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Editorial on the Research Topic

Feature Representation and Learning Methods With Applications in Protein Secondary
Structure

In recent years, the rise of machine learning methods, especially deep learning, had greatly promoted
the development of prediction of protein secondary structures. Such methods could not only make
better use of exponentially growing massive protein sequence data, but were also able to
automatically mine complex and latent patterns hidden in the data. Although significant
progress had been made, we still faced challenges how to predict protein secondary structures
directly from protein sequences with improved accuracy.

There were 11 articles published in the special issue Feature Representation and Learning Methods
With Applications in Protein Secondary Structure. The authors here described computer methods
and techniques for protein secondary structure predictions. Also, they presented and discussed
latest algorithms development in feature extraction, dimension reduction, unbalanced
classification, etc. The papers provided good references to those new to the field as well as
experienced researchers.

Guo et al. established a model to classify thermophilic proteins and non-thermophilic proteins
based on sequences. After feature extraction by iFeature, MRMD2.0 was applied for feature selection
and dimension reduction, and LIBSVM was used to obtain the optimal parameters of the model and
established the prediction model. Compared with LMT, Logistic, Random Forest, BayesNet,
REPTree, J48, the prediction rate of this model was the highest (SE: 95.85%, SP: 96.22%, ACC:
96.02%).

Li et al. constructed a model to identify antioxidant proteins based on a support vector machine
based method, Vote9. Sequence features were extracted by using reduced amino acid compositions
and the optimal g-gap dipeptide compositions from nine optimal individual models.

Gu et al. distinguished GPCRs and non-GPCRs with CTDC extraction and MRMD2.
0 dimension-reduction. The authors found different methods of feature extraction and the same
method of dimensionality reduction had different effects on distinguishing GPCRs and non-GPCRs.
The correct classification rate of five independent test sets was 90.64, 90.37, 88.04, 93.28, and 95.73%,
with an average rate of 91.61 ± 2.96%.

Jing and Li used amino acid composition, dipeptide composition, position-specific score
matrix auto-covariance, and Auto-covariance average chemical shift to predict cell wall lytic
enzymes. SMOTE was used to counter the imbalanced data classification problems, and
F-score algorithm was used to remove redundant or irrelevant features. ACC was 99.19% with
jackknife test.
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Chen et al. proposed a novel computational model for
lncRNA-protein interaction relationship prediction based on
machine learning methods. A method for representing the
topological feature information of the network of lncRNA-
protein interaction was proposed. Protein evolutionary
information, protein CTD sequence information features,
lncRNA sequence mutual information features, and lncRNA
expression profile information were extracted, and the recursive
feature elimination algorithm was used to optimize feature vectors.
The obtained optimized feature vectors were fed into SVM to predict
lncRNA-protein interactions. This method was experimentally
compared with six excellent lncRNA-protein prediction
algorithms, and experimental results showed that our proposed
method achieves the best performance values in AUPR (74.39%)
and F1 score (65.91%).

Li et al. used a total of 12 feature extraction methods when
predicted anticancer peptides. After eight times of dimension
reduction by MRMD2.0, they established a 19-dimensional
feature model based on anticancer peptide sequences, which
had lower dimension and better performance (ACC: 92.15–92.
73%, SE: 85.5–87.7%, SP: 96.1–97.1%, MCC: 83.7–84.9%, F1
score: 92.1–92.7%) than some existing methods.

Wang et al. developed a bioinformatics tool called prPred for
the prediction of plant resistance proteins that combines CKSAAP
and CKSAAGP features based on SVM. Experimental results
showed that the accuracy, precision, sensitivity, specificity, F1-
score, MCC, and AUC of prPred were 0.935, 1.000, 0.806, 1.000, 0.
893, 0.857, and 0.948, respectively, on an independent test set. The
predictive and analytical results demonstrated that the constructed
model was an efficient predictor to distinguish R proteins from
non-R proteins.

Cai et al. established a comprehensive weight model SDN2GO
based on protein sequence, protein domain content and known
protein-protein interaction network. Compared with NetGO,
DeepGO and the classic BLAST method, the authors’ results
showed that SDN2GO achieved the maximum F-max value (36.
1–56.1%) of each sub ontology of GO.

Liu et al. established a deep learning-based predictor TMPSS
to predict the secondary structure and topological structure of
α-helical TMPs. The TMPSS applied a deep learning network that
included grouped multi-scale CNN (Convolutional Neural Network)
and stacked attention-enhanced BiLSTM (Bidirectional Long Short-
Term Memory) layers to capture local and global context. Based on
the multi-task learning method, the prediction performance was
improved and the amount of calculation was reduced by
considering the interaction between different protein properties.

Yallapragada et al. established a game-based molecular
visualization tool PePblock Builder VR-AN. Different from
traditional sequence-based protein designs and fragment-based
splicing, pepblockbuilder-VR provided a building block
environment for the construction of complex structures, which
provided users with a unique visual structure construction
experience. In addition, Pepblock Builder VR worked as an
independent and VR-based application and provided us with a
good platform for teaching.

Lyu et al. established a reductive deep learning model
MLPRNN to predict either 3-state or 8-state protein secondary
structures, which had the same prediction accuracy as DeepCNF,
MUFOLD-SS, BGRUCB, CRRNN and DNSS2.

The 11 papers in this research topic covered only a small part
of the computer methods and techniques used to predict protein
secondary structure. We hope more and more researchers will
devote their time and effort into this field to predict the secondary
structure of proteins more quickly, simply and accurately.
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The assignment of function to proteins at a large scale is essential for understanding the

molecular mechanism of life. However, only a very small percentage of the more than

179 million proteins in UniProtKB have Gene Ontology (GO) annotations supported by

experimental evidence. In this paper, we proposed an integrated deep-learning-based

classification model, named SDN2GO, to predict protein functions. SDN2GO applies

convolutional neural networks to learn and extract features from sequences, protein

domains, and known PPI networks, and then utilizes a weight classifier to integrate

these features and achieve accurate predictions of GO terms. We constructed the

training set and the independent test set according to the time-delayed principle of

the Critical Assessment of Function Annotation (CAFA) and compared it with two highly

competitive methods and the classic BLAST method on the independent test set. The

results show that our method outperforms others on each sub-ontology of GO. We

also investigated the performance of using protein domain information. We learned from

the Natural Language Processing (NLP) to process domain information and pre-trained

a deep learning sub-model to extract the comprehensive features of domains. The

experimental results demonstrate that the domain features we obtained are much

improved the performance of our model. Our deep learning models together with the

data pre-processing scripts are publicly available as an open source software at https://

github.com/Charrick/SDN2GO.

Keywords: protein function, word embedding, convolutional neural network, deep multi-label classification, deep

learning

1. INTRODUCTION

As an essential structural molecule, protein is a vital component of all biological tissues and cells
and is also the primary bearer of life activities (Weaver, 2011). Understanding protein function is
important both for biology and medicine and pharmacy. For example, clarifying the function of a
protein can provide a target for genetic manipulation, and provide a reliable basis for designing a
new protein or transform an existing protein, etc. So that, accurate annotation of protein functions
is a significant and crucial task. Traditional experimental methods require a lot of resources and
time to determine protein function, despite there are high accuracy and reliability. With the
continuous development of high-throughput sequencing technology and genomics, the sequence
of proteins has been exploded, but just a small percentage of the total known and predicted protein
sequences have been extensively annotated regarding their functions. Currently, only <0.1% of the
more than 179 million proteins in UniProtKB have been experimentally annotated (Consortium,
2019). However, it isn’t straightforward to scale up the experimental method to accommodate
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such a large amount of protein sequence data, which urgently
requires the development of computational methods to assist to
annotate protein functions (Radivojac et al., 2013).

Gene Ontology, launched in 1998, is widely used in the field
of Bioinformatics, and the original intention of GO was to
provide a representative platform for terminology description or
interpretation of words of genes and gene product characteristics.
It enables Bioinformatics researchers to summarize, process,
interpret, and share the data of genes and gene products
(Ashburner et al., 2000). Gene Ontology is a Directed Acyclic
Graph (DAG) type ontology. At present, GO contains more than
45,000 biological concepts include functions and cell locations,
and is divided into three categories, covering three aspects of
biology: Biological Process, Molecular Function, and Cellular
Component. A protein generally has multiple GO annotations;
therefore, protein function prediction is a very large-scale
multi-label classification problem (Zhang and Zhou, 2013), and
accurately assigning GO terms to proteins is a challenging task.

In recent years, some organizations and teams have developed
algorithms, tools, and systems for protein function prediction
using advanced computer technologies, such as machine learning
and deep neural networks (Kulmanov et al., 2018; You et al.,
2018, 2019; Hakala et al., 2019; Lv et al., 2019b; Piovesan and
Tosatto, 2019; Rifaioglu et al., 2019; Kulmanov and Hoehndorf,
2020). Researchers predict protein functions from one or more
of the followings: protein sequences (Kulmanov et al., 2018; You
et al., 2018, 2019; Hakala et al., 2019; Piovesan and Tosatto,
2019; Kulmanov and Hoehndorf, 2020), protein structures (Yang
et al., 2015; Zhang et al., 2018), protein protein interactions
(PPI) network (Kulmanov et al., 2018; Zhang et al., 2018;
You et al., 2019), and others (Kahanda and Ben-Hur, 2017;
Hakala et al., 2019; Piovesan and Tosatto, 2019; Rifaioglu et al.,
2019). For example specifically, GOLabeler (You et al., 2018)
integrated five different types of sequence-based information
and learned from the idea of web page ranking to train an
LTR (learning to rank) regression model to receive these five
types of information to achieve accurate annotation of GO
terms. As a result, this model got the best overall performance
among all submissions of the 3rd Critical Assessment of Function
Annotation (CAFA3). NetGO (You et al., 2019), proposed by
the GOLabeler team, is based on GOLabeler and incorporates
massive amounts of protein-protein interaction (PPI) network
information into the LTR framework. Compared with GOLabler,
it has achieved a significant improvement in protein function
prediction performance. Hakala et al. (2019) developed an
integrated system, which obtain features from several different
tools or methods: BLASTP, InterproScan, NCBI Taxonomy,
NucPred, NetAcet, PredGPI, and Amino Acid Index (Kawashima
and Kanehisa, 2000; Heddad et al., 2004; Kiemer et al., 2005;
Pierleoni et al., 2008; Camacho et al., 2009; Federhen, 2012; Jones
et al., 2014), and then respectively feed all the features to two
classifiers based on neural network and random forest and finally
combined the NN classifier and the RF classifier to achieve the
best prediction performance. DeepGO (Kulmanov et al., 2018)
encodes the amino acid sequence of the protein by trigrams and
maps the trigrams to vector by one-hot encoding and dense
embedding, and then feed it to a convolutional neural network

(CNN) to extract the feature map. Next, a combined feature
vector consisting of CNN features and PPI Network embedding
features entered into the hierarchically structured classification
layers for classification of GO terms. INGA2.0 (Piovesan and
Tosatto, 2019) uses four components, Homology which inferred
from sequence similarity, Domain architecture, protein-protein
interaction networks, and integrated information from the
“dark proteome” which include disordered and transmembrane
regions, to predict protein function. This method has better
capabilities to predict some extremely rare GO terms compared
with others. Overall, these highly competitive models and
systems have proven their outstanding performance in protein
function prediction and are continually being optimized.

The amino acid sequence is crucial for understanding and
analyzing proteins of various species. Some studies have shown
that sequence homology-based BLAST methods are highly
competitive in protein function prediction (Altshul, 1997; Gillis
and Pavlidis, 2013; Hamp et al., 2013). Besides, there are several
high-level physiological functions, such as apoptosis or rhythm
regulation, which are often the result of the interaction of
multiple proteins (Kulmanov et al., 2018), and according to the
so-called “guilt-by-association” principle, interacting proteins
should have some similar functions (Oliver, 2000; Schwikowski
et al., 2000). Those shows that protein sequence information
and PPI network information are essential to predict protein
function. We have also noticed the critical position of the protein
domain in protein-related features. The domain is a structural
motif that exists independently in different combinations, and
orders in the protein (Forslund and Sonnhammer, 2008) and is
a higher-level protein component than the amino acid sequence
(Richardson, 1981). Therefore, it makes sense to analyze and
examine the effect of Domain content on protein function and try
to use it to predict protein function. Besides, Machine Learning
(ML) is currently popular and efficient for bioinformatics
problems (You et al., 2018, 2019; Lai et al., 2019; Tan et al., 2019;
Wang et al., 2019a; Zhu et al., 2019; Dao et al., 2020), especially,
due to its strong ability to fit high-dimensional, sparse, and
highly collinear complex data, deep learning technology has been
widely used in bioinformatics fields, such as protein structure and
function (Sønderby and Winther, 2014; Spencer et al., 2014; Wei
et al., 2018; Kulmanov and Hoehndorf, 2020), gene expression
regulation (Chen et al., 2016; Lanchantin et al., 2016), protein
classification (Asgari and Mofrad, 2015; Sønderby et al., 2015),
and structure and functions of nucleic acid (Zhang et al., 2016;
Lv et al., 2019a; Wang et al., 2019a,b). For these considerations,
here we proposed an integrated deep learning model based on
protein sequences, protein domain content, and known protein-
protein interaction networks to predict protein function. We first
built three different neural network modules to learn features
from protein sequences, domain content, and PPI Net separately,
and then combined the features from these three different sources
and inputted them to the neural network classifier to predict the
probability of each GO term. The experimental results show that
ourmethod of adding domain content to predict protein function
is successful, and our model achieved better performance than
BLAST and two other recent high-performance methods on an
independent dataset constructed using time-delay rules.
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2. MATERIALS AND METHODS

2.1. Data Source
2.1.1. Training Data
• Sequence Data

For our experiments, we downloaded the sequence
information of the proteins needed for the research from the
UniProt database as FASTA-format files (http://www.uniprot.
org/downloads) (Consortium, 2015). Then a CD-hit tool was
used to de-redundant the downloaded protein sequence data.
We grouped proteins with a sequence similarity >60% into
one cluster, and only one protein per cluster was retained.
Finally, we obtained a benchmark for humans contains 13,704
proteins, and a benchmark for Yeast contains 6,623 proteins.

• Annotation Data
We downloaded GO annotation data for proteins from

GOA (http://www.ebi.ac.uk/GOA) (Barrell et al., 2009)
published in December 2013. Please note that the GO
annotation data here is for training only, and all data are
annotated in 2013 or earlier. Finally, the annotation data
contains 13,882 categories (9,221 in BP, 3,483 in MF, and 1,178
in CC) for Human and 4,796 categories (2,439 in BP, 1,733 in
MF, and 624 in CC) for Yeast.

• Protein-Protein interaction (PPI) Network Data
We have added protein-protein interaction (PPI) network

data, which is derived from the STRING database v10 (https://
string-db.org/) (Szklarczyk et al., 2015), to improve the
performance of the experiment. Among them, human PPI data
contains 11,759,455 scored links of 19,257 proteins, and Yeast’s
PPI data contains 1,845,966 scored links of 6,507 proteins.

• Protein Domain Data
We downloaded protein domain data from the public

database interpro (Hunter et al., 2009) (http://www.ebi.ac.
uk/interpro/download/), which contains the all UniProtKB
proteins and the InterPro entries and individual signatures
they match. For a specific protein, we can obtain the types,
quantity, and locations of all the domains it contains, and the
start and the end positions in the protein sequence of a domain
are indicated. We searched by the protein’s UniProt ID to
obtain the domain data of all the proteins we needed. Next, we
performed de-redundancy; for the same domain information
supported by contradictory evidence, we kept only one of
them. In the end, our domain data contains 113,972 pieces of
information of 14,242 domains for Human, and 23,326 pieces
of information of 6,707 domains for Yeast.

2.1.2. Independent Testing Data
The independent test data set is used for comparison with the
competing methods. The collection of data generally follows the
time-delayed rule of the CAFA challenge. We downloaded GO
annotation data for proteins from GOA published in January
2016 and then obtained protein GO annotations added after
2013 (2014 and 2015). Specifically, we removed the annotation
data published in December 2013 from the annotation data
published in January 2016 and only retained the newly added
protein annotation data. Next, we constructed an independent
test benchmark based on the newly added annotation data; please

note that all proteins contained in this benchmark do not have
any GO annotations before 2014. Similarly, we filtered those
proteins that were only annotated by GO terms that are extremely
infrequent. The filtered independent test set contains 68 proteins
for BP, 136 proteins for MF, and 106 proteins for CC.

2.2. Data Representation
2.2.1. Protein Sequence Data
Protein sequence information is one of the inputs to our model.
The sequence of each protein is a string composed of 20 specific
amino acid codes with different lengths. In this experiment,
we only selected proteins with a sequence length not exceeding
1,500. If the sequence length is<1,500, we padded zero at the end
of the sequence to ensure that the length of each input protein
sequence information is fixed. To fully extract the context and
semantic knowledge of the sequence, we utilized the ProtVec
of BioVec (Asgari and Mofrad, 2015), which is a biological
sequence representation and feature extraction method, to map
the sequence information. This method borrows the ideas of
“word embedding” fromNatural Language Processing (NLP) and
obtains vector representations of biological sequences through
training, and ProtVec is used for protein sequences. We followed
ProtVec and used 3-grams encoding for protein sequences, that
is, using a window of length 3 with a step size of 1 to slide the
protein sequence to obtain a 3-grams sequence with a length of
1498 for each protein.

In order to convert 3-grams sequences information into
vectors that can be received by the computing model, we used the
ProtVec-100d-3grams table released by BioVec.We Downloaded
this data from Harvard Dataverse (http://dx.doi.org/10.7910/
DVN/JMFHTN). In this table, the protein vector is a distributed
representation of proteins, and a 100-D vector presents each 3-
gram. For our experiment, according to ProtVec, each protein
will be represented as a 1,498 * 100 vector matrix, and then used
as input to the model. In particular, according to the way we treat
proteins<1,500 in length, if a 3-gram word contains one or more
zeros we have padded, then the 3-gram will be represented as a
100D zero-vector.

2.2.2. Protein Network Data
The protein network data we downloaded is scored links between
proteins. The higher the score, the greater the probability of
interactions between proteins. We filtered all scored links with
400 points, leaving only scored links whose score higher than 400,
and then integrated the filtered protein network data into a PPI
scored matrix. Each row of this matrix is a vector that represents
the interaction of a protein with other proteins. If protein A
interacts with another protein B in selected data, we set the value
at the corresponding position in the vector to the fraction of these
two proteins; otherwise, we set it to 0.

2.2.3. Protein Domain Data
In proteins, the types and number of domains and the relative
positions of different domains will affect the functions of
the protein. To fully discover and extract the comprehensive
information of the type, number, and position of domains in
proteins to improve the performance of the model, we first need
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to sort the domains contained in each protein according to the
information of positions in the domain data, so that we can
obtain the information relative positions of different domains.
However, the position information given by the database is only a
possible range of domains in the protein sequence. For example,
if the database provides the position of domain D in the sequence
of protein P is 60–200, this only indicates that a domain D exists
in the area of 60–200 in protein P, but we cannot obtain the
actual length and location of this domain D. This is the result
of technical limitations, which cause the existence of different
domains to overlap, even a region completely contains another
region, in a protein, and makes it challenging to sort domains.

In our experiments, we proposed a simple sorting method
based on regional center points to solve this problem. Specifically,
in a specific protein, there are three possibilities for the
geographical relationship between any two different domains:
detached, crossing, and containing. If the relationship is
detached, we can quickly sort the two domains. If it is a
cross-relationship or a containing-relationship, we calculated the
center points of the two regions separately, and then put the
domain with a forward center point in front of another one.
After this, the information on the type, quantity, and relative
position of the domain in the protein are obtained. Next, we
learned from the idea of Natural Language Processing and treat
each domain as a biological word, so the information of domains
describing a specific protein is a biological sentence composed of
some domain words in a particular order, while the functions of
a protein are what the biological sentence means. The purpose of
the domainmodule is to receive the biological sentence of protein
and then abstract the features that represent the meaning of the
sentence. Because the number of domains contained in different
proteins is inconsistent, here we also need to solve the problem of
the inconsistent size of model input. We obtained the maximum
number of domains of proteins and used this maximum number
(357 for Human and 41 for Yeast) as a standard and proteins with
fewer domains than the maximum number were padded with 0.
We encoded domains by word Embedding to input it into the
model. Specifically, we utilized PyTorch’s Sparse layer, which can
initialize a simple lookup table to map sparse vectors to dense
vectors, to generate a fixed lookup table for the domains. In this
lookup table, each domain is represented by a 128-dimensional
vector. In principle, the Sparse layer automatically maps high-
dimensional one-hot vectors to low-dimensional dense vectors
and provides the index of the dense vectors. The dimensions
of both the one-hot vectors and the dense vectors are manually
set by the user as needed, and we could get the required dense
vector by entering the index. Therefore, the domains sentence
of Human is represented by a 357*128 two-dimensional matrix,
while the domains sentence of Yeast is represented by a 41*128
two-dimensional matrix. The Sparse layer will be integrated
into the model and trained together, that is, as the model is
continuously optimized, the representation vectors of domains
in the lookup table will become increasingly accurate.

2.2.4. Protein GO Terms
Given that a large number of specific GO terms often only exist
in the annotation sets of a small number of proteins (You et al.,

2018), and considering the calculation limit, we ranked the GO
terms according to the number of annotations in proteins, and
then use a set of thresholds (40 for BP, 20 for MF and 20 for CC)
to select the GO terms, which contains 491 BP terms, 321 MF
terms, and 240 CC terms, for Human, and a set of thresholds
(10 for BP, 10 for MF and 10 for CC) to select the GO terms,
which contains 373 BP terms, 171 MF terms, and 151 CC terms,
for Yeast. We created three binary vectors for each protein to
represent the labels of three sub-ontologies of GO: BP Ontology,
MF Ontology, and CC Ontology. If a protein is annotated by a
GO term, the value at the corresponding position of the label
vector is set as 1, and otherwise is set as zero. Please note that
all GO categories in the label vectors are selected.

2.3. Deep Model
We trained three models for the three sub-ontologies of GO.
We randomly extracted 80% of the training data for iterative
training of the model, and used the remaining 20% to verify
the performance of the model after each iteration, and retained
the model with the best generalization performance. Given
that our model needs to receive input from three aspects of
sequence, domain content, and PPI network information, as
shown in Figure 1, we divided the model into four components:
Sequence sub-model, Domain sub-model, PPI-Net sub-model,
and Weighted Classifier.

2.3.1. Sequence Sub-model
The input of this sub-model is a two-dimensional 3-grams-
vector-matrix that represents protein sequence information. To
extract in-depth high-dimensional features of protein biological
sequences, we design and implement a model based on
convolutional neural networks (CNN). The neural network is
a mathematical algorithm model that mimics the behavioral
characteristics of biological neural networks for distributed and
parallel information processing (Haykin, 1994). In CNN, there
is depth structure, and the input is convolved to obtain the
output (LeCun et al., 1998), the convolution layer contains
multiple convolution kernels, which can make the model extract
more features in different aspects. In our experiment, we used
a 1-Dimensional convolutional neural network, which uses a
one-dimensional convolution kernel to perform convolution
operations on the input data. After the sequence input is
convolved to extract features, the output feature map is passed to
the pooling layer for feature selection and information filtering;
this is because the feature map still contains redundancy. Here,
we use the max-pooling layer to treat the feature map. After
processing, the selected feature map will be passed to the next
layer as input. Specifically, three convolutional layers were set
for the sequence sub-model, which were connected end to end.
The feature map obtained after the convolution operation of
each convolutional layer uses a maximum pooling layer to filter
information to remove redundancy. The in-channels of the first
convolutional layer are the same width as the input sequence
information matrix and are set to 100. The in-channels of
the other two convolutional layers are the same as the out-
channels of the previous layer, and the out-channels of the three
convolutional layers are set as 64, 32, and 16, respectively. For
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FIGURE 1 | The integrated deep learning model architecture. (1) The Sequence sub-model utilizes 1-Dimensional convolutional neural networks to extract features

from sequence input, which was encoded as 3-grams and then mapped to 3-grams-vector-matrix. (2) The PPI Net sub-model is generated to dense the features from

PPI Network using classical neural networks. (3) The Domain sub-model initializes a Sparse layer, which is integrated into the sub-model to optimize, to generate a

lookup table for domains, and the sorted domains sentence processed by the Sparse layer is entered into 1-Dimensional convolutional neural networks to extract

features. (4) All the output features of the three sub-models are combined and entered into the Weighted Classifier, and the output vector represents the probability of

GO terms.
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each convolution layer, a convolution kernel with a size of 16 is
used for the convolution operation with a step size of 1. In order
to completely extract the input features, padding was performed
on the input with 0 before each convolution. Each maximum
pooling layer is filtered using a kernel of size 2 with a step size of 2.
The output feature map of the last pooling layer will be tiled into
one dimension and input to the fully connected (FC) layers for
dimensionality reduction. Finally, a feature vector representing
the protein sequence information was obtained. The number
of nodes in the output layer of the fully connected layer is set
according to the number of three GO sub-ontology. Specifically,
for Human, it was set as 491 for BP, 321 for MF, and 240 for CC,
and for Yeast, it was set as 373 for BP, 171 for MF, and 151 for CC.

2.3.2. PPI-Net Sub-model
In the PPI scored matrix, the feature vectors that characterize
the interaction between proteins and other proteins have large
dimensions, which are 18,901 for Human and 6,054 for Yeast,
respectively, so we built a three-layer trapezoidal neural network
module to dense the PPI features. In this module, the number of
nodes in the input layer is the same as the dimension of the input
feature vector, which is 18,901 for Human and 6,054 for Yeast.
The number of nodes in the hidden layer is set to an intermediate
value according to the number of nodes in the input layer and
the output layer, which are 4,096 for Human and 2,048 for Yeast.
And the size of the output layer is based on different species
and GO sub-ontology, and is the same as the output layer of the
Sequence sub-model.

2.3.3. Domain Sub-model
The input of the Domain sub-model is the sorted protein
domain content information. According to the input data, the
first structure of the module is the integrated Sparse layer, the
number of embedding is 14,243 for Human, and 6,708 for Yeast,
and embedding dim are set as 128. For a specific protein, the
output of the Sparse layer of the domain sentence input is a
two-dimensional matrix. Therefore, similar to the sequence sub-
model, we constructed a convolutional neural networks module
containing two 1-D convolutional layers and two max-pooling
layers. The in-channels of the first convolutional layer are set to
357 for Human, and 41 for Yeast, the in-channels of the second
convolutional layer are consistent with the out-channels of the
previous layer, and the out-channels of the two convolutional
layers are set to 128 and 64. Besides, each convolutional layer used
a convolution kernel of size 2 to perform a convolution operation
with a step size of 2. In order to completely extract the input
features, we padded the input with 0 before each convolution.
The setting of the two maximum pooling layers is the same as the
setting of themaximumpooling layer in the Sequence sub-model.
The feature map output by the last pooling layer is tiled into one
dimension and then input to the fully connected layers to reduce
the dimension and the output layer of the fully connected layer.
The size of the output layer is based on different species and GO
sub-ontology, and is the same as the output layer of the Sequence
sub-model.

FIGURE 2 | The architecture of one single GO classifier in the weighted

classifier.

2.3.4. Weighted Classifier
Weighted Classifier accepts output vectors from three sub-
models: Sequence sub-model, Domain sub-model, PPI-Net sub-
model. Through training, each GO classifier learns and optimal
the weights that receive the features from three sub-models to
achieve the best effect of multi-label classification. Note that the
output vectors of the three modules have the same dimensions.
As a whole, our Weight Classifier is a three-layer non-fully
connected network model. The number of nodes in the input
layer is the sum of the number of output nodes of the three
sub-models, and both the nodes of hidden layer and the nodes
of out layer are the same as nodes of the output layer of the
three sub-models, which are set according to different species and
GO sub-ontology. From the perspective of a single GO classifier,
the structure is shown in Figure 2. For a specific GO classifier,
the hidden node only accepts three features, which are from the
corresponding position of the output vector of three sub-model,
respectively, corresponding to the GO category, and to extract the
corresponding area, we used a binary mask matrix to implement
this connection control. The output node of the Classifier also
only receives the output of the corresponding hidden node, and
we also used a binary mask matrix to implement connection
control. In general, let the entire Weight Classifier as a whole
again, each node in the hidden layer is only connected to the three
corresponding nodes in the output layer, and each node in the
output layer is connected to only one corresponding hidden layer
node. Therefore, the weights between the hidden layer nodes and
the input layer nodes represent the preference of the Classifier
for features from three sub-models, and the weights between the
output layer nodes and hidden layer nodes globally balance the
output values of the Classifier to the same level.
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For all components of the model, we used the Rectified-
linear-unit (ReLU) (Glorot et al., 2011), which could improve the
computational efficiency and retain gradient (Nair and Hinton,
2010), as the activation function. Besides, by running specific
optimization algorithms to minimize the loss function, the DNN
model can be iteratively optimized by updating the weights
and biases. Especially, the model is trained using an adaptive
optimizer, Adam (Kingma and Ba, 2014).

2.4. Evaluate Methods
We evaluate the performance of the model through three
measures, which are F-max, AUPR (area under the precision-
recall curve), and AUC (area under the receiver operator
characteristics curve), where F-max and AUC are used in
the CAFA challenge (Radivojac et al., 2013). We use the
standard provided by CAFA to calculate F-max and the formulas
as follows:

Fmax = max
t
{
2 · pr(t) · rc(t)

pr(t)+ rc(t)
} (1)

where pr(t) and rc(t), respectively represent precision and recall
of the threshold t ∈ [0, 1], and can be calculated by the
following formulas:

pr(t) =
1

m(t)
·

m(t)∑
i=1

pri(t) (2)

and

rc(t) =
1

n
·

n∑
i=1

rci(t) (3)

wherem(t) is the number of proteins that annotated with at least
one GO term using a threshold t, n is the total number of proteins
in the target data set. pri(t) and rci(t) represent the precision and
recall of a specific protein i using a threshold t, and are calculated
by the following formulas:

pri(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Pi(t))
(4)

and

rci(t) =

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)∑

f I(f ∈ Ti)
(5)

where f is a functional term in the ontology, Function I(·) is
the standard indicator function. Ti is the set of true labels for
protein i, and Pi(t) is the set of predicted labels for protein i
using a threshold t. Once the precision and recall that calculated
by different values of t for a particular functional term were
determined overall proteins, we could then calculate the AUPR
using the trapezoid rule. Compared with AUC, AUPR has a
greater penalty for false positives[6].

We also calculate the AUC value for each model of the GO
sub-ontology, and the calculation formulas are as follows:

AUC =

∫ ∞

−∞

TPR(t)(−FPR(t))dt, (6)

TPR(t) =
TP(t)

TP(t)+ FN(t)
(7)

and

FPR(t) =
FP(t)

FP(t)+ TN(t)
(8)

where TP is the number of true positives, FP is the number of
false positives, and TN is the number of true negatives, FN is the
number of false negatives.

2.5. Model Implementation and Computing
Environment
We used PyTorch, a Python-based deep learning framework,
to implement our model. To speed up the training process, we
used a RHEL server with four NVIDIACorporationGM107GL
graphics cards installed and total video memory of 32 GB.
Under a set of parameters, the whole training time for the
most computationally-intensive BP model is <10 h. In terms
of prediction, in the case where the sequence, domain, and PPI
input information of the predicted protein has been processed
in advance, using an optimized model to predict 1,000 proteins
takes about 6 min.

3. RESULTS

3.1. Experiment
Owing to the complexity of our model composition and the
requirement to determine a large number of hyperparameters, we
first pre-trained the three-component sub-models of Sequence,
Domain, and PPI Net. We used the GO annotations of proteins
as a label and calculated the binary cross-entropy between the
predicted values and the actual values, and use this as the loss
to back-propagate to update the weights and biases between
the nodes connected in the model. We manually adjusted the
hyper-parameters, such as the learning rate and batch-size of
each module, and selected the optimal model based on the
validation loss value using the training set. After adjusting the
parameters of the three sub-modules, we used the output of
these three fine-tuned models as input to manually adjusted
the hyperparameters of the Weighted Classifier, and also select
the optimal model based on the validation loss value using the
training set. Tables S1–S4 shows the details of the training of
different hyperparameters.

We used 5-fold cross-validation on the training set to test the
performance of the model, and the results are shown in Table 1.
It is clear that the model has achieved a favorable F-max value for
each sub-ontology of GO, which indicates that our method is an
effective protein function prediction method.

3.2. Evaluating the Performance of Using
Domain Content
Using the comprehensive information of types, quantities,
and positions of protein domain content for prediction of
protein function is the crucial component and emphasis of
this research. In order to explore and explain the critical role
of comprehensive domain information on protein function
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prediction, the deep models without the domain module were
constructed for three sub-ontology of GO, and each model
contained only the Sequence sub-model, PPI-Net sub-model, and
Weighted Classifier, and we named it SN2GO. Among SN2GO,
since the Sequence sub-model and PPI-Net sub-model in the
SDN2GO model are pre-trained separately, the structure and
hyperparameter settings of the Sequence sub-model and the

TABLE 1 | The 5-fold cross validation results of training data.

Method
BP MF CC

Fmax AUPR AUC Fmax AUPR AUC Fmax AUPR AUC

SN2GO (human) 0.473 0.441 0.908 0.546 0.527 0.938 0.587 0.600 0.949

SDN2GO (human) 0.507 0.487 0.921 0.653 0.655 0.957 0.601 0.617 0.952

SN2GO (yeast) 0.414 0.289 0.810 0.548 0.435 0.870 0.520 0.395 0.881

SDN2GO (yeast) 0.415 0.304 0.839 0.611 0.530 0.903 0.528 0.424 0.878

The bold values indicate the best values.

PPI-Net sub-model are the same as those of the corresponding
modules in the SDN2GO model, and the Weighted Classifier
removes the relevant part of the domain from the input layer, the
settings of the hidden layer and output layer are still the same as
those of the SDN2GO Weighted Classifier. To ensure fairness of
comparison, we also manually readjusted the learning rate and
batch size hyperparameters and selected the optimal Weighted
Classifier model for SN2GO.

