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Editorial on the Research Topic

Computational Approaches to Study the Impact of Mutations on Disease and Drug Resistance

Advances in next generation sequencing technologies provide wealth of data on genome variations.
Understanding missense mutations is crucial to tackling global health problems related to inherited
diseases and the emergence of drug resistance in cancers and infectious diseases. Advancement in
research at systems and molecular level, is required to study the impact of mutations that affect both
the regulation of gene expression and protein function through changes in protein stability and
affinity towards other proteins, nucleic acids, biomolecules and small molecule ligands. High-quality
experimental data on protein structure, mutant stability, functional annotations and phenotype-
genotype associations in combination with the state of art techniques in artificial intelligence and
machine will revolutionise development of highly accurate predictive computational models to study
the impact of genetic mutations on human health and disease.

Predictive computational models offer an effective alternative to expensive experimental studies
of genetic variations. These models can identify potential mutations linked to disease conditions and
the emergence of antimicrobial drug resistance. At the molecular level proteins, via their interactions
with other proteins and biomolecules, play an important role in many biological processes. The
growing data on protein three-dimensional structure, along with variations observed in sequence
data, will enable the development of new computational methods and tools to predict the impact of
mutations on protein function, stability and interaction thereby aiding in the understanding of the
basic mechanisms that govern disease conditions.

This research topic highlights the recent developments in computational approaches to analysis
and predict the impact of mutation on protein stability, function and interaction. Development of
accurate protein mutant stability requires the availability of properly curated high quality
experimental thermodynamic dataset. To facilitate this, Turina et al. developed a semi-automatic
text-mining tool to extract protein mutant thermostability data from the scientific literature. Feng
et al. studied the role of phosphatase and tensin (PTEN) homolog gene mutation in low grade
gliomas progression and prognosis. Using patient’s RNA sequencing data, differential gene
expression and gene ontology analysis they showed that PTEN mutation promote tumorigenesis
and immune cell infiltration. Tan et al. trained a predictor using saturation mutagenesis data to
access the impact of point mutations on protein stability and function. Mutants are scored using a
statistical potential energy function derived from protein structural data in combination with
evolutionary sequence conservation and substitution scores. Using the physicochemical properties of
amino acids Savojardo et al. grouped variants linked to human genetic diseases into four types and
established mapping between mutations, diseases, and phenotypes through the protein family
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domains. Tunstall et al. designed an in silico framework to
understand pyrazinamide resistance mutation in the clinical
isolates of four main M. tuberculosis lineages. Using a
combination of genomic features and computational mutant
stability and drug affinity predictors to explain differences in
modern and ancient lineages within the context of drug
resistance. Using molecular dynamic simulations, Nangraj
et al. investigated the mutation in pncA gene of
Mycobacterium tuberculosis that confer resistance to the first
line drug pyrazinamide and explained resistance in term of the
changes in protein stability and drug binding site. Prabantu et al.
modelled protein structures as network where nodes and the
edges correspond to residues and interaction between residues
respectively. They showed that the differences between wildtype
and disease mutants can be explained by their respective changes
in the network both locally at the site of mutation and globally
that relate to protein allosteric effects. Birolo et al. analysed both
pathogenic and benign variants in haploinsufficient genes and
reported that variants significantly perturbing stability (both the
stabilising and destabilising) correlate with pathogenicity.
Mahlich et al. performed mutational analysis using variant
effect predictor on human proteins and its orthologous from
20 species. They analysed the impact of common and rare
variants in terms of conservation and also suggested that
cross-species variants (CSVs) might be more often neutral
than non-CSVs. Bhasin and Varadarajan used large scale
mutational scanning dataset to study the mutational sensitivity
and substitution preferences at buried and exposed positions.
They used mutational sensitivity data and predicted sequence-
based accessibility values to identify buried, active-site and
exposed non active-site residues. Soto-Ospina et al. aimed to
understand the impact of pathogenic mutations in amyloid
precursor protein Presenilin 1 that are known to cause
Alzheimer’s disease. They used molecular modelling and
dynamic simulations to explain the impact of mutations in
terms of structural modifications of active site mutant residues
found at the catalytic pore. In a focused review, Grace et al.
explored the use of molecular docking and dynamics to study
resistance mutation in Mycobacterium tuberculosis within the
context of anti-tuberculosis drugs.

Understanding the impact of geneticmutation is critical to tackle
disease and drug resistance. Experimental structures of
biomolecules are becoming available at a rapid pace due to the
recent developments in the field of cryo electron microscopy. In
parallel, the technology development in computing hardware and
software has enabled development of robust machine learning
models to predict the structure of proteins and its interactions.
Both these recent developments complement each other to provide
high quality structural data of biological macromolecules and small
molecules including drugs. The timing of these recent developments
will enable decoding the complex mutational landscape and enable
our understanding of the genotype to phenotype relationship,
paving way to the achievement of precision medicine.
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Phosphatase and Tensin Homolog
Mutation in Immune Cell Infiltration
and Clinicopathological Features of
Low-Grade Gliomas
Peng Feng1, Zhenqing Li2, Yuchen Li3 and Yuelin Zhang1*

1 Xi’an Medical University, Xi’an, China, 2 Research Center of Clinical Medicine, Affiliated Hospital of Nantong University,
Nantong, China, 3 Hengyang Medical College, University of South China, Hengyang, China

The mutation of phosphatase and tensin homolog (PTEN) genes frequently occur in low-
grade gliomas (LGGs) and are deeply associated with a poor prognosis and survival rate.
In order to identify the crucial signaling pathways and genes associated with the PTEN
mutation, we performed bioinformatics analysis on the RNA sequencing results, which
were obtained from The Cancer Genome Atlas database. A total of 352 genes were
identified as differentially expressed genes (DEGs). The gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the DEGs were
significantly enriched in categories associated with cell division and multiple metabolic
progressions. The histological stage was significantly associated with PTEN expression
levels. In addition, the PTEN mutation was associated with an abundance of B cells,
neutrophils, macrophages, dendritic cells, and CD8+ T cells during tumor infiltration.
The results showed that patients with LGGs harboring the PTEN mutation had a
poor prognosis and more serious immune cell infiltration occurred depending on the
mRNA expression level. These results demonstrated that multiple genes and signaling
pathways play a key role in LGG from low grade to high grade, and are associated with
PTEN mutations. In this study, we outlined an approach to assess the influence of PTEN
mutations on prognosis, overall survival, and messenger RNA (mRNA) expression. Our
results provided alternative strategies for the personalized treatment of patients with
LGGs harboring the PTEN mutation.

Keywords: phosphatase and tensin homolog, prognosis, mutation, low-grade gliomas, gene

INTRODUCTION

Gliomas, as a kind of common craniocerebral tumor, can be divided into four grades based
on the 2007 World Health Organization classification of tumors. Grade I and II are low-grade
gliomas (LGGs), while Grade III and IV are high-grade gliomas (Louis et al., 2007). A clinical
investigation into malignant LGGs found that the overall survival of LGGs is significantly higher

Abbreviations: DEG, Differentially expressed genes; FDR, False discovery rate; GABA, Gamma-aminobutyric acid; GSEA,
Gene set enrichment analysis; LGG, Low-grade gliomas; mRNA, messenger ribonucleic acid; PPI, Protein-protein interaction;
STRING, Search Tool for the Retrieval of Interacting Genes; TCGA, The Cancer Genome Atlas.
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(2–4 years) than high-grade gliomas (∼15 months), which
are highly aggressive tumors and exhibit significant aggression
(Buckner et al., 2016). Reported by a variety of literature, too
many genes anticipate the signal pathway of a drug resistance
response (Andersson et al., 2004; Calatozzolo et al., 2012). To
precisely treat LGGs patients, it is of importance to provide
personalized genetic information and expression correlations,
because personnel treatments can provide precise therapeutic
strategies based on specific genetic conditions. Consequently,
the identification of the underlying biomarkers of disease
progression and the underlying target gene are the prerequisite
for personalized treatments.

The phosphatase and tensin homolog (PTEN) gene is a
multifunctional tumor suppressor, which contains a catalytic
domain and a tensin-like domain (Li et al., 1997; Helseth et al.,
2010). Owing to the tumor suppressing functions of the PTEN
gene, it has been found to mutate with high frequency in
several types of carcinomas, including LGGs (Helseth et al., 2010;
Johnson and O’Neill, 2012). To promote the cell proliferation of
cancer, the key node target is Akt, in which the PTEN protein
inhibits PI3K/Akt signaling and then activates the P21 protein
(Mu et al., 2020). Although the variation in PTEN expression
levels may correlate with the LGG tumorigenesis (Wiencke
et al., 2007), these expression levels have clinical significance
and can be used as prognostic biomarkers. Some studies have
reported that PTEN is activated through AKT-independent
(protein kinase B) mechanisms (McGirt et al., 2005). Patients
harboring the PTEN mutation exhibit increasing alterations of
multiple signaling pathways and cellular metabolism compared
with those harboring the wild-type PTEN gene (Steck et al.,
1997). Thus, a variation in the PTEN status may affect the tumor
progression by regulating the immune microenvironment (Best
et al., 2018; Wu et al., 2018). And, the disease prognosis and
immune cell infiltration are highly associated with the immune
microenvironment (Ino et al., 2013), as well as resistance or
sensitivity to treatment measures (Norton et al., 2019). However,
the importance of PTEN status in LGG progression and the
molecular mechanism is still unclear.

In this study, we analyzed the RNA sequencing data of LGG
patients, obtained from The Cancer Genome Atlas (TCGA)
database. By performing the identification of differentially
expressed genes, the molecular functions and correlation
with LGG progression were analyzed using GSEA analysis.
After the enrichment of differentially expressed genes, the
association between differentially expressed genes and immune
cell infiltration was further analyzed using the TIMER database,
which elucidated the effect of the PTEN mutation on the tumor-
related genes and signaling pathways.

MATERIALS AND METHODS

Gene Set Enrichment Analysis
The RNA-seq database of LGG patients was obtained from The
Cancer Genome Atlas (TCGA) database1, which included 516

1https://portal.gdc.cancer.gov

cases. After the classification of differentially expressed genes,
gene set enrichment analysis (GSEA) was used to identify the
biological functions of the differentially expressed genes (DEGs)
based on their biological status. Furthermore, the enriched signal
pathways of LGG patients with or without the PTEN mutation
were obtained. Enrichment results with a cut-off value of false
discovery rate (FDR) < 0.25 and a p-value < 0.05 were identified
to be as significant. The hazard ratio of LGG patients, including
age, gender, PTEN status, and grade, were performed using the
Cox proportional-hazards model of the R software.

Identification of Differentially Expressed
Genes
In this study, the R software (version 3.5.2) containing the
bioconductor software package (EdgeR) was used to identify the
differential gene expression in LGG patients harboring various
PTEN mutations compared with wild-type patients (Robinson
et al., 2010; McCarthy et al., 2012). The identification criteria
for the DEGs were as follows: P-value and FDR < 0.05;
|log2FoldChange| ≥ 1.0.

Pathway Enrichment Analysis of
Differentially Expressed Genes
GSEA analysis was performed to ascertain the effect of
differentially expressed genes on signaling utilizing the Hallmark
gene sets2. Gene oncology (GO) annotations are the collaborative
effort of developing and using ontologies to support biologically
meaningful annotations of genes and their products, which
include the biological process (BP), cellular component (CC),
and molecular function (MF). Commonly, GO can be used
to describe the annotation of the enriched genes in related
signaling pathways and confirm the biological characteristics
at the transcriptomic level. DEGs were classified using the
clusterProfiler package. GO and KEGG were enriched based on
the hypergeometric distribution of the GO concepts and KEGG
pathways. To avoid high FDRs in multiple tests, the q-values of
FDR control were also calculated.

Protein-Protein Interaction Network and
Module Analysis
The Search Tool for the Retrieval of Interacting Genes (STRING)3

(Bader and Hogue, 2003) was used for creating the protein-
protein interaction (PPI) network of the DEGs and further
attribute these genes to their specific biological functions, e.g.,
cellular component, biological process, and molecular function
annotations (Dennis et al., 2003; Szklarczyk et al., 2015). Then the
Cytoscape software (v3.0)4 was used to visualize the PPI network
and identify the core DEGs in the biological regulating process.
Then the KEGG pathway was analyzed for the enrichment of
DEGs in the top-ranked three modules.

2https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
3https://string-db.org/
4https://cytoscape.org/
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FIGURE 1 | Mutation frequency (A) and types (B) of PTEN mutations in patients with LGG obtained from The Cancer Genome Atlas (TCGA) database.

TIMER Database Analysis
Immune cell infiltration analysis was performed using TIMER
2.05 (Li et al., 2020). The association between the PTEN status of
different cancers and the abundance of immune cell infiltrations
were analyzed using the TIMER database to conclude the
abundance of tumor-infiltrating immune cells, including B cells,
CD8+ T cells, macrophages, dendritic cells, CD4+ T cells,
and neutrophils.

Statistical Analysis
All statistical analyses were conducted using Graphpad and
R 3.3.0. Student’s t-test was used to analyze PTEN mRNA
expression levels in cancer tissues with different PTEN statuses.
The Benjamini-Hochberg procedure was used to adjust FDR in
limma and GSEA (Mootha et al., 2003; Subramanian et al., 2005).
A p-value < 0.05 was considered as significant. The survival curve
was obtained using the cBioPortal website6.

RESULTS

Data Information
Clinical patient information of LGGs, including the cancer
tissue RNA-seq database and complete follow-up profiles, were
obtained from the TCGA database. The LGG cases were divided
into two groups, LGG with PTEN mutation (18 patients)
and LGG without PTEN mutation (as shown in Figure 1A).
Among these patients, 6% of LGG patients had mutated
genes, which included missense mutations, nonsense mutations,
amplifications, and deep deletions. For the PTEN mutation
(Figure 1B), there were 13 amino acid sites of the PTEN protein
that were identified as the commonly mutated sites, located at the
DSPc and PTEN_C2 domains.

5http://timer.cistrome.org/
6https://www.cbioportal.org

Clinical Impact of Low-Grade Glioma
Progression and Prognosis
Clinical information for the LGG patients can provide a profile
of related characteristics. Before further bioinformatics analysis,
we studied the clinical information of the included patients, as
shown in Table 1. The average age (54.44, 35–74 years old) of
patients with the PTEN mutation was higher than the wild-type
patient (42.52, 14–87 years old), indicating that age may promote
the mutation of the PTEN gene. Moreover, the histological
grade (G4:G3 = 16:2) of LGG patients harboring the PTEN
mutation was higher than the wild-type group (G4:G3 = 247:250),
indicating that LGG with a PTEN mutation is more serious.

Initially, the PTEN mRNA expression level of the wild-type
PTEN and PTEN mutation groups were identified. As shown in
Figure 2A, the PTEN expression level of the PTEN wild-type
group was significantly higher than the PTEN mutated group.
Meanwhile, the PTEN expression dependence on the PTEN
status (as shown in Figure 2B) showed that the expression level
of shallow deletion and diploid was significantly higher than the
gain and deep deletion status.

The PTEN gene is known as the tumor suppressor gene, while
PTEN mutation can decrease the inhibition of tumorigenesis. In

TABLE 1 | Clinical characteristics of patients with low-grade glioma and their
PTEN status obtained from the Cancer Genome Atlas database.

Characteristics PTEN status

Wild-type Mutated

Age, years 42.52 54.44

Range 14–87 35–74

Gender

Female 224 6

Male 273 12

Histologic grade

G3 247 2

G4 250 16
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FIGURE 2 | (A) Correlation between the PTEN mutation and mRNA expression; (B) transcriptional expression of PTEN dependence on the PTEN status. (C) Overall
survival of LGG patient dependence on the PTEN status (alteration and wild-type). (D) Disease-free survival of LGG patient dependence on the PTEN status
(alteration and wild-type).

a previous investigation, a patient with LGG recurrence suffered
a poor prognosis (Liu et al., 2020). Thus, early treatment may
be helpful for precise therapy in LGG patients harboring the
PTEN mutation. To perform the Cox regression analysis of
multiple factors and PTEN mRNA expression including tumor
grade and patient age, the static results revealed that PTEN
mRNA expression levels may affect the prognosis of LGG
patients, which is independent of tumor grade, patient age, and
gender (Figure 3).

PTEN Status Is Correlated With Immune
Cell Infiltration Levels in Low-Grade
Glioma
The correlation between PTEN status and immune cell
infiltration (including B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells) in LGG patients
were evaluated using the TIMER database. The results showed
that the PTEN mutation is significantly and positively correlated
with the infiltration of B cells, macrophages, neutrophils, CD8+
T cells, and dendritic cells in LGG patients (Figure 4), but not
CD4+ T cells. Among these differential groups, the immune cell
infiltration of PTEN mutation was significantly higher than the
wild-type group.

Gene Set Enrichment Analysis
To explore the effect of the DEGs on molecular function
signaling, the GSEA analysis was employed. By performing
the GSEA analysis, we identified eight significant biological

function annotations, e.g., unfolded protein response, cholesterol
homeostasis, epithelial mesenchymal transition, interferon
alpha response, interferon gamma response, and angiogenesis
(Figure 5). These annotations are the critical components in
cancer cell proliferation. The enrichment results indicated that
the PTEN mutation may play a pivotal role in various pathways
involved in cancer cell migration, metabolism, and immune
response regulation.

Identification of Differentially Expressed
Genes
DEGs were identified by querying the RNA-seq datasets from the
PTEN mutation (n = 18) or wild-type PTEN groups (n = 498).
Here, 352 genes were identified as DEGs based on the criteria
of | log2FoldChange | ≥ 1.0 and P < 0.05 (as shown in
Figure 6A). Among these DEGs, 91 genes were upregulated and
261 genes were downregulated. Meanwhile, we also explored
the correlation between PTEN expression and tumor-related
biomarker expression (including Nf1, H3F3A, CDKN2A, IDH1,
and FGFR1/2) as shown in Table 2. The NF1 expression level was
highly positively correlated with PTEN expression (Spearman’s
efficiency R = 0.405).

GO and KEGG Analyses of Differentially
Expressed Genes
In order to explore the biological effect of the dependence of
these 352 DEGs on PTEN status, we performed GO and KEGG
pathway analyses. The GO analysis of the DEGs (Figure 6B)
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FIGURE 3 | PTEN expression levels affected the prognosis of patients with low-grade glioma independently of tumor stage and patient age and gender.

FIGURE 4 | PTEN mutation significantly correlates with immune cell infiltration. **p ≤ 0.01, ***p ≤ 0.001.

suggested that they were enriched during the regulation of the
postsynaptic membrane potential, transsynaptic signaling, the
regulation of membrane potential, modulation of the chemical
synaptic transmission, synapse organization, synaptic membrane,
postsynaptic membrane, pre-synapse, integral components of
the synaptic membrane, regulation of the neurotransmitter
receptor activity involved in the regulation of the postsynaptic
membrane potential, postsynaptic neurotransmitter receptor
activity, and ligand-gated ion channel activity. Moreover, the
DEGs of the KEGG analysis were enriched in nicotine addiction,
morphine addiction, the cyclic adenosine monophosphate

(cAMP) signaling pathway, and neuroactive ligand-receptor
interaction (Figure 6C).

Module Screening
Data created by the STRING database were filtered, and the
mutual effect and central genes within the DEGs were studied.
The top 10 genes were confirmed to be central genes. These
were confirmed as hub genes and included PSSTR2, GABBR1,
SSTR1, CXCL10, CCL4, ANXA1, SAA1, CCL4L1, and HRH3.
SSTR2 exhibited the highest degree of nodes among those
genes with nine. In the PPI network, the modules of genes
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FIGURE 5 | Gene set enrichment analysis results for high PTEN expression levels in patients with low-grade glioma.

FIGURE 6 | (A) Volcano plot for the differentially expressed genes (DEGs); (B) GO enrichment terms of the DEGs, (C) KEGG pathway analysis of the DEGs.

were confirmed using the MCODE plug-in in Cytoscape.
The top three modules of the GO and KEGG pathways
were chosen for analysis (Figure 7). The enrichment results

suggested that the genes in modules 1–3 were predominantly
associated with the G protein-coupled receptor signaling
pathway, coupled to the cyclic nucleotide second messenger,

Frontiers in Molecular Biosciences | www.frontiersin.org 6 December 2020 | Volume 7 | Article 56241612

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-562416 December 7, 2020 Time: 17:42 # 7

Feng et al. PTEN Mutation in LGG

TABLE 2 | Correlation between PTEN expression and tumor-related biomarkers.

Gene Spearmen’s correlation p-value q-value

NF1 0.405 9.26e− 22 2.72e− 20

H3F3A −0.172 8.753e− 5 2.215e− 4

CDKN2A −0.131 2.944e− 3 5.793e− 3

IDH1 −0.102 0.0212 0.0354

FGFR1 −0.0845 0.0555 0.0845

FGFR2 −0.151 5.952e− 4 1.319e− 3

endothelial cell activation, gamma-aminobutyric acid (GABA)
receptor activity, cAMP signaling pathway, phospholipase
C-activating G protein-coupled receptor signaling pathway,
neuroactive ligand-receptor interaction, and post-translational
protein modification.

DISCUSSION

The PTEN protein acts as a tumor suppressor, which inhibits the
down-stream proteins when performing its suppressing function
(Maehama et al., 2001; McGirt et al., 2005). The bioactivity of the
PTEN protein is highly dependent on the subsequent antagonism
of the PI3K/AKT pathway. However, some literature has reported

that PTEN can function through AKT-independence (Freeman
et al., 2003). Consequently, it is necessary to explore the biological
functions associated with the PTEN status. In this study, we
carefully evaluated the critical role of PTEN mutation in LGG
progression and prognosis, which may provide therapeutic scope
for precise LGG therapy.

Firstly, the clinical analysis (Figure 1A) results showed that 6%
of patients with LGG harbored PTEN mutations, including four
types of mutations (missense mutations, nonsense mutations,
amplifications, and deep deletions). Furthermore, the survival
curve clearly revealed that patients with the PTEN mutation
suffered a poorer prognosis, a lower survival rate, and greater
disease recurrence than the wild-type group (Figures 2C,D). On
the basis of the clinical results, early clinical intervention for
LGG PTEN mutation groups would be helpful for improving the
patient survival period.

Second, the Cox analysis revealed that the mRNA expression
level of the PTEN mutation group was lower than the wild-type
group (P < 0.01). And shallow deletion and normal diploid types
of PTEN mRNA level were also higher than the deep deletion
and gain status (Figure 2B). Considering the PTEN mutation
types (missense), a mutation of PTEN led to the dysfunction
of tumorigenesis suppression. Meanwhile, we also found that
the PTEN expression level was related with some tumor-related
biomarkers (Table 2).

FIGURE 7 | Top three modules from the Pixels Per Inch (PPI) network—(A,B) PPI network and GO and KEGG analyses of module 1; (C,D) PPI network and GO and
KEGG analyses of module 2; (E,F) PPI network and GO and KEGG analyses of module 3.
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Immune cell infiltration can affect the tumor occurrence,
progression, and prognosis, owing to the effect of the tumor
microenvironment (Chaffer and Weinberg, 2011; Deng et al.,
2020). The tumor microenvironment is highly associated with
immune cell infiltration. Consequently, exploring the immune
cell infiltration level may provide more scope on the tumor
progression and immune status. Here, we identified the role
of immune cell infiltration in PTEN status using the TIMER
database (Figure 4). By further analysis, B cells, neutrophils,
CD4+ T cells, macrophages, CD8+ T cells, and dendritic cells
were more significantly abundant in the PTEN mutation group
than the wild-type PTEN group. Higher immune cell infiltration
meant that the complex immune microenvironment may induce
a serious progression status. Therefore, these results revealed
that some specific genes or signaling may lead to immune cell
infiltration in the PTEN mutation group.

Finally, we explored the role of critical molecular annotations
that led to the poor prognosis of PTEN mutation LGG
patients (Figures 5, 6). The top six annotations of GSEA
were associated with various cancer-related pathways, e.g.,
epithelial mesenchymal transition, interferon gamma response,
interferon alpha response, cholesterol homeostasis, unfolded
protein response, and angiogenesis. These molecular functions
promoted tumorigenesis (epithelial mesenchymal transition) and
enhanced drug resistance (unfolded protein response). By deeply
affecting these signal pathways, LGGs with PTEN mutations can
lead to a higher tumor grade and poor survival (Figures 2C,D).

After the identification of DEGs (Figure 6A), the GSEA
analysis on the biological function levels were carefully studied
(Figures 6B,C). The GO annotations showed that the top five
ranking annotations were mostly associated with the signal
transduction process, for example, the regulation of postsynaptic
membrane potential, synaptic membrane, and ligand-gated
ion channel activity. These annotations were “neuron”-related
signaling and these molecular functions may affect cell metastasis.
Among them, epithelial mesenchymal transition, a complex
biological process, contributed to metastasis, wherein the
genetic and epigenetic events caused the epithelial cells to
acquire a mesenchymal gene activity signature and phenotype
(Subramanian et al., 2005; Li et al., 2020). The GO analysis results
showed that 352 DEGs could be attributed to the top three GO

annotations: growth factor activity, GABA receptor activity, and
neurotransmitter secretion. The enriched annotations of growth
factor activity and neurotransmitter secretion were consistent
with immune cell infiltration.

Moreover, the KEGG enrichment results confirmed the GO
analysis, because the top ranking pathways were neuron-related
molecular functions and tumor-related pathways (Ras signaling
pathway). The PPI network analysis also provided four key nodes
by STRING analysis (Figure 7). These node networks were highly
associated with the protein modification process.

CONCLUSION

In summary, we systematically investigated the PTEN mutation
condition with LGG poor prognosis and immune cell infiltration.
These results revealed that a PTEN mutation can promote the
tumorigenesis process and lead to more immune cell infiltration.
Thus, our results showed the importance of PTEN status in
disease progression and revealed that it may become a useful
biomarker for diagnosing LGGs.
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Missense variants are among the most studied genome modifications as disease
biomarkers. It has been shown that the “perturbation” of the protein stability upon a
missense variant (in terms of absolute ΔΔG value, i.e., |ΔΔG|) has a significant, but not
predictive, correlation with the pathogenicity of that variant. However, here we show that
this correlation becomes significantly amplified in haploinsufficient genes. Moreover, the
enrichment of pathogenic variants increases at the increasing protein stability perturbation
value. These findings suggest that protein stability perturbation might be considered as a
potential cofactor in diseases associated with haploinsufficient genes reporting missense
variants.

Keywords: protein mutation, protein stability, haploinsuffciency, variant effect prediction, protein stability prediction

INTRODUCTION

Missense variations may cause loss-of-function by directly perturbing protein-protein
interactions or ablating enzymatic activity or by inducing structural destabilization of the
protein (Stein et al., 2019), which in turn may trigger protein misfolding and degradation.
Many neurodegenerative diseases, such as Parkinson’s disease, are also associated with
destabilization of the corresponding proteins (Wilson et al., 2014). However, there are cases
where missense variations increase protein stability while still being deleterious. As an example,
the variation H101Q in the CLIC2 protein has been associated with a mental disorder and
predicted to make the CLIC2 protein thermodynamically more stable and to interact more
strongly with the ryanodine receptor, obstructing its transport to the cell membrane (Witham
et al., 2011). Therefore, stability perturbations, rather than protein destabilization, can be linked
with disease-causing variations.

Recently, Gerasimavicius et al. have highlighted an improvement in the identification of
pathogenic variations using |ΔΔG| values (Gerasimavicius et al., 2020). However, very little is
known about thermodynamic changes in human protein variants so far (Sanavia et al., 2020),
and the processes establishing whether a variation perturbing the protein stability is or not
disease-related are not clear yet. An extensive comparative analysis has proven that, on average,
variations mostly involved in disease also associated with large effects on protein stability
(Casadio et al., 2011). Although several studies tried to predict the functional or structural
impacts of missense variations, the mechanism of the phenotypic impact through inheritance
modes of the missense variations are still unclear. Indeed recessive variations are mainly
observed in the buried region of protein structures and more likely associated with loss-of-
function, whereas dominant variations are significantly enriched in the interfaces of molecular
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interactions and more difficult to be identified as disease-
related (Guo et al., 2013; Martelli et al., 2016).

One of the most known pathogenic mechanisms for loss-of-
function mutations is haploinsufficiency, a type of genetic
dominance wherein a single functional copy of a gene is
insufficient to maintain normal function. Different theories
have been put forth to explain the cause of haploinsufficiency.
One of them states that growth defects caused by changes in gene
dosage are due to stoichiometric imbalances of protein complexes
interfering with cellular functions (Veitia and Potier, 2015),
whose interactions relying on the relative stoichiometry may
be either cooperative or competitive. An example of this latter
case is the cytotoxic T-lymphocyte-associated protein 4 (CTLA4),
which competes for the same ligands with cluster of
differentiation 28 (CD28), a T-cell activator. An inappropriate
balance of CTLA4 and CD28 can result in T-cell overactivation
by CD28 and autoimmune disease. Recently, it was observed a
fatal heterozygous mutation in CTLA-4, predicted to decrease
protein stability resulting in haploinsufficiency and decreased
CTLA-4 expression in a patient reporting autoimmunity (Evan’s
syndrome), lymphoproliferation and severe infections (Moraes-
Fontes et al., 2017).

In this brief report, we suggest that one possible contribution
to the pathogenic mechanism in haploinsufficient genes can be
related to missense variants perturbing protein stability.

METHOD

Dataset
Performance assessment of 13 computational stability predictors,
i.e., FoldX 5.0 (Delgado et al., 2019), INPS3D (Savojardo et al.,
2016), Rosetta (Alford et al., 2017), PoPMusic (Dehouck et al.,
2011), I-Mutant (Capriotti et al., 2005), SDM (Worth et al., 2011),
SDM2 (Pandurangan et al., 2017), mCSM (Pires et al., 2014a),
DUET (Pires et al., 2014b), CUPSAT (Parthiban et al., 2006),
MAESTRO (Laimer et al., 2016), ENCoM (Frappier et al., 2015),
DynaMut (Rodrigues et al., 2018), was investigated for detecting
pathogenicity in (Gerasimavicius et al., 2020), considering |ΔΔG|
values obtained from each predictor on a dataset of 13,508
missense variations from 96 different high-resolution (<2 Å)
crystal structures of disease-associated monomeric proteins
encoded by 100 genes. The dataset includes 3,338 missense
variants which are annotated in Clinvar (Landrum et al.,
2018) as pathogenic or likely pathogenic, associated to
proteins with at least 10 known pathogenic missense
variations occurring at residues present in the structure. These
pathogenic variants are compared against 10,170 “putatively
benign” missense variants collected from gnomAD v2.1
(Karczewski et al., 2020) from the same genes as the
pathogenic variants. In order to highlight whether the
performance obtained by the protein stability predictors might
be influenced by the inheritance mode of the related coding
genes, we annotated them according to the curated lists of
autosomal dominant/recessive and haploinsufficient genes
reported by the MacArthur Lab (https://github.com/
macarthur-lab/gene_lists). The number of variants for each

inheritance mode, split by pathogenic/benign, are 1,217/1,252,
753/1,819, and 635/4,253 for haploinsufficient, dominant, and
recessive genes, respectively.

Performance Evaluation
The assumption is that the |ΔΔG| values provided by the
predictors can be used as a measure of pathogenicity, with
lower values associated with neutral variations. The |ΔΔG|
values are used to compute the area under the receiver
operating characteristic curve (AUC) as the performance
metric as in (Gerasimavicius et al., 2020). In this way, we do
not need to select any specific threshold for the perturbation to
define a pathogenicity score. However, to avoid biases due to the
low proportion of pathogenic variants, here the AUC and the
precision were calculated by averaging the results on balanced
subsets. More precisely, the available pathogenic variants were
matched with a random subset with the same number of benign
variants for 100 times. This procedure was applied to the full
dataset, for each gene separately and for the variants of each
specific inheritance mode (i.e. haploinsufficient, autosomal
dominant and recessive), along with their complement set.
AUCs were always computed on |ΔΔG| values.

RESULTS

Figure 1 shows the AUCs obtained from each predictor and the
mean output of the best two performing methods (FoldX 5.0 and
INPS3D, orange bar in the figure).We also tested all combinations of
the three best predictors, which performed slightly worse
(Supplementary Figure S1,S2). The bars reported in Figure 1
reflect the probability of a randomly chosen disease variant being
assigned a higher-ranking score than a random benign one
(Gerasimavicius et al., 2020). The barplots highlight the
variability in terms of performance among the prediction
stability-based methods, with FoldX 5.0 reaching the best AUC.
It is worth noting that the combination of the scores from FoldX 5.0
and INPS3D increases the AUC performance of 2 percentage points
over FoldX 5.0.

We then evaluated the scores by grouping the gene variants
according to their inheritance mode (i.e. autosomal dominant/
recessive or haploinsufficiency) in order to provide a biological
interpretation. Interestingly, we found that the performance is
significantly higher in haploinsufficient genes (Figure 2, top
panel), while it is lower in not haploinsufficient dominant
genes (Figure 2, central panel). Recessive genes show no
significant differences from non-recessive genes. (Figure 2,
central and bottom panels).

Since stability change is one of the possible disease
mechanisms to be linked with potential pathogenicity, we do
not expect a high predictive power for small ΔΔG values.
However, we can expect an enrichment of pathogenic variants
at increasing protein stability perturbations. This hypothesis is
confirmed in Figure 3, where we observed that variants with very
high |ΔΔG| values tend to be strongly enriched in pathogenic
variants. In general this is valid for all genes, but much more for
haploinsufficient genes.
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This result suggests that it is possible to generate a highly
specific test for pathogenicity by selecting the variants according
to a fixed threshold for the predicted |ΔΔG|. However, choosing
the best |ΔΔG| threshold is highly dependent on the type of
predictor used. When considering the best performing one,
i.e., the mean between FoldX 5.0 and INPS3D |ΔΔG| values,
we see that a threshold of 4.4 kcal/mol yields a precision (positive
predictive value) of 96%.

Most of the variants are predicted to be destabilizing by the
predictors, and this prevents us from analyzing the effect of the
stabilizing variants separetely. Conversely, when only the
predicted destabilizing variants are considered (Supplementary
Figure S3), the trends are similar but slightly higher to those
reported in Figure 3.

DISCUSSION

Genetic dominance originates from a variety of unrelated
mechanisms (Veitia and Potier 2015). One of those is
haploinsufficiency, namely the intolerance of a gene to the loss
of one allele. As a consequence, the relative protein dosage is half
of the normal level, which is not sufficient to ensure a normal
function and consequently causes the pathological phenotype.
Possible genetic causes are, for example, the deletion of one allele
or protein-truncating variants that may induce nonsense-
mediated decay of transcripts.

The better performance ofΔΔG predictors in haploinsufficient
genes suggests that missense variants causing significant changes
in protein stability may play a relevant role in disease

development when genes are haploinsufficient. It does not
seem far-fetched to argue that variants causing strong ΔΔG
perturbations are likely to yield a non-functional protein, thus
becoming loss-of-function variants, which are the main driver of
pathogenicity in haploinsufficient genes. On the other hand, the
lower performance on non-haploinsufficient dominant genes
shows that this role does not extend to other dominance
mechanisms, which are often activated by “gain-of-function”
variants, where the mutated protein actively interferes with the
gene function. This may suggest that ΔΔG perturbations are not
predictive of “gain-of-function” effects.

Figure 3 shows that protein stability-based methods are able to
predict pathogenic variants in haploinsufficient genes at high
precision (>96%) using thresholds on |ΔΔG| values above
4.4 kcal/mol. However, since ΔΔG perturbation is only one of the
many molecular mechanisms affecting pathogenicity, we do not
expect to gain in sensitivity by decreasing the |ΔΔG| threshold:
missense variants predicted to cause only modest ΔΔG changes may
cause disease by other mechanisms like compromising the protein
interaction capabilities. On the other hand, significant ΔΔG
perturbations can shift the protein far from its dynamically active
state, making the protein non-functional. Indeed, we confirmed that
perturbing variants (predicted to be either very destabilizing or
stabilizing) have a high probability of being pathogenic. Thus, by
choosing an appropriate |ΔΔG| threshold (which is dependent on
the specific ΔΔG predictor), we can turnΔΔG predictors into highly
precise pathogenicity predictors for haploinsufficient genes.

While the absolute value of the ΔΔG was used for all analyses, it
would have been interesting to analyze variants predicted to
increase or decrease stability separately. This would have allowed

FIGURE 1 | Barplots displaying the performance (AUC) of all the ΔΔG predictors and the consensus (orange) of the best two performing methods (FoldX5.0 and
INPS3D). The bars represent the mean AUC obtained by averaging balanced subsets (the available pathogenic variants were matched with a random sample with the
same number of benign variants for one hundred times).
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us to check if stabilizing variants could be associated for instance
with gain-of-function mechanisms, differently from destabilizing
variants. However, a high proportion of the variants in our dataset
were predicted to be destabilizing, leaving an insufficient number of
stabilizing and especially highly stabilizing variants for a robust
statistical analysis. This interesting question should be addressed in

the next future when more data will be available by correctly
mapping annotated variants to protein structures.

In conclusion, large ΔΔG perturbations in haploinsufficient
gene products appear to be a significant factor in the
pathogenicity assessment of the missense variants. Therefore,
we recommend complementing the state-of-the-art pathogenicity

FIGURE 2 | Performance of top performing predictors, (i.e. FoldX 5.0 and INPS3D, Rosetta and PoPMuSiC along with the combined scores of the first two) split by
haploinsufficient, dominant without haploinsufficiency and recessive genes. P-values of the pairwise comparison between each gene group and its complement by the
Mann-Whitney U test are reported at the bottom of the x-axis.
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predictions with one of the best performing ΔΔG predictors, at
least for haploinsufficient genes, when looking for possible
disease causes. High |ΔΔG| values indicate that protein
stability perturbation is a reasonable cause of the observed
pathological condition.
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The interactions between residues in a protein tertiary structure can be studied effectively
using the approach of protein structure network (PSN). A PSN is a node-edge
representation of the structure with nodes representing residues and interactions
between residues represented by edges. In this study, we have employed weighted
PSNs to understand the influence of disease-causing mutations on proteins of known 3D
structures. We have used manually curated information on disease mutations from
UniProtKB/Swiss-Prot and their corresponding protein structures of wildtype and
disease variant from the protein data bank. The PSNs of the wildtype and disease-
causing mutant are compared to analyse variation of global and local dissimilarity in the
overall network and at specific sites. We study how amutation at a given site can affect the
structural network at a distant site which may be involved in the function of the protein. We
have discussed specific examples of the disease cases where the protein structure
undergoes limited structural divergence in their backbone but have large dissimilarity in
their all atom networks and vice versa, wherein large conformational alterations are
observed while retaining overall network. We analyse the effect of variation of network
parameters that characterize alteration of function or stability.

Keywords: disease-causing mutations, protein structure networks, allostery, network variability, protein function

INTRODUCTION

The amino acid sequence determines the protein 3-D structure (Anfinsen, 1973) which is related to
its function. An alteration in the amino acid sequence can bring about changes in the folding and
stability of the protein (Lorch et al., 1999; Lorch et al., 2000), interaction of the protein with other
molecules (Rignall et al., 2002; Ung et al., 2006) and change in functional levels (Tiede et al., 2006) or
overall function of the protein as well. A mutation in the amino acid sequence may alter the structure
of a protein but it does not necessarily alter its function, although, the mutation at specific sites such
as conserved residues can bring about a change in the structure and function of the protein.

In humans, the most frequent genetic variants are single nucleotide polymorphisms (SNPs) which
have been studied extensively (Buetow et al., 1999; Cargill et al., 1999; Collins et al., 1999; Halushka
et al., 1999). SNPs could be non-synonymous which bring about a change in the amino acid
sequence. Several such genetic variants are known to cause mutations in their gene product and their
information is available in resources such as the SNPdb (Sherry et al., 2001) and 1000 Genomes
project (Auton et al., 2015). Some of the mutations in a protein are known to enhance the
susceptibility or predisposition to a disease and are referred to as disease causing mutations. A
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few resources are available that map the gene variants to the
diseases they may cause. ClinVar is a public archive mapping
sequence variants and human phenotype (Landrum et al., 2018),
COSMIC is a large catalogue of mutations associated with cancer
(Forbes et al., 2017) and SwissVar is a one stop database for the
easy retrieval of amino acid polymorphisms and the phenotype
information (Mottaz et al., 2010). All the information from the
SwissVar is now directly available via the UniProt knowledgebase
(Bateman, 2019). However, specific information of the gene
variants is compiled as a catalogue and is available on the
Humsavar knowledge base which is an index of manually
curated human polymorphisms and disease mutations.
(https://www.uniprot.org/docs/humsavar).

Mutations in the protein sequence can alter the structure that
is natively conferred by the sequence of the wildtype (Taverna
and Goldstein, 2002; Tokuriki and Tawfik, 2009). In several
scenarios the site of mutation is distant from the site of
function, and still one observes a loss of function or alteration
in functional levels (Mitternacht and Berezovsky, 2011; Yang
et al., 2016). Although, the conformation of the mutant protein
may be highly similar to the conformation of the wildtype, there
could be alterations in their topologies at sites distant from the
site of mutation (Rajasekaran et al., 2017). This concept of
alteration of the structure at distant sites from the site of
perturbation has been well documented under the subject of
allostery (Gunasekaran et al., 2004; Weinkam et al., 2013;
Naganathan 2019). Without much change in the overall
topology of the protein an allosteric signal can transmit the
effect of a perturbation to a different site in the protein
structure (Guarnera and Berezovsky, 2019a; Guarnera and
Berezovsky, 2019b). The internal protein structural network
defines the connectivity between atoms/residues (Vijayabaskar
and Vishveshwara, 2010). When perturbations are bought into
the system such as disease-causing mutations, it is seen that the
variation in the connectivity of the elements within the system
brings about allosteric changes in functional sites and elsewhere
(Dubay et al., 2015; Guarnera et al., 2017; Tan et al., 2019; Tee,
Guarnera and Berezovsky, 2019; Guarnera and Berezovsky,
2020).

In this study, we use the Humsavar knowledge base to identify
disease-causing mutations in proteins and analyse the variability
in protein structural networks between wildtype and disease-
causing variant. We explore the possibility of mutations at a given
site that can affect the structural network at a distant site which
may be involved in the function of the protein.

MATERIALS AND METHODS

A Dataset of Disease-Causing Variants in
Humans
The disease variant information provided in the Humsavar
knowledge base is a manually curated subset of UniProtKB/
Swiss-Prot protein data for human polymorphisms and disease
mutations with their amino acid variations imported from
Ensembl variation databases. Humsavar knowledge base has
been screened to identify proteins that have X-ray crystal

structures of the wildtype and associated disease-causing
mutant available on the protein databank (PDB) (Berman
et al., 2000; Berman et al., 2002). Of the 2,943 proteins
reported on the knowledge base having disease causing
variants, 1,316 of them have at least one crystal structure
available. In the protein structural networks involved in our
analysis we are looking into the geometry at local sites which
are closer than 4.5 Å while constructing all atom networks (Yao
et al., 2019). Hence, in our data set for analysis we have applied a
resolution cut-off criterion of 3Å. Additional condition of a
difference in refinement factors (Rfree−Rwork) of no more than
5% was also used. Protein structures available in the free form,
without a bound ligand are chosen by screening them using the
BioLip database (Yang et al., 2013). Disease cases are identified by
pairwise alignment of the sequences obtained from uniport and
PDB entries to obtain unique chains of disease-causing mutant
and wildtype structures having the best resolution. 74 cases with
crystal structures of the wildtype and corresponding disease-
causing mutant are found. Details of these protein structure
pairs are listed in Supplementary Table S1.

All Atom - Protein Structure Network Model
The Protein Structural Network (PSN) models residues as nodes
and constructs edges between nodes that satisfy the proximity
criteria. Atoms from a pair of non-adjacent residues that fall
within a distance cut-off of 4.5 Å are considered to make atom
contact and therefore form an edge between the corresponding
residues in the PSN (Brinda and Vishveshwara, 2005). The
network model is an all-atom based, weighted and non-
directed graph where the edge weight is given by:

Edgeweight(Iij) � number of atom contacts between the residues i, j
Highest number of atom contacts between the amino acids i, j

The highest number of atom contacts between any pair amino
acids is generated from analysing all the structures in the dataset
of high-resolution crystal structures. In this paper, the Cα-atom
position is used to represent the position of a node corresponding
to a residue and edges are represented using lines. A hub is a node
in the network that is well connected to several other nodes
(Cohen and Barabási, 2002). We identify the minimum number
of edges necessary to define at least one hub in all the structures of
the disease cases and hence defined any node in the PSN having
equal to or greater than 11 edges as a hub. We represent the hubs
using spheres.

Network Dissimilarity Score
The network dissimilarity score (NDS) iis used to compare two
networks with identical number of nodes to generate a
difference score that quantifies the dissimilarity in their
spectra and the weight of edges (Gadiyaram et al., 2017;
Ghosh et al., 2017). The adjacency matrix is a representation
of a network which is generated as described in the All Atom -
Protein Structure Network Model. Let us say we are comparing
the networks of a proteins A and B. The adjacency matrices of
PSN A and PSN B are compared to generate the edge difference
score (EDS).
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EDS � ||A − B||F�����������������������������(∑ edge weightA  × ∑ edge weightB)√

The edge difference score captures the difference in edge
weights between corresponding edges of the networks. A
Laplacian of the adjacency matrix is derived before their
spectra (eigen values and eigen vectors) are generated. The
spectral information is used in computing the
correspondence score (CRS) and eigen value weighted cosine
scores (EWCS).

CRS � 1 − 6∑ (Index EvecA − Index EvecB)2 
n(n2 − 1)

Where, n is number of nodes in the PSN. The index difference of
eigen vectors, once arranged in ascending order of their eigen
values, is used in the numerator.

