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Editorial on the Research Topic

Advanced Sampling and Modeling in Molecular Simulations for Slow and Large-Scale
Biomolecular Dynamics

From conception, the impact of molecular dynamics (MD) simulations has grown dramatically
(Karplus and McCammon, 2002), even though MD simulations are still affected by a critical
timescale issue. Currently, timescales accessible to MD simulations are, on average, shorter than
those of the investigated events, often resulting in insufficient sampling. Numerous efforts have been
spent on accelerating MD simulations in order to ease the timescale problem. This Research Topic
collects contributions focusing on developing and using advanced sampling techniques and
modeling strategies to promote applications of MD simulations to study a diverse range of
large-scale biomolecular systems.

Exhaustive sampling is especially important for intrinsically disordered proteins (IDPs), which
show a more shallow and rugged energy landscape when compared to folded proteins (Papoian,
2008). Ding et al. presented case studies on two IDPs by an iterative screening-after-sampling
strategy. In their study accelerated molecular dynamics was used to enhance the sampling of highly
diverse conformational ensembles of IDPs, with Small-angle X-ray scattering (SAXS) to guide the
sampling iteratively and obtain ensembles in good agreement with experimental data. Such
integrative modeling might be more broadly useful for modeling IDPs ensembles. In general, the
conformational dynamics of IDPs are strongly affected by the binding to other molecular partners or
by aggregation. There are three excellent studies in this Research Topic, focusing on the
conformational dynamics and aggregation properties of two Alzheimer’s disease-related IDPs:
the Aβ42 peptide and the tau protein (Selkoe and Hardy, 2016). In the work by Xie and Guo,
replica exchange with solute tempering (REST) (Liu et al., 2005) has been adopted to sample the
binding of the intrinsically disordered Aβ42 peptide to the Human serum albumin (HSA),
elucidating the molecular mechanism of amyloid inhibition by HSA. Their results suggest that
Aβ42 binds to multiple sites on HSA, which shifts the conformational propensity of the peptide
towards a more disordered state altering its aggregation propensity altogether. The reward behind
the quest to mechanistically characterize fibrillar nucleation in proteopathies is enormous as it would

Edited and reviewed by:
Massimiliano Bonomi,

Institut Pasteur, France

*Correspondence:
Xiakun Chu

xkchu2008@gmail.com
Yong Wang

isb@zju.edu.cn
Pengfei Tian

tianpengfei09@gmail.com
Wenfei Li

wfli@nju.edu.cn
Davide Mercadante

davide.mercadante@
auckland.ac.nz

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 15 October 2021
Accepted: 23 October 2021

Published: 12 November 2021

Citation:
Chu X, Wang Y, Tian P, Li W and

Mercadante D (2021) Editorial:
Advanced Sampling and Modeling in
Molecular Simulations for Slow and

Large-Scale Biomolecular Dynamics.
Front. Mol. Biosci. 8:795991.

doi: 10.3389/fmolb.2021.795991

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 7959911

EDITORIAL
published: 12 November 2021

doi: 10.3389/fmolb.2021.795991

4

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.795991&domain=pdf&date_stamp=2021-11-12
https://www.frontiersin.org/articles/10.3389/fmolb.2021.795991/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.795991/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.795991/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.795991/full
https://www.frontiersin.org/researchtopic/13191
https://www.frontiersin.org/researchtopic/13191
https://www.frontiersin.org/articles/10.3389/fmolb.2021.621128/full
https://www.frontiersin.org/articles/10.3389/fmolb.2020.629520/full
http://creativecommons.org/licenses/by/4.0/
mailto:xkchu2008@gmail.com
mailto:isb@zju.edu.cn
mailto:tianpengfei09@gmail.com
mailto:wfli@nju.edu.cn
mailto:davide.mercadante@auckland.ac.nz
mailto:davide.mercadante@auckland.ac.nz
https://doi.org/10.3389/fmolb.2021.795991
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.795991


suggest effective strategies for therapeutic approaches to
neurodegeneration. Ma et al. employed coarse-grained
simulations to energetically define the fibril growth of the Aβ-
peptide: discovering the binding site of new filaments to the
protofibril and a downhill mechanism of filament addition.
Together with the identification of an emerging mechanical
property of the Aβ-peptide protofibril, their research adds
valuable insights to our understanding of the nucleation of
Aβ-peptide fibrils for the development of strategies to
pharmaceutically tackle fibril growth. McCarty and co-workers
performed non-equilibrium steered MD simulations to
investigate the structural changes of the tau paired-helical
filament (PHF) and straight filament (SF) under mechanical
force. In particular, the authors identified weak spots of
interchain interactions additionally providing the dissociation
pathway of a single tau peptide from the protofibril, through
metadynamics simulations (Laio and Parrinello, 2002). In
addition, the free energy profile for tau dissociation was
obtained by umbrella sampling simulations.

One useful strategy to overcome sampling limitations is to
introduce coarse-graining into biomolecular models. MARTINI is
among the most widely used coarse-grained (CG) models for
biomolecules (Monticelli et al., 2008). Mahmood et al. introduced
a simple cutoff scheme to improve the definition of native
contacts in the structure-based protein model of MARTINI
(G�o-MARTINI). By tuning the interaction strengths and cutoff
distances, the MARTINI CG simulations can well reproduce the
structural fluctuations from atomistic simulations for the
membrane proteins investigated in the published study. The
refined model has been successfully used to simulate the key
steps leading to the assembly of the F-BAR protein involved in
membrane remodeling. Using the CG UNited-RESidue (UNRES)
model (Liwo et al., 1997), Stevens and He studied the large-scale
conformational changes within the multidomain scaffolding
protein PICK1. Considering the large size of PICK1, associated
with extensive conformational flexibility, brute-force atomistic
simulations on this system would inevitably lead to insufficient
sampling. The physics-based CG model allowed the authors to
reliably characterize the detailed interactions at the residual level
and eventually uncover the forces driving the association of
PICK1 subdomains. CG modeling has also been suggested to
study and understand chromosomal organization and dynamics
(Lin et al., 2021). However, determining the potential energy
function suitably reproducing the behaviour of chromosomal
and multi-chromosomal systems has been historically
challenging. Zhang and Huang introduced a “bottom-up”
approach, aiming to derive the CG potential from all-atom
MD simulations. They studied dynamics and interactions in
two-nucleosome systems, providing useful information to
determine functional forms and parameters to sample the
interaction between nucleosomes.

Coarse-graining the MD simulation trajectories is another
useful strategy to reduce system complexity, while elucidating
molecular dynamics. In addition to the sampling problem,
extracting key structural and dynamic features from high-
dimensional MD trajectories is a challenge in biomolecular
modeling. Such a task relies on an appropriate definition of

feature space, within which the metastable states involved in
biologically relevant conformational dynamics can be
identified via clustering and dimensionality reduction
analyses. The humanly understandable thermodynamic and
kinetic information can then be reconstructed based on
Markov State Models (MSM) (Chodera and Noé, 2014;
Lane et al., 2011). In the work by Wang et al., an effective
energy rescaling space trajectory mapping method has been
developed to detect metastable states and construct kinetic
transition networks. In their study the authors are able to
successfully describe the major metastable states and the
interstate transition kinetics involved in the folding of a
dodecapeptide. MSM can be combined with enhanced
sampling methods to further improve the performance of
structural and dynamic characterizations as done by
Fernández-Quintero et al. In this work, the authors
demonstrated the correlation between the rigidification of
the CDR-H3 loops of antibody fragments and the enhanced
antigen specificity in different stages of affinity maturation by
using metadynamics simulations in combination with MD
simulations and MSM analyses.

This Research Topic also includes two binding case studies. Do
et al. employed all-atomMD simulations with the aid of an enhanced
sampling method called Gaussian-accelerated molecular dynamics
(GaMD) (Wang et al., 2021) to determine the pathways and binding
mechanism of caffeine to the human adenosine A2A receptor. By
adding a harmonic boost potential, GaMD simulations allowed to
capture the spontaneous ligand binding and release in the μs time
scale through smoothening the potential energy surface so as to
reduce the energy barriers for slow conformational changes. This
work provided a good example on how to implement enhanced
sampling methods to study a protein-ligand binding mechanism. In
investigating the binding between nanoparticles and the clathrin-
associated protein adaptin-2 (AP2), Zhu et al. applied molecular
modeling and simulations to understand the impact of nanoparticle
morphology on binding specificity. They found that binding
specificity is majorly dictated by electrostatic interactions as well
as nanoparticle morphology. They also observed that nanoparticle
binding significantly induces conformational changes in AP2.
Overall, the authors provided a microscopic explanation for cargo
recognition in clathrin-mediated endocytosis and possible
mechanisms to design high-efficiency nano-biomaterials.

As an essential element in MD simulations, the adopted force
field is key to affect the precision of the simulation results. Wang
and Li developed and tested force field parameters for some
noncanonical amino acids (NAAs). NAAs have been widely
applied in protein engineering, virus vaccine development, and
medical therapeutics due to their strong site specificity, without
the need to introduce significant perturbations to a protein
structure. Based on quantum mechanics (QM) calculations
and experimental data as a benchmark, the authors
determined force field parameters for phenylalanine and
tyrosine derivatives showing that the newly identified
parameters well describe protein-ligand interactions with
NAAs as substrates. Finally, to aid structural modeling useful
for MD simulations, Xian et al. developed a structure
manipulation (StructureMan) tool that proved to be
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comprehensive and efficient when studying interactions in large
biomolecular systems.

Overall, we believe that this Research Topic provides a well-
rounded picture of the latest state-of-the-art developments useful
to overcome historical limitations in modeling and sampling of
large biomolecular systems and slow processes using classical
molecular dynamics simulations.
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During the affinity maturation process the immune system produces antibodies with
higher specificity and activity through various rounds of somatic hypermutations in
response to an antigen. Elucidating the affinity maturation process is fundamental in
understanding immunity and in the development of biotherapeutics. Therefore, we
analyzed 10 pairs of antibody fragments differing in their specificity and in distinct stages
of affinity maturation using metadynamics in combination with molecular dynamics (MD)
simulations. We investigated differences in flexibility of the CDR-H3 loop and global
changes in plasticity upon affinity maturation. Among all antibody pairs we observed a
substantial rigidification in flexibility and plasticity reflected in a substantial decrease of
conformational diversity. To visualize and characterize these findings we used Markov-
states models to reconstruct the kinetics of CDR-H3 loop dynamics and for the first time
provide a method to define and localize surface plasticity upon affinity maturation.

Keywords: antibodies, CDR-H3 loop, affinity maturation, rigidification, localizing plasticity, kinetics, Markov-state
models

INTRODUCTION

Since the identification of antibodies in the 19th century, the rise and importance of monoclonal
antibodies as biotherapeutics over the past 30 years has been extraordinary (Carter, 2006, 2011;
Reichert, 2017; Kaplon and Reichert, 2019). Antibodies are composed of two polypepide chains,
called VH and VL (Edelman, 1973). Each chain consists of a variable and a constant region. The
variable domain contains six hypervariable loops, referred to as the complementarity determining
regions (CDRs), which shape the antigen-binding site, the paratope (Nguyen et al., 2017). The
specificity of an antibody is mainly influenced by the CDR loops and therefore characterization
of the paratope is essential for understanding the function of the antibody (James et al., 2003).
Five of the six CDR loops, except the CDR-H3 loop, can adopt a limited number of main-chain
conformations and have been classified into canonical structures according to their length and
sequence composition (Chothia and Lesk, 1987; Al-Lazikani et al., 1997). The highest variability in
sequence, length and structure of an antibody can be observed in the CDRs, especially in the CDR-
H3 loop, while antibody frameworks are fairly well conserved (∼150 human germline framework
sequences). The CDR-H3 loop plays a central role in antigen recognition and has on average the
highest counts of contacts with antigens (Marks and Deane, 2017; Regep et al., 2017). Structure

Abbreviations: CDR, complementary determining region; Fab, antigen binding fragment; Fv, antibody variable fragment;
MD, molecular dynamics; PCCA, perron cluster cluster analysis; RMSD, root mean square deviation; tICA, time-lagged
independent component analysis; VH, heavy chain; VL, light chain.
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GRAPHICAL ABSTRACT | Visualization of the local and global rigidification
as a consequence of affinity maturation.

prediction of the CDR-H3 loop due to its exceptional diversity
of both structure and sequence and the ability to adopt
various different conformations during V(D)J recombination and
somatic hypermutation remains challenging (Bassing et al., 2002;
Market and Papavasiliou, 2003; Clark et al., 2006; Burkovitz
et al., 2014). Additionally, the CDR-H3 loop length and structure
have an effect on the antigen-binding patterns of the CDR loops
and influence the specificity of the paratope for target antigens.
Thus, to elucidate the role of B cells in adaptive immunity
and the evolution of antibodies binding specific antigens, the
understanding of the affinity maturation process and its effects
on the CDR loops, especially on the CDR-H3 loop, are crucial.
The binding site of polyreactive monoclonal antibodies, which
bind with low affinity to various structurally unrelated antigens,
has been discussed to be significantly more flexible compared
to matured antibodies (Zhou et al., 2007; Gunti and Notkins,
2015). Depending on the antigen present, polyreactive antibodies
show a broader and shallower free energy surface, reflected
in various different binding site conformations and higher
conformational diversity of the paratope (Schmidt et al., 2013;
Fernández-Quintero et al., 2019b). Especially the CDR-H3 loop
substantially influences the shape of the paratope and thus
plays a central role in antigen-binding. The correlation between
rigidification and enhanced specificity has been discussed in
terms of conformational selection (Ma et al., 1999; Tsai et al.,
1999). Antibody-antigen binding can be interpreted to follow the
paradigm of conformational selection. This implies an ensemble
of pre-existing conformations with different probabilities, in
which the binding-competent state is selected (Tsai et al., 1999;
Csermely et al., 2010). Repeated exposure to the same antigen
leads to mutations in the sequences which can result in a
rigidification of the antigen binding site. Various studies focused
on the effects of affinity maturation on the CDRs suggesting
that structural rigidification and less conformational diversity are
a consequence of affinity maturation (Wedemayer et al., 1997;
Manivel et al., 2000; Yin et al., 2001, 2003; Li et al., 2003; Thielges

et al., 2008; Adhikary et al., 2012, 2015; Schmidt et al., 2013;
Jeliazkov et al., 2018). Additionally, 3-pulse photon echo peak
shift (3PEPS) spectroscopy has been used to quantify antibody
dynamics on the femto-to nanosecond timescale. A direct
comparison between naïve with mature antibodies showed that
mature antibodies can be characterized by a higher rigidity,
reflected in smaller motions and conformational changes than
naïve antibodies (Jimenez et al., 2003; Adhikary et al., 2012, 2015).
Additionally, numerous MD studies investigated and showed
the rigidification of the CDR-H3 loop as a consequence of
affinity maturation (Thorpe and Brooks, 2007; Wong et al., 2011;
Schmidt et al., 2013). Recently, it has been reported that antibody
CDR-H3 loops does not result in a rigidification (Jeliazkov et al.,
2018), but it has also been shown that on a significantly longer
timescale the CDR-H3 loop rigidifies upon affinity maturation
(Fernández-Quintero et al., 2019b). Thus, the affinity maturation
process represents a direct connection between an enhanced
specificity and rigidification. However, rigidification is only one
of numerous biophysical mechanisms responsible for the increase
in affinity (Jeliazkov et al., 2018).

In this study, we focus on characterizing the conformational
diversity of the CDR-H3 loop including transition probabilities
and changes in surface plasticity of 10 pairs of antibody fragments
upon affinity maturation. We based our investigation on strong
experimental structural information and compared naïve (before
exposure to an antigen) and matured (after repeated exposure
to an antigen) antibodies crystallized with and without the
presence of the antigen.

MATERIALS AND METHODS

A previously published method characterizing the CDR-H3
loop ensemble upon antigen-binding in solution (Fernández-
Quintero et al., 2019a,b, 2020a,b,c) was used to investigate
the conformational diversity of CDR-H3 loop upon affinity
maturation. Experimental structural information was available
for all considered antibody fragments (Fabs and Fvs).

To avoid repetition, we only discuss three pairs of antibody
fragments upon affinity maturation in detail, while the results
for the other antibodies are summarized in Figure 1. The
structural changes upon affinity maturation for all ten antibody
pairs are visualized and described in more detail in the
Supplementary Material (Supplementary Tables 4–12). This
10 pairs of antibodies undergoing affinity maturation were
chosen as they have been part of previous work considering the
effects of affinity maturation on antibody flexibility (Wedemayer
et al., 1997; Yin et al., 2001; Jimenez et al., 2003; Li et al.,
2003, 2015; Zimmermann et al., 2006; Thorpe and Brooks,
2007; Thielges et al., 2008; Babor and Kortemme, 2009;
Wong et al., 2011; Schmidt et al., 2013; Willis et al., 2013;
Adhikary et al., 2015; Schiele et al., 2015; Jeliazkov et al., 2018;
Fernández-Quintero et al., 2019b).

The first affinity maturation pair analyzed is the D44.1
(naïve) and the F10.6.6 (matured) anti-lysozyme antibody Fab
crystallized with and without the antigen lysozyme (Braden et al.,
1994). Both antibody Fabs are murine monoclonal antibodies
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FIGURE 1 | Overview of all antibody fragments analyzed with the available PDB accession codes crystallized with and without antigen and in the naive and matured
state. Additionally, the resulting number of clusters of the CDR-H3 loop of the naïve and matured antibody fragments by using the same distance cut-off of 1.2 Å is
shown on the left and visualized on the right. The plot on the right shows the number of clusters of the naïve antibody against the number of clusters of the matured
antibody color-coded according to their loop length.

which are related in sequence and structure as they originate
from the same germline gene rearrangement. The available PDB
accession codes of the naïve and matured antibody fragments
crystallized with and without antigen are 1MLC, 1MLB, and
2Q76, 1P2C, respectively (Braden et al., 1994; Cauerhff et al.,
2004; Acierno et al., 2007). D44.1 Fab differs from the affinity
matured variant F10.6.6 in 20 mutations, seven of them
located in the CDR loops. Due to the occurring mutations,
structural changes yielded in a stabilized VH–VL interface with
an increase in the affinity toward the antigen. A significant
increase in the number of non-covalent bonds between the
antibody and the antigen from the naïve complex 93 to the
matured complex 129 as well as closer and stronger bonds were
observed. The second studied affinity maturation pair is the
28B4 Fab, which catalyzes a periodate-dependent oxidation of
sulfide to sulfoxide, whereby the hapten (1-[N-4′-nitrobenzyl-N-
4′-carboxybutylamino] methylphosphonic acid) was generated to
mimic the transition state of this reaction (Hsieh-Wilson et al.,
1996; Yin et al., 2001). The available experimental structures
are germline Fabs crystallized with and without the hapten
present (PDB codes: 1FL6 and 1FL5) and the respective affinity
matured Fab variants (1KEL and 1KEM). Nine mutations, two
in the VL and seven in the VH were introduced during affinity
maturation. Three of these mutated residues of the matured
antibody, Asn35H, Lys56H, and Trp101H directly interact with
the hapten. A decrease in flexibility and changes in the binding
geometry of the antigen due to these mutations led to an
increased complementarity and affinity between the antibody
and the hapten. The third pair of affinity maturation antibodies
is the esterolytic antibody 48G7, which catalyzes an ester and
carbonate hydrolysis reaction, whereby the hapten 5-(para-
nitrophenyl phosphonate)-pentanoic acid portrays the transition
state (Wedemayer et al., 1997). Available crystal structures that
were used as starting structures for MD simulations are the
germline Fab fragment in complex with and without the antigen
present (PDB codes: 1AJ7 and 2RCS) as well as the corresponding
affinity matured structures (PDB codes: 1GAF and 1HKL).
During the process of affinity maturation, nine mutations were
introduced, three in the VL and six in the VH.

The starting structures for simulations were prepared in
MOE (Molecular Operating Environment, Chemical Computing
Group, version 2018.01) using the Protonate3D tool (Labute,
2009; Molecular Operating Environment [MOE], 2018). To
neutralize the charges we used the uniform background charge
(Roe and Cheatham, 2013; Hub et al., 2014; Case et al., 2016).
Using the tleap tool of the AmberTools16 (Roe and Cheatham,
2013; Case et al., 2016) package, the crystal structures were
soaked with cubic water boxes of TIP3P water molecules with
a minimum wall distance of 10 Å to the protein (Jorgensen
et al., 1983). For all crystal structures parameters of the
AMBER force field 14SB were used (Maier et al., 2015). The
antibody fragments were carefully equilibrated using a multistep
equilibration protocol (Wallnoefer et al., 2011).

Metadynamics Simulations
To enhance the sampling of the conformational space well-
tempered metadynamics (Barducci et al., 2008, 2011; Biswas et al.,
2018) simulations were performed in GROMACS (Pronk et al.,
2013; Abraham et al., 2015) with the PLUMED 2 implementation
(Tribello et al., 2014). We used a linear combination of sine and
cosine of the ψ torsion angles of the CDR-H3 and CDR-L3 loop
as collective variables, calculated with functions MATHEVAL and
COMBINE implemented in PLUMED 2 (Tribello et al., 2014). As
discussed previously the ψ torsion angle captures conformational
transitions comprehensively (Ramachandran et al., 1963; Wood
and Hirst, 2005; Fernández-Quintero et al., 2019b). The decision
to include the CDR-L3 loop ψ torsion angles is based on the
structural correlation of the CDR-L3 and CDR-H3 loop and
the observed improved sampling efficiency (James and Tawfik,
2005). The simulations were performed at 300 K in an NpT
ensemble. We used a Gaussian height of 10.0 kcal/mol. Gaussian
deposition occurred every 1,000 steps and a biasfactor of 10
was used. 1 µs metadynamics simulations were performed
for each available antibody fragment crystal structure. The
resulting trajectories were clustered by using the average linkage
hierarchical clustering algorithm in CPPTRAJ (Shao et al., 2007;
Roe and Cheatham, 2013) with a distance cut-off criterion of
1.2 Å resulting in a large number of clusters. The cluster
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representatives for the antibody fragments were equilibrated and
simulated for 100 ns using the AMBER18 (Case et al., 2016)
simulation package.

Molecular Dynamics Simulations
Molecular dynamics simulations were performed in an NpT
ensemble using pmemd.cuda (Salomon-Ferrer et al., 2013).
Bonds involving hydrogen atoms were restrained by applying
the SHAKE algorithm (Miyamoto and Kollman, 1992), allowing
a time step of 2.0 fs. Atmospheric pressure of the system
was preserved by weak coupling to an external bath using the
Berendsen algorithm (Berendsen et al., 1984). The Langevin
thermostat (Adelman and Doll, 1976) was used to maintain the
temperature during simulations at 300 K.

For the obtained trajectories a tICA was performed using
the python library PyEMMA 2 employing a lag time of 10
ns (Scherer et al., 2015). Thereby, a dimensionality reduction
is obtained by transforming the trajectories into an intuitive
measure, e.g., backbone torsions, which represent the slowest
coordinates of the system (Pérez-Hernández and Noé, 2016;
Wu and Noé, 2017). To construct the tICA we chose as input
variables the backbone torsions of the CDR-H3 loop. The
first two tICs (time-lagged independent components) describe
the two slowest components of the CDR-H3 loop movements.
Thermodynamics and kinetics were calculated with a Markov-
state model (Chodera and Noé, 2014) by using PyEMMA 2,
which uses the k-means clustering algorithm (Likas et al.,
2003) to define microstates and the PCCA + clustering
algorithm to coarse grain the microstates to macrostates.
PCCA + is a spectral clustering method, which discretizes the
sampled conformational space based on the eigenvectors of
the transition matrix (Röblitz and Weber, 2013). Markov-state
models allow to identify significant structural changes during
the simulation and reconstruct thermodynamics and kinetics.
The sampling efficiency and the reliability of the Markov-
state model (e.g., defining optimal feature mappings) can be
evaluated with the Chapman–Kolmogorov test (Karush, 1961;
Miroshin, 2016), by using the variational approach for Markov
processes (Wu and Noé, 2017) and by taking into account the
fraction of states used, as the network states must be fully
connected to calculate probabilities of transitions and the relative
equilibrium probabilities. To build the Markov-state model we
used the backbone torsions of the CDR-H3 loop, defined 150
microstates using the k-means clustering algorithm and applied a
lag time of 10 ns.

Characterization of Surface Plasticity
Conformational plasticity of proteins has been shown to play
key role in molecular mechanisms such as catalytic activity,
biomolecular recognition and allosteric regulation (Daberdaku
and Ferrari, 2018; Jespersen et al., 2019). Differences of the
antibody surface were calculated by using the average surface of
the simulation and the respective standard deviations of each
frame. To visualize the differences in plasticity upon affinity
maturation, we calculated the per-voxel average and standard
deviation of the reconstructed grid. The standard deviation is
useful to highlight regions that are sometimes occupied by the

protein and sometimes solvent-accessible. Flexible regions are
characterized by large volumes with high standard deviation.
However, the resulting grid is difficult to interpret because even
very rigid regions can have a few partially occupied voxels. To
emphasize regions with large structural differences, we applied
a Gauss filter to smooth the average and the standard deviation
grid. To test our method, we used the anti-MPTS Fv, previously
analyzed to address the influence of the affinity maturation on
the CDR-H3 loop (Fernández-Quintero et al., 2019b), to compare
experimentally measured plasticity via 3PEPS spectroscopy
(Adhikary et al., 2015) with our calculated plasticity. 3PEPS has
been successfully used to characterize protein dynamics such as
side chain rotations and loop rearrangements (Oh et al., 2011;
Adhikary et al., 2012). In line with the experiment we observe a
decrease in plasticity and flexibility for the further matured 8B10
Fv (Supplementary Figure S1).

RESULTS

Various studies have discussed the effect of affinity maturation
on structural and dynamic properties (James and Tawfik, 2003;
Cauerhff et al., 2004; Schmidt et al., 2013; Adhikary et al., 2015;
Jeliazkov et al., 2018; Shehata et al., 2019).

We analyzed 10 pairs of antibody fragments supported
by strong experimental structural information upon affinity
maturation and a summary of the resulting CDR-H3 loop
flexibilities of the respective antibody pairs is illustrated in
Figure 1. On the left the PDB accession codes, the CDR-H3 loop
lengths and the resulting numbers of clusters by using the same
distance cut-off criterion of 1.2 Å, are displayed for all studied
antibody fragments. On the right the number of CDR-H3 loop
clusters of the naïve and matured antibody fragments are plotted
against each other to visualize the substantial rigidification upon
affinity maturation. The clustering also been performed using
different cut-off criteria to see if the results presented in Figure 1
are stable under variation of the cut-off and in all cases the native
antibodies reveal a higher number of clusters, indicating a higher
flexibility of the CDR-H3 loop before maturation.

As described in the “Materials and Methods” section, we used
the cluster representatives as starting structures for each 100
ns MD simulations to be able to reconstruct and characterize
thermodynamics and kinetics. Figure 2A displays the resulting
free energy surface of 18.3 µs of the naïve D44.1 Fab and 6.5 µs
of the matured F10.6.6 Fab in the same coordinate system.
Upon affinity maturation a substantial rigidification of the CDR-
H3 loop dynamics combined with a population shift toward
the global minimum in solution could be observed. Figure 2C
shows the resulting CDR-H3 loop ensemble in solution color-
coded according to Figure 1 and emphasizes the significant
decrease in conformational diversity. Supplementary Figure S2
illustrates the 2D-RMSD plots (based on the Cα coordinates)
and the B-factors of the CDR-H3 loop. In line with the decrease
in conformational space of the CDR-H3 loop, which can be
seen in Figure 2, the rigidification of the CDR-H3 loop is
reflected in both the 2D-RMSD and the B-factors. Besides,
characterizing flexibility by the resulting number of clusters,
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FIGURE 2 | Kinetic, thermodynamic and structural analyses of the CDR-H3 loop ensemble in solution. (A) Free energy surface of the naive D44.1 and the matured
F10.6.6 Fab in the same coordinate system, including the respective X-ray structures crystallized with and without antigen. The orange and green dots show the
bound X-ray structures of the naïve and the matured Fab, respectively, while magenta and blue display the X-ray structures crystallized without antigen. (B) Transition
timescales between the different macrostates orientated according to the tICA space including the state probabilities. (C) Substantial decrease of the conformational
ensemble of the D44.1 and F10.6.6 antibody upon affinity maturation.

RMSF or 2D-RMSD plots, we developed a method to analyze
and localize surface plasticity of antibody fragments (Figure 3).
Figure 3 shows the projection of the calculated plasticity of
the naïve and the matured antibody Fab onto a representative
ensemble structure. The intensity of the colors reflects regions
with higher plasticity. As surface plasticity is an essential aspect
of biomolecular recognition, we find that characterization of
protein plasticity allows a better shape-based interpretation of the
antigen binding site, compared to other flexibility measures such
as RMSD and B-factors. Upon affinity maturation we observe a
significant decrease in surface plasticity. Also, the CDR-H3 loop

reveals substantially less plasticity in the matured F10.6.6 Fab.
This observation is in line with the decrease in conformational
diversity, in particular of the CDR-H3 loop. The 2D-RMSD
plots of both the paratope and the whole variable fragment are
illustrated in the Supplementary Figure S3 and clearly show a
global rigidification upon affinity maturation.

The second studied affinity maturation pair is the hapten-
binding 28B4 antibody Fab. Figure 4A shows the resulting
tICA plots of the resulting 13.5 µs trajectories of the naïve
and 5.0 µs trajectories of matured 28B4 antibody in the
same coordinate system. The available crystal structures are
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FIGURE 3 | Global (top) and localized (bottom) surface plasticity of the naive D44.1 and matured F10.6.6 antibody Fab mapped onto a representative ensemble
structure. (Top) Global plasticity of the naïve and the matured D44.1 and F10.6.6 antibody fragments, highlighting the CDR-H3 loop in red. The intensity of the colors
reflects the regions with higher plasticity and thus allows localization. (Bottom) Localized plasticity for both the naïve and the matured D44.1 and F10.6.6 antibody
fragment Fab, respectively.

projected into the free energy landscape and color-coded
respectively. The conformational ensemble of the CDR-H3 loop
in solution reveals a substantial rigidification upon affinity
maturation, reflected in a substantial decrease in conformational
diversity (Figure 4). This significant rigidification of the CDR-
H3 loop is also shown in Supplementary Figure S4. The
2D-RMSD plot clearly depict this decrease in flexibility upon
affinity maturation. This finding is supported by the B-factors
calculated for the CDR-H3 loop, as always higher values
are obtained for the naïve antibodies. Figure 4C visualizes
the substantial rigidification in the observed conformational
diversity, which agrees with previous results. The effect of
affinity maturation on the plasticity of the 28B4 antibody
is visualized in Figure 5. Again, in line with the first
analyzed pair we observe a decrease in plasticity upon affinity
maturation, especially in the region of the CDR-H3 and CDR-
L3 loop. This observation is confirmed by the 2D-RMSD
plots of the paratope and the variable fragment illustrated in
Supplementary Figure S5.

The third in detail discussed affinity maturation pair is the
48G7 hapten binding antibody. Figure 6A reflects in agreement
in with the substantial decrease in the number of CDR-H3 loop
clusters (210 to 120), as a metric of quantifying flexibility, a
substantial reduction in conformational space of the CDR-H3
loop. A representative conformational ensemble of the resulting
21 µs (naïve) and 12 µs (matured) trajectories revealing this

significant decrease in conformational diversity is illustrated in
Figure 6C. This finding is in line with localized flexibility metrics,
such as the B-factors and the 2D-RMSD of the CDR-H3 loop
shown in Supplementary Figure S6. Figure 6B illustrates the
transition probabilities between the obtained macrostates for
both the naive and the matured antibody fragment and shows
the populations of the respective states. We clearly see that upon
affinity maturation the dominant minimum in solution is shifted
and the binding competent state becomes the most dominant
state in solution (76%). Analysis of the resulting plasticity in
Figure 7 displays significant reduction, especially in the CDR-
H3 loop upon affinity maturation, which is highlighted by the
localized plasticity in Figure 7 (bottom). 2D-RMSD plots for the
paratope and the variable fragment of the 48G7 antibody are
depicted in Supplementary Figure S7 and confirm this overall
rigidification upon affinity maturation.

DISCUSSION

In this present study, we characterize the conformational
diversity and the kinetic and thermodynamic properties of
the CDR-H3 loop of 10 affinity maturation antibody pairs
and present a method to visualize, localize and describe
plasticity of antibodies upon affinity maturation. The
affinity maturation process comprises the introduction of
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FIGURE 4 | Kinetic, thermodynamic and structural analyses of the CDR-H3 loop ensemble in solution upon affinity maturation. (A) Free energy surface of the naive
and matured 28B4 Fab in the same coordinate system, including the respective X-ray structures crystallized with and without antigen. The orange and green dots
show the bound X-ray structures of the naïve and the matured Fab, respectively, while magenta and blue display the X-ray structures crystallized without antigen.
(B) Transition timescales between the different macrostates orientated according to the tICA space including the state probabilities. (C) Substantial decrease of the
conformational ensemble of the 28B4 antibody upon affinity maturation.

combinatorial mutations that increase the binding affinity
of the antibody to the antigen and lead to a more effective
immune response (French et al., 1989). Numerous structural
studies, involving small molecules (haptens) were carried out
comparing affinity-matured antibodies and their germline
precursor binding to the same antigen (Alzari et al., 1990;
Hsieh-Wilson et al., 1996; Chong et al., 1999; Yin et al., 2001;

Mishra and Mariuzza, 2018). Thereby, somatic hypermutations
in the CDR loops lead to a higher number of hydrogen bonds,
electrostatic interactions, van der Waals contacts and an
improved shape complementarity (Fernández-Quintero et al.,
2019a, 2020b,c). Large conformational preorganization of the
paratope in combination with a decrease in flexibility upon
affinity maturation has been discussed to increase specificity
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FIGURE 5 | Global (top) and localized (bottom) surface plasticity of the naive and matured 28B4 antibody Fab mapped onto a representative ensemble structure.
(Top) Global plasticity of the naïve and the matured 28B4 antibody, highlighting the CDR-H3 loop in red. The intensity of the colors reflects the regions with higher
plasticity and allows localization. (Bottom) Localized plasticity for both the naïve and the matured 28B4 antibody, respectively.

for the target antigen while reducing the possibility of cross-
reactivity with other antigens (Wedemayer et al., 1997; Manivel
et al., 2000). Compared to affinity maturation studies focusing
on haptens, structural affinity maturation of an antibody in
response to a protein, i.e., hen egg white lysozyme, could not
be attributed to a higher number of formed hydrogen bonds
or salt bridges, but to an improved shape complementarity
at the VH-binding interface accompanied by an increase of
hydrophobic interactions (Braden et al., 1994; Li et al., 2003;
DeKosky et al., 2016). In order to understand the mechanism
of antigen-recognition, characterization of the thermodynamic
and kinetics pathway of the affinity maturation process in
combination with experimental structural information is crucial
(Foote and Milstein, 1991, 1994; Milstein, 1991; Akiba and
Tsumoto, 2015). Thus, the results presented in this study
highlight that static structural information alone might not be
sufficient to describe antibody binding properties as specificity
and promiscuity (Akiba and Tsumoto, 2015; Fernández-Quintero
et al., 2019b; Alba et al., 2020). Long timescale dynamics from
enhanced and classic MD simulations complement experimental
structural information with reliable estimations of flexibilities,
state probabilities, binding mechanisms, and localization of
plasticity. Figure 1 displays an overview of all studied affinity
maturation antibody fragments including the resulting number
of CDR-H3 loop clusters by using the same distance cut-off
criterion, as a quantification of rigidification upon affinity

maturation. We also investigated the stability of the results in
dependence of the clustering cut-off and observed the same
trend, that upon affinity maturation the flexibility of the CDR-H3
loop decreases substantially. Figures 2A,B show the free energy
surface of the naïve D44.1 and the matured F10.6.6 Fab in the
same tICA coordinate system and reveal a substantial decrease
in conformational space of the CDR-H3 loop. The naïve D44.1
Fab displays a broader free energy landscape, compared to
the deeper and narrower minima observed for the matured
F10.6.6 Fab. Besides, we identified that even without the antigen
present within the pre-existing ensemble of conformations,
the binding competent state lies in the dominant minimum in
solution. This indicates that the D44.1 Fab follows the paradigm
of conformational selection. The two highest populated states
of the CDR-H3 loop in solution of the naïve D44.1 Fab are
the dominant conformations of the matured F10.6.6 Fab. The
binding competent state in the naïve antibody becomes the
highest populated state upon affinity maturation (38 → 58%
state population). Figure 2C illustrates the conformational
ensemble of the CDR-H3 loop and emphasizes the substantial
reduction in conformational diversity upon affinity maturation.
This substantial rigidification upon affinity maturation is
supported by the 2D-RMSD plots and the B-factors illustrated in
Supplementary Figures S2, S3. Figure 3 visualizes and localizes
differences and regions with high plasticity. We did not only
observe an overall decrease in plasticity, but we could also identify

Frontiers in Molecular Biosciences | www.frontiersin.org 8 August 2020 | Volume 7 | Article 18214

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00182 August 5, 2020 Time: 18:47 # 9

Fernández-Quintero et al. Rigidification Upon Antibody Affinity Maturation

FIGURE 6 | Kinetic, thermodynamic and structural analyses of the CDR-H3 loop ensemble in solution upon affinity maturation. (A) Free energy surface of the naive
and matured 48G7 Fab in the same coordinate system, including the respective X-ray structures crystallized with and without antigen. The orange and green dots
show the bound X-ray structures of the naïve and the matured Fab, respectively, while magenta and blue display the X-ray structures crystallized without antigen.
(B) Transition timescales between the different macrostates orientated according to the tICA space including the state probabilities. (C) Substantial decrease of the
conformational ensemble of the 48G7 antibody upon affinity maturation.

a substantial reduction in the CDR-H3 loop surface plasticity.
Supplementary Figure S8 depicts the localized surface plasticity
for the CDR-H3 loop for all in detail investigated antibody
fragments and Supplementary Table 13 summarizes the overall
reduction in plasticity upon affinity maturation. Figures 4A,B
illustrate in line with the observations of the D44.1.1/F10.6.6
affinity maturation study, a substantial rigidification of the CDR-
H3 loop conformational space of the 28B4 Fab upon affinity
maturation. Besides the substantial rigidification we identified
that the dominant structure in solution was optimized to bind
the antigen, while the Fab X-ray structure crystallized without
antigen lies in a local shallow side-minimum, because of the

distortion of the loop due to crystal contacts with the tail region
of a symmetry mate Fab. The transition kinetics of the CDR-H3
loop for both the naïve and the matured Fab occur in the
nano-to microsecond timescale. Additionally, we also observe
a strong population shift upon affinity maturation. Again, the
significantly reduced conformational ensemble is illustrated
in Figure 4C and supports in line with all other observations
the rigidification upon affinity maturation. Figure 5 visualizes
differences in plasticity of the 28B4 affinity maturation study
and clearly shows in particular for the CDR-H3 and CDR-L3
loop a substantial decrease in surface plasticity. In agreement
with these results Figures 6A,B show not only a decrease in
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FIGURE 7 | Global (top) and localized (bottom) surface plasticity of the naive and matured 4G87 antibody Fab mapped onto a representative ensemble structure.
(Top) Global plasticity of the naïve and the matured 48G7 antibody, highlighting the CDR-H3 loop in red. The intensity of the colors reflects the regions with higher
plasticity and allows localization. (Bottom) Localized plasticity for both the naïve and the matured 48G7 antibody, respectively.

conformational diversity of the CDR-H3 loop of the 48G7 Fab
upon affinity maturation, but clearly reveals a population shift
toward the dominant solution structure in the affinity matured
Fab. Astonishingly, the dominant CDR-H3 loop conformation of
the matured 48G7 Fab is present as a local shallow side-minimum
in the free energy surface of the naïve 48G7 Fab. These findings
supported the hypothesis that promiscuity might arise from
numerous weakly populated conformations each of which is able
to bind different binding partners (Zhou et al., 2007; Adhikary
et al., 2015; Gunti and Notkins, 2015; Fernández-Quintero
et al., 2019b). These probabilities are then shifted toward a
smaller number of states which results in a reduction of possible
binding partners.

Again, Figure 6C shows the reduced structural ensemble
of the CDR-H3 loop upon affinity maturation. Figure 7
characterizes the plasticity of the naïve and matured 48G7 Fabs
and reflects the substantial rigidification of the CDR-H3 loop in
the matured Fab.

In all in detailed investigated antibody fragments we observe
a significant decrease in flexibility and plasticity upon affinity
maturation accompanied by strong population shifts toward the
binding competent state. The free energy surfaces of the CDR-
H3 loop do not only show a reduction in conformational space,
but also reveal a smaller number CDR-H3 loop conformational
states in solution. This is reduction in conformational diversity
is reflected by narrower and deeper minima, while the naïve
antibodies have broader and shallower free energy landscapes.
Thus, germline antibodies–before maturation–are able to still

adopt various distinct conformations, each of which is able to
recognize different antigens.

CONCLUSION

For 10 pairs of antibodies we observed a substantial rigidification
in flexibility and plasticity upon affinity maturation, in particular
for the CDR-H3 loop. Molecular plasticity plays a crucial role in
all processes involving molecular recognition. In our manuscript
we present for the first time a method to quantify and localize
plasticity on an atomistic level. We show that this method is in
excellent agreement with 3PEPS spectroscopy. Additionally, we
employ this new method to affinity maturation of antibodies,
showing for 10 pairs of antibodies, that affinity maturation
goes hand in hand with a reduction of plasticity and flexibility.
As our method allows for localization, we are even able to
identify the areas of reduced plasticity. Consequently, we are
able to show that for all 10 pairs of antibodies of different
CDR-H3 loop lengths specificity is linked to rigidity. For all
affinity maturation studies kinetics and thermodynamics were
reconstructed and revealed for the naïve Fabs broader and
shallower free energy surfaces, while the matured Fabs showed
small and distinct minima. All studied affinity maturation Fabs
follow the paradigm of conformational selection, because even
without the antigen present the binding competent state is
present in solution. In summary, we do not only demonstrate
a generalizable method to characterize and localize molecular
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plasticity in detail, but we also strongly link it to a general
principle in antibody-antigen recognition.
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The transition network provides a key to reveal the thermodynamic and kinetic properties
of biomolecular systems. In this paper, we introduce a new method, named effective
energy rescaling space trajectory mapping (EspcTM), to detect metastable states and
construct transition networks based on the simulation trajectories of the complex
biomolecular system. It mapped simulation trajectories into an orthogonal function
space, whose bases were rescaled by effective energy, and clustered the interrelation
between these trajectories to locate metastable states. By using the EspcTM method,
we identified the metastable states and elucidated interstate transition kinetics of a
Brownian particle and a dodecapeptide. It was found that the scaling parameters of
effective energy also provided a clue to the dominating factors in dynamics. We believe
that the EspcTM method is a useful tool for the studies of dynamics of the complex
system and may provide new insight into the understanding of thermodynamics and
kinetics of biomolecular systems.

Keywords: effective energy, molecular dynamics, trajectory mapping, Markov models, alanine dodecapeptide,
transition network

INTRODUCTION

The biomolecules are fundamentally dynamic in nature (Chodera et al., 2007). Protein folding,
for example, involves the conformation change from polypeptide chain to a particular tertiary
topology over microseconds to seconds, a process that can go awry and lead to misfolding and
cause disease (Chiti and Dobson, 2006; Gregersen et al., 2006; Chodera et al., 2007; Guo et al.,
2012; Wei et al., 2016; Zhou et al., 2019). Allosteric enzyme catalysis involves transitions between
multiple conformational substates, only a few of which may allow substate access or catalysis
(Eisenmesser et al., 2002; Boehr et al., 2006; Buch et al., 2011). Protein–ligand binding may alter
the transition kinetics among multiple conformational states; for example, intrinsically disordered
protein may have structured and unstructured binding pathways (Ithuralde et al., 2016; Paul et al.,
2017; Li et al., 2019; Pan et al., 2019; Weng and Wang, 2020). Understanding of biomolecular
dynamics is pivotal to reveal the function of biomolecules. Computer simulations of biomolecules,
which made the biomolecular dynamics visible in silico, provide valuable insight for understanding
how the dynamics of biomolecules drives biology processes (Cheatham and Kollman, 2000;
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Mirny and Shakhnovich, 2001; Norberg and Nilsson, 2002;
Moraitakis et al., 2003; Levy et al., 2004; Zhou et al., 2004; Gao
et al., 2005; Zuo et al., 2006, 2009; Li et al., 2008, 2013; Miyashita
et al., 2009; Yang et al., 2014; Yan and Wang, 2019; Wu et al.,
2020). In particular, molecular dynamics (MD) simulations can
provide atomic-level details that are not always accessible in
experiments and make this technique inevitable (Karplus and
McCammon, 2002; Adcock and McCammon, 2006; Wang et al.,
2009; Zuo et al., 2013). However, too many details will disguise
the meaningful information. In most cases, the functional
processes of biomolecules, the most interesting or important
processes, correspond to slow dynamical processes. To extract
these processes from numerous MD simulation trajectories,
much effort has been involved in the development of methods
for massive high-dimensional simulation data analysis. It was
now well established from a variety of studies that an intelligible
picture of the dynamics of biomolecules can be described as a
transition network between several metastable states based on
the simulation trajectories (Zwanzig, 1983; Kampen, 2007).

Markov state model (MSM) provides a powerful framework
for analyzing dynamics of biosystems, such as MD simulations,
to construct a transition network of metastable states. It has
gained widespread use over the past several decades (Chodera
et al., 2007; Gfeller et al., 2007; Noe et al., 2007; Bowman
and Pande, 2010; Pande et al., 2010; Rao and Karplus, 2010;
Bowman et al., 2013; Deng et al., 2013; Weber et al., 2013; Husic
and Pande, 2018; Wang et al., 2018; Sengupta et al., 2019). In
the analyzing process of MSM, the simulation conformations
were first classified into thousands of small groups, named as
microstates, by a geometric clustering method wherein these
conformations were similar in geometry (Bowman et al., 2009;
Pande et al., 2010). These microstates would be further clustered
into several macrostates by standard spectral clustering method
based on their transition frequency (Deuflhard and Weber, 2005;
Chodera et al., 2007; Gfeller et al., 2007; Noe et al., 2007; Noe,
2008; Bowman and Pande, 2010; Pande et al., 2010; Rao and
Karplus, 2010; Zuo et al., 2010; Bowman et al., 2013; Deng et al.,
2013; Roblitz and Weber, 2013; Weber et al., 2013; Husic and
Pande, 2018; Wang et al., 2018; Sengupta et al., 2019). Then, the
transition network between the macrostates was reconstructed
accordingly (Jayachandran et al., 2006; Buchete and Hummer,
2008; Prinz et al., 2011). Gong and Zhou (2010) presented
the trajectory mapping (TM) method to construct a kinetic
transition network of metastable states. Compared with MSM,
TM grouped simulation trajectory pieces rather than individual
conformations. They mapped the averaged conformation of each
MD trajectory segment as a vector and calculate the principal
components (PCs) of the trajectory-mapped vectors by the
principal component analysis (PCA). The similar trajectory-
mapped vectors were then grouped as metastable states by
spectral clustering method, and transition events in simulation
trajectories were further identified (Gong et al., 2015; Zhang et al.,
2017; Zhang et al., 2019a; Zhang et al., 2019b).

In both MSM and TM methods, the discretization of
MD trajectories, i.e., clustering of structures, plays a vital
role in the analysis of MD trajectories. To make clustering
of structures as accurate as possible, a variety of structural

metrics and their functions were employed in analysis, for
example, the torsion angles of backbone, the proportion of
native contacts, root mean square deviation, and solvated energy
(Gong et al., 2015). These analyses can be effective when all
input coordinates are sufficient and irrelevant to each other.
Thus, PCA was used to find orthogonal collective coordinates,
which are linear combinations of the input coordinates and
covered most of variances with only the first several eigenvectors
(Lever et al., 2017). However, as mentioned above, the slow
dynamical process is the concerned part in most cases. It is
not always true that the high variance directions correspond
to the kinetically slow-motion mode. Thus, some methods
have been developed to obtain slow-motion directions. In the
MSM, time-structure based Independent Correlation Analysis
(tICA) was used (Naritomi and Fuchigami, 2011, 2013; Perez-
Hernandez et al., 2013; Schwantes and Pande, 2013). It finds
the slow collective coordinates by eigen-decomposition of a
1t-interval autocorrelation matrix. In the TM, the averaged
conformation of every τ -length MD trajectory segment was
mapped as a vector in feature space to compose samples
for the PCA method. It was argued that fast conformational
fluctuations were suppressed after the segment averaging, and
the PCs mainly involve slow motions (Zhang et al., 2017).
In both tICA-MSM and TM methods, a hyper-parameter, 1t
for tICA-MSM and τ for TM, is required. It is difficult for
inexperienced users. It is possible to obtain the optimized
model by an automated process instead of a process of
trial and error. For example, one might consider weighting
the input coordination by an order parameter relevant to
the functional processes of biomolecules, so that the input
coordinates with high correlation contribute the most to the
distance calculation and make the clustering effective and
efficient to catch the functional processes, i.e., slow-motion
patterns of the biomolecular system.

In this paper, we will present a new method, named
effective energy rescaling space trajectory mapping (EspcTM), for
detecting metastable states and constructing transition networks.
It is a parameter-free analysis framework based on the previous
TM method. In the EspcTM method, every snapshot of the
trajectories was described by a high-dimensional vector and
mapped into an orthogonal functional space. Different from
the TM method, the features were rescaled by the effective
energy of the dynamics to make the space effective to describe
the slow processes of the system, and no hyperparameter was
required. Here, the effective energy, which was filtered from
the total potential energy of simulation trajectories by fast
Fourier transform (FFT) and multiple linear regression, is an
efficacious order parameter to describe the slow conformational
change of complex system. The PCA method was also employed
for dimensionality reduction and orthogonalization of the
functional space. The metastable states were assigned by a
spectral clustering method based on projections of the trajectories
in this feature space. Then, the Markov transition matrix is
constructed based on the transitions between these metastable
states. We show application of this method by the movement of
a Brownian particle and conformational dynamics of an alanine
dodecapeptide (Ala12). It revealed their metastable states and
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kinetic transition network, as well as provided additional insight
into the dynamics of these two systems.

THEORY AND METHOD

The EspcTM method is an analysis framework to identify
metastable states from simulation data in the effective energy
rescaling space and construct the transition network between the
states based on the theory of Markov chain. In the EspcTM, an
ordered parameter, named effective energy, was introduced to
rescale feature space of the system. The simulation trajectories
were mapped into the space and discretized to obtain the kinetic
transition network of the system based on Markov chain theory.
Figure 1 shows the flow chart of the EspcTM method, and details
of the key steps are followed.

Feature Extraction
In our study, there were Nt frames in every trajectory. They
were mapped into a space consisting of Nb basis functions

FIGURE 1 | Flow chart of EspcTM method. Step 1: Extracting the
conformational metrics with a set of basis functions for all simulation
trajectories. Step 2: Extracting the potential energy to {ε̃K

}K=1,...,Nt by fast
Fourier transform. Step 3: Multiple linear regression ε̃K and features, obtaining
effective energy and E-space. Step 4: Mapping all trajectories to E-space.
Step 5: Discretizing the trajectories based on the projections in E-space, and
calculating the Markov transition matrix.

{Âµ(Eq)}µ=1,...,Nb . To eliminate the effect of various units of basis
function, normalization was performed on every dimension.
Then, every trajectory was described as an Nt × Nb-dimension
matrix in the feature space, i.e., feature matrix

V =
(
Â1(
Eq
)
, Â2(
Eq
)
, Â3(
Eq
)
, . . . , ÂNb

(
Eq
))

(1)

where Eq denotes the structural metrics, such as the torsion
angle of backbone in peptide. Here, the basis functions
{Âµ(Eq)}µ=1,...,Nb should be chosen to identify typical
conformational motions of systems. In this work, we used
the sine and cosine of structural metrics as the feature space
(Gong and Zhou, 2010; Gong et al., 2015).

Noise Reduction
It is obvious that every basis possesses different weight on
describing the dynamics of complex system. It was argued that
dynamics of complex systems, such as protein folding, can
resemble a diffusive process on a rugged landscape of free energy
(Onuchic et al., 1997). Thus, energy is an appropriate measure to
rescale their coordinates. Most studies of complex system focus
on the dynamics of a part of the system, and the rest of the
system was regarded as the environment of the study object. For
example, studies on protein folding focus on protein molecules.
The conformational change of protein in protein folding is the
interesting part, instead of the fluctuation of water molecules.
However, the atoms of the system interacted with each other in
a complicated way. The energy variation caused by the dynamics
of the studied object is coupled with the energy caused by the
fluctuation of the remaining part. It is difficult to isolate the
meaningful energy in a frame without additional hypotheses.
On the other hand, as mentioned above, the kinetic slowness
is the main character of the interesting processes. Therefore,
the dynamics of the important processes can be separated from
the fluctuation in the frequency domain, where slow motion is
treated as low-frequency signal and fluctuation can be filtered out
as high-frequency noise.

In this work, FFT (Cochran et al., 1967) was applied to
transform the energy of trajectories into frequency space. For
every trajectory, the coefficients of frequencies were obtained by

ω̃k =

Nt−1∑
n=0

εn · e−inωk (2)

Here, i =
√
−1 is the imaginary mark, n is the index of frames

for the trajectory, εn is the total potential energy of the nth frame
obtained from the simulation data, Nt is the number of frames of
a trajectory, and ωk = 2πk/Nt corresponds to a frequency. To
reduce the false edge, even extension was used before FFT for
every trajectory. Then, a reverse FFT was performed on the first
K frequencies for every trajectory to obtain the ε̃K of every frame:

ε̃K
n =

K−1∑
k=0

ω̃k · einωk (3)

The fluctuation whose ω ≥ ωK was excluded in ε̃K. To determine
the number K, we performed multiple linear regression
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(Schneider et al., 2010) between K-energy vector ε̃K and feature
matrix V for all trajectories:

ε̃K
= aK

0 + V · âK
+ εK (4)

Here, aK
0 (scalar) and âK (Nb-dimensional vector) are the

fitting parameters, and εK is the error for the multiple linear
regression. The effective energy ε̃ = ε̃K∗

− εK∗ with the K∗ =

arg max r(K). Here, r(K) =
√

1 − (εK)2/(σK)2 is the multiple
correlation coefficient, (σK)2 is the variance of ε̃K, and r = 0 for
the case (σK)2 = (εK)2 = 0. For multiple trajectories, the FFT
was performed on every trajectory separately. Due to same length
and time interval of all trajectories in our study, all trajectories
were mapped into the same frequency space {ωk}k=1,...,Nt . Thus,
in the revised FFT, the K-energies of all trajectories are the
summary of the same frequencies for every K. Before multiple
linear regression, K-energy vectors ε̃K and feature matrixes V
of all trajectories were joined into a vector and a feature matrix
for equation (4).

Feature Rescaling and Mapping
The regression coefficients âK were used as the weight factors
on features. Every trajectory was described as a new Nt × Nb-
dimension matrix:

Ṽ = V · diag
(
âK) (5)

Here, diag(âK) is an Nb × Nb diagonal matrix with the elements
of âK on its main diagonal. A PCA (Sims et al., 2005) was applied
to reduce the dimension and orthogonalize the components of
all trajectories Ṽ . Descending according to eigenvalues, the first
Nc eigenvectors were selected to consist of an Nb × Nc matrix
M. Here, Nc � Nb, and M is the mapping operator, which
reduced the Nb − dimension vectors into Nc − dimension, given
top Nc eigenvalues whose sum has over 90% fraction of the
sum of all eigenvalues. Here, we named this Nc − dimension
space as E-space since its input coordinates were weighted by
the regression coefficients. By using the mapping operator M,
we mapped all original feature matrixes Vj into the E-space.
Therefore, every frame of the trajectories was described as an
Nc − dimension vector {B̂µ(Eq)}µ=1,...,Nc .

Trajectory Discretizing
The clustering of conformations was performed in the
E-space, i.e., based on the analysis of the projection vectors
{B̂µ(Eq)}µ=1,...,Nc . Similar to the TM method (Gong and Zhou,
2010; Zhang et al., 2017), every trajectory was divided into a lot
of isometric pieces, and the similarity between each two pieces
was defined by their average vectors:

S
(
t, t′

)
=

∑
i[Bi(t)Bi(t

′)+ 1]√∑
i[Bi(t)Bi(t)+ 1] ×

√∑
i[Bi(t′)Bi(t′)+ 1]

(6)

Here, we replaced the vectors of frames by the average vectors
of trajectory pieces. It reduced the size of the similarity matrix
and cost of computation resource. In practice, the length of the
trajectory pieces can be varied in a reasonable range. The Robust

Perron Cluster Analysis (PCCA+) method (Roblitz and Weber,
2013), implemented in pyEMMA (Scherer et al., 2015), was used
to classify all pieces into Ns states based on the similarity matrix.
Here, the number of states Ns was determined by the distribution
of the eigenvalues of the similarity matrix (Roblitz and Weber,
2013). The Markov transition matrix P was obtained based on
the discretized trajectories (Prinz et al., 2011). Since P is a row
stochastic matrix, its largest left eigenvalue is 1. If there is a unique
stationary distribution, it is true for our case, then the largest
eigenvalue and the corresponding eigenvector is unique too. As
the theory of stochastic process, the stationary distribution of the
Markov process corresponds to the distribution of equilibrium
state. More interestingly, the Markov transition matrix can also
be used to reveal the dynamics of the system in non-equilibration
conditions (Reuter et al., 2018).

Brownian Dynamic Simulation
For Brownian dynamic simulation, Brownian particles in the
presence of a potential, U, are described by the Langevin equation

m
dv (t)
dt
= −∇U (x)− γv (t)+ ξ (t) (7)

where ξ(t) is a delta-correlated stationary Gaussian process with
zero-mean. A two-dimensional Brownian particle was simulated
on the surface with three potential wells in the toy model (see
Figure 2A). Here, the potential U(x) was defined as:

U (x) = −ε
{

cos (x)+ sin (x)+
1
2

cos
(
y
)
+ 2 cos (3x)

+2 exp

[
−20

(
x+

2
3
π

)2
− 2y2

]}
(8)

with scaling parameter ε = 40. Multiple trajectories were
generated from different initial sites randomly with extensive
long simulations.

MD Simulation
In the MD simulation, the termini of Ala12 were charged, which
leads to versatile metastable structures (Noe et al., 2007). All
atoms were modeled by using Amber03 force field. The molecule
was solvated in a rhombic dodecahedral periodic box with the
distance between the solutes and box boundary at least 10 Å.
The SPC water model was used for solvation (see Figure 3A).
The MD simulations were performed using the Gromacs package
4.6.5 (Hess et al., 2008). In the simulations, the covalent bonds
involving H atoms were constrained by the LINCS algorithm,
which allowed a time step of 2 fs. The long-range electrostatic
interactions were treated with the particle-mesh Ewald method
(Darden et al., 1993) with a grid spacing of 1.6 Å. The cutoff
for the van der Waals interaction was set to 10 Å. The previous
trajectory performed at high temperature was equilibrated by
MD simulations for 100 ps at a constant pressure of 1 bar and
a temperature of 500 K using Berendsen coupling (Berendsen
et al., 1984). Then, the production simulations were performed in
NVT ensemble at 500 K for 100 ns. All 50 systems extracted from
high-temperature simulation had been iterated 100 ns in NVT
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FIGURE 2 | EspcTM on dynamic of Brownian particle. (A) The energetic landscape of the toy model. Here, the potential function of the landscape was
−ε{cos(x)+ sin(x)+ 2 cos(3x)+ 1

2 cos(y)+ 2 exp[−20(x + 2
3π)

2
− 2y2

]}. Three potential wells from left to right were S0, S1, and S2. The well of S1 was deeper
than that of the other two states, and the barrier between S0 and S1 was much higher than that between S1 and S2. The black line on the top and right panel
represents the potential along line y = 0 and x = 0, respectively. (B) Red, green, and blue dots represent three states of the snapshots of trajectories. The
histograms of each state were shown on the top and right panel in different colors. (C) Multiple correlation coefficients of ε̃K and all 40 conformational coordinates as
a function of cutoff frequencies. Here, the maximum of the multiple correlation coefficient located at cutoff frequency equaling 8.0× 10−4τ−1. (D) The regression
coefficients for all 40 features. The coordinates corresponding to basis functions sin(x), cos(x), and cos(2x) possessed large weights in the rescaling. (E) The
eigenvalues in the PCA of trajectory-mapped vector. (F) A typical discretized trajectory.

ensemble at 300 K and recorded with time interval τ = 5 ps.
There are 20,000× 50 frames in the analysis.

RESULTS AND DISCUSSION

The EspcTM method was first illustrated with a toy model,
i.e., the dynamics of a Brownian particle on a two-dimensional

surface. Then, it was applied to investigate the conformational
dynamics of alanine dodecapeptide (Ala12), and a transition
network between metastable states of Ala12 was constructed.

Toy Model
In the toy model, a two-dimensional Brownian particle was
moving in the field with three potential wells (see Figure 2A).
Ten extensive long simulations, which started from different sites
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FIGURE 3 | EspcTM on a typical trajectory of Ala12. (A) The typical conformation of Ala12 represented in sticks with labels of the 10 pairs of dihedral angles ϕ and ψ ,
solvated in SPC water molecules represented in gray surface. The inset figure shows the zoom-in of the segment contenting ϕ2∼5 and ψ2∼5. (B) Multiple correlation
coefficients of ε̃K and all 40 conformational coordinates as a function of the cutoff frequency. The maximum of the multiple correlation coefficient located at a cutoff
frequency equaling 45 MHz. (C) The regression coefficients for all 40 features. Most coefficients with large value correspond to the basis functions (sine and cosine)
of ϕ2∼5. (D) The eigenvalues in the PCA of trajectory-mapped vector.

randomly, were performed to make the distribution of samples
close to the theoretical values. Figure 2B shows the positions
and distribution of the samples of these trajectories. In the
analysis, sin(nθ) and cos(nθ)were selected as the basis functions.
θ indicates the coordinate x or y, and n = 1, . . . , 10 for every
coordinate in the EspcTM analysis of the toy model. Hence,
the trajectories were mapped into a 40-dimensional functional
space, e.g.,

sin (x) , sin
(
y
)
, cos (x) , cos

(
y
)
, . . .

sin (10x) , sin
(
10y

)
, cos (10x) , cos

(
10y

) (9)

All values of the trajectories were normalized in every dimension
before they were fitted with ε̃K.

