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Background: The characterizing symptom of Alzheimer disease (AD) is cognitive

deterioration. While much recent work has focused on defining AD as a biological

construct, most patients are still diagnosed, staged, and treated based on their

cognitive symptoms. But the cognitive capability of a patient at any time throughout this

deterioration reflects not only the disease state, but also the effect of the cognitive decline

on the patient’s pre-disease cognitive capability. Patients with high pre-disease cognitive

capabilities tend to score better on cognitive tests that are sensitive early in disease

relative to patients with low pre-disease cognitive capabilities at a similar disease stage.

Thus, a single assessment with a cognitive test is often not adequate for determining the

stage of an AD patient. Repeated evaluation of patients’ cognition over time may improve

the ability to stage AD patients, and such longitudinal assessments in combinations with

biomarker assessments can help elucidate the time dynamics of biomarkers. In turn, this

can potentially lead to identification of markers that are predictive of disease stage and

future cognitive decline, possibly before any cognitive deficit is measurable.

Methods and Findings: This article presents a class of statistical disease progression

models and applies them to longitudinal cognitive scores. These non-linear mixed-effects

disease progression models explicitly model disease stage, baseline cognition, and the

patients’ individual changes in cognitive ability as latent variables. Maximum-likelihood

estimation in these models induces a data-driven criterion for separating disease

progression and baseline cognition. Applied to data from the Alzheimer’s Disease

Neuroimaging Initiative, the model estimated a timeline of cognitive decline that spans

∼15 years from the earliest subjective cognitive deficits to severe AD dementia.

Subsequent analyses demonstrated how direct modeling of latent factors that modify

the observed data patterns provides a scaffold for understanding disease progression,

biomarkers, and treatment effects along the continuous time progression of disease.

Conclusions: The presented framework enables direct interpretations of factors that

modify cognitive decline. The results give new insights to the value of biomarkers

for staging patients and suggest alternative explanations for previous findings related

to accelerated cognitive decline among highly educated patients and patients on

symptomatic treatments.

Keywords: cognitive decline, dementia, Alzheimer disease, disease staging, biomarkers, disease progression

modeling, progression curves, cognitive reserve
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BACKGROUND

Alzheimer disease (AD) is slowly progressing with preclinical
and prodromal phases lasting many years before the onset of
dementia. The stage of the underlying disease process of an
AD patient entering a clinical trial is largely unknown, but
may be estimated by a combination of, for example, cognitive
testing, clinical evaluation, and biomarker results. While these
procedures for evaluating disease severity are useful for creating
coarse groupings of patients, the factors used to create groupings
may be systematically affected by a wealth of factors not
directly tied to the disease process, for example, comorbidities,
intelligence, level of education, and genetics.

So far, efforts to develop therapies that delay or halt the
progression of AD have generally been unsuccessful, and the vast
majority of trials testing symptomatic agents in AD have failed.
These failures may be due to wrong therapeutic targets or non-
efficacious therapies, but it is conceivable that a proportion of
trial failures could be attributed to other factors, such as study
design, endpoints, and non-optimal patient population selection.
For disease-modifying drugs, for example, the current standard
durations for interventional studies may not be adequate.
Simulations based on cohort studies suggest that prevention
of disease in cognitively normal individuals may require study
lengths far beyond the current standard to achieve high statistical
power for detecting an effect of even very efficacious drugs
(Anderson et al., 2017; Insel et al., 2019). Better patient selection
and an improved understanding of patient-level cognitive decline
could potentially address this problem.

Cognitive Decline and Symptom Onset
The characterizing symptom of AD is cognitive deterioration.
The cognitive capability of a patient at any time throughout
this deterioration will not directly reflect the disease state, but
the cumulative effect of the cognitive decline on the patient’s
pre-disease cognitive capability.

Many factors influence instantaneous cognitive ability, and
low cognitive ability at a single time point is not necessarily an
indication of cognitive decline. Cognitive decline can only be
established by repeated evaluations of patients’ cognition over
time. Longitudinal assessments of patient cognition also offer
the benefit of hindsight—once cognitive decline or dementia is
established, one can traverse back in time along the cognitive
trajectory and predict when the decline started and search for
patterns that are indicative of future cognitive decline in its
earliest stages. If done properly, one can synchronize individual
observed trajectories to one long-term timeline representative of
the full span and variation of cognitive decline over the course
of disease.

Disease Progression Modeling
Alzheimer disease typically presents in a sporadic late-onset
form. The autosomal dominant forms of AD (ADAD) caused
by rare genetic mutations have earlier onset than sporadic AD,
but otherwise, the pathogenesis is largely similar (Bateman et al.,
2011). In ADAD, age at symptom onset is strongly affected by
mutation type, parental age at symptom onset, APOE genotype,

and sex (Ryman et al., 2014). These factors can be used to
calculate expected patient age at symptom onset for ADAD
patients, which can be used to construct a more synchronized
time scale for studying biomarkers and the pathological cascade
of the disease (Wang et al., 2019). Furthermore, this makes it
possible to do primary prevention studies in a highly efficient
manner (Bateman et al., 2017).

In sporadic AD, age at onset cannot be predicted accurately
from demographic or genetic factors. Assessment of biomarkers,
such as amyloid and tau load in cerebrospinal fluid (CSF)
or by positron emission tomography (PET) may be used to
diagnose the disease even in the earliest stages (Jack et al.,
2018), but such assessments can be both invasive and expensive,
and data are sparse. There are, however, rich datasets with
longitudinal cognitive measurements that span different parts
of the disease. An appealing use of this data is to assemble
the individual observed short-term trajectories to one long-term
timeline representative of the full span of cognitive decline over
the disease.

Different approaches to construct disease progression models
for AD have been taken. A classic approach is to formulate the
changes in cognitive scores using differential equations (Ito et al.,
2011; Gomeni et al., 2012; Samtani et al., 2012; Delor et al.,
2013). One major drawback of this type of modeling is that
covariate effects and different sources of random variation should
be formulated in the differential equation framework and may be
very difficult to handle and interpret. A more direct approach
to disease progression modeling in AD is event-based models
(Young et al., 2014; Oxtoby et al., 2018) where cutoff points of
abnormality are inferred from observed biomarkers or clinical
scales, and disease stage is mapped to a discrete set of biomarker-
abnormality events. Event-basedmodels can improve robustness,
but the dichotomization of variables also reduces the granularity
of the results, especially for variables that do not show a bimodal
distribution and/or continuously evolve with disease progression.

An alternative class of disease progression models relies on
direct modeling of the observed longitudinal trajectories and
explicit modeling of the patient-level disease stage (Jedynak
et al., 2012). An important example of this type of approach
is the model by Donohue et al. (2014), which simultaneously
models multiple observations of cognitive measures and
biomarkers. This modeling approach has been powerful in
illuminating the multivariate nature of AD progression. The
approach was recently generalized to a wider class of Bayesian
latent-time joint mixed-effects models (Li et al., 2018). This
generalized class of models allows dependencies between
different outcomes and inclusion of covariates, but covariates
can only model variation in outcomes and not disease stage or
progression rate.

For modeling disease progression of very high-dimensional
data with rich structure, such as brain imaging, disease
progression models are often considered in the context of
Riemannian geometry (Louis et al., 2019). While there have been
recent advances in the range implementable models (Schiratti
et al., 2017; Koval et al., 2018), the complexity and computational
demand are still restricting the types data and effects that can be
modeled by these approaches.
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For practical applications of disease progression modeling,
there are several important considerations to make.
Simultaneous modeling of multiple outcomes is desirable
as one can detect signals in multiple outcomes that may reduce
noise in the staging of patients. However, it typically comes
with an assumption of all outcomes being synchronized in
the same disease time model (Donohue et al., 2014; Li et al.,
2018). Therefore, care should be taken when deciding which
outcomes to include. For example, if a group of individuals with
different age-related neurodegenerative diseases is modeled,
these individuals may all experience progressive dementia that
can be mapped to a common trajectory of cognitive decline,
but their individual biomarker measurements may be very
different along this trajectory, and including these as outcomes
may deteriorate the quality of the staging. Conversely, if most
individuals have the same cause of their cognitive decline (e.g.,
AD), including biomarkers may help staging patients in the early
stages of disease where no or little cognitive deficit is detectable.
Another important consideration is the time scale at which
to model disease progression. Age is typically considered the
major risk factor for developing AD, but age at first diagnosis
of AD can vary by decades between patients, and because this
span is much greater than the entire course of cognitive decline
associated with AD, patient age is not an appropriate scale for
understanding the pattern of cognitive decline in AD because it
may amplify the a priori dis-synchronization between patients
by orders of magnitude. For example, two individuals diagnosed
with AD dementia at 60 and 90 years of age, respectively, may
have similar courses of cognitive decline, but an age-indexed
model would have to compensate for the additional 30 years’
difference when compared to a diagnosis-indexed model. The
negative consequence of this can, for example, be seen in Figure
1 in Li et al. (2018), where patient-level trajectories go from
minimal to maximal severity over 10–15 years, while variation
of when maximal severity is reached between patients is spread
out over 30-years periods. Therefore, a more natural scale for
studying the patterns of cognitive decline is time since symptom
onset. However, self- or caregiver-reported age at symptom
onset is not perfect either. It may be imprecise because of the
patient’s memory problems; recall bias, where early sporadic
cognitive issues are believed to be symptoms of the disease;
or personal differences in sensitivity and interpretation of the
earliest cognitive problems.

In this article, we propose a new approach to disease
progression modeling that separates disease stage and deviations
from the mean pattern in a fully data-driven manner. The
model enables more detailed modeling and analysis of some
of the aspects of cognitive decline compared to previous
models. For example, it allows investigation of whether observed
variables are related to cognitive ability, disease stage, or rate
of decline. In the presented form, the model is estimating
a disease timeline from repeated assessments of a univariate
measure, such as a cognitive scale. The model is inspired
by the statistical framework presented by Raket et al. (2014),
where systematic patterns of variation in both vertical (observed
cognitive score) and horizontal (disease timing) directions are
modeled simultaneously on both the population and individual

levels. The model allows covariate effects on both outcomes
and disease progression, and all model parameters are estimated
simultaneously using maximum likelihood estimation.

The goal of this work was to explore whether the proposed
disease progression model could align observed cognitive
trajectories to a precise timeline of cognitive decline associated
with AD and to evaluate if this modeling would shed new light
on aspects related to disease progression and biomarkers. When
the model was fitted to cognitive scores from Alzheimer’s Disease
Neuroimaging Initiative (ADNI), the presented model aligned
the cognitive trajectories of patients to a consistent shape of
cognitive decline with a span of ∼15 years from the earliest
subjective cognitive deficits to severe AD dementia. It was shown
that the model’s predictions of patients’ disease stages based
on their longitudinal cognitive scores could predict time since
symptom onset and diagnosis. It was further demonstrated that
the predicted disease stages provided a more suitable time scale
for modeling the evolution of biomarkers over the course of
disease than group-wise modeling based on patient symptoms
at baseline. The model was used to estimate the effects of sex,
age, and education on cognitive decline and to evaluate the
effects of cholinesterase inhibitor (ChEI) treatment on cognitive
decline. Finally, the model was fitted to the cognitive trajectories
of a subset of patients with a rich set of biomarkers available at
baseline to estimate if baseline biomarker profile could predict
disease stage. The results of the model in an independent held-
out validation dataset confirmed that baseline biomarker profiles
could predict the disease stage of unseen individuals—even in
the preclinical phases of disease where no clinically detectable
cognitive impairment was present.

METHODS

Data
Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public–private partnership, led by the
principal investigator Michael W.Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance
imaging (MRI), PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early AD.
For up-to-date information, see www.adni-info.org.

Patients included in the current study were required to have
a valid classification at baseline [cognitively normal, significant
memory concern, MCI (early), MCI (late), or dementia].

Outcomes
The main outcome measure considered was the total score of
the 13-item Alzheimer’s Disease Assessment Scale–Cognitive
Subscale (ADAS-Cog; range = 0–85; lower score indicates less
impairment) (Mohs et al., 1997). Included patients were required
to have at least one valid ADAS-Cog total score to be included in
the present study.

Other outcomes reported were onset of various symptoms
related to cognitive impairment and AD; Clinical Dementia
Rating scale—sum of boxes (Hughes et al., 1982); Functional
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Activities Questionnaire (Pfeffer et al., 1982); fluorodeoxyglucose
(FDG) PET meta region of interest (meta-ROI) (Landau et al.,
2011); cross-sectional hippocampal volume extracted from MRI
using FreeSurfer (Fischl, 2012); florbetapir PET SUVr (Landau
et al., 2015); Aβ1−42, total tau, and p-tau181 concentrations
in CSF as measured using the Roche Elecsys R© immunoassay
(Bittner et al., 2016); the ratio of Aβ1−42/Aβ1−40 concentrations
in CSF as measured by two-dimensional ultraperformance liquid
chromatography tandem mass spectrometry; and neurofilament
light chain (NfL) levels in plasma measured using a single-
molecule array platform (Mattsson et al., 2019).

Disease Progression Model
Let yij represent the observed cognitive score of patient i at time
tij (i = 1, . . . , n, j = 1, . . . ,mi). We assume that yij is generated
by a model of the form

yij = θ
(

wi

(

tij
))

+ xi
(

tij
)

+ εij

where θ is a function that represents the shape of cognitive
decline; wi is a warping function that transforms observation
time tij to a disease time scale wi

(

tij
)

that is aligned across
patients; xi is the idiosyncratic patient-level deviation from the
mean shape that represents consistent deviations over time; and
εij is independent measurement noise.

Cognitive scores can be extremely noisy because of many
different sources of variation, and one will have to make suitable
model choices to accurately infer the shape of the disease timeline
of cognitive decline θ , to predict patient-level disease stage wi,
and to predict the entire patient-level course of decline ŷi. In the
following, we describe the basic model choices taken here and
their motivations.

Because we are modeling cognitive decline in pathological
aging, it is natural to assume that the representative shape of
decline θ is a function that has a stable left asymptote (pre-disease
cognitive normality) and a monotone decline. In this article,
we focus on ADAS-Cog scores that show a distinct exponential
decline in dementia (Yang et al., 2011), and thus we will work
with a parametrized family of exponential functions to model the
mean progression pattern

θ (t) = l · exp

(

t + s

exp
(

g
)

)

+ v,

It is worth noting that this choice of θ is overparametrized
unless restrictions are put on some of the parameters. The
constraint used here (discussed further below) is that s = 0 for
the cognitively normal individuals, in which case v is the left
asymptote representing the average stable pre-disease cognitive
score and where the remaining parameters determine the shape
of the decline.

The mean progression pattern θ can be modeled differently
to achieve other properties, for example, as a generalized
logistic function or as a monotone spline (Ramsay, 1988). Other
modeling options are available in the progmod R package (Raket,
2020) accompanying this article.

The mapping of observed time to disease time wi should allow
the model to assemble short-term longitudinal observations to a
long-term timeline of cognitive decline. Because themajor source
of horizontal variation can likely be ascribed to differences in how
long the patient has had the disease before we begin observing
them, we model wi as a shift of study time.

wi (t) = t + si.

Random Effects
When modeling longitudinal data for groups of individuals, it
is often natural to describe systematic differences between
individuals using random effect. The proposed disease
progression model has three types of random effects.

• si: Random patient-level shift that models the disease stage of
patient i. Assumed to follow a zero-mean normal distribution
with unknown variance τ 2.

• xi: Random patient-level systematic deviation from the mean
curve. Assumed to be a sum of discrete-time observation
of a Brownian motion xi, BM and an independent zero-
mean normally distributed starting level xi, 0 with unknown
variance. The covariance function of xi is thus C

(

t, t′
)

=

σ 2
BM · min(t, t′) + σ20 where σ2BM is an unknown parameter

controlling variance scale of the Brownian motion, and σ20 is
an unknown parameter controlling the variance of the random
starting level.

• εij: Random observation noise. Assumed to be independent
zero-mean normally distributed with unknown variance σ 2.

A free correlation between si and the starting level xi, 0 is included
in the model; the remaining effects are assumed independent.

Fixed Effects
The basic model parameters l, g, s, and v that describe the shape
of θ are modeled as fixed effects.

• l is a scaling parameter of the exponential function. Because
a goal of disease progression modeling is to find a common
pattern of decline, l will be modeled as a single free parameter.

• g is a scaling parameter of time. Patient-level differences in
rate of decline that can be ascribed to a covariate or factor
can be modeled as a regression-type model on g. Initially, this
parameter will be modeled as a single free parameter.

• s is a shift of observed time. Patient-level differences in
disease stage that can be ascribed to a covariate or factor
can be modeled as fixed effects. Because the present study
includes several cohorts at different disease stages (e.g.,
cognitively normal individuals, patients with dementia), the
initial modeling will have different s parameters for non-
cognitively normal cohorts and s = 0 for the cognitively
normal individuals to ensure structural identifiability of the
model (Lavielle and Aarons, 2016). Thus, s is modeling
disease time since the average baseline stage of the cognitively
normal individuals.

• v is an intercept parameter describing the left asymptote.
Patient-level differences in pre-disease cognition that can
be ascribed to a covariate or factor can be modeled as a
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regression-type model on v. Initially, this parameter will be
modeled as a single free parameter.

Final Model Formulation
The basic model used has the form

yij = l · exp

(

tij + si + Xs,ijβs

exp
(

g
)

)

+ v+ xi, BM
(

tij
)

+ xi, 0 + εij

where l, g, v ǫ R and βs ∈ R4 are free fixed effects, and Xs,ij is
the four-dimensional dummy row-vector indicating which, if
any, of the symptomatic baseline groups individual i belongs to.
The random effects follow a joint zero-mean normal distribution
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where τ 2, σ 2
BM , σ 2

0 , σ 2 > 0 are unknown variance parameters,
and ρ ∈ R is a parameter that controls the correlation
between the random time shift si and the random starting
level xi, 0.

Statistical Analysis
Estimation in the disease progression model was
done with maximum likelihood using the two-step
algorithm of Lindstrom and Bates (1990). Random
effects were predicted as the most likely values
given the data and maximum likelihood parameter
estimates (i.e., they maximized the posterior under the
parameter estimates).

To investigate the effect of covariates on the pattern
of disease progression, forward selection was used to
evaluate models with all combinations of covariate effects
on rate of decline g, disease stage s, and pre-disease
cognition v. The search was continued as long as the
Akaike Information Criterion (Akaike, 1998) improved,
but the model selection was based on the more conservative
Schwarz’s Bayesian Information Criterion (BIC) (Schwarz,
1978).

To investigate if predicted disease time was predictive of time
since reported symptom onset, linear regression was done on
time since reported symptom onset (at baseline) using predicted
disease time as a covariate. P-values were computed using t-tests.

Linear mixed-effects modeling was used to investigate
if predicted disease time offered a better time scale for
modeling other longitudinal outcomes (e.g., biomarkers)
than time since baseline for the five baseline groups.
To allow for non-linear trends in the mean pattern, the
outcome was modeled using a cubic B-spline function
with 3 degrees of freedom plus an intercept across
predicted disease time and time since baseline (one
pattern per baseline group), respectively. Patient-level
random slopes and intercepts were included to model
longitudinal deviations within an individual. P-values

were computed using likelihood ratio tests with maximum
likelihood estimation.

Comparisons of quantitative outcomes between groups
with two levels were done using Wilcoxon rank sum
tests, and correlations were evaluated with Spearman rank
correlation coefficients.

Software
All analyses were done using R version 4.0.0 (R Core Team,
2020). Maximum likelihood estimation in the disease progression
models was done using the progmod R package (Raket, 2020),
which builds on the estimation procedures available in the nlme
and covBM R packages (Pinheiro et al., 2019).

RESULTS

Basic Model
The basic model described above was fitted on longitudinal
ADAS-Cog data from ADNI. The data comprised 9,830
ADAS-Cog scores across 2,142 individuals. The ADAS-Cog
scores plotted against study time are shown in the top panel of
Figure 1. The middle panel in Figure 1 shows the fixed-effects
staging of the baseline status groups relative to the cognitively
normal group on the predicted time scale (“disease month”).
The bottom panel of Figure 1 shows the predicted individual
staging (both fixed and random effects) of trajectories on the
predicted time scale. Relative to the average baseline disease stage
of the cognitively normal group, the model estimated that the
significant memory concern group was 29 months later into
the trajectory of cognitive decline, whereas the early and late
MCI groups were, respectively, 42 and 88 months later and that
the dementia group was 136 months later. The model had 12
degrees of freedom, and twice the negative log likelihood of the
fitted model was 59,468.52. AIC and BIC were 59,492.52 and
59,578.84, respectively.

Validation of the Basic Model
The presented disease progression model aggregates the

information in baseline status groups and the longitudinal

trajectories of participants to a single number, the predicted

disease month. For this continuous disease progression scale to
be relevant to AD, it should also hold information that describes

other aspects of the disease than the cognitive deterioration

observed on ADAS-Cog that the model was fitted on.
To evaluate whether the disease progression model captured

milestones of cognitive deterioration, we investigated the model’s
ability to predict self-reported onset of cognitive symptoms,
MCI symptoms, AD symptoms, or diagnosis of AD. There were
1,142 participants who had at least one entry of these data
during the study follow-up. Age at symptom onset or diagnosis
plotted against the age at the model’s predicted disease time 0
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FIGURE 1 | Observed longitudinal ADAS-Cog trajectories for 2,142 ADNI participants plotted against time in study (top), predicted disease time based on the

fixed-effects staging of the different patient baseline status groups relative to the cognitively normal group (middle), and predicted individual disease time based on

both fixed group and random individual effects.

(computed as age at baseline minus predicted shift in disease
time in years) is shown in Figure 2. In an ideal setting where
trajectories were perfectly aligned and onset/diagnosis would be
perfectly consistently reported across individuals, the results of
each measure would lie on a line with slope 1, and the intercept
would represent the difference in years between age at disease

time 0 and the age at onset/diagnosis time. For the age at onset of
cognitive symptoms, there seem to be different intercepts for the
different baseline groups, wheremore severe baseline groups tend
to report symptom onset later relative to the model prediction
of the less severe groups. This may be an effect of different
subjective definitions of onset of cognitive symptoms across
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FIGURE 2 | Reported age at onset of cognitive symptoms (top left), cognitive impairment symptoms (top right), Alzheimer disease symptoms (bottom left), and

Alzheimer disease diagnosis (bottom right) as a function of age at predicted disease month 0. Dotted lines represent the best-fitting least-squares estimated lines with

slope 1.

baseline groups, it may be because of biased model estimates of
the staging of the baseline groups, or a combination.

Based on linear regression, predicted disease month was
predictive of time since cognitive symptom onset (p < 0.0001),
time since AD symptoms onset (p < 0.0001), and time since
Alzheimer diagnosis (p < 0.0001)—all times relative to study
baseline. Predicted disease month was not significantly predictive
for time since MCI symptom onset (p= 0.558).

Second, to validate that the predicted disease time also
synchronized other independently captured aspects of the disease
than cognition as measured by ADAS-Cog, we analyzed if the

predicted continuous disease scale better captured patterns of
variation in other clinical scales and biomarkers than separate
modeling of the different baseline groups. We found that
predicted disease time better described the patterns of variation
compared to allowing separate patterns per baseline group in 7 of
the 10 outcomes whenmeasured by log likelihood (Table 1), even
though the latter model had 16 degrees of freedom more than
the former. When measured using AIC and BIC that both adjust
for additional degrees of freedom to compare model quality, the
predicted disease time model was better in 8 of the 10 cases
for AIC and 10 of the 10 cases for BIC. Interestingly, the three
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TABLE 1 | Comparison of longitudinal modeling of clinical scales and biomarkers based on patient baseline group vs. continuous disease time.

Outcome measure Number of

observations

(number of patients)

One trajectory per baseline group

(df = 24)

One trajectory across predicted

disease time (df = 8)

−2·Log

likelihood

AIC BIC −2·Log

likelihood

AIC BIC

Clinical Dementia Rating Scale—sum of boxes 9,712 (2,142) 29,584.0 29,632.0 29,804.3 29,062.3 29,078.3 29,135.8

Functional Activities Questionnaire 9,715 (2,126) 51,328.2 51,376.2 51,548.5 50,526.3 50,542.3 50,599.8

FDG-PET (meta-ROI) 3,461 (1,454) −7,185.3 −7,137.3 −6,989.7 −7,594.8 −7,578.8 −7,529.6

Hippocampal volume (MRI) 6,052 (1,675) 88,404.7 88,452.7 88,613.7 88,372.1 88,388.1 88,441.7

Florbetapir PET SUVr 2,568 (1,224) −3,466.3 −3,418.3 −3,277.9 −3,430.2 −3,414.2 −3,367.4

Aβ1−42 (CSF) 2,342 (1,252) 33,958.5 34,006.5 34,144.7 34,011.1 34,027.1 34,073.1

Aβ1−42/Aβ1−40 (CSF) 1,425 (867) −5,838.2 −5,790.2 −5,663.9 −5,816.5 −5,800.5 −5,758.4

Total tau (CSF) 2,334 (1,247) 26,441.1 26,489.1 26,627.2 26,353.7 26,369.7 26,415.7

p-tau181 (CSF) 2,330 (1,246) 15,849.8 15,897.8 16,035.9 15,793.6 15,809.6 15,855.6

NfL (plasma) 4,219 (1,576) 37,584.5 37,632.5 37,784.8 37,517.8 37,533.8 37,584.6

Comparison in terms of −2·log likelihood, AIC and BIC (smaller is better for all measures). Bold numbers indicate the best-fitting model for a given measure.

df, degrees of freedom.

biomarkers where group-wise modeling was better as measured
by log likelihood were all measures related to amyloid burden
(CSF Aβ1−42 and Aβ1−42/Aβ1−40 ratio, florbetapir PET). These
biomarkers are known to have a bimodal distribution (Palmqvist
et al., 2015) and are thus poorly modeled by a single trajectory.
The estimated trajectories of the two types of models for cognitive
scales are shown in Figure 3, imaging data trajectories are shown
in Figure 4, and CSF and plasma biomarker trajectories are
shown in Figures 5, 6. For some outcomes, the per-baseline
group modeling approach had too many degrees of freedom
for the significant memory concern and dementia groups. In
these cases, the estimated mean trajectories oscillate during time
periods where no data were collected. For the non-amyloid
biomarkers, reducing the degrees of freedom for these group
would have no bearing on the results in Table 1.

Age, Sex, Education, and Cognitive Decline
There were systematic differences in follow-up time, age at
baseline, and length of education between male and female
participants (Supplementary Table 1). Compared to female
participants, male participants on average had 3.2 months’ longer
follow-up (Wilcoxon p= 0.0085), were on average 2.0 years older
at baseline (Wilcoxon p < 0.0001), and had 0.89 years more
education (Wilcoxon p < 0.0001). Age at baseline and years of
educationwere not significantly correlated (Spearman ρ=−0.04,
p= 0.0792).

To explore whether age at baseline, sex, and length of
education affected the pattern of cognitive decline, stepwise
forward model selection was done to include these factors in
the model. The best model included fixed covariate effects of
age and sex on g, s, and v, and fixed covariate effects of years
of education on g and v. While there were some substantial
differences in marginal parameter estimates due to age, sex,
and length of education (e.g., men are predicted to be 57
months later in disease compared to women in the same baseline
groups; Supplementary Table 2), the estimates should not be
interpreted in isolation because all parameters simultaneously

affect the shape of the disease trajectory and may counteract each
other. Figure 7 shows how age, sex, and education differences
systematically affected the mean trajectories. From the figure, we
see that male participants consistently scored lower on ADAS-
Cog throughout the disease (3.1 points), but that they remained
more stable in the initial 100 months where female participants
had a more gradual decline. Lower age at baseline and longer
education were both associated with higher cognitive scores, but
also slightly increased rates of decline as evident in the stages of
overt dementia (predicted disease time >120 months).

Cholinesterase Inhibitors and Cognitive
Decline
Using the search terms described in the Supplementary Material,
we identified 1,347 individuals that were treated with ChEIs,
which are approved for symptomatic treatment of AD. There
were no restrictions to brand or dose used. Only 64 of the
identified patients had records of initiation or discontinuation of
treatment during the observation time (total of nine initiations
and 60 discontinuations).

To explore if treatment with ChEIs affected the shape of the
decline trajectories, stepwise forward model selection from the
basic model was done to include ChEI treatment in the model.
The best model included fixed effects of treatment on s and v, but
not on rate of decline g (14 degrees of freedom, twice the negative
log likelihood=−59,277.59, AIC= 59,305.59, BIC= 59,406.29).
The model found that patients treated with ChEIs generally had
worse level of cognition (effect on v was 5.50 ADAS-Cog points
for treated individuals, p < 0.0001) and a delayed progression
within baseline groups (effect on s was 7.53 months, p < 0.0001).
The average trajectories and distribution of data across treatment
are shown in Figure 8.

Biomarkers for Disease Staging
The disease progression model relies on observing patients
longitudinally and uses the temporal patterns of cognitive scores
to predict the patient’s status at baseline. This type of approach
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FIGURE 3 | Data and estimated biomarker trajectories for CDR sum of boxes and FAQ. Left column shows results when allowing different trajectories for the five

baseline groups; right column shows the results when requiring a single trajectory over predicted disease time.

is needed for understanding the progression of disease and
is valuable in retrospective cohort analyses. But the models
presented thus far offer only little insight into the disease stage of
a patient that has not been followed longitudinally, for example,
a patient entering a clinical trial. In this setting, only the baseline
classification of the patient, the cognitive score, and possibly
other demographic data would be able to inform the stage
of the patient. However, as shown in Validation of the Basic
Model, several biomarkers have distinct temporal patterns over
the course of predicted disease time. Biomarker data collected
at baseline may thus enable a better assessment of the stage of
an individual.

The following analyses were done on the 688 individuals who
had complete biomarker data at baseline for the eight biomarkers
considered in Validation of the Basic Model. These individuals
had 3,301 visits with valid ADAS-Cog scores.

Training and Validation Data
Five hundred forty individuals (80%) were randomly selected for
the training cohort, and the remaining 148 (20%) comprised the
validation cohort.

Model Development
Using the BIC-based model selection procedure described
previously, we searched for the best model among
models that included adjustment for sex, baseline age,
and education (on parameters g, s, v), as well as
adjustment for the eight baseline biomarkers on disease
stage (parameter s). The model selection was done on the
training data. The best model included the biomarkers
FDG-PET (meta-ROI), hippocampal volume (MRI),
florbetapir PET SUVr, Aβ1−42/Aβ1−40 (CSF), and NfL
(plasma) (22 degrees of freedom, −2·log likelihood
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FIGURE 4 | Data and estimated biomarker trajectories for FDG-PET, hippocampal volume (MRI), and florbetapir PET. Left column shows results when allowing different

trajectories for the five baseline groups; right column shows the results when requiring a single trajectory over predicted disease time. Note that the oscillations for the

significant memory concern and dementia groups on FDG-PET and florbetapir PET, respectively, occur in time periods where no data were collected for these groups.

= 15,182.34, AIC = 15,226.34, BIC = 15,355.45).
The parameter estimates for the model are given in
Supplementary Table 3.

Model Validation
To validate the biomarker model, the model fitted on training
data was used to predict disease stage in two different
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FIGURE 5 | Data and estimated biomarker trajectories for Aβ1−42 (CSF) and Aβ1−42/Aβ1−40 ratio (CSF). Left column shows results when allowing different trajectories

for the five baseline groups; right column shows the results when requiring a single trajectory over predicted disease time. Note that the oscillations for the significant

memory concern group occur in time periods where no data were collected for this group.

scenarios. In addition to patient status, the first used only
baseline biomarker data, whereas the second also used baseline
ADAS-Cog total score. Visual inspection of the longitudinal
ADAS-Cog trajectories suggests that the baseline data do
hold information that improves prediction of disease stage
in the test data (Figure 9). To quantify this, the predictive
accuracy of the biomarker model was compared to the basic
model that did not include biomarker on the longitudinal
ADAS-Cog total score trajectories (Table 2). Inclusion of
biomarker data clearly reduced the mean squared error (MSE)
and median absolute error (MAE) of predictions on both
test and training data (MSE/MAE 65.1/4.21 vs. 100.0/4.98
on test data). Including the baseline ADAS-Cog total score
improved the post-baseline predictive accuracy of the biomarker
model further (MSE/MAE 55.1/3.48 for baseline biomarkers
+ ADAS-Cog model vs. 69.8/4.31 for biomarker model on
test data).

DISCUSSION

Disease Progression Modeling
In this article, we presented a model for progression of dementia
based on longitudinal cognitive assessments. Disease stages
of individual patients were modeled using a latent variable
approach. As opposed to conventional latent variable models,
for example, those used in item response theory for modeling
cognitive tests (Balsis et al., 2012; Embretson and Reise, 2013),
the proposed model imposes explicit structures to ensure that the
longitudinal modeling respects the known course of disease (e.g.,
that disease progression is an increasing function of elapsed time
and that cognition on average declines with disease progression).
By imposing these structures, the model provides a scaffold for
understanding disease progression in pathological aging in terms
of three continuous measures, disease stage, rate of decline, and
cognitive deviation from the mean.
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FIGURE 6 | Data and estimated biomarker trajectories for total tau (CSF), p-tau181 (CSF), and NfL (plasma). Left column shows results when allowing different

trajectories for the five baseline groups; right column shows the results when requiring a single trajectory over predicted disease time. Note that the oscillations for the

significant memory concern group occur during time periods where no data were collected on the respective biomarkers.

The proposed model aligned trajectories of cognitive
decline. To demonstrate that this approach provided valid
insights about other aspects of the disease, it was shown that
predicted disease time was predictive of various measures of

disease onset. Furthermore, the use of ADAS-Cog trajectories
to map patients to a one-dimensional disease timeline
was shown to consistently provide a better explanation
of other clinical scales and biomarker trajectories than
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FIGURE 7 | Estimated trajectories for different combination of patient age, sex, and length of education. The trajectories are aligned at predicted month 0 that

corresponds to the average cognitive stage of cognitively normal individuals at baseline.

a conventional approach that grouped patients based on
baseline symptoms.

The presented model was formulated for one-dimensional
outcomes. This choice allowed formulation and implementation
of the model in a non-linear mixed-effects modeling framework
using maximum likelihood estimation. This in turn enabled
modeling of covariate effects on different aspects of disease
progression, sophisticated models for random variation in
data, and the possibility of taking advantage of the large
body of developed statistical methodology for mixed-effects
modeling (Pinheiro and Bates, 2006). Because AD ismultifaceted,
and different measures are sensitive of disease stage and
progression at different times during AD, progression models
for multivariate outcomes can be more sensitive than univariate
models. However, realistic specification of covariate effects,
cross-covariance structures, and dependence between random
effects for the different outcomes may be very difficult and
require a large number of free parameters. While model classes
and estimation procedures for similar longitudinal multivariate
outcomes have been proposed in other fields (Olsen et al., 2018),
existingmultivariate models for AD progression generally rely on
simple modeling of different sources of variation. Future work
should address this gap in the current available methodology:
while existing multivariate models can achieve high-quality
staging of patients and outcomes with simple noise modeling
by taking advantage of the aggregated information across many
outcomes (Donohue et al., 2014; Jedynak et al., 2015), they
can likely not take advantage of this aggregated information to
address specific questions about whether a covariate affects a
specific aspect of disease progression.

Age, Sex, Education, and Cognitive Decline
The effect of demographic and socioeconomic factors on disease
risk and manifestation in AD has been the subject of much study.
In this work, we focused on the combined effects of age, sex, and
length of education.

When considered individually, these factors have been
observed to result in differences in disease progression. While
age is typically considered the major risk factor for developing
AD, higher age at AD onset has been observed to be associated
with a slower rate of cognitive decline (Gardner et al., 2013;
Stanley et al., 2019). Similarly, female sex has been identified as
a major risk factor, with almost two-thirds of AD cases being
women (Alzheimer’s Association., 2018). While this difference
has been known for a long time, it has only become apparent
more recently that there are sex differences in symptomatology,
rate of decline, and possibly in neural anatomy (Ferretti et al.,
2018; Oveisgharan et al., 2018). The effects of cognitive reserve on
age-related cognitive decline have been the subject of much study
(Tucker and Stern, 2011). Cognitive reserve is often studied using
educational attainment as an operational proxy for cognitive
reserve. It has consistently been found that higher education is
associated with increased rate of cognitive decline in incident AD
(Teri et al., 1995; Rasmusson et al., 1996; Wilson et al., 2004;
Andel et al., 2006; Scarmeas et al., 2006; Musicco et al., 2009;
Thomas et al., 2016), with several of these studies also reporting
that education is associated with higher baseline cognition.

Differences in cognitive decline are often studied by
comparing slopes in statistical models that assume that cognitive
decline follows a linear pattern. The argumentation and
interpretation around the cognitive reserve model are somewhat
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FIGURE 8 | Estimated trajectories for patients with and without cholinesterase inhibitor treatment (top) and corresponding distribution of number of observed

ADAS-Cog scores at corresponding predicted disease times. The trajectories are aligned at predicted month 0 that corresponds to the average cognitive stage of

cognitively normal individuals that are not treated with cholinesterase inhibitors at baseline.

more sophisticated, but still largely centered on an assumption
of a linear rate of decline (e.g., illustrated in Figure 1 in Stern,
2012). The prevailing hypothesis within the field of cognitive
reserve research is that, compared to individuals with low
cognitive reserve, individuals with high cognitive reserve have
higher pre-disease cognitive scores and that their brains tolerate
a higher load of neuropathology before cognitive decline is
seen. At a sufficiently high level of neuropathology, cognitive

ability reaches its floor for all participants. If the timescale
of neuropathological buildup is similar across individuals, this
suggests that individuals with high cognitive reserve will have to
decline a wider range of cognitive scores in a shorter time, thus
leading to an accelerated rate of decline (Stern, 2012).

The analyses in the present article clearly illustrate that rate of
cognitive decline as measured on ADAS-Cog is not constant but
increases over the course of AD. Thus, findings of an increased
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FIGURE 9 | Predicted disease month for training and test datasets. Top row displays predicted disease-time alignment of observed ADAS-Cog total score trajectories

based on baseline biomarker data and patient baseline status; bottom row displays predicted disease-time alignment of trajectories based on baseline ADAS-Cog

total score, baseline biomarker data, and patient baseline status.

rate of decline in a certain group of patients using slope models
could either be because the group of patients has accelerated
decline, because they are at a later disease stage, or a combination.
The proposed disease progression model seeks to align cognitive
trajectories on a disease timeline, and thus it allows one to
separate the hypothesized mechanisms of cognitive decline. The
best model that adjusted for effects of age at baseline, sex, and
length of education on, respectively, disease stage, rate of decline,
and cognitive deviation found that all three factors affected all
three disease measures except for disease stage, which was not
affected by length of education.

When considering the combination of effects (Figure 7), the
results suggested that higher age at baseline was associated with
lower cognition throughout disease time and a slightly reduced
rate of decline. Women tended to have not only better pre-
disease cognition but also an accelerated decline. Finally, longer
education was associated with slightly faster rate of decline and a
systematically better cognition throughout the disease.

While these findings are largely consistent with previous
findings, they also illustrate that previous results that do not
take the long-term disease trajectories into account may be
systematically biased. In particular, the fact that highly educated
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TABLE 2 | Predictive accuracies of predicted ADAS-Cog total score trajectories for the basic model and the biomarker model both with and without the baseline

ADAS-Cog total score.

Model and data Mean squared error Median absolute error

Training Test Training Test

Basic model (baseline status) 90.0 100.0 (110.6a) 5.48 4.98 (5.01a)

BM model (baseline status + BMs) 58.3 65.1 (69.8a) 4.19 4.21 (4.31a)

Basic model (baseline status + ADAS-Cog) 78.2a 102.7a 3.49a 3.70a

BM model (baseline status + ADAS-Cog + BMs) 53.5a 55.1a 3.29a 3.48a

Predictions were censored to the interval [0, 85] to respect the range of the ADAS-Cog scores.

BM, biomarker.
aBaseline ADAS-Cog measurements excluded in computation of prediction errors.

patients tend to have above-mean cognition throughout the early
stages of disease means that they will meet cognitive cutoffs used
for inclusion criteria in clinical studies longer into their disease
than patients with less education. Because of the accelerated
cognitive decline in the later stages of disease, these patients will
have a much faster rate of decline when using conventional slope
models, but this difference will primarily be due to their later
disease stage.

Symptomatic Medications for Alzheimer
Disease and Cognitive Decline
Cholinesterase inhibitors have consistently shown a symptomatic
benefit in mild to severe dementia due to AD in randomized,
double-blind, placebo-controlled trials (Birks, 2006). It has,
however, been questioned whether long-term treatment with
ChEIs could be harmful (Schneider, 2012). A recent meta-
analysis found that AD patients treated with symptomatic
treatments had a faster rate of cognitive decline (Kennedy et al.,
2018). This could be interpreted as a harmful side effect, but
because the included studies were not randomized with respect
to symptomatic treatments, such causal link cannot be made. An
alternative explanation is simply that ChEIs work—that patients
who are being treated at study inclusion have a cognitive benefit
that, similarly to higher levels of education, means that they meet
inclusion criteria for clinical studies further into their disease.
The optimal disease progression model identified in the model
search did not include effects of ChEI treatment on rate of
decline. Instead, the results of this model showed that patients
treated generally had lower cognition compared to untreated
patients (which points to confounding by indication; patients are
prescribed ChEIs because of their cognitive impairment) and that
their progression was slightly delayed.

Biomarker-Based Disease Staging
The final application of the model examined how a patient’s
biomarker profile at study entry could be used to predict
his/her disease stage. Based on training data used for model
development, a set of five biomarkers were included in the
model. Biomarker profiles considerably improved prediction of
future ADAS-Cog trajectories in the unseen validation dataset,
and inclusion of baseline ADAS-Cog score further improved the
prediction. Among the biomarkers, FDG-PET explained most

variation followed by CSF Aβ1−42/Aβ1−40 and florbetapir SUVr.
Hippocampal volume and plasma NfL explained the least.

This modeling of baseline biomarkers for patients in the
earliest stages of disease takes advantage of the long-term follow-
up that is unique to ADNI. The modeling essentially relies on
hindsight because the patients’ disease stage can only be predicted
with high reliability once a systematic pattern of cognitive decline
has been observed. By using these patterns, the model identified
how combinations of biomarkers could be used to predict disease
stage. The results of the model suggest that biomarker profiles at
a single time point may be used to predict the disease stage of
an individual even in the preclinical phases of disease where no
clinically detectable cognitive impairment is present.

With further validation, these results can be used to define
a space of permissible biomarker profiles to use as inclusion
criteria in clinical trials. Such biomarker-based synchronization
of patient’s disease stage would enable testing a drug in a more
homogeneous population. This would in turn greatly increase the
power of clinical trials in AD where it is common to see extreme
levels of variability in patient trajectories (Cummings et al., 2018;
Ballard et al., 2019).
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Association and prediction studies of the brain target the biological consequences of

aging and their impact on brain function. Such studies are conducted using different

smoothing levels and parcellations at the preprocessing stage, on which their results

are dependent. However, the impact of these parameters on the relationship between

association values and prediction accuracy is not established. In this study, we used

cortical thickness and its relationship with age to investigate how different smoothing and

parcellation levels affect the detection of age-related brain correlates as well as brain age

prediction accuracy. Our main measures were resel numbers—resolution elements—and

age-related variance explained. Using these common measures enabled us to directly

compare parcellation and smoothing effects in both association and prediction studies.

In our sample of N = 608 participants with age range 18–88, we evaluated age-

related cortical thickness changes as well as brain age prediction. We found a negative

relationship between prediction performance and correlation values for both parameters.

Our results also quantify the relationship between delta age estimates obtained based

on different processing parameters. Furthermore, with the direct comparison of the

two approaches, we highlight the importance of correct choice of smoothing and

parcellation parameters in each task, and how they can affect the results of the analysis

in opposite directions.

Keywords: brain aging, cortical thickness, prediction, delta age, smoothing, parcellation, association

INTRODUCTION

From a biological standpoint, aging is defined by the structural and functional alterations in living
organisms (López-Otín et al., 2013). Traditionally, brain imaging studies have used neuroimaging
data to find associations between age and tissue alterations across brain areas, using chronological
age as the ground truth (Lemaître et al., 2005; Curiati et al., 2009; Takahashi et al., 2011; Ziegler et al.,
2012; Booth et al., 2013; Hu et al., 2014). However, biological age might vary between individuals
with identical chronological age as well as across different tissues within the same person (Horvath,
2013). To non-invasively measure the biological age of the brain, neuroimaging data is used to
predict age. The difference between predicted age and chronological age is then defined as “delta”
or brain age gap estimate i.e., “BrainAGE” to compare the subjects’ chronological age with the

22

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.637724
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.637724&domain=pdf&date_stamp=2021-05-04
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yashar.zeighami@mcgill.ca
https://doi.org/10.3389/fdata.2021.637724
https://www.frontiersin.org/articles/10.3389/fdata.2021.637724/full


Zeighami and Evans Association vs. Prediction in Brain Age

predicted brain age in a given reference population (Franke et al.,
2012; Cole and Franke, 2017; Franke andGaser, 2019; Smith et al.,
2019).

Both age related brain alterations and delta age have been
studied and used extensively in the neuroimaging literature.
Age association studies translate and generalize easily across
different datasets. These association studies are applied across
brain regions and can distinguish the differential effect of age
on different brain areas (Storsve et al., 2014). Furthermore, they
directly relate to biological measures and mechanistic changes
in the brain (Khundrakpam et al., 2015). More recently, it has
been recognized that association studies are prone to overfitting
and more studies focus on prediction as the main goal of the
study (Yarkoni and Westfall, 2017; Bzdok et al., 2020). Brain age
studies (i.e., age prediction studies based on neuroimaging data)
rely on modeling and prediction accuracy. This goal is generally
achieved by using a feature set that can capture the variability
between and within subjects. On the other hand, prediction tasks
face a trade-off between a more accurate whole brain model
with no regional specificity vs. a model with lower accuracy
and increased spatial resolution (Cole and Franke, 2017; Franke
and Gaser, 2019). This limitation also results in a more indirect
relationship between delta age and other phenotypes without
a direct mechanistic and biological model. Nonetheless, the
difference between brain age and chronological age is associated
with cognitive decline (Gaser et al., 2013), predisposition to
neuropsychiatric and neurodegenerative disorders (Kaufmann
et al., 2019), and mortality (Cole et al., 2018). While evidence
supports the application of delta age as a valuable measure to
study aging in health and disease, it has been criticized due to its
reliance on prediction accuracy (i.e., more accurate models result
in lower delta values) (Cole and Franke, 2017).

The results of both association studies and delta estimation
studies are impacted by processing steps such as data
normalization, spatial resolution, and parcellation level (i.e.,
size of the parcels) of the analysis. Most association studies use
smoothing to (i) normalize the distributions of cortical thickness
across subjects, (ii) minimize registration and anatomical
misalignment across subjects, (iii) reduce measurement noise,
and (iv) increase statistical power (Worsley et al., 1999; Lerch
and Evans, 2005; Lerch et al., 2006; Zhao et al., 2013). These
advantages are gained at the cost of losing individual variability
and spatial resolution. In fact, smoothing has been studied and
optimized for best performance in association studies, using
simulation as well as in real datasets. The smoothing level has
been proposed as a dimension within the parameter space in
the association analysis that needs to be searched for the given
statistical contrast (Lerch and Evans, 2005; Zhao et al., 2013).