EWCS � ∑(1 − cosine(θij))2|1 − EvalA||1 − EvalB|
∑|1 − EvalA||1 − EvalB| 

where, EvalA and EvalB are eigen values of PSN A and PSN B. The
cosine between a pair of nodes is generated using the ratio
between the dot product of their eigenvectors and the product
of their magnitudes. The spectral comparison scores capture the
local and global clustering of the nodes in the network. The
components are formulated in computing the NDS:

NDS �
�����������������������
EDS2 + EWCS2 + (1 − CRS)2

√

An in-house python program is used to calculate the NDS in
any pair of networks.

The NDS between the PSNs of the wildtype and mutant chain
is generated.

NDS ranges from 0 (indicating absolute congruency/
identical networks) to a score of √3 (indicating absolute
dissimilarity to the extent of no match between the
networks). TM-align tool is employed to generate structure
based sequence alignment and structural difference
information (Zhang and Skolnick 2005).

Evaluating the Effect of Allostery
In order to study the effect of a perturbation such a disease-
causing mutation on the structure of protein, the AlloSigMA
server is employed. The server implements a structure-based
statistical mechanical model of allostery, abbreviated SBSMMA
(Guarnera and Berezovsky, 2016), to quantify the allosteric
response that is communicated due to the effect of a
perturbation like a molecular binding event or a mutation.
The wildtype crystal structure of the protein being analysed is
submitted as input to the server and an UPmutation perturbation
is introduced. In this case, An UPmutation simulates the effect of
mutation to a bulkier residue at the site of the disease-causing
mutation. Crystal structures that had missing residues were
completed using SWISS-MODEL (Guex and Peitsch, 1997).
The AlloSigMA server results in an output of the response
free energy of each residue that is accountable for the
allosteric signal initiated by the mutation.

RESULTS

The perturbation in the structure of a protein due to disease
causing mutations can be studied extensively using their native
structural topologies (Ambrus et al., 2015; Ambrus et al., 2016;
Szabo et al., 2018). It is understood that the resulting structural
change manoeuvres the function or functional levels of the
protein that is related to the onset of a disease. Here we study
such variations in terms of structural networks of wildtype and
disease related mutant. For the analysis, we identified proteins
with disease-causing mutational variants from the Humsavar
database and their corresponding wildtype and mutant crystal
structures from PDB. We identified crystal structure variants
corresponding to 74 disease cases and used those structures
solved with the best resolution. The effect of mutations on
their structure and network is analysed.

Analysis of Protein Structural Network
Protein structure networks are a node-edge representation of the
protein structure that efficiently displays the connectivity
between different elements of their tertiary structure. Several
studies in the past have made use of protein structure
networks in studying the connectivity between residues based
on features such as their spatial proximity and energy of
interaction. We have used an all-atom network model to
generate structural network information at the residue level
with edges made between residues that are spatially proximal.
Two residues are linked with an edge if a pair of their atoms is
situated within a distance of 4.5 Å. The strength of the edge
depends on the number of such atom pairs between the residues
that are forming an edge. We have discussed the criteria for
defining an edge in the Methods section. We generated the all-
atom protein structural networks for all the individual chains of
the wildtype and mutant protein structures in our dataset.

The alteration of the connectivity that arises as a result of
mutation is studied by comparing the PSNs of the wildtype and
the corresponding mutant. The variation in their connectivity is
observed by segregating the edges into those that are retained and
those that are unique to wildtype or mutant structures
(Supplementary Figure S1). This means that the edges found
to be unique to the wildtype structure are lost in the mutant.
Similarly, those edges that are unique to the mutant structure are
considered to be gained. The information of edges lost and gained
in the wildtype PSN and mutant PSN is presented in
Supplementary Figure S2A. Every wildtype and mutant
structure in the dataset have at least one edge that is unique
to it. Of the disease cases that are studied in the dataset, in 28 cases
the wildtype has more unique edges than the mutant and in 45
disease cases the mutant has more unique edges. This suggests
that in a majority of the disease cases more edges are gained than
those that are lost. Only in the case of the cAMP-dependent
protein kinase α catalytic subunit that is responsible for primary
pigmented nodular adrenocortical disease (by mutation L206R) it
is found that the number of edges lost in the wildtype is equal to
the number of edges that are gained in the mutant. The wildtype
and mutant in this disease case have 1,264 edges, 1,218 of these
are retained while the remaining are lost and gained.
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The information stored in the protein structure networks are
predominantly in their edges and their connectivity. In order to
study how well each element of the PSN is connected, we
employed the use of a few basic network parameters such as
the degree and strength of the nodes in the network. The
number of edges that connect to a node constitutes its degree
and the sum of all the edge weights connecting to a node spans
the strength of each node. It is possible for a node to not form an
edge with any other node; such a node is isolated in the network.
Alternatively, a node can be well connected with other nodes of
the network and form hubs. Hubs are elements in the network
that are generally crucial since they are well connected to many
other nodes. Perturbations in these nodes can have a more
significant effect on the network than those nodes that are not
hubs. Nodes from the PSNs in the dataset are found to have a
maximum degree ranging from 11 to 18 as shown in the
Supplementary Figure S3, hence for this analysis we have
chosen to consider any node with a degree 11 or higher as a
hub node, this ensures that each structure in our dataset is
composed of at least one hub.

We observe variability in the number of hubs between the
wildtype and mutant crystal structures (Supplementary
Figure S4). Hubs that are retained in between the
conformers are an indication of preserved local networks
and retained structure around them. Hubs that are unique
to the wildtype and mutant are also identified. Those hubs that
are specific to the wildtype structure are lost in the mutant
structure and the hubs unique to the mutant are gained. In 37
disease cases the number of hubs lost in the wildtype is greater
than the number of hubs that are gained in the mutant and in
28 disease cases the number of hubs gained in the mutant are
greater than those lost in the wildtype. In nine other disease
cases the number of hubs unique to the wildtype and mutant
are equal. There is no loss or gain of hubs in three disease cases.
The highest number of hubs lost in wildtype structures is 32
and the highest number of hubs gained in the mutants is 23.
The number of hubs unique to the wildtype structure and the
number of hubs unique to the mutant are shown as a scatter in
the Supplementary Figure S2B. The distribution of the
number of hubs in the structures of our dataset can be
found in the Supplementary Figure S4, S5. The functional
relevance of the change in number of hubs has been discussed
in detail for specific cases in a later section.

Local Site Variation of Structural and
Network Parameters
Change in degree of a residue between wildtype and the mutant
suggests loss or gain of edges. The strength of an edge (edge weight)
that connects two nodes may also change in the mutant. It is
expected that a node corresponding to a residue which is buried in
the protein structure has high degree and strength since they are in
the proximity of several other nodes of the network. We have
analysed the variation of network and structure parameters across
the topologically equivalent residues and nodes. Since the focus of
this work is on the mutation site that brings about the perturbation
in the network and structure of the protein that may affect the

functional sites, we have focused on studying the variability at these
local sites in detail.

The change in degree and strength at the site of mutation
reflects the change in local network at the site of perturbation. The
change in sidechain atoms of the residue at the site of mutation
plays a significant role in its degree that may or may not change in
the PSN. For example, the highest gain in degree is in the case of
apoptosis inducing factor where a glycine is mutated to a
glutamate residue and the degree increases by 5. Likewise,
when a phenylalanine is mutated to a serine in the case of
Lysine-specific histone demethylase the degree at the site of
mutation reduces by 7. The information of the change in
degree and solvent accessibility at the site of mutation is
shown in Supplementary Figure S5. In the dataset we find
that at 11 mutation sites the mutated residue undergoes
change in solvent accessibility. It is more common to see the
mutation site buried in the wildtype whereas in the mutant state
they are exposed since at 9 of the 11 sites we observe a buried
residue get exposed in the mutant.

Using the information of active site and binding sites
available in the Uniport database we identified 151 functional
sites in the dataset and analysed the change in network
parameters at these sites. The information of the change in
degree at the functional site is shown in Supplementary Figure
S6. No change in degree is observed at majority of the functional
sites. The variation of degree at the functional site (ranges from
loss of four edges to gain of four edges) is lower as compared to
the variation of degree at the mutation sites (ranges from loss of
seven edges to gain of five edges). In the dataset, only in the case
of Septin-12 protein it is found that a mutation occurs at a site of
function, where a threonine that is known to bind to GTP
(Castro et al., 2020) is mutated to methionine (T89M) and the
degree at the site changes from six in the wildtype to two in the
mutant.

Global Structural and Network Variation in
the Crystal Conformers
The overall variability in the crystal structures when the protein
undergoes a disease-causing mutation has been studied by
comparing their structures and networks separately. The
structural difference between the conformers is calculated
using the root mean square deviation (RMSD) that measures
the divergence in the backbone topologies. In order to quantify
the variation in the protein structure networks (PSN), a spectral
comparison tool that is referred to as the NDS (network
dissimilarity score) is used. The spectral comparison method
quantifies the extent of dissimilarity between two networks with
identical number of nodes. Only those residues that are
topologically equivalent are identified by structural alignment
and used for the comparison. All the structural and network
comparison scores between the wildtype and mutant crystal
structures in the dataset is generated using information of
their coordinates. Figure 1 shows the scatter plot between Cα-
atom RMSD and all-atom NDS.

The scatter of comparison scores suggests that the variation in
the network is not strongly correlated to the variation of their
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structural topologies. The mean and standard deviation in the
scores is plot on the scatter using red and blue (dotted) lines
respectively. The mean NDS of the disease cases is 0.175 and the
mean RMSD is 0.92 Å. A dataset of all pairs of available wildtype
structures is used as a control in analysing the significance of the
observed variability. In the control dataset the mean NDS is 0.12
and the mean RMSD is 0.57 Å which is relatively lesser than the
variability in the disease cases (Supplementary Figure S7). It
should be noted that RMSD and NDS plotted correspond to Cα
positions and all atoms (including sidechains) respectively. Near
absence of correlation in Figure 1 also conveys the message that
there are examples with Cα positions well retained between
wildtype and the mutant while the sidechain orientations are
altered. There are also cases where the sidechain connectivity in
networks are highly similar between wildtype and the mutant, but
Cα trajectory has undergone a significant change.

Specific Cases of Network and Structure
Variability
In the global analysis of protein structure and network variability,
we find several cases where the structural topology (Cα positions)
is preserved but the all-atom network have changed considerably
and the vice versa. In the first type of cases, the network variability
is high, NDS is greater than the mean and standard deviation,
even though the structures are well superimposed with lower than
mean RMSD. In the second type of cases, the networks are not
strongly dissimilar i.e. NDS lower than the mean of the dataset,
but the structural difference suggests that they might not be as

well preserved as their networks with RMSD greater than the
mean and standard deviation of the dataset. Three disease cases
from the dataset that fall into each of these categories are studied
in detail.

Network Variable Cases
Disease Mutation in Medium-Chain Specific Acyl-CoA
Dehydrogenase (MCAD) Alters Local Network at the
Functional Site
The MCAD mitochondrial protein is known to catalyse the first
step of fatty acid beta oxidation in humans. The functional
protein is a homo-tetrameric complex with subunits bound to
FAD molecules (Lee et al., 1996). The coding gene undergoes a
single nucleotide polymorphism (A985G) that results in the
protein mutant (K304E) which leads to the disease state
(Gregersen et al., 1993). The protein undergoes a significant
variation in the all-atom network (NDS 0.248), however the
Cα RMSD is quite low (0.46Å). 67 edges and five hubs are
lost in the wildtype PSN whereas 83 unique edges and 17
hubs are gained in the mutant (Supplementary Figure S8). It
is observed that mutational site is far away from the site of
function (S142, N191, G377, and R388). The site of function in
the protein is shown in Figure 2A, the corresponding nodes and
their edges in the wildtype PSN and mutant PSN are shown in
Figures 2B,C respectively. Due to the rearrangement of edges at
the nodes corresponding to functional site residues as shown in
Figure 2, there is change in the local network at the functional
site. It is reported that the mutation (K304E) leads to a deficiency
of the protein that can result in death at infancy.

FIGURE 1 | A scatter plot comparing the structural topology (Cα positions) and PSN of the wildtype and mutant using RMSD and NDS respectively. The
comparison scores for each disease case are plot on the scatter. It is found that the structural divergence and network dissimilarity do not share strong linear
relationship.
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Porphobilinogen Deaminase Undergoes Disease
Mutation That Leads to Loss of Essential Edges and
has Reduced Thermostability
Porphobilinogen deaminase is a transferase that catalyses the
synthesis of hydroxymethylbilane which is a precursor for heme
and porphyrin biosynthesis. The disease mutant has defects of
heme biosynthesis, which is mainly due to the enhanced
excretion of porphyrins and porphyrin precursors. It is
reported that the hydrogen bonding network in the ordered
regions of the protein allows for the protein to display higher
thermostability (Bustad et al., 2013). It has also been reported
that the mutant crystal structure is less thermo stable and has
lost its function and hence may be the leading cause for Acute
intermittent porphyria (Gill et al., 2009). Although a significant
number of edges and hubs are found to be preserved in the PSN,
it is observed that 68 edges and 11 hubs that are unique to the
wildtype is lost and 46 edges and three hubs unique to the
mutant is gained (Supplementary Figure S9). Since there is loss
of edges around the ordered secondary structures in the
wildtype the important network necessary for thermostability
is lost.

The Network Around the Functional Site in the Disease
Mutant of Glutamine--tRNA Ligase Is Altered
The glutamine tRNA ligase is essential for the biosynthesis of
glutamine in humans. The function of this protein is crucial for
brain development in infants (Zhang et al., 2014; Ognjenović et al.,
2016). The wildtype and mutant structures of the protein are well
superposable (RMSD0.68 Å) although their PSNs are quite dissimilar
(NDS 0.24). The mutant node is far from the functional site where
minimal variation of edges is observed. However, the significant loss
of 176 edges and 32 hubs which are majorly found around the
functional site in the wildtype PSN (Supplementary Figure S10) can
be the cause for reduced aminoacylation activity reported in the

mutant to cause microcephaly, progressive, with seizures and
cerebral/cerebellar atrophy.

Cases with Backbone Structure Variation
The Mutant Structure of the Major Prion Protein
Undergoes a Conformational Switch
The primary physiological function of the major prion protein is
unclear. However, the functional state of the protein (Figure 3A)
forms a well interacting dimer that is known to be involved in several
different functions (Knaus et al., 2001). In the disease mutant state
(Figure 3B), a conformational transition is observed in the
C-terminal helix (Non-aligned helix shown in Figure 3) that
forms a dimer with fewer interaction between the dimeric chains
(Lee et al., 2010). The conformational change alters the topology at
several other regions of the protein resulting in a high structural
difference (RMSD2.11 Å).However, the network in the topologically
equivalent regions of the protein is preserved (NDS 0.153). There is
only one hub in the wildtype that is not altered in the mutant and
very few edges are rearranged, 19 edges and 23 edges unique to the
wildtype and mutant respectively (Supplementary Figure S11). The
newmutant conformation is found to be associatedwith Creutzfeldt-
Jakob disease where cases are reported of degeneration of neurons
and amyloid plaque formation due to protein aggregation.

Calmodulin-1 Mutant Acquires a Closed Conformation
With Minimal Change in Network
Calmodulin is a membrane binding calcium transporter protein
that transports metal ions across ion channels. A calcium ion
binding sequence motif that occurs in pairs is conserved in the
structures of this family of proteins (Tsang et al., 2006; Sarhan
et al., 2012). There are two pairs of these binding site regions
which are far apart in the open conformation of the wildtype
structure. In the current case, when one of the calcium binding
sites undergoes mutation (N98S), the functional state of the

FIGURE 2 | The functional site in the crystal structures of the wildtype (PDB ID: 1EGE) andmutant (PDB ID: 4P13) of the MCAD protein. (A) The functional site of the
protein consists of four residues (S142, N191, G377, and R388) that are shown (using stick representation) in the superposed structures. The edges corresponding to
these residues in the networks are shown in (B) the wildtype PSN and (C) the mutant PSN (using orange line representation). While N191 looses three edges, S142,
G377, and R388 gain 1, 2, and 1 edges respectively.
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protein is lost (Wang et al., 2020). The mutant structure has a
closed conformation which is reported not to bind to the metal
ion at one of the calcium binding sites with the mutation. 21 edges
in the wildtype and 18 edges in the mutant are lost and gained
respectively. Seven hubs are retained and a single hub in the
wildtype is lost in the mutant (Supplementary Figure S12). The
overall network difference (NDS 0.121) is found to be minimal.
However, due to the mutational site region that is found not to
align well with the residues in the wildtype results in a large
structural difference (RMSD 1.82 Å).

Structural Divergence in Wilms Tumour Protein
The Wilms tumour protein is a transcriptional factor
consisting of a DNA binding domain which has four zinc
finger repeats that determine sequence specific binding to
DNA (Hamilton et al., 1995). While two of the zinc fingers
bind to the DNA others are essential for recognising the
cognate nucleotide base. One of these zinc fingers that is
responsible for recognising the cognate nucleotide base
undergoes a mutation (M342R) that enhances the affinity
for a different nucleotide base leading to errors in
transcription (Wang et al., 2018). The conformation of the
wildtype does not superpose well with the mutant (RMSD
1.69 Å). In the PSN, 12 edges are lost in the wildtype and eight
edges are gained in the mutant. One new hub is gained in the
mutant along with the 1 hub that is retained between the
wildtype and mutant PSN (Supplementary Figure S13).
Hence, the network in the several regions of the protein is
still preserved depicting low network dissimilarity (NDS
0.144).

Allosteric Effect due to Disease Causing
Mutation
In specific cases wherewe observe network variation that is far from
the site of mutation, we describe the possibility of observing an
allosteric signal that repacks the residues resulting in the alteration
of PSN. In order to corroborate the exhibition of allostery in these
proteins AlloSIgMA (Tan et al., 2020) is employed to quantify the
energetics compounding the allosteric effects of a mutation. Crystal
structures of the wildtypes of three proteins in our dataset that
undergo significant network change upon mutation were studied

using AlloSIgMA andUPmutations (A perturbation that simulates
the effect of mutation to a bulkier residue) at known disease-
causing mutation sites are implemented. The output generated is
illustrated in Figure 4 and discussed in the following section.

DISCUSSION

The protein structure network is an efficient tool in analysing
allostery in the protein structure (Süel et al., 2003; Di Paola and
Giuliani, 2015). In our study, we have analysed the variation of PSN
brought about by disease causingmutations to the native functional
protein.We have observed the variability in edges and hubs that are
important parameters that make the protein structural network.
We have identified edges and hubs that are unique to the wildtype
structure that are lost in the mutant where new edges and hubs
unique to the mutant structure are gained. The use of such
information can be discussed with the help of an example.

The human serum albumin which is found abundantly in
blood plasma is known to transport several different molecules
including thyroxine (Robbins et al., 1978). In the dataset of
disease cases, it is found that the mutant structure of albumin
protein undergoes the largest variation in the number of edges
and hubs. 294 edges and 25 hubs are lost in the wildtype and 305
edges and 20 hubs are gained in the mutant (Supplementary
Figure S14). At the site of mutation (R218P) an edge with the
residue L238 that is also a hub is found to be lost in the mutant
(Figure 5). The loss of the edge is indicative of decrease in
proximity between the residues suggesting that the thyroxine
molecule that binds to K240, hormone binding site (Jacobsen,
1978), can be better accommodated in the mutant. It is reported
that the mutation enhances the binding affinity of the protein to
thyroxine that causes the elevated serum thyroxine levels
associated with familial dysalbuminemic hyperthyroxinemia
(FDH) (Petitpas et al., 2003).

We have analysed the variability in the disease cases by
comparing their network and structure using the network
dissimilarity score and RMSD. A control dataset is employed
where the wildtype is compared to all other wildtype structures of
the protein that satisfy the criteria for the dataset. The variability
in disease cases (mean RMSD 0.92 Å and mean NDS 0.175) is
much greater than in the variability in case of only wildtype

FIGURE 3 | (A) The wildtype conformer (PDB ID: 1I4M) is crystallised as a monomer in the asymmetric unit, although it exists as a dimer functionally. (B)The
structure of the disease-causing mutant (PDB ID: 3HEQ) shows conformational change in the non-aligned helix. The mutant residue is shown in red spheres.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 7 | Article 6205547

Prabantu et al. Disease-Causing Mutation Alters Structural Network

28

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


structures (mean RMSD 0.57 Å and mean NDS 0.12) which
signifies that the mutant structure and network explore diverse
conformations with different interconnectivity of residues. The
variability observed in protein structural networks is not strongly
correlated to the topological structure difference that is used in the

traditional analysis of protein structures. It is found that in a few
cases, the network variability is relatively higher than the amount of
structural difference. The vice versa is also true, where the structural
difference is quite large but their networks seem to be well
preserved. Such cases have been specifically picked for a detailed

FIGURE 4 | Free energy values obtained for three specific proteins that undergo disease-causing mutation. Specific cases where we observe significant network
variability have been subject to the analysis of allosteric effects due to mutation. The AlloSigMA server employs the SBSMMA (Guarnera and Berezovsky, 2016) method
to generate the response free energies when perturbations (UP mutation) are introduced at known sites of disease-causing mutations. Cartoon of the wildtype coloured
according to their free energy values obtained for the cases of (A) Medium-chain specific acyl-CoA dehydrogenase, (C) Porphobilinogen deaminase and (E)
Glutamine--tRNA ligase are shown on the left. Their free energy profiles are illustrated graphically with residue index on the x-axis and Δg value on the y-axis in (B), (D) and
(F) shown on the right in the same order. The orange square points to the site of mutation.

FIGURE 5 | The PSN of human serum albumin protein at the site of mutation and function in the wildtype (PDB ID: 1N5U) and mutant (PDB ID: 1HK3) is shown. The
node corresponding to the mutation site makes an edge with a hub node L238 (green sphere) in (A) the wildtype PSNwhich is lost in the case of (B) the mutant PSN. It is
observed that hubs near to the binding site (K240) are lost, which is indicative of the increase in proximity between the nodes. It has been reported that the mutant
structure is able to better accommodate a substrate with greater binding affinity which leads to the FDH disease condintion. Hubs unique to the wildtype and
mutant are show in green and cyan sphere representation respectively, those hubs that are retained are shown in red.
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analysis of their global and local changes.We have also attempted to
provide the functional relevance of the observed variability.

In the disease cases where the site of mutation is not involved
with function, allosteric changes brought about in the
connectivity of the internal network of the protein seem to
affect the function which leads to a disease state. Where the
contribution of the mutation may be as minimal as no change in
the local network at the site of mutation, a large network
alteration can be observed far away from the site of
perturbation due to the disturbance in the network of edges
connecting each element in the PSN to the other as discussed in
the example of glutamine tRNA ligase. A significant
improvement in the number of edges and hubs attributing to
an improved network stabilises the MCAD protein although the
distant mutation site alters the network at the functional site and
hence the protein loses its function. Contrarily, a reduction in the
number of edges and hubs in the case of the porphobilinogen
deaminase protein is attributed to reduced thermostability due to
loss of essential edges in the network within the protein.
Conformational transition from one state to the other brings
structural changes and loss of function in the case of major prion
protein. However, their networks are found to be preserved since
the aligned regions have retained edges and hubs that are very
small in number. Likewise, it is found that there may not be a
significant network variation but the structure varies considerably
adding to the change in interaction with other molecule due to the
mutation that eventually contributes to the alteration of function
as observed in the case of Wilms tumour protein.

So as to substantiate the exhibition of allostery due to the
mutations, theoretical free energy is computed using the
AlloSigMA. The predicted free energy obtained for the specific
cases of network variability when an UP mutation (mimicking
substitution with a bulkier residue) is implemented at the site of
disease-causing mutation are shown in Figure 4. A free energy
value of zero suggests that the residue may not respond to the
perturbation (mutation) whereas a non-zero value suggests that the
residue may respond with more or less effect due to the
perturbation. In the specific cases with large network variability,
it is found that the disease-causing mutations stabilise (negative
free energy) the residues around them and communicates the
allosteric signal that destabilises (positive free energy) residues
elsewhere within the structure. This suggests that the significant
change in protein structural network that is observed due to the
mutation at a site known to cause a disease is also due to the
allosteric mechanism that arises fromperturbation of the given site.

In Summary, our work highlights the perturbation of protein
structural network as understood from the variability between a
wildtype structure and the structure of a disease-causing mutant.
Network features such as edges and hubs help to analyse the overall
variation of networks while parameters such as degree of each node
help to analyse their local network variability. The allostery due to a
disease-causing mutation is noticeable from the loss and gain of
network elements that result in variation of protein structural
networks that is also corroborated using theoretical free energy
calculations. We find cases where the network change is confined
to the local site of mutation or far away from the site of mutation.
We have also noted cases where repacking of sidechains occurs

upon mutation and cases where the backbone conformation is
altered with preserved sidechain network. From our work, the
effect of mutation on the structural network of the wildtype may be
used as a learning to extend to the next phase of the project to
explore its predictive power of mutant structures and allosteric
effects. Themajor challenge in the future is to translate the learning
from the current work to predict the structure of the mutant which
is a prerequisite to predict the effect of mutation on the stability and
function. Availability of accurate structures of wildtype and reliably
modelled mutant structures may be used in the context of
thermodynamic cycle towards calculation of free energy
difference between the wildtype and the mutant as for example
used by Topham et al., (Topham, Srinivasan and Blundell, 1997).
The protein structural network approach is an effective tool to
understand the structural effects of disease-causing mutation,
further we also suggest that the protein structural network
approach is a convenient approach to understand the allostery
caused by other kinds of structural perturbations.
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Prediction of Function Determining
and Buried Residues Through Analysis
of Saturation Mutagenesis Datasets
Munmun Bhasin1 and Raghavan Varadarajan1,2*

1Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India, 2Jawaharlal Nehru Centre for Advanced Scientific
Research, Bangalore, India

Mutational scanning can be used to probe effects of large numbers of point mutations on
protein function. Positions affected by mutation are primarily at either buried or at exposed
residues directly involved in function, hereafter designated as active-site residues. In the
absence of prior structural information, it has not been easy to distinguish between these
two categories of residues. We curated and analyzed a set of twelve published deep
mutational scanning datasets. The analysis revealed differential patterns of mutational
sensitivity and substitution preferences at buried and exposed positions. Prediction of
buried-sites solely from the mutational sensitivity data was facilitated by incorporating
predicted sequence-based accessibility values. For active-site residues we observed
mean sensitivity, specificity and accuracy of 61, 90 and 88% respectively. For buried
residues the corresponding figures were 59, 90 and 84%while for exposed non active-site
residues these were 98, 44 and 82% respectively. We also identified positions which did
not follow these general trends and might require further experimental re-validation. This
analysis highlights the ability of deep mutational scans to provide important structural and
functional insights, even in the absence of three-dimensional structures determined using
conventional structure determination techniques, and also discuss some limitations of the
methodology.

Keywords: deep sequencing, saturation mutagenesis, protein function, activity, stability, phenotype

INTRODUCTION

Mutagenesis is a tool to learn about proteins, identifying functionally significant protein positions,
and understanding determinants of protein folding and stability. Deep mutational scanning
involving a combination of saturation mutagenesis, phenotypic screening and next generation
sequencing allows high-throughput analysis by measuring the effects of all possible amino acid
substitutions on protein function (Fowler and Fields, 2014). Deep mutational scanning reveals the
impact of mutations on a specific protein property, for example, interaction with a partner protein or
enzymatic activity. A general workflow for a deep mutational scan involves the creation of a library of
variants by applying a mutagenesis protocol to the genetic region of interest (Fowler et al., 2010)
which can include an entire coding sequence (Adkar et al., 2012). Next, these libraries are subjected to
some selection pressure, and this is used to observe the change in the frequency of variants with a
particular phenotype. The libraries are sequenced before and after selection to obtain relative
occurrences of different mutants in the population and estimate relative enrichment with respect to
the wild type sequence (Tripathi and Varadarajan, 2014).
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There have been numerous attempts to understand and
predict functional consequences of mutations by using
computational methods (Bloom et al., 2005; Moretti et al.,
2013). The availability of deep mutational scanning data has
helped to understand the contribution of every amino acid in a
protein to its structure, stability, and function, understand how
these mutations regulate protein activity, and to build on this
information to predict functional effects of mutations in other
contexts. Mutations can affect activity either by altering the
specific activity, altering the level of properly folded protein in
vivo, or by a combination of the above (Tripathi et al., 2016).
Identifying which of these is the primary contributor to an
observed phenotype is non-trivial.

For understanding the functional role of a protein, it is essential
to identify the key catalytic or functionally important residues that
we collectively refer to as active-site residues. There are several tools
available to predict protein function based on query protein
sequence or structural homology with well-characterized proteins
(Gherardini and Helmer-Citterich, 2008). One of the common
methods used to identify catalytic sites is using sequence
conservation (Berezin et al., 2004; Fischer et al., 2008). With the
availability of three-dimensional structures of proteins, these
methods can be further improved by combining structural and
sequence conservation information (Lichtarge et al., 1996; Aloy
et al., 2001; Capra et al., 2009). These methods provide cues to
design experiments, including site-directed mutagenesis
experiments, and help to give an improved prediction of
function (George et al., 2005). Such methods are helpful in cases
where protein structural information is available. For cases with
insufficient structural information, the data from deep mutational
scans can be utilized in order to infer functional sites based on the
substitution preferences across the protein under study.

In the present study, we have analyzed several deep
mutational scanning datasets and observed the mutational
sensitivity patterns at buried and exposed positions. Further,
the sequence-based predicted accessibility values were
incorporated together with the mutational sensitivity scores to
predict functional or active-site residues. These residues include
residues involved in catalytic activity, substrate binding, as well
as protein-protein or protein-ligand interactions. Predicted
accessibility scores help in the separation of the exposed from
the buried residues. Residues that are sensitive to mutation and
predicted to be exposed are likely to constitute the active-site,
while the remaining mutationally sensitive residues are likely to
be buried.

MATERIALS AND METHODS

Datasets for Large-Scale Mutagenesis
A subset of the published deep mutational scanning datasets was
curated. The result was a set of 12 deep mutational scans
(Table 1). While several other studies have been published,
most lack sufficient coverage of single-site mutations over the
region of interest, have more than one mutation per read or
describe complex phenotypes which preclude easy interpretation
of the data. Alternatively, several studies report heatmaps and raw

sequencing data without having the underlying numerical values
of the processed enrichment scores publicly available.

Data Rescaling
Most of the deep mutational scanning datasets reported
mutational effect scores as the log-transformed ratio of
mutant frequency before and after selection, divided by
wild-type frequency before and after selection. The counts/
frequency of the mutational sensitivity scores were considered
from the original datasets, and their distribution was plotted.
The values were sorted, and the 5th percentile of the value was
taken as the minimum value, min(M), for rescaling. The
maximum value, max(M), for the rescaling was considered
as the value at the peak for the wild type in the histograms. This
peak arises because many mutational effect scores are close to
that of the WT. The scores were rescaled between 0 and −1
using the formula:

Mrescaled � (b − a) M −min(M)
max(M) −min(M) + a,

where, M is the mutational effect score, a and b are −1 and 0,
respectively. With this normalization, the most sensitive positions
have mutational effect score ≈−1 and the wild type like mutations
have mutational effect score ≈0 (Supplementary Figure S1 and
Supplementary Table S1).

Depth and Accessibility Calculations
Both depth and accessibility of each residue were calculated from
the available structures deposited in the Protein Data Bank.
Amongst the datasets in the study, five of the proteins had
high-resolution PDB structures, namely dimeric CcdB
structure (PDB ID 3VUB) (Loris et al., 1999), PSD95 pdz3
domain (PDB ID 1BE9), BRCA1 RING domain (PDB ID
1JM7) (Starita et al., 2015), Gal4 (PDB ID 3COQ)
(Marmorstein et al., 1992) and TEM1 β-lactamase (PDB ID
1FQG) (Strynadka et al., 1992).

The residue depth calculations were performed using the
DEPTH server (http://cospi.iiserpune.ac.in/depth/htdocs/index.
html) (Chakravarty and Varadarajan, 1999; Tan et al., 2011). A
residue was defined as buried or exposed if the side chain
accessibility is ≤5 or >5% respectively, based on the
accessibility calculated using the NACCESS program (Adkar
et al., 2012).

Prediction of Sequence-Based Surface
Accessibility
The sequence-based surface accessibility values were predicted
using PROF (Rost and Sander, 1994), a neural network-based
method (https://open.predictprotein.org/). These values were
compared with the structure-based surface accessibility values,
which were calculated using the NACCESS program (Hubbard
and Thornton, 1993). NetSurfP was also used for the prediction of
sequence-based surface accessibility (Petersen et al., 2009) and
compared with the prediction results obtained using PROF.
PROF and NetSurfP predictions were also compared with
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SPIDER3 (Heffernan et al., 2017), a machine learning method
that takes into account the non-local interactions in its
predictions.

Prediction of the Active-Site, Buried and
Exposed Non Active-Site Residues
The rescaled mutational sensitivity values were averaged across
mutations for each position. The averaged mutational sensitivity
scores were filtered to include only those positions that had
mutational data for a minimum of 10 mutants per position.
Also, only those positions were considered for which the
predicted sequence-based accessibility values were predicted.
Both the scores for averaged mutational sensitivity and PROF
accessibility are converted to Z-scores by subtracting the mean
value and dividing by the standard deviation. The final score for
predicting the active-site residues is obtained by using the
following formula:

Zpred � Zaveragemut−sens ± Zprof−acc,

Where, Z represents the z-scores. For the prediction of active-site
residues, the two scores are added, whereas the scores are
subtracted for the prediction of buried positions. The mean
and standard deviation were calculated for the combined
score. Residues with scores one standard deviation away from
the mean were predicted as active-site or buried.

For the prediction of exposed non-active site residues, the
same scores that used the rescaled averaged mutational sensitivity
scores along with the sequence-based accessibility scores were
considered. The residues that occurred beyond the cut-off for
prediction of active-site residues were predicted to be exposed
non active-site residues. A similar analysis was performed by
incorporating the sequence-based accessibility values obtained
using NetSurfP and SPIDER3 to compare the three classes of
prediction namely, active-site, buried and exposed non active-site
residues.

Evaluation Metrics
We assume the active-site residues to represent the positive
samples and non active-site residues to represent the negative

samples for the prediction of active-site residues. On the other
hand, for the prediction of the buried sites, we consider the buried
site residues as the positive samples and the exposed residues as
the negative samples. The exposed non active-site prediction
considered the positive and negative samples in similar way.
To evaluate the performance of prediction, four evaluation
metrics are used in this study: sensitivity, specificity, accuracy,
and Matthews correlation coefficient (MCC).

Sensitivity � TP
TP + FN

,

Specificity � TN
TN + FP

,

Accuracy � TP + TN
TP + TN + FP + FN

,

Matthews Correlation Coefficient

� (TPp TN) − (FPp FN)�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ ,

where TP, TN, FP, FN are True Positives, True Negatives, False
Positives, and False Negatives, respectively.

RESULTS

Deep mutational scanning involves measurement of large
numbers of mutational phenotypes for a given protein using
phenotypic screening coupled to deep sequencing (Adkar et al.,
2012; Fowler et al., 2010). It can be used to quantify the
phenotypic effects of all mutations at each position in a
protein. These deep mutational scanning data sets help
understand the relationships between amino acid sequence
and phenotype. The assay formats used for the deep
mutational scans included plate-based activity screens, FACS,
phage display and yeast two-hybrid methodologies (Gupta and
Vardarajan, 2018). Site-saturation mutagenesis (SSM) has been
employed in several studies to probe residue-specific
contributions to activity, stability, and binding for whole
proteins (Gray et al., 2017). This study analyzed 12 large-scale
mutational datasets of 11 proteins from existing deep mutational

TABLE 1 | Large-scale deep mutational scanning datasets used in this study.

Data set Mutagenized
positions

Host Selection PDB ID Citation

Aminoglycoside kinase 264 E. coli. Antibiotic resistance 1ND4 (Melnikov et al. (2014))
BRCA1 RING domain-BARD1 binding 102 S. cerevisiae Binding activity (Y2H) 1JM7 (Starita et al. (2015))
BRCA1 RING domain–E3 ligase activity 102 S. cerevisiae Ubiquitin ligase activity 1JM7 (Starita et al. (2015))
CcdB 100 E. coli. Toxin activity 3VUB (Adkar et al. (2012))
Gal4 (DBD) 64 S. cerevisiae Transcription factor activity 3COQ (Kitzman et al. (2015))
G protein (GB1-IgG-Binding domain) 54 Streptococcus sp. group G IgG-Fc binding 1PGA (Olson et al., (2014))
Hsp90 (ATPase domain) 219 S. cerevisiae Chaperone activity 2CG9 (Mishra et al. (2016))
NUDT15 163 E. coli Abundance and drug sensitivity 5LPG (Suiter et al. (2020))
Pab1 (RRM domain) 75 S. cerevisiae mRNA binding 1CVJ (Melamed et al. (2013))
PSD95(pdz3 domain) 83 E. coli. Ligand binding 1BE9 (McLaughlin et al. (2012)
TEM1 β-lactamase 263 E. coli Antibiotic resistance 1FQG (Stiffler et al. (2015))
Ubiquitin 75 S. cerevisiae Ubiquitin ligase activity 1UBQ (Roscoe et al. (2013))
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scan experiments (Figure 1 and Table 1). In the case of BRCA1,
there are two independent deepmutational scan experiments, one
for BRCA1 BARD1 binding and the other for E3 ligase activity
(Starita et al., 2015). In these separate experiments, a multiplexed
yeast two-hybrid assay was used to select for the ability of BRCA1
RING domain (2–103) variants to interact with the RING domain
of BARD1. The structure is also available for the BRCA1/
BARD1 RING-domain heterodimer (1JM7) (Brzovic et al.,
2001). Since the present study involves the prediction of the
active-site residues based on the mutational effect scores and the
sequence-based accessibility predictions, the variants from the
same region (2–103) of BRCA1 were used for the E3 ligase
function experiment instead of using the E3 ligase scores
available for full-length BRCA1 protein.

Some general patterns of mutational sensitivity were observed
for the datasets used in the present study. Buried residues have
high mutational sensitivity compared to those that are exposed
and not part of the active-site. The residues that show high
mutational sensitivity at exposed regions are typically involved in
an interaction with some other proteins or are part of a catalytic
or ligand binding site. As discussed above, these residues are
classified as active-site residues. Hence, it is important to examine
if these active-site residues can be distinguished from buried
residues based on the mutational sensitivity scores, even in the
absence of structural data (Tripathi et al., 2016).

Analysis of Mutational Sensitivity Data
The datasets contained effect scores for most mutations at each
position. To facilitate comparisons between each data set, the
mutational effect scores were rescaled for each protein. To
understand the overall trends in mutational sensitivity, the
substitution preferences were examined for all the proteins in
the dataset. A residue was defined as buried or exposed based on
its side-chain accessibility calculated using the NACCESS
program. A cut-off of 5% side-chain accessibility was used

(Adkar et al., 2012). The interface residues for the proteins in
the dataset were determined from the corresponding literature
citations of their respective structures.

Most exposed positions have a low mutational sensitivity
(Supplementary Figure S2). It has been observed that buried
residues along with some of the exposed residues have a high
mutational sensitivity. Exposed residues that are sensitive to
mutations are likely to be a part of the active-site (Wu et al.,
2015). We examined if the substitution specific patterns of
mutational sensitivity could help to distinguish the active-site
residues from the buried ones. The effect of various substitutions
was analyzed for different categories, namely aliphatic, aromatic,
polar and charged (Supplementary Figure S2). In most cases,
buried positions tolerated aliphatic substitutions, except when the
wild-type residue is an Alanine or Glycine residue. Polar and
charged residues are poorly tolerated at buried positions. Exposed

TABLE 2 | Correlation coefficients of surface accessibility predicted using PROF,
NetSurfP and SPIDER3 with values calculated from the structure using
NACCESS. The oligomeric state of the protein based on the PDB structure is also
mentioned.

Protein Correlation coefficient Oligomeric
statePROF NetSurfP SPIDER3

Aminoglycoside kinase 0.66 0.75 0.69 Dimer
BRCA1 RING domain 0.45 0.62 0.66 Monomer
CcdB 0.71 0.75 0.74 Dimer
Gal4 (DBD) 0.73 0.77 0.66 Tetramer
GB1 (IgG-binding
domain)

0.67 0.52 0.64 Monomer

Hsp90 (ATPase domain) 0.56 0.64 0.59 Tetramer
NUDT15 0.55 0.63 0.62 Dimer
Pab1 (RRM domain) 0.75 0.81 0.77 Dimer
PSD (pdz3 domain) 0.74 0.81 0.61 Dimer
TEM1 β- lactamase 0.74 0.81 0.79 Monomer
Ubiquitin 0.74 0.84 0.73 Monomer

FIGURE 1 | The number of single amino-acid mutations in various deep mutational scanning datasets of 12 proteins.
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active-site residues showed very high mutational sensitivity
including for substitutions to aliphatic residues
(Supplementary Figure S2). The general trends in mutational
sensitivity were similar for most proteins that were considered for
the analysis. However, some proteins namely E3 ligase activity of
BRCA1 RING domain, NUDT15 and aminoglycoside kinase
were exceptionally sensitive to mutation, even at exposed non

active-site residues. Even for the same protein, two different
activity assays namely BARD1 binding and E3 ligase activity
showed very different mutational sensitivity profiles. While this is
understandable for active-site residues, it is hard to understand
for buried residues where mutations are expected to primarily
affect protein levels, rather than specific activity (Bajaj et al., 2008;
Tripathi et al., 2016)

Correlation Between Calculated and
Predicted Solvent Accessibility
To predict the active-site residues solely from the mutational
sensitivity data, the accessibility was predicted based on sequence
using PROF (Rost and Sander et al., 1994). Further, the
correlation was calculated between the calculated surface
accessibility and the predicted accessibility values (Table 2).
The predicted surface accessibility for the 11 proteins from 12
datasets showed a Pearson’s correlation coefficient r ∼ 0.6 with
the calculated surface accessibility values in most cases. The
predicted accessibility information was combined with the
mutational sensitivity scores to predict the active-site and
buried residues as described in the Methods section.

To illustrate the accuracy of the accessibility predictions,
results obtained from PROF and the calculated accessibility
from NACCESS are mapped on the structure of CcdB (PDB
ID: 3VUB). CcdB is a 101-residue homodimeric toxin found on
F-plasmid (Figure 2). The true positives, false positives, true
negatives and false negatives are highlighted in the figure. Here,
true positives are correctly predicted exposed residues while false
positives are buried residues that are incorrectly predicted as
exposed by PROF. True negatives were correctly predicted buried

FIGURE 3 | Flowchart of the methodology for prediction of active-site, buried and exposed non-active site residues. The mutational sensitivity score was
determined for each mutant from deep sequencing-based screening. These scores were rescaled and averaged across each position. The sequence-based surface
accessibility was predicted using the PROF server. The residues that showed significant sensitivity to mutations and which were predicted to be exposed were further
considered to be the active-site residues.

FIGURE 2 | PROF prediction results for CcdB. The sequence-based
surface accessibility results obtained from PROF mapped onto the structure
of CcdB homodimer (PDB ID: 3VUB). The predictions with respect to the
exposed positions are mapped on the structure. One monomer is
highlighted in gray and the prediction results are mapped onto the other
monomer. The true positives are highlighted in blue, false positives in pink, true
negatives in tan and false negatives in orange based on the predictions from
PROF and crystal structure accessibilities calculated using NACCESS.
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residues and false negatives were exposed residues wrongly
predicted as buried.

Performance of theMethod for Prediction of
Active-Site, Buried and ExposedNon-Active
Site Residues
Deep mutational scanning plays a crucial role in identifying
protein-ligand interfaces and is useful regardless of the
structural context. To identify the active-site residues and
distinguish them from buried residues, we analyzed the
structures of 11 proteins for the dataset used. The dataset
comprises proteins that share interfaces with other proteins
and includes a protein that binds to DNA. For all the
proteins, structure-based solvent accessibilities were calculated
to validate the predicted accessibilities (Figure 3).

For the prediction of active-site residues, an average sensitivity
of ∼61% was observed (Table 3). This shows that if only the
mutational sensitivity scores and sequence-based accessibility
values are used, then those residues which are exposed and
non-interacting, as well as ones that are buried, are segregated
from the active-site residues. There is often a trade-off between
specificity and sensitivity. Consistent with this, it was observed
that for some of the datasets, there is low sensitivity, i.e., not all
active-site residues are identified. In these cases, most of the

exposed active-site residues have been incorrectly predicted as
buried residues.

It has been observed that active-sites, as well as buried
positions, have high mutational sensitivity. Therefore, it is
essential that these buried positions are separated from the
exposed active-site residues to enhance the accuracy of active-
site prediction. To identify buried residues, we employed
predicted accessibility values that have been obtained from
sequence information. Since sequence-based accessibility
Z-scores for buried residues are typically very low, these scores
are subtracted from the averaged mutational sensitivity scores to
predict them in the absence of structural information. After
combining both averaged mutational sensitivity scores and
sequence-based accessibility values from PROF, an average
specificity of ∼90% is observed (Table 4). The sensitivity is
∼55% as some buried residues are predicted as exposed by the
sequence-based accessibility predictor. The overall value of
average sensitivity is affected by the low sensitivity of
predictions in the case of HSP90 (Mishra et al., 2016). The
pattern of mutational sensitivity for the buried positions in
this protein is atypical, relative to the overall trend observed in
the other large-scale mutagenesis datasets, with many buried
positions tolerating charged substitutions. A similarly high degree
of tolerance is observed for the BRCA1 RING domain, but only
when BARD1 binding, rather than E3 ligase activity is assayed.

TABLE 4 | Prediction of buried sites based on mutational sensitivity data and PROF predicted sequence-based accessibility values.