Figure 2C shows the multiple correlation coefficient between
ε̃K and the values of these 40 features as a function of the
cutoff frequency. There was a maximum multiple correlation
coefficient at K = 17, and ε̃ = ε̃17

− ε17 was selected as the
effective energy. Figure 2D shows regression coefficients between
the energy ε̃17 and features. As shown in Figure 2D, the basis
functions sin(x), cos(x), and cos(2x) possessed large weight in
the rescaling. It should be noted that to consider the effect of
the random force by solvation in Brown dynamics, additional
energies with Gaussian distribution were added into the energies

of the Brownian particle, so that information of potential was
mixed with white noise in linear regression. PCA was performed
on these effective energy rescaled samples. Figure 2E shows the
eigenvalues in descending order. It is obvious that apart from the
first two eigenvalues, other eigenvalues were very small. The first
two eigenvectors were selected to compose the E-space of the toy
model, as well as the mapping operator. By using the mapping
operator M, composed by these two eigenvectors, all samples
were mapped into the E-space.

By using the PCCA+ algorithm, all samples had been grouped
into three states (shown by colored dots in Figure 2B). As
shown in Figure 2B, these three states corresponded to the
three wells in the potential. A discretized trajectory who visited
all three states is shown in Figure 2F. The Markov transition
matrix P was obtained based on the discretized trajectories (see
Table 1). The stationary distribution, which corresponds to the
distribution of the thermodynamic equilibrium, was obtained
by the eigen-decomposition of the Markov transition matrix
and shown in Table 1. As a benchmark, the distribution of
equilibrium state predicted by the theory of statistical physics is
shown in Table 1 as well. It is obvious that the result obtained
by the EspcTM method is similar to the theoretical values.
Furthermore, the Markov transition matrix contains kinetic
information about the system as well. The lifetime of these states,
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TABLE 1 | Transition matrix and stationary distribution of the Markov model,
distribution obtained by theory of equilibrium statistical physics, and lifetime of
states for the dynamics of a Brownian particle.

Transition matrix P Stationary
distribution

Theory Lifetime (100τ )

S0 S1 S2

S0 0.882 0.069 0.049 0.184 0.186 8.5

S1 0.024 0.858 0.118 0.532 0.538 7.08

S2 0.032 0.221 0.747 0.284 0.276 3.99

which were calculated by the diagonal elements of the transition
matrix, is also shown in Table 1. It was found that the state
S0 possessed the lowest occurring probability but the longest
lifetime. This indicated that the kinetically stable state was not
the thermodynamically stable state for this dynamic system.

Dynamics of Alanine Dodecapeptide
Alanine dodecapeptide (Ala12), consisting of 12 alanine residues,
is a typical model molecule for MD study (Noe et al., 2007).
The MD trajectories of an Ala12 was used as an example to test
the EspcTM method. According to the previous study (Gong
and Zhou, 2010; Gong et al., 2015), sine and cosine of backbone
dihedral angles (ϕ, ψ)were used as basis functions in the analysis
of the MD trajectories of Ala12. Here, ϕ is defined as the backbone
dihedral angle around the bond connecting Cα and N atoms and
ψ is defined as the backbone dihedral angle around the bond
connecting Cα and carbonyl carbon atoms (Hovmoller et al.,
2002). There are 10 pairs of dihedral angles ϕ and ψ for Ala12
(see Figure 3A), and 40 basis functions were finally included in
the analysis, e.g.,

sin (ψi) , sin (ϕi) , cos (ψi) , cos (ϕi) (10)

Here, i = 1, . . . , 10 indicates the index of dihedrals of Ala12 from
N-terminal to C-terminal. Based on these basis functions, the
EspcTM was first applied on a typical trajectory and then on all
the 50 trajectories.

State Transition of a Typical Trajectory
Figure 3B shows the result of the multiple linear regression
between ε̃K and functions of the dihedral angles of Ala12 for a
typical trajectory. There is a maximum of the multiple correlation
coefficient, similar to the case of movement of Brownian particle,
at 45 MHz (see Figure 3B). Therefore, the summary of the first
10 lowest frequencies of energy ε̃10 was used in the analysis. The
regression coefficients between the energy ε̃10 and functions of
dihedral angles are shown in Figure 3C. It was found that most
factors with large weight corresponded to the basis function (sine
and cosine) of ϕ2∼5 (see the inset figure of Figure 3A). This
indicates that the structure change near N-terminal contributes
more to large-scale conformational change than C-terminal in
this typical simulation trajectory.

Figure 3D shows the eigenvalues of weighted samples of this
trajectory. As shown in Figure 3D, the following analysis on
this trajectory was performed in the space made up of the first
six eigenvectors. Figure 4A shows the similarity matrix and the

representative structure of the trajectory. It was obvious that
there were four metastable states in the trajectory. The discretized
trajectory is shown in the middle panel of Figure 4B. The
secondary structure of the peptide was analyzed by DSSP (Kabsch
and Sander, 1983; Touw et al., 2015) and shown in the top panel
of Figure 4B. The simulation started from a structure with some
of the N-terminal α-helix formed (also see the representative
structure), i.e., the state Sb. This state was unstable and only
existed about 6.4 ns in the 100-ns trajectory. The α-helix formed
in this state acted as a nucleus that promoted the formation of
the α-helix of the C-terminal of the Ala12. Then, the trajectory
transited to the Sa state, in which most of the residues of the
peptide formed the α-helix structure. State Sa was more stable
than state Sb. It appeared two times in this trajectory and existed
about 58.0 ns in total. However, between the two occasions of the
state Sa, the α-helix of two termini had been temporally uncoiled
and interacted with the α-helix in the middle of the peptide, i.e.,
the state Sc. This state is unstable and existed only for 16.4 ns in
this trajectory. After the state Sc, the peptide folded to the state Sa
again. Finally, the peptide unfolded into a random coil, i.e., state
Sd, with low structural similarity.

The bottom panel of Figure 4B shows effective energy as a
function of time for this trajectory. It was calculated from the total
energy of the whole biosystem, including the peptide and water
molecules. Initially, the energy caused by the conformational
change of the peptide was concealed by the noise of the dynamics
of water molecules as well as the fluctuation of itself. It seemed
that the total energy (shown in gray) varied randomly and
dramatically. However, by using the FFT and regression, we
obtained the effective energy (shown in red). It was synchronous
with conformational change and state transition of the peptide.
More interestingly, the effective energy of stable state, state Sa,
was much lower than the other three states, in which most
of the α-helix was formed. This implied that the stability of
this state was supported by energy. On the other hand, the
state Sd possessed the highest energy and large conformational
variations. This implied that the unfolded coil structure was
stabled by the entropy.

Transition Network of Ala12
To obtain statistically significant conclusions, we performed the
analysis of EspcTM method on 50 MD trajectories. Figure 5A
shows the result of the multiple linear regression between ε̃K and
functions of the dihedral angles of Ala12 for these 50 trajectories.
The maximum of the multiple correlation coefficient was found
at the frequency equal to 15 MHz. The summation of the first
four lowest frequencies of energy ε̃4 was used in the analysis.
Figure 5B shows the regression coefficients between the energy ε̃4

and features. It consistently showed that ϕ2∼5 played important
roles in the dynamics of the Ala12 though there was a phase
shift on ϕ2∼5 caused small weights on the cosine of ϕ2∼5.
This indicates that local structure changes near the N-terminal,
especially the ϕ2∼5, were the major contributors to the slow
conformational change of the Ala12. According to the result of
the PCA on the weighted feature space, the clustering algorithm
was performed in the space made up of the first 10 eigenvectors,
whose sum was over 90% sum of variation (see Figure 5C). Every
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FIGURE 4 | State transition of a typical trajectory of Ala12. (A) Similarity matrix and typical conformations in the metastable states and their transitions. The color
indicated the degree of similarity. Red means high similarity. The transitions were implied from the transition probability matrix. (B) Secondary structure analysis of the
typical trajectory by DSSP was shown in the upper panel. The blue, green, yellow, and white patterns represented α-helix, bend, turn, and coil, respectively. The
discretized trajectory was shown in the middle panel. The states corresponded to the similarity matrix in panel (A). In the lower panel, the effective energy for this
typical trajectory was exhibited in the red dashed curve and the original potential energy was in the gray curve as background. Both curves shared the same x-axis
but with y-axis in different scales. The effective energy’s y-axis was on the left with an amplitude of about 20 kJ/mol, while the original potential energy’s y-axis was
on the right with an amplitude of about 1.2× 103 kJ/mol. Here, both effective energy and original potential energy had been zero-centered.

FIGURE 5 | EspcTM on 50 trajectories of Ala12. (A) Multiple correlation coefficients of regression between ε̃K and features as a function of cutoff frequencies. The
maximum was at 15 MHz. (B) The regression coefficients for all 40 features. (C) The eigenvalues in the PCA of trajectory-mapped vector. (D) The observed
probability for each state in all 50 trajectories.
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TABLE 2 | Transition matrix and stationary distribution of the Markov model and lifetime of states for the dynamics of Ala12.

Transition matrix Stationary distribution Lifetime (ns)

S0 S1 S2 S3 S4 S5

S0 0.610 0.276 0.038 0.031 0.036 0.009 0.114 2.61

S1 0.170 0.693 0.021 0.037 0.026 0.053 0.187 3.30

S2 0.042 0.037 0.758 0.115 0.030 0.018 0.103 4.16

S3 0.032 0.064 0.109 0.725 0.050 0.020 0.109 3.67

S4 0.031 0.038 0.024 0.042 0.798 0.067 0.131 4.97

S5 0.003 0.027 0.005 0.006 0.025 0.934 0.356 15.15

trajectory was divided into 100 pieces. Thus, there were 5,000
vectors, which represent 100× 50 trajectory pieces. Six states
were identified from these 50 trajectories.

Figure 5D shows the histogram of these six states. Here,
the state transitions were obtained from the 50 trajectories
with the lag time 1.0 ns. The transition matrix and stationary
distribution are shown in Table 2. It was found that the stationary
distribution obtained by the transition matrix was consistent
with the histogram. The state S5 had a much higher occurring
probability than that of other states in the equilibrium state.
Figure 6 displays these six states, represented by their typical
structures in cartoons, along with their average effective energy

FIGURE 6 | Dynamics network of Ala12. The metastable states were shown
by the cartoon structures of their typical conformations and rearranged by
their average effective energy in vertical. The size of circles around the pictures
indicated the occurring probability in the stationary mode. The arrows showed
the main transitions between six states in the equilibrium state. The pathway
was indicated by the color of the arrows. The transitions were shown in three
levels according to the transition frequency, i.e., ∼30, ∼10, and ∼5µs−1, and
indicated by the linewidth of the arrows.

in vertical. The unfolded states S0, in which peptide unfolded
into a random coil, possessed the highest energy and located at
the top of the figure. The folded state S5, in which the peptide
folded into α-helices, possessed the lowest effective energy and
located at the bottom of the figure. Between these two states, the
peptide was half-folded. In the state S1, a helix was formed in the
N-terminal of the peptide. In states S2, S3, and S4, some helices
were formed in the C-terminal. A remarkable gap between the
effective energy of state S4 and state S5 separated the folded state
from the other five states. This implied that the energy is the
reason for the stability of the folded state.

Furthermore, we obtain the dynamics and kinetics of the
system based on the transition matrix. Figure 6 shows the main
transition between six states in lines with arrows. The most
frequent transition, about 32 µs−1, occurred between the state
S0 and S1 due to the high flexibility of the peptide in these
two states. This high transition frequency made the lifetime
of these two states lower than that of states S2, S3, and S4,
though the occurring probabilities of these two states were a
little higher than the other three states. In the transition network,
there were two main folding pathways from the unfolded state
to the folded state. The fast folding pathway, which passed
through state S1 and was shown by green arrows, formed the
α-helices from the N-terminal to the C-terminal directly. The
slow folding pathway, which involved states S2, S3, and S4, was
shown by blue and red arrows and was more complex than
the fast one. In this pathway, the α-helices formed from the
C-terminal to the N-terminal, i.e., passed through states S3 and
S4 sequentially. The misfolded state S2 connected with state S3.
A detailed structural study showed that the structures of states
S2 and S4 were very similar. However, some misfolded residues
hindered the formation of the N-terminal helix in the state S2.
To reach the folded state, it must unfold into state S3. These
results indicated that the N-terminal helix plays a vital role in
the folding of the peptide in kinetics. It is consistent with the
aforementioned result of linear regression, that the ϕ2∼5 of the
peptide possessed large rescaling factors, as well as the results
by other experimental groups, that alanine-rich peptides folded
into the α-helix in the N-terminal at first (Millhauser et al., 1997;
Yoder et al., 1997). It must be noted that, as we mentioned before,
the biomolecules are intrinsically dynamic (Chodera et al., 2007)
and the unfolded states of the peptide were transferred to each
other frequently. These two pathways only described the major
folding process of Ala12. Some minor branches in the folding
pathways also existed.
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CONCLUSION

In this work, we introduced our EspcTM method by applying
it to investigate the movement of Brownian particle and
conformational dynamics of Ala12 in this work. In the study of
Brownian particle, by using the EspcTM method, we obtained
three states from simulation trajectories. The regions of the
states given by EspcTM are in accordance with the potential
wells of the landscape. In addition, the equilibrium distribution
obtained by the kinetic transition network-based Markov chain
theory was consistent with the theoretical result. In the study
of Ala12, a meaningful kinetic transition network was obtained
to describe the folding behavior of Ala12. The effective energy,
which was filtered from the total potential energy of simulation
trajectories by FFT and multiple linear regression, was shown to
be an efficacious order parameter to describe the conformational
change of Ala12. We showed that the folding process of Ala12
was synchronous with the change of effective energy. The folded
state, in which most of the residues were in helices, possessed the
lowest effective energy and was most stable in thermodynamics.
Two major folding pathways were also found in the kinetic
network. The N-terminal helix of the Ala12 was found to play an
important role in the folding of Ala12 in both thermodynamics
and kinetics. This is consistent with previous experimental
result. Thus, the EspcTM is expected to be a powerful tool
for studies of dynamics of complex systems and should be
applied to studies of dynamics of large biomolecule systems to
improve our understanding of the thermodynamics and kinetics
of biomolecular systems.

Technically, the EspcTM method is an analysis framework
based on the TM method. It identifies metastable states from
simulation data and constructs the transition network between
the states based on the theory of Markov chain. Different from
the TM method, we provided a de novo solution to obtain an
analysis space, named as E-space, to describe the slow processes
in the EspcTM method. This solution is based on a parameter-
free optimization approach. Thus, the EspcTM method is friendly
to inexperienced users. The E-space is independent from the

TM method. It is convenient to use it in the MSM method. For
the experienced users, especially those with knowledge on the
dynamics of system, they can set cutoff frequency manually as
well. Furthermore, as an extension of the EspcTM method, some
new transfer functions, such as logistic function and ReLU, can
also be used in the energy filter process. The wavelet analysis
method can be used in transforming the energy between time
domain and frequency domain.
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Theoretical analyses are valuable for the exploration of the effects of unnatural amino
acids on enzyme functions; however, many necessary parameters for unnatural amino
acids remain lacking. In this study, we developed and tested force field parameters
compatible with Amber ff14SB for 18 phenylalanine and tyrosine derivatives. The charge
parameters were derived from ab initio calculations using the RESP fitting approach and
then adjusted to reproduce the benchmark relative energies (at the MP2/TZ level) of the
α- and β-backbones for each unnatural amino acid dipeptide. The structures optimized
under the proposed force field parameters for the 18 unnatural amino acid dipeptides in
both the α- and β-backbone forms were in good agreement with their QM structures, as
the average RMSD was as small as 0.1 Å. The force field parameters were then tested
in their application to seven proteins containing unnatural amino acids. The RMSDs of
the simulated configurations of these unnatural amino acids were approximately 1.0 Å
compared with those of the crystal structures. The vital interactions between proteins
and unnatural amino acids in five protein–ligand complexes were also predicted using
MM/PBSA analysis, and they were largely consistent with experimental observations.
This work will provide theoretical aid for drug design involving unnatural amino acids.

Keywords: unnatural amino acids, charge parameters, Amber ff14SB, relative energy, molecular dynamics,
MM/PBSA

INTRODUCTION

As is well known, 20 natural amino acids are the main building blocks of proteins, the
macromolecules that perform a broad spectrum of functions within organisms (Qin et al., 2015).
Unnatural amino acids (UAAs) also called noncanonical amino acids are analogs or metabolic
intermediates of the 20 natural amino acids with only minor structural differences—often just
a chemical functional group—which is beneficial for analyzing their effects on enzyme functions
(Zhao et al., 2020). Since UAAs are of high chemical diversity, possess strong site specificity, and
introduce little disturbance to the protein structure, it is widely applied in protein engineering,
virus vaccine development, and medical therapeutics (Minnihan et al., 2011; Si et al., 2016;
Young and Schultz, 2018). For instant, biological catalysis and reaction mechanism of tyrosine
in aminoacyl-tRNA synthetases (aaRS) were investigated through the incorporation of UAA
fluorotyrosine, whose pKa was tuned by changing the number and the site of fluoro-substitution
(Minnihan et al., 2011). Si and co-workers employed the UAA Nε-2-azidoethyloxycarbonyl-l-
lysine to produce replication-incompetent viral vaccines by introducing premature termination
codon into the genome of influenza A virus, and these viral vaccines prevented further damage
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inside conventional cells via immune response (Si et al., 2016).
In addition, UAAs are utilized in the bio-orthogonal reactivity.
For example, UAA-incorporated proteins (such as antibodies,
growth factors, and cytokines) specifically interacted with diverse
moieties to form bispecific antibodies, antibody-drug conjugates,
and pegylated proteins, which provided effective treatments for
various clinical testing (Young and Schultz, 2018).

The incorporation of UAAs into canonical proteins expanded
significantly the genetic code library (Xiao et al., 2015). Natural
UAAs occur commonly in plants, microorganisms, and animals,
while those in human organisms must be chemically synthesized
(Zou et al., 2018). Typically, an orthogonal amber suppressor
aaRS/tRNA pair has been utilized to guide the incorporation
of UAAs in response to a unique nonsense codon (Santoro
et al., 2002; Liu and Schultz, 2010). Experimentally, many studies
have reported the incorporation of UAAs into the designated
sites of target proteins by means of popular residue-specific
and site-directed mutagenesis approaches (Sakamoto et al., 2002;
Fleissner et al., 2009; Xiao et al., 2015; Yuet et al., 2015). For
example, Yuet et al. described a method for residue-specific
labeling that enabled the use of the UAA p-azido-l-phenylalanine
(AzF) to tag and analyze protein metabolism in specific cells
based on the phenylalanyl-tRNA synthetase (Yuet et al., 2015).
Schultz et al. utilized site-directed mutagenesis to mutate Val216
of TEM-1 β-lactamase into p-acrylamido-phenylalanine (AcrF),
which enhanced the catalytic activity of the enzyme (Xiao et al.,
2015). Although the two complementary methods involved in
residue-specific and site-directed mutagenesis are widely used to
incorporate UAAs into proteins, they often contend with certain
technical difficulties.

To compensate for experimental obstacles, theoretical
computational methods validated by experimental data offer
a novel way to screen potential analogs for natural amino
acids. A number of computational methods to study proteins
containing UAAs have been successively reported by other
groups in recent years (Renfrew et al., 2012; Petrov et al., 2013;
Khoury et al., 2014a,b). For example, Renfrew et al. constructed
a rotamer library containing 114 UAAs to study the interface
of calpain and calpastatin, which was evaluated using a scoring
function based on the Rosetta program (Leaverfay et al., 2011;
Renfrew et al., 2012). New GROMOS54a7 force field parameters
were developed by the Zagrovic group for processing post-
translationally modified amino acids by means of molecular
dynamics (MD) simulations executed by the GROMACS package
(Petrov et al., 2013). In addition, a tool called “Forcefield_NCAA”
created by the Floudas lab is now available for generating UAA
parameters related to a library of 147 noncanonical amino acids
compatible with the Amber ff03 parameters (Khoury et al.,
2014a,b).

The aim of our work was to develop and test force field
parameters for phenylalanine and tyrosine derivatives, most
of which are not included in the reported literature. The
structures of the involved UAAs in this study are displayed in
Figure 1. The newly developed parameters were then applied
to mutant proteins or protein–ligand interactions involving
UAAs, as listed in Supplementary Table 1, by MD simulations
and molecular mechanics–Poisson Boltzmann solvent accessible

surface area (MM/PBSA) calculations. Based on comparison
with experimental data as the benchmark, the simulation results
indicate that the new force field parameters can predict protein
structures with incorporated UAAs well and generally describe
the exact interplay that occurs in the binding pockets of proteins
with UAAs as substrates.

SIMULATION STRATEGIES

We first constructed dipeptides of the α- and β-conformer of
each UAA in the form of Ace-XXX-NMe using GaussView
6 (Dennington et al., 2016) (Step 1 in Figure 2). Here, XXX
represents the analogs of phenylalanine and tyrosine shown in
Figure 1. It is a popular way to employ α- and β-backbones of
amino acids to fit parameters in current classical force fields,
such as AMBER, CHARMM, and OPLS (Hornak et al., 2006; Best
et al., 2012; Robertson et al., 2015), as these backbones dominate
in the sterically allowed structural regions of the Ramachandran
plot (Ramachandran et al., 1963). For the constructed dipeptides,
structural optimization was performed at the B3LYP/6-31G∗

level, and single-point energy calculations were executed at the
MP2/cc-pVTZ level using the Gaussian 16 program (Step 2 in
Figure 2) (Frisch et al., 2016). Based on the optimized structures
obtained at the B3LYP/6-31G∗ level, the electrostatic potential
(ESP) charges at the HF/6-31G∗ level were further evaluated;
this is a popular method to produce ESP charges because of the
accurate reproduction of free energies of solvation and liquid
enthalpies (Cornell et al., 1993; Wang et al., 2000). In Step 3,
restrained electrostatic potential (RESP) charges were generated
based on the ESP-fit charge model (Cornell et al., 1995).
The general Amber force field (GAFF) is a useful molecular
mechanics and is designed to be suitable for organic molecules,
especially drug-like small molecules (Wang et al., 2004). In the
following stage, we thus produced bonded and non-bonded
parameters using GAFF based on the Antechamber tool (Case
et al., 2020). The newly generated parameters can be transferred
into the GMX format using the ACPYPE.py script for subsequent
MD simulations in the GROMACS software package (Sousa da
Silva and Vranken, 2012). In Step 5, the initial parameters of
the structures of the α- and β-conformers of each UAA were
tested. Accordingly, we optimized the charge parameters of the
18 analogs by estimating the relative energies of each UAA pair
compared with the benchmark of quantummechanics (QM) data
at the MP2/cc-pVTZ level. In the final step, MD simulations
and MM/PBSA calculations on the proteins or protein–ligand
complexes involving UAAs were further performed to test the
new parameters determined in this work. The complete workflow
of parametrization is shown in Figure 2, and the detailed
methodology for producing the parameters is described below.

QM Calculations
The 18 UAAs shown in Figure 1 are analogs derived from the
amino acids of phenylalanine (F) and tyrosine (Y). Based on the
18 UAAs, we constructed dipeptides of two backbone conformers
for each UAA blocked with N-methyl and acetyl groups in the
form of Ace-XXX-NMe in GaussView 6 (Dennington et al.,
2016). The two backbone conformers were designed in the forms
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FIGURE 1 | Training set of 18 UAAs: analogs of phenylalanine (No. 1–8) and tyrosine (No. 9–18).
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FIGURE 2 | Workflow for parametrization of the 18 UAAs. The diagram describes the current protocol for parameter derivation and testing for the selected
phenylalanine and tyrosine derivatives. Key words for each step are indicated in bold.

of an α-helix (φ = −60◦, ψ = −40◦) and β-strand (φ = −180◦,
ψ = 180◦). Structural optimizations were performed at the
B3LYP/6-31G∗ level (Mondal et al., 2007), followed by single-
point energy calculations at the MP2/cc-pVTZ level (Harder
et al., 2016). For comparison, an additional method for the
structure and energy calculations was performed at the M06-2X
level (Robertson et al., 2015). The pseudopotential for iodine-
containing systems was assigned as the SDD basis set in this
work (Yurieva et al., 2008). The missing van der Waals (vdW)
radius for iodine atoms was chosen as the Pauling radius (2.15 Å)
(Pauling, 1939). The QM calculations were performed using the
Gaussian 16 program (Frisch et al., 2016).

Energy Model
The total pair potential energy used in this work is written as a
sum of terms as follows:

Etotal = Ebond + Eangle + Edihedral + Ees + EvdW (1)

Our goal is to develop UAA charge parameters that are
compatible with the Amber ff14SB parameter set for the 20
natural amino acids. The energy function (Equation 1) from
the Amber force field is thus employed here (Maier et al.,
2015). Generally, the vdW radius and epsilon parameters are
derived from experimental data (Weiner et al., 1984). The charge
parameters were adjusted using the protocol described below.

Parameter Optimization
The partial charges were fitted using RESP charges obtained at
the HF/6-31G∗ level (Cornell et al., 1993, 1995; Wang et al.,
2000). The initial bonding and vdW parameters were generated
from GAFF using the Antechamber module in AmberTools20
(Case et al., 2020). The charge sets of the Ace and NMe groups
are identical to the Amber ff14sb force fields. Together, we used
bonded and non-bonded parameters to calculate the structures
and relative energies of the α- and β-conformers of the 18
UAAs. By comparing the QM structures and relative energies,
we adjusted the charge parameters of the UAA backbones and
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side chains until good accordance was achieved with the QM
data in terms of the root-mean-square (RMS) deviation, as shown
in Equation 2.

RMS =

√

√

√

√

√

N
∑

i=1

(

REQM(i)− REour(i)
)2

N
(2)

where REQM(i) and REour(i) are the relative energies calculated
by QM and the new parameters developed in our work for
the ith training set, respectively, and N is the total number
of training sets. We minimized the RMS values to obtain the
charge parameters.

MD Simulations
MD simulations were performed using the 2019 version of the
GROMACS program (Abraham et al., 2015). We chose the
Amber ff14SB force field for proteins composed of natural amino
acids (Maier et al., 2015). For the UAA components, the new
parameters developed in this work were used. We placed the
initial systems in the center of a cubic box 10 Å from the
box edge. The box was then filled with a water solvent using
the TIP3P water model (Jorgensen et al., 1983). The water
molecules were randomly replaced by Na+ and Cl− ions to
a 0.1M concentration. For each model, energy minimization
with a maximum of 5,000 steps was carried out without any
restraints. After optimization, two short 200 ps MD simulations
in the NVT and NPT ensembles were successively performed
with the heavy-atom position restraint at a force constant of 500
kcal/(mol·Å2). The position restraints were gradually released via
four steps of 100 ps NPT simulations with force constants of
250, 100, 50, and 10 kcal/(mol·Å2) for the heavy atoms. Finally,
20 ns production MD simulations were performed in the NPT
ensemble. The time step was set to 2 fs, and the temperature
and pressure were kept constant at 300K and 1 bar, respectively.
In the production runs, the velocity-rescaling thermostat was
applied for temperature coupling (Berendsen et al., 1984; Bussi
et al., 2007), while the Parrinello–Rahman approach was applied
for constant pressure control (Parrinello and Rahman, 1981;
Nosé and Klein, 1983). The SHAKE algorithm was used to
constrain covalent bonds involving hydrogen atoms (Andersen,
1983; Miyamoto and Kollman, 1992). The particle mesh Ewald
method was applied to the calculation of long-range electrostatic
interactions (Darden et al., 1993). The cutoff values for vdW and
electrostatic forces were set to 12 Å, and the simulation structures
were saved every 100 ps to obtain the trajectories for analysis.

MM/PBSA Estimation
In general, the binding free energy for protein–ligand
interactions can be expressed as

1Gbind = 1EvdW +1Eele +1Gsolv − T1S (3)

where1EvdW and1Eele are the non-bonded terms of the system
total energy (1EMM) due to vdW and electrostatic interactions,
respectively. The bonded terms of 1EMM were assumed to be
zero in the single-trajectory setup used in this procedure because

of its simplicity and accuracy similar to those of amulti-trajectory
setup (Genheden and Ryde, 2015;Wang et al., 2018).1Gsolv is the
solvation free energy required to move the solute from a vacuum
(dielectric constant of 1) into the solvent (dielectric constant of
80). It can be further decomposed into polar (1Gpb/solv) and
nonpolar (1Gnp/solv) contributions to solvation. T and 1S are
the absolute temperature and entropy, respectively. However, the
entropy term was ignored in this study because of the significant
time consumption, uncertainty of the contributions to the total
free energy, and small improvement by comparison with the
experimental results (Yang et al., 2011; Kumari et al., 2014).

Furthermore, the binding free energy decomposition of each
residue was analyzed to understand the key residue impact at
the activation region of the protein–inhibitor interaction. Hence,
the free energy of each residue (1Gbind

res ) can be divided into
three terms:

1Gbind
res = 1EMM

res +1G
pb/solv
res +1G

np/solv
res (4)

where1EMM
res is the sum of the electrostatic and vdW interactions

per residue in a vacuum, and 1G
pb/solv
res and 1G

np/solv
res are

the polar and nonpolar parts of the per-residue solvation free
energy, respectively.

In this work, the successive 20 ns trajectories produced
were used to perform MM/PBSA calculations on the free
energies using the g_mmpbsa tool (Kumari et al., 2014). Here,
the system coordinates were saved for every 1 ns used for
MM/PBSA analysis such that 20 snapshots for each trajectory
were considered to calculate the binding free energies of the
protein–inhibitor interactions. The Poisson–Boltzmann (PB)
equation was applied to calculate1Gpb/solv (Honig and Nicholls,
1995). The temperature and grid spacing were set to 300K and
0.5 Å, respectively, and the concentration of charged ions was
0.1M with radii of 0.95 and 1.81 Å for Na+ and Cl−, respectively.
The solvent accessible surface area (SASA) model was employed
to estimate the nonpolar contributions (1Gnp/solv) from the
function γSASA + b (Sitkoff et al., 1994). The radius value for
SASA was 1.4 Å, and the constants γ and b were set to default
values of 0.00542 kcal/(mol·Å2) and 0.92 kcal/mol, respectively.

RESULTS AND DISCUSSION

Initial Parameters Applied to
α-/β-Conformer Optimization
After the initial parameters (hereafter referred to as cycle-1
parameters) involved in the bonded and non-bonded terms
were generated, we performed structural optimizations for the
α-and β-conformers of each UAA. For comparison with the
B3LYP/6-31G∗ structures, we depict the optimized structures
of the 18 UAA dipeptides in the α-state from the initial
parameters in Figure 3; the minimized structures for the β-
state are shown in Supplementary Figure 1. As shown, the
two backbone conformations in the α- and β-states of the
training set are in good agreement with the QM structures.
The initial parameters also performed well for the side-
chain structures. Additionally, the determined heavy-atom and
all-atom RMS displacements (RMSDs) for the 18 training
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FIGURE 3 | Overlap of 18 α-backbone conformations after energy minimization of the QM (B3LYP/6-31G*) structures. N, O, and H atoms are shown in blue, red, and
white, respectively. C atoms from the simulation and QM structures are shown in green and orange, respectively. F(17 and 18), Cl(15), Br(5), and I(6, 16) atoms are
shown in cyan, green, red, and magenta, respectively.

sets from Table 1 are nearly <0.1 Å (refer also to the
RMSD distributions in Supplementary Figure 2). Among the
systems, system 13 has the greatest RMSDs of 0.083–0.116
Å. Meanwhile, Supplementary Figure 2 shows that the all-
atom RMSDs are comparable to the heavy-atom RMSDs but
fluctuate to slightly higher values. Overall, the initial parameters
yield good results for the 18 training sets, especially the
bonded connections, but further improvements to the energies
are necessary.

Testing of Optimized Parameters
Displayed in Table 2 are the relative energies for the 18 training
sets. We selected the relative energies evaluated at the MP2/cc-
pVTZ//B3LYP/6-31G∗ level of theory as a benchmark (Mondal
et al., 2007; Harder et al., 2016). For comparison, one density
functional theory (DFT) method with a small basis set at the
M06-2X/6-311++G∗∗//M06-2X/6-31+G∗ level was used in this
work (Robertson et al., 2015). For the parameter optimization
process, four cycles were performed. First, we fixed the charges
of the Ace and NMe groups in the 18 UAA dipeptides to
remain the same as the corresponding Amber ff14sb force field
parameter sets and made minor adjustments to the backbone
RESP charges. As shown in Table 2, the relative energies from
the cycle-1 parameters show a correlation of 0.8212 compared

with the MP2 energies, with a larger RMS deviation of 4.86
kcal/mol. In the next two cycles, we chose to treat the backbones
and side chains as α-helical RESP charges and averaged RESP
charges in the α- and β-states, respectively. In the third cycle
adjustment, the RMS decreased to 2.33 kcal/mol with a 0.8072
correlation. At this point, we noted that the relative energies of
most systems were comparable to the benchmark data except for
those of systems 4, 9–12, 17, and 18. Therefore, the parameters
for these systems were further optimized. In the final procedure,
we chose the β-conformational charges from the first cycle as
the determined parameters for systems 4 and 18. For systems
9–12 and 17, different proportions between the α- and β-
conformational RESP charges were ultimately treated (see the
footnotes in Table 2). For the remaining systems, we employed
the averaged charges in the α- and β-states. Eventually, we
observed a strong correlation between our work and the QM
data, with R2 = 0.9407 (Supplementary Figure 3). Therefore, the
parameters from the fourth cycle were employed in subsequent
calculations. Although the partial charges were obtained by fitting
to the RESP of independent conformations for each UAA, the
partial charges of the atoms in their common structures are quite
close to each other (see Supplementary Material). Note that
these UAAs are phenylalanine and tyrosine derivatives and share
a common structure. The observation of such small differences
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TABLE 1 | Initial parameter test for the 18 training sets evaluated by heavy-atom
and all-atom RMSDs.

Training set Heavy-atom RMSD (Å) All-atom RMSD (Å)

α-Backbone β-Backbone α-Backbone β-Backbone

1 0.041 0.052 0.045 0.059

2 0.072 0.055 0.083 0.060

3 0.054 0.052 0.051 0.053

4 0.046 0.039 0.043 0.046

5 0.068 0.052 0.067 0.058

6 0.080 0.042 0.079 0.048

7 0.084 0.041 0.082 0.053

8 0.084 0.045 0.082 0.057

9 0.046 0.046 0.048 0.053

10 0.044 0.042 0.048 0.048

11 0.054 0.045 0.060 0.051

12 0.064 0.048 0.068 0.059

13 0.096 0.083 0.116 0.094

14 0.056 0.047 0.058 0.055

15 0.073 0.055 0.074 0.063

16 0.072 0.058 0.075 0.065

17 0.067 0.040 0.069 0.046

18 0.046 0.039 0.047 0.045

indicates that the obtained RESPs for these UAAs are reliable and
the charge parameters are well converged.

In addition, we noted that the β-backbone conformation of
each UAA is more stable than the α-backbone as predicted by
all employed methods. Here, our work shows a more favorable
RMS deviation of 0.33 kcal/mol compared with M06-2X with
an RMS deviation of 1.08 kcal/mol. Additionally, existing charge
parameters from a reference were also tested on reported systems
7, 9, 11, and 13 (Khoury et al., 2014b). The relative energies
of these four systems are 5.74, 8.52, 8.05, and 4.40 kcal/mol
obtained from the reported parameters, which are comparable to
those from the MP2 data of 6.76, 6.86, 6.79, and 8.26 kcal/mol,
respectively, but produce absolute errors of approximately 1.5
kcal/mol or higher (Supplementary Table 2). Compared with the
MP2 energies, as also shown in Supplementary Table 2, the RMS
deviations obtained from the reference and our work were 2.25
and 0.38 kcal/mol, respectively, for these four systems. Therefore,
the energetic performance of the new parameters determined in
our work results in more satisfactory predictions. In addition, the
structural optimizations from the cycle-4 parameters were again
tested on the 18 dipeptides in the α- and β-states. Comparisons
of heavy-atom RMS distributions between cycles 1 and 4 are
provided in Supplementary Figure 4, which clearly shows that
the new parameters produce smaller heavy-atom RMS deviations
than the initial parameters. Overall, the new parameters show
a good performance in terms of structural optimization and
relative energy calculations for the 18 UAA models based on
comparison with QM results, indicating that the new parameters
determined in this work are appropriate for performing further
tests via MD simulations.

TABLE 2 | Relative energies (kcal/mol) for the α- and β-conformers of the 18 UAA
dipeptides obtained from QM calculations and our work.

Training set MP2a M06-2Xb Our work

Cycle 1 Cycle 2 Cycle 3 Cycle 4c

1 6.50 7.39 11.07 2.61 6.72 6.72

2 6.93 7.72 10.78 3.34 7.12 7.12

3 6.35 7.13 11.14 1.96 6.70 6.70

4 6.05 7.30 6.63 0.01 3.52 6.63

5 6.45 7.28 10.11 2.01 6.31 6.31

6 6.53 7.38 10.56 2.44 6.55 6.55

7 6.76 7.58 10.36 2.77 6.76 6.76 (5.74)

8 6.77 7.54 10.06 3.18 7.06 7.06

9 6.86 7.62 12.78 5.56 9.57 7.00 (8.52)

10 6.89 9.74 12.40 5.54 9.06 6.77

11 6.79 7.54 12.32 4.33 8.22 7.10 (8.05)

12 8.02 8.90 15.12 6.34 11.08 7.93

13 8.26 8.99 13.78 4.05 8.94 8.94 (4.40)

14 7.12 8.08 14.38 2.44 7.70 7.70

15 7.44 8.37 12.76 1.80 7.58 7.58

16 7.53 8.42 12.88 2.69 7.86 7.86

17 5.07 5.54 6.70 −6.75 0.47 4.96

18 4.80 5.34 4.45 −7.52 −1.53 4.45

dRMS MP2 – 1.08 4.86 5.68 2.33 0.33
eR2 (MP2) 0.7831 0.8212 0.6922 0.8072 0.9407

aMP2/cc-pVTZ//B3LYP/6-31G*.
bM06-2X/6-311++G**//M06-2X/6-31+G*.
cValues in parentheses were obtained using charge parameters taken from the literature

(Khoury et al., 2014b). The different proportions of charge parameters in the final cycle

are β/6 + α*5/6 for system 9, β/5 + α*4/5 for system 10, β/3 + α*2/3 for system 11, β/6

+ α*5/6 for system 12, β*7/8 + α/8 for system 17, β for systems 4 and 18, and β/2 + α/2

for the other systems.
dAll units for RMS deviations are kcal/mol.
eCorrelation between MP2 and the other methods involved in M06-2X and our work.

The relative energy (RE) is defined as Eα – Eβ.

Testing
MD Simulations of Proteins Containing UAAs
Seven isolated protein systems containing UAAs were selected
to identify the new parameters as the testing set. At present,
crystals composed of noncanonical amino acids have rarely been
recorded in the PDB. We attempted to search for the protein
structures covering UAAs related to phenylalanine and tyrosine,
which are T4 lysozyme (PDB ID: 3HWL) (Fleissner et al., 2009),
CaM-peptide (PDB ID: 6HCS) (Creon et al., 2018), modified
threonyl-tRNA synthetase (PDB ID: 4S0I) (Pearson et al., 2015),
sphingosine-1-phosphate lyase (PDB ID: 3MBB) (Bourquin et al.,
2010), birch pollen allergen Bet v 1.0101 (PDB ID: 4B9R) (Ackaert
et al., 2014), ketosteroid isomerase (PDB ID: 5D82) (Wu et al.,
2015), and acetyltransferase (PDB ID: 2Z10) (Sakamoto et al.,
2009). Each protein mainly contains one UAA, dominated by
secondary structures of α-helices, β-sheets, and γ-turns made
of natural amino acids. Among them, the UAAs ACF131,
AZF108, NIY150, CHY16, and IOY111 incorporated in the T4
lysozyme, CaM-peptide, Bet v 1.0101, ketosteroid isomerase,
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and acetyltransferase, respectively, are mainly located at the α-
helices. BFA11 and NIY5, 66, and 83 of the threonyl-tRNA
synthetase and Bet v 1.0101 are distributed in the β-sheet regions,
and AMY249 of sphingosine-1-phosphate lyase is located at the
γ-turn. The remaining five systems involving UAAs recorded
in the PDB are in regard to the protein–ligand interactions
(Supplementary Table 1) and will be discussed in the next
section, “MM/PBSA analysis of protein–UAA interactions.”

Here, we show each UAA fragment from the final MD
structure compared with the crystal structure in Figure 4, and
Table 3 displays the averaged heavy-atom RMSD values of the
UAAs and corresponding proteins in isolated systems. As shown
in Figure 4, the backbone and side chains of the UAAs in
the isolated proteins are generally well overlapped with the
experimental structures, although there are slight structural
derivations in the fragments of the ACF131 backbone and NIY66
side chain. Table 3 also shows that the averaged RMSDs for
ACF131 and NIY66 are the largest at 1.31 ± 0.11 and 0.95 ±

0.20 Å, respectively, corresponding tomoderate RMSDs of 1.94±
0.24 and 2.43 ± 0.29 Å for their whole proteins. Simultaneously,
we inspected the UAA motions by referring to one equilibrium
structure during MD simulations, as listed in Table 3 (column
3). Almost all the RMSDs of the UAAs are under 0.5 Å, with
only NIY5 showing a larger RMSD of 0.66± 0.30 Å. In addition,
we plotted the RMSD distributions for each UAA in the isolated
protein systems compared with the crystal structures over time
in Supplementary Figure 5. As shown, each trajectory reaches a
balance after 20 nsMD simulations. However, the RMSD of NIY5
decreased by <0.5 Å between 5 and 10 ns. After 10 ns, all the
UAAs reached equilibrium with RMSDs under 1.5 Å.

Additionally, the backbone conformations of seven UAAs in
their isolated proteins obtained from the new parameters during
the MD simulations were further investigated (Figure 5). As
shown in Figure 5E, only NIY5 of birch pollen allergen Bet v
1.0101 (PDB ID: 4B9R) inclines toward the more stretched β-
sheet backbone conformation during the MD simulation (black
symbols). Compared to the crystal structures, the calculated
backbone torsions of the remaining UAAs are generally well

consistent. The backbones of ACF131, AZF108, AMY249,
NIY150, CHY16, and IOY111 are in the form of α-helices, while
those of BFA and NIY5, 66, and 83 are formed by β-strands.

MM/PBSA Analysis of Protein–UAA Interactions
Aside from the isolated proteins containing UAAs found in
the PDB search, the UAAs were resolved as a ligand role in
protein–UAA interactions (Turner et al., 2006; Moor et al., 2011;
Takimoto et al., 2011; Li et al., 2013). To evaluate the quality
of the new parameters determined in this work, five systems of
protein–UAA interactions were studied by MM/PBSA analysis.
The complexes are p-bromo-l-phenylalanine (BRF) bound to
aaRS (PDB ID: 2AG6) (Turner et al., 2006); tRNAPhe with
3,4-dihydroxy-l-phenylalanine (DHF) (PDB ID: 3TEG) (Moor
et al., 2011); evolved PylRS charged with o-methyl-l-tyrosine
(OMY) (PDB ID: 3QTC) (Takimoto et al., 2011); tyrosine-tRNA
ligase mutant complexed with 3-methyl-tyrosine (MEY) (PDB
ID: 4HPW); and 3,5-difluoro-l-tyrosine (DFY) incorporated into

TABLE 3 | Averaged heavy-atom RMSDs (Å) with standard errors of the mean for
the UAAs and corresponding proteins in isolated systems.

UAA RMSD (Å) PDB ID

UAA fit to
crystal UAA

UAA fit to MD
UAA

Protein fit to
backbone

ACF131 1.31 ± 0.11 0.39 ± 0.39 1.94 ± 0.24 3HWL

AZF108 0.75 ± 0.11 0.28 ± 0.13 3.44 ± 0.31 6HCS

BFA11 0.22 ± 0.06 0.23 ± 0.07 1.75 ± 0.15 4S0I

AMY249 0.42 ± 0.12 0.23 ± 0.09 4.36 ± 0.48 3MBB

NIY5 0.72 ± 0.29 0.66 ± 0.30 2.43 ± 0.29 4B9R

NIY66 0.95 ± 0.20 0.40 ± 0.25 2.43 ± 0.29 4B9R

NIY83 0.30 ± 0.09 0.23 ± 0.08 2.43 ± 0.29 4B9R

NIY150 0.28 ± 0.07 0.31 ± 0.09 2.43 ± 0.29 4B9R

CHY16 0.26 ± 0.01 0.24 ± 0.10 2.80 ± 0.25 5D82

IOY111 0.15 ± 0.04 0.14 ± 0.04 2.02 ± 0.20 2Z10

FIGURE 4 | Structural alignment between crystal and MD stable structures of single UAAs in isolated protein systems. C atoms from the crystal and MD stable
structures are shown in green and pink, respectively. All N and O atoms are blue and red, and Cl and I atoms from CHY16 and IOY111 are orange and magenta,
respectively.
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tyrosine phosphorylation (PDB ID: 4HJX) (Li et al., 2013). In
addition, we added H and OH groups to the -NH and -C=O
termini, respectively, to achieve neutral UAA ligands. We made
minor modifications to the charge parameters of the terminal H
and OH groups; the modified terminal charges for the H and
OH groups of the five ligands BRF, DHF, OMY, MEY, and DFY
are listed in Supplementary Table 3. These charge parameters
should be more appropriate for UAAs when they are treated
as ligands.

Compared with the UAAs incorporated into isolated proteins,
the UAAs involved as substrates in protein–ligand interactions
seem to shift more obviously, particularly the backbone
structures (Figure 6). This may be due to the flexible UAA
structures acting as ligands to bind with the proteins. The
average RMSD values were also calculated to be larger, around
1.3 Å, as listed in Table 4. After choosing one equilibrium MD
structure as the reference, the averaged RMSDs for all UAA
ligands decreased to below 1.0 Å, suggesting good stability
in the simulation process. Supplementary Figure 6 plots the
RMSD distributions as a function of time for the five ligands
BRF, DHF, OMY, MEY, and DFY during the MD simulation
starting from the experimental structure set. As shown, the

DHF, OMY, MEY, and DFY ligands were well-balanced after 3
ns, whereas BRF reached another stable state after 10 ns. The
RMSD values of all the UAA ligands are in the vicinity of 1.5 Å,
showing stable movements over the initial structures. The final
whole structures also overlap well with the crystal structures, as
depicted in Supplementary Figures 7H–L, indicating that our
new parameters can reproduce the experimental structures of
these protein–UAA interactions.

TABLE 4 | Averaged heavy-atom RMSDs (Å) with standard errors of the mean for
UAAs and corresponding proteins in protein–ligand complexes.

UAA RMSD PDB ID

UAA fit to
crystal UAA

UAA fit to MD
UAA

Protein fit to
backbone

BRF 0.96 ± 0.37 0.83 ± 0.51 2.23 ± 0.15 2AG6

DHF 1.33 ± 0.16 0.81 ± 0.49 2.42 ± 0.15 3TEG

OMY 1.33 ± 0.27 0.87 ± 0.46 2.38 ± 0.20 3QTC

MEY 1.31 ± 0.38 0.61 ± 0.44 2.44 ± 0.22 4HPW

DFY 1.11 ± 0.27 0.47 ± 0.31 3.29 ± 0.30 4HJX

FIGURE 5 | φ/ψ backbone torsional statics for (A) ACF, (B) AZF, (C) BFA, (D) AMY, (E) NIY, (F) CHY, and (G) IOY during the MD simulations. Black hollow circles
describe the torsional distributions of φ/ψ over time, and black stars indicate the crystal data for the corresponding UAAs. Four NIY structures are contained in (E),
where black, red, blue, and green circles correspond to the backbone torsional distributions of NIY5, 66, 83, and 150, respectively, and the four colored stars indicate
the corresponding crystal structures.

FIGURE 6 | Structural alignment between crystal and MD stable structures of single UAAs in protein–ligand interactions. F and Br atoms from DFY and BRF are light
blue and dark red, respectively. The colors of other atoms are the same as in Figure 4.

Frontiers in Molecular Biosciences | www.frontiersin.org 9 December 2020 | Volume 7 | Article 60893140

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Wang and Li Unnatural Amino Acid Parameters

Further, we used the MD structures obtained from the new
parameters to calculate the five protein–UAA complexes. Table 5
shows the binding free energies of aaRS–BRF (PDB ID: 2AG6),
tRNAPhe-DHF (PDB ID: 3TEG), PylRS–OMY (PDB ID: 3QTC),
tRNATyr-MEY (PDB ID: 4HPW), and tyrosine phosphorylation
(F2YRS)–DFY (PDB ID: 4HJX) based on MM/PBSA analysis.
The binding free energy of 3TEG is the highest at−21.3 kcal/mol,
while the weakest binding affinity of −6.4 kcal/mol corresponds
to 2AG6. As mentioned above, the RMSD of BRF reaches
another local equilibrium within a period of 12–20 ns. To check
the convergence of the MM/PBSA calculation, the results were
usually estimated from different time intervals (Spiliotopoulos
et al., 2012). As shown in Supplementary Table 4, the binding
free energy of 2AG6 estimated using the 12–20 ns trajectory
is −7.1 kcal/mol, which is largely consistent with the one
obtained using entire trajectory and the one in an early stage.
We also predicted the binding free energies of tRNATyr-MEY
(4HPW) and tyrosine phosphorylation–DFY (4HJX) as −17.3
and −13.6 kcal/mol, respectively. The energy decomposition
analysis also indicates that vdW and electrostatic interactions are
the dominate factors contributing to the total binding free energy.
The polar energies contribute positively to the solvation. Overall,
the binding free energies for the five systems were well stabilized
by the MM contributions.

In addition, the binding affinities from experimental data
for two of the complexes are available. One is the reported
Michaelis constant KM for the system tRNAPhe-DHF (3TEG)
of 380 ± 40µM (Moor et al., 2011), which determines the
performance of the catalytic reaction and positively correlates
with the dissociation constant Kd (Johnson and Goody, 2011).
The other is for OMY as one of the compstatin variants reported
as Kd = 118 nM and 1G = −9.5 ± 1.2 kcal/mol (Magotti et al.,
2009). The binding free energy of PylRS and OMY interaction is
predicted to be −15.7 ± 0.7 kcal/mol by MM/PBSA, which is in
satisfying agreement with the experimental one. No experimental

TABLE 5 | Binding free energies (kcal/mol) with standard deviationa for the
systems 2AG6, 3TEG, 3QTC, 4HPW, and 4HJX obtained from MM/PBSA
calculations and various energy components.

Component 2AG6 3TEG 3QTC 4HPW 4HJX

1EvdW −25.2 (0.4) −24.3 (0.5) −20.6 (1.4) −25.4 (0.9) −26.4 (0.6)

1Eele −11.8 (1.5) −35.6 (1.7) −12.7 (1.5) −20.2 (1.9) −18.8 (1.5)

1Gpb/solv 33.6 (1.5) 41.4 (1.4) 20.0 (1.1) 31.1 (1.6) 34.7 (1.5)

1Gnp/solv −3.0 (0.0) −2.7 (0.0) −2.4 (0.1) −2.9 (0.0) −3.1 (0.0)

1Gpb 21.8 (0.0) 5.8 (0.2) 7.3 (0.2) 10.9 (0.2) 15.9 (0.0)

1Gnp −28.2 (0.2) −27.0 (0.3) −23.0 (0.8) −28.3 (0.6) −29.5 (0.3)

1EMM −37.0 (0.7) −59.9 (0.8) −33.3 (0.0) −45.6 (0.6) −45.2 (0.5)

1Gsolv 30.6 (0.9) 38.7 (0.8) 17.6 (0.6) 28.2 (0.9) 31.6 (0.9)

1Gbind −6.4 (0.8) −21.2 (1.1) −15.7 (1.0) −17.4 (1.1) −13.6 (0.8)

aThe standard deviations are calculated by the equation SD =

√

N
∑

i=1

(

xi − xi
)2
/N .

Here,1Gpb =1Gpb/solv +1Eele;1Gnp =1Gnp/solv +1EvdW ;1EMM =1EvdW +1Eele;

1Gsolv = 1Gpb/solv + 1Gnp/solv .

data of the binding affinity is available to date for the other
three protein-UAA systems (PDB IDs: 2AG6, 4HPW, and 4HJX).
Nevertheless, MM/PBSA analysis has been demonstrated to be an
effective approach to estimate qualitatively the relative binding
free energy of protein-ligand interaction (Homeyer and Gohlke,
2012; Kumari et al., 2014; Genheden and Ryde, 2015; Wang et al.,
2019).

Per-Residue Energy Decomposition Analysis of

Protein–UAA Interactions
The structural interaction modes between UAAs and proteins
have been established by experimental reports (Turner et al.,
2006; Moor et al., 2011; Takimoto et al., 2011; Li et al., 2013).
We show the interaction details of the UAAs BRF, DHF, OMY,
MEY, and DFY as substrates bound to the respective proteins
in Figure 7. The per-residue binding free energies of the major
contacts involved in the interactions are provided in Table 6.
The interactions of the UAAs as substrates are discussed in the
following sections.

aaRS and BRF interactions
In the 2AG6 system, our parameters predicted several direct
connections of C–halogen-bonding interactions, which are
consistent with the experimental results (Figure 7A). For
example, the bromine of BRF forms a C-Br · · · π interaction
with WT H160, which has been extensively reported in the
crystal structures of protein–small molecules (Saraogi et al., 2003;
Turner et al., 2006). One crystal structure report showed that the
mutant L32 is a key mutant residue providing binding room for
the bromine without vdW contributions (Turner et al., 2006).
Here, the small contribution is −0.45 kcal/mol of free energy as
predicted by our new parameters (see Table 6). In addition, we
did not observe obvious contact betweenWT Y161 and BRF, and
the predicted binding free energy was 0.47 kcal/mol, with weak
contributions from MM, polar, and nonpolar interactions of
−0.84, 1.47, and −0.17 kcal/mol, respectively. This is consistent
with the experimental finding that the O atom of Y161 is too far
(4.6 Å) to form H-bonded contact with the Br-atom of BRF in
the active loop (Turner et al., 2006). In addition, two potential H-
bonded contacts that have not been anticipated experimentally
are predicted here. In particular, WT E36 and WT Q173 of
2AG6 use side chains to combine with the amide group of BRF
in the form of H-bonds. As shown in Table 6, Q173 produces
stronger polar interactions than the MM component, leading to
a positive contribution of 5.46 kcal/mol. Strong electrostatic and
vdW interactions of −6.29 and −4.31 kcal/mol were calculated
for both E36 and Q173, respectively, which provide important
conditions for H-bond formation (Li et al., 2014; Hao andWang,
2015).

tRNAPhe and DHF interactions
We provide the structural basis of the reported 3TEG (tRNAPhe

binding with DHF) in Figure 7B. F232 and F234 located at the
FPF loop maintain major contacts with the phenyl ring of the
ligand DHF (Moor et al., 2011). This was also observed from our
predictions between F232/F234 and DHF in the form of π · · ·

π interactions. Simultaneously, F276 has a novel predicted role
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FIGURE 7 | Major residue contacts with the substrates (A) BRF, (B) DHF, (C) OMY, (D) MEY, and (E) DFY in the active sites obtained by our predictions. The
interaction analysis was completed using Discovery Studio 4.5 (BIOvIA, 2015). All C atoms in the substrates are shown as green sticks. The major interaction residues
in the proteins (purple cartoon) are displayed as sticks with cyan C atoms. Red letters label the major residue names. Green dashed lines represent hydrogen bonding,
and pink dashed lines represent the π-interaction involved in ligand recognition. The light pink in (A) and cyan in (E) dashed lines represent the halogen bonding
occurring in the active regions.

involved in DHF binding through an amide · · ·π interaction (see
Supplementary Figure 8A). These π-interaction modes formed
by F232, F234, and F276 are similar to the reported “edge-
to-face” contact (Fishman et al., 2001), an interaction network
formed by three phenylalanine in tRNAPhe binding with the
phenyl moiety of the DHF ligand. The π · · · π and amide · ·

· π interactions mainly originate from vdW contributions (Gao
et al., 2017). As shown in Table 6, the total vdW and electrostatic
contributions of F232, F234, and F276 are all more negative than
−4.0 kcal/mol. Furthermore, the binding free energy of E159
is a remarkable −16.57 kcal/mol, with surprisingly large non-
bonded and polar contributions of −55.39 and 39.20 kcal/mol,
respectively. As shown in Figure 7B, one hydrogen bonding
connection occurs through the side-chain O atom of E159
with the negative charge binding to the OH group of DHF.
Additionally, H-bonded connections have been reported between
S121, Q124, R143, and Q157 in the protein and DHF shown
in Supplementary Figure 8B (Moor et al., 2011). However, we
failed to observe these hydrogen bonding contacts. Per-residue
energy decomposition analysis further indicates that only R143
and Q157 provide dispensable non-bonded interactions of−3.66
and −8.86 kcal/mol, respectively. The contributions of S121 and
Q124 are almost too weak for binding.

PylRS and OMY interactions
The four residue mutations in PylRS are A302T, N346V, C348W,
and V401L, which play a vital role in the OMY selectivity
(Takimoto et al., 2011). We also predicted these four important

residue contacts with OMY based on the new parameters and
per-residue binding free energy analysis. Figure 7C shows the
interaction modes between OMY and the four residues T302,
V346, W348, and LV401, and the binding free energy of each
residue (PDB ID: 3QTC) is listed in Table 6. As shown, W348
uses a side-chain 5-membered ring as a π-donor to form
hydrogen bonds with the N-atom in the amide group of OMY.
This results in one quadrupole–dipole interaction formed by the
indole plane of W348 being vertical to the O-methyl moiety
of OMY (Takimoto et al., 2011). The binding free energy of
W348 is−2.99 kcal/mol, providing strong vdW and electrostatic
interactions of −4.53 kcal/mol. In the activation region, alkyl
· · · π interactions occur by the methylene group of L401
binding with OMY, with the highest binding affinity contribution
of −3.91 kcal/mol. Even though no direct connection forms
between T302 and OMY, a moderate impact with a −2.11
kcal/mol binding free energy was evaluated, which also provides
strong electrostatic and vdW interactions of −7.32 kcal/mol. In
addition, the binding contribution of V346 is mainly derived
from electrostatic and vdW contributions at−2.03 kcal/mol, but
we did not observe hydrogen bonding between them. This is in
agreement with the experimental observation that the H-bonds
formed by WT N346 and OMY are abolished after the N346V
mutation in PylRS (Takimoto et al., 2011).

tRNATyr and MEY interactions
The structural basis for MEY recognition to tRNATyr has
not been reported to date, but the binding modes of the
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TABLE 6 | Energy decomposition analysis of 2AG6, 3TEG, 3QTC, 4HPW, and
4HJX for major residues.

PDB
ID

#Residue Energy component
(kcal/mol)

Standard deviation
(kcal/mol)

MM Polar Non
polar

Total MM Polar Non
polar

Total

2AG6 L32 −1.26 1.15 −0.34 −0.45 0.38 0.31 0.03 0.48

E36 −6.29 5.77 −0.33 −0.78 2.98 2.70 0.05 0.99

H160 −2.24 4.85 −0.21 2.39 0.32 0.83 0.04 0.68

Y161 −0.84 1.47 −0.17 0.47 0.12 0.20 0.02 0.19

Q173 −4.31 10.22 −0.44 5.46 0.73 1.43 0.05 0.82

3TEG S121 0.10 −0.40 −0.07 −0.36 0.21 0.38 0.02 0.25

Q124 1.96 −0.39 −0.02 1.53 0.38 0.58 0.01 0.30

R143 −3.66 7.75 −0.08 3.91 1.74 1.60 0.03 0.69

Q157 −8.86 10.66 −0.58 1.18 1.12 0.85 0.04 0.75

E159 −55.39 39.20 −0.38 −16.57 1.94 2.80 0.02 1.69

F232 −4.07 2.03 −0.47 −2.53 0.60 0.38 0.03 0.35

F234 −4.48 3.39 −0.55 −1.66 0.35 0.24 0.04 0.23

F276 −6.78 3.94 −0.09 −2.91 0.40 0.40 0.02 0.45

3QTC T302 −7.32 5.55 −0.39 −2.11 1.31 0.94 0.06 0.47

V346 −2.03 0.26 −0.08 −1.84 0.34 0.09 0.02 0.38

W348 −4.53 1.68 −0.15 −2.99 1.16 0.44 0.04 0.75

L401 −4.10 0.68 −0.50 −3.91 0.77 0.19 0.07 0.67

4HPWE36 −14.75 9.85 −0.52 −5.34 1.79 1.69 0.07 1.21

I137 −4.56 0.75 −0.62 −4.43 0.37 0.35 0.04 0.25

Y151 −13.06 7.57 −0.68 −6.17 0.95 0.78 0.06 1.09

Q155 −9.69 8.13 −0.32 −1.90 1.19 0.96 0.05 0.45

N158 −0.17 0.49 −0.02 0.31 0.21 0.49 0.02 0.34

Q173 −17.58 16.48 −0.81 −1.97 1.55 0.87 0.06 1.02

4HJX R32 −7.32 8.48 −0.27 0.82 0.71 1.19 0.03 0.98

Y65 −7.78 4.41 −0.58 −3.91 0.68 0.47 0.05 0.56

Y151 −6.95 6.62 −0.45 −0.76 0.65 0.62 0.05 0.50

Q155 −23.04 21.54 −1.07 −2.59 1.59 1.62 0.06 0.67

N158 −7.46 5.45 −0.28 −2.30 1.41 0.68 0.02 0.96

Q173 −12.13 12.83 −0.50 0.20 1.49 1.17 0.03 0.71

Bold letters represent residue contacts from experimental reports.

tRNATyr-MEY interaction can be analyzed and determined
using the Mol∗ tool provided in the PDB (Sehnal et al., 2018).
Accordingly, E36, Y151, Q155, N158, and Q173 are the main
residue contacts with MEY. Table 6 shows that the binding
free energies of these residues provide negative contributions of
−1.90 to −6.17 kcal/mol, except for N158 with 0.31 kcal/mol.
Figure 7D displays the hydrogen bonding and alkyl · · · π

interaction network between Y151, Q155, Q173, and MEY. Even
though E36 does not form hydrogen bonding with MEY, a−5.34
kcal/mol strong affinity is derived from vdW and electrostatic
attractions of −14.75 kcal/mol. Furthermore, I137 shows a new
potential contact with MEY via an alkyl · · · π interaction with a
−4.34 kcal/mol binding free energy.