Brain age prediction studies have been conducted with
various levels of data smoothing. Moreover, these studies rely on
various dimension reduction techniques, brain parcellations, or a
combination of the two approaches for feature extraction (Franke
and Gaser, 2019; Smith et al., 2019). The optimal parcellation for
a given task is an open research topic and it can vary between
studies (Gorgolewski et al., 2016; Eickhoff et al., 2018; Salehi
et al., 2020). While some studies have predicted brain age with
multiple parcellation resolutions (Khundrakpam et al., 2015;

Lewis J. D. et al., 2019), others have used a predetermined number
of parcels. However, the effect of smoothing and parcellation in
brain age prediction is not studied systematically. Furthermore,
these changes in prediction accuracy also affect the delta estimate
(i.e., the variable of interest), and it is not clear whether the delta
estimates are robust or sensitive toward these initial choices.

In this study, we used cortical thickness as the brain
measure of interest and examined the effect of smoothing
and parcellation level on both brain associations with age and
brain age prediction. Using different levels of parcellation and
smoothing, we projected brain measures onto a lower dimension
data representation space and investigated how this mapping
affects the derived associations and predictions. We further
examined the relationship between the two approaches. Finally,
we examined how delta age estimates alter based on different
smoothing and parcellation levels.

METHODS

Data
Data used in this study included subjects with T1-weighted MRI
data available from the second stage of the Cambridge Centre
for Ageing and Neuroscience (CamCAN, https://www.cam-can.
org/index.php?content=dataset) dataset, described in more detail
in Shafto et al. (2014) and Taylor et al. (2017). Subjects were
screened for neurological and psychiatric conditions and those
with such underlying disorders were excluded from the study.

MRI Acquisition
T1-weighted MRIs were acquired on a 3T Siemens TIM Trio,
with a 32 channel head-coil using a 3D magnetization-prepared
rapid gradient echo (MPRAGE) sequence (TR = 2,250ms, TE
= 2.99ms, TI = 900ms; FA = 9 deg; FOV = 256 × 240 ×

192mm; 1mm isotropic; GRAPPA = 2; TA = 4min 32 s). For
detailed acquisition parameters see: https://camcan-archive.mrc-
cbu.cam.ac.uk/dataaccess/pdfs/CAMCAN700_MR_params.pdf.

MRI Processing
We used CIVET 2.1.1 (http://www.bic.mni.mcgill.ca/
ServicesSoftware/CIVET, release December 2019), a fully
automated structural image analysis pipeline developed at the
Montreal Neurological Institute, to perform surface extraction
and cortical thickness estimation. Briefly, each subject’s T1-
weighted MRI is corrected for non-uniformity artifacts using the
N3 algorithm (N3 distance = 125mm) (Sled et al., 1998) and
linearly registered to stereotaxic MNI152 space (voxel resolution
= 0.5mm) (Collins et al., 1994). The brain is extracted and
undergoes tissue classification into three classes: white matter
(WM) tissue, gray matter (GM) tissue, and cerebrospinal fluid
(CSF) (Zijdenbos et al., 2002; Tohka et al., 2004). White and gray
matter surfaces are extracted using the marching cube algorithm
and constrained Laplacian-based automated segmentation with
proximities (CLASP) algorithms, respectively (MacDonald et al.,
2000; Kabani et al., 2001; Kim et al., 2005). Using the extracted
surfaces, cortical thickness is measured as the distance between
the white and gray cortical surfaces using the Laplace’s equation
(Jones et al., 2000). For blurring, a surface-based diffusion
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smoothing kernel (not to be confused with volumetric kernels) is
used, which generalizes Gaussian kernel smoothing and applies
it to the curved cortical surfaces (Chung et al., 2002). We applied
6 different smoothing levels with FWHM = 0, 5, 10, 20, 30,
and 40mm. Cortical thickness was measured across the cortical
surface for 81,924 vertices (40,962 vertices per hemisphere).
The results underwent visual inspection, specifically subjects
with major errors in extracted pial and gray–white surfaces
were excluded.

Cortical Parcellations
We used the Schaefer functional MRI parcellations (Schaefer
et al., 2018), a data-driven atlas based on the widely used seven
large-scale functional network parcellations by Thomas Yeo et al.
(2011). We used Schaefer parcellation with 100, 200, 400, and
1,000 regions (referred to as parcellation levels). All atlases were
registered to the MNI cortical surface template and used in
the MNI space (Lewis L. B. et al., 2019). Cortical thickness
measurements with different smoothing levels were averaged
across these parcellations. These parcellation based measures of
cortical thickness were used alongside vertex-wise measurements
to examine the interaction between the effect of brain parcellation
averaging and smoothing on statistical associations as well as
brain age prediction accuracies.

Cortical Resels and Effective Smoothing
In order to compare the findings between smoothing levels and
different parcellations, first all obtained cortical thickness were
projected to the brain surface. We used the number of resels
(i.e., resolution elements) as the measure of interest, since it takes
the statistical dependence of the brain map into consideration
and is independent of the analysis resolution (at least from
a theoretical standpoint) (Worsley et al., 1992, 1999; Worsley,
1996; Lerch et al., 2006). Using the statistical maps between aging
and cortical thickness, we estimated the number of resels for
each smoothing and parcellation level and used it to quantify
the similarity between these conditions. Resels are the number of
resolution elements approximated for a given search space [i.e.,
D(S2), S2= brain surface] and a given smoothness level FWHM.
While the effective FWHMmeasure varies across brain areas, we
defined the overall effective smoothness of the brain map as the
square root of the surface search space divided by the number
of resels estimated across brain areas (Hayasaka et al., 2004).
For the purpose of the current study, the main statistical maps
considered are the linear associations between cortical thickness
and the chronological age of the participants. All analysis were
performed using SurfStat toolbox https://www.math.mcgill.ca/
keith/surfstat/ (see Supplementary Methods for further details).

Statistical Methods
To examine the effect of the smoothing and parcellations,
mean (µ) and standard deviation (σ ) of cortical thickness
for each vertex/parcel was calculated across the population.
The coefficient of variation (CV), CV = σ

µ
, was used as

the main measure of variability. The CV was averaged across
the 7 main cytoarchitectural brain regions (von Economo and
Koskinas, 1927) in order to examine the effect of parcellation and

smoothing across major cytoarchitectural regions and identify
any differential impact on a given brain region. Finally, to
measure the association between chronological age and cortical
thickness across lifespan, correlation coefficient (r) for each
vertex/region was calculated. Variance explained (r2) was used to
visualize the results.

Brain Age Prediction
We used principal component analysis (PCA), a singular
value decomposition based data factorization method, as the
dimensionality reduction approach for our predictive variables
(i.e., cortical thickness data) (Smith et al., 2019). This approach
allowed us to use the same number of features across parcellation
levels and smoothing kernels and therefore made it possible
to compare model performance across these conditions. Our
analysis for each condition included 1 to 100 first principal
components as features to study different levels of dimensionality
reduction. Hundred is used as the maximum possible number of
independent components for the lowest number of parcels (i.e.,
Schaefer 100). To predict brain age, we used linear regression
as the main prediction model, and to ensure generalizability
and avoid overfitting, we used 10-fold cross validation. Finally,
to increase robustness, results averaged over 100 repetitions
are reported, however as discussed these repetitions are not
necessary and had no impact on the conclusions. Root-mean-
squared error (RMSE) was used as the natural cost function
for linear regression models. Mean absolute error (MAE) and
correlation between chronological age and predicted age (two
other common error metrics in the age prediction literature;
Franke and Gaser, 2019; Franke et al., 2020) are also reported
in the Supplementary Materials. Finally, we have repeated
the same procedure using a support vector machine (SVM)
regression method with linear kernel as well as linear regression
models with lasso and ridge regularization (results reported in the
Supplementary Materials).

The Relationship Between Brain Age
Prediction and Age Related Brain
Association
To compare brain age association and age prediction, we used
the variance explained between dependent and independent
variables as the main measure of interest for each model. This
common measure enabled us to quantify the two analyses in
relation to each other. Furthermore, we examined how the
number of resels affects whole brain associations with age as well
as brain age prediction. To translate the age prediction error into
variance explained, we used the predictive features in a linear
model, calculating the variance explained for age using adjusted
R2. Finally, the overfitting bias between the variance explained
(i.e., adjusted R2) using this linear model and the cross validated
prediction (i.e., r2 between predicted age and chronological age)
is reported.

Delta Age
The main goal of brain age prediction studies is to calculate
the deviation from chronological age based on the population
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norm, also known as delta age. Here, we examined the effect of
smoothing and parcellation on delta age estimation:

Y=Xβ1−δ1 δ1=Xβ1−Y

where Y denotes chronological age, X denotes the neuroimaging
features, and δ1 denotes the difference between predicted and
chronological age. δ1 is a measure of brain state/health compared
to the population with similar chronological age, and is used to
study the predisposition to different brain disorders as well as
individual cognitive abilities in neuroimaging literature.

δ1 being residual of the predictive model is by definition:
(1) orthogonal to the predictive measures X, and in the case of
linear models (2) correlated with the output Y(i.e., chronological
age) (Le et al., 2018; Liang et al., 2019; Smith et al., 2019).
The first feature is unfavorable, since we are interested in brain
related discrepancy between chronological and predicted age.
The lack of association between δ1 and brain features predicting
age undermines the interpretability of δ1 in relation to brain
measures. The second property is also an adverse feature, since it
makes it difficult to distinguish the effect of the chronological age
from the additional biological delta age (due to their collinearity).
Therefore, in the current study, we followed the recommendation
of smith and colleagues (Smith et al., 2019) and used δ2, the
orthogonalized residuals against chronological age:

δ2=δ1−Yβ2

δ2 is then used as the main measure of interest for association
across conditions. The results for δ1 is provided in the
Supplementary Materials. Note that δ2 is also consistently
calculated using the same 10-fold cross validation with 100
repeats as δ1, however as discussed these repetitions are not
necessary and had no impact on the conclusions. All statistical
and prediction analyses were performed using MATLAB 2018a.

RESULTS

Cortical Thickness Aging, Resels, and
Practical Smoothness
The parcellations have a considerable impact on the number of
resels and function as region-based smoothing kernels applied
across the brain (Figure 1A). This change in the number of
resels affects the statistical power and the association as well as
prediction results. Across parcellation levels from 100 to 1,000,
the effect of the smaller smoothing kernels with FWHM0–10mm
is negligible, while applying larger kernels reduces the number
of resels dramatically. This equivalency plot also suggests that
at the vertex level, the smoothing kernels act as a non-specific
parcellation (from an anatomical perspective) across the brain.

Cortical Thickness Variability
While keeping the mean cortical thickness measure intact,
smoothing resulted in underestimation of the cortical thickness
in the gyri areas and overestimation in the sulci regions. The
results are similar for parcellations in the case of uniformly
sized parcels and balanced inclusion of gyri and sulci in each

parcel (both criteria are met in Schaefer parcellations). Cortical
thickness variability (i.e., CV) reduces significantly both as a
result of using greater smoothing and larger parcels (Figure 2A).

The association cortices have the lowest CV across resolutions
and parcellations. Both smoothing and parcellation result in
the highest decrease in CV in limbic and insular cortices,
while primary sensory and motor areas show the lowest
change (Figure 2B). The results are shown for 0mm smoothing
across parcellations. The greatest change occurs with increasing
the FWHM value from 10 to 20mm, as well as decreasing
the number of parcels from 400 to 200. The results for
different smoothing kernels at vertex level were also similar
(Supplementary Figure 1).

Statistical Association Between Cortical
Thickness and Aging
Figure 3A shows the association between age and cortical
thickness (using variance explained r2), calculated for each
voxel/parcel for all conditions, after Bonferroni correction
to account for the multiple comparisons at each level. The
correlation increases with greater smoothing and larger parcels.
Changing smoothing kernel size results in the highest variability
in the correlation distribution across the brain at vertex level
resolution (Figure 3B, top panel), whereas smoothing doesn’t
change the results within Schaefer 100 parcellations (Figure 3B,
bottom panel). The same pattern is evident between parcellation
levels with 0mm smoothing showing the highest variability, and
40mm smoothing with lowest variability across parcellations.
These findings are further explainedwith reference to the number
of resels and effective smoothing in section The Relationship
Between Prediction and Association. Finally, while present across
all brain areas, the variability between correlation maps is the
highest within association cortices, primary motor, and insular
cortex.

Brain Age Prediction Based on Cortical
Thickness
For age prediction, vertex-level data outperformed all
parcellation-based data using the same (or a smaller) number
of principal components as predictive features. The accuracy
was also higher for lower smoothing kernel size. However,
this effect was more pronounced for FWHMs >10mm, and
the results for FWHM values of 0, 5, and 10mm showed a
very similar performance in the vertex-level analysis. A similar
pattern was present within each parcellation level. The best
performing models (i.e., 0 and 5mm smoothed vertex-wise),
reach their minimum error using the first 20–30 principal
components as features in the prediction model (i.e., a sample
to feature ratio of 28–18). The pattern was similar for MAE
and correlation between predicted age and chronological age
(Supplementary Figures 2, 3).

The Relationship Between Prediction and
Association
As expected, there was a negative relationship between the
overall correlation between age and cortical thickness across
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FIGURE 1 | Number of resels and effective smoothing for cortical thickness association with age. (A) Number of resels estimated for different parcellations/smoothing

pairs. The lines show the interpolated iso-response values. (B) Effective smoothing based on the number of resels for each condition. The results show the initial

effective smoothing as a result of parcellation with additional smoothing with applied smoothing kernels.

FIGURE 2 | The coefficient of variation (CV) of cortical thickness across population. (A) CV projected across brain vertices for each parcellations/smoothing pair. (B)

CV shown at 0mm smoothing level for each cytoarchitectural region across parcellation resolutions.

brain regions (measured by median r2) and the number of resels
within each condition (Figure 5A). Interestingly, we found a
positive association between the number of resels and the overall
ability of cortical thickness features to explain the variance of
chronological age (as measured by adjusted R2 of the linear
model) shown in Figure 5B. These results suggest that the higher
number of resels results in lower correlation values, but since
resels are independent based on their relationship with age,

they can explain different modes of chronological age within
the population (hence the higher adjusted R2), whereas, in
conditions with lower resel numbers (i.e., higher smoothing and
larger parcels) the correlation values are higher but homogenous
across the brain and therefore explain a lower proportion of the
age variance.

Finally, there was a strong linear relationship between (i) the
overall variance explained (adjusted R2) using a linearmodel with
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FIGURE 3 | Cortical thickness variance explained by age (r2). (A) Cortical thickness variance explained by age (r2) for each vertex/parcel across

smoothing/parcellation conditions. (B) Histograms for correlation values for each parcellation conditions, grouped by smoothing level.

age as dependent variable and PCs as independent variable and
(ii) the predictive performance of the linear regression model,
with a bias due to overfitting in the linear model (Figure 5C).
Figure 5D shows the overfitting bias of the adjusted R2 compared
to the cross-validated prediction, as a function of the number of
features in the model. Taken together, these results explain the
opposing directions between correlation results and prediction
accuracy across parcellation and smoothing conditions.

The Effect of Smoothing and Parcellation
on the Estimation of Brain Age Delta
In this section, we present δ2 age prediction accuracy results
with 10-fold cross validation. The prediction accuracy based

on the modified δ2 is presented in Figure 6. One of the main
assumptions in age prediction studies is that delta age measured
in different studies using different processing parameters are
similar and can be interpreted as the same measure. We have
examined the relationship between the optimal δ2 across different
parcellations and smoothing kernels (Figure 7). These results
demonstrate the degree of sensitivity of δ2 as a function of
our choice for parcellation and smoothing kernel. While there
is high correlation for large smoothing kernels (20–40mm) as
well as lower number of parcels, these conditions have the
lowest prediction accuracies. The correlations between these
conditions and higher accuracy conditions (i.e., vertex-wise and
1,000 parcels with 0–10mm smoothing) are lower (r ∼ 0.55). See
the results for δ1 in the Supplementary Figure 4.
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FIGURE 4 | Root mean square error (RMSE) for age prediction as a function of number of principal components included as features in the predictive model. (A)

Results grouped together based on the smoothing level. (B) Results grouped together based on the parcellation resolution.

DISCUSSION

In this article, we compared the effect of different smoothing
and parcellation on associations between cortical thickness and
chronological age as well as brain age prediction accuracy.
We showed that the optimal choice for association analysis
might indeed undermine age prediction accuracy, and vice versa.
We further investigated this relationship and demonstrated the
underlying differences that lead to this trade-off between the
two analyses. Finally, we examined the effect of smoothing
and parcellation on delta age estimation and showed that the
initial smoothing and parcellation choices can change the delta
estimation which in turn will affect any downstream analysis.

We used brain association with age and brain age prediction
as our target analyses, since age is used as the main variable of
interest or at least a confounding variable in most neuroimaging
studies. We used cortical thickness as the main measure of
interest. Due to the wide availability of T1-weighted MRI in
research and clinical settings, cortical thickness is a suitable
measure which has been widely used to study brain anatomy
in general (Toga, 2015), and more specifically, brain aging and
predicting brain age (Wang and Pham, 2011; Groves et al.,
2012; Kandel et al., 2013; Liem et al., 2017). Finally, our results
are presented based on a sample size of N∼600 which is a
common sample size for publicly available datasets in the field
of neuroimaging.
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FIGURE 5 | The relationship between cortical thickness association with age vs. brain age prediction. (A) Median variance explained of cortical thickness across the

brain. The results are grouped based on the parcellation. Circles represent the something level within each parcellation. (B) Total variance explained of age by the first

30 principal components (PCs) of cortical thickness as independent variables. (C) The relationship between age prediction accuracy and total variance explained of

age. In the case of prediction, the first PCs are used as predictive features alongside cross validation to prevent overfitting. The total variance explained of age is the

same as depicted in (B). (D) The overfitting bias of linear model compared to the same model used with cross validation. As expected, a higher number of predictive

features results in higher level of overfitting bias.

Given the limited number of subjects in neuroimaging studies
compared to potential features (number of vertices/voxels),
most prediction studies apply dimension reduction as an
initial step. We used PCA for dimension reduction of the
cortical thickness data. Due to its simplicity and interpretability,
PCA has been widely used in the brain age prediction
literature. Furthermore, we employed linear regression with

cross-validation as our prediction model (Smith et al., 2019).
As expected, we observed an initial drop in the prediction
error, followed by a plateau/increase in the error as the
sample to feature ratio increases (Hastie et al., 2009). At each
parcellation level, the accuracy drops with increased smoothing,
and for each smoothing level, the accuracy decreases with
larger parcels/regions.
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FIGURE 6 | Root mean square error (RMSE) for Age prediction with δ2 as the error term. The x axis shows the number of principal components included as features.

The results are grouped based on the parcellation resolution.

FIGURE 7 | δ2 age prediction error. The correlation between delta age (as measured by δ2) across parcellation resolutions (x and y axis labels) and smoothing kernels

(represented by circle size).
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The age prediction results presented in the main manuscript
are based on linear regression analysis and PCA based features.
We have also examined the performance of support vector
machines with different kernel types as well as linear regression
using lasso and ridge regularization methods. All these methods
were applied on both raw cortical thickness values as well
as PCA based features as predictors. In all cases, the PCA
based features outperformed the same method using the raw
cortical thickness values. These results can be due to the
relatively small sample size and/or sample to feature ratio in
the current study. Furthermore, with the exception of linear
regression models with lasso regularization, the presented linear
regression method outperformed all other methods. In the
case of lasso, we optimized the method for the regularization
weight (i.e., lambda parameter). With this optimization, we
gained a 2% increase in accuracy. All the results based on the
explained models are reported as Supplementary Tables 1–4

and Supplementary Figures 6–8. Although the accuracy might
vary slightly between methods, the higher accuracy in smaller
smoothing kernels (i.e., 0 and 5mm smoothing) and smaller
parcels (i.e., vertex based level) is consistent across all
methods and the explained relationship between age- association
and prediction holds true across these prediction models.
Furthermore, the anatomical correlates of aging or the main
anatomical features contributing to the brain age prediction were
not the main target or in the scope of the current study. However,
the mapping of the first 100 PCs (used in the prediction analysis)
to the Schaeffer parcellation as well as whole brain vertices
of CIVET is provided in the Supplementary Tables 5, 6. They
can be used alongside the other Supplementary Tables to infer
variables of interest and their anatomical distribution.

While 10-fold cross validation is enough in our case, for
relatively small samples, the random assignment of data in
the cross-validation partitions can lead to differences in the
distribution of the training and test data in some of the folds,
leading to highly variable performances across some folds. To
exercise the best practice and ensure that the reported results
are robust, the 10-fold cross validation procedure was repeated
and the results were averaged so that such inhomogeneous
assignments (however unlikely) do not impact the reported
results. The randomized performances were very similar (mean
correlation between repetitions was between 0.97 and 0.99) and
the standard deviation of the repetitions is <1% of the reported
value across repetitions, suggesting that our results are indeed
robust and the repetitions were not necessary for the conclusions
in the manuscript.

While not exceptionally high, the brain age prediction
accuracy in this study is comparable to similar studies in the
field (see Franke et al., 2020; Table 3). Furthermore, the accuracy
of brain age prediction is dependent on two factors which can
significantly impact prediction performance (1) Age range and
variance: With the current population’s ages ranging between 18
and 88 years (mean age = 53.52, standard deviation = 18.07),
CamCAN dataset is one of the more challenging datasets for
prediction. (2) Distribution of age: Prediction models tend to
favor values close to the mean of the population. Therefore,
data with a Gaussian distribution (which is generally used in

other similar brain age prediction studies) will result in a much
better prediction performance compared to a rather uniform
distribution of age which is the case for the CamCAN dataset.

In terms of variability within the cytoarchitectural regions,
there is a distinction between the change in the insular cortex
compared to the rest of the regions. The main shift occurs
between 400 and 200 parcellation levels (where Insular cortex
parcels are combined from 23 to 15 parcels). As a result,
several regions (in both right and left hemispheres) with distinct
cortical thickness values are combined and averaged together,
resulting in a drop in variance and consequently coefficient
of variation across regions. This might be due to the unique
morphometric properties of insular regions as well as the limited
number of parcels in the insular cortex compared to other
cytoarchitectural regions. This misalignmentmight also be due to
the functional nature of the Schaefer cortical parcellation, which
doesn’t necessarily have a one-to-one to correspondence with the
structural variability in the same areas.

It is commonplace for neuroimaging studies to use smoothing
and parcellation as the first step of their analysis to achieve
higher statistical power with reducing the individual variability
within the data. Furthermore, with increased availability of
public neuroimaging datasets, it is commonplace to release a
preprocessed version of the data with a fixed smoothing level
and averaged based on a given parcellation. Many research
groups in the field use preprocessed and parcellation-based
data releases as the starting point for their analyses. In fact,
in many cases, the raw data is not publicly distributed, and
the preprocessed parcellated data is the only version of data
available. For example, some of the most influential public
datasets in the field of neuroimaging such as Adolescent Brain
Cognitive Development (ABCD, for details see https://nda.nih.
gov/abcd) Study and UKBiobank (for details see https://www.
ukbiobank.ac.uk) provide cortical thickness data using Desikan-
Killiany-Tourville parcellations (Klein and Tourville, 2012) with
62 regions (smoothing varies across studies) as one of their pre-
calculated measures. Our findings can help provide a guide to
interpret these available measures and shed light on the effect
of these preselected parameters/parcellation when applied in
aging studies.

Higher correlation values across brain regions (as a result
of smoothing) can be explained by increased signal to noise
ratio and reduced individual variability (Figure 2). The effect
of smoothing on brain related associations has previously
been studied (Lerch and Evans, 2005). Indeed, Zhao and
colleagues propose smoothing as a scaling dimension which
needs optimization for any given target analysis (Zhao et al.,
2013). The effect of parcellation on brain association has been
addressed in several studies. However, the optimal parcellation
level is still an open question dependent on the specific case of
interest (Eickhoff et al., 2018). Here, we showed that parcellation
level has a similar impact, by reducing variability, using both CV
(Figure 2) and number of resels (Figure 1).

Association/correlation analyses reflect the general patterns
across the population (suitable for studies that investigate
population specific trends), whereas prediction analyses aim to
determine the likely value of a certain measure of interest at
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the individual level (suitable for diagnosis/prognosis purposes).
Association analyses in general benefit from averaging, since it
lowers the levels of noise and improves the obtained correlations,
allowing the analysis to draw out the overall trends of the
population. In contrast, prediction is inherently a much more
challenging task, since it aims to provide accurate estimates
at the individual level. Averaging methods decrease individual
variability and differences, preventing the prediction models
from accurately capturing the individual variabilities.

Resel numbers are statistical constructs based on the
association analysis, while at the same time informing our
interpretation of prediction analysis. As such resels don’t have
any inherent biological interpretation. Even within the same
dataset and using the same metrics, the number of resels will
differ between different statistical analyses (e.g., the number of
resels will change if we use fluid intelligence or working memory
measures instead of age) since it is a construct that evaluates the
number of resolution elements by considering the dependency
across regions/vertices with regards to a certain variable within
an association or statistical contrast analysis over the region of
interest (in our case entire brain surface). A higher number of
resels reflects a higher number of independent features (with
regards to age), which in turn captures the individual variability
across the population and increases prediction accuracy (as
confirmed by our findings presented in Figure 5). However, this
higher level of individual variability represented in the features
will result in lower correlation values across the brain (also shown
in our results in Figure 5).

In neuroimaging, smoothing and parcellations are generally
studied separately. In this study, we used a unified metric to
directly compare the effect of smoothing and parcellation. Using
resel numbers and variance explained in the model, we have
calculated commonmeasures for both association and prediction
results. Our results show that with increased smoothing and
larger parcels (i.e., lower number of resels), cortical thickness
variability reduces. This will remove inter-individual differences
across brain regions and result in higher associations between
cortical thickness and aging (Figure 5A). However, while this
improves the regional correlation with age, most of this general
trend can be captured in a few PCs (mainly the first component)
and the rest of the PCs do not explain the remaining variance
of age. On the other hand, this relationship is reversed in the
conditions with higher resel numbers (i.e., lower smoothing
and higher spatial resolutions). While in these cases higher
regional variability results in lower correlation with age, the age
related associations capture different portions of age variance
in different PCs and overall they have a higher adjusted R2

(Figure 5B). There was a consistent bias in the adjusted R2

across conditions (Figures 5C,D), however, the effects remained
similar after removing the overfitting with cross-validation.
Altogether, these analyses explain the seeming opposite direction
of correlation values and prediction accuracies for different
smoothing/parcellation levels in section Statistical Association
Between Cortical Thickness and Aging and Brain Age Prediction
Based on Cortical Thickness.

One should also consider that while the objective function in
linear regression and its variants is based on RMSE (shown in

Figure 4), considering the interdependence between the features,
there is a close linear relationship between adjusted R2 and
the prediction accuracy based on the RMSE. Furthermore, our
conclusions were independent of the use of RMSE and R2 as
shown in Supplementary Figure 3. With these considerations,
without loss of generality, we have used r2 from correlation
analysis and adjusted R2 from the linear regression model
alongside the resel numbers (as shown in Figure 5) to study the
relationship between the association and prediction analysis.

While delta age in itself is not the target of the current study,
it is important in so far as it is the main measure derived from
age prediction studies. The discrepancy between predicted age
and chronological age (i.e., delta age) is used to study other
phenotypes (either demographic, biological, or clinical) (Cole
and Franke, 2017). Based on this definition, subjects with higher
delta age are assumed to have accelerated aging (i.e., their brain is
similar to brains of older individuals). Several studies have found
relationships between delta age and brain disorders including but
not limited to traumatic brain injury, schizophrenia, epilepsy,
mild cognitive impairment, and Alzheimer’s disease. (See Cole
and Franke, 2017; Franke and Gaser, 2019; Franke et al., 2020
for a complete review of the topic). A recent study using 45,615
subjects simultaneously investigated the relationship between
delta age and 10 different brain disorders and found that
subjects with Schizophrenia, Multiple Sclerosis, Mild cognitive
impairment, and dementia show higher delta age compared to
the controls (Kaufmann et al., 2019). The increase in the studies
of brain age emphasizes that not only a better understanding
of the biological nature of delta age is needed, but also a
systematic study of the effect of analytical and computational
methods used to obtain delta age is necessary. However, the effect
of the preprocessing condition on delta age estimation is not
studied. Here we have examined the effect of parcellation and
smoothing levels as an important factor that can change delta age
estimation and consequently the aforementioned relationships
with other measures. In the current manuscript, we found a
range of associations (0.5–1) between δ2s obtained in different
conditions. These results suggest not only that each study needs
to optimize their choice of the smoothing and parcellation level,
but also when interpreting results from different studies in the
field, these parameters should be considered.

One of the main limitations of the current study is the
number of subjects (N∼600), particularly given that their age
spans across 70 years. This leads to overfitting as the number of
features increase. In fact, for vertex-wise prediction (with 0mm
smoothing), the first 30 PCs only explain 20% of the variability
in the data. This number is around 40% for 10mm smoothing.
In comparison, the first 30 PCs for 100 parcels explain 80 and
90% of the variance of the cortical thickness data for 0mm and
40mm smoothing levels, respectively (Supplementary Figure 5).
Given the higher performance of the vertex-wise PCs at 0–10mm
smoothing, it is likely that with a larger sample size and increased
sample to feature ratio, the accuracy can be further improved.
It should be noted that in each case the variance explained
corresponds to the total variability for the corresponding
smoothing and parcellation condition. Another limitation in
the current study is the use of functionally driven Schaefer
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parcellations. While this does not automatically suggest a
disadvantage, multi-resolution anatomically driven parcellations
have the theoretical advantage of a more relevant initial feature
space for cortical thickness studies. Finally, CamCAN data used
in our study is cross-sectional. This potentially decreases the
detection power of our study, since we can only estimate the
effect of time between subjects with individual variability as part
of the measurement, whereas a longitudinal dataset can decrease
variability by estimating the effect of aging within subjects.

Traditionally, neuroimaging studies have targeted brain
related associations with a given phenotype/symptom or the
statistical differences between different groups for a given brain
region, followed up with the association of these differences
with a given biological or behavioral variable of interest. More
recently, there has been an ongoing conversation in the field
toward prediction as an alternative approach. Along the same
line, the field of brain aging, has pursued age related associations
as well as age prediction. The relationship between the two
approaches is often taken for granted (since in ideal settings, i.e.,
large sample size and low inter-individual variability or noise
levels, the results would be equivalent) and ignored in practice.
In this study, we have directly addressed both age association
and prediction as a function of smoothing and parcellation levels.
Within our sample size, we found an inverse relationship between
regional age related associations and brain age prediction
accuracy as a function of smoothing and parcellation level,
highlighting the importance of the parameter selection based on
the goal of the study.
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Alzheimer’s disease (AD) is a neurodegenerative disorder which spans several years from
preclinical manifestations to dementia. In recent years, interest in the application of
machine learning (ML) algorithms to personalized medicine has grown considerably,
and a major challenge that such models face is the transferability from the research
settings to clinical practice. The objective of this work was to demonstrate the
transferability of the Subtype and Stage Inference (SuStaIn) model from well-
characterized research data set, employed as training set, to independent less-
structured and heterogeneous test sets representative of the clinical setting. The
training set was composed of MRI data of 1043 subjects from the Alzheimer’s disease
Neuroimaging Initiative (ADNI), and the test set was composed of data from 767 subjects
from OASIS, Pharma-Cog, and ViTA clinical datasets. Both sets included subjects
covering the entire spectrum of AD, and for both sets volumes of relevant brain
regions were derived from T1-3D MRI scans processed with Freesurfer v5.3 cross-
sectional stream. In order to assess the predictive value of the model, subpopulations of
subjects with stable mild cognitive impairment (MCI) and MCIs that progressed to AD
dementia (pMCI) were identified in both sets. SuStaIn identified three disease subtypes, of
which the most prevalent corresponded to the typical atrophy pattern of AD. The other
SuStaIn subtypes exhibited similarities with the previously defined hippocampal sparing
and limbic predominant atrophy patterns of AD. Subject subtyping proved to be consistent
in time for all cohorts and the staging provided by the model was correlated with cognitive
performance. Classification of subjects on the basis of a combination of SuStaIn subtype
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and stage, mini mental state examination and amyloid-β1-42 cerebrospinal fluid
concentration was proven to predict conversion from MCI to AD dementia on par with
other novel statistical algorithms, with ROC curves that were not statistically different for the
training and test sets and with area under curve respectively equal to 0.77 and 0.76. This
study proves the transferability of a SuStaIn model for AD from research data to less-
structured clinical cohorts, and indicates transferability to the clinical setting.

Keywords: alzheiemer’s disease, patient subtyping, patient staging, SuStain model, inter-cohort validation

INTRODUCTION

Interest in the application of advanced statistics and machine
learning (ML) in medicine has been constantly rising during the
last years and their predictive capability allowed advancements in
many fields. Particularly, data-driven approaches may contribute
greatly to the advancement of neurosciences (Oxtoby et al., 2017;
Ten Kate et al., 2018; Redolfi et al., 2020), where diseases are
regularly modeled heuristically and patient care is influenced by
clinicians’ expertise (Braak and Braak, 1991; Jack et al., 2010; Jack
et al., 2013).

Alzheimer’s disease (AD) is one of the most impactful
neurodegenerative diseases, affecting more than 50 million
patients worldwide and costing healthcare systems $800 billion
per year (Chan et al., 2019). The common underlying pathology
of this disease is the combination of deposition of amyloid
plaques with tau neurofibrillary tangles (NFT) (Braak and
Braak, 1991), which is the driving cause of neurodegeneration
and brain atrophy that leads to a progressive cognitive
deterioration that affects multiple domains and eventually to a
complete loss of function (Jack et al., 2010). Some basic questions
still remain unresolved, such as: how homogeneous is AD? Is the
course of progression more or less the same for most patients or
are there significant variations?

Heuristic models of the temporal evolution of AD have been
largely hypothesized (Braak and Braak, 1991; Jack et al., 2010;
Jack et al., 2013), but most of these had the limitation of defining a
mean average for the disease evolution that fits the majority of the
AD patients. Instead, the phenomenology of AD is heterogeneous
in terms of spatial distribution of tau NFT (Murray et al., 2011)
and detecting rarer disease patterns may help in patient
stratification, potentially allowing for specific drug targeting
(ten Kate et al., 2018). Another major limitation of most
heuristic and data driven models is the lack of validation in
independent data, which is fundamental in order to translate
models from the research setting to the clinical practice. For all
these reasons well-validated ML tools are needed in order to
promote advancements in clinical practice.

In recent years, the collection of numerous data sets
containing demographic, clinical and biologic data of subjects
from all stages of AD made possible the employment of statistical
models and ML approaches (Oxtoby and Alexander, 2017). This
context helped deploying disease models that allowed the
definition of new strategies for biomarker-informed patient
staging (Sperling et al., 2011). Among these algorithms, the
family of event-based models (EBM) has been proven

successful in defining discrete models for a wide battery of
brain diseases (Young et al., 2015; Eshaghi et al., 2018;
Wijeratne et al., 2018; Venkatraghavan et al., 2019; Firth et al.,
2020; Oxtoby et al., 2021), showing utility in fine-grained staging
of patients (Young et al., 2014). Generally, the assumption of
these EBMs is that the sequence of events describing the disease
progression is common for all subjects, which ignores the
observed variation between individuals that may indicate the
presence of subtypes of AD (Poulakis et al., 2020).

One key limitation of early subtyping approaches in literature
(Whitwell et al., 2012; Nettiksimmons et al., 2014; Noh et al.,
2014; Hwang et al., 2015), is that they do not account for temporal
variation of the disease, implicitly assuming that all subjects were
at the same disease stage.

SuStaIn (Young et al., 2018) (Subtype and Stage Inference)
generalizes the EBM approach to include both subtyping and
staging of subjects simultaneously, by using a full trajectory of
change to define each subtype rather than a static pathology
pattern. SuStaIn drops the basic EBM hypothesis of a single
event sequence that fits all subjects, while also modeling the
transition of biomarkers between different intermediate levels
of severity rather than just changing from normal to abnormal.
SuStaIn enables the discovery of different progression patterns
that represent different manifestations of the same disease
while avoiding the confounds of temporal change (Young
et al., 2018).

However, SuStaIn has been tested so far only on well-defined
research datasets or on synthetic data. Well-defined research
datasets are not entirely representative of the general
population (Ferreira et al., 2017) and transferability of a model
to a less-structured clinical data is not granted a priori. In this
paper we trained SuStaIn model on the well-defined research
dataset of Alzheimer’s disease Neuroimaging Initiative (ADNI)
(Aisen et al., 2010), and we tested the subtyping and staging utility
provided by the resulting disease model on a wider and
heterogeneous data cohort composed of independent and less-
well-phenotyped datasets representative of clinical settings and
routine biomarker collection procedures. Our goal was to assess
the transferability of a SuStaIn progression model from research
data to an independent clinical data cohort coming from three
different multi-centric data sets encompassing the entire AD
spectrum that spans from early pre-clinical stages of
cognitively normal (CN) elderly individuals to full blown
dementia. This is a mandatory step in order to adopt SuStaIn
and, more generally, advanced statistical models and ML tools in
the clinical environment.
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MATERIALS AND METHODS

Participants
Data from a total of 1810 subjects gathered from various cohorts
(Table 1) were used for this study. Subjects were divided into a
training set, used to create the disease model, and a test set, used
for model validation. The training set was composed of baseline
data of 1043 subjects from the ADNI cohort that were either CN,
affected by mild cognitive impairment (MCI) or AD dementia
(Table 2), and were not affected by other major neurological
diseases. Subjects diagnosed with subjective memory complaints
(SMC) were included in the CN group since Mini-Mental State
Examination (MMSE) score of these individuals was 28.1 ± 1.6.
Diagnostic criteria used to identify MCI subjects were a clinical
dementia rating (CDR) � 0.5 and amini mental state examination

(MMSE) (Tombaugh and McIntyre, 1992) score ≥24, while AD
subjects were identified as all subjects with CDR ≥ 1 or subjects
with CDR � 0.5 and MMSE<24.

Additionally, two subpopulations of subjects with longitudinal
information, namely stable MCI subjects (sMCI) and progressive
MCI (pMCI) were identified. Specifically, sMCIs were subjects for
which only MCI diagnosis was reported for all available time-
points and pMCIs were subjects that had at least one diagnosis of
MCI and subsequently one diagnosis of AD and never reverted to
MCI in the time-span of 10 years we considered.

The test set was composed of subjects coming from three
independent data cohorts characterized by heterogenous and
less-structured data collection. Specifically, subjects were
selected from the Open Access Series of Imaging Studies
(OASIS) (Marcus et al., 2007), PharmaCog (Galluzzi et al.,

TABLE 1 | Characteristics of the data sets selected.

Data Set Full name Description Categories

Training
Set

ADNI-1 Alzheimer’s Disease Neuroimaging Initiative – 1 The Alzheimer’s Disease Neuroimaging Initiative Aisen et al.
(2010) is a longitudinal multicentre study designed to develop
clinical, imaging, genetic, and biochemical biomarkers for the
early detection and tracking of Alzheimer’s disease (AD). ADNI
was originally launched in 2003 as a public-private
partnership; its primary goal has been to test whether
magnetic resonance imaging (MRI), biological markers,
clinical and neuropsychological assessments can be
combined to measure the progression of MCI and
Alzheimer’s disease. The initial five-year study (ADNI-1) was
extended by 2 years in 2009 by a Grand Opportunities grant
(ADNI-GO), and in 2011 by further competitive renewal of the
ADNI-1 grant (ADNI-2). Through its three phases, it has
targeted participants with AD, different stages of MCI,
and CN.

CN MCI
AD
SMC

ADNI-GO Alzheimer’s Disease Neuroimaging Initiative – Grand
Opportunities

MCI
SMC

ADNI-2 Alzheimer’s Disease Neuroimaging Initiative – 2 CN
MCI
AD
SMC

Test Set OASIS Open Access Series of Imaging Studies OASIS Marcus et al. (2007) consists of I) a cross-sectional
collection of 416 subjects. 100 of the included subjects, over
the age of 60, have been clinically diagnosed with very mild to
moderate Alzheimer’s disease (AD). II) A longitudinal collection
of 150 subjects aged from 60 to 96 years. Each subject was
scanned on two or more visits, separated by at least 1 year for
a total of 373 imaging sessions. In addition, the data set
contains socio-demographic, clinical, and genotype
information.

CN
MCI
AD

PharmaCog
(E-ADNI)

Prediction of cognitive properties of new drug candidates for
neurodegenerative diseases in early clinical development

PharmaCog is an industry-academic (Innovative Medicines
Initiative – IMI) European project aimed at identifying
biomarkers sensitive to symptomatic and disease modifying
effects of drugs for Alzheimer’s disease Galluzzi et al. (2016).
Several clinical sites participated in this study across Italy
(Brescia, Verona, Milan, Perugia, and Genoa), Spain
(Barcelona), France (Marseille, Lille, and Toulouse), Germany
(Leipzig and Essen), Greece (Thessaloniki) and Netherland
(Amsterdam). 151 MCI patients have been studied
longitudinally for 3 years collecting multimodal image scans,
clinical variables, and bio-specimens.

MCI
AD

ViTA Vienna Transdanube Aging ViTA is a population-based cohort-study of all 75-years old
inhabitants of a geographically defined area of Vienna Fischer
et al. (2002). VITA is composed of 606 subjects followed
longitudinally for 4 years. Recruitment took place between
May 2000 and October 2002. The primary focus of the VITA
work-group was to establish a prospective age cohort for
evaluation of prognostic criteria for the development of AD.

CN
MCI
AD

AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment; SMC; subjective memory complaints.
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2016), and Vienna Transdanube Aging (ViTA) (Fischer et al.,
2002) cohorts, totaling 767 subjects with the same clinical labels
and diagnostic criteria as the training set. Populations of sMCIs
and pMCIs were identified in the test sets with the same criteria as
in the training set, but in this case the maximum time-span
available was 7.5 years.

The training and test set populations were heterogeneous in
terms of demographic, genetic and biological features (Table 2).
The CN subjects in the test set were younger and less educated
compared to the training set. The MCI subjects in the test set
were less educated, and had higher prevalence of APOE-ε4 non-
carriers compared to the training set’s. Moreover, the pMCIs in
the test set were younger than those in the training set. Finally,
the AD dementia subjects in the test set were older and less
educated compared to the corresponding subjects of the training
set. Importantly, no statistical differences were reported in the
frequency of abnormal cerebrospinal fluid (CSF) concentrations
of amyloid-β1-42 (Aβ1-42) protein between the test and the
training sets for each diagnostic group. In all test set
subgroups, with the exception of pMCIs, the gender
prevalence was statistically different compared to the
training set.

Clinical, Cognitive, Biological and Imaging
Data
Clinical, cognitive, biological and imaging information were
collected for each subject from the training and test set. Imaging
information was derived from 1.5T or 3T T1-3D magnetic
resonance imaging (MRI) scans, and was analyzed with
Freesurfer 5.3 cross sectional stream (http://surfer.nmr.mgh.
harvard.edu) with Desikan-Killiany atlas to obtain volumes of
relevant brain regions of each subject, which were used to build
the SuStaIn disease progression model. Freesurfer outputs were
visually checked and validated by expert neuroscientists. The
volumes of specific regions were used, specifically, we selected
volumes of hippocampus, fusiform gyrus, entorhinal cortex,
middle temporal cortex, precuneus, amygdala, insula, thalamus

putamen, caudate, nucleus accumbens, pallidum and ventricles,
which are among the most used regions employed in both
heuristic and data driven currently available atrophy models
for AD (Frisoni et al., 2010; Vemuri and Jack, 2010; Koval et al.,
2018; Young et al., 2018; Archetti et al., 2019). For each region,
volumes were obtained averaging the respective volume of the
left and right hemisphere, volume of ventricles was obtained as
the sum of 3rd and lateral ventricles. Cognitive information was
provided by the MMSE score and was used as a proxy in order to
verify that the disease model correlated with cognitive decline.
Biological data included CSF concentration of Aβ1-42 protein
and it was used to identify a subpopulation of amyloid-negative
healthy subjects defined as those CN subjects from the training
set that had an Aβ1-42 CSF concentration >192 pg/ml (Shaw
et al., 2009). For the training set, Aβ1-42 CSF concentration was
obtained with Multiplex xMAP Luminex platform with
Innogenetic immunoassay kit–based reagents (Kang et al.,
2012). For demographic purposes Aβ1-42 CSF concentration
was collected for the test set subjects as well, but the CSF
biomarker was only available for PharmaCog subjects. In this
case, Aβ1-42 CSF concentration was obtained with Enzyme
Linked Immunosorbent Assay (ELISA) (Butler, 2000) which
led to different CSF biomarkers distributions with respect to the
training set. In order to tackle this issue, Aβ1-42 CSF
concentrations from PharmaCog were rescaled to match the
mean and standard deviation of Aβ1-42 distribution of training
set subjects. The same cut-off value as the training set was used
to define abnormality. As a compensation for inter-cohort
demographic variability all volumetric measures for both
training and test sets were corrected against the effect of age,
sex, education (Gale et al., 2007), APOE genotype (Liu et al.,
2013) and total intracranial volume (TIV) (Gur et al., 1991;
Király et al., 2016) by means of multiple linear regression, and
were converted into z-scores with respect to the mean and
standard deviation defined by the volumes distribution of the
healthy amyloid-negative subjects from the training set.
Correction of biomarkers was performed separately for
training set and test set.

TABLE 2 | Demographic, clinical, genetic and biological characteristics of the training and test sets.