Dataset Sensitivity (%) Specificity (%) Accuracy (%) Matthews correlation coefficient

Aminoglycoside kinase 66.6 90.8 85.6 0.57
BRCA1 RING domain-BARD1 binding 38.5 88.2 80.2 0.27
BRCA1 RING domain–E3 ligase activity 38.5 80.6 73.3 0.12
CcdB 68.4 96.1 90.6 0.69
Gal4 (DBD) 50 78.6 77.6 0.13
GB1 (IgG-binding domain) 70 90.9 87 0.58
Hsp90 (ATPase domain) 18.8 84.7 73.5 0.06
NUDT15 69.7 88 84.2 0.55
Pab1 (RRM domain) 80 89.8 87.8 0.65
PSD (pdz3 domain) 55 90.5 81.9 0.48
TEM1 β- lactamase 59.8 91.5 80.9 0.55
Ubiquitin 45.5 83.3 76.9 0.26

TABLE 3 | Active-site prediction based on the mutational sensitivity data and PROF predicted sequence-based accessibility values.

Dataset Sensitivity (%) Specificity (%) Accuracy (%) Matthews correlation coefficient

Aminoglycoside kinase 72.7 87.7 87.1 0.34
BRCA1 RING domain-BARD1 binding 45.5 91.4 85.2 0.37
BRCA1 RING domain–E3 ligase activity 50 92.3 86.6 0.42
CcdB 75 98.9 96.9 0.79
Gal4 (DBD) 46.6 86.1 75.9 0.34
GB1 (IgG-binding domain) 85.7 91.5 90.7 0.66
Hsp90 (ATPase domain) 93.3 92 92.1 0.63
NUDT15 50 91.2 85.4 0.41
Pab1 (RRM domain) 62.5 87.9 85.1 0.41
PSD (pdz3 domain) 75 90.6 89.2 0.53
TEM1 β-lactamase 66.6 85.8 85.2 0.26
Ubiquitin 70 96.4 92.3 0.69
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The accuracy of prediction results for both active-site and
buried residues are ∼88% and ∼84%, respectively. In the case of
prediction of the buried positions, it was observed that the
incorporation of sequence-based accessibility values played an
important role in improving the results (Supplementary Figure
S3). This helped to distinguish both the categories of mutationally
sensitive positions, namely exposed active-site and buried
positions. In contrast, prediction of the exposed non active-site
residues prediction did not show significant improvement after
incorporating the sequence-based accessibility scores
(Supplementary Figure S3). Overall, incorporating the
sequence-based accessibility values along with the averaged
mutational sensitivity scores improves the prediction
performance of the method primarily for buried residues and
can be useful in identifying key residues in the protein even in the
absence of structural information.

Along with the prediction of the active-site and buried
residues, the exposed non active-sites can also be
distinguished from the other two categories. The high value
of sensitivity in these prediction results points to the ability of
the method to identify these residues (Table 5). In a few cases,
it was observed that there are a few exposed positions far from
the active-site that show high mutational sensitivity. In the
case of TEM1 β-lactamase, it was observed that exposed
positions with large side chain show a high mutational
sensitivity in comparison to the other exposed non active-
site residues. For example, Trp210, Trp229 and Trp290 are
exposed residues that are crucial for the structure and activity
of β-lactamase (Huang et al., 1996). Mutations at such
positions may lead to the instability of the enzyme, thus
abrogating its function, though this needs to be confirmed
by experiments. In comparison to predictions in the other two
categories, prediction specificity was low for exposed non
active-site residues, probably resulting from the lower
fraction of true negatives in this category.

The Matthew’s correlation coefficient (MCC) was computed
using either the experimental mutational effect scores or the
PROF predicted accessibility values. These values were compared
with corresponding values obtained using the combined score for
all the three categories of predictions (Figure 4). The results show
that overall, the combined score yields the best results.

Comparison of the Results Across Other
Solvent Accessibility Predictors
In the above analysis, the sequence-based accessibility scores
from PROF were considered along with the experimental
mutagenesis scores to calculate the prediction sensitivity for
the active-site, buried and exposed non active-site residues.
The average Pearson’s correlation coefficient of predicted
accessibility from PROF with calculated surface accessibility
from NACCESS is 0.66.

The analysis was also performed with another sequence-based
accessibility predictor NetSurfP (Petersen et al., 2009). In this
case, the correlation between the predicted accessibility from
NetSurfP and calculated accessibility from NACCESS, is
improved with an average correlation coefficient of 0.72. The
sensitivity, specificity and accuracy of the results were
recalculated using NetSurfP rather than PROF for residue
accessibility prediction (Figure 5, Supplementary Tables
S3–S5). Results for prediction of buried and exposed non-
active site residues are comparable with both accessibility
predictors. However for active-site residues the sensitivity was

FIGURE 4 | Comparison of Matthew’s correlation coefficients of
predictions using experimental mutational effect scores alone, PROF
predicted accessibility alone and experimental mutational effect scores
combined with the PROF predicted accessibility scores (combined
score).

TABLE 5 | Prediction of exposed non active-site residues based on mutational sensitivity data and PROF predicted sequence-based accessibility values.

Dataset Sensitivity (%) Specificity (%) Accuracy (%) Matthews correlation coefficient

Aminoglycoside kinase 94.9 22.1 76.1 0.25
BRCA1 RING domain-BARD1 binding 94.7 25 74.1 0.29
BRCA1 RING domain–E3 ligase activity 92.3 34.8 74.7 0.34
CcdB 97.1 29.6 78.1 0.39
Gal4 (DBD) 92.3 41.2 77.5 0.41
GB1 (IgG-binding domain) 89.2 35.3 72.2 0.29
Hsp90 (ATPase domain) 92.3 36.2 80 0.34
NUDT15 90.3 23.6 67 0.27
Pab1 (RRM domain) 94.2 50 81.1 0.52
PSD (pdz3 domain) 92.7 35.7 73.5 0.36
TEM1 β-lactamase 92.0 31 68.8 0.3
Ubiquitin 97.8 40 80 0.5
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lower when the NetSurfP predicted accessibility was used instead
of the PROF predicted accessibility.

In order to compare between the various surface accessibility
predictors, SPIDER3 (Heffernan et al., 2017) was also used for
prediction of active-site, buried and exposed non active-site
residues. SPIDER3 is a method that captures long-range, non-
local interactions and predicts the protein one-dimensional
structural properties. The correlation between the predicted
accessibility using SPIDER3 and calculated accessibility using
NACCESS was 0.68 which is comparable to the correlation
coefficient observed in the case of PROF. After incorporating
sequence-based accessibility scores from SPIDER3 with the

experimental mutational sensitivity scores, there was a very
slight improvement in the prediction sensitivity of the buried
positions. However as with NetSurfP, the mean sensitivity values
for prediction of active-site residues and mean accuracy values
were lower with SPIDER3, relative to PROF (Figure 5;
Supplementary Tables S3–S5).

Comparison of the Results with Mutational
Effect Predictors
As there is currently a limited number of complete deep
mutational scanning datasets, a similar analysis was carried
out by using the predicted mutational effect scores from the
computational variant effect predictor SNAP2 (Hecht et al.,
2016), which required only the sequence as the input to
predict mutational effect scores. An average Pearson’s
correlation coefficient of 0.5 was see between the experimental
and SNAP2 predicted scores. The three categories of residues
namely, active-site, buried and exposed non active-site residues
were further predicted using the SNAP2 scores by combining
them with PROF predicted accessibility (Figure 6,
Supplementary Table S6). The predicted variant effect scores
poorly predict active-site residues. However, prediction metrics
for buried and exposed non active-site residues are comparable in
terms of their sensitivity, specificity and accuracy to those
obtained with experimental mutational scores.

DISCUSSION

Deep mutational scanning is a method that is widely used to
probe the effects of substitutions on proteins, which helps to
identify functionally important residues (Adkar et al., 2012). In
this study, we examined if such large-scale mutagenesis datasets,
could be used to infer locations of functional sites in proteins and
distinguish them from other positions based on their specific
mutational sensitivity pattern.

The present analysis reveals that active-site residues are on
average more sensitive to mutation than buried residues. Use of
sequence-based accessibility predictions further contributes to
distinguishing buried positions from the exposed active-site
residues. The third category of residues that is largely
insensitive to mutation, is exposed non active-site residues
There are a few exposed non active-site residues that are mis
predicted as active-site residues. One of the reasons for this is
their proximity to the active-sites, thus making them sensitive to
substitutions. In some cases, these exposed mutationally sensitive
residues have accessibility values that are close to the cut-off that
is used for classifying them as exposed or buried. Among the
datasets considered for prediction of active-site residues, there is
one deep mutational scan of the DNA-binding domain (DBD) of
Gal4, a yeast transcription factor (Kitzman et al., 2015). Gal4
binds DNA as a homodimer via a Zn2Cys6-class domain centered
on a pair of Zn2+ ions. This helps to maintain the fold of the
DNA-binding residues. Substitutions at any of six cysteines
completely disrupts the function (Marmorstein et al., 1992).
Since these cysteines are both buried, but also involved in the

FIGURE 5 | Comparison of mean values of sensitivity, specificity and
accuracy of predictions using mutational effect scores combined with the
predicted accessibility results from PROF, NetSurfP and SPIDER3
respectively.
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activity of the protein, they are considered as active-site residues
for analysis. They have been further excluded in the prediction of
the buried residues. It was also observed that sensitivity of
predictions decreases for proteins with a large number of
interacting partners or with limited mutational sensitivity data.
Thus, for the present study only those deep mutational scanning
datasets are considered which have an average of at least ten
mutants per residue.

For datasets where the relative fitness effects of single amino
acid mutations were observed under antibiotic selection, an

optimum antibiotic concentration value was selected for
prediction. In the case of TEM1 β-lactamase, mutational data
foe selection with an ampicillin concentration of 625 μg/ml were
used (Stiffler et al., 2015). Higher concentrations of ampicillin
result in highmutational sensitivity across the entire protein. This
results in inability to separate the key catalytic residues from the
non-interacting ones. For aminoglycoside kinase, the relative
abundance of mutant vs. wild-type amino acids at each
position was examined under kanamycin selection at a range
of inhibitory concentrations (Melnikov et al., 2014). At high
kanamycin concentration, the mutational sensitivity was again
very high, thus data from the lower kanamycin concentration was
used for analyzing the pattern of mutational sensitivity. In
general, it appears that mutational scanning datasets are most
useful when phenotypic screens are carried out under conditions
where ∼25% of substitutions yield measurable phenotypes.

Amongst the deep mutational scanning datasets analyzed in
this study, there are a few cases where there is high mutational
sensitivity at non active-site residues. One such example is the
deep mutational scan of TEM1 β-lactamase (Stiffler et al., 2015).
There are residues that are distal from the active-site but are
highly sensitive to substitutions, suggesting possible allostery
(Avci et al., 2016). However, it is difficult to know if such
mutational sensitivity is because of functional allostery or
because of a decreased level of secreted protein, for example
because of increased proteolysis. This emphasizes the need to
measure both levels of properly folded protein as well as activity.
This is not done in most mutational scans.

Since there still relatively few proteins that have been subjected
to deep mutational scans, computationally predicted variant
effect scores were used in place of experimental data.
However, this led to poor predictions for active-site residues.
In future, given recent advances in deep learning based structure
prediction (Senior et al., 2020), it would be interesting to map
computationally predicted variant scores onto structural models
to more accurately predict active-site residues.

In addition to identifying buried, active-site and exposed non
active-site residues, the present analysis has identified puzzling
mutational sensitivity features in some of the proteins in the
present dataset, that reflect either our incomplete understanding
of determinants of protein stability and function or potential
lacunae in the experimental data that need additional validation
through repeat experiments.
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Low Diversity of Human Variation
Despite Mostly Mild Functional Impact
of De Novo Variants
Yannick Mahlich1*, Maximillian Miller1, Zishuo Zeng1 and Yana Bromberg1,2*

1Department of Biochemistry andMicrobiology, Rutgers University, NewBrunswick, NJ, United States, 2Department of Genetics,
Rutgers University, Piscataway, NJ, United States

Non-synonymous Single Nucleotide Variants (nsSNVs), resulting in single amino acid
variants (SAVs), are important drivers of evolutionary adaptation across the tree of life.
Humans carry on average over 10,000 SAVs per individual genome, many of which likely
have little to no impact on the function of the protein they affect. Experimental evidence for
protein function changes as a result of SAVs remain sparse – a situation that can be
somewhat alleviated by predicting their impact using computational methods. Here, we
used SNAP to examine both observed and in silico generated human variation in a set of
1,265 proteins that are consistently found across a number of diverse species. The
number of SAVs that are predicted to have any functional effect on these proteins is smaller
than expected, suggesting sequence/function optimization over evolutionary timescales.
Additionally, we find that only a few of the yet-unobserved SAVs could drastically change
the function of these proteins, while nearly a quarter would have only a mild functional
effect. We observed that variants common in the human population localized to less
conserved protein positions and carried mild to moderate functional effects more
frequently than rare variants. As expected, rare variants carried severe effects more
frequently than common variants. In line with current assumptions, we demonstrated
that the change of the human reference sequence amino acid to the reference of another
species (a cross-species variant) is unlikely to significantly impact protein function.
However, we also observed that many cross-species variants may be weakly non-
neutral for the purposes of quick adaptation to environmental changes, but may not
be identified as such by current state-of-the-art methodology.

Keywords: variation, adaptation, evolution, nsSNVs, SNAP, cross-species variation, common variation

INTRODUCTION

The vast majority of human genomic variants are single nucleotide variants (SNVs) (Durbin, et al.,
2010). Coding region variants trivially make up a much smaller fraction of all variation than do non-
coding variants (Lander, et al., 2001). However, the former affect protein structure/function and thus
have a disproportionate effect of molecular function of the cellular machinery. For example, each
individual genome contains approximately ten thousand of nsSNVs (non-synonymous SNVs, which
change the amino acid sequence (Shen, et al., 2013), a combination of which is responsible for a
variety of observed phenotypes, including disease (Peterson, et al., 2013; Hassan, et al., 2019).
Establishing the effect of any given nsSNV, however, is a difficult task. One gold-standard
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experimental approach is saturated mutagenesis (SM) (Wells,
et al., 1985), which induces variants of interest in a gene and
measures the change of resulting protein molecular function.
However, SM is too inefficient to thoroughly study the entirety of
genomic variation. While the recent development of the deep
mutational scanning techniques (Fowler and Fields, 2014) has
facilitated high-throughput functional analysis of coding variants,
experimental annotation of millions of possible nsSNVs in
human genome still remains elusive, Given the inefficiency of
large-scale experimental measurements computational methods
for variant effect interpretation offer a plausible alternative for the
exploration of the human genome.

Genome-wide association study (GWAS) (Visscher, et al.,
2017), as well as the post hoc polygenetic risk scoring
(Torkamani, et al., 2018), has been extensively deployed to
establish the associations between complex phenotypes and
genetic background. GWAS results, however, are by definition
association (not causation) evaluations and are specific to a
phenotype. Evaluating variant effect on molecular function
requires a different type of techniques. Machine learning
models are often used to classify variants into neutral/
deleterious (e.g., CADD (Kircher, et al., 2014), DANN (Quang,
et al., 2014)), benign/pathogenic (e.g., MutPred2 (Pejaver, et al.,
2017), PhD-SNP (Capriotti and Fariselli, 2017)), stable/unstable
(e.g., I-Mutant2.0 (Capriotti, et al., 2005)), and effect/no-effect
(e.g., Envision (Gray, et al., 2018), SNAP (Bromberg and Rost,
2007), SNAP2 (Hecht, et al., 2015)).

Conservation of residues across homologs is often assumed to
indicate structural or functional importance of these residues and
their intolerance to substitution (Kumar, et al., 2009). Thus,
conservation is used as a proxy for variant effect evaluation,
e.g. by tools like SIFT (Ng, 2003) and PROVEAN (Choi and
Chan, 2015), and has been widely incorporated as one of the
features in many other variant effect predictors (e.g., CADD,
DANN, SNAP, PhD-SNP). We previously proposed the concept
of cross-species variants (CSV) analysis (Mahlich, et al., 2017),
which is similar to but intuitively different from conservation
evaluation. Conservation can be directly computed from a
multiple sequence alignment (MSA) of homologs built for
CSV analysis. However, CSVs specifically describe only the
difference between two orthologous reference sequences and
do not summarize overall conservation. For example, if the
amino acid residue at a specific position of a human protein is
glycine, and if the MSA-corresponding position of a mouse
ortholog is leucine, then a CSV at this position of this human
protein would be glycine > leucine. If this particular glycine >
leucine variant also occurs in the human population, the variant is
an observed CSV. As a rule, these types of human variants, i.e. to
residues found in other species, have been presumed to carry no
effect on protein function (Ng and Henikoff, 2001; Ng, 2003;
Calabrese, et al., 2009; Adzhubei, et al., 2010; Shihab, et al., 2013;
Kircher, et al., 2014; Schwarz, et al., 2014; Pejaver, et al., 2020).
After all, if an amino acid is observed in a functional protein of an
ortholog, its substitution into the human version cannot be
expected to drastically affect the function.

Pathogenic amino acid substitutions are, on average,
functionally more radical than CSVs (Briscoe, et al., 2004;

Miller and Kumar, 2001; Subramanian and Kumar, 2006). A
study of the rhodopsin protein, for example, has revealed that
variants corresponding to CSVs among vertebrates are less likely
to be pathogenic (Briscoe, et al., 2004). Of the 7,293 human-
mouse CSVs in 687 human disease genes, only a small fraction
(2.2%) corresponds to known human disease variants
(Waterston, et al., 2002). Other studies have also estimated
that only about 10% of the human-to-other-species amino
acid substitutions are involved in disease (Kondrashov, et al.,
2002; Subramanian and Kumar, 2006). However, this type of logic
may have precipitated a self-fulfilling prophecy, where CSVs that
were annotated to be neutral in the development of variant effect-
prediction methods (Bromberg and Rost, 2007; Adzhubei, et al.,
2010; Kircher, et al., 2014; Pejaver, et al., 2017; Pejaver, et al.,
2020) could bias the prediction of previously unseen CSV effects
toward neutrality. While unlikely pathogenic, intuitively, a yeast
version of the human protein may be less or more functionally
efficient, may have unexpected structural effects given the rest of
the protein sequence, or may participate in different/additional
molecular pathways. Incorporating taxonomic distances between
the species included in an alignment improves identification of
variant effect (Malhis, et al., 2019). A deeper evaluation of CSVs
in terms of their functional effects may thus be warranted.

We previously reported (Mahlich, et al., 2017) that amino acid
CSVs have less predicted molecular functional effects on average
than human variation recorded by the Exome Aggregation
Consortium (Lek, et al., 2016). Here we extend this analysis,
by investigating human variation in 1,265 proteins that have
orthologs in 20 species spread across the eukaryotic branch of the
tree of life. We evaluate the differences in functional impact of the
variants that are observed within the human population against
those not yet observed, but genetically possible. We show that
common variants favor less conserved positions than rare
variants, indicating a potential need for flexibility in sequence
for the purposes of environment-driven adaptation. We also
assessed the differences in predicted impacts on the function
of human protein of cross-species variants (CSVs; variant amino
acid is found in one of the 20 orthologs) and non-CSVs. We
finally suggest that the lack of functional impact of CSVsmight be
overestimated by the current presumption that evolutionary
persistence suggests functional neutrality.

METHODS

Variant Collection
A total of 93,437 human protein-coding transcripts were
extracted from GRCh37 p.13 assembly (Church, et al., 2011)
in Ensembl BioMart (Kinsella, et al., 2011). From these, we
selected 22,346 longest transcripts per gene. We removed
transcripts from patches/alternate sequences (http://m.ensembl.
org/info/genome/genebuild/haplotypes_patches.html), retaining
19,971 transcripts. For these, we artificially generated all possible
non-synonymous single nucleotide variants (73,813,560
nsSNVs). We downloaded the Genome Aggregation Database
(gnomAD v2, https://gnomad.broadinstitute.org/downloads)
exome data (Karczewski, et al., 2020) and, using SAMtools (Li,
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et al., 2009), mapped the generated nsSNVs to the corresponding
variant allele frequencies where available. We thus collected
2,951,998 variants with gnomAD allele count � 1 and
2,561,015 gnomAD variants with larger allele counts. The
remaining 68,300,547 variants were not found in gnomaAD.
Note that at the time of data collection gnomAD v2 was the
most current version available. The current v3 version of
gnomAD is only slightly different in relevant content as its
reference genome, GRCh38, recapitulates 99% of GRCh37
(Pan, et al., 2019) and most differences between the two are in
the non-coding regions, an area outside this study. We thus
expect that results and conclusions reported here would not
change with this update.

The allele counts of all nsSNVs causing the same single amino
acid substitution (SAV) were further aggregated to represent the
frequencies of individual SAVs (Eq. 1):

freq(SAV) � ∑k
i�1ni

N
, (1)

where for any codon, n1 . . . nk are counts of the specific SAV-
causing alleles and N is the total numbers of sequenced alleles of
that codon. Note that in the process of aggregation some observed
(allele count >1) SAVs could be derived from the aggregation
from multiple single allele nsSNVs. The aggregation of nsSNV
frequencies into SAV frequencies, resulted in 2,564,652 observed
(allele count >1), 2,918,355 singletons (allele count �1), and
60,601,329 synthetic SAVs in the 19,971 transcripts. Observed
variants were further classified as common (freq (SAV) ≥ 0.01)
and rare (freq (SAV) <0.01).

Collection of Cross-Species Variants
Cross-species variants (CSVs) are the amino acid differences
between the human reference protein sequence and the
orthologous protein sequence of another species. For example,
if the amino acid residue at the third position of the human
protein sequence P is leucine, and if the amino acid residue at the
same position in mouse orthologous protein sequence is glycine,
then the CSV at this position in P would be L3G. Aiming to span
the tree of life with species available in Ensembl BioMart
(GRCh37), we considered 20 species for CSV analysis: yeast
(Saccharomyces cerevisiae), worm (Caenorhabdiis elegans),
fruitfly (Drosophila melanogaster), zebrafish (Danio rerio),
xenopus (Xenopus laevis), anole lizard (Anolis carolinensis),
chicken (Gallus gallus), platypus (Ornithorhynchus anatinus),
opossum (Monodelphis domestica), dog (Canis familiaris), pig
(Sus scrofa), dolphin (Tursiops truncatus), mouse (Mus
musculus), rabbit (Oryctolagus cuniculus), tree shrew (Tupaia
belangeri), tarsier (Carlito syrichta), gibbon (Nomascus
leucogenys), gorilla (Gorilla gorilla), bonobo (Pan paniscus),
and chimpanzee (Pan troglodytes). We identified the
evolutionary distances of these species from Homo sapiens
using the TimeTree database (Kumar, et al., 2017). All protein
coding DNA sequences (CDS) of these 20 species were
downloaded from the Ensembl database (Zerbino, et al., 2018)
(release 94, https://uswest.ensembl.org/info/data/ftp/index.html).
For every human protein coding transcript T, the available

orthologous CDS for each of the 20 species was extracted
using the Ensembl BioMart (Kinsella, et al., 2011). Each
species may have multiple protein coding sequences
orthologous to T, but only the longest one was selected. We
performed multiple sequence alignment (MSA) of T and all its
orthologs using PRANK (Löytynoja and Goldman, 2005), which
translates CDS and aligns protein sequences. Of the 19,971
human transcripts in our set, 1,342 had a full set of the 20
species orthologs in the MSA. In these transcripts (940,328 amino
acids) there were 183,540 observed (49,541 CSVs/133,999 non-
CSVs), 228,774 singleton (52,550 CSVs/176,224 non-CSVs), and
5,118,164 synthetic SAVs (873,011 CSVs/4, 245,153 non-CSVs).

Cross-Species Variant Effect Predictions
We generated SNAP (Bromberg and Rost, 2007) predictions for
all variants in the 1,342 transcripts. SNAP predictions could be
made for 1,265 of the proteins; a set of 77 sequences (832,697
variants) did not yield any predictions due to SNAP’s sequence
length constraints (63 sequences), variant to sequence mapping
errors (3 sequences), and unresolvable errors in the SNAP input
feature extraction pipeline (11 sequences) as well as an
additional 46,840 variants on the remaining proteins. Note
that, as in all other proteins in our set, the vast majority
(93%) of these variants were synthetic (4% singleton and 3%
observed), suggesting that our analyses of effect trends should be
largely unaffected by this missing subset. Thus, the final SNAP
effect prediction dataset contained 4,650,941 variants in 791,040
positions among 1,265 proteins (Supplementary Table S1).
Note that for this study we used the original SNAP tool
instead of the more recent version SNAP2 (Hecht, et al.,
2015). There were two reasons for this choice: 1) SNAP2
used OMIM (Amberger, et al., 2009) disease variants in
training, a choice which does not directly reflect variant
functional effects, and 2) SNAP effect prediction reliability
scores strongly correlate with the functional effect strength
(Bromberg, et al., 2013), an observation that has not been
explicitly made for SNAP2.

Variant Conservation Scores
For all residues of all proteins in our set we computed two types of
conservation scores:

1. We used the PredictProtein pipeline (Yachdav, et al., 2014) to
compute ConSurf (Glaser, et al., 2003) conservation scores.
ConSurf scores are based on MSAs of up to 150 homologous
sequences. Reported scores are normalized so that the average
score over all residues of one protein is zero and the standard
deviation is one. Lower scores indicate more conserved
residues.

2. We extracted from the list of SNAP input features the
position-specific independent counts (PSIC) (Sunyaev,
et al., 1999). PSIC scores reflect per-residue position-
specific weights considering the MSA-based overall level of
sequence similarity.

We only retained the conservation scores for those variant
positions (104,375) that had both ConSurf and PSIC annotations.
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Conservation scores across variant subsets were used only
once per variant position in the subset. That is, if two rare CSVs
were present at one protein position, conservation for this
position was only used once toward establishing the
distribution of the rare CSV dataset. On the other hand, if a
position contained both a common CSV and a rare CSV, the
conservation score was included separately into distributions of
each subset.

Per-Residue Funtrp Scores
funtrp (Miller, et al., 2019) is a prediction tool that assesses the
expected range of functional effects due to the possible variants at
a given protein position. funtrp classifies sequence positions as
neutral (most variants at this position show weak or no effect),
rheostatic (a full range of variant effects) and toggle (most variants
have a severe effect). funtrp was trained with deep-mutagenesis
data and uses sequence-based features to differentiate between
the three residue classes. We used our publicly available
webservice (https://services.bromberglab.org/funtrp) to identify
funtrp classes for each position of 1,254 of our protein sequences;
predictions for the remaining 11 sequences were not returned by
the method.

Evaluating Statistical Significance
Distribution Differences
For all comparisons of score distributions (e.g. SNAP scores)
across variant classes (e.g. rare vs common), we re-sampled said
distributions 1,000 times to extract 1,000 observations each time.
For each resampling instance, we performed the Kolmogorov-
Smirnov test to test the equity of the distributions, reporting the
associated p-value; the median p-val over 1,000 iterations was
reported.

RESULTS AND DISCUSSION

Many Variants Remain to be Sequenced
Single amino acid variant (SAV) effects were determined by
SNAP (Bromberg and Rost, 2007) (predicted score range for
our variants [−94, + 88]), with negative scores identifying neutral
SAVs (no change in function) and positive scores identifying
non-neutrals/effect SAVs (activating or deactivating changes in
function); score absolute values indicate the reliability of
prediction and, for non-neutral variants, the size of the effect
(Bromberg, et al., 2013). Note that our definition of effect does not
specify whether the effect is detrimental or beneficial to the
organism, but rather reports on the change in wild-type
functionality of the affected protein.

Overall, more variants were predicted to be neutral than effect,
with some difference in fractions of effect variants between
synthetic, singleton, and observed variant subsets
(Supplementary Table S1). The distribution of synthetic
variant SNAP scores was significantly different from that of
singleton and observed variant scores (Kolmogorov-Smirnov,
KS, test p-value; synthetic vs. singleton � 8.7e−04, synthetic vs.
observed � 1.1e−06), while singleton and observed scores were
only slightly different (singleton vs. observed p-val � 0.14). For
synthetic variants (median SNAP score � −12; Figure 1A), i.e.
those that have not been seen in the population, the majority
(60%) were predicted to be neutral. These variants are, thus,
technically observable and may be identified in future sequencing
efforts. Those 40% of the synthetic variants predicted to have an
effect, had on average more severe impact than the effect variants
seen in the human population (combined observed and singleton
sets; 31% effect; Figure 1B). Increased predicted effect of
synthetic variants is in line with the expectation that these are
subject to purifying selection.

Earlier (Bromberg, et al., 2013), we observed a similar trend of
more effect variants in the synthetic than in the observed/singleton set;
i.e. 55% effect in synthetic SAVs in 100 randomly selected enzymes
vs. 46% effect variants in 1000Genomes data (Auton, et al., 2015).
However, the fractions of both the synthetic and observed/singleton of
effect variants in our earlier study were significantly higher than the
corresponding numbers reported here. Furthermore, the SNAP
scores of the synthetic variants reported here and those in
Bromberg were significantly different (p-val 4.0e−15); the scores
of our combined observed/singleton variants also differed from the
scores of 1000Genomes variants (p-val � 3.0e−12).

While 1000Genomes variants were observed in 85% (1,072 of
1,265) of the transcripts used in this study, our variant set for

FIGURE 1 | Higher prevalence of effect among the synthetic as
compared to observed and singleton variants. (A) The distribution of
effect predictions for synthetic variants (dark orange; median SNAP � -12) is
significantly more right-shifted toward effect (SNAP ≥0; horizontal line)
than that of observed variants (green; median SNAP � -24) and singletons
(yellow; median SNAP � -20). For all distributions, however, the majority of
predictions are neutral (SNAP <0) (B) Additionally, synthetic variants show an
enrichment of moderate to severe functional effects (SNAP ≥ 23) vs.
singletons and observed variants.
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these proteins was larger, suggesting improved sequencing
coverage and accounting for some effect prediction differences.
Notably, only 36% of the 1000Genome variants in our proteins
had an effect–in line with the 31% effect variants in our observed/
singleton set and 10% less than in the complete 1000Genomes
variant set. Furthermore, of the set of 100 enzymes used in the
Bromberg et al. study to generate synthetic variants, only four
were present in our protein set. Thus, the difference in effect
scores between our earlier study and the current work is most
likely due to the specific genes/proteins selected for this study.
Genes/proteins in our set have orthologs in each of our selected
species, i.e. these are likely ancient and rarely disease-associated
(Moreau and Tranchevent, 2012). As the functions of these
proteins are important for organism survival, they likely
harbor the variants necessary for environment-driven
functional adaptation but do not allow for severe disruption
upon mutation (Key, et al., 2014; Key, et al., 2014; Ilardo and
Nielsen, 2018; Rees, et al., 2020). While the variants in these
proteins may still be extremely deleterious, less than three percent
in our set were of severe effect (SNAP score ≥50; 130,870 variants;
7.2% of all effect variants) and, as expected, most were synthetic
(123,962 variants, 3% of all synthetic), with few found in the
population (6,908 variants, 2% of all singleton/observed).

Given these fractions of effect variants, we expect at least half a
million (neutral syntheticCSVs) and possibly over fourmillion (any
synthetic neutrals and milds/moderates) variants to be possibly
observable, i.e. they may be found with more sequencing. As the
genes considered here are likely ancient and evolutionarily
optimized to resist drastic changes upon mutation, this 12-fold
possible increase in the observable variants (vs those already
observed) suggests an upper bound of increase in the number of
observed/singleton SAVs that may be collected in the future.

Common Variants May Drive Environmental
Adaptations
Despite the fact that common variation is, by definition, widespread
in the population, trivially, the vast majority of unique population
variants are rare. Variant effect trends are therefore dominated by
observations for rare variants, effectively drowning out signal from
common variants. We thus aimed to elucidate the difference
between common (≥1% SAV frequency) and rare variants. For
this part of the analysis we excluded from consideration the
singleton variants, which are a special case of rare variation and
may be disproportionately sequencing errors. We note that
common variants are unlikely to be very deleterious/disease-
causing as they would not stay common. On the other hand,
variants that have no impact on function (neutrals) and very weak
nonneutrals can be fixed in the population at about the same rate
via genetic drift (Kimura and Ohta, 1969).

We also considered the differences between observed cross-
species variants (CSVs) and non-CSVs (Methods). We expected
different evolutionary drivers for the existence of different variant
types (e.g. common CSV vs. rare non-CSV) and, in turn, potential
differences in their impact on protein function. Note that variants
labeled as non-CSVmay still be present in the orthologs of species
that were not assessed here. However, using more species could

also reduce our total protein set if some of the currently used
transcripts are absent in the new species transcriptome.

Common variants are as frequently CSVs as non-CSVs (691
CSVs vs. 683 non-CSVs, Supplementary Table S2). For common
CSVs (reference substituted by variant amino acid), the human
reference amino acid is present in aminority (40%) of all 20 species
orthologs, but more frequently in mammals (48%) and great apes
(59%; Table 1). Note that these fractions were computed as the
number of shared reference amino acids of all residues aligned, e.g.
if for one variant ten of 15 orthologs aligned at the variant position
have the human reference amino acid, while for another variant
four of the 20 orthologs do, the total fraction of reference amino
acid across these variants is 40% (14/35). Given these fairly low
fractions, the variant amino acids of common CSVs are possibly
ancestral, i.e. human variant amino acid could have been the
reference of a potential ancestor. Thus, for humans reinstating the
ancestral residue at this position is likely to be detrimental, as it
would otherwise remain fixed as reference.

For common non-CSVs the corresponding fractions of
reference amino acids across orthologs are 75% (all), 86%
(mammals), and 98% (apes; Table 1). Thus, variant amino
acids of common non-CSVs likely represent somewhat newer
evolutionary developments and are 1) likely to be beneficial
(still effect!) for humans as a whole but may have not been
around long enough to become the reference or 2) are non-
universal adaptations to persistent environmental conditions,
e.g. ethnicity-specific variants (Rees, et al., 2020).

Unlike common variants, rare CSV variants are nearly three-fold
less commonplace than non-CSVs. However, just as for common
variants, rare non-CSV reference amino acids are present in
orthologs at a higher frequency than CSV references (83% non-
CSV vs. 68% CSV). The preponderance of non-CSV reference
amino acids across all species highlights these variants as likely of
recent origin, and therefore possibly of any amount (a full range) of
effect. Rare CSV variant amino acids, on the other hand, may be
ancestral, although the likelihood of this is greatly diminished as
compared to common variants (68% rare vs. 40% common
reference amino acid across orthologs). If they are ancestral,
their extensive elimination from the population would suggest
deleterious effects (purifying selection). Independent appearances
of the variant in human (as rare variant) and in another species (as
reference) is unlikely, but also possible. In this case, the variant
amino acid would likely be neutral or slightly deleterious in human.

Further comparing the frequencies of occurrence of reference
amino acids across orthologs suggests that rare variants occur at
more conserved positions than common variants; reference amino
acids of CSVs vs. non-CSVs were present across all species for 68% vs.
83% for rare variants and 40%vs. 75% for common ones. Evaluation of

TABLE 1 | Prevalence of human reference amino acids in CSV positions across
orthologs.

Rare Common

CSV (%) Non-CSV (%) CSV (%) Non-CSV (%)

Apes 98 99 59 98
Mammals 83 93 48 86
All 68 83 40 75
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conservation of variant positions using ConSurf (Glaser, et al., 2003)
confirmed this observation (Figure 2; lower score means more
conserved position; KS p-val CSV rare vs. common � 3.2e−08,
non-CSV rare vs. common � 1.5e−09). The protein positions
harboring rare variants were on average more conserved (103,609
positions; median ConSurf score � −0.11) than positions with
common variants (1,013 positions; median ConSurf score � 0.36).
Note that there are only a few 247) positions for which both rare and
common variants are present, and these are also only weakly conserved
(median ConSurf score � 0.34). A similar trend was observed using
PSIC scores (Sunyaev, et al., 1999) of variant positions (Figure 2;
higher score means more conserved position; median PSIC score of:
rare � 0.80, common � 0.55, both � 0.59; KS p-val CSV rare vs.
common � 4.4e−16, non-CSV rare vs. common � 4.2e−07).

This is an unexpected result, as variants in conserved positions
are often assumed to have an effect, while rare variants, both CSV
and non-CSV, are less frequently predicted to have an effect than
the corresponding common variants (rare vs. common effect
variants: 10% vs. 20% CSVs and 36% vs. 40% non-CSVs;
Supplementary Table S2). Here we point out that more severe
effect (several high score outliers) vs. more frequent effects (many
variants have some effect) indicate different score distributions but
may result in similar summary statistics (e.g. distribution means).
Thus, although common variants have an effect more frequently
than rare variants (Figure 3A), the former are less frequently
severe (SNAP ≥50; 6% rare vs 3.6% common effect variants;
Figure 3B). Furthermore, rare non-CSVs are enriched in
moderate effect variants (SNAP ≥25) vs. common non-CSVs

that are mostly mild. Common CSVs, on the other hand, carry
more moderate effects than rare CSVs (Figure 3B). Note that as
CSVs in general score tend to be predicted neutral more often than
non-CSVs (Supplementary Figure S1, the preponderance of high-
scoring common CSVs vs. non-CSVs reinforces the likely
adaptational value of common CSVs proposed above. The
propensity of rare variants to cause severe effects highlights
them as likely culprits of disease. However, rare variants make
up nearly three quarters of variation overall and are clearly not
restricted to being disease-causing. In fact, they cover a complete
range of effect–from strongly effect to reliably neutral (Figure 3A).

In an effort to validate our observations of effects of common
variants we used funtrp (Miller, et al., 2019) – a method that
trained to recognize the range of variant effects possible at a single
protein position. It classifies positions into 1) neutrals, where
most variants have no effect on protein function, 2) toggles, where

FIGURE 2 | Rare variants more frequently found in conserved
protein positions. Rare variants (blue) are more frequently found in
conserved positions (ConSurf ≤0) than common variants (purple).
Furthermore, non-CSVs (hatched fill) are more frequently present in
conserved positions than CSVs (solid fill). Similarly, rare variants carry higher
PSIC scores than common variants.

FIGURE 3 | Common variants aremore frequently effect than rare
variants, but rare variants are more frequently severe. (A) The
distribution of common CSV and non-CSV predictions (purple) is more right-
shifted (more effect) than that of rare variants (blue). Furthermore, (B) rare
non-CSVs (blue dashed line) are more often of moderate and severe effect
than common non-CSVs (purple dashed line). However, common CSVs are
more often of mild-moderate effect than rare CSVs. Due to small numbers of
variants at each SNAP score (x-axis), frequencies are calculated in intervals of
10, e.g. 0 ≤ SNAP <10; points are centered in the interval.
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most variants have severe or knockout effects, and 3) rheostats,
where variants cover a range of effect strengths. Overall, funtrp
classes reflected SNAP predictions well; median SNAP scores of
variants in neutral, rheostat, and toggle positions were −33, −18,
and 12, respectively. Common variants were more often found in
neutral positions as compared to rare ones (66% vs. 56%,
Figure 4A). However, of the effect positions (i.e. rheostat and
toggle), common variants preferred rheostats (77% common vs.
69% rare variants). As most toggles are conserved (Miller, et al.,
2019), this observation is in line with the above finding that rare
variants 1) are more likely than common ones to be in conserved
positions and 2) that they carry more severe functional effects.
Common variants in rheostatic positions, on the other hand, were
likely used in evolution to fine-tune functions of affected proteins.

Variant Effect Reflects Evolutionary Time of
Reference Amino Acid Origin
We asked whether variant effect is related to the likely
evolutionary time of appearance of the human reference. For
each species X, we collected all effect variants in our dataset where
the human and X reference amino acids were identical. For
mammals, the median effect strengths of the variants affecting
these positions were similar. For other species, however, the
variant effect was correlated with increasing evolutionary
distance between human and the specific species (Figure 5).
This correlation held true for CSVs and non-CSVs, as well as for
synthetic, singleton or observed variants.

Notably for non-CSVs, median effect scores increased more
rapidly over evolutionary time than for CSVs. This trend was
expected, as variants whose reference amino acids are present in
evolutionarily distant species likely disproportionately affect
conserved ancestral amino acids. For example, a shared human
and yeast reference amino acid is likely present across all or most
species in our set. Thus, a CSV at this position (if say, fly amino acid
is different) would indicate some flexibility at the position, but a non-
CSV would elicit the functional effect associated with the disruption
of stringent conservation. However, we found that conservation of
the variant position is unlikely the sole contributor to the observed
effect gradient. The trend, albeit less pronounced, remained visible if
only the variants in positions of low conservation (ConSurf score
≥0.5) were used in the analysis (Supplementary Table S2).
Importantly, a clear distinction between CSVs and non-CSVs was
also still evident, indicating that even in non-conserved positions
CSVs and non-CSVs are distinguishable.

Self-Fulfilling Prophecy: Are Cross-Species
Variants Really Neutral?
As mentioned previously, CSVs were less often predicted to have
an effect than mutations to an amino acid that is not present in
other species (non-CSVs); this observation was true for both
synthetic and observed human variation (Supplementary Table
S1). The absolute difference in median SNAP scores between
CSVs and non-CSVs was 38 (mean �30) for synthetic variants
and 32 (mean �27) for the observed–a full 14–21% of the entire
scoring range ([−94, + 88]). CSV scores are most often neutral
across all three categories of variation (i.e. synthetic, singleton,
observed), while the distribution of non-CSV scores is much more
widespread (Figure 6). An biological explanation for this
observation is that CSVs are indeed more likely to be neutral
with respect to protein function, as is expected from their
persistence in homologs (Kondrashov, 1995; Sunyaev, et al.,
2001). However, another explanation for this stark difference
could then be the fact that SNAP was trained using a dataset of
cross-species orthologous enzyme variants deemed neutral. Only
30 of these enzymes were in our set of 1,265 proteins and, thus,
are not expected to dramatically impact our observations.
However, if SNAP learned input feature patterns specific to
CSVs, others could be labeled neutral without ever being seen
in training. Thus, SNAP could fail to recognize CSVs that have a
functional impact without introducing the organism to selection
pressures, i.e. functionally non-neutral, but physiologically
neutral. In fact, these may be the so called “fuel for evolution”
(Bromberg, et al., 2013; Fu, et al., 2013) – the pool of weakly
nonneutral variants necessarily present in the population for the
purposes of quick adaptation to a changing environment.

In our earlier work we had determined a SNAP threshold of 23
as the upper functional impact limit to the absence of
physiological visibility. We have confirmed this threshold for
this data set as well, as the score where the fraction of possible/
expected variants exceeds those observed (Figure 6). Of the
observed effect CSVs, 76% are in this mild functional effect
range, while 58% of all effect non-CSVs are as well. This
significantly larger fraction of mild effect CSVs than effect

FIGURE 4 | Common variants prefer neutral positions more than
rare variants. Neutral positions (green shading) are enriched in common
variants (purple) as opposed to rare variants (blue) (66% vs. 56% - actual
variant counts shown as numbers in the bars). The fraction of rare
variants in rheostatic positions (blue shading) is higher than the corresponding
fraction of common variants. However, the ratio of common variants in
rheostat positions vs. toggles (pink shading) is higher than that of rare variants.
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non-CSVs suggests that the former are more likely the functional
variants necessary for adaptation.

Although CSVs are more frequently (vs non-CSVs) predicted
to be mild in effect, they also vastly outnumber non-CSVs in the
neutral score range. Curiously, there is almost no difference
between the synthetic and observed CSV score distributions.
However, only 5% of all possible CSVs in our set are observed
in the human population–not much more (percentage-wise) than
all possible non-CSVs (3%; and fewer in the absolute sense with
∼42K observed CSVs and ∼144K observed non-CSVs). It thus
remains unclear whether functional constraints are indeed
weaker for (often biochemically similar substitutions of amino
acids in) CSVs.

Evaluating prediction bias is difficult in the absence of a gold-
standard data set and one of neutral CSVs doesn’t exist. While
funtrp uses site conservation as input, it was not trained to
recognize individual variant effect and thus could be used to
elucidate our findings. In other words, funtrp forgoes the broad
generalization of assigning neutrality to cross-species variants on
the basis of the evolution-guided inference (e.g. SNAP and other
methods (Ng and Henikoff, 2001; Ng, 2003; Calabrese, et al.,
2009; Adzhubei, et al., 2010; Shihab, et al., 2013; Kircher, et al.,
2014; Schwarz, et al., 2014; Pejaver, et al., 2020).

In line with our earlier observations, funtrp found that most
protein positions in our set are neutral. The distribution of
synthetic, singleton, and observed variants across position
classes was very similar for CSVs (62/30/8% neutral/rheostat/
toggle; Supplementary Table S3). Non-CSVs maintained an
average 50/33/17% ratio of neutrals/rheostats/toggles, with
observed non-CSVs more frequently found in neutral and
rheostat positions than singletons or synthetic variants
(Supplementary Table S3). Thus, both CSVs and non-CSVs
were about as likely to localize to rheostatic positions, but non-
CSVs were less frequently found in neutrals and twice as often in
toggles. Note that while not all variants in neutral positions are
necessarily functionally neutral, and non-neutral positions may
have some neutral variants, only 62% of observed CSVs are found
in neutral positions, while SNAP predicts 90% of observed CSVs
to be functionally neutral.

Two conclusions from these results are salient: 1) as expected,
CSVs are indeedmore frequently neutral than non-CSVs and 2) it
appears that SNAP (and likely other predictors) tends to
overestimate CSV neutrality. Thus, we suggest that cross-
species variants may carry mild to moderate functional effects
and should be evaluated accordingly.

FIGURE 5 | Impact of variants sharing reference amino acids with other species correlates with evolutionary distance. Mean SNAP scores (y-axis) are
computed for CSV (green line) and non-CSV (red line) synthetic (left panel), singleton (middle panel), and common (right panel) variants, according to per-species human-shared
reference amino acids. Species are placed along the x-axis (logarithmic) according to their distance to ancestor shared with human.