F2YRS and DFY interactions
F2YRS shares approximately identical sequences with tRNATyr

except for the asparagine and cysteine at positions 108 and 109,
respectively, corresponding to F108 and G109 in tRNATyr. The
complex of F2YRS–DFY was obtained after Y32R, L65Y, H70G,
F108N, Q109C, D158N, and L162Smutations by an experimental
technique (Li et al., 2013). We assumed DFY to be in a neutral
state due to the reported pKa value close to 7.0 (Seyedsayamdost
et al., 2006). Figure 7E shows the six key residues binding to
the DFY substrate. R32 and N158 form halogen bonding with
the two different fluorine atoms of DFY; meanwhile, hydrogen
bonding of R32 and N158 occurs with the OH group of DFY.
This is consistent with experimental findings (Li et al., 2013).
Experiments have also shown that there are strong dipolar
interactions between the fluorine atoms and amide/guanidine
groups. Notable polar contributions of 8.48 and 5.45 kcal/mol are
estimated by our predictions for R32 and N158, respectively. In
addition, Y65 formsπ · · ·π stacking interactions with the phenyl
group of DFY, and Y151, Q155, and Q173 form hydrogen bonds
with the amide and carbonyl groups of DFY. Among them, Q155
provides the largest MM contribution of −23.04 kcal/mol with
21.54 kcal/mol of polar energy. Y65 and Q155 with −3.91 and
−2.59 kcal/mol free energies, respectively, contribute moderately
to the observed binding.

CONCLUSION

This work presents the charge parameters of 18 UAAs related to
phenylalanine and tyrosine that are compatible with the use of
the Amber ff14SB force field included in the GROMACS package.
The newly derived charge parameters initially fitted by the RESP
protocol were tested on structural optimizations and relative
energies of the 18 UAAs in α-/β-backbone conformations, with
an RMS deviation of 0.33 kcal/mol compared with the QM
dataset, whereas theM06-2Xmethod produces an RMS deviation
of 1.08 kcal/mol. After the parameters were determined, the
energy function was further applied to MD simulations of
the UAA-mutated proteins and protein–UAA complexes. The
motifs containing UAAs and their respective backbone torsions
generally overlapped well with the initial coordinates, with an
average RMSD of approximately 1.5 Å. The MM/PBSA approach
showed that the binding free energy of tRNAPhe-DHF is higher
than that of PylRS–OMY, which is consistent with experimental
data. Comparisons with crystal residue contacts and satisfactory
treatments for the interaction modes between proteins and UAAs
by substrate binding are presented from the analysis of the
per-residue energy decomposition.

Nevertheless, the development of force field is too far from
only the development of charge parameters. To increase the
transferability and compatibility to the standard Amber force
field, the atoms in the common structure of these UAAs should
be optimized to be of identical partial charges by applying
restraints/constraints in the fitting to RESP in a future study.
The bonded parameters, especially the torsional terms related
to the gas-phase QM conformational potential energy scan,
require further adjustment. The current testing concentrated
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on conformational and energetic investigations is also limited,
and thus more extensive studies focusing on the dynamic and
thermodynamic properties of polypeptides and proteins should
be explored.
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Sehnal, D., Rose, A. S., Koča, J., Burley, S. K., and Velankar, S. (2018). “Mol∗:
towards a common library and tools for web molecular graphics,” in Paper

Presented at the Proceedings of the Workshop on Molecular Graphics and Visual

Analysis of Molecular Data, Brno, Czech Republic.
Seyedsayamdost, M. R., Reece, S. Y., Nocera, D. G., and Stubbe, J. (2006).

Mono-, di-, tri-, and tetra-substituted fluorotyrosines: new probes for enzymes
that use tyrosyl radicals in catalysis. J. Am. Chem. Soc. 128, 1569–1579.
doi: 10.1021/ja055926r

Si, L., Xu, H., Zhou, X., Zhang, Z., Tian, Z., Wang, Y., et al. (2016). Generation of
influenza A viruses as live but replication-incompetent virus vaccines. Science
354:1170. doi: 10.1126/science.aah5869

Sitkoff, D., Sharp, K. A., and Honig, B. (1994). Accurate calculation of hydration
free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978–1988.
doi: 10.1021/j100058a043

Sousa da Silva, A. W., and Vranken, W. F. (2012). ACPYPE - AnteChamber
PYthon Parser interfacE. BMC Res. Notes 5:367. doi: 10.1186/1756-0500-5-367

Spiliotopoulos, D., Spitaleri, A., and Musco, G. (2012). Exploring PHD fingers and
H3K4me0 interactions with molecular dynamics simulations and binding free
energy calculations: AIRE-PHD1, a comparative study. PLoS ONE 7:e46902.
doi: 10.1371/journal.pone.0046902

Takimoto, J. K., Dellas, N., Noel, J. P., and Wang, L. (2011). Stereochemical
basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo

incorporation of structurally divergent non-native amino acids. ACS Chem.

Biol. 6, 733–743. doi: 10.1021/cb200057a
Turner, J. M., Graziano, J., Spraggon, G., and Schultz, P. G. (2006). Structural

plasticity of an aminoacyl-tRNA synthetase active site. Proc. Natl. Acad. Sci.
103:6483. doi: 10.1073/pnas.0601756103

Wang, C., Greene, D. A., Xiao, L., Qi, R., and Luo, R. (2018). Recent
developments and applications of the MMPBSA method. Front. Mol. Biosci.

4:87. doi: 10.3389/fmolb.2017.00087
Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., et al. (2019).

End-point binding free energy calculation with MM/PBSA and MM/GBSA:
strategies and applications in drug design. Chem. Rev. 119, 9478–9508.
doi: 10.1021/acs.chemrev.9b00055

Wang, J., Cieplak, P., and Kollman, P. A. (2000). How well does a restrained
electrostatic potential (RESP) model perform in calculating conformational
energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074.
doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A. (2004).
Development and testing of a general amber force field. J. Comput. Chem. 25,
1157–1174. doi: 10.1002/jcc.20035

Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona,
G., et al. (1984). A new force field for molecular mechanical simulation of
nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784. doi: 10.1021/ja0031
5a051

Wu, Y., Fried, S. D., and Boxer, S. G. (2015). Dissecting proton delocalization in an
enzyme’s hydrogen bond network with unnatural amino acids. Biochemistry 54,
7110–7119. doi: 10.1021/acs.biochem.5b00958

Xiao, H., Nasertorabi, F., Choi, S.-H., Han, G. W., Reed, S. A., Stevens, R. C.,
et al. (2015). Exploring the potential impact of an expanded genetic code
on protein function. Proc. Natl. Acad. Sci. 112:6961. doi: 10.1073/pnas.15077
41112

Frontiers in Molecular Biosciences | www.frontiersin.org 14 December 2020 | Volume 7 | Article 60893145

https://doi.org/10.1021/sb400168u
https://doi.org/10.1021/ci500020m
https://doi.org/10.1016/B978-0-12-381270-4.00019-6
https://doi.org/10.1002/anie.201300463
https://doi.org/10.1002/jcc.23473
https://doi.org/10.1146/annurev.biochem.052308.105824
https://doi.org/10.1002/jmr.972
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1021/ja207719f
https://doi.org/10.1002/jcc.540130805
https://doi.org/10.1016/j.theochem.2007.02.006
https://doi.org/10.1016/j.chembiol.2011.08.008
https://doi.org/10.1080/00268978300102851
https://doi.org/10.1063/1.328693
https://doi.org/10.1126/science.aaa2424
https://doi.org/10.1371/journal.pcbi.1003154
https://doi.org/10.1021/ac504121d
https://doi.org/10.1016/S0022-2836(63)80023-6
https://doi.org/10.1371/journal.pone.0032637
https://doi.org/10.1021/acs.jctc.5b00356
https://doi.org/10.1093/nar/gkf589
https://doi.org/10.1016/j.str.2009.01.008
https://doi.org/10.1038/nbt742
https://doi.org/10.1016/S1463-0184(03)00068-6
https://doi.org/10.1021/ja055926r
https://doi.org/10.1126/science.aah5869
https://doi.org/10.1021/j100058a043
https://doi.org/10.1186/1756-0500-5-367
https://doi.org/10.1371/journal.pone.0046902
https://doi.org/10.1021/cb200057a
https://doi.org/10.1073/pnas.0601756103
https://doi.org/10.3389/fmolb.2017.00087
https://doi.org/10.1021/acs.chemrev.9b00055
https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/ja00315a051
https://doi.org/10.1021/acs.biochem.5b00958
https://doi.org/10.1073/pnas.1507741112
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Wang and Li Unnatural Amino Acid Parameters

Yang, T., Wu, J. C., Yan, C., Wang, Y., Luo, R., Gonzales, M. B., et al.
(2011). Virtual screening using molecular simulations. Proteins 79, 1940–1951.
doi: 10.1002/prot.23018

Young, D. D., and Schultz, P. G. (2018). Playing with the molecules of life. ACS
Chem. Biol. 13, 854–870. doi: 10.1021/acschembio.7b00974

Yuet, K. P., Doma, M. K., Ngo, J. T., Sweredoski, M. J., Graham, R. L. J., Moradian,
A., et al. (2015). Cell-specific proteomic analysis inCaenorhabditis elegans. Proc.
Natl. Acad. Sci. 112:2705. doi: 10.1073/pnas.1421567112

Yurieva, A. G., Poleshchuk, O. K., and Filimonov, V. D. (2008). Comparative
analysis of a full-electron basis set and pseudopotential for the iodine atom
in DFT quantum-chemical calculations of iodine-containing compounds. J.
Struct. Chem. 49, 548–552. doi: 10.1007/s10947-008-0073-9

Zhao, J., Burke, A. J., and Green, A. P. (2020). Enzymes with noncanonical
amino acids. Curr. Opin. Chem. Biol. 55, 136–144. doi: 10.1016/j.cbpa.202
0.01.006

Zou, H., Li, L., Zhang, T., Shi, M., Zhang, N., Huang, J., et al. (2018). Biosynthesis
and biotechnological application of non-canonical amino acids: complex and
unclear. Biotechnol. Adv. 36, 1917–1927. doi: 10.1016/j.biotechadv.2018.07.008

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wang and Li. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 15 December 2020 | Volume 7 | Article 60893146

https://doi.org/10.1002/prot.23018
https://doi.org/10.1021/acschembio.7b00974
https://doi.org/10.1073/pnas.1421567112
https://doi.org/10.1007/s10947-008-0073-9
https://doi.org/10.1016/j.cbpa.2020.01.006
https://doi.org/10.1016/j.biotechadv.2018.07.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


METHODS
published: 11 January 2021

doi: 10.3389/fmolb.2020.627087

Frontiers in Molecular Biosciences | www.frontiersin.org 1 January 2021 | Volume 7 | Article 627087

Edited by:

Xiakun Chu,

Stony Brook University, United States

Reviewed by:

Yunjie Zhao,

Central China Normal University, China

Yunhui Peng,

National Institutes of Health (NIH),

United States

*Correspondence:

Weihong Qiu

weihong.qiu@oregonstate.edu

Lin Li

lli5@utep.edu

Specialty section:

This article was submitted to

Biological Modeling and Simulation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 08 November 2020

Accepted: 10 December 2020

Published: 11 January 2021

Citation:

Xian Y, Xie Y, Silva SM, Karki CB,

Qiu W and Li L (2021) StructureMan:

A Structure Manipulation Tool to Study

Large Scale Biomolecular Interactions.

Front. Mol. Biosci. 7:627087.

doi: 10.3389/fmolb.2020.627087

StructureMan: A Structure
Manipulation Tool to Study Large
Scale Biomolecular Interactions
Yuejiao Xian 1, Yixin Xie 2, Sebastian Miki Silva 3, Chitra B. Karki 2, Weihong Qiu 4,5* and

Lin Li 2,3*

1Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, United States, 2Computational

Science Program, University of Texas at El Paso, El Paso, TX, United States, 3Department of Physics, University of Texas at

El Paso, El Paso, TX, United States, 4Department of Physics, Oregon State University, Corvallis, OR, United States,
5Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, United States

Studying biomolecular interactions is a crucial but challenging task. Due to their large
scales, many biomolecular interactions are difficult to be simulated via all atom models.
An effective approach to investigate the biomolecular interactions is highly demanded
in many areas. Here we introduce a Structure Manipulation (StructureMan) program to
operate the structures when studying the large-scale biomolecular interactions. This
novel StructureMan tool provides comprehensive operations which can be utilized to
study the interactions in various large biological systems. Combining with electrostatic
calculation programs such as DelPhi and DelPhiForce, StructureMan was implemented
to reveal the detailed electrostatic features in two large biological examples, the
viral capsid and molecular motor-microtubule complexes. Applications on these two
examples revealed interesting binding mechanisms in the viral capsid and molecular
motor. Such applications demonstrated that the StructureMan can be widely used when
studying the biomolecular interactions in large scale biological problems. This novel
tool provides an alternative approach to efficiently study the biomolecular interactions,
especially for large scale biology systems. The StructureMan tool is available at our
website: http://compbio.utep.edu/static/downloads/script-for-munipulation2.zip.

Keywords: protein-protein interactions, protein-RNA/DNA interactions, electrostatic force, viral capsid assembly,

molecular motor, kinesin, DelPhi, DelPhiForce

INTRODUCTION

Studying interactions between biomolecules is an important but challenging task. In recent decades,
many efforts and progresses have been made to study the biomolecule interactions (Jones and
Thornton, 1996; von Mering et al., 2002; Li et al., 2015; Zhou, 2015). Such studies are in two
categories: Predicting biomolecule complex structures (Pagadala et al., 2017); and revealing the
biomolecule interaction mechanisms (Jones and Thornton, 1996).

To predict the complex structures of biomolecules such as proteins, RNAs/DNAs, many
algorithms have been developed based on some physics principals and statistic functions. Some
of them are protein-protein docking algorithms (Gabb et al., 1997; Chen et al., 2003; Dominguez
et al., 2003; Li et al., 2011), protein-DNA/RNA docking algorithms (Tuszynska and Bujnicki,
2011; Huang et al., 2013; Yan et al., 2017), scoring functions (Chen and Weng, 2003; Jain, 2006;
Huang et al., 2010; Li et al., 2013a), etc. To reveal the mechanisms of biomolecular interactions,
numerous methods have been developed to simulate the biomolecular binding processes. The two
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most challenging issues in studying the biomolecular interactions
are that the size scale of the biomolecules and time scale of
the binding processes. Traditional all atom molecular dynamic
simulations can hardly simulate the binding processes of large
biomolecular systems, such as capsid proteins binding to a
viral capsid. In order to accelerate the large-scale biomolecule
simulations, many successful coarse-grained models have been
developed (Liwo et al., 1997; Marrink et al., 2007). Such coarse-
grained models are in several categories: elastic network models,
Go-like models, beads-based models (Tozzini, 2005). Besides
coarse-grained models, some multiscale methods have also been
developed (Wang et al., 2014; Li et al., 2016b).We have developed
a DelPhiForce steered Molecular Dynamic (DFMD) method
(Li et al., 2017a; Peng et al., 2019) to speed up the Molecular
Dynamic (MD) simulation. The advantage of DFMD is utilizing
the long-range electrostatic interactions in the MD simulations
to accelerate the binding process. This DFMD method has
been proven very successful in protein-biomolecule binding
processes. Therefore, studying electrostatic interactions is crucial
to investigate large scale biomolecular interactions.

To study the interactions between two biomolecules
in various perspectives, the ligand structure needs to be
manipulated with respect to the receptor, such as shifted, spun,
rotated around the receptor. For some large biomolecules
such as viruses, many proteins are required to assembled a
complete viral capsid. Studying such large complex structures
need more comprehensive manipulations on individual
biomolecules. Therefore, we developed a Structure Manipulation
(StructureMan) program to manipulate the biomolecule
structures. Four basic and two advanced structural operations
were developed to manipulate the structures of biomolecules.
These basic operations are developed for two biomolecules (a
receptor and a ligand), which include separation, spin, rotation
and perpendicular shifting between a pair of receptor and
ligand. Furthermore, two advanced operations were developed
to study the assembly of multiple biomolecules in pseudo
spherical or pseudo cylindrical symmetry. The pseudo spherical
operations, including capsid generation, capsid expansion
and capsid detachment tools, can be widely used to study the
viral capsid assembly problems. With StructureMan, users can
easily manipulate the structures of a complex to study the
electrostatic interactions for large systems, such as protein-
protein interactions in a whole virus capsid or a large piece
of microtubule. In this work, we applied the StructureMan
on a viral capsid and a molecular motor, which demonstrated
that this novel tool is very useful when studying large scale
biomolecular interactions.

Turnip crinkle virus (TCV) is a plant pathogenic virus which
is composed of ∼4.0 kb plus-sense RNA and 180 copies of
capsid protein subunits (Hogle et al., 1986; Wei et al., 1990).
These capsid proteins assemble into an icosahedral capsid with
a diameter of ∼330 Å. For the purpose of this work, the
quasi-three-fold symmetry related subunits are grouped together
and referred as one capsomer (Figure 1A). The viral capsid
has been shown to have multiple functions in stabilizing the
genomic RNA materials during viral assembly and protecting
RNA and host-defense machinery (Cao et al., 2010). In 2012,

an expanded form of TCV was captured and considered to be
a putative RNA uncoating intermediate (Bakker et al., 2012).
The expanded capsid is resulted from the separation of the
capsid proteins. Having its multiple functions and dynamic
nature, the TCV capsid is an interesting target for protein-
protein interaction studies, especially in the studies of capsid
assembly and viral infection (Sorger et al., 1986; Wei et al., 1990;
Saunders and Lomonossoff, 2015). As suggested by transmission
electron microscopy, the assembly of the TCV capsid is a
progressive process where the capsid protein units continuously
assemble onto the initiating structure until the viral capsid is
completed (Sorger et al., 1986). This assembly process is guided
by interactions among the capsid proteins as well as their RNA
genome (Sorger et al., 1986; Wei et al., 1990; Bakker et al.,
2012; Saunders and Lomonossoff, 2015). In a recent studies, the
wild type capsid proteins of TCV expressed in Cowpea Mosaic
Virus-Hyper Translatable Expression system self-assembled into
TCV-like particles (Saunders and Lomonossoff, 2015). These
results suggested that the ability of these capsid protein assemble
into the viral capsid is fundamentally essential in TCV’s life
cycle. Therefore, this study implemented the StructureMan
tool to manipulate the structure of TCV capsid, which then
facilitated our analyses that reveal the binding mechanisms
among capsomers in the TCV capsid. Many interesting features
are discovered and shown in the results and discussion section.

Kinesins are a superfamily of molecular motors. Kinesins
have vital cellular functions (Mandelkow and Mandelkow, 2002;
Endow et al., 2010; Lee et al., 2015; Tseng et al., 2018) in mitosis
and become ideal anti-mitotic drug targets for cancer treatment
(DeBonis et al., 2004; Tao et al., 2005; Nakai et al., 2009).
Traditional anti-mitotic drugs face two significant problems:
(1) serious side effects (Jordan and Wilson, 2004; Schmidt and
Bastians, 2007); (2) Strong drug resistance for some types of
cancers (Kavallaris, 2010). Recent works found that another
promising direction of cancer drug design is targeting kinesins
(Jackson et al., 2007; Sarli and Giannis, 2008; Huszar et al., 2009).
Interrupting the binding or motility of specific kinesins can block
the mitosis and kill the cancer cells. Due to the variety types
of kinesins (Vale et al., 1985), kinesin targeting drugs will be
more selective and also alternative to solve the drugs resistance
compared to microtubule targeting drugs. Therefore, discovering
and designing drugs targeting certain types of kinesins become
a very promising direction for cancer treatment. Efficient drug
design approaches highly demand the systematic understanding
of binding and motility mechanisms of kinesins. Therefore,
many computational studies have been conducted to study the
molecular motors including kinesins (Li et al., 2016a,b; Li et al.,
2017; Tajielyato et al., 2018). This work utilized StructureMan to
study the binding mechanisms between kinesin and microtubule,
which sheds light on the drug design targeting the kinesins.

METHODS

Four basic and two advanced structural operations were
developed to manipulate the structures of biomolecules. The
basic operations are developed for two biomolecules (a receptor
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FIGURE 1 | Structure manipulation of the capsid of Turnip Crinkle Virus (TCV). (A) Individual capsomer of TCV with the three type of protein subunits labeled on the
side (PDB ID 3ZX8); (B) the whole TCV capsid generated using the capsid generation tool; Penal (C–F) are demonstration of structure manipulation where: (C) the
native TCV capsid is expended by 0.7RM. The central section of the native capsid (left) and the expended capsid (right) are shown as their radius labeled in black,
respectively; (D) one capsomer is detached from the rest of the capsid by 0.4 to 1.0RM, as its distance to the mass center of the whole capsid increases to 1.4RM

and 2.0RM; (E) one capsomer is first detached by 0.7RM and then spun from −90Å to 90Å in the xy-plane (around z-axis); (F) after detached by 0.7RM, the capsomer
is rotated around the capsid from −20Å to 20Å with respect to the mass center of the whole capsid. In all panels, the capsomers and capsids are shown in their
density map generated using Chimera (Pettersen et al., 2004; Goddard et al., 2007) and colored by radius from red to green.

and a ligand), which include separation, spin, rotation and
perpendicular shifting between a pair of receptor and ligand.
Furthermore, two advanced operations were developed to study
the assembly of multiple biomolecules in pseudo spherical or
pseudo cylindrical symmetry. These pseudo spherical operations,
including capsid generation, capsid expansion, and capsid
detachment tools, can be widely used to study the viral capsid
assembly problems. For the purpose of demonstration of the
advanced operations, the protein capsid of the TCV, and the
kinesin-microtubule complex were chosen in this work because
of their representative pseudo spherical (icosahedral) and pseudo
cylindrical symmetry.

Basic Manipulations
Separation
With two separated coordinates files of the protein units as
inputs, this tool would displace one of the two units in a user
given distance away from the other. For clarification, one of
the protein units would be fixed in its original coordinates and
is referred as the fixed unit. The other protein unit would be
manipulated to result in different positions and orientations and
is hence referred as the manipulated unit.

The tool first calculate the mass center of both proteins,
Cfixed, and Cmanipulated, by averaging the coordinates of
each individual atom after weighted by their corresponding
atomic mass (Supplementary Equations 1, 2). With the

obtained mass centers, a vector
−→
M , form Cfixed to Cmanipulated

is calculated (Supplementary Equation 3). This vector
−→
M

can then be normalized with its magnitude to obtain

the vector
−→
U that defines the direction of the separation

(Supplementary Equations 4, 5). With the vector
−→
U and the

user-defined separation distance, d, a separation vector,
−→
S ,

would then be generated (Supplementary Equation 6), which
is then applied to the coordinates of the manipulated unit and
create a new structure that is separated from the fixed unit by the
user-defined distance d (Supplementary Equation 7).

Rotation
The rotation tool would rotate the manipulated unit around the
fixed one by a user-given angle. This rotation operation can be
carried out in xy plane (around z-axis), xz-plane or yz-plane
as users prefer. Rotation in xy-plane is discussed here for a
simplified demonstration.
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The tool will start by calculating the mass center Cfixed using

the method demonstrated in the section above. A vector,
−→
MA,

from Cfixed to a randomly chosen atomA in the manipulated unit
can be created (Supplementary Equation 8). The rotation vector,
−→
RA, would then be generated via multiplying vector

−→
MA vector

by a rotation matrix that included the user-defined angle for the

desired rotation (Supplementary Equation 9). This obtained
−→
RA

is then applied on the x, y, z coordinates of the manipulated unit,
generating a modified structure with the user-defined degree of
rotation (Supplementary Equations 10, 11).

It is important to notice that the rotation of manipulated unit
around the fixed one may introduce clashes if the atoms are
closed to each other. Therefore, it is recommended to separate the
manipulated unit from the fixed one to a proper distance upon
using the rotation tool.

Spin
This tool allows the spinning of the manipulated unit with the
respect to its own mass center. Similar to the rotation tool,
the spinning can be performed in any of the xy-, yx-, or xz-
plane. Spinning the protein unit in xy-plane is discussed here as
a demonstration.

With the coordinate file of the unit to be manipulated as
the input, this tool first calculates its mass center, Cmanipulated,

usingmethod discussed in section Separation. A vector,
−→
MA, from

Cmanipulated to a randomly chosen atom would then be generated
and multiplied by a rotation matrix to generate the final spinning

vector,
−→
SA , using the method demonstrated in section Rotation.

The final coordinates of the atom will be calculated using the
spinning vector. As the operation being carried out in the
xy-plane, the z coordinate of each atom remind the same as
original. This process would be repeated on each individual atom
within the protein unit and output their spun coordinates into a
separate file. To avoid clashes, it is recommended to separate the
manipulated unit from the fixed one to a proper distance upon
using the spinning tool.

Perpendicular Translation
The perpendicular translation tool shifts the manipulated unit
along the line that is perpendicular to the vector of mass centers
in the selected plane. The translation in xy-plane is shown as
an example.

This tool calculates the mass centers of both protein units and
the vector of mass centers,

−→
M , the normalized vector

−→
U , as well

as the separation vector,
−→
S , in a similar manner to that in section

Separation (Supplementary Equations 12–15). The separation

vector
−→
S would then be rotated 90Å or −90Å to generate

the final translation vector
−→
T that contains information of

the user-defined distance (Supplementary Equation 16). Finally,
this tool modifies the coordinates of the manipulated unit using

translation vector
−→
T to create a new structure which is translated

along the line perpendicular to the mass center vector by a
given distance d (Supplementary Equation 17). Similar to the
rotation and spinning tool, it is also recommended to separate the

manipulated unit from the fixed one to a proper distance upon
using this tool in order to avoid any clashes.

Capsid Structure Manipulation
Capsid Generation Tool
Many pdb files of multi-protein complexes deposited in Protein
Data Bank (PDB) do not actually contain the coordinates of all
the protein units within the complexes, making it inconvenient
for researchers who study protein-protein interactions among
multiple protein units. However, instructions on how to
construct the missing units from the given units are given as
BIOMT matrices (Table 1). Within the BIOMT matrices, the
numbers of biomolecule to be constructed (Table 1, Column3), as
well as the corresponding transformation matrices are provided
(Table 1, Column4–7). Therefore, in order to generate the
structure of all the individual biomolecule unit within the pseudo
spherical (icosahedral) viral capsid, an input coordinate file
containing BIOMT matrices information is required.

As shown in Table 1, each transformation matric contains
BIOMT1, BIOMT2, BIOMT3, which would be apply on x, y, and
z coordinates, respectively, using the following equations:







xf = ax0 + by0 + cz0 + d

yf = ex0 + fy0 + gz0 + h

zf = ix0 + jy0 + kz0 + l
(1)

Where the coefficients a to l are provided by the BIOMTmatrices
(Table 1), and x0, y0, and z0 represent the original coordinates of
individual atom in the given molecule. The calculation would be
performed on all other atoms until the structure of protein unit
is completed and output as a separated file. This process will then
repeat with the next BIOMT matrix until all the required protein
units are generated (Figures 1A,B).

This tool can be applied in generating structures of individual
protein units form any multi-protein complex as long as the
BIOMT matrices are provided. As a demonstration, the initial
structure of the TCV capsid was downloaded from PDB (ID
3ZX8), by which the structure of a capsomer and the BIOMT
matrices were provided. Using the capsid generation tool, 60
copies of capsomer structures were generated and assembled into
the native structure of TCV capsid (Figure 1B). These capsomer
structures can then be collected for further studies, where the
interactions among capsomers are investigated.

Capsid Expansion Tool
The next tool allows the shifting of all capsomers away from
the mass center of the whole capsid resulting in a viral capsid
expended by a user desired distance (Figure 1C).

The first step in this operation is to find the capsid’s mass
center, Ccapsid, which would be done in a similar manner
to the capsid generation tool. When determining the mass
center of TCV capsid, this tool first calculates the mass center
of the primary capsomer, and then transformed the obtained
coordinates according to the given BIOMTmatrices. Sixty copies
of coordinates would be generated and presenting the mass
center of corresponding capsomers in the TCV capsid. With
these coordinates, the coordinates of the mass center of the
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TABLE 1 | Demonstration of the BIOMT matrices provided in PDB files.

Column1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7

REMARK 350 BIOMT1 N a b c d

REMARK 350 BIOMT2 N e f g h

REMARK 350 BIOMT3 N i j k l

whole TCV capsid can then calculated by averaging the mass
center coordinates of its individual capsomer, as shown in the
following equation:















Ccapsid(x) =
∑N

n=1 xn
N

Ccapsid(y) =
∑N

n=1 yn
N

Ccapsid(y) =
∑N

n=1 zn
N

(2)

Where N is the total number of capsomers, xn, yn , and zn are the
coordinates of the mass center of the capsomer n.

Next, the tool generates the 60 copies of vectors,
−→
S n, from the

mass center of the whole capsid to the mass center of individual
capsomer by the following equation; The vectors,

−→
S n, would

define the direction of the shifting the individual capsomers.







−→s n,x = Ccapsid(x)− CN(x)
−→s n,y = Ccapsid(y)− CN(y)
−→s n,z = Ccapsid(z)− CN(z)

(3)

where Ccapsid(x), Ccapsid(y), and Ccapsid(z) are given in Equation
(2), CN(x), CN(y), and CN(z) are the coordinates of mass center
of the capsomer n.

The shifting (expansion) distance can again be defined by
user. To make it more convenient of users who don’t have direct
measurement of the desired distance, we introduce the concept
of a mean radius of mass distribution, the mean mass radius RM,
which is defined using the following equation:







ri =
√

[Ccapsid(x)− xi]
2
+ [Ccapsid(y)− yi]

2
+ [Ccapsid(z)− zi]

2

RM =

∑I
i=1 miri
|MT |

(4)

Where xi, yi, and zi are the coordinates of atom i, ri is the distance
between a single atom i and the mass center of the capsid Ccapsid,
mi is the atomic mass of the corresponding atom, and MT is the
total atomic mass of all atoms within the capsid.

Thanks to the icosahedral symmetry of the vial capsid, the
distances from Ccapsid to the mass center of individual capsomer
are equal. The calculation of the RM can be simplified to one step
using following equation:

RM = |
−→
S n| =

√

[

Ccapsid (x) − CN (x)
]2

+
[

Ccapsid

(

y
)

− CN

(

y
)]2

+
[

Ccapsid (z) − CN (z)
]2

(5)

where only the coordinates of the capsid mass center Ccapsid(x, y,
z), and that of the one capsomer n is needed.

With the given distance, d, a expansion vector,
−→
E , would then

be generated using by the following expressions:











−→
E x = d · RM ·

−→
S n,x

−→
E y = d · RM ·

−→
S n,y

−→
E z = d · RM ·

−→
S n,z

(6)

Finally, the tool generates the expanded structures based on the
given primary capsomer, BIOMT matrices and the calculated

expansion vector
−→
E , using the following equation:











xf = ax0 + by0 + cz0 + d +
−→
E x

yf = ex0 + fy0 + gz0 + h+
−→
E y

zf = ix0 + jy0 + kz0 + l+
−→
E z

(7)

Where the coefficients a to l are provided by the BIOMTmatrices
(Table 1), and x0, y0, and z0 are the coordinates of individual
atom in the primary capsomer. The calculation would be repeat
on all atoms within the capsomer and output the expanded
coordinates into a separated file. This process then goes on with
the next BIOMT matrix until the expanded capsid is generated
(Figures 1B,C).

As a demonstration, a TCV capsid expended by 0.5RM was
generated by shifting the individual capsomers 0.5RM away from
the mass center of TCV capsid (Figure 1C). With the structures
of expended capsid and its individual capsomer, investigation
that aims to determine the driving force of intact viral capsid
assembly, can be carried out as discussed in the later section.

Capsomer Detachment Tool
This tool detaches a single capsomer from the viral capsid by a
user defined distance. Compare to previous tools, this one will
output a structural file of the shifted capsomer and the rest of the
capsid in two separated files. The work flow of this tool is very
similar to that of the expansion tool, except the expansion vector
would only be applied on the chosen capsomer. The detachment
distance can be user defined relatively to the mean mass radius
RM. As a demonstration, one of the capsomer from TCV capsid
was separated from the rest of the capsid from 0.4RM to 1.0RM in
0.1RM intervals (Figure 1D).

Once the structures of the detached capsomer and the rest
of the capsid are obtained, operations including spinning and
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rotation, can then be carried out for the purpose of investigating
the interactions between the one capsomer and rest of the capsid
during viral capsid assembly. After detached from the TCV
capsid by 0.7RM, the capsomer was spun in the xy-plane (around
z-axis) from −90Å to 90Å in 2Å interval (Figure 1E) using the
spinning tool described in section Spin. The capsomer were
also rotated around the rest of the capsid from −20Å to 20Å
in 2Å interval (Figure 1F) using the rotation tool described in
section Rotation.

By detaching, spinning and rotating a single capsomer,
different orientations and distances of capsomer with respect
to the rest of the capsid were obtained, which can be
used for the capsid assembly studies where the driving force
can be investigated in a manner of mimicking the dynamic
assembly process.

Cylindrical Structure Manipulation
The application of the manipulating tool can be extended
in complexes where cylindrical structures are involved. One
example is to mimic the kinesin motor’s movement on the
microtubule filament, which can be subsequently used in the
investigation of kinesin-microtubule interactions during the
cargo transportation. In this work, the complex structure of
kinesin binding with microtubule is generated and described in
our previous paper (Li et al., 2016b). However, the StructureMan
tool can be used to any other microtubule and cylindrical
biomolecules. With the tools described above, 4 different
operations of the kinesin motor domain were performed: (1)
shifted away from the microtubule by 5Å to 50Å in 2Å interval
using the separating tool (Figure 2A); (2) rotated around one
chosen microtubule unit from −20Å to 50Å in 2Å interval using
the rotation tool (Figure 2B). This rotation range was limited by
the steric effects of the neighboring microtubule units; (3) spun
from −180Å to 180Å in 2Å interval around the Z axis using the
spin tool (Figure 2C). (4) translated along the microtubule from
−80Å to 80Å in 2Å interval using the perpendicular translation
tool (Figure 2D); In each operation, the structures of kinesin
motor domain with various distances and orientations were
output separately and collected for DelPhi (Li et al., 2012a,b,
2013b) and DelPhiForce (Li et al., 2017a,b,c) calculation.

Electrostatic Potential Calculations by
DelPhi
Electrostatic calculations were performed on the complex of
detached capsomer and incomplete TCV capsid as well as
the expended capsid collected from previous sections using
method described in our previous paper (Xian et al., 2019). The
electrostatic potentials as well as the interactions among the
capsomers are visualized in Visual Molecular Dynamics (VMD)
(Humphrey et al., 1996; Figure 3). The surfaces of the capsid and
capsomers are generated using the “Quicksurf” method in VMD
and colored from red to blue in a scale range of−3.0 to 3.0 kT/Å.
More information on DelPhi analysis can be accessed through
this tutorial: http://compbio.clemson.edu/delphi.

Electrostatic Binding Forces Calculation by
DelPhiForce
To examine the roles of electrostatic interactions in the process
of viral capsid assembly, 115 structures of viral capsomers in
various orientations and distances were collected from previous
sections and prepared for DelPhiForce calculations using the
method mentioned in our previous paper (Xian et al., 2019).
The calculated electrostatic forces between the manipulated
capsomer and the rest of the capsid were visualized and in VMD
(Humphrey et al., 1996), where they are represented by arrows.
The rest of the capsids are shown using the “Quicksurf” method
and colored from red to blue in a scale range of−3.0 to 3.0 kT/Å
(Figure 4).

In order to underline the significances of electrostatic
interactions in driving kinesin’s movement along the
microtubule, 342 structures of microtubule and kinesin
motor domain in different orientations and distances were
collected for DelPhiForce calculations. The parameters for these
calculations were set as the same as those of TCV capsid. The
visualization of the electrostatic forces was also done in VMD
using the same method, except the surface of microtubule
were obtained by the “Surf” option in VMD (Figure 5). More
information on DelPhiForce analysis can be accessed through
this tutorial: http://compbio.clemson.edu/delphi-force-web.

RESULTS AND DISCUSSION

Electrostatic Potential of the TCV
Capsomers and Its Capsid
The charge distribution on capsomers mainly has two functions:
First, the electrostatic interactions among capsomers play
significant roles in assembling and stabilizing the whole capsid
structure (Li et al., 2012a; Salas et al., 2019; Xian et al., 2019).
Second, electrostatic interactions between capsid and DNA/RNA
stabilize the encapsidated genomic materials by neutralizing the
repulsive forces between the DNA/RNAs (Bakker et al., 2012). In
this work, we mainly focused our investigations on electrostatic
interactions among capsomers of TCV using the StructureMan.

The electrostatic potential calculations from DelPhi
demonstrated the charge distribution on the inner and outer
surface of the viral capsid. The inner surface of the viral capsid is
dominated by positive charges as shown in Figures 3c,d, which
explains why the capsomers play crucial roles in stabilizing the
packed genomic RNA in previous studies.

On the outer surface of the viral capsid, negatively charged
residues are distributed rather evenly through the whole capsid,
while the positively charged residues are mostly located at 5-fold
axis and 3-fold axes (Figure 3a). After one chosen capsomer is
detached from the rest of the capsid by 0.5RM (50 percent of the
particlemeanmass radius), strong attractive electric field lines are
present between the detached capsomer and the rest of the capsid
(Figure 3b), suggesting that the electrostatic interaction guides
capsomers to build the viral capsid.

To study the overall electric field lines among the capsomers
for a whole capsid, the StructureMan was utilized to expand the
capsid. This “expand” operation shifted each of the capsomers
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FIGURE 2 | Structure manipulation of the kinesin with respect to microtubule. In each of the four operations, the microtubule is shown at the bottom in green and
shown in density map generated by chimera (Pettersen et al., 2004; Goddard et al., 2007), whereas the motor domain of kinesin is shown on the top in ribbon with
various color, red, purple, orange, and blue. The motor domain is manipulated by (A) shifted from the microtubule from 5Å to 50Å in 2Å interval; (B) rotated around
one chosen microtubule unit form −20Å to 50Å in 2Å interval; (C) spun from −180Å to 180Å in 2Å interval around the z-axis; (D) translated along the microtubule
from −80Å to 80Å in 2Å interval.

away from the rest of the capsid (Figures 3c,d). Electrostatic
calculation of the expended capsid shown the electric field
lines located at the interfaces of capsomers (Figures 3c,d). High
density of electric field lines were found among individual
capsomers, indicating the present of strong attractive interactions
(Figure 3d). These attractive interactions were found throughout
the viral capsid, which demonstrated the role of electrostatic
interactions in stabilizing the whole viral capsid.

Electrostatic Binding Force Between One
Detached Capsomer and the Rest of the
Capsid
To further characterize the role of electrostatic interaction in
the vial capsid assemble process, the electrostatic binding forces
were calculated using DelPhiForce (Li et al., 2017a,b). With
the structure generated from the StructureMan, the electrostatic
binding forces were studied in various orientation and distances
of the capsomers (Figure 4).

While one chosen capsomer was detached from the rest of
the capsid, DelPhiForce was utilized to calculate the electrostatic
binding forces, which were represented by orange arrows in
Figure 4A. Note that all the force arrows are normalized to the
same size in order to demonstrate their directions clearly. To
compare the strengths of these binding forces, the magnitudes of
these binding forces were plotted against the distance between
the detached capsomer and its native position (Figure 5A),

where the more negative value represents the stronger attractive
binding force. Binding forces data at 0.3RM or less were not
considered because of the possibility of clashes between the
atoms. The binding force became neglectable after the capsomer
was detached by 0.8RM or further (Figure 5A). The forces within
the range of 0.4RM to 0.7RM are all attractive as the arrows point
toward the rest of the capsid (Figure 4A). This indicated that
the effective range of electrostatic forces between the capsomer
and the rest of the capsid is about 0.7RM(∼97Å), which suggests
that the electrostatic binding forces guide capsomers from long
distance during the viral capsid assembling process.

The binding forces between the detached capsomer and
the rest of the capsid were also calculated while the detached
capsomer was spun (visualized in Figure 4B). If the capsomer
was rotated around z-axis within the range from −45Å to 90Å,
the binding forces remained attractive. When the capsomer
was rotated from −90Å to −45Å, the binding force became
repulsive due to the effect introduced by putting the wrong-
orientated bulky S domain too close to the rest of the capsid,
which resulted in strong electrostatic repulsive forces. This
suggests that the electrostatic forces contribute in adjusting
the orientations of the capsomers to the native orientations,
which were more electrostatically favorable compared to the
non-native orientations.

Previous studies on viral capsids have demonstrated the
interactions between an individual capsomer and its adjacent
capsomers are crucial in the capsid assembly process (Salas et al.,
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FIGURE 3 | The electrostatic potential field lines among capsomers of TCV
capsid. (a) The electrostatic potential field lines of a capsomer detached away
by 0.5RM and the rest of the capsid. (b) Zoom-in area of the electrostatic
potential field lines between the detached capsomer and the rest of the
capsid, where their attractive interaction ware pointed out by white arrows; (c)
The electrostatic potential field lines of the expended capsid obtained by
shifting individual capsomers 0.5RM away from the mass center of the whole
capsid. (d) Zoom-in area of the electrostatic potential field lines among the
expanded capsid. The attractive interaction around one capsomer are pointed
out by white arrows; All four panels were rendered by VMD (Humphrey et al.,
1996). All capsomer surfaces are generated using the “Quicksurf” method.
Negatively and positively charged capsomer surface areas are colored from
red to blue with a scale of −3.0 to 3.0 kT/Å. The electric field lines were also
colored using the same color scheme.

2019; Xian et al., 2019). Here we focused on the interaction
between one capsomer and the rest of the capsid. As the detached
capsomer was rotated around the rest of the capsid using the
StructureMan, the binding forces were analyzed (Figure 4C).
The rotation was carried out within a range that the detached
capsomer was still relatively close to the cavity created by
capsomer detachment. As the arrows are all orientated toward
the capsid, we conclude that the electrostatic interaction is
again attractive between the detached capsomer and the rest of
the capsid.

Electrostatic Binding Force Between
Kinesin Motor Domain and Microtubule
Similar analyses of the electrostatic binding forces were
performed with the kinesin-microtubule complex in which the
kinesin motor domain was manipulated by various orientations
and distances (Figures 5B, 6). As the kinesin motor domain was
separated from the microtubule, the strengths of the attractive
binding forces reduced and became insignificant when the
distance reached 25Å (Figures 5B, 6A). When the kinesin was

separated from the microtubule less than 15Å, the electrostatic
binding forces were exerted toward the native binding site on the
microtubule. When the separation was in the range of 15Å−25Å,
the binding forces were orientated to the neighboring binding
site. This suggests that as the distance between the kinesin motor
domain and the microtubule increases, the binding force toward
the neighboring binding site becomes competitive to that toward
the native binding site.

While the kinesin was rotated around one microtubule within
the range of −16Å to 10Å, the binding force was exerted toward
the native binding site (Figure 6B). If the kinesin was rotated
further than −16Å, the force became repulsive due to the steric
effect from the neighboring microtubule units. When the kinesin
was rotated to the top of the microtubule units, the binding
force first became repulsive and then changed to attractive as
it traveled close enough to the neighboring native binding site
(Figure 6B). When the kinesin motor domain was spun from
−10Å to 10Å (the motor is still in near-native orientation), the
binding forces remain attractive. However, when the orientation
of kinesin motor domain is significantly changed, the binding
forces became randomly directed (Figure 6C). The results from
both rotation and spin operations reveal that the electrostatic
interaction favors the native or near-native orientations of
kinesin motor domain, and when its orientation is altered, the
binding force reorient it to the native orientation by providing a
repulsive binding force.

In the operation where the kinesin motor domain was
translated along the microtubule, the binding forces were
consistently exerted toward the native binding side within the
range of −26Å−12Å (Figure 6D). While traveling between the
native binding site to the neighboring binding site, the binding
forces were shown to bemostly repulsive. However, as the kinesin
motor domain traveled closer to the neighboring binding site
(from −70Å to −80Å, and 60Å to 80Å), the binding forces were
again orientated toward the neighboring binding sites. These
results demonstrate that the electrostatic interactions make a
significant contribution in guiding the kinesin by favoring the
binding on the native binding sites and rejecting the non-native
binding positions. Our discovery on the electrostatic interaction
between kinesin and microtubule can explain and support the
thermal ratchets model for kinesin’s motility (Magnasco, 1993;
Hwang and Karplus, 2019). The electrostatic analyses in this
study also match the previous results from Brownian simulations
for kinesins (Grant et al., 2011).

CONCLUSION

Understanding biomolecular interactions is crucial and
fundamental to study the biology problems. Due to their
large scales, many biomolecular interactions are difficult to be
studied via all atom simulations. Here we introduce a Structure
Manipulation tool (StructureMan) to offer comprehensive
operations for the structures in large scale biomolecular
interactions, such as interactions in the viral capsid and
molecular motor-microtubule complexes. This StructureMan
tool contains operations which can be utilized to study the
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FIGURE 4 | Electrostatic forces between the manipulated capsomer and the rest of the capsid while the capsomer was (A) separated from the rest of the capsid by
0.4RM to 0.7RM in 0.1RM interval; (B) spun around the z-axis from −90Å to 90Å in 2Å interval; (C) rotated around the rest of the capsid from −20Å to 20Å in 2Å
interval. In all three panels, the manipulated capsomer was shown in gray ribbon. The rest of the capsid shown in “Quicksurf” colored from red to blue in a scale of
−3.0 to 3.0 kT/Å. The electrostatic forces are represented by arrows. In order to clearly show the directions of all binding forces, the arrows in each panel ware
normalized to the same size. The tails of arrows in (B,C) ware placed at the mass centers of the manipulated capsomer. In (A), the arrow tails are place on a circle
where the spinning degrees can be differentiated by the angle theta (θ). All images are rendered by VMD.

FIGURE 5 | The magnitudes of electrostatic binding forces between the detached capsomer and incomplete TCV capsid (A), and the kinesin motor domain and
microtubule (B). In both panels, the strength of the binding forces is represented by the blue vertical histogram bars. The more negative value of binding force (KT/Å),
the stronger attractive electrostatic binding force. The changes of binding force as the separation distance increased were shown by the red moving average
trendlines in both panels.

interactions in large biological systems. Combining with
electrostatic calculation tools such as DelPhi and DelPhiForce,
StructureMan can be used to reveal the detailed biomolecular
interactions. Two examples are demonstrated in the results
and discussion section, which show that the StructureMan is
beneficial when studying the biomolecular interactions in large
scale biomolecular complexes.

There are four basic and two advanced operations developed
in the StructureMan. Note that these basic operations in
StructureMan are different from those in existing visualization
programs. Those tools in the existing visualization programs can
shift or rotate a single biomolecule; However, these four basic
operations of StructureMan take two biomolecules as inputs and
do the operations between the two biomolecules. For examples,
the separation tool in StructureMan shifts the ligand from the
receptor in the direction of their mass center connection line,
while the existing tools can only shift a single protein. If users
want to shift a ligand from the receptor in the direction of their

mass center connections, users need to calculate the shifting
vector first and normalize the vector, then use the existing tools to
shift the ligand. The rotation operation in StructureMan rotates
the ligand around the mass center of the receptor. This operation
cannot be easily achieved by the existing visualization programs.
Instead, users need to write some script to complete such an
operation. Advanced operations in StructureMan are even more
comprehensive. For example, the capsid expansion operation
takes one capsomere as input structure and generates a structure
of expanded capsid in which every two adjacent capsomers are
separated by a distance defined by the users. Such an operation
is not in any of the existing tools. Another advantage is that the
StrucrueMan is written in shell script, which can be easily used
to handle large number of structures (such as a big number of
frames fromMD simulations).

In this work, we first focused on investigations on electrostatic
interactions among capsomers of TCV using the StructureMan.
The charge distribution on the inner surface of the viral capsid
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FIGURE 6 | Electrostatic forces between the manipulated kinesin motor domain and microtubule while the kinesin motor domain is (A) separated from the
microtubule from 5Å to 50Å in 2Å interval; (B) rotated around one chosen microtubule unit form −20Å to 50Å in 2Å interval; (C) spun from −180Å to 180Å in 2Å
intervals around the z-axis. (D) Translated along the microtubule from −80Å to 80Å in 2Å interval. The kinesin motor domains are shown in ribbon. The microtubule are
shown in surface colored from red to blue in a scale of −3.0 to 3.0 kT/Å. The electrostatic forces are represented by arrows. In (C), the arrow tails are place on a circle
where the spinning degrees can be differentiated by the angle theta (θ), while the tails of arrows in all other panels are placed at the mass centers of the manipulated
capsomers. The force arrows in each panel are normalized to the same size. All images are rendered by VMD.

indicates that the capsomers stabilize the packed genomic RNA,
as observed in previous studies. On the outer surface of the
viral capsid, strong attractive electric field lines imply that the
electrostatic interactions guide capsomers to build the viral
capsid. The “expand” operation shifted each of the capsomers
away from the rest of the capsid, which reveals that the attractive
interaction among the capsomers is a key factor to stabilize the
whole viral capsid.

The StructureMan and DelPhiForce were utilized to further
characterize the electrostatic binding forces in the viral capsid.
Results demonstrate that the effective range of electrostatic forces
between the capsomer and the rest of the capsid is about 0.7RM

(∼97Å), which suggests that the electrostatic binding forces guide
capsomers from long distances in the viral capsid assembling
process. The spin and rotation operations in the StructureMan
show that the electrostatic forces contribute in adjusting the
orientations of the capsomers to the native orientations.

Similar analyses of the electrostatic binding forces were
performed to the kinesin-microtubule complex, where the
kinesin motor domain was manipulated by various orientations
and distances. The results suggest that when the distance
between the kinesin motor domain and the microtubule
increases, the binding force toward the neighboring binding
site becomes competitive to that toward the native binding site.
The calculations from both rotation and spin operations reveal
that the electrostatic interaction favors the native or near-native
orientations of kinesin motor domain. When the orientation
of kinesin motor domain is altered, the binding force reorients

it to the native orientation by providing a repulsive binding
force. In the operation where the kinesin motor domain was
translated along the microtubule, the calculations demonstrate
that the electrostatic interactions make significant contributions
in guiding the kinesin by favoring the binding on the native
binding sites and rejecting the non-native binding positions.

Besides the two examples demonstrated in this work, the
StructureMan program is able to help the researchers to
study many other large-scale biomolecular interactions. We
expect the StructureMan to be combined with DFMD method
(Peng et al., 2019) to investigate the biomolecular interactions
in the perspective of molecular dynamic simulations in our
future work. This novel tool provides an alternative approach
to study the biomolecular interactions, especially for large
scale biology problems. The StructureMan tool is available
at our website: http://compbio.utep.edu/static/downloads/script-
for-munipulation2.zip.
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PICK1 is a multi-domain scaffolding protein that is uniquely comprised of both a PDZ

domain and a BAR domain. While previous experiments have shown that the PDZ

domain and the linker positively regulate the BAR domain and the C-terminus negatively

regulates the BAR domain, the details of internal regulation mechanisms are unknown.

Molecular dynamics (MD) simulations have been proven to be a useful tool in revealing

the intramolecular interactions at atomic-level resolution. PICK1 performs its biological

functions in a dimeric form which is extremely computationally demanding to simulate

with an all-atom force field. Here, we use coarse-grained MD simulations to expose the

key residues and driving forces in the internal regulations of PICK1. While the PDZ and

BAR domains do not form a stable complex, our simulations show the PDZ domain

preferentially interacting with the concave surface of the BAR domain over other BAR

domain regions. Furthermore, our simulations show that the short helix in the linker

region can form interactions with the PDZ domain. Our results reveal that the surface

of the βB-βC loop, βC strand, and αA-βD loop of the PDZ domain can form a group

of hydrophobic interactions surrounding the linker helix. These interactions are driven

by hydrophobic forces. In contrast, our simulations reveal a very dynamic C-terminus

that most often resides on the convex surface of the BAR domain rather than the

previously suspected concave surface. These interactions are driven by a combination

of electrostatic and hydrophobic interactions.

Keywords: PICK1, inter-domain dynamics, coarse-grained simulations, key residues, physical forces

INTRODUCTION

Protein Interacting with C Kinase-1 (PICK1) is a multi-domain mammalian membrane
protein (Staudinger et al., 1995). In the monomeric form, PICK1 is comprised of one PDZ
(PSD-95/Dlg1/ZO-1) domain (Sheng and Sala, 2001; Hung and Sheng, 2002) and one BAR
(Bin/amphiphysin/Rvs) domain (Takei et al., 1999). While each is a common modular domain,
PICK1 is unique as it is the only known protein that contains both a PDZ and a BAR domain.
The domains are connected via an intrinsically disordered linker that allows the PDZ domain to
have a wide range of motion around the BAR domain. This range of motion increases the effective
concentration of PDZ domain so that it can form protein-protein interactions with a variety of
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cellular proteins. Furthermore, the N- and C-termini are
intrinsically disordered regions that may be involved in the
regulation mechanism of PICK1. The short N-terminus (∼18
residues) sits before the PDZ domain and is enriched with many
acidic residues. The lengthy C-terminus (∼60 residues) follows
the central BAR domain and is characterized by a stretch of
acidic residues. The structure of PICK1 is shown in Figure 1.
Functionally, PICK1 is involved in the trafficking of a variety
of proteins, including receptors, transporters, and ionic channels
(Staudinger et al., 1997; Torres et al., 1998, 2001; Dev et al., 1999;
Boudin et al., 2000; Cowan et al., 2000; El Far et al., 2000; Takeya
et al., 2000; Jaulin-Bastard et al., 2001; Lin et al., 2001a,b; Penzes
et al., 2001; Duggan et al., 2002; Hruska-Hageman et al., 2002;
Perroy et al., 2002; Enz and Croci, 2003; Hirbec et al., 2003;
Leonard et al., 2003; Williams et al., 2003; Meyer et al., 2004;
Reymond et al., 2005). Its wide range of functions in regulating
membrane proteins has drawn attention as a possible drug target.
PICK1 has been identified as a possible target in ischemia (Dixon
et al., 2009), Alzheimer’s disease (Alfonso et al., 2014), Parkinson’s
disease (He et al., 2018), chronic pain (Garry et al., 2003),
and cocaine addiction (Jensen et al., 2018). If PICK1 is to be
targeted with the necessary affinity and specificity, an in-depth
understanding of the activation mechanism and protein-protein
interactions of PICK1 are vital.

PICK1 interacts with the final C-terminal residues of
receptors, transporters and transmembrane channels via its PDZ
domain (Hanley, 2008). The PICK1 PDZ domain has a well-
defined binding pocket with canonical Class II ligand-PDZ
interactions (Madsen et al., 2005). PICK1 regulates the trafficking
of membrane proteins via electrostatic interactions between the
membrane and the dimeric BAR domain. The family of BAR
domain proteins is one of the largest groups of membrane
curving proteins in the cell. The amphiphysin BAR domain

FIGURE 1 | Structure of PICK1. (A) Sequence of PICK1. Monomeric PICK1 is comprised of two modular domains, PDZ (red) and BAR (blue), and three intrinsically

disordered regions, N-terminal, linker (green), and C-terminal (yellow). (B) Structure of PICK1 in the absence of N- and C-termini. (C) Dimeric BAR domain and

intrinsically disordered C-terminal.

binds to the negatively charged lipid membrane via two pairs
of positively charged residues (Peter et al., 2004). Sequence
alignment with the amphiphysin BAR domain suggests that five
positively charged residues (K251, K252, K257, K266, and K268)
on the PICK1 BAR domain are responsible for its interactions
with the lipid membrane (Xu and Xia, 2007). Point mutation
analysis further confirms the importance of these residues in
lipid membrane binding (Jin et al., 2006). While an atomic-
level understanding of these processes remains unclear, detailed
hypotheses of auto-inhibition exist. Jin et al. used truncated
mutants of PICK1 to test their lipid-binding capabilities (Jin et al.,
2006). It was shown that the deletion of the C-terminus promotes
BAR interactions with the lipid membrane. Results affirmed that
PICK1 is negatively regulated by its C-terminus and positively
regulated by its linker and PDZ domain (Jin et al., 2006).
Furthermore, it is suggested that the negatively charged region
of the C-terminus negatively regulates the function of PICK1 by
interacting with and thus covering the critical positively charged
residues on the concave surface of the BAR domain.

Our previous work has shown that the PDZ domain forms
interactions with the BAR domain, which may prevent the
binding between the BAR domain to the lipid membrane
(He et al., 2011). These results support the hypothesis of an
inactivated state of PICK1 in which ligand binding results in
activation via a conformational change to expose the BAR
domain to the membrane (Lu and Ziff, 2005; Rocca et al.,
2008). A more recent experiment has revealed a more dynamic
pattern for the interactions between the BAR and PDZ domains
(Karlsen et al., 2015). Small-angle X-ray scattering (SAXS)
analysis revealed the wide range of flexibility of the PDZ domain
via the intrinsically disordered linker. Higher-order oligomeric
structures of PICK1 further enable the dynamic positioning
of the PDZ domains (Karlsen et al., 2015). Moreover, several
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experiments done by different groups show that the linker of
the PICK1 protein may play a key role in promoting BAR
interactions with the lipid membrane (Jin et al., 2006; Herlo
et al., 2018). To understand the interplay between different
parts of the PICK1 protein in its biological dimeric form,
dynamics information at residue resolution and a very fine time
resolution (picosecond or nanosecond time scale) is essential.
However, such dynamics information is difficult to obtain
from experiments since PICK1 is inside of the cell and forms
aggregates with itself.

PICK1 is a large protein and performs its biological function
in dimeric form. Such a system consists of more than 800
residues and may have a dimension over 20 nm because of its
flexibility (Karlsen et al., 2015). A system of this size is extremely
computationally demanding to simulate with all-atom force
fields. Physics-based coarse-grained models have a long history
of helping scientists to tackle systems of this size with reasonable
computational resources. The physics-based UNited-RESidue
(UNRES) (Liwo et al., 1997a) force field, which was originally
proposed by Liwo and Scheraga, is one of the extensively
tested coarse-grained models that can be used to predict protein
structure (He et al., 2009, 2019) and probe large protein dynamics
(He et al., 2011; Gołaś et al., 2012; Mozolewska et al., 2015). With
several generations of optimization, UNRES is a reliable tool to
explore the inter-domain dynamics of PICK1.

Here, we present the needed structural and dynamics
information that is responsible for the auto-inhibition of PICK1
and provides a complete picture of the inter-domain dynamics
of PICK1. We implemented coarse-grained UNRES molecular
dynamics simulations to model two systems: (1) BAR domain
with PDZ domain and linker and (2) BAR domain with C-
termini. These truncations are modeled after experimental work
(Jin et al., 2006) that describes systems (1) and (2) as the two
extreme cases of the enhanced and reduced biological function
of PICK1, respectively. The truncated systems allow us to more
readily isolate the key interactions in each of these extreme
cases. Our results show that the PDZ domain and linker form
dynamic interactions on the concave surface and side of the BAR
domain dimer. The PDZ domain interacts with the BAR domain
dimer via residues that are located in the regions which are
regulated by the electrostatic allosteric effects upon the formation
of the PDZ-ligand complex. Surprisingly, our results do not
show the C-termini interacting with the concave surface of the
BAR domain via electrostatic interactions as previously expected.
Rather, the movements of the C-termini are vastly dynamic and
generally reside at the central region of the convex surface of the
BAR domain.

METHODS

Though the experimental structures of PICK1 and the PICK1
dimer have not yet been determined, the PICK1 BAR domain
has a high sequence identity with Arfaptin-2, a N-BAR domain
protein (Nakamura et al., 2012). The dimer structures of N-BAR
domains have been well-established. The starting structures used

in the simulations were created using the BAR dimer in Arfaptin-
2 as a template to create the PICK1 dimeric BAR domains using
MODELER (Šali and Blundell, 1993; Fiser et al., 2000; Martí-
Renom et al., 2000; Webb and Sali, 2016). With the BAR dimer,
the structure of the C-termini of PICK1 was randomly generated
and attached to the BAR domain. The structure of the PDZ
domain has been previously experimentally determined (Pan
et al., 2007) and was used as a structural template in our protocol.
After the PDZ domains were randomly placed with respect to
the BAR domain, the intrinsically disordered linker was added to
connect the PDZ domain and BAR domain. The initial structures
are shown in Figures 1B,C.