N Age (years) Sex (M/F) Education
(years)

MMSE
(raw
score)

Aβ1-42
(positive/negative)

APOE-ε4
(carriers/

non carriers)

Training set CN 335 73.5 ± 5.9 46%/54% 16.3 ± 2.6 29.1 ± 1.2 40%/60% 27%/73%
MCI 537 72.0 ± 7.2 59%/41% 16.0 ± 2.8 27.7 ± 1.8 66%/34% 51%/49%
AD 171 73.4 ± 8.2 54%/46% 15.5 ± 2.7 23.4 ± 2.0 95%/5% 73%/27%
Total 1043 72.7 ± 7.0 54%/46% 16.04 ± 2.7 27.4 ± 2.5 62%/38% 46%/54%
sMCI 271 72.3 ± 7.1 58%/42% 16.1 ± 2.8 28.0 ± 1.7 56%/44% 42%/58%
pMCI 205 73.1 ± 6.8 59%/41% 15.8 ± 2.8 27.2 ± 1.8 87%/13% 64%/36%

Test Set CN 440 54 ± 25* 37%/63%* 8.4 ± 5.7* 29.0 ± 1.2 NA 2%/7%
MCI 283 72.3 ± 7.6 46%/54* 9.2 ± 5.1* 26.3 ± 2.6* 34%/17% 19%/32%*
AD 44 77.3 ± 7.4* 34%/66%* 5.8 ± 5.3* 21.7 ± 3.8* NA 0%/5%
Total 767 62 ± 21* 40%/60%* 8.6 ± 5.4* 27.2 ± 3.0 12%/6% 8%/16%*
sMCI 152 71.2 ± 7.5 47%/53% 11.5 ± 4.2* 26.7 ± 2.2* 46%/25% 25%/43%
pMCI 39 69.8 ± 6.4* 49%/51% 11.7 ± 3.9* 25.7 ± 2.4* 44%/5% 33%/26%

Values fromCN,MCI and AD contribute to the totals, MCI subpopulations of pMCIs and sMCIs are reported aswell. Valuesmarkedwith * on the test set are significantly different (p-value of
ANOVA for continuous variables and chi-square for discrete variables <0.05) from the corresponding values from training set. Abbreviations: M, male; F, female; N, number.
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Modelling
The disease progression model was built using the SuStaIn
algorithm (Young et al., 2018), which generalizes the EBM
approach (Fonteijn et al., 2012; Young et al., 2015) to allow
for subtyping. Traditional EBMs rely on the assumption that it is
possible to define a common sequence of events where, in the case
of disease models, each event is defined as the value of a
biomarker stepping from normality to abnormality. The
normality and abnormality of the values are usually defined
on the basis of biomarker distributions of healthy and diseased
subjects. However, SuStaIn differs from classical EBM models in
two main features:

1) The hypothesis of the common event sequence is relaxed
in favor of multiple event sequences corresponding to a
data-driven number of different disease subtypes that
represent different disease trajectories of biomarker
change observed in the training set. The optimal
number of subtypes is determined using a popular
model selection criterion called “Cross Validation
Information Criterion” (CVIC) (Gelman et al., 2014).

2) Biomarkers are not treated as binary entities that are either
normal or abnormal but all biomarker trajectories are
modeled as a succession of z-scores progressing linearly
toward abnormality.

Considering such modifications, the disease progression
model is then represented by a set of sequences of integer
z-scores for each biomarker, which represents the different
disease subtypes. For this work z-scores were calculated with
respect to the mean and standard deviation defined by the
biomarker distribution of the healthy amyloid-negative ADNI
subjects.

The maximum number of subtypes was set to 5 and the
maximum value of z-scores for each biomarker was set to 3
(Young et al., 2018), meaning that maximum abnormality of each
biomarker was reached when the z-score was >� 3.

When the disease progression model is defined, it is possible to
outline the subtype that most likely fits any subject as the subtype
for which the likelihood of a subject’s z-scores projected on the
z-score progression is maximized (Young et al., 2018). The
subject is then staged on the most likely stage of the z-score
progression defined by his or her subtype. The SuStaIn algorithm
is publicly available in the form of a python package at the
following link: http://europond.eu/software/.

Model Validation and Statistical Analysis
In order to investigate possible similarities with other subtyping
methods, correlation between subtypes defined with SuStaIn and
subtypes defined on the basis of visual rating scales of regional
brain atrophy (Ferreira et al., 2019) was explored. Specifically, the
visual scales considered were Scheltens’medial temporal atrophy
(MTA) scale (Scheltens et al., 1992), Koedam’s scale for Posterior
Atrophy (PA) (Koedam et al., 2011) and Pasquier’s frontal
subscale of global cortical atrophy (GCA-F) (Pasquier et al.,
1996; Scheltens et al., 1997).

According to visual ratings, typical AD was defined as
abnormal MTA together with abnormal PA and/or abnormal
GCA-F. Hippocampal-sparing was characterized by abnormal
PA and/or abnormal GCA-F but normal MTA, while minimal
atrophy ADwas defined as normal scores inMTA, PA, and GCA-
F. Limbic-predominant was defined as abnormalMTA alone with
normal PA and GCA-F (Ferreira et al., 2017). All the visual
ratings were computed automatically by means of the Automatic
Visual Ratings of Atrophy (AVRA) tool (Mårtensson et al., 2019).

Further heuristic validation of SuStaIn was tested by exploring
correlation of the subjects staging to the cognitive decline
measured by means of MMSE.

The transferability of the model to new individuals was tested
by subtyping and staging subjects from both the training and test
sets on the basis of baseline volumes. Similarities between clinical,
demographic, genetic and CSF features of subjects from the
training and test sets assigned to different subtypes were
explored by means of ANOVA and chi-square tests.

A subset of subjects (502 for the training set and 139 for the
test set) were subtyped using 12-months visit biomarkers
measurement in order to check the temporal consistency of
the subtyping. Predictive capabilities of the model were tested
by measuring the area under curve (AUC) of receiver-operator
characteristic (ROC) curves obtained from classification of
pMCIs and sMCIs from the training and test sets using
various combinations of subtype, stage, MMSE and CSF Aβ1-
42 concentration as predictors in a multivariate logistic model.
Statistical differences between ROC curves were tested by means
of De Long test (DeLong et al., 1988). All ROC analyses were
computed using R (version 3.5.1).

Chi-square and ANOVA tests (α � 0.05) were performed in
python (version 3.6.9) to test differences between the diagnostic
groups and subtypes.

RESULTS

The disease model identified by SuStaIn consisted of three disease
subtypes (Figure 1). The first disease subtype (“Subtype 1” in the
next sections), is characterized by abnormality (Z-score � 1) that
can be observed in the ventricles first, then atrophy occurs in the
hippocampus and entorhinal cortex, that are also the first regions
to show full abnormality (Z-score � 3) alongside amygdala.
Interestingly, ventricles are also the last regions to show full
abnormality meaning a relatively slow but persistent volumetric
expansion process that tracks the disease progression.

The second disease subtype (“Subtype 2” in the next sections)
shows an atrophy pattern where abnormality starts in thalamus
and pallidum (Z-score � 1). Subsequently, atrophy can be
observed in caudate, putamen, insula, precuneus and then
fusiform gyrus and middle-temporal cortex and hippocampus
which is the first biomarker to become fully abnormal (Z-score �
3). In this subtype, ventricles start expanding later than in
Subtype 1. The third subtype (“Subtype 3” in the next
sections) shows an atrophy pattern where ventricles become
fully abnormal before atrophy starts in almost all the other
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regions, for which a less-defined atrophic progression is
manifested in comparison to Subtypes 1 and 2.

SuStaIn subtypes were cross linked to AVRA ratings to evaluate
whether similarities between subtypes defined by the two methods
exist (Figure 2). Subtype 1 was mainly characterized by the
“Typical AD” atrophy pattern (Ferreira et al., 2019); Subtype 2
showed an equal predominance of the hippocampal-sparing
variant; Subtype 3 showed a limbic-predominant subtype. The
minimal atrophy subtype (Ferreira et al., 2020) wasmost consistent
with Subtypes 1 and 2. After correcting against effects of sex, age
and TIV, relevant differences (p-value for ANOVA <0.05) in
volume of hippocampus were observed between subjects from
Subtypes 1 and 2 labeled with minimal atrophy according to the
AVRA scores (Figure 3), with subjects from Subtype 2 exhibiting
larger volumes. Subjects with minimal atrophy from Subtype 3 are
not reported as they are not enough for statistical significance.

Differences in AVRA visual scores between subtypes were
inferred via a linear regression model of visual scores vs. model
stage (Supplementary Figure S1). No relevant subtype differences
were observed for GCA. MTA was shown to progress significantly
faster for Subtype 2 than Subtypes 1 and 3. Subtype 3 also showed a
significantly faster progression of the PA scale. Subjects from each
diagnostic category of both training and test sets that were assigned
to a specific subtype are shown in Table 3. Subjects that were in
stage 0 or in the final stage were excluded from the subtyping as

these stages are equivalent for each subtype. In each diagnostic
group, the majority of subjects were on average assigned to the
typical subtype (65% for training set and 82% for the testing set). A
minority of the subjects were assigned to the hippocampal sparing
subtype, specifically 30% of the training set and 16% for the test set,
while only a limited number of subjects for each dataset were
assigned to the limbic subtype (5% for the training set and 2% for
the test set). For both sets, subjects from each diagnostic category
were staged on average at stages that mirror the worsening of their
clinical condition (Table 3), with the exception of pMCIs and
sMCIs from Subtype 3.

Significant differences between subtypes were observed for
demographic, clinical, biological and genetic variables (Table 4).
For each subtype, subjects from all diagnostic categories were
considered. In both training and test sets, subjects from Subtype 2
were on average more educated and a larger portion of them were
male with respect to subjects from Subtype 1. Similarly, subjects
from Subtype 3 had a lower MMSE with respect to Subtype 2. In
the training set, where CSF data was widely available, the portion
of subjects that had an abnormal Aβ1-42 CSF concentration was
significantly lower with respect to the other subtypes. This effect
was not observed in the test set for the small number of subjects
for which Aβ1-42 is available.

Subtyping consistency of the SuStaIn progression model was
tested by comparing subtyping of subjects for which 12-months

FIGURE 1 | SuStaIn model built on the basis of volumetric biomarkers of the training set.(A) Z-score progression patterns for each subtype. Color shades indicate
the probability of a Z-score to increment, “N” indicates the number of subjects from the training set assigned to each subtype (B)Representations of early stages for each
subtype.
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follow-up was available (502 for the training test and 140 for the
test set). Few subjects were subtyped to a different group at 12-
months follow up (Figure 4), with only 11% of training set
subjects and 9% of test set subjects assigned to different subtypes.
Changes occurred mainly between subtypes 1 and 2 in both
training and test sets. For subjects with stable subtype assignment,
stage progression was relatively slow in time showing an average
progression of 0.8 ± 1.5 stages over the 12-month period.

The disease progression signature defined by Subtype 1
showed good correlation with cognitive performance measured
by MMSE (Figure 5), with R2 � 0.74 for the training set and R2 �
0.82 for the test set. Similarly, good correlations were registered in

Subtype 2 (R2 � 0.85 training set; R2 � 0.87 test set) and Subtype 3
(R2 � 0.85 training set; R2 � 0.76 test set).

Classification of pMCIs and sMCIs, based on subtype and
stage retuned ROCs with AUC � 0.67 for the training set and 0.72
for the test set. The combination of subtype and stage with other
predictors tracking different aspects of the disease, namely the
MMSE and CSF concentration of Aβ1-42 protein, returned a
better classification performance than the subtype and stage
model alone, with AUC � 0.77 for the training set and AUC �
0.76 for the test set, outperforming also a model that accounts
only for MMSE and Aβ1-42 (AUC � 0.72 for the training set and
AUC � 0.74 for the test set) and a model that accounts for AVRA

FIGURE 2 | AVRA vs. SuStaIn subtypes of AD. Pie graphs represent the percentage of AVRA subtypes subjects for each SuStaIn subtype. Regional atrophy in
AVRA was measured with the MTA, PA and GCA-F scales based on T1-3D weighted images; below, visual examples of the SuStaIn atrophy subtypes are shown.

FIGURE 3 | Hippocampal volume of subjects from Subtypes 1 and 2 labeled with minimal atrophy according to AVRA scores. Hippocampal volumes were
averaged between right and left hemisphere for simpler representation.
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subtype, MMSE and Aβ1-42 (AUC � 0.72 for the training set,
unavailable for the test set). Notably, for each predictor
combination no statistically significant differences were
observed between ROC curves (Supplementary Figure S2) of
the training and test sets (p-value of DeLong test >0.05).

DISCUSSION

In this study, we tested the transferability of a SuStaIn AD
progression model among clinical data cohorts. The disease
progression model trained on volumetric imaging markers

from an observational research study estimated three AD-
related atrophy patterns. Previously, SuStaIn was only tested
on research datasets, such as ADNI and GENetic
Frontotemporal dementia Initiative (GENFI) or synthetic data
(Young et al., 2018), while in the present study we demonstrated
model transferability to clinical cohorts through stable and
consistent subtyping.

Subtype 1 mirrored the typical course of AD as supposed in
heuristic models and as found in previous EBM and data-driven
models (Young et al., 2015; Archetti et al., 2019; Venkatraghavan
et al., 2019), according to which hippocampus is one of the
earliest regions to show considerable atrophy. This subtype also

TABLE 3 | Number and percentage of subjects from each diagnostic category assigned to each subtype.

Subtype 1 Subtype 2 Subtype 3

N Average Stage N Average Stage N Average Stage

Training Set CN 96 (54%) 3 ± 3 74 (41%) 3 ± 3 9 (5%) 4 ± 1
MCI 243 (62%) 5 ± 4 128 (33%) 5 ± 5 22 (5%) 7 ± 4
AD 126 (79%) 8 ± 5 26 (16%) 9 ± 6 7 (5%) 11 ± 5
sMCI 111 (59%) 4 ± 4 67 (36%) 4 ± 4 10 (5%) 8 ± 5
pMCI 116 (69%) 6 ± 5 44 (26%) 7 ± 6 8 (5%) 7 ± 4

Test Set CN 303 (86%) 5 ± 4 37 (11%) 5 ± 4 9 (3%) 5 ± 2
MCI 185 (78%) 7 ± 6 49 (21%) 6 ± 4 3 (1%) 9 ± 2
AD 41 (95%) 9 ± 7 1 (2.5%) 12 1 (2.5%) 9
sMCI 83 (68%) 7 ± 6 35 (29%) 5 ± 4 4 (3%) 8 ± 3
pMCI 32 (84%) 9 ± 6 6 (16%) 11 ± 4 0 (0%) NA

TABLE 4 | Descriptive statistics of the demographic, clinical, biological and genetic variables of subjects for each subtype

Age (years) Sex (M/F) Education (years) MMSE (raw score) Aβ1-42 (positive/negative) APOE-ε4 (carriers/ non
carriers)

Training Set Subtype 1 72.5 ± 7.2a 48%/52%a 15.9 ± 2.7a 26.6 ± 2.6a 72%/28%a 48%/52%
Subtype 2 73.8 ± 6.7a 84%/16%a,b 16.4 ± 2.7a 27.9 ± 2.0a,b 53%/46%a,b 44%/56%
Subtype 3 74.8 ± 6.2 61%/39%b 15.9 ± 3.0 26.5 ± 2.6b 79%/21b 42%/58%

Test Set Subtype 1 60 ± 24c 41%/59%a 8.5 ± 5.4a 26.7 ± 3.3 3%/10% 8%/14%
Subtype 2 63 ± 17b 64%/36%a 10.4 ± 5.6a 27.4 ± 2.2b 31%/15% 24%/25%
Subtype 3 74.4 ± 5.7c,b 46%/54% 7.9 ± 6.1 25.7 ± 4.7b 15%/0% 0%/15%

Values marked with aindicate significant differences (p-value < 0.05) between Subtype 1 and Subtype 2 values in the same set; values marked with cindicate significant differences (p-value
< 0.05) between Subtype 1 and Subtype 3 values in the same set; values marked with bindicate significant differences (p-value < 0.05) between Subtype 2 and Subtype 3 values in the
same set.

FIGURE 4 | Longitudinal subtype consistency for training set subjects (left) and test set subjects (right) over a 12-months follow-up period.
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shares similarities with the typical subtype as defined in the
original SuStaIn work (Young et al., 2018) for which
hippocampus and amygdala are among the first regions to
show atrophy. The correspondence of Subtype 1 with the
canonical and most prevalent manifestation of AD (Braak and
Braak, 1991), is reinforced by our subject subtyping results, with
the majority of subjects assigned to this subtype in both training
and test set. In particular, the proportions of AD subjects of the
training and testing set assigned to Subtype 1, 79% and 95%
respectively, are greater than those from other diagnostic
categories. Subtype 1 is also majorly prevalent as assignment
of pMCIs, with a proportion of 69% compared to the other
diagnostic categories.

Subtype 2 shows similarities with the hippocampal-sparing
variant of AD characterized by a relative sparing of the medial
temporal lobe as observed in previous works (Murray et al., 2011;
Whitwell et al., 2012; Ferreira et al., 2019; Krajcovicova et al.,
2019). In this subtype hippocampus starts becoming abnormal

after most of the others deep gray matter structures, with loss
predominantly focused in the insula, caudate nucleus and parietal
cortex. The similarity also extends to the demographic
characteristics of this group, that is characterized by a higher
prevalence of male subjects as reported in previous works
(Ferreira et al., 2020). In this subtype, pallidum, putamen and
caudate are among the first regions to show atrophy as observed
in the subcortical subtype defined in the original SuStaIn work
(Young et al., 2018).

Subtype 3 is characterized by a broader atrophy signature with
less distinct ordering than the other subtypes, with the exception
of ventricles expansion that was clearly the first marker to become
abnormal. In this atypical subtype, atrophy seems to progress
simultaneously in most brain regions. Subtype 3 was observed in
a minority of subjects when considering our whole cohort. These
subjects exhibit similarities with the limbic predominant subtype
of AD (Ferreira et al., 2017). Also, Subtype 3 might have some
characteristics in common with other subtypes as some subjects

FIGURE 5 | Plot of Cognitive performancemeasured byMini Mental State Examination (MMSE) vs. the estimated disease stage subjects from the training (left) and
test (right) sets for each subgroup. Coefficients of determination (R2) of the linear regression of MMSE score vs. disease stage are reported. The x-axes are only reported
up to stage 25 of 39 as no subjects were staged beyond.
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had been labeled as belonging to the typical AD subtype (Ferreira
et al., 2017; Persson et al., 2017). Alternatively, it is possible that
this group does not reflect a distinct AD subtype but just includes
a subgroup of subjects whose ventricles outlie the normal
distribution of ventricles in healthy subjects.

The atrophy subtypes of AD have been assessed via visual
rating scales in several previous studies (Ferreira et al., 2020).
AVRA is a method to automatically quantify these visual rating
scales, which was used just on ADNI data, therefore it represented
the ideal tool to find a correlate between a clinically used
subtyping method and the SuStaIn data driven definition
performed on our training dataset. We have produced the first
comparison of data-driven subtyping results using a disease
progression model (SuStaIn) with existing progression-
ignorant methods of visual ratings and AVRA. Partial
agreement was observed between SuStain and AVRA subtypes
on an individual level, and differences may be imputed to the
selection of brain regions used to train SuStaIn, that do not cover
entirely the same brain region used to assess visual ratings and to
a general lack of harmonization of subtyping methods (Mohanty
et al., 2020). SuStaIn proved to offer a finer-grained
representation of different atrophy patterns as relevant
differences in hippocampal volume were observed between
subjects from subtypes 1 and 2 that were labeled with minimal
atrophy according to the AVRA scores.

The temporal consistency of SuStaIn subtyping was tested on
subjects from the training and test sets for which a 12-months
follow-up visit was available. The test resulted in excellent
consistency with only 10% of subjects receiving a different
subtype assignment across different visits. Since disease stage
was relatively stable across the 12-months interval for individuals
with stable subtype, the excellent subtype consistency was
expected.

Once subjects from all subtypes were staged on the respective
disease progression sequence, the SuStain stage showed good
linear correlation (Perneczky et al., 2006) with general cognitive
decline on the MMSE (Tombaugh and McIntyre, 1992) test,
particularly for Subtypes 1 and 2, and the ceiling effect that was
observed in previous studies (Hoops et al., 2009; Archetti et al.,
2019) was not detected, likely due to the absence of early markers
of AD in the model, such as CSF markers.

SuStaIn subtype and stage predicted conversion of MCI
subjects to AD with an AUC comparable to other novel
statistical algorithms (Ramírez et al., 2018; Salvatore et al.,
2018). The combination of multiple predictors proved to be
key in improving classification performance as classification
based on subtype and stage alone or on MMSE and Aβ1-42
alone yielded a lower classification performance. Importantly,
classification task performed similarly in the training and test set
for each combination of predictors, thus giving a first indication
of the transferability of SuStaIn disease models and its use in deep
patient phenotypization for future clinical trials as well.

The interpretation of the atrophy subtypes still remains an
open issue as solid subtyping ground truth in AD is lacking, since
heuristic models such as Jack’s (Jack et al., 2010) or Braak’s (Braak
and Braak, 1991) are more aimed at defining a common disease
trajectory rather than detecting different atrophy patterns. Also,

the model presented here differs slightly from the AD model
presented in the original SuStaIn work (Young et al., 2018), and
this difference is provoked by choice of different brain regions as
input data for the two models and partially due to the different
purpose of this study.

Previous works based on cross sectional models were able to
reach better classification performances across a wide range of
neurological diseases (Willette et al., 2014; Archetti et al., 2019),
but in all cases the models were built ab initio using multi-modal
markers accounting for biological features and cognitive scores,
while we used CSF and cognitive data only for post-hoc analyses.
In the present study, we chose to exclude CSF measurements and
cognitive scores because these markers were available only for a
small portion of subjects used as test set.

The most important limitation of the present work is the
relatively small number of subjects used to train and test the
model. The small number of subjects particularly affects the
characterization of rarer subtypes, that cannot be modeled as
accurately as common subtypes. Also, the small number of
subjects considered to assess the predictive value of the model
prevented us from assessing with a usual power level measures of
sensitivity and specificity for the classification of pMCIs and sMCIs.

An important limitation of the model is the relatively low
AUC reached in the classification of pMCIs vs. sMCIs, indeed the
AUC could be improved with the inclusion of CSF and cognitive
scores for the model building phase rather than using them for
post hoc analyses (Archetti et al., 2019), but those biomarkers
were excluded from the model building as they should not be
important factors in atrophy subtype identification. Moreover,
CSF and cognitive scores are more easily affected by inter-cohort
and inter-centre harmonization issues (Costa et al., 2017; Delaby
et al., 2020) thus requiring a more thorough model validation.
Therefore, MRI-only models are more suitable for near-future
implementation of SuStaIn-based models in tools for subtype
detection in single case-scenarios.

Another key factor affecting the AUCs is the unavailability of
the characterization in amnestic and non-amnestic MCI for the
major portion of the subjects. The condition of amnestic MCI is a
more typical prodromal stage for AD that could provide better
classification performances (Cousins et al., 2020). Also, the use of
amnestic MCIs for the training process could indeed generate a
more accurate disease model that better depicts the transition
phase from MCI to dementia.

Future work will concentrate efforts in modeling subtypes using
larger and more diverse cohorts, that will allow for a more precise
definition of subtypes and for a finer-grade characterization of
subjects belonging to each subgroup. Another key factor for an
optimal definition of the subtypes is the selection of brain regions,
and future work will investigate the optimal choice to obtain a
disease model that is descriptive and informant without being
redundant and trying to maximize the individual match between
AVRA subtypes and SuStaIn subtypes. SuStaIn is a suitable
approach to build disease models that include non-imaging
markers, and future work will investigate the possibility of
defining AD progression subtypes based on CSF markers and
cognitive scores coupled with imaging markers, possibly linking
subtypes with demographic genetic and lifestyle factors.
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There are ongoing efforts to extend this work toward full
clinical translation. This includes implementing SuStaIn
progression models in user-friendly interfaces, external
independent validation studies, and usability assessments from
clinicians, all of which form key components of the EuroPOND
(http://europond.eu/) and E-DADS initiatives (https://e-dads.
github.io/).

CONCLUSIONS

We have demonstrated that a data-driven subtyping model
(Young et al., 2018) of Alzheimer’s disease progression trained
on research-quality MRI (ADNI) is transferable to lower-
quality clinical data (PharmaCog, OASIS, ViTA). This is an
encouraging result motivated by the expectation that, in the
near future, healthcare will increasingly adopt data-driven
and ML models in daily clinical practice. Indeed, the
validation and generalization of such models on
independent datasets is a proof of concept required for
their translation from research settings to clinical
environments. Open questions remain about the biological
mechanisms underpinning Alzheimer’s disease subtypes,
which will be an important focus of future studies,
including ongoing drug-development efforts.
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Alzheimer’s disease (AD) has its onset many decades before dementia develops, and

work is ongoing to characterise individuals at risk of decline on the basis of early detection

through biomarker and cognitive testing as well as the presence/absence of identified

risk factors. Risk prediction models for AD based on various computational approaches,

including machine learning, are being developed with promising results. However, these

approaches have been criticised as they are unable to generalise due to over-reliance

on one data source, poor internal and external validations, and lack of understanding

of prediction models, thereby limiting the clinical utility of these prediction models. We

propose a framework that employs a transfer-learning paradigm with ensemble learning

algorithms to develop explainable personalised risk prediction models for dementia. Our

prediction models, known as source models, are initially trained and tested using a

publicly available dataset (n = 84,856, mean age = 69 years) with 14 years of follow-up

samples to predict the individual risk of developing dementia. The decision boundaries

of the best source model are further updated by using an alternative dataset from a

different and much younger population (n = 473, mean age = 52 years) to obtain an

additional prediction model known as the target model. We further apply the SHapely

Additive exPlanation (SHAP) algorithm to visualise the risk factors responsible for the

prediction at both population and individual levels. The best source model achieves a

geometric accuracy of 87%, specificity of 99%, and sensitivity of 76%. In comparison

to a baseline model, our target model achieves better performance across several

performance metrics, within an increase in geometric accuracy of 16.9%, specificity of

2.7%, and sensitivity of 19.1%, an area under the receiver operating curve (AUROC)

of 11% and a transfer learning efficacy rate of 20.6%. The strength of our approach

is the large sample size used in training the source model, transferring and applying the

“knowledge” to another dataset from a different and undiagnosed population for the early

detection and prediction of dementia risk, and the ability to visualise the interaction of the

risk factors that drive the prediction. This approach has direct clinical utility.

Keywords: early detection, risk factors, Alzheimer’s, personalised dementia risk, explainable AI model, ensemble-

based learning
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INTRODUCTION

Dementia is the consequence of a number of progressive
neurodegenerative diseases with Alzheimer’s disease (AD)
accounting for∼60–80% of all types of dementias (Gaugler et al.,
2019). AD is considered to be one of the top 10 causes of death,
globally. Due to the progressive nature of the disease, people with
dementia have different degrees of deterioration in cognition,
memory, mental, and other functions (Lyketsos et al., 2002).
Moreover, the socioeconomic burden of the disease is estimated
to be in the region of one trillion USD per year (World Health
Organization, 2017). Dementia has no cure; however, with early
detection and diagnosis, it may be possible to delay the onset,
which will help reduce the economic burden it currently poses
on the society (Prince et al., 2018).

A recent Lancet report has identified modifiable risk factors,
which when well-managed could reduce the risk of dementia
or delay its onset (Livingston et al., 2020). However, the
complexity of the interaction among these risk factors requires
computational approaches capable of detecting patterns from
these complex interactions to be able to achieve accurate
prediction. Meanwhile, machine-learning based approaches
have successfully been employed to help identify complex
relationships between risk factors and their effect on disease
outcomes in various application areas within the care pathway of
patients. Examples of such application areas include prediction
of pneumonia risk and 30-days readmission in hospital (Caruana
et al., 2015), a real-time prediction of patients at the risk of septic
shock (Henry et al., 2015), and application of machine learning
model in breast screening (Houssami et al., 2017).

Following the above success storeys in the non-dementia
domain, numerous attempts are being made to develop machine-
learning models for dementia risk prediction. For example,
Skolariki et al. (2021) applied machine learning algorithms to
predict the likelihood of people with mild cognitive impairment
converting to dementia based on features extracted from
brain scans. Cui et al. (2019) also applied a recurrent neural
network to develop a dementia risk prediction model based
on longitudinal features extracted from brain scans. Other
studies have also explored features obtained from sources,
such as neuropsychological assessments (Barnes et al., 2009;
Johnson et al., 2009; Lee et al., 2018; Adam et al., 2020). While
these attempts have shown promising results, the prediction
algorithms are mostly trained with samples containing diagnosis
information and therefore unable to predict beyond the critical
window of diagnosis (Prince et al., 2018), making these models
ungeneralizable to relatively younger populations (Goerdten
et al., 2019). Furthermore, despite these promising results
achieved by machine learning-based approaches for dementia,
their utility in healthcare settings remains limited partly due
to the difficultly in interpreting the outputs of these models
(Pellegrini et al., 2018). Interpretable models offer users the
confidence and the ability to understand why a certain prediction
was made for an individual and the specific underlining factors
that led to the prediction. Confidence in how the prediction is
made would allow the clinician to communicate this optimally to
the patient and intervene. However, lack of confidence on the part

of clinicians has resulted in the limited use of powerful machine
learning approaches, such as deep learning and ensemble-based
learning in developing prediction models for decision support
systems in the dementia care pathway. Meanwhile, the complex
nature of dementia, which results in complex data structures,
makes it imperative to continue to explore these powerful
machine learningmethods, where traditional approaches, despite
their limitations in handling complex data structures (Breiman,
2001), have widely been employed (Goerdten et al., 2019).

We develop and evaluate two ensemble-based interpretable
models capable of learning patterns from the complex
interactions among risk factors to be able to predict dementia
risk at both population and individual levels up to an average
of 14 years in advance. Unlike the approaches described above,
our final model predicts individual dementia risk based on the
parent history of dementia and genetic information about the
individual. The prediction models are built using Random Forest
(RF) and XGboost algorithms. Briefly, RF like other ensembles
of classification and regression trees employs a “divide-and-
conquer” strategy in the process of learning by repeatedly
partitioning the input data into a number of large classification
trees and fitting a prediction model for each tree (Breiman et al.,
1984). It then employs the non-parametric bootstrap method
(Efron and Tibshirani, 1994) to build a prediction model for
each tree. Similarly, the XGBoost also belongs to the family of
classification and regression trees and adopts the RF approach
to learning. However, XGBoost employs a step-wise, additive
approach to sequentially build a prediction model for each tree,
while taking into account the difficulties encountered in fitting
previous models (Natekin and Knoll, 2013). It is worth noting
that RF and XGboost both combine the predictions from weak
learners to produce a final model—a process known as “voting.”
These algorithms have been demonstrated to be powerful
when applied to various problems, such as risk prediction of
hypoxaemia during general anaesthesia and surgery (Lundberg
et al., 2018).

We argue that our proposed approach provides useful and
actionable information to assist clinicians and other users in
their decision-making process around diagnosis, prognosis, and
management. We also believe that this is an important step
for machine learning in neurodegenerative disease research and
translation to clinical care. Our approach not only significantly
improves the ability for the early detection of neurodegenerative
disease but also the ability to explain the predictions from
accurate and complex models in order to understand drivers
of the prediction for important intervention strategies to
be developed.

METHODS

Overview of the Research Framework
It is believed that dementia clinically manifests after decades of
exposure to risk factors (Ritchie and Ritchie, 2012). Therefore,
the aim of this project was to develop a machine learning model
capable of predicting the risk of developing dementia decades
prior to the onset of the dementia syndrome. To achieve this,
the task was formulated as a transfer learning classification
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FIGURE 1 | Transfer learning process showing how data extraction and pre-processing procedures are applied to SHARE and PREVENT datasets. A prediction

model (Source model) is built using the SHARE dataset with 80% of the data used for training and 20% held-out for testing for SHARE predictions. The Source model

is updated with 90% PREVENT training and the updated prediction model (Target model) is applied to PREVENT 10% test set held-out for population as well as

personalised risk prediction of dementia.

problem (Pan and Yang, 2009). This made it possible to develop
the machine learning prediction model using the data drawn
from different populations and applied the model to another
population. Figure 1 illustrates the methodology employed. As
the figure shows, unlike traditional machine learning where
a model is developed and applied to predict data from the
same population, our model was developed using external
data source and transferred the knowledge learned from the
external population and applied it to data from population of
different characteristics. The characteristics of the data sources
are discussed in the next section.

Data Description and Preprocessing
The data sources used in developing the models were obtained
from the Survey of Health, Ageing, and Retirement in Europe
(SHARE) study (Börsch-Supan et al., 2013) and the PREVENT
Dementia programme (Ritchie and Ritchie, 2012). While both
SHARE and PREVENT projects are related to dementia research,
the rationale and aims of each of the studies vary resulting in
differences in the datasets.Table 1 shows a brief description of the
datasets. While SHARE population covers 20 European countries
with the mean age of 69 years, the PREVENT data, on the other
hand, is a relatively younger cohort with the mean age of 52
years drawn from a population limited to the United Kingdom.
Further, the SHARE cohort includes individuals with some
having been diagnosed with dementia, while the PREVENT
cohort contains healthy individuals without a diagnosis of
dementia. However, the PREVENT study participants are

children of individuals with or without a diagnosed dementia.
The study also collects information about the apolipoprotein E
(ApoE) genotype of each individual.

Even though both SHARE and PREVENT research
programmes have different research aims and objectives, there
was a high degree of overlap between the two datasets in terms
of data collection. In order to make transfer learning possible,
it was important to focus on common data items between the
two datasets. Table 2 shows the categories of common variables
found in both datasets. We extracted data records from the
SHARE dataset and merged the data of individuals across waves
1–6 which covers the period between 2004 and 2015. Therefore,
from the SHARE cohort, it was possible to build a prediction
model using a longitudinal dataset of 14 years of follow-up data.
The PREVENT dataset on the other hand is the baseline data
collected between February 2014 and October 2018.

The difference in data collection protocols used by the studies
resulted in structural differences in data. To address these
differences, we devised a pre-processing procedure to harmonise
the representation of the data items, which were employed as
features to train the learning algorithms. All medical history
variables were processed to have binary feature representation
based on the responses as either condition being present or
not present, with a feature value of “1” and “0,” respectively.
The Body Mass Index (BMI) as per WHO classification was
applied to obtain the following four categories: underweight
(<18.5 kg/m2), normal (18.5–24.9 kg/m2), overweight (25–
29.9 kg/m2), and obese (>30 kg/m2) with feature values of
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“0,” “1,” “2,” and “3,” respectively Furthermore, “marital status”
had categorical entries (“divorced,” “married,” “living with
spouses,” “married,” “not living with spouse,” “never married,”
and “registered partnership”), and each of these was separately
represented as binary based on the response as either “yes”
or “no,” with a feature value of “1” and “0,” respectively. The
International Standard Classification of Education scheme was
applied to “education level” variable to have seven categories
with feature value representations (0 = none; 1 = first stage
of basic education; 2 = lower secondary education or second
stage of basic education; 3 = upper secondary education; 4 =

post-secondary non-tertiary education; 5 = first stage of tertiary
education; and 6 = second stage of tertiary education). The
“daily activity” variables had two categories: “vigorous” and
“moderate” sports with each having feature value representations
(0 = hardly ever or never; 1 = one to three times a month; 2
= once a week; and 3 = more than once a week). We believe
that this method of representation provides information on the
activity as well as the intensity of the activity, which can be
useful for the learning algorithms. The “smoking” variable was

also processed to have a binary representation based on the
responses with feature values (0= never smoked and 1= current

or past smoker). Finally, the SHARE dataset contained data
on whether a participant had been diagnosed with Alzheimer’s

disease (AD) and those without a diagnosis. This was therefore
used as the class variable for the prediction model feature values

representation (Non-AD = no diagnosis; AD = diagnosis of
Alzheimer’s dementia). However, in the absence of a diagnosis

in the PREVENT dataset, and to facilitate the evaluation of
our approach, we employed a classification scheme proposed by

Ritchie and Ritchie (2012) to group the participants according
to parental clinical status and ApoE genotype. Therefore,

participants with a parental dementia diagnosis and ApoE 4

TABLE 1 | Characteristics of SHARE and PREVENT datasets.

Data description SHARE data PREVENT data

Population 20 European countries The United Kingdom

Number of samples 84,856 473

Mean age 69 52

Number of years of

follow-ups

14 years (2004–2015),

2 years interval on

average

Only used baseline

data

Class distribution Diagnosis

• Diagnosis of

Alzheimer’s

disease—“AD” (n =

4,157)

• No diagnosis

of-Alzheimer’s

disease

diagnosis—“non-AD”

(n = 80,699)

Parental diagnosis of

AD and Apolipoprotein

E4 allele (ApoE4)

genotype status of

individual

• Parental diagnosis

of AD + ApoE4

status—“High Risk”

(n = 109)

• No parental

diagnosis of AD +

No ApoE4 status of

individual—“Low

Risk” (n = 364)

genotype were allocated to a “High-Risk” (HR) group as these

individuals were considered to be at high risk of dementia. All
other participants were allocated to a “Low-Risk” (LR) group.
The final distribution of classes is as follows: SHARE dataset,
Non-AD (95%) and AD (5%); PREVENT dataset HR (23%) and
LR (77%).

Building the Prediction Model
We built four ensemble-based prediction models by training
RF and XGBoost algorithms. The algorithms were trained by
applying a hybrid approach that combines cross-validation and
hold out, through a procedure we refer to as cross-validation
with hold out (Pedregosa et al., 2011). This procedure involved
splitting the SHARE data into training and test sets. The training
set (D_train), which constituted 80% of the SHARE data, was
used to train the algorithms including hyperparameters tuning.
The 20% test set (D_eval) was held and used only for the
model performance evaluation. Similarly, the PREVENT data
was also split into 80% training set (PREV_train) and 20% test
set (PREV_eval). The splits were stratified in order to ensure the
equal proportion of class representation in both training and test
sets. A summary of our cross-validation with hold out training of
algorithms procedure is as follows:

• Step 1: We employed a 5-fold cross-validation during training,
which randomly split the 80% training set into 5-folds each
containing a subset of training (D_train1−5) and validation
(D_val1−5) sets.

• Step 2: We applied a set of initial hyperparameters to train the
algorithm to obtain five different models using D_train1−5 and
D_val1−5, to obtain a number of potential hyperparameters
from each cross-validation.

• Step 3: We then applied the random search optimization
algorithm (Bergstra and Bengio, 2012), to search and choose
from a set of potential number of hyperparameters derived

TABLE 2 | The common data items between SHARE and PREVENT datasets

used to develop the prediction models.

Data category Data items

Sociodemographic • Gender

• Age

• Education level

• Marital status

• Had children?

• BMI

Self-reported medical history • Heart attack

• Hypertension (high blood pressure)

• High cholesterol

• Diabetes

• Lung disease

• Peptic ulcer disease

• Parkinson’s disease

• Emotional disorders

• Osteoarthritis

Life style • Daily activity

• Smoking
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from Step 2 to obtain the optimal set of hyperparameters based
on the evaluation function of the optimization algorithm.
Table 3 shows the set of initial and optimal hyperparameter
settings obtained.

• Step 4: Once the optimal hyperparameters are obtained,
we then retrained the algorithm using the optimum
hyperparameters on the entire training set, D_train.

• Step 5: We applied the procedures in Steps 2–4 for
RF and XGBoost to obtain SHARE_RF_pred and
SHARE_XGBoost_pred prediction models, respectively.

• Step 6:We evaluated the performance of the predictionmodels
obtained in Step 5 by applying SHARE_XGBoost_pred and
SHARE_RF_pred to the hold-out test set (D_eval).

• Step 7: We employed the method proposed by DeLong et al.
(1988) to carry out a pairwise comparison of the receiver
operating curve (ROC) to compare the performance difference
between SHARE_XGBoost_pred and SHARE_RF_pred to
determine the best model.

• Step 8: We randomly spit the PREVENT data into 80%
training set (PREV_train) and 20% held out test set
(PREV_eval). Again, the split was stratified in order to ensure
an equal proportion of class representation in both the training
and test sets.

• Step 9: We employed a parameter-transfer learning approach
as described by Yao andDoretto (2010) to build a target model.
This approach assumes that the target shares parameters with
the best source model as determined in Step 7. The parameters
of the best source model are further updated using the PREV
train set. This process adjusted the decision boundaries of the
source model to produce PREVENT_target prediction model.

• Step 10: We evaluated the performance of prediction models
obtained in Step 9 by applying them to the hold-out test
set (PREV_eval).

• Step 11: We trained the XGBoost algorithm using PREV_train
and applied procedures into Steps 2–4 to obtain a prediction
model (PREVENT_only).

• Step 12: We evaluated the performances of PREVENT_target
and PREVENT_only by applying them to the hold-out test
set (PREV_eval).

• Step 13:We finally applied the procedures in Step 7 to compare
the performance difference between the PREVENT_target and
PREVENT_only to determine the best model.

Performance Evaluation
We employed a series of metrics to evaluate the performance
of the models based on the D_eval and PREV_eval unseen
datasets. As already pointed out, D_eval contained “AD”
and “No-AD” which served as the ground truth for the
evaluation of SHARE_RF_pred and SHARE_XGBoost_pred
models. PREV_eval on the other contained “HR” and “LR” as
explained above, and this served as the ground truth for the
evaluation of our PREVENT_target and PREVENT_onlymodels.
These metrics were primarily based on the following information
obtained from the outputs of the prediction models: Refer False
Positive (FP), False Negative (FN), True Positive (TP), and True
Negative (TN) (Pollack, 1970) for details of these metrics. The

TABLE 3 | Hyperparameter settings for prediction models.

Algorithm Initial parameters Optimal hyperparameter settings

Random

Forest

n_estimators = range

(5, 40), max_features =

[’auto’, ’sqrt’, ’log2’],

max_depth = range

(10, 25), criterion =

[gini, entropy]

Bootstrap = True; ccp_alpha = 0.0;

class_weight = None; criterion =

entropy; max_depth = 24;

max_features = sqrt; max_leaf_nodes

= None; max_samples = None;

min_impurity_decrease = 0.0;

min_impurity_split = None;

min_samples_leaf = 1;

min_samples_split = 2;

min_weight_fraction_leaf = 0.0;

n_estimators = 33, n_jobs = None;

oob_score = False; random_state =

None; verbose = 0; warm_start =

False

XGBoost n_estimators = range

(1, 20), max_depth =

range (10, 25),

learning_rate =

[.1,.2,.4,.45,.5,.55,.6],

colsample_bytree’:

[.6,.7,.8,.9, 1], booster

= gbtree,

min_child_weight =

[0.001, 0.003, 0.01]

Objective = multi:softprob;

base_score = 0.5; booster = gbtree;

colsample_bylevel = 1;

colsample_bynode = 1;

colsample_bytree = 0.7; gamma = 0;

gpu_id = −1; importance_type =

gain; interaction_constraints = None;

learning_rate = 0.5, max_delta_step

= 0; max_depth = 24;

min_child_weight = 0.003; missing =

nan; monotone_constraints = None;

n_estimators = 16; n_jobs = 0;

num_parallel_tree = 1; random_state

= 0; reg_alpha = 0; reg_lambda = 1;

scale_pos_weight = None;

subsample = 1; tree_method =

None; validate_parameters = False;

verbosity = None; num_class = 2

comparison of the models was based on geometric accuracy (GA)
as expressed in Equation (3) which is derived from Equations (1)
and (2) which represent sensitivity and specificity, respectively.
GA accounts for both majority and minority class error rates
which makes it ideal for imbalanced problems (Kim et al., 2015).

Sensitivity =
Number of TP

Number of TP + Number of FN
(1)

Specificity =
Number of TN

Number of TN + Number of FP
(2)

Geometric Accuracy =
√

(Sensitivity ∗ Specificity) (3)

We also employed area under the receiver operating curve
(AUROC) to further explore the robustness of our models,
given the wide usage of this metric in medical applications
(Mandrekar, 2010). Also, as already stated, a significant test
was used to examine the performance differences between the
prediction models.

Finally, we employed a method proposed by Taylor
and Stone (2009) to examine the efficacy of our transfer
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learning approach based on a learning ratio as expressed
in Equation (4).

ratio =
area under curve with transfer − area under curve without transfer

area under curve with transfer
(4)

Feature Importance and Model
Interpretability
An important advantage of tree-based algorithms is their
ability to provide information on the decisions made around
predictions. This information is provided in the form of weights
that are assigned to the features as a result of the learning process.
The value of weight assigned to a given feature is an indicator of
the importance of that feature as determined by the prediction
model, which enabled us to examine how each feature was ranked
by the prediction models.

We further applied the SHapley Additive exPlanation (SHAP)
algorithm to explore the interactions between the features
(Lundberg et al., 2018). Briefly, the algorithm is inspired by game
theory, where the interaction between features is considered as
a “team” of features, with each feature being a member of the
team responsible for driving the overall risk. An instance of the
interaction between the features registers a set of predicted values
produced by the predictionmodel. These values serve as input for
the SHAP algorithm to generate another set of values known as
“impact values.” The SHAP values provide a dynamic view of the
effects of the interaction between the features to determine the
probability of risk and the role of each feature on the individual
level. Furthermore, the SHAP algorithm offers the possibility to
compare an individual predicted risk probability with a baseline
prediction, which is the average predicted probability known as
the “base value.”

RESULTS

Model Performance Analyses
Figure 2 shows the confusion matrix of the results obtained
when SHARE_RF_pred (Figure 2A) and SHARE_XGBoost_pred
(Figure 2B) models were applied to 20% of SHARE unseen test
set. The figure also shows the results when PREVENT_target
(Figure 2C) and PREVENT_only (Figure 2D) models were
applied to 20% of PREVENT unseen test set. Table 4 further
shows a summary of the performances obtained. As seen from
the table, SHARE_XGBoost achieves a GA of 87%, specificity of
99%, sensitivity of 76%, and AUROC of 96%. In comparison,
SHARE_RF_pred achieves a GA of 85%, specificity of 99%,
sensitivity of 73%, and AUROC of 94%. Figure 3A shows
an AUROC curve comparison between SHARE_RF_pred and
SHARE_XGBoost, with SHARE_XGBoost showing a marginal
difference in the performance between the two models. A
pairwise comparison of the AUROC scores between the two
prediction models demonstrates a significant difference in
performance (P < 0.0001, 95% Confidence Interval: 0.01–0.02),
suggesting SHARE_XGBoost as the best performing model.

Again, as seen from Table 4, PREVENT_target achieves a
GA of 56.5%, specificity of 84.7%, sensitivity of 38.1%, and

AUROC of 63%. In comparison, PREVENT_only achieves a GA
of 39.6%, specificity of 82.0%, sensitivity of 19%, and AUROC
of 51%. Figure 3B shows an AUROC curve comparison between
PREVENT_target and PREVENT_only, with PREVENT_target
showing a marginal difference in performance between the two
models. Even though a pairwise comparison of the AUROC
scores between PREVENT_target and PREVENT_only, no
significant difference in performance is observed (P = 0.2166,
95% Confidence Interval: 0.07–0.325), the PREVENT_target
model outperformed PREVENT_only model across all the
performance metrics as shown in Table 4. There is an increase in
the sensitivity of 19.1%, specificity of 2.7%, GA of 16.9%, AUROC
of 11%, and a transfer-learning rate of 20.6%.

Feature Importance Analysis and
Interpretability of Personalised Risk
Prediction
Even though RF and XGboost are both considered ensemble-
based algorithms, the learning strategy tends to differ as
briefly discussed. From that score, we examine how both
models assessed the importance of the features used in training
the models. Figures 4A,B depict a comparison between
SHARE_RF_pred and SHARE_XGBoost_pred prediction
models on how features were ranked based on the weights
assigned. As shown by Figures 4A,B, while significant similarities
in the ranking of the features exist between the two models,
some striking differences can also be observed. For example,
the ranking of the top seven features of both RF and XGBoost
appear to be in the same order, with ’“age” being the most
important feature followed by “moderate sport,” “education,”
“vigorous sports,” “BMI,” “hypertension,” and “esmoked.” Some
differences in rankings were observed. Where RF ranks “gender”
and “emotional disorders” as the 8th and 9th most important
features, XGBoost ranks “high cholesterol” and “osteoarthritis,”
respectively. Additionally, RF ranks “widowed” as the 10th most
important feature, whereas XGBoost ranks “diabetes” as the 10th
most important feature, and ranks “widowed” as one of the least
important features (ranked 18th).