FIGURE 6 | Observed variants enriched in mild effects. Both
observed CSVs (green solid line) as well as non-CSVs (green dashed line) are
enriched in mild effect variants over their synthetic counterparts (orange
CSVs–solid line, non-CSVs–dashed line).
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CONCLUSION

We investigated a set of single amino acid substitutions (SAVs) in
evolutionarily persistent, likely ancient, proteins, i.e. those that we
expect to be optimized to tolerate variation. We found that despite
the enrichment in severe effects of synthetic vs observed variants, a
large proportion of SAVs might still be found upon broader
sequencing of the population. Moreover, we expect that only a
small fraction of variants that have yet to be sequenced will have a
severe impact and/or be disease causing. We further observed that
common variants favor poorly conserved sites. This lower
conservation, indicative of more tolerance toward variation,
might be providing enough “wiggle” room for environmental
adaptations. Rare variants are, on the other hand, are often
found in more conserved positions, explaining their enrichment
in severe effects in comparison to common SAVs. Curiously, it
appears that our ancient proteins have been optimized to the point
where disrupting a conserved site does not immediately cause a
functional disruption, as seen in the majority of rare variants
predicted to be neutral. Finally, we suggest that cross-species
variants (CSVs) might indeed be more often neutral than non-
CSVs however not as consistently as currently expected.
Ultimately, however, this question can only be answered
through the development of an effect predictor that is does not
make a priori assumptions of CSV neutrality and, which is
somewhat harder, does not rely on conservation.
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During the last years, the increasing number of DNA sequencing and protein mutagenesis
studies has generated a large amount of variation data published in the biomedical
literature. The collection of such data has been essential for the development and
assessment of tools predicting the impact of protein variants at functional and
structural levels. Nevertheless, the collection of manually curated data from literature is
a highly time consuming and costly process that requires domain experts. In particular, the
development of methods for predicting the effect of amino acid variants on protein stability
relies on the thermodynamic data extracted from literature. In the past, such data were
deposited in the ProTherm database, which however is no longer maintained since 2013.
For facilitating the collection of protein thermodynamic data from literature, we developed
the semi-automatic tool ThermoScan. ThermoScan is a text mining approach for the
identification of relevant thermodynamic data on protein stability from full-text articles. The
method relies on a regular expression searching for groups of words, including the most
common conceptual words appearing in experimental studies on protein stability, several
thermodynamic variables, and their units of measure. ThermoScan analyzes full-text
articles from the PubMed Central Open Access subset and calculates an empiric
score that allows the identification of manuscripts reporting thermodynamic data on
protein stability. The method was optimized on a set of publications included in the
ProTherm database, and tested on a new curated set of articles, manually selected for
presence of thermodynamic data. The results show that ThermoScan returns accurate
predictions and outperforms recently developed text-mining algorithms based on the
analysis of publication abstracts.

Availability: The ThermoScan server is freely accessible online at https://folding.biofold.
org/thermoscan. The ThermoScan python code and the Google Chrome extension for
submitting visualized PMC web pages to the ThermoScan server are available at https://
github.com/biofold/ThermoScan.
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INTRODUCTION

A key aspect for characterizing the relationship between genotype
and phenotype is the study of the impact of amino acid variants
on protein function and structure (Thusberg and Vihinen, 2009;
Compiani and Capriotti, 2013). To address this task, several tools
for predicting the effect of variants on protein stability have been
developed (Sanavia et al., 2020). The implementation of these
methods requires a large and accurate set of experimental data,
both for training and benchmarking. Although many protein
folding databases were developed in the past (Bava et al., 2004;
Fulton et al., 2007; Wagaman et al., 2014; Pancsa et al., 2016;
Manavalan et al., 2019) some of them were discontinued or no
longer maintained (Bava et al., 2004; Fulton et al., 2007). Among
them, ProTherm (Kumar et al., 2006), the most comprehensive
resource for thermodynamic data on protein variants, was not
updated since 2013, and its maintenance was discontinued.
Therefore, the need for curated databases on the
thermodynamics and kinetics of protein folding has become
urgent for implementation of accurate prediction methods.

In general, the collection of data from scientific literature is an
expensive and time-consuming process requiring careful
selection of keywords and queries for web searching (Fleuren
and Alkema, 2015). As a consequence, during the last decades,
several text-mining tools have been developed to speed up the
data collection process (Rebholz-Schuhmann et al., 2012). Given
the complexity and large variety of biological data, such searching
tools were customized to address specific tasks (Huang and Lu,
2016). In particular, different approaches have been developed for
identifying protein-protein interactions (Krallinger et al., 2008),
drug-drug interactions (Zeng et al., 2019) and drug-phenotype
relationships (Garten and Altman, 2009). Other methods identify
gene functions (Soldatos et al., 2015) and define the role of
molecules involved in biological processes (Wang et al., 2011).
Currently, text-mining tools are used in daily life science research
activity to improve web search (Ananiadou et al., 2010) and
facilitate the database curation process (Yeh et al., 2003;Wei et al.,
2012; Karp, 2016).

In this context, we developed ThermoScan, a new method for
facilitating the collection and curation of thermodynamic data.
Aiming atmaximizing the extent of automatic vs. manual curation,
ThermoScan is based on a semi-automatic text-mining algorithm
for identifying experimental data on protein stability within the
publicly accessible literature. ThermoScan reads the Open Access
full-text manuscripts, ranks them according to the likelihood of
finding the experimental thermodynamic data, and extracts
relevant parts of the manuscript from paragraphs and tabular
items. In addition, we evaluated the performance of ThermoScan in
the detection of thermodynamic data in comparison with two
existing web-server tools for documents classification (Fontaine
et al., 2009; Simon et al., 2019).

METHODS

ThermoScan is a semi-automatic method for retrieving protein
thermodynamic data from literature. The method scans the

PubMed Central full-text HTML page and calculates a score
for identifying manuscripts reporting experimental protein
thermodynamic data in paragraphs and tables.

Datasets
For optimizing and testing the performance of ThermoScan we
collected different datasets of articles reporting protein
thermodynamic data (positives) or not (negatives). The initial
set of positives (Pos-PT) was collected by considering 157 Open
Access PMC articles referenced in the ProTherm database. Two
negative sets of publications were selected from the PMC Open
Access repository using different searching keywords. In detail we
considered only the full-text articles available in HTML format
and containing the terms “protein” and “stability” (Neg-PS) or
“protein” and “unfolding” (Neg-PU). For the Neg-PS dataset we
restricted the search to the first 2,000 articles. Thus, the Neg-PS
and Neg-PU negative sets, obtained by restricting the literature
search to the period 2000–2010, were composed of 2,000 and 583
manuscripts respectively.

For testing the performance of ThermoScan, we selected a set
of 296 recently published (2011–2019) Open Access PMC articles
with a PubMed search of the keywords “protein,” “stability” and
“unfolding”. The manual curation of these articles, based on
stringent criteria, allowed the identification of 194 manuscripts
reporting experimental protein folding data. The remaining 102
papers, initially retained as negatives, were filtered excluding 37
articles reporting only protein thermodynamic data from binding
or in silico experiments. With this manual procedure, we
generated the New-PSU dataset, composed of 194 positive and
102 negative articles, and the Snew-PSU, composed of the same
number of positives and 65 high-quality negatives. The
composition of the datasets is summarized in Supplementary
Table S1. The PMCIDs of the manuscripts collected in all the
datasets are available as Supplementary File.

Manuscript Processing and Word Selection
Full-text articles in HTML format are parsed using the
BeautifulSoup Python library (https://www.crummy.com/
software/BeautifulSoup/). BeautifulSoup is used for extracting
the text between paragraphs (<p>) and tables (<table>) tags.
After extraction of the text included in the paragraphs and tables
of each manuscript, the Natural Language Toolkit (NLTK)
platform (https://www.nltk.org/) (Bird et al., 2009) is used for
removing stopwords and for the lemmatization process. In
particular, we use the WordNetLemmatizer function of NLTK
for determining the word’s lemma. After processing the
manuscript with NLTK, the text is analyzed for identifying the
words associated with protein thermodynamic concepts. In detail,
we compared the frequency of the words in the manuscript of
Pos-PT dataset against the Neg-PS dataset using a binomial
distribution. The words were ranked on the basis of the
p-value obtained from the complementary cumulative
binomial distribution. Such p-value represents the probability
of observing, in the Pos-PT dataset, a number of manuscripts
with a given word higher than expected from the background
probability, as estimated in the Neg-PS dataset. According to the
p-values, calculated using the binomial survival function of the
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binomial distribution (Supplementary Table S2), the 5 words
with lowest score were: unfolding, two-state, denaturant,
dichroism and midpoint.

Text Mining and Scoring
ThermoScan processes the full-text article in HTML searching for
significant protein thermodynamic words grouped in four classes:

• Thermodynamic concepts (TC): Important words
frequently appearing in protein thermodynamic studies
(unfolding, two-state, denaturant, dichroism, midpoint).

• Thermodynamic variables (TV) Words are identified by a
regular expression matching the abbreviations of the main
thermodynamic variables (ΔG, ΔH, ΔTm, etc.).

• Units of measure (UM): Words are identified by a regular
expression matching the main units of measure used in
thermodynamic experiments (kcal/mol, kJ/mol, etc)

• Computational concepts (CC): Words referring to
computational studies (simulation, molecular dynamics,
force field, predict, etc.).

The text extracted from the manuscript is searched for the 5
words in the first group. If one of the words is found, all the
significant terms are extracted using each of the four regular
expressions representing the four classes. The codes of the four
regular expressions are reported in Supplementary Materials.

For each article, ThermoScan calculates an empirical score
based on the four classes of words defined above. Our approach
returns the total and the single paragraph/table scores. A positive
partial score is assigned to the items matching the first three
classes (thermodynamic concepts, thermodynamic variables and
units of measures), and a negative one to the items matching the
fourth class (computational concepts).

The paragraph/table score is calculated by summing the scores
of the individual matches without repetitions. The individual
scores of the different classes of words are the following:

• two-state � unfolding � denaturant � midpoint �
dichroism � 1

• Cp � Tm � 1, ΔX � 2, ΔΔX � 3 (X � Cp, Tm, UG, GU, G,
H, T, U)

• °C � 1, E/C � 2 (E � kcal, kJ; C �mol, mole, mole/°C, mol/°C,
mol/K, mol/M)

• simulation � molecular dynamics � force field � charmm �
gromacs � amber � PBSA � GBSA � predict � −1; md
simulation � −2

The total score assigned to the article is obtained by summing
all paragraph/table scores. For the classification task, we
considered two alternative measures, corresponding to the
maximum (Max) or to the average (Mean) paragraph/table
score for each paper.

Although not used at this stage for the classification task,
ThermoScan additionally searches for thermodynamic data
relative to binding processes, considering the following terms:
binding, affinity, dissociation, interaction, ppi, protein-protein,
kcat/Km.

Method optimization and Testing
For optimizing the performance of ThermoScan we maximized the
performance of a binary classifier discriminating between
manuscripts reporting protein thermodynamic data and not. In
general, this task can have different difficulty levels depending on
the selection of the negative set. To select a fair negative set of
manuscripts, we considered those collected in the Neg-PS and Neg-
PU datasets, which include the terms “protein” and “stability,” or
“protein” and “unfolding,” respectively. From Neg-PS and Neg-PU
datasets we generated 10 randomly selected sets of 157 negative
manuscripts in equal proportion, to be comparedwith those collected
in the Pos-PT dataset. With this procedure we generated 10 training
sets that only differ by the subset of negatives. Using the procedure
described above, for each manuscript we calculated the maximum
(Max) and average (Mean) scores of the extracted paragraphs and
tables. In addition, we evaluated the relative contributions of the three
main groups of words (thermodynamic concepts, thermodynamic
variables and units of measures) to the prediction power of
ThermoScan by calculating the performance achieved when using
different groups combinations. In particular we evaluated the
performance of three alternative methods considering:

• thermodynamic concepts alone (TC);
• thermodynamic variables and units of measures (TV ∪ UM);
• thermodynamic concepts, thermodynamic variables and
units of measures (TC ∪ TV ∪ UM).

The results obtained with the three combinations were
compared with those obtained by including all four groups of
words defined above.

For ThermoScan optimization we selected the classification
thresholds that maximized the Matthews Correlation Coefficient
(see Methods section in Supplementary Materials), and finally we
tested the ThermoScan performance on the two testing sets (New-
PSU, Snew-PSU) by applying the same classification thresholds.

The performance of ThermoScan was then compared with
those achieved by MedlineRanker (Fontaine et al., 2009) and
BioReader (Simon et al., 2019). The performances of the two text
miningmethods (MedlineRanker and BioReader), which are both
based on the analysis of the manuscript abstract, were evaluated
on the New-PSU, Snew-PSU datasets. All the performance
measures are defined in Supplementary Materials.

RESULTS

Here we present the results achieved by ThermoScan in the
selection of manuscripts reporting experimental protein
thermodynamic data from PubMed. We first optimized
ThermoScan in a training step, then tested its performance on
a blind set of manually curated articles, and finally compared such
performance with those achieved by MedlineRanker (Fontaine
et al., 2009) and BioReader (Simon et al., 2019).

ThermoScan Optimization
For the optimization of ThermoScan we calculated its performance
considering both the maximum (Max) and the average (Mean)
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scores assigned to each part (paragraph/table) of the manuscript.
The performance of ThermoScan was calculated using a positive set
of 157 manuscripts from Protherm containing protein
thermodynamic data (Pos-PT) and a negative set with an equal
number of articles not containing any thermodynamic information
(randomly selected from Neg-PU and Neg-PS datasets, described in
the Methods section). All the performance measures (defined in the
Supplementary Materials) were averaged over 10 random
samplings of the negative subset. The detailed results obtained
with both Max and Mean scoring systems are reported in
Supplementary Tables S3, S4; Table 1 summarizes the optimal
performance measures from Supplementary Tables S3, S4 for both
the Max and Mean scoring systems. In detail, the method based on
the maximum score achieved 3% higher accuracy (Q2) and 5%
higher Matthews correlation coefficient (MCC). In Figure 1, the
Precision (PPV) and Recall (TPR) values from Supplementary
Tables S3, S4 are plotted as a function of Max (Figure 1A) and
Mean (Figure 1B) scoring threshold. The results show that the best
performance was achieved with the Max scoring system with
threshold ≥3. Alternative scores of the performance are based on
the AUC (Area Under the receiving operating characteristic Curve)
and on theAUPR (AreaUnder the Precision-Recall curve) which are
shown in Figure 2. Also, these results confirm that the Max scoring
system achieved the best performance.

In summary, the above analysis shows that the binary classifier
results in a higher performance when based on the maximum
paragraph/table score rather than on the average score.

ThermoScan Testing and Benchmarking
ThermoScan was tested calculating its performance on two sets
(New-PSU and Snew-PSU) obtained by searching in the Open

Access PMC articles having the words “protein,” “stability” and
“unfolding” in their abstracts. The classification was performed
using the same threshold values obtained in the optimization steps.
The results reported inTable 2 show that ThermoScan achieved the
highest performance on the testing set Snew-PSU, obtained by
removing 37 manuscripts of difficult classification, (i.e. reporting
protein thermodynamic data from binding or in silico experiments
only). Indeed, when comparing the performances of both versions
of ThermoScan (Max and Mean) on the Snew-PSU and New-PSU
datasets, themethod results in ∼10%better accuracy and 20% better
Matthews correlation coefficient on the first one. The version of
ThermoScan based on the maximum paragraph/table score
achieved an overall accuracy of 91% and a Matthews correlation
coefficient of 0.76. These results are the most similar ones to those
reached in the optimization step. Furthermore, to estimate the
filtering capabilities of ThermoScan, we analyzed a set of ∼700,000
manuscripts from the PubMed Central FTP website (https://ftp.
ncbi.nlm.nih.gov/pub/pmc/manuscript/), which required on
average ∼4 s for each article. By using a scoring threshold of 6,
ThermoScan selects ∼2,200 items (0.3%), which, according to our
analysis of the New-PSU testing set, are expected to include less
than 4% of false positives. Finally, we compared the performance of
ThermoScan with those of MedlineRanker (Fontaine et al., 2009)
and BioReader (Simon et al., 2019) which are based on the analysis
of themanuscript abstracts. As shown inTable 3, ThermoScan, that
analyzes the full-text manuscript, results in better performance than
MedlineRanker and BioReader on both New-PSU and Snew-PSU
datasets. In almost all cases ThermoScan reached ∼15% higher
overall accuracy and ∼30% higher Matthews correlation coefficient
with respect to MedlineRanker and BioReader. Given the different
amount of information in input, the performance of ThermoScan

TABLE 1 | Optimized performance of ThermoScan based on the maximum (Max) and average (Mean) scores. The performance measures are defined in Supplementary
Materials. The standard deviation of all the performance measures are ≤0.01.

Score TH Q2 TNR NPV TPR PPV MCC F1 AUC AUPR

Max 3.00 0.97 1.00 0.95 0.94 1.00 0.94 0.97 0.99 0.99
Mean 1.36 0.94 0.94 0.95 0.95 0.94 0.89 0.94 0.98 0.99

FIGURE 1 | Precision and Recall of ThermoScan at different classification thresholds. The plots show the performance based on the Max (A) and Mean (B) scores.
The performance measures TPR (black) and PPV (red) are defined in Supplementary Materials. The shaded area represents the range between the minimum and
maximum scoring values.
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can not be directly compared with those of MedlineRanker and
BioReader. Our analysis shows that full-text classification-based
methods do tend to have higher discriminating power than
methods based on the analysis of the abstract, even though the
latter can deal with larger sets of articles in a shorter amount of time.

Contribution to Performance
To evaluate the contribution to the performance of ThermoScan of
each group of words included in the manuscript processing, we
assessed the performance of three alternative methods considering a
subset of groups (seeMethod optimization and testing paragraph in
the Methods section). In particular, we compared the performance
of ThermoScan with the three following approaches based on:

i. the thermodynamic concepts alone (TC);

ii. the thermodynamic variables and units of measure
(TV ∪ UM);

iii. all previous groups (TC ∪ TV ∪ UM).

On the training sets (Pos-PT, Neg-PS and Neg-PU), the results of
the comparison between ThermoScan, which includes four groups of
words (TC ∪ TV ∪ UM ∪ CC), and the alternative methods described
above are reported in Supplementary Tables S5, S6. This analysis
shows that the predominant contribution to the classification power is
given by the 5 words belonging to the group of the thermodynamic
concepts. We also noticed that the combination, which significantly
contributes to improve the performance, includes all three groups: both
the thermodynamic concepts and variables, together with the units of
measure. Indeed, considering the classifier based on the maximum
paragraph/table score, the method based on the combination of the

FIGURE 2 | Performance measures of ThermoScan based on the Max (red) and Mean (blue) scores. The plots show the AUC (Area Under the receiving operating
characteristic Curve). The shaded area represents the range between the minimum and maximum scoring values (A) and the AUPR (Area Under the Precision-Recall
curve) (B) for the two scoring systems. The TPR, FPR, and PPV performance measures are defined in Supplementary Materials.

TABLE 2 | Performance of ThermoScan on the New-PSU and Snew-PSU datasets. The ThermoScan thresholds obtained in the optimization step with maximum andmean
paragraph/table scoring methods are 3.00 and 1.36 respectively. The performance measures are defined in Supplementary Materials.

Score Dataset Q2 TNR NPV TPR PPV MCC F1 AUC AUPR

Max New-PSU 0.80 0.49 0.88 0.96 0.78 0.55 0.86 0.86 0.86
Snew-PSU 0.91 0.75 0.88 0.96 0.92 0.76 0.94 0.96 0.94

Mean New-PSU 0.80 0.59 0.77 0.91 0.81 0.53 0.85 0.83 0.82
Snew-PSU 0.89 0.83 0.75 0.91 0.94 0.71 0.92 0.92 0.91

TABLE 3 | Comparison of the performance of ThermoScan (based on maximum paragraph/table score) with BioReader and MedlineRanker on the New-PSU and Snew-
PSU datasets. The classification thresholds for BioReader andMedlineRanker and ThermoScan are 0.022, 0.027 and three respectively. The performancemeasures are
defined in Supplementary Materials.

Method Dataset Q2 TNR NPV TPR PPV MCC F1 AUC AUPR

BioReader New-PSU 0.66 0.59 0.50 0.70 0.76 0.28 0.73 0.64 0.72
Snew-PSU 0.70 0.69 0.43 0.70 0.87 0.34 0.77 0.69 0.75

MedlineRanker New-PSU 0.63 0.63 0.47 0.63 0.76 0.25 0.69 0.70 0.67
Snew-PSU 0.70 0.68 0.43 0.70 0.87 0.34 0.78 0.78 0.72

ThermoScan New-PSU 0.80 0.49 0.88 0.96 0.78 0.55 0.86 0.86 0.86
Snew-PSU 0.91 0.75 0.88 0.96 0.92 0.76 0.94 0.96 0.94
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three groups of words results in 4% better overall accuracy and 7%
better Matthews correlation coefficient with respect to the methods
based on thermodynamic concepts alone (Supplementary Table S5).
Although no significant improvement of the performance is resulting
from adding the computational concepts (CC), this negative score,
which is included in ThermoScan, is important for penalizing the
manuscripts reporting in silico protein stability data. A similar
improvement is observed on the testing sets New-PSU and Snew-
PSU (Supplementary Tables S7–S10). In the testing step we observed
an improvement of NPV (negative predicted value) and TNR (true
negative rate) of 2 and 4% respectively when comparing ThermoScan
with themethod based on the three groups ofwords (TC∪ TV∪UM).

Identification of In-Silico Data and
Manuscripts
Identifying in-silico articles, which represented less than 10% of our
testing set, remains a critical issue, especially when the article texts
include reference to, and description of, experimental data. To
penalize articles presenting in-silico data only, we defined a negative
score based on the presence of the computational concepts (CC).
The maximum penalization score for a paragraph is -2 when the
words “md simulation” is found. Although the addition of the CC
does not significantly improve the performance of the automatic
evaluation, it can help during the manual curation process to detect
and discard possible false positives.

ThermoScan Web Server and Code
We developed a web server version of ThermoScan that takes in input
a list of manuscript identifiers (PMCID, PMID or DOI) and returns a
table with the scores associated with each article. Each identifier in the
output is linked to a webpage showing significant paragraphs and
tables which include protein thermodynamic terms.Words belonging
to the main three classes defined in the Method section
(thermodynamic concepts, thermodynamic variables, units of
measure) are highlighted in red. To facilitate the curation process
and avoid the selection of in-silico data, the output of the webserver
displays the CC terms in blue and returns a score related to their
presence. For better help in identifying the possible presence of
thermodynamic data on protein mutants, the potential amino acid
variants are highlighted in green. For each manuscript, the server
calculates the total score and the maximum score for the extracted
paragraphs and tables. An example of the ThermoScan server output
is available at the page https://shorturl.at/cetwG. To analyze the
HTML pages of manuscripts with restricted access, we developed a
GoogleChrome app that allows the user to submit the content of a web
page, visualized on the user’s browser, directly to the ThermoScan
server. Furthermore, the ThermoScan python script for the local
scanning of the PMC articles is made available through GitHub.

DISCUSSION

In this paper we present ThermoScan, a text-mining algorithm for the
selection and fine-grained classification of Open Access PMC articles,
aimed at retrieving literature data on the thermodynamic stability of
proteins and their variants. Although the direct comparison of the

performance of methods with different input features is not
straightforward, our results show that ThermoScan, which is based
on the analysis of full-text articles, outperforms existing web services
based on the analysis of themanuscript abstracts (Fontaine et al., 2009;
Simon et al., 2019), thus constituting a new valuable tool to semi-
automatically collect protein thermodynamic data. Furthermore, the
web interface, which displays relevant parts of the article, makes
ThermoScan a valuable complementing tool for refining the search of
protein thermodynamic data. In conclusion, our method achieves a
high discrimination power by analyzing full-text articles, by fine-
tuning the classification thresholds, and by using a tailored subset of
specific symbols and words. Given the trend toward an increasing
amount of in-silico only studies in the literature repositories, in the
future more sophisticated search strategies should be implemented, to
avoid the selection of manuscripts reporting in-silico data only, which
contribute to increasing the rate of false positives. Nevertheless we
expect that ThermoScan will significantly support and accelerate the
updating and curation of new databases for collection of protein
thermodynamic data. Such data are essential for characterizing the
relationship between protein sequence and structure and for the
development of more accurate methods for predicting the impact
of amino acid variants on protein stability.
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Human genome resequencing projects provide an unprecedented amount of data about
single-nucleotide variations occurring in protein-coding regions and often leading to
observable changes in the covalent structure of gene products. For many of these
variations, links to Online Mendelian Inheritance in Man (OMIM) genetic diseases are
available and are reported in many databases that are collecting human variation data
such as Humsavar. However, the current knowledge on the molecular mechanisms that
are leading to diseases is, in many cases, still limited. For understanding the complex
mechanisms behind disease insurgence, the identification of putative models, when
considering the protein structure and chemico-physical features of the variations, can
be useful in many contexts, including early diagnosis and prognosis. In this study, we
investigate the occurrence and distribution of human disease–related variations in the
context of Pfam domains. The aim of this study is the identification and characterization
of Pfam domains that are statistically more likely to be associated with disease-related
variations. The study takes into consideration 2,513 human protein sequences with
22,763 disease-related variations. We describe patterns of disease-related variation
types in biunivocal relation with Pfam domains, which are likely to be possible markers
for linking Pfam domains to OMIM diseases. Furthermore, we take advantage of the
specific association between disease-related variation types and Pfam domains for
clustering diseases according to the Human Disease Ontology, and we establish a
relation among variation types, Pfam domains, and disease classes. We find that Pfam
models are specific markers of patterns of variation types and that they can serve to
bridge genes, diseases, and disease classes. Data are available as Supplementary
Material for 1,670 Pfam models, including 22,763 disease-related variations associated
to 3,257 OMIM diseases.

Keywords: protein variations, protein structure, protein domain, variation type, disease-related variations,
disease variant databases, Pfam-disease association
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INTRODUCTION

In the last decade, several efforts have been devoted to the
problem of functional annotation of protein variants with the aim
of relating variations to specific diseases (Vihinen, 2017, 2018).
A collection of variations of genetic diseases is now available,
and this prompted the investigation of molecular mechanisms
responsible for protein failure (Schaafsma and Vihinen, 2018).
Particularly, variations of non-synonymous proteins can promote
the change of the active/binding sites and/or protein instability
and can hamper protein–protein and ligand–protein interactions
(Kucukkal et al., 2015; Ittisoponpisan et al., 2019; Ofoegbu et al.,
2019). Molecular mechanisms can be, therefore, different, and
different phenotypes may share common molecular mechanisms,
independent of the different genes (Deans et al., 2015; Reeb
et al., 2016; Babbi et al., 2019, and references therein). Several
studies also focused on determining the most frequent protein
variants associated with diseases, with the aim of helping
functional annotation, starting from variant sequencing (Niroula
and Vihinen, 2017; Zeng and Bromberg, 2019).

Different computational methods are available for the
functional annotation of variations, based on different
approaches. Routinely, given a specific variation, computational
methods return with a computed reliability whether the change
of a side chain in a protein is disease-related or not (Niroula and
Vihinen, 2016).

An interesting aspect of disease-related protein variants is the
protein instability promoted by the variations (Casadio et al.,
2011; Savojardo et al., 2019, and references therein). Protein
instability may be related to a disease, with this not being the only
reason. For functional annotation of disease-related variations,
routinely, the chemico-physical properties of the variation and
the effect of the variation on the close environment in the
protein structure are taken into consideration. It appears that the
correlation among the strength of association to disease and the
strength of association to the protein structure perturbation is
moderate (Savojardo et al., 2019).

The problem of which phenotype is associated with a
given variation or a set of variations has been scarcely
addressed, and it remains unanswered, given the complexity
of the scenario relating phenotypes to variations. Existing
databases can relate genes to diseases and/or variations to
diseases (MalaCards1, Rappaport et al., 2017; GeneCards2, Stelzer
et al., 2016; DisGeNet3, Piñero et al., 2020; eDGAR4, Babbi
et al., 2017; Humsavar5, UniProt Consortium, 2019; OMIM6,
Amberger et al., 2015).

Protein domains have been adopted to explore associations
between genes and human-inherited diseases (Zhang et al., 2011,
2016; Yates and Sternberg, 2013; Wiel et al., 2017, 2019). Models

1https://www.malacards.org/
2https://www.genecards.org/
3https://www.disgenet.org/
4http://edgar.biocomp.unibo.it
5https://www.uniprot.org/docs/humsavar
6https://www.omim.org/

of protein domains are available in the Pfam database7 (El-
Gebali et al., 2019), and they enable the clustering of proteins
into protein families, each represented by multiple sequence
alignments, mainly based on protein structural alignments and
cast into hidden Markov models (HMMs). Initially, similarities
of disease phenotypes were exploited within a given domain–
domain interaction network, and a Bayesian approach was
proposed to prioritize candidate domains for human complex
diseases (Zhang et al., 2011). Then, domain–disease associations
were inferred from domain–protein, protein–disease, and
disease–disease relationships (Zhang et al., 2016). In these
studies, the bottom layer of variations in proteins, detected
in large-scale sequencing experiments, was not taken into
consideration, restraining the analysis only to the already known
protein– or gene–disease associations. More recently (Wiel et al.,
2017), with the notion of homologous domains in proteins,
variants were aggregated to improve their interpretation, and a
web server (MetaDome8, Wiel et al., 2019) was made available for
the pathogenicity analysis of genetic variants.

In a previous study (Savojardo et al., 2019), we introduced
the notion of variation type, in order to take the physico-
chemical properties of the variations into account as well
(Casadio et al., 2011). After mapping genetic disease–related
variations on a restricted set of human protein three-
dimensional (3D) structures, we found that the distribution
of disease variation types significantly varies across different
structural/functional Pfam models.

In this study, relying on the relationship between genes and
phenotypes, we ask the question as to which extent possible
patterns of variation types framed into Pfam domains are
significant for a reliable association to specific groups of maladies.

MATERIALS AND METHODS

Dataset Construction
The dataset adopted in this study was derived from the Humsavar
database5 release 2020_04 of August 2, 2020, listing all missense
variants annotated in human UniProtKB/Swiss-Prot (UniProt
Consortium, 2019) entries.

From the initial set of proteins included in the database, we
only selected those reporting at least one variant implicated in
the disease, excluding proteins reporting only polymorphisms
not associated with disease insurgence. Moreover, any variation
labeled as “unclassified” (i.e., with uncertain implications in
disease) was filtered out. Finally, we only retained disease-related
variations associated with a genetic disorder reported in the
Online Mendelian Inheritance in Man (OMIM) catalog9.

The set of neutral variations was extended using data retrieved
from the GnomAD database (exome version 2.1.1) (Karczewski
et al., 2020). Only variations occurring in our set of proteins,
not already included in Humsavar and with clinical significance

7https://pfam.xfam.org/
8https://stuart.radboudumc.nl/metadome/
9https://omim.org/
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labeled as “Benign/Likely benign” by ClinVar (release 2021-03-
23) (Landrum et al., 2020), were retained.

Pfam (El-Gebali et al., 2019) annotations were retrieved from
the Pfam-A region annotation file for Homo sapiens version 33.1
obtained via the Pfam FTP server10. From all the annotations
available, we only retained those occurring at proteins included in
our set of data and covering at least one disease-related variation.

Mapping OMIMs to Disease Ontology
The DO (Human Disease Ontology) OBO (Open Biological and
Biomedical Ontology) file release of September 15, 2020, was
downloaded11 and used directly to retrieve annotations for each
OMIM disease by means of cross-references. Each retrieved leaf
DO term associated to a single OMIM was expanded up to the
ontology root term, including all ancestors. Term expansion was
computed using an ad-hoc script to parse the OBO file.

Computing the Disease Score
For each Pfam domain, we estimated a propensity score for the
association to the disease as follows:

Score (pfam) =
Npfam
d /

(
Npfam
d + Npfam

p

)
Nd/

(
Nd + Np

) (1)

where Npfam
d and Npfam

p are the number of disease-related and
polymorphism variations in the domain pfam, while Nd and Np
are the same numbers in the whole dataset. In the dataset, scores
range from 1.40 down to 0.03.

Kullback–Leibler Divergence Between
Distributions
Differences between probability distributions were evaluated
using the Kullback–Leibler divergence:

DKL = −
∑
x∈X

p (x) · log2
q(x)
p(x)

(2)

where p and q are two discrete probability distributions defined
on the same probability space X.

RESULTS

A Dataset of Variations With Annotated
Pfam
Overall, our dataset comprises 50,746 variations occurring in
2,959 proteins implicated in 3,884 genetic disorders. Disease-
related variations in these proteins are 29,949, accounting for
55% of the total variations. The remaining 20,797 variations are
neutral (45%). Table 1 shows summary statistics about the dataset
analyzed in this study.

Restricting the set of proteins to those having Pfam entries
covering at least one disease-related variation, we ended up

10ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam33.1/proteomes/9606.tsv.gz
11https://disease-ontology.org/

TABLE 1 | Summary of the OMIM-related variation dataset of this study.

Number of proteins associated with disease 2959

Number of diseases (OMIM) 3884

Number of variations 54746

Number of disease variations 29949 (55%)ˆ

Number of neutral polymorphisms (on the same disease
proteins)

24797 (45%)ˆ

Number of disease proteins with Pfam covering disease
variations

2513 (85%)#

Number of Pfams 1670

Number of diseases (OMIM) in proteins with Pfams 3257 (84%)◦

Number of variations covered by Pfams 31934 (68%)ˆ

Number of disease variations covered by Pfams 22763 (71%)+

Number of neutral polymorphisms covered by Pfams 9171 (29%)+

ˆ percentage computed with respect to the total number of variations (54746);
# percentage computed with respect to the total number of proteins (2959);
◦ percentage computed with respect to the total number of diseases (3884);
+ percentage computed with respect to the total number of Pfam-covered
variations (31934).

with 2,513 proteins (corresponding to 85% of the initial protein
set) implicated in 3,257 distinct genetic diseases. Overall, 1,670
distinct Pfam entries were annotated on these proteins. A subset
of 548 out of 1,670 Pfams occurs in two or more proteins in the
set. The vast majority (96%) of Pfam entries are of type “Domain”
or “Family,” while a very small fraction accounts for “Repeat,”
“Coiled-coil,” “Motif,” and “Disordered” types.

After this reduction, we retained 31,934 variations covered by
Pfams, distributed into 22,763 (71%) and 9,171 (29%) disease-
related and neutral polymorphic variations, respectively.

Data shown in Table 1 clearly indicate that the incidence of
disease-related variations within Pfam domains is significantly
higher than the background (71% against 55%).

Overall Pfam Association With Disease
We were interested in elucidating the overall association between
Pfam and OMIM diseases. For each entry in the set of 1,670
Pfam domains in our dataset, we computed the score for the
association to disease with the formula reported in Eq. 1. A value
greater than 1 for this ratio highlights a higher abundance of
disease variations in the Pfams than in the background. The
complete result of this analysis is reported in Supplementary
Table 1 for all the 1,670 Pfam entries. About 48% of Pfam
entries have a value greater than 1, as a consequence of the
overall propensity of disease-related variations to be located
within Pfam domains. In general, the distribution of scores is
not random and reflects a differential disease association for the
different Pfam entries.

In Table 2, we list the result for the 20 highest scoring
Pfams covering 10 or more proteins. Scores with corrected
p-values (Supplementary Table 2) equal to or lower than 0.1 are
highlighted (top scoring Pfams are all significant at 0.1 level).
Significance does not hold for some Pfams covering only few
variations. In these cases, more data are needed in order to
properly evaluate the association to the disease.

Interestingly, Pfam entries reported in Table 2 can be grouped
into few functional classes, including DNA-binding domains
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TABLE 2 | The 20 highest scoring Pfam entries mostly associated with diseases.

Pfam ID Pfam name Pfam type No of proteins No of disease variations No of neutral polymorphisms Score§

PF00105 zf-C4 Domain 12 60 2 1.36*

PF00250 Forkhead Domain 10 88 4 1.34*

PF00010 HLH Domain 14 48 3 1.32*

PF00104 Hormone_recep Domain 18 195 20 1.27*

PF00307 CH Domain 11 48 6 1.25*

PF00046 Homeodomain Domain 42 163 21 1.24*

PF07645 EGF_CA Domain 17 301 46 1.22*

PF00096 zf-C2H2 Domain 23 80 13 1.21*

PF00029 Connexin Family 10 319 53 1.20*

PF00017 SH2 Domain 11 72 12 1.20*

PF00520 Ion_trans Family 48 1020 173 1.20*

PF00004 AAA Domain 10 70 12 1.20*

PF00400 WD40 Repeat 19 52 9 1.20

PF02770 Acyl-CoA_dh_M Domain 10 40 7 1.19

PF00169 PH Domain 11 53 10 1.18

PF00005 ABC_tran Domain 15 236 49 1.16*

PF07686 V-set Domain 12 84 18 1.16

PF00271 Helicase_C Family 17 65 15 1.14

PF00176 SNF2_N Family 10 63 15 1.13

PF00089 Trypsin Domain 21 258 87 1.13*

§Score is computed as defined in Eq. 1. Significance of each score was assessed using the Fisher exact test on the corresponding contingency table and correcting for
multiple testing using the Benjamini-Hochberg procedure. Individual p-values are listed in Supplementary Table 2. *Corrected P-values are equal or lower than 0.1.

(accounting for eight domains/families), transmembrane
domains (three), and enzymes (three).

Pfams Have Distinctive Patterns of
Disease Variation Types
Going a step further in the analysis, we investigated the
composition of disease-related variations occurring in different
Pfam domains. In a previous study (Savojardo et al., 2019),
the same analysis was performed on a small dataset of highly
curated variations covered by 3D structures from Protein Data
Bank (PDB). In this study, we extended and complemented the
previous results using a larger dataset of Pfam domains and
variations. To this aim, we first grouped residues according to
their physico-chemical properties, obtaining four major groups,
namely, apolar (GAVPLIM), aromatic (FWY), polar (STCNQH),
and charged (DEKR) residues. We define a variation type in
relation to the conservation or substitution of apolar (a), polar
(p), aromatic (r), and charged (c) (Figure 1). Then, we computed
Pfam-specific distributions of disease-related variations involving
substitutions from one group to another (overall, 16 different
substitution types are possible). Complete results are reported in
Supplementary Table 3 for all the 1,670 Pfam domains.

In Figure 1, we show a heatmap reporting the frequencies
of each substitution type for the 20 highest scoring Pfam
entries described in the previous section and mostly associated
with diseases. For each Pfam entry, we report the Pfam ID,
the name, and two numbers in parentheses, indicating the
number of proteins and disease-related variations covered by the
specific Pfam. For comparison, the last row reports the overall
distribution of substitution types computed on the whole set of
variation types covered by Pfams.

The results shown in the heatmap of Figure 1 indicate that
the different Pfams are enriched in different variation types and
that each Pfam shows a differential pattern with respect to the
background. Interestingly, in some cases, the pattern of enriched
variation types can be related with the overall function of the
Pfam domain and/or the cellular context in which the domain/s
are presumably operating.

In Figure 2, we report three examples, namely, a selection
of DNA-binding domains, growth factors, and transmembrane
domains. For DNA-binding domains, we observe a higher
concentration of disease-related variations involving a
substitution from a charged residue to any different residue
type. Contrarily, for growth factor domains, we observe
abundant variations involving substitutions from polar to any
type of the residue, while transmembrane domains are mostly
enriched in substitutions involving apolar wild types. These
observations clarify a general trend, pointing to the specificity of
the disease variation type per Pfams of functional classes.

From data analysis, we conclude that the distribution
of the disease-related variation type patterns observed for
the different Pfams is non-random and different from the
background distribution (computed considering all the disease-
related variation types occurring in Pfams). This observation
confirms our previous results obtained with a smaller number
of Pfam domains, directly related to human protein structures,
and corroborates the notion that distinctive patterns of disease-
related variation types are Pfam specific (Savojardo et al., 2019).

Linking the Pfam to Disease Ontology
As a final step of our investigation, we searched for a link between
Pfam domains and disease ontology. Disease classification is not
a trivial task. Different controlled vocabularies and ontologies
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FIGURE 1 | The heatmap reporting the frequency of each variation type as observed within the 20 Pfam entries mostly associated with diseases. For each Pfam, the
numbers within parentheses indicate the number of proteins and disease-related variations covered. In variation types, labels are as follows: a, apolar; r, aromatic; p,
polar; and c, charged. Mean and median Kullback–Leibler divergences (Eq. 2) between individual Pfam distributions and the background are 2.1 and 2.1 bits,
respectively.

such as the Human Phenotype Ontology (HPO)12 (Köhler et al.,
2019) or the DO (Schriml et al., 2019) are available for this
purpose. However, none of the ontologies provides a full coverage
of the entire space of OMIM diseases, ranging from 82% coverage
of HPO to 74% of DO. Moreover, ontologies like HPO are
not specifically designed to describe a disease. Instead, they
are devised to describe clinically relevant phenotypes. In the
current study, we used the DO ontology because, in spite of a
slightly lower coverage, it provides a better and less ambiguous
classification of diseases.

12https://hpo.jax.org/app/

To obtain a high-level disease classification, we collected
all the 3,257 OMIM diseases linked to variations occurring
in our 1,670 Pfam domains and mapped them to a set of
17 first-level DO terms. These include 12 terms describing
diseases affecting anatomical entities (all child terms of
“DOID:7 – disease of anatomical entity” like cardiovascular,
endocrine, gastrointestinal, etc.), cellular proliferation diseases
(DOID:14566), mental health diseases (DOID:150), metabolic
diseases (DOID:0014667), physical disorders (DOID:0080015),
and syndromes (DOID:225). We were able to map 2,454
out of 3,257 OMIMs to at least one of the above DO
terms. On average, each OMIM was mapped to 1.01 DO,
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FIGURE 2 | The heatmap reporting the frequency of each variation type as observed within a selection of (A) DNA-binding, (B) growth factor, and (C)
transmembrane domains. For each Pfam, the numbers within parentheses indicate the number of proteins and disease-related variations covered. In variation types,
labels are as follows: a, apolar; r, aromatic; p, polar; and c, charged.

providing an almost strict classification of each OMIM into
a single DO term.

With this mapping, we computed a Pfam-specific distribution
of DO-associated disease classes. Complete results are reported in
Supplementary Table 4 for all the 1,670 Pfam entries considered
in this study. The data provided in this study indicate that
disease classes are not evenly distributed among different Pfam
domains, again suggesting a differentiated association between
the Pfam and phenotypes.

In Figure 3, we show an extract of our analysis, focusing on the
20 highest scoring Pfam domains associated with diseases. The
heatmap reports, for each Pfam, the frequency of disease types (in

the 17 different classes detailed above) as retrieved from OMIMs
associated with substitutions occurring on the specific Pfam. In
brackets, close to each Pfam name, we list the number of proteins,
disease variations, and OMIMs associated to the Pfam.

Even in this case, the distributions of disease classes appear
to be very different from the background (reported in the last
row of the heatmap). Remarkably, the aggregation of Pfams into
more general functional classes provides an additional level of
interpretation. Considering Figure 3, we can observe that DNA-
binding domains are mostly associated with syndromes,
nervous system, and endocrine system disease classes,
while enzymes are mostly involved in the metabolic disease
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FIGURE 3 | The heatmap reporting, for each Pfam, the frequency of diseases (grouped into 17 different classes extracted from Disease Ontology) as retrieved from
OMIMs, after the association via the disease type with Pfam. The numbers within parentheses are the number of proteins, the number of disease variations, and the
number of Online Mendelian Inheritance in Man (OMIM) diseases associated with the Pfam, respectively. Each Pfam is labeled according to its functional class:
DNAb, DNA-binding domain; Enz, enzymatic domain; TM, transmembrane; GF, growth factor; ACTINb, actin-binding domain; Sign, signaling; and Various, various
functions associated. Mean and median Kullback–Leibler divergences (Eq. 2) between individual Pfam distributions and the background are 2.5 and 2.7 bits,
respectively.

FIGURE 4 | The heatmap reporting, for the Pfam entry PF00250 Forkhead, the frequency of each variation type as observed after separating variations according to
disease classes. The numbers within parentheses are the number of proteins, the number of disease variations, and the number of Online Mendelian Inheritance in
Man (OMIM) diseases associated with the Pfam (and covered by DOID), respectively.
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class. Transmembrane domains show the prevalence of nervous
and integumentary disease classes, while growth factors and
actin-binding domains are enriched in musculoskeletal diseases.
Finally, signaling Pfam domains are prominently associated with
immune system diseases. Overall, many of these findings are
in line with what we expected. Protein domains have different
functions and are involved into different biological processes.
Variations occurring in these domains, when disruptive, lead
to diseases that are connected to the biological processes in
which the proteins are mainly involved. For instance, the
fact that variations occurring in transmembrane domains are
often linked to neurological diseases is a direct consequence
of the involvement of transmembrane proteins (among other
functions) in neurotransmission. Similarly, variations in enzymes
routinely lead to metabolic diseases.

Some of the Pfams reported in Figure 3 are associated to
more than one disease types. For example, diseases that are
associated to the Forkhead domain (PF00250) are distributed
into five classes, namely, nervous, mental, endocrine, immune
diseases, and syndromes. In Figure 4, an additional heatmap is
shown trying to link the disease types to the patterns of variation
types. Specifically, the patterns of variation types are reported
after isolating variations linked to OMIMs in the different disease
classes. Interestingly, the patterns show an evident difference
among each other. This confirms the level of association that links
domains to variation types and diseases.

CONCLUSION AND PERSPECTIVES

In this study, we consider, for the time being, only diseases
of genetic origins, with the belief that cancer-related somatic
variations are as yet not satisfactorily clustered according to tissue
specificity of the plague.