We observed the performance of SN2GO on the training set
and compared it with SDN2GO. As the same, we used SN2GO
to perform a 5-fold cross-validation experiment on the training
set.Table 1 shows the cross-validation results of SN2GO.We find
that compared with SN2GO, the performance of the SDN2GO
that uses domain information has been significantly improved
on all the sub-ontology of GO, especially in the MF Ontology
of humans, the F-measure value of SDN2GO has been enhanced
by nearly 20% (0.65 vs. 0.55) compared to SN2GO. As shown in
Figure 3, the PR curves of SDN2GO and SN2GO on validation
data of humans, it is clear that the red PR curve surrounds the
other one on each sub-ontology. This result shows that domain

FIGURE 3 | Precision-recall (P-R) curves of SDN2GO and SN2GO. The performances of the two methods were evaluated on the validation data of human in each

sub-ontology of GO (gene ontology).
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information plays an essential role in protein function prediction,
and proves that our coding and processing methods for protein
domain information and the sub deep learning models for
domains are useful and meaningful.

3.3. Comparison With Competing Methods
In order to further verify the performance of SDN2GO, we
compared the two novel methods, NetGO and DeepGO, on
the independent test set. Both of these two methods are
competitive and excellent in protein function prediction and
have achieved outstanding results on some datasets. As a
state-of-the-art machine learning method for protein function
prediction, NetGO provides constructive ideas on how to
integrate features based on different sources. At the same
time, DeepGO is quite representative of using deep learning
technology for protein function prediction. Specifically, NetGO
integrates five different types of sequence-based evidence and
massive network information into the learning to rank (LTR)
framework to predict protein function. We uploaded the
protein sequence of the independent test set in Fasta format
to the AFP (automated function prediction) webserver (http://
issubmission.sjtu.edu.cn/netgo/) released by NetGO and then
downloaded the prediction result of NetGO in txt format
after a while. DeepGO uses convolutional neural networks to
extract protein sequence features and combines known PPI
network information as combined features to predict protein
functions. We downloaded all source code of DeepGO from
GitHub and downloaded the required data, and the fine turned
neural network models saved in PKL format from the provided
webserver (http://deepgo.bio2vec.net/data/deepgo/), and then
entered the test protein sequence in Fasta format to this open-
source tool, and obtained the prediction results of DeepGO.
Besides, the BLAST was also used in comparative experiments.

The comparison results are shown in Table 2. We have
observed that BLAST performs well on every GO sub-ontology,
which illustrates again that the sequence homology-based BLAST
method is still quite competitive. NetGO andDeepGOperformed
well on MFO and BPO, respectively, but did not achieve their
claimed effects on other sub-ontology. We further analyzed the
prediction results of these two methods, and we found that the
false-positive rates of both of them are relatively high, which leads
to their inability to obtain high precision values. Figure 4, which
shows the PR curves of MFO on independent test sets for various
methods, demonstrates our analysis results from one aspect. The
PR curves of BPO and CCO and other specific details can be
seen in Figures S1, S2. Obviously, SDN2GO outperformed other
methods on all sub-ontologies, especially on MFO. Those shows
that our model has excellent generalization performance and is
a currently competitive method for protein function prediction.
In particular, we paid attention to the performance of SN2GO,
which lacks the domain sub-model on the test set. The results
show that its performance on BPO and MFO is far worse than
that of SDN2GO, and prove that extracting features from protein
domains for protein function prediction is feasible, and will
improve the accuracy of GO term labeling for proteins, especially
on BPO and MFO.

TABLE 2 | The comparison results of the competing method on the independent

testing set.

Method
BP MF CC

Fmax AUPR AUC Fmax AUPR AUC Fmax AUPR AUC

BLAST 0.347 0.192 0.771 0.381 0.292 0.873 0.386 0.245 0.860

DeepGO 0.321 0.095 0.729 0.291 0.117 0.784 0.210 0.080 0.687

NetGO 0.173 0.048 0.594 0.386 0.243 0.919 0.217 0.092 0.669

SN2GO 0.132 0.044 0.893 0.423 0.306 0.953 0.384 0.264 0.948

SDN2GO 0.361 0.203 0.917 0.561 0.471 0.964 0.432 0.290 0.947

The bold values indicate the best values.

FIGURE 4 | Precision-recall (P-R) curves of BLAST, DeepGO, NetGO,

SN2GO, and SDN2GO. The performances of the five methods were evaluated

on the independent testing set in MFO (molecular function ontology).

4. DISCUSSION

SDN2GO, an integrated deep learning-based weight model
we have proposed, combines three aspects of information:
protein sequence, protein domain content, and known protein-
protein interaction networks. We constructed three sub-models
for these three aspects of information, and then learned and
extracted three components of features through pre-training
the sub-models. Each GO term of the protein was finally
scored and annotated through the integrated deep learning
weight classifier. The 5-fold cross-validation results show
that SDN2GO is a stable and reliable method for protein
function prediction. In order to further verify the generalization
performance and competitiveness of SDN2GO, we constructed
an independent test set based on the principle of time-delay
for comparison with the novel method and the classic BLAST
method. The comparison results show that our method has
achieved the maximum F-max value for each sub-ontology
of GO.

Many studies illustrated that protein sequence and
PPI network are valid for protein function (Kirac and
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Ozsoyoglu, 2008; Jiang and McQuay, 2011; Nguyen et al.,
2011; Baryshnikova, 2016; Kulmanov et al., 2018). Besides,
some researchers have used protein domain information
to predict protein function (Altshul, 1997; Forslund and
Sonnhammer, 2008), but they only focused on a single
aspect of type or structure of the domain and failed to fully
mine the general characteristics of various aspects of the
domain. We considered this and drowned lessons from the
principle of NLP to encode domains to integrate the type,
quantity, and position information of the protein domains,
and utilized the convolutional neural network to extract the
general characteristics of the domains, which is the advantage
of our model. We built a comparison model SN2GO based
on SDN2GO without domain sub-model and conducted
comparative experiments on both the training data and
the independent test set. The results show that the domain
information has significantly improved the prediction effect of
the model, especially in BPO On MFO; this might be because
the domain information, as a higher-level protein feature than
sequence, is more intuitive in expression and closer to the
functions of the protein. And to a certain extent, the comparison
results illustrated the correctness and generalizability of our
methods of protein domain information processing and
feature extraction.

In the future, we will continue to improve our model,
such as adding more GO annotation categories to expand the
scale of multi-label classification. Besides, we will also try to
integrate more aspects of protein-related features, such as protein
structure information and co-expression information, into our
model to explore the role of different information on protein
function prediction.
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The G Protein-Coupled Receptor (GPCR) family consists of more than 800 different

members. In this article, we attempt to use the physicochemical properties of

Composition, Transition, Distribution (CTD) to represent GPCRs. The dimensionality

reduction method of MRMD2.0 filters the physicochemical properties of GPCR

redundancy. Matplotlib plots the coordinates to distinguish GPCRs from other protein

sequences. The chart data show a clear distinction effect, and there is a well-defined

boundary between the two. The experimental results show that our method can

predict GPCRs.

Keywords: feature extraction, CTD, MRMD2.0, Matplotlib, predict GPCRs

INTRODUCTION

G protein-coupled receptors (GPCRs) are the largest receptor superfamily. According to their
sequence similarity, they are divided into 6 subfamilies (AF), of which the Rhodopsin or rhodopsin-
like family is the largest andmost widely studied family (Fredriksson et al., 2003; Liu and Zhu, 2019;
Ru et al., 2020). Class A has approximately 284 members in humans, and Class B subfamilies can be
further divided into two unused families: Class B1, named secretin, secrete protein-like receptors,
and Class B2 (adhesion) adhere to GPCRs. Class B1 and Class B2 contain 15 members and 33
members in humans, respectively. The adhesive G protein-coupled receptor (ADGR) family is one
of the oldest GPCR families. It exists in primitive animals, and even in several basic fungi, and is
the ancestor of the B1 subfamily of GPCRs (Nordstrm et al., 2009; Krishnan et al., 2012). Finally,
the class C glutamate family is composed of peptide receptors. The class F frizzled protein family
has appsroximately 11 members in humans.

Protein classification is one of the key issues in bioinformatics and plays an important role in the
identification and study of gene markers (Tibshirani, 1996; Cheng and Hu, 2018; Feng, 2019; Guo
et al., 2019). With the development of machine learning, protein classification and prediction have
entered a new era. Machine learning can use previous experience and data to automatically improve
the performance of algorithms, build appropriate models, and discriminate new protein sequences.
Islam et al. (2017) applied a natural language processing N-Gram model to classify proteins. The
above machine learning methods have achieved certain effects in protein classification. This article
uses feature extraction and dimension reduction of GPCR proteins to distinguish between the
properties of the extracted proteins. Finally, Matplotlab is used to distinguish GPCRs from non-
GPCRs. In the article Prediction of G Protein-Coupled Receptors (Liao et al., 2016), the 188D
method is used to extract the protein features, and then cross validation and random forest are used
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to accurately divide the GPCR and non-gpcr protein sequences.
In this paper, the CTD mode (Zou et al., 2013) is used, where
C represents the content of each hydrophobic amino acid, T
represents the frequency of the divalent peptide, andD represents
the amino acid distribution at the five positions of the sequence.
After using CTDC feature extraction method, the innovative
feature of this experiment is that the redundant features are well-
extracted using dimensionality reduction. Finally, the machine
learning method and Matplotlib are used to draw a graph that
distinguishes GPCRs from non-GPCRs.

MATERIALS AND METHODS

Datasets
1. The original 5027G protein-coupled receptors (GPCRs) were
obtained in fasta format from the database (http://www.UniProt.
org/); 2. The initial sequence was pre-processed using the
protein clustering programme CDHIT (http://cd-hit.org/) to
improve the analysis performance and reduce the homology of
the predicted sequence (Zou et al., 2020). The critical value
of sequence identity was located at 0.8. Finally, 2,495 GPCR
sequences were obtained from the positive data set. 3. The
positive sequences of all the protein sequences were removed,
and 10,386 non-GPCR protein sequences were produced as the
positive dataset (Liao et al., 2016).

Feature Extraction Methods
Principle

CTD represents the composition, transition, and distribution,
respectively. Its principle is to replace the amino acid sequence
with mathematical symbols representing physical and chemical
properties (Cheng et al., 2018a). Because the protein sequence
information is of different lengths, CTD is used to obtain
fixed-length information from proteins as input to machine
learning. In protein or peptide sequences, CTD represents
physicochemical properties or amino acid distribution patterns
of specific structures (Dubchak et al., 1995, 1999; Cai et al.,
2003; Zhang et al., 2011; Ding et al., 2017). These features are
very important for protein sequence analysis (Wei et al., 2018;
Liu et al., 2019; Liu et al., 2019a; Yan et al., 2019; Chen et al.,
2020). According to the main amino acid indicators of Tomii and
Kanehisa (Kentaro and Minoru, 1996), amino acids are divided
into three groups according to seven physical and chemical
properties, as shown in Table 1.

CTD (Dubchak et al., 1999) is very helpful for enzyme
prediction. Composition (Cai et al., 2003; Han et al., 2004; Chen
W. et al., 2019; Liu, 2019) refers to the number of specific amino
acids in a protein sequence divided by the total length N of the
amino acid in the protein sequence:

Composition(e) =
ne

N
(i)

where ne represents the sum of the number of e, a particular
amino acid, in the sequence. e could be 1, 2, or 3, which represents
the type of amino acid.

TABLE 1 | Seven types of physicochemical properties and the division of

amino acids.

Seven types of

physicochemical

properties

Division: 1 Division: 2 Division: 3

Secondary structure;

Amino acids

Helix;

M, E, A, K, R,

H, L, Q

Strand;

W, F, T, V, I,

Y, C

Coil;

S, D, G, P, N

Hydrophobicity;

Amino acids

Polar;

N, Q, D, E,

K, R

Neutral;

Y, P, H, S, T,

A, G

Hydrophobicity;

M, F, I, L, C,

W, V

Normalized van der

Waals volume;

Amino acids

0–2.78;

T, S, P, A,

G, D

2.95–94.0;

Q, L, V, N,

E, I

4.03–8.08;

M, H, K, F, R,

Y, W

Solvent accessibility;

Amino acids

Buried;

W, V, I, C, G,

F, A, L

Exposed;

Q, E, D, N,

K, P

Intermediate;

H, Y, M, S, P, T

Polarizability;

Amino acids

0–1.08;

G, A, S, D, T

0.128–

120.186;

G, P, N, V,

E, Q, I, L

0.219–0.409;

K, M, H, F, R, Y,

W

Charge;

Amino acids

Positive;

K, R

Neutral;

Q, G, H, I,

A, N, C, L,

M, FP, S, T,

W, Y, V

Negative;

E, D

Polarity;

Amino acids

4.9–6.2;

L, I, F, W, C,

M, V, Y

8.0–9.2;

P, A, T, G, S

10.4–13.0;

H, Q, R, K, N,

E, D

Assuming two specific amino acids are a and b, transition (T)
means the number of ab and ba divided by the length of the
protein sequence N-1:

Transition(ab+ ba) =
nab + nba

N − 1
(ii)

The distribution is the position of a specific amino acid in the
protein/the total length of the protein sequence, which represents
the chain length at which the first, 25, 50, 100% amino acids of
this particular amino acid are located.

For example, take the following protein sequence:
DEKRADGSTAGPSTDGNPS. According to Table 1, DE
is the amino acid sequence of classification 2 under
Charge, KR is the amino acid sequence of category 3
under Charge, and ADGST is the amino acid sequence of
classification 1 under Polarizability. AGPST is an amino
acid sequence of Polarity 2, and DGNPS is the amino
acid sequence of classification 1 under the Secondary
Structure. Thus, our protein sequence is converted by CTD
to 2233111112222211111. The following shows how the protein
sequence Composition, Transition, Distribution is calculated
(see Figure 1).

Composition of category 2: 7/(7 + 2 + 10 = 19)= 36.8%;
Composition of category 3: 2/19 = 10.5%; Composition of
category 1: 10/19 = 52.6%. Transition (23, 32) = 1/18 = 5.5%;
Transition (12, 21) = 2/18 = 11.1%; Transition (13, 31) = 1/18
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FIGURE 1 | Computational flow of CTD eigenvectors in protein sequences.

= 5.5%. Distribution (1) = 5/19, 6/19, 7/19, 8/19, 15/19, 16/19,
17/19, 18/19, 19/19; Distribution (2) =1/19, 2/19, 10/19, 11/19,
12/19, 13/19, 14/19; Distribution 3 is equal to 3/19, 4/19. The
final CTD results of DEKRADGSTAGPSTDGNPS are as follows:
Composition (2): 36.8%, Composition (3): 10.5%, Composition
(1): 52.6%. T (23, 32): 5.5%, T (12, 21): 11.1%, T (13, 31): 5.5%; D
(1): 26.3, 31.5, 36.8, 42.1, 78.9, 84.2, 89.4, 94.7, 100%; D (2): 5.2,
10.5, 52.6, 57.8, 63.1, 68.4, 73.6%; D (3): 15.7, 21.0%.

Dimensionality Reduction
The MRMD2.0 (Wei et al., 2015; Zou et al., 2016a,b) algorithm
is used to reduce the dimensions of the files after using
CTDC to extract features. The specific process of dimensionality
reduction is:

1. Attribute selection: Using analysis of variance to test the
significance of the difference between the mean values
of two or more samples; maximum correlation and
maximum distance MRMD feature classification and
accuracy and stability of prediction tasks; MIC is based on
a non-parametric information-based maximum parameter
exploration for measuring the linear or non-linear strength
of two variables X and Y; the minimum absolute contraction
and selection operator (LASSO) (Tibshirani, 1996; Guo
et al., 2019) uses an L1 regularized linear regression method;
Minimal Redundancy-Maximum Correlation (mRMR)
method expands the representativeness of a feature set by
requiring features to be maximally different from each other;

chi-square test is a widely used hypothesis test based on
the chi-square distribution for common hypothesis testing;
Recursive Feature Elimination (RFE) classifies data according
to the size of the correlation coefficients or importance
of feature attributes. Through recursive elimination of
functions in each cycle, RFE attempts to eliminate possible
dependencies and collinearity in the model.

2. Function ranking PageRank algorithm: In the attribute
selection method used above, point a to b because feature
b is more important than feature a. Finally, the result of
each function selection method forms a link list. Using the
PageRank algorithm to rank these links, a directed graph is
formed, and each feature receives a score. A ranking is then
obtained according to the level of the feature, a, b, c, d, e ...

3. Finally, choose the best outcome of the sequence. Since the
first feature “a” in the new sequence has the highest score,
random forest (Pang et al., 2006; Ding et al., 2016; Cheng
et al., 2018b; Liu et al., 2019b; Su et al., 2019; Wei et al.,
2019; Xu et al., 2019c; Lv et al., 2020) is used for 5-fold cross-
validation starting from the first feature. The highest standard
score is made by comparing the three sequences: “a,” “a,b;”
“a,b,c,d,e.” Finally, five data indicators were used: f-score,
precision, recall, MCC and AUC (Xu et al., 2018a; Cheng,
2019; Cheng L. et al., 2019; Ding et al., 2019; Zeng et al.,
2019a, 2020; Zhang et al., 2019; Liu and Chen, 2020; Wang
et al., 2020), and the sequence with the highest index and the
highest score for dimension reduction was found. The specific
dimension reduction process is shown in Figure 2.
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FIGURE 2 | The specific dimension reduction process.

Algorithm Steps
GPCR sequence protein features are extracted using specific

protein extraction methods. Any two attributes in the extracted

features are divided into GPCRs and non-GPCRs. Finally,
Matplotlib is used to divide any two attributes in the extracted

features into GPCRs and non-GPCRs (the experimental flow
chart is shown in Figure 3):

(1) Using all the different positive protein samples, extract the

corresponding Pfam protein sequence from the “family and

domain” of the UniProt website and delete the redundant
and identical Pfam number. Then, the unique Pfam number

obtained for the positive data set (Liao et al., 2016).

(2) All the protein sequences are integrated into the Pfam
number file, and the protein sequences with the same Pfam

sequence are then merged into the same file named after the
Pfam number.

(3) Delete the files with a positive Pfam number. In the
remaining Pfam number files, the negative data set (Liao
et al., 2016) is extracted from the longest sequence of
each Pfam.

(4) Use the CTDCmethod command to extract specific features
in fasta files to generate GPCRs and non-GPCRs .csv files;
positive GPCRs sample are marked as 0, negative sample are
marked as−1, and the GPCRs and non-GPCRs .csv files are
combined into one file.

(5) The combined .csv file was reduced by MRMD2.0, and the
reduced CTDC-mRMD2.0.csv file was obtained.

(6) Select any two attributes of the 39 attributes in the CTDC
sequence. GPCRs are purple andmarked 0, and non-GPCRs
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FIGURE 3 | Experimental flow chart for prediction of G protein-coupled receptors.

are green andmarked 1; UsingMatplotlib, plot the picture of
GPCRs and non-GPCRs.

RESULTS

Comparison of Effects of Different
Features
CTDCwas used to extract the characteristics of the GPCR protein
feature sequences sample, including 39 properties. Previous
studies showed that feature extraction is very important for
constructing the computational predictors (Wei et al., 2017a,b;

Xu et al., 2018b; Liang et al., 2019; Liu and Li, 2019; Patil and
Chouhan, 2019; Shen et al., 2019; Zhang and Liu, 2019; Junwei
et al., 2020; Liu et al., 2020; Wen et al., 2020). Any two of
the 39 attributes were selected and plotted using Matplotlab

to obtain the sample differentiation graph of GPCRs and non-
GPCRs, as shown in Figure 4. Among them, the abscissa and

the ordinate in the chart represent two of the 39 attributes.

The x-coordinate of Figure 4 on the left is the first of the 39

properties, “hydrophobicity_PRAM900101,” named “RKEDQN,”
which is hydrophilic. The y-coordinate is the 14th property,

“hydrophobicity_PRAM900101,” named “GASTPHY,” which is
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FIGURE 4 | Comparison of effects of different features.

neutral. In the right diagram of Figure 4, the X coordinate is
the fourth attribute in the CTDC feature extraction method,
normwaalsvolume: NVEQIL. The Y coordinate is the 25th
attribute in CTDC, hydrophobicity_ENGD860101: CVLIMF. As
seen from the chart, GPCRs and non-GRCRs are represented by
blue and green, respectively, in which GPCRs and non-GPCRs
can be clearly distinguished.

Comparison of Different Feature Extraction
Methods
A comparative experiment was conducted, and the GPCR protein
feature sequences are extracted by the 188D feature extraction
method. The experimental effect is shown in Figure 5. In
Figure 5, 120 and 100 dimensions of 188D are used. Non-
GPCRs and GPCRs are marked as −1 and 1, respectively. It
can be seen from the chart that the differentiation effect of
GPCRs and non-GPCRs is very poor, but the differentiation
effect of Figure 4 is very good. Thus, whether GPCRs and non-
GPCRs can be distinguished well is related to the selected feature
extraction method.

Comparison of Results of Different
Dimensionality Reduction Methods
The feature sequences of GPCR protein are extracted by the
mRMR (Ding and Peng, 2005; Peng et al., 2005; Wang et al.,
2018) dimensionality reduction method. 0 represents negative
sample non-GPCRs, and 1 represents positive sample GPCRs.
The experimental results are shown in Figure 6. In comparison
with Figure 4, the two figures adopt the same feature extraction
method of CTDC, the same attribute features and different
dimension reduction methods. As seen from the figure, the
difference between GPCRs and non-GPCRs was also very high
after the dimension reduction method was used, and positive and
negative samples are clearly distinguished.

Comparison With Others
In the study of Prediction of G Protein-Coupled Receptors with
SVM-Prot Features and Random Forest (Liao et al., 2016), the
researchers adopted a method different from the method in this

paper to predict GPCRs and non-GPCRs. The experimental steps
they adopted were as follows: 1. Extract GPCR and non-GPCR
sample characteristics with 188D (Balfanz et al., 2013) 2. The
sample sequences were divided into five parts, four of which were
for the training set and the remaining one for the test set. In
these four parts, positive and negative samples were treated with
a strike balance 3. Random Forest was applied to the training
samples, and the accuracy of the test samples was measured 4.
Finally, Sn, Sp, Acc, MCC, and AUC standards were adopted to
measure the accuracy. The correct classification rate of the five
independent test sets was 90.64, 90.37, 88.04, 93.28, and 95.73,
with an average rate of 91.61± 2.96%.

CONCLUSION

With the feature extraction method of CTDC, GPCRs and non-
GPCRs can be well-distinguished from the two randomly selected
dimensions. The same CTDC feature extraction method was
used, but another dimension reduction method, mRMR, was
selected. Compared with mRMD2.0, the differentiation effect
was similar, and GPCRs and non-GPCRs could be significantly
predicted. Using different feature extraction methods (188D)
and the same dimensionality reduction method (mRMD2.0),
GPCRs and non-GPCRs had no clear dividing line. In conclusion,
different methods of feature extraction and the same method of
dimensionality reduction have different effects on GPCRs and
non-GPCRs. Therefore, the feature extraction method is the
direct factor for distinguishing GPCRs from non-GPCRs.

However, a similar work was done in the Prediction of G
protein-coupled sensor (Nordstrm et al., 2009) study. Compared
with our study, the defects were as follows: 1. The 188D feature
extraction method with more dimensions was adopted, the 188D
feature extraction method had more feature dimensions, and
the feature information of proteins was more complete and
more comprehensive. The dimension information extracted by
the CTDC method in this experiment has only 39 attribute
characteristics, and there are less data. In addition, there is
less redundant information after dimension reduction. 2. Five
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FIGURE 5 | Comparison of different feature extraction methods.

FIGURE 6 | Comparison of results of different dimensionality reduction methods.

independent test sets and training sets were divided in the
Prediction of G protein-coupled sensor study, and the positive
and negative samples in the training set tended to be balanced
by the use of strike. However, defects in the strike method lead
to inaccuracy of the data. In this paper, on the basis of original
data collection, feature extraction and dimensionality reduction
were directly carried out to distinguish GPCRs sample from
non-GPCRs sample to obtain more accurate prediction results.
Compared with this paper, the advantages are as follows: 1.
The accuracy of the Prediction of G Protein by Coupled sensor
study is approximately 90%; while the GPCRs and non-GPCRs
differentiation diagram in this paper is shown by Matplotlab,
and the accuracy was not calculated correctly. 2. The universality
of this experiment is relatively low. The CTDC method and
MRMD2.0 dimension reduction method may only be applicable
to GPCRs protein sequence but not to other protein sequence.
In the study of Prediction of G protein-coupled sensor, cross
validation and Random Forest can be used on other protein
sequences (Lai et al., 2018; Tang et al., 2018), especially the
proposed framework can be applied to protein fold recognition

(Wei et al., 2016; Liu et al., 2017), protein remote homology (Liu
et al., 2020), protein subcellular localization (Lv et al., 2019), etc.

DISCUSSION

Like other macromolecules, proteins are important parts of the
living body, the material basis of life, and they participate in
almost every activity in the cell. Proteins performmany functions
in the body. Through the study of proteins, the mechanism of
diseases can be studied, and the design of new drugs can also
be promoted. With the advent of machine learning, the function
prediction of proteins has also flourished. Obtaining high-
performance classification models, accurately and efficiently
extracting protein sequences, and converting them into equal-
length amino acid sequences have become research directions of
many scientists.

Compared with the traditional experimental method, a set
of experimental schemes in this paper replaces the redundant
experimental steps. Using the CTDCmethod and dimensionality
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reduction in CTD, the redundant attributes in the protein
sequence features are successfully removed, and they are drawn
intuitively using Matplotlib. The division map between GPCRs
and non-GPCRs is then drawn. In the division map, there can
be a clear distinction between GPCRs and non-GPCRs. This
experiment has achieved a certain degree of accuracy.

There are still many aspects that need to be further studied.
The Matplotlib coordinate chart used to classify GPCRs and
non-GPCRs can only distinguish the relatively large positive and
negative samples after being divided by attributes, extracting
several solutions: 1. The use of a single Matplotlib coordinate
diagram is simple to operate and has many limitations;
thus, it cannot reach high accuracy. In the later stage, more
comprehensive computational intelligence method such as
neural networks (Song et al., 2018a; Zhou et al., 2018; Bao et al.,
2019; Hong et al., 2019; Sun et al., 2020), network methods
(Sun et al., 2014; Zhou et al., 2015, 2016; Song et al., 2018b;
Zeng et al., 2018) and evolutionary strategies (Xu et al., 2019a,b;
Zeng et al., 2019b) can be adopted to take the extracted protein
features as input. Thus, the positive and negative samples can
be divided more accurately, and accuracy can be obtained. 2.
In terms of high extraction accuracy, a more comprehensive
protein feature extraction method combined with the dimension

reduction method (Yang et al., 2019; Zhu et al., 2019) for
GPCRs pruning was attempted to screen out features with higher
differentiation between GPCRs and non-GPCRs.
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Antioxidant proteins play important roles in preventing free radical oxidation from
damaging cells and DNA. They have become ideal candidates of disease prevention
and treatment. Therefore, it is urgent to identify antioxidants from natural compounds.
Since experimental methods are still cost ineffective, a series of computational methods
have been proposed to identify antioxidant proteins. However, the performance of the
current methods are still not satisfactory. In this study, a support vector machine based
method, called Vote9, was proposed to identify antioxidants, in which the sequences
were encoded by using the features generated from 9 optimal individual models. Results
from jackknife test demonstrated that Vote9 is comparable with the best one of the
existing predictors for this task. We hope that Vote9 will become a useful tool or at least
can play a complementary role to the existing methods for identifying antioxidants.

Keywords: antioxidant, reduced amino acid composition, g-gap dipeptide composition, feature selection, support
vector machine

INTRODUCTION

Reactive oxygen species (ROS) are composed of oxygen free radicals and nitrogen free radicals.
Free radicals contain unpaired electron molecules or atoms, which are generally unstable and
highly reactive. They can trigger lipid peroxidation during metabolism, which leads to DNA strand
breaks, and even oxidize biofilms and almost all molecules in tissues indiscriminately. Fortunately,
organisms have evolved effective strategies to detect and prevent molecular oxygen metabolites
(Finkel and Holbrook, 2000; Mccord, 2000; Klaus and Heribert, 2004; Li et al., 2015). This is
called the antioxidant system of organisms, which can effectively resist the damages caused by ROS
(Agus et al., 2011).

Owing to their important roles in the antioxidant system, natural antioxidants have received
more and more attentions (Yigit et al., 2014). Antioxidant proteins can neutralize free radicals,
thereby blocking cell damage or death caused by free radicals. The consumption of antioxidants
can be used to reduce the oxidative stress caused by excessive ROS, and reduce the damage to the
organism (Yang et al., 2017). Antioxidants have also been applied to prevent diseases such as heart
disease, cancer, cardiovascular disease (Gey, 1990; Dreher and Junod, 1996; Diaz et al., 1997). Its
unique role in anti-aging was also reported (Ames et al., 1993).
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Accordingly, many proteins extracted from rapeseed, ginkgo
and other plant seeds are used as natural antioxidants (Nichole
et al., 2008; Huang et al., 2009). Some micronutrients such as
vitamin C and vitamin E (Lobo et al., 2010) are also considered
as antioxidant molecules. However, our body cannot synthesize
these nutrients, so we need to ingest them from the diet.
Therefore, it has become an urgent task to identify proteins with
antioxidant activity from natural compounds.

Although identifying antioxidant proteins through
biochemical experiments is an objective and accurate method,
they are still labor intensive and expensive. With the massive
production of protein sequences, a series of computational
methods have been proposed to identify antioxidant proteins.
For the first time, Enrique et al. (2013) proposed a random forest
model for predicting antioxidant proteins based on star map
topological index and achieved satisfactory results. However,
their model was trained based on a dataset including redundant
sequences that might lead to overestimation problems (Chou,
2011). In 2013, Feng et al. (2013) constructed a high quality
dataset with the sequence similarity less than 60%. Based on
this dataset, they developed a Naive Bayes method by using the
optimal dipeptides and obtained an average accuracy of 66.88%.
Based on this dataset, a series of methods have been proposed
in recent years. In 2016, Feng et al. (2016) proposed a support
vector machine based method, called AodPred, which identifies
antioxidant by using the optimal 3-gap dipeptide features and
improves the prediction accuracy to 74.79%. Later on, Lei et al.
(2018) developed a computational model called SeqSVM by
using support vector machine and obtained an overall accuracy
of 89.46%. More recently, Meng et al. (2019) proposed another
support vector machine model called AOPs-SVM by integrating
multiple kinds of features and obtained an overall accuracy of
94.2%. However, the sensitivity of AOPs-SVM is only 68%.

The above results indicate that the prediction accuracy still
needs to be improved. Therefore, in this study, based on the
optimal dipeptide composition and the reduced amino acid
composition (Chen D. et al., 2012; Chen W. et al., 2012; Feng
et al., 2016; Lv et al., 2019), a new model was constructed.
The results show that the performance of the proposed method
for identifying antioxidant proteins is better than or at least
comparable to existing methods.

MATERIALS AND METHODS

Training Set and Test Set
The dataset used in the present work is the same as the one used
by Feng et al. (2013, 2017),which includes 253 antioxidant protein
sequences and 1552 non-antioxidant protein sequences with the
sequence identity less than 60%. The dataset is expressed as:

S = S+ ∪ S− (1)

where “S” stands for benchmark dataset, “S+” is the positive
dataset and contains 253 antioxidant protein sequences, and “S−”
is the negative dataset and contains 1552 non-antioxidant protein

sequences. The longest and shortest peptides in the dataset are
1463 and 11 amino acids, respectively.

In the following analysis, the dataset S was divided into two
parts. One of them is the training set ST and includes 80% of the
sequences in S, and the remaining 20% sequences form the testing
set SE, which are expressed as following,

ST = S∗+0.8 ∪ S∗−0.8 (2)

SE = S− ST (3)

Independent Dataset
To objectively evaluate the proposed method and compare with
its counterpart, an independent dataset was built in the present
work. By searching the Universal Protein Resource (Uniprot)
with the keywords “antioxidant” and “reviewed,” and setting the
date from March 1, 2014 to March 31, 2020, we obtained 22
antioxidant protein sequences that are independent from the
sequences in the dataset S.

Support Vector Machine
Support Vector Machine (SVM) is a method for effectively
identifying data according to supervised learning method, which
is widely used in bioinformatics and other fields (Feng et al.,
2016; Liao et al., 2018; Wang et al., 2019; Liu and Chen, 2020).
If the samples are linearly separated, the basic idea of the SVM
algorithm is to solve the separation hyperplane that can correctly
divide the training dataset and have the largest geometric interval;
when the samples are nonlinearly separated, SVM maps the low-
dimensional data to the high-dimensional data by the kernel
function space. In this work, the LIBSVM package downloaded
from https://www.csie.ntu.edu.tw/~cjlin/libsvm/ was used to
perform the prediction. The best regularization parameter C
and kernel width parameter g were determined by using the
grid search method.

Sequence Representation
g-gap Dipeptide Composition
The g-gap dipeptide composition was proposed to describe the
long-range correlation between two amino acid residues and has
been proved to be effective in the field of protein recognition
(Ding et al., 2013; Lin et al., 2013; Tan et al., 2019). Accordingly,
in the present work, the g-gap dipeptide composition was
used to encode the sequences in both benchmark dataset and
independent test dataset.

The g-gap dipeptide composition is expressed as following,

F = [f g1 f g2 ...f gi ...f g400]
T (4)

f gi =
ngi

L− g − 1
(5)

where f g
i represents the frequency of the i-th (i = 1, 2,..., 400)

dipeptide with g-gap interval in the protein sequence, and T
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FIGURE 1 | The flowchart of building the proposed method. The samples in the training dataset were firstly encoded by using reduced amino acid compositions and
the optimal g-gap dipeptide compositions, respectively. Accordingly, 15 SVM models based on these different kinds of features was built. After validating the
combinational performance of these models on the test dataset, 9 of the 15 SVM models were selected out as the optimal models. Finally, the SVM outs of these 9
models were used as the new features and used as the inputs of the SVM for building the proposed model.