UNRES (Liwo et al., 1997a,b, 1998, 2011; He et al., 2009;
Sieradzan et al., 2014) uses a simplified representation in which
a protein chain is composed of a sequence of α-carbon atoms
connected by virtual bonds with attached side chains. To reduce
computational cost and maintain residue-level resolution, each
residue is represented by two interaction sites. One interaction
site is centered between two consecutive Cα atoms, and the
other is located at the center of the mass of the corresponding
side chain. As a physics-based coarse-grained force field, the
UNRES energy function has been averaged over the lost degree
of freedom when simplifying from all-atom to coarse-grained
representations. Recently, UNRES has been expanded to include
both nucleic acids and lipid membranes (He et al., 2013;
Sieradzan et al., 2018; Ziȩba et al., 2019). Canonical MD
simulations (13 trajectories) were carried out for each complex to
explore the interplay between the different parts of PICK1 and the
crescent BAR domains. The most recently parameterized UNRES
force field (Sieradzan et al., 2017; Lubecka et al., 2019), which has
been evaluated based on CASP 13 targets, was used in this work.

The input files (including all input parameters) were generated
using the UNRES server at http://unres-server.chem.ug.edu.pl.
While the UNRES server was used to generate input files for
each system, simulations were performed locally because the
UNRES server has a size limit that is smaller than the system
sizes explored in this work. The simulations used the latest
UNRES source code that can be downloaded at https://unres.
pl/downloads. The input files generated by the UNRES server
used the most recent UNRES force field, namely “NEWCT-9P =

JCP 150 155104 (2019).” Users must click the “advanced” button
(after selecting “MD” option) located at the top-right of the web
page to use this force field. Both systems started from the PDB
structures described above with periodic boundary conditions
set at 10,000.0 Angtroms. No secondary structure restraints were
applied. Distance restraints were manually added to the input
files generated by the UNRES server to maintain the structure of
the BAR and PDZ domains but not the linker or the C-terminus.
It should be noted that the UNRES server does not include
keywords to add distance restraints. Since PICK1 is much larger
than the proteins used to parametrize the force field, a higher
temperature (350K) was used for all canonical MD simulations
of the two systems simulated. It should be noted that the 350K
used here does not directly correspond to 350K in a biological
system. Rather, a temperature of 350K is used to estimate a
temperature between 300K and 350K in a biological system based
on the evaluation of the previous work (Liwo et al., 2019). The
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time increment for integrating the equations of motion δt was
9.78 fs. Thirteen trajectories were carried out, and each trajectory
has 80,000,000 steps. Snapshots of structures are outputted every
10,000 steps. Our input files of all systems have been included
in the supporting information. All other parameters are default
values provided by the UNRES server.

RESULTS

Root mean square deviation (RMSD) and radius of gyration (Rg)
analysis were performed to quantify the flexibility of the dynamic
system. Frequency refers to the proportion of frames with the
given distance. Figure 2 shows the RMSD and radius of gyration
calculated using all the trajectories of System 1 (the BAR domain
with the PDZ domain and linker). The RMSD plot (Figure 2A)
shows a median RMSD at ∼28 Å. This is a significant variation
from the initial structure. Furthermore, the radius of gyration
analysis supports these results as the size of the protein fluctuates
between 30 and 60 Å with relatively significant frequencies. This
analysis reveals the wide range of motion of the PDZ domain
about the BAR domain as a result of the flexible linker.

For each of the two systems, contact maps were used to reveal
the major interactions between any pair of residues. Contact was
defined as any two Cα atoms at least five residues apart with
a distance separation of 8Å or less. In System 1, the PICK1
complex is in the proposed inactivated state as the protein was
neither in complex with ligand nor in proximity with the lipid

FIGURE 2 | RMSD and radius of gyration of System 1 (BAR domain with PDZ

domain and linker). (A) RMSD. (B) Radius of gyration. The wide range of

frequency signifies the system is very dynamic.

membrane. As expected for inactivated PICK1, the PDZ domains
formed contact with a wide range of residues located on the
concave face and side surface of the BAR domains, as seen
in Figure 3. Figure 3A describes the contact between the BAR
domain and the PDZ domain and the BAR domain and the
intrinsically disordered linker. Both the PDZ domain and the
linker form the majority of interactions with residues 150–200
and 250–300 of the BAR domain. Figure 3B highlights these
regions of residues on the BAR domain dimer. The PDZ domain
and linker region reside near the concave surface of the BAR
domain dimer in the inactivated state of PICK1. Though there
are extensive interactions between PDZ and BAR domains, none
of the interactions appear in>10% of the frames in the combined
trajectories. This agrees with previous experimental observations
that suggest a dynamic interaction pattern between the PDZ and
BAR domains.

Detailed residue-residue interaction analysis revealed that
the short helical portion of the linker region forms significant
interactions with the PDZ domain. Key residues of PDZ-linker
interaction were elucidated by identifying the most prevalent
contacts, in this case, forming a contact in 13% of the frames. Ten
key interaction pairs were identified between the PDZ domain
and the linker, as shown in Table 1. It is not surprising that
the linker can form significant contact with the PDZ domain of
PICK1 as the linker and PDZ domain are next to each other in
sequence. It should be noted that all listed contacts in Table 1 are
formed between the helical fragment of the linker and the PDZ
domain. Previous work has highlighted the importance of the
helical fragment in the linker region in assisting the alignment
of the BAR domain to the membrane (Herlo et al., 2018). The

FIGURE 3 | Contact between the BAR domain dimer and the PDZ domain

and linker. (A) Contact map of BAR domain with PDZ domain and linker region.

PDZ domain and linker region interact with approximate residues 150–200 and

250–300 of the BAR domain. (B) Dimeric BAR domain with residues 150–200

and 250–300 colored red. The color bar describes the probability of the

contact as the log of the percentage of frames that the contact occurs.
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linker may compete with the BAR domain to interact with the
PDZ domain in the inactivated PICK1 dimer.

These ten key pairs are hydrophobic interactions between the
βB-βC loop, βC strand, and αA-βD loop of the PDZ domain
and the short helix fragment of the linker region, as shown in
Figure 4. It can be seen that the PDZ domain forms a group of
hydrophobic interactions surrounding the hydrophobic helical
fragment in the linker region. It has been shown that this short
helical region in the linker is critical for the biological function
of the BAR domain (Herlo et al., 2018). Our results suggest that
this linker may mediate and/or regulate the interactions between
the PDZ and the BAR domains. In addition to the frequency
of each contact pair, the lifetime of each pair has also been
investigated. The lifetime was calculated based on the lasting time
of each contact. Since it is difficult to directly connect UNRES
simulation steps to the real world time scale, lifetime is defined
directly using UNRES steps. While all contacts shown in Table 1

have a probability larger than 13%, their lifetime is rather short

TABLE 1 | Interacting residue pairs between PDZ and Linker.

Residue 1 Residue

type

Residue 2 Residue

type

Probability (%) Lifetime*

50 VAL 114 LEU 21.1 1.70 ± 1.31

66 ALA 114 LEU 17.2 1.80 ± 1.65

43 TYR 113 SER 16.6 1.59 ± 1.14

41 ALA 117 VAL 13.7 1.67 ± 1.19

43 TYR 117 VAL 13.6 1.69 ± 1.16

66 ALA 112 MET 13.5 1.68 ± 1.38

43 TYR 112 MET 13.1 1.55 ± 1.27

50 VAL 118 LEU 13.1 1.67 ± 1.34

66 ALA 113 SER 13.1 1.64 ± 1.19

50 VAL 113 SER 13.0 1.58 ± 1.18

*unit is 100,000 UNRES simulation steps.

FIGURE 4 | Key interaction pairs between the PDZ domain and the linker. (A)

shows the hydrophobic core forming between the PDZ βC-strand/αA-βD loop

and the short helix of the linker. Key interaction pairs Val50-Leu114 and

Ala66-Leu114 listed in Table 1 can be visualized in (A). (B) shows the

hydrophobic core forming between the PDZ βB-βC loop and the short helix of

the linker. Key interaction pairs Tyr43-Ser113 and Ala41-Val117 listed in β can

be visualized in (B).

compared to PDZ and BAR domain interactions. This may be
due to the flexible nature of the linker region.

The interaction pattern between the PDZ and the BAR
domains is quite different than the interactions between the PDZ
domain and the linker. The top ten contact residue pairs are
shown in Table 2. The three most probable interaction pairs
(probability >7%) are between the βB-βC loop of the PDZ
domain and the BAR domain, as shown in Figure 5. Though the
probability of each of the ten pairs is below 10%, the lifetime
of these interactions is much longer than the lifetime of the
PDZ-linker interactions. These results suggest that the PDZ and

TABLE 2 | Interacting residue pairs between PDZ and BAR.

Residue 1 Residue

type

Residue 2 Residue

type

Probability (%) Lifetime*

44 CYS 156 LEU 8.5808 4.28 ± 5.65

42 GLN 156 LEU 7.490471 3.95 ± 5.44

43 TYR 156 LEU 7.446148 6.46 ± 11.89

130 SER 608 SER 6.905416 3.01 ± 3.25

44 CYS 152 ARG 6.205124 3.68 ± 4.63

43 TYR 153 LEU 5.983512 3.90 ± 4.73

42 GLN 160 ALA 5.983512 2.06 ± 1.88

54 ASP 156 LEU 5.921461 4.61 ± 9.70

42 GLN 258 PHE 5.673256 3.79 ± 4.38

84 VAL 265 LEU 5.575747 3.84 ± 3.89

*unit is 100,000 UNRES simulation steps.

FIGURE 5 | Key interaction pairs between the PDZ domain and the BAR

domain. Visualization of key interaction pairs between the PDZ βB-βC loop

and the BAR domain (Gln42-Leu156, Tyr43-Leu156, and Cys44-Leu15) listed

in Table 2.
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BAR domain interactions are more stable than the PDZ-linker
interactions despite lower probabilities.

To identify the preferred regions on the dimeric BAR domain
which interact with the PDZ domains, cluster analysis revealed
the five most probable positions of the PDZ domains in space.
Figure 6 portrays an overlay of these five clusters, where the
dimeric BAR domain is shown in gray and each cluster is
represented by a unique color of the PDZ domain. Furthermore,

FIGURE 6 | Cluster analysis reveals the most probable positions of the PDZ

domains. The dimeric BAR domain is shown in gray and each cluster of the

PDZ domains is shown in a unique color. Cluster 1 (yellow) represents 30.9%

of the frames, Cluster 2 (pink) represents 20.8% of the frames, Cluster 3

(green) represents 18.9% of the frames, Cluster 4 (orange) represents 18.8%

of the frames, and Cluster 5 (cyan) represent 10.5% of the frames. K251,

K252, K257, K266, and K268 are colored red.

the five key positively charged residues on the concave surface
of the BAR domain that readily interact with the surface of the
lipid membrane are colored red. The most probable positions of
the PDZ domain could physically block these key residues on
the BAR domain from interacting with the membrane. While the
most probable positions of the PDZ domains are on the concave
surface of the BAR domain, the movement of the PDZ domains
remains very dynamic. When the PDZ domains depart from
the concave surface of BAR dimer, it may interact with the C-
terminus of its binding partners and pull the BAR domain closer
to the lipid membrane.

While cluster analysis reveals the most probable positions of
the PDZ domain in respect to the BAR domain, RMSD and radius
of gyration analysis reveal that the system has widely dynamic
movements. In efforts to capture this range of motion and make
a direct comparison to data reported by previous experiments
(Karlsen et al., 2015), we performed centroid distance analysis as
shown in Figure 7. Overall, our results agree with experimental
data. The peak of the wide range of distances demonstrates the
wide range of motion of the PDZ domain about the BAR domain.
The major peaks of the distance distributions are for PDZ to
BAR-Linker and PDZ to BAR-Tip reported by experiments was
20A to 40A, which agrees with our simulation data. In contrast,
the distance between PDZ and BAR-Center does not precisely
agree with experiments. Experimental data report the distance
to be 60A to 100A while our simulations have shown a much
broader distribution for this pair. For PDZ-PDZ distance, our
simulations were able to capture the range corresponding to
the range reported by experiments. It should be noted that
while our simulations did produce a minor peak near 120A that
directly agrees with experiments, the overall distance distribution
is shifted slightly to the left.

Root mean square deviation (RMSD) and radius of gyration
(Rg) analysis was performed to quantify the flexibility of System

FIGURE 7 | Distance analysis between the PDZ domain and the BAR domain. Distance between the PDZ domain and the BAR-Linker was defined by residues L60

and S130. Distance between the PDZ domain and the BAR-tip was defined by residues L60 and S262. Distance between the PDZ domain the BAR-Center was

defined by residues L60 and T167. Distance between the two PDZ domains was defined by residues L60 and D390.
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2 (the BAR domain with the C-termini), as shown in Figure 8.
The RMSD plot (Figure 8A) shows the RMSD ranging from
∼25 to 45 Å. This is a significant variation from the initial
structure and demonstrates the wide range of motion of the C-
termini. Furthermore, the radius of gyration analysis (Figure 8B)
supports these results as the size of the protein fluctuates between
30 and 40 Å with relatively significant frequencies. This basic
analysis reveals the wide range of motion of the C-terminal.

The previous literature (Jin et al., 2006) hypothesizes that
the C-terminus negatively regulates the function of PICK1 by
interacting with the key positively charged residues (K251, K252,
K257, K266, and K268) on the concave surface of the BAR
domain dimer that are critical to forming interactions with the
lipid membrane. Interestingly, our results do not support these
hypotheses. The C-termini are very dynamic and have a wide
range of interactions with both with each other and the dimeric
BAR domain as shown in Figure 9. The black boxes indicate
contact between negatively charged stretch of residues that
comprise the C-terminus (D380-D389) may form electrostatic
interactions with the positively charged residues (K251, K252,
K257, K266, and K268) on the BAR domains. These interactions
formed contact in<1% of the frames with a separation of<8.0 Å.
The two C-termini formed contact with each other as well. Most

FIGURE 8 | RMSD and radius of gyration of System 2 (BAR domain with

C-termini). (A) RMSD. (B) Radius of gyration. The wide range of frequency

signifies the system is very dynamic.

notably, the contact dissipates at the stretch of negatively charged
residues (D380-D389).

While the C-terminus contains many charged residues, the
driving forces guiding the interactions between the BAR and
the C-terminus is unknown. Our work identifies the top
ten pairs of residues forming interactions between the BAR
domain and the C-terminus of PICK1. While the majority of
identified pairs are driven by hydrophobic interactions, we also
identified electrostatic interactions such as K209–D347. The high
prevalence of hydrophobic interactions that are entropy driven
may be due to the flexibility of the C-termini. All the contacts
between the BAR domain and the C-terminus have a short
average lifetime that is similar to the PDZ and linker interactions.
Since the C-termini are flexible, the contacts between BAR and
C-terminus form and break continuously.

All residues identified in the top ten interaction pairs listed
in Table 3 are highlighted in red in the BAR-C-termini structure
shown in Figure 10. Potentially, these residues form the most

FIGURE 9 | Contact map of BAR and C-terminus interactions. (A) C-terminus

1 and BAR 1 interactions. (B) C-terminus 1 and BAR 2 interactions. Black

boxes indicated interactions between the key positively charged residues on

the BAR domain (K251, K252, K257, K266, and K268) and the negatively

charged residues of the C-terminus (D380-D389).

TABLE 3 | Interacting residue pairs between C-terminus and BAR domains.

Residue 1 Residue

type

Residue 2 Residue

type

Probability (%) Lifetime*

341 MET 348 CYS 21.4 1.60 ± 1.10

342 SER 348 CYS 17.2 1.40 ± 0.80

209 LYS 347 ASP 17.0 1.31 ± 0.70

342 SER 347 ASP 16.6 1.26 ± 0.63

206 ALA 348 CYS 16.6 1.41 ± 0.89

341 MET 349 TYR 14.5 1.46 ± 0.85

342 SER 349 TYR 13.6 1.44 ± 0.84

210 PHE 348 CYS 13.5 1.38 ± 0.80

206 ALA 351 VAL 13.4 1.55 ± 1.03

340 THR 345 TYR 13.0 1.18 ± 0.53

*unit is 100,000 UNRES simulation steps.
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FIGURE 10 | Key interaction pairs between the C-terminal and the BAR

domain. All key residues listed in Table 3 have been colored red.

probable interactions because of simple proximity. The BAR
and C-termini most readily interacting at their connection site
reinforces the notion of significantly flexibile C-termini.

Cluster analysis revealed the five most probable positions of
the C-termini in space. Figure 11 portrays an overlay of these
five clusters, where the dimeric BAR domain is shown in gray
and each cluster is represented by a unique color of the C-
termini. Furthermore, the key positively charged residues on the
concave surface of the BAR domain that readily interact with the
surface of the lipidmembrane are colored red. Themost probable
positions of the C-termini are centered on the convex surface of
the dimeric BAR domain. The C-termini do not readily cover
the key positively charged residues on the concave surface of the
dimeric BAR domain as previously suspected. These results are
in agreement with previous MD simulations of the PICK1 system
(Salzer et al., 2017).

DISCUSSION

Our results demonstrate that the interdomain dynamics of
PICK1 are driven by both electrostatic and hydrophobic
interactions. Here, we identified key interaction pairs between the
PDZ domain, linker, and dimeric BAR domain that are primarily
hydrophobic interactions. While our results agree with previous
experimental observations which suggest dynamic PDZ and BAR
interaction patterns, the PDZ domain does have preferences on
regions of interactions on the BAR domain. Interestingly, key
residue interactions do not include the previously suspected
positively charged residues (K251, K252, K257, K266, and
K268) of the BAR domain but rather include neighboring
residues. Surprisingly, the short helical fragment in the linker
can form extensive interactions with the PDZ domain, potentially
outcompeting the BAR domain. The biological function of the

FIGURE 11 | Cluster analysis reveals the most probable positions of the

C-termini. The dimeric BAR domain is shown in gray and each cluster of the

C-termini is shown in a unique color. Cluster 1 (purple) represents 66.6% of the

frames, Cluster 2 (green) represents 38.9% of the frames, Cluster 3 (cyan)

represents 22.3% of the frames, Cluster 4 (orange) represent 7.5% of the

frames, and Cluster 5 (yellow) represents 4.6% of the frames. K251, K252,

K257, K266, and K268 are colored red.

helical fragment may be more than just help to align to the BAR
domain on the lipid membrane.

The interaction pairs demonstrate the significance of the βB-
βC loop (Ala41, Gln42, and Tyr43) of the PDZ domain in
initiating PDZ-BAR and PDZ-linker contact. Previous structural
prediction via small-angle X-ray scattering (SAXS) analysis
was unable to determine the orientation of the PDZ domain
in PDZ-BAR interactions, but made the prediction that the
βB-βC loop of the PDZ domain would orient toward the
concave surface of the BAR domain (Madasu et al., 2015)
Our simulations support this early hypothesis. Furthermore,
previous literature reports the importance of the βB-βC loop
in complex formation between the PDZ domain and activation
ligand. Our previous work demonstrates the uniqueness of the
PICK1 PDZ βB-βC loop (Stevens and He, 2020). A recent
publication demonstrated a small-molecule inhibitor of the
PICK1 PDZ domain with both strong affinity and specificity
via targeting both the binding pocket and βB-βC loop of the
PDZ domain (Christensen et al., 2020) Additionally, the βB-
βC loop has been identified as an important player in PDZ-
membrane interactions (Pan et al., 2007; Erlendsson andMadsen,
2015). Here, we show the relevance of the βB-βC loop in
PDZ-BAR contact in the absence of an activating ligand. Key
hydrophobic and electrostatic interactions between the PDZ
domain and the BAR domain are initiated by residues that
comprised the βB-βC loop. Furthermore, the interaction pairs
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reveal the significance of the βB-βC loop in initiating PDZ-
BAR contact.

Previous experimental results (Jin et al., 2006) suggest that
the C-terminus negatively regulates the function of PICK1 by
physically covering the concave surface of the BAR domain dimer
that interacts with the lipid membrane. The negatively charged
stretch of residues that comprise the C-terminus (D380–D389)
may form electrostatic interactions with the positively charged
residues on the BAR domains that are critical in interactions with
the negatively charged lipid bilayer. Interestingly, our results do
not support these hypotheses. Our results demonstrate that the
C-termini of PICK1 could directly interact with the positively
charged residues (K251, K252, K257, K266, and K268) on the
BAR domain, but actual interactions between these residues
observed in our simulations are rare. We suspect that the
C-termini may inhibit the higher-order aggregates of PICK1.
PICK1 performs its biological function by forming clusters at
the cell surface. Rather than covering key positively charged
residues on the concave surface of the BAR domain, the
C-termini may negatively inhibit the function of PICK1 by
preventing scaffolding.
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Optimizing G�o-MARTINI
Coarse-Grained Model for F-BAR
Protein on Lipid Membrane
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Coarse-grained (CG) molecular dynamics (MD) simulations allow us to access much larger
length and time scales than atomistic MD simulations, providing an attractive alternative to
the conventional simulations. Based on the well-known MARTINI CG force field, the
recently developed G�o-MARTINI model for proteins describes large-amplitude structural
dynamics, which has not been possible with the commonly used elastic network model.
Using the G�o-MARTINI model, we conduct MD simulations of the F-BAR Pacsin1 protein
on lipid membrane. We observe that structural changes of the non-globular protein are
largely dependent on the definition of the native contacts in the G�o model. To address this
issue, we introduced a simple cutoff scheme and tuned the cutoff distance of the native
contacts and the interaction strength of the Lennard-Jones potentials in the G�o-MARTINI
model. With the optimized G�o-MARTINI model, we show that it reproduces structural
fluctuations of the Pacsin1 dimer from atomistic simulations. We also show that two
Pacsin1 dimers properly assemble through lateral interaction on the lipid membrane. Our
work presents a first step towards describing membrane remodeling processes in the G�o-
MARTINI CG framework by simulating a crucial step of protein assembly on the
membrane.

Keywords: molecular dynamics simulation, MARTINI force field, G�o model, membrane remodeling, Pacsin

INTRODUCTION

Large-scale shape changes of membrane structures in the cell are important in many biological
processes such as endocytosis, exocytosis and vesicle trafficking (McMahon and Gallop, 2005). These
membrane remodeling processes emerge from the interplay between lipids and proteins (McMahon
and Gallop, 2005; Suetsugu et al., 2014; Bassereau et al., 2018). Because of dynamic nature of these
processes, molecular dynamics needs to be clarified to understand their mechanisms. The molecular
dynamics (MD) simulation is a powerful tool to study the dynamic processes at molecular level
(Marrink et al., 2019). However, the conventional all-atom (AA) MD has limitations in size and time
scales. It is too costly to simulate a large system of membrane remodeling that contains large lipid
membrane, large number of proteins and solvent molecules with a time scale longer than
microseconds by AA MD. Thus, the coarse-grained (CG) model that represents a group of
atoms by a single bead, offers a good alternative to study large membrane remodeling processes
(Marrink et al., 2019).

Various CG models of lipids and proteins have been developed previously (Tozzini, 2005; Ayton
et al., 2007; Klein and Shinoda, 2008; Takada, 2012; Marrink et al., 2019). For lipids, there are
reasonably accurate and transferable CG models such as MARTINI and SPICA (Marrink and
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Tieleman, 2013; Marrink et al., 2019; Seo and Shinoda, 2019). For
proteins, there are structure-based models such as elastic network
(EN) and G�o models (Tozzini, 2005; Takada et al., 2015).
However, relatively less effort has been made on CG models
of the combined protein-membrane system, which should be
important for describing the membrane remodeling processes.
For example, the popular MARTINI model introduces the EN
model to proteins (denoted as EN-MARTINI) (Periole et al.,
2009), which assumes unbreakable harmonic bonds, and thus, is
unable to describe large-scale motions such as protein unfolding
or conformational changes between two stable conformations.
These large-scale motions should be important to describe
realistic dynamics of the membrane remodeling. The recently
developed G�o-MARTINI addressed this issue by replacing the
harmonic potential with the Lennard-Jones (LJ) potential based
on the contact map of the native protein structure (Poma et al.,
2017). The G�o-MARTINI model combines the flexibility of the
Cα-based G�o-like model for the sampling of large conformational
changes in proteins (Okazaki et al., 2006, 2012; Okazaki and
Takada, 2008; Poma et al., 2018, 2019; Senapati et al., 2019) and
the versatility of the MARTINI force field that allows the
description of different biomolecules, (e.g. lipids,
polysaccharides, polymers and nucleic acids) at almost
atomistic resolution (Marrink and Tieleman, 2013; Uusitalo
et al., 2015; Souza et al., 2020). At the moment, some studies
including the original developmental work have used G�o-
MARTINI for protein-only systems (Poma et al., 2017; Souza
et al., 2019), and not much has been done for protein-membrane
systems. Only a few studies have used G�o-MARTINI for protein-
membrane systems (Thallmair et al., 2019).

In this study, we apply the G�o-MARTINI model to the F-Bin/
Amphiphysin/Rvs (F-BAR) protein Pacsin1 as a model protein that is
involved in themembrane remodeling. Pacsin proteins are involved in
clathrin-mediated endocytosis, actin polymerization and neuronal
development. In the previous study, we showed that Pacsin1
induces and senses the membrane curvature in the EN-MARTINI
framework (Mahmood et al., 2019). However, it was found that
structural fluctuations of Pacsin1 in the EN-MARTINI model are
underestimated, which can affect the stability of the protein complex
(Baaden and Marrink, 2013; Stark et al., 2013). Since the association
and dissociation of protein complexes play a crucial role inmembrane
remodeling processes, the underestimated fluctuations can lead to an
incorrect description of the processes. Here, in order to overcome the
limitations of the ENmodel, we introduced a simple cutoff scheme of
the G�o-MARTINI and tuned the parameters to reproduce structural
fluctuations of Pacsin1 on the lipid membrane observed in the AA
simulations. We further show that Pacsin1 properly assembles on the
membrane with the optimized parameters. This study is a first step
toward describing realistic dynamics of the membrane remodeling in
the G�o-MARTINI framework.

MATERIALS AND METHODS

All-atom MD Simulations
For our study, we have chosen the human Pacsin1 F-BAR domain
crystal structure with the PDB ID 3HAH (Wang et al., 2009). The

structure consists of two monomers with some missing residues.
MODELLER (Martí-Renom et al., 2000; Webb and Sali, 2016)
was employed for modeling the Pacsin1 dimer missing residues
(first monomer: T172-L191, second monomer: T172-K194)
without referring to a homologous structure. The missing
residues at the N- and C-terminal parts were not considered
in the simulations. The N-terminal part consists of 15 residues
with four negatively charged amino acids. Although the role of
the N-terminal part remains unclear, it is unlikely that this highly
negatively charged region is involved in interaction with the
negatively charged lipid head groups of the membrane. The
C-terminal part consists of the central linker and SH3 domain,
which have been experimentally shown to decrease the
membrane transformation activity (Wang et al., 2009). First,
the coordinates of mixed lipid bilayer (POPC 20%, POPE
20%, POPS 60%) (Wang et al., 2009) were generated by the
membrane builder tool of CHARMM-GUI (Sunhwan et al., 2008;
Wu et al., 2014). Then, Pacsin1 structure was placed on the lipid
bilayer using VMD (Humphrey et al., 1996). TIP3P water
molecules and neutralizing ions of 0.15 M Na+ and Cl− were
added to the system, making a periodic boundary box (x:23 nm, y:
23 nm and z:18 nm) with the total number of atoms 909109. The
CHARMM36 force field was used for lipid bilayers and protein
(Venable et al., 2010). The simulation procedure was the same as
that of our previous work (Mahmood et al., 2019). The 500 ns
production runs were conducted at a temperature of 310 K and a
pressure of 1 atm.

Conventional EN-MARTINI Simulations
The MARTINI coarse-grained (CG) molecular dynamics (MD)
simulations described in this paper were performed with the
GROMACS-2018 simulation package (Abraham et al., 2015)
(www.gromacs.org). The CG model of the Pacsin1-membrane
system was constructed using the MARTINI force field version 2.
2 (Marrink et al., 2007; Monticelli et al., 2008; De Jong et al., 2013;
Marrink and Tieleman, 2013) with additional EN potential for the
protein. The EN model was used to maintain the secondary and
tertiary structures of proteins based on definition by the DSSP
algorithm (version 2.2.1) (Kabsch and Sander, 1983). The spring
constant of 500 kJ mol−1nm−2, the lower and upper elastic bond
cut-off to 0.5 and 1.2 nm, respectively (Periole et al., 2009;
Mahmood et al., 2019) were applied to the Pacsin1 crystal
structure (PDB ID 3HAH) (Wang et al., 2009). The numbers
of the elastic bonds from this definition were 2688 for chain A and
2646 for chain B. The numbers are different between the two
chains, reflecting a slight difference in their structures. A possible
approach to improve the definition of the elastic bonds, as well as
the G�o native contacts, is mentioned in DISCUSSION. The
protein CG structure and topology were generated using the
script “martinize.py” (De Jong et al., 2013). Then, we used a script
“insane.py” (Wassenaar et al., 2015) for constructing the flat lipid
membrane, aligning proteins on the membrane, generating water
and ions. The lipid membrane consists of mixed lipids POPC,
POPE and POPS (20%:20%:60%). The systems were hydrated
using CG water beads and made charge neutral by addition of an
appropriate number of ions with 0.15 M Na+ and Cl−. The total
number of beads in the system was about 292743 CG beads and
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the system box size was x:60 nm, y:30 nm and z:20 nm. Energy
minimization of the system was performed with 5,000 steps of the
steepest descent method. After minimization, the system was
equilibrated for 0.5 ns in the NPT ensemble using the Berendsen
pressure coupling (Berendsen et al., 1984). The following
production simulations were run at 300 K with separate
temperature coupling for the solvent, lipids and protein using
the stochastic rescaling scheme (Bussi et al., 2007) (τ � 1 ps) and
the Parrinello-Rahman (Parrinello and Rahman, 1981)
semiisotropic pressure coupling at 1 bar. A time step of dt �
20 fs was used. The reaction field electrostatics and LJ potentials
were shifted to zero at the cut-off distance of 1.2 nm.

G�o-MARTINI Simulations
In the G�o-MARTINI simulations, we have replaced the harmonic
bonds of the commonly used EN model with the LJ potential based
on the contact map of the native protein structure as in G�o models
(Poma et al., 2017). There are several types of contact maps with
different definitions of native contacts (Clementi et al., 2000; Koga
and Takada, 2001; Sułkowska and Cieplak, 2008; Noel et al., 2012).
The original G�o-MARTINI adopts the atomic overlap criterion
(OV) and chemistry-based rCSU for definition of the native
contacts (Sułkowska and Cieplak, 2008; Wołek et al., 2015; Poma
et al., 2017). With this definition, the Pacsin1 conformation became
distorted during the simulations with respect to the conformations
observed in the all-atom simulations (Supplementary Figure S1).
Although it worked for globular proteins (Poma et al., 2017), the OV
+ rCSU definition of the native contacts might result in an unnatural
conformation for extended structures like Pacsin1 (Figure 1A) in a
balance between the native contacts and the non-native interactions
of theMARTINI force field. Thus, we adopt a simpler cutoff scheme
for the native contact definition as described in the following. First,
all i th and (i + 3) th amino-acid pairs in the sequence are considered
as the native contact, providing a similar interaction as the dihedral
term in the typical G�o models. Then, for i th and j>i + 3 th amino
acid pairs, if the residue-residue minimum distance considering all
non-hydrogen atoms is below a cutoff distance, the pair is considered

as the native contact. The cutoff distance of 4.5 Å, 5.0 Å and 5.5 Å
were tested. As shown in Supplementary Table S1, the number of
the native contacts significantly increased with the new definition,
while keeping almost all contacts from the OV + rCSU definition.
The number of the native contacts, however, are less than the
number of the elastic bonds used in the EN-MARTINI (see the
previous section). The numbers of the native contacts are different
between the two chains, reflecting a slight difference in their crystal
structures. For the cutoff distance of 5.0 Å, the number of the
common contacts shared between the two chains is 793, which is
93% and 94% of the total contacts of the chain A and chain B,
respectively. The rest of the contacts is unique to each chain. Note
that the native contacts were defined for each chain of Pacsin1 and
no native contact was defined between the two chains. Thus, it would
be interesting to see if the interface structure is maintained only with
the MARTINI force field. To check the interface structure between
the two chains, we calculated the fraction of the “virtual” (that is, not
considered in the model potential) native contacts at the interface
present during the G�o-MARTINI simulations (QAB) (Poma et al.,
2017). The virtual native contacts were defined in the same way as
the intra-chain contacts with the cutoff distance 5.0 Å. The native
contact between residues i, j is considered to be present when its
distance satisfies rij < 1.5σ ij ≈ 1.34r0ij (see below for definitions of σ ij
and r0ij). The backbone beads (BB), that is, Cα positions, were used
for the interaction sites. In the LJ potential, the parameter εij controls
the strength of the native contact interaction in unit of ε, where ε �
6.276 kJ mol-1. This value corresponds to the typical energy scale of
hydrogen bonds in proteins (Poma et al., 2015) and λ in the native
contact energy, εij � λ ε, is a tunable parameter. In this study, λ � 1.0,
1.5 were tested. The LJ potential of the native contacts is defined as,

ULJ � ∑
i, j ∈ Native contacts

4εij⎡⎣(σ ijrij)12

− (σ ij
rij
)6⎤⎦, (1)

where σ ij � r0ij/2
1/6 with r0ij being the Cα-Cα distance of the native-

contact pair in the native structure. The bond angle term is
another factor in G�o models, biasing towards the native structure.

FIGURE 1 | All-atom (AA), coarse-grained (CG) EN-MARTINI and G�o-MARTINI molecular dynamics systems of the protein and membrane are shown (A) and (B)
respectively. Blue color carton represents Pacsin1 protein. Three kind of lipids composition (cyan: 20% POPC, blue: 20% POPE and red: 60% POPS). Water molecules
and ions are represented in gray color.
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The bond angle force constants for helices and the other
secondary structures were set to KBBB � 700 kJ mol-1 and KBBB

� 20 kJ mol-1, respectively (Monticelli et al., 2008). For proline
residues in the helix kink region (Pro 145 and Pro221), the force
constants were set to KBBB � 20 kJ mol-1. Our modified version of
“go_martinize.py” script was used to generate the protein coarse-
grained structure and topology. The script is available on GitHub
(https://github.com/OkazakiLab/Go-MARTINI). The following
system setup and simulations were done in the same way as
the conventional EN-MARTINI described in the previous
section.

Principal Component Analysis
The principal component analysis (PCA) was performed to
identify large-amplitude conformational changes of Pacsin1
from simulation trajectories. We only considered Cα positions
of the AA or backbone-bead (BB) positions of the MARTINI
simulations, after Pacsin1 structure was superimposed in the
trajectories. Then, a covariance matrix was calculated and
diagonalized to obtain eigenvalues and eigenvectors in the
order of their contributions to the conformational changes.
First, PCA was performed for each simulation: AA, EN-
MARTINI, and G�o-MARTINI. In order to compare the PCA
results, we calculated the root mean square inner product
(RMSIP) (Amadei et al., 1999),

RMSIP �
															
1
10

∑10
i�1

∑10
j�1

(ui · vj)2√√
, (2)

where ui and vj represent eigenvectors obtained by two different
PCAs, and the first 10 eigenvectors were considered. The RMSIP
quantifies how much two simulation trajectories are overlapped
in a subspace described by the first 10 eigenvectors. Another way
to quantify an overlap among multiple trajectories is to perform a
single PCA using all trajectories and project them onto common
principal components (Martín-García et al., 2015). We
performed the PCA using all three simulations, after
superimposing Pacsin1 structure in all three trajectories.

RESULTS

Structural Flexibility of Pacsin1 With
EN-MARTINI and G�o-MARTINI
The structural flexibility of a single Pacsin1 dimer on the lipid
membrane was investigated through the AA and CG MD
simulations (Figure 1). We carried out ∼500 ns AA simulation
and ∼1000 ns CG simulations with the conventional EN-
MARTINI and G�o-MARTINI (Figures 1A,B). First, we
calculated the root mean squared fluctuation (RMSF) of the
Pacsin1 dimer and compared it between the AA and CG
simulations (see Figure 2). In this analysis, only the
coordinates for backbone atoms of Pacsin1 were used. The
RMSF represents the extent of amino acid residue fluctuation
around their average positions. A comparison among simulations
suggested that the fluctuation in the tip-loop region from the EN-

MARTINI simulation is significantly underestimated compared
to the AA simulation result (Figure 2). The underestimation of
the RMSF in the tip-loop region is due to a limitation of the elastic
network potential. To address this issue, we employed the G�o-
MARTINI model, which can describe large-scale unfolding
motions. We introduced a simple cutoff scheme to define the
native contacts in the G�o model (see Methods). After exploring
the G�o-MARTINI parameters, we found that the RMSF from the
G�o-MARTINI simulation with the native contact cutoff 5.0 Å and
interaction strength of the LJ potential λ � 1.0 is well fitted with
the AA simulation result, including the tip-loop region residues
(Figure 2). The RMSFs from the G�o-MARTINI simulations with
the native contact cutoff values 4.5 and 5.5 Å or λ � 1.5 are slightly
suppressed (see Supplementary Figures S2,3). In addition, the
principal component analysis, Pacsin1 binding and assembly on
the membrane support that the native contact cutoff 5.0 Å and λ
� 1.0 is a best set of parameters, as we see below. These results
indicate that choice of the force field parameters influence
structural dynamics of the protein.

Second, we performed the principal component analysis
(PCA). The PCA identifies the axes of maximal variance of
global structural fluctuations. The PCA was performed for
trajectories from the AA and CG MARTINI MD simulations.
In our analysis, we consider only Cα atoms of the protein.
Figure 3 shows a visualization of the structural fluctuations
from the first principal component mode and the eigenvalues
along the principal component modes. The AA MD simulation
shows that the tip-loop regions of the protein have high
magnitude of fluctuations, which can be seen in the PC1
eigenvector. The PCA result from the G�o-MARTINI
simulation with cutoff 5.0 Å, λ � 1.0 is in good agreement
with the AA result, regarding not only the PC1 vector but
also the eigenvalue profile along the PC modes. In contrast, the
EN-MARTINI result shows an underestimated fluctuation,
which is evident from the PC1 eigenvector and the
eigenvalue profile. In order to compare the PCA results of
the G�o-MARTINI and EN-MARTINI simulations to the
reference AA result, we calculated RMSIP (see MATERIALS
and METHODS) between the G�o-MARTINI and AA results, as
well as between the EN-MARTINI and AA results. The RMSIP
quantifies how much two simulation trajectories are overlapped
in a subspace described by the first 10 eigenvectors. It was found
that the RMSIP (G�o-MARTINI, AA) of 0.691 is higher than the
RMSIP (EN-MARTINI, AA) of 0.652, indicating that the
overlap between G�o-MARTINI and AA is better than that of
EN-MARTINI and AA.We note that the time scale of 500 ns for
the AA simulation might not be enough to fully cover slow
conformational dynamics of the tip loops that contribute
significantly to the global conformational changes. We also
performed a single PCA using all three trajectories: AA, EN-
MARTINI, and G�o-MARTINI (cutoff 5.0 Å, λ � 1.0), and
projected each trajectory onto the common PC1 and PC2
(Figure 3D). The plot shows that conformations sampled in
the AA and G�o-MARTINI overlap at the edges to some extent,
while the EN-MARTINI samples an isolated, restricted region.
The common PC1 and PC2 involve motions of the flexible tip
loops (Supplementary Figure S4), which are expected to be
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slow and might not be fully covered by the 500 ns AA
simulation. As the native contact cutoff of the G�o-MARTINI
increases, magnitude of fluctuations decreases as seen from
smaller eigenvalues (Supplementary Figure S5). Thus, the
G�o-MARTINI with the native contact cutoff 5.0 Å and λ �
1.0 reproduces both local and global structural fluctuations of
Pacsin1.

We also analyzed the interface structure between two chains of
Pacsin1 during the simulations, because the native contacts
(elastic bonds) were not considered for the interface in the
current G�o-MARTINI (EN-MARTINI) simulations. We
calculated the fraction of the virtual native contacts at the
interface present during the simulations (QAB, see Materials
and Methods). The time courses of QAB for the G�o-MARTINI

FIGURE 2 | The RMSF results from (A) AA (B) EN-MARTINI (C)G�o-MARTINI (cutoff 5.0 Å and λ � 1.0) simulations are shown. For the RMSF calculation, the last half
of the trajectories was used. Black and red lines represent chain A and B, respectively. Arrows indicates the tip-loop region in chain A and B.

FIGURE 3 | Principal component analysis (PCA) of the Pacsin1 structural fluctuations. For (A) All-atom (B) EN-MARTINI (C) G�o-MARTINI (cutoff 5.0 Å and λ � 1.0)
results, the first principal component (PC1) eigenvector on the Pacsin1 structure, the eigenvalue profile along the principal component modes, and mapping of the
Pacsin1 conformations on the PC1-PC2 surface are shown. Colorbars in the PC1-PC2 mapping represent the time progress in nanoseconds. In (D), mapping of the
Pacsin1 conformations on the PC1-PC2 surface obtained from PCA using all three simulations is shown.
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and EN-MARTINI simulations as well as the AA simulation are
shown in Supplementary Figure S6. For the G�o-MARTINI
models, the average value of QAB from the last half of the
trajectory is 0.83 or higher, which indicates that the interface
structure is basically maintained only with the MARTINI force
field at the interface. For the EN-MARTINI model, we observed a
similar average value of 0.86. These values are lower than the
average value of 0.94 observed in the AA simulation. Note that the
time scale of the AA simulation is much shorter than the G�o-
MARTINI or EN-MARTINI simulations. This is ∼ 8 times
shorter if we consider that MARTINI dynamics is faster than
AA dynamics with the speed-up factor of ∼ 4 (Marrink et al.,
2004). Using this factor and comparing all simulations in the
same time scale, we can report a higher QAB value above 0.9
during the first 200 ns of the G�o-MARTINI (cutoff 5.0 Å and λ �
1.0) simulation, which would match the AA result.

Pacsin1 Binding on the Lipid Membrane
The structure of the F-BAR domain of Pacsin1 revealed
distinctive wedge loops that are involved in the membrane
binding and insertion (Wang et al., 2009). The wedge loop is a
signature of Pacsin proteins and possibly affects their assembly
(Bai et al., 2012). In our analysis, we found that positively charged
residue Lys (K123) of the wedge loop interacts with negatively
charged phosphate of the lipid head group during MD
simulations. Thus, we calculated a minimum distance between
K123 and the lipid phosphate as a measure of Pacsin1 binding.
For the G�o-MARTINI (cutoff 4.5 Å, λ � 1.0), after a few
nanoseconds, two wedge loops from different Pacsin1 dimers
are inserted in the membrane (distance ∼0.5 nm) throughout the
simulations. One of the remaining wedge loops is inserted in the
membrane after 1.2 μs. The last one is not inserted in the
membrane during the simulations. For the optimized G�o-
MARTINI (cutoff 5.0 Å, λ � 1.0), we observed a clear interaction
between the wedge loop and the membrane (Figure 4B). That is, the
distance between the wedge loop (residue K123) and the
membrane stayed close for all wedge-loops. In contrast, for

the other G�o-MARTINI (cutoff 5.5 Å, λ � 1.0), two wedge
loops from different Pacsin1 dimers are inserted in the
membrane from the early stage of MD simulations
(Figure 4C). But other two wedge loops are not inserted
into the membrane and the distances stay larger than 1 nm.

Pacsin1 Assembly Process on the Lipid
Membrane
Assembly of Pacsin1 on the lipid membrane is one of the key
features involved in the membrane remodeling. We carried out
the G�o-MARTINI simulations with two Pacsin1 dimers on a flat
tensionless membrane. During the 2 μs long simulation, stable
Pacsin1-Pacsin1 lateral interaction was observed for the
optimized G�o-MARTINI (cutoff 5.0 Å, λ � 1.0), while
improper interactions were observed for the other G�o-
MARTINIs (Figure 5). The lateral interaction observed in the
optimized G�o-MARTINI was formed within a few nanoseconds
and maintained throughout the simulation (Figure 5B). The
similar lateral interaction was observed in the crystal structure
of Pacsin1 (PDB entry, 3HAI) (Wang et al., 2009). Our previous
study also revealed the similar lateral interaction of Pacsin1-
Pacsin1 with the EN-MARTINI simulations (Mahmood et al.,
2019). The inter-protein interaction is due to the physico-
chemical interactions of the MARTINI force field. Thus, our
results confirm that protein-protein interactions are well
described by MARTINI (Baaden and Marrink, 2013). More
importantly, it was also demonstrated that the observed inter-
protein interactions, with the same MARTINI force field
describing them, are strictly dependent on the definition of the
intra-protein potentials.

DISCUSSION

In this study, we have adapted the G�o-MARTINI model to describe
structural dynamics and assembly of the F-BAR protein Pacsin1. We

FIGURE 4 | Binding of Pacsin1 to the membrane with the wedge loops inserted into the membrane. Distance between positively charged K123 of the wedge loop
and negatively charged phosphate of the lipid head group duringMD simulations of (A)G�o-MARTINI (cutoff 4.5 Å and λ � 1.0), (B)G�o-MARTINI (cutoff 5.0 Å and λ � 1.0),
and (C) G�o-MARTINI (cutoff 5.5 Å and λ � 1.0) are shown. Black, red, green and blue lines represent the wedge loop 1, 2 of the first Pacsin1 and that of the second
Pacsin1, respectively.
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introduced a simple cutoff scheme for definition of the native
contacts instead of the OV + rCSU approach used in the original
G�o-MARTINI (Poma et al., 2017). The cutoff scheme ismore flexible
and allows us to explore parameters such as the cutoff distance of the
native contacts. The optimized G�o-MARTINI simulations reproduce
global and local structural fluctuations from the AA simulation. The
transferability of the current scheme including the cutoff distance of
the native contacts should be tested with other systems to build a
universal model. It was also shown that Pacsin1 binding and
assembly on the membrane were reproduced properly by the
optimized G�o-MARTINI. These results suggest that protein-lipid
and protein-protein interactions are well described by the physico-
chemical MARTINI force field, once proper intra-protein structures
are prepared. The earlier success of the EN-MARTINI model for
protein-protein interactions supports this notion (Baaden and
Marrink, 2013). However, large conformational changes of intra-
protein structures are beyond the scope of the EN-MARTINI model.
Our results show that EN-MARTINI can be replaced by G�o-
MARTINI, and the G�o-MARTINI model performs better than
the EN-MARTINI model in terms of intra-protein structural
fluctuations. The G�o-MARTINI model also offers advantages over
the commonly used bond-angle restrained MARTINI, which
maintains the local secondary structures. The bond-angle
restrained MARTINI has been used for rather small or flexible
proteins, such as helical peptides (Monticelli et al., 2008) or
α-synuclein (Braun et al., 2012). However, this model is not
applicable to proteins that have specific native structures more
complicated than a single helix. Thus, the G�o-MARTINI model
has advantages in simulating conformational dynamics of proteins
with the specific native structures.

We note that the protein model in G�o-MARTINI is not a
pure “G�o model”, because it has non-native (that is, physico-
chemical) interactions from the MARTINI force field. Previous
works on protein-protein interactions showed that the
MARTINI force field tends to overestimate protein-protein
interactions, and thus, down-scaling of the interactions is
necessary to reproduce experimental results (Stark et al.,
2013; Javanainen et al., 2017; Benayad et al., 2020). By
optimizing both the structure-based G�o interactions (Li et al.,
2011, 2012) and physico-chemical MARTINI interactions
(Alessandri et al., 2019), we have a unique opportunity to
properly describe intra and inter protein structural stability
and dynamics with the G�o-MARTINI model. Possible
improvements of the structure-based G�o interactions include
refinement of contact energy in a residue-pair specific manner.
The previously developed methods such as atomic-interaction-
based coarse-grained (AICG) model (Li et al., 2011) or
Miyazawa-Jernigan statistical contact energy (Karanicolas and
Brooks, 2002) can be used. The definition of the native contacts
itself can be improved by symmetrizing between homodimers or
analyzing the contacts in the all-atom simulations instead of the
static experimental structure. The dynamic contact analysis of
the all-atom simulations discerns between stable and transient
contacts (Moreira et al., 2020), where the latter can be excluded
from the native contacts. Another improvement would be an
extension of the current single-basin G�o model to a multiple-
basin G�o model to explore conformational changes between
different stable conformations such as ligand-free and bound
conformations. The previous methods such as the multiple-
basin energy landscape model (Okazaki et al., 2006) or the

FIGURE 5 | Pacsin1 assemblies on the lipidmembrane simulated with the G�o-MARTINI (cutoff 4.5 Å and λ � 1.0), (cutoff 5.0 Å and λ � 1.0) and (cutoff 5.5 Å and λ �
1.0) are shown in (A), (B) and (C), respectively.
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double-well ultra-coarse-grained model (Zhang et al., 2020) can
be introduced.

To describe realistic dynamics of membrane remodeling in
the G�o-MARTINI framework, we might need a further
reduction of the dimension of the model. The simulation
system can become very large when whole membrane
remodeling processes are considered with large membranes
and many proteins involved. One possible way to reduce the
dimension in G�o-MARTINI is to replace normal MARTINI
with Dry MARTINI, an implicit solvent version of MARTINI
(Arnarez et al., 2015). This is a highly effective approach
because solvent beads dominate the total number of beads
as the simulation system becomes large. Although there are
some modifications of the force field parameters in Dry
MARTINI, our G�o-MARTINI framework is expected to
apply with possible minor changes. In addition, an extreme
reduction to a continuum membrane model and backmapping
to the MARTINI model has been explored recently to simulate
membrane transformation of an entire mitochondrion
(Pezeshkian et al., 2020). When this type of multiscale
approach is combined with an accurate description of
membrane-protein system at the molecular level by G�o-
MARTINI, it will be a powerful tool to simulate large
systems of membrane remodeling processes.
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Albumin Alters the Conformational
Ensemble of Amyloid-β by
Promiscuous Interactions:
Implications for Amyloid Inhibition
Huisi Xie and Cong Guo*

Department of Physics and International Centre for Quantum andMolecular Structures, College of Sciences, Shanghai University,
Shanghai, China

Human serum albumin (HSA) is a key endogenous inhibitor of amyloid-β (Aβ) aggregation.
In vitro HSA inhibits Aβ fibrillization and targets multiple species along the aggregation
pathway including monomers, oligomers, and protofibrils. Amyloid inhibition by HSA has
both pathological implications and therapeutic potential, but the underlying molecular
mechanism remains elusive. As a first step towards addressing this complex question, we
studied the interactions of an Aβ42 monomer with HSA by molecular dynamics
simulations. To adequately sample the conformational space, we adapted the replica
exchange with solute tempering (REST2) method to selectively heat the Aβ42 peptide in
the absence and presence of HSA. Aβ42 binds to multiple sites on HSA with a preference
to domain III and adopts various conformations that all differ from the free state. The
β-sheet abundances of H14-E22 and A30-M33 regions are significantly reduced by HSA,
so are the β-sheet lengths. HSA shifts the conformational ensemble towards more
disordered states and alters the β-sheet association patterns. In particular, the
frequent association of Q15-V24 and N27-V36 regions into β-hairpin which is critical
for aggregation is impeded. HSA primarily interacts with the latter β-region and the
N-terminal charged residues. They form promiscuous interactions characterized by salt
bridges at the edge of the peptide-protein interface and hydrophobic cores at the center.
Consequently, intrapeptide interactions crucial for β-sheet formation are disrupted. Our
work builds the bridge between the modification of Aβ conformational ensemble and
amyloid inhibition by HSA. It also illustrates the potential of the REST2 method in studying
interactions between intrinsically disordered peptides and globular proteins.

Keywords: alzheimer’s disease, amyloid-beta, serum albumin, conformational ensemble, solute tempering,
promiscuous interactions

INTRODUCTION

The pathogenesis of Alzheimer’s disease (AD) is tightly correlated with the abnormal aggregation of
amyloid-β (Aβ) in the central nervous system (CNS). Numerous endogenous proteins interacting
with Aβ can modulate its amyloidogenic process (Bohrmann et al., 1999; Han et al., 2016). Human
serum albumin (HSA), the most abundant protein in blood, has been recognized as an inhibitor of
Aβ aggregation (Biere et al., 1996; Bohrmann et al., 1999; Kuo et al., 2000; Ezra et al., 2016). It binds
Aβ and facilitates Aβ efflux from the cerebrospinal fluid (CSF) to plasma (Boada et al., 2020).
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Reduced serum albumin levels are associated with increasing
cognitive impairment in AD patients (Yamamoto et al., 2014).
Moreover, a phase IIb/III trial using plasma exchange with
albumin replacement has presented initial encouraging results
(Boada et al., 2020). In vitro, substantial evidence suggests that
HSA inhibits Aβ aggregation and binds multiple species along the
aggregation pathway which include monomers, oligomers, and
protofibrils (Milojevic et al., 2007; Milojevic et al., 2009; Milojevic
andMelacini, 2011; Stanyon and Viles, 2012; Algamal et al., 2013;
Milojevic et al., 2014; Wang et al., 2016; Choi et al., 2017; Algamal
et al., 2017; Bode et al., 2018). Despite the biological and
therapeutic significance of HSA-Aβ interactions, the
underlying mechanism is not fully understood. Molecular
dynamics (MD) simulations hold great potential to contribute
to solving the puzzle. However, with conventional MD, it is
challenging to adequately sample the conformational space of
the Aβ-HSA complex due to the intrinsic disorder of Aβ and the
large system size. The present work reports the adaption of an
enhanced sampling method called replica exchange with solute
tempering (REST2) (Wang et al., 2011) to study the interactions
of monomeric Aβ with HSA.

Aβ is a 36-43-residue peptide derived from the amyloid
precursor protein (Nasica-Labouze et al., 2015). The two
common isoforms are the 40-residue Aβ40 and 42-residue
Aβ42, with the latter having two extra residues (I41-A42).
Although Aβ40 is more abundantly produced, Aβ42 is more
disease relevant as it is more abundant in amyloid plaques and
shows a greater tendency to aggregate in vitro (Nasica-Labouze
et al., 2015). The amino acid sequence of Aβ42 can be divided into
four regions according to hydrophobicity: the hydrophilic
N-terminal D1-K16 region that is comprised of 6 charged
residues and 3 histidines, the central hydrophobic core (CHC)
region L17-A21, the hydrophilic central region E22-G29, and the
hydrophobic C-terminal region A30-A42. Monomeric Aβ is
classified as an intrinsically disordered peptide (IDP), but
solution nuclear magnetic resonance (NMR) experiments have
detected transient β-sheet structures, especially in the CHC, I31-
V36, and V39-I41 regions (Hou et al., 2004). β-hairpin
conformation with two legs at residues L17-D23 and A30-V36
was stabilized by the amyloid inhibitor protein ZAβ3, indicating
an important role of the β-hairpin structure in fibrillization
(Hoyer et al., 2008). Different from monomers, Aβ fibrils are
featured by in-register parallel cross-β sheet structures. Recently,
several groups have solved atomic resolution structures of Aβ42
fibrils with advanced solid-state NMR and cryo-electron
microscopy (cryo-EM) techniques (Xiao et al., 2015; Colvin
et al., 2016; Wälti et al., 2016; Gremer et al., 2017). In these
structures, the N-terminal region is disordered or partially
ordered while the other regions are arranged into 3 or 4 β-
strands linked by loops, which results in an overall S-shape.
Especially, residues in the CHC region and the C-terminal region
constitute the cross-β structures in all structures, reinforcing their
critical roles in aggregation as have been established by many
studies (Liu et al., 2004; Williams et al., 2004; Bernstein et al.,
2005).

The aggregation process of Aβ is described by a nucleation-
condensation polymerization model, which involves a lag phase

for nucleation, a subsequent elongation phase for the rapid
growth of oligomers and protofibrils into fibrils, and a final
plateau phase. Though Aβ peptides circulate in CSF and in
blood at similar concentrations of 0.1–0.5 nM (Stanyon and
Viles, 2012), amyloid plaques were only found in CNS. It is
primarily attributed to the fact that ∼90% plasma Aβ is
sequestered by HSA which has a concentration of 640 μM in
plasma as opposed to a remarkably low level of 3 μM in CSF
(Biere et al., 1996). In vitro, HSA at physiological concentrations
significantly increased the lag phase time and decreased the total
amount of amyloid fibers (Stanyon and Viles, 2012). A 35-residue
segment in domain III retained the inhibitory effect of HSA
(Picón-Pagès et al., 2019) while natural HSA ligands negated
such effect (Bode et al., 2018). HSA interfered with different
stages of aggregation and targeted multiple species including
monomers, oligomers, and protofibrils with increasing
affinities (Wang et al., 2016; Algamal et al., 2017). Although
the molecular mechanism underlying the protective inhibition of
Aβ aggregation by HSA has not been fully elucidated, these
studies consistently indicate a role of monomeric Aβ-HSA
interactions in the process, which also lay the foundation for
high-order interactions between Aβ oligomers/protofibrils and
HSA. Therefore, revealing the interaction mechanism of
monomeric Aβ with HSA is essential for understanding the
amyloid regulation by HSA.

Many experiments have been devoted to studying the
monomeric Aβ-HSA interactions but current understanding of
this issue is still limited due to certain inconsistency in the
literature. HSA was found to bind monomeric Aβ at a
stoichiometric ratio of 1:1 (Kuo et al., 2000). It is agreed that
the monomeric Aβ-HSA interactions are weak. However, very
different disassociation constants (Kd) ranging from
submicromolar to submillimolar have been reported (Rózga
et al., 2007; Costa et al., 2012; Wang et al., 2016; Algamal
et al., 2017). Aβ40 and Aβ42 have different affinities to HSA
whereas the order of the two is a subject of debate (Algamal et al.,
2017; Litus et al., 2019). Molecular-level characterization of Aβ
binding to HSA has also been provided. Saturation transfer
difference NMR experiments by Algamal et al. have identified
the C-terminal region of Aβ as the primary interaction site with
HSA (Algamal et al., 2017). With mass spectrometry and small-
angle X-ray scattering, Choi and coworkers found that HSA
predominantly captured a single Aβ monomer at the groove
between domains I and III, resulting in a structural change of Aβ
from a random coil to an α-helix but no structural variations of
HSA (Choi et al., 2017). Contradictorily, a more recent study
reported that domain II contained the primary binding sites for
Aβ monomers (Ishima et al., 2020). The above discrepancies
could be due to different Aβ sample preparation procedures and
buffer conditions which are shown to influence the Aβ-HSA
interactions (Litus et al., 2019) and the presence of Aβ oligomers
in the sample resulting from the intrinsic propensity of Aβ to
aggregate. These factors bring challenges to experimental
measurements on the monomeric Aβ-HSA interactions.
Several questions remain open: 1) a comprehensive
characterization of the Aβ conformations and binding sites in
the complex with HSA is still lacking, which is essential for
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understanding the interaction mechanism; 2) it is unknown how
such information is related to amyloid inhibition.

MD is a powerful tool to probe the molecular mechanisms at
the atomic level through investigating conformational ensembles
of biomolecules. Previously using conventional MD simulations,
we found that domain III was the primary target for Aβ binding
and that fatty acids interfered with Aβ binding to HSA by
quenching the conformational flexibility of the latter (Guo and
Zhou, 2019). However, we failed to capture any possible Aβ
conformational transitions upon binding to HSA, probably due to
the relatively short simulation time and Aβ as an IDP possessing a
flat free energy surface. On this issue, enhanced sampling
methods are needed, among which replica exchange molecular
dynamics (REMD) (Sugita and Okamoto, 1999) has been widely
used to study Aβ peptides (Rosenman et al., 2016; Man et al.,
2017) and other IDPs (Guo et al., 2015). In REMD, multiple
replicas of a system are simulated at different temperatures
simultaneously and neighboring replicas are attempted to
exchange periodically using the Metropolis criterion. A
random walk of replicas in the temperature space allows them
to escape local minimum. However, the use of REMD to large
systems such as the Aβ-HSA complex (>620 residues) is
computationally restricted by the large number of replicas
required to cover a wide temperature range with reasonable
exchange probabilities.

As an alternative, the replica exchange with solute tempering
(REST) method has been developed (Liu et al., 2005) and later
modified in REST2 (Wang et al., 2011) to improve sampling
efficiency. It has been successfully applied to the conformational
sampling of IDPs (Côté et al., 2015; Rossetti et al., 2016; Smith
et al., 2016; Han et al., 2017; Lee and Chen, 2017; Hicks and Zhou,
2018). REST2 is a new form of Hamiltonian replica exchange
method wherein all replicas are simulated at the same
temperature T0 albeit on different deformed potential energy
surfaces. With delicate energy scaling, exchange probability
between two replicas is exclusively determined by protein-
related energy terms that involve a small number of atoms,
not by the energy of a large number of solvent molecules.
Consequently, the number of replicas can be reduced four to
five times without changes in the temperature range (Smith et al.,
2016). Another important consequence is that part of the solute
instead of all solute atoms can be chosen for scaling to achieve
enhanced sampling. For example, it has been used to sample the
conformations of a disordered loop in a globular protein (Pang
and Zhou, 2015). This feature is perfectly suited for exploring the
conformational ensemble of Aβ in the large complex with HSA,
whereby Aβ is highly dynamic while HSA experiences little
conformational changes (Choi et al., 2017).