This study, as well as the previous ones (Yates and Sternberg,
2013; Wiel et al., 2017, 2019), aims at establishing a direct
mapping among variations, diseases, and phenotypes via the
protein domains. Our novelty is the introduction of the variation
type as a distinguished feature of association to the Pfam domain
and to the phenotype. Our findings complement previous ones

(Wiel et al., 2017) with the inclusion of the variation type, which
adds to the classification of variations and their impact on the
protein function, stability, and interaction in the specific context
where the gene is active.

The link among the variation type, Pfam domain, and
phenotype can greatly reduce the number of possible steps to
understand which variations are disease-related or which are
not and which phenotype they may promote. In perspective,
the association among the variation type, protein domain/s,
and phenotype may greatly simplify the problem of genetic
variant annotation.
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Pyrazinamide (PZA) is the first-line drug commonly used in treating Mycobacterium
tuberculosis (Mtb) infections and reduces treatment time by 33%. This prodrug is
activated and converted to an active form, Pyrazinoic acid (POA), by Pyrazinamidase
(PZase) enzyme. Mtb resistance to PZA is the outcome of mutations frequently reported
in pncA, rpsA, and panD genes. Among the mentioned genes, pncA mutations
contribute to 72–99% of the total resistance to PZA. Thus, considering the vital
importance of this gene in PZA resistance, its frequent mutations (D49N, Y64S,
W68G, and F94A) were investigated through in-depth computational techniques to put
conclusions that might be useful for new scaffolds design or structure optimization to
improve the efficacy of the available drugs. Mutants and wild type PZase were used
in extensive and long-run molecular dynamics simulations in triplicate to disclose the
resistance mechanism induced by the above-mentioned point mutations. Our analysis
suggests that these mutations alter the internal dynamics of PZase and hinder the
correct orientation of PZA to the enzyme. Consequently, the PZA has a low binding
energy score with the mutants compared with the wild type PZase. These mutations
were also reported to affect the binding of Fe2+ ion and its coordinated residues.
Conformational dynamics also revealed that β-strand two is flipped, which is significant
in Fe2+ binding. MM-GBSA analysis confirmed that these mutations significantly
decreased the binding of PZA. In conclusion, these mutations cause conformation
alterations and deformities that lead to PZA resistance.
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INTRODUCTION

Pyrazinamide (PZA), along with isoniazid (INH) and rifampin
(RIF) is a very effective and fast therapy against persistent
bacilli (Mitchison, 1985; Aggarwal et al., 2018). Pyrazinamide
(PZase) encoded by the pncA gene of Mycobacterium tuberculosis
(Mtb) transform this prodrug to pyrazinoic acid (POA).
POA inhibits the proliferation of latent Mtb at very low
pH values (Zhang and Mitchison, 2003; Malik et al., 2019).
Studies have shown that resistance is developed against PZA
due to mutations in three genes: pncA, panD, and rpsA,
among which pncA gene mutations contribute to 72–99%
resistance against PZA (Mitchison, 1985; Akhmetova et al., 2015;
Miotto et al., 2017).

Mutations in the pncA gene have been mapped both in the
coding as well as promoter region (Lemaitre et al., 2001; Miotto
et al., 2014; Maningi et al., 2015). Recent investigations indicated
that Pzase activity is affected due to mutations in D49A, Y64S,
W68G and F94A positions (Miotto et al., 2014). The mentioned
mutations have been shown to affect enzyme functionality
drastically, and together with other reported mutations, influence
protein structure integrity, solubility, function stability, and rate
of expression (Petrella et al., 2011). More recently, novel pncA
mutations are being described as liable to cause PZA resistance
(Tan et al., 2014; Junaid et al., 2018).

The crystallographic structure of apo pyrazinamidase has
been reported comprising six β-sheets covered by α-helices.
This enzyme has metal and substrate binding sites. Iron (Fe2+

ion), histidine (His51, His57, and His71), and aspartate (Asp49)
residues are part of the metal-binding site, whereas Asp8,
Lys96, and Cys138 make the catalytic triads (Chaturvedi and
Shrivastava, 2005; Petrella et al., 2011).

Computational approaches are now in routine to decipher
mutations mediated biological mechanisms responsible for
neutralizing the action of potent drugs. This atomic-level
understanding holds great potential in de nova drug design
and as such, speeds up novel drug discovery. In particular,
advancements in molecular dynamics simulations allows scientist
to analyze protein dynamics in environmental milieu replica
of real biological cells (Khan et al., 2018a,b, 2019a, 2020a). It
has been noticed that binding of PZA to the PZase enzyme
altered protein’s conformation, which is valuable data-keeping
their importance in the quest of novel drug design. Likewise,
MD simulations made it possible to study conformational
variations in the three-dimensional structure of proteins that
may arise following mutation(s) in the sequence (Khan
et al., 2019c, 2020b,f). Thus MD simulations decrease time,
costs and resources by reducing the number of cases for
which experimental evaluation is required (Dolatkhah et al.,
2017). We also investigated the molecular mechanism behind
the resistance caused by D49N, Y64S, W68G, and F94A
mutations (Stoffels et al., 2012; Miotto et al., 2014; Wan
et al., 2020). Furthermore, extensive post-simulation analyses
were employed to get insights into the atomic level with an
ultimate objective to design novel chemical structures that
can be effectively used in drug-resistant TB infections—with
minimum side effects.

MATERIALS AND METHODS

PZase and PZA Structure Retrieval
The 3D structure of Mtb PZase (accession ID: 3PLI) and
PZA (accession ID CID1046) were retrieved from the PDB
databank (Rose et al., 2016) and PubChem (Kim et al., 2019)
respectively. Water molecules were removed from the protein
structure before starting downward analyses. As specific mutant
structures of the enzyme were not available, mutations were
introduced in the enzyme structure using PYMOL (DeLano,
2002) at particular locations.

Molecular Docking
Energy minimization steps were performed for PZA structure in
Open Babel using Universal Force Field (Dallakyan and Olson,
2015). The ligand was optimized with default steepest descent and
conjugate gradient algorithms in UCSF Chimera (Goddard et al.,
2005). Docking was done in the PatchDock server, where binding
conformation clusters were set at RSMD of 4.0 Å (Schneidman-
Duhovny et al., 2005). Conformations with the lowest binding
score were processed for molecular dynamics simulation using
AMBER18 software (Wang et al., 2001; Case et al., 2005).

Impact of Mutations on Protein-Drug
Interaction and Stability
Mutations’ effect on protein thermodynamic stability was
evaluated using mCSM1 (Pires et al., 2013). The server utilizes
graph-based signatures to predicts structural stability impact
caused by mutation. mCSM accepts PDB files as input and a list
of mutations to predict their effect on protein stability.

Molecular Dynamics Simulation
AMBER18 package was used to perform extensive MD
simulations. This was done to investigate the stability of the PZA
at the active site of both normal and mutant PZase. Parameters
of protein were generated through ff14SB force field, and ligand
preparation was done via Amber general force field (GAFF)
(Wang et al., 2001; Case et al., 2005). MD simulations were
performed for all five systems, including one wild (WT) and
four mutants (D49N, Y64S, W68G, and F94A). Each system
is solvated in TIP3P water box. Counter ions were added
to each system to get charge neutralization. Afterward, two-
step energy minimization procedure was adopted; (i) steepest
decent minimizations of 6,000 cycles and (ii) conjugate gradient
minimization of 3,000 cycles was applied on each system to
remove steric clashes and allow system relaxation. Complexes
were then heated to 300 K for 0.2 ns, followed by systems
equilibration for 2 ns at 300 K. Temperature hold was achieved
via Langevin thermostat (Zwanzig, 1973). For all systems, MD
simulations production run was completed on GPU supported
PMEMD code for 100 ns, and each simulation was repeated
three times. Long-range electrostatic interactions (Darden et al.,
1993; Essmann et al., 1995; Toukmaji et al., 2000) were detected
with the particle mesh Ewald method using a cutoff distance of

1http:/biosig.unimelb.edu.au/mcsm/
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10.0 Å. SHAKE method was applied for covalent bond treatment
(Kräutler et al., 2001) (Salomon-Ferrer et al., 2013). CPPTRAJ
and PTRAJ (Roe and Cheatham, 2013) packages in AMBER18
were considered for trajectories analysis.

Principal Component Analysis
Principal component analysis was utilized to measure structural
fluctuations within the protein of all used complexes (Amadei
et al., 1993). CPPTRAJ package calculated the covariance
matrix based on Cα coordinates. Eigenvectors and eigenvalues
estimation was performed by diagonalizing the covariance
matrix, and these values indicate motion direction and
fluctuation, respectively. In total, 5000 frames from each system
MD trajectories were used to get PCA calculations. The plotting
performed on PC1 and PC2 was used for motion monitoring.
The lowest energy stable state was determined by the free energy
landscape (FEL) and is indicated by deep valleys on the plot,
whereas the intermediate state is shown by boundaries between
deep valleys (Hoang et al., 2004). In this study, FEL calculations
based on PCI and PC2 were obtained by the following equation:

1G (PC1, PC2) = − KBTlnP (PC1, PC2)

Where KB indicates Boltzmann constant, PC1 and PC2 were used
to estimate the reaction coordinates, and probability distribution
P of the system is shown along PC1 and PC2.

Binding Affinity Estimation
PZA binding free energy with PZase (native and mutants) was
estimated through MMPBSA.py script of AMBER over 500
snapshots of simulation trajectories (Miller et al., 2012; Mishra
and Koča, 2018). The equation given below is used for binding
free energy calculations

1Gbind = 1Gcomplex − [1Greceptor + 1Gligand]

where 1Gbind, 1Gcomplex, 1Greceptor, and 1Gligand indicate
net binding free energy, binding free energy of the complex,
protein, and ligand, respectively. The following equation was
used to calculate the value of each component:

G = Gbond + Gele + GvdW + Gpol + Gnpol

where the energy of bonds, electrostatic, van der Waals
interactions, the polar and non-polar contributions are shown by
the Gbond, Gele, GvdW, Gpol, and Gnpol, respectively. Whereas
Gpol and Gnpol were calculated by the generalized Born (GB)
implicit solvent method with SASA.

RESULTS

Mutant PZase Structural Modeling and
Docking With PZA
The PZase apo structure (available as crystal structure) with ID:
3PL1 was retrieved from the protein databank and subjected
to mutagenesis module in the PyMOL software where D49N,
Y64S, W68G, and F94A mutants were created. Before molecular

docking, all the structures were minimized by removing bad
contacts from newly mutated residues as well as other residues.
Following the minimization process, the docking process was
completed blindly. Docking results suggested that our docking
protocol is reliable, as indicated by the involvement of similar
residues in interaction, as reported by a previous study
(Junaid et al., 2018, 2020). Two residues such as His137 and
Cys138, were reported to be involved in hydrogen bonding
interactions with the oxygen of PZA. In the present study,
similar results were obtained. The docking score of all complexes,
including wild type and mutants, are tabulated in Table 1.
The more negative binding energy implies better PZase-PZA
intermolecular complementarity and higher binding affinity in
contrast to the positive binding energy. The complex structure
of wild type PZase and the PZA and its interaction pattern are
given in Figure 1A. The docking score of PZA with both wild
type and mutants PZase is in the following order: wild type
(−5.21 kcal/mol), D49N (−4.75 kcal/mol), Y64S (−4.1 kcal/mol),
W68G (−4.51 kcal/mol) and F94A (−4.18 kcal/mol). This data
suggests that the PZA drug has a higher binding affinity for the
wild type PZase enzyme in contrast to the mutants. Among the
mutants, the lowest binding affinity of the PZA drug was noticed
for Y64S and F94A. There is a high possibility that the mutations
alter the active pocket conformation and thus not allowing proper
PZA binding. The binding interaction pattern of each complex is
given in Figures 1–E. MD simulations were performed on top
scorer conformations to ascertain the effect of the mutation on
the PZase structure as well as its binding with PZA.

Dynamics Characterization of Wild Type
and Mutant Complexes
Mutations were found to confer instability in enzyme structure
as predicted by mCSM web server and also by RMSD plots
from a triplicate run of 100 ns MD simulations. mCSM server
predicts the impact of each substitution by forecasting the
change in conformational energy. As given in Table 1, it can
be easily pointed that the given mutations induced greater
instability compared to the wild type and hence classified as
highly destabilizing. Among the four mutants, it was observed
that W68G has a profound destabilizing effect on the PZase
enzyme with 1G of −3.14 kcal/mol. This was followed by F94A
mutation that contributes to enzyme destabilizing change of
−2.94 kcal/mol (Miotto et al., 2017). Among others, the predicted
destabilizing energy change for Y64S is −2.2 kcal/mol whereas,

TABLE 1 | Molecular docking scores of the wild and mutant complexes. The
mCSM predicted stability changes upon mutation. All the energies are given in
kcal/mol.

S. No Complex Docking score Predicted 11G Outcome

1. Wild −5.21 00 –

2. D49N −4.75 −2.00 Highly destabilizing

3. Y64S −4.1 −2.2 Highly destabilizing

4. W68G −4.51 −3.14 Highly destabilizing

5. F94A −4.18 −2.94 Highly destabilizing
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FIGURE 1 | 3D structure of the PZase along with the PZA drug and the Fe2+ metal shown in the circle. The figure also shows the binding of Fe2+ ion and PZA drug
to the wild type (A), D49N (B), Y64S (C), W68G (D), and F94S (E).

for D49N, the energy change is 2.0 kcal/mol. These findings
are in line with the docking score of the systems and together,
both analysis demonstrated the mutations are responsible for the
change of PZase active pocket conformation, thus destabilize the
binding network of the PZA drug, as can be seen in Figure 1.

For the stability assessment of each system, Cα atoms
root-mean-square deviation (RMSD) was calculated based on
simulated trajectory. The WT system reached an equilibrium
state up to 60 ns, followed by a minor RMSD increased up to a
maximum of 1.5 Å. Later, the RMSD continued over 1.5 Å with
insignificant fluctuation (Figure 2). The D49N mutant system
reached an equilibrium state of 2 Å in the first 20 ns, and then
the RMSD fluctuated high throughout the simulation time due
to system instability compared to WT. The Y64S system, like the
WT gained equilibrium in the 50 ns and remained stable with
slight fluctuations in the RMSD. The W68G system is in stable
conformation till 30 ns with RMSD of 2.2 Å, then retained with
RMSD at 1.5 Å and fluctuating slightly from the WT for the
rest of time. The F94A system gains equilibrium in the first 10
ns and afterward showing minor fluctuations up to 2 Å. This
unstable dynamics behavior of the mutants supports the enzyme
conformation changes upon mutations to show resistance against
PZA. Further inspection of Cα-RMSD rise for mutants compared
to the WT showed that the D49N, Y64S, W68G, and F94A might
weaken the active site residues interactions with the PZA. The
RMSD of the mutant complexes is comparable with the wild
type in terms of RMSD value, but the destability justifies that the
different convergences at different intervals faced by the mutant
structures but not in the wild type. This explanation of the wild
and mutant complexes elucidates that due to small protein, the
systems have reached the equilibrium point earlier. Furthermore,

it can also be seen that the wild type reached the stability at 1.0Å;
however, the other systems gained the equilibrium at ∼1.5Å,
which shows the mutations induced structural perturbation in
mutant complexes. The RMSD results for the other two replicates
are given in Supplementary Figures 1, 2.

Local fluctuations due to mutations were examined through
Cα, root-mean-square fluctuation (RMSF). Residues fluctuation
was noted significantly in the mutant systems compared to the
WT. WT system fluctuates at the N-terminus. The D49N mutant
system reveals several point fluctuations as compared to WT
and other mutations. The RMSF high fluctuation from the WT
discloses that the mutations greatly affect the binding of the drug
to the active site of the protein. The flexibility of the mutants
may justify the binding differences, which can be better revealed
by exploring the binding affinity differences. In the case of the
mutants, the specific fluctuations at the site of the mutation can
be easily distinguished. The RMSF of all the systems is given in
Figure 3. The RMSF results for the other two replicates are shown
in Supplementary Figures 3, 4.

Figure 4 presents broader distance distributions in mutants in
contrast to WT, indicating more conformation dynamics in the
former systems. As three residues: His51, His57, and His71 form
a catalytic triad, it is important to understand the effect of these
substitutions on the triad dynamics. It can be seen that the wild
type, Y64S, and F94A showed a similar pattern of dynamics, while
the D49N and W68G possess different triad distance network
dynamics. Distinct changes of His57 is due to the loop harboring
this residue. Fe2+ ion disturbance may reduce PZase activity and
may explain the resistance phenomenon of these mutations. This
effect was also confirmed by calculating the distance between
PZA and the PZase. Supplementary Figure 5 shows that the
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FIGURE 2 | RMSD of wild and mutants’ complexes. RMSD of each mutant is superimposed on to the RMSD of the wild type. The X-axis shows the simulation time
in nanoseconds, while the y-axis shows the RMSD in Angstrom.

FIGURE 3 | RMSF of the wild and mutants’ complexes. The RMSD of each mutant is superimposed over RMSF of the wild type. The x-axis shows residues number,
while the y-axis shows RMSF in Angstrom. Shadowed regions depict enzyme amino acids stretch highly affected by the mutation.

distance between the wild type and the PZA is conserved, and
the average distance reported was 8Å. However, this distance
significantly fluctuates in the case of D49N, W68G, and F94A.

While in the case of Y64S, the distance between the PZA and the
receptor molecule remained somewhat similar to the wild type.
Thus, these results also confirm that mutations have induced
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FIGURE 4 | Distances between the Fe2+ ion and its coordinating four residues. Furthermore, within each figure inside, there is a legend that shows the distance
between Asp49 [O], His51[N], His57[N], His71[N] and Fe2+ ion. Each residue from the metal coordinates is differently colored.

structural destabilization and favor PZA unbinding due to their
weak attachment.

Furthermore, we also calculated Rg to estimate the
compactness of each system. The calculated Rg for each
complex is given in Supplementary Figures 6–8. The results
show that D49N is less compact than the wild type. For D49N
initially, the higher Rg was observed, which then decreased;
however, similar pattern of increasing and decreasing was
experienced until 100 ns. In the case of Y64S, the Rg pattern was
comparable with the wild type, but at 40–60 ns the Rg converged
and a similar pattern was also observed between 95–100 ns.

Similarly, W68G systems were significantly affected. The Rg
value significantly increased, and the average Rg was reported
to be 15.6Å. The results of F94A and Y64S are comparable.
No significant convergence was observed; however, at different
intervals, the Rg increased.

Dimensionality Reduction and Clustering
the Protein Motions
To understand the protein motion and cluster the related
structural frames, PCA was performed. PCA is a mathematical
method that transforms several correlated variables into
smaller uncorrelated variables called principal components. To
comprehensively understand the impact of the substitution on
the protein motion initially, the eigenvectors were calculated and
presented in Figure 5.

As given in Figure 5, the first three eigenvectors showed
significant variations while rest of the eigenvectors showed
localized fluctuations. It was reported that the wild type

contributed 41% variance by the first three eigenvectors to the
total motion. For D49N, Y64S, W68G, and F94A, variance
contribution by the first three eigenvectors is 55, 41, 63, and 32%,
respectively. These results, particularly the D49N and W68G
mutations, are significantly in uniformity with the RMSD, RMSF,
and Rg results because these two mutations significantly affected
the overall dynamics of the proteins and PZA binding.

We further plotted the principal components (PC1 and PC2)
to cluster the trajectories motion for a perusable understanding.
The conformational transition from one to another is represented
in different colors (red to blue). Given in Figure 6, each
dot represents a single frame from the trajectory. The mutant
complexes variable phase space as compared to the WT. Together,

FIGURE 5 | Fractions of the first ten eigenvectors. Using the MD trajectory,
the fraction of motions is calculated and given in percentage against the
eigenvector numbers.
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FIGURE 6 | Principal component analysis of all systems, including the Wild type and the four mutants. The first two principal components (PC1 and PC2) are used
to project motion in the space phase at 300 K.

all these results indicate that mutations significantly affect the
structure that has led to the resistance against PZA drug.

Destabilization of Fe2+ Ion by Mutations
Induced Conformational Changes
Three histidine residues and one asparagine residue coordinate
the Fe2+ ion. Li/Merz ion parameters for divalent Fe2+ ion
was used to generate the topology. Mutations induced by Fe2+

destabilization during the simulation were determined by using
the free energy landscape. It was found that Fe2+ is greatly
influenced by the mutations. As given in RMSD and RMSF
that the stability of each system is differentially affected, while
the residual flexibility also showed variations. As presented in
Figure 7, in the wild type structure, the Fe2+ did not move out
significantly, but other regions showed little dynamic differences.
The lowest energy conformation was attained at 92 ns. The
only metastable state was extracted for wild type PZase is given
below, which shows that the protein conformation is not altered
during simulation.

On the other hand, as presented in Figure 7, the mutant
system D49N showed destabilization of the Fe2+ ion.
The structural coordinates extracted from the simulation
trajectory at 70 ns represent the lowest conformation. In the
case of D49N, the β-sheet two is significantly affected by
transforming conformation.

Y64S has no significant effect on the enzyme and has the
lowest energy conformation state attained at 72 ns. As given in
RMSD and RMSF, the structural dynamics are not significantly
affected by the Y64S mutation. All the analysis performed for
Y64S in the manuscript discover consistent results and found
Y64S as a comparatively less-lethal mutation than others. On the

other hand, as reported above, W68G was significantly involved
in structural destabilization and Fe2+ rearrangements. Along
with the Fe2+ replacement and distortion of the coordination,
the β-sheet 2 also flipped and thus causes a displacement of
Asp49 residues that forms Fe2+ coordination along with the three
histidine residues. The lowest conformational state of the W68G
was extracted (5ns) after attaining the equilibrium (Figure 8).

Mutation Diminishes the Binding Affinity
of PZA
The MM-GBSA approach was employed to assess the binding
affinity of WT and mutated receptors and ligand [1,2]. The last
10 ns trajectory, 500 snapshots, were used as input to estimate
dominant forces between the protein and ligand interactions.
The total binding free energies 1Gbind of WT and mutants
(WT/-8.13, D49N/-5.93, Y64S/-4.88, W68G/-4.02, and F94A/-
4.03) were calculated in kcal/mol (Table 2). The total energies
of mutants compared to the WT indicates that these mutations
drop the binding strength of the PZA. The vdW, Elec, and 1PS
energies contribution to the binding energies of the mutants
compared to the WT were significantly low. It explores that the
mutated proteins have weak binding to PZA. Mutations that
are not involved in the direct interaction with the PZA affect
orientation coordination of active site residues involved in direct
contact with the PZA.

DISCUSSION

Different studies have revealed that the administration of PZA,
along with RIF and INH, is efficacious in treating Mtb infections
(Gu et al., 2016; Khan et al., 2018c). Mtb resistance to these drugs
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FIGURE 7 | Structural rearrangement of Fe2+ and the other regions in the protein given above (WT and D49N mutant). The lowest energy conformation from the
wild type (92 ns) for the D49N (70 ns) was extracted and compared with the native state. The circle represents the lowest energy conformation.

renders front-line therapy ineffective, and as a consequence TB
patient are exposed to a higher dose of the drugs. This leads to
strong side effects on the patients and lower survival chances
(Akhmetova et al., 2015; Khan et al., 2018d). Mitchison (1985),
Miotto et al. (2014, 2017), Shi et al. (2014), Junaid et al. (2018),
and Khan et al. (2020f). Since 1972, PZA was used as an active
drug against the Mtb by targeting panD gene and had played

TABLE 2 | shows the binding affinity comparison between the wild type and
mutant systems.

Complex vdW Elec 1PS SASA MMGBSA 1TS 1Gbind

Wild −19.25 −23.37 23.48 −3.19 −20.25 −12.12 −8.13

D49N −16.46 −17.30 19.15 −6.54 −17.21 −11.28 −5.93

Y64S −18.23 −19.58 17.11 −9.27 −18.05 −13.17 −4.88

W68G −15.88 −17.21 13.54 −11.10 −15.25 −11.23 −4.02

F94A −17.14 −15.23 8.22 −10.01 −13.32 −9.73 −4.03

All the energies are given in kcal/mol.

key role in clearing persistent Mtb. Mutations in pncA, resulting
in a loss of function of PZase, represent the primary molecular
mechanism for PZA resistance in clinical strains. Pyrazinoic acid
(POA) binds to the pncA active site and any conformational
changes efflux the drug from the active site and this compromise
the activity of the drug (Yadon et al., 2017). Additionally, the POA
binding pocket is relatively small so any conformational changes
result in unviability of the drug (Hewlett et al., 1995). It is clear
that how the conformational changes affect the PZA binding,
so, in this study, we selected D49N, Y64S, W68G, and F94A
mutations at the Fe2+ binding site and PZA binding of PZase
for their possible role in resistance to PZA (Miotto et al., 2017).
We determined how the conformational changes may affect the
binding of PZA and hinder the treatment of Mtb and eventually
lengthen the eradication of tuberculosis.

In this regard, in silico techniques such as MD simulations
were utilized to study the said mutations role in PZase
resistance to PZA. These methods are widely used to understand
the mechanism of resistance and any binding perturbation
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FIGURE 8 | Structural rearrangement of Fe2+ and the other regions in the protein given above (Y64S, W68G, and F94A mutants). The lowest energy conformation
from each trajectory was extracted and compared with the native state. The circle represents the lowest energy conformation.

caused by mutations (Khan et al., 2020c,e, 2021a,b). It unveils
conformational changes of proteins caused by any intrinsic
mutations or ligand binding. This information is vital for
devising novel strategies to combat drug resistance strains
(Khan et al., 2019c, 2020b). Initial investigation of our selected
mutations revealed that these mutations had altered the binding
affinity of the PZA drug which shows that these mutations
have clear role in resistance. Further characterization using
biophysical tools revealed that RMSD and RMSF values suggest
smaller fluctuations in wild type and higher fluctuations in
mutant types. This probably suggest that wild type is highly
stable, whereas more fluctuations in mutant type during the
course of simulation suggest that the selected mutations are
classified as highly destabilizing, and these findings are in
line with previous experimental studies conducted on native
and mutant (Q10P, D12A, G97D, R123P, T76P, G150A, H71R,
W68R, W68G, and K96R). They reported that the mutations
causes structural flexibility and thus weaken the drug binding
(Khan et al., 2019b). The RMSF high fluctuation in mutant
as compared to the WT discloses that the mutations have
profound effect on the binding of the drug to the active site
of the protein. A previous study carried out by Muhammad
et al. also concluded that mutations in the PZA enzyme affect
the binding orientation of PZA drug by shortening active
pocket volume (Junaid et al., 2018, 2020; Khan et al., 2019c,
2020d). Findings of the current study may also suggest that
said mutations affect the binding pocket, due to which the
binding pocket volume as a whole is disturbed. Any distortion
in the functional cavity volume might alter the binding affinity
of PZA. This supports the previous study carried out by
Vats et al. that mutations at the active pocket decrease the

optimum affinity of the drug (Junaid et al., 2018, 2020). The
residual flexibility also showed that each mutation displays a
different frequency of fluctuations. Conformational dynamics,
such as principal component analysis and free energy landscape,
which are handy techniques reported by other studies, explored
that the binding of Fe2+ is significantly affected. The main
four residues coordinating the metal ion are disturbed during
the simulation. In current study we observed different Rg
pattern for the wild type and mutants. In case of wild
type, initially Rg value increased and then it remains flat,
whereas various patterns of increase/decrease were observed
for all the mutants. These patterns suggest that the internal
dynamics of each system is impacted by the mutation and
eventually contributed to the PZA resistance. This notion is
also supported by previous study (Jamal et al., 2020; Karmakar
et al., 2020). The lowest energy minima conformation from
each trajectory was extracted and compared with the native
state that reported significant variations in Fe2+ binding and
β–stands 2 specifically also confirmed by published literature
(Khan et al., 2019c; Junaid et al., 2020). Analogous results
have been reported that demonstrate that Fe2+ position
is affected by catalytic and non-catalytic residues mutation.
Furthermore, The Gibbs free energy to estimate the impact
of the said substitutions on the binding of PZA. It was
witnessed that mutations have significantly reduced the binding
affinity of PZA and D49N and W68G being the major
which contribute significantly to PZA resistance (Rehman
et al., 2019). The study of dynamic behavior provided highly
adequate knowledge on the PZase mutation that affected its
structure, as well as perspectives into how conformational
differences influence protein-ligand interactions which would aid
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the development of structure-based drug designing against the
PZA target of Mtb.

In conclusion, we performed extensive MD simulations in
triplets to explore the impact of D49N, Y64S, W68G, and F94A
mutations on the PZase resistance to PZA. Our analysis revealed
that these mutations affect stability, internal structural dynamics,
and the binding energy of PZA. Our study further suggests that
the stabilization of Fe2+ and β–stand 2 were affected. Hence,
there is a dire need to design more potent drugs that would
potently inhibit Mtb.
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Simulation ofMutations of Presenilin-1
Familial Alzheimer’s Disease on the
Orthosteric Site
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Alzheimer’s disease pathology is characterized by β-amyloid plaques and neurofibrillary
tangles. Amyloid precursor protein is processed by β and γ secretase, resulting in the
production of β-amyloid peptides with a length ranging from 38 to 43 amino acids.
Presenilin 1 (PS1) is the catalytic unit of γ-secretase, and more than 200 PS1 pathogenic
mutations have been identified as causative for Alzheimer’s disease. A complete
monocrystal structure of PS1 has not been determined so far due to the presence of
two flexible domains. We have developed a complete structural model of PS1 using a
computational approach with structure prediction software. Missing fragments Met1-
Glut72 and Ser290-Glu375 were modeled and validated by their energetic and
stereochemical characteristics. Then, with the complete structure of PS1, we defined
that these fragments do not have a direct effect in the structure of the pore. Next, we used
our hypothetical model for the analysis of the functional effects of PS1 mutations
Ala246GLu, Leu248Pro, Leu248Arg, Leu250Val, Tyr256Ser, Ala260Val, and
Val261Phe, localized in the catalytic pore. For this, we used a quantum mechanics/
molecular mechanics (QM/MM) hybrid method, evaluating modifications in the topology,
potential surface density, and electrostatic potential map of mutated PS1 proteins. We
found that each mutation exerts changes resulting in structural modifications of the active
site and in the shape of the pore. We suggest this as a valid approach for functional studies
of PS1 in view of the possible impact in substrate processing and for the design of targeted
therapeutic strategies.

Keywords: presenilin-1, modeling, simulation, quantum mechanics/molecular mechanics, familiar Alzheimer’s
disease mutations

INTRODUCTION

Neurodegenerative diseases are characterized by impairment of the central nervous system (Bereczki
et al., 2018). Many of these pathologies are produced by deposits of proteins as Huntingtin in the case
of Huntington disease (HD), α-synuclein for Lewy body in Parkinson’s disease (PD), neurofibrillary
tangles by hyperphosphorylation of tau (τ) protein, and senile plaques by accumulation of β-amyloid
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(Aβ) peptide in Alzheimer’s disease (AD) (Myers, 2004; Paulsen,
2011; Jucker and Walker, 2012; Jucker and Walker, 2013). AD is
the most common of neurodegenerative diseases, representing
the largest number of reported cases worldwide (Sheikh et al.,
2013; Prince et al., 2015).

AD must be divided into familiar AD (FAD) and sporadic AD
(SAD). FAD is caused by the inheritance of mutations in the
genes for amyloid precursor protein (APP), presenilin-1
(PSEN1), and presenilin-2 (PSEN2), and it can manifest in
different ages (Rovelet-Lecrux et al., 2006; Guerreiro and
Hardy, 2014; Shao et al., 2017). SAD is thought to be
associated with known risk factors for other diseases, for
example, high-cholesterol blood levels (dyslipidemia), oxidative
stress, inflammation, low cognitive activity, and absence of
physical activity (Ballard et al., 2011; Arbor et al., 2016; Yu
and Zheng, 2012). The amyloidogenic theory states that AD is
the result of the accumulation of Aβ, a fragment of the APP
protein. APP metabolism follows two pathways, a non-
amyloidogenic and an amyloidogenic pathway. In the non-
amyloidogenic pathway, the enzyme α-secretase cleaves APP
followed by cleavage by γ-secretase, a transmembrane protein
complex, producing a small peptide of 23 amino acids (peptide
p3) and an intracellular fragment known as the APP intracellular
domain (AICD) (Lichtenthaler, 2012; Eggert et al., 2004). On the
other hand, in the amyloidogenic pathway, APP is cleaved by
β-secretase first and then by γ-secretase, producing Aβ peptides
of diverse length (1–38 to 1–43 amino acids) (Vassar, 2004;
Venugopal et al., 2008; Chávez-Gutiérrez et al., 2012). Aβ
peptide structure facilitates its oligomerization, resulting in the
accumulation of senile plaques in brain parenchyma (Wolfe et al.,
1907), (Thal et al., 2008). The γ-secretase enzymatic complex
includes four subunits: presenilin-1 (PS1), pharynx-defective 1
(Aph1), nicastrin (NCT), and presenilin enhancer-2 (PEN-2).
PS1 is the catalytic unit of the γ-secretase complex, and its
orthosteric site is located in aspartic acids 257 and 385, in
transmembrane helix 6 and 7, respectively (Chávez-García
et al., 2019). PS1 contains low mobility regions including nine
α-helixes, and two high mobility regions, so far without a defined
structure (Wolfe et al., 1907; Cacquevel et al., 2012; Bai et al.,
2015). Only recently, a comprehensive structural analysis of PS1
was possible thanks to protein crystallization and cryogenic
electron microscopy (cryo-EM). However, in order to obtain a
crystal structure, flexible domains, such as amino acids Met1 to
Glu 72 and Ser 290 to Glu 375, were not included in the sequence
(Zhou et al., 2019).

The lack of a full crystal structure for PS1, including high-
mobility regions, makes difficult to explain the possible role of
some mutations, their impact on neuronal pathology, and it
hinders the development of effective medical treatments.
Moreover, protein loops can have special functions, including
domain recognition and regulatory activities. For instance, PS1
loops seem to be responsible of the activation of the catalytic
function (Wolfe et al., 1907; Knappenberger et al., 2004;
Fukumori et al., 2010).

In order to provide a more precise correlation between PS1
structure and gamma secretase function, it is important to
determine the localization and the 3D structure of PS1

missing fragments, using other tools such as bioinformatics
and structural modeling. In this work, we have used three
different predictive algorithms in order to complete the
structural 3D model for PS1.

The dynamic methods that are part of macromolecular
systems consist of computational simulations of particles in
movement. Molecular dynamics utilize special algorithms to
explain motion states and geometrical conformations for
systems where several forces are acting simultaneously at
various magnitudes of interactions and angles. These are
always based on the classic Newtonian physic principles, but
under rigid charge distribution (Nosé, 1984; Hospital et al., 2015).
There are several structural models proposed in literature for the
γ-secretase enzyme (Bai et al., 2015; Zhou et al., 2019; Bai et al.,
2015). These are based on the role of protonation and
deprotonation of the aspartic acids Asp257 and Asp385, in the
substrate immobilization around the pore (Aguayo-Ortiz and
Dominguez, 2018; Hitzenberger and Zacharias, 2019; Bhattarai
et al., 2020). Additionally, it considers the ability of the enzyme to
recognize the extracellular APP which contains the subunit NCT
(Bolduc et al., 2015), which is in charge of constraining the
substrate by means of hydrogen bonding. All these molecular
effects considered in the whole molecular dynamic, along with the
configurational arrangements, result in a rigid secondary
structure of the enzyme (Hitzenberger and Zacharias, 2019;
Aguayo-Ortiz et al., 2017). It is important to consider as well,
the effect of all possible mutations of the PS1 that occur far from
the active site, with the supporting proteins PEN2 and APH1
which can be modulated according to the protonation degree of
the orthosteric site and evidencing that these simulations do not
take into account a complete model of the catalytic subunit PS1,
to represent the missing fragments of the protein and the
correlation of various electronic effects (Chávez-García et al.,
2019).

Several hybrid methods in quantum mechanical molecular
field have been widely utilized for the study of the macro
biological systems. These allow to register and quantify small
changes that the enzyme undergoes, considering polarizable
electrons as the most susceptible to the measurements of the
missense-nonsynonymous variants with quantum methods such
as functional density implementing the B3LYP or even the
Hartree–Föck method (Murphy et al., 2000; Orlando and
Jorgensen, 2010; Náray-Szabó et al., 2013; Roston et al., 2018;
Siegbahn and Blomberg, 2018) to calculate the reaction
coordinate and the formation or breaking of chemical bonds.
These present some disadvantages, principally due to the limited
amount of nucleus and electrons considered for a given biological
system. Besides, these compute complex matrices that require
high computational resources. On the other hand, semi-empirical
methods seem to be a promising alternative in the study of
biological and polyatomic systems as these intend to solve the
Schrödinger equation from an approximated perspective, that is,
considering an average between the electron interactions and
appropriated theory levels, reducing the computational time. Of
particular interest, the semi-empirical Austin model 1 is
characterized because its parameters are derived from
experimental data in order to solve the Schrödinger equation
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(Carvalho et al., 2014; Christensen et al., 2016; Rafique et al., April
2019; Garcia et al., 2020; Grillo et al., 2020). These can be applied
efficiently to large molecules to calculate their respective surface
potentials (Foresman and Frisch, 1996; Levitt, 2014; Silva et al.,
2015; Marín and Soto-ospina, 2020; Cano et al., 2021).

In this work, we have analyzed the structural changes in the
active site resulting from seven selected mutations in TM6 and
TM7 of PS1, utilizing a hybrid method of quantum mechanics/
molecular mechanics simulation. We have encountered that once
a full 3D model for PS1 is achieved. Furthermore, the
conformational effects of mutations Ala246GLu, Leu248Pro,
Leu248Arg, Leu250Val, Tyr256Ser, Ala260Val, and Val261Phe,
localized in the pore, can be explained as polarity changes, torsion
angles, distance between helixes, and electronic structures. We
proposed this analytical approach as the tool of choice for
assessing mutational effects in structurally defined regions
within proteins with multiple possible mutations in the
nonflexible zones of PS1.

METHODOLOGY

Characterization of Protein PS1
Transmembrane Domains
A preliminary study of the structure of protein PS1 was
performed by constructing a plot with the tool TMHMM
available in the suite ExPASy (Sonnhammer and Krogh, 1998;
Krogh et al., 2001; Möller et al., 2001), based on the primary
sequence of the protein. We obtained a plot for the probability
distribution through Hidden Markov Models. The position and
score of the transmembrane fragments containing the structure
inside–outside of cellular membrane were also determined
(Artimo et al., 2012; Guex and Peitsch, 1997).

Missing Fragments Structural Prediction
and Characterization of Obtained Models
Three different software tools for structure prediction were used
to build a hypothetical model of the fragments representing the
missing loops of PS1. The crystallized structures for PS1 reported
in the protein data bank (PDB) were chose with IDs: 6IYC, 5A63,
and 5FN2 subunit B (Presenilin-1) (Bai et al., 2015; Zhou et al.,
2019; Bai et al., 2015). The two missing fragments were identified,
and the primary sequence was built with a hypothetical model,
using an algorithm that was defined to create the models based on
homology constitution. The protein’s active site was modeled
based on the primary sequence of PS1 in FASTA format, and with
the templates identified as 5A63 and 5FN2, which have aspartic
acid in position 385 (D385) (Bai et al., 2015; Bai et al., 2015). The
software tools used for the modeling were I-TASSER from Zhang
Lab from the University of Michigan (Yang et al., 2015; Roy et al.,
2010; Zhang, 2008) and Phyre2 (Protein Homology/analogY
Recognition Engine V 2.0) from the structural bioinformatics
group at Imperial College London (Kelly et al., 2015; Kelley and
Sternberg, 2009). The models were refined with tools of the suite
I-TASSER (Iterative Threading ASSEmbly Refinement), mainly
using ModRefiner to optimize the energy from a native structure

state and to improve the model for the interaction of backbone
with hydrogen bond considering stereochemical optimization of
the flexible behavior of the system (Xu and Zhang, 2011).
Another refining tool used was the Fragment Guided of
Molecular Dynamics (FG-MD). This software begins with
classical modeling taking into account the geometrical
optimization of angles and removing features that generated
an unstable model. These features can improve steric clashes,
geometry, and interactions by hydrogen bonding (Zhang et al.,
2011). To follow other methodologies of elucidation with de novo,
the software QUARK was utilized (or ran). This software is a tool
for predicting a 3D model from each amino acid. This takes into
account folded fragments of peptides and connects them via
Monte Carlo simulation considering force fields and without
utilizing templates (Xu and Zhang, 2012).

Validation and Minimization of Predicted
Models
Each model was validated with an energetic tool from the suite
SIB EXpASY, using Z-score values and QMEAN6 for the
assessment (Petrey et al., 2003; Soni and Madhusudhan, 2017).
Then, the stereochemical distribution was characterized using the
EMBL-EBI Procheck software (Laskowski et al., 1993).
Ramachandran plots for measuring the dihedral planes
between the residues of the peptide bonds in the protein
constitution were obtained and a calculation for the angles Phi
and Psi in the model was performed. Rampage software from
Cambridge University for Ramachandran plot analysis was used
for measuring the same angles using another algorithm (Artimo
et al., 2012; Petrey et al., 2003; Ramachandran et al., 1963;
Crystallography and Bioinformatics Group, 2017). All models
were visualized with the software Chimera UCSF version 1.1.1
and aligned through the algorithm 3D by match-maker under the
Needleman–Wunsch algorithm. A BLOSUM62 matrix was used
for the global alignment of the PS1 protein (Pettersen et al., 2004).
Structural minimization was simulated using packages
NAMD—Scalable Molecular Dynamics and VMD—Visual
Molecular Dynamics, for the elimination of bad initial
contacts, to avoid overlapping, and to generate fluidity in the
models generated (Phillips et al., 2005; Humphrey et al., 1996).
The loops for the best final model for the complete PS1 protein
were finally refined with the Modeller software tool. This tool
generates a normalized value of discrete and optimized protein
statistical potential for the best rotamers in the lateral chain. This
is implemented under iterative cycles that consider possible
spatial restrictions (Webb and Sali, 2016). Eventually,
transversal views of modeled PS1 proteins were obtained using
Chimera UCSF v.1.11.

Hydropathicity Index and Phosphorylation
Sites Prediction
The analysis of the polarity in the systems was performed with the
software ProtScale available in the suite ExPASy, using as
measurements the Kyte and Doolittle coefficients. Also, the
primary sequences of the wild-type PS1 protein and studied

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6499903

Soto-Ospina et al. Simulation of PS1 Protein Modeled

84

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


mutants were assessed, and the hydropathy index was calculated
for each amino acid, labeling it as hydrophobic or hydrophilic
(Gasteiger et al., 2005). The NetPhos 3.1 Server was used to
predict serine, threonine, or tyrosine phosphorylation sites
susceptible to phosphorylation by diverse kinases, for instance,
PKA, PKC, PKE, RSK, EGFR, or MAPK38 kinases (Artimo et al.,
2012; Blom et al., 2004; Blom et al., 1999).

Hybrid Method for QuantumMechanics and
Molecular Mechanics Modeling
The final modeled structure of PS1 protein was used to study the
functional behavior of mutations located in TM6: Ala246GLu,
Leu248Pro, Leu248Arg, Leu250Val, Tyr256Ser, Ala260Val, and
Val261Phe. The hybrid method examines the system based on the
z-matrix obtained from the topological consideration for each
nucleus, frozen for molecular mechanics purposes. The modeled
system used the localization of α-helix TM6 amino acids 243–263
and TM7 383–398 as a representation of the active site. Then, a
quantum mechanics calculation was applied to it, with a level of
theory that consider the number of atoms and parametrization of
the system, using data derived from experimental analysis
published in databases for protein structure. However, the
selected subsystem for implementing molecular mechanics
(MM) observes the whole structure within a classical physics-
based description of the remaining PS1 protein. The QM/MM
fragment is considered with QM polarization due to the classical
MM region for the TM6 and TM7 α-helixes, as shown in
(Figure 1). The specific method used for this analysis was
semi empirical applying the force field Austin model 1 (AM1)
to the QM region (Dewar et al., 1993). This method considers the
average interaction among electrons to solve the Schrödinger
equation in protein macro systems. This method for geometric
optimization is very useful given that the study of the canonical
function considers 243–261 amino acids for region TM6 and
383–298 amino acids for region TM7. These have, in total, 280

atomic nuclei and 1,560 electrons for electronic description.
Considering this, high-level quantum theory methods cannot
be easily applied given the required computational resources and
the costs of the calculation. The system’s total MM region and the
classical description of the QM region is carried out with the
MMFF(aq) by estimating the system’s second solvation sphere.
The interface was also saturated with hydrogen atoms (Marques
et al., 1995; Halgren, 1996; Halgren, 2000; Mackerell, 2004;
Alexeev et al., 2013; Zhou et al., 2019; Soni et al., 2020). The
molecules were optimized based on the data of global minimum
geometry and energy using the Spartan 18′ software for wave
function. This software has a tool for the determination of
Spartan surfaces that simulate the optimized structure for each
surface, such as density, potential–potential, ionization, orbitals
Homo, orbitals Lumo, and electrostatic potential map. All of
them resulted from the structural changes in the active site and
applied to the electronic structure and their possible interactions.

The total energy in the system is calculated with the equation
for mechanical integration:

Etotal � EQM + EMM(total) − EMM(QM), (1)

with this equation and under a multiscale analysis, the total
energy is obtained for wild type and mutations models,
tripled for each one, considering the average energy to be
included in Eq. 1, and with a low standard deviation for each
one of the determined systems (Maseras, 1999; Cao and Ryde,
2018).