FIGURE 2 | The IFS curves of different g-gap dipeptides (g = 0, 1, 2,..., 9). The optimal number of features and the accuracy based on the optimal features were
shown in the right of the figure.

represents the transposition of the vector. ng
i represents the

number of the i-th g-gap dipeptide. In the present work, g is an
integer in the range of [0, 9]. For example, g = 0 represents the

correlation between two adjacent amino acid residues, and g = 1
represents the correlation of two amino acid residues separated
by one residue, and so forth.
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FIGURE 3 | (A) The performance of the 15 models for identifying antioxidants. OP (5) stands for the method of optimizing amino acid residues to divide 20 amino
acid letters into 5 categories, and then uses LIBSVM to establish a classification model. Using the method of g-gap dipeptide (Feng et al., 2016), we selected the
best feature subset of protein sequence steps g = 0, 1... 7 to construct a g0, g1... g7 classification model. Vote9 is a comprehensive classification model that used
the prediction results of the above classification models as feature vectors. (B) Comparison between Vote9 and single classification model.

Reduced Amino Acid Composition
With the aim of including structural information, the reduced
amino acid composition (RAAC) was applied to encode proteins
(Feng et al., 2016). Compared with the classical amino acid
composition, the RAACs can reduce protein complexity and
eliminate part of the redundant signals without losing sequence
information intact (Wang and Wang, 1999; Liu et al., 2018). In
order to obtain the RAAC from the sequences, Zuo et al. (2017)
established the online webserver and database (Zheng et al., 2019)
that can be used to calculate RAAC.

In term of RAAC, based on amino acid sequence and structure
information, the 20 natural amino acids can be aggregated
into a smaller number of representative amino acid residues
(Thomas and Dill, 1996; Mirny and Shakhnovich, 1999; Solis
and Rackovsky, 2000). According to the different optimization
procedures (Op) for protein sequences proposed by Etchebest
et al. (2007), there are 5 different cluster files for the 20 natural
amino acids, i.e., Op(5), Op(8), Op(9), Op(11)and Op(13), which
are formulated as below:

Op (i) =

Op (5) : {G; IVFYW; ALMEQRK; P; NDHSTC}
Op (8) : {G; IV; FYW; ALM; EQRK; P; ND; HSTC}
Op (9) : {G; IV; FYW; ALM; EQRK; P; ND; HS; TC}
Op (11) :{G; IV; FYW; A; LM; EQRK; P; ND; HS;}
T; C}
Op (13) :{G; IV; FYW; A; L; M; E; QRK; P; ND;
HS; T; C}

(6)

where i indicates the different cluster profiles (i = 5, 8, 9,
11, 13), and the letters between the two semicolons belong to
the same cluster.

Accordingly, a sequence can be encoded based on the reduced
amino acid composition. As indicated in Eq. 6, for the n-peptide

FIGURE 4 | Comparison of Vote9 with existing methods.

composition with various cluster profiles, the components and
dimensions of the feature vector will be different.

9 = [91, 92, · · · , 9�]
T (7)

where � is the dimension of the vector, and is based on the
selected n and cluster profiles. For example, for the dipeptide
composition with the cluster profile of Op(5), the � will be 25.
In the current work, our initial tests demonstrate that the optimal
n for different cluster profiles is as following,

� =



53 = 125 for Op(5) cluster
82 = 64 for Op(8) cluster
92 = 81 for Op(9) cluster
112 = 121 for Op(11) cluster
132 = 169 for Op(13) cluster

(8)

Performance Evaluation
There are usually three methods for evaluating the performance
of computational models, namely independent dataset test, k-fold

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 July 2020 | Volume 8 | Article 85830

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00858 July 21, 2020 Time: 16:45 # 5

Li et al. Identifying Antioxidants

cross-validation test, and jackknife test (Wei et al., 2017; Chen
et al., 2019; Manavalan et al., 2019a,b; Yang et al., 2019; Hasan
et al., 2020; Lv et al., 2020). Among the three evaluation methods,
the most rigorous and least random jackknife test was used to
evaluate the proposed method.

The sensitivity (Sn), specificity (Sp), accuracy (Acc) and
Mathew’s correlation coefficient (MCC) was selected as the
evaluation metrics that are defined as following,

Sn =
TP

TP + FN
(9)

Sp =
TN

TN + FP
(10)

Acc =
TP + TN

TP + FN + TN + FP
(11)

MCC =
TN∗TP − FP∗FN

√
(TP + FP)∗(FN + TN)∗(TP + FN)∗(TN + FP)

(12)
where TP, FP, FN, and TN represent true positive, false positive,
false negative and true negative, respectively.

Feature Selection
The principle of analysis of variance (ANOVA) is to measure the
characteristic variance by calculating the ratio (F-value) between
the characteristics of the groups and the internal characteristics
of the groups (Lin and Ding, 2011; Basith et al., 2019). The
larger the F-value, the greater the probability that each sample
comes from a different population. In order to exclude redundant
features and enhance the robustness of the proposed model, the
ANOVA that widely used in computational proteomics (Ding
et al., 2013; Lin et al., 2013; Basith et al., 2020) combined with
the incremental feature selection (IFS) strategy was used to select
the optimal features.

Flowchart of the Method
By following the above procedure, we proposed a new
computational method for identifying antioxidants. The
flowchart of how to build it was shown in Figure 1.

RESULTS AND DISCUSSION

Prediction Performance
In order to obtain the optimal features, for a given kind of g-gap
dipeptide composition, the 400 g-gap dipeptide compositions
were ranked based on their F-scores. Each of the 400 dipeptide
compositions were added one by one from higher to lower
rank. This procedure was repeated 400 times, and for each
time a SVM model was built. The accuracies of these models
were then used to plot the IFS curve. Accordingly, the 10
IFS curves for g = 0 to 9 were obtained (Figure 2), where
the abscissa is the number of features and the ordinate
is the corresponding accuracy. In each curve, the optimal
number of features were obtained when the curve reaches
its peak. The optimal number of features and the accuracy
based on the optimal features were shown in the right of
Figure 2. Accordingly, 10 models were obtained based on g-gap
dipeptide compositions.

Based on the reduced amino acid composition, another
five models were built for identifying antioxidants. Their
predictive performances together with that of the 10 models
based on g-gap dipeptide composition were indicated in
Figure 3A.

According to the prediction results of the 15 models, we
removed 6 models with the sensitivity less than 20%. Therefore,
9 models were left and were combined to build the final model
in the following analysis. To do so, the out of the nine SVM
based models (1 or −1) were further used as the input of
the SVM. Therefore, each sequence will be re-encoded by a 9-
dimension vector with the element of 1 or −1. The model thus
obtained is called Vote9. In the jackknife test, Vote9 obtained
an accuracy of 0.94 with the sensitivity of 0.65, specificity of 0.99
and MCC of 0.74.

Comparison With Single Model
In order to demonstrate the better performance of Vote9, we
compared its performance with that of the single model for
identifying antioxidants in the test dataset. The result is shown
in Figure 3B. It was found that the sensitivity, specificity and
accuracy of Vote9 are all significantly better than those of any

TABLE 1 | Comparative results of different methods for identifying antioxidants in independent dataset.

Sample Aops-SVM Aodpred Vote9 Sample Aops-SVM Aodpred Vote9

P9WQB7 Y Y N P9WIS6 Y N N

P9WHH9 Y N N P9WQB6 Y Y N

P9WIS7 Y N Y P9WID9 Y Y N

P9WG35 Y Y N O17433 Y Y N

P9WGE9 Y Y N P9WIE0 Y N N

P9WQB5 Y Y N P9WID8 Y Y N

P9WIE3 Y Y N P9WGE8 Y Y N

P0CU34 Y Y N C0HK70 Y Y N

Q5ACV9 N N N P9WQB4 Y Y N

P9WHH8 Y N Y P9WG34 Y Y N

P9WIE1 Y N Y P9WIE2 Y Y N
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single model, demonstrating that it’s necessary to built the model
by combining the optimal single models.

Comparison With Existing Methods
In this section, we compared the performance of Vote9 with the
performance of other existing methods (Aops-SVM, AodPred,
and SeqSVM) that all trained based on the same dataset. Their
performances were shown in Figure 4.

It was found that the accuracy of Vote9 is better than that
of AodPred and SeqSVM, and is comparable with that of Aops-
SVM. Although the sensitivity of Vote9 is lower than that of
Aops-SVM and AodPred, its specificity is higher than that of the
other three methods (Aops-SVM, AodPred, and SeqSVM). This
result indicate that Vote9 might also become a useful tool for
identifying antioxidants.

In order to objectively evaluate the performance of different
methods for identifying antioxidants, a comparison was
performed based on the independent dataset. Since some of the
previous methods didn’t provide publicly available tool or doesn’t
work properly, the comparison was also performed among Vote9,
Aops-SVM, and AodPred. Their performances for identifying
antioxidants in independent dataset were reported in Table 1. As
shown in Table 1, we found that Aops-SVM performs the best,
and Vote9 and AodPred can be used as complementary tools.

Conclusion
The role of antioxidant proteins in neutralizing free
radicals and preventing the damage of free radicals to

cells is well known. Unfortunately, there are very few
molecules with antioxidant properties in nature. Therefore,
in order to accelerate researches on antioxidant proteins,
there is an urgent need to develop effective methods for
identifying them.

In the present work, we proposed a new method, called
Vote9, in which the sequences were encoded by using the
features generated from 9 optimal individual models. Results
from jackknife test demonstrated that Vote9 is comparable
with the best of the existing predictors for this task. The
results of independent dataset test demonstrate that Vote9 can
play a complementary role to the existing methods in this
area. We hope that Vote9 will become a useful method for
identifying antioxidants.
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Cancer is still a severe health problem globally. The therapy of cancer traditionally
involves the use of radiotherapy or anticancer drugs to kill cancer cells, but these
methods are quite expensive and have side effects, which will cause great harm to
patients. With the find of anticancer peptides (ACPs), significant progress has been
achieved in the therapy of tumors. Therefore, it is invaluable to accurately identify
anticancer peptides. Although biochemical experiments can solve this work, this method
is expensive and time-consuming. To promote the application of anticancer peptides
in cancer therapy, machine learning can be used to recognize anticancer peptides by
extracting the feature vectors of anticancer peptides. Nevertheless, poor performance
usually be found in training the machine learning model to utilizing high-dimensional
features in practice. In order to solve the above job, this paper put forward a 19-
dimensional feature model based on anticancer peptide sequences, which has lower
dimensionality and better performance than some existing methods. In addition, this
paper also separated a model with a low number of dimensions and acceptable
performance. The few features identified in this study may represent the important
features of anticancer peptides.

Keywords: anticancer peptide, feature extraction, feature model, feature selection, machine learning

INTRODUCTION

Cancer is still a severe health problem globally, and lots of people have died from cancer (Liao
et al., 2018; Cheng et al., 2019a; Zeng W. et al., 2019; Zhang Y. et al., 2019; Zhou et al., 2019;
Yang et al., 2020). Traditional cancer treatments kill not only cancer cells but also normal cells,
and the medical costs are very high (Feng, 2019; Lin et al., 2019; Li Y.H. et al., 2020; Zhang
et al., 2020). With the find of anticancer peptides, the situation has changed because anticancer
peptides can interact with the anionic cellular elements of cancer cells to selectively kill cancer
cells without harming the normal cells of the body (Ozkan et al., 2019; Wang Y. et al., 2020; Yin
et al., 2020). Although there have been some defects in the development of anticancer peptides,
anticancer peptides are safer than man-made drugs (Sun et al., 2016; Liu H. et al., 2018; Liao
and Jiang, 2019; Munir et al., 2019; Srivastava et al., 2019; Liu H. et al., 2020; Ru et al., 2020;
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Wang J. et al., 2020) and have higher effectiveness, specificity and
selectivity. Anticancer peptides provide a new direction for the
treatment of cancer, so the therapeutic methods of anticancer
peptides have attracted greater attention. Anticancer peptides are
generally composed of five to thirty amino acids. Nevertheless, it
is still hard to identify anticancer peptides from other (artificially
designed or natural) peptides. Using biochemical experiments
to identify anticancer peptides is very time-consuming and
expensive. In addition, only a few anticancer peptides can be used
in the clinic. Thus, it is essential to apply machine learning to
forecast anticancer peptides.

In past few years, some bioinformatics methods have been
introduced to predict anticancer peptides. By extracting the
amino acid composition and binary features of anticancer
peptides as feature vectors, Tyagi et al. (2013) applied support
vector machine to verify the performance, and the accuracy
reached 91.44%. Hajisharifi et al. (2014) applied support vector
machine to predict anticancer peptides on the basis of the local
alignment kernel and pseudo-amino acid composition, and the
highest accuracy was 89.7%. Chen W. et al. (2016) developed
a classifier for predicting anticancer peptides by optimizing
the composition of g-GAP dipeptides, and 94.77% accuracy
was obtained by using 126D features. Xu et al. (2018b) used
400D features or 400D-g gap features to predict anticancer
peptides, and the accuracy of support vector machine reached
91.86%. The above methods obtained sound prediction results,
but these methods did not mention the dimensional advantages
of the model. In reality, training the machine learning model
utilizing high-dimensional features usually behaves poorly, This
phenomenon is called Curse of Dimensionality (Wilcox, 1961; Xu
et al., 2017; Xu Y. et al., 2018; Zou et al., 2017; Wang et al., 2019).

In this paper, through using a variety of polypeptide feature
extraction methods, the obtained feature vectors were selected
many times, which gained a low-dimensional model. Using
multiple classifiers for verification, the performance accuracy
was 92.73%, while the number of dimensions of the model
was only 19. In this paper, the most important 7 dimensional
features were further separated and verified, and good results
were obtained. The feature model obtained in this paper can
not only accurately and rapidly classify anticancer peptides, but
also effectively avoid Curse of Dimensionality. The above results
may suggest that these low-dimensional features are important
features for distinguishing anticancer peptides.

MATERIALS AND METHODS

The process of this research is shown in Figure 1. Every detailed
step will be presented in the following sections.

Benchmark Dataset
In this paper, we used the benchmark dataset constructed by
Hajisharifi et al., which contained 206 non-anticancer peptides
and 138 anticancer peptides. The anticancer peptides in this data
set were extracted from APD2, and 206 non-anticancer peptides
established by Wang et al. were extracted from UniProt. To
avoid the deviation of the classifier, peptides with more than

90% similarity were deleted from the data set through CD-HIT.
Chen et al. and Xu et al. have applied the identical benchmark
data set as well.

Feature Extraction Strategies
The peptide sequences can not be immediately identified by
machine learning algorithms. Therefore, it is requisite to translate
the strings stood for peptide sequences into numerical features
(Liu et al., 2006, 2019b; Liu S. et al., 2018; Jia et al., 2018; Wang
et al., 2018; Chen C. et al., 2019; Hong J. et al., 2019). The feature
extraction methods are very crucial in building computational
predictors (Cheng et al., 2018, 2019b; Xiong et al., 2018; Zhang
et al., 2018b, 2019a; Sun et al., 2019; Tang et al., 2019).

In this paper, we applied five sorts of feature extraction
strategies including amino acid composition (AAC), conjoint
triad (CT), pseudo-amino acid composition (PAAC), grouped
amino acid composition (GAAC) and C/T/D. Each strategy
may also include several feature extraction methods.
This paper implemented these strategies through iFeature
(Chen et al., 2018).

Conjoint Triad
Shen et al. (2007) put forward the conjoint triad model (CT). In
consideration of the properties of one amino acid and its nearby
amino acids and regards any three sequential amino acids as a
unit, the model classifies amino acids into seven sorts. Triad in the
same class are considered similar. As an example, triads which are
composed by three amino acids belonging to the same sort, such
as GLM and VFT, could be treated equally, since they may play
the same role. A peptide sequence is represented by a binary space
(V,F). V is the vector space of sequence features. Each feature (vi)
represents a unit. F is the frequency vector corresponding to V,
and each feature (fi) is the frequency of vi in a peptide sequence.

C/T/D
Dubchak et al. (1995) put forward the C/T/D model. This model
considers 3 properties of amino acids, their solubility, secondary
structure and relative hydrophobicity. Amino acids are classified
into three classes on the basis of the relative hydrophobicity, three
or four classes on the basis of the secondary structure, and two
classes on the basis of solubility. Each class is presented by the
three kinds of descriptors: C/T/D (Tan et al., 2019).

Amino Acid Composition
The peptide is composed of 20 sorts of amino acids (Liu
et al., 2019a). The frequency of every amino acid type in a
peptide sequence was computed to present the peptide sequences.
Therefore, each peptide sequence can be represented as a 20-
dimensional feature model. This model is called amino acid
composition model (AAC). The features can be defined as:

f (a) = Na
/

N, a ∈ (A, C, . . . , W, Y)

where Na is the quantity of amino acid type a. while N is the
length of a peptide sequence.

In this paper, we also used the k-spaced amino acid pair
composition model (CKSAAP), which computes the frequency
of amino acid pairs separated by an arbitrary number (k) of
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FIGURE 1 | The main flow chart of the research process in this paper.

amino acid residues. A example of this encoding scheme (k = 0)
is provided as follow:

a peptide sequence : CRACRKDSMVN

The features (k = 0) can be defined as:
(

NAA = 0/
(N− 1),

NAC = 1/
(N− 1), . . . ,

NCQ = 0/
(N− 1),

NCR = 2/
(N− 1), . . . ,

NYY = 0/
(N− 1)

)
400

At the same time, this paper used the tripeptide composition
model (TPC), which computes the frequency of three consecutive
amino acids in a peptide sequence and provides 8000 dimensional
features. The features can be defined as:

f
(
a, b, c

)
= Nabc

/
(N− 2), a, b, c ∈ (A, C, . . . , W, Y)

where Nabc is the quantity of amino acid type a, b, and c. while N
is the length of a peptide sequence.

At the same time, this paper used the dipeptide composition
model (DPC), which computes the frequency of two consecutive
amino acids in a peptide sequence and provides 400D features.
The features can be defined as:

f
(
a, b

)
= Nab

/
(N− 1), a, b ∈ (A, C, . . . , W, Y)

where Nab is the quantity of amino acid type a and b. while N is
the length of a peptide sequence.

Pseudo-Amino Acid Composition
Chou (2001) put forward a pseudo-amino acid composition
model (PAAC). In this model, It takes into account not only the
frequency of each amino acid type in a peptide sequence but
also the position information of the amino acids. Therefore, the
feature of the pseudo-amino acid composition is stated as below:

PAAC = (a1,a2,...,a19,a20,a20+1, a20+2,...,a20+n)
The front portion a1,..., a19,a20 stand for the frequency of each

amino acid type in a peptide sequence, and the latter portion
a20+1,...,a20+n represent the location info of the amino acids in
a peptide sequence.

This paper also used a method similar to PAAC. The
amphiphilic pseudo-amino acid composition model (APAAC)
was put forward by Chou et al. The model takes the hydrophilic
and hydrophobic properties of amino acids into account.

Grouped Amino Acid Composition
The grouped amino acid composition model (GAAC) divides 20
amino acid types into 5 classes on the basis of the physical and
chemical properties and then computes the frequency of each
amino acid group in a peptide sequence. The features can be
defined as:

f(c) = Nc
/

N, c ∈ (c1, c2, c3, c4, c5)
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where Nc is the quantity of amino acid in class c. while N is the
length of a peptide sequence.

In this paper, a model similar to the grouped amino acid
model, k-spaced amino acid group pair (CKSAAGP), was used
to compute the frequency of amino acid group pairs separated by
an arbitrary number (k) of amino acid residues.

This paper also used the grouped dipeptide composition
model (GDPC), which can be regarded as a combination
of GAAC and DPC.

In addition, this paper used the grouped tripeptide
composition model (GTPC), which can be regarded as a
combination of GAAC and TPC.

Feature Selection
Feature selection is the procedure of picking out a subset
from the relevant features applied in machine learning model
building (Zou et al., 2016; Qiao et al., 2018; Cheng, 2019;
Yang et al., 2019; Zhang M. et al., 2019; Li F. et al., 2020).
The dimension of features will be decreased after feature
selection, thus this procedure is named dimension reduction as
well. MRMD2.0 was mainly used in this paper to reduce the
feature dimensions. Each feature was given a numerical value
by MRMD2.0 (the larger the number, the feature’s recognition
ability will be more obvious). MRMD2.0 sorted the features in
order on the basis of the ranking value. Next, the first feature
with the highest value was examined for its performance. The
second feature was added to examine the capability of the new
feature subset. This procedure continued till examining total
features. Eventually, some parameters in disparate dimensions
were acquired, including F-score, accuracy, etc.

Classifier
Support Vector Machine
A support vector machine (SVM) was used for prediction in this
study. SVM has been widely applied in the proteome prediction
(Jiang et al., 2013; Wei et al., 2016, 2018; Ding et al., 2017; Lin
et al., 2017; Qu et al., 2017; Wang et al., 2017, 2018; Guo and Xu,
2018; Xu et al., 2018a,b; Zhang et al., 2018a; Chao et al., 2019;
Chen Z. et al., 2019; Fang et al., 2019; Hong Z. et al., 2019; Liu
and Li, 2019; Yu and Gao, 2019; Zeng et al., 2019b; Dao et al.,
2020; Huang et al., 2020), transcriptome (Chen X. et al., 2016;
Tang et al., 2017) and genome (Zeng et al., 2017; Song et al., 2018;
Deng et al., 2019b; Hong Z. et al., 2019). Therefore, support vector
machine is a pretty useful classifier. libSVM was adopted in this
paper to optimize the prediction results of SVM utilizing grid
method to correct parameters g and c.

Random Forest
Random forest (rf) has been extensively applied as a classifier in
chemoinformatics (Zeng et al., 2019b, 2020a,b; Song et al., 2020)
and bioinformatics (Zhang J. et al., 2016; Guo and Xu, 2018; Deng
et al., 2019a; Liu et al., 2019a; Lv H. et al., 2019; Lv Z. et al., 2019;
Lv et al., 2020; Ru et al., 2019; Wei et al., 2019; Xu et al., 2019;
Tang et al., 2020; Yu et al., 2020). Rf was applied in this paper.

LibD3C
At the same time, this paper used the LibD3C classifier (Lin
et al., 2014) for prediction to examine the performance of the
model. The classifier adopts the strategy of selective integration,
based on the hybrid integrated pruning model on the basis of
k-means clustering and functional selection cycle framework and
sequential search, by training multiple classifiers and selecting a
group of accurate and diversified classifiers to solve the problem.

Prediction Result Estimate
It is extremely critical to quantitatively evaluate the effectiveness
of the method because the benchmark data set is non-balanced
data. This paper used Mathew correlation coefficient (Mcc),
specificity (Sp),sensitivity (Sn), total accuracy (Acc) and the
F-score value (F-score) phase to evaluate the performance of the
model (Li et al., 2015, 2017; Wei et al., 2017; Chu et al., 2019;
Ding et al., 2019; Gong et al., 2019; Liang et al., 2019; Shan et al.,
2019; Yan et al., 2019; Yu and Gao, 2019; Zeng et al., 2019a, 2020b;
Zhang et al., 2019b; Liu X. et al., 2020; Wang H. et al., 2020).

Mcc = (TP× TN− FP× FN) /

√
(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)

Sn = TP/ (TP+ FN)

Sp = TN/ (TN+ FP)

Acc = (TP+ TN) / (TP+ TN+ FP+ FN)

F− score = 2× P× R/ (P+ R)

where TP stands for the quantity of anticancer peptides correctly
predicted, FP stands for the quantity of non-anticancer peptides
predicted as anticancer peptides, TN stands for the correctly
predicted quantity of non-anticancer peptides, and FN stands for
the quantity of anticancer peptides predicted as non-anticancer
peptides. P represents the accuracy, indicating the proportion of
the total number of predicted positive cases; R is the recall rate,
indicating the number of correct cases identified and accounting
for the total number of cases in this category.

RESULTS AND DISCUSSION

In this paper, a total of 12 feature extraction methods were
used. Because the number of dimensions of the amino acid
composition model was only 20, it is of little significance to
reduce the dimensionality of the amino acid composition model
alone, and the k-spaced amino acid pair composition model
is an extension of this method. The principles of the two
models were similar, and so the two models were merged and
expressed uniformly by AAC. Similarly, the grouped amino
acid composition model and the k-spaced amino acid group
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pair model were merged and expressed uniformly by GAAC.
To compare the advantages and disadvantages of different
feature extraction methods for anticancer peptide sequences,
each model obtained by each method was examined by 10-fold

cross-validation utilizing the random forest classifier, and then
10-fold cross-validation was carried out for each method after
dimensional reduction through MRMD2.0. Figure 2A lists the
F-score of each feature extraction method before and after feature

FIGURE 2 | The results of different experiments. (A) According to the results, this paper thought that the CT, GAAC, GDPC, GTPC, and TPC are not ideal.
(B) According to the results, this paper thought that the greedy algorithm was more efficient than MRMD2.0. (C) According to the results, this paper thought that the
greedy algorithm is worse than MRMD2.0 in the performance index of the selected model. (D) After several dimension reductions, the results showed that the
MRMD2.0 was better than the greedy algorithm index of the selected model. (E) After several dimension reductions, the results showed that the dimension of model
of the greedy algorithm is about five times that of the MRMD2.0. The results showed that as for the dimensions of the selected model, the greedy algorithm was more
efficient than MRMD2.0. However, the greedy algorithm cannot further reduce the dimensions of the selected feature model, but MRMD2.0 can still further reduce it.

TABLE 1 | Comparing the performance of different methods.

Methods Sn Sp Acc MCC F-score Dimension

iACP 88.40% 99.02% 94.77% 89.30% 126

Hajisharifi et al. 85.18% 92.68% 89.70% 78.40%

SAP 86.23% 95.63% 91.86% 83.01% 89.47% 400

Our method(RF) 86.20% 97.10% 92.73% 84.90% 92.70% 19

Our method(LibD3C) 85.50% 96.60% 92.15% 83.70% 92.10% 19

Our method(SVM) 87.70% 96.10% 92.73% 84.80% 92.70% 19
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selection. In this paper, according to the verification results,
it is believed that the effects of the CT, GAAC, GDC, GTC,
and TC methods were not ideal, so the above model was not
considered in the follow-up study. To compare the advantages
and disadvantages of different feature selection methods, the
greedy algorithm and MRMD2.0 were used to select each feature
model. Figure 2B lists the dimensions of each feature model
after two kinds of software selection, and Figure 2C lists the
F-score of each feature model after two kinds of software
selection. For the feature selection method of anticancer peptide,
after synthesizing the situation of all types of model selection,
MRMD2.0 was better than the greedy algorithm in terms of the
capability index of the selected model; As for the dimensions of
the selected model, the greedy algorithm was more efficient than
MRMD2.0. However, the greedy algorithm cannot further reduce
the dimensions of the selected feature model, but MRMD2.0 can
still further reduce it.

The feature subset of each method was merged and
reduced to get a 102D feature model after selected by
the greedy algorithm. The F-score value was 0.924 after
random forest 10-fold cross-validation. At this time, it was
impossible to use the greedy algorithm to further reduce the
dimensions of the model.

After merging the selected feature model by MRMD2.0, the
model dimension number was 1177. This paper continued to
use MRMD2.0 to reduce the dimension of the model to get a
767-dimensional feature model which was still too high. After

continuing to reduce the dimensionality of the model again
to obtain 633 dimensional features, the result was still not
ideal. In this paper, the dimensionality reduction was carried
out 6 times. For each dimensionality reduction, a line chart
of F-score was drawn changing with the dimension according
to the obtained indicators. The feature points were separated
with large changes in the line to form a new model for
verification, and the results were not ideal. After 8 times of
dimensionality reduction, a 19-dimensional feature model was
obtained. At this time, it was no longer possible to use MRMD2.0
for dimensionality reduction. Figures 2D,E list the feature
model F-score and dimensions separated by the two methods,
respectively. By comparison, MRMD2.0 was found to be better
than the greedy algorithm.

The 19-dimensional model was tested by random forest,
support vector machine (parameters c and g are 8192.0 and
0.00048828125, respectively) and LibD3C, respectively. Table 1
listed the prediction results of three types of classifiers. The
results indicated that the performance of the 19-dimensional
model separated in this paper is stable. Table 1 also lists the
prediction results of others based on the same data set. Compared
with Hajisharifi et al.’s and Xu et al.’s models, the model in this
paper performs better in all prediction indicators. Although it
is slightly inferior to Chen et al. in the prediction results, the
number of dimensions of their model was 126, while the number
of dimensions of this paper is 19, which is obviously lower
than that in the previous study. By evaluating the performance

FIGURE 3 | The figure was the change of F-score with dimension according to the last dimension reduction. The red dots in the figure were the feature points with
great changes in this paper. And these points were separated to form a new feature model and verified. After verification, these seven red dots are the most
important seven features.
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of the model and comparing it with the previous work, this
paper believed that the 19-dimensional model proposed in this
paper can be used to predict the anticancer peptide conveniently,
quickly and accurately.

In this paper, the feature points with large slopes in the
last reduced-dimension line chart (Figure 3) were separated
to form a 7-dimensional model, which was verified by support
vector machine with an accuracy of 90.41%. This possibly
imply that these seven-dimensional features are important
features to distinguish anticancer peptides. These 7-dimensional
features are GL.gap4, hydrophobicity_PRAM900101.Tr2332,
polarizability.2.residue0, Pc1.C, Xc1.K, Pc2.Hydrophobicity.8,
and secondarystruct.1.residue0. These features may
suggest that for anticancer peptides, the composition
and content of glycine, leucine, cysteine and lysine
as well as their secondary structure, polarization and
hydrophobicity are important indicators different from other
non-anticancer peptides.

CONCLUSION

In this paper, a low-dimensional feature model with better
performance was obtained through feature extraction and
continuous feature selection over many iterations. The features
were further isolated, and a few features that might distinguish
anticancer peptides were identified. It is hoped that the results of
this paper can be used in the artificial design and prediction of
anticancer peptides.
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Thermophilicity is a very important property of proteins, as it sometimes determines

denaturation and cell death. Thus, methods for predicting thermophilic proteins and

non-thermophilic proteins are of interest and can contribute to the design and engineering

of proteins. In this article, we describe the use of feature dimension reduction technology

and LIBSVM to identify thermophilic proteins. The highest accuracy obtained by

cross-validation was 96.02% with 119 parameters. When using only 16 features,

we obtained an accuracy of 93.33%. We discuss the importance of the different

characteristics in identification and report a comparison of the performance of support

vector machine to that of other methods.

Keywords: support vector machine, thermophilic proteins, feature dimension reduction, amino acid, feature

selection

INTRODUCTION

Temperature is a critical condition for life. Proteins are less stable than other macromolecules,
and temperature changes can easily lead to protein denaturation, which can lead to cell death
(Kumar et al., 2000). Thus, it is important to develop a highly efficient method for predicting
protein thermophilicity, which will contribute to the design of stable proteins. The properties of
many proteins are related to their thermal stability. Studies have shown that the thermal stability
of proteins is influenced by ion number, salt bridge presence, amino acid composition (AAC),
dipeptide composition (DPC), and other factors (Sadeghi et al., 2006; Wang H. et al., 2018; Yin
et al., 2020). Zhang and Fang (2006), Li et al. (2018), and Wang Y. et al. (2020) found significant
differences in the presence of some dipeptides between thermophilic and mesothermal proteins. In
addition, Gromiha et al. (1999) found that protein stability was associated with the balance between
packing and solubility.

Many studies have been conducted on methods of distinguishing thermophilic proteins from
normal-temperature proteins based on protein properties. Liang et al. (2005) proposed an amino
acid coupling model with strong statistical ability to distinguish between thermophilic proteins and
mesophilic proteins. LogitBoost Classifier and 20 features were used to distinguish thermophilic
proteins by Zhang and Fang (2007) which achieved an overall classification accuracy reaching
88.9%. Montanucci et al. (2008) applied support vector machine (SVM) to investigate the

44
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impacts of mutations on the thermal stability of proteins,
and with jackknife cross-validation, they achieved a prediction
accuracy of 88%. Recently, Lin and Chen (2011) used feature
selection technique and SVM with 30 parameters to predict
thermotropic proteins, and the overall accuracy reached 93.27%.
These methods have achieved good accuracy, but there remains
room for improvement in the number of features used and
prediction performance.

In this work, we used the data set of Lin and Chen
(2011) after eliminating redundancy to distinguish between
thermophilic proteins and non-thermophilic proteins. After
feature extraction, MRMD2.0 was applied for feature selection
and dimension reduction, and LIBSVM was used to obtain the
optimal parameters of the model and establish the prediction
model. Finally, from the results of cross-validation, both the
number of features and the prediction accuracy were improved;
the overall prediction accuracy with only 16 features in AAC
was increased to 93.33%, and the highest overall accuracy,
attained with 119 parameters, reached 96.02%. In addition,
we analyzed the importance of features and demonstrated the
strong performance of SVM by comparing this method with
other methods.

MATERIALS AND METHODS

Data Sets
In this article, we conducted prediction experiments using two
groups of data, namely, a group of thermophilic protein data
and a group of non-thermophilic protein data. The data sets
were collected by Lin and Chen (2011). Generally, thermophilic
proteins and non-thermophilic proteins derive from the
corresponding biosome, and optimum growth temperature is
the key feature used to distinguish thermophilic and non-
thermophilic proteins. Therefore, we used 60◦C as the minimum
optimum growth temperature for thermophilic proteins and
30◦C as the maximum optimum growth temperature for
non-thermophilic proteins to avoid the problem of protein
denaturation. As a result, 136 prokaryotic genomes conforming
to the standard were selected, and their protein sequences were
obtained from the Universal Protein Resource.

Next, we screened the protein sequences to increase the
quality of the data sets. The filtering process employed the
following criteria: (1) the sequence must have manual annotation
and evaluation; (2) the protein sequence cannot include
ambiguous residue; (3) the sequences cannot be fragments of
other proteins; and (4) the sequence cannot be deduced from
prediction or homology. After the above screening process,
we obtained a total of 1,250 non-thermophilic proteins and
1,329 thermophilic proteins. Next, highly similar sequences were
removed by employing the CD-HIT program, resulting in 793
non-thermophilic proteins and 915 thermophilic proteins.