Similarly, a comparison between PREVENT_only and
PREVENT_target shows how these prediction models ranked
the features as shown in Figures 4C,D, respectively. Again, while
there appear to be some overlaps in the order of feature rankings
between the models, some differences can also be observed.
For example, “age” remains the most important feature among
the two models. A close examination of the top 10 features of
the models show some differences in the order of rankings.
For example, while PREVENT_only ranks “divorced,” and
“no_children” among the top 10, PREVENT_target also ranks
“BMI” and “gender” among the top 10, but ranks “divorced,”
and “no_children” in the 11th and 13th positions, respectively.
Even though these differences in feature rankings can be
observed between these two models, the difference is not
statistically significant. However, because our PREVENT_target
demonstrated some marginal increase in the performance over
PREVENT_only, our analysis will be based on the output of
PREVENT_target model. A further comparison of the order

Frontiers in Big Data | www.frontiersin.org 6 May 2021 | Volume 4 | Article 61304754

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Danso et al. Explainable Personalised Dementia Risk Models

FIGURE 2 | Confusion matrix showing the prediction results from unseen 20% of SHARE test data as predicted by (A) Random Forest (A,B) XGBoost models. Also

showing are the prediction results from 20% unseen PREVENT test data as predicted by (C) Updated SHARE_XGBoost_pred decision boundaries with PREVENT

training set and (D) Trained XGBoost using PREVENT training set.
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TABLE 4 | Summary of prediction models on the unseen test set.

Model Sensitivity (%) Specificity (%) Geometric

Accuracy (%)

AUROC (%) P-value Transfer learning

efficacy (%)

SHARE_RF_pred 73 99 85 94 P < 0.0001 N/A

SHARE_XGBoost_pred *76 (+3%) *99 (0%) *87 (2%) *96 (2%)

PREVENT_target **38.1 (+19.1%) **84.7 (+2.7%) **56.5 (+16.9%) **63 (+11%) P = 0.2166 20.6%

PREVENT_only 19.0 82.0 39.6 51

*Performance comparison in relation to SHARE_RF_pred.

**Performance comparison in relation to PREVENT_only.

of rankings of features between SHARE_XGBoost_pred as
the source model and our PREVENT_target as the target
model also shows 70% overlap among the top 10 features
as ranked by both the models. The differences observed
include: “emotional_disorders,” “hypertension,” and “diabetes”
ranked among the top 10 by SHARE_XGBoost_pred, but
ranked by PREVENT_target model at 12th, 14th, and 21st
positions, respectively.

Furthermore, we examined the performance of the models
at individual levels. Figure 5 shows the visualisation of SHAP
values of four randomly selected prediction outputs when
SHARE_XGBoost_pred was applied to SHARE unseen test set.
Figure 5A shows an individual with AD and correctly predicted
by the model, with the probability of 80%. Figure 5B shows an
individual with AD which is incorrectly predicted as a non-
AD with the probability of 6%. Figure 5C shows an individual
without AD predicted as AD with the probability of 66%.
Figure 5D also shows an individual without AD and correctly
predicted as a Non-AD with the probability of 4%. The figures
also show the risk factors that drive each of the probabilities,
with red indicating risk factors and blue suggesting protective
factors. For example, Figure 5A shows a 69-year-old woman
correctly predicted to be living with AD with the probability
of 80%. While smoking, vigorous sports, education, BMI, and
osteoarthritis appear to be playing a role in the prediction, the
lack of moderate sports appears to be the most important risk
factors as determined by the colour (red) and the length of
the bar allocated to each risk factor. In contrast, as Figure 5B
shows, age and the fact that the person engages in moderate
sports appear to have significant impact on the prediction, which
resulted in a relatively low risk of probability of 6%. Similarly,
age and moderate sports appear to have a significant impact on
the prediction of probabilities in both Figures 5C,D. However,
while moderate sports appear to be protective for the individual
as shown in Figure 5C, the relatively older age (80 years) and
the lack of education appear to be the risk factors that have a
significant impact on the prediction resulting in the probability
of 66% of AD. In contrast, the individual shown in Figure 5D
is relatively young and engages in moderate as well as vigorous
sports, which appear to be the proactive factors driving the
prediction with a relatively low probability of 4% risk of AD.

Examining our target model at the individual level, Figure 6
shows randomly selected outputs when PREVENT_target model
was applied to PREVENT unseen test set. Figure 6A shows a
low-risk individual predicted as a high-risk with the probability

of 70%. Figure 6B shows a high-risk individual correctly
predicted with the probability of 7%. Figure 6C shows a high-
risk individual predicted as low-risk with the probability of 19%.
Figure 6D is also a low-risk individual correctly predicted as
low-risk with the probability of 27%. As the figures show, while
age appears to be themost protective factor for all the individuals,
the lack of vigorous sports, relatively low education, and BMI
appear to be the risk factors with the greatest impact. A closer
look at Figure 6A shows a 60-year-old individual who has no
education and lacks physical activity and therefore predicted
by the model to be at high risk despite having been allocated
to the low-risk group. Similarly, Figure 6B shows a 52-year-
old individual belonging to the high-risk group and correctly
predicted by the model with a probability of 63%. In this figure,
individual age is the most protective factor, while education (3=
upper secondary level) and having a healthy weight (BMI = 1)
appear to be risk factors. This may suggest that higher education
may be critical for individuals with an APOE e4 gene and a
parental history of dementia, compared to individuals without
that fall outside the high-risk group.

DISCUSSION

This study developed an ensemble-based machine-learning
model to predict Alzheimer’s dementia risk at both population
and individual levels based on the data drawn from two
populations with different characteristics. Our models were built
using large heterogeneous data drawn from a population of
20 European countries with up to 14 years of follow-up data.
Our best model achieves high-performance accuracy, obtaining
an AUROC score of 96% on the unseen test set. The decision
boundaries of the best model were further updated through
transfer learning. The update was done using data from a
different population with different dementia risk profiles to
produce a target model. The target model achieves an AUROC
score of 63% and a transfer learning efficacy rate of 20%. It
is also able to visualise the risk as well as protective factors
that are responsible for the prediction at both population and
individual levels.

To the best of our knowledge, this is the first approach that
employs transfer learning with ensembles to develop dementia
risk prediction models and visualisation of risk factors from
an undiagnosed population in mid-life. Although numerous
computational approaches have been developed, these methods
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FIGURE 3 | Showing ROC curves with AUROC scores of (A) the performance

difference between Random Forest and XGBoost prediction models when

applied to 20% SHARE unseen test set and (B) the performance compassion

between XGBoost model updated with PREVENT training set (Transfer model)

and XGBoost trained with PREVENT only (PREVENT only model) and applied

to 20% PREVENT unseen test set.

have been limited in terms of sample size and the over-reliance on
a homogenous sample for validation (Goerdten et al., 2019). van
Maurik et al. (2019) attempted to address this issue by combining
data from older adults in different populations across Europe
and North America to develop dementia-risk prediction models
for people with mild cognitive impairment. They employed
traditional statistical modelling approaches and biomarkers, such
as cerebrospinal fluid and imaging data to develop the prediction
models. While we are unable to compare our proposed approach
to that of van Maurik et al. (2019) due to differences in data used,

it would be interesting to compare the performance of the two
modelling approaches on the same dataset in the future.

Even though the relative differences in feature rankings
between the models may be hard to interpret relative to their
importance in predicting the dementia risk, and given that
XGBoost outperforms RF as our significant test suggests, it
would be reasonable to conclude that the feature rankings of
XGBoost model could be more accurate and therefore reliable.
The prediction models developed here identified risk factors that
agree with previous literature.We demonstrate this by examining
the top 10 features as ranked by the XGboost prediction models.
Numerous studies have concluded that age remains the single
biggest risk factor (Song et al., 2014). This is consistent with
our model, ranking age to be the most important risk factor.
Even though age is considered a non-modifiable risk factor, the
Lancet commission report on dementia prevention by Livingston
et al. (2020) identified a number of risk factors which when
modified could reduce the risk of dementia by 40%. The report
identified less education, hypertension, hearing impairment,
smoking, obesity, depression, physical inactivity, diabetes, and
infrequent social contact as potentially modifiable risk factors.
Seventy percent of these risk factors were ranked among the top
10 by the study’s prediction model as shown in Figure 4.

Furthermore, the interaction effects identified by the study’s
models are also in accordance with the existing evidence. For
example, low education level is known to account for up
to 8% and physical inactivity accounts for up to 3% of the
dementia risk (Livingston et al., 2017). Again, both education
and physical activity are associated with cognitive reserves and
improvement in mental functions, suggesting that these could act
as protective factors (Sharp and Gatz, 2011). Therefore, poorly
educated individuals with a sedentary lifestyle could have an
increased risk of dementia. This phenomenon is consistent with
what is observed in Figures 5, 6. As Figure 5A demonstrates,
the relatively low education and low levels of physical activity
(moderate/vigorous sports) were the two major risk factors
among the (non-age) other risk factors that increased the risk of
dementia up 80% of this individual. This is consistent with what
is observed in Figure 6A which shows an individual considered
to be at low risk but due to lack of education and physical
activity, the risk profile of this individual is predicted with 70%
probability, with age being the only protective factor.

While the majority of the top 10 risk factors ranked by
the study’s prediction model were part of those identified by
the recent Lancet Commission report, there are a few that
appear to be playing a major role in the risk prediction but not
currently part of the report. Figure 6B demonstrates the effect
of emotional disorder on the risk of dementia at the individual
level. Again, while age and physical activity remain significant
protective factors, emotional disorder appears to be playing a
significant role in the 7% risk of Alzheimer’s Dementia for this
individual. Therefore, any intervention in the emotional health
of this participant chosen for illustrative purposes could further
reduce their risk. This approach is exactly what is envisaged in
the Brain Health Clinics being developed across Europe (Frisoni
et al., 2020) based on a consensus led by our group in how to
change clinical services for dementia prevention (Ritchie et al.,
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FIGURE 4 | Feature importance as ranked by the weights derived from SHARE_RF_pred (A) and SHARE_XGBoost_pred (B) prediction models that were trained

using SHARE dataset. It also shows the ranking of features of PREVENT only (C) and PREVENT target (D).
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FIGURE 5 | Force plot showing the effect of SHAP values on the interaction of features and the overall prediction at the individual level. This shows examples of

prediction outputs with taken from SHARE as predicted by the SHARE model. Features in red show risk factors pushing up the overall probability while those in blue

are protective factors pushing down the probability. (A) Shows SHARE participants predicted to have AD with 85% probability. (B) Shows SHARE participant

diagnosed to have AD but has been predicted by the model to be Non-AD with 6% probability. (C) Shows a Non-AD participant predicted as AD with 63% probability.

(D) Shows as Non-AD participant predicted as Non-AD with 4% probability. Feature labels are: esmoked (0 = never smoked); emotional disorders (0 = no);

hypertension (0 = no); osteroarthritis (1 = yes); high cholesterol (0 = no); heart attack (0 = no); education (2 = lower secondary education or second stage of

basic education; 3 = upper secondary education); moderate sports (0 = hardly ever, or never, 1 = one to three times a month); vigorous sports (0 = hardly ever, or

never, 1 = one to three times a month); no children (0 = no children); widowed (1 = yes); BMI [1 = under weight (<18.5)]; married, living with spouse (0 = no)

and gender (1 = male).

2017). This is based on collecting data from these Brain Health
Clinics to support Real World machine learning approaches
and using these algorithms to support the development of
personalised prevention plans driven by early disease detection
and comprehensive risk profiling.

Even though the performance of the study’s prediction model
demonstrates a potential clinical utility, we do acknowledge
that it would benefit from further development and validation.
Firstly, it would be beneficial to evaluate the effect of additional
data sources derived from biological samples and neuroimaging
on the overall performance of the study’s model as well as
the effect of the interactions of additional features at both

population and individual levels. Secondly, further validation
of the model using data from non-research settings is crucial.
The dataset used in training the model is obtained from
research settings, which is considered to be of high quality
due to the strict data collection protocols that are used in
these settings. Thirdly, the problem of imbalanced data and
the ability to develop accurate prediction models that account
for these problems are major challenges (Khalilia et al., 2011).
However, RF and XGBoost have consistently been shown to
have the capacity to handle imbalanced challenges due to the
strategy employed in learning. For example, Facal et al. (2019)
compared the performance of number learning algorithms,
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FIGURE 6 | Force plot showing the effect of SHAP values on the interaction of features and the overall prediction at the individual level. This shows examples of

prediction outputs PREVENT target models. Features in red show risk factors pushing up the overall probability while those in blue are protective factors pushing

down the probability. (A) Shows PREVENT participant assigned to the Low-risk group but has been predicted by the model to be High-risk with 70% probability. (B)

Shows a High-risk participant predicted as High-risk with 63% probability. (C) Shows a High-risk participant predicted as Low-risk with 19% probability. (D) Shows

Low-risk participant predicted as Low-risk with 27% probability. Feature labels are: esmoked (0 = never smoked); emotional disorders (0 = no); hypertension (0

= no); osteroarthritis (1 = yes); high cholesterol (0 = no); heart attack (0 = no); education (2 = lower secondary education or second stage of basic education;

3 = upper secondary education); moderate sports (0 = hardly ever, or never, 1 = one to three times a month); vigorous sports (0 = hardly ever, or never, 1 = one

to three times a month); no children (0 = no children); widowed (1 = yes); BMI [1 = under weight (<18.5)]; married, living with spouse (0 = no) and gender (1 =

male).

including RF and XGBoost, to predict mild cognitive impairment
to dementia conversion with highly skewed class distribution,
and XGBoost demonstrated superior performance over the rest
of the algorithms and outperforming RF, which is consistent
with the study’s findings. Nevertheless, the study’s model may
benefit from incorporating some of the numerous imbalanced
data techniques discussed by Fernández et al. (2018) in the
processing pipeline as part of future work. Lastly, all missing
data were removed from the training set as part of the pre-
processing step, which may have led to loss of data. This
approach is not ideal and sub-optimal particularly when dealing

with longitudinal datasets with long follow-up periods as well
as real-world datasets, which mostly have a high prevalence
of missing data. Therefore, approaches to handling missing
data such as those described by Buck (1960) could potentially
be explored.

Even though the study’s source model achieved a relatively
good performance, the performance of our target model could
be better. The 63% AUROC score and a transfer learning efficacy
rate of 20% achieved by the study’s target model could be
attributed to the limited sample used to update the decision
boundaries of the study’s source model. This could be considered
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a limitation, and therefore a bigger sample size will be required to
further update and evaluate the model.

CONCLUSION

Drawing on the transfer learning paradigm of artificial
intelligence, we developed ensemble-based models capable of
predicting Alzheimer’s dementia onset in a relatively younger
population up to 14 years in advance of the mean in the training
set with promising results. The models not only predict dementia
risk but also provide a visualisation of the interactions between
risk factors to determine those driving the risk prediction at
the individual level. The complex nature of dementia requires
powerful machine learning models to be able to learn complex
patterns from the interactions between risk factors, and the
study’s proposed model achieves this with reasonable accuracy.
While some of the risk factors identified are well-documented,
our model further identified less suspected risk factors that
appear to be significant in driving the risk of AD. We believe that
with further development and validation, our prediction model
has the potential to support the early detection for appropriate
interventions to be developed to prevent dementia.
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Differences BetweenMR Brain Region
Segmentation Methods: Impact on
Single-Subject Analysis
W. Huizinga1*, D. H. J. Poot1, E. J. Vinke2,3, F. Wenzel4, E. E. Bron1, N. Toussaint 5, C. Ledig6,
H. Vrooman1, M. A. Ikram3, W. J. Niessen1,7, M. W. Vernooij 2,3 and S. Klein1

1Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine and Medical Informatics, Erasmus MC,
Rotterdam, Netherlands, 2Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands, 3Department of
Epidemiology, Erasmus MC, Rotterdam, Netherlands, 4Philips Research Hamburg, Hamburg, Germany, 5School of Biomedical
Engineering, King’s College London, London, United Kingdom, 6Biomedical Image Analysis Group, Department of Computing,
Imperial College London, London, United Kingdom, 7Quantitative Imaging Group, Department of Imaging Physics, Faculty of
Applied Sciences, Delft University of Technology, Delft, Netherlands

For the segmentation of magnetic resonance brain images into anatomical regions,
numerous fully automated methods have been proposed and compared to reference
segmentations obtained manually. However, systematic differences might exist between
the resulting segmentations, depending on the segmentation method and underlying brain
atlas. This potentially results in sensitivity differences to disease and can further complicate
the comparison of individual patients to normative data. In this study, we aim to answer two
research questions: 1) to what extent are methods interchangeable, as long as the same
method is being used for computing normative volume distributions and patient-specific
volumes? and 2) can different methods be used for computing normative volume
distributions and assessing patient-specific volumes? To answer these questions, we
compared volumes of six brain regions calculated by five state-of-the-art segmentation
methods: Erasmus MC (EMC), FreeSurfer (FS), geodesic information flows (GIF), multi-
atlas label propagation with expectation–maximization (MALP-EM), and model-based
brain segmentation (MBS). We applied the methods on 988 non-demented (ND) subjects
and computed the correlation (PCC-v) and absolute agreement (ICC-v) on the volumes.
For most regions, the PCC-v was good (> 0.75), indicating that volume differences
between methods in ND subjects are mainly due to systematic differences. The ICC-v
was generally lower, especially for the smaller regions, indicating that it is essential that the
same method is used to generate normative and patient data. To evaluate the impact on
single-subject analysis, we also applied the methods to 42 patients with Alzheimer’s
disease (AD). In the case where the normative distributions and the patient-specific
volumes were calculated by the same method, the patient’s distance to the normative
distribution was assessed with the z-score. We determined the diagnostic value of this
z-score, which showed to be consistent across methods. The absolute agreement on the
AD patients’ z-scores was high for regions of thalamus and putamen. This is encouraging
as it indicates that the studied methods are interchangeable for these regions. For regions
such as the hippocampus, amygdala, caudate nucleus and accumbens, and globus
pallidus, not all method combinations showed a high ICC-z. Whether two methods are
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indeed interchangeable should be confirmed for the specific application and dataset of
interest.

Keywords: brain region segmentation, subcortical, comparison study, normative modeling, magnetic resonance
imaging

1 INTRODUCTION
Quantitative imaging biomarkers are biological features that can
be measured using medical images. They are of interest for
diagnosis when changes in these features are due to disease. In
the case of traumatic brain injury or neurodegenerative disease,
typical valuable quantitative imaging biomarkers are brain
region volumes (Zagorchev et al., 2015; Ledig et al., 2015;
Scheltens et al., 2002). A well-known example is the volume
of the hippocampus. A relatively low volume may indicate the
presence of Alzheimer’s disease (AD)’ (Convit et al., 1997; Jack
et al., 1999; den Heijer et al., 2006). To determine if a patient
deviates significantly, one can compare it to the so-called
normative data (Brewer, 2009; Ziegler et al., 2014; Marquand
et al., 2016). Normative data are acquired in a reference
population, and they are used as baseline distribution for a
measurement, against which an individual measurement can be
compared. Normative data may incorporate covariates such as
age or gender, when the distribution is expected to vary
significantly as a function of these variables. Well-known
examples are head-circumference-for-age, height-for-age,
weight-for-age, and weight-for-height norms, provided by the
WHO (de Onis et al., 2006), for detecting abnormal growth in
children. The dependency on age is also the case for volumetric
magnetic resonance (MR) brain images. Brewer (2009)
proposed using quantile curves as a function of age as
normative data for volumetric MR measurements.

Volumetric MRmeasurements are acquired by segmenting the
brain into its different tissue types and regions of interest. The
manual segmentation of a brain image is a time-consuming task,
which has to be performed by an expert and is therefore too
expensive and impractical for a clinical setting (Brewer (2009)).
To automatically obtain brain region volumes from MRI brain
data, numerous fully automated brain segmentation methods
have been proposed in the literature. Each method relies on
different techniques to segment either the full brain or a specific
region. We can subdivide the methods that are based on prior
probability maps (Fischl et al., 2002), statistical shape and
appearance models (Babalola et al., 2008a; Patenaude et al.,
2011; Wenzel et al., 2018), multi-atlas registration and labeling
(Bron et al., 2014; Cardoso et al., 2015; Ledig et al., 2015; Murphy
et al., 2014; Wang et al., 2014; Wolz et al., 2010; van der Lijn et al.,
2008), deep learning approaches (Bao and Chung, 2018; Shakeri
et al., 2016; de Brébisson and Montana, 2015), and other
(Hammers et al., 2009; Corso et al., 2007; Morra et al., 2008;
Tue et al., 2008). Each method aims to segment the brain as
accurately as possible where manual segmentation serves as the
gold standard.
Various comparison studies have been performed with regard to
automated brain segmentation methods. Grimm et al. (2015)
assessed the differences in amygdalar and hippocampal volume

resulting from Freesurfer (Fischl et al., 2002), VBM8 (VBM1), and
manual segmentation. They concluded that volumes computed
with VBM8 and Freesurfer V5.0 were comparable, and systematic
and proportional differences were mainly due to different
definitions of anatomic boundaries. They concluded that large
differences can still exist even with high correlation coefficients.
Morey et al. (2009) also compared amygdalar and hippocampal
volumes but using methods such as FSL/FIRST 4.0.12, Freesurfer
4.0.5 (Fischl et al., 2002), and manual segmentation. They
concluded that for the hippocampus, Freesurfer was more
similar to manual segmentation in terms of volume difference,
overlap, and correlation. For the amygdala, FIRST represented
the shape more accurately than Freesurfer. Babalola et al. (2008b)
compared four different state-of-the-art algorithms for automatic
segmentation of subcortical structures in MR brain images and
evaluated spatial overlap, distance, and volumetric measures:
classifier fusion and labeling (Aljabar et al., 2007), profile
active appearance models (Babalola et al., 2007), Bayesian
appearance models (Patenaude et al., 2011), and
expectation–maximization–based segmentation using a
dynamic brain atlas (Murgasova et al., 2006). They concluded
that all four methods perform on par with recently published
methods. One of their evaluating methods (Aljabar et al., 2007)
performed significantly better than the other three methods
according to their evaluation. Perlaki et al. (2017) compared
the segmentation accuracy of the caudate nucleus and putamen
between FSL/FIRST (version FSL’s build: 507) and Freesurfer
(versions 4.5 and 5.3) by studying the Dice coefficient, and
absolute and relative volume difference. They also measured
consistency and absolute agreement. They concluded that for
caudate segmentation, FIRST and Freesurfer 4.5 and 5.3
performed similarly, but for putaminal segmentation, FIRST
was superior to Freesurfer 5.3.

The impact, however, of using different methods on the
analyses of individual patients within a normative modeling
framework is still unknown. This is relevant when volumetric
MR data are used to generate normative distributions for both
research and clinical use. In this study, we therefore aim to answer
two research questions: 1) to what extent are methods
interchangeable, as long as the same method is being used for
deriving normative volume distributions and patient-specific
volumes? and 2) can different methods be used for deriving
normative volume distributions and patient-specific volumes? To
answer these questions, we evaluated five state-of-the-art
segmentation methods (Bron et al., 2014; Wenzel et al., 2018;

1http://dbm.neuro.uni-jena.de/wordpress/vbm/
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Cardoso et al., 2015; Ledig et al., 2015; Fischl et al., 2002; Ikram
et al., 2015).

2 MATERIAL AND METHODS

2.1 Data
To derive the normative distributions as a function of age, we
applied the brain region segmentation methods to a subset of
the population-based Rotterdam Scan Study, a prospective
longitudinal study among community-dwelling subjects
aged 45 years and older (Ikram et al., 2015). This subset is
uniformly distributed over age and consists of 988 T1w MR
brain images from non-demented (ND) (425 male, age � 68.1 ±
13.0 years). The total sample size of the Rotterdam Scan Study
is larger: as of July 2015, a total of 12,174 brain MR scans have
been obtained on the research scanner in over 5,800
individuals (Ikram et al., 2015). The 988 subjects form a
subset with uniform age distribution (433 male, age �
68.3 ± 13.0 (mean ± std)). We adopted this dataset from
Huizinga et al. (2018). All brain images were acquired on a
single 1.5T MRI system (GE Healthcare, US). The T1w
imaging protocol was a 3-dimensional fast radiofrequency
spoiled gradient recalled acquisition with an inversion
recovery pre-pulse sequence (Ikram et al., 2015). The
images were reconstructed to a voxel size of
0.5 × 0.5 × 0.8mm3, and the number of voxels in each
dimension was 512 × 512 × 192.

In addition, we used the brain images of 42 (25 male, age �
81.9 ± 4.9 years) patients with AD at the time of the MRI scan
from the same imaging study. Different MR acquisition
protocols may lead to different image contrasts, and since
most automated methods are—partly or entirely—driven by
the contrast in the image; this may influence the segmentation
results. To rule out possible differences of the segmentation due
to the acquisition protocol, the methods were applied to the
same images, all acquired with the same acquisition protocol
(Ikram et al. (2015)).

2.2 Brain Segmentation Methods
We applied five previously proposed brain segmentationmethods
to the imaging data. The following five segmentation methods,
explained in detail later, were evaluated:

1. Multi-atlas registration combined with tissue segmentation for
cortical regions, developed at Erasmus MC (EMC), the
Netherlands;

2. Freesurfer 5.1 (FS), developed at the Athinoula A. Martinos
Center for Biomedical Imaging at Massachusetts General
Hospital, United States of America;

3. Geodesic information flows (GIF), developed at University
College London, United Kingdom;

4. Multi-atlas label propagation with expectation–
maximization–based refinement (MALP-EM), developed at
Imperial College London, United Kingdom; and

5. Model-based brain segmentation (MBS), developed at Philips
Research Hamburg, Germany.

The regions segmented by each method are shown in Table 1.
Later, a short description of each method is given.

2.2.1 EMC
This method combines multi-atlas registration and voxel-wise
tissue segmentation for cortical regions, and hippocampus and
amygdala. Probabilistic tissue segmentations are obtained on the
image to be segmented using the unified tissue segmentation
method (Ashburner and Friston, 2005) of SPM8 (Statistical
Parametric Mapping, London, United Kingdom). Thirty
labeled T1-weighted MR brain images are used as atlas images
(Gousias et al., 2008; Hammers et al., 2003). The atlas images are
registered to the subjects’ image using a rigid, affine, and non-
rigid transformation model consecutively, and a mutual
information-based similarity measure. The subjects’ images are
corrected for inhomogeneities to improve registrations using the
N3 algorithm (Tustison et al., 2010). Labels are fused using a
majority voting algorithm (Heckemann et al., 2006). For the
cortical regions, as well as hippocampus and amygdala, the label-
map is combined with the tissue map such that the brain region
volumes are determined on gray matter voxels only. For
subcortical regions, the volumes are determined with a multi-
atlas segmentation only as the probabilistic tissue segmentation
for these regions is inaccurate. A more detailed description of this
method can be found in Bron et al. (2014).

2.2.2 FS
Freesurfer is widely used neuroimaging software developed by the
Laboratory for Computational Neuroimaging at the Athinoula A.
Martinos Center for Biomedical Imaging at Massachusetts
General Hospital. It has many applications, but in this work,
we use the brain region segmentation method described in Fischl
et al. (2002). The method defines the problem of segmentation
using a Bayesian approach in which the probability is estimated of
a segmentation, given the observed image. First, the image is
transformed into the atlas space with an affine transformation.
Manually labeled atlas images provide the prior spatial
information of the brain regions. The final segmentation is
estimated by combining this spatial information with the
intensity distribution of each brain region in the individual
image. (For more detailed information about this method, we
refer the reader to Fischl et al. (2002).) In our experiments, we
used FS version 5.1. The user is able to use his own atlas, however,
we used the atlas provided by FS. This method is publicly
available3.

2.2.3 GIF
This method is atlas-based and uses the geodesic path of a
spatially variant graph to propagate the atlas labels (Cardoso
et al., 2015). The atlas image database contains 130 T1-
weighted MR brain images of cognitively normal
participants from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study and 35 T1-weighted MR brain
images from 30 young controls of the OASIS database

3http://freesurfer.net/
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(Marcus et al., 2007). The labeled images are made publicly
available by Neuromorphometrics4 under academic
subscription, as part of the MICCAI 2012 Grand Challenge
on label fusion. First, each atlas image is registered to the
individual image using a non-rigid transformation. A
morphological distance of this image to each atlas image is
estimated using the displacement field resulting from the
image registration and the intensity similarity. The
segmentation is estimated by fusing the labels of the
morphologically closest atlas images. (For more details
about this method, we refer the reader to Cardoso et al.
(2015).) This method is publicly available5.

2.2.4 MALP-EM
Like EMC, this method also combines multi-atlas registration and
voxel-wise tissue segmentation. The atlas database of this method
consists of 35 manually annotated T1-weighted MR brain images
of 30 subjects of the OASIS database, which are also part of the
atlas images of the GIF method (see Section 2.2.3). The atlas
images of these 30 subjects are transformed to the space of the
image that is to be segmented. These transformations are
obtained via a non-rigid image registration approach
(Heckemann et al., 2010). The subjects’ brains are extracted
using the method proposed in Heckemann et al. (2015). The
resulting 30 label images are fused, and a probabilistic map of
each brain region is obtained. The labels are refined using
expectation–maximization (EM) (Leemput et al., 1999), a
brain tissue segmentation technique based on the image
intensities. (More details can be found in Ledig et al. (2015).)

In our experiments, we used MALP-EM version 1.2. This method
is publicly available6.

2.2.5 MBS
The MBS method is based on the model-based brain segmentation
presented inWenzel et al. (2018). Themodel is shape-constrained and
represented by a triangulatedmesh of fixed topology. Shape variations
are modeled by principal component analysis of manually annotated
meshes of a set of training images, resulting in a point distribution
model (PDM) with a mean mesh and shape modes (Cootes et al.,
1992). To segment a new image, the mean mesh is placed within the
image by a generalized Hough transform compensating global
translation and translation. Subsequently, the mean mesh is
adapted by a global affine transformation and then region-specific
affine transformations by adding weighted shape modes. The global
and local affine transform parameters and the mode weights are
estimated using a boundary detection based, for example, on the local
intensity gradient and a penalization component regularizing the
mesh shape, including the PDM. Finally, in a deformable
deformation step, triangles can adapt individually, leading to a
close match of the model surface with the image boundaries.

A database of 96 3T scans following theMP-RAGE acquisition
protocol, split over three vendors (GE, Siemens, and Philips)
served as training data. These scans have been randomly selected
from the ADNI study (n � 87) and an Alzheimer’s disease study
at the Lahey Clinic, Burlington, MA (n � 9). Ground truth
delineations mostly followed structure definitions of the CMA
guidelines,7 with two exceptions: (1) lateral thalamus borders

TABLE 1 | Characteristics of each method. The input format of each method is a 3D NIFTI file.

Method References Used reference data Method of
segmentation

#
Regions

Region description

EMC Bron et al.
(2014)

Hammers et al. (2003), Gousias et al.
(2008)

Multi-atlas segmentation with majority
voting for label fusion

83 Subcortical regions, cortical regions,
ventricles, corpus callosum, substantia
nigra, lobes, brain stem, and cerebellum

FS Fischl et al.
(2002)

Fischl et al. (2002) Multi-atlas segmentation with a
Bayesian approach for label
assignment

261 Subcortical regions, cortical regions,
ventricles, lobes, optic chiasm, ventral
diencephalon, lesions, vessels, corpus
callosum, choroid plexus, brain stem, and
cerebellum

GIF Cardoso et al.
(2015)

Petersen et al. (2010), Marcus et al.
(2007) and Neuromorphometrics4

Multi-atlas segmentation with heat-
kernel–weighted label fusion

144 Subcortical regions, cortical regions,
ventricles, optic chiasm, ventral
diencephalon, lesions, vessels, lobes, brain
stem, and cerebellum

MALP-
EM

Ledig et al.
(2015)

Marcus et al. (2007) and
Neuromorphometrics4

Multi-atlas segmentation with label
refinement using prior information

138 Subcortical regions, cortical regions,
ventricles, lobes, brain stem, and
cerebellum

MBS Wenzel et al.
(2018)

Petersen et al. (2010), an Alzheimer‘s
disease study at the Lahey Clinic,
Burlington, MA

Model-based segmentation using a
pretrained shape-constrained
deformable surface model

56 Subcortical regions, ventricles, corpus
callosum, fornix, septum pellucidum, lobes,
brain stem, pons, and cerebellum

EMC is themethod ErasmusMCby Bron et al. (2014), FS is themethod FreeSurfer by Fischl et al. (2002), GIF is themethod geodesic information flows by Cardoso et al. (2015), MALP-EM
is the method multi-atlas label propagation with expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel et al.
(2018).

4http://neuromorphometrics.com/
5http://cmicti g.cs.ucl.ac.uk/niftyweb/program.php?p�GIF

6https://github.com/ledigchr/MALPEM
7https://web.archive.org/web/20180226014735/http://www.cma.mgh.harvard.edu/
manuals/
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follow image contrast, which may deviate from the CMA
description, and (2) hippocampus annotations follow the
EADC-ADNI harmonized protocol8 (Boccardi et al., 2015a;
Boccardi et al., 2015b). The training data and procedure are
extensively described in Wenzel et al. (2018).

2.3 Regions of Interest
The set of brain regions in which each image is segmented differs
per method. In this study, we focus on the following S � 6 regions:
hippocampus, amygdala, caudate nucleus and accumbens,
putamen, thalamus, and globus pallidus. Figure 1 shows an
example image of an ND subject with the analyzed brain
regions in colored overlay. In the analysis, the volumes of the

regions in the left hemisphere and the right hemisphere were
summed.
For all methods except MBS, the volume of the caudate nucleus
was added to the accumbens volume because MBS already
segments these as a single region.

2.4 Outlier Detection
Segmentation errors may occur due to bad image quality,
pathology, or other method-related problems. These errors
could lead to outliers in the volume data and may influence
the statistics excessively. We therefore remove them from the
volume data prior to the statistical analyses.

The segmentations of the ND subjects were not visually
inspected as this would be too time-consuming. Method
failures, that is, when the software pipeline did not result in a
segmentation for the image, were excluded. On the remaining

FIGURE 1 | T1w MR brain image from one of the subjects, with a colored overlay of the brain regions analyzed in this work, segmented with all methods. Slices in
the axial direction are shown in the top row, slices in the saggital direction are shown in the middle row, and slices in the coronal direction are shown in the bottom row.
The legend on the right side shows the regions and their corresponding colors in the overlay. Note that only for this visualization, the segmentations were registered to the
MNI space; some differences might be due to imperfections of this registration.

8http://www.hippocampal-protocol.net/SOPs/index.php
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images, outliers were defined as having an absolute z-score higher
than 5.0, derived with the population mean and standard
deviation. Note that a z-score > 5.0 does not necessarily imply
a failed segmentation. We chose an absolute z-score of > 5.0,
instead of the typical value of 3.0 because we wanted to include as
much of the normal population as possible to generate the
normative data, but we did not want to contaminate the
normative data with unrealistic volumes. The segmentations of
the AD patients were visually inspected, and obviously failed
regions were excluded.

2.5 Statistical Analyses
In the analyses, two scenarios are considered: 1) both the
normative volume distribution and the patient-specific
volumes are calculated by the same method, and 2) the
normative volume distribution and the patient-specific
volumes are calculated by different methods. The requirements
for two methods to yield comparable results under scenario 1) are
given as follows:

i) a high correlation on the absolute volumes, measured with the
Pearson’s correlation coefficient (PCC) and referred to as
PCC-v;

ii) a high absolute agreement on the patient’s distances relative to
the normative distribution, that is, a high absolute agreement
on the patients’ z-scores, measured with the intraclass
correlation coefficient (ICC) and referred to as ICC-z.

The requirements for two methods to yield comparable results
under scenario 2) are given as follows:

i) a high absolute agreement on the absolute volumes, measured
with the intraclass correlation coefficient (ICC) and referred
to as ICC-v;

ii) a high absolute agreement on the patients’ z-scores, measured
with the intraclass correlation coefficient (ICC) and referred
to as ICC-z.

For scenario 2), requirement i naturally results in requirement
ii. The requirements for scenario 2) are stricter than those for
scenario 1). If in scenario 1), an offset or scaling is present in the
volumes of different methods, the resulting patient’s z-score will
be the same because the same method is used for comparing the
patient to the normative distribution. However in scenario 2),
absolute agreement on the volumes is necessary, that is, no offset
or scaling is allowed for comparing the patient to the normative
distribution as an offset or scaling will affect the patient’s z-score.
The next sections describe how the normative distribution was
established, how the correlation and absolute agreement are
measured, and, in the case of scenario 1), how the diagnostic
value of the z-scores was assessed.

2.5.1 Normative Distribution Fitting
We fit an age-dependent normative distribution with the
previously proposed LMS method (Cole and Green (1991)).
This method assumes that the data are standard and normally
distributed after applying the Yeo–Johnson transformation

(Yeo and Johnson (2000)). The method estimates the
λ−parameter of this transformation (L), the median (M), and
coefficient of variation (S) for the appropriate volume at each
age. With these three parameters, z-scores can be computed at
each age. The smoothness of the resulting iso–z-score curves is
influenced by the degrees of freedom δ, a user-defined
parameter. In our experiments, we set the smoothness
parameter δ to a value of 2. We used R-package VGAM for
fitting these iso–z-score curves (Yee, 2010). The value of the
brain region volume may also be influenced by other covariates
than age, for example, gender and height. We correct for these
covariates in the fitting procedure.

2.5.2 Correlation and Absolute Agreement
To verify if scenario 1) is applicable, we first measure the
correlation of the volumes calculated by the methods, with the
Pearson’s correlation coefficient (PCC). We refer to these
correlations as PCC-v. This coefficient is invariant for an
offset and scaling of the data.
To verify if scenario 2) is applicable, we compute the absolute
agreement on the volumes, which was measured with the
intraclass correlation coefficient (ICC). The type of ICC to be
chosen depends on the problem at hand. McGraw and Wong
(1996) give an overview of the possible ICCs. For the presented
experiments, ICC(A,1) is the appropriate absolute agreement
measure (McGraw and Wong, 1996). Let X be an n × k matrix
where each column contains the measurements of a single
method and each row contains the measurements of a single
subject, then ICC(A,1) is given by McGraw and Wong (1996) is
given as follows:

ICC(A, 1) � MSR(X) −MSE(X)
MSR(X) + (k − 1)MSE(X) + k

n (MSC(X) −MSE(X)),
(1)

where MSR(X) is the mean square for rows, MSC(X) is the mean
square for columns, and MSE(X) is the mean square error, which
is defined as follows:

MSE(X) � 1

(n − 1)(k − 1) ∑
nk

i,j�1
[Xij − Xi − Xj + X]

2
, (2)

where Xi � 1
k∑

k
j�1Xij, Xj � 1

n∑
n
i�1Xij, and X � 1

nk∑
nk
i,j�1Xij. We refer

to the absolute agreement on the volumes as ICC-v. The absolute
agreement is maximal (1.0) when the measurements are exactly
the same. When one or more measurements deviate, the absolute
agreement is no longer 1.0 and drops according to how large the
deviation is. A systematic error causing an offset in the
measurements with a magnitude of, for example, the
population standard deviation would lower the absolute
agreement to ∼0.67. Or a scaling of the data by a factor of 1.2
would lower the absolute agreement to ∼0.7. The higher the ICC-
v, the more reasonable it is to interchange methods.

We report all possible pairwise method combinations of PCC-
v and ICC-v for M � 5 methods for each of the S brain regions.
Since the correlation and absolute agreement are determined with
symmetric measures, we present PCC-v and ICC-v of the
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methods in a single 5 × 5 table, for each of the analyzed brain
regions.

2.5.3 Absolute Z-Score Agreement
To further assess the applicability of scenario 1), we also
computed the absolute agreement on the AD patient z-scores
with ICC(A,1). We indicated these values with ICC-z. We present
ICC-z on AD subjects with PCC-v for ND subjects (see Section
2.5.2) in the same table, to facilitate their comparison.

2.6 AUC
To estimate how well the AD patient z-scores discriminate
between normative volumes and patient-specific volumes in
scenario 1), we determine the area under the receiver
operating characteristic curve (AUC) of the z-score. The
z-score was computed, as described in Section 2.5.1. The
expected z-scores for the AD patients are <0, since we expect
their brain structure volume to be lower than normal. We
therefore define the AUC as the probability that a randomly
chosen ND subject will have a higher z-score than a randomly
chosen AD patient. The higher the AUC, the better will be the
discrimination between AD patients and ND subjects. Since not
every region is a known discriminative biomarker for AD, it is not
necessarily expected that the AUC is high for each region. The
hippocampus and amygdala are known to be discriminative
biomarkers for AD, so for these regions, a high AUC is
expected. For the computation of the AUC, only ND subjects
within the age range of the AD patients, [71, 91] years, were
included. A 95% confidence interval was computed by
bootstrapping the z-scores 1,000 times.

3 RESULTS

We used the following rating scale for PCC-v, ICC-v, and ICC-z,
adopted from the rules of thumb in Mukaka (2012):

• Poor: < 0.5
• Fair: 0.5 − 0.7
• Good: 0.7 − 0.9
• Excellent: > 0.9

3.1 Outlier Detection
Method FS failed for nine ND subjects, either by not finishing the
segmentation pipeline or by giving a zero volume output for some
of the analyzed brain regions. Visual inspection of the MRI scans
of these subjects did not show pathology or severe artifacts that
would clearly explain failure. The method EMC failed for one ND
subject, which was due to the failure of the brain extraction tool
(Smith (2002)), which is used at the beginning of the pipeline. The
remainder of the methods provided a segmentation for all images.
The number of outliers per region and method on the remaining
978 subjects is reported in Table 2 Two T1w images of AD
patients were excluded due to large scanning or motion artifacts.
The number of failed segmentations per region andmethod in the
remaining 40 images is shown in Table 3. In one image, there was

a large lesion in the frontal lobe, affecting the segmentation of the
caudate nucleus and accumbens of all methods. In one other
image, the method MBS failed to segment the putamen and
globus pallidus correctly.

3.2 Volume Distributions
Table 4 shows the mean and standard deviation of the volumes of
the ND subjects for each method and region. We performed a
one-way ANOVA test, which showed that the p-values for each
brain structure is p< 0.05, indicating that the volume
distributions differ significantly between the methods. A
multiple comparison post hoc analysis was done with the
Tukey test. This test showed a limited number of non-
significant differences, namely, the amygdala for methods
EMC vs. GIF, the thalamus for methods FS vs. GIF and FS vs.
MBS, and, finally, the putamen for methods FS vs. GIF. All other
pairwise differences were statistically significant. The
hippocampus volume of methods EMC and GIF deviates
substantially from the other methods. The method EMC
deviates due to a different definition of the hippocampus in
the atlases that are used by the methods. The Hammers’ atlas
(Hammers et al. (2003), Gousias et al. (2008)), used by the
method EMC, defines the posterior border of the
hippocampus such that the hippocampus tail is not included
in the definition, whereas the other methods include the
hippocampus tail. The method GIF deviates because it
generally delineates the hippocampus in a larger volume.
These same methods have a smaller average globus pallidus
volume than the other methods. Visual inspection on a
representative subset showed that these methods delineated a
smaller globus pallidus. Methods MALP-EM and MBS calculated
a smaller amygdala than the other methods.

Figure 2 shows the normative brain structure volume
distribution fitted on 978 ND subjects, visualized in iso-z-score
lines, for each method and brain structure. The red scatters show
the volumes of the 40 AD patients, segmented with the same
method as the normative distribution (scenario 1).

3.3 Correlation and Absolute Agreement
Table 5 present PCC-v and ICC-v for each pairwise combination
of the five methods. For most regions, PCC-v was good (≥ 0.75)
and was excellent for the region thalamus (0.91 − 0.97) and good
to excellent for the putamen (0.88 − 0.96).
For the three smallest structures, the hippocampus, amygdala
and globus pallidus, ICC-v was generally poor, with some
exceptions. The combination MALP-EM–MBS scored
relatively high on ICC-v compared to the other method
combinations. Visual inspection on a representative subset
showed that the delineated hippocampus, amygdala, and
globus pallidus for MALP-EM and MBS was similar in
shape, explaining the good ICC-v. For the amygdala, the
combination GIF–EMC also showed a good ICC-v. The
three larger structures, the caudate nucleus and accumbens,
thalamus, and putamen, showed generally higher ICC-vs.
Visual inspection showed that their shape was, on average,
more similar, possibly due to the less irregular shape of these
regions than the smaller regions. Some method combinations
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showed poor ICC-v values for these larger regions, for example,
MBS—EMC and MBS–MALP-EM for the caudate nucleus and
accumbens, and GIF–MALP-EM for the putamen. MALP-
EM–MBS also had a fair PCC-v for the regions caudate nucleus
and accumbens; however, the other combinations showed a good
PCC-v, indicating that the low ICC-v can mainly be explained by a
volume offset and/or scaling.

3.4 Absolute Z-Score Agreement
Table 6 shows ICC-z in the lower left triangle. In the upper-
right triangle, PCC-v of the ND subjects is showed again, for easy
comparison. ICC-z was good to excellent for regions thalamus
(0.75 − 0.94) and putamen (0.83 − 0.96), fair to good for regions
hippocampus (0.56 − 0.81), amygdala (0.65 − 0.88), and globus
pallidus (0.50 − 0.72), and fair to excellent for the caudate nucleus
and accumbens (0.51 − 0.96). The two method combinations with

the lowest PCC-v of the caudate nucleus and accumbens,
MBS–EMC and MBS–MALP-EM, also have the lowest ICC-z.
This is also the case for the globus pallidus, where combinations
EMC–FS and MALP-EM–FS have the lowest PCC-v and the
lowest ICC-v.

3.5 AUC
Table 7 shows the AUC for each method and brain region. The
highest AUCwas achieved for the hippocampus (on average 0.79) and
amygdala (on average 0.78), demonstrating their involvement in AD.
For the thalamus and putamen, the AUC was > 0.5 for all methods,
indicating that these regions are also affected by AD. For the method
GIF, the AUC of regions thalamus and globus pallidus were high
compared to the other methods. The methods FS, MBS, and GIF had
comparable thalamus volumes for the ND subjects, but the AD
thalamus volumes segmented by GIF were, on average, 120mm3

TABLE 2 |Number of outliers in the ND subjects per method for each brain region. The outliers were defined as having an absolute z-score > 5.0, derived with the population
mean and standard deviation. The ten subjects that failed in the in the postprocessing were not included. As the outliers of the methods may overlap, the last column of
the tables indicates the number of subjects included in the statistical analysis.