Herein, we have employed the REST2 protocols to study the
interactions of the more toxic Aβ42 monomer with HSA. By
choosing Aβ42 atoms for scaling, we can use the same number of
replicas to achieve enhanced sampling of Aβ42 with and without
HSA. Simulations of the isolated Aβ42 peptide yield consistent
secondary structure contents with previous REMD studies
(Rosenman et al., 2016), demonstrating the applicability of the
REST2 protocols. Aβ42 binds to five major sites on the HSA
surface with a preference to domain III, consistent with our

previous work (Guo and Zhou, 2019). The binding site at the cleft
of domains I and III is similar to the one reported by ion mobility
mass spectrometry (Choi et al., 2017). Aβ42 adopts different
conformations at different binding sites, which in general are less
β-sheet-rich and contain shorter β-strands than the free state.
HSA significantly suppresses the β-sheet propensities of the H14-
E22 and A30-M33 regions and alters the intrapeptide interaction
patterns as well. Particularly the interactions between the Q15-
V24 region and the N27-V36 region which are dominant in the
free state are disrupted by HSA. Aβ42 interacts with HSA
primarily via the N-terminal charged residues and the K28-
M35 segment. An interaction mechanism is proposed wherein
Aβ42 promotes promiscuous interactions with HSA that conflict
with intrapeptide interactions curial for β-sheet formation.
Implications of our findings in amyloid inhibition are also
discussed.

MATERIALS AND METHODS

System Preparation
The sequence of Aβ42 is DAEFRHDSGY10 EVHHQKLVFF20

AEDVGSNKGA30 IIGLMVGGVV40 IA. The starting structure of
Aβ42 was built upon the NMR structure of Aβ40 in aqueous
solution (PDB 2LFM) (Vivekanandan et al., 2011) by adding the
two C-terminal residues (I41-A42) with PyMol (DeLano, 2002).
HSA is a 585-residue protein and consists of three homologous
domains I to III (Figure 1A). Each domain can be further divided
into subdomains a and b. The initial coordinates of HSA were
taken from its crystal structure (PDB 1AO6) (Sugio et al., 1999).
Two systems were simulated, the Aβ42 monomer alone (Aβ42)
and in the presence of HSA (Aβ42 + HSA). The Aβ42 + HSA
system contained one Aβ42 molecule and one HSA molecule, for
which 8 different initial configurations (Figure 1A) were
generated by randomly placing the Aβ42 peptide at different
positions 10 Å away from HSA. Each initial configuration seeded
two replica simulations.

Simulation Setup
We performed all simulations using the GROMACS 2018.1
software package (Abraham et al., 2015) patched with the
PLUMED plug-in (version 2.4.2) for REST simulations (Bussi,
2014; Tribello et al., 2014). GPU acceleration (Páll and Hess,
2013) was used to increase computation performance. The
Amber99sb-ILDN (Lindorff-Larsen et al., 2010) force field and
the TIP3P water model were used. For both Aβ42 and Aβ42 +
HSA, the solute was energy minimized in vacuum first and then
solvated in a dodecahedron box with a minimal distance of 10 Å
from the box boundaries. Counterions were added to neutralize
the net charge of proteins and generate a salt concentration of
150 mM. The whole system was heated gradually to 300 K in
200 ps. Then, it was equilibrated for 200 ps under an NVT
ensemble and for another 200 ps under an NPT ensemble.
During the whole equilibration process, protein heavy atoms
were restrained. In the final production runs, these restraints were
removed and all protein bonds were restrained by LINCS (Hess
et al., 1997). The Particle Mesh Ewald method (Darden et al.,
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1993) with a real-space cut-off of 10 Å was used to calculate long-
range electrostatic interactions. Temperature was maintained at
300 K by the velocity rescaling method (Bussi et al., 2007).
Pressure was maintained at 1 bar by the Parrinello-Rahman
coupling method (Parrinello and Rahman, 1981; Nosé and
Klein, 1983). The simulation time step was 2 fs. Snapshots
were saved every 10 ps. More details about REST2 simulation
parameters are given below.

Details of REST2 Protocol
The REST2 method was used to enhance the sampling of the
Aβ42 peptide. In REST2, the total potential energy of a system is
decomposed into three components: the protein intramolecular
energy Epp, the interaction energy between protein and solvent
Epw, and the self-interaction energy between solvent molecules
Eww. For each replica, its potential energy is

E � λEpp +
�
λ

√
Epw + Eww.

Scaling is limited to the first two terms and all replicas are
assigned different scaling factors λ ranging from 0 to 1. Enhanced
sampling is achieved by equivalently heating protein to a higher
effective temperature T0/λ while the solvent molecules remain
cold at T0. For both Aβ42 and Aβ42 + HSA, all atoms of the Aβ42
peptide were selected as the “hot” solute region; the other atoms
were kept unperturbed which were equivalently treated as the
“solvent” region. In different replicas, Aβ42-Aβ42 and Aβ42-
other interactions were scaled to generate an effective
temperature ladder for the “hot” region, while the “solvent”
temperature remained a constant. We used 16 replicas at the

effective temperatures exponentially spaced between 300 and
600 K. The effective temperature ladder was 300.0, 314.1,
328.9, 344.8, 361.0, 377.8, 395.8, 414.4, 434.2, 454.5, 476.2,
498.3, 522.6, 547.4, 572.5, and 600.0. Exchange between
neighboring replicas was attempted every 2 ps. The average
exchange rates for the two systems are the same, 33.2% for
Aβ42 and 32.8% for Aβ42 + HSA. Each replica simulation
lasted 800 ns for Aβ42 and 500 ns for Aβ42 + HSA. For both
systems, the last 200 ns from the unscaled replica (i.e., at 300 K)
was used for analysis.

Analysis
All analyses were carried out with built-in tools in GROMACS
and our in-house-developed codes. Secondary structures of Aβ42
were determined by the DSSP (Kabsch and Sander, 1983)
program. The cluster analysis of Aβ42 conformations was
performed with gmx cluster in GROMACS using a backbone
root-mean-square deviation (RMSD) cut-off of 0.2 nm. The
binding propensity of one residue in one protein was defined
as the percentage of snapshots in which it was in contact with the
partner protein. A contact was defined when two heavy atoms lie
within 5.4 Å. For each snapshot, the Aβ42 binding pose was
characterized by the position of Aβ42 relative to HSA, which was
calculated as the center-of-mass coordinates of Aβ42 after
superimposing HSA to the starting structure using backbone
atoms. All poses sampled in the last 200 ns were partitioned into
clusters by the DBSCAN algorithm (Ester et al., 1996). A salt
bridge is considered to be formed if the distance between any of
the oxygen atoms of acidic residues and the nitrogen atoms of

FIGURE 1 | Starting structures of simulations for Aβ42 with HSA and secondary structure changes of Aβ42 upon binding to HSA. (A) Superimposition of 8 Aβ42 (in
color) starting positions around HSA. Domains I, II, and III of HSA are shown in silver, gray, and light gray, respectively. (B) The average probability of each secondary
structure content. (C) Residue-specific β-sheet probability. The average value of each curve is shown as a horizontal dashed line. Regions (H14-E22 and G29-G34) that
display significant changes are highlighted by brown shading. (D) Histograms of β-sheet lengths of Aβ42 in the two systems.
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basic residues is within 4 Å. All structure figures were prepared in
VMD (Humphrey et al., 1996).

RESULTS

Convergence of Simulations
We carried out comparative REST2 simulations of Aβ42 with and
without HSA so as to provide atomic-level insight on Aβ42-HSA
interactions, with a focus on the effect of HSA on Aβ42
conformational ensemble and binding properties of Aβ42.
Two systems are denoted by Aβ42 + HSA and Aβ42,
respectively. By taking the advantage that the REST2 method
can heat a part of the system, we selectively enhanced the
sampling of Aβ42 conformational ensemble with affordable
computation cost. A 700/500 ns REST2 simulation was
performed for Aβ42/Aβ42 + HSA, which led to an
accumulative simulation time of 11.2/9 μs. Throughout each of
the two simulations, each of the 16 replicas visited all of the 16
effective temperatures. The percentages of dwell time of 16
replicas at each effective temperature fluctuate around 6.25%
with standard deviations at 1∼4% for Aβ42 and at 2∼6% for Aβ42
+ HSA (Supplementary Figures S1A,B). It indicates sufficient
exchanges between replicas and thus verifies the sampling
efficiency. Furthermore, the convergency of simulations was
checked by comparing the radius of gyration (Rg) and the
secondary structure probabilities of Aβ42 in different time
intervals from the unscaled replica (i.e., 300 K). For both
systems, the distribution curves of Rg in two independent 100
ns time intervals of the last 200 ns overlap well with each other
(Supplementary Figures S1C,D); the probabilities of each
secondary structure content in two different time intervals are
the same (Supplementary Figures S1E,F). Moreover, secondary
structures of Aβ42 are consistent with previous REMD
simulations which started from extended coils (Rosenman
et al, 2016), evidencing the insensitivity of simulation results
to the initial conformation. These results demonstrate that two
REST2 simulations have reasonably converged in the last 200 ns.

Initially, the Aβ42 peptide was randomly placed at 8 different
positions 10 Å away from HSA. At the effective temperature of
300 K, Aβ42 diffuses onto the surface of HSA within 50 ns and
basically remains in a bound state until 500 ns. Disassociation of
Aβ42 from HSA is observed but the frequency is extremely low.
Especially in the last 200 ns, Aβ42 is disassociated from HSA in
only 4% of total frames. With the increase of effective
temperature, the binding probability of Aβ42 to HSA
decreases. Above 414 K, Aβ42 is bound to HSA in 34∼76% of
total frames. During simulations, HSA displayed an average
backbone RMSD at 3.5 Å at both low and high temperatures,
justifying our assumption that HSA has little conformational
changes upon Aβ42 binding. Root-mean-square fluctuations
(RMSFs) of HSA residues do not change with temperatures
(Supplementary Figure S2). Large conformational changes of
HSA are not accessible by our simulations. Structural stabilities of
HSA probably account for the high binding probabilities of Aβ42
at high temperatures. Only data from the unscaled replica
(i.e., 300 K) are meaningful for analysis, because in the other

replicas, the system evolves on a deformed energy surface. Unless
specified, all results below are based on data of the last 200 ns at
300 K, during which it is fair to consider that Aβ42 remains
bound to HSA.

HSAReduces the β-Sheet Abundance of the
H14-E22 and A30-G33 Regions of Aβ42 and
Prevents Formation of Long β-Strands
We first analyzed the influence of HSA on the secondary
structures of Aβ42. The average probability of each secondary
structure (including coil, β-sheet, bend, turn, and helix) was
calculated. As shown in Figure 1B, the isolated Aβ42 peptide
mainly adopts random coil (32.7%) and β-sheet (31.5%)
structures, in accordance with its intrinsically disordered
nature. Bend and turn contents are a little lower (20.1% and
10.3%) while the helix content (1.4%) can be neglected. These
results are similar to those obtained by circular dichroism (CD)
spectroscopy (27% β-sheet and 6% helix) (Fezoui and Teplow,
2002) and previous REMD simulations using the same force field
(∼36% coil, ∼26% β-sheet, ∼19% bend, ∼16% turn, and <3%
helix) (Rosenman et al., 2016). Upon binding to HSA, the β-sheet
content is significantly reduced to 20.7%, whereas the coil content
increases to 40.5% and the helix content slightly increases to 4.0%.
The increase of helix propensities upon complexation with HSA
was also detected by previous CD experiments (Choi et al., 2017).
The bend and turn contents do not change much, which are
19.9% and 12.0%, respectively.

To elaborate the apparent changes of the β-sheet abundance,
we show the residue-specific β-sheet probabilities of Aβ42 with
and without HSA in Figure 1C. For each system, the average
β-sheet probability is indicated by a horizontal dashed line. For
the isolated Aβ42 peptide, three continuous segments form
β-sheets, which include two long stretches spanning residues
Y10-V24 and S26-I41 and a short stretch covering the N-terminal
residues A2-H6. Residues Q15-A21 and G29-M35 exhibit
relatively high β-sheet propensities. The former covers the
CHC region and the latter belongs to the C-terminal region.
We recall that both regions are critical for fibrillization (Liu et al.,
2004; Bernstein et al., 2005). Besides, residues E3-F4 and V39-
V40 display above-average β-sheet probabilities. Similar β-sheet
profiles were reported by previous REMD simulations of the
Aβ42 monomer (Rosenman et al., 2016) and dimer (Man et al.,
2017). Our results are also consistent with NMR experiments
which detected β-strands in the CHC region, residues I31-V36
and V39-I41 (Hou et al., 2004).

In the presence of HSA, the above-mentioned β-regions are
preserved to some extent, but pronounced changes occur to two
continuous β-segments spanning Y10-V24 and S26-I41. The first
region splits into three short ones, Y10-H13, H16-F19, and E22-
V24. Particularly, residues H14-E22 suffer the greatest reduction
of β-sheets with all β-sheet probabilities falling below the average.
The S26-I41 region splits as well at I32. The β-sheet probabilities
of residues A30-G33 are also significantly decreased. The
discontinuous β-regions in the presence of HSA imply that the
length of β-sheets should vary from that without HSA. Therefore,
we plotted the histograms of β-sheet lengths of Aβ42 in the two
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systems (Figure 1D). Without HSA, the β-sheet length of Aβ42
ranges from 2 to 15. Both short β-stands (3–4 residues) and long
β-strands (6–8 or 12–15 residues) have relatively high
probabilities. With HSA, Aβ42 is more prone to form short
β-strands composed of 2–4 and 6 residues; longer β-strands
disappear.

Overall, HSA suppresses the β-sheet formation of Aβ42, in line
with its inhibitory effect on Aβ fibrillization (Stanyon and Viles,
2012). Not only are the β-sheet propensities at residues H14-E22 and
A30-G33 significantly reduced, but also the β-sheet length is much
shorter in the presence ofHSA. Changes in secondary structures hint
at different tertiary structures of Aβ42 in two systems.

HSA Shifts the Conformational Ensemble of
Aβ42 Towards Less β-Sheet-Rich States
and Modifies the β-Sheet Associations
To investigate the influence ofHSA on the conformational ensemble
of Aβ42, we clustered Aβ42 conformations using a backbone RMSD
cut-off of 0.2 nm. For Aβ42 and Aβ42 + HSA, 679 and 181 clusters
are found, respectively. Representative conformations of the top six
most-populated clusters and the corresponding populations are
shown in Figure 2 (C1–C6 for Aβ42, C1′–C6′ for Aβ42 + HSA).
These clusters account for 73 and 88% of the total snapshots of Aβ42
and Aβ42 + HSA, respectively. For both systems, conformations in
the remaining clusters resemble those in the top 6 clusters, as judged
by the residue-specific β-sheet probabilities (Supplementary Figure
S3). The β-sheet structures in the G29–G37 region are further
suppressed by HSA in the remaining clusters of Aβ42 + HSA.
Thus, the remaining clusters which all have populations below 1%
are omitted here. The smaller number of clusters and the larger
proportion of the top 6 clusters reflect that the structural diversity of
Aβ42 in the presence of HSA is less pronounced than the
isolated form.

Without HSA, the conformational ensemble of Aβ42 is
featured by β-sheet-rich structures. The most populated
conformation contains a three-stranded β-sheet structure,
which also appears in C5. Meanwhile, β-hairpin structures are
frequently observed in C3, C4, and C6. Disordered structures are
only observed in C2, which contain two short β-hairpins at the N-
and C-terminus. In the presence of HSA, even though C1′, C2′,
and C6′ are still β-sheet-rich, the conformational ensemble is
shifted towards more disordered states. Conformations in C3′,
C4′, and C5′ are dominated by extended coils. Among them, the
conformation of C4′ is the most extended. In addition, short
helices are observed in C3′, C5′, and C6′, accounting for 25.7% of
total snapshots. For the isolated Aβ42, helical structures are
observed in C5 and C6 with a total percentage of 10.6%. It is
consistent with the slight increase of helix content.

To better characterize the tertiary structures, we illustrate
the β-strands and β-sheet associations in each representative
conformation in Figure 3. β-strands are represented with
strips and those assembling into one β-sheet are paired with
the same color. We partitioned the whole sequence into 5
conserved β-regions by grouping residues that form β-strands
in more than 2 clusters of Aβ42 (C1 to C6) or Aβ42 + HSA (C1′
to C6′). They are identified as follows: A2-H6 (β1), Y10-H13
(β2), Q15-V24 (β3), N27-V36 (β4), and G38-I41 (β5). As have
been reported by previous simulations (Song et al., 2015; Man
et al., 2017), the extra two C-terminal residues of Aβ42
stabilize an additional β-strand spanning G38 to I41 that is
absent in Aβ40. One conformation differs from another in
β-regions and the way they assemble into β-sheets. Therefore,
we listed the composition of β-regions for each conformation
and used a dash character to represent the hydrogen bonding
connection. Interestingly, the five β-regions, consistent with
previous MD simulations of the Aβ42 monomer (Song et al.,
2015; Rosenman et al., 2016) and dimer (Man et al., 2017),

FIGURE 2 | Cluster analysis on the conformational ensemble of the Aβ42 peptide in two systems: (A) Aβ42 and (B) Aβ42 + HSA. For two systems, representative
conformations of the Aβ42 molecule in the top six most-populated clusters are shown as well as the corresponding population of each cluster. The blue and red balls
refer to the Cα atoms of the N- and C-terminal residues (D1 and A42), respectively.
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overlap well with those in Aβ42 fibrils (Supplementary Figure
S5) (Xiao et al., 2015; Colvin et al., 2016; Wälti et al., 2016;
Gremer et al., 2017). The best match is with the fibril structures
determined by cryo-EM (Gremer et al., 2017), wherein four
β-segments are at A2-G9, E11-A21, N27-L34, and V39-I41,
respectively, and the second segment combines β2 and β3 here.
It implies that β-sheet motifs of the Aβ42 monomer are closely
related to the fibrillization process.

For the isolated Aβ42 peptide, the most frequently occurring
β-regions are Q15-V24 (β3) and N27-V36 (β4), consistent with the
fact that the two regions have the highest β-sheet propensities
(Figure 1C). The other three β-regions are also observed in
multiple clusters, but the corresponding β-sheet lengths are
much shorter (2–4 residues). Furthermore, the most frequent
association is between Q15-V24 (β3) and N27-V36 (β4) as well,
which appears in all clusters except C2. In C1 and C5, β3 and β4
form a three-stranded β-sheet together with an additional β-strand.
REMD simulations of the Aβ42 dimer also reported the similar
β-hairpin (CHC and A30-V36) and the three-stranded β-sheet in
C5 (L17-A21, A30-V36, and V39-I41) (Man et al., 2017). In C3,
C4, and C6, β3 and β4 form a β-hairpin. Τhe A2−Η6 (β1) region
primarily associates with Q15-V24 (β3) as in C1 and also has
certain probabilities to associate with Y10-H13 (β2) as in C4 and
C6. Τhe V39-I41 (β5) region at the C-terminus mainly associates
with Y10-H13 (β2) as in C3 and with N27-V36 (β4) as in C4 and
C6. Note that C4 and C6 share the same β-sheet association pattern
(β1-β2, β3-β4) but the relative orientations of the resulting two
β-hairpins are different. From these data, we conclude that the
association of Q15-V24 with N27-V36 (i.e., β3-β4) serves as a core
of β-sheet-rich conformations. Consistently, the β-hairpin formed
by residues K16-E22 and G29-M35 has been suggested as a basic
monomeric unit for the aggregation process (Abelein et al., 2014).

Upon binding to HSA, the β-sheet association of each cluster is
different from any of clusters C1 to C6. Though the β3-β4

association is frequently observed in C1′, C2′, and C6′, the β3
strands are much shorter. Moreover, the association between β4
and β5 is also frequent, which occurs in C2′, C3′, and C4′.
Meanwhile, two new associations emerge. The first is between two
β-segments within the β4 region (i.e., β4-β4) in C1′. The second is
between β1 and β5 in C6′. In contrast, the associations of β3 with
β1 and β5 observed in C1 and C2, respectively, disappear. To sum
up, HSA impairs associations of the Q15-V24 region with the rest,
promotes associations of the N27-V36 region with the
C-terminus, and induces new associations within the N27-V36
region and between N- and C-terminal β-regions.

HSA Modifies Intrapeptide Interaction
Patterns of Aβ42
The decrease in the abundance and lengths of β-strands together
with the changes in β-sheet associations suggests that the
intrapeptide interactions of Aβ42 would be changed by HSA. To
validate this conjecture, we calculated the contact probabilities of all
the residue pairs of Aβ42 with and without HSA and showed the
results in Figure 4. For the isolated Aβ42, the matrix elements with
high contact probabilities are away from the diagonal, indicating that
long-range interactions are dominated. The strongest interactions
are observed between Q15-V24 (β3) and N27-V36 (β4), consistent
with the highest β-sheet propensities of β3 and β4 (Figure 1C) and
the frequent association between the two (Figure 3B). The
corresponding antidiagonal submatrix signifies an antiparallel
arrangement of two β-strands, as observed in C1 and C3 to C6
(Figure 2A). The submatrix constituted by A2-H6 and Y10-H13
regions has the second highest contact probabilities, corresponding
to the formation of β-hairpin by β1 and β2 in C4 and C6. The
antidiagonal submatrix constituted by β1 and β3 regions also shows
high contact probabilities, corresponding to antiparallel β-sheets
in C1.

FIGURE 3 | β-sheet associations for Aβ42 and Aβ42 + HSA are displayed in (A, B), respectively. β-strands formed in the representative conformations of the top six
most-populated clusters are shown with colored strips. The corresponding snapshot of each conformation is shown in Figure 2. β-strands that associate into the same
β-sheet are paired with the same color. At the top, five β-segments are represented by arrows.
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In the presence of HSA, interactions between β3 and β4 are
greatly weakened, consistent with the decrease of β-sheet
propensities at the two regions. Instead, β4-β5 interactions are
enhanced as β4 frequently associates with β5 as well. Interactions
of β1 with β2 and β3 are much weaker, too. The former results
from the suppression of the β1-β2 associations, which only
appears in C6′ with a population of 6.4%, as opposed to
appearing in C4 and C6 of the isolated Aβ42 with a total
population of 13.6%. The latter can be attributed to the
disappearance of the β1-β3 association. In contrast, β1 is
paired with β4 in C1′ and contributes to forming an
antiparallel β-sheet. Consistently, the antidiagonal elements of
the submatrix constituted by A2-R5 in β1 and S26-I31 in β4
display high contact probabilities. Lastly, local interactions within
β4 are stronger, consistent with the β-sheet associations in C1′,
where residues S26-I31 and L34-G37 within β4 are arranged into
an antiparallel β-sheet.

The above results manifest that HSA interferes with the
interactions of the Q15-V24 region with the A2-H6 and N27-
V36 fragments, which are dominant in the isolated Aβ42 system
and are essential for β-sheet formation. While such long-range
interactions are prevented, local interactions within β4 and those
between β4 and β5 are enhanced instead.

Charged and Polar Residues in the
N-Terminal Region and the K28-M35
Segment are More Likely to Interact
With HSA
To explain the effect of HSA on Aβ conformations, next we
analyzed the binding properties of Aβ42 with HSA. Clustering of
the Aβ42 positions in all snapshots identifies five major binding
poses (Supplementary Figure S4). Poses 1 and 4 are within

domain III; pose 2 is at the cleft between domains I and III; poses
3 and 5 are within domain II. Obviously, domain III is the most
populated binding site among the three HSA domains. Our
previous work reported similar results (Guo and Zhou, 2019),
wherein we attributed high binding propensities of domain III to
its high conformational flexibility (Supplementary Figure S2B)
which was essential for HSA to adapt Aβ binding. Here, we focus
on the Aβ side.

Interestingly the residue-specific HSA-binding probabilities of
Aβ42 (Figure 5) show a dependence of residue types. In total, 20
residues have above-average binding propensities, among which
5 residues are charged, 9 are polar, and 6 are hydrophobic. The
opposite trend is observed for the other 22 residues with below-
average binding propensities. The number of charged,
hydrophilic, and hydrophobic residues are 4, 5, and 13,
respectively. It suggests that electrostatic interactions play an
important role in Aβ42 binding to HSA.

The K28-M35 fragment has the highest binding propensities
and is the primary interaction site with HSA. The central residues
H13-Q15 also exhibit relatively high binding probabilities. These
results are consistent with recent NMR data (Algamal et al., 2017)
and our previous MD results (Guo and Zhou, 2019). Both studies
have identified the C-terminal region as the primary binding site
of HSA. It is noteworthy that the fragment K28-M35 is at the
center of β4 region, which frequently associates with the Q15-V24
(β3) region into β-sheets in the absence of HSA. Although the β3
segment displays below-average HSA-binding probabilities,
binding of the β4 segment to HSA would interfere with β3-β4
interactions and result in the loss of hydrogen bond partners for
both. This result is reconciled with the decrease of β-sheet
propensities at H14-E22 and A30-G33 regions and weaker
interactions between Q15-V24 and N27-V36 regions. The
C-terminal β-region V39-A42 exhibits below-average binding

FIGURE 4 | Intrapeptide interaction maps of the Aβ42 molecule (A) in the absence and (B) in the presence of HSA. Contact probabilities are displayed in a color
scale from navy to yellow. Submatrices with distinct changes upon binding to HSA are highlighted by boxes in white.
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propensities, consistent with the NMR data (Algamal et al., 2017)
which have shown that interaction of the C-terminal β-strand
with HSA is reduced in Aβ42 monomer but promoted in
protofibrils, possibly due to the stabilization of a C-terminal
turn at G37 and G38 by the last two residues.

Promiscuous Interactions Between Aβ42
and HSA Facilitate Optimal Binding but
Disrupt Intramolecular Interactions Crucial
for β-Sheet Formation
To further reveal the interaction mechanism of Aβ42 with HSA,
structural characterizations of the Aβ42-HSA complex are necessary.
By visual inspection of the snapshots, we found that the binding
positions of Aβ42 are approximately the same among conformations
of each cluster. Clusters C1′ to C6′ correspond to five binding poses,
which are virtually identical to those shown in Supplementary
Figure S4. The mapping relations between clusters and binding
poses are as follows: C1′ to pose 1, C2′ to pose 3, C3′ and C5′ to pose
2, C4′ to pose 4, and C6′ to pose 5. Therefore, the corresponding
complex conformations of cluster centers serve as good
representations of all snapshots. Below we provide the structural
details of each complex (Figure 6), paying special attention to
potential conflict with intrapeptide interactions.

In C1′, the N-terminal (i.e., β1-β2) region and the K28-M35
fragment (i.e., β4) of Aβ42 bind to the pose enclosed by IIIa-h1,
IIIa-h2, and the h2-h3 loop of IIIb (Figure 6A). These HSA-
binding residues belong to a three-stranded β-sheet, which is
lidded at the periphery of the complex by a random coil in the β3
region. At the edges of the binding interface, residues R5, D7, and
H13 form salt bridges or hydrogen bonds (H-bonds) with HSA
residues E492, K538, and E393, respectively, anchoring the Aβ42
peptide to HSA surface. Embedded within the complex, K28
forms a salt bridge with E492 of HSA, which positions the K28-

M35 fragment in proximities of HSA. As a result, the β-sheet-rich
structure of Aβ42 is trapped by HSA via direct interactions.

The binding pose of C2′ is constituted by the IIa-IIb loop, IIb-
h3, IIb-h4, IIa-h1, IIa-h3, and IIa-h4 (Figure 6B). Aβ42 interacts
with HSA mainly via residues H13-D23 (i.e., β3) and A30-V36
(i.e., β4). Just like in C1′, Aβ42 is anchored to HSA by two salt
bridges (E11-HSA:K378 and K16-HSA:D301) at the edge of the
interface. Interestingly, residues K16-F19 in the CHC region form
an intermolecular β-sheet with HSA residues D301-S304. The
hydrophobic loop (A30-V36) between two intramolecular
β-sheets inserts into the hydrophobic groove between IIb-h3
and IIIa-h1, confining the β-sheets at the near side of HSA. At
the far side, these β-sheets are covered by the disordered
N-terminal residues. As can be seen, Aβ42 achieves optimal
binding on the HSA surface via multipronged interactions
including salt bridges, H-bonds, and hydrophobic stacking.
The interaction pattern is independent of the binding sites and
conformations of Aβ as manifested by preceding results and as
detailed next. Intermolecular salt bridges and the corresponding
probabilities are summarized in Supplementary Table S1.

C3′ and C5′ share a similar binding pose at the cleft between
domains I and III, which involves Ia-h1, Ib-h1, Ib-h2, the Ia-Ib
loop, IIIa-h3, IIIa-h4, IIIb-h1, IIIb-h2, IIIb-h3, and IIIb-h4
(Figure 6C,E). This binding site is similar to the one detected
by mass spectroscopy (Choi et al., 2017). In two clusters, Aβ42
interacts with HSA via different residues but forms similar types
of interactions. In C3′, several charged residues in the N-terminal
region, S26-M35 (i.e., β4) and V39-A42 (i.e., β5) fragments are
bound to HSA, whereas in C5′, all residues are in contact with
HSA except the N27-L34 fragment (i.e., β4). In both clusters,
hydrophobic residues (β4 and β5 for C3′ and β5 for C5′) are
embedded into the groove surrounded by Ia-h3, Ib-h1, and Ib-h2,
forming hydrophobic stacking with the Ia-Ib loop; charged
residues form salt bridges at the interface boundaries, which
involve D1, R5, K16, and K28 in C3′ and E11, K16, and E22
in C5′.

In C4′, Aβ42 binds to the backside of domains I and III, which
involves the Ia-Ib loop, IIb-h3, IIb-h4, the entire IIIa, and the IIIa-
IIIb loop (Figure 6D). It interacts with HSA extensively via
residues D1-E11, L17-A21 (i.e., β3), D23-I31 (i.e., β4), and
V39-A42 (i.e., β5). The N-terminal and central regions of
Aβ42 are anchored to the HSA surface by salt bridges (D1-
HSA:R114 and K28-HSA:E376) and H-bonds (e.g., H6-HSA:
E531). Lastly, the binding pose of C6’ is within domain II
surrounded by IIa-h2, IIa-h3, IIa-h4, the IIa-IIb loop, IIb-h1,
and IIb-h2 (Figure 6F). Residues D1-F4 (i.e., β1), V18-E22
(i.e., β3), S26-M35 (i.e., β4), and I41-A42 directly interact with
HSA. Aβ42 adapts to the HSA surface via the K28-HSA:D308 salt
bridge, H-bonds (e.g., H14-HSA:E227), and hydrophobic
stacking of β3 and β4 regions with IIb-h2 and the IIa-IIb loop.

Both electrostatic and van der Waals interactions are at play in
Aβ42 binding. The N-terminal residues, K16 and K28, contribute
to forming salt bridges or H-bonds at the rim. Intermolecular
H-bonds are especially prominent in C3′ and C4′ as listed in
Table 1. Hydrophobic stacking via β4 or β5 regions is observed in
most clusters. Generally, the electrostatic interactions are
significantly stronger than the van der Waals interactions,

FIGURE 5 |Binding probabilities of Aβ42 residues with HSA. Data points
are colored according to residue types (acidic: red; basic: blue; polar: green;
hydrophobic: black). Regions displaying relatively high binding probabilities
are highlighted by brown shading. The average binding probability is
displayed as a horizontal dashed line.
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except in C2′ and C5′ for which two terms are comparable to each
other. In short, the Aβ42 peptide takes the advantage of intrinsic
flexibilities to form promiscuous interactions with HSA at
different binding sites. HSA usually directly targets the most
occurring β-regions (i.e., β3 and β4), or it traps the β-sheet-rich
conformation by protecting β-sheets fromwater. Either way, HSA
interferes with the interaction determinants of Aβ42 aggregation.

DISCUSSION

We have applied the REST2 method to gain mechanistic insights
into the interactions of Aβ42 with HSA through selectively

enhanced sampling of the Aβ42 peptide. HSA dramatically
changes the conformational ensemble of Aβ42 in several
aspects. First, the suppression of overall β-sheet structures by
HSA demonstrates the inhibitory effect on Aβ fibrillization.
Second, conformations of Aβ42 are more disordered in the
complex; long continuous β-strands (>6 residues) that are
highly populated in the free state are completely impeded.
Third, HSA weakens intrapeptide interactions and alters the
patterns of remnant interactions as well. For the isolated
Aβ42, the two most occurring β-regions Q15-V24 and N27-
V36 assemble into β-sheets, serving as a core of β-sheet-rich
structures. Residues A2-H6 interact strongly with residues Y10-
H13 and Q15-V24. In the complex, all these interactions are
impaired and new interaction pairs are formed. Residues Q15-
V24 interact weakly with the rest of the peptide; residues N27-
V36 switch to interact internally and with residues A2-H6 and
V39-I41. For the other β-regions, β-sheet propensities are not
affected by HSA, but interaction partners are different in the two
systems.

Conformational changes of Aβ42 result from promiscuous
interactions, which conflict with intramolecular β-sheet
associations. HSA simultaneously interacts with both
hydrophilic and hydrophobic regions, which mainly include
the N-terminal charged and polar residues and the
hydrophobic K28-M35 fragment. Two additional

TABLE 1 | Hydrogen bonds and interaction potential energies between Aβ42 and
HSA calculated for each cluster. Interaction energies are decomposed into the
electrostatic (Eelec) and van der Waals (Evdw) terms. Standard deviations are given
in parentheses.

Cluster C19 C29 C39 C49 C59 C69

Hydrogen
bond

4.7 (2.1) 7.1 (2.3) 15.0
(3.1)

15.0
(3.1)

9.6 (2.4) 7.3 (2.1)

Eelec (kJ/mol) −296
(97)

−342
(97)

−638
(146)

−782
(124)

−510
(93)

−494
(93)

Evdw (kJ/mol) −166
(37)

−374
(37)

−227
(37)

−560
(64)

−480
(44)

−283
(46)

FIGURE 6 | (A–F)Representative structures of the Aβ42-HSA complexes in the six most-populated clusters. In each panel, an overview of the complex is shown on
the left and an enlarged view of the binding surface is shown on the right. HSA is transparent and residues in contact with Aβ42 are highlighted in gray. Aβ42 is in yellow
and residues in contact with HSA are in orange. Side chains are colored according to the residue types (acidic: red; basic: blue; hydrophobic: cyan). The Cα atoms of
residues D1 and A42 are indicated by red and cyan balls, respectively.
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hydrophobic regions (CHC and C-terminus) directly interact
with HSA as well but with lower probabilities. Electrostatic
and van der Waals interactions cooperate to optimize the
binding interface with the former being more dominant. The
Aβ42-HSA interface is characterized by salt bridges or
H-bonds primarily between the N-terminal region and
HSA residues at the rim and stacking of hydrophobic
regions at the center. Residues K16 or K28 adjacent to the
hydrophobic core also form salt bridges with HSA in all six
clusters. Consequently, interactions of the A2-H6 region with
Y10-H13 and Q15-V24 regions are impaired; β-sheet
probabilities and associations of Q15-V24 and N27-V36
regions are suppressed. In addition, such extensive
interactions with HSA are incompatible with distal
interactions. Instead, local intrapeptide interactions are
preferable, such as interactions of the N27-V36 region with
itself and the C-terminus.

Our findings provide atomistic insights into the role HSA
played at the initial stage of Aβ aggregation. HSA could
interfere with Aβ nucleation in several ways, which
explains why HSA lengthens the lag phase of Aβ
fibrillization (Stanyon and Viles, 2012). First, interactions
with HSA hinder the β-sheet formation and eliminate
structural characteristics resembling Aβ42 fibrils. In the
free state, residues Q15-D23 and N27-V36 frequently
associate into β-sheets as a core of β-sheet-rich
conformations. Consistently, residues Q15-V18 and A30-
I32 always formed β-sheets in all Aβ42 fibril structures
(Supplementary Figure S5) (Xiao et al., 2015; Colvin et al.,
2016; Wälti et al., 2016; Gremer et al., 2017). Residues H15-
V24 formed a hydrophobic cluster with N27-L34, stabilizing a
disease-relevant amyloid fibril (Wälti et al., 2016). However,
HSA directly targets the second region (specifically K28-
M35), significantly decreases the β-sheet abundance of both
regions (especially H14-E22 and G30-G33), and impairs
intrapeptide interactions between them. In additions, direct
interactions of Aβ42 charged residues with HSA conflict with
several salt bridges stabilizing fibril structures, including K28-
D1 (Gremer et al., 2017), K28-A42 (Xiao et al., 2015; Colvin
et al., 2016; Wälti et al., 2016), R5-D7 (Gremer et al., 2017),
E11-H6 (Gremer et al., 2017), and E11-H13 (Gremer et al.,
2017). Our findings are consistent with experiments by
Stanyon and coworkers which have shown that Aβ bound
to HSA is trapped in a nonfibrillar form (Stanyon and Viles,
2012). Second, although ordered β-sheet structures can be
formed on the HSA surface, they are protected from exposure
to water by HSA and disordered regions of Aβ42, which
potentially prevents further β-sheet growth upon addition
of monomers. Lastly, as Aβ42 binds to multiple sites on the
HSA, it is possible that HSA concurrently traps several Aβ
monomers, effectively decreasing the concentrations of
monomers for nucleation. It is conceivable that HSA would
interfere with Aβ42 dimerization by disrupting the common
structural features shared by Aβ42 monomer and dimer (Man
et al., 2017), which include similar β-sheet profiles, the
β-hairpin spanning CHC and A30-V36 regions, and the
three-stranded β-sheet involving L17-A21, A30-V36, and

V39-I41. NMR data have shown that two terminal residues
of Aβ42 extend direct interactions of protofibrils with HSA to
the very C-terminal residues as compared to Aβ40 (Algamal
et al., 2017). It would be interesting to carry out comparative
simulations of multiple Aβ42 or Aβ40 monomers binding
to HSA.

The promiscuity-centered interaction mechanism proposed here
has important biological implication in the context of IDPs. Aβ42 and
many other amyloid peptides (e.g., tau, amylin, and α-synuclein)
belong to the family of IDPs. Accumulative evidence suggests that
interacting partners of these IDPs can modulate the amyloidogenic
process. In addition to diverse partners that interfere with Aβ
fibrillization (Han et al., 2016; Wallin et al., 2017; Sun and Ding,
2020), amyloidosis of amylin is affected by 7B2, proSAAS (Peinado
et al., 2013), lysozyme, and alpha-lactalbumin (Pilkington et al.,
2017). IDPs usually promote nonspecific and dynamics
multivalent interactions with targets (Weng and Wang, 2020).
Some transition from disorder to order upon binding to protein
partners while some keep various degrees of disorder. Aβ42-HSA
interactions are typical of IDP-protein interaction regime. First, Aβ42
binds to multiple sites on the HSA surface and adopts multiple
conformations including ordered β-sheet structures and extended
random coils. Second, their interactions are promiscuous and do not
rely on specific residue sequences. The binding interfaces commonly
have salt bridges at the rim and hydrophobic cores at the center. In
addition, electrostatic interactions known to enhance the binding
rates and the formation of IDP-protein complexes (Zhou and Pang,
2018) play an important role in Aβ42 binding to HSA. The proposed
Aβ42-HSA interaction mechanism reinforces the important role of
promiscuous interactions in regulating amyloidosis. It might apply to
other modulators of Aβ aggregation and probably is prevalent in the
amyloid regulation by endogenous proteins.

Our study demonstrates that the REST2 method is suitable for
studying IDPs, as other studies have done (Pang and Zhou, 2015;
Rossetti et al., 2016; Smith et al., 2016; Han et al., 2017; Lee and Chen,
2017; Hicks and Zhou, 2018). More intriguingly, we present an
example of using it to achieve efficient sampling of the IDP-protein
complex, given that simulations of such systems are generally
resource demanding. Our work has confirmed the theoretical
expectation that the REST method can be readily used to only
heat part of the system with affordable computational cost (Han
et al., 2017) as the replica exchange probabilities exclusively depend
on the degrees of freedom related to the hot region. For the isolated
Aβ42 peptide, we obtained converged sampling with 16 replicas
covering an effective temperature range from 300 to 600 K. Our
results are consistent with previous REMD simulations, which in
comparison usedmuchmore replicas for a similar temperature range
(52 replicas spanning 270.0–601.2 K) (Rosenman et al., 2016). In the
complex system, only Aβ42 was still chosen as the hot region as HSA
experiences little conformational changes. Compared with the free
monomer system, though the total number of atoms increases by an
order of magnitude (∼16000 vs. ∼132000), the same number of
replicas were used within the same temperature range. We hope that
our study would spur future applications of REST2 on similar
occasions, such as the binding and coupled folding of IDP to its
globular protein partners whereby large-scale conformational
changes occur to the IDP only.
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The Morphology of Hydroxyapatite
Nanoparticles Regulates Cargo
Recognition in Clathrin-Mediated
Endocytosis
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Xiangdong Zhu4, Jing Ma3,5*‡ and Hao Dong1,5,6*‡
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Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing, China, 4National Engineering Research Center for Biomaterials, Sichuan University,
Chengdu, China, 5Nanxin Pharm. Co., Ltd., Nanjing, China, 6Institute for Brain Sciences, Nanjing University, Nanjing, China

The clathrin-associated protein adaptin-2 (AP2) is a distinctive member of the hetero-
tetrameric clathrin adaptor complex family. It plays a crucial role in many intracellular vesicle
transport pathways. The hydroxyapatite (HAp) nanoparticles can enter cells through
clathrin-dependent endocytosis, induce apoptosis, and ultimately inhibit tumor
metastasis. Exploring the micro process of the binding of AP2 and HAp is of great
significance for understanding the molecular mechanism of HAp’s anti-cancer ability. In
this work, we used molecular modeling to study the binding of spherical, rod-shaped, and
needle-shaped HAps toward AP2 protein at the atomic level and found that different
nanoparticles’ morphology can determine their binding specificity through electrostatic
interactions. Our results show that globular HAp significantly changes AP2 protein
conformation, while needle-shaped HAP has more substantial binding energy with
AP2. Therefore, this work offers a microscopic picture for cargo recognition in clathrin-
mediated endocytosis, clarifies the design principles and possible mechanisms of high-
efficiency nano-biomaterials, and provides a basis for their potential anti-tumor therapeutic
effects.

Keywords: nanoparticles, conformational change, endocytosis, cancer, molecularmodeling and simulation, adaptin

INTRODUCTION

The bioactivity and biocompatibility of nanomaterials, notably their antitumor therapeutic effects,
have been the focus of recent medical investigations. Various models systems of nanoparticles have
been evaluated for their clinical potentials and applied to cancer cells (Brigger et al., 2012). The
hydroxyapatite (HAp) nanoparticles could enter cells through the clathrin-dependent endocytosis
process, stimulating mitochondria-dependent apoptosis and eventually suppressing tumor
proliferation (Chu et al., 2012). Nanosheets of metal dichalcogenides (WS2 and MoS2) were also
internalized by epithelial and macrophage cells, colocalized with lysosomes, and induced ferroptotic
cell death in the mouse lung tissues (Hao et al., 2017). Calcium peroxide (CaO2) nanoparticles
exhibited dual functions of calcium overload and oxidative stress under tumor microenvironment,
inhibiting the tumor growth in vivo (Zhang et al., 2019b). Hence, the ability to understand and
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manipulate the interplay between nanoparticles and the cellular
environment is vital to innovative ways of developing nano-
medicines.

Despite the recent advancements in applying nanoparticles
against tumor growth or metastasis, the underlying molecular
mechanisms, specifically the interactions between nanoparticles
and endocytosis systems (clathrin, adaptor proteins, membrane
receptors, etc.) have not been fully explored. The key factors that
affect nanoparticles’ functions as biomedicines, such as particle
size, morphology, chemical compositions, etc., remain largely
elusive. Nanoparticles enter the cells by endocytosis, and cells
regulated the movements of extracellular molecules (including
nanomaterials) with coated vesicular carriers. Specifically,
clathrin-coated vesicles mediate multiple trafficking routes,
including internalization from the plasma membrane (Kovtun
et al., 2020). Among the clathrin-associated proteins, adaptin-2
(AP2) is the most abundant endocytic clathrin adaptor and a
functional hub linking the cargo molecules and the clathrin cage.
AP2 consists of four subunits (α, β2, μ2, and σ2), (Jackson et al.,
2010) which can adopt a range of conformations under different
conditions. To interact with cargos, the AP2-μ2 subunit
undergoes a conformational change from a “locked” state to
an “open” state, exposing the YxxΦ motif in the C-terminal
region and facilitating recruitment of proteins, lipids or
nanoparticles (Traub and Bonifacino, 2013).

We previously characterized the HAp nanoparticles and their
inhibitory activities against tumor cells or promoting activities on
normal tissue cells, and elucidated the downstream signaling
pathways evoked by HAp-internalization and others (Chen
et al., 2013; Zhao et al., 2017; Wang et al., 2018a; Zhang et al.,
2019a; Liu et al., 2019; Wang et al., 2019; Wu et al., 2019; Li et al.,
2020). If the cells were pretreated with chlorpromazine (clathrin-
pathway inhibitor) (Shi et al., 2017) or NaN3 (ATP inhibitor),
(Ryan et al., 2015) the uptake of HAp were significantly
prohibited, indicating clathrin-mediated and ATP-dependent
endocytosis for HAp nanoparticles. The physicochemical
properties of HAp as well as its interactions with proteins
(such as collagen) or substrates have also been extensively
studied at atomic level (Cheng et al., 2017; Wang et al., 2018b;
Wang et al., 2018c; Liu et al., 2018; Xie et al., 2018; Gu et al., 2019;
Xue et al., 2019; Liu et al., 2020; Ma et al., 2020; Tan et al., 2020;
Wang et al., 2020). However, only a few studies have reported the
clathrin-mediated adhesion and endocytosis of HAp, (Shi et al.,
2017; Shi et al., 2018; Huang et al., 2020) while the molecular
details remain elusive. Modeling the dynamic process of HAp
binding with AP2 at the atomic level is crucial for a detailed
understanding of the driving forces, especially the early events at
the nano-biological interface. In the current study, we
investigated the interplay of HAp with the upstream pathway
of endocytosis to uncover the main factors governing the HAp-
AP2 interactions, and to illuminate the design principle of highly
efficient nano-biomaterials.

Computational Details
Construction of nanoparticle structural models. The models of
hydroxyapatite (sphere, rod, and needle morphology) were built
by Materials Studio (Accelrys, 2006). All the structures were

optimized using DFT methods at the level of PBE/DND4.4 in the
DMol3 package. SwissParam (http://www.swissparam.ch/) was
used to generate the CHARMM force field parameters and
topology files for each nanoparticle (Zoete et al., 2011). The
Mulliken charge was used to generate the electrostatic potential
surface. As shown later, all the HAp structures could be well
maintained in the following molecular dynamics (MD)
simulations, and therefore validates that the parameters can
well describe the HAps.

Molecular Dynamics Simulations. The all-atom MD
simulations were performed on Gromacs 5.1.1 (Pronk et al.,
2013) with CHARMM27 force field (Best et al., 2012) and
explicit solvent model TIP3P for water (Jorgensen et al., 1983).
The crystal structure of AP2-μ2 subunit (PDB entry: 2XA7. pdb)
(Jackson et al., 2010) was adopted as the initial structural model.
The missing residues, Q136-Q141 and K224-K235 (both are
loops), were built by MODELLER (Fiser et al., 2000).

The initial binding conformations of AP2-HAp complexes
were constructed on HADDOCK2.2.(van Zundert et al., 2016).
For the initial poses, we also considered the following criteria: 1)
biological-relevance. The AP2-μ2 domain was known to mediate
cargo binding, while α, β2 domains mostly register μ2 domain in
place or interact with the plasma membrane. Within the μ2
domain, the C-terminal region undergoes a significant
conformational change upon ligand binding, hence, the
C-terminal region is likely enriched with ligand-interacting
sites; and 2) compatible with electrostatic potential. As shown
in Supplementary Figure S3, docking on the full-length AP2
protein or the AP2-μ2 show consistent results. Then, we
performed MD simulations using the aforementioned three
initial poses, and only the site one gives meaningful results, as
described later.

The system was then solvated, neutralized with 150 mMNaCl,
minimized using steepest descent method, and then equilibrated
for 1 ns at 300 K. Simulated annealing was applied to accelerate
the sampling and a typical annealing procedure was: starting from
300 K, the system was heated to 500 K within 5 ns, and then
gradually cooled to 300 K within 40 ns, and then to 200 K within
another 80 ns. After obtaining a stable configuration of the
nanoparticle, MD simulations were carried out to accumulate
another 100 ns trajectory. Throughout the simulations, velocity-
rescale thermostat and constant pressure (1 bar, Parrinello-
Rahman NPT ensemble) were adopted. The nonbonded
interaction cut-off for electrostatics calculations was set as
10 Å and the particle mesh Ewald (PME) method was used in
the calculation of long-range electrostatic interactions. For each
system, two independent simulations were carried out to improve
the statistic.

For systems with some residues mutated, we started from the
aforementioned systems that have been well equilibrated.
Another 10 ns MD simulations were carried out after
mutation, and 200 frames were evenly extracted from the
trajectory to do the following binding free energy calculations
with MM/PBSA.

The principal component calculations. To detect possible
transition between the open and the locked configurations of
the AP2 μ2 domain, we calculated a principal component, λ,
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along the vector connecting the two states (Eq. 1). λ � 0 refers to
the open state configuration, and λ � 1 refers to the locked state.
For each sampled structure, the value represents the specific state
of the structure.

λ �
∣∣∣∣v(x, y, z) − v1(x, y, z)∣∣∣∣∣∣∣∣v2(x, y, z) − v1(x, y, z)∣∣∣∣ (1)

λ is the value of the principal component; v is the position of the
sampled structure, v1 and v2 are the positions of the reference
structures 1 (the open state) and 2 (the locked state), respectively.

The matrix of distance fluctuation. To monitor the structural
dynamics and plasticity of the protein, we calculated the matrix of
distance fluctuation according to Eq. 2:

τ ij � (dij − dij)2 (2)

where dij is the time dependent distance between atoms i and j,
and bracket represents the time average. Clearly, τij is
independent of the reference structure.

Binding free energy calculations. The Gromacs tool
“g_mmpbsa” (Kumari et al., 2014) was used for calculations.
For each system, 101 representative frames were evenly extracted
from the 100 nsMD trajectory in the production phase. TheMM/
PBSA method calculates the binding free energy of the protein
with ligand in solvent according with Eq. 3:

ΔGbinding � Gcomplex − (Gprotein + Gligand) (3)

Gcomplex , Gprotein, and Gligand are total free energies of the
protein-ligand complex, isolated protein and isolated ligand in
solvent, respectively. These terms were calculated according to
Eq. 4, individually:

Gx � 〈EMM〉 − TS + 〈Gsolvation〉 (4)

whereGx represents the free energy of isolated protein, or isolated
ligand, or protein-ligand complex. T is the temperature, and S
represents the entropy in vacuum. 〈Gsolvation〉 is the solvation free
energy. 〈EMM〉 is the average molecular mechanics (MM)
potential energy in vacuum, including the contributions from
bonded and non-bonded interactions determined by the force
field parameters (Eq. 5):

EMM � Ebonded + EvdW + Eelec (5)

where Ebonded is the bonded interaction energies consisting of
bond, angle, dihedral and improper interactions. EvdW and Eelec
are modeled using a Coulomb and Lennard-Jones (LJ) potential
function, respectively. 〈Gsolvation〉 is the energy required to
transfer a solute from vacuum into the solvent, which is
expressed as Eq. 6:

Gsolvation � Gpolar + Gnonpolar (6)

where, Gpolar is estimated by solving the Poisson-Boltzmann (PB)
equation, which is the electrostatic contribution. Gnonpolar is
estimated through solvent accessible surface area (SASA)
model to get the non-electrostatic contribution. Through
g_mmpbsa, EMM , Gpolar , and Gnonpolar are calculated

individually, which means the binding energy could be
decomposed on a per residue basis as Eq. 7:

ΔRBE
x � ∑n

i�0
(Acomplex

i − Afree
i ) (7)

ΔRBE
x is the contribution to the binding energy of residue x.

Acomplex
i is the energy of the ith atom on x residue in bound state

and Afree
i is the energy in the unbound state.

RESULTS AND DISCUSSION

Morphology of HAp
During the adsorption of proteins on a solid surface, there are
several main driving forces, including electrostatic and
hydrophobic interactions, as well as the structural
rearrangement of the adsorbed proteins (Dee et al., 2003).
Due to the highly charged nature of HAps, the electrostatic
interaction has been confirmed to strongly affect their affinities
toward proteins through charge-charge and charge-dipole
interactions (Zhu et al., 2007; Zhu et al., 2010; Chen et al.,
2014; Wang et al., 2014). For the HAps with a similar shape (for
example, the spherical one) at a given ratio between Ca and P
atoms, our calculations show that the difference in their sizes
results in certain differences in the electrostatic potential
distribution of the surface (Figure 1A). However, the surface
charge density of different spheres is close to a constant value,
implying a unique electrostatic property at the surface
(Figure 1B). Therefore, the HAp-S with the diameter of
1.926 nm was used in the following calculations. On the
other hand, changes of the nanoparticles’ geometrical
parameters, such as the Ca:P ratio or the aspect ratio, may
lead to variable net-charge and the electrostatic potential surface
(Supplementary Figure S1), though it was reported that the
zeta potentials of HAp nanoparticles of various shape that have
been characterized in experiments are all negative (Wu et al.,
2019); besides, changes in the size may also lead to a change in
the geometric matching of the interface between the two.
Therefore, we will focus on the interactions between the
fixed-size nanoparticles (Figure 1C,D) and the protein in
this work.

Three different morphologies of HAps were examined in this
work, which were named as HAp-S (sphere), HAp-R (rod), and
HAp-N (needle), respectively. The three systems have distinct
electrostatic potential surfaces (EPS) due to different total charges
and the charged groups exposed on the surfaces (Figure 1): HAp-
S and HAp-N are dominated by negatively charged distributions,
while HAp-R is mostly positively charged. More interestingly, the
EPSs are not evenly distributed among the three: on HSP-S, the
weak positive and strong negative charges are distributed
alternately on the surface; on HSP-N, both ends of the needle-
like structure are positively charged, whereas the remaining part
is mainly negatively charged; the HSP-R features a weak
positively charged EPS. Seemingly, the difference in
electrostatic potential distribution on HAps’ surface indicates
their different abilities to interact with the target protein AP2.
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Binding of HAp on AP2-μ2
We then examined the effects of particle morphologies (HAp-S,
-R, and -N) on the interactions between endocytic adaptor
protein AP2 and HAp nanoparticles. Due to the relatively
large size of the AP2 complex and the major role of the μ2
subunit as a cargo-binding region, we focus on the protein
structural preservation and alteration of the μ2 subunit
(denoted as AP2-μ2) upon the binding of HAp in the
following simulations.

To our best knowledge, no structural information of the
complex formed by the HAp and AP2-μ2 is available. Thus,
the initial guess about the interface between the two
components was derived from rigid-body docking and the
matching of electrostatic potential surfaces. Presumably,
polar residues K311, E313, K315, E380, and E382 (Figures
2, 3) at the β-sheet-rich C-terminal side of the AP2-μ2
(represented as AP2-μ2-C, residue ID 172-443) mediates
the binding, which was designated as binding sites I. It
should be noted that this segment is originally deeply
buried in the bowl of AP2 core arranged by the α, β2, μ2,
and σ2 subunits when it is in a locked state, but is released
from the bowl and rotates roughly about its long axis when it
is in an open state. Molecular dynamics (MD) simulations
show that HAp-S and HAp-N have specific binding sites on
AP2-μ2 and consequently cause different conformational
changes of the protein.

HAp-S bound to AP2-μ2 tightly at the binding site I
throughout the 100 ns simulations. The positively charged
residues K311 on the β-sheet-rich C-terminal side of AP2-μ2
retains close interactions with the exposed phosphate groups on
the surface of HAp-S. E380 forms stable interactions with an
exposed Ca2+ on the surface of HAp-S (Figure 2). The HAps well
maintain the spherical structure without significant change of its
morphology (Supplementary Figure S2), and no release of Ca2+

ions was observed within the simulated time scale. Notably, the
binding site I is close to the experimentally-identified binding
pocket of the μ2-subunit-specific YxxΦ-type-binding motif,
which is functionally conserved for AP2 (Kittler et al., 2008).

In contrast, the HAp-Nmigrated away from the initial binding
site I and settled on a pocket (binding site II, Figure 2) formed by
α-helices and a number of spatial surrounding amino acids at the
α-helix-rich N-terminal region (represented as AP2-μ2-N,
residue ID 1-121). One possible reason for the detachment of
HAp-N from the binding site I could be attributed to the
relatively flat surface at the β-sheet-rich domain. Notably, the
binding site II is not fully exposed in the AP2 adaptor complex
formed by the α, β2, μ2, and σ2 subunits, but has some overlap
with the interface between the μ2 and β2 subunits. In the case of
HAp-R, it rapidly detached from AP2-μ2 (5ns after constraint
release in the simulations) and remained distant from the protein.

To explore the AP2 conformation and HAp binding sampled
in the MD simulations with further details, we clustered the

FIGURE 1 | Different morphology of HAp nanoparticles. (A) The spherical-shaped HAps with different sizes show slightly different electrostatic potential surfaces.
Particles of various sizes are only schematic diagrams and do not correspond to the real scale. (B) The ratio between the total charge and the surface area is nearly a
constant in HAps. (C, D) Information of the needle (C) and the rod (D) shaped HAps. The unit for electrostatic potential is kBT/e.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6270154

Zhu et al. Hydroxyapatites Regulate Adaptin-2’s Structure

97

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


trajectories into six groups by using 1.5 Å root-mean-square
deviation (RMSD) as the criterion in each system. Notably, in
both AP2-μ2/HAp-S and AP2-μ2/HAp-N complexes, the first
three ethnic groups account for more than 85% of all the MD
trajectories. Therefore, we calculated the binding free energy with
an implicit solvation model, the molecular mechanics/Poisson-
Boltzmann surface area (MM/PBSA) method (Kollman et al.,
2000; Baker et al., 2001).

Compared with the AP2-μ2/HAp-S complex, the AP2-μ2/
HAp-N has a much larger contact area. The total binding free
energy indicates that the AP2-μ2 has a much stronger binding
affinity with HAp-N than that with HAP-S. Among different
interactions, the electrostatic interaction is dominant in both

systems, evidenced by several conserved key residues mediating
the majority of contributions toward binding.

To further validate the contributions from the charged residues on
HAps toward the binding affinity, we also studied the AP2-μ2 with
some key residues mutated. We carried out two sets of mutations on
the AP2-μ2/HAp-X (X � N or S) complex (Table 1): in the first set,
only a single mutation on AP2-μ2 was made, where the residue
contributing most to the binding was replaced with a neutral residue
alanine. The resultingmutants are AP2-μ2-D117A/HAp-N andAP2-
μ2-E380A/HAp-S; in the second set, simultaneous mutations at four
important sites toward binding weremade. The resulting mutants are
AP2-μ2-E110A-D113A-Q143A-E147A/HAp-N and AP2-μ2-
R305A-K311A-K315A-E380A/HAp-S. Our data show that

FIGURE 2 | The bound state of HAp-S (top panel) or HAp-N (bottom panel) on AP2-μ2. (A) The binding of HAp-S at the β-sheet-rich C-terminal side of AP2. (B)
The key residues involved in HAp-S binding. (C) The electrostatic potential distribution at the binding site of the HAp-S/AP2-μ2 complex. (D–F) Information for the binding
of HAp-N. The binding of HAp-N is at the α-helix -rich N-terminal side of AP2.

FIGURE 3 | The key residues on AP2-μ2 contributed to the binding of HAp-S (left panel) and HAp-N (right panel).
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mutation of the key residue(s) dramatically reduces the binding
between the AP2-μ2 and HAp-X, further illustrating the
electrostatic interaction nature between the two.

Seemingly, HAps with different morphologies have binding
specificity toward AP2-μ2. It should be noted that the inherent
limitations of MM/PBSA, as in the lack of implicit information
about solvent water around the binding site and large fluctuations
of conformational entropy (Hou et al., 2011) hinders the precise
calculation of the absolute binding energies. However, given the
computational efficiency of this method, the estimated relative
values of binding provide meaningful information to distinguish
the binding of different HAps.

HAp-Binding Induced Conformational
Change of AP2-μ2
To monitor the conformational change of AP2-μ2 upon binding
of HAp, we calculated the principal component, λ, of the complex
trajectory along a vector connecting the open (Jackson et al.,
2010) (PDB entry: 2xa7. pdb, λ � 0) and the locked (Collins et al.,
2002) (PDB entry: 2vgl.pdb, λ � 1) states of AP2-μ2 (Figure 4)
determined by x-ray crystallography. In the absence of HAp, the
conformations of AP2-μ2 generated with MD simulations
resemble the open state crystal structure, as indicated by the λ
values fluctuating just above 0, showing the stability of open state
conformation. Presumably, the small deviation (with the mean

TABLE 1 | The binding free energies of the AP2-μ2/HAp-X (X � N or S) complex calculated with MM/PBSA (in kcal/mol).

HAp-N/AP2-μ2 HAp-S/AP2-μ2

Wild type D117A E110A, D113A, Q143A, E147A Wild type E380A R305A, K311A, K315A, E380A

Evdw 9.26 ± 5.20 12.35 ± 4.62 15.60 ± 5.56 −3.31 ± 4.39 −1.32 ± 3.70 0.53 ± 3.61
Eelec −209.75 ± 18.67 −304.22 ± 10.57 −375.56 ± 36.64 −109.95 ± 14.99 744.56 ± 36.84 582.17 ± 20.70
Gpolar −54.22 ± 15.17 211.44 ± 12.45 224.03 ± 27.80 99.48 ± 39.49 88.49 ± 15.39 52.67 ± 25.81
Gnonpolar −2.49 ± 0.20 −1.66 ± 0.11 −1.29 ± 0.28 −2.00 ± 0.47 −1.50 ± 0.48 −1.16 ± 0.36
Gbinding −257.20 ± 22.54 −82.07 ± 13.15 −137.22 ± 14.42 −15.78 ± 29.13 830.23 ± 37.76 635.64 ± 27.14

FIGURE 4 | The conformational change of the AP2-μ2 protein upon binding of HAp nanoparticles. (A, B) The open (A) and the locked (B) states of the AP2 protein.
The α (magenta), β2 (blue), and σ2 (orange) subunits are in the surface mode, and the μ2 subunit (white) is in the cartoon mode. (C) The calculated principal
component of the conformations between the open (λ � 0) and the locked (λ � 1) states of the AP2-μ2 protein sampled with MD simulations. (D–F) The sampled
conformations (in the linemode) of the AP2-μ2 alone (D), in the bound state with HAp-N (E), or with HAp-S (F), where the AP2-μ2 in the open state is taken from the
crystal structure (in the cartoon mode) and shown as the reference. In each ensemble, different colors are used for different clusters of the sampled structures, and the
bound HAp particles are shown in the space-filling mode. (G) The representative structure of AP2-μ2 in the HAp-N/AP2-μ2 (pink), HAp-S/AP2-μ2 (blue) complexes,
where the open (gray) and locked (green) structures are also shown for comparison. The AP2-μ2-C subunit is shown in the surface mode to illustrate the direction of
conformational change, and the AP2-μ2-N subunit is shown in the cartoon mode. All the structures are in a view pre-aligned with the AP2-μ2-N subunit. For clarity, the
bound HAps are not shown.
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value of λ � 0.24) could be attributed to the lack of anchoring
subunits α, β2, and σ2 in the present MD simulations.