Feature Extraction
Before protein prediction, the features of the protein sequences
were extracted to construct the feature vectors (Figure 1). For
this purpose, iFeature was used, which is a utility toolkit based on
python to obtain miscellaneous numerical feature representation

schemes for protein sequences (Chen et al., 2018). When using
iFeature, users can combine various feature clustering, feature
selection, and dimension reduction algorithms to promote the
analysis of feature importance and model training. iFeature has
been widely tested to ensure the validity of our calculations to
further ensure the strength of our work.

We used iFeature to extract the features of the protein
sequences from our data set, including AAC (Bhasin and
Raghava, 2004; Pan et al., 2018; Chen et al., 2019b; Liu et al.,
2019; Shen et al., 2019b; Tang et al., 2019; Li Y. H. et al.,
2020), C/T/D composition (CTDC), C/T/D transition (CTDT),
conjoint triad (CTriad), dipeptide deviation from the expected
mean (DDE) (Saravanan and Gautham, 2015), DPC (Saravanan
and Gautham, 2015; Chen et al., 2019a), tripeptide composition
(TPC), composition of k-spaced amino acid pairs (CKSAAP),
grouped dipeptide composition (GDPC), and grouped tripeptide
composition (GTPC). The following is a concise explanation of
the feature extraction protocol. In all of the following formulas, n
denotes the length of the protein sequence.

AAC

AAC refers to the frequency of each amino acid in a
protein or peptide sequence. There are 20 kinds of naturally
occurring amino acids, namely, ACDEFGHIKLMNPQRSTVWY,
and their frequencies in a sequence can be calculated by the
following formula:

f (i) =
n(i)

n
, i ∈ {A,C,D,E, F, . . . ,W,Y}

where n(i) refers to the number of occurrences of amino acid i.

DPC

DPC refers to the frequency of dipeptide combinations in a
protein or peptide sequence, which yields 400 descriptors (Cheng
J. H. et al., 2018; Tang et al., 2018). It is defined by the
following formula:

f
(
x, y

)
=

nxy

n− 1
, x, y ∈ {A,C,D,E, F, . . . ,W,Y}

where nxy refers to the number of dipeptides denoted by amino
acids x and y.

TPC

TPC refers to the frequency of tripeptide combinations in a
protein or peptide sequence, which yields 8,000 descriptors
(Tan et al., 2019; Zhu et al., 2019). It is defined by the
following formula:

f
(
x, y, z

)
=

nxyz

n− 2
, x, y, z ∈ {A,C,D,E, F, . . . ,W,Y}

where nxyz refers to the number of tripeptides denoted by amino
acid combination x, y, and z.

DDE

The DDE eigenvector is constructed by calculating three
parameters: dipeptide composition (Dc), theoretical mean value
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FIGURE 1 | Study flowchart. (I) The original protein sequence is input for feature extraction. (II) A feature extraction algorithm is used to obtain feature descriptors of

each protein. (III) MRMD2.0 is used to rank the importance of features and select features. (IV) Support vector machine is used for parameter optimization and training

model establishment. (V) Three parameters are used to evaluate the performance of the model: sensitivity (SE), specificity (SP), and accuracy (ACC).

(Tm), and theoretical variance (Tv). These three parameters and
DDE are calculated as follows:

Dc

(
x, y

)
=

nxy

n− 1
, x, y ∈ {A,C,D,E, F, . . . ,W,Y}

where nxy refers to the number of dipeptides displayed by amino
acid combination x and y.

Tm

(
x, y

)
=

Cx

Cn
×

Cy

Cn
, x, y ∈ {A,C,D,E, F, . . . ,W,Y}

where Cx and Cy are the number of codons encoding the first and
second amino acids, respectively, in dipeptide “x, y,” and Cn is the
total number of possible codons remaining after removing the 3
terminated codons.

Tv

(
x, y

)
=

Tm

(
x, y

)
(1− Tm

(
x, y

)
)

n− 1
,

x, y ∈ {A,C,D,E, F, . . . ,W,Y}

DDE
(
x, y

)
=

Dc

(
x, y

)
− Tm

(
x, y

)
√
Tv

(
x, y

)

GDPC

The GDPC encoding is a change of the DPC descriptor that
includes a total of 25 descriptors, defined as follows:

f
(
x, y

)
=

nxy

n− 1
, x, y ∈

{
g1, g2, g3, g4, g5

}

where nxy refers to the number of dipeptides denoted by amino
acid groups x and y.

GTPC

The GTPC is another change of TPC descriptor, which consists
of a total of 125 descriptors and is defined as follows:

f
(
x, y, z

)
=

nxyz

n− 2
, x, y, z ∈

{
g1, g2, g3, g4, g5

}

where nxyz refers to the number of tripeptides denoted by amino
acid combination x, y, and z.

CTD

CTD features represent the structural or physicochemical
distribution patterns of amino acids in protein or peptide
sequences (Dubchak et al., 1999; Tang et al., 2020). Thirteen
types of physicochemical properties were used to calculate these
characteristics, including hydrophobicity, standardized van der
Waals volume, solvent accessibility, polarity, secondary structure,
polarizability, and charge. These descriptors were computed by
the following procedures: (1) the amino acid sequences were
changed into residues with certain structural or physicochemical
properties; (2) according to the main cluster of Tomii and
Kanehisa (1996) amino acid index, the 20 amino acids were
divided into 3 groups according to 7 physicochemical properties.

CTDC

After all 20 amino acids are divided into three groups, the
composition descriptor is composed of 3 values, which are the
total percentages of group 1, group 2, and group 3 of the protein
sequences. The descriptor is calculated as follows:

C (x) =
n(x)

n
, x ∈ {group 1, group 2, group 3}

where n(x) refers to the number of occurrences of amino acid x
in the encoded sequence.

CTDT

The transformation descriptor T also contains three values. The
transition from group 1 to group 2 is the percentage frequency
of a residue from group 1 followed by a residue from group 2
or a residue from group 2 followed by a residue from group
1. Transformations between group 2 and group 3 and between
group 3 and group 1 are defined in a similar manner. The
transformation descriptor can be calculated as follows:

T
(
x, y

)
=

n
(
x, y

)
+ n

(
y, x

)
n− 1

,

x, y ∈ {
(
group 1, group 2

)
,
(
group 2, group 3

)
, (group 3, group 1)}

where n
(
x, y

)
and n

(
y, x

)
refer to the numbers of dipeptides

denoted by “x, y” and “y, x,” respectively, in the protein sequence.
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Feature Selection
Feature selection is an important step in the process of protein
classification (Figure 1) (Feng et al., 2017; Cheng, 2019; Liu,
2019; Yang W. et al., 2019; Zheng et al., 2019; Wang M. et al.,
2020; Yang et al., 2020b; Zhao et al., 2020). MRMD2.0 is a very
deep feature selection method, which uses the concept of the
PageRank algorithm and is combined with methods such as
analysis of variance (Scheffe, 1960), minimal redundancy and
maximal relevance (Ding and Peng, 2005), maximal information
coefficient, and least absolute shrinkage and selection operator
(Xu et al., 2017). As a result, MRMD2.0 integrates seven
different feature ranking algorithms with PageRank algorithm
and detects optimized dimensionality with forward adding
strategy. PageRank algorithm was originally used to attach
weight value to each target page: pages with large weight values
are displayed in the front, whereas pages with small weight
values are displayed in the back. Similarly, MRMD2.0 uses
PageRank algorithm and several other feature ranking algorithms
to generate a corresponding weight value for each feature to form
a ranking of the importance of all features.

In this study, MRMD2.0 was used to select features and
reduce the dimension of the obtained features to improve the
feature prediction ability. By treating each group of features in
the previous step with MRMD2.0, we obtained the combination
of features with the highest classification accuracy and the
importance ranking of each group of features. Generally,
the combination of features with the highest classification
accuracy has fewer dimensions, so we refer to this process
as feature dimension reduction. Based on the classification
performance, we ranked the group of features. After combining
the features with good classification performance, we applied
MRMD2.0 to select them again. Finally, after comparing the
results, we obtained the combination of features with the best
classification ability.

In addition, we applied MRMD2.0 to obtain the importance
ranking of features. On the rank list, higher-ranked features are
more predictive; accordingly, we identified the most important
features for the classification of thermophilic proteins and
non-thermophilic proteins. The resulting information enhances
our knowledge of the properties of proteins and can aid the
construction of stable proteins in protein engineering.

LIBSVM
In this study, LIBSVM was used to construct models and make
predictions (Figure 1). LIBSVM is an effective SVM pattern
recognition and regression software package designed by Chih-
Jen Lin, a professor at Taiwan University, and has been applied
in many fields (Lin et al., 2012; Liu et al., 2012, 2017; Ding et al.,
2017; Zeng et al., 2017; Wei et al., 2018, 2019; Xu et al., 2018b,c;
Cheng et al., 2019b; Deng et al., 2019; Liang et al., 2019; Shen
et al., 2019b,a; Su et al., 2019; Yang H. et al., 2019; Li F. et al.,
2020; Wang H. et al., 2020; Yang et al., 2020a; Zhang et al., 2020).
Before training SVM on a problem, the parameters must be
specified (Jiang et al., 2013; Zhao et al., 2015, 2017). We selected
the best parameters, C and g, through a simple tool provided
by LIBSVM for evaluating a grid of parameters. The accuracy
for each parameter setting is obtained in LIBSVM, allowing

the parameters with the highest cross-validation accuracy to be
determined. Next, we trained the whole data set with the best
parameters C and g to obtain the prediction model. Finally, we
tested and predicted our data set with the obtained model.

Performance Measurement
We used three commonly used indicators to evaluate model
performance: sensitivity (SE), specificity (SP), and accuracy
(ACC) (Figure 1) (Wang et al., 2010; Wei et al., 2017a,b; Zhang
et al., 2018; Cheng et al., 2019a; Ding et al., 2019a; Junwei et al.,
2019; Liang et al., 2019; Liu and Li, 2019; Tian et al., 2019; Jia
et al., 2020; Liu and Chen, 2020; Li J. et al., 2020; Lv et al., 2020;
Wang Z. et al., 2020). They are described as follows:

SE =
TP

TP+ FN

SP =
TN

TN+ FP

ACC =
TP+ TN

TP+ FN+ TN+ FP

where TN, TP, FN, and FP refer to the numbers of correctly
predicted non-thermophilic proteins, correctly predicted non-
thermophilic proteins, incorrectly predicted non-thermophilic
proteins, and incorrectly predicted thermophilic proteins,
respectively. SE and SP indicators measure the predictive ability
of a model in positive and negative situations, respectively, and
ACC is used to evaluate the overall performance of a prediction
model (Wang et al., 2008; Zou et al., 2017a,b; Cheng L. et al., 2018;
Wang G. et al., 2018; Xue et al., 2018; Xu et al., 2018a, 2019; Ding
et al., 2019b; Shen et al., 2019b; Yang, 2019; Zeng et al., 2019; Fu
et al., 2020; Hong et al., 2020).

RESULTS AND DISCUSSION

Identification of Protein Thermostability
The results of feature selection by using MRMD2.0 are
shown in Table 1. Among them, features with good
classification performance include AAC, DPC, CTDC, and
dipeptide deviation from the expected mean. However,
although the classification ACC of dipeptide deviation
from the expected mean after dimension reduction reached
85.6%, it had 365-dimensional features. Considering the
excessive dimension and the unexceptional performance,
only AAC, DPC, and CTDC were subsequently combined
for classification.

Next, based on LIBSVM and grid parameter optimization, we
used various combinations of these three features to construct
models and perform cross-validation for our data sets. The results
are shown in Table 2. The overall ACC of three schemes is higher
than that of Lin and Chen (2011) (93%).

Initially, we used AAC with 16 dimensions alone to build
a prediction model for the data set, achieving an overall ACC
rate of 93.33% through cross-validation, which is slightly higher
than that of Lin and Chen (2011). In addition, Zhang and Fang
(2006) and Gromiha and Suresh (2010) used all 20 amino acids
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TABLE 1 | The results of feature selection by using MRMD2.0.

Feature Dimensions Accuracy (%)

AAC 16/20 87.94

DPC 103/400 87.00

DDE 365/400 85.60

CTDC 33/39 85.01

CTDT 39/39 80.50

CTriad 338/343 79.80

CKSAAP 143/150 79.04

GTPC 107/125 78.63

GDPC 13/25 78.57

TPC 1,008/1023 77.11

The two numbers in the second column of the table are the number after dimension

reduction and the number before dimension reduction.

TABLE 2 | The results of classification using SVM and various feature

combinations.

Feature combination SE (%) SN (%) Accuracy (%)

The method of Lin and Chen (2011) 93.77 92.69 93.27

AAC (16) 93.44 93.19 93.33

AAC (16) + CTDC (33) 93.77 92.81 93.33

AAC (16) + DPC (103) 95.85 96.22 96.02

The numbers in parentheses in the first column of the table represent the number of

arguments to the feature preceding the parentheses.

TABLE 3 | The results of classification accuracy using LIBSVM and various

combinations of important features.

Dimension Feature Accuracy (%)

1 K 76.41

2 K + D 77.50

3 K + D + LK 78.29

A plus sign in the second column of the table indicates the use of these characteristics

for model training and classification. For example, “K + D” indicates the modeling and

classification of the data sets with the two-dimension characteristics K and D.

composition to predict the thermostability of protein, and their
overall ACC was 90.5 and 89%, respectively. Furthermore, Wang
and Li (2014) enhanced the ACC to 95% by selecting 9 AAC
and 38 DPC using a genetic algorithm. In contrast, the scheme
used only 16 parameters, but the ACC reached 93.33%, which is
fewer than the dimensions used in previous studies. The results
show that AAC plays an important role in the identification of
thermophilic proteins.

The top two features in Table 3 were AAC and DPC.
The model constructed with 16 parameters of AAC and 103
parameters of DPC achieved the highest overall ACC of 96.02%.
The SE and SP of this method were 95.85 and 96.22%,
respectively, which indicates that the predictive ability of this
model in both positive and negative situations is excellent.

In addition, we used the combination of AAC with 16
dimensions and CTDC with 33 dimensions to build a prediction
model and obtained the same overall ACC as the first model.
However, this second model had higher SE and lower SP than the
first model, indicating that it was slightly inferior to the model
built with 16 dimensions of AAC.

Feature Importance
We aimed to identify the most important features of the method
with 119 parameters that can achieve the highest ACC and
analyze them. To assess feature importance, first, we used
MRMD2.0 to rank all 119 features by importance. We found
that the top three features were K, D, and LK (Feature K is the
percentage of lysine in the amino acid sequence, feature D is
the percentage of aspartic acid in the amino acid sequence, and
feature LK is the percentage content of the dipeptide consisting
of leucine and lysine in the amino acid sequence). These three
features are arguably the most predictive among the 119 features
for the classification of thermophilic proteins.

Next, to obtain the classification performance of the above
features, we used one-dimensional (K), two-dimensional (K and
D), and three-dimensional (K, D, and LK) features to classify our
data set based on LIBSVM. The results are shown in Table 3.

As seen from Table 3, the classification ACC of the K
feature alone reached 76.41%, whereas the ACC achieved with
K combined with D and LK was only slightly greater. To better
analyze the classification ability of these three important features,
we constructed a violin diagram, scatter diagram, and 3D scatter
diagram for the 1-, 2-, and 3-dimension features. The results are
shown in Figure 2.

As seen from Figure 2A, the K value of the thermophilic
proteome is concentrated ∼0.08, whereas the K value of the
non-thermophilic proteome is concentrated∼0.03. These results
indicate that the K feature can well distinguish thermophilic
proteins from non-thermophilic proteins, a finding of great
significance for the identification of the thermophilic properties
of proteins. All three panels reveal obvious differences in the
distribution pattern between the two data sets, which indicates
that these features have strong recognition ability and good
performance in distinguishing thermophilic proteins from non-
thermophilic proteins, as shown in Table 3.

Comparison With Other Classification
Methods
To reveal the advantage of our method, we applied six other
classification methods to train our data sets based on the
Waikato environment for knowledge analysis (Weka) tool
(Witten and Frank, 2002): logistic, random forest, BayesNet,
logistic model trees (LMTs), J48, and reduced error pruning
tree (REPTree).

We used the combination with the highest overall ACC
in this article (16 features in AAC and 103 features in
DPC) as the input, and we used the above classifiers to
predict the data set to obtain the SE, SP, and ACC of
each method. To ensure a robust comparison, we also
used cross-validation to predict the data set. By comparing
the performance of different methods, the performance of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 October 2020 | Volume 8 | Article 58480748

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Guo et al. Discrimination of Thermophilic Proteins

FIGURE 2 | Visualization of the ability of important features to classify thermophilic and non-thermophilic proteins. (A) is a violin diagram of the K feature. (B) is a

scatter diagram of the K feature and D feature. (C) is a 3D scatter diagram of the K, D, and LK features. K is the percentage of lysine in the amino acid sequence, D is

the percentage of aspartic acid in the amino acid sequence, and LK is the percentage content of the dipeptide consisting of leucine and lysine in the amino acid

sequence.

TABLE 4 | The performance of different classification methods in the prediction of

the data sets.

Classification method SE (%) SN (%) Accuracy (%)

SVM (this article) 95.85 96.22 96.02

LMT 92.35 90.29 91.40

Logistic 91.15 88.90 90.11

Random Forest 91.69 87.51 89.75

BayesNet 88.08 86.25 87.24

REPTree 83.60 84.62 84.07

J48 83.50 80.33 82.03

different classifiers was evaluated. The prediction results
of each method applied to the data set are shown in
Table 4.

It can be seen from Table 4 that the SVMwe used in this study
achieved the best performance; the SE, SP, and ACC of the other
methods were all lower than those of the SVM method of this
article. To visualize the data, we constructed a cluster histogram
of the performance of the different methods, shown in Figure 3.

The advantage of using SVM to predict data sets is apparent
from the histogram.

CONCLUSION

In this article, we distinguished 915 thermophilic proteins and
793 non-thermophilic proteins. We applied iFeature to extract
the features of the protein sequences. MRMD2.0 was used to
reduce the dimensions of features and select the ones that
performed the best. LIBSVMwas used to optimize the parameters
and establish the prediction model. As a result, the overall ACC
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FIGURE 3 | The performance of the method described in this article and other six predictors when the input is 16 parameters of amino acid composition and 103

parameters of dipeptide composition. The performance metrics are sensitivity (SE), specificity (SP), and accuracy (ACC).

was improved, which reached 96.02% under cross-validation.
Furthermore, we constructed a prediction model by LIBSVM
with 16 parameters, and the ACC determined by cross-validation
was 93.33%. In addition, we found that the K feature played a
significant role in the identification. Finally, we demonstrated the
advantage of SVM by comparing its performance with that of
othermethods.We aim to analyze information, such as the family
of misclassified proteins, to optimize our method in the future.
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Due to the overuse of antibiotics, people are worried that existing antibiotics will become
ineffective against pathogens with the rapid rise of antibiotic-resistant strains. The use
of cell wall lytic enzymes to destroy bacteria has become a viable alternative to avoid
the crisis of antimicrobial resistance. In this paper, an improved method for cell wall
lytic enzymes prediction was proposed and the amino acid composition (AAC), the
dipeptide composition (DC), the position-specific score matrix auto-covariance (PSSM-
AC), and the auto-covariance average chemical shift (acACS) were selected to predict
the cell wall lytic enzymes with support vector machine (SVM). In order to overcome the
imbalanced data classification problems and remove redundant or irrelevant features,
the synthetic minority over-sampling technique (SMOTE) was used to balance the
dataset. The F-score was used to select features. The Sn, Sp, MCC, and Acc were
99.35%, 99.02%, 0.98, and 99.19% with jackknife test using the optimized combination
feature AAC+DC+acACS+PSSM-AC. The Sn, Sp, MCC, and Acc of cell wall lytic
enzymes in our predictive model were higher than those in existing methods. This
improved method may be helpful for protein function prediction.

Keywords: cell wall lytic enzymes, optimized combination feature, synthetic minority over-sampling technique,
F-score, support vector machine, jackknife test

INTRODUCTION

Bacteria are constantly around us, and bacterial infections have become a major public health
problem. The overuse of antibiotics leads to the rapid rise of antibiotic-resistant strains, and people
are worried that existing antibiotics will become ineffective against pathogens. Using cell wall
lytic enzymes to destroy bacteria has become a viable alternative method to avoid the crisis of
antimicrobial resistance (Sommer et al., 2017; Wu et al., 2017; Bhagwat et al., 2019; Cheng et al.,
2020). Cell wall lytic enzymes are divided into two enzymes: endolysin and autolysin. Endolysins
are phage-encoded enzymes that have evolved to degrade the bacterial cell wall (Shavrina et al.,
2016). Many studies have shown that endolysin has an excellent bactericidal effect on Staphylococcus
aureus (Ajuebor et al., 2016), Escherichia coli (Yan et al., 2019), Streptococcus suis (Der Ploeg, 2008),
and other pathogens. Compared with conventional antibiotics, endolysin has many advantages,
such as rapid host killing, host specificity, low chances of developing drug resistance, and efficacy
against multidrug-resistant bacteria (Gondil et al., 2020). Autolysin is the other cell wall lytic
enzyme that degrades some bonds in the peptidoglycan backbone of the bacterial cell wall (Usobiaga
et al., 1996), and it is closely related to the life of cells and participates in the control of cell growth,
cell lysis, daughter-cell separation, and biofilm formation (Kalali et al., 2019). Cell wall lytic enzymes
have become a valuable tool for biological researchers in the medical and food industry and in
agricultural applications (Yu, 1997).
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Experimental determination of the cell wall lytic enzymes
is time-consuming and laborious, so it is necessary to use an
effective method to predict cell wall lytic enzymes. Recently
some computational methods for predicting cell wall lytic
enzymes have been proposed. Ding et al. (2009) used Chou’s
amphiphilic pseudo to predict cell wall lytic enzymes; the
predictive accuracy was 80.40% with jackknife test. Chen et al.
(2016) developed a predictor called “Lypred” that used pseudo
amino acid composition (PseAAC) as a feature vector; the
predictive accuracy was 91.3% with fivefold cross-validation.
Meng et al. (2020) developed a predictor called “CWLy-SVM”
that employed the 473-dimensional sequence-based feature
descriptor to predict cell wall lytic enzymes; the result was
95.50% with jackknife test. In this paper, the amino acid
composition (AAC), the dipeptide composition (DC), the
position-specific score matrix auto-covariance (PSSM-AC), and
the Auto-covariance average chemical shift (acACS) were used
to predict the cell wall lytic enzymes with the same datasets as
investigated by Chen et al. (2016).

Data imbalance is always considered a problem in developing
efficient and reliable prediction systems; in imbalanced datasets,
the classifier would tend to the majority class. Here, the
synthetic minority over-sampling technique (SMOTE) was used
to solve the problem of imbalance. To remove redundant
or irrelevant features, we selected features using the F-score
algorithm. The accuracy (Acc) was 99.19% with a balanced
dataset in jackknife test by using the optimized combination
feature AAC+DC+PSSM-AC+acACS.

MATERIALS AND METHODS

Benchmark Dataset
The benchmark dataset was generated by Chen et al. (2016), The
dataset was taken from the Universal Protein Resource (UniProt),
using the following steps to collect the sequence: (1) sequences
annotated with “Inferred from homology” or “Predicted” were
removed. (2) Sequences which were the fragments of other
proteins were not included. (3) Sequences containing ambiguous
letters such as “B,” “J,” “O,” “U,” “X,” and “Z” were excluded. To
reduce homologous bias and redundancy, the program CD–HIT
(Li and Godzik, 2006) was used to remove those sequences that
have ≥ 40% pairwise sequence identity. Finally, 375 sequences
were obtained; they contained 68 lyases and 307 non-lyases, and
the dataset can be expressed as:

S = Slysases ∪ Snonlysases (1)

The dataset can be freely downloaded from http://lin-group.cn/
server/Lypred/data.html.

Feature Extraction Techniques
Feature extraction is a crucial step in developing a powerful
predictor; a set of reasonable features contains more protein
sequence information (Zhu et al., 2018; Yang et al., 2019; Zhang
and Liu, 2019). Generally, the feature combination can boost
the prediction performance. In this paper, the AAC, the DC,

the PSSM-AC, and the acACS were used to predict the cell
wall lytic enzymes.

Amino Acid Composition
The amino acid composition of proteins is the most basic feature
information in all features. The protein sequence consists of 20
amino acids (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,
and Y). AAC calculates the occurrence frequency of the 20 native
amino acids so that the protein sequence can be expressed as 20
features in a feature vector. It can be defined as:

P = [x1, x2, x3, · · · , xi, · · · , x20] (2)

xi =
ni
L

(3)

Where ni is the occurrence number of the 20 native amino acid
in protein sequence and L is the length of the protein sequence.

Dipeptide Composition
Dipeptide composition (DC) is calculated as the occurrence
frequency of each two adjacent amino acid residues. There
are 20∗20 = 400 combinations of amino acid pairs. Compared
with AAC, DC is a feature that considers some sequence-order
information. It can be calculated as:

P =
[
f1, f2, f3, . . . , fi, . . . , f400

]
(4)

fi =
mi

L− 1
(5)

Where mi is the occurrence number of i-th dipeptide in protein
sequence and L is the length of the protein sequence.

Position-Specific Score Matrix Auto-Covariance
Position-Specific Score Matrix Auto-Covariance (PSSM-AC) is
a feature that extracts the evolutionary information of a protein
sequence. PSSM-AC was first proposed to predict the protein fold
recognition by Dong et al. (2009). Recently, the PSSM-AC was
used successfully in many works for the prediction of protein
function (Zou et al., 2013; Huang and Li, 2018; Wang et al.,
2019b, 2020a). In PSSM-AC, the PSI-BLAST (Position-Specific
Iterative Basic Local Alignment Tool) was used to generate PSSM;
the threshold of e-value is 0.001 and the maximum number of
iterations is 3. PSSM-AC is calculated as the correlation between
two residues within PSSM. This method can be represented as:

PPSSM =



R1,1 R1,2 . . . R1,j . . . R1,20
R2,1 R2,2 . . . R2,j . . . R2,20

...
...

...
...

...
...

Ri,1 Ri,2 . . . Ri,j . . . Ri,20
...

...
...

...
...

...

RL,1 RL,2 . . . RL,j . . . RL,20


(6)

PPSSM − AC
(
j, lg

)
=

1
L− lg

L−lg∑
i=1

(
Ri,j − Rj

) (
Ri+lg,j − Rj

)
(7)
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Rj =
1
L

L∑
i=1

Ri,j
(
j = 1, . . . , 20

)
(8)

Where Ri,j is the score of the residue of the i-th position mutated
to the j-th amino acids residue in the protein sequence; a high
score means a highly conserved position. L is the length of the
protein sequence, lg is the distance along the sequence, and 0
< lg< L. As a result, the protein sequence generates a 20 × lg
dimensional feature vector with PSSM-AC.

Auto-Covariance Average Chemical Shift
As important parameters are measured by nuclear magnetic
resonance (NMR) spectroscopy, the chemical shift has been
used as a powerful indicator of the protein structure. Several
researchers revealed that the average chemical shift (ACS) of a
particular nucleus in the protein backbone empirically correlates
to its secondary structure (Sibley et al., 2003). acACS was
proposed by Fan et al. (2014), In acACS, the secondary structure
was converted into the average chemical shift, and then the auto-
covariance function was used to construct the vector representing
the protein sequence by selecting different. In this work, the
secondary structure was obtained by submitting the protein
sequence to PSIPRED1, and then the protein sequence and the
corresponding secondary structure were submitted to the acACS
web server2. It can be calculated as:

For a protein P, where each amino acid in the sequence is
substituted by its averaged chemical shift, P can be expressed as:

P =
[
Ai

1,A
i
2,A

i
3, . . . ,A

i
L
] (
i = 15N, 13Cα,

1Hα,
1HN

)
(9)

Where 15N stands for Nitrogen, 13Cα for alpha Carbon, 1Hα for
alpha Hydrogen, and 1HN for Hydrogen linked with Nitrogen.

After we select λ = 17 and i = 15N, 13Cα,
1Hα,

1H, the acACS
could be expressed as:

ϕλ
i =

1
L− λ

L−λ∑
k=1

[
Ai
k − Ai

k+λ

] (
i = 15N, 13Cα,

1Hα,
1HN;λ < L

)
(10)

P =
[
ϕ0
i , ϕ

1
i , ϕ

2
i , . . . ,ϕ

λ
i
] (
i = 15N, 13Cα,

1Hα,
1HN

)
(11)

Synthetic Minority Over-Sampling
Technique
The numbers of non-lyases are about 4.5 times that of lyases,
and this leads to imbalanced data classification problems. In
order to overcome this problem, we used SMOTE to solve the
problem of imbalance. SMOTE is an over-sampling approach for
imbalanced data classification (Wang et al., 2018a; Zhou et al.,
2019). The algorithm of SMOTE is described as follows: (1)
randomly choose the samples xi from the minority class, and
calculate the Euclidean distance to all other samples in this class,
then K nearest neighbors of this sample were selected, (2) select

1http://bioinf.cs.ucl.ac.uk/psipred/
2http://202.207.14.87:8032/bioinformation/acACS/index.asp

xi samples from the k nearest neighbors, and (3) generate a new
sample xnew by: xnew = xi + α (x− xi), α is a random number in
(0, 1). In this paper, the protein numbers of lyases and non-lyases
are in equilibrium with SMOTE.

Feature Selection
Redundant or irrelevant features will decrease the accuracy
of prediction and increase computational time. In order to
remove redundant or irrelevant features, a variety of feature
selection techniques have been proposed: the analysis of variance
(ANOVA) (Tan et al., 2018; Li et al., 2019; Zhang et al., 2020a),
Max-Relevance-Max-Distance algorithms (MRMD) (Zou et al.,
2016; Wan et al., 2017; Ru et al., 2019; Kwon et al., 2020),
and Minimal-Redundancy-Maximal-Relevance (MRMR) (Jiao
and Du, 2016; Xu et al., 2016; Wang et al., 2018b; Kabir et al.,
2020) are the representative feature selection algorithms. In this
study, we selected features using the F-score algorithm; the
F-score algorithm was proposed by Yi-Wei (Chen and Lin, 2006).
All features are ranked according to F-score values; a higher
score indicates a higher likelihood that this feature is more
discriminative (Zhang et al., 2020b). It can be calculated as:

Fi =

(
x̄(+)
i − x̄i

)2
+

(
x̄(−)
i − x̄i

)2

∑n+
k=1

(
x̄(+)
k,i − x̄(+)

i

)2
+

1
n−−1

∑n−
k=1

(
x̄(−)
k,i − x̄(−)

i

)2 (12)

Where x̄i is the average of the i-th feature of the whole sample,
x̄(+)
i is the average of the i-th feature of the positive samples, x̄(−)

i
is the average of the i-th feature of the negative samples; n+ is
the total number of positive samples, n− is the total number of
negative samples; x̄(+)

k,i is the average of the i-th feature of the k-th

sample in the positive samples, and x̄(−)
k,i is the average of the i-th

feature of the k-th sample in the negative samples.
To determine the optimal features, the incremental feature

selection (IFS) (Ju and He, 2017; Tang et al., 2018) was employed
based on the features ranked. The IFS procedure starts with one
feature with the highest score, then adds features to the start
feature based on their scores until all the features are added.

Support Vector Machine
The support vector machine was proposed by Vapnik; the
basic idea of SVM is to transform the input data into a high-
dimensional Hilbert space and then determine the optional
separating hyperplane. SVM has been successfully applied in
the field of computational biology and bioinformatics (Fan
et al., 2013; Li and Wang, 2016; Arif et al., 2018; Chen
et al., 2019; Tian et al., 2019; Wang et al., 2019a; Du et al.,
2020; Jing and Li, 2020; Yang et al., 2020). Therefore, we
used this classifier to build our model. The radial basis
function (RBF) kernel was adopted to perform prediction. The
regulation parameter c and kernel width parameter γ were
tuned via the grid search method. In this paper, the LibSVM
package was used to predict cell wall lytic enzymes, which
can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/
libsvm.
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Performance Evaluation
In statistical prediction, three cross-validation methods are
commonly used to examine a predictor for its effectiveness
in practical applications: k-fold cross-validation, independent
dataset test, and jackknife test (Li and Li, 2008; Tan et al.,
2019; Dao et al., 2020a,b). Among the three methods,
the jackknife test is deemed the most objective and
rigorous. Hence, the jackknife test was used to evaluate the
performance of this paper.

In order to evaluate the predictive capability and reliability
of our model, the sensitivity (Sn), specificity (Sp), Matthew’s
correlation coefficient (MCC), and accuracy (Acc) (Bustamam
et al., 2019; Cheng, 2019; Cheng et al., 2019; Feng et al., 2019;
Malebary et al., 2019; Chen et al., 2020; Li and Gao, 2020; Wang
et al., 2020b) were measured and defined by:

sn =
TP

TP + FN
(13)

sp =
TN

TN + FN
(14)

MCC =
TP×TN − FP×FN

√
(TP + FP)× (TN + FN)× (TP + FN)× (TN + FP)

(15)

Acc =
TP+TN

TP + TN + FP + FN
(16)

Where TP represents the true positive, TN represents the true
negative, FP represents the false positive, and FN represents
the false negative.

FIGURE 1 | The Acc of position-specific score matrix auto-covariance
(PSSM-AC) with different lg.

RESULTS AND DISCUSSION

The Choice of Our Model Parameters lg,
and Combination Schemes of Chemical
Shifts
In order to investigate the effectiveness of the predictive model,
the AAC, the DC, PSSM-AC, and the auto-covariance, average
chemical shift was selected to predict the cell wall lytic enzymes.
Furthermore, for the sake of the best performance of predicting

FIGURE 2 | The Acc with respect to the correlation factor λ of the
combination mode of chemically shifted atoms 15N, 13Cα, 1Hα, 1H.

FIGURE 3 | The Acc of different combination schemes of chemical shifts.
Numbers denote the chemical shifts of atoms: 1 denotes 15N, 2 denotes
13Cα, 3 denotes 1Hα, 4 denotes 1HN.

TABLE 1 | The predictive results of individual features with jackknife
test by using SVM.