RESULTS AND DISCUSSION

Modeling of Loop Fragments of Protein PS1
The PS1 structural template used as a baseline for the full
structure prediction, was the one published by Zhou et al.,
Protein Data Bank (PDB) ID: 6IYC, given that it is the most
complete structure up to date. Moreover, this structure was

FIGURE 1 | Partition regions observed with the QM-MM hybrid method for PS1 protein in the γ-secretase enzyme.
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aligned with two other structures reported previously PDB ID:
5FN2 and PDB ID: 5A63 (Lu et al., 2014; Bai et al., 2015). Some
minimum structural differences were found between the three
models (Figure 2A). Missing fragments were incorporated as
dotted lines. The specific amino acid position of the missing
fragments was determined using the tool “sequence” of the
Chimera U.C.S.F software as shown in Supplementary Figure
S1A. The quantitative alignment with a graphical color code for
root mean squared deviation (RMSD) showed a high similarity
index and identity percentage, as corroborated by the similar
topology between models (Supplementary Figure S1B).

The Hidden Markov Model software was used to confirm the
different transmembrane passes of PS1 based on its primary
sequence. Missing fragments are also visible with low probability
for a transmembrane pass (Supplementary Figure S2A). The
primary sequences for each missing fragment (Met1-Glu72 and
Ser290-Glu375) were modeled as a tertiary structure. The model

of each fragment was generated using structure predictors
Phyre2, I-Tasser, and Quark for folding recognition and
structural distribution, using homology comparison algorithms
that apply forces derived from primary sequences to the model,
and compares them with structures identified experimentally.
Posteriorly, models were refined usingModRefiner and Fragment
GuidedMolecular Dynamics (FG-MD). Resulting structures were
aligned with Chimera U.C.S.F, and in order to obtain a structural
arrangement from the different models for the two missing
fragments, Needleman Wunsch and matrix blosum62
approaches were used. Each of the structure predictors applied
a different algorithm of assembly together with homology
modeling, protein threading for fold recognition from primary
sequences, and assembly without a template, using free modeling
ab initio taking into account force fields in order to produce the
spatial distribution of the models. Subsequently, each model was
refined with ModRefiner and FG-MD to improve visualization
and analysis of not covalent interactions such as hydrogen
bonding, disulfide bridges, hydrophobic, and hydrophilic
interactions. The final models obtained with the three different
predictive software were validated using QMEAN software for
energetic calculations and Procheck software for stereochemical
analyses. For Met1-Glu72, the best loop model was obtained with
the software Phyre2 (Figure 2B) with an energetic QMEAN6
value of 0,472 in a range between 0–1. The value for Z-score was
set similar to the structural size, −1,867. Ramachandran plot of
the favorable region was 71.60%, of the allowed region was
20.90%, of the generously allowed region was 4.50%, and of
the forbidden region was 3.00%. The best loop model for the
fragment Ser290-Glu375 was obtained also with Phyre2, with an
energetic QMEAN6 value of 0.455 in a range between 0–1,
Z-score with a value of similarity in structural size −2.331.
Ramachandran plots of favorable region was 83.3%, of the
allowed region was 12.8%, of the generously allowed region
was 1.3%, and of the forbidden region was 2.6% (Table 1).

According to the results that were calculated from the
QMEAN6 energetic parameter in Table 1, Phyre2 was the best
structure predicting software for the missing regions (Met1-
Glu72 and Ser290-Glu375). This is because it achieved the
highest score values in energetic status characterization for the
modeled regions compared with the other ab initio structure
predictors (I-TASSER and QUARK). Lower Z-score value
indicated the quality of the models obtained with Phyre2, by
assessing the viability of the hypothetical models in relation to
structures obtained experimentally that share the same range of
values. Finally, the Ramachandran plot showed the distribution of
each residue of protein and its dihedral plane with percentages of
some residues in the four quadrants of the Cartesian plane i.e., the
x-axis (Phi) angle and the y-axis (Psi) angle. This information was
used to validate and assemble the secondary structure of the
fragments. We could observe that the Phyre2 models provided
high percentage of favorable regions, in this case after refinement.
In consequence, the software I-TASSER and Quark ab initio
generated models (Supplementary Figure S2B) were not selected
for further assembly with the rest of the PS1 3D model.

Met1-Glu72 and Ser290-Glu375 fragments generated using
Phyre2 were integrated into the PS1 6IYC template as obtained

FIGURE 2 | Phyre2 modeling for PS1 structure in the γ-secretase
complex. (A) Structural alignment of cryo-electron microscopic structure PS1
protein domains as found in PDB ID: 6IYC (Blue), 5FN2 (Cyan), and 5A63
(Gray). (B) Refined and unrefined modeling of PS1 N-terminal fragment
Met1-Glu72 and Ser290-Glu375, using Phyre2. (C) Modeling of the active
γ-secretase heteromer. Inset shows PS1 transmembrane domains forming
the pocket including TM6 and TM7 together with the active sites Asp257 and
Asp385.
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via Cryo-EM. Consequently, a molecular dynamics approach
using the VMD/NAMD package was applied to the assembled
structure for minimization of all atoms in order to remove any
poor initial contacts, to avoid overlapping and to facilitate the
fluidity of the model. The resulting full structural model for PS1
in ribbon (Supplementary Figure S3A) and surface density
(Supplementary Figure S3B) was then assembled into the
γ-secretase model in which the 6IYC template was originally
included (Zhou et al., 2019) (Figure 2C). It can be observed that
the full hypothetical model for PS1 was not perturbed by the
putative N-terminal and loop fragments (Supplementary
Figures S3A,B), and that it does not present a structural
change in comparison with the original template. In fact, the
topology of active sites, Asp257 and Asp385 remain as previously
reported (Zhou et al., 2019) (Figure 2C, inset). In consequence,
the active pore structure modeled can be further used for the
analysis of the structural effects induced by the pathogenic
mutations in PS1 that directly modify amino acids in
transmembranal domains 6 (TM6) and 7 (TM7). Although a
molecular dynamics approach could also be used to evaluate the
mobility of the different components of the gamma secretase
complex and to assess possible effects of flexible fragments in the
active pore, our approach using a hybrid quantum mechanics/
molecular mechanics (QM/MM) method allows more sensitivity
in the measurement of small topological changes and electronic
structural modifications (Van Der Kamp and Mulholland, 2013;
Omer et al., 2015; Hofer and de Visser, 2018).

Functional Analysis of Mutations in the
Orthosteric Site TM6
After determining that the structure of the pore is unaffected by
PS1 flexible domains, some mutations were selected from the AD
mutations database in Alzforum (Alzforum, 2020). Seven
different missense mutations located in TM6 close to the

active site (Asp257) were selected: Ala246GLu, Leu248Pro,
Leu248Arg, Leu250Val, Tyr256Ser, Ala260Val, and Val261Phe.
In order to obtain the most sensitive assessment of topological
and electronic structure changes generated by these amino acid
substitutions, we applied a hybrid QM/MM approach, including
the evaluation of electronic potential, ionization potential, and
electrostatic surfaces. For the evaluation of polyatomic systems,
we chose the force-field Austin Model 1 (AM1), a semi-empirical
method for quantum calculations. In this way, we can obtain a
description of the modifications in electronic correlations and
changes in atomic nuclei topology when comparing wild-type
and mutated PS1. Each PS1 mutation induces specific effects in
the protein structure. These effects can be on the topology, the
electronic surface, or the electrostatic potential. For each
mutation, one of these possible changes generates a stronger
impact on the structure of the pore, depending on the distance
between the amino acid substituted and the active site Asp257.

Topological Changes Induced by Mutations
Ala246Glu, Leu248Pro, and Leu248Arg
in PS1
Mutations Ala246Glu, Leu248Pro, and Leu248Arg have effects in
the chemical properties of the environment of the pore and a
direct effect in the secondary structure of the protein in TM6 and
TM7. Mutation Ala246Glu presents a chemical change that
increases the polarity due to the high electronegativity
conferred by adding two oxygen molecules when substituting
alanine by glutamic acid. Increased electronegativity induces the
formation of transient dipoles, favoring noncovalent interactions,
for instance, hydrogen bonding or acid–base reactions with the
adequate distances equal or less 2.7 Å (Figure 3A).

In wild-type PS1, position 246 is occupied by alanine, which is
not polar and it cannot interact by hydrogen bonding. The lack of
polarity in this position brings on London dispersion interactions

TABLE 1 | Energetic and stereochemical validation of missing fragments of PS1 protein.

Missing region PS1 Model Software QMEAN6 Zscore Ramachandran plot

Favorable
region

Allowed
region

Generously allowed
region

Forbidden
region

Met1-Glu72 (M1-E72) Unrefined I-TASSER 0.263 −3.379 59.70% 28.40% 4.50% 7.50%
Refined FG-MD 0.291 −3.176 62.70% 26.90% 4.50% 6.00%

ModRefiner 0.235 −3.575 73.10% 22.40% 1.50% 3.00%
Met1-Glu72 (M1-E72) Unrefined Phyre2 0.472 −1.867 71.60% 20.90% 4.50% 3.00%

Refined FG-MD 0.393 −2.438 58.20% 35.80% 6.00% 0.00%
ModRefiner 0.232 −3.602 88.10% 7.50% 3.00% 1.50%

Met1-Glu72 (M1-E72) Unrefined Quark ab initio 0.368 −2.62 84.00% 10.70% 5.30% 0.00%
Refined FG-MD 0.286 −3.209 65.70% 20.90% 7.50% 6.00%

ModRefiner 0.309 −3.041 86.60% 10.40% 1.50% 1.50%
Ser290-Glu375 (S290-
E375)

Unrefined I-TASSER 0.421 −2.606 64.10% 34.60% 1.30% 0.00%
Refined FG-MD 0.430 −2.529 65.40% 33.30% 1.30% 0.00%

ModRefiner 0.445 −2.428 82.30% 17.70% 0.00% 0.00%
Ser290-Glu375 (S290-
E375)

Unrefined Phyre2 0.450 −2.374 60.30% 23.10% 11.50% 5.10%
Refined FG-MD 0.449 −2.377 56.40% 32.10% 11.50% 0.00%

ModRefiner 0.455 −2.374 83.30% 12.80% 1.30% 2.60%
Ser290-Glu375 (S290-
E375)

Unrefined Quark ab initio 0.404 −2.74 79.10% 13.90% 7.00% 0.00%
Refined FG-MD 0.353 −3.151 53.80% 41.00% 2.60% 2.60%

ModRefiner 0.376 −2.969 76.90% 17.90% 3.80% 1.30%

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6499906

Soto-Ospina et al. Simulation of PS1 Protein Modeled

87

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


inside the helix. With the substitution to glutamic acid in this
position, the chemical environment changes and TM6 is brought
closer to TM7 on this particular location. PS1 amino acid Lys395
presents a basic behavior, and the Ala246Glu mutation facilitates
an interaction via hydrogen bonding, facilitated by the decreased
distance between TM6 and TM7. In theory, adequate distances to
consider for possible adduct formation should be less than 2.7 Å,
with the Ala246Glu mutation, the distance between Glu246 and
Lys395 is 2.596 Å, while the same distance between wild-type
Ala246 and Lys395 is 5.384 Å. The reduced distance between
TM6 and TM7 at this point impairs the interaction between the
substrate and the orthosteric site. Previous work has shown that
drastic changes in polarity for this mutation can favor
interactions different than that of the wild type in the
diffusion of the carboxy-terminal (CTF99) fragment. This
changes the epsilon-cleavage site (ε) of the enzyme and
implies a decrease in the total amount of produced peptide. It
might also imply an abnormal substrate processing, which follows
the cleavages that occur first at Leu-Val (amino acids 49 and 50)
or Thr-Leu (amino acids 48 and 49) for the APP substrate
(CTF99), thus blocking production up until amino acids 37 or
38 (Funamoto et al., 2019; Funamoto et al., 2004).

PS1 mutation Leu248Pro does not induce major polarity
modifications, but it does induce a topological structural
change due to the substitution of a leucine to a proline, which
contains a ring of five atoms with a nitrogen inside, facilitating a
modification in the torsion angle of the helix. The angle between
amino acid 248 and the alpha carbon in the side chain of wild-
type PS1 is 122,26°, while with mutation Leu248Pro, this angle
measures 118,76° (Figure 3B). The effect of these modifications in
the torsion of the TM6 helix is similar to the effect observed with
mutation Ala246Glu, because it impairs the access of the
substrate to the orthosteric site.

PS1 mutation Leu248Arg, on the other hand, modifies polarity
in this position. It substitutes leucine, an amino acid with a
hydrocarbon side chain, to an arginine, an amino acid with a
guanidine group in the extreme of its side chain. The guanidine
group contains an electrophilic center, making arginine
susceptible to nucleophilic attack by biological systems besides
its impact in the amino acid polarity. As with mutations
Ala246GLu and Leu248Pro, the distance between TM6 and
TM7 decreases. More to the point, the distance between
aspartic acids 257 and 385 decreases in the Leu248Arg
mutation. The distances of carboxylic groups between aspartic
acids 257 and 385 as measured in oxygen atoms sp2 and sp3 are
7.838 and Å 7.374 Å, respectively. Meanwhile, mutation
Leu248Arg decreases these distances to 2.682 Å and 3.918 Å.

As a result of the decreased distance between them, α-helixes
of TM6 and TM7 become susceptible to noncovalent interactions,
such as hydrogen bonding or electrostatics bonds, making it
difficult to access the pore of the substrate. Furthermore, PS1
mutation Leu248Arg also affects the torsion of the TM6 α-helix,
producing a kink in the helix. The alteration of the hydrogen
bonding pattern modifies the London dispersion interaction
between Val252 and the amino acid in position 248 (in the
case of this mutation, arginine) turning the helix closer to
TM7. In wild-type PS1, with Leu248, the values for these
angles are 33.26° and 113.79°, while with the substitution to
Arg248 changes them to 34.32° and 111.94°, respectively. The
resulting modification of the torsion in TM6 α-helix represents
another argument for a plausible blocking of the active site
(Figure 3C).

Electronic Surface Changes Induced by
Mutations Tyr256Ser and Ala260Val in PS1
PS1 mutations Tyr256Ser and Ala260Val disturb the topological
distribution of electrons in the atoms of affected amino acids.
These electronic effects can modify the docking with organic
ligands, ions, complex peptides, nucleic acids, dendrimers, and
others.

Mutation Tyr256Ser occurs adjacent to Asp257, one half of the
active site, indicating that it has a direct effect in the structural
conformation and processing of the substrate. In wild-type PS1,
the phenol functional group in the side chain of Tyr256 has high
acidity, which is consistent with a pKa � 10.06. Besides, amino
acid deprotonation is oriented from the phenoxide anion
stabilized by resonance. When this amino acid is substituted
to Ser256, the side chain of serine contains a hydroxyl functional

FIGURE 3 | Topological representation of structural changes of PS1
mutations Ala246Glu, Leu248Pro, and Leu248Arg: (A) ribbon representation
of wild type (left, dark blue) and Ala246Glu mutation (right, light blue) from the
interaction with the adjacent α-helix of the transmembrane 7; (B) ribbon
representation of wild type and Leu248Pro mutation with the kink of α-helix;
(C) ribbon representation of wild type and Leu248Arg mutation considering
the changes in the torsional angles.
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group, this functional group is less acid than phenol, with pKa �
13.60. Therefore, the hydrogen is not released to the reaction
medium. Furthermore, the effect of this substitution in the active
site was evaluated on the electronic surface structure with a hybrid
QM/MMmethod. With this approach, a potential–potential surface
was created for PS1 TM6 domain. This analysis found that the
accessible area of interaction in wild-type PS1, containing tyrosine in
position 256, was 426.10 Å

2
and the total surface area was

1,093.11 Å
2
. With the substitution to serine 256, the accessible

area was 395.97 Å
2
and the total surface area was 986.55 Å

2

(Figure 4A). Ser256 mutation decreases both areas, and this is an
important point to discuss for the possible anchoring of the substrate
to the active site. The phenol in the side chain could interact with the
substrate by Coulombic interactionwith a phenoxide anion or by the
effect of the delocalization of electrons in the aromatic ring via
stack–stack, stack–cations, or stack–anions interactions.
Alternatively, the serine could just interact via hydrogen bonding
of the hydroxyl group in the side chain.

PS1 mutation Ala260Val does not present a change of polarity,
but it increases the number of carbons in its side chain. The effect
of this mutation was measured using a hybrid QM/MM method

for the electronic analysis of TM6, by evaluating surface density.
In the wild type, with Ala260, the distribution of charges along
TM6 has influence on the active site in Asp257 due to its proximity,
generating a charges distribution volume of 2,280.14 Å

3
and a total

surface area of 2009.46 Å
2
.With the substitution toVal260, there is a

modification on the distribution of charges with a distribution
volume of 2,322.31Å

3
and a total surface area of 2038.01 Å

2

(Figure 4B). Taking into account these values, the increase in
distribution volume and surface area could be a result of the
increased number of carbons, besides the inclusion of a methyl
group due to the substitution to valine. Therefore, there is a change
in the intrinsic distribution of electronic density in front of the active
site Asp257, blocking the access and possible interaction with the
substrate in the structural model.

Modifications in the Electrostatic Potential
Map in PS1 Mutations Leu250Val and
Val261Phe
Aside of topological effects or changes in surface area or density,
other possible effects of PS1 mutations could be in the electronic

FIGURE 4 | Surface representation of electronic structure of PS1 Tyr256Ser and Ala260Val mutations: (A) the potential–potential surface of wild type (left) and
mutation Tyr256Ser (right). Modification of the surface corresponding to position 256 can be observed; (B) density surface of wild type (left) and mutation Ala260Val
(right), showing the increment in charges volume, blocking potential access to Asp257. The space around Tyr256 is used as a point of reference.
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distribution within the electrostatic potential. The PS1 Leu250Val
mutation does not present polarity changes given that both amino
acids (Leu and Val) do not present any polar feature (London
dispersion), the main difference between amino acids is one extra
carbon in the structure of valine, and this implies a possible
spatial effect, given that the hydropathicity is the same. Using the
ProtScale software, we quantified the hydrophobic and
hydrophilic forces with the Kyte and Doolittle approach. In
this position in PS1, the wild-type Leu250 has a hydropathic
index of 2,522, while the substituted Val250 presents a
hydropathic index of 2,567, with similar polarity behavior
(Supplementary Figure S4). Therefore, there are no
topological modifications in the α-helix, given that the
similarities in hydrophobicity do not affect the London
dispersion forces. Likewise, surface electronic density analysis
did not detect changes between the wild type and the mutation.
However, there was the option to evaluate the electrostatic
potential map using Spartan 18.0 software. In effect, there is a
modification in the electronic structure in the vicinity of the
mutation site, reducing the access to Ser254 in the Val250-
mutated PS1 (Figure 5A). This modification can have a direct
impact in the functionality of the protein. We searched for
possible affected interactors using the software XPASY and the

tool NetPhosK 2.0. We found that Ser254 is a phosphorylation
site for kinase PKA in the wild type situation, with a score 0.50
(Figure 4A, insets). In conclusion, when the Val250 substitution
takes place, position Ser254 is blocked with the hydrocarbon side
chain and its high electronic density site cannot be docked by
PKA, resulting in loss of the phosphorylation site.

We did not find experimental reports in the literature that
confirm phosphorylation for this position in PS1. However, this
protein is highly phosphorylatable, and it has associated functions
such as cell signaling, Ser346 being a recognitionmotif for caspase
in apoptosis regulation (Fluhrer et al., 2004). We have also
assessed the differential effect of phosphorylation of the A246E
mutation in the PS1 transmembrane domain and the N141I
mutation in PS2. This has been done considering that these
mutations could impact phosphorylation due to its structural
localization. However, no differences have been found in the
effect of PS1 and PS2 phosphorylation. Likewise, many remaining
available phosphorylation sites have been proposed. These
remain after the γ-secretase enzyme carries out substrate
proteolytic processing. This leads to a structural change in the
enzyme that renders amino acids accessible in cases where they
were initially inaccessible upon phosphorylation of casein kinase
1 and 2, or of PKA and PKC (Walter and Haass, 2010; Walter

FIGURE 5 | Electrostatic potential map representation: (A) electronic distribution and phosphorylation blockage of wild type (left) and PS1 mutation Leu250Val
(right) to putative protein kinase A (PKA) phosphorylation; (B) electronic distribution and resulting steric clash of the substitution from wild type (left) to PS1 mutation
Val261Phe (right) due to the aromatic electronic effect in the possible interactions with the substrate. Electronic distribution within the range of −200 Kcal/mol to
200 Kcal/mol is represented by an eight-color scale.
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et al., 1997). The position for the phosphorylation site is currently
proposed to be serine 367, as it has been found to be closely
related to the dynamics of microglia development and has also
been found to have a protective function. This encourages
autophagosome–lysosome assembly, which increases the
degradation of β-CTF99 carboxi-terminal, thereby decreasing
amyloid peptide synthesis (Ledo et al., 2020; Bustos et al., 2017).

The last PS1 mutation evaluated is Val261Phe, and here we
can observe the change in the aliphatic side chain to an aromatic
group with a direct effect on the structure of TM6. Phenylalanine
has a high electronic density due to the aromatic ring, and the
resulting increased electron density blocks the active site Asp257.
The electrostatic map represents the potential and electronic
distribution in the range of -200 Kcal/mol to 200 Kcal/mol. In
the wild-type PS1, Val261 shows relatively low electronic density,
while the Phe261 mutant presents a wider area with higher
electronic density with a score of −100 to −150 Kcal/mol
(Figure 5B). Furthermore, this substitution has an effect in
the topology. The aromatic group produces a change in the
dihedral angle due to the hybridization of the aliphatic and
aromatic carbons in the structure, reducing distances for

bonding via steric clash. The angles between the α carbon and
the lateral side chain are modified, affecting the structure and the
dihedral angle manifest differences in the topological
representation with angles of −60.47° for wild type and
−132.04° for mutated PS1 Val261Phe. The dihedral changes
induce a kink in the α-helix of TM6 and the substrate can be
hindered when entering the pore (Supplementary Figure S5).

In summary, the consequences of a variety of structural and
electronic modifications in the active domains of PS1 as a result of
point mutations suggest a possible functional effect in the
catalytic activity for the processing of APP as a substrate. This
effect could be considered as loss of function given that
experimental data from the studied mutations show a
decreased production of both Aβ 1–40 and Aβ 1–42 together
with increased Aβ 1–42/1–40 ratio (Sun et al., 2016) (Figure 6A
and Supplementary Table S1). Besides, the evaluation of
topology, surface area, volume, and electrostatic potential is
necessary to understand the structural behavior of PS1. These
modifications can be summarized by a top view section in the
upper plane of the protein. Due to the combination of the
structural effects, the shape of the pore defined by the space
and distance between TM6 and TM7 is noticeably modified in
PS1 mutants. In some cases, the apparent volume and shape of
the pore are radically different, hinting to a possible effect in the
accessibility of the pore by the substrate. For instance, inmutation
Ala260Val, the structure of the pore is severely modified, and the
production of Aβ 1–40 is depleted, while the production of Aβ
1–42 is half of that on the wild type (Sun et al., 2016), hinting to
the accessibility effect mentioned above (Figure 6A). The
energetic calculation is obtained for the entire system with the
subtraction formula in quantitative terms and considering the
catalytic pocket in the multiscale model, thus obtaining the results
reported in Table 2.

By analyzing the results in (Figure 6B), it is determined from
an energetic standpoint that due to several mutations, there is not
a significant change at an energetic level. However, there is a
decreased size of the catalytic pocket, which leads to the
enzymatic function being affected. This explains the decrease
in the total amount of peptide for Aβ 1–40 and Aβ 1–42.
However, the change of amino acid for mutations is not
synonymous if they show an effect on hydrophobicity.
Therefore, certain cuts of amyloid-β are favored, which is
reflected in the cut ratio at the experimental level with the
Aβ42/Aβ40 peptide proportion. As a result, an analysis
focused on the lateral chain is validated with changes in
topology and electronic structure, as was previously shown.
The graph reveals that the increase in hydrophilicity results in
the cleavage route that leads to producing Aβ42 peptide instead of
Aβ40. This is because it is the most commonly found peptide in
the amyloid plaques and the graphical trend of its hydrophobicity
is very similar to the data that were experimentally reported on
the peptide cuts of 42 amino acids. Likewise, the γ-secretase
enzyme with mutations and with these changes in polarity
profiles favors certain processing routes that can produce the
most frequent amyloid peptide fragments. In addition, due to the
mutations, enzyme activity could be modified and could
encourage cleaving up to the Aβ38 and Aβ37 amyloid peptide

FIGURE 6 | Top view section of wild-type PS1(dark blue) and the seven
mutations analyzed in TM6 (pale blue) with a cross section at the same level of
the catalytic pocket (magenta). (A) β ratio values were obtained from reference
(Sun et al., 2016); (B) Energy comparison plot, hydrophobicity and total
amount of amyloid peptide.
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fragments. These fragments are frequently found in senile plaques
but are not as pathogenic as Aβ 40 or Aβ 42, which tend to
undergo oligomerization more readily (Murakami et al., 2003;
Chen et al., 2017; Morel et al., 2018; Song et al., 2018).

Previously, a molecular dynamics approach by Chávez-García
et al. was used to analyze the effects of PS1 mutations in the
catalytic domain of the protein (Chávez-García et al., 2019),
(Aguayo-Ortiz et al., 2017). Briefly, their approach involved
amino acid network and protonation analysis for thirteen PS1
mutations via all-atom molecular dynamics simulation. Among
their findings, an increased number of correlations for different
mutations were identified. Interestingly, two of the mutations
analyzed by this approach are localized in TM6 and were also
evaluated in the present work (Ala260Val and Val261Phe). They
found that these two mutations presented increased number of
correlations and they also suggest that the amino acid substitution
might affect the entry gate (Chávez-García et al., 2019). We
consider that our approach brings a different view of the
problem, and that both approaches (molecular dynamics and
hybrid QM/MM) are valid and complementary when analyzing
the effect of mutations in structural protein chemistry.

CONCLUSION

Protein functional studies through structural modeling in
neurodegenerative diseases is a useful approach for
understanding the effect of some genetic variants that translate
in specific protein modifications. In the case of PS1, it opens a
window to understand how its structure affects its function and
those of the γ-secretase complex and its four subunits. Given that

PS1 has two flexible domains that have not been resolved
satisfactorily via experimental approaches, we have developed
a model using structure prediction software. Flexible regions
present experimental challenges for protein structure studies,
such as their low electron-dense zone with low signal emission
that results in low structural resolution for Cryo-EM studies or
affecting crystallization for X-ray analysis (Bai et al., 2015; Rossi
et al., 2012; Heo et al., 2017). Therefore, an in silico approach
seems to be the best alternative for resolving the full structure of
PS1, until further experimental models are obtained.
Homological modeling, using assembly by threading and
reconstruction ab initio, was used to create a hypothetical
construct for the missing fragments with their respective
energetic and stereochemical characterization. Our approach
included algorithms of molecular dynamics methods that
consider force fields and the primary sequences of amino acids
in the construction of proteins. The completed model for PS1 was
then useful to assess possible effects of the flexible domains in the
pore. In our reconstructed model, we observed that the predicted
assembly for both flexible fragments did not affect the topology
and the connectivity matrix of the most current template for PS1
(Zhou et al., 2019) and did not affect the structure of the pore
constituted by TM6 and TM7 (Supplementary Figure S3). It is
possible that PS1 pathogenic mutations localized in the flexible
pores affect pore accessibility by other means different from
direct modifications on the active site.

Additionally, we analyzed seven PS1 mutations localized in
TM6 and in the proximity of Asp257, in order to assess the direct
effect of these mutations in the active site. The structural changes
were assessed using a topological approach for distance
variations, torsion angles, and dihedral angles and electronic

TABLE 2 | Energetic values calculated in the system with PS1 in the γ-secretase enzyme.

Protein
PS1

Energy MM (Full
length)

Average MM (Full
length)

Energy
MM (QM)

Average
MM (QM)

Energy QM Average QM Total Energy: EQM +
EMM-EMM(QM)

Wild type 2962167.1071 2962167,108 (+/−)
0,017

−40.6771 −40,67710 (+/−)
0,00040

−5104.5531 −5104,5604 (+/−)
0,0067

2957103,225(+/−) 0,023
2962167.0920 −40.6775 −5104.5661
2962167.1261 −40.6768 −5104.5621

Ala246Glu 2961014.1399 2961014,14
(+/−) 0,89

−161.5506 −161,5503 (+/−)
0,0021

−5534.4918 −5540,2 (+/−) 4,9 2955635,5 (+/−) 5,9
2961015.0300 −161.5481 −5543.0927
2961013.2500 −161.5523 −5543.0906

Leu248Pro 2964064.3892 2964064,39
(+/−) 0,16

772.9771 772,97740 (+/−)
0,00090

−4998.3374 −4998,337 (+/−)
0,012

2958293,07 (+/−) 0,17
2964064.2220 772.9784 −4998.3491
2964064.5480 772.9768 −4998.3252

Leu248Arg 2959517.4753 2959517,48
(+/−) 0,05

−13.3939 −13,3937 (+/−)
0,0016

−4677.5868 −4672,0 (+/−) 9−6 2954858,8(+/−) 9,7
2959517.4220 −13.3952 −4677.5844
2959517.5312 −13.3921 −4660.9302

Leu250Val 2962020.7393 2962020,7398 (+/-)
0,0090

108.0198 108,01970 (+/−)
0,00050

−4676.2334 −4676,2318 (+/−)
0,0025

2957236,488 (+/−) 0,011
2962020.7310 108.0192 −4676.229
2962020.7492 108.0202 −4676.2331

Tyr256Ser 2961819.2446 2961819,24
(+/−) 0,19

30.3606 30,36050 (+/−)
0,00040

−5235.8072 −5235,47
(+/−) 0,58

2956553,41 (+/−) 0,77
2961819.0530 30.3601 −5234.7973
2961819.4348 30.3609 −5235.809

Ala260Val 2964306.3948 2964306,40
(+/−) 0,32

100.4126 100,41260 (+/−)
0,00050

−5168.3129 −5164,3 (+/−) 11,7 2959041,7 (+/−) 12,0
2964306.7205 100.4121 −5173.4372
2964306.0722 100.413 −5151.0903

Val261Phe 2960691.6238 2960691,624 (+/−)
0,090

160.2564 160,25730 (+/−)
0,0010

−4955.9667 −4956,28
(+/−) 0,53

2955575,09 (+/−) 0,62
2960691.5340 160.2571 −4955.9701
2960691.7131 160.2583 −4956.8911
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changes with the distribution of charges and surfaces in the
system. Macromolecular systems present a problem for
structural biology, such as their polyatomic constitution and
the high number of possible multiple interactions. In these
cases, hybrid QM/MM methods are useful for the study of
polyatomic systems given that they assess the interaction of
the electronic structure with a stochastic measure of energy
and optimization of structural conformers (Murphy et al.,
2000; Silva et al., 2015; Zou et al., 2017).

For PS1 mutations Ala246Glu, Leu248Pro, and Leu248Arg,
topological changes, such as the modification of distances between
TM6 and TM7 as a result of changes in the kink of the TM6 helix,
seemed to be the most relevant for their possible effect in the active
site. On the other hand, PS1 mutations Leu250Val, Tyr256Ser,
Ala260Val, and Val261Phe produce more noticeable modifications
in the electronic structure of TM6, affecting the electronic surface,
charge distribution volume, and electrostatic potential, finally
blocking the access of the substrate. Interestingly, the modification
of the electronic distribution for Ser254 elicited by PS1 mutation
Leu250Val has a direct effect in the corresponding phosphorylation
site with possible functional repercussions. Independently of the
specific change, all the studied mutations affected the shape of the
pore, possibly affecting the accessibility of the substrates to the active
site or affecting the kinetics of its processing. There are experimental
data for Aβ processing of five out of the seven PS1 mutations we
analyzed. All of them show decreased production of Aβ in
comparison with the wild-type enzyme, with some of them
increasing the relative production of Aβ 1–42 (Sun et al., 2016),
perhaps as an effect of major changes in the pore (Figure 6A).

We consider that the use of QM/MM hybrid methods might be an
ideal approach for the study of single-point mutation effects in
macromolecular systems as complex as that of γ-secretase and PS1.
With the development and access to more powerful computational
systems, this kind of studies will provide a wide array of possibilities for
functional analysis and the development of better targeted drug design.
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Resistance to drugs used to treat tuberculosis disease (TB) continues to remain a
public health burden, with missense point mutations in the underlying Mycobacterium
tuberculosis bacteria described for nearly all anti-TB drugs. The post-genomics era
along with advances in computational and structural biology provide opportunities
to understand the interrelationships between the genetic basis and the structural
consequences of M. tuberculosis mutations linked to drug resistance. Pyrazinamide
(PZA) is a crucial first line antibiotic currently used in TB treatment regimens. The
mutational promiscuity exhibited by the pncA gene (target for PZA) necessitates
computational approaches to investigate the genetic and structural basis for PZA
resistance development. We analysed 424 missense point mutations linked to PZA
resistance derived from ∼35K M. tuberculosis clinical isolates sourced globally, which
comprised the four main M. tuberculosis lineages (Lineage 1–4). Mutations were
annotated to reflect their association with PZA resistance. Genomic measures (minor
allele frequency and odds ratio), structural features (surface area, residue depth
and hydrophobicity) and biophysical effects (change in stability and ligand affinity) of
point mutations on pncA protein stability and ligand affinity were assessed. Missense
point mutations within pncA were distributed throughout the gene, with the majority
(>80%) of mutations with a destabilising effect on protomer stability and on ligand
affinity. Active site residues involved in PZA binding were associated with multiple
point mutations highlighting mutational diversity due to selection pressures at these
functionally important sites. There were weak associations between genomic measures
and biophysical effect of mutations. However, mutations associated with PZA resistance
showed statistically significant differences between structural features (surface area and
residue depth), but not hydrophobicity score for mutational sites. Most interestingly
M. tuberculosis lineage 1 (ancient lineage) exhibited a distinct protein stability profile
for mutations associated with PZA resistance, compared to modern lineages.

Keywords: Mycobacterium tuberculosis, pncA, nsSNPs, non-synonymous Single Nucleotide Polymorphisms,
biophysical effects, thermodynamic stability, mCSM, FoldX
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INTRODUCTION

Tuberculosis (TB), is a highly infectious and contagious air-borne
disease caused by the bacterium Mycobacterium tuberculosis.
Despite its ancient origins and the efforts to develop disease
control and prevention measures, the disease continues to
cause a global public health burden, with increased drug
resistance making control difficult. In 2019, WHO reported
around 10 million global cases of TB of which 1.4 million
result in death (World Health Organization [WHO], 2020).
In 2019, 465,000 cases of rifampicin resistant TB (RR-TB),
among which 78% cases of multidrug-resistant TB (MDR-
TB, defined as having additional resistance to isoniazid) were
reported. Among these RR/MDR cases, ∼6% cases were further
resistant to one fluoroquinolone and one injectable second
line drug, leading to extensively drug resistant TB (XDR-TB)
(World Health Organization [WHO], 2020).

The size of the M. tuberculosis genome (reference H37Rv
strain) is 4.4 Mb, with a high (65%) GC content. The
M. tuberculosis genome is clonal, and consists of seven main
lineages, which vary by their geographical spread (L1: Indo-
Oceanic, L2: East Asian, L3: East-Africa-Indian, and L4: Euro-
American) (Phelan et al., 2016). The lineages are further classified
into ancient (L1, L5–6), modern (L2–4), and intermediate (L7)
strains, with L2 being particularly mobile as evidenced by its
recent spread to Europe and Africa from Asia (Phelan et al.,
2016). The M. tuberculosis lineages appear as distinct clades
on phylogenetic trees (Coll et al., 2014) and govern disease
transmission and dynamics with phenotypic consequences
on clinical severity and drug resistance (Ford et al., 2013;
Reiling et al., 2013), including recent reports of lineage-specific
associations with the latter (Oppong et al., 2019). Drug resistance
in M. tuberculosis is almost exclusively due to mutations
[including non-synonymous Single Nucleotide Polymorphisms
(nsSNPs), insertions and deletions (INDELs)] in genes coding
for drug-targets or drug-converting enzymes. Changes in efflux
pump regulation may also have an impact on the emergence
of resistance (Al-Saeedi and Al-Hajoj, 2017) and putative
compensatory mechanisms have been described to overcome
fitness impairment that arises during the accumulation of
resistance conferring mutations (de Vos et al., 2013). Resistance-
associated point mutations have been described for all first-line
drugs, including rifampicin, isoniazid and pyrazinamide, as well
as for several second-line and newer drugs (fluoroquinolones,
bedaquiline) (Somoskovi et al., 2001; Boonaiam et al., 2010;
Segala et al., 2012), but knowledge is still incomplete.

Pyrazinamide (PZA) is a crucial antibiotic used in WHO
recommended combination therapies in the front-line treatment
of TB. It is a pro-drug which is activated by the amidase
activity of the enzyme pyrazinamidase/nicotinamidase (PZase;
MtPncA) encoded by the pncA gene, converting PZA to its active
form of pyrazinoic acid (POA). Despite its indispensable status
in TB treatment, PZA’s exact mode of action remains poorly
understood. Other genes (rpsA and panD) have been implicated
in PZA resistance (Dookie et al., 2018) with a recent study
suggesting that PZA exerts its antibacterial activity by acting as
a target degrader of panD, blocking the synthesis of coenzyme A
(targeted by POA) (Gopal et al., 2020). Despite this, mutations

in the pncA gene remain the most common mechanism of PZA
resistance (Khan et al., 2019).

Advances in whole genome sequencing (WGS) is assisting
the profiling of M. tuberculosis for drug resistance, lineage
determination and virulence, and presence in a transmission
cluster (Phelan et al., 2019a), thereby informing clinical
management and control policies. This is reflected in the
WHO recommendation for use of rapid molecular testing
for detecting TB and drug resistant TB (World Health
Organization [WHO], 2020). The use of WGS can uncover new
resistance mutations through genome-wide association studies
(GWAS) and convergent evolution analysis (Phelan et al., 2016;
Coll et al., 2018).

Furthermore, using protein structure, the biophysical effects of
point polymorphisms can be investigated allowing a mechanistic
understanding of resistance development (Phelan et al., 2016;
Kavvas et al., 2018; Portelli et al., 2018). This approach can
highlight important functional resistance mutations before they
take hold in a population, corroborate drug susceptibility test
results, as well as provide insights in highly polymorphic
candidate loci (e.g., pncA) where many of the putative mutations
have low frequency. It has been observed that sites with multiple
mutations (>2) are linked to drug resistance (Comas et al.,
2011), but such resistance hotspots may not necessarily lie close
to the drug binding site. To this effect, sites with 2 mutations
are considered as “emerging” or “budding” resistance hotspots
(Portelli et al., 2018).

One assessment of the impact of missense mutations is to
measure the change in a protein structure’s as well as drug-
target complex’s physical interactions that contribute to its overall
stability. Computational approaches (e.g., the mCSM suite; Pires
et al., 2014a, 2016; Pires and Ascher, 2016, 2017; Rodrigues et al.,
2019) have been developed to predict the effects of missense
point mutations on overall protein structure stability, as well
as the binding affinity/stability of ligand, protein-protein, and
protein-nucleic acid interactions within a single framework,
based on either an experimentally resolved structure or derived
model. Here we apply such approaches to the effects of missense
point mutations in the pncA gene. In addition, we also analyse
biophysical structural features including surface area, residue
depth and hydrophobicity for residues and sites associated with
missense point mutations.

A crystal structure for pncA from M. tuberculosis has
been determined as a monomeric enzyme of 186 amino acids
(19.6 kDa) (Petrella et al., 2011). The structure comprises a 6-
stranded parallel beta sheets, with helices on either side forming
a single α/β domain with a metal cofactor (iron, Fe2+) binding
site formed of D49, H51, H57, and H71. The substrate binding
cavity in MtPncA is small, approximately 10 Å deep and 7 Å
wide. It consists of highly conserved residues F13 and W68
that are essential in substrate binding with Y103 and H137
limiting access to this cavity (Petrella et al., 2011). The catalytic
triad consisting of C138, D8, K96 is indicative of a cysteine-
based catalytic mechanism (Petrella et al., 2011). Leveraging
this crystal structure, we developed an in silico framework
to assess the biophysical impact of pncA mutations and their
resistance risk as determined by GWAS. In this study, we attempt
to understand PZA resistance by exploring the relationship
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between the genomic features and the biophysical consequences
of stability and affinity of nsSNPs, and how this is reflected in
differences between M. tuberculosis lineages.

MATERIALS AND METHODS

SNP Dataset
The dataset consists of 35,944 M. tuberculosis isolates, which
has been described recently (Napier et al., 2020). In brief, it
encompasses all the main lineages (1, 5, and 6, ancient; 2, 3,
and 4, modern; 7 intermediate), and drug susceptibility testing
across 8 first-and second-line anti-TB drugs. Across these isolates,
mutations in the pncA coding region with non-synonymous
amino acid changes (nsSNPs) were extracted. These nsSNPs were
further annotated for their link with drug resistance as defined by
their presence in the TB-Profiler mutation database (Phelan et al.,
2019b). Initial analysis aimed at understanding the structure and
characterising the active site, followed by in silico predictions to
quantify the enthalpic and entropic effects of GWAS-identified
nsSNPs on the pncA protein structure. Subsequently, additional
metadata relating to the clinical isolates were studied in relation
to the structural effects of mutations. The general methodology
workflow followed in this analysis is similar to the one described
previously (Portelli et al., 2018).

Drug and Target: Structural Data
In the absence of a drug (PZA) and target (pncA) complex,
respective individual structures were obtained from RSCB PDB
database (Berman et al., 2000). The crystal structure of pncA in
M. tuberculosis is available as PDB entry 3PL1 (Petrella et al.,
2011), while the structure of PZA was extracted from PDB entry
3R55 (Singh et al., 2011). The molecular motion of pncA was
analysed by Normal Mode Analysis using the DynaMut tool
(Rodrigues et al., 2018) (Supplementary Figure 1).

Protein-Ligand Docking: Autodock Vina
The pncA-PZA complex was generated using the software
AutoDock Vina, version 1.1.2 (Trott and Olson, 2009). Autodock
Vina is an open-source, freely available molecular modelling
platform to perform protein-ligand docking. Docking was carried
out with default settings and guided by the positioning of
the ligand within the active site as descried by Petrella et al.
(2011). The complex was generated to facilitate downstream
analyses by mCSM-lig (Pires et al., 2016) Autodock Vina returns
bound conformations with their respective predicted binding
affinity values. The prediction of binding affinity (strength of
the ligand interaction with its target) is based on one of several
scoring functions, which rank the poses in increasing order
of predicted binding affinity. Binding free energy is calculated
using a semi-empirical force field, combining experimental and
knowledge-based information. The docking poses were visualised
and inspected in UCSF Chimera 1.13 (Pettersen et al., 2004)
according to the occupation of search space and diversity of pose
conformations (Supplementary Figure 2). The top two binding
poses were closely matched with the conformations generated
by Karmakar et al. (2018) and Petrella et al. (2011), respectively
(Supplementary Figure 3). The best pose was chosen considering

the ligand orientation generated by molecular docking performed
by Karmakar et al. (2018) and comparing interaction of both
poses with active site residues through an Arpeggio (Jubb et al.,
2017) analysis (Supplementary Figure 4).

Ligand extraction and protonation were carried out using
UCSF Chimera, version 1.11 (Pettersen et al., 2004) while
identification of rotatable bonds was carried out in Autodock
tools (available as part of MGL tools, version 1.5.6) (Morris et al.,
2009) where protonation of the ligand is specifically required
by Autodock Vina (Trott and Olson, 2009). Similarly, protein
extraction and explicit removal of solvent were carried out in
UCSF Chimera, version 1.11 (Pettersen et al., 2004), and other
steps in the overall protein preparation process were carried out
in Autodock tools (part of MGL tools, version 1.5.6) (Morris et al.,
2009). All the required parameters to perform docking needed to
be included in a configuration file.

In silico Predictions: mCSM DUET, FoldX,
mCSM-lig
The computational tools based on mutation cut-off scanning
matrix, primarily mCSM DUET (Pires et al., 2014a) and mCSM-
lig (Pires et al., 2016) were used to investigate the structural
effects of nsSNPs within the pncA target protein. The effects
of nsSNPs within pncA were analysed with respect to protein
stability (DUET and FoldX (Schymkowitz et al., 2005) and ligand
affinity (mCSM-lig). The consequences of these effects were to
investigate change in protein fold and function, and effect on
mechanism of PZA drug activation, respectively. Results from
mCSM-lig (Pires et al., 2016) return both ligand affinity and
DUET scores, hence only mCSM-lig was run to obtain both the
outputs simultaneously.

A semi-automated pipeline was constructed for mCSM and
FoldX to submit and extract results for multiple mutations
consecutively using python and shell scripts. Both tools require
wild type structure, chain ID and a list of nsSNPs in the
X <POS> Y format (X: wild type residue; <POS> : position, Y:
mutant residue). The residue symbols (X and Y) are specified as
one letter amino acid code. DUET and FoldX estimate mutational
impact as a change in Gibbs Free energy (11G) in Kcal/mol.
The classification of mutational impact based on 11G from
these methods are categorised in opposing ways. For example,
11G < 0 of a SNP is classified as a “destabilising” according to
DUET, while the same is classified as “stabilising” according to
FoldX.

The mutational impact on ligand affinity is calculated as a log
fold change between wild type and mutant binding affinities. In
addition to SNP identifiers, mCSM-lig requires the ligand affinity
of the wild-type protein to be specified in nano Molar (nM) for
affinity change calculations. Since the binding affinity returned
by AutoDock Vina, version 1.1.2 (Trott and Olson, 2009) is in
Kcal/mol, these needed to be converted to nM via Eq. 1 (below).
The binding affinity for PZA in nM was 0.9911.