In contrast, the binding of HAp leads to a certain degree of
conformational changes of AP2-μ2. Specifically, AP2-μ2 with
both nanoparticles tends to transform to the locked state, as
indicated by the value of λ deviating from 0 toward the
direction of 1. For the AP2-μ2/HAp-S complex, the average
value of λ is ∼0.65, much larger than that of the AP2-μ2/HAp-
N complex (∼0.32), demonstrating a more significant
conformational change induced by the bound of spherical
nanoparticle (HAp-S) than the needle one (HAp-N). In
other words, the HAp-N bound AP2-μ2 protein is closer to
its open state, while the HPA-S bound one is more comparable
to its locked state (Figure 4).

By comparing the locked and the open state structures
(Figure 4), it is clear that the domain rearrangement from the
open to the locked state could be described as the rotation of the
AP2-μ2-C along its long axis, as well as the approaching of the
AP2-μ2-C toward the AP2-μ2-N, as the AP2-μ2-N is relatively
fixed in the bowl. We then studied the collective motion of the
open state structure of AP2-μ2 with normal mode analysis
(Figure 5A), assuming that the system is stabilized by
harmonic potentials. The first five low-frequency modes show
that relative motions between the C- and N-terminal segments
within AP2-μ2 are dominant, indicating the functional role of
these intrinsic motions.

The AP2-μ2 experiences different conformational changes in
the presence of different HAPs (Figure 4). Presumably, the
synergistic effect of the protein plasticity has an impact on the

binding affinity of HAp. Therefore, we monitored the matrix of
distance fluctuations of the AP2-μ2 protein (Figure 5B). Taking
the two domains in the AP2-μ2 as the reference, the binding of
HAp-N induces less fluctuations at the N-domain, which is likely
to be attributed to its strong binding affinities toward the
N-terminal domain (Table 1). Seemingly, the presence of HAp-
N locks AP2-μ2 at a certain configuration. In contrast, the binding
of HAp-S triggers much larger fluctuations at the C-domain, which
is likely to be related to its weak binding affinity. Therefore, HAp-S
leads to a more significant conformational change on AP2-μ2 than
that of HAp-N (Figure 4).

In the meantime, the binding of the negatively charged HAp
partially neutralizes the net charge on AP2-μ2, which is likely to
reduce the electrostatic repulsion between the AP2-μ2-N and
AP2-μ2-C segments, and therefore facilitate the relative motion
between the two. Consequently, HAp-S favors AP2-μ2-C
surfaces, while HAp-N is attracted to AP2-μ2-N. Compared to
HAp-N, HAp-S possess higher-densities of surface charges and
interacts with a relatively exposed protein area (the binding site I).
Hence, HAp-S leads to a more significant conformational change
on AP2-μ2 than that of HAp-N. In literature, it was reported that
the sphere-shaped HAp nanoparticles effectively inhibited the
growth of A375 melanoma cells (34.90% viability); in contrast,
the rod or needle-like HAp nanoparticles moderately affected the
viabilities of melanoma cells (60.43%–74.90%) (Wu et al., 2019).
Presumably, HAp-S is likely to facilitate its transportation in the
cellular environment by shifting AP2-μ2 to a locked
conformation, and therefore resulting in a more profound
tumor-suppressive effect.

FIGURE 5 | The dynamics and plasticity of AP2-μ2. Top panel: the first five low-frequency modes of collective motion generated with the normal mode analysis on
the open state crystal structure. Bottom panel: the matrix of distance fluctuations of the AP2-μ2 protein in the absence (left panel) and the presence of HAp-N (middle
panel) or HAp-S (right panel) in the MD simulations. The N- and C-terminal domains are labeled on the top of each panel. The color bar shows the magnitude of
fluctuations. Only Cα atoms were used in both calculations.
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CONCLUSION

In this work, we used molecular dynamics simulations to
study the regulation of nanoparticles HAp with the clathrin
adaptor AP2. We found that the different morphologies of
HAps feature distinct binding affinities toward AP2; the
binding of HAps with different morphology leads to
structurally and functionally distinct configurations of
AP2, which is likely to affect cargo recognition in
clathrin-mediated endocytosis profoundly. Our work
offers a microscopic explanation for cargo recognition in
clathrin-mediated endocytosis and possible mechanisms of
designing high-efficiency nano-biomaterials, thus providing
a basis for understanding their specificity and potential as
intracellular agents.
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Insight Into Seeded Tau Fibril Growth
From Molecular Dynamics Simulation
of the Alzheimer’s Disease Protofibril
Core
Cass Leonard, Christian Phillips and James McCarty*

Department of Chemistry, Western Washington University, Bellingham, WA, United States

Aggregates of the microtubule associated tau protein are a major constituent of
neurofibrillary lesions that define Alzheimer’s disease (AD) pathology. Increasing
experimental evidence suggests that the spread of tau neurofibrillary tangles results
from a prion-like seeding mechanism in which small oligomeric tau fibrils template the
conversion of native, intrinsically disordered, tau proteins into their pathological form. By
using atomistic molecular dynamics (MD) simulations, we investigate the stability and
dissociation thermodynamics of high-resolution cryo-electron microscopy (cryo-EM)
structures of both the AD paired-helical filament (PHF) and straight filament (SF). Non-
equilibrium steered MD (SMD) center-of-mass pulling simulations are used to probe the
stability of the protofibril structure and identify intermolecular contacts that must be broken
before a single tau peptide can dissociate from the protofibril end. Using a combination of
exploratory metadynamics and umbrella sampling, we investigate the complete
dissociation pathway and compute a free energy profile for the dissociation of a single
tau peptide from the fibril end. Different features of the free energy surface between the
PHF and SF protofibril result from a different mechanism of tau unfolding. Comparison of
wild-type tau PHF and post-translationally modified pSer356 tau shows that
phosphorylation at this site changes the dissociation free energy surface of the
terminal peptide. These results demonstrate how different protofibril morphologies
template the folding of endogenous tau in distinct ways, and how post-translational
modification can perturb the folding mechanism.

Keywords: tau, Alzheimer’s disease, neurofibrillary tangles, paired-helical filament, straight filament, umbrella
sampling, molecular dynamics

1 INTRODUCTION

Alzheimer’s disease (AD) is characterized by extracellular plaque deposits of amyloid-β (Aβ)
peptides and intracellular neurofibrillary tangles (NFTs) of the microtubule associated protein
tau (Selkoe and Hardy, 2016; Polanco et al., 2018). Both Aβ and tau contribute to neuroinflammation
and neurodegeneration (Bolós et al., 2017). Evidence suggests that Aβ and tau interact synergistically
in AD pathogenesis (Rhein et al., 2009; Ittner and Götz, 2011), and amyloid plaques have been shown
to facilitate the seeding of tau fibrils (He et al., 2018). As a complement to amyloid-β-based drugs for
AD, tau is a potential target for therapeutics aimed at blocking tau aggregation (Noble et al., 2011; Li
and Götz, 2017).
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Tau is a soluble, intrinsically disordered protein (IDP)
predominantly found in axons (Konzack et al., 2007). Under
physiological conditions, tau binds to microtubules and plays an
important role in microtubule stabilization, the regulation of
active axonal transport, and neuronal polarity (Gonzalez-
Billault et al., 2002; Götz et al., 2006). Full-length tau (2N4R)
consists of 441 amino acids with a N-terminal region, a proline-
rich domain, four (R1-R4) microtubule binding repeat (MBR)
domains, and a C-terminal region. Alternative mRNA splicing
produces six isoforms of tau in the human brain with either three
(R1, R3, and R4) or four (R1-R4) microtubule binding repeat
(MBR) domains. In AD NFTs, both the three- and four-repeat
isoforms are present (Goedert and Spillantini, 2006). Tau has 84
available serine (S), threonine (T), and tyrosine (Y)
phosphorylation sites, located primarily in the proline-rich and
C-terminal domains (Goedert et al., 2017a).
Hyperphosphorylation of tau at both physiological and
pathological phosphorylation sites causes tau to dissociate
from microtubules and is observed in both AD patients and
transgenic mouse models (Ballatore et al., 2007).

It is hypothesized that the spread of tau pathology in the brain
progresses via a prion-like mechanism, in which oligomeric tau or
other aberrant pre-fibrillar species induces other tau molecules to
adopt a particular pathological structure (Mudher et al., 2017;
Goedert et al., 2017a; Goedert et al., 2017b; Ayers et al., 2018;
Jucker and Walker, 2013). Both in vitro and in vivo experiments
show that small, oligomeric tau complexes seed the growth of tau
fibrils (Strang et al., 2018). This seed can be a small tau protofibril
isolated from mouse or human brain tissue. Different structural
seeds induce different tau fibril morphologies by recruiting tau in
solution to polymerize onto the protofibril end, consistent with a
prion-like hypothesis (Ayers et al., 2018). The precise mechanism
by which endogenous tau is converted into a particular fibril
structure is not well-understood, but likely depends on subtle
differences in chemical environment, signaling, environmental
stress, or mutations.

The predominant component of tau NFTs is a paired helical
filament (PHF) structure formed by a twisted, double helical stack
of C-shaped subunits (Kidd, 1963). A second structural
polymorph, called the straight filament (SF), is also found in
tau inclusions and consists of a similar C-shaped unit forming
different lateral contacts between filament subunits (Crowther,
1991). Recent high-resolution cryo-EM structures of the tau fibril
core, isolated from the brain of an individual with AD, reveal the
detailed C-shaped core structure formed by residues 306–378 that
are part of the R3-R4 repeat domain (Fitzpatrick et al., 2017). The
C-shaped fibril core has a combined cross-β/β-helix structure
typical of amyloid fibrils and prion structures (Sunde et al., 1997;
Govaerts et al., 2004). The core residues include the PHF6
hexapeptide (306VQIVYK311 in R3) that has been identified as
a minimal interaction motif for tau aggregation and amyloid
formation (Friedhoff et al., 2000; Luo et al., 2014; Ganguly et al.,
2015; Xie et al., 2015).

Molecular dynamics (MD) simulations can provide atomic-
resolution information about the stability and thermodynamics
of tau fibril elongation. For example, Li et al. performed all-atom,
100 ns MD simulations of the C-shaped motif, demonstrating

that the form is stable only for the R3-R4 repeat domains while
the R1-R2 adopts a linear shape (Li et al., 2018). MD simulations
of full-length tau in solution reveal that tau samples both
extended and compact conformations and can transiently
form secondary structures resembling the fibril state (Battisti
et al., 2012). All-atom replica exchange MD (REMD) simulations
(Larini et al., 2013; Ganguly et al., 2015; Levine et al., 2015) and
coarse-grained (Smit et al., 2017) simulations of important
nucleating fragments of tau have provided information about
the early stages of tau aggregation and which factors stabilize
either parallel or antiparallel β-sheet structures (Ganguly et al.,
2015). REMD simulations performed by Derreumaux et al. of the
R3-R4 domain dimer identified elongated, U-shaped, V-shaped,
and globular configurations, but not the C-shaped structure
characteristic of AD NFTs (Derreumaux et al., 2020). Recent
steered molecular dynamics (SMD) simulations assessed the
stability and dissociation of tau from an isolated protofibril
pentamer, suggesting that the PHF and SF protofibrils induce
a different pathway for misfolding of tau (Liu et al., 2019).

Despite advances in processing power and designated custom
hardware (Shaw et al., 2014), conventional atomistic MD
simulations in explicit solvent of protofibril nucleation and
elongation remain particularly challenging due to the large
time scale and system sizes characteristic of protein
aggregation. Enhanced sampling methods can overcome this
challenge by accelerating the exploration of configurational
state space through the use of an applied bias potential.
Umbrella sampling (Torrie and Valleau, 1977) is particularly
suited to compute the free energy surface (FES) along a pre-
defined reaction coordinate (Roux, 1995). Umbrella sampling has
been applied to study both the thermodynamics and kinetics of
Aβ fibril growth, providing insight into the stability and
formation of the Aβ fibril (Lemkul and Bevan, 2010; Schwierz
et al., 2016).

In this work, we use all-atom molecular dynamics simulation
in explicit solvent to study the paired PHF and SF protofibril
structures and a post-translationally modified PHF,
phosphorylated at residue Ser356. We assess the stability of
the protofibril structure from SMD simulations, identifying the
structural changes that occur in response to the applied force at its
maximum value. The structural changes that result from the
applied force reveal interchain interactions that impart stability to
the fibril. We then perform an exploratory metadynamics
simulation to determine the dissociation pathway of a single
tau peptide “monomer” from the protofibril end. To obtain the
free energy surface (FES) for tau dissociation, we perform
umbrella sampling simulations of configurations sampled
along the dissociation pathway, using a harmonic restraining
potential to sample the configurational space along the COM
distance reaction coordinate. The FES along the dissociation
coordinate, obtained using the weighted histogram analysis
method (WHAM), provides thermodynamic and mechanistic
insight into the stability of tau protofibrils and the dissociation
mechanism of a single tau peptide from the fibril end. This work
can provide a foundation for designing and interpreting tau
seeding experiments with different fibril morphologies and for
designing small molecule inhibitors that destabilize tau NFTs.
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2 METHODS

The complete cryo-EM structures of both the PHF (PDB ID entry
503 L) and SF (PDB ID entry 5O3T) fibril contain 14 pairs of
chains arranged in a helical stack with a C-shaped cross-section.
As a minimal stable protofibril starting structure, we used ten
protofilament core chains (chains A-J) resulting in a structure
with five stacked and paired C-shaped subunits, as shown in
Figure 1. The N-terminus of each peptide was capped with an
acetyl group (ACE) and the C-terminus was capped with a
N-methionine group (NME) to give uncharged terminal ends.
A post-translationally modified PHF protofibril was created using
the PyTMs plugin for PyMOL (Warnecke et al., 2014;
Schrödinger, LLL, 2015). We added a phosphate group (−2
charge) onto Ser 356 for chains labelled G and I in Figure 1A.
All titratable amino acids were assigned a charge based on
physiological pH. We used the CHARMM36m force field
(Huang et al., 2017) with the TIP3P water model.
CHARMM36 parameters are available for phosphorylated
serine amino acids. Each protofibril chain was solvated in a
box with periodic boundary conditions. The system was
neutralized with counter ions to achieve a final salt
concentration of 150 mM.

All simulations were performed using the Gromacs 2019.4 MD
code (Hess et al., 2008; Lindahl et al., 2019) with an integration time
step of 2 fs. Long-range electrostatics were calculated using the PME

method (Essmann et al., 1995), and we used a cutoff radius of
1.0 nm for both real-space Coulombic and Lennard-Jones
interactions. Equilibrium MD simulations of both the SF and
PHF protofibril in solution show that the structure is stable for
at least 10 ns (see Supplementary Figure S1).

The protofibril was placed in an elongated box with
dimensions 15.8 × 8.7 × 25.7 nm for PHF and 12.4 × 12.5 ×
25.7 nm for SF, as determined by the minimum image convention
for periodic boundary conditions. After solvating the box with
TIP3P water and counter ions, the PHF system contained 358,966
atoms and the SF had 402,600 atoms. Following a steepest descent
energy minimization step, the system was equilibrated for 100 ps
in an NVT ensemble at a temperature of 310 K using the velocity
rescaling thermostat (Bussi et al., 2007) and position restraints on
all heavy atoms. This was followed by a 100 ps NPT equilibration
using a Berendsen weak-coupling barostat (Berendsen et al.,
1984) to maintain a pressure isotropically at 1 bar. Position
restraints were removed from all heavy atoms except for
peptides G and H, which were used as an immobile reference
(See Figure 1 for a definition of chains and secondary structure).
This restraint mimics the effect of the larger fibril structure
(Takeda and Klimov, 2009a; Takeda and Klimov, 2009b). All
production runs were performed in the NPT ensemble at a
temperature of 310 K and pressure of 1 bar, using the velocity
rescaling thermostat and the Parrinello-Rahman barrostat
(Parrinello and Rahman, 1981).

FIGURE 1 | (A) PHF protofilament based on the cryo-EM R3-R4 structure of residues V306-F378 (PDB ID entry 503 L). We used ten total chains labelled A-J
arranged as five paired filaments. The C-shaped core structure has eight β sheets labelled β1-β8. (B) SF protofilament based on the cryo-EM R3-R4 structure of residues
V306-F378 (PDB ID entry 5O3T). The SF structure has the same eight β sheets labelled β1-β8 but a different orientation of paired filaments. A rendered view of the
secondary structure is shown at the bottom with the β sheets individually colored.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6243023

Leonard et al. Seeded Tau Fibril Growth

105

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


To quantify structural changes that occur during a simulation,
the distance root mean square deviation (dRMSD) of the
backbone atoms with respect to a reference β sheet structure
was monitored for each inter-chain β sheet formed between chain
G and chain I (β1–β8 in Figure 1). The dRMSD was computed
during the simulation using the PLUMED2.6 plugin (Tribello
et al., 2014). The dRMSD is a measure of the distance between two
structures Xa and Xb, defined as

d(XA,XB) � �����������������������������
1

N(N − 1)∑i≠ j[d(xai , xaj ) − d(xbi , xbj )]2√
(1)

where N is the number of backbone atoms in the reference
structure, and d(xi, xj) is the distance between atoms i and j.
For each of the β sheets (β1–β8) the cryo-EM structure after a
short 200 ps equilibration was used as the reference structure in
the calculation.

2.1 Steered MD Simulations
For each SMD (COM pulling) simulation, the COM of peptide
chain I was pulled away from the COM of peptide chain G of the
fibril core along the z-axis for 1,200 ps using a constant pull rate of
0.01 nm ps−1 and a spring constant of 1,000 kJ mol−1 nm−2. The
simulation box, placement of the chain, and definition of the
elongation axis are shown in the Supplementary Figure S2. A
slower pulling rate of 0.0025 nm ps−1 resulted in similar force
curves (see Supplementary Figures S3–S5). A final COM
distance between peptide chain I and the fibril end of
approximately 10–12 nm was achieved.

2.2 Metadynamics Simulations
The dissociation path of a single tau peptide chain from the
protofibril structure was investigated with metadynamics (Laio
and Parrinello, 2002). In this work, the history-dependent
metadyanimcs bias is applied in order to explore the
dissociation pathway and identify partially folded
intermediates. However, due to the slow convergence of the
metadynamics bias, we do not compute the free energy surface
from reweighting. Instead, we take representative configurations
along the dissociation path sampled via metadynamics and
perform umbrella sampling along the COM separation
distance. Metadynamics enhances the exploration of phase
space by applying a history-dependent bias potential along a
chosen set of collective variables (CVs) (Valsson et al., 2016).
Analogous to protein folding (Best et al., 2013), we compute the
fraction of native contacts Q between chain I and the adjacent
chains H, F, and G (see Figure 1). Here, Q includes all the native
contact pairs i, j between heavy atoms i and j, considered in
contact if the distance between i and j is less than 0.45 nm. The
CV Q is then computed as

Q(X) � 1
N

∑
(i,j)

1

1 + exp[β(rij(X) − λr+ij )] (2)

where rij(X) is the distance between atom i and j in configuration
X, r+ij is the reference distance in the cryo-EM structure, β is a
smoothing parameter set to 50 nm−1 and λ is a tolerance distance

set to 1.5 nm. We identify 1,260 contacts between the terminal
chain I and adjacent chains (G, H, and J) in the PHF structure and
1,149 contacts for the SF protofibril. The fewer native contacts in
the SF structure is due to the looser packing of this structure and
less contact between the adjacent paired helical structures shown
in Figure 1.

Metadynamics simulations were carried out using the open-
source, community-developed PLUMED library (Bonomi et al.,
2019), version PLUMED2.6 plugin (Tribello et al., 2014). In
addition to the fraction of native contacts CV Q, we also
biased the COM distance between chains I and G (see
Figure 1 for chain definitions). The two-dimensional bias was
deposited every picosecond with a Gaussian hill height of 1.0 kJ/
mol and a width of σ � 0.01 for Q and σ � 0.1 nm for the COM
distance. Finally, a ratchet-and-pawl like restraint was placed on
the COM distance to evolve the system toward further separation
distances and dampen fluctuations back towards the protofibril
end. A definition of this restraint is presented in the
Supplementary Material Section 1.

2.3 Umbrella Sampling
From representative frames of the exploratory metadynamics
trajectories, configurations were selected to generate starting
configurations for umbrella sampling (Lemkul and Bevan,
2010). Frames for the umbrella sampling windows were
selected every 0.1 nm up to 2 nm COM separation distance
between chains I and G and every 0.2 nm beyond up to
11.0 nm. This resulted in a total of 62 umbrella windows for
each protofibril. Since each umbrella window is taken from a
snapshot of the metadynamics simulation, each window has the
same box size and number of particles. For each umbrella window
a harmonic restraint was employed centered at the reaction
coordinate of the initial COM distance for that window. We
used a force constant of 1,000 kJ mol−1 nm−2. After a short 200 ps
equilibration, a 10 ns long productionMD simulation was run for
each umbrella window. The total production simulation time for
the set of umbrella sampling simulations is 620 ns for each
protofibril. A histogram of the sampled reaction coordinate for
each system is shown in the Supplementary Figure S6, showing
the overlap of the sampled distance distribution between adjacent
windows. The free energy surface from the umbrella sampling
simulations was computed using the weighted histogram analysis
method (WHAM) as implemented in GROMACS 2019.4 (Hub
et al., 2010). All umbrella sampling simulations were preformed
on a GPU workstation (8 CPU threads and 1 Nvidia RTX 2080
GPU). We also made use of the SDSC Comet Supercomputer
available through the Extreme Science and Engineering Discovery
Environment (XSEDE) (Towns et al., 2014).

3 RESULTS

In the present work we focus on the fibril stability of the two AD
tau cryo-EM structures: the PHF filament and the SF filament.
We also investigate a post-translationally modified PHF fibril
with a phosphate group at Ser356, located in the MTB repeat
domain. The PHF and SF filaments are structural polymorphs
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with the same number of amino acids but different packing and
relative orientation of paired filaments. These structural
differences are expected to lead to different relative stabilities
of the two fibril types. As shown in Figure 1, the structural core
unit for both fibrils consists of eight β-strands (labelled β1–β8)
adopting a C-shaped structure.

3.1 SMD Simulations Identify That
Interchain Contacts Formed by Residues
Within the β6 and β7 Regions Impart Critical
Structural Stability to the Protofibril
SMD simulations can be used to identify important interactions
between subunits that are broken during the non-equilibrium
trajectory (Izrailev et al., 1999). SMD has been applied in the
context of protein-ligand binding (Grubmüller et al., 1996),
DNA-binding proteins (Jakubec and Vondrášek, 2020), Aβ
fibril growth (Lemkul and Bevan, 2010), and on tau fibril
dissociation (Liu et al., 2019). During the non-equilibrium
simulation, the force increases as a result of the applied bias
until a breaking point is reached, at which time critical

interactions are disrupted, allowing the peptide to dissociate
from the core protofibril structure. The point of maximum
force corresponds to the instant just before these key
interactions are broken. Because the work performed during a
SMD simulation is path-dependent, a single SMD pulling
trajectory is insufficient to determine the free energy surface,
and different force-time curves will produce different dissociation
pathways. For this reason, the precise order of events leading to
dissociation cannot reliably be determined from SMD
simulations at the high force values used here.

Despite the fact that tau dissociates from each protofibril end
through different pathways, we consistently observe that the
point of maximum force for each protofibril architecture
corresponds to the breaking of hydrogen bonds between the
parallel β-sheets, formed largely by residues Arg349 to Val363
that make up the β6–β7 region (see Figure 1). The observation
that these hydrogen bonds break at the point of maximum force
along the SMD trajectory suggests that these interactions impart
critical stability to the protofibril. Figure 2 shows the force
applied during the pulling of a single tau peptide chain from
the protofibril tip during a 1,200 ps SMD simulation. A snapshot

FIGURE 2 | (Left) Time evolution of the force during SMD simulations for the (A) PHF, (B) phosphorylated pSer356 PHF, and (C) SF tau protofibrils. The blue
vertical line (and depicted blue peptide structure on the right) corresponds to the structure at the maximum force. The vertical red line (and depicted red peptide structure
on the right) correspond to a representative frame just after this maximum force has been reached and the force curve begins to decrease. This corresponds to a major
structural transition where important hydrogen bonds have been broken during dissociation. (Right) The inset highlights the region of secondary structure loss that
occurs between the point of maximum force (blue) and immediately after the force curve begins to decrease (red). For PHF (A) this event correlates with loss of the β7
secondary structure as indicated by the increase in the dRMSD value for this structure during this time window. For the PHF-pSer356 (B) and SF (C) the adjacent β6
region unfolds during the time window with corresponding increase in the dRMSD with respect to the reference β6 structure.
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along the dissociation pathway at the point of maximum force is
shown with the dissociating peptide chain colored blue, and the
subsequent loss of structure immediately after the point of
maximum force is shown with the dissociating peptide colored
red. For the PHF protofibril (Figure 2A), the point of maximum
force occurs at 440 ps and involves breaking the interchain
hydrogen bonds between residues Ile360 and Val363 within
the β7 region. A snapshot highlighting this region of the
protofibril just before the point of maximum force at 440 ps is
shown in blue and is compared to the same chain when the force-
time curve is decreasing at 470 ps shown in red. We observe that
during this 30 ps window, the β-sheet formed by residues
Asp358-His362 (β7 in Figure 1) is lost and hydrogens bonds
between parallel β-sheets in this region are broken. This is
confirmed by the large increases in the distance dRMSD for
the β7 region during this time window.

For the post-translationally modified PHF at Ser356 (PHF-
pSer356), the force-time curve (Figure 2B) exhibits a maximum
at 416 ps and involves loss of structure and breaking of interchain
hydrogen bonds between the β sheet formed by residues Gln351
to Gly355 in the β6 region. The middle structure in Figure 2B
compares a snapshot of the PHF-pSer356 structure just before the
maximum force at 416 ps and at 435 ps when the force is
decreasing, showing the interchain hydrogen bonds that are
broken during this window. This region is directly adjacent to
the phosphorylated Ser356. The dRMSD of the β6 sheet shows an
abrupt increase during this time window indicating a loss of the
β6 structure at the point of maximum pulling force.

For the SF protofibril (Figure 2C), the point of maximum
force occurs earlier, at 371 ps. The structure just before the point
of maximum force at 371 ps and at 400 ps (where the force is
decreasing) is compared in bottom structure in Figure 2C,
showing loss of the β-sheet structure between residues Gln351
and Asp358 that make up the β6 region and beginning of the β7
region. Interchain hydrogen bonds within this region are broken
during this time window, and the dRMSD of the β6 sheet
increases sharply as the β6 structure is lost.

In all SMD simulations, it is clear that a single main structural
transition corresponds to a destabilization of the fibril structure,
leading to dissociation at the protofibril tip. These structural
transitions involve the parallel β-sheets that define the β6 and β7
region.

3.2 The Free Energy Surface From Umbrella
Sampling Reveals Different
Template-Induced Folding Mechanisms
of Tau
Because the large pulling force may result in an unfolding
mechanism that does not resemble the true dissociation path,
we produce configurations along the dissociation path using
metadynamics. Metadynamics builds a history-dependent bias
during the simulation that allows the system to escape free energy
minima, and the dissociation path revealed during a
metadynamics simulation should closely follow the true
dissociation mechanism. Furthermore, by including the

fraction of native contacts Q as a CV, the applied bias should
lead to enhanced fluctuations of native contacts leading to tau
dissociation along the protein folding pathway. As the
metadynamics bias builds during the simulation, weaker
contacts should break before stronger contacts; thus the
sequence of dissociation events from metadynamics should
reflect the dissociation mechanism. We then perform umbrella
sampling simulations restrained along the one-dimensional
COM distance for frames extracted from metadynamics
simulations.

The free energy surfaces computed from umbrella sampling
simulations are shown in Figure 3. Error bars are determined
using a bootstrap method (Hub and de Groot, 2006). Individual
bootstrap profiles are presented in the Supplementary Figure S7.
To provide a sense of the convergence of the free energy surface
from the limited 10 ns umbrella sampling trajectories, the FES
was computed separately for different trajectory blocks of 2–4,
4–6, 6–8, and 8–10 ns. A comparison of the FES for these different
regions is presented in the Supplementary Figure S8. In all cases,
the FES profile does not change appreciably after 5 ns. Therefore,
the FES shown in Figure 3 is computed only over the final 5 ns of
the 10 ns production simulation.

The difference in the free energy surfaces between the PHF
fibril (black line) and SF fibril (purple line) of Figure 3 reflect
differences in the dissociation and unfolding mechanism of tau
for these two fibril structures. The PHF FES (black line) has a
broader basin, indicating that partially folded tau forms contacts
with the protofibril end at longer separation distances. The broad
basin for the PHF fibril corresponds to the sequential breaking of
interchain interactions, leading to unfolding of the tau peptide
through a series of partially unfolded intermediates that will be
discussed in more detail below. On the other hand, the FES for the
SF fibril (purple line) has a narrower and steeper basin where
partially folded tau makes contact with the protofibril end at
shorter separation distance. The shape of the FES indicates that

FIGURE 3 | Free energy curves obtained from umbrella sampling
simulations for each fibril in this study. The PHF free energy profile (black) and
the SF free energy profile (violet) have a similar free energy minimum; however,
the different shape reflects a different dissociation mechanism. The PHF
fibril is stabilized by phosphorylation at Ser356 (green) despite having a similar
mechanism of dissociation. Error bars were determined by bootstrapping.
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tau unfolds in a more concerted mechanism from the SF
protofibril as compared to the PHF fibril. Interestingly, the
difference in free energy between the bound structure
(ξ � 0.6 nm) and the free dissociated tau (ξ � 11 nm) of both
the PHF and SF protofibril is nearly identical, with a value of
−89 kJ/mol ± 5 kJ/mol (35 kBT) for the PHF and −87 ± 6 kJ/mol
(34 kBT) for the SF. This value compares reasonably well to the
experimental value for fibril elongation of Aβ(1–40) of −38 kJ/
mol (34 kBT) (O’Nuallain et al., 2005). However, we note that our
calculated value may include errors from limited sampling.

Phosphorylation at pSer356 changes the shape of the FES
profile for the PHF protofibril (green line). Interestingly, the free
energy of the final folded state of the phosphorylated tau is lower
with respect to the unphoshorylated PHF implying that the
phosphate actually stabilizes the fibril structure. The origin of
this increased stability of the pSer356 PHF protofibril is not
obvious. Simulations of native tau in solution suggest that
phosphorylation of tau at Ser356 can facilitate aggregation by
destabilizing compact configuration and enhancing the
distribution of extend conformations that expose residues to
the protofibril template (Popov et al., 2019). To investigate
this, Figure 4 shows a representative structure at a separation
distances of ξ � 3.6 nm for the PHF and PHF pSer356 along with
the intramolecular distribution of the distance between the Cα of
residues Gly323 and Phe378 on chain I averaged over the 10 ns
trajectory. The wild-type tau adopts partially folded compact
intermediate states while the phosphorylated tau remains in a
much more extended conformation. As seen in Figure 3 (black
line), after the wild-type tau makes initial contact with the PHF
fibril at around 8 nm, the FES exhibits a docking region without a
steep folding funnel. This feature agrees with recent models of
amyloid aggregation progressing via a random search through
multiple, non-productive conformations before the peptide

samples an extended configuration that is able to form native
contacts with the fibril template (Jia et al., 2017; Jia et al., 2020). In
contrast, phosphorylation at Ser356 shifts the conformational
ensemble towards more extended conformations (Figure 4), and
the FES in Figure 3 (green line) exhibits a steeper folding funnel,
along which native contacts form in successive order along the
fibril template.

3.2.1 The Dissociation Mechanism of Tau From the
PHF Protofibril
We now discuss in more detail the order of partial unfolding
events that lead to dissociation of a single tau peptide from the
PHF protofibril end. We analyze conformations from different
umbrella windows along the reaction coordinate in terms of
the dRMSD of the various β sheets that form the folded
structure. Figure 5 shows representative structures from
umbrella sampling windows at key intermediate stages of
dissociation. Escape from the free energy minima that
represents the bound conformation begins with loss of the
β6 and β5 structure, followed almost immediately with partial
stabilization of the β7 region. This conformational change is
shown between structure 1 (ξ � 0.6 nm) and structure
2 (ξ � 0.9 nm) in Figure 5 and the corresponding increase
in dRMSD for the β5-β7 region. Next, the β4 structure is lost
between structure 2 and 3 (ξ � 1.4 nm). Between structures 3
and 4 (ξ � 5.8 nm), the partially unfolded tau forms non-native
intramolecular contacts like that shown in Figure 4. The
remaining sequence of dissociation events is loss of β3
between structures 3 and 4, loss of β2 between structures 4
and 5 (ξ � 8.8 nm), and finally, loss of β1 between structures 5
and 6 (ξ � 10.4 nm) that results in complete dissociation
(structure 6) of the peptide. This final dissociation step (loss
of β1) involves breaking interactions between the nucleating

FIGURE 4 |Distribution of the intramolecular Cα distance between residues Gly323 and Phe378 on chain I for the PHF (blue) and PHF-pSer356 (red) protofibril over
the umbrella window restrained at a COM distance of 3.6 nm. The distribution is accumulated over the 10 ns production simulation. At this separation distance, the
partially folded tau remains in contact with the protofibril at the β1 end (V306). A snapshot taken at 5 ns during the 10 ns trajectory is shown for both structures. The PHF-
pSer356 remains predominantly in an extended conformation while the wild-type PHF adopts more compact configurations forming non-native intramolecular
contacts.
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PHF6 hexapeptide 306VQIVYK311 region. This supports the
hypothesis that the formation of the PHF6 hexapeptide
initiates tau misfolding and aggregation.

3.2.2 Effect of Phosphorylation at pSer356 on the
Dissociation Mechanism of Tau From the PHF
Protofibril
Figure 6 shows representative structures along the reaction
coordinate for the pSer356 post-translationally modified tau.

The mechanism of dissociation in terms of the order of events
is similar to that of the wild-type PHF. In this case, escape from the
free energyminima that represents the bound conformation begins
with loss of the β7 structure followed immediately by loss of the
adjacent β6 and β8 region. This is shown in Figure 6 by the
increase in dRMSD between structure 1 (ξ � 0.6 nm) and
structure 2 (ξ � 1.8 nm) for these regions. Next, the β5
structure is lost, followed by the loss of β4 as shown between
structure 2 and structure 3 (ξ � 5.2 nm). The remaining unfolding

FIGURE 5 | Free energy profile for the association/dissociation of a single tau chain onto the PHF protofibril. Representative structures are shown along with the
dRMSD of the secondary structure regions. Between structures 1 and 2 the dRMSD increases for β5 (blue), β6 (red), and β7 (black). Structure 3 shows loss of β4 (yellow),
and structure 4 shows loss of the β3 (pink). Structure 5 shows loss of β2 (cyan). The complete dissociation occurs with loss of β1 (green) that includes the PHF6 region.
Structureswere obtained fromumbrella sampling simulationwindowwithin thedifferent regions along the reaction coordinate after 5 ns. ThedRMSDvalues in eachof thebar
graphs are calculated from Eq. 1 for the depicted representative structures taken at 5 ns of simulation, where the final folded state is the reference structure.
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events proceed identically to the wild-type PHF in the order of β4
→ β3 → β2 → β1. We concluded that for both PHF and PHF
pSer356 the β1-β4 region is involved in nucleation and the initial
docking of tau to the protofibril template, occurring at separation
distances between 2.0 and 9.0 nm. The subsequent folding of the
β6-β8 regions leads to locking of tau into a pathological structure
and occurs at separation distances less than 2.0 nm.

3.2.3 The Dissociation Mechanism of Tau From the SF
Protofibril
Compared with the PHF protofibril, tau dissociates from the
SF protofibril with a different unfolding mechanism, as
suggested by the different free energy surface. Figure 7
shows representative structures from umbrella sampling
windows at key intermediate stages of dissociation of a

FIGURE 6 | Free energy profile for the association/dissociation of a single pSer356 peptide from the phosphorylated PHF protofibril at Ser356. Representative
structures are shown along with the dRMSD of the secondary structure regions. Between structures 1 and 2, the dRMSD increases for β5 (blue), β6 (red), β7 (black), and
β8 (orange). Structure 3 shows loss of the β4 (yellow), and structure 4 shows loss of β3 (pink). Structure 5 shows loss of β2 (cyan). The complete dissociation occurs with
loss of β1 (green) that includes the PHF6 region. Structures were obtained from umbrella sampling simulation window within the different regions along the reaction
coordinate after 5 ns. The dRMSD values in each of the bar graphs are calculated from Eq. 1 for the depicted representative structures taken at 5 ns of simulation, where
the final folded state is the reference structure.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6243029

Leonard et al. Seeded Tau Fibril Growth

111

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


single tau peptide from the SF protofibril end. Dissociation
begins with loss of the β8 region, as shown by the increase in
dRMSD for this region between structures 1 (ξ � 0.6 nm) and
2 (ξ � 1.4 nm) shown in Figure 7. In contrast to the PHF, the
β1 and β2 regions unfold next, as shown by structures 2 and

3 (ξ � 2.4 nm), followed by the loss of β7 (between structures 3
and 4 (ξ � 3.2 nm)). Between structures 4 and 5 (ξ � 3.8 nm)
along the FES, loss of the β4 and β6 region occurs. The final
dissociation step involves loss of the β5 region between
structures 5 and 6 (ξ � 10.4 nm).

FIGURE 7 | Free energy profile for the association/dissociation of a single tau chain onto the SF protofibril. Representative structures are shown along with the
dRMSD of the secondary structure regions. Tau dissociates starting from the β8 end, shown by the increase in dRMSD between structures 1 and 2 for β7 (black) and β8
(orange). Structure 3 shows simultaneous loss of β1 (green) and β2 (cyan). Structure 4 shows simultaneous loss of β3 (pink) and β7 (black). Structure 5 shows loss of β4
(yellow) and an increased dRMSD for β6 (red). The complete dissociation occurs with loss of β5 (blue). Structures were obtained from umbrella sampling simulation
window within the different regions along the reaction coordinate after 5 ns. The dRMSD values in each of the bar graphs are calculated from Eq. 1 for the depicted
representative structures taken at 5 ns of simulation, where the final folded state is the reference structure.
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4 DISCUSSION

Using all-atom MD simulations and a combination of
enhanced sampling methods including non-equilibrium
SMD, metadynamics, and umbrella sampling, we have
determined several key factors that are important for the
stability of tau AD NFTs and for fibril elongation through
induced folding of monomeric tau. Our computational study
suggests that the β6–β7 region imparts stability to both the
PHF and SF fibril despite differing dissociation mechanisms.
SMD simulations indicate that intermolecular contacts
formed within this region are energetically strongest. We
explore the full dissociation mechanism using
metadynamics simulations, enhancing fluctuations along
both the COM distance and the fraction of native contacts
formed with the fibril end. We observe a different dissociation
mechanism between the PHF and SF protofibril. Using
umbrella sampling, we compute a free energy surface of tau
dissociation from the protofibril end along the COM distance
coordinate.

Assuming that fibril elongation proceeds via the reverse
process of the observed dissociation, metadynamcis
simulations show that elongation of the tau PHF fibril
begins with association at the β1 and β2 region. The β1
region, including the PHF6 (306VQIVYK311) motif, is
important for nucleation and docking of bulk tau in solution
to the PHF fibril. This observation is supported by previous
simulations that identified the PHF6 region as a critical
fragment for nucleation of amyloid structures (Ganguly
et al., 2015). The folding of tau along the PHF fibril
template then proceeds with the sequential formation of the
β3, β4 and β5 regions. Finally, the formation of native contacts
within the β6–β7 region locks the tau peptide at the fibril end.
In contrast, tau in solution initiates contact with the SF fibril
end at the β5 region, forming the β4–β6 region, followed by β3
and β7 formation, before the templated folding of the β1 and β2
region. Taken together, the free energy surface and
corresponding key intermediate structures presents a
detailed picture of important steps in AD pathogenesis. Such
detailed mechanistic information can give insight into tau
seeding experiments in which different protofibril seeds can
templet different tau morphologies (Strang et al., 2018).

Post-translational modification or mutations that affect the
stability of the fibril might disrupt the formation of toxic
NFTs. We identify the β6–β7 region as being important for
maintaining both the SF and PHF protofibril stability. To
investigate this idea, we have studied a post-translationally
modified PHF fibril phosphorylated at Ser356, which is
located between the β6 and β7 region. Our results show
that pSer356 modifies the FES and alters the order of the
β6 and β7 loss of structure in the dissociation mechanism.
However, it is not obvious how this subtle difference in the
mechanism will manifest during in vitro tau seeding
experiments. Phosphorylation of Ser356 has been shown
experimentally to block tau interactions with Aβ peptide
(Guo et al., 2006) and inhibits the seeding activity of the
K18 tau construct in the presence of heparin (Haj-Yahya et al.,

2020). Meanwhile, REMD simulations of the PHF dimer show
that pSer356 modifies the conformational ensemble of a tau
dimer in solution (Derreumaux et al., 2020). It has been
suggested that pSer356 may lead to increased sampling of
extended conformations of disordered tau, thereby exposing
residues to the fibril template during binding (Popov et al.,
2019). Our umbrella sampling simulations give credence to
this idea, showing that partially folded pSer356 tau remains
extended while docking and is able to form native contacts
with the fibril template without needing to unfold compact
conformations or break non-native contacts. Further
experiments and simulation work is needed to fully
understand the effect of phosphorylation at Ser 356 as well
as other possible phosphorylation sites within the MTB
region.

It would be interesting in the context of AD targeted
therapeutics to investigate small molecule inhibitors or
mutations that affect the β5–β7 region. This region is involved
in the final folding of tau onto the PHF template, while the
formation of initial contacts between tau and the SF fibril involves
the β5 region. While the anthraquinone derivative Purpurin
molecule has been shown to inhibit tau fibrillization by
forming hydrophobic contacts with the PHF6 nucleating
hexapeptide region 306VQIVYK311, our results suggest the
β5–β7 regions as an alternative target.

This work presents a detailed thermodynamic and mechanistic
analysis of tau fibril dissociation for the two structural polymorphs
of tau relevant to AD neurodegeneration using recent cryo-EM
structures. Differences in the FES for template-induced misfolding
of tau by the two AD protofibril structures can provide a more
complete understanding of tau seeding from these structures. In
addition to further work to understand how mutations and the
binding of small molecules might perturb the thermodynamics of
fibril elongation through templated folding, simulations of other
tau morphologies, such as the widely studied K18 construct, could
give additional insights into tau folding mechanisms. While this
work presents a picture of tau dissociation, the free energy surface
projected along the one dimensional separation distance may hide
other relevant conformations or missing slow degrees of freedom
that could provide more thermodynamic insight. The present
study could be complemented by other enhanced sampling
methods that could more completely explore configuration
space. Another area for further exploration is in the kinetics of
dissociation of tau, which could be elucidated by studying the
position-dependent diffusion along the reaction coordinate.
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Interactions Between Nucleosomes:
From Atomistic Simulation to Polymer
Model
Chengwei Zhang1,2,3,4 and Jing Huang2,3,4*
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The organization of genomes in space and time dimension plays an important role in gene
expression and regulation. Chromatin folding occurs in a dynamic, structured way that is
subject to biophysical rules and biological processes. Nucleosomes are the basic unit of
chromatin in living cells, and here we report on the effective interactions between two
nucleosomes in physiological conditions using explicit-solvent all-atom simulations. Free
energy landscapes derived from umbrella sampling simulations agree well with recent
experimental and simulation results. Our simulations reveal the atomistic details of the
interactions between nucleosomes in solution and can be used for constructing the
coarse-grained model for chromatin in a bottom-up manner.

Keywords: chromatin, nucleosome, molecular dynamics simulation, umbrella sampling, potential of mean force,
coarse-grain

INTRODUCTION

Chromatin is highly compacted and condensed into the small space of the nucleus (Goloborodko
et al., 2016b; Finn and Misteli, 2019). Human diploid genome contains about six billion DNA base
pairs, and it will be approximately 2 m long if fully extended in a double helix (Fraser et al., 2015;
Dans et al., 2016; Saurabh et al., 2016). In contrast, the size of the nucleus is only a few micrometers,
andmuch remains to be understood that how chromatin fit into the nucleus in such a compacted and
condensed way. The organization and dynamics of chromatin in the nucleus are found to be neither
random nor stochastic, instead it is well defined and regulates the gene expression intricately.

The organization and folding processes of chromatin can be mainly divided into four layers: 1)
The antiparallel double helical and right-handed B-DNA structure with each base pair rising up
about 3.4 Å along the helical axis, which makes DNA very stable while it provides potential for the
binding of proteins. 2) About 146 base pairs wrap around a histone octamer (also called histone
core), including two copies each of the four histone core proteins (H2A, H2B, H3, and H4) in a left-
handed superhelix, which constitute a nucleosome. Nucleosomes are the basic units of chromatin
and provide controlled accessibility for DNA-binding proteins such as transcription machines and
structural maintenance of chromosome (SMC) complexes. The height of a nucleosome is about 55 Å,
so the formation of nucleosome compacts DNA by about 9 times as 146 base pairs × 3.4Å ÷ 55Å ≈ 9.
Even though the DNA sequences binding to histone core are nonspecific, the binding affinity
between some DNA sequences and histone core are higher than others (Field et al., 2008; Teif et al.,
2012; Teif and Clarkson, 2019). About 75–90% of the genome are organized in the form of
nucleosomes (Field et al., 2008). 3) Under the view of electron microscopes, chromatin appears as
“beads on a string,” in which beads correspond to nucleosomes and the string between beads
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corresponds to the double helical DNA called linker. The string-
like chromatin is shaped by loops (Alipour and Marko, 2012; Rao
et al., 2014; Goloborodko et al., 2016a, Goloborodko et al., 2016b),
topologically associating domains (TADs) (Dixon et al., 2012;
Schwarzer et al., 2017; Krietenstein et al., 2020), and A/B
compartments (Dekker et al., 2002; Zhao et al., 2006;
Lieberman-aiden et al., 2009; Dekker et al., 2013). Because
chromatins are fluid and dynamic, it is appropriate to use
structural ensembles to describe the chromatin structure.
While TADs and compartments fluctuate at a single-cell level,
population-averaged TADs and compartments are tissue specific,
meaning that their patterns are similar and conserved in one cell
line and have high variability across different cell lines (Cheng
et al., 2020; Contessoto et al., 2021). The variability of the
organization and dynamics in this layer suggests direct
impacts on the expression and regulation of genes (Finn and
Misteli, 2019). 4) Each chromatin has its own territory in the
nucleus, in which locus from the same chromatin have higher
probability to localize together and form exclusive subregions
(Stam et al., 2019). In the normal cell nucleus, euchromatins,
which are gene-rich and transcriptionally active segments, cluster
together in the interior, whereas heterochromatins, which
are gene-poor and silenced, cluster together in the nuclear
envelope. Visualization in real time and simulation in silicon
provides a comprehensive understanding of the phase
separation and chromosome territory (Liu et al., 2020;
Oliveira Junior et al., 2020; Su et al., 2020). Overall,
chromatin is organized in a highly hierarchical architecture.
Each of these four layers is also highly dynamic, which provide
potential to regulate important biological processes, in
particular the gene expression.

The human genome is the blueprint of life consisting of more
than 20,000 genes and millions of regulatory candidate elements
(Dunham et al., 2012). Despite intensive efforts, it is far from
complete to understand how these elements function and interact
with each other in the spatial and temporal dimensions to
regulate gene expression, as cells with identical DNA sequence
can function differently. The three-dimensional structure and
dynamics of chromatin play critical roles in bringing into physical
proximity the regulatory elements with target genes across
hundreds of kilobases or even megabase distance. The
abnormal chromatin organization leads to the occurrence of
diseases, in particular cancer (Goes et al., 2011; Meaburn
et al., 2016). 3C-based methods such as Hi-C (Dekker et al.,
2002; Lieberman-aiden et al., 2009) and FISH (Fraser et al., 2015;
Fudenberg and Imakaev, 2017) are two mainstream experimental
techniques to probe the organization and dynamics of chromatin.
However, how to integrate and interpret the Hi-C and the FISH
measurements remains challenging, and in some cases, they can
even lead to contradictory results (Fudenberg and Imakaev,
2017).

Complementary to experiments, computer simulations
provide unprecedented resolution to investigate the folding of
chromatin. Polymer model theory can be used to study the
organization and dynamics of chromatin fibers at genome
scale. Coarse-grained (CG) models of nucleosome can be used
to study the interaction and dynamics of nucleosomes array

which is the local subregion of the chromatin fiber. All-atom
molecular dynamics (MD) simulations of nucleosome can
provide further detailed information at the atomistic level.
Combining these models for multiscale simulations would be
useful to enhance our understanding of chromatin folding
processes. In the polymer model (Philip et al., 1993; Münkel
and Langowski, 1998), chromatin is represented as polymers
consisting of different monomers connected by harmonic
bonds, and different persistence lengths are chosen according
to the compaction ratio, for example, how many base pairs are
coarse-grained into one monomer. The models also account for
particular interactions related to the biological activities of
chromatin, for example, loop extrusion and compartmental
segregation. Recently, two sophisticated computational models
with slightly different potential energy function formulas have
been developed (Di Pierro et al., 2016; Fudenberg et al., 2016),
and shed light on the mechanisms underlying the folding and
organization of chromatin (Gibcus et al., 2018; Mirny et al., 2019;
Stam et al., 2019; Banigan et al., 2020).

The quality of polymer model simulations depends critically
on the accuracy of their potential energy functions, which are a
summation of different pairwise interaction terms. Previous
researches (Sanborn et al., 2015; Fudenberg et al., 2016;
Goloborodko et al., 2016a; Goloborodko et al., 2016b)
typically used grid search strategy to optimize the parameters
in potential energy functions, which means trial-and-error until
simulated properties match experiments. If there are four
parameters in one energy function and each parameter have
10 grids, 10,000 sets of parameter combination are tried from
which one will be selected, the one most consistent with the Hi-
C contact map. In addition to grid search strategy, the
maximum entropy principle (Zhang and Wolynes, 2015; Di
Pierro et al., 2016) was also applied to derive the potential
functions using the experimental contact map information as
inputs. A prior knowledge is needed to derive models from the
maximum entropy principle, where it is used by grid search
strategies as the criterion to select the best parameter
combination. An alternative way to construct coarse-grained
models is using the “bottom-up” or “ab initio” approach. One
can derive coarse-grained physical potentials from more
detailed simulations, for example, explicit-solvent all-atom
MD simulations (Noid et al., 2008; Li et al., 2016). Here, we
present a first step toward constructing a multiscale polymer
model for chromatin based on atomistic simulations of two
nucleosomes.

Nucleosomes are fundamental units for chromatin folding and
the main carrier of epigenetic marks, so we coarse-grain one
nucleosome as one bead in the coarse-grained model. Since the
high-resolution X-ray structure of the nucleosome was
determined in 1997 (Luger et al., 1997), there have been many
studies on the properties of nucleosomes (Portela and Esteller,
2010; Biswas et al., 2013; Feng and Li, 2017; Zhou et al., 2019).
Recently, Funke et al. (2016) employed force spectrometer and
single-particle electron microscopy to measure the forces and
interaction profiles between nucleosomes by placing two
nucleosomes close to each other in a variety of defined relative
orientations and recording the frequency of their distances.
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Multiscale simulations revealed that increased secondary
structure resulting from acetylation of H4 tail has an
important effect on the rigidification and also impaired the
interactions between stacked nucleosomes (Collepardo-
Guevara et al., 2015). The effect of H4 tail on stabilizing the
stacked nucleosome is also validated by a recent first atomistic
simulation of stacked nucleosomes using conventional and
steered MD simulations (Saurabh et al., 2016). Ishida and
Kono (2017) explored the energy landscape of two stacked
nucleosomes using umbrella sampling with nucleosomes
restrained at a few distinctive orientations. Moller et al. (2019)
evaluated the anisotropic energy landscape of stacked
nucleosomes across a variety of parameters in configurational
and environmental space using residue coarse-grained
simulations. Lequieu et al. (2019) constructed a coarse-grained
multiscale model of chromatin by mapping the energy
landscape of stacked nucleosomes to a reduced coarse-grained
topology. Interestingly, Spakowitz and co-workers investigated
the effects of epigenetic modifications, especially methylation of
lysine-9 of histone H3, on the organization and dynamics of
chromatin using polymer model (MacPherson et al., 2018;
Sandholtz et al., 2020).

Nucleosome positioning, referring to the location of the
nucleosome dyads in linear DNA, regulates the accessibility of
DNA to DNA-bound proteins (Portela and Esteller, 2010).
Adjacent nucleosomes in sequence are connected by linkers,
whose lengths are about tens of base pairs in eukaryotes. The
average radius of folded protein is about a few nanometers
(Milo et al., 2009), whereas the compartment structures are
across megabases. So the process of compartmentalization is self-
organized by the interactions between nucleosomes, rather than
mediated by proteins. Modifications of nucleosome, such as DNA
methylation and histone modification, change the properties of
nucleosomes and thus alter their interaction landscapes.
Theoretical modeling of the interactions between two
nucleosomes, in particular its dependence on the distance and
relative orientation of nucleosomes, are crucial to our
understanding of chromatin folding.

In this work, we present all-atom MD simulations of two
nucleosomes interacting with each other in physiologically
relevant explicit-solvent environment and analyze their
interaction landscapes in the context of the 30-nm chromatin
model. We consider two simulation systems, one containing two
linked nucleosomes, whereas the other one containing two
unlinked nucleosomes proximal in space. Atomistic simulation
results of these two systems could be used to determine the
function forms and parameters in the model, such as the diameter
of the beads, the strength of the harmonic bonds connecting
beads, and the strength of the weak attraction between beads in
different chromatin states. The manuscript is organized as
follows: Details of MD simulations and trajectory analysis will
be provided in the Methods section. In the Results section,
unbiased MD simulation results will first be presented,
followed by the potential of mean force (PMF) and coarse-
graining calculations. The manuscript ends with a short
discussion and conclusion.

METHODS

System Setup
The interaction between two nucleosomes can be naturally
divided into two types, one type representing the interactions
between nucleosomes that are connected by the linker DNA and
the other type representing the interactions between two spatially
adjacent nucleosomes that are stacked together with no
connecting linker. Accordingly, two simulation systems were
set up as shown in Figure 1. The initial structures were taken
from that of classical 30 nm fiber (pdb id: 6hkt) (Garcia-Saez
et al., 2018). Although its resolution is relatively low (9.7 Å), it
includes the information about the nucleosomal stacking and
packing patterns which are important for building the simulated
systems to model the interactions between nucleosomes. We note
that the histone tails that are missing in the crystal structure are
not modeled in the simulation systems.

For the linked-nucleosomes (LN) system, two nucleosomes
and their corresponding linker DNA base pairs were extracted
from the experimental structure and solvated in an explicit TIP3P
(Jorgensen et al., 1983) water box with dimensions of 463 Å ×
142 Å × 110 Å (Figure 1B). CHARMM (Brooks et al., 1983;
Brooks et al., 2009) was used to build the missing hydrogen atom
coordinates and patch protein and nucleic acid terminals.
150 mM KCl was added with additional cations to neutralize
the system. In total, the LN system contains 676,742 atoms which
are composed of 16 protein chains, two DNA chains, 209,471
water molecules, 1,140 K+ ions, and 594 Cl− ions.

The unlinked-nucleosome (ULN) system contains two stacked
nucleosomes plus 15 flanking base pairs extracted from the
experimental 30 nm fiber structure. A similar procedure was
used to solvate the system in a cubic water box with
dimensions of 182 Å × 182 Å × 182 Å (Figure 1C). In total,
the ULN system has 558,630 atoms composed of 16 protein
chains, four DNA chains, 170,064 water molecules, 1,039 K+ ions,
and 485 Cl− ions. Proteins and DNAs were modeled by the
CHARMM36m protein force field (Huang et al., 2017) and the
CHARMM36 nucleic acid force field (Hart et al., 2012),
respectively.

Molecular Dynamics Simulations
MD simulations were performed using OpenMM (Eastman and
Pande, 2010; Eastman et al., 2017) with the isothermal–isobaric
(NPT) ensemble. Periodic boundary condition (PBC) was applied
and particle mesh Ewald (PME) (Essmann et al., 1995) was used
to compute all the nonbonded interactions with a real space cutoff
at 9 Å. We noted that both electrostatics and van der Waals
interactions are fully accounted for with no truncations, as the
latter were treated by the recently developed LJ-PME method
(Wennberg et al., 2015). All hydrogen-containing bonds were
constrained by the SETTLE algorithm (Miyamoto and Kollman,
1992) and the Verlet integrator was used with a time step of 2 fs
The temperature was maintained at 303.15 K using the Andersen
thermostat (Andersen, 1980) with a damping coefficient of 1 ps−1.
AMonte Carlo barostat (Aqvist et al., 2004) was used to maintain
the pressure at 1 atm by attempting to change the box dimension
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every 25 steps. Both LN and ULN systems were simulated to 1 µs,
and frames were saved every 5,000 steps (10 ps).

Umbrella Sampling and Potential of Mean
Force Calculations
To investigate the free energy landscape between nucleosomes,
advanced simulation techniques need to be employed. Here, we
perform umbrella sampling simulations using the distance
between the two nucleosomes as the reaction coordinate.

Humb � H0 + 1
2
k(d − d0)2, (1)

where the system Hamiltonian H0 is biased by a harmonic
potential that restrains the select reaction coordinate d at a
certain value d0. Biased MD simulations employing Eq. 1 with
different d0 values (windows) can be carried out to enhance the
sampling of events hindered by free energy barriers. The initial
configuration for each window was extracted from the unbiased
MD simulations with d, most close to the targeted d0 value. The
NVT ensemble was used for umbrella sampling. The system was
equilibrated for 1 ns with no biased potential added and then
subject to 30 ns umbrella sampling simulations.

Umbrella sampling simulations were carried out using
OpenMM with a plugin for PLUMED (Tribello et al., 2014).
The center of a nucleosome was defined as the center of mass of
the phosphorus atoms of DNA wrapped on the nucleosome
histone cores (LN system) or the center of mass of protein Cα

atoms of the histone cores (ULN system). The reaction

coordinate d was then defined as the distance between the
centers of nucleosomes. For the LN system, 127 windows were
used in total, d0 ranging from 175 to 250 Å with an interval of 1 Å
and additional windows ranging from 187.5 to 237.5 Å with an
interval of 1 Å. For the ULN system, 68 windows were used in
total, d0 ranging from 60 to 91 Å with an interval of 0.5 Å and
additional five windows ranging from 55 to 59 Å with an interval
of 1 Å. For the LN system, 5 kJ/mol/Å2 was selected as the value of
k, whereas 10 kJ/mol/Å2 was used in alternative windows for the
ULN system. Good phase space overlap between windows was
achieved (Supplementary Figures S1, S2). The potential of mean
force profiles were calculated using the weighted histogram
analysis method (WHAM) (Grossfield, 2020–9).

RESULTS

Unbiased Molecular Dynamics Simulations
Unbiased MD simulations were carried out for 1,000 ns for both
LN and ULN systems. For individual nucleosome, the binding
between DNA and histone core was very stable as indicated by
their root mean square deviations (RMSDs) being around 4 Å
with respect to the initial structures (Supplementary Figure S3).
The relative motion between nucleosomes, in contrast, was highly
dynamic with respect to both their distance and orientation over
the microsecond timescale (Figure 2). For nucleosomes
connected by the linker, their distance d varied between 165
and 239 Å. The distance increased to 238 Å in the first 200 ns of
the simulations and gradually decreased to 170 Å after 400 ns.

FIGURE 1 | (A) The template structure (pdb id: 6hkt) for the setup of simulation system includes six nucleosomeswith a flat two-start helix with uniform nucleosomal
stacking interfaces and an uncondensed nucleosome packing density. The LN system is marked by a red rectangle, whereas the ULN by a purple rectangle. (B) A
snapshot of the LN system after 10 ns MD simulation. (C) A snapshot of the ULN system after 10 ns MD simulation (D) The distance, d, defined using the centers of
nucleosomes and the angle, θ, defined using the superhelical axes of nucleosomes.
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For unlinked nucleosomes, d increased almost linearly from
the starting value of 60 to about 90 Å at the first 200 ns, and then
fluctuated between 75 to 100 Å in the following 600 ns, and rose
to 120 Å after 800 ns. This suggests that the equilibrium distance
of two free nucleosomes in aqueous environment is much larger
than the 62 Å in the crystal structure of 30 nm fiber, which are
impacted by the crystal packing and the stacking of nucleosomes.
Based on our simulations, the relative velocity between two
nucleosomes can be estimated to be about 0.1 Å/ns or 0.01 m/s.