EMC FS GIF MALP-EM MBS TOTAL N

Hippocampus 0 0 0 0 0 978
Amygdala 0 1 1 0 0 976
Caudate nucleus and accumbens 2 1 0 2 0 975
Thalamus 0 1 0 0 0 977
Putamen 0 2 0 1 0 976
Globus pallidus 0 0 0 0 0 978

EMC is ErasmusMC by Bron et al. (2014), FS is FreeSurfer by Fischl et al. (2002), GIF is geodesic information flows by Cardoso et al. (2015), MALP-EM is multi-atlas label propagation with
expectation–maximization–based refinement by Ledig et al. (2015), and MBS is model-based segmentation by Wenzel et al. (2018).

TABLE 3 | Number of rejected segmentations in the AD subjects per method for each brain region, determined by visual inspection. The two subjects that failed in the
postprocessing were not included. As the outliers of the methods may overlap, the last column of the tables indicates the number of subjects included in the statistical
analysis.

EMC FS GIF MALP-EM MBS Total N

Hippocampus 0 0 0 0 0 40
Amygdala 0 0 0 0 0 40
Caudate nucleus and accumbens 1 1 1 1 1 39
Thalamus 0 0 0 0 0 40
Putamen 0 0 0 0 1 39
Globus pallidus 0 0 0 0 1 39

EMC is ErasmusMC by Bron et al. (2014), FS is FreeSurfer by Fischl et al. (2002), GIF is geodesic information flows by Cardoso et al. (2015), MALP-EM is multi-atlas label propagation with
expectation–maximization–based refinement by Ledig et al. (2015), and MBS is model-based segmentation by Wenzel et al. (2018).

TABLE 4 | Mean (standard deviation) of brain region volumes in mm3 for the ND subjects.

Hippocampus Amygdala Caudate nucleus
and accumbens

Thalamus Putamen Globus pallidus

EMC 3,652 (494) 2,289 (320) 8,428 (1,265) 11,926 (1,637) 8,049 (1,139) 1897 (281)
FS 7,533 (1,166) 2,664 (402) 7,995 (1,154) 12,328 (1,614) 9,008 (1,338) 2,834 (480)
GIF 8,766 (906) 2,284 (269) 7,882 (1,059) 12,581 (1,333) 9,014 (1,090) 1735 (207)
MALP-EM 5,723 (862) 1887 (299) 7,640 (1,568) 13,678 (1,654) 7,427 (1,218) 2,472 (349)
MBS 6,052 (782) 1775 (243) 7,280 (895) 12,422 (1,451) 7,746 (977) 2,561 (304)

EMC is themethod ErasmusMCby Bron et al. (2014), FS is themethod FreeSurfer by Fischl et al. (2002), GIF is themethod geodesic information flows by Cardoso et al. (2015), MALP-EM
is the method multi-atlas label propagation with the expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel
et al. (2018).
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lower than those segmented by MBS and 50mm3 lower than those
segmented by FS. Themethods EMC andGIF had comparable globus
pallidus volumes for theND subjects, but for AD subjects, the volumes
segmented by GIF were, on average, 320mm3 lower than those
segmented by EMC.

3.6 Computational Efficiency
All methods were executed on a Linux Sun Grid Engine (SGE)
computing cluster with eight computing nodes, each having
multiple cores. All methods, except FS, provide an option for

using multiple cores. This is especially efficient for methods
that use multi-atlas registration, where the registrations of
the subjects in the atlas database can run in parallel. In
practice, the method GIF had the longest computation
time, despite the usage of multiple cores. This was mainly
due to the non-rigid image registrations of the 165 images in
the atlas database. The method MBS was most efficient,
needing only a few minutes to segment all 56 regions in a
brain image on a single core. Except for MALP-EM, needing
33 GB of RAM per brain image, the memory usage of the

FIGURE 2 | Normative brain structure volume distribution fitted on 978 ND subjects, visualized in iso-z-score lines from −3 to 3. All volumes are given in mm3 as a
function of age [y]. The columns show volumes of each method, and the rows show the volumes per brain structure. The light gray scatters show the volumes of the ND
subjects, and the red scatters show the volumes of the 40 AD patients, segmented with the samemethod as the normative distribution (scenario 1). The distribution was
corrected for gender and height and is shown here for males of height 170 cm. EMC is the method Erasmus MC by Bron et al. (2014), FS is the method FreeSurfer
by Fischl et al. (2002), GIF is the method geodesic information flows by Cardoso et al. (2015), MALP-EM is the method multi-atlas label propagation with
expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel et al. (2018). The caudate nucleus
and accumbens was shortened to caudate n & a for visualization purposes.
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methods was modest (≤8 GB) for the hardware in modern
computers.

4 DISCUSSION

We evaluated the correlation and absolute agreement on
regional volumes computed with different automated brain
segmentation methods, and the impact of the volume
differences between these methods on single-subject analysis
in a normative modeling framework. We evaluated two
scenarios: 1) The normative volume distributions and the

patient-specific volumes were calculated by the same
method, and 2) the normative volume distributions was
calculated by a different method than the patient-specific
volumes. To this end, we applied five state-of-the-art
automated brain segmentation methods on the T1w MR
brain images of 988 ND subjects, and 42 AD patients
acquired with the same MR acquisition protocol.

The PCC-v showed that the volumes of all regions
correlated well, indicating that volume differences between
methods in ND subjects are mainly due to systematic
differences, such as the usage of different atlases and region
definitions. The ICC-v however was generally low, especially

TABLE 5 | PCC-v (upper-right triangle) and ICC-v (lower-left triangle) of ND volumes.

EMC is themethod ErasmusMCby Bron et al. (2014), FS is themethod FreeSurfer by Fischl et al. (2002), GIF is themethod geodesic information flows by Cardoso et al. (2015), MALP-EM
is the method multi-atlas label propagation with expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel et al.
(2018).
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for the smaller regions, including the hippocampus, amygdala,
and globus pallidus. The low ICC-v indicates that the methods
cannot be interchanged in a normative modeling framework
and scenario 2) is not applicable. This also becomes visually
clear from Figure 2, when comparing the location of the red
dots across graphs in a row.

The ICC-z, with which the agreement on the AD patient
position relative to the normative distribution was measured in
the case of scenario 1), was good to excellent for the thalamus and
putamen, which also showed a good to excellent PCC-v. The
other four regions showed lower ICC-z, indicating that different
methods would result in different AD patient positions relative to
the normative distribution, even when the normative distribution
was computed using the same method as the patient data. A low

PCC-v also seemed to result in a low ICC-z. A high PCC-v
however does not necessarily result in a high ICC-z. This may
indicate that brain morphology changes because AD affects each
method differently.

The AUC, with which the z-score discrimination between the
patient and normative volumes was measured in the case of
scenario 1), was relatively high for the regions hippocampus and
amygdala for all methods, demonstrating the involvement of
these regions in AD. For the method GIF, the thalamus volume
showed to be a better discriminator for AD than the
hippocampus volume, which is unexpected, as this region is
not known for its involvement in AD, and the other methods did
not show such a high AUC for the thalamus. A possible
explanation is that the method GIF is more affected than the

TABLE 6 | PCC-v of the ND volumes (upper-right triangle) and ICC-z of AD volume z-scores (lower-left triangle). The ICC-z is computed according to scenario 1.

EMC is themethod ErasmusMCby Bron et al. (2014), FS is themethod FreeSurfer by Fischl et al. (2002), GIF is themethod geodesic information flows by Cardoso et al. (2015), MALP-EM
is the method multi-atlas label propagation with expectation–maximization–based refinement by Ledig et al. (2015), and MBS is the method model-based segmentation by Wenzel et al.
(2018).
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other methods by the brain morphology change due to AD, such
as larger ventricles.

Several limitations of this study can be highlighted. First, the
segmented results rely strongly on the atlas that was used by the
method. As was shown with the hippocampus, differences in
volume may be largely explained by the atlas and how the
region was defined. For this reason, operationalized and
quantitated landmark differences to help a Delphi panel
converge on a set of landmarks on the hippocampus and
provided a set of manually segmented images for training
models for automatic hippocampus segmentation. In this study
however, we considered the atlas a part of the method, and we did
not study specific atlas-related volume differences. Second, the
number of AD patients was limited, which limits the generalization
of the conclusions drawn from these results. In future studies, a
higher number of AD patients should be used to generalize the
study results. Third, we used images that were acquired on a single
1.5 T scanner with the same acquisition protocol. This allowed us
to study the effect of differences in segmentation methods, while
not considering the confounding effect of differences in acquisition
protocols. Future research should investigate how differences in
acquisition protocols influence the comparison of individual
patients to normative data and to study the generalizability of
our results in more heterogeneous datasets. Previously, tools have
been developed to cope with volumetric differences due to
scanning artifacts. The effectiveness of these tools can be tested
using our research setup with normative data. Finally, we limited
our study to five automatic segmentation methods. Many more
have been previously proposed, and it remains an active area of
research, particularly since the rise of deep learning techniques
(Bao and Chung, 2018; Shakeri et al., 2016). These methods may
achieve higher accuracy and precision, and therefore, the AUC of
the AD patient z-scores may increase. Future studies should
therefore also include deep learning–based approaches.

4.1 Conclusion
In this study, we aimed to answer two research questions: 1) to
what extent are methods interchangeable, as long as the same

method is being used for computing normative volume
distributions and patient-specific volumes? and 2) can
different methods be used for generating normative volume
distributions and patient-specific volumes? Based on the
absolute agreement results on the volume data of 988 non-
demented subjects, we conclude that it is essential that the
same method is used to generate normative volume
distributions and patient-specific volumes. For most regions,
the correlation was good (> 0.75), indicating that volume
differences between methods in ND subjects are mainly due to
systematic differences. When the same method is being used for
generating normative and patient data, we found that the
agreement on the AD patient’s position relative to the
normative distribution (ICC-z) was high for the regions
thalamus and putamen. Our results are encouraging as they
indicate that the studied methods are interchangeable for these
regions. For the regions hippocampus, amygdala, caudate nucleus
and accumbens, and globus pallidus, not all method
combinations showed a high ICC-z. Whether two methods are
indeed interchangeable should be confirmed for the specific
application and dataset of interest.
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of the Sequence of Imaging and
Clinical Biomarker Changes in
Huntington’s Disease
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Jane S. Paulsen4, Rachael I. Scahill 2, Sarah J. Tabrizi 2 and Daniel C. Alexander1
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Psychological Sciences, Faculty of Nursing, Medicine, and Health Sciences, Monash University Clayton Campus, Clayton, VIC,
Australia, 4Departments of Neurology and Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States

Understanding the order and progression of change in biomarkers of neurodegeneration is
essential to detect the effects of pharmacological interventions on these biomarkers. In
Huntington’s disease (HD), motor, cognitive and MRI biomarkers are currently used in
clinical trials of drug efficacy. Here for the first time we use directly compare data from three
large observational studies of HD (total N � 532) using a probabilistic event-based model (EBM)
to characterise the order in which motor, cognitive and MRI biomarkers become abnormal. We
also investigate the impact of the genetic cause of HD, cytosine-adenine-guanine (CAG) repeat
length, on progression through these stages. We find that EBM uncovers a broadly consistent
order of events across all three studies; that EBM stage reflects clinical stage; and that EBM
stage is related to age and genetic burden. Our findings indicate that measures of subcortical
and white matter volume become abnormal prior to clinical and cognitive biomarkers.
Importantly, CAG repeat length has a large impact on the timing of onset of each stage and
progression through the stages, with a longer repeat length resulting in earlier onset and faster
progression. Our results can be used to help design clinical trials of treatments for Huntington’s
disease, influencing the choice of biomarkers and the recruitment of participants.

Keywords: huntington’s disease, biomarkers, disease progression model, multi-study investigation, clinical staging

INTRODUCTION

The development of disease modifying treatments for Huntington’s disease (HD), a fatal
neurodegenerative condition, has taken remarkable steps in recent years. There are a wide range
of clinical trials attempting to validate a treatment for HD currently ongoing, including trials testing
antisense oligonucleotide and micro RNA therapies (Rodrigues et al., 2020). As we move towards
larger Phase III clinical trials, it is imperative that both patient recruitment and endpoint selection are
targeted to ensure trials have high sensitivity to detect the efficacy of pharmacological interventions.
In order to tailor cohorts and clinical trial endpoints for different therapeutic targets, we require a
detailed understanding of candidate biomarkers in HD.

Onset of HD symptoms typically begins in mid-life, with individual genetic burden
determining a large amount of variance in the timing of disease onset (Bates et al., 2015).
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It is clear that imaging and fluid biomarkers are sensitive to
disease-related change many years prior to symptom onset
(Tabrizi et al., 2009; Byrne et al., 2018), although the exact
timing and order of these changes is still being studied.
Imaging biomarkers that measure atrophy in regional
brain volume show some of the largest effect sizes in both
pre-manifest HD (PreHD) and manifest HD compared to
other biomarker candidates, particularly in subcortical
structures (Tabrizi et al., 2012; Tabrizi et al., 2013).
Clinical markers assessing motor symptoms and cognitive
decline typically exhibit disease-related change later than
imaging biomarkers, but are currently used as primary
endpoints since they have a more direct relationship with
the clinical benefit of a therapy. However, when moving into
large phase III trials it is important to select endpoints that
relate closely to the disease stage of the patients, and
biomarkers that are likely to be the most sensitive to
change during this time.

Disease progression models can reveal disease-related
changes at the group and individual levels directly from
observed data (Oxtoby and Alexander, 2017). Here we
focus on the event-based model (EBM), which infers the
order in which biomarkers become abnormal from cross-
sectional data. We have previously applied the EBM in HD to
reveal a sequence of regional brain volume changes in the
TRACK-HD study, a large multi-site study of HD (Wijeratne
et al., 2018). We demonstrated that three subcortical
structures (the putamen, caudate and pallidum) were the
first to become abnormal, followed by regions of the insula,
CSF spaces, and amygdala. We have also applied the EBM to
reveals the sequence of mixed biofluid, imaging and clinical
changes in the HD-CSF study, a smaller single-site cohort
study of HD (Byrne et al., 2018; Rodrigues et al., 2020).

However, these analyses were performed separately, and no
direct comparison was made between studies to determine which
features and findings were consistent. The analysis we present
here is the first cross-study EBM analysis performed in HD (or
any other disease), using data from the three largest imaging
cohort studies in HD: TRACK-HD, PREDICT-HD and IMAGE-
HD (Paulsen et al., 2008; Tabrizi et al., 2013; Poudel et al., 2015).
We also add commonly used phenotypic cognitive and motor
markers to the analysis to compare the stage at which these
become abnormal across cohorts. Furthermore, we investigate the
impact of genetic burden, as measured by cytosine-adenine-
guanine (CAG) repeat length, on progression through the
sequence of events. We therefore provide new information on
the consistency of measurable imaging and clinical biomarker
changes across differing study designs and individual-level
genetic information, which has direct relevance to the design
of multi-centre clinical trials in HD.

MATERIALS AND METHODS

Cohorts
Participants from the PREDICT-HD, TRACK-HD and IMAGE-
HD studies with MRI data collected at three time-points (study

baseline plus two follow-ups) on the same scanner were included in
the study. All scans underwent visual quality control (QC) prior to
inclusion, after which there were 284 participants from four centres
in TRACK-HD; 171 participants from 20 centres in PREDICT-HD;
and 77 participants from one centre in IMAGE-HD. We note that
no participants underwent any disease modifying treatment during
data collection. Table 1 shows the demographic, clinical and
cognitive data at baseline for all cohorts and groups. As noted
previously (Wijeratne et al., 2020), there are differences between the
groups in a number of criteria due to different recruitment strategies.

TRACK-HD Study
Data for TRACK-HD were collected at four centres; Leiden, London,
Paris and Vancouver between 2008–2011 (Tabrizi et al., 2013). HD
gene-carriers were recruited fromHDclinics andwere required to have
a CAG of ≥40. At baseline, 123 controls, 120 PreHD participants and
123HD participants were recruited. PreHD participants were required
to have a burden of pathology score > 250 (calculated as [age x (CAG-
35.5)] (Langbehn et al., 2004), and a UHDRS Total Motor Score
(UHDRS-TMS) (Huntington Study Group, 1996) of less than five,
indicating minor motor symptoms. Manifest HD participants were
required to have a diagnostic confidence level (DCL) of four and a
Total Functional Capacity of seven or more, as measured by the
UHDRS TFC (Huntington Study Group, 1996). 3T T1-weighted scans
were acquired from four scanners (two Siemens, two Philips). The
parameters for Siemens were TR � 2200ms, TE � 2.2ms FOV �
28 cm, matrix size � 256 × 256, 208. For Philips TR � 7.7ms, TE �
3.5ms, FOV � 24 cm, matrix size � 242 × 224, 164. The acquisition
was sagittal to cover the whole-brain. There was a slice thickness of
1mm, with no gap between slices. These acquisition protocols were
validated for multi-site use. The study was approved by the local ethics
committees, and written informed consent was obtained from each
participant.

PREDICT-HD Study
Participants were recruited at 33 global centres, with most
participants either PreHD or healthy controls (Paulsen et al.,
2008). All participants were required to have had genetic testing
(CAG ≥ 39 repeats) independent of the research study. PREDICT-
HD recruited a total of 1,013 PreHD and 301 gene-negative controls
between 2001 and 2012. Participants were excluded from the study
at enrolment if there was a diagnosis of HD or evidence of an
unstable illness, alcohol or drug abuse, a history of special education
or central nervous system disease, a pacemaker ormetallic implants,
anti-psychotic medications prescribed in the previous 6 months or
use of phenothiazine-derivative anti-emetic medication for
3 months or more. MRI acquisition parameters for the
PREDICT-HD scanners included in this analysis are provided in
(Wijeratne et al., 2020). The study was reviewed and approved by
institutional review boards at all study and data processing sites.
Participants underwent informed consent procedures and signed
consents for both participation and to allow de-identified research
data to be sent to collaborative institutions for analysis.

IMAGE-HD Study
IMAGE-HD was a single-centre study which recruited control,
PreHD and manifest HD participants (Poudel et al., 2015). Gene
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carriers had a CAG of ≥ 39 repeats, and PreHD and manifest HD
participants were allocated to each group based on their UHDRS-
TMS, with those having a score of five or less included in the PreHD
group and participants with a score of greater than five included in
the manifest HD group. 108 participants were recruited at baseline,
with imaging data available for 31 PreHD, 31 manifest HD and 29
control participants. Data were collected using a Siemens Magnetom
Tim Trio 3T scanner with a 32 channel head coil. T1-weighted
images were acquired with 192 slices, 0.9 mm slice thickness, 0.8mm
× 0.8 mm in-plane resolution, TE� 2.59ms, TR� 1900ms, flip angle
� 9°. The study was approved by the Monash University and
Melbourne Health Human Research Ethics Committees and
informed written consent was obtained from each participant
prior to testing in accord with the Helsinki Declaration.

Image Analysis
Structural MRI for each participant at baseline plus two follow-ups
were analysed. T1-weighted MRI data at 3T were used from the
TRACK-HD and IMAGE-HDdatasets, and at 1.5T (N� 136) and 3T
(N � 35) from the PREDICT-HD dataset. For each dataset
longitudinal registrations were performed on each participant via
SPM12 using MATLAB version 2012b. The serial longitudinal
registration pipeline was applied to all participants with data from
three consecutive timepoints using default settings (Ashburner and
Ridgway, 2012). This registration process resulted in an average scan
for each participant along with Jacobean deformationmaps. For every
participant, the average scanwas parcellated into 156 regions using the
Geodesic Information Flows (GIF) software (Cardoso et al., 2015).
Each region was then multiplied by Jacobian deformation maps to
create a volumetric map for every region for every time-point.

Bilateral regions were combined across hemispheres as there is
little evidence of hemispheric differences in HD atrophy
(Minkova et al., 2017; Minkova et al., 2018). To enable
interpretation of our results, we included a subset of
biomarkers in this analysis based on HD pathology. These
were the putamen, caudate, pallidum, lateral ventricles and
global white matter. Total intracranial volume was calculated
as the sum of cerebrospinal fluid (CSF), cortical gray matter, deep
gray matter, and white matter (WM). All scans, registrations and
segmentations underwent visual QC to remove scans due to poor
quality defacing that was conducted on the MRI scans, or failures
in registration and segmentation, or due to other pathology.

Other Variables
To facilitate further comparison among the three studies, three
additional measures of phenotypic progression from the Unified

Huntington’s Disease Rating Scale (UHDRS) that were available
from all three cohorts were included. The UHDRS Total Motor
Score (TMS) was used to measure motor symptoms
(Huntington Study Group, 1996). Two cognitive scores from
the UHDRS—the symbol digit modalities test (SDMT) (Smith,
1991) and stroop word reading test (SWRT) (MacLeod, 1991)—
were used as cognitive outcome measures, and CAG repeat
length was used to quantify approximate lifetime genetic
burden.

Covariates
All imaging and clinical variables were adjusted for covariates
(age, sex, site) by regressing against the HC samples in each
study separately. In addition, the imaging variables in the
PREDICT-HD cohort were adjusted for field strength; the
imaging variables in all studies were adjusted for total
intracranial volume; and the clinical variables in all studies
were adjusted for level of education.

Event-Based Model of Disease Progression
We use the event-based model (EBM; Fonteijn et al., 2012;
Young et al., 2014) to infer the sequence of imaging and
clinical biomarker changes in each study cohort. The EBM
defines disease progression as an ordered sequence of
abnormality events, which correspond to the transition of
a biomarker from a healthy to abnormal state. To infer the
most likely sequence of events across the population, the
EBM fits healthy and abnormal distributions for each marker
separately and makes the assumption of monotonic
biomarker change. This assumption is reasonable for
many biomarkers in progressive diseases, and in
particular the imaging and clinical markers we use in this
analysis.

Here we use non-parametric kernel density estimate
mixture models (Firth et al., 2020) to fit the healthy and
abnormal biomarker distributions, as they are more flexible
than Gaussian mixture models. We fit these models to
baseline data from the TRACK-HD cohort, as it provides
the best sampling of HC (i.e., healthy) and HD
(i.e., abnormal) groups (Supplementary Figure S1 for the
distributions and fits). We then use these mixture models to
infer the most likely sequence, S, for each study separately
using their respective baseline cohorts, and estimate the
uncertainty in the sequence ordering using Markov chain
Monte Carlo sampling of the model posterior. After inferring
S, we can obtain a model-based disease stage by calculating

TABLE 1 |Demographic data for the PREDICT-HD, TRACK-HD and IMAGE-HD participants at baseline. Acronyms used: HC � healthy control, PRE � preHD, HD �manifest
HD, P � PREDICT, T � TRACK, I � IMAGE. TIV � Total Intracranial volume, TMS � UHDRS Total Motor Score, DCL � Diagnostic Confidence Level, TFC � UHDRS Total
Functional Capacity, DBS �Disease Burden Score, SDMT � Symbol Digit Modalities Test, SWRT � StroopWord Reading Test. A value of “-” indicates that the data were not
available.

HC_P HC_T HC_I PRE_P PRE_T PRE_I HD_P HD_T HD_I

Age 45.1 ± 10.9 46.3 ± 10.4 43.3 ± 13.6 41.8 ± 11.0 41.2 ± 8.9 39.3 ± 8.2 46.5 ± 10.7 48.5 ± 9.3 53.0 ± 7.9
Sex 25:11 58:42 17:5 85:47 55:49 15:13 3:0 43:37 7:19
TIV (l) 2.07 ± 0.2 2.12 ± 0.22 2.14 ± 0.23 2.01 ± 0.19 2.15 ± 0.22 2.05 ± 0.19 1.89 ± 0.08 2.09 ± 0.19 2.15 ± 0.28
CAG 20.44 ± 3.5 — — 42.4 ± 2.7 43.0 ± 2.3 42.7 ± 2.0 43.3 ± 4.2 43.8 ± 3.0 42.9 ± 2.1
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the likelihood distribution over all stages for a given
individual. We then take the maximum likelihood stage as
the inferred individual-level stage.

Statistical Models of Progression
To interrogate the relationship between EBM stage and
genetic burden, as specified by an individual’s CAG repeat
length, we build polynomial mixed effects regression models.

Specifically, we regress the inferred individual-level EBM
stage against age at each time-point (not just baseline) for
each CAG group separately, with individual-level random
intercepts. Instead of taking the maximum likelihood EBM
stage, here we take the weighted average stage, as it
accommodates uncertainty in the staging; as such, the
stage is a continuous measure We construct both linear
and quadratic mixed effects models for each CAG group,

FIGURE 1 | Left column: positional variance diagrams showing the estimated order of regional brain volume and clinical marker abnormality events in
PreHD and manifest HD patients at baseline, from the TRACK-HD, PREDICT-HD and IMAGE-HD cohorts separately. The heatmaps indicate the magnitude of
the probability of the ordering; dark diagonal boxes indicate strong event ordering, and lighter indicate possible event permutations with strength proportional
to the off-diagonal boxes. Right column: individual-level disease stage for each group in each cohort, predicted by the EBM sequence fit to each cohort
separately.
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and select the model that provides the best fit as quantified by
the size of the confidence intervals.

RESULTS

Event Sequences Are Consistent Across
Studies
We find sequences of clinical and imaging events that are
remarkably consistent across all three studies (Figure 1 left
column). For all three studies, the imaging biomarkers were
placed before the clinical biomarkers with the exception of the
lateral ventricles, which were positioned either last or second last
for all cohorts. TMS was the fifth marker to become abnormal for
all three cohorts, with SDMT and SWRT in variable positions
after TMS. To quantify the similarity between event sequences,
we calculated the Kendall’s tau distance between each sequence
separately, which returned values of 0.5 (TRACK-HD vs.
PREDICT-HD, IMAGE-HD vs. PREDICT-HD) and 0.57
(TRACK-HD vs. IMAGE-HD), indicating positive correlations
across all studies.

Event-Based Model Stage Reflects Clinical
Stage
We find that EBM successfully stages individuals according to
their clinical stage (HC, PreHD, or HD) in all three studies, when
taking the maximum likelihood stage for each individual
(Figure 1 right column). As expected, the HC group is staged

at or near zero, the PreHD group at intermediate stages, and the
HD group across the later stages. The only exception is in the HD
group in the PREDICT-HD cohort, where two of the three HD
individuals are staged at zero; this is due to a combination of
mismeasurement in the insula white matter and control-like
clinical measurements for one individual, and mostly control-
like volumetric and clinical measurements for the other
individual.

Event-Based Model Stage Is Related to Age
and Genetic Burden
We find that EBM stage and rate of progression depends on age
and CAG length, with higher CAG lengths resulting in faster
progression through the sequence (Figure 2). We can use the
regression models shown Figure 2 to calculate the average group-
level age at each event as a function of CAG repeat length. We
denote the onset of motor symptoms as equivalent to the event at
which TMS becomes measurably abnormal (stage 5). Note that
the dependency of motor onset on CAG is not smoothly
monotonic (in particular CAG � 46); this is due to small
sample sizes for these CAG lengths causing variability in the
regression fits.

DISCUSSION

Here we applied a disease progression model, the EBM, to infer
the patterns of change in brain and cognitive markers across

FIGURE 2 | EBM stage as a function of age and CAG repeat length, for PreHD participants with at least one follow-up across all years in the PREDICT-HD, TRACK-
HD and IMAGE-HD cohorts. Polynomial mixed effects models are fit to each CAG group separately, which are coloured from low CAG repeat count in light yellow to high
CAG repeat count in dark red, with the CAG repeat count denoted by integer values at the end of the curves. Stages are ordered along the vertical axis according to the
ordering obtained by the EBM applied to the TRACK-HD cohort (Figure 1). The stage at which TMS becomes measurably abnormal is indicated by a black
horizontal line (stage 5).
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multiple cohorts in HD, and evaluated the consistency and
genetic correlation of these changes. This is the first such
cross-study model analysis in HD, and our findings suggest
that the measurable changes in imaging and clinical volumes
are largely independent of study protocols and cohort
inclusion criteria. This has implications for large multi-
centre clinical trials, which are necessary in HD due to its
low prevalence, and suggests that the imaging and clinical
biomarkers used in this analysis are suitable candidates for
tracking disease progression.

Previously, we demonstrated that subcortical volumes become
abnormal prior to other brain regions, which was supportive of the
HD literature (Tabrizi et al., 2013; Byrne et al., 2018; Rodrigues
et al., 2020). By applying the EBM to multiple cohorts we
demonstrated that subcortical imaging biomarkers become
abnormal prior to clinical markers. Across the three cohorts, the
position of the caudate, pallidum, putamen and insula white matter
varied in their position, but were consistently placed prior to
clinical markers. The lateral ventricles were placed last
(TRACK-HD, PREDICT-HD) or second to last (IMAGE-HD).
The three non-imaging biomarkers are all ranked after the
subcortical and white matter measures, with TMS first of these
measures in all three cohorts. The differences in the relative
positions of each imaging change across studies may be due to
subtle between-sample variances related to cohort characteristics or
imaging acquisitions, but by analyzing all data via the same
imaging pipeline we can rule out the effects of different post-
processing procedures. These results highlight the importance of
using imaging biomarkers in clinical trials recruiting PreHD and
early manifest HD participants, as clinical changes may not be
sensitive enough to detect the pharmacological impacts of a
therapy. Currently, the majority of clinical trials are focussed on
manifest HD patients, but the end-goal of a number of therapeutic
approaches is to treat PreHD individuals in order to delay or halt
symptom onset. Trials for PreHD patients are unlikely to detect
significant changes in clinical endpoints, and thus should also
include imaging biomarkers as priority endpoints. The nature of
these endpoints may vary dependent on the pharmaceutical
mechanisms, but our results suggest that there are a variety of
candidate regions available that change prior to clinical measures.

Importantly, we also demonstrate that the rate of progression
through these stages is largely dependent on CAG repeat length,
with wide variation seen in the age at which HD gene carriers
with different CAG repeat lengths might be expected to pass
through each stage. Our analysis of the link between CAG
length, age and progression through the stages of our EBM
suggest that those with shorter CAG repeat lengths undergo
slower progression than those with longer CAG lengths. While
this is supportive of previous work (Penney et al., 1997; Ruocco
et al., 2008; Langbehn et al., 2011; Henley et al., 2012; Langbehn
et al., 2019), Figure 2 demonstrates how significantly this varies.
Those with a CAG repeat length of 49 are expected to have
abnormal sub-cortical and WM volumes by approximately 27 ±
2 years of age, while those with a CAG repeat length of 40 are
estimated to be approximately 70 ± 5 years of age at the same
stage. This large variability indicates that participants with
larger CAG repeat lengths are expected to show faster

progression during a clinical trial, and this should be
considered during recruitment and treatment evaluation.

There are limitations to the analysis we present here. Firstly,
we do not include biofluid biomarkers, such as neurofilament
light, since these measures are only available for a limited
selection of TRACK-HD data, and not at all for PREDICT-
HD and IMAGE-HD. However, in previous work we
demonstrate that these markers appear to be the first to show
abnormalities in HD (Byrne et al., 2018; Rodrigues et al., 2020). In
addition, we limited our investigation to a subset of available
imaging biomarkers. This was done to aid interpretation, but
different pharmacological mechanisms may require the
consideration of other biomarkers not included here.
Methodologically, we applied the basic cross-sectional EBM
and hence were only able to recover the order of events, but
not the time between them. Future work will use the recently
developed temporal EBM (Wijeratne and Alexander, 2020) to
properly leverage longitudinal data, allowing the time between
events to be estimated. Finally, the basic EBM only considers a
single sequence across the whole sample; it would be interesting
to apply the subtyping version of the EBM (SuStaIn; Young et al.,
2018) to investigate the possibility of multiple within-cohort
subtypes.

By applying the EBM to multiple HD cohorts, we have
confirmed that imaging biomarkers become abnormal prior to
clinical and cognitive markers, and that there is large variation
due to CAG repeat length in the age at which these markers
become abnormal. By understanding both the sequence of
changes in these markers and the correlation between the
predicted individual-level stage and genetic burden,
biomarkers can be more effectively selected for clinical trials
in HD.
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Subtype and Stage Inference (SuStaIn) is an unsupervised learning algorithm that uniquely
enables the identification of subgroups of individuals with distinct pseudo-temporal
disease progression patterns from cross-sectional datasets. SuStaIn has been used to
identify data-driven subgroups and perform patient stratification in neurodegenerative
diseases and in lung diseases from continuous biomarker measurements predominantly
obtained from imaging. However, the SuStaIn algorithm is not currently applicable to
discrete ordinal data, such as visual ratings of images, neuropathological ratings, and
clinical and neuropsychological test scores, restricting the applicability of SuStaIn to a
narrower range of settings. Here we propose ‘Ordinal SuStaIn’, an ordinal version of the
SuStaIn algorithm that uses a scored events model of disease progression to enable the
application of SuStaIn to ordinal data. We demonstrate the validity of Ordinal SuStaIn by
benchmarking the performance of the algorithm on simulated data. We further
demonstrate that Ordinal SuStaIn out-performs the existing continuous version of
SuStaIn (Z-score SuStaIn) on discrete scored data, providing much more accurate
subtype progression patterns, better subtyping and staging of individuals, and
accurate uncertainty estimates. We then apply Ordinal SuStaIn to six different sub-
scales of the Clinical Dementia Rating scale (CDR) using data from the Alzheimer’s
disease Neuroimaging Initiative (ADNI) study to identify individuals with distinct patterns
of functional decline. Using data from 819 ADNI1 participants we identified three distinct
CDR subtype progression patterns, which were independently verified using data from
790 ADNI2 participants. Our results provide insight into patterns of decline in daily activities
in Alzheimer’s disease and a mechanism for stratifying individuals into groups with
difficulties in different domains. Ordinal SuStaIn is broadly applicable across different
types of ratings data, including visual ratings from imaging, neuropathological ratings and
clinical or behavioural ratings data.
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INTRODUCTION

Characterisation of disease progression patterns and
heterogeneity among individuals can provide fundamental
insights into the biology of a disease and is key to developing
tools for patient stratification that can support precision medicine
and healthcare. Disease progression models (Fonteijn et al., 2012;
Jedynak et al., 2012; Donohue et al., 2014; Oxtoby et al., 2014;
Young et al., 2014; Bilgel et al., 2016; Iturria-Medina et al., 2016;
Schiratti, 2017; Koval et al., 2018; Li et al., 2018; Marinescu et al.,
2019; Venkatraghavan et al., 2019; Firth et al., 2020) reconstruct
the long-term temporal evolution of disease biomarkers from
cross-sectional or short-term longitudinal data, enabling
diagnosis, prognosis and stratification from biomarker
measurements. In contrast to supervised machine learning
techniques such as classification, which focus on a single
disease stage, disease progression models infer fine-grained
temporal patterns, providing the ability to generalise across
disease stages and quantify disease trajectories in previously
unseen detail. Disease progression models were primarily
developed for use in Alzheimer’s disease, where the decades-
long disease process prevents the collection of long-term
datasets that span the full disease time course, but they are
increasingly being applied in other neurodegenerative diseases,
such as Multiple Sclerosis (Eshaghi et al., 2018) and
Huntington’s disease (Wijeratne et al., 2018) and other long-
term chronic conditions, such as respiratory diseases (Young
et al., 2020b). However, the majority of disease progression
modelling techniques rely on the assumption that all individuals
follow a single common disease progression pattern, and so are
unable to model disease subtypes which are prevalent in many
diseases, and particularly in neurodegenerative diseases.
Clustering identifies disease subgroups (Whitwell et al., 2009;
Nettiksimmons et al., 2010, 2013, 2014; Noh et al., 2014; Racine
et al., 2016; Zhang et al., 2016; Ferreira et al., 2020; Habes et al.,
2020), providing new insights into disease heterogeneity, but
lacks the ability to generalise across different disease stages, and
so is unable to distinguish heterogeneity arising from differences
in disease stage from heterogeneity due to the presence of
disease subtypes.

The Subtype and Stage Inference (SuStaIn) algorithm (Young
et al., 2018) allows disease progression modelling to be used in
combination with clustering to identify subgroups of individuals
with distinct disease trajectories. SuStaIn simultaneously clusters
individuals into subgroups and characterises the trajectory that
best defines each subgroup, thus capturing heterogeneity in both
disease subtype and disease stage. The SuStaIn algorithm has been
applied in a range of conditions including Alzheimer’s disease
(Young et al., 2018; Aksman et al., 2020; Garcia et al., 2020; Vogel
et al., 2021), frontotemporal dementia (Young et al., 2018; Young
et al., 2020a), Multiple Sclerosis (Eshaghi et al., 2020) and
Chronic Obstructive Pulmonary disease (Young et al., 2020b).
From a mathematical perspective any disease progression model
can be used in combination with SuStaIn, but in practice some
disease progression models may be unfeasibly computationally
intensive. Two disease progression models have been used with
SuStaIn to date: the event-based model (Fonteijn et al., 2012;

Young et al., 2014; Firth et al., 2020) and the piecewise linear
z-score model (Young et al., 2018). The event-based model
describes disease progression as a series of events, where each
event corresponds to a new biomarker becoming abnormal. The
piecewise linear z-score model describes disease progression as a
series of stages, with each stage corresponding to a biomarker
linearly increasing to a new z-score relative to a control
population. The advantage of each of these two models is that
they are not too computationally intensive and work with purely
cross-sectional data, enabling SuStaIn to perform stratification
based on a single visit.

As is the case with most disease progression models, the
disease progression models used in combination with SuStaIn
to date are designed to take continuous biomarker
measurements as input, for example those derived from
blood or fluid samples or medical imaging. Whilst
continuous measures offer fine-scaled resolution and so can
provide high precision, discrete ordinal data, such as visual
ratings of images, neuropathological ratings, and clinical and
neuropsychological test scores can provide unique and
complementary information. Clinical and cognitive test
scores, for example, are widely collected in clinical settings
and directly measure skills and symptoms that affect an
individual’s quality of life and reflect the severity of their
disability. Meanwhile, neuropathological ratings offer direct
measurement of disease pathologies, and thus can provide
unique insights into the disease biology not possible with other
techniques. Where imaging is used in a clinical setting, visual
ratings of images are often already integrated into the clinical
workflow, and thus can underpin diagnostic, prognostic and
stratification tools that are more readily integrated into clinical
practice. However, such measurements are not readily
analysable by the majority of disease progression models,
and neither of the disease progression models currently
available for use with SuStaIn accommodate discrete ordinal
data. The event-based model (Fonteijn et al., 2012; Young
et al., 2014; Firth et al., 2020) doesn’t model different severity
levels, instead assuming each event is a transition from
‘normal’ to ‘abnormal’. The piecewise linear z-score model
(Young et al., 2018) doesn’t allow for discrete data as it
describes continuous biomarker trajectories with gaussian
noise. There is a need for the development of disease
progression modelling techniques that can be used on
discrete ordinal data to enable a broader range of analyses
to be carried out on these data types, in line with the techniques
already available for continuous data.

Here we introduce the scored events model, allowing SuStaIn
to be used with ordinal data. The scored events model describes
disease progression as a series of events, where each event
corresponds to a biomarker transitioning to a new score. We
term the resulting algorithm ‘Ordinal SuStaIn’. We verify the
validity of Ordinal SuStaIn on simulated data, and that it out-
performs the alternative option of using the existing piecewise
linear z-score model (‘Z-score SuStaIn’) on ordinal data. We then
demonstrate Ordinal SuStaIn by characterising heterogeneous
trajectories of decline in subcategories of the Clinical Dementia
Rating (CDR) scale.
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MATERIALS AND METHODS

The Scored Events Model
We propose a scored events model to describe disease
progression in Ordinal SuStaIn. The scored events model
describes disease progression as a series of events, where
each event corresponds to the transition of a biomarker to a
new score. The occurrence of an event Eiw in biomarker i for
score w is informed by the measurements xij of biomarker i in
subject j, where each biomarker has its own set of scores
wir � wi1 . . . wiWi, and starts from a minimum score wi0.
The whole data set X � {xij

∣∣∣∣i � 1 . . . I, j � 1 . . . J} is the set
of measurements of each biomarker in each subject. The most
likely ordering of the scored events is the sequence S that
maximises the data likelihood

P (X|S) � ∏
J

j�1
⎡⎣∑

K

k�0
P(k)∏

I

i�1
P(xij

∣∣∣∣Eiw)⎤⎦ ,

where w � s(i, k) is the score reached by biomarker i at stage k in
the sequence S; at stage 0, w � wi0 for all biomarkers. The
number of stages K is defined by the number of scored events

included in the model, K � 1 + ∑I
i�1 Wi, i.e., the total number of

scores included across all biomarkers. The form of the

distribution P(xij
∣∣∣∣Eiw) is fully flexible and can be chosen by

the user. The scored events model simply takes as input the
probability each datapoint has each score: for each
measurement xij of biomarker i in subject j the user specifies
the probability P(xij

∣∣∣∣Eiw) that the ‘true’ score of measurement xij
is Eiw for each score w as a matrix with dimensions J ×Wi for
each biomarker i. Here we use a categorical distribution (see
Figure 1 for a visualisation) where

P(xij|Eiw) �
⎧⎪⎪⎨
⎪⎪⎩

p if xij � w

1 − p
Wi

if xij ≠w

thus p indicates the proportion of correctly scored individuals for
each biomarker, and all other scores are assumed to be equally
probable.

Ordinal SuStaIn
The SuStaIn algorithm (Young et al., 2018) assumes a dataset
consists of c clusters of individuals (subtypes) that undergo a
common disease progression pattern, Sc. Each individual is a
sample of an unknown subtype c at an unknown stage k along the
disease progression pattern for that subtype. SuStaIn
simultaneously optimises subtype membership and subtype
progression patterns (which describe the stages of the disease).
SuStaIn fits an increasing number of clusters up to a user-defined
maximum, using Markov Chain Monte Carlo (MCMC) sampling
to obtain samples of the progression pattern for each subtype,
providing an estimate of the posterior distribution of each
subtype progression pattern. Information criterion can be used
to choose the optimal number of clusters by evaluating the
number of clusters that best balances accuracy and complexity,
such as the Cross-Validation Information Criterion used in
(Young et al., 2018). Our proposed Ordinal SuStaIn algorithm
uses the scored events model detailed above to describe the
evolution of biomarkers at different stages. To this end,
Ordinal SuStaIn uses the same implementation of the SuStaIn
algorithm as in (Young et al., 2018), but replaces the data
likelihood P(X|Sc) for each subtype c with that of the scored
events model described above.

Simulated Data
We generated a series of simulated datasets to test the
performance of Ordinal SuStaIn. To generate each dataset we
randomly chose C subtype progression patterns, each described
by a sequence S in which a set of scored events occur. We fixed the
expected proportion πc of individuals belonging to each subtype c
to be

πc � C − c + 2

∑C
c�1 [C − c + 2],

or equivalently,

πC−c+1 � c + 1

∑C
c�1 [c + 1],

such that the proportion of individuals in each subtype decreased
from the most prevalent subtype c � 1 to the least prevalent

FIGURE 1 | Illustration of simulation settings. Subfigure (A) shows P(xij
∣∣∣∣Eiw) for the default proportion of correctly scored individuals p � 0.9. Subfigure (B) shows

P(xij
∣∣∣∣Eiw) for the setting p � 0.75. P(xij

∣∣∣∣Eiw) can also be set to vary for each biomarker i and/or subject j. Subfigure (C) shows the expected number of datapoints for each
stage of each subtype for each simulation setting.
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subtype c � C. We then randomly assigned j � 1 . . . J individuals to
c � 1 . . .C subtypes and k � 0 . . .K stages, using a weighted
random sampling of subtype membership cj based on the
proportion πc of individuals belonging to each subtype, and a
uniform random sampling of stage kj. The set of expected
biomarker scores for each individual Wj � {wi ∀ i where wi �
s(i, kj) if kj > 0 and wi � wi0 if kj � 0} was then evaluated and
each individual’s biomarker data Xj was then sampled according
to the categorical distributionP(xij � wij) � p and P(xij ≠wij) � 1−p

Wi
,

such that P(xij
∣∣∣∣Eiw) follows the categorical distribution described

above, as illustrated in Figures 1A,B. In our experiments we varied
the number of biomarkers I, number of subjects J , number of
subtypes C, proportion of correctly scored individuals p and a
proportion of misdiagnosed individuals f who followed random
subtype progression patterns not included in the simulated set of
sequences S. By default we fixed the simulation settings to I � 10,
J � 250, C � 2, p � 0.9, and f � 0, varying each setting in turn to
test settings of I � [5, 10, 15], J � [100, 250, 500],
C � [1, 2, 3, 5], p � [0.75, 0.9], and f � [0, 0.05, 0.1]. We
fixed the number of scored events to Wi � 3 for all biomarkers i.
Each experiment was performed three times for different randomly
chosen subtype progression patterns and simulated datasets. The
expected number of datapoints for each stage of each subtype varies
across the different simulation settings, as illustrated in Figure 1C.

Comparison With Z-Score SuStaIn
We performed one further simulation in which we used the
default settings to generate simulated data but used Z-score
SuStaIn rather than Ordinal SuStaIn to estimate the subtype
progression patterns and subtypes and stages of individuals.
Z-score SuStaIn uses a piecewise linear z-score model of
disease progression, which describes disease progression as a
series of events, where each event corresponds to a biomarker
reaching a new z-score relative to a control population. The data
in the control population is assumed to be normally distributed
and the data is z-scored using this control population such that
the control population has a mean of 0 and standard deviation of
1. In the piecewise linear z-score model, the biomarkers start at 0
(at stage 0), accumulating linearly between z-score events (each of
which corresponds to a new stage) and accumulate to a final
maximum z-score (reached at the last stage). The z-score events
and the maximum z-score are specified by the user. To apply
Z-score SuStaIn we z-scored the data using a control population
consisting of individuals assigned to stage 0 in each experiment.
The z-score events in Z-score SuStaIn were set to be the same as
those in Ordinal SuStaIn by z-score transforming the score
corresponding to each scored event. The maximum z-score
was set to be the same as the maximum score of the scored
event model by z-score transforming the maximum scores.

Performance Evaluation: Progression
Pattern Estimation
We estimated the most probable progression pattern Sc from the
MCMC samples of the progression pattern by ordering the scored
events according to their mean position in the sequence across
samples. We measured the accuracy of the subtype progression

patterns by calculating the average Kendall rank correlation τ
(Kendall, 1945) between the most probable subtype progression
patterns Sc estimated by SuStaIn and the ground truth subtype
progression patterns Ŝc in each simulation. This is computed as

τ � P − Q��������������������(P + Q + T)(P + Q + U)√ ,

where P is the number of concordant pairs, Q is the number of
discordant pairs, T is the number of ties in Sc, and U is the number of
ties in Ŝc. Correspondence between the ground truth and simulated
subtypes was achieved by matching each simulated subtype
progression pattern Sc with the most similar ground truth subtype
progression pattern Ŝc. In nearly all experiments this was equivalent to
matching the ground truth and simulated subtype progression
patterns based on the proportion of individuals belonging to each
subtype. The exception was for experiments with C � 5 subtypes in
which the fraction would sometimes be swapped between subtypes of
similar sizes, and so matching the subtype progression patterns based
on their correspondence with the ground truth ensured that
correspondence was achieved between subtypes of similar sizes. We
estimated the confidence in the position assigned to each scored event
by evaluating the proportion of MCMC samples in which each scored
event appeared in the same position as in the most probable
progression pattern. We evaluated the accuracy of the confidence
estimate by determining whether the ground truth position of each
scored event fell within the 95% confidence estimates output by
SuStaIn. To do this we tested whether the ground truth position of
each scored event was within two standard deviations of the estimated
mean position of each scored event across MCMC samples.