1G = − RTlnK. (1)

Equation 1: Calculation of binding free energy, 1G, where R
is the gas constant, 1.987 cal K−1 mol−1 and T is the absolute
temperature, 298 K. Adapted from Morris et al. (1998).
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The mCSM suite of tools (Pires et al., 2014a, 2016; Pires
and Ascher, 2017; Rodrigues et al., 2019) are based on
graph-based measures at an atomic level along with machine
learning (ML) tools for predicting enthalpic and entropic
effects of stability. mCSM achieves this broadly by generating
a signature encompassing the wild-type milieu and change in
pharmacophore properties upon mutation (Pires et al., 2014b).
Owing to the inter-atomic distance pattern within mCSM
describing the wild-type residue environment, novel parameters
like residue depth and long-range interactions are implicitly
considered. In this manner, mCSM is able to characterise
both local and global effects of missense point mutations. The
mutational change at the atomic level is considered by using a
change in the “pharmacophore count” vector, thus obviating the
need to have explicit mutant structure. All mCSM tools (Pires
et al., 2014a, 2016; Pires and Ascher, 2016, 2017; Rodrigues
et al., 2019) use the atomic changes, while DUET (Pires et al.,
2014a) is an ensemble method combining methods of mCSM
stability (Pires et al., 2014b) and SDM (Worth et al., 2011;
Pandurangan et al., 2017). FoldX, however is an empirical-based
prediction tool which summarises the change in stability between
mutant and wild type protein structures using a combination of
energy terms based on fundamental intramolecular interactions
(Schymkowitz et al., 2005).

Other Structural Parameters
Additional structural parameters for wild type structure were
also included in the analysis. These were: Accessible (ASA) and
Relative Surface Area (RSA), residue depth (RD), hydrophobicity
values according to the Kyte-Doolittle scale (KD). The DSSP
programme (Kabsch and Sander, 1983; Touw et al., 2015) was
run to extract the ASA and RSA values, while RD values
calculated as described by Chakravarty and Varadarajan (1999)
were calculated using the depth server available at http://cospi.
iiserpune.ac.in/depth. The KD values were fetched from the
expasy server (Artimo et al., 2012) available at https://web.expasy.
org/protscale/.

Data Normalisation: DUET, FoldX, and
mCSM-lig
The DUET (Pires et al., 2014a), FoldX (Schymkowitz et al., 2005),
and mCSM-lig (Pires et al., 2016) scores associated with each SNP
were subsequently normalised between the range of−1 and 1. For
mCSM-lig analyses, data was filtered according to distance from
interacting site and only residues within a distance of 10 Å of the
ligand (PZA) were considered for all ligand affinity analyses.

Minor Allele Frequency and Odds Ratio
Calculations: SNP Dataset
Across the M. tuberculosis isolates tested for PZA drug
susceptibility data, we performed association analysis to estimate
the risk of resistance for SNP alleles. For each nsSNP, minor allele
frequency (MAF) and odds ratio (OR) were calculated in relation
to all samples tested for PZA susceptibility. MAF is the average
occurrence of a given nsSNP, and OR is the measure of association
of a given nsSNP with PZA resistance. In addition to unadjusted

odds ratio (OR), and similar to a GWAS approach, adjusted
odds ratio (aOR) were estimated using logistic regression models
with a kinship matrix adjusting for a random effect representing
the SNP-based relationships between samples (e.g., the lineage-
based population structure) (Zhou and Stephens, 2012; Coll et al.,
2018). P-values were estimated using Fisher and Wald test for
unadjusted and adjusted ORs, respectively.

Statistical Analyses
Data was analysed using non-parametric statistical tests.
For assessing correlations, Spearman correlation values
were calculated. For comparing lineage distributions, the
Kolmogorov-Smirnov (KS) test was used. Statistical significance
thresholds used are ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
∗∗∗∗P < 0.0001).

Data Visualisation
All plots were generated using R statistical software,
version 4.0.2 (R Core Team, 2014). Protein and ligand
structures were generated using UCSF Chimera, version
1.11 (Pettersen et al., 2004).

RESULTS

Analysing the pncA Molecular Motion
and pncA-PZA Complex
Molecular motion in pncA was analysed by Normal Mode
Analysis (NMA). Regions undergoing the greatest movement
were limited to residues in loop regions and mainly concentrated
to loop 60–66, followed by loop residues 39–41 and 111–113.
Residues at site 165–167 within helix 164–178 showed the least
flexibility (Supplementary Figure 1). The frequency of mutations
in these variable regions was most prominent for sites 62–63
(>2 mutations) while the other sites were limited to at most two
mutations (Figure 1). Mutations within the most flexible region
(residues 60–66) of pncA showed mixed effects in relation to their
association with PZA resistance with the single mutation at site 64
related to PZA resistance. Sites 39 and 40 within the other highly
flexible region 39–41 were not associated with any mutations in
our study, while the two mutations at site 41 were not associated
with PZA resistance. The region 111–113 is associated with single
mutations at sites 111 and 112 which are not linked to PZA
resistance, while site 113 was not associated with any mutations in
our study. Sites 165–167, which form part of the helix (164–178),
are the most stable according to NMA. Two residues (A165 and
D166) within this helix were not associated with any mutations
in our study, while a single mutation at site T167 was not
associated with PZA drug resistance (Supplementary Figure 1
and Supplementary Table 1). Docking with AutoDock vina
(Trott and Olson, 2009) generated nine different conformations
as per default settings. In six of these poses, the aromatic ring
of PZA was oriented towards the substrate binding residue
W68 (Supplementary Figures 2A,B). The top two poses (1
and 2) returned by Vina were similar to previous molecular
docking studies (Petrella et al., 2011; Karmakar et al., 2018)
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FIGURE 1 | Logo plot showing sites with multiple missense point mutations and association with Odds Ratio. Sites associated with multiple (>2) missense point
mutations (i.e., nsSNPs). A total of 386 mutations corresponding to 113 positions on the pncA protein structure were associated with multiple nsSNPs. The
horizontal axis in (A,B) show the position numbers of sites with multiple nsSNPs, while part (C) shows the wild-type residues for each position. The vertical axis in (A)
represents Odds Ratio (OR) where letters denote mutant residues which are proportional to their corresponding OR highlighting the most resistant mutation at each
site and overall. Part (B) shows each mutant residue at a given position, highlighting nsSNP diversity by position. The wild-type and mutant residues are coloured
according to the amino acid properties as denoted. Positions marked in yellow form the catalytic triad, residues in blue and teal are involved in substrate binding,
those in green are involved in hydrogen binding while the ones in purple are involved in the iron centre coordination. The figure is generated using R statistical
software (version 4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms; pncA, pyrazinamidase.

(Supplementary Figure 3). A follow-up Arpeggio analysis (Jubb
et al., 2017) indicated that pose 1 when compared to pose 2,
has more H-bonds (4 vs. 1), fewer aromatic contacts (3 vs. 13),
and greater Van der Waals interactions (3 vs. 1) (Supplementary
Figures 4A,B). Therefore, model with pose 1 was chosen to form
the pncA-PZA complex (Supplementary Figure 5).

Genomics Data
SNP data from 35,944 M. tuberculosis clinical isolates tested for
drug susceptibility to a range of first and second line drugs were
obtained (Napier et al., 2020). Among these, 39% (n = 13,914)
of these isolates were tested for PZA drug susceptibility. The
isolates were collected from over 30 different countries and
represented the 4 main M. tuberculosis lineages (L1, n = 144;
L2, n = 1,886; L3, n = 190; L4, n = 2213) (Supplementary
Figure 6). In order to infer whether the ancestral pncA
sequences for each lineage differed, we quantified the number
of samples without any mutations in each lineage. The majority
of isolates in L1–L4 had an identical pncA sequence as the
H37Rv reference indicating that the ancestral sequences for
these lineages do not differ. The majority were pan susceptible
(n = 23,256, 64.7%), with the remainder MDR-TB (n = 6,691,
18.6%), XDR-TB (n = 989, 2.8%), or another type of resistance
referred to as DR-TB (n = 5,008, 13.9%) (Table 1). From the
list, only nsSNPs within the protein coding region of pncA
(n = 4,731, 13.2%) were considered for our analyses (Table 1).
The majority of these were MDR-TB (n = 3,290, 69.5%) followed
by relatively equal numbers of XDR-TB and DR-TB (n = 625,
13.2% and n = 632, 13.4%, respectively), while only a small
percentage were susceptible (n = 184, 3.9%) (Table 1). From

a total of 13,914 samples tested for PZA drug susceptibility,
a minority of those were found to be resistant (n = 2,379,
17.1%) (Table 1). However, the burden of PZA resistance among

TABLE 1 | Number of samples analysed.

Item name Total number (%)

Clinical isolates/samples 35,944

Samples classified Susceptible 23,256 (64.7)

Drug resistant (DR) 5,008 (13.9)

Multi-drug resistant (MDR) 6,691 (18.6)

Extreme drug resistant (XDR) 989 (2.8)

Samples tested for PZA drug
susceptibility

13,914

Resistant 2,379 (17.1)

Samples with nsSNPs in the protein
coding region of pncA

4,731 (13.2)

Susceptible 184 (3.9)

Drug resistant (DR) 632 (13.4)

Multi-drug resistant (MDR) 3,290 (69.5)

Extreme drug resistant (XDR) 625 (13.2)

Samples with pncA nsSNPs tested for
PZA drug susceptibility

2,289 (48.4)

Samples with pncA nsSNPs resistant to
PZA

1,677 (73.3)

Unique nsSNPs: No. of sites 424 nsSNPs: 151 sites

Summary of clinical isolates from genome-wide analysis. PZA, pyrazinamide;
nsSNPs, non-synonymous Single Nucleotide Polymorphisms.
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FIGURE 2 | Barplots showing number of mutations and sites associated with protein stability and ligand affinity. (A) Number of nsSNPs categorised as destabilising
(n = 359) and stabilising (n = 65) according to DUET protein stability. (B) Frequency of sites associated with the number of nsSNPs, where horizontal axis denotes the
number of nsSNPs and vertical axis denotes the total number of sites/positions corresponding to the number of nsSNPs. (C) Barplot showing the number of nsSNPs
categorised as destabilising (n = 168) and stabilising (n = 33) according to mCSM ligand affinity where sites lie within 10Å of ligand. (D) Frequency of sites associated
with the number of nsSNPs, where horizontal axis denotes the number of nsSNPs and vertical axis denotes the total number of sites/positions corresponding to the
number of nsSNPs. The figure is generated using R statistical software (version 4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms.

samples containing nsSNPs in the protein coding region was high
(n = 1,677, 73.3%) (Table 1).

Across the 4,731 isolates, 424 distinct nsSNPs corresponding
to 151 distinct amino acid positions on the pncA structure were
identified (Figures 2A,B). A total of 201 nsSNPs corresponding
to 54 amino acid changes were within 10 Å of the ligand binding
site (Figures 2C,D). The majority of these nsSNP mutations
have been annotated as being linked to PZA resistance within
the TBProfiler tool (227/424). The majority of these nsSNP
mutations have been annotated as being linked to PZA resistance
within the TBProfiler tool (227/424; denoted as DM), while

the others (197/424; denoted as OM) were assumed to have
weak or no links. Genomic measures like minor allele frequency
(MAF) and odds ratio (OR) were obtained for a total of 322
nsSNPs, with adjusted OR (aOR) estimated for a total of 163
nsSNPs. Across the majority of these nsSNPs, the MAFs were low
(median: 0.02% range: 0.01–2.11%) (Supplementary Figure 7A).
Similarly, when considering ORs, the majority of the nsSNPs had
high ORs (median: 9.70, range: 0.22–414.61) (Supplementary
Figure 7D). When looking at the distribution of MAF and OR
within mutations associated with PZA resistance (DM) and other
mutations (OM) (Supplementary Figures 7B,E), DM mutations
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FIGURE 3 | Mutational landscape of pncA structure (3PL1) coloured by positions linked to pyrazinamide drug (PZA) resistance. Panels (A,B) show all mutational
positions in orange while mutational positions in (C,D) are further coloured by mutations classed as either drug resistant mutations (purple) or “other mutations”
(blue), while sites linked to mutations belonging to either category are coloured in pink. The right panels (B,D) depict the corresponding structure rotated by 180◦.
The ligand (PZA) is shown as ball and stick within the active site denoted by the red circle. The figure is rendered using UCSF Chimera (version 1.14). pncA,
pyrazinamidase.

were associated with significantly higher (P < 0.0001) MAF and
OR (Supplementary Figures 7C,F).

Understanding Mutational Effects on
pncA Stability and PZA Binding Affinity
The 424 nsSNPs mapped onto the crystal structure of pncA
revealed that mutational landscape of pncA appears distributed
(Figures 3A,B) throughout the structure. Sites linked to drug
resistant mutations were predominant around the PZA binding
(active) site, while sites exclusively linked to mutations classed in
the “other” category are distal to the active site (Figures 3C,D, 4).
Furthermore, active site residues were associated with a multiple

point mutation (Table 2 and Figures 1B, 5C). All active site and
hydrogen-bond forming residues with the ligand were associated
with multiple mutations (≥2) (Figure 1B), thus representing the
high diversity of mutations present within pncA. Despite this,
there appears to be some degree of clustering around positions
4–14, 46–97, 132–143 involving the active site and metal centre
residues (Figure 5C).

The biophysical effect of mutations on protomer stability,
estimated as 11G (Kcal/mol), was measured using DUET (Pires
et al., 2014a) and FoldX (Schymkowitz et al., 2005), while
mutational impact on ligand affinity was measured using mCSM-
lig (Pires et al., 2016) (see section “Materials and Methods”).
Assessing mutational effects on protein stability as measured by
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FIGURE 4 | Comparison of structural features between Drug resistance (DM) and other mutations (OM) of pncA gene mutations according to (A) DUET protein
stability (11G), (B) FoldX stability (11G), and (C) Ligand Affinity. A total of 424 nsSNPs for DUET and FoldX (DM, n = 227, OM, n = 197), while a total of 201
nsSNPs (DM, n = 129 OM, n = 72) lying within 10 Å of PZA for ligand affinity were included in the analysis. DM and OM mutations were compared using Wilcoxon
rank-sum (unpaired) and statistical significance indicated as: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). The figure is generated using R statistical
software (version 4.0.2). ns, non-synonymous Single Nucleotide Polymorphisms; pnca, pyrazinamidase; PZA, pyrazinamide; Å, Angstroms; 11G, Change in Gibbs
free energy in Kcal/mol; ASA, Accessible Surface Area; RSA, Relative surface Area; RD, Residue Depth; KD, Kyte-Doolittle Hydrophobicity values.

DUET, nearly 85% had a destabilising effect (n = 359) compared
to nearly 15% mutations with stabilising effects (n = 47) as shown
in Figure 2A. When assessing ligand affinity, 47.4% (n = 201)
SNP mutations were present within 10 Å of the PZA binding site
(Figure 2C). Similar to DUET stability effects, the majority (84%;
n = 168) of nsSNPs were destabilising while 16% (n = 27) were
stabilising for ligand binding affinity (Figure 2C). More than
50% of the mutational positions were associated with multiple
nsSNPs for both protein stability (n = 113) and ligand affinity
(n = 49) (Figures 2B,D). The average protein stability and ligand
affinity effects of all mutations mapped onto the pncA structure
(Figures 5A,B), highlight mutations with opposing effects for
protein stability and ligand affinity. These effects are pronounced
for active site residues (I133, A134, H137, C138) (Figures 5C,D).

There were 80 sites within pncA associated with multiple
nsSNPs (>2) (Figures 1B, 2B) which included all active residues
except I133 which was associated with 2 mutations (Figure 1B).
Sites with 2 nsSNPs are considered to be budding resistance
hotspots (n = 33 for protein stability, n = 7 for ligand affinity).
A total of 57 nsSNPs within 5 Å of PZA were considered
to be within the first shell of residues lining the active site
(Table 2). While majority of the mutational sites associated with
more than two mutations comprise of destabilising mutations,
positions 1, 2, 10, 12, 43, 46, 51, 57, 63, 67, 69, 78, 82,
92, 96, 100, 104, 105, 129, 135–138, 142, 149, 164, 168, and
174 comprised of both stabilising and destabilising mutations
(Figure 5C). Similarly, for ligand affinity, most mutational sites
had destabilising mutational effects, with positions 7, 8, 13, 27,

49, 72, 78, 96, 102, 103, 105, 134, 137, 138, and 162 associated
with mutations resulting in mixed stability impact. Position 163
comprised only of mutations with stabilising effects (Figure 5D).
The budding resistance hotspot active site residue I133 contained
both mutations with destabilising effect for protein stability
(Figure 5C), while stabilising for ligand affinity (Figure 5D).
Similarly, for budding resistance hotspots, majority of the nsSNPs
were associated with destabilising effects. For protein stability,
9/33 sites had mutations with mixed stability (positions 15, 32, 61,
66, 76, 114, 127, 153, and 161) (Figure 5C), while only position 20
showed mixed stability effects for ligand affinity (Figure 5D).

Mutations With Extreme Effects
Mutations with extreme effects on protein stability and affinity
are summarised in Table 3. Overall, the most destabilising
mutation according to DUET was L4S, where a change from
a hydrophobic to a polar residue may contribute to disruption
of local conformation (Table 3). The closest most destabilising
mutational effect on protein stability was from A134D (wild-
type residue involved in hydrogen bonding) (Table 3), likely
resulting in electrostatic and steric clashes due to a change
in charge and volume affecting the overall stability negatively.
The most stabilising mutation on protomer stability was from
active site residue Y103D, while the closest such mutation was
C138R (Table 3). The stabilising effect of these mutations on the
protein stability and ligand affinity is thought to result from the
electrostatic interactions working favourably for sites lying within
5 Å of the ligand. The most destabilising mutation according
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TABLE 2 | Mutations close to the active site of PZA.

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

1 A134D Others 0.01 2.42 1.00E+00 NA NA −2.98 D 3.05 0.58 S 1.03 D 10 0.08 1.87 6.77

2 A134G Others NA NA NA NA NA −1.62 D 3.05 −0.38 D −1.29 S 10 0.08 1.87 6.77

3 A134P Others 0.01 9.70 1.71E-01 NA NA −1.43 D 3.05 0.08 S −5.20 S 10 0.08 1.87 6.77

4 A134T Others NA NA NA NA NA −1.93 D 3.05 0.88 S −0.94 S 10 0.08 1.87 6.77

5 A134V Drug
associated

0.04 19.43 3.68E-03 1.53 3.07E-05 −0.41 D 3.05 0.12 S −1.46 S 10 0.08 1.87 6.77

6 I133S Others 0.01 9.70 1.71E-01 NA NA −3.22 D 3.05 0.58 S 3.30 D 3 0.02 1.97 7.90

7 I133T Drug
associated

0.32 6.44 2.90E-09 0.86 4.86E-03 −2.79 D 3.05 0.70 S 1.58 D 3 0.02 1.97 7.90

8 D8A Drug
associated

0.01 19.41 2.92E-02 NA NA −0.51 D 3.22 −3.27 D 0.54 D 5 0.03 1.63 9.48

9 D8G Drug
associated

0.08 48.69 1.95E-07 1.25 4.42E-02 −0.85 D 3.22 −3.45 D 1.89 D 5 0.03 1.63 9.48

10 D8E Drug
associated

0.03 14.56 1.74E-02 1.19 1.46E-01 −0.79 D 3.22 0.01 S 1.90 D 5 0.03 1.63 9.48

11 D8N Drug
associated

0.05 29.16 1.49E-04 1.24 7.10E-03 −1.18 D 3.22 −1.66 D −1.26 S 5 0.03 1.63 9.48

12 C138G Others NA NA NA NA NA −0.02 D 3.28 −0.01 D 1.12 D 12 0.07 1.17 6.70

13 C138S Drug
associated

NA NA NA NA NA 0.00 D 3.28 0.81 S −0.23 S 12 0.07 1.17 6.70

14 C138W Others NA NA NA NA NA −1.05 D 3.28 0.94 S −1.72 S 12 0.07 1.17 6.70

15 C138Y Drug
associated

NA NA NA NA NA −0.52 D 3.28 0.91 S −0.57 S 12 0.07 1.17 6.70

16 C138R Drug
associated

0.09 116.96 6.10E-10 1.74 4.08E-12 0.10 S 3.28 0.35 S −2.12 S 12 0.07 1.17 6.70

17 H137N Others 0.01 2.42 1.00E+00 NA NA 0.19 S 3.42 −0.12 D 0.40 D 84 0.38 −1.40 4.60

18 H137P Drug
associated

NA NA NA NA NA 0.37 S 3.42 −0.77 D 2.19 D 84 0.38 −1.40 4.60

19 H137Y Others 0.01 2.42 1.00E+00 NA NA 0.86 S 3.42 −0.01 D 0.34 D 84 0.38 −1.40 4.60

20 H137R Drug
associated

0.03 4.85 1.38E-01 0.56 1.21E-04 −0.27 D 3.42 0.47 S 0.49 D 84 0.38 −1.40 4.60
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Frontiers
in

M
olecular

B
iosciences

|w
w

w
.frontiersin.org

July
2021

|Volum
e

8
|A

rticle
619403

105

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fm
olb-08-619403

A
ugust3,2021

Tim
e:21:57

#
10

Tunstalletal.
P

yrazinam
ide

R
esistance

in
M

ycobacterium
tuberculosis

TABLE 2 | Continued

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

21 D49G Drug
associated

0.05 29.16 1.49E-04 1.66 4.38E-08 −1.16 D 3.45 −3.46 D 0.46 D 7 0.04 −1.53 7.89

22 D49A Drug
associated

0.04 58.33 2.49E-05 1.67 3.17E-06 −0.45 D 3.45 −3.35 D −2.07 S 7 0.04 −1.53 7.89

23 D49N Drug
associated

0.06 77.84 7.23E-07 1.51 3.14E-04 −1.68 D 3.45 −1.93 D −0.33 S 7 0.04 −1.53 7.89

24 D49Y Drug
associated

0.01 9.70 1.71E-01 NA NA −0.74 D 3.45 −1.86 D −2.67 S 7 0.04 −1.53 7.89

25 D49E Drug
associated

0.02 9.70 7.77E-02 NA NA −0.47 D 3.45 0.25 S −0.70 S 7 0.04 −1.53 7.89

26 A102R Others 0.01 2.42 1.00E+00 NA NA −0.70 D 3.50 0.17 S 4.13 D 10 0.08 0.03 5.51

27 A102P Others 0.06 14.58 5.08E-04 0.66 5.33E-04 −1.25 D 3.50 −0.23 D −0.62 S 10 0.08 0.03 5.51

28 A102V Others 0.06 2.43 1.88E-01 0.91 3.00E-01 −0.25 D 3.50 −0.16 D −1.91 S 10 0.08 0.03 5.51

29 A102T Drug
associated

0.01 19.41 2.92E-02 1.75 4.98E-04 −0.72 D 3.50 0.88 S −2.03 S 10 0.08 0.03 5.51

30 F13C Others 0.01 1.21 1.00E+00 0.64 4.31E-03 −2.32 D 3.55 −0.49 D 2.70 D 24 0.10 0.60 6.93

31 F13I Drug
associated

0.03 14.56 1.74E-02 NA NA −1.76 D 3.55 −0.45 D 0.89 D 24 0.10 0.60 6.93

32 F13L Drug
associated

0.06 34.04 2.89E-05 1.37 2.29E-03 −2.03 D 3.55 −0.43 D 1.10 D 24 0.10 0.60 6.93

33 F13V Others 0.01 1.21 1.00E+00 NA NA −2.57 D 3.55 −0.56 D 1.40 D 24 0.10 0.60 6.93

34 F13S Drug
associated

0.03 1.62 5.28E-01 0.60 3.07E-04 −3.10 D 3.55 0.22 S 2.59 D 24 0.10 0.60 6.93

35 K96E Drug
associated

0.08 107.17 3.58E-09 1.75 2.79E-06 −2.12 D 3.98 −0.67 D 6.92 D 8 0.03 −1.87 5.96

36 K96Q Drug
associated

0.03 4.85 1.38E-01 0.64 1.17E-01 −1.32 D 3.98 −0.08 D 1.04 D 8 0.03 −1.87 5.96

37 K96T Drug
associated

0.09 58.47 6.68E-09 1.84 2.25E-13 −0.86 D 3.98 −0.57 D 3.54 D 8 0.03 −1.87 5.96

38 K96M Others 0.01 19.41 2.92E-02 NA NA 0.41 S 3.98 −1.03 D 0.27 D 8 0.03 −1.87 5.96

39 K96N Drug
associated

0.01 2.42 1.00E+00 NA NA −1.16 D 3.98 0.33 S 2.61 D 8 0.03 −1.87 5.96
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TABLE 2 | Continued

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

40 K96R Drug
associated

0.11 19.49 1.66E-07 1.43 2.16E-06 −0.17 D 3.98 0.08 S −0.74 S 8 0.03 −1.87 5.96

41 H71D Drug
associated

0.01 9.70 1.71E-01 NA NA −2.69 D 4.18 −2.50 D 5.75 D 5 0.02 −0.77 6.25

42 H71N Drug
associated

NA NA NA NA NA −2.67 D 4.18 −1.34 D 0.64 D 5 0.02 −0.77 6.25

43 H71P Others 0.01 4.85 3.13E-01 NA NA −2.36 D 4.18 −2.89 D 3.26 D 5 0.02 −0.77 6.25

44 H71Q Drug
associated

0.01 19.41 2.92E-02 1.75 2.12E-04 −2.29 D 4.18 −1.73 D 1.12 D 5 0.02 −0.77 6.25

45 H71R Drug
associated

0.05 1.94 3.42E-01 0.88 2.01E-01 −1.93 D 4.18 −0.83 D −1.52 S 5 0.02 −0.77 6.25

46 H71Y Drug
associated

0.18 25.67 4.52E-13 1.48 5.50E-08 −0.46 D 4.18 −1.96 D −1.78 S 5 0.02 −0.77 6.25

47 H57D Drug
associated

0.73 166.91 2.08E-72 1.24 1.05E-01 −1.85 D 4.56 −1.28 D 1.83 D 16 0.07 −1.30 5.63

48 H57P Drug
associated

0.03 38.85 8.53E-04 1.55 1.16E-02 −1.23 D 4.56 −2.12 D 0.15 D 16 0.07 −1.30 5.63

49 H57Q Others NA NA NA NA NA −1.29 D 4.56 −0.95 D 0.85 D 16 0.07 −1.30 5.63

50 H57R Drug
associated

0.19 254.92 1.02E-20 1.48 9.69E-09 −1.17 D 4.56 −0.28 D 1.25 D 16 0.07 −1.30 5.63

51 H57L Drug
associated

NA NA NA NA NA −0.06 D 4.56 −1.92 D −1.11 S 16 0.07 −1.30 5.63

52 H57Y Drug
associated

0.02 29.13 4.99E-03 2.08 7.92E-06 0.41 S 4.56 −1.16 D −0.15 S 16 0.07 −1.30 5.63

53 W68C Drug
associated

0.04 24.29 7.49E-04 1.75 1.67E-04 −1.45 D 4.97 −1.58 D 2.68 D 45 0.16 −1.10 5.49

54 W68G Drug
associated

0.14 87.93 2.36E-13 1.58 7.39E-11 −2.57 D 4.97 −2.13 D 4.04 D 45 0.16 −1.10 5.49

55 W68L Drug
associated

NA NA NA NA NA −1.62 D 4.97 −2.24 D 0.19 D 45 0.16 −1.10 5.49

56 W68R Drug
associated

0.20 132.41 4.03E-20 1.50 4.26E-09 −1.61 D 4.97 −0.58 D 0.08 D 45 0.16 −1.10 5.49

57 W68S Drug
associated

0.01 9.70 1.71E-01 NA NA −2.67 D 4.97 −1.04 D 2.65 D 45 0.16 −1.10 5.49

Fifty-seven mutations (nsSNPs) lying within 5 Å of PZA and the corresponding GWAS measures of minor allele frequency (MAF), Odds Ratio (OR), P-values, adjusted OR (aOR), and P-values from Wald test corresponding
to aORs, along with structural measures of distance to ligand, DUET, FoldX, ligand affinity values and effect. Wild type residues for mutations highlighted and marked in green are considered to participate in hydrogen
bonding, those in yellow form the catalytic triad, residues in teal (and blue) are involved in substrate binding, while the residues in purple are involved in the iron centre. The columns are coloured to highlight the most
significant column attribute with deeper colours denoting the greatest effects. The dark colours in MAF, OR, and aOR columns indicate the highest values, while P-values are coloured with the darkest colour showing the
most significant values. Values in the DUET, mCSM-lig, and FoldX columns are coloured according to the extent of their respective effects with red indicating destabilising and blue denoting stabilising effects. nsSNPs,
non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; GWAS, Genome-Wide Association Studies. D, Destabilising; S, Stabilising.

Frontiers
in

M
olecular

B
iosciences

|w
w

w
.frontiersin.org

July
2021

|Volum
e

8
|A

rticle
619403

107

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-619403 August 3, 2021 Time: 21:57 # 12

Tunstall et al. Pyrazinamide Resistance in Mycobacterium tuberculosis

FIGURE 5 | Protein stability and ligand affinity effects of nsSNPs on pncA structure and by position. Mutational impact of nsSNPs on the pncA protein structure
coloured by average (A) DUET Protein stability (n = 424) and (B) ligand affinity (n = 201). Barplots (C,D) showing the frequency of mutations within the pncA gene.
The horizontal axis shows the mutational positions within pncA and the vertical axis shows the frequency of mutations. Positions on the horizontal axis are coloured
to denote the active site residues: green (residues involved in hydrogen bonding with PZA), yellow (catalytic triad), blue and teal (substrate binding), purple (iron
centre). For a given position, each corresponding mutation (nsSNP) is coloured by the level of stability according to (C) DUET(n = 424) and (D) Ligand affinity
(n = 201) where the horizontal axis denotes amino acid positions in pnca, and is restricted to positions lying within 10 Å of PZA for ligand affinity. Destabilising
mutations are depicted in red and stabilising mutations in blue, where colour intensity reflects the extent of effect, ranging from −1 (most destabilising) to + 1 (most
stabilising). The structural figures (A,B) are rendered using UCSF Chimera (version 1.14). The barplot figure (C,D) is generated using R statistical software (version
4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; pncA, pyrazinamidase.

to ligand affinity was D49G located at ∼3.5 Å (Table 3). The
three subsequent destabilising mutations for ligand affinity were
also all within 5 Å of PZA binding site namely D8G (∼3 Å),
D49A (∼3.5 Å), and D8A (∼3 Å) (Supplementary Table 1), all
arising likely due to the loss of charge and volume interfering
with ligand interaction. The mutation with the greatest stabilising
effect on ligand affinity was G162D, located at ∼8 Å, i.e. outside
the first shell of influence (>5 Å) from the ligand. This is
possibly due to the resulting electrostatic effects and increase in
volume, which may favour hydrogen bond formation with nearby
residues and PZA binding, thereby increasing affinity (Table 3).
The closest most stabilising mutational impact on ligand affinity
was due to mutation A134P, though this was a marginal effect
(Table 3). The most destabilising mutation according to FoldX
was C72W, which is located far away from the active site (∼27 Å).

Interestingly, mutation A134P was the most stabilising according
to FoldX, while the same was estimated to have a destabilising
effect according to DUET (Table 3). All mutations except A134D
and A134P were associated with PZA drug resistance (Table 3).

Relating Structural and GWAS Analyses
The minor allele frequencies for the 424 nsSNPs were mapped
onto their corresponding amino acid positions of the pncA
gene (Supplementary Figure 8). Position 10 had the highest
cumulative minor allele frequency (MAF, ∼2.3%), followed by
position 7 (∼1.2%), position 57 (∼1.0%), position 51 (∼0.6%),
and position 14 (0.5%). The risk of PZA resistance from the
alleles at each SNP was estimated by calculating ORs and P-values
using a GWAS approach. Additionally, adjusted OR (aOR)
which accounted for the confounding effects of lineage were also
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TABLE 3 | Mutations with extreme effects.

Mutational effects Mutation Mutation class MAF (%) OR P-value Distance
to ligand

(Å)

Stability 11G Ligand affinity

Highest OR H51D Drug-associated 0.30 414.61 4.49E-33 5.66 −2.2 −1.82

Most frequent mutation Q10P Drug-associated 2.11 156.23 1.28E-207 6.02 −0.63 −1.77

Most deStabilising for protein
stability (DUET)

L4S Drug-associated 0.25 28.46 5.63E-18 15.33 −3.87 −1.08

Closest destabilising for protein
stability (DUET)

A134D Others 0.007 2.43 1.00 3.05 −2.98 0.58

Most stabilising for protein
stability (DUET)

Y103D Others 0.22 142.33 1.24E-21 5.42 1.18 0.85

Closest stabilising for protein
stability (DUET)

C138R Drug-associated 0.09 116.96 6.09E-10 3.28 0.10 0.35

Most destabilising for ligand
affinity

D49G Drug-associated 0.05 29.16 0.0001 3.45 −1.16 −3.46

Closest destabilising for ligand
affinity

D8G Drug-associated 0.08 48.69 1.95E-07 3.22 −0.85 −3.45

Most stabilising for ligand
affinity

G162D Drug-associated 0.03 38.85 0.0008 8.32 −1.04 2.23

Closest stabilising for ligand
affinity

A134P Others 0.007 9.70 1.71E-01 3.05 −1.43 0.08

Most destabilising for protein
stability (Foldx)

C72W Drug-associated 0.01 19.41 0.03 7.05 27.46 –

Most stabilising for protein
stability (Foldx)

A134P Others 0.007 9.70 1.71E-01 3.05 −5.2 –

Mutations (nsSNPs) with extreme effects on odds ratio, frequency, thermodynamic stability, and ligand affinity. For ligand affinity, only mutations lying within 10 Å of
PZA (pyrazinamide) were considered. nsSNPs, non-synonymous Single Nucleotide Polymorphisms; Å, Angstroms; MAF, minor allele frequency; OR, Odds Ratio; 11G,
Change in Gibbs free energy in Kcal/mol.

FIGURE 6 | Correlation between biophysical effects and GWAS measures of Odds Ratio (OR), P-values (P) and minor allele frequency (MAF). Pairwise correlations
between MAF, negative log10 P-value [-Log(P)], Log10 (OR) and (A) Protein stability (DUET) and FoldX for 424 nsSNPs, (B) Ligand affinity of 201 nsSNPs (lying
within 10 Å of PZA). The upper panel in both plots include the pairwise Spearman correlation values along with their statistical significance (*P < 0.05, **P < 0.01,
***P < 0.001). The points in the lower panel represent nsSNPs, coloured according to respective stability effects: (A) nsSNPs with destabilising effect for DUET and
ligand affinity are coloured red, while for FoldX these appear in blue, (B) nsSNPs with stabilising effect for DUET and ligand affinity appear in blue, while for FoldX
these appear in red. The diagonal plots display the histogram of the corresponding parameter. The figure is generated using R statistical software (version 4.0.2).
nsSNPs, non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; Units for DUET, FoldX and Ligand Affinity (Kcal/mol).
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FIGURE 7 | Density distribution of M. tuberculosis lineages. A total of 4,433 samples belonging to Lineages 1–4, containing 419‘pncA mutations were considered.
The horizontal axis shows the DUET stability values (−1, most destabilising) to blue (+1, most stabilising). while the vertical axis shows the density distribution of M.
tuberculosis lineages coloured by mutation class as either DM (associated with pyrazinamide resistance in orange) or OM (not associated with pyrazinamide drug
resistance which appear in grey). DM mutations comprise of a total of 3,565 samples contributing to 226 mutations, while 868 samples contributing to 193
mutations formed part of the OM mutation class. The figure is generated using R statistical software (version 4.0.2). Abbreviations used: nsSNPs: non-synonymous
Single Nucleotide Polymorphisms, pncA: pyrazinamidase.

analysed (Supplementary Figure 9). The majority of nsSNPs
were linked to increased likelihood of being resistant to PZA
(OR > 1). For unadjusted ORs, this was 96% (310/322), while
for aOR, it was ∼75% (122/163). Wild type position 51 had the
highest unadjusted OR (> 350, P < 10−30), followed by positions
57, 120 (OR > 250, P< 10−19), and subsequently by positions 10,
103, 68, 135, 138, 96, and 180 (OR > 100; P < 10−10) (Figure 1A,

Supplementary Figure 8, and Supplementary Table 1), with
most of these positions being present in the metal binding
and active sites.

When assessing sites in relation to mutational diversity,
active site residues were among the highest, with residues
H51, H57, H71, K96 associated with six distinct mutations,
followed by F13, D49, W68, A134, C138 with five mutation
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each, while residues D8, Y103, H137 were associated with
four distinct mutations and residues I133 associated with two
distinct mutations (Figure 1B). The dominant effect of a highly
frequent mutation (Q10P; MAF = 2.1%, OR = 156.23) in the
population compared to two other mutations observed at the
same position namely Q10R (MAF = 0.13%, OR = 83.01) and
Q10H (MAF = 0.08%, OR = 107.17) (Supplementary Table 1),
makes position 10 prominent in terms of MAF (Supplementary
Figure 8) while sites involved in the catalytic activity and iron
metal centre are more prominent with respect to SNP diversity
(Supplementary Figure 8). These results suggest that mutations
at these structurally and functionally important sites are likely
under selective pressure exerted by the drug resulting in this
observed mutational diversity.

The relationship between structural measures of stability and
OR was visualised as a bubble plot indicating that mutations
associated with greater resistance (high OR) tend not to have
extreme effects (Supplementary Figure 10). Furthermore, this
relationship along with MAF, OR, and P-values was assessed
through Spearman correlations (Figures 6A,B). MAF was
strongly correlated with P-values for all 424 mutations (ρ = 0.78,
P < 0.001) and 201 mutations lying with 10 Å of PZA (ρ = 0.84,
P < 0.001) (Figures 6A,B). As expected, OR and P-values were
strongly correlated (ρ = 0.9, P < 0.001) for all 424 nsSNPs and
201 nsSNPs close to PZA binding site (Figures 6A,B). FoldX
stability and DUET stability values showed moderate correlation
(ρ = 0.45, P < 0.001). The negative sign for the DUET and
FoldX associations is expected since stability changes measured
by these tools have opposite signs (i.e., 11G < 0: destabilising in
DUET vs. stabilising in FoldX). FoldX 11G values showed weak
but significant correlations with OR (ρ = 0.23, P < 0.001), and
P-values (ρ = 0.18, P < 0.01) (Figure 6A), while DUET 11G and
ligand affinity showed weak and insignificant association with OR
(ρ = −0.1, P > 0.05) (Figures 1B, 6A), including adjusted OR
(Supplementary Figures 9A, 8B).

When considering aOR and its relationship with stability
and other structural features [i.e., Accessible (ASA), Relative
Surface Area (RSA), residue depth (RD), and hydrophobicity
values (KD)], there was high correlation (ρ > 0.6, P < 0.05)
with adjusted and unadjusted ORs (Supplementary Figure 9A).
DUET 11G showed moderate positive correlation between
ASA and RSA (ρ > 0.6, P < 0.05), while moderately
negative correlation with RD (ρ∼−0.5, P < 0.05), and weak
negative correlation with KD values (ρ∼−0.2, P < 0.05)
(Supplementary Figure 9A). The same structural features,
however, did not demonstrate correlation with either
FoldX 11G (Supplementary Figure 9A) or ligand affinity
(Supplementary Figure 9B).

Structural Differences in Drug
Associated Mutations
Comparing stability effect (DUET and FoldX), ligand affinity,
ligand distance, and other structural features (ASA, RSA, RD,
KD) between mutations associated with PZA drug resistance
(DM) and other mutations (OM), revealed statistically significant
differences (P < 0.05) between all features except hydrophobicity

values. The difference in structural features were most prominent
when all 424 SNP mutations were considered (P < 0.0001)
(Figures 4A,B) with lesser significance for ligand affinity
(P < 0.05), ASA (P < 0.01), and RSA and RD (P < 0.001)
values when 201 nsSNPs lying within 10 Å were considered
(Figure 4C). Mutations associated with PZA resistance have
lower DUET (Figure 4A, top left) but higher FoldX stability
changes (Figure 4B, bottom left), and lower binding affinity
(Figure 4C, second from bottom left) compared to OM.
Additionally, it also appears that that while drug mutations
need not necessarily occur at the hydrophobic sites (KD values,
P > 0.05), they tend to lie buried indicated by higher RD values,
and consequently lower surface area (ASA and RSA) compared
to OM (Figures 4A,B).

Distinct Stability Profile for Drug
Mutations and Lineage 1
A total of 419 nsSNPs are lineage specific (L1: 74; L2: 277; L3:
104; L4: 311). The greatest diversity of nsSNPs was observed
in L3 (54.7%), followed by L1 (51.4%) and Lineage 2 (14.7%)
with L4 showing the lowest diversity (14.1%) despite containing
the highest number of samples (Supplementary Figure 6).
Statistical analysis of the DUET 11G distributions revealed
significant differences between all lineages except between
L3 and L4. Lineage differences for DUET 11G were most
prominent between L2 and L4 (P < 0.0001), followed by
L1 and L4 (P < 0.001) (Supplementary Table 2A). Within
each lineage, mutational distributions were significantly different
between DM and OM mutation classes (P < 0.0001) except
L3 (Supplementary Table 2B). Interestingly, a distinct stability
profile was observed for DM mutations within L1. Mutations
associated with drug resistance showed a marked peak around the
extreme end (−0.75 DUET 11G) of the destabilising spectrum
(Figure 7) within L1.

DISCUSSION

Genetic mutations including nsSNPs present within drug-targets
and their activating genes are the main drivers of resistance
development in TB (Schön et al., 2017). The motivation for
investigating the missense mutations within the protein coding
region only of the pncA gene was to enable understanding
of the phenotypic mutational effects in relation to PZA
resistance development. While the exact molecular mechanisms
of PZA resistance are yet to be fully elucidated, the binding
pocket of PZA and its key interactions are well known and
characterised (Petrella et al., 2011; Ali et al., 2020; Sheik
Amamuddy et al., 2020; Khan et al., 2021). This knowledge
was used to guide the molecular docking of PZA to generate
the pncA-PZA complex in the absence of an experimentally
solved structure of the bound complex in Mtb. While docking
generates a variety of ligand conformations (poses), choosing
the “best” pose is based on considerations around key molecular
interactions formed by the ligand, interaction energy of the
docked complex and subject expertise. Using these guides,
docking pose 1 was chosen due to its molecular interactions
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with known key residues and close alignment with previously
published studies (Karmakar et al., 2018; Ali et al., 2020; Khan
et al., 2021). In addition, we analysed the top two docking
poses using the mCSM pipeline (Supplementary Figure 3).
The resulting mutational effects on pncA stability and ligand
affinity did not differ between poses indicating the small
differences in pose did not affect downstream analysis. It also
suggests that due to the small size of the PZA molecule, the
orientation of the aromatic ring within the cavity may have
more flexibility in its orientation and interaction with the
neighbouring residues, but without drastically impacting the
molecular interactions for global protomer stability and ligand
binding affinity.

The molecular motion of pncA assessed by NMA was
visualised to understand the mutational effects with regard
to flexibility (Supplementary Figure 1). Sites displaying high
mutational frequency or association with drug resistance
mutations were not located in regions with high flexibility, with
large molecular motions mainly restricted to the loop region 60–
66. This suggests the molecular motion in pncA does not interfere
with PZA binding as active site residues were not associated with
high fluctuations.

Normal mode analysis shows large scale molecular motions.
Molecular dynamics (MD) studies offer insights into the
finer grained atomic motions and are an excellent way to
investigate molecular mechanisms. However, these studies are
computationally intensive and are difficult to scale for studying
hundreds of mutations. A recent MD study on a subset of
mutations found within our dataset analysed seven pncA nsSNPs
(F94L, F94S, K96N, K96R, G97C, G97D, and G97S) showed
that these destabilising mutations altered the binding pocket,
allowing increased PZA flexibility (Khan et al., 2021). All seven
mutations were associated with PZA resistance and also showed
destabilising effects in our study. A similar study of destabilising
mutations R123P, T76P, H7R associated with PZA resistance
showed that the mechanism of resistance could be through
increasing the flexibility of the region they are located in,
thereby changing the binding pocket volume (Ali et al., 2020).
Another MD study of mutations P54L and H57P showed that
they decrease overall stability along with reduced ligand affinity
leading to PZA resistance (Mehmood et al., 2019). All of these
observations are concordant with our analysis.

Destabilising effects of nsSNPs are thought to be the main
reason for impeding protein function through directly effecting
protomer stability or ligand affinity. However, large stabilising
effects can have an equally deleterious impact on protein
function through rigidification, impeding flexibility and dynamic
molecular motions. This has been implicated more generally
within a disease context (Gerasimavicius et al., 2020) and more
specifically in PZA resistance (Rajendran and Sethumadhavan,
2014). It offers an explanation for the observance of the stabilising
mutation site 103. Drug associated mutations at this site (Y103C,
Y103H, and Y103S) could result from the rigidification of the
binding pocket leading to reduced binding affinity measured as
destabilising PZA affinity.

Mutations within pnca are scattered along the entire gene
length observed in studies (Stoffels et al., 2012; Miotto et al.,

2014; Whitfield et al., 2015). While two other genes, rpsA
and panD have also been linked to PZA resistance, a clear
link between rpsA and PZA resistance is lacking (Shi et al.,
2011; Alexander et al., 2012; Simons et al., 2013; Tan et al.,
2014) although there is increasing evidence to support panDs
association with PZA resistance (Pandey et al., 2016; Werngren
et al., 2017; Gopal et al., 2020). In our analysis, there were
only a few samples with rpsA and panD mutations, therefore
limiting attempts at assessing their synergistic relationship with
PZA resistance. Mutations within the pncA gene and its promoter
remain the most common route to PZA resistance (Dookie
et al., 2018) (Khan et al., 2019). Nearly 70% of the MDR
isolates and 13% XDR isolates had nsSNPs in the pncA coding
region. The burden of pncA mutations in the MDR and XDR
isolates was lower in our analysis compared to 88.0% and
∼20% observed by Pang et al. (2017). In another study, 70%
of the MDR isolates, and significantly higher i.e., 96% of XDR
isolates harboured pncA mutations including nsSNPs (Allana
et al., 2017). An alternative route to resistance for pncA as
a non-essential gene encoding an enzyme that transforms a
prodrug to drug would be by INDELs or mutations leading to
premature stop codons resulting in the protein being degraded
on translation. A recent report analysing the pncAc.85_86insG
frameshift mutation using structural and biophysical analysis
showed the mutation resulted in a truncated and incomplete
protein lacking the active site pocket (Karmakar et al., 2018).
Despite this obvious route to resistance, only 1% samples
in our dataset showed INDELs and stop codons, compared
to 13% of samples that showed missense point mutations
in pncA. This is consistent with the knowledge that nsSNPs
in pncA remain the major route to resistance for PZA
(Khan et al., 2019).

