by the triple therapy (60)
but whose renal response to immune complex deposition was
markedly attenuated.

THE UTILITY OF THE IFNα ACCELERATED LUPUS MODEL
Studies of therapeutic interventions in many strains of lupus-
prone mice, such as NZB/W mice, are hampered by the stochastic
disease onset and the length of time needed for the mice to
develop spontaneous disease. In contrast, IFNα induced disease
has a relatively synchronized onset and highly reproducible dis-
ease progression, allowing the study of therapies on defined stages
of disease including remission induction studies. In addition,
the IFNα induced model requires less time to develop clinical
manifestations and has a shorter window from disease onset to
death, allowing the therapies to be tested in a compact time
frame.

At the same time, one needs to be aware that Ad-IFNα treated
NZB/W F1 mice are not merely a hastened version of the spon-
taneous lupus model but they possess some distinct features. For
instance, Ad-IFNα treated NZB/W F1 mice almost completely lack
the long-lived plasma cells that exist in abundance in the spleen
and bone marrow of the conventional NZB/W F1 mice (34) and
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therefore may not be a suitable model to test therapies target-
ing these pathogenic cells. Similarly, the modest renal infiltration
with inflammatory cells renders the IFNα model less attractive
for studies focused on inhibitors of leukocyte trafficking. Finally
Ad-IFNα treatment also alters the response of disease to therapies
that are highly effective in the spontaneous disease. Such therapies
are for the most part only effective in the IFN model if they are
administered prophylactically. This may reflect a more dynamic
inflammatory environment in IFNα induced disease, rendering
the disease more resistant to therapeutic intervention. Whether
IFN signaturehi patients are similarly more resistant to drug inter-
ventions than IFN signaturelo patients needs to be determined
in the context of clinical trials. It is of interest in this regard

that preliminary studies of one anti-IFN agent showed no effect
on autoantibodies and demonstrated efficacy only in the IFN
signaturelo patient group (61, 63). By contrast, preliminary data
from a second trial of a different anti-IFN agent showed a trend
towards a better outcome in the patients with a high IFN signa-
ture (64). Further clinical trials are in progress. Overall Ad-IFNα

treated mice are a reliable but stringent model to test new therapies
for lupus nephritis. The difference in their response to therapies
may help to predict proper intervention for patients with an IFN
signature.
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