Features Sn (%) Sp (%) MCC Acc (%)

AAC 47.06 95.77 0.51 86.93

DC 38.24 97.39 0.48 86.67

PSSM-AC 72.06 99.67 0.81 94.40

acACS 57.35 93.81 0.55 87.20
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cell wall lytic enzyme, the lg of the distance was selected,
with results in Figure 1, and the best lg was 28 when the
accuracy was the highest. In addition, the combination mode of
chemically shifted atoms and the best parameter λ were selected.
Figure 2 shows that the best parameter λ was 17. The results of
combination mode of chemically shifted atoms were shown in

FIGURE 4 | Three-dimensional heat map of DC’s F-score value.

FIGURE 5 | The Acc of dipeptide composition (DC) with the incremental
feature selection.

FIGURE 6 | The Acc of DC with feature selection and non-feature selection.

Figure 3; the best combination mode of chemically shifted atoms
was 15N, 13Cα,

1Hα,
1H when the accuracy was the highest.

The Predictive Performance of Cell Wall
Lytic Enzymes
The predictive performance of cell wall lytic enzymes by using
the SVM classification algorithm with SMOTE was listed in
Table 1. The highest sensitivity (Sn), specificity (Sp), Matthew’s
correlation coefficient (MCC), and accuracy (Acc) of individual
parameters were 72.06%, 99.67%, 0.81, and 94.40% with jackknife
test by using PSSM-AC. By comparison, the result of acACS was
better than AAC and DC; this is probably due to the fact that

FIGURE 7 | Prediction results of different combined features. Letters denote
features: a for AAC, b for DC, c for acACS, d for PSSM-AC.

TABLE 2 | The predictive results of combined feature
AAC+DC+acACS+PSSM-AC by using different algorithms with
and without SMOTE.

Algorithms SMOTE (N/Y) Sn (%) Sp (%) MCC Acc (%)

SVM N 75.00 99.67 0.83 95.20

RF 41.18 85.99 0.27 77.87

KNN 66.18 80.13 0.40 77.60

NB 86.76 66.78 0.42 70.40

SVM Y 99.35 99.02 0.98 99.19

RF 85.99 77.52 0.64 81.76

KNN 100.00 73.94 0.77 86.97

NB 92.18 69.38 0.63 80.78

TABLE 3 | The comparison of the predictive results between this paper and
existing methods.

Method Sn (%) Sp (%) MCC Acc (%)

Ding et al. 66.70 88.60 0.573 80.40

Lypred 76.47 93.16 0.678 91.30

CWLy-SVM 85.30 97.70 0.845 95.50

Our predictive model 99.35 99.02 0.98 99.19
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acACS considers the protein secondary structure information.
The sensitivity (Sn), Matthew’s correlation coefficient (MCC),
and accuracy (Acc) of AAC were all higher than DC, because
DC displays redundant or irrelevant features, so we used “F-
score” to select the feature. As shown in Figure 4, the closer
the color is to red, the higher the F-score of adjacent amino
acid residue and the easier it is to distinguish. On the contrary,
the closer the color is to blue, the harder it is to distinguish.
It can be seen that DC has some redundant information; this
redundant information will reduce the prediction success rate.
Figure 5 showed the Acc of DC based on the incremental
feature selection (IFS). The peak (the maximum accuracy) can
be found in this curve, and it was 90.93% with 245D features.
Figure 6 showed the comparison of DC with feature selection
and non-feature selection; we can see that feature selection was
successfully applied to remove the irrelevant and redundant
features. The Sn, MCC, and Acc were improved remarkably;
Acc increased from 86.67 to 90.93%, Sn increased from 38.24
to 60.29%, and the results indicate that feature selection was
helpful to enhance the predictive performance. The predictive
results of different combined features with SVM without SMOTE
were displayed in Figure 7. From Figure 7 we can see the
combined feature AAC+DC+acACS+PSSM-AC was better than
other parameters. The accuracy (Acc) of combined feature
AAC+DC+acACS+PSSM-AC was 95.20% with the jackknife
test. This result indicates that the combined feature was powerful
in the prediction of cell wall lytic enzymes.

Comparison With Different Classifiers
In order to display the power of our predictive model, our
predictive model [Support Vector Machine (SVM)], Random
Forest (RF), K-Nearest Neighbors (KNN), and Naive Bayes (NB)
were used to predict cell wall lytic enzymes. The predictive
performance of SVM, RF, KNN, and NB were listed in Table 2.
From Table 2, we can see the predictive performance of SVM,
RF, KNN, and NB with SMOTE were superior to those without
SMOTE. The Acc of SVM, RF, KNN, and NB increased by 3.99,
3.89, 9.37, and 10.38% when using SMOTE; the MCC of SVM,
RF, KNN, and NB increased by 0.15, 0.37, 0.37, and 0.21 when
using SMOTE. In addition, the Sn, Sp, MCC, and Acc of SVM
reached 99.35%, 99.02%, 0.98, and 99.19% by using SMOTE. The
experimental results show that SVM was useful for improving the
predictive performance of cell wall lytic enzymes.

Comparison With Existing Methods
To further investigate the effectiveness of our predictive model,
we compared it with existing methods with the same dataset. The

comparison results were listed in Table 3. From Table 3, we can
see that the predictive results of cell wall lytic enzymes in our
predictive model were better than those of the other methods.
Furthermore, the Sn, Sp, MCC, and Acc in our predictive model
reached 99.35%, 99.02%, 0.98, and 99.19%, which were 32.65%,
10.42%, 0.407, and 18.79% higher than the Ding et al. (2009)
method, 22.88%, 5.86%, 0.302, and 7.89% higher than Lypred,
and 14.05%, 1.32%, 0.135, and 3.69% higher than CWLy-SVM.
These results indicate that our predictive model was superior to
existing methods.

CONCLUSION

With the rapid rise of antibiotic-resistant strains, cell wall lytic
enzymes used to destroy bacteria is a viable alternative method
to avoid the crisis of antimicrobial resistance. In this work, a
reliable and effective computational method was developed to
identify the cell wall lytic enzymes. This model was derived
from the SVM machine learning algorithm; SMOTE was used
to counter the imbalanced data classification problems, and the
F-score algorithm was used to remove redundant or irrelevant
features. A series of experiments demonstrated that the proposed
method is powerful. This method has good capability for
distinguishing lyases.
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To infect plants successfully, pathogens adopt various strategies to overcome their
physical and chemical barriers and interfere with the plant immune system. Plants deploy
a large number of resistance (R) proteins to detect invading pathogens. The R proteins
are encoded by resistance genes that contain cell surface-localized receptors and
intracellular receptors. In this study, a new plant R protein predictor called prPred was
developed based on a support vector machine (SVM), which can accurately distinguish
plant R proteins from other proteins. Experimental results showed that the accuracy,
precision, sensitivity, specificity, F1-score, MCC, and AUC of prPred were 0.935, 1.000,
0.806, 1.000, 0.893, 0.857, and 0.948, respectively, on an independent test set.
Moreover, the predictor integrated the HMMscan search tool and Phobius to identify
protein domain families and transmembrane protein regions to differentiate subclasses
of R proteins. prPred is available at https://github.com/Wangys-prog/prPred. The tool
requires a valid Python installation and is run from the command line.

Keywords: prPred, plant R protein, CKSAAP, CKSAAGP, support vector machine

INTRODUCTION

Plant pathogens can disturb the plant immune system to support their growth and development
within plant tissue. The propagation and spread of pathogens threaten food security and
cause crop and economic losses. To recognize invading pathogens, plants have evolved various
disease resistance proteins (R proteins). There are two main categories of plant R proteins:
membrane-bound pattern recognition receptors (PRRs) and intracellular resistance receptors.
PRRs are comprised of two receptor classes, receptor-like proteins (RLPs) and receptor-like
kinases (RLKs), that are located on the plant plasma membrane as the first layer of the
surveillance system to detect microbe-derived molecular patterns. PRRs typically contain highly
variable extracellular domains, such as lysin motif (LysM), leucine-rich repeat (LRR), and lectin
domains (Zhou and Yang, 2016). The majority of intracellular resistance receptors (NBS-LRRs
or NLRs) are nucleotide-binding sites (NBSs) and LRR proteins that can recognize effectors
delivered into host cells by pathogens. The NBS domain is part of the NB-ARC domain
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that contains additional subdomains, including apoptotic
protease-activating factor-1 (APAF-1), R gene products and
caenorhabditis elegans death-4 protein (CED-4) (van der Biezen
and Jones, 1998; Van Ooijen et al., 2008). NLR proteins are
divided into two subclasses based on the N-terminal structure:
TIR-NBS-LRR (TNL), which contains a toll-like-interleukin
receptor (TIR) domain, and CC-NBS-LRR, which carries a
coiled-coil (CC) domain (Han, 2019; Sun et al., 2020).

Five computational approaches have been developed for
R protein prediction (Table 1). NLR-parser, RGAugury, and
Restrepo-Montoya’s pipeline are alignment-based tools, and
NBSPred and DRPPP are learning-based tools. NLR-parser
uses motif alignment and search tool (MAST) to identify
NLR-like sequences (Steuernagel et al., 2015). RGAugury
identifies different subclasses of R proteins, including membrane-
associated receptors (RLPs or RLKs) and NBS-containing
proteins, by integrating the results generated from several
computing programs, such as BLAST (Camacho et al., 2009),
InterProScan (Zdobnov and Apweiler, 2001), HMMER3 (Eddy,
2011), nCoil (Lupas et al., 1991), and Phobius (Käll et al.,
2004). Restrepo-Montoya et al. (2020) developed a computational
approach to classify RLK and RLP proteins using SignalP
4.0 (Petersen et al., 2011), TMHMM 2 (Krogh et al., 2001)
and PfamScan (Finn et al., 2014). However, methods based
on sequence alignment are low-sensitive and time-consuming,
which can lead to difficulties in predicting low similarity proteins.
Machine learning-based methods, NBSPred and DRPPP, are
used for the detection of R proteins based on SVM by
considering various numerical representation schemes of protein
sequences. NBSPred was developed to differentiate NLR/NLR-
like proteins from non-NLR proteins. However, the NBSPred
training datasets were generated by electronic searches and were
not experimentally verified, which might reduce the accuracy
of the model. DRPPP was built by extracting various features
from input protein sequences, and the model achieved 91.11%
accuracy for prediction plant R proteins. Unfortunately, the
NBSPred1 and DRPPP2 web servers are no longer available.

In this study, we developed an accurate computational
approach for identifying R proteins using various sequence
features. It is worth highlighting that the composition of k-spaced
amino acid pairs (CKSAAPs) and k-spaced amino acid group
pairs (CKSAAGPs) were also considered in the training process.
The two-step feature selection strategy was adopted to detect
irrelevant and redundant features. Then, the optimal k value and
algorithm were evaluated for R protein prediction. Ultimately,
support vector machine (SVM) and 5-spaced amino acid (group)
pairs were chosen and applied to construct classifiers with
sequence features.

MATERIALS AND METHODS

A flowchart of our method is shown in Figure 1. It
can be summarized in five steps: (1) data collection;

1http://soilecology.biol.lu.se/nbs/
2http://14.139.240.55/NGS/download.php

(2) feature construction; (3) two-step feature selection;
(4) performance evaluation of features with or without
CKSAAPs and CKSAAGPs; and (5) performance evaluation of
different algorithms.

Data Collection
We obtained plant R protein sequences from the PRGdb
database3. R protein sequences were derived from 35 plant
species and served as a positive dataset (Osuna-Cruz et al.,
2018). Next, the known protein sequences of 35 plant
species were downloaded from the NCBI protein database
to construct a negative dataset. The sequences containing
NB-ARC, LRR, Pkinase, TIR, FNIP, Acalin, peptidase_C48,
PPR, zf-BED, and WRKY were filtered by a Pfam domain
search (Kushwaha et al., 2016). To remove redundancy,
proteins with sequence similarity >30% were excluded from
the non-R protein dataset using CD-HIT (Fu et al., 2012).
However, 34,975 protein sequences remained in the non-R
protein dataset after filtering, thus, to ensure the balance
of data, 304 protein sequences were selected randomly from
the identified non-R proteins to serve as a final negative
dataset. Then, 152 R proteins and 304 non-R proteins were
split into training and test datasets at an 8:2 ratio. Finally,
the training dataset is made up of 121 R protein sequences
and 243 non-R protein sequences, and the independent test
dataset is composed of 31 R protein sequences and 61 non-R
protein sequences.

Feature Construction
Features were extracted from input sequences using iFeature
(Chen et al., 2018), such as amino acid composition,
grouped amino acid composition, quasi-sequence-
order, composition/transition/distribution (C/T/D),
autocorrelation, conjoint triad and pseudo-amino acid
composition (PseAAC). More detailed information about
the features is described in the Supplementary Methods and
Supplementary Table 1.

There are lots of feature extraction methods (Pal et al., 2016;
Zeng et al., 2016; Liao et al., 2018; Zhang and Liu, 2019; Ikram
et al., 2020; Li J. et al., 2020; Wang et al., 2020; Zhao et al.,
2020; Zhu et al., 2020). In this work, we utilized CKSAAPs and
CKSAAGPs as numeric vectors to represent the protein sequence.
CKSAAP was used to calculate the occurrence frequencies of any
two amino acids separated by any k amino acids. For example, if
k = 0, the 0-spaced residue pairs can be represented as: AA, AC,
AD, . . ., YY; if k = 1, the 1-spaced residue pairs can be expressed
as AxA, AxC, AxD, . . ., YxY. The CKSAAPs are defined as:

k = 0
(

N [AA]
N0

,
N [AC]
N0

,
N [AD]
N0

, . . . . . . ,
N [YY]
N0

)
400

k = 1
(

N [AxA]
N1

,
N [AxC]

N1
,

N [AxD]
N1

, . . . . . . ,
N [YxY]

N1

)
400

3http://prgdb.org/prgdb/
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TABLE 1 | Summary of existing tools for plant R protein prediction.

Tool Methods Objects Sites References

NLR-parser Motif alignment and search
tool (MAST)

NLRs http://github.com/steuernb/NLR-Parser Steuernagel et al., 2015

RGAugury BLAST search and
domain/motif analysis

RLKs, RLPs, NLRs https://bitbucket.org/yaanlpc/rgaugury Li et al., 2016

Restrepo-Montoya’s method BLAST search and
domain/motif analysis

RLKs, RLPs https://github.com/drestmont/plant_rlk_rlp/ Restrepo-Montoya et al., 2020

NBSPred SVM NLRs http://soilecology.biol.lu.se/nbs/ Kushwaha et al., 2016

DRPPP SVM R proteins http://14.139.240.55/NGS/download.php Pal et al., 2016

SVM, support vector machine.

k = 2
(

N [AxxA]
N2

,
N [AxxC]

N2
,

N [AxxD]
N2

, . . . ,
N [YxxY]

N2

)
400

where “x” represents any of 20 amino acids; Nk was calculated as
Nk = L− (k+ 1), k = 1, 2, 3. . ., where L represents the length of a
given protein sequence. The final feature vector was computed by
concatenating the individual feature vectors; for example, if k = 5,
the number of vector dimensions would be 400× 6 = 2,400.

Amino acid residues can be divided into five categories
based on chemical properties of the side chains, including
aliphatic group (g1: GAVLMI), aromatic group (g2: FYW),
positive charged group (g3: KRH), negative charged
group (g4: DE), and uncharged group (g5: STCPNQ).
k-spaced amino acid group pairs (CKSAAGP) is based
on the frequency of two group separated by any k amino
acids. If k = 0, the 0-spaced group pairs is represented
as:

k = 0

(
N
[
g1g1

]
N0

,
N
[
g1g2

]
N0

,
N
[
g1g3

]
N0

, . . . . . . ,
N
[
g5g5

]
N0

)
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Two-Step Feature Selection Strategy
First, feature vectors were sorted according to the
value of information gain (IG). A new feature list was
generated in descending order of the IG value. Second,
we selected or removed features based on the accuracy
value during the training process. We added features
from higher IG value to lower IG value. If the addition
of a feature did not reduce the accuracy in the cross-
validation strategy, then the feature vector was retained;
otherwise, it was removed.

Machine Learning Algorithms
Eight algorithms, including logistic regression (LR) (Hosmer
et al., 2013), K-nearest neighbors (KNN) (Kramer, 2013),
SVM (Hearst et al., 1998), decision tree (DT) (Swain
and Hauska, 1977), random forest (RF) (Breiman, 2001),
gradient boosting classifier (GBC) (Aler et al., 2017),
Adaboost (Schapire, 2013), and extra-tree classifier (ETC)
(Geurts et al., 2006), were chosen to train the model.
We applied grid search (GS) to find optimal parameter
combination in 10-fold cross-validation for each model.
GS requires specifying a range for parameters, for

example, the SVM parameter optimization using GS is
implemented within the given ranges of C = {−5, 11}
and γ = {−9, 13}.

Performance Evaluation
To estimate the contributions of CKSAAPs and CKSAAGPs
and to measure the overall predictive performance of the
classification models, six parameters were applied for 10-fold
cross-validation and independent tests (Hearst et al., 1998;
An et al., 2019; Chen et al., 2019; Ding et al., 2019a,b;
Fang et al., 2019; Jiang et al., 2019; Lv et al., 2019b, 2020b;
Shen et al., 2019; Liu et al., 2020), including precision (Pre),
sensitivity (Sen), specificity (Spe), accuracy (Acc), F1-score, and
Matthew’s correlation coefficient (MCC). They are defined as
follows:

Pre =
TP

TP+ FP
(1)

Sen =
TP

TP+ FN
(2)

Spe =
TN

FP+ TN
(3)

Acc =
TP+ TN

TP+ FP+ TN+ FN
(4)

F1− score =
2× Pre × Sen

Pre+ Sen
(5)

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(6)

where TP is the number of R proteins classified as R proteins, TN
is the number of non-R proteins classified as non-R proteins, FP
is the number of non-R proteins classified as R proteins, and FN
is the number of R proteins classified as non-R proteins.

Additionally, the ROC curve and PR curve were used as visual
assessment metrics. The ROC curve shows the false-positive rate
versus the true positive rate, and the PR curve is recall versus
precision. The area under the curve (AUC) is also provided as
performance measure (Wang et al., 2010; Cheng et al., 2019). An
AUC close to 1 indicates better prediction of the model.
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FIGURE 1 | prPred workflow.
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TABLE 2 | Performance comparison of features with and without CKSAAP and CKSAAGP in the independent dataset test.

Algorithms Independent dataset test

Acc Pre Sen Spe F1-score MCC AUC

Without CKSAAPs and CKSAAGPs LR 0.891 0.839 0.839 0.918 0.839 0.757 0.919

KNN 0.891 0.862 0.806 0.934 0.833 0.754 0.928

SVM 0.902 0.893 0.806 0.951 0.847 0.778 0.935

RF 0.880 0.885 0.742 0.951 0.807 0.727 0.924

DT 0.859 0.846 0.710 0.934 0.772 0.676 0.847

GBC 0.815 0.733 0.710 0.869 0.721 0.583 0.839

Adaboost 0.848 0.840 0.677 0.934 0.750 0.650 0.859

ETC 0.913 0.926 0.806 0.967 0.862 0.803 0.947

k = 5 LR 0.891 0.862 0.806 0.934 0.833 0.754 0.946

KNN 0.924 0.929 0.839 0.967 0.881 0.828 0.935

SVM 0.935 1.000 0.806 1.000 0.893 0.857 0.948

RF 0.913 0.960 0.774 0.984 0.857 0.805 0.931

DT 0.880 0.917 0.710 0.967 0.800 0.729 0.854

GBC 0.902 0.923 0.774 0.967 0.842 0.778 0.882

Adaboost 0.870 0.828 0.774 0.918 0.800 0.704 0.880

ETC 0.924 0.962 0.806 0.984 0.877 0.829 0.938

LR, logistic regression; KNN, K nearest neighbors; SVM, support vector machine; RF, random forest; DT, decision tree; GBC, gradient boosting classifier; ETC, extra
tree classifier. The bold values represent the predictive performance of SVM based on 5-spaced amino acid pairs.

FIGURE 2 | ROC (A) and PR (B) curve for the prPred classifier in the independent dataset test.

TABLE 3 | Example results in the CSV-format output file of prPred.

ID R_protein_possibility TM SP Domain

Protein1 0.992151981 0 0 NB-ARC (PF00931.22) Rx_N (PF18052.1) LRR_8 (PF13855.6) LRR_8 (PF13855.6) LRR_8 (PF13855.6)

Protein2 0.992149469 0 0 NB-ARC (PF00931.22) NB-ARC (PF00931.22) Rx_N (PF18052.1) Rx_N (PF18052.1) Rx_N (PF18052.1)

Protein3 0.998599022 0 0 TIR (PF01582.20) NB-ARC (PF00931.22) NB-ARC (PF00931.22) TIR_2 (PF13676.6)

Protein4 0.992166647 1 Y Pkinase (PF00069.25) Pkinase_Tyr (PF07714.17) LRRNT_2 (PF08263.12) LRRNT_2 (PF08263.12) LRR_8 (PF13855.6)

Protein5 0.992152188 1 Y LRR_8 (PF13855.6) LRR_8 (PF13855.6) LRR_8 (PF13855.6) LRR_8 (PF13855.6) LRR_8 (PF13855.6)

Protein6 0.023914191 0 0

Protein7 0.022744187 0 0 FHA (PF00498.26)

Protein8 0.023851809 1 0
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RESULTS

Comparison of Different Feature
Combinations and Classification Models
CKSAAPs and CKSAAGPs are numerical encoding schemes
that can capture short linear motif information, and the
composition of CKSAAPs has been successfully applied
to identify protein modification sites (Cheng et al., 2018;
Lv et al., 2020c,d). We constructed feature vectors with
CKSAAPs and CKSAAGPs because plant R proteins contain
motif information distinct from that of non-R proteins
(Supplementary Figure 1). The numerical encoding schemes
of CKSAAP and CKSAAGP have exhibited obvious differences
between R and non-R proteins using Wilcoxon rank sum
test (Supplementary Figure 2). Table 2 showed that different
models had different responses to the features with or without
CKSAAPs and CKSAAGPs. For example, the Acc of LR showed
no noticeable changes when CKSAAP and CKSAAGP features
were added, while the Acc of SVM was improved from 0.902
to 0.935 in the independent dataset when considering 5-spaced
amino acid pairs.

To determine the optimal algorithms and k value, we explored
the discrimination power of k = 3-, 5-, 7-, 9-, and 13-spaced
amino acid pairs using different algorithms (e.g., LR, KNN, SVM,
RF, DT, GBC, Adaboost, and ETC) (Supplementary Table 2).
We observed that SVM achieved better performance than other
algorithms in 10-fold cross-validation tests in the same k-value.
Although the AUC of SVM when k = 5 (AUCk = 5 = 0.948) was
slightly lower than that when k = 9 and 13 (AUCk = 9 = 0.953,
AUCk = 13 = 0.951) in the ROC curve in the independent
dataset tests, the PR curve showed 4.12 and 7.09% improvements
in AUC-PR when k = 5 compared with k = 9 and 13
(Figure 2). Moreover, the Acc, Spe, F1-score, and MCC values
were improved by 2.41% (4.94%), 3.41% (3.41%), 3.60% (8.77%),
and 6.72% (13.81%), respectively, compared with k = 9 (and
13) (Supplementary Table 2). Therefore, we chose SVM as
the model and k = 5 to build the plant R protein predictor.
The predictor showed satisfactory prediction results for the
independent dataset with an Acc of 0.935, Pre of 1.000, Sen
of 0.806, Spe of 1.000, F1-score of 0.893, MCC of 0.857, and
AUC of 0.948 (Table 2 and Supplementary Table 2). The
optimal parameters of SVM with the RBF kernel were C = 2.0
and γ = 0.0078.

Prediction Pipeline of prPred
Because the published methods based on machine learning
algorithms (e.g., NBSPred and DRPPP) are no longer available,
performance comparisons cannot be carried out between
prPred and the state-of-the-art methods. The alignment-
based tools, NLR-parser and Restrepo-Montoya’s method
are mainly applied to predict NLRs and PRRs (RLKs and
RLPs), respectively. The RGAugury project aims to identify
resistance gene analogs for plant genomes using interolog-
and domain-based approaches. In the study, prPred integrated
machine learning method and sequence alignment-based
method to analyze and evaluate the potential R proteins.

Except for predicting the potential R proteins, it was capable of
annotating protein domain families based on Pfam-A using a
hidden Markov model (HMM) and searching transmembrane
regions (TMs) using Phobius to differentiate RLPs/PLKs
from NLRs. Users can import protein sequences in FASTA
format, and the prPred prediction results can be saved to
CSV- and FASTA-formatted file. The CSV-formatted file
output contains information about the protein sequence ID,
prediction probability score, TM number, that as shown
in Table 3.

CONCLUSION

In this study, we developed a bioinformatics tool called
prPred for the prediction of plant resistance proteins that
combines CKSAAP and CKSAAGP features based on
SVM. The predictive and analytical results demonstrated
that the constructed model is an efficient predictor to
distinguish R proteins from non-R proteins. CKSAAP and
CKSAAGP features provide important improvements in
the prediction performance. We expect that prPred will be
a useful tool to facilitate biological research and provide
guidance for related experimental validation. In the feature,
we will use deep learning method and deep representation
learning features for prPred (Lv et al., 2019a, 2020a, 2021;
Li F. et al., 2020).
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Alpha transmembrane proteins (αTMPs) profoundly affect many critical biological

processes and are major drug targets due to their pivotal protein functions. At present,

even though the non-transmembrane secondary structures are highly relevant to the

biological functions of αTMPs along with their transmembrane structures, they have

not been unified to be studied yet. In this study, we present a novel computational

method, TMPSS, to predict the secondary structures in non-transmembrane parts

and the topology structures in transmembrane parts of αTMPs. TMPSS applied a

Convolutional Neural Network (CNN), combined with an attention-enhanced Bidirectional

Long Short-Term Memory (BiLSTM) network, to extract the local contexts and long-

distance interdependencies from primary sequences. In addition, a multi-task learning

strategy was used to predict the secondary structures and the transmembrane helixes.

TMPSS was thoroughly trained and tested against a non-redundant independent

dataset, where the Q3 secondary structure prediction accuracy achieved 78% in the

non-transmembrane region, and the accuracy of the transmembrane region prediction

achieved 90%. In sum, our method showcased a unified model for predicting the

secondary structure and topology structure of αTMPs by only utilizing features generated

from primary sequences and provided a steady and fast prediction, which promisingly

improves the structural studies on αTMPs.

Keywords: protein secondary structure, protein topology structure, deep learning, alpha-helical transmembrane

proteins, long short-term memory networks

INTRODUCTION

Membrane proteins (MPs) are pivotal players in several physiological events, such as signal
transduction, neurotransmitter adhesion, ion transport, etc. (Goddard et al., 2015; Roy, 2015).
While transmembrane proteins (TMPs), as an essential type of MPs, span the entire biological
membrane with segments exposed to both the inside and the outside of the lipid bilayers (Stillwell,
2016). As themajor class of TMPs, alpha-helical TMPs are given great pharmacological importance,
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accounting for about 60% of known drug targets in the current
benchmark (Wang et al., 2019). Nevertheless, the difficulties of
acquiring their crystal structures always stand in our way due
to their low solubilities in the buffers typically used in 2D-PAGE
(Butterfield and Boyd-Kimball, 2004; Nugent et al., 2011). All of
this is calling for accurate computational predictors.

Predicting alpha-helical TMPs’ tertiary structure directly
from amino acid sequences has been a challengeable task in
computational biology for many years (Yaseen and Li, 2014),
but some indirect measures may be worth considering. Since
Pauling et al. (1951) performed the first protein secondary
structure prediction in 1951, many indicators on the secondary
structure level of proteins, such as topology structure (Wang
et al., 2019), surface accessibility (Lu et al., 2019), have been
demonstrated to be strongly associated with the 3D information
of TMPs. Specifically, the secondary structure helps to identify
function domains and guides the design of site-specific mutation
experiments (Drozdetskiy et al., 2015), whereas the topology
structure can help reveal the relative position relationship
between TMPs and membranes (Tusnady and Simon, 2001).
Generally, the performance of protein secondary structure
prediction can be measured by Q3 accuracy in a 3-class
classification, i.e., helix (H), strand (E), and coil (C), or Q8
accuracy in an 8-class classification under a more sophisticated
evaluation system. Q3 is preferred according to its low cost
and close ability in depicting the secondary structure compared
with Q8.

Progress in the structure prediction for MPs is slower than
that for soluble proteins (Xiao and Shen, 2015). At present,
state-of-the-art methods aiming at predicting the secondary
structure based on primary sequences, such as SSpro/ACCpro
5 (Magnan and Baldi, 2014), JPred4 (Drozdetskiy et al., 2015),
PSIPRED 4 (Buchan and Jones, 2019), and MUFOLD-SSW
(Fang et al., 2020), are all trained on soluble protein-specific
datasets. However, none of those mentioned methods can
simultaneously predict the secondary structure and topology
structure of alpha-helical TMPs. More specifically, existing tools
could not distinguish transmembrane helices of TMPs from non-
transmembrane ones and, in-term, would weaken the TMPs’
structure prediction specificity. Another common challenge
among the available methods is that features fed into these
models are often toomiscellaneous, making themodel prediction
low efficient and even difficult for users to understand. Thus,
a more suitable and practical tool for assisting the structure
prediction of TMPs is greatly needed.

Deep learning has been employed in several protein sequence
classification problems (Lv et al., 2019; Wei et al., 2019; Zeng
et al., 2020). Here, we proposed a deep learning-based predictor
named TMPSS to predict the secondary structure and topology
structure of alpha-helical TMPs simultaneously using amino
acid sequences. Equipped with a robust network and carefully
screened input features, TMPSS ignored input length restriction
and achieved the highest output efficiency compared with other
state-of-the-art methods with an acceptable Q3 performance of
secondary structure prediction in the full chain (see Figure 1).
In addition, our TMPSS achieved the Q3 of a whopping 0.97
in the transmembrane region, suggesting that almost all the

transmembrane helices were identified. Moreover, TMPSS also
significantly outperformed other existing topology structure
predictors with the prediction accuracy of 0.90 and the Matthew
Correlation Coefficient (MCC) of 0.76 using an independently
generated dataset. TMPSS implemented a deep neural network
by grouped multiscale Convolutional Neural Networks (CNNs)
and stacked attention-enhanced Bidirectional Long Short-Term
Memory (BiLSTM) layers for capturing local contexts and
global dependencies, respectively. We also utilized the multi-
task learning technique to improve prediction performance
by considering the mutual effects between different protein
properties. We have released TMPSS as a publicly available
prediction tool for the community. The pre-trained model
and support materials are both available at https://github.com/
NENUBioCompute/TMP-SS.

MATERIALS AND METHODS

Benchmark Datasets
As illustrated above, none of the existing secondary structure
predictors available today are specific to TMPs. Thus, it is
necessary to create unique datasets that contain only alpha-
helical TMPs for targeted research. The Protein Data Bank
of transmembrane proteins (PDBTM) (Kozma et al., 2012),
the first up-to-date and comprehensive TMP selection of the
Protein Data Bank (PDB) (Burley et al., 2017), was chosen to
construct our datasets.We downloaded 4,336 alpha-helical TMPs
from PDBTM (version: 2020-2-7) and removed the chains that
contained unknown residues (such as “X”) and whose length was
<30 residues.

To reduce the redundancy of data and avoid the influence of
homology bias (Zou et al., 2020), we utilized CD-HIT (Fu et al.,
2012) with a 30% sequence identity cut-off and obtained 911
protein chains. These protein chains were then randomly divided
into a training set of 811 chains, a validation set of 50 chains, and
a test set (named “TEST50”) of 50 chains. Secondary structure
labels were obtained by the DSSP program (Kabsch and Sander,
1983) through PDB files, and topology structures were collected
from PDBTM. All the experiments were conducted on five-
fold cross-validation to gauge its generalization performances
(Walsh et al., 2016). The results were used to evaluate our
model and compare against other predictors. The overview of
AA composition of the training set, validation set, and TEST50
is shown in Table 1.

Features and Input Encoding
Features are the key issue for the machine learning tasks (Patil
and Chouhan, 2019; Zhang and Liu, 2019). Prediction of alpha-
helical TMPs’ secondary structure and topology structure at the
residue level is formulated as follows: for a given primary protein
sequence of an alpha-helical TMP, a sliding window whose length
is L residues is used to predict the secondary structure and
topology structure of the central residue. For example, if L is
19, each protein will be sliced into fragments of 19 amino acids.
Providing valuable input features to deep learning networks is of
great importance to make predictions more accurate. Here, we
carefully selected two encoding features to represent the protein
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FIGURE 1 | Secondary structure and topology structure prediction of alpha-helical transmembrane proteins.

TABLE 1 | Overview of AA composition of the training set, validation set, and

TEST50.

3-State 8-State Training set Validation set TEST50

Helices G 60.1% 5,090 59.0% 438 55.1% 317

H 119,987 7,931 7,897

I 3,101 254 192

Strands E 6.3% 12,226 6.5% 853 8.9% 1,240

B 1,295 103 110

Coils C 33.5% 34,372 34.5% 2,298 36.0% 2,607

S 17,861 1,332 1,397

T 19,195 1,409 1,488

fragment: one-hot code and HHblits profile (Remmert et al.,
2012).

The first set came from the protein profiles generated by
HHblits, which is faster, almost twice as sensitive, and provides
more accurate evolutionary information for protein sequence
than PSI-BLAST (Steinegger et al., 2019). We found the best
results against the database named uniprot20_2016_02 with
three iterations, an E-value threshold of 0.001, and other default
settings. The obtained Hhhm matrix consisted of 31 dimensions,
30 of which were HMM profile values and one reflected NoSeq
label (representing a gap) (Fang et al., 2018) at the last column.
Each of Hij in the matrix was scaled by a variation of sigmoid
function [see Equation (1)], making the distribution of features
more uniform and reasonable.

f (t)= 10

1+e
− t
2000

(1)

We then adopted a 21-dimensional matrix Oonehot as our second
set containing a simple one-hot encoding of 20 positions with one
NoSeq label. The past research suggested that one-hot encoding
was straightforward to generate and has been successfully used
in protein structure prediction-associated tasks (Ding and Li,
2015). Therefore, we used 19 dimensional “0” vector with a “1”
to represent AA at the index of a particular protein sequence. We
mapped each protein fragment sliced by the sliding window with
this encoding strategy into an undisturbed coding within local
position information.