We also analyzed the relative orientation between the two
nucleosomes, characterizing it using the angle between the
superhelical axes of nucleosomes (Figure 1D). There were
large variations of angle in 1,000 ns MD simulations for both
LN andULN systems. The length of the linker DNA in the linked-
nucleosomes system is 40 base pairs, smaller than the persistence
length of double helix DNA (about 150 base pairs). A weak
correlation between orientation and distance d was observed in

both the LN and ULN systems. In the LN system, the relative
orientation angle has a tendency to decrease when d decreases. In
the ULN system, the angle has a tendency to increase with the
distance. The frequency of angle variation is significantly higher
than that of distance. During 1,000 ns MD simulation, distance
went down in the LN or up in the ULN system, whereas the angle
vibrated up and down regularly.

Interaction Free Energy Landscapes
To study the effective interactions between nucleosomes in both
systems, umbrella sampling simulations were performed to
compute the PMFs as a function of distance between the
nucleosomes. In general, the free energy profiles are shallow
and flat, consistent with the hypothesis that nucleosomes are
highly dynamic. The convergence of PMF is relatively good for
both LN and ULN systems as indicated by the statistical
uncertainties from the Monte Carlo bootstrapping calculations

FIGURE 2 | The distance and relative orientation between two nucleosomes in the LN (A, B) and ULN (C, D) systems from 1 μs unbiased MD simulations. Also
shown are snapshots corresponding to different time points (E).
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with WHAM (Grossfield, 2020–9) being low (Supplementary
Figures S8–S11). For the LN system, the global minimum is
found at d � 224 Å. Fitting the PMF around this minimum into a
harmonic potential led to an equilibrium distance of 225 Å and a
vibrational frequency of 2.41 × 109 s−1. As shown in Figure 3, the
interaction free energy increases harmonically when the two
nucleosomes are compressed from the global minima and then
becomes flat and rugged below 200 Å, whereas the interaction
free energy increases slightly and then becomes flat and rugged.
This suggests that the linker DNA is more like a rubber string
other than a spring. We also analyzed the relative orientation of
nucleosomes in each window. The orientation angle along the
time series in each window was stable and vibrated regularly

within a small interval (Supplementary Figure. S4), whereas the
average values were strongly dependent on the reaction
coordinate d (Supplementary Figure. S5). The umbrella
sampling results are consistent with the observations from
unbiased MD simulations (Figure 2A), which provide more
quantitative information on the interaction landscape of linked
nucleosomes.

The interaction between two unlinked nucleosomes in
solution has a completely different free energy profile, featured
by a strong repulsion wall at smaller distances, and a flat curve for
larger d (Figure 4). It indicates that the interactions between ULN
nucleosomes are repulsive. As histone tails are not included in our
ULN simulation system, the repulsive interaction is consistent

FIGURE 3 | PMF calculated from umbrella sampling in the LN system along the distance between two nucleosomes (black solid line). The fitted harmonic potential
function is shown as red dotted line.

FIGURE 4 | PMF calculated from umbrella sampling in the ULN system along the distance between two nucleosomes (black solid lines). The fitted exponential and
shifted Coulomb potential functions are shown as red dotted line and green solid line, respectively.
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with previous simulations (Collepardo-Guevara et al., 2015;
Saurabh et al., 2016; Ishida and Kono, 2017; Moller et al.,
2019) and experiments (Dorigo et al., 2003; Gordon et al.,
2005), which showed histone tails are crucial for holding
stacked nucleosomes together. We note that the nucleosome
has a disc-like shape with a height of 55 Å, so the sharp free
energy rise below d � 60 Å is probably not caused by steric clash
but instead by the unfavorable electrostatic interactions as each
individual nucleosome is highly negatively charged. The asymptotic
free energy was not fully resolved in our calculations, due to the
limited size of the simulation box (182 Å × 182 Å × 182 Å). When
the two nucleosomes are pulled away with d larger than 90 Å,
interactions with their PBC images become possible such that the
WHAM analysis is no longer valid.

Similar to the LN system, we also analyzed the orientation of
nucleosomes in each window. The relative orientation angle along
the time series in each window is stable and vibrates regularly at a
small interval (Supplementary Figure. S6) and correlates with
the distance d (Supplementary Figure. S7). In the ULN system,
orientation angle has a tendency to increase with d and has larger
fluctuation at larger d, consistent with unbiasedMD simulation in
which angle increases with distance (Figures 2C,D). The
computational PMF for the ULN system can be directly
compared with a recent experimental measurement of the
association of nucleosomes (Funke et al., 2016). By integrating
two nucleosomes into a carefully designed and calibrated DNA
origami-based force spectrometer, Funke et al derived the
Boltzmann-weighted distance-dependent energy landscape for
two nucleosomes interacting with each other. They observed
three major features: a strong repulsion at distances smaller
than 60 Å; a minimum located somewhere between 60 and
70 Å; and vanishing interactions at distances greater than
130 Å. The computational PMF shown in Figure 4 agrees well
with strong repulsion at small distances and vanishing interactions
at distal distance. No global minimum is found in our PMF due to
the absence of histone tails in the ULN system, suggesting the
importance of histone tails from an indirect perspective.

Constructing Coarse-Grained Potentials
With umbrella sampling, we are able to dissect the interactions
between nucleosomes with atomistic details. On the other hand,
the human chromatin contains about 28 million nucleosomes, so
it is not feasible to use atomistic simulations to study chromatin
folding in the foreseeable future. The free energy profiles we
obtained can serve as the starting point to construct coarse-
grained potentials to study the conformational dynamics of
chromatin elements such as 30 nm fibers. Current polymer
theory models for chromatin (Di Pierro et al., 2016;
Fudenberg et al., 2016) are typically composed of five terms:

Htotal � ∑ Hbond +∑ Hstiffness +∑ Hloop +∑ Hcompartment

+∑ Hpermeability, (2)

where the Hbond term models the interaction between adjacently
connected monomers,Hstiffness describes the rigidity of chromatin
fibers, Hloop term represents the biological process of loop

extrusion, Hcompartment term models the compartmentalization,
and Hpermeability models the biological function of topoisomerase
II that makes DNA free of knots. In general, the Hbond and
Hstiffness are common items that are intrinsic in the conformation
of chromatin and conserved over the cells of different sources and
species. The mechanism behind the Hloop item is complicated
because how the involved SMC complexes establish the loop
structure at themolecular level remains unknown, especially a cell
may have different Hloop at different states. Hcompartment is highly
correlated with the interactions between unlinked nucleosomes
and epigenetic modifications on histone cores and can describe
the phase separation responsible for the compartmentalization.
Here, we derivedHbond andHcompartment items using all-atomMD
simulations.

If we construct a CG model in which each nucleosome is
coarse-grained into one monomer, the Hbond term can then be
directly inferred from the atomistic simulation results of the LN
system. As shown in Figure 3, the PMF can be fitted with a
harmonic potential:

V(d) � 1
2
k(d − d0)2, (3)

where k equals 0.01 kcal/mol/Å2 and d0 � 225.0 Å.
The free energy profile of the ULN system shows that the

interactions between a pair of nucleosomes in distant distance are
very weak (Figure 4). This suggests that the nucleosomes might
not self-aggregate if there are no additional restraints such as
histone tail effects, epigenetic modifications or binding of
proteins such as cohesins or condensins. Hcompartment in Eq. 2
models compartmentalization, which means that nucleosomes in
different compartments (A and B) have different interaction
strength (Di Pierro et al., 2016). In general, A compartments
match euchromatins and B compartments correspond to
heterochromatins. The interaction landscape of two free,
unmodified nucleosomes from explicit-solvent all-atom MD
simulations would be useful to construct some of the
Hcompartment terms. If we use an exponential potential to fit
the PMF

V(d) � e−α·d−β (4)

we could determine the parameters to be α � 0.1213 Å
−1

and
β � 9.2086 (red line in Figure 4).

Another suitable potential energy function form to fit the PMF
would be a shifted Coulomb potential.

V(d) � A
d − B

. (5)

However, fitting the PMF with such a shifted Coulomb potential
leads to A � 39.53 kcal/mol · Å and B � 52.82 Å (green line in
Figure 4).

DISCUSSION AND CONCLUSION

A spatially and temporally resolved understanding of chromatin
organization is currently one of the central topics in molecular
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and cell biology. Here, we used classical MD simulations and
enhanced sampling methods to study the basic element of
chromatin, nucleosome. In particular, we studied the
conformational dynamics and the free energy landscapes
between two nucleosomes in aqueous environment. Not only
the widely investigated stacked nucleosomes but also the linked
nucleosomes are involved in our study. With umbrella sampling
calculations, we obtained detailed free energy profiles for
nucleosome pairs either free or connected by a linker DNA.
Our simulation results compare favorably with a variety of
experimental findings and MD simulations, in particular the
PMF of the ULN system correlates well with a recent single-
molecule force spectrometer measurement.

Considering that the configurations of nucleosomes are highly
dynamic, the relative orientations of the stacked nucleosomes are
often restrained to achieve quick convergence in previous
simulation studies. In this work, the ULN (stacked) system
was simulated freely without additional restrains at the cost of
longer simulations, which makes the dynamics more natural and
nucleosomes free to explore possible relative orientations. Both
unbiased and biased simulations of unlinked nucleosomes show
that electrostatic repulsion dominates distance distribution in the
absence of histone tails. In addition to the ULN system, we also
studied the dynamics and free energy profiles of linked
nucleosomes. Results of LN and ULN systems could provide
new insights into the organization and dynamics of larger
chromatin elements such as 30 nm fibers.

Umbrella sampling is a useful technique to investigate the
effective interaction between biological macromolecules.
Recently, Lai et al (2020) studied the free energy profile
between two identical DNA double helices using extensive
umbrella sampling. In this study, we carried out 1 μs
conventional MD simulations and found out that the relative
motion between nucleosomes is very slow. We then performed
accumulatively more than 3.8 μs umbrella sampling simulations
on systems with more than half a million atoms to understand the
slow- and large-scale dynamics between nucleosomes. This is
only possible with recent advances in both hardware and software
that utilize the graphics processing units (GPUs) for MD
simulations. Simulation of the LN system (∼ 677,000 atoms)
runs about 10 ns per day on a single Tesla V100 GPU card. One
advantage of umbrella sampling is that the method is naively
parallel so simulations of different windows can be carried out on
different GPU cards at the same time.

We note that K+ ions were used as the cation in our simulation
systems, whereas salt concentration and composition are more
complicated in physiological environment and will impact the
strength of nucleosome interactions. Mg2+ ions were known to
play a crucial role in directly binding with and stabilizing nucleic
acids. However, more accurate polarizable force fields might be
needed to model Mg2+ ions (Huang et al., 2014; Lemkul and
MacKerell, 2016; Walker et al., 2020). It would be interesting to
investigate how the interaction landscapes between nucleosomes
change with the different ion strength and composition. Another
flaw of the current study concerns the limited simulation box size.
For the ULN system, we are not able to obtain the asymptotic free
energy over distance larger than 90 Å, as nucleosomes will

interact through their images due to the PBC conditions. A
larger and probably noncubic water box might be needed to
overcome these limitations.

We carried out atomistic simulations of nucleosomes with the
long-term goal to construct a coarse-grained potential for 30 nm
chromatin structure to bridge the gap between all-atom model of
nucleosomes and polymer model. This would constitute a
“bottom-up” approach to determine the function forms for
polymer models and to optimize their parameters. With the
analytically fitted CG potentials presented in this work, one
would already be able to simulate, for example, the classical
30 nm chromatin fibers to investigate the stability and
dynamics of such nucleosome fiber arrays and then optimize
the polymer model with this coarse-grained potential. For this
purpose, we built a system consisting of 100 nucleosomes which
had no open ends and was covalently bonded to itself through
periodic boundary conditions. When we propagated the
simulation system using derived potential functions (Eqs 3, 4)
for 106 steps (1 µs), the system was unstable and quickly crashed.
In contrast, the structure remained stable if a weak attractive
interaction between stacked nucleosomes was added mimicking
the effect exerted by histone tails (Supplementary Figure S12).
Unstability of 30-nm chromatin fiber with our CG model is
consistent with previous research studies showing that histone
tails are critical to hold nucleosomes together (Dorigo et al., 2003;
Gordon et al., 2005).

This highlights one of the current limitations of the
preliminary CG model presented here. Conversion between
different compacted states of 30 nm chromatin significantly
depend on the histone tails, especially H4 tails, so simulations
with histone tails need to be carried out to derive the
corresponding free energy profiles. Epigenetic modifications
often occur on the histone tails, changing the properties of
nucleosomes such as charge, rigidification, and solvent
exchange which make a big difference in the dynamics and
organization of chromatin and gene expression. Considering
the importance of histone tails for both nucleosome stacking
interactions and higher level chromatin structures, we are
currently performing similar simulations with full histone tails.
However, this involves significantly more extensive MD
simulations that are out of the scope of the current study,
which represents a first step toward building up a CG model
for chromatin with a bottom-up approach. The binding between
the linker histone and linker DNA also plays important roles in
chromatin compaction (Luque et al., 2014), especially the
interactions between linked nucleosomes. Similar linked
nucleosomes systems with linker histone should be studied in
future work. On the other hand, the model is not applied to any
practical biological problem, for example, loop extrusion and
compartmentalization. In reality, the disk-like shape of
nucleosomes and nonuniform distribution of their charges
make interactions highly anisotropic, whereas interactions are
assumed to be isotropic in our coarse-grained model.

As for the next step, we will perform similar umbrella
sampling simulations to study how epigenetic modifications
on nucleosomes change the interaction landscapes and derive
the corresponding potential parameters. Modifications of
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interests include acetylation of lysines on histone H4, mono-, di-,
and trimethylation of lysine 27 on histone H3 and
monoubiquitination of lysine 119 on histone H2A.
Parameterization for these epigenetic modifications would
allow us to construct a transferable computational model for
chromatin. We plan to construct a coarse-grained model at
nucleosome resolution, aiming to make the model as simple as
possible so that it can be used to simulate one whole chromosome
even genome which consists of millions of nucleosomes. Four or
more beads (monomers) will be needed to intimate the
anisotropicity of one nucleosome and the highly negative
charge will be included simultaneously in the future.
Ultimately, the polymer model will be optimized using
“bottom-up” strategy. Such a model is expected to be useful in
understanding development-related and disease-related
chromatin dynamics, for example, how the binding of
Polycomb repressive complex 1 (PRC1) and 2 (PRC2) (Comet
et al., 2016) induces the condensation of chromatin.
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Intrinsically disordered proteins (IDPs) have been paid more and more attention over the
past decades because they are involved in a multitude of crucial biological functions.
Despite their functional importance, IDPs are generally difficult to investigate because they
are very flexible and lack stable structures. Computer simulation may serve as a useful tool
in studying IDPs. With the development of computer software and hardware,
computational methods, such as molecular dynamics (MD) simulations, are popularly
used. However, there is a sampling problem in MD simulations. In this work, this issue is
investigated using an IDP called unique long region 11 (UL11), which is the conserved
outer tegument component from herpes simplex virus 1. After choosing a proper force field
and water model that is suitable for simulating IDPs, integrative modeling by combining an
enhanced sampling method and experimental data like small-angle X-ray scattering
(SAXS) is utilized to efficiently sample the conformations of UL11. The simulation
results are in good agreement with experimental data. This work may provide a
general protocol to study structural ensembles of IDPs.

Keywords: IDPs, biological function, MD simulation, sampling, integrative modeling

INTRODUCTION

It has been recognized that a large segment of the human proteome comprises intrinsically
disordered proteins (IDPs) that lack stable secondary and tertiary structures under physiological
conditions (Colak et al., 2013; Kulkarni and Uversky, 2019). IDPs play important roles in a
multitude of crucial biological functions despite their lack of a stable structure, such as cell cycle
regulation, molecular recognition, and signal transduction (Dunker et al., 2005; Uversky et al.,
2005). According to previous work, IDPs are involved in the majority of human cancer
(Iakoucheva et al., 2002) and many chronic diseases like cardiovascular disease (Cheng
et al., 2006), neurodegenerative diseases (Uversky, 2009; Uversky, 2014), and type 2 diabetes
(Du and Uversky, 2017).

Although researchers continue to discover the functional importance of IDPs, it remains difficult
to explore the structure-function relationship because getting the high-resolution structures of IDPs
remains elusive. Since an IDP is generally not stable in one conformational state, these classical
technologies of structural biology, including X-ray crystallography and cryo-EM, cannot determine
its atomic-resolution structure. Alternatively, structural information on the ensemble average of the
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IDP is available by techniques like nuclear magnetic resonance
(NMR) (Dunker and Oldfield, 2015), small-angle X-ray scattering
(SAXS) (Bernado and Svergun, 2012), and For̈ster resonance
energy transfer (FRET) (LeBlanc et al., 2018).

In order to obtain structural details of IDPs, atomistic molecular
dynamics simulation is a useful and complementary method for
illuminating the molecular nature of IDPs’ conformational
ensembles because it can provide spatial and temporal resolution
unavailable from experiments (Potoyan and Papoian, 2011; Burger
et al., 2014; Granata et al., 2015; Bhowmick et al., 2016). Despite the
significant progress made, a sampling problem remains in MD
simulations of IDPs. The conformational space of an IDP is generally
very large, so conventional MD simulations at a timescale of
microseconds (μs) cannot capture all the states adequately. To
tackle this problem, many enhanced sampling methods have
been developed, which achieve good sampling by modifying
potential energy function (Hamelberg et al., 2004) or increasing
the temperature of barrier regions (Zhang et al., 2003; Hu et al.,
2012). In recent years, a new kind of sampling techniques has been
proposed, which are built on iterative multiple independent MD
(MIMD) simulations (Harada and Kitao, 2013, Harada and Kitao,
2015; Shkurti et al., 2019; Yuan et al., 2020; Zhang and Gong, 2020).
Such a method generally contains many cycles, and each cycle
consists of a number of short MIMD simulations starting from
selected seed conformations. The sampling efficiency would depend
on the strategy of selecting seeds, and different criteria have been
tried (Harada and Shigeta, 2018).

Many studies have shown the possibility of combining
experimental data and computational simulations to interpret
structural dynamics of large biomolecules in a solution that is
called integrative modeling (Braitbard et al., 2019). There are
various integrative modeling techniques for the interpretation of
different structural data (Bonomi et al., 2017; Saltzberg et al., 2019;
Orioli et al., 2020), which can be divided into two categories: refining-
while-sampling and the screening-after-sampling (Zhang et al., 2015).
A refining-while-sampling method directly adds an extra pseudo
energy term based on the experimental data and then a
conformation or an ensemble is simulated by optimizing the
energy (Zheng and Tekpinar, 2011; Bjorling et al., 2015). In a
screening-after-sampling method, a structure pool of the
biomolecule is firstly sampled without experimental restraints, and
then a reweighting method acts on these conformations to optimize
their weights in order to fit the experimental data well (Bottaro et al.,
2020). An ensemble containing a small number of conformations
selected from the pool could be determined (Bernado et al., 2007;
Curtis et al., 2012).

In this work, we propose a general strategy to study the
conformations of IDPs. After choosing a suitable force field and
water model for simulating IDPs, an integrative modeling
procedure combining an enhanced sampling method based on
iterativeMIMD and SAXS data is used to sample conformations of
IDPs efficiently. We present a case study on an IDP called unique
long region 11 (UL11), an RNA-binding protein that is one of the
conserved outer tegument components from herpes simplex virus
1 (HSV-1) (Bowzard et al., 2000; Metrick et al., 2020).

HSV-1 contains a unique tegument layer sandwiched between the
capsid and lipid envelope, including 24 tegument proteins

(McLauchlan and Rixon, 1992). UL11 is the smallest tegument
protein with only 96 amino-acid residues (MacLean et al., 1989;
Bowzard et al., 2000). UL11 and its homologs have been found to
play crucial roles in efficient viral replication (MacLean et al., 1992;
Baird et al., 2010) and tegument assembly (Owen et al., 2015).
However, the mechanistic understanding of its role in these
processes is limited due to the lack of knowledge of its
biochemical and structural properties. A recent article
(Metrick et al., 2020) has suggested that UL11 is an IDP in
solution, which can undergo liquid–liquid phase separation
(LLPS) in vitro. Analysis of experimental SAXS data showed
that the protein is highly dynamic. Here, we aim to construct an
atomic structural ensemble of UL11 that is in agreement with
the available experimental data.

MATERIALS AND METHODS

An Initial Atomic Model of UL11
The UL11 construct used in this work is called UL11-Stll (Metrick
et al., 2020), which is the UL11 sequence (96 residues) plus a small
C-terminal Strep-tag II (Stll) including eight residues
(WSHPQFEK). We used this 104-residue construct, on which
the SAXS experiment was conducted. In the following, we call this
construct UL11 for simplicity.

According to a prediction from the FoldUnfold server (http://
bioinfo.protres.ru/ogu), many residues of UL11 are predicted to be
disordered, except for some N-terminal residues that are natively
folded (Metrick et al., 2020). We predicted an atomic model of
UL11 using the tFOLD server (https://drug.ai.tencent.com/
console/cn/tfold) (Figure 1). There are some β-strands at the
N-terminus (residues 11–14, 17–20, 24–27, 39–41, and 44–47),
while the other regions are disordered till the C-terminal end. The
tFOLD model is consistent to the prediction of the disorder, so we
used it as a starting structure for simulations.

Simulation Details
In this work, all-atom conventional MD (cMD) simulations and
accelerated MD (aMD) simulations were conducted using the
Amber20 package.

Conventional MD (cMD) Simulation
It has been recognized that, in MD simulations using those
traditional force fields and water models, IDPs may become
over-compact. Therefore, combinations of new force fields and
water models have been proposed to address this issue (Kuzmanic
et al., 2019). In this work, we used the A99SB force field in
combination with a 4-point OPC water model (Izadi et al., 2014).

FIGURE 1 | An atomic model of UL11 predicted by tFOLD.
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It has been reported that this A99SB/OPC combination is suitable
for simulating conformations of IDPs (Shabane et al., 2019).

The system was built via the LEaP module (Case et al., 2005).
The OPC waters (Izadi et al., 2014) were added to a truncated
octahedral box with a minimal distance of 10.0 Å between the
solute and the box boundary. 102 Na+ and 98 Cl− ions were added by
replacing water molecules to balance the charge on the system and
bring the salt concentration to about 100mM NaCl. The box size is
1.66× 106 Å3, with 205,909 atoms in total. To remove bad contacts, the
waters and ions were initially minimized for 2,000 steps using the
steepest descent method for the first 1,500 steps and then the
conjugate gradient for the last 500 steps, with the position of
protein fixed (force constant was 500 kcal mol−1 Å−2). In the
second energy minimization, the restraints on the protein were
removed. This stage was conducted for 2,500 steps, using the
steepest descent method in the first 1,000 steps and then the
conjugate gradient algorithm for the last 1,500 steps. After that,
a heat-up MD was run at a constant volume. The system was
heated from 0 to 300 K for 100 ps with a weak restraint of
10 kcal mol−1 Å−2 on the solute. A free MD simulation of
150 ns was carried out under the NPT condition utilizing the
GPU-accelerated pmemd.cuda code. The temperature was
regulated using the Langevin dynamics with a collision
frequency of 1.0 ps−1 (Pastor et al., 1988). Pressure was
controlled with isotropic position scaling at 1 bar with a
relaxation time of 2.0 ps. All the bonds involving hydrogen
atoms were constrained using the SHAKE algorithm (Ryckaert
et al., 1977). A 2 fs integration step was used. Van der Waals
interactions outside the cutoff distance were approximated via a
continuum model (vdwmeth � 1) (Izadi et al., 2014; Izadi and
Onufriev, 2016). The long-range electrostatic interaction was
calculated using the PME method (Muller et al., 1996) with a
10 Å cutoff for the range-limited nonbonded interaction.

Accelerated MD (aMD) Simulation
The aMD (Muller et al., 1996) introduces a boost potential,ΔV(r),
to the original potential energy V(r) when the latter is below a
threshold energy E:

ΔV(r) �
⎧⎪⎪⎨⎪⎪⎩

0, V(r)≥ E,

[ (E − V(r))
α + (E − V(r))]2

, V(r)＜E.
(1)

where α is a factor that tunes the depth of the modified energy
basins. Boosting potentials were applied to both the total potential
and the individual dihedral energy term. The aforementioned
150 ns cMD simulation was used to estimate the aMD
parameters. In the cMD trajectory, the average total potential
energy was −641,138 kcal mol−1 and the average dihedral energy
was 1,068 kcal mol−1. UL11 has 104 residues and the simulated
system consists of 205,909 atoms. The following parameters were
set based on the above information:

E (tot) � −641,138 kcal mol−1 + (0.2 kcal mol−1 atom−1 ×
205,909 atoms)≈−599,956 kcal mol−1

α (tot) � 205,909 atoms × 0.2 kcal mol−1 atom−1

≈41,182 kcal mol−1

E (dih) � 1,068 kcal mol−1 + (3.5 kcal mol−1 residue−1 × 104
residues)≈ 1,432 kcal mol−1

α (dih) � 0.2 × (3.5 kcal mol−1 residue−1 × 104 residues)≈
73 kcal mol−1

With these parameters, a 150 ns aMD simulation was
conducted. All the other parameters were the same to the
aforementioned cMD simulation.

The Strategy of Integrative Modeling
We have previously developed a method called SAXS-oriented
ensemble refinement (SAXS-ER) (Cheng et al., 2017), and the
flowchart is as follows (Figure 2). The code is available at https://
github.com/pcheng27/SAXS-ER/tree/v1.1.

1) Set up the system starting from an initial structure of the
biomolecule, and perform a preliminary simulation. Any
simulation method can be utilized, such as atomistic MD
simulations, enhanced sampling techniques, or coarse-grained
modeling. In this work, we are studying an IDP, and the
sampling is challenging. Therefore, aMD simulations are
carried out using the most updated code of pmemd.cuda in
the Amber20 package.

2) Calculate the scoring function and obtain an ensemble of
conformers with the best score. The number of conformers
in the ensemble is Nes. In this work, the scoring function is χ2
between the calculated SAXS profile of the ensemble and the
experimental SAXS profile.More details will be introduced in
the “Ensemble Optimization Method” section.

3) Starting from the Nes conformers selected by scoring func-
tion, Nsim (�Nes)-independent simulations are carried out.
Multiple independent short-time simulations may achieve a
better sampling than a single long-time simulation. All the
trajectories are combined.

4) Repeat steps 2 and 3 for N cycles. Analyze all those cycles
with the saturated scoring function.

SAXS Data
The SAXS data of UL11 were taken from SASBDB (www.sasbdb.
org) with the ID SASDEX4. All the experimental details and
analyzed results can be found in the database and the published
article (Metrick et al., 2020). In this work, we took the data points
with q from 0.009 to 0.206 Å-1 (q � 4π sin θ/λ, where 2θ is the
scattering angle and λ is the wavelength of 1.246 Å), and the
signal–noise ratios in this range are essentially larger than 2.0
(Figure 3A). The radius of gyration (Rg) of the protein was
estimated to be 24.1 ± 1.7 Å by Guinier analysis using the autoRg
program in the ATSAS package (Franke et al., 2017). The pair
distance distribution function (PDDF) was calculated by GNOM
(Semenyuk and Svergun, 1991) using the maximum dimension
(Dmax) of 89.0 Å as input. The normalized PDDF is asymmetrical
and tailed off to a large distance (Figure 3B), which resembles
the shape of an elongated ellipsoid (Mertens and Svergun, 2010).
Therefore, the protein should be able to take extended
conformations in the solution that can be disordered. The
Kratky plot (Figure 3C) also supports that the protein is an
IDP with partially folded regions.
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CRYSOL (Svergun et al., 1995) was used to compute the
theoretical SAXS profile of a known atomic structure in PDB
format, and then autoRg was run on the SAXS profile to
estimate the Rg of the structure. The CaPP software, available
at github.com/Niels-Bohr-Institute-XNS-StructBiophys/CaPP, was
used to calculate PDDF from these PDB files.

Ensemble Optimization Method
A structural ensemble was obtained by the ensemble optimization
method (EOM) (Bernado et al., 2007). EOM was used to select a
small number of representative conformations from a pool
containing lots of conformations of UL11 in order to fit the
experimental SAXS data. The scoring function of EOM is as follows:

χ2 � 1
K − 1

∑K
i�1

[μI(qi) − Iexp(qi)
σ(qi) ]2

, (2)

where K is the number of data points in the SAXS profile and σ(q)
are experimental errors. For every conformation in the ensemble,
its theoretical scattering profile is computed. I(q) is the average of
them, and μ is a scaling factor.

A new version of EOM called EOM2 (Tria et al., 2015) was used to
compute the scoring function (Eq. 2) and pick the ensembles. In the
original SAXS-ER using EOM2 (Cheng et al., 2017), the program
automatically determined the ensemble size in each cycle that was
generally small. An IDP should be represented by an ensemble
containing more conformers than folded proteins. Therefore, in this
work, we used an option of fixing the ensemble size to a relatively large
number like 24 when running EOM2 in each cycle.

RESULTS AND DISCUSSION

aMD of UL11 without Integrating the SAXS Data. Three
independent aMD simulations, each of 150 ns, were conducted.

We converted a trajectory into sequentially individual PDB files;
then CRYSOL and autoRg were run to obtain Rg of each atomic
structure as described in the “SAXSData” section. The initial structure
of UL11 (Figure 1) is extended with Rg of 35.2 Å. In the first 70 ns of
the aMD simulations, the protein is equilibratingwith a clear tendency
of Rg decrease (Figure 4A), and then the Rg values essentially fluctuate
between 21.0 and 27.5 Å in the remaining simulations. According to
the Rg distribution of the conformations in the last 80 ns (Figure 4B),
they seem to show agreementwith the experimental Rg of 24.1± 1.7 Å.
We calculated the PDDF of each conformation in the last 80 ns of one
trajectory and then plotted the ensemble-averaged PDDF (Figure 4C).
The shape of the three ensemble-averaged PDDF curves is obviously
not similar to that of the experimental PDDF (Figure 3B). That is to
say, the aMD simulations at the time scale of 150 ns cannot adequately
sample solution conformations of the IDP, which is the cause for the
discrepancy between the simulated and the experimental PDDF. A
straightforward way is to simply run longer simulations so that the
protein could expand again and sample diverse conformations.
However, it is not sure how long would be long enough to give a
representative picture of the IDP. Therefore, we performed integrative
modeling of UL11.

Integrative Modeling of UL11. Starting from the same
structural model (Figure 1), we conducted integrative
modeling of UL11 using the protocol introduced in Figure 2.
A cycle consisted of Nsim � 24 independent 200 ps aMD
simulations using A99SB/OPC. In each aMD simulation, a
conformation was recorded every 1 ps, so a structural pool
containing 4,800 conformations was generated in one cycle. By
fitting the experimental SAXS data of UL11, EOM2 selected an
ensemble with the size of Nes � 24 from the pool. Starting from
these conformations, the next cycle of multiple independent
simulations was run. We carried out 30 cycles, so the total
simulation time was 144 ns (200 ps × 24 aMD × 30 cycles).

The χ2 and the average Rg (<Rg>) of the ensemble are plotted
against the cycle number (Figure 5A). The initial model of UL11

FIGURE 2 | Flowchart of integrative modeling that is a modification from Figure 1 in (Cheng et al., 2017).
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is very extended (Figure 1); the EOM ensemble generated at cycle
0 cannot fit the experimental SAXS data well, with a χ2 of 2.3. It is
found that χ2 decreases relatively fast in the first eight cycles
(from 2.3 to 1.0), and then it slowly converges to about 0.9 after
the 10th cycle (Figure 5A, circle). When looking at the time
evolution of the <Rg> (Figure 5A, up-triangle), it converges to
25.5 Å after 12 cycles, that is in good agreement with the
estimated Rg (24.1 ± 1.7 Å) from the experimental SAXS data
(Figure 3A). Therefore, we plotted the calculated SAXS profile of
the ensemble at the 12th cycle and its error-weighted residual

(Figure 5B). The residuals are defined as (Iexp(q) − Icalc(q))/σexp(q),
corresponding to the difference between the experimental and the
computed intensities weighted by the experimental uncertainty
(Carter et al., 2015; Trewhella et al., 2017). The residual difference
plot is flat, which indicates that the results are in good agreement
with the data. The inset is the normalized average PDDF of the
ensemble, which has a similar shape to the experimental PDDF
(Figure 3B).

To characterize conformations consistent with the SAXS data,
we analyzed the Rg distribution of all the ensembles after the 11th
cycle (Figure 5C). There is a major peak with the Rg value around
24.6 Å, a minor peak located between 27.5 and 30.0 Å, and two

FIGURE 3 | SAXS data analysis of UL11. (A) The experimental SAXS
profile of UL11 is shown with errors. (B) The pair distance distribution function
(PDDF) is normalized so that the sum under the curve is 1. (C) Kratky plot.

FIGURE 4 | Results of aMD using A99SB/OPC. (A) Time evolution of Rg.
(B) Rg distribution in the last 80 ns aMD simulations. (C) Ensemble-averaged
PDDF in the last 80 ns aMD simulations. The three independent simulations
are shown in different colors.
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more peaks with the Rg values larger than 30.0 Å that do not appear
in the 150 ns aMD simulations (Figure 4B). A representative
structure of each peak is shown in Figure 5D. One can clearly
see several states of UL11, which correspond to relatively compact,
intermediate, and extended conformations, respectively.

To test the reproducibility of the results, we also conducted the
integrative modeling starting from a relatively compact structure
of UL11 (inset in Figure 6A) taken from the 150 ns cMD
simulation using A99SB/OPC. χ2 and <Rg> of the ensemble
are plotted against the cycle number (Figure 6A). χ2 of the
ensemble at cycle 0 is 1.8, and only after seven cycles, it
converges to 0.9 (Figure 6A, circle). < Rg> of the ensemble at
cycle 0 is 23.6 Å, and it converges to 25.8 Å after 11th cycles
(Figure 6A, up-triangle). We plotted the calculated SAXS profile
of the ensemble at the 12th cycle and its error-weighted residual
(Figure 6B). The residual difference plot between the
experimental and the computed I(q) is flat, which indicates
that the results fit with the data. The normalized ensemble-
averaged PDDF is in agreement with the experimental curve
(Figure 3B). The Rg distribution of all the ensembles after the
12th cycle also indicates a major peak around 24.1 Å, a minor one
between 27.5 and 30.0 Å, and two more peaks with the Rg values
larger than 30.0 Å (Figure 6C). The representative structures of
the peaks (Figure 6D) correspond to states of UL11 from the
relatively compact, the intermediate, and to the extended
conformations. It has been found that the two independent
integrative models of UL11 starting from the different
structures show fairly consistent results.

It is worth noting that the total time scale of the integrative
modeling is only 144 ns, but it can achieve a more efficient sampling
and better convergence than the 150 ns aMD simulations (Figure 4).

In a previous work (Metrick et al., 2020), the authors ran RANCH,
an internal program of EOM2, to generate a coarse-grained structural
pool using a simple exclusion energy term. Then EOMwas applied to
the pool to pick an ensemble by fitting the SAXS data. The ensemble
also included states from compact to extended. Our results of
integrative modeling support their study. However, our ensembles
consist of atomic models generated by fine Amber force field and
explicit watermodel, which should be physicallymore reasonable than
those generated by RANCH.However,more experimental datawould
be needed to further validate these models.

CONCLUSION

This work integrates an enhanced samplingmethod and experimental
SAXS data to study IDPs. In our strategy, we first need to choose a
combination of the force field and water model, such as A99SB/OPC,
that is suitable for simulating IDPs, and then an enhanced sampling
technique like aMD is taken. After that, integrative modeling is
conducted based on iterative multiple independent simulations.
Experimental data like SAXS are used to design a scoring function
for screening conformations and thus guide the simulations toward an
ensemble that fits the experimental data well. Therefore, we think this
strategy of integrative modeling is well suited for investigating
conformational ensembles of IDPs.

FIGURE 5 | Integrative modeling from an extended structure of UL11 (Figure 1). (A) The minimal χ2 (circle) and the corresponding <Rg> (up-triangle) at each cycle.
(B) The back-calculated SAXS profile of the selected ensemble (red line) is fitted to the experimental data (black line with errors). The lower plot shows the error-weighted
residual of the model fitting. The inset is the normalized ensemble-averaged PDDF. (C) The distribution of Rg values calculated from the ensembles after the 11th cycle.
(D) Representative structures according to the Rg distribution.
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We have carried out the integrative modeling of UL11, which is
important for efficient viral replication and tegument assembly. To
the best of our knowledge, the understanding of its biochemical
structure and mechanism is still limited, except for some coarse-
grained structural information (Metrick et al., 2020). In this work, we
have predicted an ensemble of atomic structures, which includes
both the relatively compact and extended conformations of UL11.
This ensemble is in agreement with the available experimental data
andmay provide information on the functionalmechanism ofUL11.
It has been said that UL11 undergoes LLPS in vitro (Metrick et al.,
2020). Our study on the monomer and the integrative modeling
strategy may be helpful for future research on LLPS.

There are various tools for integrative modeling (Bonomi et al.,
2017; Orioli et al., 2020), which use either the refining-while-sampling
or the screening-after-sampling strategy. A refining-while-sampling
method is efficient, but one needs to modify complicated simulation
code to add an energy term for experimental restraints. In a screening-
after-sampling method, although there is no need to change the
simulation code, the postprocessing reweighting procedure would
rely on adequately sampling conformations of the biomolecule,
which is, however, a nontrivial issue for IDPs. Our method can be
regarded as an iterative screening-after-sampling strategy, so we do not
change the MD code. However, the sampling is still efficient because it
is guided by the experimental data.

Our integrative modeling method has some other
characteristics. The first is that the iterative multiple
independent simulations are very suitable for parallel
computing. In this work, 24 independent simulations are run

simultaneously, but one can use more CPU/GPU if they are
available. The second is the high adaptability. Any sampling
methods and ensemble optimization methods can be easily
implemented with minor modifications to the scripts. Last but
not least, many experimental data may be integrated
simultaneously as long as a proper scoring function is designed.
One of the future improvements is to input multiple initial models
at the beginning of the integrative modeling in order to sample the
conformations of IDPs as adequately as possible.
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Caffeine (CFF) is a common antagonist to the four subtypes of adenosine G-protein-
coupled receptors (GPCRs), which are critical drug targets for treating heart failure,
cancer, and neurological diseases. However, the pathways and mechanism of CFF
binding to the target receptors remain unclear. In this study, we have performed all-
atom-enhanced sampling simulations using a robust Gaussian-accelerated molecular
dynamics (GaMD) method to elucidate the binding mechanism of CFF to human
adenosine A2A receptor (A2AAR). Multiple 500–1,000 ns GaMD simulations captured
both binding and dissociation of CFF in the A2AAR. The GaMD-predicted binding poses
of CFF were highly consistent with the x-ray crystal conformations with a characteristic
hydrogen bond formed between CFF and residue N6.55 in the receptor. In addition,
a low-energy intermediate binding conformation was revealed for CFF at the receptor
extracellular mouth between ECL2 and TM1. While the ligand-binding pathways of the
A2AAR were found similar to those of other class A GPCRs identified from previous
studies, the ECL2 with high sequence divergence serves as an attractive target site for
designing allosteric modulators as selective drugs of the A2AAR.

Keywords: adenosine A2A receptor, caffeine, Gaussian accelerated molecular dynamics, ligand binding,
mechanism, pathways

INTRODUCTION

Adenosine receptors (ARs) are a subfamily of G-protein-coupled receptors (GPCRs) with
adenosine as the endogenous ligands (Fredholm et al., 1997). They belong to class A GPCRs and
consist of four known subtypes: A1AR, A2AAR, A2BAR, and A3AR (Jacobson and Gao, 2006).
Despite their broad distribution in human tissues and functional differences, ARs share common
antagonists of caffeine (CFF) and theophylline, both of which antagonize the receptors upon
binding. The sequence alignment by MultiSeq in VMD (Humphrey et al., 1996) showed that the
seven transmembrane (TM) helix bundles of the A1AAR shares high similarity with A2AAR by
71%, A2BAR by 70%, and A3AAR by 77%. The sequence similarity is significantly reduced in the
three extracellular loops (ECLs), being 43% for A2AAR, 45% for A2BAR, and 35% for A3AR when
compared with A1AR. The CFF antagonist binds to all four subtypes of ARs, but with different
binding affinities (Porkka-Heiskanen et al., 1997). Understanding the binding mechanism of CFF
is expected to facilitate drug design targeting the functionally important ARs.

The human A2AAR is one of the best structurally characterized GPCRs at the atomic level,
with more than 30 x-ray and cryo-EM structures published to date (Carpenter and Lebon, 2017).
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Structures of its three distinct conformational states have been
reported, including the inactive conformation bound to an
antagonist or inverse agonist, the intermediate conformation
bound to an agonist, and the active conformation bound to both
an agonist and engineered G protein. The orthosteric binding
pocket of the A2AAR is defined by the residues interacting with
both the endogenous adenosine agonist and antagonist such as
CFF (Carpenter and Lebon, 2017). The residues include M5.38,
M7.35, I7.39, and F45.52ECL2 (Doré et al., 2011; Lebon et al., 2011;
Cheng et al., 2017). The GPCR residues are numbered according
to the Ballesteros–Weinstein scheme (Ballesteros and Weinstein,
1995). Receptor residue N6.55 can form hydrogen bonds with the
N7 atom of adenosine (Lebon et al., 2011) and the O11 or O13
atom of CFF, which results in two distinct binding orientations
referred to as CFF A and B (Cheng et al., 2017). Other interacting
residues include V3.32, L3.33, T3.36, W6.48, L6.51, S7.42, and
H7.43 (Lebon et al., 2012; Cheng et al., 2017).

Molecular dynamics (MD) simulations have been previously
carried out to characterize binding of the CFF antagonist to
the human A2AAR. Cao et al. (2015) performed 800 ns MD
simulations to elucidate the effect of membrane composition
on the CFF-bound A2AAR. They discovered that the seven TM
helix folds were maintained across the systems over the course
of their simulations. CFF was flexible and exhibited multiple
binding poses in the receptor orthosteric binding pocket. The
four most populated binding poses of CFF were extracted with
the interacting residues, including A2.61, I2.64, S2.65, V3.32,
L3.33, T3.36, F45.52, E169ECL2, M5.38, N5.42, L6.51, H6.52,
N6.55, H264ECL3, M7.35, I7.39, and H7.43. In particular, CFF
forms a hydrogen bond with receptor residue N6.55 and water-
bridge contact with residue H7.43 (Cao et al., 2015). Guo
et al. (2016) performed 10 temperature-accelerated MD (TAMD)
simulations starting from the 4EIY PDB structure to investigate
the dissociation pathway of the ZM241385 antagonist from
the A2AAR. The method specifically accelerated the center of
mass of the ligand, and thus the A2AAR was almost rigid.
They found 16 residues that could potentially interact with
ZM241385 during the ligand dissociation process, including
G1TM1, I2.63, S2.64, T2.65, Q148ECL2, G152ECL2, K153ECL2,
S156ECL2, Q157ECL2, E169ECL2, T6.58, H7.29, A7.30, P7.31, L7.32,
and Y7.36. Specifically, the residues E169ECL2, T6.58, and H7.29
along with the structural water of 4EIY formed a hydrogen
bond network interacting with the ligand ZM241385 (Guo et al.,
2016). Caliman et al. (2018) applied the FTMap fragment-based
mapping algorithm on the four distinct conformers obtained
from MD simulations of two ligand free receptor conformations
of the A2AAR (PDBs: 3QAK and 3EML). They uncovered five
non-orthosteric binding sites that were located in the intracellular
region of the TM helices TM3/TM4, the G-protein-binding site in
the intracellular region between TM2/TM3/TM6/TM7, the lipid
interface of TM5/TM6, the intracellular region of TM1/TM7,
and the extracellular region of TM3/TM4 of the A2AAR. Their
analysis also revealed residues in the orthosteric binding site,
including I2.64, V3.32, L3.33, T3.36, Q3.37, I3.40, L45.51ECL2,
F45.52ECL2, E169ECL2, M5.38, N5.42, W6.48, L6.51, H6.52, N6.55,
T6.58, H264ECL3, L7.32, M7.35, Y7.36, I7.39, S7.42, and H7.43
(Caliman et al., 2018).

Gaussian-accelerated MD (GaMD) is a computational method
that allows for simultaneous unconstrained enhanced sampling
and free energy calculations of large biomolecules (Miao et al.,
2015). By adding a harmonic boost potential, GaMD smooths
the potential energy surface of biomolecules to reduce the
system energy barriers (Miao et al., 2015). The harmonic boost
potential mostly exhibits a Gaussian distribution. Cumulant
expansion to the second order (“Gaussian approximation”) can
thus be applied to achieve proper energetic reweighting. GaMD
resolves the energetic noise problem encountered in the previous
accelerated MD (aMD) method (Hamelberg et al., 2004; Shen and
Hamelberg, 2008), thereby allowing us to recover the original
free energy profiles of biomolecules (Miao et al., 2015). Even
though it is exceedingly difficult to obtain convergent free energy
profiles for large biomolecular systems, “semiquantitative” low-
energy conformational states of biomolecules can be identified
from the GaMD-reweighted free energy profiles. GaMD does not
require carefully predefined collective variables and as such it
is advantageous to study complex biological processes. GaMD
has been demonstrated on enhanced sampling and free energy
calculations of ligand binding (Miao et al., 2015; Pang et al.,
2017), protein folding (Miao et al., 2015; Pang et al., 2017),
GPCR activation (Miao and McCammon, 2016), and protein–
membrane (Bhattarai et al., 2020), protein–protein (Miao and
McCammon, 2018; Wang and Miao, 2019), and protein–nucleic
acid (Ricci et al., 2019; East et al., 2020) interactions. Of relevance
to studies of GPCRs, GaMD simulations have successfully
revealed the mechanisms of GPCR activation, ligand binding,
and GPCR–G-protein interactions, which were consistent with
experimental data and/or long timescale conventional MD
(cMD) simulations (Miao and McCammon, 2016, Miao et al.,
2018; Pawnikar and Miao, 2020).

In this study, we have performed all-atom GaMD simulations
to determine the pathways and mechanism of CFF binding
to the human A2AAR. The GaMD simulations have captured
both binding and dissociation of CFF in the A2AAR. The
simulation-predicted binding poses were consistent with x-ray
crystal conformations of CFF in the 5MZP PDB structure (Cheng
et al., 2017). An important intermediate binding site of CFF
was also revealed from the GaMD simulations. The simulation
findings could provide a molecule basis for rational computer-
aided drug design targeting the A2AAR and other ARs.

METHODS

System Setup
The x-ray crystal structure of the human A2AAR in complex
with CFF at 2.1 Å resolution (PDB: 5MZP) (Cheng et al., 2017)
was used for setting up the simulation system. The structure
included 296 out of the total 306 residues of the A2AAR, with
10 missing residues (209–218). The T4-lysozyme, lipid molecules,
CFF, water, and heteroatom molecules were removed. A total of
10 CFF ligand molecules were placed randomly at a distance >15
Å from the extracellular surface of the A2AAR (Figure 1A). The
simulation system was then prepared using the CHARMM-GUI
webserver with the membrane input generator (Wang et al., 2006;
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FIGURE 1 | Gaussian-accelerated molecular dynamics (GaMD) simulations successfully captured both binding and dissociation of caffeine (CFF) in the A2AAR.
(A) Computational model used for simulations of the A2AAR (blue ribbons) with 10 CFF molecules (orange spheres) placed far away in the solvent. The receptor was
inserted in a POPC lipid bilayer (cyan sticks) and solvated in an aqueous solution (cyan) of 0.15 M NaCl. (B) X-ray structure of CFF-bound A2AAR (PDB: 5MZP).
A hydrogen bond is formed between either O11 or O13 atom of CFF with the ND2 atom of the receptor residue N6.55 in two X-ray conformations of the ligand
(CFF-A and CFF-B), in which the distance between the N1 atom that connects atoms O11 and O13 in CFF and the ND2 atom of residue N6.55 stays at 5.1 Å. The
seven transmembrane (TM) helices I–VII and three extracellular loops (ECL) 1–3 are labeled in the A2AAR. (C–F) Time courses of the N6.55:ND2–CFF:N1 distance
calculated from 63 ns GaMD equilibration and three independent 500–1,000 ns GaMD simulations.
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Jo et al., 2007, 2008; Wu et al., 2014; Lee et al., 2016, 2020). The
system dimension was 81.18 × 81.18 × 115.11 Å. It included 161
POPC lipid molecules, with 81 molecules on the upper leaflet and
80 molecules on the lower leaflet, and 14,627 water molecules.
All chain termini were capped with neutral patches (acetyl and
methylamide). The system was solvated in 0.15 M NaCl solution
at temperature 310 K. The AMBER FF19SB (Tian et al., 2019)
parameter set was used for the receptor, LIPID17 (Gould et al., in
preparation) for the POPC lipids, TIP3P (Jorgensen et al., 1983)
for water, and GAFF2 (Wang et al., 2004; He et al., 2020) for
CFF. The output files from CHARMM-GUI were used to perform
GaMD simulations with AMBER 20 (Case et al., 2020).

Simulation Protocol
The output files of CHARMM-GUI webserver were used for
initial energy minimization, equilibration, and cMD to prepare
the system for GaMD simulations. The system was energetically
minimized for 5,000 steps using the steepest-descent algorithm
and equilibrated with the constant number, volume, and
temperature (NVT) ensemble at 310 K using default parameters
given by CHARMM-GUI. It was further equilibrated for 375 ps
at 310 K with the constant number, pressure, and temperature
(NPT) ensemble. The cMD simulation was then performed for
10 ns using the NPT ensemble with constant surface tension at 1
atm pressure and 310 K temperature.

Gaussian-accelerated MD implemented in GPU version of
AMBER 20 (Salomon-Ferrer et al., 2013; Miao et al., 2015; Case
et al., 2020) was applied to simulate the A2AAR system. The
simulations involved an initial short cMD of 3.0 ns to calculate
GaMD acceleration parameters and GaMD equilibration of
added boost potential for 60 ns. Three independent 500–
1,000 ns GaMD production simulations with randomized initial
atomic velocities were performed on the A2AAR with 10
unbound CFF molecules. All GaMD simulations were run at
the “dual-boost” level by setting the reference energy to the
lower bound. One boost potential was applied to the dihedral
energetic term and the other to the total potential energetic
term. The average and SD of the system potential energies
were calculated every 300,000 steps (0.6 ns) for all simulation
systems. The upper limit of the boost potential SD, σ0 was set
to 6.0 kcal/mol for both the dihedral and the total potential
energetic terms. The simulation frames were saved every 1.0
ps for analysis. The GaMD simulations are summarized in
Supplementary Table 1.

The NPT ensemble with constant surface tension was used
in the short cMD and GaMD simulations. The input files for
GaMD equilibration and GaMD simulations have been attached
as the Supporting Information. The standard protocol for MD
simulations of membrane proteins was followed using notably
the system configuration files generated from CHARMM-GUI
(Wang et al., 2006; Jo et al., 2007, 2008; Wu et al., 2014;
Lee et al., 2016, 2020). Using the MEMBPLUGIN 1.1 plugin
of VMD (Guixà-González et al., 2014), we calculated the
area per lipid to be 81.58 ± 8.92 Å2 and the membrane
thickness to be 70.74 ± 2.09 Å from the GaMD production
simulations. The area per lipid was consistent with the initial
value of 81.68 Å from CHARMM-GUI. The density of the

entire system was calculated to be 1.008 ± 0.001 g/cm3 from
the GaMD production simulation outputs, being similar to
the value of 1.020 g/cm3 in the cMD simulation. Therefore,
the system was expected to behave normally as in other
simulation studies.

Simulation Analysis
Simulation analysis was carried out using CPPTRAJ (Roe and
Cheatham, 2013) and VMD (Humphrey et al., 1996). The
software tools were applied to track the binding and dissociation
of CFF from the A2AAR. A hydrogen bond could be formed
between O11 or O13 of CFF with atom ND2 in residue N6.55
of the A2AAR, so the distance between atom N1 that connects
atoms O11 and O13 in CFF and atom ND2 of residue N6.55 was
calculated to monitor ligand binding (Figure 1B). The distance
between atom ND2 of receptor residue N6.55 and atom N1 of
CFF and the distance of important interactions between receptor
residues of TM helices (TM) III, VI, and VII were identified
to calculate 2D potential mean force (PMF) free energy profiles
using the PyReweighting toolkit (Miao et al., 2014). A bin size of
1 Å was used for the distances. The cutoff was set to 500 frames
in one bin for reweighting.

The hierarchical agglomerative clustering algorithm was used
to cluster the snapshots of protein conformations with all
GaMD production simulations combined. The combined GaMD
simulations of CFF binding to the A2AAR were clustered to
obtain clusters that corresponded to the low-energy states in the
2D PMF free energy profiles.

RESULTS

Gaussian-Accelerated MD Simulations
Captured Both Binding and Dissociation
of CFF in the A2AAR
Three independent dual-boost GaMD simulations showed
similar averages and SDs of the added boost potentials:
16.21 ± 4.50 kcal/mol for Sim1, 16.20 ± 4.49 kcal/mol for Sim2,
and 16.32 ± 4.52 kcal/mol for Sim3, respectively (Supplementary
Table 1). Spontaneous binding of CFF to the orthosteric
site of the A2AAR was detected at ∼9 ns into the GaMD
equilibration (Figure 1C). The first two independent 1,000 ns
GaMD simulations (Sim1 and Sim2) captured binding of the CFF
in the receptor orthosteric pocket (Figures 1D,E). Remarkably,
at ∼400 ns into GaMD Sim2, a second CFF bound to the
orthosteric pocket of the A2AAR, while the first CFF remained
bound (Figure 1E). The complete dissociation of CFF from the
orthosteric pocket of the A2AAR was observed at ∼60 ns in the
last independent 500 ns GaMD simulation (Sim3). The traces of
CFF binding and dissociation were then analyzed in detail using
CPPTRAJ and VMD. The representative CFF poses were selected
at distances between receptor residue N6.55 atom ND2 and CFF
atom N1 of ∼15, 10, and 5 Å to calculate the interacting residues
from the A2AAR in the binding and dissociation pathways using
LigPlot (Wallace et al., 1995; Supplementary Figures 1, 2).
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FIGURE 2 | 2D potential of mean force (PMF) free energy profiles of the A2AAR–caffeine (CFF) interactions. (A) Two-dimensional (2D) PMF of the distance between
receptor residue N6.55 atom ND2 and CFF atom N1 and the ionic lock distance between charge centers of receptor residues R3.50 and E6.30. The low-energy
states are labeled in the PMF profile, including the unbound (U1 and U2), intermediate (I), and bound (B1 and B2). (B) 2D PMF of the distance between atom CZ in
receptor residue R3.50 and the hydroxyl oxygen atom of residue Y7.53 and the ionic lock distance between charge centers of receptor residues R3.50 and E6.30.
The low-energy inactive and intermediate conformational states are labeled. The 3RFM and 5MZP PDB structures of inactive A2AAR are mapped to the free energy
surface as hexagons and stars.

Free Energy Profiles of CFF Binding to
the A2AAR Receptor
We combined all three GaMD production simulations to
calculate reweighted free energy profiles to characterize the
binding of CFF to the A2AAR. The distance between the ND2
atom of receptor residue N6.55 and the N1 atom of CFF, ionic
lock distance between the CZ atom of residue R3.50 and the CD
atom of residue E6.30, and the distance between the CZ atom of
residue R3.50 and the OH atom of residue Y7.53 were selected
as reaction coordinates to calculate the one-dimensional (1D)
(Supplementary Figure 3) and two-dimensional (2D) (Figure 2)
PMF free energy profiles. The 1D PMF free energy profiles
with variations were obtained by averaging the three GaMD
production simulations. Despite the free energy variations,
relatively low-energy wells could be identified from 1D PMF
profiles of the distances of CFF–residue N6.55, residues R3.50–
E6.30, and residues R3.50–Y7.53 (Supplementary Figure 3).
The corresponding distances from representative PDB structures
(3RFM and 5MZP) were mapped to the 2D free energy profiles
for comparison. In the 3RFM PDB structure, the distances
between CFF and residue N6.55, residues R3.50 and E6.30, and
residues R3.50 and Y7.53 are 5.5, 4.6, and 12.0 Å, respectively. In
the 5MZP PDB structure, the distances between CFF and residue
N6.55, residues R3.50 and E6.30, and residues R3.50 and Y7.53
are 5.2–5.5, 6.0, and 12.9 Å, respectively.

In the 2D free energy profile of the distances between residue
N6.55 and CFF and residues R3.50 and E6.30 (Figure 2A), we
identified five low-energy conformational states: unbound (U1,
U2), intermediate (I), and bound (B1, B2). In the unbound states
(U1, U2), the distance between receptor residue N6.55 and CFF
exhibited a broad energy well from ∼35 Å to ∼65 Å, illustrating

CFF diffusion in the bulk solvent. The ionic lock distance between
residues R3.50 and E6.30 increased from ∼3.5–4.5 Å in U1 to
∼6–7.5 Å in U2. The intermediate state (I) was identified at ∼20–
25 Å distance between receptor residue N6.55 and CFF and at
∼7 Å distance between residues R3.50 and E6.30, suggesting that
CFF was located at the extracellular mouth of the A2AAR. Both
the bound states (B1, B2) were observed at ∼5–10 Å distance
between receptor residue N6.55 and CFF. CFF was located in the
orthosteric pocket in these states. Similar to the unbound states,
the ionic lock distance was ∼3.5–4.5 Å in B1 and ∼6.5–7 Å in B2.

We identified two low-energy conformational states from the
free energy profile of the R3.50–Y7.53 and R3.50–E6.30 distances
in Figure 2B, labeled as the inactive and intermediate states.
In the inactive state, the ionic lock distance between receptor
residues R3.50 and E6.30 was ∼3.5–4.5 Å and the distance
between receptor residues R3.50 and Y7.53 was ∼10–15 Å. In the
intermediate state, the ionic lock distance remained the same, but
the distance between receptor residues R3.50 and Y7.53 decreased
to ∼5–8 Å.

Binding and Dissociation Pathways of
CFF in the A2AAR
In the equilibration trajectory of GaMD simulation, 1 out of
the 10 CFF molecules (CFF2) that freely diffused in the solvent
bound to the A2AAR through a pathway connecting ECL2,
the extracellular mouth between ECL2 and ECL3, and finally
the receptor orthosteric site (Figure 3A and Supplementary
Figure 1A). At ∼15 Å distance between CFF and the receptor
residue N6.55, CFF interacted with the receptor N-terminus and
ECL2 (Supplementary Figure 1B). At ∼10 Å distance between
CFF and the receptor residue N6.55, CFF was located at the
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FIGURE 3 | Binding and dissociation pathways of caffeine (CFF) in the A2AAR revealed from the Gaussian-accelerated molecular dynamics (GaMD) simulations.
(A) Trace of CFF (orange) binding to the A2AAR observed in the GaMD equilibration. Starting from free diffusion in the solvent, CFF bound to the orthosteric site of
the A2AAR receptor. (B) Binding of the second CFF (orange) to orthosteric pocket of the A2AAR observed in GaMD Sim2. The first bound CFF is shown in red.
(C) Pathway of CFF that dissociated from orthosteric site of the A2AAR to the bulk solvent observed in GaMD Sim3. The A2AAR receptor is shown in blue ribbons
and the CFF traces are shown as orange beads. (D) The B1-bound conformational state of CFF was located between ECL2, TM3, TM5, and TM6 with interacting
residues F45.52ECL2, V3.32, M5.38, N5.42, W6.48, L6.51, H6.52, and N6.55. (E) The B2-bound conformational state of CFF was located between ECL2, TM3,
TM5, and TM6 with interacting residues V3.32, L3.33, F45.52ECL2, M5.38, N5.42, and N6.55. CFF formed a hydrogen bond with the receptor residue N6.55 in both
the B1 and B2 states. (F) The intermediate (I) conformational state of CFF that was located between ECL2, N-terminus of TM1, and TM2 with interacting residues
P1.28, I1.29, S2.65, K153ECL2, S156ECL2, Q157ECL2, and L45.51ECL2. CFF formed hydrogen bonds with both receptor residues I1.29 and Q157ECL2. The CFF
ligand is represented by sticks with carbon atoms colored in orange for simulation-derived low-energy conformations and pink and purple for two x-ray
conformations in the 5MZP PDB structure. The receptor-interacting residues are highlighted in green.

extracellular mouth of the A2AAR between ECL2, ECL3, and
TM6, interacting with residues L45.51ECL2, E169ECL2, S263ECL3,
and T6.58 (Supplementary Figure 1C). At ∼5 Å distance
between CFF and receptor residue N6.55, CFF bound to the
receptor orthosteric site. In Sim2 of GaMD simulation trajectory,
out of the nine remaining CFF molecules that freely diffused in
the solvent, another CFF (CFF9) bound to the orthosteric pocket
of the A2AAR, while CFF2 remained bound (Figures 1E, 3B). The
binding pathway of CFF9 was mostly similar to that of CFF2,
except a slight difference that CFF9 explored a region between
ECL2 and TM6 after entry into the receptor (Figure 3B).