Performance Evaluation: Subtyping and
Staging
We computed the probability each individual belonged to each
subtype and stage by computing the probability they belonged to
each subtype (summed over stage) and stage (summed over subtype)
for each MCMC sample and then averaging over MCMC samples,
thus taking into account the uncertainty in the progression pattern of
each subtype. We then assigned each individual to their most
probable subtype and most probable stage. We estimated the
confidence of the subtype and stage assignments by evaluating
the probability of the subtype and stage that each individual had
been assigned to. We evaluated the accuracy of the confidence
estimates by determining whether the ground truth subtype and
stage of each individual fell within the 95% confidence estimates
output by SuStaIn. To do this we tested whether the ground truth
subtype of each individual was assigned an average probability of at
least 0.05, and whether the ground truth stage of each individual had
a cumulative probability of more than 0.025 and less than 0.975.

Performance Evaluation: Number of
Subtypes
When comparing the estimated subtype progression patterns and
subtype and stage assignments with the ground truth, we fixed the
number of subtypes to be the same as the ground truth number of
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subtypes to enable a direct comparison. To give an indication of
the accuracy of the number of subtypes estimated by SuStaIn we
fitted up to C + 1 subtypes in each experiment. We then evaluated
whether the 95% confidence intervals of the overall model
likelihood (obtained from the MCMC samples of the model
likelihood) for the ground truth number of subtypes C
overlapped with the 95% confidence intervals of the overall
model likelihood for one less (C − 1) subtype and one more
(C + 1) subtype than the ground truth number of subtypes. We
considered SuStaIn to underestimate the number of subtypes if
the 95% confidence intervals of the C subtypes model likelihood
overlapped the confidence intervals for C − 1 subtypes, or if the
average model likelihood was greater for C − 1 subtypes. We
considered SuStaIn to overestimate the number of subtypes if the
average model likelihood was greater for C + 1 subtypes than C
subtypes, and the 95% confidence intervals of the model
likelihood for C + 1 subtypes didn’t overlap the confidence
intervals for C subtypes.

Alzheimer’s Disease Neuroimaging
Initiative Data
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical
companies and non-profit organisations, as a $60 million,
5 years public-private partnership. For up-to-date information,
see http://www.adni-info.org. Written consent was obtained from
all participants, and the study was approved by the Institutional
Review Board at each participating institution.

CDR sub-scores (Hughes et al., 1982; Morris, 1993) from 819
participants in ADNI1 and 790 participants in ADNI2 were
collated to obtain two independent datasets measuring sub-
scores of memory, orientation, judgement, community, home
and personal care. Each CDR sub-score can be assigned a score of
0 (no impairment), 0.5 (questionable impairment), 1 (mild
impairment), 2 (moderate impairment) or 3 (severe
impairment). Of the 819 ADNI1 participants, 229 were
cognitively normal, 397 had mild cognitive impairment and
193 had a dementia diagnosis. Of the 790 ADNI2 participants,
293 were cognitively normal, 349 had mild cognitive impairment
and 148 had a dementia diagnosis. We further collated follow-up
CDR sub-scores at 6, 12, 18, 24 and 36 months follow-up visits to
test the longitudinal consistency of the subtypes and stages
assigned by Ordinal SuStaIn.

We ran Ordinal SuStaIn separately on baseline data from each
of the ADNI1 and ADNI2 studies to obtain two independent
estimates of CDR subtype progression patterns. We set the
proportion p in P(xij|Eiw) with an accurate score to 0.75 for
each sub-score, based on the inter-rater reliability of CDR scores
in the literature (Schafer et al., 2004). None of the ADNI
participants had a score of three on any CDR sub-scale and so
this score was excluded from the scored events model. We
selected the optimal number of subtypes by performing three-

fold cross-validation in each dataset and evaluating the Cross-
Validation Information Criterion (Gelman et al., 2014; Young
et al., 2018).

Individuals were assigned to subtypes and stages at baseline
and at follow-up visits using Ordinal SuStaIn, with the subtyping
and staging being performed independently in each dataset
(i.e., using the subtype progression patterns estimated from
the baseline data in each dataset separately). Subtypes were
considered to be longitudinally consistent between a pair of
visits if both visits were labelled as the same subtype. Stages
were considered to be longitudinally consistent between a pair of
visits if the stage either remained the same or increased at the later
of the two visits.

RESULTS

Simulated Data: Progression Pattern
Figure 2A shows the accuracy of SuStaIn for estimating subtype
progression patterns under different simulation settings. In
general, Ordinal SuStaIn gave a good accuracy across all
settings, with a Kendall rank correlation between the estimated
subtype progressions and the ground truth of >0.63 for all
settings. When comparing Ordinal SuStaIn and Z-score
SuStaIn under the default settings, the Kendall rank
correlation using Z-score SuStaIn was only 0.33, compared to
0.95 for Ordinal SuStaIn. The confidence estimates of the position
of each scored event provided by Ordinal SuStaIn (Figure 2B)
gave a good indication of the true accuracy of the estimated
progression patterns measured against the ground truth
(Figure 2B reflects the trend in Figure 2A). Likewise,
Figure 2C shows that the ground truth position of each
scored event was generally within the 95% confidence intervals
estimated by Ordinal SuStaIn for at least 95% of scored events
(minimum of 94%, maximum of 100%). The confidence intervals
obtained using Z-score SuStaIn were much less accurate with only
69% of the ground truth positions of the scored events being
within the 95% confidence intervals estimated by Z-score
SuStaIn.

The Kendall rank correlation between the estimated
progression patterns and the ground truth varied substantially
with different simulation settings. The Kendall rank correlation
decreased substantially when the number of biomarkers was set to
I � 15 compared with I � 5 and I � 10, when the number of
subjects was set to J � 100 rather than J � 250 and J � 500, when
the number of clusters was set to C � 3 or C � 5 rather than C � 1
or C � 2, and when the proportion of correctly scored individuals
was set to p � 0.75 compared to p � 0.9. As shown in Figure 3A,
increasing the number of biomarkers, decreasing the number of
subjects and increasing the number of clusters all reduce the
number of datapoints per subtype and stage combination, with
this decrease in sample size correlating with the decrease in the
accuracy of the progression pattern. Figure 3A also shows that
decreasing the proportion p of individuals that are scored
correctly from p � 0.9 to p � 0.75, which makes the data
noisier, further decreases the accuracy of the estimated
progression patterns in addition to the effect of sample size.
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FIGURE 2 | Performance of SuStaIn for recovering progression patterns. (A) Accuracy of Ordinal SuStaIn for recovering the ground truth subtype progression
patterns, (B) the confidence SuStaIn assigned to the estimated subtype progression patterns, and (C) the accuracy of the confidence intervals SuStaIn assigned to the
estimated subtype progression patterns. The x-axis shows the experiments in which we varied the simulated number of biomarkers I (orange), number of subjects J (red),
number of subtypes C (purple), proportion p with an accurate score (i.e., the categorical probability each test score is accurate; blue), the proportion f of
misdiagnosis (i.e., the proportion of individuals that follow randomly chosen alternative progression patterns; green), and the choice of algorithm (either the proposed
Ordinal SuStaIn algorithm or the existing Z-score SuStaIn algorithm). The default value for each simulation setting is indicated with an asterisk on the x-axis.

FIGURE 3 |Relationship between sample size and accuracy. Each subfigure shows a scatter plot comparing the expected number of datapoints per stage for each
simulation and the accuracy of Ordinal SuStaIn for (A) estimating subtype progression patterns, (B) subtyping individuals, and (C) staging individuals. Each simulation
setting is plotted using the same colours used in Figures 2, 4, 5, except the default setting, which is shown in grey. The simulation using Z-score SuStaIn was excluded
from these figures.

FIGURE 4 | Performance of SuStaIn for subtyping individuals. (A) Accuracy of Ordinal SuStaIn for recovering the ground truth subtypes of individuals, (B) the
confidence SuStaIn assigned to the estimated subtypes, and (C) the accuracy of the confidence intervals SuStaIn assigned to the estimated subtypes. As in Figure 2,
the x-axis shows the experiments in which we varied the simulated number of biomarkers I (orange), number of subjects J (red), number of subtypes C (purple),
proportion p with an accurate score (i.e., the categorical probability each test score is accurate; blue), the proportion f of misdiagnosis (i.e., the proportion of
individuals that follow randomly chosen alternative progression patterns; green), and the choice of algorithm (either the proposed Ordinal SuStaIn algorithm or the
existing Z-score SuStaIn algorithm). The default value for each simulation setting is indicated with an asterisk on the x-axis.
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Simulated Data: Subtyping
Figure 4A shows how the accuracy of SuStaIn for subtyping
individuals varies with different simulation settings. SuStaIn
was able to subtype individuals with high accuracy, with more
than 92% of individuals being subtyped correctly for all
simulation settings. Figure 4B shows that the confidence
was a good reflection of the subtyping accuracy, following
the same trend as Figure 4A. Figure 4C shows that all
simulation settings gave 95% confidence intervals that were
correct in at least 95% of subjects (minimum of 97%,
maximum 100%). Figure 3B shows that the accuracy of the
subtyping was not particularly related to the sample size.
However, the sample size does remain reasonably large for
each subtype across all simulation settings: the last subtype in
the C � 5 experiment was the smallest, but still had an expected
sample size of 25 subjects.

Simulated Data: Staging
Figure 5A shows the accuracy of the SuStaIn stages of
individuals for different simulation settings. The SuStaIn
stages were around 80% accurate for most simulation
settings. There were two notable exceptions. The first was
when the proportion of correctly scored individuals was set to
p � 0.75, introducing more noise in the data and reducing the
staging accuracy to 53%. The second was when Z-score
SuStaIn was used rather than Ordinal SuStaIn, which
staged only 6% of individuals correctly. Figure 5B shows
that Z-score SuStaIn also has a lower confidence in the
stages assigned to each individual, but that the stages are
not within the 95% confidence interval estimated by Z-score
SuStaIn, with only 40% of individual’s stages falling within the
95% confidence interval. For all other settings the confidence
assigned by SuStaIn was a good reflection of the accuracy of
the stages (Figure 5B follows the same trend as Figure 5A),
and the confidence intervals were a good reflection of the
confidence in each individuals stage assignment (Figure 5C),

with at least the expected 95% of individuals ground truth
stages falling within the 95% confidence intervals estimated by
SuStaIn (minimum of 91% and maximum of 97%). Figure 3C
shows that the staging accuracy increases slightly with sample
size, but that the effect of noisy data (reducing the proportion
of correctly scored individuals from p � 0.9 to p � 0.75) is
much greater. Figure 6 shows the relationship between the
ground truth stage and the stage assigned by Z-score SuStaIn.
Z-score SuStaIn systematically underestimates the stage of
each individual, as well as being less accurate than Ordinal
SuStaIn.

Simulated Data: Number of Subtypes
The number of subtypes was estimated accurately for all
simulation settings, except when a proportion of
misdiagnosed individuals f were included, or when Z-score
SuStaIn was used instead of Ordinal SuStaIn. For f � 0.05,
SuStaIn over-estimated the number of subtypes in two out of
three experiments and for f � 0.10, SuStaIn over-estimated the
number of subtypes in all three experiments. Z-score SuStaIn
over-estimated the number of subtypes in two out of three
experiments.

Application to Clinical Dementia Rating
Sub-scores
Figure 7 shows the subtype progression patterns estimated
from applying Ordinal SuStaIn to CDR sub-scores in ADNI1
and ADNI2 separately. Three subtypes with distinct
progression patterns were identified independently in each
dataset, which we describe as 1) ‘typical’—the most numerous
group, with memory problems at early SuStaIn stages,
followed by difficulties with orientation and judgement and
problem solving, and then difficulties with home life and
community affairs, 2) ‘orientation-spared’—remaining
relatively well-oriented until later SuStaIn stages, and 3)

FIGURE 5 | Performance of SuStaIn for staging individuals. (A) Accuracy of Ordinal SuStaIn for recovering the ground truth stages of individuals, (B) the confidence
SuStaIn assigned to the estimated stages, and (C) the accuracy of the confidence intervals SuStaIn assigned to the estimated stages. As in Figures 2, 3, the x-axis
shows the experiments in which we varied the simulated number of biomarkers I (orange), number of subjects J (red), number of subtypes C (purple), proportion p with an
accurate score (i.e., the categorical probability each test score is accurate; blue), the proportion f of misdiagnosis (i.e., the proportion of individuals that follow
randomly chosen alternative progression patterns; green), and the choice of algorithm (either the proposed Ordinal SuStaIn algorithm or the existing Z-score SuStaIn
algorithm). The default value for each simulation setting is indicated with an asterisk on the x-axis.
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‘outliers’—not following the ‘typical’ or ‘orientation-spared’
CDR sub-score progression pattern. The progression patterns
were consistent between the two datasets, supporting the
existence of three Alzheimer’s subgroups with distinct
clinical progression.

Subtyping and Staging Using Clinical
Dementia Rating Sub-scores
Figures 8A,B show the distribution of the stages assigned to
individuals by Ordinal SuStaIn at the baseline visit in ADNI1 and
ADNI2. As expected, cognitively normal individuals had the

FIGURE 6 |Comparison of staging performance using Ordinal SuStaIn and Z-score SuStaIn. The top row shows scatter plots comparing the ground truth stage in
simulation and the estimated SuStaIn stage obtained from (A) Ordinal SuStaIn and (B) Z-score SuStaIn across three simulations (shown in different colours) performed
using the default settings. The bottom row shows histograms of the difference between the ground truth stage and the stage estimated by (C) Ordinal SuStaIn and (D)
Z-score SuStaIn across the three simulations.

FIGURE 7 | Clinical subtypes of Alzheimer’s disease based on CDR sub-scores. Subtypes of CDR ratings subtypes identified by applying Ordinal SuStaIn to (A)
ADNI1 and (B)ADNI2. Each entry in the diagram represents the proportion of MCMC samples in which a particular scored event appears at a particular position along the
progression pattern, with CDR � 0.5 shown in red, CDR � 1 in magenta and CDR � 2 in blue.
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lowest stages, followed by individuals with mild cognitive
impairment, whilst individuals with Alzheimer’s disease had
the highest stages. There was a clear separation between
cognitively normal and Alzheimer’s disease subjects, with all
cognitively normal subjects being assigned to stage 0 and all
Alzheimer’s disease subjects being assigned to stage 2 or above.
Figures 8C,D compare the stages assigned to individuals by
Ordinal SuStaIn at baseline and at follow-up. The follow-up
visits were generally longitudinally consistent, i.e., at follow-up
individuals either remained at the same stage or advanced in
stage compared to baseline. In ADNI 1, 2113 of 2456 follow-up
visits (86%) were longitudinally consistent, and in ADNI2,
1606 of 1885 follow-up visits (85%) were longitudinally
consistent.

The subtypes assigned to individuals by Ordinal SuStaIn
generally remained consistent at follow-up visits. Assigning
individuals to subtypes using CDR scores is difficult as several
of the stages are predicted to give the same CDR values across
more than one subtype. For example, at stage 5 of all subtypes,
CDR values are predicted to be 0 for the personal care rating
and 0.5 for all the other sub-scales. Likewise, at stage 6 of all
subtypes, CDR values are predicted to be 0 for the personal care
rating, one for the memory score, and 0.5 for all the other sub-
scales. Naively comparing each pair of visits that had CDR

scores available at both visits (excluding individuals assigned to
SuStaIn stage 0 at either visit and therefore unable to be
subtyped), we found that the same subtype was assigned at
both visits in 3,017 of 5,129 pairs of visits (59%) from ADNI1,
and 2035 of 2,728 pairs of visits (75%) from ADNI2.
Performing the same analysis but instead considering only
individuals confidently assigned to subtypes (probability
greater than or equal to 0.75), and thus removing
individuals who were at stages where the subtypes are
indistinguishable, we found that the same subtype was
assigned at both visits in 143 of 190 pairs of visits (75%)
from ADNI1, and in 157 of 169 pairs of visits (93%) from
ADNI2.

DISCUSSION

In this study we developed Ordinal SuStaIn, an extension of
the SuStaIn algorithm to allow SuStaIn to be used with
discrete scored data. We demonstrated strong performance
of Ordinal SuStaIn on simulated data and much better
performance than using Z-score SuStaIn, which is designed
for continuous data only. We applied Ordinal SuStaIn to
CDR scores to identify three CDR subtypes that were

FIGURE 8 | Staging individuals using CDR sub-scores. The top row shows histograms of the SuStaIn stages of individuals in (A) ADNI1 and (B) ADNI2. The bottom
row shows scatter plots comparing the SuStaIn stages of individuals at baseline and follow-up in (C) ADNI1 and (D) ADNI2. The size of each point represents the number
of individuals. CN � cognitively normal; MCI � mild cognirive impairment; AD � Alzheimer’s dsease.
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longitudinally consistent and replicable across independent
data from ADNI1 and ADNI2.

The simulation results highlight the scenarios in which
Ordinal SuStaIn performs best. In particular, the progression
patterns are more accurately estimated when the average number
of data points is more than three per stage. However, the
confidence estimates still provided accurate information about
the range of possible progression patterns and subtypes and
stages of individuals, regardless of the simulation setting. The
accuracy of the progression patterns also does not hugely impact
on the subtyping and staging accuracy. In general, noise in the
data has the largest effect of all settings, adversely affecting the
ability to estimate the progression patterns and the stages of
individuals. We also found that the number of subtypes is likely to
be overestimated when a proportion of misdiagnosed individuals
are included in the dataset. Misdiagnosed individuals are typically
grouped into an outlier cluster with no distinct progression
pattern.

We therefore propose the following guidelines for using
Ordinal SuStaIn:

• Report the uncertainty in the progression patterns and the
subtypes and stages of individuals by showing the positional
variance diagrams or other visual representations of the
uncertainty.

• In cases where there is low confidence take uncertainty into
account in any subsequent analysis and reporting of results
by clearly presenting the caveat that there is low confidence
in a particular progression pattern.

• Small clusters with high uncertainty (proportion of
individuals belonging to the cluster less than 10% and
high uncertainty in the progression patterns illustrated by
the positional variance diagrams) in the progression pattern
should be reported as possibly being groups of outliers
rather than subtypes.

• Where possible choose datasets and scored events to have an
average of more than three data points per stage.

• Where possible choose biomarkers with a good signal to
noise ratio.

Ordinal SuStaIn requires the user to input the probability
P(xij

∣∣∣∣Eiw) that the ‘true’ score of measurement xij is Eiw. This
allows complete flexibility in the probability distributions of the
scores, which can vary by biomarker, score, and even by
individual if desired. This allows the user to model, for
example, some scores being difficult to distinguish from one
another, whilst others are easily distinguished, or individualised
confidence ratings for each score. P(xij

∣∣∣∣Eiw) would ideally be
estimated by comparing assigned scores for each biomarker with
a ground truth, in which the scorer is blinded to the ground truth
score. In the absence of a ground truth, P(xij

∣∣∣∣Eiw) can be
approximated by looking at test-retest reliability.

Z-score SuStaIn performed poorly at estimating progression
patterns and stages of individuals for discrete data. Z-score
SuStaIn uses a piecewise linear z-score model, which assumes
that each biomarker transitions linearly between scores. This
alters the expected value of each biomarker at each stage, with the

majority of stages modelling biomarker values that don’t exist in
the data, leading to inaccuracy in the estimation of the subtype
progression patterns and the stages of individuals. Z-score
SuStaIn further assumes the errors on the data are normally
distributed, which means that there are predicted to be more
individuals with lower and higher scores than exist in the data.
This causes a systematic overestimation of the stages of
individuals at early stages and an underestimation of the
stages of individuals at late stages. In this case the overall
trend is to underestimate the stages of individuals as there are
more stages representing scored events that have a positively
skewed distribution than a negatively skewed distribution.
Z-score SuStaIn also tends to overestimate the number of
subtypes in the data to account for poor modelling of the
subtype progression patterns.

Ordinal SuStaIn identified three clinical Alzheimer’s
subgroups with distinct patterns of decline in CDR sub-scores.
The subgroups were independently identified in ADNI1 and
ADNI2 and the subtypes and stages were longitudinally
consistent at follow-up visits taken over a 3 year time frame.
These subgroups may simply illustrate different cognitive
trajectories experienced by individuals, there may be different
underlying biological disease processes (Mukherjee et al., 2018),
or there may be a proportion of individuals with other
neurodegenerative diseases or atypical variants (Scheltens
et al., 2017). Further work will be required to validate these
subtypes in a wider range of clinical settings, and to test whether
the subtypes correspond to distinct biological subgroups.

There are now three forms of SuStaIn that can be used in
different settings: the new Ordinal SuStaIn algorithm proposed
here, Z-score SuStaIn and Event-based SuStaIn. Ordinal
SuStaIn uses a scored events model to describe discrete
scored data, Z-score SuStaIn uses a piecewise linear z-score
model to describe continuous data with normally distributed
noise, and Event-based SuStaIn uses an event-based model to
describe discrete or continuous biomarkers transitioning from
normal to abnormal. Future work will explore whether it is
possible to develop an integrated version of SuStaIn that can
allow different types of data to be modelled simultaneously.
Extensions to model subtypes conditioned on different
variables would also be a valuable addition, for example
modelling how genetics, demographics, lifestyle factors,
multi-morbidity, and electronic health records are related to
subtype assignment or how subtype assignment alters the
probability of different outcomes, such as developing a
particular condition or long-term health outcomes. Another
important avenue for future work is incorporating
longitudinal data to estimate the time between different stages.

All forms of the SuStaIn algorithm rely on several
assumptions to infer temporal subtype progression patterns
from cross-sectional data. One assumption is that biomarker
trajectories increase monotonically with disease progression,
enabling identifiability of the progression patterns. This
monotonicity assumption is made at the population level
rather than at an individual level, which enables SuStaIn to
allow for reversion in disease stage; individuals who revert will
be assigned a lower stage at follow-up than at baseline. In
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future work there may be possibilities to relax this assumption
by allowing a subset of biomarkers to be non-monotonic or
incorporating longitudinal data to establish the time
directionality. Another design choice in the SuStaIn
algorithm is that the number of stages is fixed based on the
number of biomarkers and scores. This simplifies the discrete
optimisation procedure underlying SuStaIn by reducing the
number of dimensions of the search space but can lead to
redundant model complexity. Future versions will test whether
it is possible to optimise the number of stages to enable more
compact subtype progression patterns. However, under the
current version of the SuStaIn algorithm, stages of a subtype
progression pattern that are under-represented by samples
can be identified by looking at the uncertainty in the
positional variance diagrams. In addition, the model
complexity can be reduced pre-emptively by limiting the
number of features for small datasets, for example by using
the rule of thumb described earlier of ensuring at least three
subjects per stage. Another assumption that leads to
redundancy in the subtype progression patterns is that
each subtype progression pattern is unique; in fact, some
subtypes may merge or split at some points in the
progression. Future versions of the SuStaIn algorithm will
explore whether merging and splitting of subtype
progression patterns can be incorporated.

We proposed Ordinal SuStaIn, a variant of the SuStaIn
algorithm for use with discrete scored data. We demonstrated
that Ordinal SuStaIn out-performs available versions of SuStaIn
in this setting and provides good performance in simulation.
Ordinal SuStaIn is applicable to any discrete scored data. Here we
applied Ordinal SuStaIn to CDR scores to reveal three distinct
CDR subtypes in Alzheimer’s disease, however Ordinal SuStaIn is
readily applicable to visual ratings data, such as from
neuropathology or imaging, other clinical, neuropsychological
or behavioural scores, and across a wide range of conditions,
including other neurodegenerative diseases and respiratory
diseases.
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Disease Modelling of Cognitive
Outcomes and Biomarkers in the
European Prevention of Alzheimer’s
Dementia Longitudinal Cohort
James Howlett 1†, Steven M. Hill 1†‡, Craig W. Ritchie2 and Brian D. M. Tom1*

1MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom, 2Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, United Kingdom

A key challenge for the secondary prevention of Alzheimer’s dementia is the need to
identify individuals early on in the disease process through sensitive cognitive tests and
biomarkers. The European Prevention of Alzheimer’s Dementia (EPAD) consortium
recruited participants into a longitudinal cohort study with the aim of building a
readiness cohort for a proof-of-concept clinical trial and also to generate a rich
longitudinal data-set for disease modelling. Data have been collected on a wide range
of measurements including cognitive outcomes, neuroimaging, cerebrospinal fluid
biomarkers, genetics and other clinical and environmental risk factors, and are
available for 1,828 eligible participants at baseline, 1,567 at 6 months, 1,188 at one-
year follow-up, 383 at 2 years, and 89 participants at three-year follow-up visit. We novelly
apply state-of-the-art longitudinal modelling and risk stratification approaches to these
data in order to characterise disease progression and biological heterogeneity within the
cohort. Specifically, we use longitudinal class-specific mixed effects models to
characterise the different clinical disease trajectories and a semi-supervised Bayesian
clustering approach to explore whether participants can be stratified into homogeneous
subgroups that have different patterns of cognitive functioning evolution, while also having
subgroup-specific profiles in terms of baseline biomarkers and longitudinal rate of change
in biomarkers.

Keywords: Alzheimer’s disease, biomarkers, cognitive functioning, disease modelling, European prevention of
Alzheimer’s dementia, latent class mixed models, precision medicine, Bayesian profile regression

1 INTRODUCTION

Alzheimer’s disease (AD), the leading cause of dementia globally (Livingston et al., 2017), is
characterised by synaptic dysfunction and neurodegeneration (e.g., neuronal loss), triggered by
sequential accumulation of amyloid plaques and neurofibrillary tangles (aggregates of
hyperphosphorylated tau proteins) (Braak and Braak, 1991). The exact ordering of the
pathological cascade of events, leading to clinical symptoms of cognitive deterioration and
dementia, has been actively researched over the last decade. Jack and colleagues (Jack et al.,
2010; Jack et al., 2013) hypothesised that there is an underlying disease process and that the
temporal ordering of changes in key biomarkers and their dynamics characterise the full spectrum of
the disease throughout the different successive stages of pre-clinical, prodromal and dementia.
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On the whole there have been few treatment successes (and
none of these are disease-modifying) despite substantive
investment in pharmacological compounds for Alzheimer’s
disease in symptomatic populations and early promise shown
in pre-clinical studies (Gauthier et al., 2016; Winblad et al., 2016;
Anderson et al., 2017). There may be a number of possible
explanations for the many failures including inadequate drug
dosages, incorrect treatment targets and inappropriate trial
populations where the disease process is too far along to be
amenable to treatment (Raket, 2020; Shi et al., 2020;
Yiannopoulou and Papageorgiou, 2020). There is a consensus
that the genesis of AD pathology occurs decades before the onset
of dementia symptoms (Braak and Braak, 1997; Hardy and
Selkoe, 2002; Jack et al., 2010; Bateman et al., 2012; Braak and
Del Tredici, 2012; Jack et al., 2013). This thus presents an
opportunity for early disease course modification before
dementia onset and even prior to clinical symptoms. As such
there is great interest—from both academia and industry—in
accurately identifying groups of individuals with higher
likelihood of progressing to AD dementia for natural history
studies, early phase treatment trials and for participation in
secondary prevention trials where, for example, they may have
evidence of AD pathology through relevant biomarker
abnormalities but no clinical evidence of symptoms of
dementia (Ritchie et al., 2016; Watts, 2018).

Current proposals for defining an individual’s probability for
developing AD dementia or for modelling cognitive deterioration
based on biomarkers and/or clinical symptoms have been focused
on the stage of AD close to dementia onset. Various disease
progression and sub-type approaches have been proposed and
developed. These include survival and multi-state models for
investigating transitions between disease states (Hubbard and
Zhou, 2011; Vos et al., 2013; van den Hout, 2016; Wei and
Kryscio, 2016; Robitaille et al., 2018; Zhang et al., 2019); mixed
effects models (linear, generalized, non-linear) that incorporate
subject-specific random effects and can be extended to handle
latent time shifts, random change points, latent factors, processes
and classes, hidden states, and multiple outcomes (Hall et al.,
2000; Jedynak et al., 2012; Liu et al., 2013; Proust-Lima et al.,
2013; Donohue et al., 2014; Samtani et al., 2014; Lai et al., 2016;
Zhang et al., 2016; Geifman et al., 2018; Li et al., 2018;Wang et al.,
2018; Lorenzi et al., 2019; Proust-Lima et al., 2019; Villeneuve
et al., 2019; Younes et al., 2019; Bachman et al., 2020; Kulason
et al., 2020; Raket, 2020; Segalas et al., 2020; Williams et al., 2020)
and can be combined with models for event-history data
(Marioni et al., 2014; Blanche et al., 2015; Proust-Lima et al.,
2016; Rouanet et al., 2016; Li et al., 2017; Iddi et al., 2019; Li and
Luo, 2019; Wu et al., 2020); event-based models which attempt to
model the pathological cascade of events occurring as the disease
develops and progresses through disease stages (Fonteijn et al.,
2012; Young et al., 2014; Chen et al., 2016; Goyal et al., 2018;
Oxtoby et al., 2018); and various clustering approaches for
discovering risk stratification/disease progression groups and
endotypes. For example, those based on hierarchical,
partitioning and model-based clustering algorithms/methods
(Dong et al., 2016; Racine et al., 2016; Dong et al., 2017; ten
Kate et al., 2018; Young et al., 2018). Moreover, various machine

learning and other statistical approaches have been proposed for
both disease progression, prediction and subgroup identification
in Alzheimer’s disease (Fiot et al., 2014; Schmidt-Richberg et al.,
2016; Cheng et al., 2017; Bhagwat et al., 2018; Khanna et al., 2018;
de Jong et al., 2019; Martí-Juan et al., 2019; Brand et al., 2020;
Golriz Khatami et al., 2020; Lei et al., 2020; Martí-Juan et al., 2020;
Lin et al., 2021; Zhang et al., 2021).

However, in the earlier stages of disease, the development of
disease models is far more challenging due to the relatively slow
progression of the disease and clinical measures being
insufficiently sensitive to detect such subtle changes. In order
to develop disease models in the early stages when individuals do
not have symptoms, or express only subjective complaints of
cognitive decline or have only mild cognitive symptoms, it is
necessary to undertake longitudinal follow-up of these
individuals measuring reliable biomarkers of pathological
changes alongside clinical outcomes. Ideally individuals would
be followed-up over an extended period of time to ensure
sufficient proportions make transitions through the various
disease stages to dementia. Ultimately, these disease models
would better inform patient selection into trials, improve
understanding of AD progression in individuals and allow a
more tailored approach to clinical management and targeting of
disease modifying treatments to individuals (i.e., precision
medicine) based on a range of biomarker modalities (e.g.,
neuroimaging, cerebrospinal fluid (CSF), blood), cognitive and
clinical measures and risk factors.

Against this backdrop, the European Prevention of
Alzheimer’s Dementia (EPAD) consortium (Ritchie et al.,
2016) was initiated as a large public-private partnership, and
funded by the Innovative Medicines Initiative (IMI) Joint
Undertaking. A total of 39 European organisations or
“partners” were involved in the EPAD consortium. EPAD was
developed as an interdisciplinary research initiative with an aim
of improving the understanding of the early stages of Alzheimer’s
disease and delivering new preventative treatments.

The EPAD Longitudinal Cohort Study (LCS) was a
prospective, multi-centre, pan-European study set up with the
dual objectives of developing accurate longitudinal models over
the entire course of Alzheimer’s disease (AD) prior to the onset of
dementia and creating a trial-ready cohort for potential
recruitment into the EPAD Proof-of-Concept (PoC) Trial
(Solomon et al., 2018). It was designed as a long-term
observational study with recruitment from different types of
existing parent cohorts (PCs) across Europe (e.g., population-
based, memory clinics) and then, later on, more directly from
clinical settings. It aimed to provide both a well-phenotyped
population covering the full continuum of risk of subsequent AD
dementia development and enough participants with particular
profiles potentially eligible for an adaptive designed trial. This aim
was achieved through monitoring of the evolving characteristics
of the EPAD cohort and use of a flexible and dynamic approach to
selection into the LCS that allowed over- and under-sampling by
particular characteristics already available in the PCs. The other
component of the EPAD programme, the EPAD PoC Trial, was
designed to provide an environment for testing multiple
interventions for the secondary prevention of AD dementia.
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Using the data collected in the LCS on cognitive and clinical
outcomes, biomarkers and risk factors, we aim to develop state-
of-the-art models for disease progression and stratification which
can be used 1) to inform selective recruitment and adaptation in
clinical trials, 2) for longitudinal prediction and stratification, 3)
for subgroup identification based on both baseline and
longitudinal biomarker profiles and, ultimately, 4) to help
improve treatment and clinical management decisions. We
adopt a two-stage approach, where we first identify
subpopulations/classes with different underlying, potentially
AD-related cognitive/functional trajectory patterns (i.e., latent
clinical phenotypes) over time after controlling for known
exogenous risk factors (constitutional and genetic). These
latent phenotypes are then jointly modelled with endogenous
neuroimaging and CSF biomarkers to identify homogeneous
subgroups/clusters based on biomarker profiles
(i.e., neuropathological endotypes) that are linked to these
trajectory patterns.

2 METHODS

2.1 Data
We performed all analyses on the V. IMI data release from the
EPAD cohort (http://ep-ad.org/open-access-data/access/).
Briefly, a total of 2,096 participants were screened and entered
the cohort. Any participants who failed screening, had a baseline
global clinical dementia rating (CDR) ≥1, or had a diagnosis of
Alzheimer’s dementia at baseline were excluded, leaving 1,828
eligible participants. Participants were aged at least 50 years old,
with either a CDR global score of 0 (n � 1,313) or 0.5 (n � 498)
(The CDR global scores for seventeen participants were missing.)
Recruitment occurred across 31 centres from 10 different
European countries. Follow-up visits were designed to occur at
6 months, 1 year and yearly thereafter. Unfortunately, the LCS
closed at the end of the IMI-funding period and therefore the
maximum number of visits was five. Of the 1,828 participants
with a baseline visit, 1,567 attended the 6-months visit, 1,188
attended the 1-year visit and 396 and 89 attended the 2-years and
3-years visits respectively. Two hundred and fifty four
participants only had a baseline visit, 389 had two visits
(including five who had a baseline and 1-year visit but not 6-
months), 791 had three visits (including 2 who had baseline, 1-
year and 2-years visits but not a 6-months visit; the remaining
attended the first three visits), 307 had four visits (including 2
who had baseline, 6-months, 2-years and 3-years visits but not a
1-year visit; the remaining had all visits up to 2 years) and 87 had
five visits. We restrict our study to the 1,574 participants who had
more than one visit.

The variables used in the models can be considered to belong
to four domains: 1) outcomes, 2) baseline risk factors, 3) baseline
biomarkers, and 4) longitudinal biomarkers.

Outcomes
The outcomes used were transformations of CDR sum of boxes
(CDRSB) and Mini-Mental State Examination (MMSE) scores.

To deal with floor and ceiling effects of CDRSB, a logistic
transformation was applied to CDRSB as defined in Eq. 1:

tCDRSB � −log (CDRSB + 0.1)
(18 − CDRSB + 0.1)( ) (1)

A normalising transformation was applied to MMSE values,
converting MMSE from a 0–30 scale to nMMSE on a 0–100
scale to deal with curvilinearity (Philipps et al., 2014). CDRSB was
scheduled to be collected at all visits but MMSE was not designed
to be collected at the 6-months visit.

Baseline Risk Factors
Baseline risk factors included age, sex, education, family history of
AD (first-degree relatives), and APOEϵ4 carrier status. Age is
treated as a continuous variable. Sex, family history, and APOE
are binary. Education was recorded in the LCS as years of formal
education. However, as the values have different interpretations for
different countries, years of education was converted to a three-
category highest educational attainment level variable labelled 1, 2,
and 3 on a country-specific basis (European Commission/EACEA/
Eurydice, 2018). Level 1 is defined as up to secondary education,
level 2 as beyond secondary education up to undergraduate
ordinary degree, and level 3 as postgraduate studies.

Baseline Biomarkers
Baseline biomarkers included:

• the ratio of phosphorylated tau (pTau) to amyloid-beta 42
(Aβ), derived from CSF samples using the fully automated
Roche Elecsys System in a single laboratory;

• volumetric imaging variables of the total of the left and right
hippocampi and of the total of the four ventricles adjusting
for head size by dividing by the pseudo total intracranial
factor (HV and VV), processed by IXICO using the learning
embeddings for atlas propagation (LEAP) method (Wolz
et al., 2010);

• neurological radiological reads variables obtained
through central assessment of magnetic resonance
(MR) images by IXICO raters following a standardised,
compliant and efficient workflow (Ritchie et al., 2020;
ten Kate et al., 2018):
– average of left and rightmedial temporal lobe atrophy (MTA);
– Fazekas scale deep (FSD) and Fazekas scale periventricular
(FSPV); and

– five regional age-related white matter change (ARWMC)
variables.

For EPAD participants, values of pTau/Aβ > 0.024 are here
defined as CSF “AD positive” based on the biomarker cut-offs
derived by Roche for EPAD using the methodology in (Hansson
et al., 2018; Schindler et al., 2018), and reflect either decreased
concentrations of Aβ (a marker of amyloidosis) or increased
levels of pTau (a marker of neurofibrillary tangles). All
radiological reads biomarkers were converted to binary
variables <1 and ≥1, except for Fazekas scale deep which was
dichotomised instead at 2. A score of 0 for all radiological reads
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variables indicates no pathology and scores ≥1 (and ≥2 for Fazekas
scale deep) indicate some pathology. A score of 0.5 in the average of
left and right MTA is assumed to provide inconclusive evidence of
pathology. A combined ARWMC variable was created that
counted the number of age-related regions with evidence of
white matter lesion cerebrovascular pathology, and a count ≥3
indicated that the majority of regions had signs of pathology.

Longitudinal Biomarkers
Longitudinal biomarkers considered were derived from the MR
volumetric imaging variables of total hippocampal volume and
total ventricular volume adjusting for head size. The processing of
the longitudinal volumetric variables was also performed by IXICO
using LEAP. The rates of change in the adjusted total hippocampal
and ventricles volumes were calculated by dividing the difference
between the last observed and baseline volumes by the time in
study (in years) between the taking of the last and baseline volumes.
These rate of change (i.e., annualised change) variables were used
in our analyses to describe the longitudinal changes in biomarkers.

2.2 Statistical Methods
Our analysis is based on a two-stage approach (see Figure 1)
where in the first stage a multivariate latent class linear mixed
effects modelling approach is adopted to model the longitudinal

cognitive and clinical outcomes adjusting for constitutional and
genetic risk factors purported to be important in AD disease
progression or related to selection into the EPAD LCS. From the
multivariate latent class linear mixed effects model, latent clinical
phenotypes corresponding to the latent classes are extracted to
characterise the various mean trajectory profiles which
individuals may follow over time. These latent phenotypes
result from a hard assignment of individuals to specific latent
classes based on their posterior probabilities of class membership.
In the second stage, a probabilistic outcome-guided clustering
approach based on Dirichlet process mixture modelling called
Bayesian profile regression is applied to the latent phenotypes
alongside the CSF and neuroimaging biomarkers. This aims to
identify homogeneous clusters of participants with particular
neuropathological endotypes characterised by biomarker
profiles linked to clinical disease progression. Note that the
latent phenotypes and endotypes are not meant to represent a
grouping orthogonal to disease severity or stage, but reflect and
characterise potential underlying processes and features that give
rise to or are associated with disease severity or stage.

The specific statistical formulation of this two-stage modelling
approach for disease progression, trajectory stratification and
subgroup identification are outlined in the next two subsections.
Missing response data are assumed to be missing at random

FIGURE 1 | Graphical representation of the proposed two-stage approach.
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(MAR) for both stages, which allows valid inference using
likelihood approaches.

2.2.1 Multivariate Latent Class Linear Mixed Effects
Model
We used a multivariate latent class linear mixed effects model
(MLCMM) to identify G mean profiles of trajectories
corresponding to G latent classes or sub-populations of individuals
(Lai et al., 2016; Proust-Lima et al., 2017). This model assumes that a
latent process Λi(t) generates the K longitudinal outcomes at time t,
and this latent process is characterised by the mean trajectory profile
corresponding to the latent class membership of individual i. Yijk is a
measure of outcome k (k � 1, . . ., K) for subject i (i � 1, . . ., N) at
measurement occasion j (j � 1, . . ., nik), with associated time of
outcomemeasurement from start of study tijk.Yijk is related toΛi (tijk)
via an outcome-specific link function. Here for the purposes of this
paper, we assume a linear transformation link function (others are
possible) for the outcomes with outcome-specific parameters. That is,
Yĩjk � Yijk−η1k

η2k
, k � 1, . . ., K. These transformations allow the

transformed outcomes to be interpreted as noisy measurements of
the underlying latent process with outcome-specific measurement
errors.

The general formulation of the linear mixed effects part of our
model given membership to latent class g is

Ỹ
ijk|ci�g � Λi(tijk)|ci�g + ϵijk (2)

with

Λi(tijk)|ci�g � X(1)T
ijk β + X(2)T

ijk cg + ZT
ijkυig , (3)

where ci is the latent class variable, X(1)
ijk are the covariates

associated with the class-independent fixed effects β and X(2)
ijk

are the covariates associated with the class-specific fixed effects cg.
Zijk are the covariates associated with the class-specific random
effects υig, which are from a zero-mean multivariate normal with
variance-covariance matrix ωgB, where B is left unspecified and
ωg is a positive proportionality factor (with ωG � 1 to ensure
identifiability). The measurement errors {ϵijk} are assumed to be
independent Gaussian random variables with mean 0 and
outcome-specific variances σ2k (k � 1, . . . ,K).

The latent variable ci equals g when subject i belongs to latent
class g. To complete the specification of our multivariate latent
class mixed model, the probability of individual i belonging to
class g is described by the multinomial logistic submodel without
covariates given by Eq. 4:

πig � P ci � g( ) � eξ0g

∑G
l�1eξ0l

, (4)

where ξ0g is the intercept parameter for class g. Extension of this
latent class membership submodel to include covariates is
straightforward. The full MLCMM is fitted using maximum
likelihood estimation within R (R Core Team, 2017) using the
multlcmm function in the lcmm package (Proust-Lima et al., 2017).

In our application, we included the logistic transformed
CDRSB, tCDRSB, and normalised MMSE, nMMSE, as
outcomes (K � 2) in our MLCMM formulation. For both
these outcomes and the latent process, a higher value indicates

less cognitive/functional impairment (i.e., better cognitive
functioning). We used time in study as the time scale and
allowed class-specific fixed intercepts and slopes (time in study
effects). As maximum follow-up in the EPAD study population
was 3 years and 4 months and the majority of subjects had two or
three visits, we considered only linear trends in an individual’s
underlying disease process. The baseline risk factors described in
Section 2.1 were introduced into Eq. 3 with associated class-
independent fixed effects. We included only class-specific
random intercepts into the latent process model, which are
introduced to induce correlation across the longitudinal
observations of an outcome for an individual and to better
align participants in terms of where they fall on the disease
time scale. The variance of the random intercept for the reference
class is not estimated by the model and is set to be 1. The best
choice of the number of latent classes was made using the
Bayesian Information Criterion (BIC) and the relative entropy.

All observations with either a recorded CDRSB orMMSE were
considered for inclusion in the model provided that individuals
had 2 or more visits. These corresponded to 4,795 visits on 1,574
participants. Of which, there were 3,228 visits with both CDRSB
and MMSE present, 1,558 visits with only CDRSB present, and
nine visits with only MMSE present. Of the 1,574 individuals, 86
had five observation-visits, 305, 789, 384 and 10 had 4, 3, 2 and 1
observation-visits with either CDRSB or MMSE or both present
respectively. However, 31 individuals had missing APOEϵ4
carrier status information and were excluded. This thus
resulted in 1,543 individuals be included in theMLCMM analysis.

2.2.2 Bayesian Profile Regression
Bayesian profile regression (Molitor et al., 2010) is a non-
parametric outcome-guided clustering approach that links an
outcome variable to covariates via cluster membership. Here, it
was applied to identifyG* clusters of participants, with each cluster
characterised by particular clinical disease progression phenotypes
(latent classes from the MLCMM analysis) and a particular CSF/
neuroimaging biomarker profile. These clusters can be interepreted
as corresponding to different neuropathological endotypes.

Bayesian profile regression uses a Dirichlet process mixture model
(DPMM), which can be regarded as the limit of a finitemixturemodel
as the number of components goes to infinity. That is, for observed
data Di for subject i, we have the following DPMM likelihood:

p(Di|π*,Θ) � ∑
∞

h�1
p(c*i � h|π*)p(Di|c*i � h,Θ) (5)

� ∑
∞

h�1
π*h f (Di|Θh), (6)

where c*i ∈ Z+ denotes latent cluster membership, π* �
(π*1, π*2, . . .)T are mixture component (cluster) weights and ΘT �
(ΘT

1 ,ΘT
2 , . . .) are component-specific parameters for the mixture

component densities, indexed by h ∈ Z+.
In addition to covariates Wi for subject i, Bayesian profile

regression models an outcome Y *
i that also informs the clustering

and is assumed to be conditionally independent of the covariates
given cluster assignment c*i . Furthermore, covariates can be a mix
of discrete and continuous, WT

i � (W(d)T
i ,W(c)T

i ), with discrete
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covariatesW(d)
i and continuous covariatesW(c)

i also assumed to
be conditionally independent given c*i . We therefore have
observed data DT

i � (Y *
i ,W

(d)T
i ,W(c)T

i ) for subject i and Eq. 6
becomes

p Y *
i ,W

(d)
i ,W(c)

i |π*,Θ( ) � ∑
∞

h�1
π*hf Y *

i |Θ(o)
h( ) f W(d)

i |Θ(d)
h( ) f W(c)

i |Θ(c)
h( ),

(7)

where ΘT
h � (Θ(o)Th ,Θ(d)Th ,Θ(c)Th ) are the component-specific

parameters for the outcome, discrete covariate and continuous
covariate densities respectively.

The stick-breaking construction of the DPMM (Sethuraman,
1994) is used within Bayesian profile regression which gives the
following formulation for the prior on the mixture weights: π*1 �
V1 and π*h � Vh∏l<h(1 − Vl) for h ≥ 2 with Vh ∼iidBeta(1, α). The
concentration hyperparameter α, which itself has a gamma prior
distribution, affects the mixture weight distribution and implicitly
informs the number of non-empty clusters. One of the key
desirable properties of a DPMM approach to clustering is the
removal of the need to pre-specify the number of clusters. Prior
distributions are also placed on the component-specific
parameters Θh and Markov chain Monte Carlo (MCMC) is
used to fit the resulting profile regression model (see (Liverani
et al., 2015) for details of the prior distributions and for
computational aspects of the MCMC).