Model Design
Network Architecture

As a deep learning-based predictor, TMPSS can predict the
secondary structure and topology structure of alpha-helical
TMPs simultaneously. As we can see in Figure 2, the four
parts of our model are feature-integration layers for input
feature preprocessing, groupedmultiscale CNN layers, attention-
enhanced BiLSTM layer, and fully-connected layers by two
softmax outputs in the end.

Our network’s input carried two types of features generated
from primary sequences, amino acid features, and profile
features. These preprocessed features were fed into a grouped
multiscale CNN layer to capture local position information and
prevent their mutual interferences at the same time. Then, the
merged CNN output flew into two stacked BiLSTM layers, which
turned out to be skilled in extracting long-term dependencies
and global information (Zhou et al., 2016). We also proposed
the attention mechanism as a simple dense layer to help LSTM
know which unit’s output should be paid more attention. At
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FIGURE 2 | Diagram of TMPSS.

the end of the components mentioned above, there were two
fully-connected hidden layers with a softmax-activated output
layer, which performed a 3-category secondary structure and
2-category topology structure classification. More details of
grouped multiscale CNNs and attention-enhanced BiLSTM are
discussed in the Supplementary Material.

Implementation Details

Our model was implemented, trained, and tested using the
open-source software library Keras (Gulli and Pal, 2017) and
Tensorflow (Abadi et al., 2016) on an Nvidia 1080Ti GPU.
Main hyperparameters, such as sliding window length, training
dropout rate, and number of LSTM units, were explored, and
an early stopping strategy and a save-best strategy were adopted
(Fang et al., 2018). When the validation loss did not reduce in
10 epochs during training time, the training process would be
stopped, and the best model parameters would be saved. In all
cases, the weights were initialized by default setting in Keras;
the parameters were trained using an Adam optimizer (Bello
et al., 2017) to change the learning rate during model training
dynamically. Furthermore, batch normalization layers (Ioffe and
Szegedy, 2015) and a Dropout layer (Gal et al., 2017) (rate =

0.30) were utilized since they were both skilled in avoiding the
network from overfitting and improving the speed of the training
process effectively. We set the sliding window’s length as 19
residues and put 700 units in each LSTM layer according to the
hyperparameter tuning results in this study.

Performance Evaluation
A commonly used evaluationmetric for both secondary structure
and topology structure prediction based on the residue level
is accuracy (ACC), and in particular, Q3 was widely used
as a performance metric for 3-category secondary structure
prediction (Fang et al., 2017). To quantitatively evaluate the
performance of TMPSS and other predictors at the residue level,
they were assessed by six measures, including accuracy, recall,
precision, specificity, MCC, and F-measure (Tan et al., 2019; Yang
et al., 2019; Zhu et al., 2019). The calculation formulas of these

evaluation parameters were illustrated as follows:

Accuracy= TN+TP
TP+FN+FP+TN (2)

Recall= TP
TP+FN (3)

Precision= TP
TP+FP (4)

Specificity= TN
FP+TN (5)

MCC= TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(6)

F−measure=2×Recall×Precision
Recall+Precision

(7)

where TN, TP, FN, and FP, respectively denoted true negative,
true positive, false negative, and false positive samples.

RESULTS

Prediction Performance Analysis at the
Residue Level
To evaluate the prediction performance of each category in both
two classification tasks at the residue level, we used the confusion
matrices (see Figure 3), Receiver Operating Characteristic (ROC)
curves, and Precision–Recall (PR) curves (see Figure 4) to
visualize the predict results of TMPSS on TEST50. As illustrated
in Table 1, TEST50 contains a total of 15,248 residues labeled
by “H” (helix), “E” (strand), or “C” (coil) in secondary
structure prediction and “T” (transmembrane helix) or “N” (non-
transmembrane residue) in topology structure prediction.

Figures 3A,B shows the confusion matrices of secondary
structure prediction in the full chain and non-transmembrane
region, respectively. As we can see, class “H” was predicted
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FIGURE 3 | Confusion matrices of TMPSS’s prediction performance. (A) Confusion matrix of secondary structure prediction in the full chain. (B) Confusion matrix of

secondary structure prediction in the non-transmembrane region. (C) Confusion matrix of topology structure prediction in the full chain.

FIGURE 4 | Receiver Operating Characteristic (ROC) and Precision–Recall (PR) curves of prediction performance. (A) ROC curve of secondary structure prediction.

(B) PR curve of secondary structure prediction. (C) ROC curve of topology structure prediction. (D) PR curve of topology structure prediction.
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TABLE 2 | Comparison of TMPSS with previous secondary structure predictors on TEST50 in the full chain.

Method Class R P S MCC F Full chain

SS Q3

Limitation of

input length

(residues)

Time cost

(min)

SSpro5 (with

templates)

H 0.908 0.942 0.923 0.826 0.925 0.90 Limited to 1,500 980

E 0.908 0.778 0.975 0.824 0.838

C 0.870 0.854 0.926 0.792 0.862

PSIPRED 4 H 0.907 0.880 0.829 0.741 0.893 0.83 Limited to 1,500 490

E 0.726 0.735 0.975 0.705 0.731

C 0.731 0.770 0.891 0.631 0.750

RaptorX-Property H 0.897 0.910 0.877 0.772 0.903 0.85 – 114

E 0.771 0.761 0.977 0.743 0.766

C 0.786 0.770 0.883 0.666 0.778

Porter 5 H 0.919 0.893 0.849 0.773 0.906 0.85 – 1,035

E 0.757 0.763 0.977 0.737 0.760

C 0.758 0.796 0.903 0.670 0.777

DeepCNF H 0.867 0.908 0.879 0.741 0.887 0.83 – 3,000

E 0.741 0.703 0.970 0.694 0.722

C 0.791 0.743 0.864 0.645 0.766

Spider3 H 0.927 0.883 0.831 0.766 0.904 0.85 – 720

E 0.751 0.765 0.978 0.734 0.758

C 0.737 0.803 0.910 0.662 0.769

SPOT-1D H 0.931 0.884 0.832 0.772 0.907 0.85 Limited to 750 2,030

E 0.821 0.767 0.976 0.773 0.793

C 0.731 0.822 0.921 0.673 0.774

MUFOLD-SSW H 0.920 0.884 0.833 0.760 0.902 0.85 Limited to 700 150

E 0.820 0.743 0.973 0.758 0.779

C 0.724 0.815 0.918 0.663 0.767

JPred4 H 0.830 0.908 0.884 0.706 0.867 0.80 Limited to 800 110

E 0.664 0.602 0.958 0.595 0.632

C 0.772 0.689 0.826 0.583 0.728

TMPSS H 0.907 0.888 0.842 0.752 0.897 0.84 – 96

E 0.646 0.764 0.981 0.677 0.700

C 0.763 0.759 0.880 0.641 0.761

H, helix (DSSP classes H, G, and I); E, strand (DSSP classes E and B); C, coil (DSSP classes S, T, and blank).

R, Recall; P, Precision; S, Specificity; F, F-measure. Bold fonts represent the best experimental results.

with great precision in different regions of TMPs, but the
results of class “E” and class “C” were less satisfactory. A
similar experimental phenomenon existed in Figures 4A,B

simultaneously. Helices account for the largest proportion and
make the prediction more significant by considering our dataset’s
characteristics. The matrices demonstrate that TMPSS did well
in both full chain and non-transmembrane region prediction of
secondary structure on TEST50, confirming it to be a suitable
secondary structure predictor for TMPs.

As for topology structure prediction, TMPSS is also an
effective method. The confusion matrix of topology structure
prediction in the full chain (see Figure 3C) proves that the
output results performed well, whether for class “T” or class “N.”
The ROC and PR curves (see Figures 4C,D) also support the
above conclusion. After doing a thorough analysis of TMPSS’s
prediction performance at the residue level on TEST50, it can be

seen that TMPSS is a reliable and convenient tool for predicting
the secondary structure and topology structure of alpha-helical
TMPs synchronously.

Assessment of Multiple Predictors on
TEST50
We tested TMPSS against SSpro5 (Magnan and Baldi, 2014)
(with templates), PSIPRED 4 (Buchan and Jones, 2019), RaptorX-
Property (Wang et al., 2016a), Porter 5 (Torrisi et al., 2019),
DeepCNF (Wang et al., 2016b), Spider3 (Heffernan et al., 2017),
SPOT-1D (Hanson et al., 2019), MUFOLD-SSW (Fang et al.,
2020), and JPred4 (Drozdetskiy et al., 2015) on the TEST50
we created (see Table 2). Experimental results illustrated that
SSpro5 (with templates) was the most accurate 3-state predictor
in our tests on TEST50 in the full chain with a Q3 of 0.90.
It might be probably because of the contribution of templates.
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TABLE 3 | Comparison of TMPSS with previous secondary structure predictors

on TEST50 in the different transmembrane regions.

Method Trans SS Q3 Non-trans SS Q3

SSpro5 (with templates) 0.90 0.89

PSIPRED 4 0.94 0.79

RaptorX-Property 0.95 0.80

Porter 5 0.95 0.81

DeepCNF 0.91 0.80

Spider3 0.95 0.80

SPOT-1D 0.95 0.81

MUFOLD-SSW 0.94 0.81

JPred4 0.90 0.75

TMPSS 0.97 0.78

Trans, transmembrane region; Non-trans, non-transmembrane region. Bold fonts

represent the best experimental results.

However, apart from SSpro5 (with templates), the remaining
servers performed similarly with the maximum Q3 deviation of
0.02, and some servers, such as JPred4, even performed worse.
Many methods refused to accept sequences of more than a
certain length. By comparison, TMPSS was user-friendly with no
length limitation of input and had the highest output efficiency
among the existing methods with an acceptable Q3 of 0.84 in the
full chain.

It is worth emphasizing that this comparison shown in
Table 2 is “unfair” for our experimental tool. Firstly, the
existing secondary structure predictors cannot distinguish the
transmembrane “H’s” from non-transmembrane “H’s”, whereas
ours can. Secondly, some tools, such as SSpro5, uses templates,
which cannot be found whenmaking predictions about unknown
structural sequences and not recommended to use under
normal circumstances.

However, the tools suitable for water-soluble proteins may
not be suitable for handling the residues in the transmembrane
region of TMPs since they cannot distinguish transmembrane
helices from non-transmembrane helices. To assess different
servers’ secondary structure prediction ability in the different
transmembrane regions, we calculated the precision of both
transmembrane and non-transmembrane residues and listed
the results in Table 3. As expected, TMPSS achieved the
best Q3 performance among all exemplified servers in the
transmembrane region, which signified that almost all the
transmembrane helices were identified by our method.

As for topology prediction, we compared TMPSS to state-
of-the-art topology predictors, including HMMTOP 2 (Tusnady
and Simon, 2001), OCTOPUS (Viklund and Elofsson, 2008),
TOPCONS (Tsirigos et al., 2015), Philius (Reynolds et al.,
2008), PolyPhobius (Jones, 2007), SCAMPI (Bernsel et al.,
2008), and SPOCTOPUS (Viklund et al., 2008). As illustrated
in Table 4, TMPSS obtains the best ACC (= 0.90) and MCC
(= 0.76) performance on TEST50 in the full chain among
the listed methods. The most probable cause is that the joint
feature learning helped two prediction tasks promote each other.
According to this, the deep convolutional BiLSTM extracted

TABLE 4 | Comparison of TMPSS with state-of-the-art topology predictors on

TEST50 in the full chain.

Method ACC MCC

HMMTOP 2 0.84 0.64

OCTOPUS 0.87 0.71

TOPCONS 0.88 0.72

Philius 0.87 0.71

PolyPhobius 0.88 0.72

SCAMPI 0.87 0.70

SPOCTOPUS 0.87 0.71

TMPSS 0.90 0.76

Bold fonts represent the best experimental results.

TABLE 5 | Effect of loss weight during multi-task learning.

Loss weight (λ1:λ2) SS Q3 Topo ACC

1:0.1 0.832 0.887

1:0.3 0.833 0.892

1:0.5 0.835 0.896

1:0.7 0.825 0.892

1:1 0.830 0.894

1:5 0.811 0.889

1:10 0.794 0.892

Bold fonts represent the best experimental results.

the most effective information though there are only two
features exploited.

Multi-Task Learning
Secondary structure prediction and topology structure prediction
of alpha-helical TMPs are highly related tasks since the
residues labeled “T” (transmembrane helix) in topology structure
prediction also have the label of “H” (helix) in secondary
structure prediction (Chen et al., 2002). Therefore, we put these
two tasks together to support multi-task learning (Zhang and
Yeung, 2012) and generated a 3-class secondary structure and
a 2-class topology structure simultaneously. With the help of
multi-task learning, our model’s computational complexity was
significantly reduced compared with other methods based on
cascaded deep learning networks. The joint loss function could
be formulated as follows:

L ({si, ti}) =
λ1
N

∑
Ls (si, si

∗) +
λ2
N

∑
Lt (ti, ti

∗) (8)

where Ls (si, si
∗) = −si

∗log(si) and Lt (ti, ti
∗) = −[ti

∗log(ti) +
(1 − ti

∗)log(1 − ti)] are respective loss functions for secondary
structure and topology structure prediction, si and ti are
predicted probabilities (softmax output) of secondary structure
labels and topology structure labels, respectively, si

∗ and ti
∗

are ground-truth labels of secondary structure and topology
structure, respectively, λ1 and λ2 are loss weight of combined loss
function, and N is the total number of residues. Table 5 shows
the effect of different loss weights (λ1 : λ2) during multi-task
learning on the validation dataset, and we set λ1 = 1, λ2 = 0.5
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FIGURE 5 | Visualize the input features and the features learned by convolutional BiLSTM, respectively, using PCA. (A) Input of TMPSS in SS prediction. (B) Output of

convolutional BiLSTM in SS prediction. (C) Input of TMPSS in TOPO prediction. (D) Output of convolutional BiLSTM in TOPO prediction.

for balancing two joint feature learning tasks and regularization
terms in the end.

Visualization of the Features Learnt by
Convolutional BiLSTM
As an automatic feature extraction process, deep learning can
learn high-level abstract features from original inputs (Farias
et al., 2016). To further explore the effectiveness of convolutional
BiLSTM, Principal Component Analysis (PCA) (Shlens, 2014)
was utilized to visualize the input features and each LSTM unit’s
output in the last bidirectional layer with TEST50. Figure 5
shows the PCA scatter diagrams before and after TEST50 was fed
into our network, respectively.

TABLE 6 | Effect of different combination ways of the attention mechanism on

TEST50.

Model SS Q3 Topo ACC

Attention with multiscale CNNs 0.826 0.893

Attention with BiLSTM 0.835 0.896

Attention with dropout 0.742 0.866

Bold fonts represent the best experimental results.

As described earlier, the input data had 52 features (i.e., 52
dimensions). PCA reduced the input features’ dimensionality
to two principal dimensions and visualized it. As we can
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see in Figures 5A,C, no clear cluster can be found. However,
after feeding the data into the convolutional BiLSTM that
contains 1,400 dimensions (twice of the unit number in a
simple LSTM) at the top layer, the data points showed apparent
clustering tendency (see Figures 5B,D). This visualization
experiment strongly proved the feature extraction efficiency of
the convolutional BiLSTM.

It is worth mentioning that since multi-task joint feature
learning was performed in our network, the label-based
visualization results also revealed the internal relation
between secondary structure prediction and topology
structure prediction. We found that the points representing
“helices” of secondary structure and the ones representing
“transmembrane helices” of topology structure have almost
completely overlapping distributions under different label-
orientated predictions. This experimental phenomenon
also directly confirmed the strong correlation between the

TABLE 7 | An ablation study on TEST50.

Model SS Q3 Topo ACC

Without multiscale CNNs 0.832 0.895

Without BiLSTM layers 0.759 0.743

Without multi-task learning 0.825 0.891

Without attention mechanism 0.828 0.892

TMPSS 0.835 0.896

Bold fonts represent the best experimental results.

two prediction tasks and the necessity and effectiveness of
multi-task learning.

More results, such as the prediction performance analysis
at the residue level, feature analysis, implementation details
of multi-task learning, implementation details of attention
mechanism, and an ablation study, can be found in the
Supplementary Material.

Attention Mechanism
The attention mechanism can stimulate the model extracting
features more effectively, speeding up reaching or even
improving the best performance of prediction (Choi et al.,
2016). To verify the effect of various binding ways of attention
mechanism, which acted as a simple full-connect layer in our
model, we combined it with different network layers, and the
results are shown in Table 6. It can be seen that when we attached
an attention layer to BiLSTM layers, the prediction results (SS
Q3 = 0.835 and Topo ACC = 0.896) were better than doing
the same thing to multiscale CNNs or the Dropout layer as
expected. One reason could be that the attention mechanism
enhanced the process of feature extraction. Another reason could
be that BiLSTM layers just learned the most abundant contextual
features, making it achieve the best effect when combining
attention layer with BiLSTM layers.

Ablation Study
To discover whether a certain component of our proposed
method was vital or necessary, we carried out an ablation
study by removing some network elements in this section. The
experiments performed in our ablation study shared the same

FIGURE 6 | Visualization of secondary structure and topology structure prediction results generated by TMPSS with PyMOL: take 6KKT_A as an example.
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features and hyperparameters. From the results on TEST50
presented inTable 7, we found that those BiLSTM layers were the
most contributing and effective component in our model since
the Q3 accuracy of secondary structure prediction dropped to
75.9% when we roughly removed this part from the network.
Multiscale CNNs were also essential for good performance as
they were particularly good at dealing with local information
of protein sequences. Furthermore, multi-task learning and
attention mechanism were necessary at the same time because
their application made contributions to the robustness of our
method with the proof of study results.

Case Study
To further demonstrate the effectiveness of TMPSS on predicting
the secondary structure and topology structure of alpha-helical
TMPs, we randomly took 6KKT_A as an example of our case
study. 6KKT is a kind of transport protein of Homo sapiens
released on 2019-10-23 that plays vital roles in cell volume
regulation, ion transport, and salt reabsorption in the kidney
(Liu et al., 2019). The prediction result of TMPSS is visualized
in Figure 6 using PyMOL (DeLano, 2002).

As can be seen, our model correctly identified the helices
in the transmembrane region (colored blue) and the non-
transmembrane region (colored green). Additionally, most of the
coils in the non-transmembrane region (colored orange) were
also successfully distinguished.

CONCLUSION

In this study, we proposed a deep learning-based predictor,
TMPSS, to predict the secondary structure and topology
structure of alpha-helical TMPs from primary sequences.
TMPSS’s Q3 accuracy of secondary structure prediction in the
full chain performed on par with the state-of-the-art methods
statistically, and our model had the highest output efficiency with
no length restriction of input at the same time. Moreover, our
method achieved the best Q3 performance in the transmembrane
region and significantly outperformed other topology structure
predictors on the independent dataset TEST50.

TMPSS applied a deep learning network with grouped
multiscale CNNs and stacked attention-enhanced BiLSTM layers
for capturing local and global contexts. Multi-task learning was
exploited to improve prediction performance and reduce our

method’s computational expense by considering the interactions
between different protein properties. A series of visualization
experiments and comparative tests was taken to verify the validity
of the model components mentioned above.

Furthermore, we implemented TMPSS as a publicly available
predictor for the research community. The pre-trained model
and the datasets we used in this paper could be downloaded
at https://github.com/NENUBioCompute/TMP-SS. Finally, we
sincerely hope that the predictor and the support materials we
released in this study will help the researchers who need them.
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The long non-coding RNA (lncRNA)–protein interaction plays an important role in

the post-transcriptional gene regulation, such as RNA splicing, translation, signaling,

and the development of complex diseases. The related research on the prediction

of lncRNA–protein interaction relationship is beneficial in the excavation and the

discovery of the mechanism of lncRNA function and action occurrence, which are

important. Traditional experimental methods for detecting lncRNA–protein interactions

are expensive and time-consuming. Therefore, computational methods provide many

effective strategies to deal with this problem. In recent years, most computational

methods only use the information of the lncRNA–lncRNA or the protein–protein similarity

and cannot fully capture all features to identify their interactions. In this paper, we

propose a novel computational model for the lncRNA–protein prediction on the basis

of machine learning methods. First, a feature method is proposed for representing the

information of the network topological properties of lncRNA and protein interactions. The

basic composition feature information and evolutionary information based on protein,

the lncRNA sequence feature information, and the lncRNA expression profile information

are extracted. Finally, the above feature information is fused, and the optimized feature

vector is used with the recursive feature elimination algorithm. The optimized feature

vectors are input to the support vector machine (SVM) model. Experimental results show

that the proposed method has good effectiveness and accuracy in the lncRNA–protein

interaction prediction.

Keywords: feature representation, mutual information, structure analysis, support vector machine, lncRNA protein

interactions

INTRODUCTION

Long non-coding RNA (lncRNA)–protein interactions play an important role in the post-
transcriptional gene regulation, polyadenylation, splicing, and translation, and predicting lncRNA–
protein interactions helps to understand lncRNA-related activities (Mittal et al., 2009; Ray et al.,
2013). With the rapid advancement of high-throughput technologies and the rapid increase
of lncRNA and protein sequence data, predicting lncRNA–protein interactions by traditional
biological experimental approaches, such as RNA-pulldown, RNA immunoprecipitation, and
other biological experiments, is expensive and time-consuming. In recent years, computational
methods, especially machine learning methods, have been widely used in the field of
bioinformatics. For example, Link prediction paradigms have been used to predict drug targets
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(Munir et al., 2019; Srivastava et al., 2019; Zeng et al., 2019,
2020; Ru et al., 2020; Wang et al., 2020), enhancer promoter
interactions (Hong et al., 2019; Cai et al., 2020a), disease genes
(Zeng et al., 2017a; Ji et al., 2019; Kuang et al., 2019; Wang
et al., 2019; Peng et al., 2020), link prediction (Xiao et al., 2018,
2019, 2020), circular RNAs (Zeng et al., 2017b; Xiao et al., 2019),
microRNAs (miRNAs) (Xiao et al., 2018, 2020; Zeng et al., 2018;
Hajieghrari et al., 2019; Jeyaram et al., 2019; Zhang X. et al., 2019),
and peptide recognition (Bai et al., 2019; Cai et al., 2020b; Fu
et al., 2020; Zhang and Zou, 2020). In addition, computational
intelligence such as evolutionary algorithms (Song et al., 2020a,b)
and unsupervised learning (Lambrou et al., 2019; Noureen et al.,
2019; Zhang L. et al., 2019; Zou et al., 2020) can be applied
to the field of bioinformatics. Given the efficient performance
of machine learning methods in predicting lncRNA–protein
interactions, the number of researchers considering machine
learning methods as the first choice for predicting lncRNA–
protein interactions have been increasing.

The general process of machine learning methods for
predicting lncRNA–protein interactions is as follows. First, raw
lncRNA and protein data are mined and analyzed separately to
extract the characteristic information of lncRNA and protein.
Algorithms are then designed to compute the lncRNA–protein
interactions and obtain their relationships. Finally, prediction
results are verified and can be used to guide biological
experiments in reverse, which can reduce the cost of biological
experiments and improve the efficiency of research. Currently,
machine learning-based methods for predicting lncRNA–protein
interactions can be divided into two main categories.

(1) Construction of prediction models on the basis of lncRNA
and protein features. The feature information of lncRNA and
protein can be extracted using feature extraction methods based
on sequence information, structure, and various physicochemical
properties, which are fused to construct feature vectors.
Feature vectors are fed into machine learning classification
algorithms to construct prediction models for lncRNA–protein
interaction relationships. Bellucci et al. (2011) have proposed the
catRAPID model for predicting lncRNA–protein interactions,
which combines the protein molecular secondary structure and
the position information and extracts and inputs more than
100 dimensions of feature information from protein and non-
coding RNA into the random forest (RF) and the support vector
machine (SVM) to train the prediction model. Muppirala et al.
(2011) have developed the RPISeq method, which utilizes only
lncRNA and protein sequence information and uses SVM and
RF classifiers to construct a model for the prediction of lncRNA–
protein association interactions. Wang et al. (2013) have applied
the plain Bayesian to construct prediction models for predicting
lncRNA–protein interactions on the basis of the study of Lu et al.
(2013) have proposed a method called the lncPro, which extracts
amino acid and nucleotide sequence information and applies the
Fisher’s linear discriminant method to construct the prediction
model. Subsequently, Suresh et al. (2015) have proposed the RPI–
Pred method, which extracts the sequence and the structural
feature information of lncRNAs and proteins and the high-
order 3D structural features of proteins to construct prediction
models. However, the low conserved nature of lncRNA sequences

makes the prediction algorithm based on lncRNA and protein
feature information perform poorly in terms of accuracy and the
prediction efficiency and needs to be enhanced.

(2) Heterogeneous network-based prediction model. Given
the development of related experimental techniques and
the accumulation of research results in the field of lncRNA,
many lncRNA–protein interaction relationships have been
experimentally confirmed, and researchers have successively
proposed many network-based prediction algorithms to
study the interaction relationships between lncRNAs and
proteins. Li et al. (2015) have constructed lncRNA and protein
similarity networks and combined the existing lncRNA and
protein interaction data to predict unknown lncRNA–protein
interaction relationships and proposed a heterogeneous
network-based method called the LPIHN. The LPIHN method
predicts unknown lncRNA–protein interaction relationships by
constructing a heterogeneous network with the restart random
walk (RWR) implemented on the constructed network to
predict novel lncRNA–protein associations. Ge et al. (2016) have
introduced a network dichotomy method called the LPBNI.
This method performs a resource allocation procedure in the
lncRNA–protein dichotomous network to evaluate candidate
proteins for each lncRNA for the prediction of interaction
deletions. Hu et al. (2017) have proposed a semisupervised
method called the LPI–ETSLP, which reveals lncRNA–protein
correlations and does not require negative samples. On the one
hand, the number of known action–relationship pairs is sparse
compared with the huge number of lncRNAs and proteins and
directly affects the network construction and the performance
of the network link prediction. On the other hand, lncRNAs or
proteins with only one action–relationship in which the data
behave as isolated nodes in the network and most algorithms
based on network link prediction cannot effectively predict
isolated nodes.

Based on the above analysis, this paper proposes amultifeature
information fusion method based on lncRNA and protein
sequence features and heterogeneous network topological
features to predict lncRNA and protein interaction relationships.
First, a novel feature extraction method based on the topological
feature information of lncRNA and protein heterogeneous
networks is proposed to extract the topological network features
of lncRNA and protein, lncRNA sequence mutual information,
the basic statistical information of lncRNA sequence bases
and lncRNA expression profile features, and the evolutionary
information and the composition–transition–distribution (CTD)
feature information of protein sequences. Then, the above
features are fused, and the fused feature information are input
into the SVM to train and construct the lncRNA–protein
prediction model.

MATERIALS AND METHODS

Framework of the Proposed Method
In this paper, we propose a multi-information fusion-based
lncRNA–protein association prediction model consisting of
three main phases, namely, (1) dataset preparation, (2) feature
extraction and optimization, and (3) model training and
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prediction. In the dataset preparation, candidate lncRNA and
protein sequences and their interaction data are usually collected
from validated databases and related literature. Good training
and test sets are usually required to build a high-quality
prediction model. The training set is used for model training, and
the test set is used to verify the transferability and the reliability
of the training model. In the feature extraction and optimization,
lncRNA and protein topological network features are proposed,
and the protein sequence, Position Specific Scoring Matrix
(PSSM), lncRNA sequence, and lncRNA expression spectrum
features are extracted. Feature vectors are usually optimized by
removing some irrelevant features to improve the performance
of the feature information. In the model training and prediction,
the SVM is used to train the input training set, and the grid search
provides SVM training parameters for the construction of the
training model. The prediction is performed on the given set of
prediction vectors. The overall framework of the entire lncRNA–
protein association prediction model is shown in Figure 1.

Datasets
With the development of high-throughput sequencing
technologies, many public databases are available for scientists
to study lncRNA–protein interactions. The NPInter database
includes experimentally validated information on interactions
between non-coding RNAs and other biomolecules (e.g.,
proteins, RNAs, and genomic DNA). The NONCODE
(Liu et al., 2005) database is a comprehensive annotation
database covering all types of non-coding RNAs except
tRNAs and rRNAs. The NONCODE4.0 database contains
141,353 lncRNA sequence data, covering the lncRNA
sequence data required in this paper. The UniProt database
(Consortium, 2018) can provide the protein sequence data
required in this paper. Through the abovementioned public
databases, the datasets required to study lncRNA–protein
interactions can be obtained and may help in the conduct of
the study.

The acquisition and the preprocessing of datasets usually
consist of two main steps, i.e., candidate data collection and
invalid data rejection. (1) Candidate data collection, human
lncRNA, and its association term data are extracted from the
NPInter V2.0 database (Yuan et al., 2013; Hao et al., 2016),
and 4,870 pairs of experimentally identified lncRNA–protein
interaction datasets, which include 1,114 lncRNAs and 96
proteins, are obtained. Then, the lncRNA sequence information
is obtained from the NONCODE 4.0 database, and the protein
sequence information is obtained from the UniProt database. (2)
Eliminate invalid data; since a few lncRNA sequence data are
not available in some candidate datasets, proteins and lncRNAs
with unavailable sequence information should be removed. In
addition, some lncRNAs that only interact or are related to one
protein or proteins that only interact or are related to one lncRNA
have usually low correlation and potentially noisy information.
Therefore, such data are excluded.

A dataset containing 4,158 lncRNA–protein interactions
(including 990 lncRNAs and 27 proteins) is constructed in this
paper through the above data processing steps.

Features Extraction
In this paper, five types of feature information, namely, lncRNA–
protein network topology features, protein evolution information
(Shao et al., 2020), protein sequence features (Liu et al.,
2019), lncRNA sequence features, and lncRNA expression profile
feature information, are extracted for the lncRNA–protein
association prediction.

lncRNA–Protein Network Topology Features
The lncRNA–protein network can be regarded as a
heterogeneous undirected graph. Suppose that the lncRNA–
protein network containsN lncRNAs andM proteins and that the
sets of lncRNAs and proteins are denoted by L and P, respectively,
then L =

{
l1, l2, l3, . . . , lN

}
, and P =

{
p1, p2, p3, . . . , pM

}
.

The set of edges E of this bipartite graph is denoted by
E =

{
eij | li ∈ L, pj ∈ P, eij = eji

}
.

If any node li and pj have an interaction, then eij = 1,
and vice versa eij = 0. The interaction feature Lij between any
lncRNA node li and protein node pj is denoted as the set of
edge values of node li and all other protein nodes except node
pj, i.e., eij /∈ Lij,Lij =

{
ei1 , eij−1 , eij+1 , . . . , eiM

}
. Similarly, the

interaction feature Pji between any protein node pj and protein
node li is denoted as the set of edge values of node pj and all
other lncRNAs nodes except node lj. Then, eji /∈ Pji,Pji ={
ej1 , ej i−1 , ej i+1 , . . . , ejN

}
.

The lncRNA–protein network topology is characterized as:

LPNetij = Lij ∪ Pji, i = 1, . . . ,N, j = 1, . . . ,M. (1)

As a result, we can obtain 1,015-dimensional network features.

Protein Evolutionary Feature Information
The protein evolutionary feature information is extracted
using our previously proposed K-PSSM-composition method
(Fu et al., 2018). The K-PSSM-composition feature extraction
method is derived from the PSSM-composition feature extraction
method. The PSSM-composition, which is proposed by Sharma
et al. (2015), is used to extract protein sequence features
for the prediction of the protein subcellular localization. The
PSSM-composition feature extraction method can mine the
evolutionary information of protein sequences but loses the
mutual information between 20 amino acid residues and the
local information of protein sequences. For this reason, we
propose the K-PSSM-composition feature method to alleviate
the above problems. In this paper, we have applied the
K-PSSM-composition method to extract features from the
obtained protein sequence data for the collection of the protein
evolutionary feature information. The K-PSSM-composition
feature is calculated as shown below.

K−PSSM−composition

=
[
PSSM

−
com(1), . . . , PSSM

−
com(λ)

]
1×(400∗k)

(2)

Here, λ = 1, . . .K; PSSM_com(λ) denotes the submatrix features,
the calculation of which is shown in Equation (3)

PSSM−com(λ) =
[
FA, FR, . . . , Fϕ

]
1×400

(3)
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FIGURE 1 | The overall framework of the proposed method for lncRNA–protein interactions.

Here, ϕ denotes the 20 amino acid residues {A, C, D, E, F, G, H, I,
K, L, M, N, P, Q, R, S, T, V, W, Y}. Fϕ represents the row sum of
amino acid residues in the sub-PSSMmatrix. In this study, k= 1;
thus, we obtain a total of 400 dimensional features.

Protein Sequence Feature Information
In this paper, we have used the CTD (Cai et al., 2003) to extract
protein sequence features, which represent the distribution
patterns of specific structural or physicochemical properties
in a protein or peptide sequence. Twenty amino acids are
divided into three groups on the basis of different amino acid
properties and represented by three feature descriptors, namely,
composition (C), transition (T), and distribution (D). C denotes
the percentage frequency of a specific set of amino acid properties
in the calculated protein sequence, T depicts the percentage
frequency of amino acids characterizing a specific property
followed by another property, and D denotes the amino acid
fragment describing a specific property of the whole protein
sequence. Thirteen physicochemical properties have been used
to calculate CTD features. Here, we use the iFeature (Chen
et al., 2018) to set default parameters to extract CTD feature
information and obtained a total of 504 dimensional features.

lncRNA Sequence Features
The extracted lncRNA sequence feature information contains
two categories, namely, the lncRNA sequence mutual and the
base compositional feature information. The lncRNA sequence
mutual information is extracted using our previously proposed
PSFMI feature extraction method (Fu et al., 2019) by using
the entropy and the mutual information to calculate the
interdependence between two bases on a given lncRNA sequence.
Specifically, the 3- and the 2-gram mutual information (MI)
are calculated as the characteristic information of a given
lncRNA sequence.