In Sim3 of GaMD simulation trajectory, CFF dissociated from
the orthosteric site of the A2AAR to the bulk solvent through
a pathway connecting the receptor orthosteric pocket and the
extracellular mouth between ECL2 and TM7 (Figure 3C and

Supplementary Figure 2A). At ∼5 Å distance between CFF and
the receptor residue N6.55, CFF bound to the orthosteric site
of the A2AAR (Supplementary Figure 2B). At ∼10 Å distance
between CFF and the receptor residue N6.55, CFF was located
at the extracellular mouth of the A2AAR between ECL2 and
TM7, interacting with residues L45.51ECL2, I1.29, I2.64, L7.32,
and Y7.36 (Supplementary Figure 2C). At ∼15 Å distance
between CFF and the receptor residue N6.55, CFF moved near
ECL2–TM1 and interacted with receptor residues L45.51ECL2,
A1.26, P1.27, P1.28, and I1.29 (Supplementary Figure 2D). At
∼20 Å distance between CFF and the receptor residue N6.55,
CFF is in the intermediate (I) conformational state. While the
GaMD simulations were not sufficiently converged with only a
few ligand-binding events captured, the binding and dissociation
pathways of CFF characterized using the GaMD energetically
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FIGURE 4 | Representative “inactive” (green) and “intermediate” (orange) low-energy conformations of the A2AAR compared with the 5MZP PDB structure (blue).
(A) The ionic lock distance between charge centers of residues R3.50 and E6.30 in the 5MZP, inactive, and intermediate conformations are 6.0, 4.4, and 4.3 Å,
respectively. (B) The distance between atom CZ in residue R3.50 and hydroxyl oxygen atom of Y7.53 in the 5MZP, inactive, and intermediate conformations are
13.2, 12.4, and 6.0 Å, respectively.

reweighted structural clusters of the ligand (Supplementary
Figure 4) were similar to those as shown in Figure 2.

Low-Energy Binding Poses of CFF in the
A2AAR
Next, we combined GaMD simulations of CFF binding to the
A2AAR and clustered the simulation snapshots of CFF to obtain
representative structural clusters that corresponded to the low-
energy states in the 2D PMF free energy profiles (Figure 2A). In
the B1-bound state, CFF bound to the orthosteric pocket of the
A2AAR and interacted with residues F45.52ECL2, V3.32, M5.38,
N5.42, W6.48, L6.51, H6.52, and N6.55. In particular, a hydrogen
bond was formed between the ND2 atom of receptor residue
N6.55 and O13 atom of CFF at a distance of 2.7 Å (Figure 3D
and Supplementary Figure 1D). In the B2-bound state, CFF
bound to the orthosteric pocket of the A2AAR in the presence
of another CFF molecule in the pocket. The orthosteric pocket
was located within the receptor TM bundle between ECL2, TM3,
TM5, and TM6. CFF interacted with residues F45.52ECL2, V3.32,
L3.33, M5.38, N5.42, and N6.55. In particular, a hydrogen bond
was formed between the ND2 atom of receptor residue N6.55 and
O13 atom of CFF at a distance of 2.9 Å (Figure 3E).

In the intermediate (I) conformational state (Figure 3F), CFF
was located at the extracellular mouth of the A2AAR between
ECL2 and TM1, interacting with residues P1.28, I1.29, S2.65,
K153ECL2, S156ECL2, Q157ECL2, and L45.51ECL2. In particular,
a hydrogen bond was formed between the N atom of receptor
residue I1.29 and N9 atom of CFF and another hydrogen bond
was formed between the NE2 atom of receptor residue Q157ECL2

and O13 atom of CFF (Figure 3F).

Conformational Changes of the A2AAR
During CFF Binding
Two different low-energy conformational states were identified
from GaMD simulations of the A2AAR during CFF binding,

including the inactive and intermediate states (Figure 2B).
The hierarchical agglomerative clustering algorithm was used
to cluster snapshots of the A2AAR conformations with all the
GaMD production simulations combined. The combined GaMD
simulation trajectories were clustered to identify representative
low-energy conformational states of the receptor (Figure 4). The
ionic lock distance between residues R3.50 and E6.30 changed
from 6 Å in the 5MZP PDB structure to 4.3–4.4 Å in the inactive
and intermediate conformations (Figure 4A). The distance
between the atom CZ of residue R3.50 and the OH atom of
residue Y7.53 decreased from 12.4 Å in the inactive conformation
(similar to 13.2 Å in the 5MZP PDB structure) to 6.0 Å in the
intermediate cluster (Figure 4B). Therefore, the NPxxY motif, a
highly conserved motif in the intracellular end of TM7 of class A
GPCRs, moved inward during the conformational transition of
the A2AAR from the inactive to the intermediate state.

DISCUSSION

In this study, all-atom GaMD simulations have been applied
to elucidate the pathways and mechanism of CFF binding to
the human A2AAR. The GaMD simulations have successfully
captured both spontaneous binding and dissociation of CFF
in the receptor. With GaMD-enhanced sampling, we were
able to simulate the complete binding of the CFF antagonist
with the final orthosteric pocket deeply buried in the receptor
TM domain. However, it is important to note that only
two ligand-binding events and one dissociation event were
observed in the presented GaMD simulations (Figure 1).
Quantitative characterization of the ligand-binding free energy
and kinetics would require sampling of significantly more
ligand-binding events, which will be investigated in the future
using a very recently developed, potentially more efficient
Ligand GaMD (LiGaMD) method (Miao et al., 2020) and other
applicable algorithms. Nevertheless, energetic reweighting of
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the GaMD simulations enabled us to identify relatively low-
energy conformational states of CFF binding to the A2AAR.
Our results were consistent with the experimental data from
3RFM PDB (Doré et al., 2011) and 5MZP PDB (Cheng et al.,
2017). In the 3RFM PDB structure, the residues interacting
with CFF include F45.52ECL2, M5.38, L6.51, N6.55, M7.35, and
I7.39. In the 5MZP PDB structure, the residues interacting
with CFF include I2.64, V3.32, F45.52ECL2, M5.38, L6.51, N6.55,
and I7.39. The B1- and B2-bound conformations identified
from the GaMD free energy profiles were comparable with
the experimental 3RFM and 5MZP PDB structures in terms
of the ligand interacting residues in the orthosteric pocket
and distances between residues R3.50 and E6.30 and residues
R3.50 and Y7.53.

We identified a dominant pathway of CFF binding to the
A2AAR from the GaMD simulations. CFF approached the A2AAR
through interactions with ECL2, extracellular mouth between
ECL2, ECL3, and TM7, and finally the receptor orthosteric
site located deeply within the receptor TM bundle (Figure 3A
and Supplementary Figure 1). A slightly different binding
pathway was observed when two CFF molecules bound to the
orthosteric pocket of the A2AAR. In this pathway, the second
CFF explored a region between ECL3 and TM7 during the
binding process (Figure 3B). The dissociation pathway of CFF
observed from the GaMD simulation was mostly the reverse of
the dominant binding pathway (Figure 2 and Supplementary
Figure 4). CFF moved from the receptor orthosteric site to the
extracellular mouth between ECL2 and TM7 and then ECL2
and TM1 before dissociating to the bulk solvent (Figure 3C
and Supplementary Figure 2). Two low-energy conformational
states were identified from the GaMD simulations of the A2AAR
during CFF binding, i.e., the inactive and intermediate states.
In the inactive state, the distances between residues R3.50 and
E6.30 and R3.50 and Y7.53 were 4.4 and 12.4 Å, respectively.
In this context, the average distances between residues R3.50
and E6.30 and R3.50 and Y7.53 in 46 experimental structures
of the inactive A2AAR (Supplementary Table 2; Jaakola et al.,
2008; Doré et al., 2011; Congreve et al., 2012; Hino et al.,
2012; Liu et al., 2012; Batyuk et al., 2016; Segala et al., 2016;
Cheng et al., 2017; Martin-Garcia et al., 2017, 2019; Melnikov
et al., 2017; Sun et al., 2017; Weinert et al., 2017; Broecker
et al., 2018; Eddy et al., 2018; Rucktooa et al., 2018; Ishchenko
et al., 2019; Shimazu et al., 2019; Borodovsky et al., 2020; Ihara
et al., 2020; Jespers et al., 2020; Lee et al., 2020; Nass et al.,
2020) were calculated to be 6.5 ± 1.0 Å and 12.7 ± 0.4 Å,
respectively. Therefore, the highly conserved residues R3.50 and
E6.30 ionic lock became fully closed in the GaMD simulations
of the inactive A2AAR during binding of the CFF antagonist.
In comparison, the average distances between residues R3.50
and E6.30 and residues R3.50 and Y7.53 in the nine available
structures of active A2AAR (Supplementary Table 2; Lebon et al.,
2011, 2015; Xu et al., 2011; Carpenter et al., 2016; Garcia-Nafria
et al., 2018; White et al., 2018) were calculated as 11.1 ± 0.4 Å
and 4.4 ± 0.2 Å, respectively. No intermediate structure is
currently available for the A2AAR (Pándy-Szekeres et al., 2017).
In the GaMD-predicted intermediate conformational state of
the A2AAR, the ionic lock distance between residues R3.50

and E6.30 was 4.3 Å, similar to that in the inactive receptor.
The distance between residues R3.50 and Y7.53, however,
decreased to 6.0 Å, comparable with the average of active
A2AAR structures. Therefore, while the ionic lock remained
closed, the conserved NPxxY motif in the intracellular end of
TM7 was able to move inward in the intermediate state of the
A2AAR, being consistent with the pathway and mechanism of
GPCR activation revealed from earlier studies (Dror et al., 2011;
Miao et al., 2013).

The binding and dissociation of CFF antagonist in our
GaMD simulations of the A2AAR involved receptor residues
P1.28, I1.29, S2.65, L45.51ECL2, F45.52ECL2, K153ECL2, S156ECL2,
Q157ECL2, E169ECL2, A259ECL3, S263ECL3, H264ECL3, N6.55,
T6.58, F6.59, P7.31, L7.32, L7.34, M7.35, and Y7.36 (Figure 3
and Supplementary Figures 1, 2). The orthosteric pocket was
located within the receptor TM bundle and made of receptor
residues F45.52ECL2, V3.32, L3.33, M5.38, N5.42, W6.48, L6.51,
H6.52, and N6.55. Notably, CFF formed a hydrogen bond
with receptor residue N6.55. The four most populated CFF
binding poses in the A2AAR found by Cao et al. consisted
of residues A2.61, I2.64, S2.65, V3.32, L3.33, T3.36, F45.52,
E169ECL2, M5.38, N5.42, L6.51, H6.52, N6.55, H264ECL3, M7.35,
I7.39, and H7.43. Furthermore, CFF formed a hydrogen bond
with receptor residue N6.55 and water-bridge contact with
residue H7.43 (Cao et al., 2015). The ligand dissociation
pathway in the A2AAR discovered by Guo et al. involved
16 receptor residues: G1TM1, I2.63, S2.64, T2.65, Q148ECL2,
G152ECL2, K153ECL2, S156ECL2, Q157ECL2, E169ECL2, T6.58,
H7.29, A7.30, P7.31, L7.32, and Y7.36 (Guo et al., 2016).
The residues in the orthosteric binding site of the A2AAR
revealed by Caliman et al. (2018) were I2.64, V3.32, L3.33,
T3.36, Q3.37, I3.40, L45.51ECL2, F45.52ECL2, E169ECL2, M5.38,
N5.42, W6.48, L6.51, H6.52, N6.55, T6.58, H264ECL3, L7.32,
M7.35, Y7.36, I7.39, S7.42, and H7.43. Overall, our results
were in good agreement with previous studies of the A2AAR,
in terms of the receptor residues involved in the ligand
dissociation and binding.

An intermediate ligand-binding site was also revealed from
the GaMD simulations of CFF binding and dissociation in the
A2AAR. It was located at the extracellular mouth between ECL2
and TM1 of the A2AAR. This region has been identified as
an allosteric site of many class A GPCRs (Dror et al., 2013;
Kruse et al., 2013; Miao and McCammon, 2016; Miao et al.,
2018; Pawnikar and Miao, 2020). Taken together, our simulations
suggest that CFF binds to the orthosteric pocket of A2AAR via an
intermediate site located at the receptor extracellular mouth. The
ECL2 with high sequence divergence could serve as an attractive
target site for designing allosteric modulators as selective drugs of
the A2AAR and other ARs (Miao et al., 2018).
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Fibril Surface-Dependent Amyloid
Precursors Revealed by
Coarse-Grained Molecular Dynamics
Simulation
Yuan-Wei Ma, Tong-You Lin and Min-Yeh Tsai*
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Amyloid peptides are known to self-assemble into larger aggregates that are linked to the
pathogenesis of many neurodegenerative disorders. In contrast to primary nucleation,
recent experimental and theoretical studies have shown that many toxic oligomeric
species are generated through secondary processes on a pre-existing fibrillar surface.
Nucleation, for example, can also occur along the surface of a pre-existing
fibril—secondary nucleation—as opposed to the primary one. However, explicit
pathways are still not clear. In this study, we use molecular dynamics simulation to
explore the free energy landscape of a free Abeta monomer binding to an existing fibrillar
surface. We specifically look into several potential Abeta structural precursors that might
precede some secondary events, including elongation and secondary nucleation. We find
that the overall process of surface-dependent events can be described at least by the
following three stages: 1. Free diffusion 2. Downhill guiding 3. Dock and lock. And we show
that the outcome of adding a new monomer onto a pre-existing fibril is pathway-
dependent, which leads to different secondary processes. To understand structural
details, we have identified several monomeric amyloid precursors over the fibrillar
surfaces and characterize their heterogeneity using a probability contact map analysis.
Using the frustration analysis (a bioinformatics tool), we show that surface heterogeneity
correlates with the energy frustration of specific local residues that form binding sites on the
fibrillar structure. We further investigate the helical twisting of protofilaments of different
sizes and observe a length dependence on the filament twisting. This work presents a
comprehensive survey over the properties of fibril growth using a combination of several
openMM-based platforms, including the GPU-enabled openAWSEM package for coarse-
grained modeling, MDTraj for trajectory analysis, and pyEMMA for free energy calculation.
This combined approachmakes long-timescale simulation for aggregation systems as well
as all-in-one analysis feasible. We show that this protocol allows us to explore fibril stability,
surface binding affinity/heterogeneity, as well as fibrillar twisting. All these properties are
important for understanding the molecular mechanism of surface-catalyzed secondary
processes of fibril growth.

Keywords: abeta, MD simulation, coarse-grained model, fibril surface, secondary nucleation, fibrillar twisting,
binding sites, elongation (growth)
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1 INTRODUCTION

The formation of oligomeric species of Abeta protein and
subsequent amyloid deposition are implicated in causing the
pathogenesis of Alzhaimer’s Disease (AD) (Chen and Mobley,
2019). As the hallmark of AD, amyloid fibrils display a range of
structural variations called fibril polymorphism (Tycko, 2015;
Riek and Eisenberg, 2016), which challenges the developments for
molecular imaging and therapeutic strategies (Fändrich et al.,
2018). The fibrillar structure of amyloid-beta peptides (Abeta40
and Abeta42), for example, are quite different (Colvin et al., 2016;
Wälti et al., 2016; Gremer et al., 2017), but they share similar
protofilament structures and both display primarily left-handed
twisted filament architecture in vitro (Schmidt et al., 2009; Zhang
et al., 2009). Brain-derived amyloid fibrils, however, are right-
handed (Kollmer et al., 2019). These studies demonstrate how
amyloid proteins show their structural plasticity under different
contexts, and thus are important in determining the pathogenesis
of neurodegenerative disorders. Despite many fibrillar
morphologies being available, the molecular mechanism
underlying the aggregation process of amyloid proteins is still
not fully understood. In the process of fibril growth, cross-seeding
experiments have revealed some correlation of fibril growth over
fibrillar surfaces with selected amyloid peptides. Abeta40 and
Abeta42 can cross-seed their constituent fibrils, however, the
growth rate displays a different profile for different original fibril
seeds (Thacker et al., 2020). Different amyloid peptides can also
mutually seed each other. These results suggest a common
structural feature of the fibrillar surface that exhibit
physicochemical similarity at the molecular level, though
identical amyloid backbone virtually is not sufficient for cross-
seeding (Daskalov et al., 2021).

Amyloids form by a sequence of chemical reactions. Protein
monomers first need to oligomerize into critical nuclei through
primary nucleation (Tsai, 2019). These nuclei then may
transform into active oligomer species for subsequent
secondary processes to occur, for example, elongation,
fragmentation, and secondary nucleation. These processes all
together make aggregation itself much more complex than
descriptions using simple mass-action kinetics (Xue et al.,
2008; Tsai et al., 2015). Recent advances in exploring the
aggregation free energy landscapes of Abeta peptides have
shown the complex paths of interconversion between different
but structurally similar states of oligomers and have
demonstrated the structural diversity for conformational
conversion between pre-fibrillar to fibrillar oligomers (Zheng
et al., 2016; Zheng et al., 2017). The detailed molecular
interactions such as salt bridges, intercalation of water
molecules, and hydrophobic clusters formed in different fibril
polymorphic forms were found to significantly affect the capacity
for cross-seeding as well as secondary nucleation (e.g., speeding
up the aggregation of Abeta40 with Abeta42 fibril) (Xiao et al.,
2015; Colvin et al., 2016). These results suggest the role of early
stages of aggregation in modulating the chemical properties of
the fibrillar surfaces—surface heterogeneity—that provide
different specific or nonspecific chemical screening capacity.
Surface heterogeneity, perhaps, plays a pivotal role in the later

stages of aggregation that involves a variety of secondary
processes.

To understand the molecular mechanism underlying surface-
dependent aggregation events, in this work, we focus on the
formation of monomeric precursors on the existing fibrillar
surfaces as it can potentially initiate subsequent secondary
processes. There are several possibilities when a protein
monomer interacts with an existing fibrillar surface. During
the interaction process, the monomer can either bind and stay
at a particular surface patch, forming a new surface nucleation
site or the monomer ends up localizing at both ends and elongates
the fibril as a result. The former process, secondary nucleation,
describes protein monomers being nucleated on the fibrillar
surface through a two-dimensional search. This newly formed
critical nucleus then plays a role of seeding new fibrils. The latter
describes the elongation of the existing fibrillar structure which
may take place at both fibril ends along the fibril axis. Although
“elongation” and “secondary nucleation” are two seemingly
distinct aggregation processes, it is now a popular view that
they should be investigated with caution at the molecular
level, as these two processes can be mutually correlated from a
broader view of aggregation energy landscapes Cohen et al.
(2018); Scheidt et al. (2019).

Elongation is the major process of aggregation when growing a
fibril. There exist considerable experimental studies on the
elongation process, in particular in measurements of the rate
of fibril elongation (Xu et al., 2019). The experimental work offers
an opportunity for theorists to construct models to understand
molecular mechanisms of fibril growth. Some have proposed
models concerning structural rearrangements and intermediates,
while others address the molecular species from an energy
perspective. Wei et al. first carried out atomistic molecular
dynamics simulation to study thermodynamics and kinetics of
fibril elongation of Abeta17–42. They used a kinetic network
model to reveal detailed pathways for fibril elongation (Han and
Schulten, 2014). Although elongation primarily concerns
monomer addition at fibril ends, kinetic analyses have
suggested multiple steps are involved, from solution free
monomers all the way to final elongated fibril. Crespo et al.
showed that elongation includes lateral migration of attached
monomers towards the fibril ends and this process is not rate-
limiting (Crespo et al., 2012). Since there exist several polymorphs
of fibrils, some are disease-relevant, dissociation of Abeta
monomers from such fibrillar structures have also been
investigated in silico. For example, S-shaped fibrillar structure
showed the stop-and-go mechanism at fibril ends due to the
structural flexibility of the N-terminal monomer (Ilie and
Caflisch, 2018). Simulation study over a three-fold protofibril
from human tissue, however, supported the two-step dock-and-
lock mechanism, where Abeta monomer interacts with fibril
surface by direct docking onto it, and then, the docked
peptide undergoes conformational arrangements on the
surface in order to fit the fibril template over the ends for
elongation (Sasmal et al., 2016). According to their result,
docking is faster than the locking process by about an order
or so, depending on the type of monomer ensemble. In contrast to
the stop-and-go kinetics, recent experimental work showed
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relatively steady Abeta40 fibril growth and dissolution rates (Xu
et al., 2019). Structural and dynamics difference between the two
ends (even/odd) of amyloid fibril adds more kinetic complexity
for the understanding of the mechanism of fibril growth. The
even end grows faster as has been shown in experiment (Konno
et al., 2020), independently verified in another simulation work
(Okumura and Itoh, 2016). All these results raise an issue about
the pathway-dependent nature for elongation, in particular, due
to their different mechanistic details. For example, there might be
multiple pathways of elongation channels that can potentially
contribute to fibril growth. In this regard, the most probable path
has been discussed (Rodriguez et al., 2018). From a kinetic
perspective, indeed, multiple pathways would lead to a
variation in predicting kinetic properties. Regarding the
binding thermodynamics, several approaches are available in
the calculation of the binding affinities, for example,
alchemical free energy perturbation method or potential-of-
mean force (PMF) approach (Deng and Roux, 2009).
Depending on the simulation type, different approaches in
general yield at least qualitative agreement across different all-
atom and coarse-grained force fields.

In contrast to fibril elongation, secondary nucleation describes
a surface-catalyzed nucleation process where new fibril seeds
emerge. Recently, an experimental study that combines
theoretical analysis showed that secondary nucleation and
elongation occur at different sites, suggesting a potential
dynamic interplay for a protein monomer searching over
fibrillar surfaces (Scheidt et al., 2019). In the propagation of
amyloid fibrils, researchers have shown the role of hydrophobic
patches in growing fibrils via secondary nucleation (Thacker
et al., 2020). All these studies have clearly pointed out the
importance of surface heterogeneity for different secondary
processes.

There are many existing studies that focus on amyloid
aggregation, either from a nucleated-polymerization
perspective or a templated fibril growth perspective. However,
little is known about how fibril polymorphic surfaces affect
secondary processes. Specifically, how existing fibril seeds
catalyze the process of fibril growth by recruiting new
monomers onto the fibrillar surfaces. As we have mentioned
above, the mechanistic details of aggregation, in particular the
kinetically relevant events, are significantly limited by the
experimental means and physical/chemical parameters we used
to probe them. Theoretical models and simulation techniques, in
this regard, are very useful for probing complex processes and
therefore allow us to explore parameter space that is difficult to
achieve via experimental methods alone.

Fully atomistic modeling has shown great promise in tackling
many important problems in protein biophysics. This technique
is particularly useful for exploring full dynamics of Abeta
monomers to necessary atomistic details, and is an ideal
approach for exploring conformational ensembles for various
calibration purposes (Grazioli et al., 2019). However, modern
pressing biological problems involve molecular assemblies having
thousands of amino acid residues and functional dynamic
motions taking place in timescales more than milliseconds,
seconds and beyond. As a result, exploring the biologically

relevant timescales using fully atomistic simulation makes such
realization a daunting task. Coarse-graining therefore becomes a
conceptual prerequisite for addressing the major problems of
modern biology. Another important motivation for developing
coarse-grained modeling is that many large-scale protein motions
concern emergent properties caused by collective organizing
principles (Laughlin et al., 2000), in which details of intra/
intermolecular forces are averaged out. Folding, binding, and
functional transition in proteins are examples of emergent
phenomena that can be fully understood at an appropriately
coarser resolution. In this study, we use one such coarse-grained
model, Associative-memory, Water-mediated, Structure and
Energy Model (AWSEM) (Davtyan et al., 2012; Tsai et al.,
2016b), to study the process of Abeta peptides interacting with
the surfaces of a protofilament. AWSEM is a transferable, coarse-
grained, and non-additive protein force field that incorporates
physically motivated energy terms and knowledge-based
information using the principle of minimal frustration
(Ferreiro et al., 2018). AWSEM has been proven useful for
exploring many of the important biological processes, such as
folding, binding (Tsai et al., 2016b; Zheng et al., 2012),
aggregation (Zheng et al., 2016, 2017; Chen et al., 2016),
protein-DNA interaction (Tsai et al., 2016a; Tsai et al., 2019;
Potoyan et al., 2016a; Potoyan et al., 2016b), and chromosome
remodeling (Zhang et al., 2016), and has continued to be a
suitable coarse-grained model for studying the aggregation
system of interest here. Here, we employ a GPU-enabled
AWSEM code, openAWSEM (Lu et al., 2020). This new
version includes a recent advance in GPU acceleration built on
the openMM platform (Eastman et al., 2017).

In this work, we explore the experimentally determined
fibrillar structure of Abeta11-42 (ssNMR) using openAWSEM.
We first study the stability of the fibrillar surface structure using
the AWSEM coarse-grained force field and confirm the structural
integrity of the S-shaped polymorphic fibrillar structure. We then
investigate fibrillar surface heterogeneity by exploring the binding
free energy landscapes of a free Abeta monomer to a short fibrillar
surface. For a broader surface sampling purpose, we choose to use
the biasing coordinate that allows efficient sampling over the
surface with a simple distance restraint. This biasing strategy is
somewhat different from the conventional approach, where the
fibril ends usually are chosen to bias with (Han and Schulten,
2014) or some positional restraints at the filament tips are applied
in order to prevent twisting motions (Schwierz et al., 2016). These
approaches are important for obtaining structurally stable
binding sites for elongation. We nevertheless explore the PMF
along the coordinates that allow more sampling over amyloid
structural precursors that can lead to different aggregation
pathways. To ensure this, different initial spatial orientations
are used. The biasing coordinates are determined by a C-alpha in
the free monomer and a C-alpha of a fibrillar monomer in the
fibril (chain in the middle of the fibril, not the fibril ends). We aim
to explore the configurations of monomeric amyloid precursors
that precede elongation and other secondary processes. Our
overall hypothesis is that secondary processes, such as
elongation and secondary nucleation, share similar monomeric
amyloid precursors that drive different aggregation pathways. We
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have identified several structural precursors and potential surface
binding sites accordingly. To understand the intrinsic energetics
of the local residues forming binding pockets, we have carried out
energy frustration analysis for a series of fibril polymorphic
structures and have predicted the preferred surface binding
sites. The simulation protocol used allows us to characterize
some key steps in the process of aggregation and allows
efficient sampling for binding sites that are specific to
secondary processes. Finally, we model the fibrillar twist
polymorphism of a protofilament with different filament sizes.
We find a filament size dependent effect on filament twisting,
which potentially can modulate the surface heterogeneity of a
fibril.

Understanding the molecular mechanism of elongation and
secondary nucleation can help predict how mutations and
external factors affect fibril growth and how antibody drugs
intervene in the processes of elongation and secondary
nucleation. It allows us to predict the effect of drugging in
promotion or inhibition of fibril growth. Our results support
that secondary nucleation and elongation occur at different
binding sites, confirming their independent inhibitory effects
by molecular chaperones follow a different pathway (Scheidt
et al., 2019). We anticipate that our study will be useful for
developing rational design principles for new therapeutic drugs.

2 METHODS

2.1 Models and Simulation
2.1.1 Modeling of Fibrillar Structure
Human amyloid-beta (Abeta) peptide (pdbID 2MXU [Xiao et al.,
2015)] was used to model the aggregation system in the present
study. The solid-state NMR structure features a S-shaped, three-
layer fibrillar architecture with 12 Abeta peptides (11–42, length �
32), in-register and parallel aligned, labeled as chain A, B, . . . , L,
respectively. In simulation, we prepared one such 12-monomer
fibril structure and one additional free monomer having its initial
structure as it is in the fibril structure. For the central fibril, “single
fragment memory” was used in order to strongly bias the
aggregation energy landscape towards the native fibril
structure. For the additional free monomer, we adopted two
different monomer structural ensembles: 1. Relaxed ensemble (no
biasing fragment memory is used) 2. Fibril-like ensemble (single
fragment memory as is in the fibril structure). The descriptions
about the “fragment memory” library can be found elsewhere
(Davtyan et al., 2012; Tsai et al., 2016b). The free monomer is
initially positioned in six different orientations with respect to the
central fibril: up, down, left, right, front, and back. These six
independent simulations ensure a better sampling quality while
leveraging the availability of our computation resources. The
system is built and visualized using VMD (Humphrey et al.,
1996).

2.1.2 Molecular Dynamics Simulation Using
OpenAWSEM
In this study, we use openAWSEM, a python version of the
AWSEM protein coarse-grained force field developed by

Wolynes and his coworkers Lu et al. (2020). This new
simulation platform is built on openMM (Eastman et al.,
2017) for a fast (GPU-enabled), flexible, easy-to-use purpose.
OpenAWSEM inherits from the lineage of the Associative-
memory, Water-mediated, Structure and Energy Model
(AWSEM), for molecular dynamics (MD) simulation (Davtyan
et al., 2012). In AWSEM, each amino acid residue is represented
by three atoms: Cα, Cβ, and O (glycine is an exception). The
physicochemical properties of different types of side chains are
reflected on Cβ atoms. The AWSEM-MD simulation protocol has
been used to address a variety of biological questions, such as
protein structure prediction (Davtyan et al., 2012; Tsai et al.,
2016b; Sirovetz et al., 2017; Chen et al., 2018a), protein binding
prediction (Tsai et al., 2016b), protein aggregation (Zheng et al.,
2016, 2017), as well as complex protein-DNA assemblies and
remodeling (Tsai et al., 2016a, 2019; Potoyan et al., 2016b; Zhang
et al., 2016). Interested readers are encouraged to test the online
web-server version, AWSEM-Suite for structure prediction (Jin
et al., 2020). Because of openMM’s extensibility in python
scripting, openAWSEM benefits from such flexibility for
interfacing with other post-processed analysis and visualization
toolkits, such as MDTraj, pyEMMA and NGLviewer.

For the fibril stability test, three independent simulations were
carried out, with each simulation trajectory running for
10 million simulation time steps (�10,000 frames).

2.1.3 Importance Sampling and WHAM
Free energy calculation, more precisely potential of mean force
(PMF), is carried out using the pyEMMA python package,
developed by Noe and his coworkers (Scherer et al., 2015). In
the calculation of PMFs, one needs to choose a specific progress
coordinate of interest to sample along. Because high energy
configuration space is not easily accessed through thermal
activation, a biasing force is required in order to “bias” the
sampling route towards the configurational space of interest-a
procedure termed “importance sampling”. In practical use, all the
sampling tasks were carried out by running molecular dynamics
simulation on the openAWSEM platform (Lu et al., 2020). To
sample along the route of a free monomer diffusing towards a
designated position on the surface of a fibril, a large number of
sampling windows were prepared. Different sampling windows
were deployed by applying a series of harmonic biasing restraints
between two atoms (one from the free monomer and the other
from the fibril); they are centered at a distance in a range of
10–100 Å (with an interval of 1 Å). A total of 91 independent
simulations were generated as a result. The biasing coordinate is
defined as the distance between the C-beta atom of residue N27 of
chain F in the fibril and the C-beta atom of residue N27 of the free
monomer. The biasing force constant k is set to be 2.4 kcal/mol
(10 kJ/mol) for all the 91 simulations (sampling windows) using
the harmonic biasing form k(r − r0)2, with r0 � 10, 11, 12, . . .
100 Å. Each simulation is run for 5 million time steps; 5,000
frames were outputted for analysis purposes (output frequency is
every 1,000 time steps). After collecting data from the simulation
trajectories (from a total of 91 sampling windows), the data were
reweighted using the WHAM technique (Kumar et al., 1992)
implemented in pyEMMA package (thermo.wham) (Scherer
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et al., 2015), discarding the first 500 thousands time steps (500
frames) for equilibration. The distribution of all the sampling
windows is shown in the Supporting Information
(Supplementary Figures S1, S5).

2.2 Analyses
2.2.1. Thermodynamic Binding Affinity
In the calculation of binding affinity, we use the formula that is
based on one-dimensional radial potential of mean force (PMF)
given in the literature (Deng and Roux, 2009). One simple
equation is shown below.

Kd � 4π∫
site
r2e−β(w(r)−w(r

*))dr (1)

where w refers to the PMF as a function of the distance r; r* refers
to a reference position set to be far away in the bulk (w(r*) � 0 at
r* � 80 Å); β � 1/kBT. In practical use, to enhance the fluctuations
of the orientation of the Abeta monomer (ligand) with respect to
the central fibril, we adopted six independent simulations with
each of them representing a different initial orientation (front,
back, up, down, even, odd). See the subplot in Figure 1A. The
thermodynamic binding affinity thus can be calculated

ΔG° � −RT ln(c0Kb), (2)

where c0 � 1M refers to the standard state (1 mol/L � (1,660 Å3)−1).
SeeTable.1 for the calculated value as well as the experimental values
obtained from literature.

FIGURE 1 | The overall structure of the experimentally determined fibrillar structure and the simulated fibrillar structure are compared. (A) Left: The fibrillar structure
of Abeta42 is determined by solid-state NMR [PDB ID: 2MXU (Xiao et al., 2015)]. The actual sequence length of the individual peptides in the structure is 32 (spanning
from 11 to 42). The “S” shaped triple parallel-beta-sheet architecture can be seen from the side view below. Right: The simulated fibrillar structure. The experimental
structure is structurally relaxed viamolecular dynamics simulation using openAWSEM. Two different orientations of the relaxed structure are shown, with an arrow
showing the direction of the fibril axis. The “S” shaped triple parallel-beta-sheet remains in the simulation. Different colors represent different local structural features of the
Abeta42 peptide, defined in the original PDB file, illustrated using the sequence below. Blue strand (V12-V18), Cyan loops (E11,F19-D23,G33-M35,A42), Orange strand
(V24-I32) and Red strand (V36-I41). (B) The RMSD is calculated as a function of simulation time step (only one of the three independent simulation trajectories is shown).
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2.2.2 Probability Contact Maps
The detailed monomer-fibril interactions are quantified using the
Contact Map Explorer python module, which is based on tools
implemented in MDTraj (McGibbon et al., 2015). The formation
of a contact is defined by setting a cutoff distance between any of
two C-alpha atoms in the residues. A contact forms if the distance
is smaller/equal to the cutoff value; the cutoff is set to be 6.5 Å in
the present study. The step-by-step tutorial (Jupyter notebook) is
provided in the Github.

2.2.3 Nematic/Polar Order Parameter
To characterize the structural difference of fibril polymorphism,
we have used the nematic order parameter (P2 value) as the
structural orderness of fibrillar surface structure. Originally
designed for describing the structural order of liquid crystals,
nematic order parameter was first introduced to study protein
aggregation by Caflisch and co-workers (Cecchini et al., 2004).
This order parameter was further applied to describe elongation
of Amyloid-beta fibrils (Schwierz et al., 2017) and recently being
compared with neural network learned order parameters Charest
et al. (2020).

2.2.4 Probing Fibrillar Twisting
The twist angle is calculated using the protocol described in the
literature (Ilie and Caflisch, 2018). The angle, θi, is defined by the
two vectors: one represents the vector of the reference chain i and
the other denotes the vector of the neighboring chain i + 1,
respectively (see Figure 6A). Similarly, θi+1, θi+2 and so forth
can also be calculated by propagating the current chain pair to the
next neighboring chain pairs. The vector is defined by the two
C-alpha atoms of Q15 and F19 of individual chains as indicated in
the reference (Ilie and Caflisch, 2018). To avoid the effect of
simulated fibril structural fluctuation on angle calculation, we
defined a fibril axis vector and a normal plane perpendicular to
this vector for angle correction purpose. We report two different
angular properties in order to quantify the twist morphology of a
fibril. 1. The averaged θ (θ ̄, the twist angle is averaged over all chain
pairs of the same fibrillar structure) 2. The accumulated total twist
angle, θtot (the twist angles from all of the chain pairs are added up).
θtot represents the extent of global twistingmorphology of the fibril.

In simulating fibrillar helical twisting, five protofilamentmodels
of different sizes (12, 24, 36, 48, 62 chains) were prepared. Long
protofilament models (24–62 chains) were made using the 12-
chain model (pdbID 2MXU). To ensure the strands at the joint
boundary are properly connected between the 12-chain model
fragments, we also, if necessary, constrain the resulting elongated

protofilament by applying a mild harmonic biasing force along the
fibril long axis. The harmonic biasing form is 1

2k′(r − r0)2.The
magnitude of the force constant/center distance pairs (k′, r0) were
set to be (6 kcal/mol, 10 Å). The center of mass of the first two
chains and the center of mass of the last two chains of the model
fragment were the constrained objects to which the biasing force is
applied. As a result, we carried out 1 million simulation time steps
for all the five protofilament models for a pre-equilibration/
relaxation purpose. The relaxed structure of each protofilament
model along with the structure’s θ angle distribution can be found
in the Supporting Information (Supplementary Figure S10). After
that, 10million simulation time steps were performed and the data
(each with 10,000 frames) were collected for fibrillar twisting
analysis.

2.2.5 Frustration Profiles for Polymorphic Fibrillar
Surfaces
According to the energy landscape theory of protein folding, the
evolutionarily conserved protein structure is energetically
minimally frustrated while protein functional activities emerge
through frustration (Ferreiro et al., 2018). The corresponding
energy landscape for robust folding is manifested as a funneled
shape. However, a recent study has pointed out functional roles of
energetically frustrating areas in binding protein-DNA partners
(Tsai et al., 2016b,a; Marcovitz and Levy, 2013; Potoyan et al.,
2017), forming assemblies, and ligand binding (Chen et al., 2020).
Energy frustration of proteins involves the statistical energy
survey over a series of decoy states, which can be generated
through pairwise residue substitution, direct mutation, and
position shifting. Different decoy settings correspond with
different physical contexts. The frustration is defined using the
standard scores (z-scores) in statistics. Three different scales are
classified accordingly: Frustrated (<−1), neutral (>−1 and <0.78),
and minimally frustrated (>0.78). Interested readers should refer
to the reference provided for details (Parra et al., 2016).

The frustration calculation for a series of amyloid fibrillar
surfaces was conducted using the frustratometer server Parra
et al. (2016), http://frustratometer.qb.fcen.uba.ar/. This
frustration computation protocol utilized the same AWSEM-
MD energy function (sequence separation is set to be 3) along
with the electrostatics enhanced feature (optional) to compute the
frustration profile. The frustration profiles for a variety of
polymorphic fibrillar structures are shown in Figure 5. The
PDBIDs used in the analysis include 5KK3 5OQV 2MXU
2M4J 2LMQ 2LMN. The results are summarized in Table 2.
The protein residues in purple indicate they are conserved

TABLE 1 | Thermodynamic binding affinity of Abeta binding to a fibril.

ΔGb (kcal/mol) Topology Length Solubility (μM) Condition Type

−8.7 Twofold 1–40 0.44 <10 μM (27°C) Exp. Xu et al. (2019)
−8.7 Twofold 1–40 0.3–0.4 <75 μM (24°C) Exp. Qiang et al. (2013)
−9 - 1–40 0.8–1.0 <30 μM (37°C) Exp. O’Nuallain et al. (2005)
−12 (even) Twofold 17–42 - 37°C Sim. Han and Schulten, (2014)
−11.3 (odd)
−15.6 Twofold 9–40 - 37°C Sim. Schwierz et al. (2017)
−20.7 Single 11–42 - 27°C This work
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residues and therefore energetically minimally frustrated, while
the residues in red represent highly frustrated residues. This
means they may have functional significance in interacting
with its partner, such as protein, DNA/RNA, or even membranes.

3 RESULTS AND DISCUSSION

3.1 The Same “S” Shaped, Triple
Parallel-Beta-Sheet Architecture Remains
in the Simulation
Starting with the experimentally determined fibrillar structure,
we examine the stability of the fibrillar structure in the simulation
using the AWSEM force field. We find that the overall fibrillar
structure along with its surface architecture is well maintained in
the simulation. Figure 1A shows the structural refinement of
Abeta42 fibrillar structure. The NMR structure exhibits a
S-shaped triple parallel-beta-sheet architecture. This fibrillar
architecture shows a common cross-beta structure, which
contains specific cooperative residue interactions along the 2D
plane that is perpendicular to the fibril axis. Figure 1B shows one
of the three RMSD trajectories (based on the Root Mean
Square Deviation of Cα atoms with respect to the reference
structure of 2MXU); the rest of two are not shown. The RMSD
value is saturated at an averaged value of 0.90 Å; the average is
taken over the last 1,000 frames. The resulting polymorph has
been described as “ribbon folding” by Wolynes and his
coworkers (Chen et al., 2018b). Because of the cooperative
coupling among different fibril dimensions, a variety of
fibrillar polymorphs become possible when different pairs of
residues are preferred using different force fields. According to
the ribbon-folding landscape schemes, different fibrillar
architectures can be seen at the energy local minimum
along the polymorph energy landscape (Chen et al., 2018b).
In this study, we show that openAWSEM is suitable for
exploring the ideal cross-beta fibrillar architecture. The
cross-beta architecture along with its fibrillar surface later
will be used to study surface heterogeneity and helical
twisting of a protofilament. Here, we show that the
openAWSEM-refined fibrillar structure retains the same
S-shaped, triple parallel-beta-sheet architecture observed
from the NMR structure.

3.2 A Monomer Binding to Fibrillar Surfaces
can be Characterized at Least by Three
Different Stages: Free Diffusion, Downhill
Guiding, and Dock and Lock
We explore the free energy landscape along a distance separation
between a free Abeta monomer and a fibril surface. To enhance
sampling over different spatial orientations, we carry out several
independent simulations with different initial positions of the
monomer with respect to the central fibril. A total of six different
positions were chosen to address the fluctuations of orientation.
The six simulations, having the monomer being put in different
orientations: front, back, up, down, even, and odd, respectively,
were performed (see the subplot in Figure 2A for a schematic
description). Figure 2A presents a representative free energy
profile with the monomer being positioned in the “front”
position. From the free energy profile, several features can be
observed. They are classified into three different stages
accordingly: I. Free diffusion. II. Downhill guiding. III. Dock
and lock. When the Abeta monomer is far from the central fibril
(r > 80 Å), the dynamics of the free monomer is primarily
diffusive and that the free energy profile is nearly flat in the
plateau (Stage I). As the distance between the fibril and the
monomer decreases, the monomer is subject to a long-range
guiding force due to electrostatics, and therefore, the monomer
begins to approach the fibril. This long-range guidance yields an
energetically downhill profile (Stage II). The downhill free energy
continues until its slope significantly changes at r ≈ 35 Å where
the free energy profile displays a curvature. After that, the
monomer begins to have physical contacts with the fibril
(Stage III). In stage III, there are many ways for the monomer
to dock the fibril. The biasing strategy used allows spatially
orientational flexibility for the monomer to dock the fibril. As
a result, the monomer is able to dock the fibrillar surface through
different sites. All the resulting binding configurations lead to a
clear free energy basin at r ≈ 33 Å. Figures 2B–F show example
configurations of several key binding configurations whose
population is significant and that their interaction pattern is
well characterized. The result shows that the monomer can
interact with the fibril’s C-terminal surface (red), N-terminal
surface (blue), cleft interface, even-end, and odd-end. We will
look into their structural features more carefully in the next
section. The rest of the free energy profiles, with the monomer

TABLE 2 | Polymorphic properties of aggregation.

Polymor.1 Polymor.2 Polymor.3 Polymor.4 Polymor.5 Polymor.6 This work

PdbID 5KK3 5OQV 2MXU 2M4J 2LMQ 2LMN 2MXU
# of 4 6 4 6 4 4 2
patches
Frustrated E11 D1,E3 E11 D1,E3 Y10,E11 Y10,E11 E22, D23
residues H14,Q15 E11 K16 E11 K16 K16 N27, K28

K16 Q15,K16 E22,D23 K16 E22,D23 E22,D23
E22,D23 E22,D23 N27,K28 E22,D23 G25,S26 S26,N27
N27,K28 N27,K28 K28 N27,K28 K28

P2 value 0.95 0.93 0.99 0.25 0.26 0.93 0.99
Method ssNMR cryoEM ssNMR ssNMR ssNMR ssNMR Sim
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initially positioned in a different orientation, can be found in the
Supporting Information (Supplementary Figure S2).

Next, we look into the thermodynamic binding affinity,
defined by the potential of mean force (PMF). In determining
the free energy of binding, multiple free energy calculations have
shown variation in rb (rb refers to the distance at which the global
free energy basin is found), suggesting that the Abeta monomer
binds to the fibril surface through a pathway-dependent manner.
This pathway dependence very likely causes some variations in
the binding free energy profiles since the monomer might interact
with the fibril surfaces through different “dock” sites. Here, we do
not assume any specific binding site a priori for the monomer to
bind with. Instead, we aim to sample different binding trajectories
and then combine these trajectories to determine the standard

binding affinity (with c0 � 1 M, see 2.2.1). The value is computed
to be −20.7 ± 2.8 kcal/mol if we use the data of all the six
orientations to ensure the orientational fluctuations. The
binding affinity, determined by the simulation trajectory of
individual single orientation, ranges from −17 to −23 kcal/mol.
This energy variation is due to a different PMF obtained from
individual orientation (see Supporting Information for details).
The experimental values of −8.7 kcal/mol (Xu et al., 2019; Qiang
et al., 2013) and −9 kcal/mol (O’Nuallain et al., 2005). have been
exclusively reported for the process of fibril elongation. Their
corresponding binding affinity was also calculated using
computational methods, which are summarized in Table 1 as
well. Although the reported values for binding affinity are rather
diverse, these values are within the same order of magnitude.

FIGURE 2 | The free energy profile for a single Abeta11-42 monomer binding to the Abeta42 fibrillar surface (12 chains) is shown. (A) The free energy profile features
three different aggregation stages, labeled as I. Free diffusion. II. Downhill guiding. III. Dock and lock. r is defined as the distance between the C-beta of residue 27th in the free
monomer and the C-beta of residue 27th of chain F in the fibril. A representative configuration at each aggregation stage is schematically shown on the right. Simulationswere
preparedwith six different monomer positions with respect to the central pre-existing fibril. Six orientations: front, back, up, down, even, odd are schematically shown in
the diagram. The free energy profile shown refers to the result obtained from the simulation setup with the monomer positioned in the “front” orientation. The free energy
profiles for the rest of the orientations are shown in the Supporting Information (Supplementary Figure S2). (B–F) The representative structures taken from stage III in which
different binding configurations are formed upon the monomer landing and searching over the fibrillar surface. These binding configurations are potentially surface-catalyzed
precursors for fibril growth. (B) C-ter surface precursor (C) N-ter surface precursor (D) Cleft-gate precursor (E) Even-end precursor (F) Odd-end precursor.
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Fibrillar surface heterogeneity, presumably, plays an important
role in the process of monomer binding. As a result, finding a
proper reaction coordinate is a non-trivial task. In other words,
monomer binding may undergo different pathways; the overall
process can be under a kinetic control. For example, when the
monomer binds to a specific surface site, the monomer may
undergo a conformational conversion, searching for the right
conformation or the position for subsequent secondary events.
Indeed, several surface-dependent aggregation mechanisms have
been discussed, such as conformational rearrangement (Xu et al.,
2019), lateral migration (Crespo et al., 2012), or other surface-
based events. These all together may have significant influence on
the thermodynamic interpretation of binding and thus determine
the kinetics of fibril growth. A similar multi-pathway issue using a
complex collective variable for describing the loop interaction in
adenine riboswitch has been discussed in the literature (Di Palma
et al., 2015). It is important to know if the progress coordinate of
interest is sufficient to drive the system through the appropriate
transition states. Here, we recall the importance of the biasing
protocol used for the interpretation of results.

One interesting result is worth noting. Free energy calculation
using a different monomeric structural ensemble (fibril-like) shows
a somewhat similar free energy profile (with the same three stages
as described above) but now with a rather different pattern of
contacts (see next section for further discussion). This result can be
attributed to the structural rigidity of the specific fibril-like
conformation used for the monomer. This finding suggests that
the specificity for binding energy are encoded in the sequence,
irrespective to the monomer conformation adopted.

3.3 Surface Binding Heterogeneity: Several
Binding Sites are Identified Over the Fibrillar
Surfaces
From our simulations, we have identified several Abeta binding
configurations that potentially can be structural precursors for
subsequent surface-dependent processes, e.g., fibril elongation,
secondary nucleation. These structural precursors are named
with the preferable binding region along the fibrillar surfaces to
which the single monomer binds. These binding regions include
sites located on the C-terminal (C-ter) surface, the N-terminal
(N-ter) surface, the cleft interface, and the two fibril ends (even and
odd). Here we would like to characterize their structural features
and quantify their contacts with the fibrillar surfaces. The structure
of the monomer on the fibrillar surfaces shows primarily a beta-
hairpin conformation with their strand vector either parallel (N-ter
and cleft-gate precursors) or orthogonal (C-ter, even-end, and
odd-end precursors) to the fibril long axis. They are binding
configurations of the free energy basin (area III, see Figure 2A).
Figure 3 shows the probability contact maps for these structural
precursors. The C-ter surface consists of an alignment of
hydrophobic sequence segments (36-VGGVVIA-42) along the
direction of the fibril axis. Abeta monomer interacts with the
C-ter surface primarily through the same VGGVVIA hydrophobic
sequence motif of its C-terminus and thus facilitating C-ter/C-ter
hydrophobic clustering. In contrast to the C-terminus, the N-ter
surface shows a different pattern of contacts. The binding region

involves some charged residues in the sequence (11-
EVHHQKLVFFAEDVGS-26) along the fibrillar surface. The
contact pattern therefore is more diverse, with additional
charge-charge interactions (D, E, H and K) that participate in
the stabilization ofmonomer binding. E22 andD23 are particularly
important since these two residues are also predicted to be themost
highly frustrated areas in the frustration analysis (see below).
Figures 3A,B show the C-ter surface contact map and the
N-ter surface contact map, respectively.

A somewhat unconventional binding site is identified on the
other side of the N-ter surface. Because of its gate-like shape with
a cleft at the interface, we name such a monomer binding
configuration “cleft-gate” precursor (see Figure 3C). The
pattern of the contact map of the cleft-gate precursor looks
very similar to the N-ter surface precursor (both display a “S”
shape), except that the overall profile is shifted towards the even
end. One signature of the cleft-gate precursor is that the contacts
formed over the individual chains of the fibril is long-range along
the sequence. Therefore, the micro profile of individual chains is
different from that of the N-ter surface precursor (see
Supplementary Figure S3 in the Supporting Information).
Figures 3D,E show the probability contact maps of the even-
end and odd-end precursors, respectively. In both cases, the
monomer moves to a fibril end and localize onto it. These
binding configurations presumably correspond to a fibril being
elongating. However, we do not observe the monomer
conformation being in the fibril form throughout the
simulation. It is very likely that the monomer structural
ensemble also plays a role in the process of elongation.

3.4 An Elongating Fibril Requires the Added
Monomers Being in the “Activated”
Conformation
On the other hand, we have also carried out similar probability
contact map analysis for simulations using a fibril-like monomer
ensemble (“activated” conformation). We find that the structural
precursors identified share similar binding sites with those found
in the case of relaxed monomer ensemble. This finding implies
that some interactions between peptide and fibril on the surface
are well conserved, e.g., C-ter/N-ter hydrophobic patches. The
overall contact maps of the fibril-like and the relaxed monomer
ensembles, however, exhibit quite different features due to the
conformational dynamics and rigidity that the monomer
intrinsically has. Figure 4 shows the structure of the monomer
being elongating on both fibril ends. The simulated structures
were taken from the simulation trajectories with the monomer
being in the fibril-like conformation. These elongated species,
either formed at the even-end (Figure 4A) or the odd-end
(Figure 4B), are not observed in the simulations using a
structurally unbiased monomer. This result suggests that the
monomer conformation being “activated” (conforms to the
same shape as in the fibril) plays a determining role in the
elongation process while monomer in non-activated form does
not significantly contribute to fibril elongation. This result also
echoes the two-step dock-and-lock mechanism where the second
locking step involves an “activated monomer” that irreversibly
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binds to the fibril end and elongate (Sasmal et al., 2016). The
contact maps for the rest of surface structural precursors can be
found in the Supporting Information (Supplementary Figure
S7). Supplementary Figures. S4–S7 show the results for the
fibril-like monomer binding to the fibrillar surface.

Our simulation study shows that the conformational ensemble
of single Abeta plays a key role in determining the kinetic
pathways of elongation. The structural rearrangement of the
monomer from the “dock” state into the “lock” state involves
activated fibril-like conformation that irreversibly binds to the
fibril end. This result suggests that the elongation free energy
landscape in general can be reduced into a few dimensions: 1. The
dimension of the monomer that reversibly searches the landing
site over the fibril surface (dock). 2. The dimension of the
conformational ensemble of the single monomer on the
surface (lock). Once the monomer is in the activated form, the

“docking” state merges into the “locking” state. This conversion
irreversibly leads to a one-step fibril elongation.

3.5 Fibril Surface Binding Site Prediction
Using Frustration Analysis
We have shown fibril surface heterogeneity of Abeta protofibril by
identifying several binding interfaces. To further our
understanding of those predicted sites, we carry out a series of
frustration analyses over fibrils of different polymorphs. We aim to
compare their results with the results from ourMD simulation and
provide insight into the predicted sites from an energy perspective.
Frustration analysis uses the AWSEM energy functions to access
the extent of frustration in the spatially localized interactions in
proteins at a residue level (Ferreiro et al., 2007; Parra et al., 2016). If
a residue and its neighboring residues are predicted to be highly

FIGURE 3 | Five key structural precursors on the fibrillar surface and their probability contact maps are shown. (A) C-ter surface precursor (B) N-ter surface
precursor (C) Cleft-gate precursor (D) Even-end elongation precursor (E) Odd-end elongation precursor. The probability contact map next to each structural precursor
presents the contacts formed between the monomer and the fibril. The colorbar, scaled by probability, is shown on the right. The horizontal axis uses the fibril index
(1–384; 32 × 12 � 384), which sequentially renumbers the 12 monomers in the fibril. The vertical axis describes the residue index of the free monomer by adding up
the existing fibril index, 385–416 (384 + 32 � 416). Different structural features are labeled as “strand” or “loop”. Note that in (A), a schematicmonomer structure is shown
in a red box, with its structure in the fibrillar form. Three strands (strand 1, 2, and 3) and two loops (loop 1 and 2) are indicated. The color scheme for the structure is the
same as that used in Figure 1.
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FIGURE 4 | Fibril elongation with the monomer being in the activated fibril-like conformation and their contact maps are shown. (A) Even-end fibril elongation. (B)
Odd-end fibril elongation.
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frustrated, they form a cluster of residues and this cluster may play
a role in binding its partners (ex., protein, DNA, RNA, ligands) or
serving as an allosteric site. Figure 5 presents the frustration profile
for different types of fibrillar polymorphic structures. The highly
frustrated residues are shown in red while minimally frustrated
residues are shown in purple. We can see that the predicted
frustrated areas are not unique but are distributed over the
fibrillar surfaces. The exact location of the frustrated area is
associated with the structure of the backbone in the given
fibrillar architecture. Table 2 summarizes the results of different
fibrillar polymorphs. Interestingly, we find that the frustration
profiles of different polymorphic structures share several common
residues that are predicted to be highly frustrated, although their

fibrillar structures are quite different. Charged residues, E22, D23,
and K28, for example, are predicted to be highly frustrated across
all the fibrillar structures studied. In this work, we also specifically
look into the structure of 2MXU. The frustration profile of the
2MXU structure and that of the simulated one are quite similar.
This result suggests that structural relaxation due to geometric
packing of residues does not significantly affect the frustration
profile. For the relaxed fibrillar structure, the most frustrated
residues contain E22, D23, N27, K28, which are located in two
separate areas in space: (E22, D23) and (N27, K28). The former
includes primarily charged residues and is apparently
electrostatically driven. The predicted E22-D23 site here agrees
well with the binding sites of the N-ter surface, obtained from our

FIGURE 5 | Frustration profiles for a variety of polymorphic fibrillar structures of Abeta peptides available to date. (A) 5KK3. (B) 5OQV. (C) 2MXU. (D) 2M4J. (E) 2LMQ.
(F) 2LMN. (G) MD-relaxed structure using 2MXU. The magnitude of frustration is quantified using different colors with red (highly frustrated), grey (neutral), and purple
(minimally frustrated). The frustration profile is obtained using the frustratometer server (http://frustratometer.qb.fcen.uba.ar/). Single-residue frustration mode is adopted
throughout the analysis. Note that for each panel, a 1D sequence representation is shown below (residues are colored using the same frustration color code).

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 71932012

Ma et al. Fibril Surface-Dependent Amyloid Precursors

158

http://frustratometer.qb.fcen.uba.ar/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


MD simulation, to which the monomer binds (see Figure 3B).
Here, we have shown an agreement in predicting fibrillar binding
sites between the coarse-grained MD simulation and the
bioinformatics tool (frustratometer2).

3.6 The Helical Twisting Around the Fibril
Axis is an Emergent Mechanical Property of
a Long Protofilament
A variety of protofilament morphologies of antiparallel beta-sheets
have been reported (Stroud et al., 2012). In addition to cross-beta
structure, one common feature across different fibrillar

polymorphs is the helical topology that arises from the degree
of overall filament twisting. The overall helical twisting
accumulated from the twist angles of individual neighboring
pairs of peptide chains. We carry out molecular dynamics
simulation for protofilaments of different sizes and examine
their twisting features. Starting with the relaxed fibrillar
structure that was previously obtained, we used it to build
models for the protofilaments with their sizes: 24, 36, 48, up to
62 chains. The calculation of the twist angle along the fibril axis is
detailed in Methods, illustrated in Figure 6A. Figure 6B compares
the final simulated fibrillar structures of different sizes in the
simulation trajectory. The twist angle of individual neighboring

FIGURE 6 | Fibrillar twisting of protofilaments of different sizes is analyzed and compared. (A) The definition of the fibrillar twist angle θ is shown. (B) Representative
fibrillar structures of different sizes are displayed (from top, 12, 24, 36, 48, and 62 chains). (C)Distribution of the averaged twist angle per chain (θ )̄ for the protofilaments of
different sizes. The black arrow indicates the second peak of the 62-chain protofilament, which represents the twisting structure of the 62-chain protofilament seen in (B).
(D) Accumulated total twist angle (θtot) for protofilaments of different sizes. For each of the filament species, the twist angle of each chain is added up to yield a final
total twist angle. Note that the initial structure of the protofilament model is taken from the last frame of a pre-equilibration simulation (see Supplementary Figure S10 in
the Supporting Information for details).

Frontiers in Molecular Biosciences | www.frontiersin.org August 2021 | Volume 8 | Article 71932013

Ma et al. Fibril Surface-Dependent Amyloid Precursors

159

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


chain pairs are recorded in time series. Figure 6C shows the
distribution of the averaged twist angle per chain pair θ .̄ The
distribution is primarily a single gaussian-like curve with its peak
centered around −1° for protofilaments of size 12 to 48 chains; their
corresponding structures are shown in Figure 6B. This averaged
twist angle θ ̄ ≈−1° represents the twisted morphology initially
obtained from the solid-state NMR structure (2MXU).
Interestingly, there exists a small second peak at −3° to −4°,
exclusively for the 62-chain protofilament. This small shoulder
observed indicates a further filament twisting to a larger degree, as
shown in Figure 6B (62-chain protofilament is the last one). The
alternative filament twisting observed is consistent with the
existing literature on the structure of amyloid fibrils (Bedrood
et al., 2012). Figure 6D shows the accumulated total twist angle of
protofilament of all sizes as a function of simulation time steps.We
find that the alternative twisting feature is not significant for those
short filaments. In contrast, θ ̄� −3° to −4° is not observed until the
filament size increases to the number of 62 chains. The result of the
62-chain protofilament clearly shows that the fibrillar structure
starts to transform into a left-handed twisted fibrillar form at the
time step ≈30 × 106. In other words, filament twisting becomes
more significant for protofilaments in a large size. This result
suggests that fibrillar twisting is associated with the propagation of
localized interactions between neighboring pairs along the fibril
axis—via cooperative effect. Since the energetics for filament
twisting is primarily enthalpy-driven (Periole et al., 2018), all
these results support that the filament twisting polymorphic
structure is an emergent mechanical property, driven by the
size effect of the filament. Such a large-scale mechanical
coupling overall contributes to the helical twisting
polymorphism of filaments. We show that the simulation
protocol used can accurately simulate the mechanical feature of
fibrillar twisting as well as the global structural rearrangement of
amyloid protofilaments.

4 CONCLUSION

The interaction of a free amyloid protein monomer with a pre-
existing fibrillar surface is an essential process which initiates
subsequent fibril growth. Efficient fibril growth is mediated by
several secondary processes such as elongation and surface-
catalyzed nucleation. Understanding their kinetic pathways can
provide mechanistic insight into the molecular mechanism of
fibril growth. In this study, we have constructed a simulation
platform for studying the early stage of fibril growth using a new
GPU-enabled coarse-grained protein force field (openAWSEM).
This simulation platform allows us to carry out long time
simulations for protein aggregation over a fibrillar surface. We
have investigated the thermodynamic binding affinity for a single
monomer binding to fibrillar surfaces and find out that surface
heterogeneity can significantly influence the predicted binding
affinity. Accordingly, we have also identified several key surface
binding sites: C-ter, N-ter, cleft, even-end, odd-end. Our study
reveals several monomer-fibril binding configurations which
potentially are amyloid precursors for subsequent elongation and
secondary nucleation. This finding suggests that surface

heterogeneity, entailed by the protein sequence and the resulting
self-assembly, plays a key role in determining the aggregation
pathways and, more importantly, it inevitably leads to variation
in the thermodynamic binding affinity. In addition, we have used a
bioinformatics tool to predict binding sites over different
polymorphic fibrillar surfaces. For the fibril structure of interest,
the frustration analysis predicts several potential functional sites,
including residue E22 and D23 (mostly frustrated). These residues
belong to the N-ter surface identified from the simulation. This
binding site presumably can be modulated electrostatically (e.g., pH,
ionic strength) to reflect its binding plasticity. To understand surface
properties of fibrils in response to the global fibrillar twisting, we
have simulated fibrillar twisting of single protofilaments with
different sizes. Our result shows that fibrillar twisting is an
emergent, collective property that correlates with the number of
monomers participating in the fibril. We propose that the length-
dependent fibrillar twisting may influence the population
distribution of the amyloid precursors and thus drive different
aggregation pathways for fibril growth. This work demonstrates
the capability of the current simulation protocol for a comprehensive
survey over fibril stability, binding affinity, surface heterogeneity, and
mechanical twisting of polymorphic protofilaments. All these
properties are prerequisite for understanding the molecular
mechanism of surface-catalyzed secondary processes. We leave
that task for future work.
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