In our application, the outcome variable for each subject is the
latent class predicted from the MLCMM analysis, i.e. Y*

i � c î. This
is treated as a categorical variable with cluster-dependent
parameters: Y*

i |Θ(o)
h ∼ Cat(θ(o)

h,1, θ
(o)
h,2, . . . , θ

(o)
h,G ̂), where Ĝ is the

estimated number of latent classes in the MLCMM. The
covariates used in the model are the baseline and longitudinal
biomarkers described in Section 2.1. In particular, we included five
binary baseline covariates (pTau/Aβ, MTA, FSD, FSPV, ARWMC
combined) for each subject, each independently taking a Bernoulli
distribution given cluster assigmment:W(d)

i,q |Θ(d)
h,q ∼ Bern(θ(d)h,q ) for

q � 1, . . ., 5. Additionally, four continuous covariates (standardised)
were included—adjusted total hippocampal and ventricles volumes at
baseline, HV and VV, and their corresponding longitudinal rate of
changes, HV rate and VV rate—jointly taking a multivariate
Gaussian distribution given cluster assignment:
W(c)

i |Θ(c)
h ∼ N 4(μh,Σh). This allows for the correlation between

the continuous covariates to be taken into account.
Since the clustering assignments and number of clusters vary

across theMCMC iterations, it is useful to obtain a “representative”
clustering that summarises the MCMC output. Following (Molitor
et al., 2010; Liverani et al., 2015), we find a “representative”
clustering based on the N × N posterior similarity matrix S,
where element (i, j) of S is the proportion of MCMC iterations
where subjects i and j are assigned to the same cluster. The
partitioning around medoids (PAM) clustering algorithm
(Kaufman and Rousseeuw, 1990) is applied to the posterior
dissimilarity matrix 1 − S to find a clustering of the subjects
that is consistent with S, with the optimal number of clusters
selected using the silhouette width method (Rousseeuw, 1987).

An advantage of the DPMM clustering framework is that it
takes uncertainty in the clustering (including the number of

clusters) into account. This allows the uncertainty associated
with the “representative” clustering to be investigated. If we let
C(rep)
h denote the subset of subjects allocated to cluster h in the

“representative” clustering, then at MCMC iteration r we can
calculate the average value of mixture component parameters for
subjects in C(rep)

h . For example, for the Bernoulli distribution
parameter for binary covariate q we calculate

θ ̄
(d)
h,q(r) �

1
nh

∑
i∈C(rep)

h

θ(d)
c*i (r),q

(r) (8)

where nh is the number of subjects in C(rep)
h and θ(d)c*i(r),q(r) is the

sampled Bernoulii parameter for the cluster c*i (r) that subject i is
allocated to at MCMC iteration r. The distribution of θ ̄

(d)
h,q (r)

across the MCMC iterations (i.e., the posterior distribution) gives
an insight into the uncertainty of cluster h in the “representative”
clustering; narrower credible intervals indicates a more consistent
clustering. These distributions can be computed for all of the
“representative” clusters and for all of the mixture component
parameters associated with the outcome variable and covariates.

Bayesian profile regression is implemented in the R package
PReMiuM (Liverani et al., 2015) and this was used to fit the model
and perform the post-processing analysis (PReMiuM package
version 3.2.3; R version 3.6.3; default settings for
hyperparameters used; run for 350,000 MCMC iterations with
first 100,000 discarded as burn-in). Convergence of the MCMC
procedure was investigated by checking agreement between the
“representative” clusterings from six independent chains
(quantified using the adjusted Rand index) and by inspection of
posterior parameters (see (Liverani et al., 2015) for more details of
convergence diagnostics). Consensus clustering of the consensus
dissimilarity matrix, obtained through averaging of the
dissimilarity matrices from the six independent chains and
applying PAM to this matrix, resulted in the final representative
clustering structure. The adjusted Rand indices assessing
agreement between the final representative consensus clustering
with the representative clusterings from the six independent chains
are calculated and reported. Moreover, the lower triangular part of
the individual posterior dissimilarity matrices from the six
independent chains are compared to the lower triangular part
of the consensus posterior dissimilarity matrix using Pearson’s
correlation. Risk and covariate profiles are derived through pooling
of MCMC iterations across the six chains and using the final
representative consensus clustering. Additionally, Bayesian profile
regression without the latent classes as outcome was performed to
obtain a baseline/reference clustering structure based purely on the
biomarkers. All 1,543 subjects included in the MLCMM analysis
were included in the Bayesian profile regression analysis.

2.2.3 Validation
The final results of our multivariate latent class mixed model and
Bayesian profile regression analysis on the full data-set were assessed
for class and cluster validity through stability assessment under
repeated sub-setting. We repeatedly (i.e., ten times) split the full
data-set into two subsets, by first stratifying the full data-set by
number of visits and then randomly allocating (with equal
probability) within each strata a participant to belong to either
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the first or second subset. Our proposed two-stage approach is then
applied in turn to each subset to estimate a latent class structure
followed by clustering structure as described in the previous two
subsections. For assessing class validity for each split, we begin by
using the multivariate latent class model trained on one subset to
predict the class membership of participants in the other subset and
vice versa. We next cross-tabulate the out-of-sample predictions of
class memberships (based on the model trained on the subset that
does not include the participant for whom a prediction is being
made) with the in-sample class membership assignments (obtained
from the model trained on the subset which includes the participant
for whom a prediction is being made) to assess out-of-sample
performances in the models trained on the two subsets and
stability of class structure across the two subsets. Cohen’s kappa
statistic and the adjusted Rand index are used tomeasure the out-of-
sample performances and across subset stability. Finally, the validity/
stability of the class structure obtained from the full data-set is
evaluated by a comparison of the in-sample class assignments based
on the finalmultivariate latent class mixedmodel on the full data-set
to the in-sample class assignments obtained from the multivariate
latent class models for the subsets, using again Cohen’s kappa and
the adjusted Rand index.

For assessing clustering validity, we first apply Bayesian profile
regression to the biomarker and latent class assignment data for
each subset in turn and obtain the consensus results over six
chains as described earlier. Next, the consensus dissimilarity
matrices for the subsets are compared to their corresponding
block diagonals of the consensus dissimilarity matrix from our
Bayesian profile regression on the full data-set using Pearson’s
correlation. To assess cluster stability, the corresponding PAM
consensus representative clustering structures from each subset
are compared to the final representative clustering from the full
data-set using the adjusted Rand index. Moreover, we make
predictions for the held-out subsets that allow us to compare
1) their predicted dissimilarity matrices with the corresponding
off-diagonal blocks of the final consensus dissimilarity matrix
from the full data-set using Pearson’s correlation, and 2) their
predicted clustering structures with the PAM consensus
representative clustering obtained using a model trained on
the held-out subset (clustering predictions are obtained by
using the predicted dissimilarity matrices to assign participants
in the held-out subset to the PAM consensus representative
cluster from the training subset that they are closest to).

External validation was not possible as we do not have access to
data from studies on similar populations with the corresponding
extensive baseline and longitudinal biomarker and phenotypic
information to EPAD.

3 RESULTS

3.1 Baseline Characteristics of the
European Prevention of Alzheimer’s
Dementia Longitudinal Cohort Study
Population
Table 1 describes the group of 1,574 participants with two or
more visits in the EPAD longitudinal cohort. The mean age of

these participants was 65.4 years with a standard deviation of
7.4 years. Around 56% were female and 63% had their highest
educational attainment beyond secondary education—an
indication of a highly educated cohort of participants
recruited; reflecting the eligibility criterion on minimum years
of formal education. The cohort was enriched for participants
with a family history of AD (first degree relatives) and APOEϵ4
carriers, without diminished decision-making capacity. For the
group, this enrichment corresponded to 65.5 and 37.5% with a
known family history of AD and a known carrier for APOEϵ4
respectively. 78% of this group (n � 1,226) had a global CDR of 0,
while the remaining 22% had a score of 0.5 (n � 346); two
participants had unknown baseline CDR global. Around 82% of
those with a family history of AD had a CDR global score of 0.
Whereas 70% of those without a family history of AD had a CDR
score of 0. Thus there was a clear association between CDR global
score and family history of AD favouring the recruitment of
participants with a family history who do not have any baseline
cognitive impairment and for those without a family history
enriching for early symptomatics (p < 0.0001; χ2-test). No
evidence for an association between CDR global score and
APOEϵ4 carrier status was found (p � 0.10), with 80% of non-
carriers and 76% of carriers having CDR global equal 0.

Table 1 also summarises the distributions of the EPAD
cognitive and clinical outcomes and CSF and neuroimaging
biomarkers at baseline. Ten percent of participants had an
MMSE score below 27 and 12.5% had a CDRSB score of 1 or
above; suggesting that the majority of participants had high levels
of cognitive functioning at baseline. However, varying degrees of
disease pathology at baseline were indicated on considering a
range of biomarkers. AD positivity was estimated around 20%
using the ratio of phosphorylated tau to amyloid-beta 42 in CSF.
Convincing evidence for the widening of the choroid fissure to
different degrees (average of left and right MTA ≥1) was found in
about a quarter of the participants, whilst varying percentages of
white matter lesion cerebrovascular pathology were seen ranging
from 6 to 68% based on age-related regional white matter changes
or based on an overall impression of the brain using the Fazekas
scales (approximately 16 and 39%). Nearly a quarter of the
participants (23.5%) had indications of cerebrovascular
pathology in three or more of the five age-related white matter
regions. The mean adjusted total hippocampal and ventricles
volumes at baseline (with standard deviation) were 5,793mm3

(703mm3) and 32,991mm3 (17,669mm3).

3.2 Disease Progression and Latent
Phenotypes—Results From MLCMM
Our MLCMM was able to identify four distinct mean trajectories.
Figure 2 shows these four mean trajectory profiles on the latent
process scale and on the original scales for CDRSB and MMSE.
Latent clinical phenotype classes 0 to 3 had, respectively, 1,050
(68.0%), 97 (6.3%), 106 (6.9%), and 290 (18.8%) individuals hard
assigned to them based on a posterior classification of participants’
class membership through the selection of the participant’s class
with the highest posterior class-membership probability. Latent
phenotype class 0, which had the majority of participants, is
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characterised by individuals having the highest levels of cognitive
functioning with no signs of impairment at baseline and no decline
throughout the course of the study. Class 1 contained individuals
who showed some signs of cognitive/functional impairment at
baseline but appeared to improve over time. Class 2 was
characterised by individuals who appeared cognitively and
functionally unimpaired at baseline (although cognitive functioning
levels were not as high as those in class 0) but then declined on follow-
up. Whereas class 3 contained individuals who showed the most
evident signs of early cognitive/functional impairment at baseline and
continued to show impairment on follow-up.

Table 2 reports the results from our four-class MLCMM. A
higher baseline age and a lower level of education are associated
with higher levels of cognitive/functional impairment; consistent

with findings from the neurodegenerative and AD literature. Due
to how individuals were recruited into the study (through use of a
flexible and dynamic approach to selection), biased effects of
family history of AD and APOEϵ4 carrier status were expected
and therefore the corresponding estimates of these effects were
not interpreted as they were notably affected by the selection
mechanism. For example, both were found not to be statistically
significantly associated with cognitive/functional impairment and
the effect of family history of AD was in the opposite direction to
that reported in the literature.

The measurement error variances for tCDRSB and nMMSE
are 0.531 and 3.527 respectively indicating that tCDRSB has a
stronger relationship to the underlying latent disease process. The
estimated class-specific proportionality factors, ω ̂

g (g � 0, 1, 2),

TABLE 1 | Baseline characteristics of the 1,574 participants with more than one visit.

Variable Mean (SD) Frequency (%) No. Unknown

Risk Factors Age, years 65.4 (7.4) 0
Sex Female 888 (56.4) 0

Male 686 (43.6)
Education Level 1 587 (37.3) 0

Level 2 393 (25.0)
Level 3 594 (37.7)

Family history of AD No 543 (34.5) 0
Yes 1,031 (65.5)

APOEϵ4 carrier No 965 (62.5) 31
Yes 578 (37.5)

Outcomes CDRSB 0 1,162 (73.9) 2
0.5 214 (13.6)
≥1 196 (12.5)

MMSE 29–30 999 (63.5) 1
27–28 417 (26.5)
≤26 157 (10.0)

Transformed CDRSB, tCDRSB 4.60 (1.04) 2
Normalised MMSE, nMMSE 83.6 (14.6) 1

Biomarkers pTau/Aβ ≤0.024 1,240 (80.5) 33
>0.024 301 (19.5)

MTA average 0 800 (51.2) 13
0.5 375 (24.0)
≥1 386 (24.7)

Fazekas scale deep <2 1,317 (84.4) 13
≥2 244 (15.6)

Fazekas scale periventricular <1 947 (60.7) 13
≥1 614 (39.3)

ARWMC basal ganglia <1 1,379 (88.3) 13
≥1 182 (11.7)

ARWMC frontal <1 506 (32.4) 13
≥1 1,055 (67.6)

ARWMC infratentorial <1 1,465 (93.9) 13
≥1 96 (6.1)

ARWMC parieto-occipital <1 786 (50.4) 13
≥1 775 (49.6)

ARWMC temporal <1 1,268 (81.2) 13
≥1 293 (18.8)

ARWMC combined <3 1,194 (76.5) 13
≥3 367 (23.5)

Total hippocampal volume (adj), mm3 5,793 (703) 62
Total ventricular volume (adj), mm3 32,991 (17,669) 168
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which here correspond to the variances of the class-specific
random intercepts are 0.0004 for class 0, 0.397 for class 1, and
0.957 for class 2. (The variance for the random intercept
corresponding to class 3 was set to 1 for identifiability.) The
log-likelihood of this model was −16,842.95, the BIC 33,869.44,
and the (relative) entropy 0.947. By comparison, the equivalent
three-class model had a log-likelihood of −17,097.26, a higher
BIC of 34,348.70, and a lower entropy of 0.932. Thus our four-
class model was preferred. It showed excellent ability to
discriminate between latent trajectory classes.

Moreover assessment of validity of our four-class model
through class stability under repeated sub-setting gave mean
Cohen’s kappa and adjusted Rand index values (with standard
deviations) of 0.987 (0.008) and 0.989 (0.006), respectively,
across the twenty subset comparisons and 0.993 (0.004) and
0.995 (0.003) for the ten comparisons against the full data-set.
These results indicate near perfect agreement with evidence for
stability across subsets and validity of the class structure derived
based on the full data-set. Across the ten splits, the number of
discordant classifications seen when the in-sample latent class
membership predictions for subsets are compared to the class
memberships predicted by our four-class model on the full data-
set ranged from 3 to 13 out of the 1,543 participants
(0.19–0.84%). For the twenty subsets across the ten splits,
four-class multivariate latent class mixed models were always
found to provide a better fit (based on BIC) than the alternative
three-class multivariate latent class mixed models, and these
four-class models had similar class structure as our four-class
model on the full data-set.

We further characterised these four latent phenotype classes
by baseline and change variables and (marginally) compared
these variables across classes using analysis of variance
(ANOVA) tests for the continuous variables and χ2 tests for
binary and categorical variables. The results are shown in
Table 3. We observe increasing trends in mean age and
mean baseline ventricles volume across the latent classes
from 0 to 3 and a decreasing trend in mean baseline
hippocampal volume. Class 3 differed from the other three
classes in having the highest proportions of males, lowest
educational level attainers, those with AD positivity at
baseline and with evidence on baseline MTA of widening of
choroid fissure in varying degrees from widen to end stage
atrophy. There was evidence found for differences amongst the

FIGURE 2 | (A) Predicted trajectories with 95% confidence bands for each class on the latent process scale given mean values for each of the covariates. (B) and
(C) Predicted trajectories with 95% confidence bands for each class on the CDRSB and MMSE scale given mean values for the each of the covariates with observed
outcomes for each participant.

TABLE 2 | Results of the 4-class MLCMM on the 1,543 participants.

Coefficient (SE) p-value

Class membership model Intercept class 0 1.30 (0.07) <0.0001
Intercept class 1 −1.04 (0.12) <0.0001
Intercept class 2 −0.87 (0.13) <0.0001

Fixed effects model Intercept class 0 0 (not estimated) —

Intercept class 1 −2.33 (0.15) <0.0001
Intercept class 2 −0.65 (0.14) <0.0001
Intercept class 3 −3.14 (0.22) <0.0001
Time in study class 0 −0.0040 (0.014) 0.773
Time in study class 1 2.43 (0.16) <0.0001
Time in study class 2 −1.58 (0.11) <0.0001
Time in study class 3 0.16 (0.04) 0.0001
Age −0.0033 (0.0014) 0.022
Sex male −0.015 (0.019) 0.443
Education level 2 0.022 (0.024) 0.367
Education level 3 0.043 (0.022) 0.049
Family history of AD 0.016 (0.021) 0.453
APOEϵ4 −0.021 (0.019) 0.290

Link function parameters tCDRSB η1 5.31 (0.07) <0.0001
tCDRSB η2 0.73 (0.04) <0.0001
nMMSE η1 87.96 (0.48) <0.0001
nMMSE η2 3.80 (0.30) <0.0001
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classes in the presence of white matter hyperintensities in the
entire brain as measured by the Fazekas scales, with latent class 2
having the highest proportion of participants with abnormal
pathology. No evidence of any further differences between
classes 3 and 2 (or between classes 0 and 1) was found with
regard to age-related regional white matter changes. However
evidence of differences between the lower two classes (0 and 1)
compared to the upper two classes (2 and 3) was found for a
number of these neuroimaging variables associated with white
matter lesions (Table 3).

On examining possible associations of longitudinal changes in
volumetric imaging measures and the latent phenotype classes,
we observe an increasing annualised hippocampal shrinkage with
increasing class, without a similar trend being seen between
annualised ventricular enlargement and latent phenotype class.
Notably, latent phenotype class 2 had the largest annualised
increase in ventricles volume (Table 3).

3.3 Neuropathological Endotypes—Results
From Profile Regression
For the profile regression analysis, which linksCSF and neuroimaging
biomarkers to the latent clinical trajectory phenotype, we ran six
independent MCMC chains, and obtained a posterior similarity
matrix and associated PAM “representative” clustering from the
output of each chain (see Section 2.2.2 for details). Agreement
between these six chains was high with mean pairwise Pearson’s
correlation of 0.95 (standard deviation 0.03) between the dissimilarity
matrices and mean pairwise adjusted Rand index of 0.90 (standard
deviation 0.05) between the representative clusterings. This, together
with inspection of posterior parameters for each chain, suggests that
there is no strong evidence against convergence of the MCMC and
there is a good level of robustness of the clustering structure. Three of
the “representative” clusterings have six clusters, while the other three
had seven.

TABLE 3 | Characterisation of the baseline and change variables by latent phenotype classes.

Mean (SD)

Variable Class 0 Class 1 Class 2 Class 3 ANOVA p-value

Age, years 63.9 (7.0) 65.6 (6.6) 68.1 (7.0) 69.5 (7.0) <0.0001
Total hippocampal
volume (adj), mm3 5,911 (644) 5,814 (725) 5,609 (715) 5,429 (768) <0.0001
Total ventricular
volume (adj), mm3 30,715 (16,348) 35,404 (19,823) 37,962 (18,838) 38,396 (19,405) <0.0001
Annual (adj) hippocampal
volume change, mm3/yr −9.4 (83.5) −30.4 (61.9) −40.2 (85.3) −55.3 (99.1) <0.0001
Annual (adj) ventricular
volume change, mm3/yr 988 (910) 1,430 (1,354) 1,958 (1,651) 1,688 (1,586) <0.0001

Frequency (%)

Variable Class 0 Class 1 Class 2 Class 3 χ2 p-value

Sex Female 614 (58.5) 54 (55.7) 65 (61.3) 137 (47.2) 0.005
Male 436 (41.5) 43 (44.3) 41 (38.7) 153 (52.8) —

Education Level 1 368 (35.0) 35 (36.1) 34 (32.1) 138 (47.6) 0.009
Level 2 267 (25.4) 24 (24.7) 30 (28.3) 63 (21.7) —

Level 3 415 (39.5) 38 (39.2) 42 (39.6) 89 (30.7) —

Family history of AD No 319 (30.4) 36 (37.1) 40 (37.7) 136 (46.9) <0.0001
Yes 731 (69.6) 61 (62.9) 66 (62.3) 154 (53.1) —

APOEϵ4 carrier No 656 (62.5) 68 (70.1) 73 (68.9) 168 (57.9) 0.078
Yes 394 (37.5) 29 (29.9) 33 (31.1) 122 (42.1) —

pTau/Aβ ≤0.024 906 (87.5) 74 (77.9) 71 (71.0) 167 (59.4) <0.0001
>0.024 130 (12.5) 21 (22.1) 29 (29.0) 114 (40.6) —

MTA average <1 856 (82.1) 63 (67.0) 75 (71.4) 158 (54.7) <0.0001
≥1 186 (17.9) 31 (33.0) 30 (28.6) 131 (45.3) —

Fazekas scale deep (FSD) <2 893 (85.7) 83 (88.3) 76 (72.4) 236 (81.7) 0.002
≥2 149 (14.3) 11 (11.7) 29 (27.6) 53 (18.3) —

Fazekas scale periventricular (FSPV) <1 660 (63.3) 61 (64.9) 53 (50.5) 155 (53.6) 0.002
≥1 382 (36.7) 33 (35.1) 52 (49.5) 134 (46.4) —

ARWMC basal ganglia <1 929 (89.2) 83 (88.3) 90 (85.7) 246 (85.1) 0.248
≥1 113 (10.8) 11 (11.7) 15 (14.3) 43 (14.9) —

ARWMC frontal <1 346 (33.2) 36 (38.3) 27 (25.7) 86 (29.8) 0.182
≥1 696 (66.8) 58 (61.7) 78 (74.3) 203 (70.2) —

ARWMC infratentorial <1 988 (94.8) 87 (92.6) 96 (91.4) 266 (92.0) 0.195
≥1 54 (5.2) 7 (7.4) 9 (8.6) 23 (8.0) —

ARWMC parieto-occipital <1 549 (52.7) 48 (51.1) 45 (42.9) 127 (43.9) 0.025
≥1 493 (47.3) 46 (48.9) 60 (57.1) 162 (56.1) —

ARWMC temporal <1 863 (82.8) 77 (81.9) 78 (74.3) 223 (77.2) 0.043
≥1 179 (17.2) 17 (18.1) 27 (25.7) 66 (22.8) —

ARWMC combined <3 815 (78.2) 71 (75.5) 72 (68.6) 211 (73.0) 0.061
≥3 227 (21.8) 23 (24.5) 33 (31.4) 78 (27.0) —
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We present below the results of applying consensus clustering
to aggregate the output from the six MCMC chains. The mean
Pearson’s correlation between the consensus dissimilarity matrix
and the six independent chains’ dissimilarity matrices was 0.98
(standard deviation 0.01). Similarly, the mean adjusted Rand
index between the consensus representative clustering and the six
representative clusterings from each chain was 0.93 (standard
deviation 0.03). The final consensus representative clustering has
seven clusters.

Figure 3 shows the consensus posterior similarity matrix that
summarises the output from across the six MCMC chains and the
seven representative clusters that were identified from this matrix.
Figure 4 and Table 4 describe these seven clusters and their
distinct biomarker profiles (i.e., neuropathological endotypes).
Cluster 1, which is the largest cluster (comprising of 575 out of
1,543 participants), estimated the posterior mean probability of
belonging to latent phenotype class 0 to be 92% (in agreement
with the empirical estimate of 94%). It was characterised by
participants with lower than expected/average probabilities of

having abnormal pathology on the various biomarkers and above
average healthy indicators of baseline and longitudinal
volumetric measures for hippocampus and ventricles. We label
this cluster as a “healthy brain” neuropathological endotype. It
had on average the youngest participants, with a mean age (SD) of
61.4 (6.2) years.

Cluster 2, which is a mixture of participants from both latent
phenotype classes 0 and 1 (85 and 15% respectively), had
somewhat lower than average AD positivity risk (but within
the margin of uncertainty of the overall mean) and had stable
hippocampal volume over time, but otherwise had higher than
expected risk of abnormal pathology on the other biomarkers,
including medial temporal lobe atrophy (MTA) indicating
hippocampal involvement, and 1.59 standard deviations (SDs)
higher baseline ventricles volume and 0.32 SD faster annual rate
of increase in ventricles volume above their average, which is
being tolerated so far. This cluster appears to be a non-AD driven
cluster with “kindling” cerebrovascular disease. We label it as an
“at-risk-of-vascular dementia” neuropathological endotype. The

FIGURE 3 | Posterior similarity matrix for the consensus across the six MCMC chains from the Bayesian profile regression analysis on the 1,543 EPAD participants.
Each entry (i, j) of this 1,543 × 1,543-matrix represents the proportion of times participants i and j are assigned to the same cluster over the 250,000 × 6MCMC iterations.
Color bars indicate the seven final PAM consensus representative clusters of participants identified. See Figure 4 for more information regarding these clusters.
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FIGURE 4 | Results from Bayesian Profile Regression analysis. (A) Cluster sizes for the final PAM representative consensus clusters. (B–D) Posterior distributions
for mean mixture component parameter values for each of the “representative” clusters (see Section 2.2.2). (B) Outcome variable (parameters are the probability of
belonging to each MLCMM latent class). (C) Binary covariates (parameters are the probability of the covariate having value of one). (D) Continuous covariates
(parameters are the mean covariate value). For (A–D), colors indicate clusters (see also Figure 3). For (B–D), black horizontal lines indicate the mean parameter
values across all subjects and the coloured circles indicate the upper and lower limit of the 90% credible interval.
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mean age (SD) of participants was 69.1 (7.0) years and percentage
APOEe4 positive was 28%, the lowest amongst the clusters.

Cluster 3, which is the second largest in size (409 participants;
all from latent phenotype class 0), is characterised by lower than
expected risk of both AD positivity and MTA abnormal
pathology and no clinically meaningful pathological
indications on volumetric neuroimaging; but with evidence of
white matter lesion pathology. We describe this cluster as a
“healthy ageing” endotype especially as participants are on
average older than those in cluster 1, with a mean age (SD) of
66.1 (6.5) years, and they appear to be able to compensate for
some cerebrovascular disease. Moreover, none of the differences
from overall average for any of the biomarkers were
particularly large.

Cluster 4 has 15% of the participants—with average age (SD)
of 68.1 (6.8) years–all of whom belong to latent phenotype class 3
(questionably cognitively impaired class). It is characterised by
clinically meaningful increased risk of AD positivity and MTA
abnormal pathology, early pathological indications on
hippocampal volume markers and slightly increased
proportion of APOEϵ4 carriers relative to the overall average
(0.4 versus 0.375) and may represent a subgroup of “AD high
risk” participants.

Cluster 5 represents the 5% of the cohort who have the highest
risk, worst baseline levels and fastest rate of worsening on
markers. It comprises of a mixture of participants from latent
phenotype classes 0 (6%), 2 (17%) and 3 (77%). We consider this
to be an “AD-related cluster”. Moreover, it has the highest mean
age of 74.2 years (SD 5.6 years) amongst the seven clusters and,
notably, the highest proportion of APOEϵ4 carriers (0.46) despite
the EPAD selection mechanism.

Finally clusters 6 and 7, which are the most uncertain ones
(i.e., empirical class membership proportions of 100% in class 2
for cluster 6 and class 1 for cluster 7 do not match with the

corresponding mean posterior probabilities for these classes of 73
and 46% respectively), correspond to clusters where there are,
respectively, evidence of increased abnormal pathology on all
markers (except hippocampal atrophy and MTA) and no
particular overall evidence of increased abnormal pathology
beyond expected on any particular biomarker. Cluster 6 may
be another AD-related cluster, but one, possibly, in an earlier
stage of progression (cf cluster 5) as they are on average 5.6 years
younger, with a mean age (SD) of 68.6 (6.3) years. Cluster 7
appears to have individuals with both unclear biomarker profiles
and unclear cognitive trajectories, and therefore we describe it as
an “ambiguous” cluster. The mean age (SD) here is 66.0 (6.5)
years.

We assessed clustering validity through stability under
repeated sub-setting (10 splits, totalling 20 subsets of the
data). Out of the twenty consensus representative clustering
structures obtained from applying Bayesian profile regression to
the twenty subsets, 8 and 10 of these clustering structures
consisted of four and five clusters respectively, while the
other two comprised three and six clusters. Agreement
between the consensus clusterings and the clusterings from
the corresponding six independent MCMC chains across the
twenty subsets were again high with mean adjusted Rand index
of 0.93 (standard deviation of 0.10). The reduced number of
clusters relative to the seven clusters found using the full
data-set is likely due to the 50% reduction in sample size for
the subsets. A comparison of the consensus representative
clustering obtained using the subsets of data with the
consensus representative clustering obtained using the full
data-set (restricted to those individuals in each subset for the
comparisons) resulted in a mean adjusted Rand index of 0.69
(standard deviation of 0.09). Furthermore, comparing the 20
consensus posterior dissimilarity matrices obtained from the
subsets against those obtained using the corresponding

TABLE 4 | Results from the Bayesian profile regression analysis on the 1,543 participants.

Posterior means

Probability of abnormal pathology SD distance from overall mean Class membership probability

Clusters N (%) pTau/
Aβ

MTA FSD FSPV ARWMC
combined

Mean
HV

Mean HV
rate

Mean
VV

Mean VV
rate

Class
0

Class
1

Class
2

Class
3

1 575
(37.3)

0.113 0.096 0.079 0.269 0.143 0.549 0.362 −0.674 −0.463 0.917 0.040 0.038 0.005

2 110
(7.1)

0.166 0.575 0.278 0.567 0.357 −0.706 0.047 1.590 0.321 0.791 0.133 0.038 0.039

3 409
(26.5)

0.145 0.200 0.195 0.436 0.287 −0.111 −0.066 0.101 −0.042 0.976 0.015 0.006 0.003

4 227
(14.7)

0.353 0.337 0.135 0.405 0.202 −0.300 −0.166 −0.063 0.020 0.010 0.040 0.009 0.941

5 82
(5.3)

0.553 0.810 0.380 0.675 0.524 −1.229 −1.093 1.583 1.558 0.101 0.024 0.154 0.721

6 72
(4.7)

0.308 0.309 0.276 0.529 0.319 −0.354 0.000 0.287 0.407 0.064 0.177 0.731 0.028

7 68
(4.4)

0.228 0.247 0.157 0.376 0.240 0.025 0.026 −0.109 −0.004 0.248 0.464 0.173 0.115

Overall
empirical
mean

0.194 0.247 0.158 0.393 0.236 5,793 -23.8 32,997 1,274 0.680 0.063 0.069 0.188

SD 705 88.7 17,687 1,264
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submatrices of the full data-set resulted in a mean Pearson’s
correlation of 0.860 (standard deviation of 0.049). These
comparisons indicate good agreement between the results
obtained on the subsets and those obtained using the full
data-set, giving evidence for stability of our results.

Additionally, the held-out prediction analyses (training on one
subset and predicting for the other in each split) resulted in a mean
Pearson’s correlation of 0.674 (standard deviation of 0.045) between
the predicted posterior dissimilarity matrices and the corresponding
submatrices obtained using the full data-set. Comparing each of the
estimated consensus representative clustering obtained from one
subset of the split with the predicted clustering for this subset
(predictions obtained using a model trained on the other subset
of the data split only) resulted in a mean adjusted Rand index of
0.464 (standard deviation of 0.076) over the 20 comparisons. This
performance on challenging held-out prediction tasks gives further
support for the validity and stability of our clustering results.

The consensus representative clustering structure obtained
using Bayesian profile regression without the MLCMM class
outcome (i.e., only using biomarker covariates) had an
adjusted Rand index of 0.48 with the clustering that did
include the outcome, indicating that the outcome is playing an
influential role in the clustering analysis and is facilitating
interpretation of the clusters in terms of linking them to latent
clinical phenotypes.

4 DISCUSSION

In this paper, we demonstrate the usefulness of our two-stage approach
in, firstly, characterising the evolution of correlated cognitive and
clinical outcomes for LCS participants via an underlying latent
process in which its trajectory depends on one of four latent clinical
phenotypes, and then in providing biological insight through the
identification of subgroups based on distinct biomarker profiles
(i.e., neuropathological endotypes) linked to the latent phenotypes.
Our approach recognises that the longitudinal cognitive and clinical
outcomes are the downstream clinical manifestations/consequences of
earlier endogenous biological changes occurring within the brain
whether they be due to normal brain ageing or pathological due to
a specific underlying disease process. It however does not attempt to
assess the exact ordering of the pathological cascade of events.

Our intention here was not to provide a comprehensive
clinical and biological investigation of the EPAD LCS data but
to demonstrate the utility of our two-stage strategy in uncovering
meaningful clinical and biological structure within this
heterogeneous population. Therefore we chose to use a
reduced set of coarser, but still relevant, ATN (amyloid-beta
deposition (A), pathologic tau (T), and neurodegeneration (N))
and cerebrovascular biomarkers to demonstrate our two-stage
approach. If interest lies in a more thorough investigation, then
our approach can be extended to incorporate a larger set of
biomarkers, providing more granular information (e.g., both left
and right MTAs and hippocampal volumes and all five ARWMC
regions could be considered instead of the average, total or
majority as was done in this paper; with additional markers
such as the Koedam score, which measures parietal atrophy,

included), and additional correlated cognitive or clinical
outcomes (e.g., specific cognitive domains). However, with
more biomarkers being considered, this could result in
increased uncertainty and instability in clustering structure
obtained through use of Bayesian profile regression. Therefore
we would recommend the incorporation of a variable selection
component into the Bayesian profile regression analysis in order
to identify the actual drivers of the clustering structure. Related
issues may arise regarding both the number and relevance of
latent classes arrived at when additional outcomes are added to
the multivariate latent class mixed effects analysis, especially
when weakly informative or conflicting outcomes are included.

The latent process arising from themultivariate latent classmixed
modelling (MLCMM) approach appeared to be more highly
correlated with the observed transformed CDR sum of boxes
score than to the normalised Mini-Mental State Examination
score, possibly reflecting the former being more sensitive to
underlying changes than the latter early on. Nevertheless both
CDRSB and MMSE produced concurring patterns with each
other across the four latent phenotype classes (see Figure 2).
These four trajectories correspond to a normal cognitive
functioning class throughout, a reversion class, a declining class
and a (questionable) cognitively impaired class. They are consistent
with what has been reported previously in the literature, although the
reversion class probably reflects measurement error. Interestingly,
with our Bayesian profile regression analysis, we were able to find
endotypes covering the full spectrum from “healthy brain” to “AD-
related” within the EPAD cohort; reflecting one of the aims of the
EPAD LCS to provide a well-phenotyped population covering the
full continuum of risk of subsequent AD dementia development.

We note that the diminishing numbers at each visit reflect both the
staggered opening of the 31 recruitment centres across Europe and the
LCS concluding at the end of the IMI funding period. Attempts to
further fund the cohort as a whole across Europe were not successful,
in large part due to theCOVID-19 pandemic. Attempts are ongoing to
follow-up these participants in a series of studies across Europe to
provide longer term clinical and biological outcomes.

The second objective of the EPAD LCS was to create a trial-
ready cohort for potential recruitment into the EPAD PoC Trial.
Unfortunately, this trial was not realised. However, our approach
can still be used to demonstrate trial-readiness with respect to both
minimising screen failures and identifying participants with
particular biomarker profiles eligible for recruitment. For
example, participants identified/pre-screened as belonging to the
“healthy brain” or “healthy ageing” clusters would not be
considered for inclusion into trials thereby reducing screen-
failure rates currently seen in AD-related trials due to the low
prevalence of AD pathology in individuals without dementia,
especially among cognitively unimpaired. Whereas, for example,
individuals in clusters 4, 5 or 6 may be specifically targeted for
phase II trials in which volumetric neuroimaging biomarkers are
used as “surrogate” endpoints.While secondary prevention trials in
pre-clinical populations with no baseline cognitive impairment
may be more inclined to focus recruitment on participants from
cluster 6 (or class 2) when the primary endpoint is a cognitive one.

The novelty of our approach is not only in characterising the
longitudinal cognitive and clinical outcomes into latent
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phenotype trajectories and in identifying neuropathological
endotypes, but going beyond identifying substructures to also
being able to do future longitudinal clinical prediction in
individuals. Briefly, we would combine the posterior predictive
probabilities of class membership obtained from both the Bayesian
profile regression and the MLCMM, based on the observed
relevant biomarker, cognitive and risk factor data, to update the
individual’s mixture component probabilities in the MLCMM.We
would then use these as weights to average over the linear mixed
effects submodels corresponding to the four classes in order to
predict future transformed CDRSB and normalised MMSE.
Currently, the uncertainty attached to the latent trajectory
classes is not taken account of in the Bayesian profile regression
analysis in our two-stage approach, although this can be rectified
by using Markov melding (Goudie et al., 2019). However, we
expect this to have little impact on our findings.

In conclusion, we have introduced a two-stage approach for
the modelling of longitudinal cognitive and clinical outcomes,
biomarkers (baseline and longitudinal) and risk factors to analyse
the data from the EPAD Longitudinal Cohort Study and shown
its clinical and biological utility in the areas of trajectory
stratification, subgroup identification and prediction. In the
long term we envisage this approach to be applicable more
widely to precision medicine and secondary prevention in
Alzheimer’s dementia research and practice.
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Artificial Intelligence to Analyze the
Cortical Thickness Through Age
Sergio Ledesma1,2, Mario-Alberto Ibarra-Manzano2, Dora-Luz Almanza-Ojeda2,
Pascal Fallavollita1 and Jason Steffener1*

1Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada, 2School of Engineering, University of Guanajuato,
Guanajuato, Mexico

In this study, Artificial Intelligence was used to analyze a dataset containing the cortical
thickness from 1,100 healthy individuals. This dataset had the cortical thickness from 31
regions in the left hemisphere of the brain as well as from 31 regions in the right
hemisphere. Then, 62 artificial neural networks were trained and validated to estimate the
number of neurons in the hidden layer. These neural networks were used to create a
model for the cortical thickness through age for each region in the brain. Using the
artificial neural networks and kernels with seven points, numerical differentiation was
used to compute the derivative of the cortical thickness with respect to age. The
derivative was computed to estimate the cortical thickness speed. Finally, color
bands were created for each region in the brain to identify a positive derivative, that
is, a part of life with an increase in cortical thickness. Likewise, the color bands were used
to identify a negative derivative, that is, a lifetime period with a cortical thickness
reduction. Regions of the brain with similar derivatives were organized and displayed
in clusters. Computer simulations showed that some regions exhibit abrupt changes in
cortical thickness at specific periods of life. The simulations also illustrated that some
regions in the left hemisphere do not follow the pattern of the same region in the right
hemisphere. Finally, it was concluded that each region in the brain must be dynamically
modeled. One advantage of using artificial neural networks is that they can learn and
model non-linear and complex relationships. Also, artificial neural networks are immune
to noise in the samples and can handle unseen data. That is, the models based on
artificial neural networks can predict the behavior of samples that were not used for
training. Furthermore, several studies have shown that artificial neural networks are
capable of deriving information from imprecise data. Because of these advantages, the
results obtained in this study by the artificial neural networks provide valuable information
to analyze and model the cortical thickness.

Keywords: modeling, cortical thickness, artificial neural network, derivative, changes with age, adaptive models,
neuroimaging

1 BACKGROUND

In the last few years, machine learning techniques have been used in common applications
(Alpaydin, 2016). In this paper, we use one technique from Artificial Intelligence to analyze the
progress of the cortical thickness with age. This study includes data from 1,100 healthy individuals.
The cortical thickness was measured using FreeSurfer which is a fully automated software for
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measuring several parameters in the brain including
neuroanatomic volume and cortical thickness (McCarthy et al.,
2015).

Several studies illustrate the relevance of the analysis of the
cortical thickness through the life span. For instance, the authors
in (Steffener et al., 2016) indicate that brain aging can be analyzed
taking into consideration the inevitable and universal effects of
advancing age and the effects resulting from a lifetime of
exposures. These effects and a decreased cortical thickness in
some regions of the brain may be related to some mental
disorders or cognitive decline (Fouche et al., 2017; Razlighi
et al., 2017). Thus, some studies have indicated correlations
between disease states and cortical thickness, see the references
in (Scott et al., 2009).

In the state of the art, there are many studies about the
modeling of changes in the cortical thickness. The authors in
(Scott et al., 2009) propose a voxel-based method to measure the
cortical thickness utilizing inversion recovery anatomical
magnetic resonance images. Churchwell et al. use separate
hierarchical multiple regressions to analyze changes with age
in the cortex thickness in specific zones in the brain (Churchwell
and Yurgelun-Todd, 2013). Additionally, it has been suggested
that brain aging is a process influenced by degenerative and
restorative activities (Fjell et al., 2014). Consequently, the
resulting process can be linear and non-linear. Similarly, it has
been proposed that cortical thickness changes follow non-linear
patterns across childhood and adolescence, and these changes
vary to some degree by cortical region (Wierenga et al., 2014;
Piccolo et al., 2016; Sowell et al., 2007).

In this sense, the thinning of the cortical thickness has been
analyzed. For instance, Tamnes et al. describe the age-related
changes in cortical thickness, their findings revealed regional
age-related cortical thinning (Tamnes et al., 2010), see also
(Salat et al., 2004). The authors in (McGinnis et al., 2011)
analyze the thinning of the cerebral cortex in different
regions of the brain in the course of aging. Chen et al.
demonstrate age-related alterations in the modular
organization of the human brain structural networks using
regional cortical thickness measurements (Chen et al., 2011).
Lemaitre et al. use linear regressions of age, their studies indicate
an associated global age-related reduction in cortical thickness,
surface area and volume (Lemaitre et al., 2012). On the other
hand, it has been indicated that cortical surface area is an
increasingly used brain morphology metric that is
ontogenetically and phylogenetically distinct from the cortical
thickness and offers a separate index of neuro-development and
disease (Winkler et al., 2018).

2 ARTIFICIAL NEURAL NETWORKS

An artificial neural network is a computational technique
motivated by a specific behavior found in the brain (Marsland,
2015). A neural network is composed of basic units of processing
called neurons. Inside the network, the neurons are organized in
layers. Artificial neural networks are used for: image
classification, image processing, signal processing, prediction,

pattern recognition, function approximation, and other
applications (Jin et al., 2017; Jordan and Mitchell, 2015). From
a practical point of view, artificial neural networks can be used to
create a model using only a set of data samples (Russell and
Norvig, 2020; Masters, 2015). The main advantage of using an
artificial neural network to model the cortical thickness is that the
network creates the model that best fits the patterns in the data. In
other words, an artificial neural network is capable of learning
and modeling non-linear and complex relationships.
Additionally, the neural network is immune to noise in the
data samples and can infer unseen relationships on unseen
data. Therefore, the models obtained are able to generalize and
predict on unseen data. Furthermore, research has shown that
artificial neural networks have a great capability of deriving
information from complex or imprecise data.

3 DATASET DESCRIPTION

The simulations in this study were performed using a dataset with
information from approximately 1,100 healthy individuals. This
dataset was built by combining data from four different common
datasets: IXI, MMRR, NKI, and OASIS. Table 1 includes a sample
from one patient of the cortical thickness for each dataset. These
datasets are briefly discussed next.

3.1 IXI Dataset
This dataset contains approximately 600 magnetic resonance
images from normal and good health individuals. The data
was collected at three different hospitals in London:
Hammersmith hospital, Guy’s hospital and the Institute of
Psychiatry. The IXI dataset was prepared during the project
called Information eXtraction from Images, (Information
eXtraction from Images, 2019).

3.2 MMRR Dataset
TheMulti-Modal MRI Reproducibility Resource dataset was built
using information from 21 healthy volunteers. In the MMRR
dataset, all volunteers did not have a history of neurological
conditions, and therefore, all of themwere used in this study. This
dataset has 42 records and each record includes information from
a 1-h scan session (Landman et al., 2011).

3.3 NKl Dataset
The Nathan Klein Institute - Rockland Sample (NKI-RS) is an
attempt to create a large-scale community sample. This dataset
includes data from different types of assessments including
advanced neuroimaging. The dataset has 186 T1-weighted
images from 99 males and 87 females.

3.4 OASIS Dataset
The Open Access Series of Imaging Studies dataset is a set of
magnetic resonance images collected from 416 individuals
between the ages of 18–96 years (Marcus et al., 2007). This
dataset is public and can be used for research. As this study
focuses only on healthy individuals, data coming from patients
with a mental disease was discarded, and therefore, not used.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 5492552

Ledesma et al. AI to Analyze Cortical Thickness

117

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Consequently, data from only 313 individuals were used for the
computer simulations and analysis performed in this work.

4 METHODOLOGY

In this study, the cortical thickness of the images provided in
(Tustison et al., 2014) was used for the training and validation of
62 artificial neural networks. The total number of records in this
dataset was approximately 1,100. Each record had the sex and age
of each individual. Additionally, each record included the values
of the cortical thickness in 31 regions in the left hemisphere of the
brain and 31 regions in the right hemisphere, see Fischl (2012)
and Klein and Tourville (2012).

To create the neural network models, several steps were
performed. First, the input data, the age of each person in the
dataset, was linearly scaled so that all the values at the input of the
network were in the range of −1 to 1. Second, the cortical thickness
values were also scaled using a linear transformation so that all target
values at the output of the network were in the range of −1 to 1.
Third, each neural network was trained in two steps. In the first step,
a non-greedy optimization method called simulated annealing was
used to find initial values of the weights connecting the neurons in

the network. Then, a gradient-based method was used to quickly
optimize the values of the weights by moving the weights in the
opposite direction of the gradient of the error. Once the networks
were trained, we validated the performance of the network by
measuring the mean squared error between the predicted value
and the observed data from the validation set.

4.1 Training and Validation of the Artificial
Neural Networks
Once the dataset was ready, 62 multilayer neural networks were
created using the Neural Lab software (Ledesma et al., 2017). All 62
networks had three layers: the input layer, the hidden layer, and the
output layer as shown in Figure 1. All neurons in the network were
designed to use the hyperbolic tangent as their activation functions.
The neurons were connected with weights, these are denoted by h
and w in Figure 1. Each network had one input, the age, and one
output, the cortical thickness of one specific region of the brain as in
Figure 1. Thus, each neural network had one neuron in the output
layer. The number of neurons in the hidden layer was iteratively
determined as follows. First, the complete dataset with the 1,100
cases was split into two datasets: the training set and the validation
set. Second, each network was trained with zero neurons in the

TABLE 1 | Cortical thickness in millimeters from one person in each database.