In this study, we used entropy and MI to calculate the
interdependence between bases on a given lncRNA sequence.
Specifically, the 3-gram MI and the 2-gram MI were calculated
separately as the characteristic information of the given
lncRNA sequences. The procedure of the 3-gram triplet mutual
information calculation is shown in Equation (4).

MI(x, y, z) = MI(x, y)−MI(x, y|z) (4)

Here x, y, and z denote three bases that are consecutively adjacent
to each other, and the equations for the calculation of MI(x, y)
and conditional mutual information MI(x, y|z) are as follows.

MI(x, y|z) = H(x|z)−H(x|y, z) (5)

MI(x, y) = p(x, y)∗ log(
p(x, y)

p(x)∗p(y)
) (6)

MI(x, y) = MI(y, x) (7)

Where H(x|z) and H(x|y, z) are calculated as follows:

H(x) = p(x)∗ log(p(x)) (8)

H(x|z) = −
p(x, z)

p(z)
log(

p(x, z)

p(z)
) (9)

H(x|y, z) = −
p(x, y, z)

p(y, z)
log(

p(x, y, z)

p(y, z)
) (10)

Where p(x) denotes the frequency of occurrence of base x in the
lncRNA sequence, p(x, y) denotes the frequency of occurrence of
2 grams of bases x and y in the lncRNA sequence, and p(x, y, z)
denotes the frequency of occurrence of 3 grams of bases x, y, and
z in the lncRNA sequence. The values of p(x), p(x, y), and p(x, y,
z) can be calculated by Equations (11)–(13) as follows.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 February 2021 | Volume 9 | Article 64711385

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Chen et al. Prediction of lncRNA–Protein Interactions

TABLE 1 | Parameter description in the SVM-RFE + CBR method.

Parameter Value Describe

kerType 2 Kernel type, see libsvm. linear: 0; rbf:2

rfeC 16 Parameter C in SVM training

rfeG 0.0078 Parameter g in SVM training

useCBR True Whether or not use CBR

Rth 0.9 Corrcoef threshold for highly corr features

p(x) =
Nx + ε

L
(11)

p(x, y) =
Nxy + ε

L− 1
(12)

p(x, y, z) =
Nxyz + ε

L− 2
(13)

Here, Nx denotes the number of bases x that appear in the
pre-miRNA sequence and L is the length of the given lncRNA
sequence. The ε in Equations (11–13), denoting a very small
positive real number, is used to avoid using 0 as the denominator.

For the lncRNA base composition feature information, given
any lncRNA sequence, we have calculated the percentage of
4 nucleotide (i.e., A, C, G, and T) and 16 dinucleotide
(e.g., AA, AG, and AC) types in each lncRNA sequence
separately and obtained 20-dimensional feature vectors. The
lncRNA sequence mutual information and the lncRNA base
composition feature information have 19 and 16 dimensions,
respectively. Thus, the total number of lncRNA sequence feature
dimensions is 35; i.e., the dimensionality of the feature vector is
35 dimensions.

lncRNA Expression Profile Features
In this paper, we have obtained the lncRNA expression profile
information from the NONCODE4.0 database, which contains
170,601 lncRNA expression profile data. The expression profiles
describe the expression of lncRNAs in 24 types of human tissues
or cells. Thus, the lncRNA expression profile features contain
24-dimensional feature vectors.

By the above analysis, we can extract a total of 1,978 (1,015 +
400+ 504+ 35+ 24) dimensional features obtained.

Feature Optimization
The feature space of lncRNA–protein interactions consists of five
features, namely, lncRNA–protein network topology, lncRNA
sequence, lncRNA expression profile, protein CTD information,
and protein sequence evolution information features. Compared
with individual features, the fusion of multiple features
can capture increased sequence information, which leads to
improved prediction performance. However, the fusion of
multiple features produces a high-dimensional redundant feature
and may lead to problems, such as excessive training time and
bias in performance. Therefore, in this paper, we have used the
SVMRecursive Feature Elimination (SVM-RFE) and Correlation
Bias Reduction (CBR) (Yan and Zhang, 2015) to optimize the
feature set.

The SVM-RFE algorithm proposed by Tolosi and Lengauer
(2011) has been successfully applied to many system biology
problems. The CBR algorithm has been used to reduce potential
biases in linear and non-linear SVM-RFE. In this study, we use
the algorithm SVM-RFE + CBR (Yan and Zhang, 2015), which
consists of a combination of SVM-RFE and CBR, to optimize the
feature vectors. The specific process is as follows: first, all features
are ranked using SVM-RFE + CBR (Yan and Zhang, 2015) to
select a set of features with the top score; second, the selected
features are reorganized into new, ordered features; and finally,
these new features are fed into the predictive classifier to generate
a training model. Thus, we can obtain the ranked list of features
through the SVM-RFE and CBR and select a set of top-ranked
feature information to enable the optimal selection of features.

In the SVM-RFE + CBR method, we used the following
parameters: kerType, rfeC, rfeG, useCBR, Rth. The values and
descriptions of these parameters are shown in Table 1. The
rest of the required parameters use the default settings of the
SVM-RFE+ CBR method.

Classification Algorithm
In this paper, we choose SVM as the classifier to build
the prediction model. Specifically, the open source Library
of Support Vector Machines (LIBSVM) is used for model
training and construction. The LIBSVM toolbox can be
downloaded for free at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
We integrated the toolbox in the Matrix Laboratory (MATLAB)
workspace to build predictive models. The specific form of
the kernel function has a large impact on the performance
of the SVM. The Gaussian radial basis kernel function (RBF)
has good results for non-linear classification and is widely
used for bioinformatics classification; therefore, we choose
RBF as the kernel function for SVM. A grid search based
on five-fold cross-validation was applied to optimize the
SVM parameters γ and the penalty parameter C. The grid
search yielded the optimal C = 256 and γ = 0.002 set as
their values.

Measurements
Several measures were used to evaluate the performance of the
lncRNA–protein interaction predictionmethod comprehensively
(Jin et al., 2019; Manavalan et al., 2019; Manayalan et al., 2019; Su
et al., 2019a,b, 2020a,b; Qiang et al., 2020). The receiver operating
characteristic curve was based on specificity and sensitivity. The
area under the receiver operator characteristic curve (AUC)
and the area under precision-recall curve (AUPR) were used as
evaluation metrics (Wei et al., 2014, 2017a,b; Tang et al., 2020).
The AUC provided a measure of classifier performance. A high
AUC value indicated improved performance of the classifier.
However, for class imbalance problems, the AUPR penalizes false
positives in the evaluation and is more suitable than the AUC.
In addition, the Matthew correlation coefficient (MCC) was used
to assess the prediction performance. The MCC considered true
and false and positive and negative and was usually a balanced
measure that could be used even if these classes had different
sizes. Sensitivity (SE), specificity (SP), precision (PR), accuracy
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TABLE 2 | Performance of different feature subsets on the benchmark dataset.

Methods ACC (%) SE (%) SP (%) MCC F1 score (%) AUC (%) AUPR (%)

LDNet 90.56 77.94 97.14 0.603 64.36 89.32 71.10

Pro 85.87 69.19 98.65 0.290 26.61 57.33 27.92

lRNA 84.47 52.91 99.77 0.067 2.83 52.29 20.34

lRNA + Pro 86.17 68.11 98.22 0.323 31.79 79.11 47.94

lRNA + LDNet 90.81 78.69 97.20 0.615 65.52 90.99 73.75

CTD + LDNet 90.62 78.25 97.18 0.606 64.62 89.02 71.32

The best values are shown in boldface.

TABLE 3 | Comparison of performance with different excellent algorithms.

Methods ACC (%) F1 score (%) AUC (%) AUPR (%)

IRWNRLPI 90.09 65.16 91.50 71.38

LPI–ETSLP 88.34 59.78 88.76 64.38

RWR 95.36 36.03 83.32 28.93

LPBNI 95.81 38.68 85.86 33.06

RPISeq–RF 46.62 14.81 39.49 6.31

RPISeq–SVM 48.23 14.93 39.87 6.98

Our method 90.82 65.91 90.97 74.39

The best values are shown in boldface.

(ACC), and MCC are defined as follows.

SE =
TP

TP + FN
(14)

SP =
TN

TN + FP
(15)

PR =
TP

TP + FP
(16)

F1− score = 2×
SE× PR

SE+ PR
(17)

ACC =
TP + TN

TP + FP + TN + FN
(18)

MCC =
TP × TN − FP × FN

√
(TP + FN)(TN + FP)(TP + FP)(TN + FN)

(19)

TP, TN, FP, and FN indicate the number of true positives, true
negatives, false positives, and false negatives, respectively.

RESULTS AND DISCUSSION

Analysis of the Effect of Different Feature
Information Subsets on the Experimental
Performance
The effect of different feature subsets on the experimental
performance was analyzed to evaluate the effect of different
feature information on the lncRNA–protein prediction
performance. We compared each feature subset and their
two-by-two combinations on the benchmark dataset separately.

The lncRNA sequence and the lncRNA expression profile
features had feature vector dimensions of 35 and 24, respectively.
These features were combined for the dimensionality of the
lncRNA feature information be 59 and named as lRNA features
for convenience. The CTD features of protein sequences were 273
dimensions, and the K-PSSM-composition features of protein
evolutionary information were 400 dimensions. The CTD and
K-PSSM-composition features were combined and named as Pro
features. Thus, the Pro features of proteins were 673 dimensions.
The lncRNA–protein topological network features were named
LDNet features, and their total feature dimension was 1,015
dimensions. Therefore, six subsets of features [i.e., lRNA, Pro,
and LDNet and their two-by-two combinations (i.e., lRNA+ Pro,
lRNA + LDNet, and Pro + LDNet)] were obtained. To evaluate
the effect and the importance of each feature subset on the
prediction results, this paper uses the SVM classifier to train the
prediction model, and the grid search algorithm was employed
to adjust the parameters of the SVM so that each feature subset
achieves the best accuracy in the same threshold range. Five-fold
cross-validation tests were conducted on these six feature subsets.
Experimental results are shown in Table 2.

The experimental results of the six feature subsets constructed
in this paper by five-fold cross-validation tests are shown in
Table 2. The ACC, SE, MCC, F score, AUC, and AUPR values
of LDNet features were 90.56, 77.94, 0.603, 64.36, 89.32, and
71.10%, respectively, and higher than those of lRNA and Pro
features. For the F1 score, AUC, and AUPR metrics, the LDNet
features were higher by 37.75, 31.99, and 43.18%, respectively,
than the Pro features, which ranked second in these three feature
subsets. Therefore, the LDNet features performed the best in the
separate experiments for the three feature subsets of LDNet, Pro,
and lRNA, which indicated that the LDNet was the best for the
lncRNA–protein association prediction because the LDNet was
the largest and far exceeded the two other feature subsets.

The ACC, SE, MCC, F score, AUC, and AUPR values for

lRNA + LDNet features were 90.81, 78.69, 0.615, 65.52, 90.99,

and 73.75%, respectively, and were the maximum values in

these six feature subsets (Table 1). The values of these metrics

for Pro + LDNet and lRNA + LDNet feature subsets were

close. The F1 score, AUC, and AUPR values for the lRNA +

Pro feature subset were 31.79, 79.11, and 47.94%, respectively,
which were lower than the first two combined features and even
lower than the LDNet feature subset. Therefore, the lRNA +

LDNet features performed best in predicting lncRNA–protein
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FIGURE 2 | ROC curves for five-fold cross-validation tests of the benchmark dataset.

FIGURE 3 | AUPR curves for five-fold cross-validation tests of the benchmark dataset.

interactions. Among lRNA and LDNet features, the LDNet
was the main decisive feature subset, which also indicated
that the lncRNA and protein network topology-based features
proposed in this paper had the greatest effect on the prediction
performance. In addition, the performance of each feature subset
in the two-by-two combination was better than the feature
performance value of each feature subset individually.

Comparison With Existing Approaches
We selected the following six excellent methods for experimental
comparison on the benchmark dataset to compare the
performance of our proposed method with existing excellent
methods. These six methods included IRWNRLPI (Zhao et al.,

2018), LPI–ETSLP (Hu et al., 2017), RWR (Kohler et al., 2008),
LPBNI (Li et al., 2015), RPISeq–RF (Muppirala et al., 2011), and
RPISeq–SVM (Muppirala et al., 2011). The RPISeq–RF and the
RPISeq–SVM models are prediction methods that extract and
input lncRNA and protein features into RF or SVM predictors,
whereas the IRWNRLPI, LPI–ETSLP, RWR, LPBNI, and
RPISeq–RF algorithms are prediction methods that are based
on heterogeneous networks constructed from lncRNAs and
proteins. On the benchmark dataset, a five-fold cross-validation

test was performed separately, and four evaluation metrics,

namely, ACC, F1 score, AUC, and AUPR, were selected to
evaluate the performance of different algorithms. Experimental
results are shown in Table 3.
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The experimental results of each evaluation index for
predicting lncRNA–protein interactions are listed in Table 3.
First, we compared the values of AUPR, which were 64.38%
(LPI–ETSLP), 28.93% (RWR), 33.06% (LPBNI), 6.31% (RPISeq–
RF), 6.98% (RPISeq–SVM), and 71.38% (IRWNRLPI) lower than
74.39% in our method and indicated that our method predicted
reliable results.

The AUC value of our method was 90.97%, which ranked
the second among all methods, and was close to the first
ranked IRWNRLPI (91.50%) method and 2.21% higher than
the third ranked LPI–ETSLP method. These results showed that
our method had very good prediction performance. We plotted
the curves of AUPR and ROC for the five-fold cross-validation
tests to demonstrate the AUPR and the AUC values, respectively
(Figures 2, 3).

Next, we further analyzed the ACC and the F1 score values of
these prediction models. The ACC of our method was 90.96%
smaller than those of RWR (95.36%) and LPBNI (95.81) but
better than that of IRWNRLPI (90.09%) because of very few
experimentally validated lncRNA–protein interactions, which
were far less than the unknown lncRNA–protein association
relationships in the benchmark dataset. Therefore, the use of F1
score values to evaluate the performance of different methods
than the ACC evaluation was reasonable. The F1 score value
of our method was 65.91%, which was the highest among all
methods and higher than those of the RWR (36.03%) and
the LPBNI (38.68%). Therefore, the combined results of all
experiments further demonstrated the good performance of our
method in predicting lncRNA–protein associations. Notably, the
four evaluation metrics (AUC, AUPR, ACC, and F1 score) of
our method, which constructed prediction models on the basis
of lncRNA and protein features, were more remarkable than
RPISeq–RF and RPISeq–SVM.

CONCLUSIONS

lncRNAs are involved in the regulation of gene expression
at the transcriptional level, epigenetics, and other life activity
processes by interacting with RNA-binding proteins. Therefore,
related research on the prediction of lncRNA–protein interaction

relationship is beneficial in the excavation and the discovery of
the mechanism of lncRNA function and action occurrence.

In this paper, a computational model for lncRNA–protein
interaction relationship prediction based on the multisource
information fusion is proposed. A method for representing the
topological feature information of the network of lncRNA–
protein interactions is proposed. Subsequently, protein
evolutionary information, protein CTD sequence information
features, lncRNA sequence mutual information features, and
lncRNA expression profile information are extracted, and the
recursive feature elimination algorithm is used to optimize
feature vectors. The obtained optimized feature vectors are fed
into SVM to predict lncRNA–protein interactions. Our proposed
method is experimentally compared with six excellent lncRNA–
protein prediction algorithms by using five-fold cross-validation
tests on benchmark datasets, and experimental results show
that our proposed method achieves the best performance values
in AUPR and F1 score, illustrating the effectiveness and the
accuracy of the proposed method in lncRNA–protein association
prediction methods.
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Proteins mediate and perform various fundamental functions of life. This versatility of
protein function is an attribute of its 3D structure. In recent years, our understanding
of protein 3D structure has been complemented with advances in computational and
mathematical tools for protein modelling and protein design. 3D molecular visualisation
is an essential part in every protein design and protein modelling workflow. Over the
years, stand-alone and web-based molecular visualisation tools have been used to
emulate three-dimensional view on computers. The advent of virtual reality provided the
scope for immersive control of molecular visualisation. While these technologies have
significantly improved our insights into protein modelling, designing new proteins with a
defined function remains a complicated process. Current tools to design proteins lack
user-interactivity and demand high computational skills. In this work, we present the
Pepblock Builder VR, a gaming-based molecular visualisation tool for bio-edutainment
and understanding protein design. Simulating the concepts of protein design and
incorporating gaming principles into molecular visualisation promotes effective game-
based learning. Unlike traditional sequence-based protein design and fragment-based
stitching, the Pepblock Builder VR provides a building block style environment for
complex structure building. This provides users a unique visual structure building
experience. Furthermore, the inclusion of virtual reality to the Pepblock Builder VR
brings immersive learning and provides users with “being there” experience in protein
visualisation. The Pepblock Builder VR works both as a stand-alone and VR-based
application, and with a gamified user interface, the Pepblock Builder VR aims to expand
the horizons of scientific data generation to the masses.

Keywords: virtual reality, protein gaming, molecular visualisation, edutainment, 3D structure

INTRODUCTION

Proteins mediate and perform various fundamental functions of life. This versatility of protein
function is an attribute of its 3D structure. Understanding the protein 3D structure is crucial for
various fields of science. Elucidating the structure of a protein revolutionised the field of protein
science and paved the way for the establishment of massive databases. Traditionally, physical
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methods such as NMR spectroscopy and X-ray crystallography
have been deployed to elucidate and study the 3D structure of
proteins. The recent advances in computational sciences have
resulted in sophisticated algorithms for predicting and modelling
the 3D structure of a protein from its corresponding amino
acid sequence. Designing entirely novel proteins with a defined
structure is also feasible with the current developments in de
novo protein design (Huang et al., 2016). Traditionally, proteins
were primarily designed by sequence-based design. In recent
years, other concepts such as parametric modelling (Wood et al.,
2017) and fragment assembly (Huang et al., 2011) have been
developed to effectively design protein structures with particular
functions. In spite of the recent progress, the field of protein
design has a steep learning curve and requires great technical
skills to effectively design novel protein structures. This lack
of a complete visual-based interactive design tool is one of the
bottlenecks in translating the protein design technology toward a
broader creative audience. Recently (Yeh et al., 2018), Yeh et al.
introduced a building block style graphical interface Elfin UI,
which provides a modular approach to structure building. Such
visual-based interactive interfaces create a platform for users with
limited technical knowledge to create novel protein structures
with minimal/no focus on the amino acid sequence.

Visualising Proteins in 3D and Why?
Visualising proteins in 3D has various unique applications
and advantages for both scientific and educational purposes
(Figure 1). In education, teaching the protein structure is a
highly complicated task (Richardson and Richardson, 2002).
The differences between the primary, secondary, and tertiary
structures of proteins are challenging to understand. The non-
linearity in protein folding, stereo-configurations and formation
of large complex assemblies add to the existing hurdles
in teaching the protein structure. In such cases, deploying
computational 3D visualisation tools to visualise proteins not
only provides users with an enhanced visual experience but also
increases interest in the scientific field (Cai et al., 2021).

From a scientific perspective, visualisation of the 3D structure
of a protein forms a pivotal component in both modelling
the protein structure (physical methods and/or computational
prediction) and de novo protein design. (i) For biochemists:
It provides insights into various protein domains such as
hydrophobic regions, active sites, catalytic sites etc. (ii) For
evolutionary biologists: Visualising and mapping 3D structures
aids in studying homology in structure. (iii) In drug designing:
Visualising protein–protein interactions and protein interactions
with small molecules can be key to understanding drug activity.
(iv) In de novo protein design: Visualising the designed backbone
structures and superimposing the designed structures with
experimental structures is very commonly performed using
in silico molecular visualisation.

Current Tools for Visualising Proteins
Over the years, a wide variety of visualisation tools have been
developed and deployed for 3D structure visualisation. These
tools range from printout stereoscopic images to sophisticated
VR CAVEs. Early 21st century saw a sudden increase in the

number of protein structures deposited in protein databases
(Bank, 2021), and a need for better visualisation tools increased
in parallel. PyMOL (2021), VMD (Humphrey et al., 1996),
Chimaera (Pettersen et al., 2004) and Rasmol (Sayle and
Milner-White, 1995) are some examples of widely used stand-
alone applications for molecular visualisation. Later, web-based
applications such as Jmol (2021) and iView (Li et al., 2014)
have gained interest in the scientific community. The web-
based applications provided a way to integrate the visualisation
into websites. Recently, several mobile-based applications for
Android and iOS have also been developed by various groups
for molecular visualisation. Although these tools provide a wide
canvas of features for visualising proteins in 3D, there are a few
considerable drawbacks such as the lack of full visual immersion
and the lack of a real 3D effect.

Virtual reality (VR) based methods provide an alternative
solution for these problems (Goddard et al., 2018a). Since
its invention in the late 1960s, a wide range of technologies
have been researched and deployed for VR (Indhumathi et al.,
2007). Head mount devices (HMDs) such as Oculus Rift, Cave
automatic virtual environment (CAVEs) and smartphone-based
Google cardboard-like devices are some well-known examples.
The introduction of VR brings a full immersive visual experience
to molecular visualisation. The 3D effect generated in virtual
reality provides other advantages such as enhanced accuracy
in colour depiction of the models, accurate depth perception,
improved wide field of view, haptic interfacing and better
molecular viewing resolution (Norrby et al., 2015).

Visualising biomolecules (proteins in particular) in VR
has gained wide attention recently (Goddard et al., 2018a).
Tools such as ChimeraX (Goddard et al., 2018b), BioVR
(Zhang et al., 2019), and StarCave (DeFanti et al., 2009)
(cave based) have been developed for visualising the 3D
structure of proteins in VR. Although the current technology
provides a plethora of functionalities for the user, the potential
of molecular visualisation in VR is still a maturing field.
Easier navigation in the VR environment, better user interface
(UI), faster rendering and simplified instrumentation are some
areas that are expected to see some improvements in the
near future. Parallel advancements in affordable VR headsets
and increasing computational power and graphics project
interesting times ahead.

Gamification in Education and Scientific
Research
Computer games are powerful audio-visual teaching tools and
have been used as interactive learning aids in various fields
of education. Gamification of scientific learning is becoming a
popular form of edutainment. Today, edutainment is a powerful
form of experiential smart learning (Anikina and Yakimenko,
2015), and the market value of edutainment is projected to
reach 11.34 billion by 2028 (Global Edutainment Market Growth,
2021). Through fun-based learning, gamification instils curiosity,
motivated experience and interest in learning (Cai et al.,
2006, 2008). With the advances in human–computer interaction
strategies, gamification has also expanded the realms of research
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FIGURE 1 | Various applications of molecular visualisation. The interior graphics refer to (A) connection between computational “protein modelling and design” and
visualisation. (B) Showing the connection between physical structure elucidation methods and visualisation.

TABLE 1 | Examples of popular games for science and bio-edutainment.

Game/Tool Scientific problem addressed Description

Foldit (Kleffner et al., 2017) Protein folding Game involving real-time manipulation of protein structures, with results used to solve
real-life problems. Recently resolved the structure of HIV-associated enzyme.

EteRNA (Anderson-Lee et al., 2016) RNA folding Puzzle-based game to provide insights into RNA design.

The Cure (Good et al., 2014) Phenotyping in breast cancer Detection of molecular signatures linked to specific breast cancer prognosis through
web-based game.

Phylo (Kwak et al., 2013) DNA sequence alignment Web-based Tetris style game facilitating sequence alignments.

EyeWire (Cooper et al., 2018) Neuronal mapping Web-based 3D neuron reconstruction game.

Brainflight (Brainflight, 2021) Neuronal mapping Game to track the path of electric impulses travelling through the brain.

FIGURE 2 | (A) Welcome screen of the Pepblock Builder VR showing the menu panel for play, options (sounds, music, and volume controls) and quit buttons
(B) The game UI of the Pepblock Builder VR with the peptide panel on the left with basic secondary structures as building blocks and the right panel showing various
in silico parameters related to the structure. The hexagonal control panel contains functions for play instructions (! symbol), undo and redo (right and left arrows), help
button (! symbol), submit button (up arrow), exit button (with door symbol) and a settings toggle button.
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by taking advantage of the massive number of citizen scientists to
contribute toward complicated scientific goals. When combined
with audio-visual edutainment and gamification, scientific goals
appeal to a larger audience. The path from concept building,
world realisation and problem solving are an integral part of
gaming. This path is commonly observed in real-life scenarios
such as scientific research. By mimicking scientific research
and by adding gamification principles, tools/games for bio-
edutainment such as fold.it and Phylo have gained public
attention and resulted in remarkable scientific achievements
(Koepnick et al., 2019) (Table 1).

Introducing Pepblock Builder VR
The Pepblock Builder VR is a gamified protein visualisation and
design tool for bio-edutainment and fully visual-based protein
structure building. The Pepblock Builder VR is currently available
in two versions: (i) a stand-alone desktop-based tool and (ii)
an HMD-based tool in the VR environment. The Pepblock
Builder VR is a versatile tool that can serve as a visualisation
tool, an edutainment tool and a structure-based modular design
tool. As a visualisation tool, the Pepblock Builder provides an
immersive experience to the users to visualise complicated 3D
structures. As an edutainment tool, the Pepblock Builder VR
provides an interactive and experiential learning experience to
users through gamification. As a design tool, the modular (semi-
LEGO R© style) protein design approach of the Pepblock Builder
VR offers a multitude of non-technical users to build complex
protein structures.

MATERIALS AND METHODS

Ethics
Written informed consent was obtained from the [individual(s)
and/or minor(s)’ legal guardian/next of kin] for the publication of
any potentially identifiable images or data included in this article.

PC Infrastructure Used for Pepblock
Builder VR
The Pepblock Builder VR was developed on a desktop PC
running Windows 10, with 8 GB RAM, 4GB NVidia graphics
card and Intel core I7 processor (7th generation). Two 16-inch
LCD monitor screens were used for display. Standard keyboard
and optical mouse were used as input devices. The development
of the Pepblock Builder VR demanded a high-spec configuration
to facilitate multitasking during the design, implementation and
testing stages of various iterations of the software in parallel
(Table 2).

VR Setup
Oculus Rift and Oculus Rift S setups were used for the
development of the Pepblock Builder VR for virtual reality
environment. The setup included an HMD, two handheld
controllers for human–VR interaction and two stand sensors.
The program has a pre-built library called OVR Utilities
Plugin (Oculus Integration) for implementing functionalities

TABLE 2 | Key features of Pepblock Builder VR.

Technical Features Details/Format

File types PDB, X3D

Structure visualisation format Ribbons and Cartoons

VR module Oculus Rift

Human interaction in VR and
PC

Handheld controllers and optical mouse

Manipulation features Rotation, zooming, bending and
twisting carbon alpha chains, 360 X, Y,
Z movements

GUI model and scheme Space neon colour scheme

Graphics and Game mechanics
tools used

Blender and Unity game engine

with Oculus Rift. This enables the connection of external parts
such as controllers, headset etc., to the VR environment.

Data Generation, Protein Modelling and
in silico Parameters
Protein tertiary structures were generated by the I-TASSER suite
(v5.1). C-scores for all the structures were obtained from I-Tasser.
In silico parameters such as hydrophobicity and theoretical pI
were calculated using the ProtParam facility, hosted by Expasy.
Saves server (using the Verify3D utility) was used to generate the
Ramachandran plots and scores for all the structures modelled
using I-Tasser. RMSD scores between the atoms of the guided
shadow and the query protein are calculated through in-house
scripts written in Python and R, developed at the Tangney lab.
Amino acid sequences and/or PDB files were given as inputs
wherever necessary.

Programming
Scripts for processing the in silico parameter data from the servers
and integrating into the Unity environment were written in
Python and C# programming language. Individual scripts used
in integrating the data from various servers and scripts used for
calculating certain in silico parameters such as the RMSD score
are documented in GitHub1.

Graphics and Game Mechanics
Blender v2.8 was used (i) for generating all the graphical 3D
files using protein structures (modelled using I-Tasser), (ii) for
guided shadows, and (iii) to add flexibility to protein backbones.
The Unity v2019.2.9 personal edition game engine was used
for animating the opening cutscene, internal game mechanics
and implementation.

IMPLEMENTATION AND RESULTS

Pepblock Builder VR as an Edutainment
Tool
The Unity 3D game engine was used to develop the Pepblock
Builder VR’s gameplay and graphics. Two versions of the

1https://github.com/TIanshuXu/Pocket-Peptides-PC
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FIGURE 3 | (A) User with Oculus Rift headset and controllers, experiencing the Pepblock Builder VR in VR. (B) UI of the Pepblock Builder VR VR. (C) Oculus rift
headset used for the Pepblock Builder VR. (D) Handheld controllers used for user–computer interaction.

Pepblock Builder VR were developed, i.e., (i) Pepblock Builder
VR desktop version and (ii) Pepblock Builder VR VR version.
Figure 2 shows the welcome screen and game UI for the desktop
version. Figure 3 shows the VR UI and Oculus Rift S VR setup.
Neon blue and Neon green colour scheme was used throughout
the UI to give a space Sci-Fi effect.

Storyboard and Game Narrative
Modern gaming benefits from the inclusion of a captivating
storyboard to narrate the game world and to introduce in-game
rules to the players. The Pepblock Builder VR has a passive
narrative of a human-destroyed earth and the grand ecosystem
that was lost due to human activities. An AI bot seeks help
for building new protein structures using three fundamental
secondary shapes, i.e., Helix, Coil, and Sheet. The 60-s opening
cutscene shows an animated post-apocalyptic tutorial and guides
the user into building new proteins to restore life on earth.
Between each task and level, an in-game screensaver presents
facts about proteins displayed in curated graphics to deepen the
user’s understanding of proteins. Figure 4 shows screenshots
from the opening cutscene of the Pepblock Builder VR.

Interface, Gameplay and Functionalities
The Pepblock Builder VR gameplay is based on simple LEGO
style modular protein building. Users are engaged in creating
novel structures based on the challenges provided by each level.
The Pepblock Builder VR is designed with a progressive level-
up approach to guide, teach and challenge the users toward
complicated design problems using proteins.

Initially (see Figure 5), the users are provided with a blank
canvas in the centre, where any structure from the left panel could
be dragged and dropped. The left panel has four basic shapes. The
panel on the right displays the in silico parameters of the current
structure in display. The control panel at the bottom right has
a help button to provide a tour of the interface and a challenge
button to display the “challenge” of the current level. The left and
right arrows provide undo and redo options, respectively, while
the centre up button submits the user response.

Game users are required to construct the given shape (neon
blue shadow) using the basic shapes from the left panel.
Subsequent levels include the ability to modify the structure by
rotating, twisting and bending the protein backbone. A haptic-
snaplock feature locks the protein into the shadow when the
complete resemblance is achieved. For the PC version, users
are allowed to click on buttons in the UI to either navigate
through the various game scenes (menus and different levels) or
toggle protein components (secondary structure) and tips. The
protein components (displayed as icons on the left in the game
scenes) are available to be dragged and dropped on the glowing
area (the centre of the screen). The users are also allowed to
rotate and zoom the whole scene by clicking the middle mouse
button. In advanced levels, users also unlock bending, twisting
and turning features by clicking and dragging on any point on
the 3D structure.

The progressive level approach of the Pepblock Builder VR
increases the complexity of the structures and challenges with
increasing difficulties. The values in the in silico parameter panel,
relevant to the structure displayed, change as the user modifies
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FIGURE 4 | Screenshots from storyboard of the Pepblock Builder VR (Cutscene). The Pepblock Builder VR is set up in a post-apocalyptic world. (a) An AI guides a
tutorial, talking about the grand ecosystem that existed and is now seeking help to rebuild the world. (b) Concepts on the composition of proteins are explained in an
animated fashion. (c) Secondary structures of proteins (Helices, Coils, and Sheets) are projected as fundamental building blocks (LEGO style).

the structure. This promotes the basic understanding of the
relationship between the in silico parameters and the structure of
a protein. There is potential to implement more advanced levels
where the challenges would demand direct structure design for a
defined set of in silico parameters.

Pepblock Builder VR in Virtual Reality
Although the game storyboard, narrative and game goals remain
the same in VR as were in the desktop game, the user interface
and user interaction were reprogrammed. The “drag and drop”
feature was changed to grab and throw, which is a common
user interaction method in various VR games. Controller buttons
and actions for all the in-game user interactions are listed in
Box 1. Users are allowed to walk around in the VR environment
(available to Oculus Rift or higher). Similar to the stand-alone
version, users can click on protein component icons on their left-
hand side by clicking on the right trigger button on their Touch
controller to display the corresponding protein model. Once a
protein model is displayed at the centre of the scene, the player
can grab protein models behind the protein component icons
by tapping and holding the grip button on a Touch controller.
After grabbing a protein model, they can examine it and be
able to throw it onto the large displaying model at the centre
of the scene. When a second protein model is thrown upon the

existing structure, the resultant (modelled) combination of the
two complexes is displayed.

Pepblock Builder VR as a Visualisation
Tool
The gaming principles and the easy-to-navigate UI are the
two key features of the Pepblock Builder VR. While the
gamification forms the foundation for bio-edutainment and
understanding modular protein design, the UI of the Pepblock
Builder VR could be deployed to visualise any protein of
interest. Any file in the.PDB format can be converted and
automatically processed to be visualised in the in-game virtual
environment. In the current version (the automatic processing
mode), the proteins are depicted in ribbons and cartoon format
by default. Other depiction models can also be achieved by
manually converting any.PDB file to a.DAE file and by importing
into the Pepblock Builder VR UI. An example of visualising
a protein downloaded from RCSB PDB databases is shown
in Figure 6.

Pepblock Builder VR as a Protein Design
Tool
The Pepblock Builder VR provides the user with a panel of
LEGO-style protein building blocks. Both in the stand-alone and
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FIGURE 5 | Screenshots showing the game interface and toggle buttons: (a) Menu board of the Pepblock Builder VR game. (b) A 3D visualisation of an in-game
peptide, with in silico parameters on the right panel. (c) In-game challenge displaying the required final output in neon blue. (d) Structure manipulation by bending
and snap-fitting into the required final output.

BOX 1 | Controls and gestures implemented for Pepblock Builder VR.

Button/action Assigned function

Grip (L) (R) Grab

Thumbstick (L) Move around in VR

Thumbstick (R) Turn around in VR

Trigger(R) Click

Oculus (R) Toggle Menu

Throw (action) Merges structure in hand with the structure in display

Grip
(L)/(R) + Thumbstick
(L)/(R)

Moves the structure only* toward or away from the user

the VR application, the users can make combinations of these
building blocks or even combine different protein structures
from the PDB server. For basic experience, a certain number of
permutations and combinations of the four elementary structures
present in the front panel of the UI are pre-modelled and
stored in the application library. Thus, when the user makes a
combination of proteins using elementary shapes up to three
levels, the Pepblock Builder VR instantly shows the resultant
structure. However, just as the LEGO analogy, the complexities
and permutations and combinations of possible structures that
can be made are infinite. Thus, it would be impractical to have a
resultant file for every possible protein structure made from the
elementary structures. To tackle this, the Pepblock Builder VR

was linked to a stand-alone protein modelling application. In the
backend, the resultant structure is modelled and displayed in the
Pepblock Builder VR UI when ready. In our case, I-Tasser stand-
alone application was used for protein modelling. However, this
is a highly time-consuming process and dramatically increases
the wait times for complex structures. Once a user gets back the
resultant structure, the user will be able to store the structure
locally and be able to share the structure with any other user
through in-game file transfer. This enables the creation of novel
protein structures in a gamified and experiential manner and
without the need to work with the corresponding amino acid
sequences of the proteins. As a design tool, the Pepblock Builder
VR shows a promising potential to bring protein design to a
broader non-technical audience.

User Response and Usability
Twenty random users with a combination of low, medium and
professional knowledge on protein were asked to evaluate the
Pepblock Builder VR in aspects such as usability, ease of learning
about proteins, satisfaction with the VR UI and the potential for
the Pepblock Builder VR as a scientific tool. The user response is
shown in Figure 7.

The response shows that the vast majority of the users found
the Pepblock Builder VR as a very interactive and useful bio-
edutainment tool. The distribution of experiencing different
levels of difficulty to play the game could be due to the varied level

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 May 2021 | Volume 9 | Article 67421198

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-674211 May 11, 2021 Time: 17:10 # 8

Yallapragada et al. Pepblock Builder VR

FIGURE 6 | Custom protein visualisation in the Pepblock Builder VR. Protein complex “6CLZ–PDB ID” was downloaded from the RCSB PDB website and was
automatically converted to a.DAE file on the Pepblock Builder VR. (a) Showing the VR interface for importing custom protein. (b) Showing 6CLZ in the Pepblock
Builder VR environment. (c) Outer helices of the 6CLZ nano disc being rotated by virtual hands.

FIGURE 7 | User response toward the Pepblock Builder VR. Twenty users were asked to take an anonymous survey after experiencing the game and custom
protein visualisation in virtual reality.

of prior knowledge in proteins. However, most users found the
tutorial (including the cutscene) very helpful in understanding
the context and the background of the game.

DISCUSSION AND OUTLOOK

We developed the Pepblock Builder VR by blending the concepts
of protein design, 3D visualisation and VR and exploiting the

merits of gamification. Thorough care was taken during every
iteration of the tool to provide an interactive interface to users
of all levels. Considering that not all users would have the
availability of HMD equipment for the VR environment Pepblock
Builder VR package, we also packed the entire gamified learning
experience into a desktop version. The minimum requirements
to run the Pepblock Builder VR are described in Figure 8.

The existing VR tools for molecular visualisation are often
complicated to navigate, and some tools also require basic
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FIGURE 8 | Minimum requirements for running the Pepblock Builder VR.

programming skills. Compared to these, the Pepblock Builder VR
has non-expert friendly, one-step installation procedure, simple
navigation and workflow. The Pepblock Builder VR’s interface is
designed to interact and inform the user with a guided tutorial
at every screen. The cutscene and the pop-up tutorials explain
the game context and provide the users with in-game help
wherever required.

The Pepblock Builder VR is enriched with multiple challenges
in each level and edutains the users with fun facts about
proteins at the end of each level. Such a gamified learning
experience is unique to the Pepblock Builder VR. Gamification
principles have not been extensively used priorly in any
other molecular visualisation tools except in Fold.it. The
gamification of the Pepblock Builder VR adopts a LEGO-style
modular protein design. Proteins are versatile biomolecules.
Fusion proteins (proteins made by combining two or more
full/partial proteins) and engineered versions of natural proteins
have been revolutionising various fields such as biomedicine,
materials technology and food processing. The concepts of
protein design could be compared to a LEGO-style modular
approach with a twist. For example, a combination of
structures A [Helix] and B [Coil] may not be [A + B],
i.e., Helix attached to a coil, and in most cases may result
in a completely new structure C. This non-linear nature of
combining two protein structures is difficult to understand
without some basic theoretical knowledge on free energy and
stereochemistry. This gets more complicated when protein design
is introduced. In such cases, deploying gaming-based learning
provides a solution.

Gaming principles involve core elements such as concept
building, world realisation and problem solving. Users learn
and adapt to the in-game principles as they progress through
levels. This slow introduction of world rules and self-adapted
learning of concepts is an effective alternative way compared

to the traditional classroom-based learning of protein design.
The process of designing solutions, modelling ideas, building
strategies and testing the outputs is a form of the “design,
model, build and test” approach, a cornerstone of synthetic
biology (Agapakis, 2021; Bueso and Tangney, 2021). Combined
with a gamified protein design interface, an immersive VR
experience and a LEGO-style protein building interface, the
Pepblock Builder helps in the understanding of protein folding
concepts for both technical and non-technical users. This
was successfully observed from the user experience survey.
Nearly 90% of the users found the Pepblock Builder VR easy
to navigate and visually appealing. Over 70% of the users
strongly agreed that the Pepblock Builder VR is a useful
educational tool.

The Pepblock Builder VR could also be used as a simple
visualisation tool. Any protein structure could be visualised in
VR using the Pepblock Builder VR. Protein complexes and
small molecules can also be imported into the VR interface.
The Pepblock Builder VR can fetch in silico parameter data for
the imported structure by interacting with online servers and
in-built scripts.

The current version of the Pepblock Builder VR is a
proof-of-concept tool with several limitations. One of the key
limitations of the game is the time consumed while modelling
the new combinations of the protein structure. The current
game database has limited permutations and combinations of
the four basic shapes provided in the left panel. Levels 1–
10 rely on this in-game database. As the levels progress, the
demand of newer combinations will rise. This requires protein
modelling. Currently, with a lab-grade computer, modelling a
100–200 amino acid chain would take 5 h and 12–15 h for
500 AA long protein, depending on the structural complexity.
Real-time modelling of such structures would be challenging to
achieve without long wait times. Improving the time consumed
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for protein modelling is a bottleneck that we aim to improve
in the next iterations of the game. In addition to this,
to maintain the attention of the users during the wait
periods, creative subtasks and facts-based edutainment levels
will be implemented.

In the current version, game levels only up to level
10 are included. We plan to introduce packages with
more game levels and new challenges in the near future.
The first 10 levels of the Pepblock Builder VR have an
in-game shadow to direct users toward the end goal of
each level. The in silico parameters displayed in the right
panel change in real time as the protein structure is being
modified. This feature becomes the primary guide for level
11 onward. The users would be challenged to make/design
a structure for a defined set of in silico parameters. This
expands the potential of the Pepblock Builder VR from
a bio-edutainment and visualisation tool to a citizen-
based protein design interface. In future, cloud-based
libraries for user-designed proteins would be established,
enabling multiplayer capabilities and providing “share and
build” features.

The Pepblock Builder VR opens a new avenue in protein
design. With advancements in parallel computing, increasing

computational power and improving graphics, the future of
bringing protein design to the masses looks promising.
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Protein secondary structures have been identified as the links in the physical processes

of primary sequences, typically random coils, folding into functional tertiary structures

that enable proteins to involve a variety of biological events in life science. Therefore,

an efficient protein secondary structure predictor is of importance especially when

the structure of an amino acid sequence fragment is not solved by high-resolution

experiments, such as X-ray crystallography, cryo-electron microscopy, and nuclear

magnetic resonance spectroscopy, which are usually time consuming and expensive.

In this paper, a reductive deep learning model MLPRNN has been proposed to predict

either 3-state or 8-state protein secondary structures. The prediction accuracy by the

MLPRNN on the publicly available benchmark CB513 data set is comparable with those

by other state-of-the-art models. More importantly, taking into account the reductive

architecture, MLPRNN could be a baseline for future developments.

Keywords: protein secondary structure, deep learning, multilayer perceptron, recurrent neural network, sequence

profile

1. INTRODUCTION

Proteins are biomacromolecules that function in various life processes, many of which have
been found as drug targets of human diseases (Huang et al., 2016; Li et al., 2021). The
syntheses of proteins as long polypeptide chains or primary sequences take place in the
ribosomes. Released from the ribosomes, the chains fold spontaneously to produce functional
three-dimensional structures or tertiary structures (Anfinsen et al., 1961), which are usually
determined by experiments, including X-ray crystallography, cryo-electron microscopy, and
nuclear magnetic resonance spectroscopy. However, these experiments are often time consuming
and expensive, which to a large extent explains the gap between the number of protein structures
(∼150,000) deposited in the Protein Data Bank (PDB) (Berman et al., 2002) and that of sequences
(∼140,000,000) stored in the UniProtKB/TrEMBL database (The UniProt Consortium, 2017,
2018). Therefore, it is of importance to develop efficient computational methods for protein
structure prediction. The three-dimensional structure of a protein is determined most by its amino
acid sequence (Baker and Sali, 2001), indicating the possibility of theoretical prediction of a protein
structure from its amino acid sequence.
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Protein secondary structures are characterized as local
structures that are stabilized by hydrogen bonds on the backbone
and considered as the linkages between primary sequences and
tertiary structures (Myers and Oas, 2001; Zhang, 2008; Källberg
et al., 2012). According to the distinct hydrogen bonding modes,
generally three types of secondary structures have been identified,
namely helix (H), strand (E), and coil (C), where the helix
and strand structures are most common in nature (Pauling
et al., 1951). Later in 1983, a finer characterization of secondary
structures was proposed. In the new classification calculated
by DSSP algorithm, previous 3 states are extended to 8 states,
including α-helix (H), 310 helix (G), π-helix (I), β-strand (E),
β-bridge (B), β-turn (T), bend (S), and loop or others (C)
(Kabsch and Sander, 1983), among which the α-helix and β-
strand are the principal structure features.

The 3-state or Q3 prediction problem has been extensively
studied since 1974 (Chou and Fasman, 1974). As summarized
by Stapor and coworkers, the computational models reported
after 2007 can provide the prediction accuracy of 80% and above
(Smolarczyk et al., 2020). Until 2018, the theoretical limit 88%
of the Q3 protein secondary structure prediction was achieved
first by Lu group (Zhang et al., 2018). At the same time, it is
noticed that the 8-state or Q8 prediction would provide more
valuable information. For instance, π-helix is found abundant
and associated with activities in some special proteins (Cooley
et al., 2010). As a result, over the few years many efforts have been
made, trying to solve the Q8 prediction problem, which is much
more complicated and challenging (Li and Yu, 2016; Wang et al.,
2016; Fang et al., 2017; Heffernan et al., 2017; Zhang et al., 2018;
Krieger and Kececioglu, 2020; Uddin et al., 2020; Guo et al., 2021)
If not otherwise specified, the models discussed in this paper
are non-template based. The Q8 prediction accuracy has reached
70% and at present the best record is 77.73% (Uddin et al., 2020).
Thus, there is still a deviation of about 10% from the theoretical
limit of 88% (Rost et al., 1994).

Over the past few decades, a variety of state-of-the-art
methods have been developed to improve Q3 or Q8 prediction
accuracy and most progresses are contributed by machine
learning based models (Li and Yu, 2016; Wang et al., 2016; Fang
et al., 2017; Heffernan et al., 2017; Zhang et al., 2018; Krieger and
Kececioglu, 2020; Uddin et al., 2020; Guo et al., 2021) So far as
we know, the predictive power of a machine learning model is
governed mainly by two elements, namely feature representation
and algorithm. For instance, the introduction of sequence
evolutionary profiles from multiple-sequence alignment (Rost
and Sander, 1993), such as position-specific scoring matrices
(PSSM) (Jones, 1999), improves prediction accuracy significantly
(Zhou and Troyanskaya, 2014). In addition to PSSM, either the
hidden Markov model (HMM) profile (Guo et al., 2021) or
amino acid parameters (Zhang et al., 2018) can also contribute
to the improvement of prediction accuracy. As to a machine
learning algorithm, the major task is to capture either local or
non-local dependencies from the input features using different
neural network architectures. For instance, a specific neural
network, namely convolutional neural network (CNN) (LeCun
et al., 1998), is successful in capturing short-range features. At
the same time, the recurrent neural network (RNN) equipped

with bidirectional gate current unit (BGRU) (Cho et al., 2014) or
long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997) can be used to capture long-range dependencies. CNN
and RNN architectures were integrated for the first time in the
DCRNN model to predict protein secondary structures (Li and
Yu, 2016; Zhang et al., 2018). Some models employ different
deep learning architectures, such as the deep conditioned neural
field (DeepCNF) (Wang et al., 2016) and the deep inception-
inside-inception network (Deep3I) (Fang et al., 2017; Uddin et al.,
2020). In particular, the model SAINT that incorporates self-
attention mechanism and Deep3I provides up-to-date the best
Q8 prediction accuracy (Uddin et al., 2020).

Noting that as the neural network architecture gets more
complex or deeper, the number of parameters grows. In this
work, a reductive neural network architecture MLPRNN has
been proposed that include a two-layer stacked bidirectional
gated recurrent unit (BGRU) block capped by two multilayer
perceptrons (MLP) at both sides, like a sandwich. Encouragingly,
the prediction accuracy for Q3 and Q8 reach 83.32 and 70.59%,
respectively, comparable with other state-of-the-art methods
developed recently. More importantly, taking into account the
reductive architecture, MLPRNN would provide an extensible
framework for future developments.

2. METHODS AND MATERIALS

2.1. Data Sets
In this work, two publicly available data sets, CB6133-filtered and
CB513 (Zhou and Troyanskaya, 2014), which have been widely
applied in protein secondary structure prediction (Li and Yu,
2016; Fang et al., 2017; Zhang et al., 2018; Guo et al., 2021), were
used to train and test the new model, respectively. The CB6133-
filtered is the result of removing the sequences that have >25%
identity with the CB513 and the redundancy with the CB513
from the original CB6133. As expected, the distributions of 8
states with respect to the CB6133-filtered and CB513 are similar
(Supplementary Figure 6).

2.1.1. CB6133-Filtered

An open-source protein sequence data set, namely CB6133-
filtered, was employed for training in this work (Zhou and
Troyanskaya, 2014). CB6133-filtered is a large non-homologous
sequence and structure data set that contains 5,600 training
sequences. This data set was produced with the PISCES Cull
PDB server, a public server for culling sets of protein sequences
from the Protein Data Bank (PDB) by the sequence identity and
structural quality criteria (Wang and Dunbrack, 2003). Notably,
the data set was created with better than 2.5Å resolution while
sharing less than 30% identity.

2.1.2. CB513

The testing data set CB513 was introduced by Cuff and Barton
(Cuff and Barton, 1999, 2000). Noting that the length of one
sequence is longer than the maximal of 700, this sequence has
been split into two overlapping sequences. As a result, CB513
contains 514 sequences. Both CB6133-filtered and CB513 data
sets can be downloaded via Zhou’s website.
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2.2. Input Features
2.2.1. PSSM Profile

Statistically, homologous proteins often have similar secondary
structures. Thus, all homologous proteins can be grouped
into a family through the multiple sequence alignment (MSA)
with a fitting cutoff (Sander and Schneider, 1991). Then the
approximate structure of the family can be predicted. Apparently,
theMSA gives muchmore structural information than one single
sequence (Rost and Sander, 1993). One of the most popular
position-specific profile of proteins is the PSSM (Jones, 1999),
which can be produced by the PSI-BLAST algorithm (Altschul
et al., 1997). The PSSM dimension of a sequence is N × S, where
N and S denote the types of amino acids and the length of the
sequence, respectively. Normally, N is 20 that corresponds to the
20 standard amino acid types. Here, one additional type, marked
as X, was added to the PSSM profile to represent non-standard
amino acids. Thus, N is 21 instead of 20 for the PSSM profile.
According to the PSI-BLAST, each position of amino acids gets
a score of hit that denotes the appropriate probability of the
amino acid staying in this position solidly. For instance, if the
score of the hit is high, a position is supposed to be conserved.
Otherwise, the position is not likely a conserved site (Gribskov
et al., 1987; Jeong et al., 2010). Usually, a sigmoid function is
applied to restrain the scores of the hits that range from 0 to 1
(Jones, 1999).

2.2.2. HMM Profile

Recently, it has been demonstrated that the combination of
HMM and PSSM profiles as input of the model DNSS2
can improve the Q8 prediction accuracy by about 2% (Guo
et al., 2021). Thus, in this work, we follow the scheme above
and the PSSM and HMM profiles were used as input. The
HMM profile was calculated with the HHblits (Remmert et al.,
2012), a software that can convert amino acid sequences into
hidden Markov model profiles by searching specific databases
iteratively. The database used in this work is the publicly
available uniclust30_2016_03.tgz. The columns in the HMM
profile correspond to the 20 amino acid types. In each column,
a substitution probability is provided based on its position along
the protein sequence (Smolarczyk et al., 2020). Finally, the
values generated by the HHblits were transformed to the linear
probabilities, which can be formulated as follows:

p = 2−N/1000 (1)

where N denotes the score number from the profile (Sharma
et al., 2016). Compared to the sequence-search tool PSI -BLAST,
HHblits is faster because of its discretized-profile prefilter. Also,
HHBlits is more sensitive than PSI-BLAST (Remmert et al.,
2012).

2.3. Model Design
The reductive model MLPRNN proposed in this study is
composed by one BGRU and two MLP blocks. In this section,
MLP and BGRU will be introduced separately. Followed is the
explanation in details of the overall architecture.

2.3.1. MLP

The multi-layer perceptron (MLP) is a reductive neural network
with at least three layers, namely an input layer, a hidden layer,
and an output layer. Taking the three-layer MLP exploited in this
study as an example, as illustrated in Figure 1, each neuron at
the hidden layer integrates the messages from all input nodes
and spreads the integrated message to all neurons at the output
layer. A linear function is used to adjust the number of neurons
at each layer. Each neuron need to work with a non-linear
activation function, such as Rectified Linear Unit (ReLU), and a
dropout method.

2.3.2. BGRU

In this study, the bidirectional gate current units (BGRUs) were
used to capture long-range dependencies in the amino acid
sequences. Assuming the number of hidden units is k and the
input of a GRU(t) is (lt , ht−1). The activated reset gate rt , update
gate ut , internal memory cell h̃t , and GRU output ht(∈ R

k) can
be expressed as follows:

rt = σ (Wlrlt +Whrht−1 + br) (2)

ut = σ (Wlult +Whuht−1 + bu) (3)

h̃t = tanh(Wl̃hlt +Wh̃h(rt ⊙ ht−1 + b̃h)) (4)

ht = ut ⊙ ht−1 + (1− ut)⊙ h̃t (5)

where Wlr , Whr , Wlu, Whu, Wl̃h, and Wh̃h (∈ R
3q×k) denote

weight matrices. br , bu, and b̃h (∈ R
k) are bias terms. ⊙,

σ , and tanh stand for element-wise multiplication, sigmoid,
and hyperbolic functions, respectively (Li and Yu, 2016). As
illustrated in the inset of Figure 1, each GRU contains one input
and one output. A BGRU layer, such as BGRU 1 in Figure 1, not
only learns input features from head to tail, but also tail to head,
so as to catch the dependencies at both sides. Thus, a BGRU need
read input features twice. In the end, outputs of two GRU chains
are merged together as the final output.

2.3.3. Overview of MLPRNN

Figure 1 illustrates the data stream of an amino acid in the
sequences and the other dimension perpendicular to the plot is
the amino acid sequences. As illustrated in Figure 1, MLPRNN
has a sandwich like architecture where a two-layer stacked BGRU
block is capped by two MLP blocks at both sides. Both MLP
blocks have one hidden layer. In specific, 41-dimensional features
are taken as the input of the first MLP block. The dimensions
of the input, hidden, and output layers in the first MLP block
are 41, 256, and 512, respectively. The BGRU block is fed with
the 512-dimensional output of the first MLP. The BGRU block
is followed by the other MLP block with one hidden layer too.
The dimensions of the input, hidden, and output layers are
512, 256, and 9, respectively. Finally, the prediction is made
by a softmax unit fed by the output of the second MLP block.
The dimensions of the hidden and output layers in the MLP
blocks are selected based on the prediction accuracy. As shown
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FIGURE 1 | Schematic diagram of the MLPRNN model.

in Supplementary Table 1, the combination of the dimensions
256 and 512 give not only the best Q8 prediction, but also
the fastest convergence. From Supplementary Table 2, one can
see that the model with two-layer stacked BGRU block gives
best performance in view of accuracy as well as efficiency. For
instance, the models with respect to two-layer and three-layer
stacked BGRU blocks give similar accuracies, but the former
has less parameters. Thus, the two-layer stacked BGRU block is
chosen in this study.

2.4. Implementation Details
In all experiments, the optimizer named Adam was used during
the training to calculate and update the parameters of the
model. The default original learning rate is set 0.001, which
decreases every 10 epochs with the rate of 0.997. All sequences
were padded with zero if the sequence length is shorter than
700. As a consequence, zero could be learned by the model,
which is undesired. To remove the effect of the zero class, the
Multiple Cross-Entropy Loss function was employed, which is
based on the cross-entropy loss function. The weight constraint
of dropout with the parameter p= 5 was applied to avoiding over
fitting by BGRUs and the tails of MLPs. Our experiments were
implemented under the PyTorch (version 1.7.1) environment
and the model was trained on a single NVIDIA Titan RTX GPU
with 24 Gigabyte (GB) memory. Each experiment in this work
was trained and tested for at least 3 times and the best result was
taken as the final solution. In this work, the average of the loss
over the last 10 epochs was used to determine at which epoch the
convergence was reached for the testing set.

2.5. Performance Evaluation
The Q Score formulated as Equation (6) has been widely used
to examine protein secondary structure predictions. In brief,
it measures the percentage of residues for which the predicted

secondary structures are correct (Wang et al., 2016).

Qm = 100%×

∑m
i=1 Ncorr(i)

N
(6)

where m indicates the number of classes. m = 3 and m = 8
correspond to Q3 and Q8 predictions, respectively (Lee, 2006).
Ncorr(i) is the number of correctly predicted residues for state i
and N is the total number of residues.

3. RESULTS AND DISCUSSION

3.1. Prediction Accuracy
Q3 and Q8 prediction accuracy have been estimated by the
proposed model MLPRNN and compared with the values by
another 5 state-of-the-art methods that also used CB513 for
testing. Here Q8 is transformed to Q3 by treating 310-helix and
π-helix as α-helix (H) and merging β-bridge (B) to β-strand
(E). As to the rest, turn (T) and bend (S) are treated as coil
(C). As illustrated in Table 1, the prediction accuracy for either
Q3 or Q8 by MLPRNN is at the same level with other state-
of-the-art methods. In particular, the Q8 prediction accuracy
obtained by the new model is about 1 and 3% lower than those
given by CRRNN (Zhang et al., 2018) and DNSS2 (Guo et al.,
2021), respectively. Here, the DNSS2 integrates 6 deep learning
architectures, which is much more complex than the present
MLPRNN. In addition to the PSSM and HMM profiles, another
three input features were utilized in the DNSS2 model (Guo
et al., 2021). With respect to CRRNN, the training set TR12148
applied by this model is about twice larger than the CB6133-
filtered used in this work (Zhang et al., 2018). Thus, the present
MLPRNN could be improved with more input features such as
the ones introduced by DNSS2 or a larger training dataset like
the TR12148. It should be noted that MLPRNN and DNSS2 share
the same method of mapping Q8 to Q3. Although CRRNN and
DeepCNF use anothermethod for the transformation. In specific,
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TABLE 1 | Q3 and Q8 prediction accuracy (%) comparison.

Method References Q3 Q8

DeepCNF Wang et al., 2016 82.30 68.30

MUFOLD-SS Fang et al., 2017 82.98 71.05

BGRUCB Drori et al., 2018 82.85 70.10

CRRNN Zhang et al., 2018 85.30 71.40

DNSS2 Guo et al., 2021 82.56 73.36

MLPRNN 83.32 70.59

FIGURE 2 | Losses as a function of epoch by MLPRNN for the training (open

circles) and testing (solid circles) data sets, respectively.

α-helix (H), β-strand (E), and the rest 6 states in Q8 form the 3
classes of Q3, respectively. It has been reported that the selection
of the transformation method from Q8 to Q3 can influence
prediction performance to some extent (Cuff and Barton, 1999).
Indeed, replacing the present method of converting Q8 to Q3
with the one employed by CRRNN, the prediction accuracy of
Q3 by MLPRNN increases from 83.32 to 85.38%, slightly higher
than 85.30% by CRRNN.

3.2. Convergence Rate
The losses as a function of epoch for the training (CB6133-
filtered) and testing (CB513) data sets, respectively, have been
calculated to examine the convergence. As illustrated in Figure 2,
the loss for CB513 drops from 0.39 to 0.30 within 6 epochs
and stabilized or converged around 0.26 for another 38 epochs.
The following two experiments have been designed, trying to
explain the fast convergence of loss for CB513 byMLPRNN. First,
the MLP blocks were removed from MLPRNN. As a result, the
number of epochs required for loss convergence increases to 70
(Supplementary Figure 1), which is expected as BGRU is known
as slow in learning when compared with other neural network
architectures (Bradbury et al., 2016). Next, MLP was replaced
with CNN, and the resulting convergence rate is similar with
that by the original MLPRNN (see Supplementary Figures 2,
3). Thus, the sandwich-like reductive architecture itself is
responsible for the fast loss convergence. It should be noted that
MLP is more suitable than CNN for this model in terms of
prediction accuracy, which will be discussed later.

TABLE 2 | Q8 prediction accuracy (%) with different input features.

Model Q3 Q8

PSSM 82.27 69.50

HMM 80.51 62.49

PSSM+HMM 83.32 70.59

FIGURE 3 | Prediction accuracy obtained by the multilayer perceptron

(MLP)-removed MLPRNN model (gray) and the original MLPRNN model (cyan)

for three sequence length regions.

TABLE 3 | Q3 and Q8 prediction accuracy (%) where multilayer perceptrons

(MLPs) in the MLPRNN are replaced by convolutional neural networks (CNNs).

Model Q3 Q8

CNN (k = 1) BGRU 83.32 70.59

CNN (k = 3) BGRU 82.89 68.30

CNN (k = 7) BGRU 82.14 67.46

3.3. Feature Analysis
Feature representation is essential for the prediction of protein
secondary structures. In this work, the input features are
represented by the concatenation of PSSM and HMM profiles,
both of which transfer the evolutionary information for
amino acids in the sequences. Thus, it is of interest to
examine the impacts of the two profiles separately. The loss
convergence plots of the two experiments can be found in
Supplementary Figures 4, 5. From Table 2, one can see that the
prediction accuracy with PSSM profile is higher than that with
HMM profile. In particular, the discrepancy is about 7% for Q8
prediction. However, when PSSM is combined with HMM, the
prediction accuracy is improved by about 1% for both Q3 and
Q8 predictions, implying that HMM profile is complementary to
PSSM profile, which is consistent with the result obtained by the
DNSS2 model (Guo et al., 2021).

Noting that the PSSM profile was generated by the PSI-
BLAST, a profile-sequence alignment method, and the HMM
profile was generated by the method HHblits that uses both
profile-sequence alignment and profile–profile alignment. It has
been suggested that the HHblits method is more sensitive to
identify distant homologous sequences than the PSI-BLAST,
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TABLE 4 | Prediction accuracy (%) for Q8 states.

Label Types Count BGRUa MLPRNN MLPRNN MLPRNN CNN(k = 3) CNN(k = 7)

(PSSM)b (HMM)c BGRUd BGRUe

H α-helix 405560 91.28 92.42 92.32 90.72 93.15 92.88

E β-strand 255887 81.52 83.34 81.67 82.04 84.20 82.28

L Coil 225493 64.48 68.34 64.97 67.22 71.22 71.36

T Turn 132980 17.88 54.02 50.78 46.55 55.92 52.73

S Bend 97298 6.73 26.83 27.91 0 0 0

G 310-helix 46019 1.50 25.73 29.92 0 0 0

B β-bridge 12096 0 0 0 0 0 0

I π-helix 209 0 0 0 0 0 0

aMLPs are removed.
b Input features are represented by PSSM profile.
c Input features are represented by HMM profile.
dMLPs are replaced by CNNs with the kernel size k = 3.
eMLPs are replaced by CNNs with the kernel size k = 7.

indicating different sensitivity and specificity between the two
methods (Guo et al., 2021), which might explain the distinct
performances between PSSM and HMM profiles found in the
current protein secondary structure prediction. In specific, the
PSI-BLAST method is perhaps more sensitive to the sequence
homology of the datasets utilized in this work. In addition, the
present HMM profile was generated based on a smaller sequence
database, whichmight influence the accuracy of the HMMprofile
and the resulting prediction accuracy.

3.4. Model Analysis
The current reductive model MLPRNN is constructed by only
a two-layer stacked BGRU block capped by two MLP blocks,
facilitating detailed model analysis. To examine the impact of
adding MLP blocks to both sides of BGRU block, the input data
were trained with BGRU block alone and the resulting prediction
accuracies are 73.22 and 61.95% for Q3 and Q8, respectively,
about 10% lower than those by the originalMLPRNNwhereMLP
blocks are present. Apparently, the MLP blocks in the MLPRNN
model are essential to the prediction.

Further, to investigate where the MLP-related improvement
occurs, the sequences for testing were split into three groups
according to the length N of a sequence. As illustrated in
Figure 3, the prediction accuracy where N is larger than 50 is
below 40%, about 15% lower than that where N is smaller than
50. When the MLP blocks are added, the prediction accuracies
are all above 60% for the three length regions, indicating that
MLP blocks could help capture very long-range dependencies.
The experiment above highlights that the two MLP blocks are
indispensable complementary to the BGRU block for protein
secondary structure prediction.

CNNs have been used to couple with BGRUs for protein
secondary structure prediction since 2016 (Li and Yu, 2016;
Zhang et al., 2018). Therefore, it is of interest to see if the
current framework works with CNNs too. In this experiment,
MLPs in the MLPRNN model were replaced by CNNs where
the kernel size k equals 3 or 7. Noting that a CNN with the
kernel size k = 1 is equivalent to a MLP, MLPRNN is renamed

as CNN(k = 1)BGRU in Table 3. From Table 3, one can see
that the prediction accuracy reduces as the kernel size increases,
which is more evident for Q8 prediction, demonstrating that
MLPs match better with BGRUs than CNNs under the proposed
reductive architecture.

Standard RNNs include LSTMs and GRUs. Thus, it is worth
investigating the effect of replacing BGRUs with bidirectional
LSTMs (BLSTMs). As presented in Supplementary Table 2, the
BLSTMs show no impact on the prediction accuracy except
for the reduced convergence rate, which is mainly due to the
increased amount of parameters.

3.5. Prediction Accuracy for Individual Q8
States
Apart from the overall accuracy, the predictive precision for each
class of Q8 would provide more useful information. Thus, the
prediction accuracies for all Q8 states were calculated and listed
in Table 4 that includes the results by the MLPRNN model and
the experiments mentioned above. Here, the labels are ordered
based on the counts of 8 states in the training data set. It is
evident that the prediction of T by BGRU is poor when compared
with those by others, indicating that MLP or CNN blocks in the
current framework are essential to predict the turn structure.
Interestingly, only the MLPRNN model fed with at least PSSM
profile is able to distinguish S or G from other states, though the
prediction accuracy is still low.

From the third column of Table 4, one can see that the count
of S or G type is much smaller than those with respect to the
four most populated types, namely H, E, L, and T. Under such a
limited number of samples, accurate feature extraction is essential
for the prediction of S or G type. When CNNs are used, local
features are extracted preliminarily at the convolution step before
entering the neural network. Here, the range of the local features
is determined by the kernel size. When the kernel size of 3 or
above is used, some very local information, which are critical
for the prediction of S or G type, could be missed during the
convolution step. As a consequence, the following training in the
neural network would be affected. In that case, the kernel size of 1,
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which is equivalent toMLP employed by the proposedMLPRNN,
might be necessary.

From the prediction accuracies for individual Q8 states, it is
found that HMMprofile compensates PSSMprofile by improving
the prediction accuracies of H, E, L, and T types. Adding
HMM profile to PSSM profile as input, however, reduces the
prediction accuracies of the two less populated states, namely
S and G. In association with the discussion on input features
above, the poor prediction of either G or S type with the HMM
profile alone as input might be due to the underlying effect of
sequence homology.

The results above have provided twomessages, whichmight be
useful for future development. First, PSSM profile is better than
HMM profile in representing bend and 310-helix states. Second,
MLP is more suitable than CNN in predicting the two states.

4. CONCLUSION

In this study, we proposed a reductive deep-learning architecture
MLPRNN for protein secondary structure prediction. Based on
the benchmark CB513 data set, the prediction accuracy for either
Q3 or Q8 by MLPRNN is comparable with those by other state-
of-the-art methods, verifying the validity of this reductive model.
From the comparative experiments, it is found that MLPs are
non-trivial to the proposed model. First, MLPs contribute a lot
to secondary structure prediction made by MPLRNN, especially
at the long sequence length side. Besides, the reductive model
performs better in the presence of MLPs instead of CNNs. The
impact of input features have been studied too. It is revealed that,
in contrast to PSSM profile, HMM profile fails in representing
two less populated states, bend and 310-helix. In addition,
the prediction of the two states fails too if the MLPs in the
MLPRNN model are replaced with CNNs. Encouragingly, the

original MLPRNN model in the presence of MLPs could capture
features of the two states represented by PSSM profile. Finally,
the MLPRNN model proposed in this study has provided a
reductive and extensible deep learning framework, facilitating the
incorporation of more sophisticated algorithms or new features
in future for further improvement.
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