Database IXI MMRR NKI OASIS

Age (years) 39 25 41 74

Left Right Left Right Left Right Left Right

Caudal anterior cingulate 2.432 2.395 2.981 3.201 2.344 2.545 2.7 2.694
Caudal middle frontal 2.23 2.326 2.634 2.578 2.516 2.422 2.351 2.413
Cuneus 1.895 1.663 1.918 1.761 1.935 1.874 1.682 1.805
Entorhinal 3.356 3.728 4.093 3.868 2.808 2.958 2.876 3.053
Fusiform 2.486 2.558 2.657 2.67 2.457 2.538 2.274 2.199
Inferior parietal 2.426 2.356 2.307 2.303 2.338 2.413 2.221 2.267
Inferior temporal 2.892 2.751 2.777 2.832 2.509 2.519 2.57 2.205
Isthmus cingulate 2.214 2.086 2.702 2.38 2.222 2.356 2.031 2.35
Lateral occipital 2.017 2.097 1.863 1.962 2.005 2.066 2.085 2.001
Lateral orbitofrontal 2.522 2.795 3.085 2.95 2.679 2.497 2.538 2.604
Lingual 1.774 1.762 2.096 2.086 1.961 1.911 1.784 1.837
Medial orbitofrontal 2.53 2.444 2.701 2.628 2.633 2.414 2.159 2.553
Middle temporal 2.856 2.825 2.792 2.845 2.607 2.716 2.561 2.548
Parahippocampal 2.456 2.509 3.339 3.143 2.787 2.608 2.035 2.496
Paracentral 2.108 2 2.579 2.395 2.209 2.253 2.214 2.136
Pars opercularis 2.665 2.307 2.69 2.768 2.549 2.635 2.456 2.528
Pars orbitalis 2.464 2.529 2.893 2.771 2.45 2.332 2.308 2.612
Pars triangularis 2.243 2.4 2.533 2.431 2.287 2.364 2.077 2.243
Pericalcarine 1.441 1.308 1.528 1.642 1.58 1.554 1.482 1.454
Postcentral 1.98 1.901 2.349 2.262 2.144 2.127 2.094 2.039
Posterior cingulate 2.397 2.311 2.79 2.655 2.282 2.229 2.234 2.432
Precentral 2.28 2.339 2.248 2.344 2.574 2.449 2.317 2.231
Precuneus 2.28 2.231 2.625 2.438 2.309 2.22 2.285 2.126
Rostral anterior cingulate 2.69 2.899 3.118 3.406 2.894 2.531 3.041 2.908
Rostral middle frontal 2.224 2.34 2.383 2.356 2.373 2.266 2.283 2.15
Superior frontal 2.558 2.565 2.674 2.812 2.518 2.483 2.592 2.477
Superior parietal 2.135 1.978 2.198 2.084 2.311 2.201 2.128 2.168
Superior temporal 2.774 2.826 2.824 3.023 2.771 2.774 2.614 2.633
Supramarginal 2.482 2.414 2.577 2.577 2.545 2.478 2.302 2.309
Transverse temporal 1.893 1.968 2.713 2.628 2.332 2.364 2.621 2.285
Insula 3.072 2.749 3.169 3.242 3.01 2.915 2.942 3.049
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hidden layer. Both themean squared error for training and themean
squared error for validation were computed. Then, the number of
neurons in the hidden layer was increased by one. Again, the mean
squared error for training and the mean squared for validation were
computed. This iterative process was stopped when the mean
squared error during validation did not decrease. The main
conclusion obtained from this iterative process was that only two
neurons in the hidden layer were necessary to model the cortical
thickness.

In this case, 80% of the cases were included in the training set,
and the 20% remaining cases were used to build the validation set.
The training of the 62 artificial neural networks was performed in
two steps using the parameters shown in Table 2. The training of
each neural network began using simulated annealing. Then, the
method of Levenberg–Marquardt was used to improve the
training.

4.2 Derivative Computation
In the field of numerical differentiation, there are some methods
to estimate the numerical value of the derivative of a function.
One commonmethod to approximate the derivative of a function
is based on finite differences. There are three types of differences:
forward difference, backward difference, and central difference.
These differences are associated with a stencil or kernel. A stencil

s (or kernel) is a set ofN points that are arranged in the vicinity of
a point of interest (Hassan et al., 2012). For instance, the stencil

s � [−1, 0, 1] (1)

is used to describe a stencil with three points (N � 3) in the
vicinity of the point of interest. The numbers in the stencil
indicate the time steps, 0 represents the current value, − 1
represents the previous value, and 1 represents the next value.
In general, a stencil with N points is represented as

s � [s1, s2, s3,/sN]. (2)

For instance, whenN � 5, the derivative is computed using five
points in the vicinity of the point of interest. Consequently, when
the value of N is increased, the accuracy of the derivative also
increases. However, when working in the upper or lower ends of
the data, it is important to use different stencils to compute the
derivative for each point. That is, the point of interest must be
dynamically located inside the stencil to compensate for the
missing data, see (Hassan et al., 2012). For the stencil s in
Equation 2, the finite difference coefficients c1, c2, /, cN, can
be obtained by solving the system of linear equations

(s1)0 (s2)0 / (sN)0
(s1)1 (s2)1 / (sN)1
« « 1 «

(s1)N−1 (s2)N−1 / (sN)N−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

c1
c2
«
cN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � d!

δ0,d
δ1,d
«

δN−1,d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

where d is the order of derivative and δi,j is the Kronecker delta,
see (Hassan et al., 2012). The main advantage of using this
method is that different stencils can be used to estimate the
derivative at different points of interest increasing the accuracy
of the computation. It is important to note that Equation 3
cannot be used to estimate the derivative in a non-differentiable
region. However, as it can be seen from databases in the state of
the art, changes in the cortical thickness are slow and non-
differentiable regions were not found in the four databases used
in this study.

FIGURE 1 | Structure of the artificial neural network used to model the cortical thickness.

TABLE 2 | Methods and parameters used for training.

Simulated annealing

Initial temperature 15
Final temperature 0.001
Number of temperatures 100
Iterations per temperature 100
Cooling schedule Linear

Levenberg-Marquardt
Number of iterations 1,000
Goal (mean squared error) 1 × 10–5
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5 COMPUTER SIMULATIONS AND
RESULTS

The computer simulations performed in Section 4.1 were used to
determine the proper number of neurons in the hidden layer and
to validate the performance of the models. However, once the
validation process was finished, it was convenient to create new
models by performing the training of the networks using all
samples in the data set. Therefore, all the 62 artificial neural
networks were again trained, but in this case, all the 1,100 cases
(instead of only 80% of the cases) were used. The training was
performed as before using the parameters in Table 2. According
to the results of the computer simulations performed in Section
4.1, all neural networks had two neurons in the hidden layer.

5.1 Cortical Thickness Progress With Age
As it is well known, artificial neural networks may be used to
create a model when there is not a mathematical equation to
represent the data (Kelleher et al., 2015; Goodfellow et al., 2016).
In this study, artificial neural networks were used to model the
changes in cortical thickness in the brain at different ages.
Specifically, for each region in the brain, one artificial neural
network was used to model the cortical thickness in that region.
Thus, a total of 62 artificial neural networks were trained and
validated to model the cortical thickness of the brain. There are
several approaches that can be used to model the different regions
of the brain. For instance, instead of using 62 neural networks, it
is possible to design a single neural network with 62 outputs.
However, computer simulations showed that the performance of
the single neural network was very similar to the performance of
the 62 neural networks.

The results of the computer simulations indicated that the
mean squared error during the training of the artificial neural
networks was from 0.016 to 0.031. During the validation of the
models, the computer simulations indicated that the variations
between the observed data and the predicted results had errors
from 0.016 to 0.033. Finally, to build the models, a new set of
artificial neural networks was trained using the whole dataset. In
this case, the mean squared error was in the range of 0.017–0.034.
To our knowledge, this is the first study to use this type of
approach to analyze changes in the cortical thickness.

To ease the presentation of the computer simulations, the
models obtained by the artificial neural networks were organized
manually in clusters. In this sense, each cluster included those
regions which exhibit similar behavior through age. A total of six
clusters were created based on the patterns observed in the
cortical thickness. We chose this number of clusters because
most of the patterns observed in the 62 regions of the brain were
represented using only six clusters. However, it is important to
mention that if more clusters are used, each cluster will include
very few regions. These clusters are described next.

5.1.1 Changes in Cortical Thickness Around 25 years
of Age
Figure 2 shows the behavior of the models created by the artificial
neural networks in twelve different regions in the brain. Each
graph was built using one artificial neural network. All networks

in this study had the configuration shown in Figure 1. However,
each network had a different set of weights, h and w. These
weights were adjusted during the training process to model one
single region of the brain, and thus, discover and learn hidden
patterns in the data. To build the graph, a set of uniformly
distributed values for the age was applied to the input of the
neural network. Then, an estimate for the cortical thickness in
millimeters was produced at the output of the artificial neural
network. Finally, the respective input and output values were used
to build each graph in Figures 2–7.

All regions in Figure 2 exhibit a similar pattern for the changes
in cortical thickness with age. Specifically, all these regions
present an abrupt change in the cortical thickness speed
around the age of 25 years. This abrupt change is observed by
a change in the direction (line slope) of the graph for each region.
As it was mentioned before, those regions of the brain with
similar behavior in their cortical thickness were manually
selected, and then presented in the same figure.

The first row in Figure 2 displays the cortical thickness in
millimeters for the left insula and the right insula as a function of
age. From this figure, it can be seen that the thickness of the left
insula constantly reduces during the first 20 years of life. A similar
behavior is also observed in the right insula. From age 20 to 30,
the cortical thickness remains almost constant in these two
regions. Then, starting at age 30, the thickness of the left and
right insula starts decreasing with age at a low rate. Thus, it can be
observed that both regions the left insula and the right insula
exhibit a somehow similar pattern for the changes in cortical
thickness with age. In the next row in Figure 2, the graphs show
the cortical thickness models created using the artificial neural
networks for the left superior parietal and the right superior
parietal. The next row shows the models for the left precentral
and right precentral. The next rows in the figure show the
behavior of the cortical thickness with age in other regions of
the brain; all these regions follow a similar pattern with age.
However, it is important to note that the left rostral anterior
cingulate and the right rostral anterior cingulate present a more
abrupt change at 25 years of age than the other regions in
Figure 2.

It is important to note that each artificial neural network was
trained separately without using data from the same region in
the other hemisphere of the brain. However, as it has been
concluded by other researchers, some regions in the brain did
not present the same behavior for the cortical thickness in both
hemispheres. Consequently, some of the graphs in the figures do
not present the results for the left hemisphere on the column on
the left, and the results for the right hemisphere on the column
on the right. For instance, the fifth row in Figure 2 shows the
results for the left transverse temporal and the right caudal
anterior cingulate.

5.1.2 Changes in Cortical Thickness Around 40 years
of Age
Figure 3 shows eight regions in the brain that have a special
behavior in cortical thickness around 40 years of age. The first
row in Figure 3 displays the cortical thickness for the left
poscentral and the right poscentral. Observe that both
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regions exhibit a constant reduction in cortical thickness during
the first 35 years of life. From 35 to 45 years of age, the cortical
thickness remains almost constant in both regions. Then,
starting at age 45, the cortical thickness begins to slowly

decrease. The second row in Figure 3 shows the model for
the left caudal middle frontal and the right caudal middle
frontal. For these two regions, it can be observed a sudden
and small increase in cortical thickness around age 35. In the

FIGURE 2 | Regions with changes in cortical thickness around 25 years of age.

FIGURE 3 | Regions with changes in cortical thickness around 40 years of age.
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same sense, an unexpected reduction around age 38 is present
in the right lateral orbitofrontal and the right medial
orbitofrontral. The last row in Figure 3 shows the
behavior of the cortical thickness in the left middle

temporal and the right lateral occipital. Observe that the
left middle temporal exhibits an abrupt transition around are
age 45, while the right lateral occipital exhibits a transition
around age 32.

FIGURE 4 | Regions with changes in cortical thickness around 50 years of age.

FIGURE 5 | Regions with changes in cortical thickness around 70 years of age.
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FIGURE 6 | Regions with multiple changes in cortical thickness through age.

FIGURE 7 | Regions with constant changes in cortical thickness.
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5.1.3 Changes in Cortical Thickness Around 50 years
of Age
Figure 4 shows 10 regions that have changes in cortical thickness
around 50 years of age. The first row in Figure 4 displays the
model for the cortical thickness in millimeters for the left inferior
parietal and the right inferior parietal. In these two regions, the
cortical thickness remains almost constant from age 25 to 50.
Then, these regions present a slow and constant reduction in
cortical starting at age 50. The graphs in the second row in
Figure 4 displays the cortical thickness for the left rostral middle
frontal and the right fusiform. From age 25 to 50 the cortical
thickness remains approximately constant in both regions. Then,
starting at age 50 there is slow a constant reduction in cortical
thickness. The third row in Figure 4 shows the cortical thickness
for the left cuneus and the right cuneus. Both regions present a
sudden cortical thickness reduction at age 30 and 50. The fourth
row in Figure 4 displays the cortical thickness behavior for the left
lingual and the right lingual. An abrupt change in cortical
thickness is clearly observed in both regions at age 50 years
old. The last row in Figure 4 illustrates the behavior of the
cortical thickness in the left pericalcarine and the right middle
temporal. Notice that both regions exhibit a sudden change in
cortical thickness in two different periods of life. The left
pericalcarine exhibits the first change in cortical thickness
around 20 years of age and the second change around 55 years
of age. On the other hand, the right middle temporal has the first
abrupt change at 20 years of age, while the second change is
present around 45 years of age.

5.1.4 Changes in Cortical Thickness Around 70 years
of Age
Figure 5 shows ten regions in the human brain that present
changes in cortical thickness around 70 years of age. The first row
in Figure 5 illustrates these changes for the left posterior cingulate
and the right posterior cingulate. These two regions exhibit a
steady and non-linear reduction in cortical thickness during all
stages of life. However, they have an abrupt reduction in cortical
thickness around 70 years of age. All regions of the brain in
Figure 5 present a very similar behavior as the ones in the first
row. They have a constant and slow reduction in cortical
thickness with age. They also have a sudden reduction in
cortical thickness around 70 years of age.

5.1.5 Regions With Changes at Multiple Ages
Figure 6 shows ten different regions that exhibit multiple cortical
changes during the human lifespan. The first row in Figure 6
shows the development of the left lateral orbitofrontal and the left
medial orbitofrontal. These two regions have a non-linear
relation with age, and they both have a sudden increase in
cortical thickness at 35 and 62 years of age. The second row in
Figure 6 shows the left inferior temporal and the right inferior
temporal. Again, these two regions present an abrupt increase in
cortical thickness around 35 and 62 years of age. The graphs in
the third row of Figure 6 include the left caudal anterior cingulate
and the right transverse temporal. Both regions have inflection
points at 20, 45 and 70 years of age. The graphs in the fourth row
in Figure 6 include the behavior in the left fusiform and the right

pericalcarine. The last row in Figure 6 shows the cortical
thickness development in the left entorhinal and the right
entorhinal. These are the only two regions in the brain that
have very big changes in cortical thickness through the lifespan.
The cortical thickness in these two regions reaches a maximum
value at ages 35 and 60.

5.1.6 Regions With a Constant Rate
All the regions in Figure 7 exhibit a mostly steady reduction in
cortical thickness through age. The first row in Figure 7 shows the
cortical thickness in millimeters for the left isthmus cingulate and
the right isthmus cingulate. With the exception at the beginning
of life, both of these two regions exhibit a mostly linear reduction
in cortical thickness through life. The second row in Figure 7
shows the cortical thickness in millimeters for the left pars
triangularis and the right pars triangularis. From the graph, it
can be observed that the left pars triangularis presents an abrupt
transition in cortical thickness around 50 years of age. While the
right pars triangularis exhibits a linear reduction in cortical
thickness for most of the human life span. The third row in
Figure 7 includes the left pars opercularis and the right pars
opercularis. Both of these two regions have an almost linear
reduction in cortical thickness. The fourth row in Figure 7 shows
the behavior of the cortical thickness in the left precuneus and the
right precuneus. The left precuneus exhibits a small transition
around 55 years of age, while the right precuneus exhibits a minor
transition in cortical thickness around 25 years of age. The fifth
row in Figure 7 shows the cortical thickness changes for the left
paracentral and the right paracentral. Both of these regions have
two inflection points, one at 30 of age and another at 75 years of
age. The last row in Figure 7 shows the models for the left
parahippocampal and the right parahippocampal. The cortical
thickness for both of these regions follows a non-linear reduction
through life.

5.2 Cortical Thickness Changes Through
Life
The study of changes in cortical thickness with age is very
important because it provides information about the
individual. For instance, a reduction in cortical thickness has
been associated with some neurodegenerative diseases (Oertel-
Knöchel et al., 2015). Additionally, it has been suggested that age-
related non-linear changes in cortical thickness are influenced by
family income and parental education (Piccolo et al., 2016). In the
same sense, Plessen et al. evaluated the connection between
measures of asymmetry in cortical thickness with age, sex, and
cognitive performance (Plessen et al., 2014).

In this section, we compute the derivative of the cortical
thickness using Equation 3 and the models created using the
artificial neural networks. The computer simulations were
performed using stencils (kernels) with seven points, N � 7 in
Equation 2. Additionally, the stencils were dynamically computed
at the beginning and at the end of the lifespan to improve accuracy,
see (Hassan et al., 2012). The computer simulations in Section 5.1
focused on the value and progress of the cortical thickness through
different ages. On the other hand, the simulations in this section
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focused on the speed of the cortical thickness during the life span.
Thus, when the derivative is positive, the speed is also positive and
this implies that there is an increase in the cortical thickness during
this part of life. When the derivative is negative the speed is also
negative implying that there is a reduction in cortical thickness for
that part of life. In the same sense, when the derivative is almost
zero, the speed is also close to zero, and therefore, the cortical
thickness does not change.

Figure 8 shows the cortical thickness derivative with respect to
age. Observe that the figure includes the results only for the left
hemisphere of the brain. Observe also that the results are
organized in clusters, that is, those brain regions with similar
derivatives are displayed next to each other. The thickness

derivative is represented using the color scale displayed on the
right part of Figure 8. Starting at the top of the scale, the blue dark
color is used to display a significant increase in cortical thickness.
In the middle of the scale, the green color is used to indicate no
changes in cortical thickness, 0.0. At the bottom of the scale, the
red color is used to indicate an important reduction in cortical
thickness.

Row one in Figure 8 shows the derivative for the caudal
middle frontal. As it can be seen this band is mostly green with a
blue band around 30. Therefore, this region exhibits a constant
derivative with an abrupt increase in the cortical thickness speed
around 30 years of age. The bands from row two (postcentral) to
row six (rostral middle frontal) in Figure 8 are mostly green with

FIGURE 8 | Cortical thickness derivative with respect to age, left hemisphere.
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some soft yellow zones. Thus, these brain regions exhibit an
almost constant cortical thickness derivative during the lifespan.
From row seven in Figure 8 (pars opercularis) to row twelve
(lateral occipital) all these bands have red and yellow zones at the
beginning of life. Thus, these brain regions lose cortical thickness
at high speed around the first 20 years of age. Row 13 in Figure 8
shows the behavior of the rostral anterior cingulate. There are red,
yellow and blue color bands in the first 20 years of life. This
implies that the cortical thickness speed considerably changes
during the first 2 decades of life. From row 15 (entorhinal) to row
21 (parahippocampal), all these brain regions present different
cortical thickness speeds at diverse parts of life. Both the
transverse temporal in row 22 and the precentral in row 23

have a red zone around 20 years of age. This implies that the
human brain presents a period with great reductions in cortical
thickness for these two regions at age 20.

All regions from row 24 (lingual) to row 26 (cuneus) exhibit a
red or yellow band around 20 and 50 years. This means that
during this age, the derivative is negative, and therefore, the
cortical thickness is quickly reduced during these two parts of life.
The last regions in Figure 8 starting in row 28 (posterior
cingulate) have a red band around 65 years of age. Thus, these
regions exhibit a fast reduction in cortical thickness at 65 years.

Figure 9 shows the derivative of the cortical thickness for the
right hemisphere. The regions in Figure 9 are organized in
clusters as in the regions in the left hemisphere.

FIGURE 9 | Cortical thickness derivative with respect to age, right hemisphere.
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The first six regions in Figure 9, from caudal middle frontal to
fusiform, have a constant cortical thickness speed for most of the
life. Regions from row 7 (supramarginal) to 11 (paracentral)
present a high cortical thickness reduction during the first
20 years of life. The regions located in the cluster in the
middle of Figure 9, from row 15 (entorhinal) to row 18 (pars
opercularis), have several abrupt changes in the cortical thickness
speed at different parts of life. Both the medial orbitofrontal in
row 19 and the lateral orbitofrontal in row 20 have a negative
cortical thickness speed around 33 years of age. The regions from
row 24 (lingual) to 26 (cuneus) have a negative cortical thickness
speed around 20 and 50 years of age. Finally, the regions from row
27 (rostral middle frontal) to 31 (superior temporal) present a
negative cortical thickness speed around 70 years of age.

Tables 3–5 show some of the main results from this study. The
first row inTable 3 indicates that the left pericalcarine is the region
with the lowest cortical thickness throughout all life. As it can be
seen from the third column in Table 3, the right entorhinal is the
region with the highest thickness throughout all life, after 40 years
of age, and after 60 years of age. However, the value in the second
column in the last row in Table 3 indicates that the right
pericalcarine is the region with the lowest thickness after
60 years of age.

Table 4 shows the variability of the cortical thickness.
Through all life, the region with the lowest variability is the
right caudal anterior cingulate, and the region with the highest
variability is the left parahippocampal. For a person 40 years and
older, the region with the lowest variability is again the right
caudal anterior cingulate, while the region with the highest
variability is the right transverse temporal. For a person
60 years and older, the left enthorhinal is the region with the
highest variability, and the left pericalcarine is the region with the
lowest variability.

Table 5 measures the linearity of the cortical thickness with
age. Throughout life, the left lateral occipital is the region that
exhibits the highest linearity. For an age of 40 years and older, the
right isthmus cingulate is the region with the highest linearity. For
an age of 60 years and older, the left pericalcarine is the region
with the highest linearity. In this sense, the cortical thickness in
those regions in the third column of Table 5 can be estimated
using a simple linear model. On the other hand, the cortical
thickness of those regions in the second column ofTable 5 cannot
be accurately predicted using a simple linear model. In summary,
the models created with artificial neural networks adapt to the
patterns in the data. Therefore, the performance of a neural
network model or a linear model is very similar in those regions
that exhibit a linear tendency in its cortical thickness with time.
For those regions that have a linear behavior, the mean squared
error was 0.016 for both models. However, the performance of the
neural network models was better than the performance of linear
models in those regions with complex patterns through age. For
those regions that do not have a linear behavior with time, the
mean squared error for the neural network models was 0.03 while
the mean squared error for the linear models was 3.0.

In this publication, we propose the use of artificial neural
networks to model the thickness of the cortical thickness through
life for different regions in the brain. Once the neural networks
are trained, it is possible to validate the performance of the model
using new datasets. One important feature of artificial neural
networks is their capacity to generalize. This means that a neural
network has been trained, it should be able to predict the cortical
thickness of data that the network has not seen before (Masters,
2015). Future work may include the study on how to utilize the
artificial neural network models to understand various cognitive
functions through life.

6 CONCLUSION

This work analyzes the progress of the cortical thickness with age
using Artificial Intelligence. A set of artificial neural networks was
trained and validated using a dataset with information from 1,100
healthy individuals. Each neural network was designed to model
one single region in the human brain. Thus, 31 artificial neural
networks were created to model the cortical thickness in each
region in the left hemisphere of the brain. Similarly, 31 networks
were created to model the cortical thickness for the regions in the
right hemisphere. Furthermore, computer simulations were used
to adjust the number of neurons in the hidden layer of the
artificial neural networks, and thus, obtain the best model given
the amount of data available.

The models created by the artificial neural networks were,
then, organized in clusters. Each cluster included those regions
that followed a similar pattern for the cortical thickness through
age. The results from the computer simulations show that the
models allow the detection of abrupt changes in cortical
thickness. The simulations also provide an age estimate of
when these changes may happen.

Additionally, the neural networks were used with numerical
differentiation techniques to estimate the derivative of the cortical

TABLE 3 | Modeling of the cortical thickness through life.

Lowest thickness Highest thickness

Through all life Left pericalcarine Right entorhinal
age ≥40 Left pericalcarine Right entorhinal
age ≥60 Right pericalcarine Right entorhinal

TABLE 4 | Variability of the cortical thickness through life.

Lowest variability Highest variability

Through all life Right caudal anterior cingulate Left parahippocampal
age ≥40 Right caudal anterior cingulate Right transverse temporal
age ≥60 Left pericalcarine Left enthorhinal

TABLE 5 | Linearity of the cortical thickness through life.

Lowest linearity Highest linearity

Through all life Right entorhinal Left lateral occipital
age ≥40 Right entorhinal Right isthmus cingulate
age ≥60 Left lateral orbitofrontal Left pericalcarine
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thickness with respect to age. Dynamic stencils were used to
improve the accuracy of the derivative at the beginning and the
end of life. Then, color bands were created to display the speed of
the cortical thickness. A color scale was designed to locate and
visualize those parts of life with a positive or a negative speed. A
positive speed is obtained when there is an increase in cortical
thickness. On the other hand, a negative speed is present when
there is a reduction in cortical thickness during that part of life.
Therefore, the color bands allowed the detection of those parts of
life with a reduction or an increase in cortical thickness. Finally,
these graphs were organized in clusters. Each cluster included
those regions with similar behavior through life.

After examining the results, it was concluded that some
regions in the left hemisphere do not present the same
progress with age as the counterpart regions in the right
hemisphere. Some regions in the brain exhibit very particular
patterns in their cortical thickness; one of these regions is the
entorhinal. One advantage of the methodology proposed in this
paper is that the models created using the artificial neural
networks do not assume a linear or non-linear model. Instead,
the artificial neural network is capable of dynamically adapt to the
required complexity of each region in the human brain.
Additionally, artificial neural networks are insensitive to noise
present in the data and learn the patterns relevant to the specific
application. Most importantly, neural networks are capable of
generalizing, that is, they are able to predict patterns that are
present in other datasets that were not used for training.
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Heterogeneity in Alzheimer’s disease progression contributes to the ongoing failure to

demonstrate efficacy of putative disease-modifying therapeutics that have been trialed

over the past two decades. Any treatment effect present in a subgroup of trial participants

(responders) can be diluted by non-responders who ideally should have been screened

out of the trial. How to identify (screen-in) the most likely potential responders is an

important question that is still without an answer. Here, we pilot a computational

screening tool that leverages recent advances in data-driven disease progression

modeling to improve stratification. This aims to increase the sensitivity to treatment effect

by screening out non-responders, which will ultimately reduce the size, duration, and cost

of a clinical trial. We demonstrate the concept of such a computational screening tool by

retrospectively analyzing a completed double-blind clinical trial of donepezil in people

with amnestic mild cognitive impairment (clinicaltrials.gov: NCT00000173), identifying

a data-driven subgroup having more severe cognitive impairment who showed clearer

treatment response than observed for the full cohort.

Keywords: disease progression modeling, Alzheimer’s disease, mild cognitive impairment, clinical trials,

screening, dementia, biomarkers, donepezil

1. INTRODUCTION

Alzheimer’s Disease (AD) is one of the most important socioeconomic challenges of the
twenty-first century, being the leading cause of age-related dementia in an aging global
population. Despite decades of research and clinical trials of potential therapies (Cummings
et al., 2018b), no trials have been able to prove disease-modifying efficacy (Cummings et al.,
2014, 2016, 2017, 2018a, 2019, 2020). There are multiple possible explanations for this. For
example, potentially targeting the “wrong” pathology at the wrong time—typically amyloid
protein pathogens are the target but if a treatment is given to symptomatic individuals, it
may be too late to halt or reverse any damage done. Notwithstanding this, enrolling the
right people at the right time (disease stage) into a clinical trial remains a considerable
challenge because of undetected heterogeneity in phenotype/presentation (Firth et al., 2020)
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and/or ensuring the underlying pathology is present (Salloway
et al., 2014), which can be a general problem because clinical
trials often cannot adapt their designs to accommodate research
discoveries made after they have begun. This can result in
enrolment of non-responders into a clinical trial that wash out
treatment effect in any subgroup of responders. Identification of
non-responders typically occurs in post hoc subgroup analysis,
which does not confer the benefits of a reduced trial size,
and requires careful analysis to infer conclusions which can be
misleading (Wang et al., 2007; Cummings, 2018). Given the
breadth of evidence in support of the amyloid hypothesis (Hardy
and Higgins, 1992) that has driven this clinical research for two
decades, albeit with some controversies (Morris et al., 2014),
here we focus on the aforementioned challenges of screening to
identify the right participants at the right time. The good news
is that there has been a swell of computational research into
unraveling the heterogeneity of Alzheimer’s disease progression
over the past decade (e.g., see Oxtoby et al., 2017), driven
largely by the increasing availability of large open medical
datasets (Marinescu et al., 2018).

Computational approaches for aging and age-related
diseases have been designed to fuse multimodal data into a
quantitative template (Bilgel and Jedynak, 2019) of disease
progression. These signatures often include a patient staging
mechanism (Young et al., 2014) that provides a quantitative
tool for fine-grained, individualized inference based on
disease severity that goes above and beyond standard clinical
phenotyping using patient symptoms. A recent innovation
of data-driven disease progression modeling incorporates
unsupervised machine learning, i.e., clustering, to provide both
subtype and stage inference (Young et al., 2018). A frequent
occurrence in this literature are claims of how these data-driven
models can benefit clinical trials in Alzheimer’s disease, but we
are yet to find any evidence of studies actually analyzing clinical
trial data to demonstrate the claimed benefit.

In this work we demonstrate the potential of data-driven
models of disease progression to enhance clinical trials in
Alzheimer’s disease via targeted screening. We achieve this by
example, using a particular modeling approach—the event-based
model (Fonteijn et al., 2012)—in a post hoc subgroup analysis
of a particular completed clinical trial that concluded without
evidence of efficacy (Petersen et al., 2005).

2. MATERIALS AND METHODS

This section describes the data, the computational model, and
the statistical analysis used in our study. Overall, our analysis
includes three steps. First, we fit a data-driven disease progression
model of cognitive decline in AD to data from a large multicentre
observational study, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI; training set). Second, we use this computational
model to score disease progression at baseline for participants
in the completed “MCI” clinical trial from the Alzheimer’s
Disease Cooperative Study (ADCS-MCI; test set). Finally, this
disease progression score is used to stratify the ADCS-MCI Trial
participants for a post hoc analysis of subgroup treatment effect.

2.1. Data
Our reference model fit to data from the ADNI observational
study is used to stage participants from the ADCS-MCI clinical
trial (clinicaltrials.gov: NCT00000173; Petersen et al., 2005). For
this we use a set of features common to both data sets, which
is a subset of cognitive instruments used in the ADCS-MCI
trial (see the vertical axis of Results, Figure 1), taking care to
exclude ADAS-Cog (being a secondary outcome of the trial).1 For
simplicity, we included only ADNI participants having complete
data for this feature set.

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

Additional data used in the preparation of this article
were obtained from the Alzheimer’s Disease Cooperative Study
(ADCS) database (adcs.org). Specifically, we analyse data from
the completed ADCS-MCI clinical trial of donepezil and vitamin
E, reported in Petersen et al. (2005). The ADCS-MCI trial aimed
to assess the efficacy of vitamin E and donepezil in subjects
with amnestic MCI. The primary end point was the time to
the development of possible or probable AD dementia, with
secondary outcomes on cognition and function. Measurements
were taken at 6-month intervals until the end of the trial (36
months). At screening, 769 subjects were included in the trial,
randomized into 259, 257, and 253 subjects for the placebo,
vitamin E, and donepezil arms, respectively—reducing to 174,
158, and 145 by the end of the trial.

2.2. Event-Based Model
The event-based model (EBM) (Fonteijn et al., 2012; Young et al.,
2014) estimates the most likely sequence, and uncertainty in this
sequence, of observable cumulative abnormality events in the
pathophysiological cascade (Jack et al., 2010) of a progressive
disease. In this context, an event constitutes deviation of a
biomarker measurement from those typical of healthy controls,
toward those typical of patients. Events, and the overall sequence
of events, are probabilistic entities. The EBM sequence of
cumulative abnormality is estimated from cross-sectional data.
This is made possible by combining data from a cohort of
individuals at different stages of cumulative abnormality. The
EBM sequence estimation is achieved directly from the data
distributions in diseased and healthy groups andwithout a priori-
defined disease stages or biomarker cutpoints /thresholds. The
EBM, in its various versions, has been applied to a variety of
diseases since 2011 (e.g., Fonteijn et al., 2012; Eshaghi et al.,
2018; Oxtoby et al., 2018, 2021; Wijeratne et al., 2018; Firth et al.,
2020). For a detailed intuitive description of the EBM, we refer
the reader to Oxtoby et al. (2021).

1Results with ADAS-Cog included can be found in the Supplementary Material.
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FIGURE 1 | Event based model of cognitive decline (ADNI). Positional

density/variance diagram showing the sequence (top to bottom) and

uncertainty (left to right) under five-fold cross-validation (repeated 10 times).

CDR, clinical dementia rating; MMSE, mini-mental state examination; bwd,

backward; DSST, digit symbol substitution test.

Here, we employ the recently-developed kernel density
estimation (KDE) EBM that copes naturally with the ceiling/floor
effects seen in cognitive data (Firth et al., 2020), and gives
a cleaner interpretation of the model by exploiting prior
information on disease direction (Oxtoby et al., 2021). To
improve generalizability, we perform repeated five-fold cross-
validation (10 repeats) and combine all 50 sets of posterior
samples of the EBM into a cross-validated positional density
map (Oxtoby et al., 2021).

The EBM affords us a screening tool by way of the patient
staging mechanism introduced by Young et al. (2014). This
process assigns a model stage (disease progression score)
that maximizes the likelihood given an individual’s set of
measurements. Here, we use the ADNI-trained EBM to stage
baseline data from the ADCS-MCI clinical trial, then stratify
subjects into strata based on disease progression scores for post
hoc subgroup analyses. In future, this process could be performed
as part of the screening process to homogenize the clinical
trial cohort.

2.3. Statistical Analysis
Our hypothesis is that AD clinical trial cohorts are likely to
contain undetected heterogeneity that washes out treatment
effects whichmay exist in an independently identifiable subgroup
of responders. Accordingly, in order to examine whether our
proposed screening tool can detect this heterogeneity and reveal
such a subgroup of responders, our post hoc subgroup analysis of
the ADCS-MCI clinical trial closely follows the primary analyses
in Petersen et al. (2005). We describe the key steps below.

Primary Outcome: We use Kaplan–Meier estimators to
estimate the rate of progression fromMCI to AD over the course
of the trial. Additionally, Cox proportional-hazards models were
constructed to compare the risk for progression in each treatment
arm with the placebo (using baseline age, MMSE, and APOE-ǫ4
carrier status as covariates). This intention-to-treat analysis in the

trial was conducted for both placebo vs. vitamin E and placebo vs.
donepezil, but in this paper we focus on the latter.

To correct for multiple comparisons in the Cox proportional-
hazards model (for the two treatment arms), the Hochberg
method was used. As our introduction of subgroups increases
the number of comparisons made, we extend this adjustment for
the total number of subgroups, regardless of whether a single
subgroup is the focus of analysis.

Secondary Outcome: We compare ADAS-Cog 13 scores
between placebo and donepezil arms in subgroups at each 6-
month interval to assess the difference in longitudinal cognitive
decline. A two-sided Mann–Whitney U-test is used to compare
the treatment groups at each time point for each subgroup,
correcting for multiple comparisons using the Hochbergmethod.

3. RESULTS

3.1. Reference Model
Figure 1 shows a positional variance diagram for an event-based
model (Firth et al., 2020) of cognitive decline due to probable
Alzheimer’s disease, across a set of cognitive instruments from
N = 810 (of 2,040) ADNI participants [229 cognitively normal
(CN), 181 AD, 400 MCI] having complete data (see Section
2). The cross-validated model’s confidence in the sequence is
higher where the positional variance is reduced—a dark diagonal
corresponds to strong confidence in the data-driven ordering.
The estimated sequence of cognitive decline starts from the Clock
Drawing test and Clinical Dementia Rating (CDR), through
tests of memory recall (Logical Memory) and general cognition
(MMSE), to verbal fluency (Boston Naming; Animals), working
memory (Digit span backwards), and executive function (Digit
Symbol Substitution Test, DSST).

Figure 2 shows a key component of the EBM—the
normal/abnormal mixture models for each cognitive instrument
(blue/orange solid lines, respectively), and the resulting
cumulative probability of an event having occurred (dashed
lines) (Fonteijn et al., 2012). These sigmoidal event probabilities
quantify divergence from normality (Oxtoby et al., 2021) and
provide a visualization of the data-driven event threshold
(akin to a data-driven biomarker cutpoint). Histograms show
the AD (orange) and CN (blue) data from ADNI. Early/late
events are, respectively, those that have occurred in many/few
patients and thus show greater/smaller separation between the
group histograms.

3.2. Patient Staging: Re-screening the
ADCS-MCI Trial
Figure 3 shows the distribution of patient stages assigned to
participants in the (Figure 3A) ADNI study and (Figure 3B)
ADCS-MCI trial, using the ADNI-trained EBM shown
in Figure 3. The MCI distributions show considerable
heterogeneity, with a notable late-stage ADCS-MCI subgroup
beyond stage 8 in Figure 3B, delineated by a red dashed line.
Table 1 compares the whole ADCS-MCI cohort and 2 subgroups
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FIGURE 2 | ADNI data histograms (adjusted for age and education level) and EBM mixture models for each feature. Orange bars corresponds to AD patient data,

blue bars to data from CN participants, showing the “normal” and “abnormal” distributions and the determined probability of the event having occurred (dashed line).

(“Late-stage” and “Others”) on demographic and cognitive
measures at baseline.

Primary Outcome: Figure 4 shows Kaplan–Meier curves for
the whole ADCS-MCI cohort (Figure 4A), the early-to-middle
“Others” subgroup (Figure 4B) and the “Late-stage” subgroup
(Figure 4C) in the placebo and donepezil arms, illustrating
the change in survival rates (specifically, not progressing to
probable AD dementia) during the trial. For each survival
function estimate, 95% confidence intervals are shown in the
shaded area. Figure 5 shows the corresponding hazard ratios and
95% confidence intervals for Cox proportional-hazards models
quantifying the risk of progression from MCI to AD. Although
there are no significant differences between all subjects (hazard
ratio 0.80; 95% CI 0.57–1.13; p= 0.42), the estimated effect seems
larger than in the early-to-middle stage subgroup (hazard ratio

1.00; 95% CI 0.67–1.51; p = 0.99), or the late-stage subgroup
(hazard ratio 0.55; 95% CI 0.28–1.07; p= 0.24).

Figure 6 shows ADAS-Cog 13 scores at 6-month intervals
throughout the ADCS-MCI trial separately for the two
subgroups. Conducting a two-sided Mann–Whitney U-test at
each time point, no significant difference (in adjusted p-values)
was found in either subgroup, despite the apparent trend toward
treatment effect in the late-stage subgroup.

4. DISCUSSION

We fit an event-based model of cognitive decline in Alzheimer’s
disease using a reference data set (ADNI), which was then used
to score disease progression in subjects at baseline in a completed
clinical trial (ADCS-MCI). This disease progression score was
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FIGURE 3 | Histograms of model stage for subjects in the ADNI dataset (A) and ADCS-MCI trial (B).

TABLE 1 | Demographic and cognitive comparison of ADCS-MCI trial participants

(All) and the model-determined subgroups thereof (“Late-stage” and “Others”).

Group

All Others Late-stage

Measure (N = 769) (N = 648) (N = 121)

Age (years) 72.9 (7.3) 73.0 (7.2) 72.4 (7.9)

Education (years) 14.6 (3.1) 14.6 (3.1) 15.0 (3.0)

Sex (% female) 352 (45.8%) 290 (44.8%) 62 (51.2%)

APOE-ǫ4 carrier (%) 424 (55.1%) 352 (54.3%) 72 (59.5%)

Donepezil arm (%) 253 (32.9%) 219 (33.8%) 34 (28.1%)

Vitamin E arm (%) 257 (33.4%) 216 (33.3%) 41 (33.9%)

Placebo arm (%) 259 (33.7%) 213 (32.9%) 46 (38.0%)

ADAS-Cog 11 11.3 (4.4) 10.8 (4.2) 14.1 (4.0)

ADAS-Cog 13 17.7 (6.1) 17.0 (5.9) 21.6 (5.6)

ADAS-Cog Q4 6.3 (2.2) 6.1 (2.2) 7.3 (2.0)

Boston naming 6.9 (2.4) 7.3 (2.2) 5.1 (2.5)

CDR global 0.5 (0.0) 0.5 (0.0) 0.5 (0.0)

CDR sum of boxes 1.8 (0.8) 1.8 (0.8) 2.2 (0.8)

Clock drawing 4.3 (0.9) 4.5 (0.8) 3.4 (1.0)

Digit span bwd 6.2 (2.1) 6.4 (2.1) 5.1 (1.9)

DSST 31.5 (10.9) 33.4 (10.2) 21.1 (8.0)

Logical memory - delayed 3.3 (2.4) 3.5 (2.5) 2.2 (2.0)

Logical memory - immediate 6.2 (3.1) 6.5 (3.1) 4.7 (2.7)

MMSE 27.3 (1.8) 27.5 (1.8) 26.2 (1.7)

Verbal fluency - animals 15.8 (5.2) 16.8 (5.0) 10.5 (3.0)

used to stratify trial participants for a post hoc subgroup analysis
of treatment effect.

The event-based model of cognitive decline in Figure 1

is representative of typical (memory-led) Alzheimer’s disease,
with CDR and impaired memory recall occurring before

decline in verbal fluency, working memory, and executive
function. Indeed, the estimated sequence shares similarities
with results in Firth et al. (2020), which involved an
independent cohort. We deliberately excluded ADAS-Cog scores
from the model to avoid circularity with the corresponding
secondary outcome of the trial (and also to avoid having to
perform the relatively arduous ADAS-Cog test at a screening
visit). Supplementary Figure 1 shows that the sequence is
largely unchanged with ADAS-Cog features included. Notably,
Clock Drawing appears as the first event (before even
CDR features), albeit with an additional component of
positional density around stages 7–9, supporting the presence
of additional heterogeneity among individuals. This result
warrants further investigation but is beyond the scope of our
study.

The event-based model patient staging mechanism (Young

et al., 2014) revealed considerable heterogeneity in the cognitive

impairment of MCI participants in both the ADNI observational
study (Figure 3A) and the ADCS-MCI clinical trial (Figure 3B).

Such clinical heterogeneity is likely to mask treatment response

in clinical trials, particularly if the underlying source is

biological heterogeneity relevant to the experimental treatment.
The biological underpinnings here are unknown due to the

absence of biomarker data in the ADCS-MCI trial, and we
need access to such individual-level biomarker data from
more recent clinical trials if we are to assess the value of

EBM screening vs. biomarker screening. Regardless, we found
promising trends in our post hoc subgroup analyses (discussed

below). Of course, the reduced sample size increases screen-in
cost of a clinical trial and potentially diminishes the treatable

patient group (affecting also the drug label). This is mostly
positive. Pros: a medicine that is effective on a subgroup is

better than no medicine at all; not treating non-responders
reduces the occurrence of unnecessary side-effects. Con: the
smaller group of potential responders limits the treatable
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FIGURE 4 | Kaplan–Meier survival curves for all 769 participants (A), the “Others” subgroup (B), and the “Late-stage” subgroup (C) in the ADCS-MCI trial.

FIGURE 5 | Hazard ratios (with 95% confidence intervals) for the progression

to AD for the two subgroups and all subjects when comparing the placebo

and donepezil arms.

patient population (but at least those treated are likely to
benefit).

In the ADCS-MCI trial we found encouraging trends toward
improved survival (Figure 4), preserved cognition (Figure 6),
and a lower hazard ratio (Figure 5) in the more severely affected
“Late-stage” MCI subgroup (N = 121) compared to the less
affected “Others” subgroup (N = 648). These results suggest
that the treatment (donepezil) may protect cognition and provide
more protection against MCI conversion to dementia for late-
stage MCI. This result concurs with the fact that donepezil
is approved for symptomatic relief in more severely affected
groups—specifically, dementia patients. Additionally, a recent
re-analysis of the ADCS-MCI trial unmasked beneficial effects
of donepezil (Edmonds et al., 2018) in a more severely affected
subgroup by screening out false-positive MCI participants using
hierarchical clustering by Ward’s method.

There are multiple possible explanations for why more
severely impaired individuals with MCI seem to benefit from
donepezil preferentially over less impaired individuals. For one,
donepezil may have less cognitive benefit earlier in the disease.

Another is that ADAS-Cog might be inadequate to detect such
a benefit. Regardless, the key finding is that our approach
was able to stratify a clinical trial population into potential
responders and non-responders using only baseline/screening
data. This supports the notion that computational, data-
driven screening can substantially reduce the size (and cost)
of a clinical trial, without sacrificing statistical power (see
also Franzmeier et al., 2020).

Our work motivates using event-based model staging as a
screening tool to enrich clinical trials, but the general principle
can be applied using other models that can calculate disease
progression scores (e.g., Jedynak et al., 2012; Leoutsakos et al.,
2016; Stallard et al., 2017; Wang et al., 2020). While many such
works mention the potential application to analyzing clinical
trial data, fewer suggest incorporating this into the screening
stage, and none (to our knowledge) have actually applied such
models in clinical trials, nor in post hoc analyses that follow the
original analysis protocol to retrospectively determine subgroup
treatment effects. Closest to this work is the aforementioned
study of the ADCS-MCI trial data by Edmonds et al. (2018), and
the work of Schneider et al. (2016), but the approaches used in
these studies do not provide an interpretable disease progression
signature, nor do they allow for future extension to seamlessly
incorporate imaging data and other biomarkers.

In summary, the ADCS-MCI trial was an attempt to
test whether donepezil, an approved symptomatic treatment
of dementia patients, could slow progression from MCI to
dementia. This placebo-controlled, double-blind, phase 3 study
found no significant treatment effects (Petersen et al., 2005).
Here, we reanalyzed the trial in a post hoc subgroup analysis,
with the subgroups defined by a data-driven disease progression
model: the event-based model (Fonteijn et al., 2012; Young
et al., 2014; Firth et al., 2020). Our two key findings are: (1)
there was considerable heterogeneity in cognitive impairment
in the ADCS-MCI trial, suggesting an inadequate screening
protocol; (2) this heterogeneity masked a possible treatment
effect in a sample of more severely impaired late-stage MCI
participants, despite the likelihood of this smaller sample being
under-powered to detect an effect of this magnitude. Our
study has highlighted a potential mechanism for improving
clinical trial design but the general applicability will require
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FIGURE 6 | Progression of ADAS-Cog 13 scores in the placebo and donepezil arms throughout the trial for each of the two subgroups.

broader verification, ideally in more recent trials having
biomarker data.

In conclusion, our findings support the use of our proposed
data-driven screeningmethod to enhance targeting and efficiency
of future clinical trials in Alzheimer’s disease. What is perhaps
most exciting in the immediate future is the prospect of
performing similar post hoc analyses in other “failed” clinical
trials, which could resurrect some Alzheimer’s disease drug
research programs, saving billions of dollars and years of
research. This work is continuing.
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