Destabilising effects are considered detrimental to the
downstream protein function (via disruption of drug affinity,
nucleic acid affinity or overall complex stability) and are thus
given higher consideration in classifying mutations (Wylie and
Shakhnovich, 2011). In our analysis, around 85% of mutations
were destabilising for overall protein stability as well as complex
affinity. It is thought that the resistant phenotype is imparted
either through affecting protein folding, instability of the PZase
protein, prevention of coenzyme complex (Gopal et al., 2016)
or loss of virulence factor synthesis (Gopal et al., 2016).
Further, this is thought to come without a high bacterial fitness
cost since pncA is primarily an activator of the PZA drug.
This is similar to a recent observation reported in the katG
gene (target for the anti-TB pro-drug, isoniazid) with a high
proportion of destabilising mutations (Portelli et al., 2018).
Also, a higher proportion 60% (n = 253) of SNP mutations
showed electrostatic changes compared to ∼35% reported by
Portelli et al. (2018). This likely due to the larger sample size of
our dataset.

All active site residues appear to be under drug selection
pressures due to multiple mutations (>2) associated with these
with the exception of I133, considered to be an emerging or
budding-resistance hotspot. In our analyses, there were 22 such
sites while 83 sites within pncA associated with > 2 nsSNPs linked
to PZA drug resistance (categorised as DM). However mutations
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were not restricted to the active site, with less than 50% resistant
variants lying within 10 Å of the active site of PZA, indicating the
possible role of distal residues in resistance development (Portelli
et al., 2018). Mutations associated with drug resistance tend to
have lower stability, lie buried within the structure with lesser
surface area as shown by Karmakar et al. (2020).

Our study compares results from two different computational
stability predictors: mCSM and FoldX (Schymkowitz et al.,
2005). Unsurprisingly, most mutations were found to have a
destabilising effect (Supplementary Figure 11). FoldX reported
∼85% (vs. ∼80% estimated by DUET) nsSNPs with destabilising
effect. The range for absolute 11G values was greater for FoldX
(median: 2.0; range: −5.2, 27.46) compared to DUET (median:
−0.1; range: −3.9, 1.2). There was however, 77% agreement
between FoldX and DUET outcomes (data not shown).
Interestingly, drug associated mutations displayed higher FoldX
11G predictions compared to mCSM-DUET 11G predictions.
A possible explanation for this is the differences in the underlying
parameters the different methods use. FoldX constructs mutant
structures by mutating the target residue and searching for the
optimal conformation by iteratively altering the position of the
neighbouring side chains. The stability of the mutant structure
is estimated using an empirical force field made of several
energy terms. This compares to DUET where estimates of the
structural effects are based on differences between the wild-type
environment and pharmacophore atomic changes resulting from
the mutation, without the need to generate mutant structures.
With this in mind, it appears that the DM mutations have
larger local perturbations in the mutated region considered
by FoldX, resulting in higher 11G predictions compared to
the lesser effects of surface area considered by DUET. Drug
resistance mutations displaying smaller surface area compared
to their susceptible counterparts were also observed in recent
studies investigating nsSNPs in Mtb genes (Portelli et al., 2018;
Karmakar et al., 2020) indicating the role of compensatory
mutations, alleviating any fitness penalty in the development of
the drug resistance phenotype. The extent of the contribution
of surface area in these methods is reflected in the observation
of moderate correlations between DUET and structural features,
and the weaker associations between FoldX and structural
features (Supplementary Figure 9A). Structural associations for
ligand affinity were also observed to be weak (Supplementary
Figure 9B) most likely due to the role of factors involved in short-
range interactions (like Van der Waal’s forces) not considered
in our analysis. A similar view emerged in the recent study by
Karmakar et al. (2020) where no significant differences were
observed for PZA binding affinity.

It has been suggested that frequently occurring mutations may
not confer extreme changes in biophysical stability measures,
with mild stability effects offering local fitness advantages
(Portelli et al., 2018). Our data presented us with the opportunity
to test this theory empirically by assessing relationships of
stability with GWAS measures of MAF, OR, and P-values. At
a glance, it appears that mutations with high OR tend be
less extreme in their impact on protein stability and ligand
affinity (Supplementary Figure 10). However, we did not find
any significant association with high frequency mutations and

extreme changes in stability or affinity parameters (Figure 6).
One possible explanation is that the fitness landscape is gene and
function specific, optimised differently for genes directly coding
for drug targets and for non-essential genes like pncA. Another
major consideration is that resistance is often acquired through
a stepwise ordinal accumulation of mutations (Woodford and
Ellington, 2007; Ismail et al., 2019). The genetic background can
dramatically influence fitness effects associated with mutations
(Wong, 2017). Consequently, the mutational impact differs when
occurring against a sequence background of extant resistant
mutations, a phenomenon known as epistasis (Wong, 2017).
Since resistance development is a balanced interplay between
fitness effects and cost of resistance, epistasis warrants due
consideration in efforts to understand and limit the evolution of
multi-drug resistance.

The use of mCSM suite of tools has the advantage of
studying global (protein stability) as well as local effects (ligand
affinity, protein-protein interaction, and protein nucleic-acid
interaction). Additionally, it also provides the methodological
consistency for comparing molecular effects and benefits
application of machine learning methods (ML) to explore
greater mechanistic details. While computationally intensive,
ML methods would benefit from using tools such as DynaMut
(Rodrigues et al., 2018) which account for protein molecular
motions when estimating mutational effect on protein stability.
Additionally methods which consider anti-symmetric properties
of mutational impact i.e., 11G (A → B) = −11G (B → A)
like DeepDDG (Cao et al., 2019) and INPS-MD (Savojardo et al.,
2016) have the potential to build robust predictive models and
improve the “learning” capability of ML methods in the context
of machine learning.

Mtb lineages have been associated with virulence, disease
transmission, drug resistance, and clinical outcome (Ford et al.,
2013; Reiling et al., 2013; Novais et al., 2017; Correa-Macedo et al.,
2019; Oppong et al., 2019; McHenry et al., 2020). Lineage specific
differences between lineages 2 and 4 have recently been noted in
the development of TB drug resistance, especially related to MDR
and XDR strains (Oppong et al., 2019). Our study highlighted
the most significant differences between L2 and L4 with respect
to protomer stability demonstrating the biophysical phenotypic
manifestation of these underlying genotypic changes. The
observance of a distinct peak for destabilising mutations related
to drug resistance within L1 suggests that the extreme mutational
consequences of such mutations in the “ancient” lineage 1 may
be rapidly giving way to other “modern” M. tuberculosis lineages
linked to MDR and XDR-TB and virulence.

Our study is based on a well-characterised clinical dataset
sourced globally from over 35 K clinical isolates, and leverages
the availability of robust metadata (lineage, geography, DST, etc.)
for each isolate. We show that the framework used in our work
allows us to investigate the interrelationships between genomic
features from GWAS analysis and the biophysical measures of
nsSNPs, helping to contextualise the underlying bacterial fitness
and mutational landscape. The need to consider multiple stability
predictors with different underlying principles to validate these
associations has also been highlighted. Lineage associations of
drug resistance, and their biophysical consequences, require
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further investigation and the functional characteristics of
mutations should be validated in future experiments. We hope
such a framework can be used to understand and inform
therapeutic and stewardship efforts.
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Packpred: Predicting the Functional
Effect of Missense Mutations
Kuan Pern Tan1,2†, Tejashree Rajaram Kanitkar3†, Chee Keong Kwoh2 and
Mallur Srivatsan Madhusudhan3*

1Bioinformatics Institute, Singapore, Singapore, 2School of Computer Engineering, Nanyang Technological University, Singapore,
Singapore, 3Indian Institute of Science Education and Research, Pune, India

Predicting the functional consequences of single point mutations has relevance to protein
function annotation and to clinical analysis/diagnosis. We developed and tested Packpred
that makes use of a multi-body clique statistical potential in combination with a depth-
dependent amino acid substitution matrix (FADHM) and positional Shannon entropy to
predict the functional consequences of point mutations in proteins. Parameters were
trained over a saturation mutagenesis data set of T4-lysozyme (1,966 mutations). The
method was tested over another saturation mutagenesis data set (CcdB; 1,534mutations)
and the Missense3D data set (4,099 mutations). The performance of Packpred was
compared against those of six other contemporary methods. With MCC values of 0.42,
0.47, and 0.36 on the training and testing data sets, respectively, Packpred outperforms all
methods in all data sets, with the exception of marginally underperforming in comparison
to FADHM in the CcdB data set. A meta server analysis was performed that chose best
performing methods of wild-type amino acids and for wild-type mutant amino acid pairs.
This led to an increase in the MCC value of 0.40 and 0.51 for the two meta predictors,
respectively, on the Missense3D data set. We conjecture that it is possible to improve
accuracy with better meta predictors as among the sevenmethods compared, at least one
method or another is able to correctly predict ∼99% of the data.

Keywords: missense mutation effect prediction, amino acid depth, local environment/clique, statistical potential,
meta predictor

INTRODUCTION

Amino acid substitutions could affect protein stability, alter/impair its function, and possibly lead to
disease conditions (Zhang et al., 2012). Several such single amino acid substitutions in proteins, also
called missense mutations, are implicated in diseases such as cystic fibrosis, diabetes, cancer etc.
(Roach et al., 2010; Stranger et al., 2011). Data from clinical studies and from large-scale projects such
as the Human Genome Project (Craig Venter et al., 2001), the HapMap Project (Frazer et al., 2007),
the Exome Sequencing Project, and the 1,000 Genomes Project (Altshuler et al., 2012) have
unearthed such single amino acid mutations. It would be instrumental to have a fast and
automated computational method to accurately predict the functional effect of these mutations.
Such an exercise could also provide valuable insights into the development of personalized medicine.

Several computational methods predict the effect of missense mutations. The methods use
sequence or structure information or a combination of the two. The sequence-based methods rely on
previously known protein sequences and their characterizations deposited in databases. For example,
in the SIFT method (Ng and Henikoff, 2003), mutational effect prediction is made based on a
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customized position-specific substitution matrix (PSSM),
constructed using PSI-BLAST (Altschul et al., 1997) and
MOTIF finder (Smith et al., 1990) to identify conserved local
sequence regions. A majority of structure-based methods are
based on machine learning algorithms. These methods employ
different feature sets and machine learning architectures. For
example, I-mutant2.0 (Capriotti et al., 2005) is trained on features
such as pH, temperature, and mutation type using a support
vector machine. AUTO-MUTE 2.0 (Masso and Vaisman, 2014)
constructs a statistical contact potential with Delaunay
tessellation and trains their models with additional attributes
such as ordered identities of amino acids, pH, and temperature.
PoPMuSiC-2.0 (Dehouck et al., 2009) uses a linear combination
of 26 different statistical energy functions in an artificial neural
network architecture. mCSM (Pires et al., 2014b) utilizes a graph
metric to summarize physicochemical interactions within a cut-
off distance as pattern signatures and trains them using a
Gaussian process regression model. SDM (Pandurangan et al.,
2017), which does not rely on machine learning, constructs an
environment-specific amino acid substitution matrix based on
observed substitutions in evolutionary time. DUET (Pires et al.,
2014a) is a meta-algorithm that consolidates the methods of
mCSM and SDM (Worth et al., 2011). Missense3D
(Ittisoponpisan et al., 2019) is another structure-based method
that uses 17 structural properties to predict the effect of the
mutation. Dynamut2.0 (Rodrigues et al., 2020) uses normal mode
analysis and graph-based signatures. Polyphen (Adzhubei et al.,
2010) is a hybrid method that combines sequence and structural
features to predict the effect of a mutation. It uses an improved
version of PSSM, information from the Pfam database, and
structural features such as accessible surface area and volume
of an amino acid to make a prediction. SuSPect (Yates et al., 2014)
is another hybrid-based method that uses PSSMs and Pfam
domain profiles (Finn et al., 2014). It also includes
information from protein–protein interaction networks and
searches in the database for known functional annotations of a
mutated position. Despite these various efforts and algorithms,
the functional fate of point mutations remains a challenging
problem.

A missense mutation could lead to functional instability by
either disrupting its structure or by affecting its interaction
interface and/or active sites without necessarily impacting its
structure. A mutational effect predictor should hence take into
account the effect of mutation on both overall structural stability
and its functional relevance. In this study, we describe Packpred,
which addresses both these aspects. For structural features,
Packpred uses an environment-dependent multi-body
statistical potential and a depth-dependent substitution matrix,
FADHM. We had previously established that FADHM scores are
useful in predicting the effects of point mutations (Farheen et al.,
2017). The multi-body statistical potential considers the
observed/expected ratio of cliques of residues. The greater the
value of the ratio, the more energetically stable is the packing of
amino acids in the residue clique. We further categorized these
residue cliques based on their residue depths. Residue depth
(Chakravarty and Varadarajan, 1999; Tan et al., 2011, Tan et al.,
2013) measures the degree of burial and hence the solvation effect

on amino acids. Depth has been shown to correlate well with the
structural stability and free energy change of cavity-creating
mutations in globular proteins (Chakravarty and Varadarajan,
1999; Tan et al., 2011). Our depth-based statistical potential hence
assesses the effect of mutation on local packing stability. To
capture the functional relevance of amino acids, we used residue
position Shannon entropy from a multiple sequence alignment of
homologs of the query sequence. By this, we exploit evolutionary
information to quantify the degree of observed variation at the
position of mutation. Usually, the lesser the variation, the greater
is the functional importance of the residue.

MATERIALS AND METHODS

Data Sets
Statistical Potential Data Set
A set of 3,753 protein structures (Supplementary Table S1)
obtained from the Protein Data Bank (PDB) (Berman et al.,
2000) was used to construct the clique statistical potential. The
structures in this set have a resolution of 2.5 Å or better, an R-free
of 0.25 or better, and are nonredundant at 30% sequence identity.
To account for atomic position fluctuations (protein dynamics)
while considering amino acid cliques, 10 homology models were
built using Modeller9.11 (Šali and Blundell, 1993) with the native
protein serving as both target and template in a self-alignment.
The “refine very slow” option was used to relax the molecular
structures with the aim of maximizing atomic position flexibility.
These homology models along with the native structure (i.e., 11
structures for each protein) were then used to build the statistical
potential.

Saturation Mutagenesis Data Sets
Saturation mutagenesis data sets of two proteins, T4-lysozyme
(Rennell et al., 1991) and controller of cell division or death B
(CcdB) (Adkar et al., 2012), were used in this study. T4-lysozyme
is a 164 amino acid residue protein with our reference structure
being PDB: 2LZM, which was solved at a resolution of 1.7 Å
(Weaver and Matthews, 1987). Each position except the first was
mutated to 13 other amino acids (A, C, E, F, G, H, K, L, P, Q, R, S,
and T). After excluding key catalytic site residues (D10, E11,
R145, and R148P), the data set consists of 1,966 mutations. CcdB
is a cytotoxin (an inhibitor of DNA gyrase) with 101 amino acids.
Its native structure was solved at a resolution of 1.4 Å [PDB:
3VUB (Loris et al., 1999)]. Full saturation mutagenesis (mutating
each position to all other 19 amino acids) was performed at all
positions of the protein. After removal of active site residues (I24,
I25, N95, F98, W99, G100, and I101), a final set of 1,534
mutations was obtained. In both saturation mutagenesis
experiments, an assessment was made on the phenotypic effect
for each mutation. For T4-lysozyme, the phenotypic effect was
gauged based on the plaque-forming ability of themutant. Subject
to the same experimental condition, a mutant is assigned to one of
the four levels of sensitivity if the size of the plaque is (1) similar to
native control, (2) significantly smaller, (3) with hazymorphology
or difficulty in discerning plaques, and (4) no plaque formation
(Rennell et al., 1991). For CcdB, the mutational sensitivity score
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was quantitatively defined as the titer number at which the
protein activity (in this case, inducing cell death) decreases by
5-fold or becomes more relative to its previous dilution. Values of
mutational sensitivity range from 2 to 9 in CcdB, and we scaled
the T4-lysozyme values to range from 2 to 5. For both data sets, a
mutation is regarded as neutral if there is no perceptible
phenotypic difference as compared to its native sequence (MS
score � 2 in CcdB and T4-lysozyme) and is regarded as
destabilizing otherwise.

Missense3D Data Set
The Missense3D data set consists of 4,099 mutations from 606
proteins extracted from Humsavar (Bateman et al., 2017),
ClinVar (Landrum et al., 2014), and ExAC (Karczewski et al.,
2017) (Ittisoponpisan et al., 2019). Humsavar lists all the
annotated missense variants from humans reported in UniProt
and SwissProtKB. ClinVar catalogs variations in humans and
their associated phenotypes. ExAC is an exome aggregation
consortium that describes the aggregation and analysis of
human exomes. The analysis includes quantification of the
pathogenecity of variants. The data set of 4,099 mutations
consists of 1,965 disease-associated variants and 2,134 neutral
variants (not associated with any known disease yet). Packpred
parameters were trained on the T4-lysozyme data set and tested
on the CcdB and Missesense3D data sets.

Structural and Sequential Features
Residue Depth
Depth is defined as the distance of a protein atom to the nearest
bulk water molecule (Chakravarty and Varadarajan, 1999). The
quantity measures the degree of burial of the atom. Depth has
been shown to be capable of concisely describing the protein
environment, as substantiated by its utilities in protein design and
function predictions (Tan et al., 2011, Tan et al., 2013; Farheen

et al., 2017). Atom depth values were computed using default
parameters. The depth of a residue clique is defined as the average
depths of its constituent atoms.

Cliques of Amino Acid Residues
A clique is defined as a sub-graph in which all possible pairs of
vertices are linked. We define a (N, dcut) “residue clique” to be a
clique of N amino acids within a linkage distance of dcut. We
consider two amino acids as linked when at least four or more
than half of the side chain non-hydrogen atoms (whichever are
smaller) are within dcut from atoms of another amino acid
(Figure 1). For glycine, the Cα atom is used in lieu of the side
chain. Residue cliques defined with different combinations of N
and dcut (N ranges from 2 to 4 and dcut ranges from 7.0 to 10.5 Å
in step of 0.5 Å) have been computed and investigated in
this study.

Statistical Potential and Residue Clique Score
A residue clique statistical potential is constructed by adopting
the formulation of Sippl’s potential of mean force (Sippl, 1990),

Ec � −kT log⎛⎝(Pc
obs + α Pc

exp)
(Pc

exp + αPc
exp)⎞

⎠, (1)

where Ec is the pseudo potential energy and c is a residue clique of
type {r1, r2, . . .}, where the ri’s are the amino acid types; Pcobs is the
observed number of residue clique c; Pcexp is its expected number
in a hypothetical reference state without energetic interactions; α
is the ratio of pseudo-count introduced to account for sparse
statistics and is taken as 0.00 in our study. −kT is a constant and is
assumed as one in this study.

For each (N, dcut) clique, the statistical potential is built at five
different levels of depth (2.80 – 5.25 Å, 4.25 – 6.25 Å, 5.25 –
7.25 Å, 6.25 – 8.25 Å, and 7.25 Å–∞). To calculate the score of a
residue clique (S), the mean μ and standard deviation σ of its
depth are first computed. A Gaussian probability density function
N(x | μ, σ) is then accordingly built. The clique score is computed
as the weighted sum of integrands at every depth level as follows:

Scμ,σ � ∑
d∈D

1
df − di

∫
x�df

x�di

Ec
d · N(x ∨ μ, σ)dx, (2)

where d is one depth level, and di and df are the lower and upper
bounds of the level.

Most residue cliques in a protein are overlapping with one
another, and an amino acid residue can participate in multiple
cliques. The score of a residue is taken as the average of all such
cliques (refer to Supplementary Text S1 for example). The score
of a protein is further taken as the average of all its residue scores.

Shannon Entropy
Shannon entropy (H) is a measure of variation observed at a given
position. It is calculated from a multiple sequence alignment
obtained by a PSI-BLAST search against the uniref50 database
(Altschul et al., 1997). H for a given position is then calculated as
follows:

FIGURE 1 | Residue clique of amino acids. A 5-residue clique (P11,
W30, H91, Q98, and L100) of cut-off 7.5 Å shown in ball and stick
representation and enveloped with a meshed molecular surface from human
recombinant MTCP-1 protein (PDB: 1A1X).
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H � –∑20
i�1

Pi log2Pi, (3)

where Pi is the fraction of amino acid i observed at a given
position.

FADHM Scores
FADHM scores are depth-dependent pairwise amino acid
substitution likelihood scores extracted from the FADHM
matrices. The FADHM matrices quantify the substitution
frequencies at different depths obtained by performing
protein–protein structural alignments. A detailed account of
the FADHM score can be found elsewhere (Farheen et al., 2017)

The Packpred Score for Mutations
The Packpred score is given as follows:

PS � 1.5(S) + 1.75(H) + 0.5(FADHM), (4)

where PS is the Packpred score, S is the residue clique score
obtained from the statistical potential, H is the Shannon entropy,
and FADHM is the depth-based amino acid substitution
likelihood score. The weights were obtained by training on the
T4 saturation mutagenesis data set (Supplementary Table S2).
The coefficients for S, H, and FADHM (weights) were
systematically sampled in the range 0–3 with a step size of
0.25. The cut-off score threshold that best discriminates
neutral mutations from destabilizing ones was 1.6 in the
training data (see Training and Testing Packpred Score).
Mutation with a score greater than 1.6 is neutral and is
destabilizing otherwise. To score a mutant, we modify the
clique composition without explicitly modeling the mutant
protein structure, with the mutant amino acid inheriting all
the properties of the wild-type residue.

Packpred is implemented as a web server at http://cospi.
iiserpune.ac.in/packpred/. A standalone version is also
available for download.

Matthews’s Correlation Coefficient
We gauge the binary classification performance of Packpred
using Matthews’s correlation coefficient (MCC) (Matthews,
1975), which is given as follows:

MCC � TP · TN–FP · FN����������������������������������[TP + FP][TP + FN][TN + FP][TN + FN]√ , (5)

where TP, TN, FP, and FN represent true-positive, true-negative,
false-positive, and false-negative predictions.

RESULTS

Training and Testing Packpred Score
Packpred uses a linear combination of sequence position
Shannon entropy, a residue clique statistical potential, and a
depth-dependent substitution matrix (FADHM) to predict the
functional effect of missense mutations. The Shannon entropy
part of the score estimates the functional importance of residues

based on evolutionary information. The clique statistical
potential and the substitution matrix gauge the effect of the
mutation on the local environment/structure. The statistical
potential computes the observed and expected probabilities to
calculate a score for a clique. The FADHM scores are taken from
substitution matrices that are derived from structural alignments
of proteins. The substitution likelihood scores are calculated by
categorizing a protein in three regions based on residue depths
(exposed, intermediate, and buried). The substitution scores
indicate the likelihood of a residue getting replaced by another
at a given depth.

We performed a grid search in the range of 0–3 with a step size
of 0.25 for S, H, and FADHM to optimize the coefficients
(weights) of each component of the linear combination
Packpred score. The optimization was to maximize Matthews’s
correlation coefficient (MCC) (see below) of the T4 lysozyme
saturation mutagenesis training data set. The weights that gave
the highest MCC on the training set were 1.5, 1.75, and 0.5 for the
clique statistical potential, Shannon entropy, and FADHM,
respectively. We also obtained a cut-off threshold that
distinguishes the destabilizing from the neutral ones from this
training exercise. The cut-off was sampled in the range of 0–2
with a step size of 0.1. Mutations with scores greater than 1.6 are
classified as neutral, and scores below 1.6 are classified as
destabilizing. The T4-lysozyme training set consists of 1,362
(∼69%) neutral and 604 (31%) destabilizing mutations, of
which Packpred correctly identifies 1,049 (∼77%) neutral
mutations and 406 (∼67%) destabilizing mutations
(Supplementary Table S3). In the T4 training exercise, we
observe similar MCC values for different combinations of
weights of the grid search. Although the MCCs are similar,
the underlying predictions and the linear combination scores
are different (refer to Supplementary Text S2 for an example).

The weights and threshold obtained from the training set were
applied to two testing sets, the CcdB saturation mutagenesis data
set (Supplementary Table S4) and the Missense3D data set
(Supplementary Table S5). The CcdB data set has 1,258
(∼80%) neutral mutations and 276 (∼20%) destabilizing, while
the Missense3D data set has 2,134 (∼52%) neutral and 1965
(∼48%) disease mutations, respectively. We used the PDB
structures 2LZM and 3VUB to obtain Packpred scores of T4-
lysozyme and CcdB, respectively. The biological unit of CcdB is a
dimer, and we did all the calculations using this dimeric state
structure for CcdB. Packpred correctly predicts 864/1,258 (∼68%)
neutral and 253/276 (∼92%) destabilizing mutations from the
CcdB testing set and 1,670/2,134 (∼78%) neutral and 1,123/1965
(∼57%) disease-causing mutations from the Missense3D data set.

We compared Packpred’s binary classification with several
popular methods such as i-mutant2 (Capriotti et al., 2005),
mCSM(Pires et al., 2014b), SDM(Pandurangan et al., 2017),
dynamut2 (Rodrigues et al., 2020), FADHM(Farheen et al.,
2017), and Missense3D (Ittisoponpisan et al., 2019) (Table 1).
All the predictions were made using default parameters. Packpred
was the best performing method on the T4-lysozyme training set
and the Missense3D testing set, with MCC values of 0.42 and
0.36, respectively. The next best method isMissense3DwithMCC
values of 0.40 and 0.33 for the T4 and Missense3D data sets,
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respectively. The MCC of Packpred on the CcdB data set is 0.47
and is marginally outperformed by the best performing method,
FADHM, which has an MCC of 0.48 (Table 1).

The clique potential and FADHMwere earlier trained on 3,753
and 2,384 PDB entries, respectively. 89 of these PDBs are common
to the 606 PDB entries that comprise the Missense3D testing set
(Supplementary Table S6). These 89 overlapping entries include
not just those that are identical but also those that are homologs
(with sequence identities of 30% or greater). The overlapping PDBs
account for 463 of 4,099 mutations in the Missense3D data set.
Omitting these 463 mutations and using the other 3,636 mutations
resulted in an MCC of ∼0.37, comparable to the value of 0.36
obtained over the entire Missense3D data set of 4,099 mutations.

Analysis of the Predictions on the
Missense3D Data Set
The Missense3D data set has a balanced representation of
∼48% disease-associated mutations and ∼52% neutral
mutations. The data set, however, is skewed in terms of
amino acid abundance when compared to natural
abundance (Supplementary Figure S1). For instance,
arginine has the highest representation and accounts for
∼16% (664/4,099) of the Missense3D data set, while its
natural abundance is ∼5%. The next most abundant amino
acid in the Missense3D data set is glycine, which accounts for
∼9% (372/4,099) of the data (natural abundance is ∼7%). The
most frequent mutant is also arginine (347/4,099), followed
by serine (343/4,099). There are 2,233 mutations in the

exposed environment (depth less than 5 Å), 1,258 in the
intermediate environment (depth between 5 and 8 Å), and
608 in the buried environment (depth greater than 8 Å).

We assessed the performance of various methods on the
Missense3D data set using metrics including sensitivity,
specificity, precision, accuracy, and F1 (Table 2). Packpred
outperforms all other methods in MCC, precision, and
accuracy. Missense3D has the highest sensitivity and F1.
Packpred has less sensitivity than FADHM and Missense3D,
indicating potential for improvement. Packpred has a
specificity of 0.57, indicating a higher number of false-positive
predictions. mCSM and i-mutant outperform all other methods
in specificity. However, mCSM, i-mutant, SDM, and dynamute
predict a large number of false negatives (Table 3) that affect their
MCC. Hence, we compare Packpred with FADHM and
Missense3D in the next sections unless otherwise stated.
Packpred has fewer false positives among FADHM and
Missense3D and has the highest number of false negatives.
The high false-positive rate contributes to its lower specificity.

We analyzed the results structurewise (Supplementary Table
S7). Packpred correctly predicted all mutations from 264 (out of
606) structures and at least 50% mutations correctly from 507
structures. It could not correctly predict any mutation from 56
structures. In these 56 PDBs, the maximummutations in any one
protein were four, while the average number of mutations per
PDB in the whole set was ∼6. These 56 structures did not follow
any particular discernible pattern or trait.

Packpred has limitations in several areas. One of which is its
high number of false-positive predictions that also affects its

TABLE 1 | Performance of some methods on T4, CcdB saturation mutagenesis, and Missense3D data sets.

Method MCC for T4-lysozyme saturation mutagenesis data set MCC for CcdB saturation mutagenesis data set MCC for Missense3D data set

i-mutant 2.0 0.30a 0.36a 0.06
mCSM 0.22a 0.39a 0.05
SDM2 0.24a 0.33a 0.14
Dynamut2 0.09 0.15 0.06
Missense3D 0.40 0.39 0.33
FADHM 0.38a 0.48a 0.27
Packpred 0.42 0.47 0.36

aValues taken from FADHM article.
The best MCC values are in bold.

TABLE 2 | Prediction performance of sevenmethods on theMissense3D data set. The best score in each assessment metric is shown in bold font. Values of Class1 are used
to describe the results in the manuscript.

Metric Packpred FADHM Missense3D Dynamut2.0 mCSM i-mutant SDM

MCC 0.36 0.27 0.33 0.06 0.05 0.06 0.14
Sensitivity (Class 0) 0.57 0.39 0.40 0.84 0.92 0.92 0.80
Specificity (Class 0) 0.78 0.85 0.89 0.20 0.10 0.12 0.34
Precision (Class 0) 0.71 0.71 0.76 0.49 0.49 0.49 0.52
F1 (Class 0) 0.63 0.50 0.53 0.62 0.64 0.64 0.63
Sensitivity (Class 1) 0.78 0.85 0.89 0.20 0.10 0.12 0.34
Specificity (Class 1) 0.57 0.39 0.40 0.84 0.92 0.92 0.80
Precision (Class 1) 0.66 0.60 0.62 0.59 0.59 0.60 0.63
F1 (Class 1) 0.72 0.70 0.73 0.31 0.18 0.20 0.44
Accuracy 0.68 0.62 0.65 0.51 0.50 0.50 0.55
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specificity. Other methods have a higher specificity but
underperform in their sensitivity by overpredicting true
negatives. Packpred has fewer true positives than FADHM
and Missense3D, indicating another potential area for
improvement. With more true positives, it is likely that
Packpred’s F1 value would also improve, which is currently
bested by Missense3D. Packpred has scores higher than 0.65 in
all other metrics (accuracy, precision, sensitivity, and F1),
indicating its overall balanced performance. We also
calculated MCC (Supplementary Table S8) for each native
amino acid type from theMissense3D data set. We found that of
all 20 types of amino acids, Packpred has the highest MCC of
0.40 for Ile, Leu, and Val amino acids and the lowest MCC for
Cys with an MCC of 0.17. Similar to Packpred, FADHM also
has the lowest MCC of 0.04 for Cys amongst all the amino acid
types. FADHM has the best MCC of 0.47 for I, which also
happens to be the single best MCC for an amino acid among
other methods. Missense3D, in contrast to Packpred and
FADHM, has the best prediction for Cys with an MCC of
0.43 and has the lowest MCC of 0.02 for Trp among other
amino acid types. These results show us amino acid–wise
prediction performances and possibly contain useful hints on
where one could improve the method.

We stratified the Missense3D data to particular depth zones to
assess the performance of these methods at particular depths.

Packpred has 597/2,233 (∼72%) correct predictions from the
exposed environment, 796/1,258 (∼63%) from the intermediate,
and 400/608 (∼66%) from the buried environment. Packpred is
the least accurate in predicting the effect of mutations in the
intermediate environment. Interestingly, Missense3D is also the
least accurate in this intermediate zone (Figure 2).

Meta Predictions
Of the 4,099 mutants, at least one of the seven methods we tested
made an accurate prediction in 4,036 cases. This motivated us to
make two different meta predictions by combining the different
methods.

The first meta prediction makes use of the method that
performs the best for particular amino acids. We studied the
wild-type (native) amino acid–wise trends of all seven methods.
For instance, native amino acids N, K, Q, R, and T are best
predicted by Missense3D, FADHM outperforms other methods
in the prediction of I andM amino acids, and Packpred is the best
at predicting A, D, E, G, L, P, V, and Y. In fact, all seven methods
feature as the best method for at least one amino acid
(Supplementary Table S9). Interestingly, we found that
Packpred has the highest percentage (68%) of correct
predictions when averaged over the 20 amino acids and with
the lowest standard deviation (4%). In contrast, FADHM and
Missense3D have averages of 62 and 64% with standard

TABLE 3 | Confusion matrix values for the different prediction methods. The values in bold font show the best in each category. TP, FP, TN, and FN stand for true positive,
false positive, true negative, and false negative, respectively.

Metric Packpred FADHM Missense3D Dynamut2.0 mCSM i-mutant SDM

TP 1,670 1816 1890 440 229 251 713
FP 842 1,203 1,177 312 158 164 420
TN 1,123 762 788 1,650 1804 1798 1,542
FN 464 318 244 1,685 1896 1874 1,412

FIGURE 2 | Histograms of the prediction accuracy of Packpred, FADHM, and Missense3D at different depth levels (exposed to the solvent, intermediate, and
buried).
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deviations of 7 and 10%, respectively. The other methods all have
averages less than 60% with standard deviations between 11 and
14% (Supplementary Table S9). Packpred predictions are
consistently well performing across the different native amino
acid types. We then used these prediction strengths of each of the
methods to get a hypothetical hybrid/meta prediction scheme
(Supplementary Table S10) that combines predictions from all
of the methods and has anMCC of 0.40 over theMissense3D data
set, easily outperforming all the individual methods.

The second hypothetical meta prediction only involves
Packpred, FADHM, and Missense3D as these were the
methods that did consistently well over all different data sets
and amino acids. Here, we considered the method that best
predicted wild-type mutant pairs. Furthermore, we segregated
these amino acid pairs into different depth categories—exposed
to the solvent (depth <5 Å), intermediate (depth between 5 and
8 Å), and buried (depth >8 Å). Our meta prediction then chose
the best performing method for a particular pair at a particular
depth level. For instance, the wild-type mutant pair A→D,
Packpred has the best predictions in an exposed environment,
FADHM in the intermediate environment, and Missense3D in
the buried environment (Figure 3). In case of a tie between
methods, the one with the better MCC was chosen. By thus
combining the strengths of the three methods, the MCC of the
predictions rises to 0.51 for the Missense3D data set
(Supplementary Table S11). An analysis to rationalize/explain
why certain methods are best for certain pairs/environments did
not yield any illuminating results. It is clear, however, that there is
some degree of complementarity in these different methods, and
perhaps a more rigorous treatment of the results from the
individual methods could further improve prediction accuracy.

We would like to emphasize here that the purpose of exploring
these meta predictions was to simply test the extent to which we
could possibly improve results with such an approach. In a more
rigorous implementation of this method, we would have to train
and test the meta-predictor separately, something that is beyond
the scope of this study. Choosing the best results from our testing
set, as we have done here, merely represents the possible limit up
to which we could improve on predictions.

Rank Ordering the Degree of Phenotypic
Change by Mutations
We wanted to investigate if the Packpred scores are indicative of
the degree of change/disruption caused by a mutation. The degree
of change is measured experimentally using the mutational
sensitivity score, which categorizes each mutation into one of
four and eight levels in T4-lysozyme and CcdB data sets,
respectively. We chose to use Spearman’s rank correlation
coefficient (SCC) to measure the performance of rank-ordering,
as it makes no assumption on a linear relationship between the
scores and the phenotypical change. SCC is calculated as follows:

ρ � 1–
6∑ d2i
n(n2–1) , (6)

where d is the difference between the actual and the predicted
ranks of a mutation, and n is the number of levels. The SCC for T4
and CcdB data sets is −0.48 and −0.54, respectively. At best, this
correlation is weak and indicates that these scores could be
further improved.

Assessing Robustness of Packpred
Last, we assessed the robustness of Packpred. For this, we changed
the training set to include only 149 point mutations that result
from a single nucleotide change in codons. The Missense3D data
set is made of only these 149 different mutations. We created
three additional training sets that all contain instances of only
these 149 mutations. The first contains mutations from only the
T4 lysozyme data set, the second set contains mutations from T4
in a 50:50 ratio of neutral-to-deleterious mutations, and the third
set has mutations from the T4 and CcdB data sets in a 50:50 ratio
of neutral-to-deleterious (Supplementary Table S12). The ratio
was chosen based on the neutral-to-deleterious ratio of the
Missense3D test set. For every combination of the training set,
we obtained different optimal weights for the features of the linear
combination (Supplementary Table S12). Interestingly, the
accuracy of the method as gauged by the MCC value over the
Missense 3D data set was consistently between 0.34 and 0.35
(Supplementary Tables S13–15).

FIGURE 3 | Best performing methods for each wild-type mutant amino acid pair at different depth levels.
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DISCUSSIONS

In this study, we have developed a method to predict the effect of
missense mutations on the structure and function of a protein. We
believe that such predictions could be tested by assaying the protein
for its function. Ourmethod, Packpred, is constructed in a way that
it is sensitive to structural changes effected by themutation and any
functional changes it may effect without perturbing the structures.
To assess the impact of the mutation on the structure (and hence
the function) of the protein, we devised a multi-body clique
statistical potential. This statistical potential evaluates the
strength of the interaction in a local neighborhood (amino acid
clique). To assess the impact of mutation, we consider the same
residue neighborhood environment while replacing the wild-type
amino acid with the mutant. The score of the clique with the wild-
type residue and with the mutant are then computed. An inferior
score for the mutant in comparison to the wild type would be
indicative of a destabilizing mutation. The structural stability of
introducing the mutant residue is also gauged using a depth-
dependent substitution matrix, FADHM, whose efficacy at
detecting the fate of mutations we had previously benchmarked
and tested. To account for functional changes that could happen
even when the structure is not affected by the mutation, we invoke
evolutionary information from a multiple sequence alignment
using Shannon entropy. The more conserved the position, the
more likely that it is going to affect function. These different scores
are taken together in a linear combination, whose coefficients were
optimized using the T4-lysozyme saturation mutagenesis data set
of ∼2,000 mutations. Packpred was tested on two different data
sets, another saturation mutagenesis data set (CcdB) and the
Missense3D data set. Its performance on these data sets was
also compared to those of six other methods including
FADHM, Missense3D, Dynamut2.0, mCSM, i-mutant2.0, and
SDM. With the exception of the CcdB data set, where it
marginally underperforms FADHM, Packpred clearly
outperformed all other methods on all data sets. Among the
methods, Packpred balances well between predicting true
positives and true negatives (neutral and disease-causing
mutations) and hence has the best MCC values. Packpred has
the best accuracy and is close to the best specificity, precision, and
F1. It loses out to the best methods in these measures and on
sensitivity as methods such as mCSM predict a disproportionately
large number of negatives. When the performance of the different
methods is compared on an (wild-type) amino acid by amino acid
basis, Packpred performs consistently well, with prediction
accuracies never falling below 60%, while maintaining an
average of 68%, which is easily the best among the methods
tested. Qualitatively, a similar picture also emerges when the
results are broken down into wild-type mutant amino acid pairs.

We also investigated whether Packpred (and other methods)
preferred certain types of structures over others. No clear
deduction could be made from these analyses. However, there
was one trend that could be considered for further
improvements—Packpred, similar to Missense3D and
FADHM, performed the worst in the intermediate amino acid
depth environment. Mutational effects in exposed and buried
(according to residue depth) environments were better predicted.

Perhaps, the intermediate depth levels need to be further
stratified, which in the case of Packpred would be reflected in
the FADHM matrix values and in the clique statistical potential.
Improvements could also be thought of by examining the reasons
for why Packpred was unable to accurately predict the fate of 72
mutants that were all accurately called by the other six methods.
We could also dissect the 23 correct predictions that Packpred
made that were missed by all other methods to determine the
relative strength of Packpred in comparison to the other methods.

Packpred relies on the sequence and structure of a given
protein to predict the effect of a mutation. It is likely that
these predictions could be impacted by the accuracy/resolution
of the protein structure. The two structural features that Packpred
extracts from structures are amino acid depth and structural
neighbors. To whatever extent these two features get affected by
the quality/accuracy/resolution of the structure would predicate
the impact it would have on the final predictions. For the
structures in the Missense3D data set, they all have resolutions
of 2 Å or better. For this set, there appears to be no correlation
between the accuracy of the prediction and the resolution of the
structure (Supplementary Figure S2). In an independent study,
we are exploring the use of homology models along with low-
resolution structures from the PDB to quantify the impact of
structural accuracy on Packpred predictions.

The clique statistical potential that has many tunable
parameters such as the number of amino acids in the clique,
cut-off distance, and definitions of what constitutes a “contact”
between residues. Packpred could improve by investigating these
aspects too, and this would form an independent study in itself.
Similarly, further tweaks to the FADHM matrix, as briefly
discussed above, could also possibly improve overall prediction
accuracy. Shannon entropy accounts for the degree of variation at a
given site/position and does not change depending on the type of
mutation. In our method, we use Shannon entropy in conjunction
with the clique potential and FADHM to get a wholesome picture
of sequence and structure conservation. However, it is likely that a
more nuanced version of the entropy measure and/or other scores
for conservation may help get more accurate predictions. In its
current implementation, Packpred categorizes mutations as being
neutral or destabilizing. When we tried to correlate the score with a
discretized value of the function, the correlations were around −0.5.
Perhaps, with some of the improvements discussed above, this
correlation would also improve.

One important observation from our findings is that of the
4,099 mutations, 4,036 were correctly called by at least one of the
methods. There exists great complementarity between the
methods tested here. We were tempted to then use two simple
meta prediction methods. We designated the predictions
involving a particular wild-type amino acid or a wild-type
mutant amino acid pair to the method that best predicted this
type. Such a simple-minded approach gave us MCCs of 0.40 and
0.51 for the amino acid and the amino acid pair type predictions,
respectively, where the best predicting method, Packpred, had an
MCC of 0.36 (Missense3D data set). It is conceivable that a
different method of combining the results from these different
methods could vastly increase the accuracy of predicting the
functional fate of single amino acid changes.
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We assessed the robustness of Packpred by training it on the
T4 set and a combination of the T4 and CcdB saturation
mutagenesis data sets. Each of the training sets gave us
different optimal values of feature weights. These different
weights did not, however, affect the overall performance of the
method on the Missense3D testing set. In earlier results too, we
had observed that different weight combinations gave rise to
similar performances on the training set. We believe that one of
the primary reasons for the different optimal weights is the fact
that the three features in Packpred do not all affect predictions at
the same level of granularity. The statistical potential and the
substitution matrices (FADHM) give a score for particular
mutations, whereas the Shannon entropy score gives a single
value for a position, regardless of the type of mutation. Given the
myriad of different environments and levels of conservation in
different positions of the protein, the contribution due to each of
these features is not uniformly the same across a protein. The
positive aspect of these predictions is that despite the lack of
consensus of optimal values of the different features, the overall
prediction accuracy does not appear to suffer. This is probably
indicative of the fact that the features of the algorithm are
important, and perhaps a different way of combining these
features may yield consistently better results.
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The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) impedes the
End TB Strategy by the World Health Organization aiming for zero deaths, disease, and
suffering at the hands of tuberculosis (TB). Mutations within anti-TB drug targets play amajor
role in conferring drug resistance within Mtb; hence, computational methods and tools are
being used to understand the mechanisms by which they facilitate drug resistance. In this
article, computational techniques such as molecular docking and molecular dynamics are
applied to explore point mutations and their roles in affecting binding affinities for anti-TB
drugs, often times lowering the protein’s affinity for the drug. Advances and adoption of
computational techniques, chemoinformatics, and bioinformatics in molecular biosciences
and resources supporting machine learning techniques are in abundance, and this has seen
a spike in its use to predict mutations in Mtb. This article highlights the importance of
molecular modeling in deducing how point mutations in proteins confer resistance through
destabilizing binding sites of drugs and effectively inhibiting the drug action.

Keywords: mutations, drug resistance, computational tools, Mycobacterium tuberculosis, molecular modeling

INTRODUCTION

Drug resistance in tuberculosis chemotherapy is fast becoming a health crisis on a global scale.
The emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally
drug-resistant (TDR) strains of Mycobacterium tuberculosis (Mtb) has been observed as a result
of ineffective directly observed treatment short-course (DOTS) (Bihari et al., 2008; Whalen,
2006) among a myriad of other factors. MDR is due to resistance to at least one first-line drug
(Figure 1) including isoniazid (INH) which inhibits mycolic acid synthesis (Bollela et al., 2016)
and rifampicin (RIF) that inhibits RNA synthesis (Zhang et al., 2019). Other TB drugs facing
resistance include ethambutol (EMB) that targets the arabinogalactan synthesis (Zhang and
Yew, 2009), streptomycin (STR) that inhibits protein synthesis (Ruiz et al., 2002), and
pyrazinamide (PZA) that inhibits pantothenate and CoA synthesis, disrupting plasma
membrane and energy metabolism (Zhang et al., 2014).

Resistance to first-line drugs leads to the implementation of treatment regiments belonging to
the second-line drugs which are fluoroquinolones, kanamycin/amikacin and capreomycin/
viomycin, and ethionamide whose mechanisms of action involve introducing negative
supercoils in DNA molecules, inhibiting protein synthesis, and disrupting cell wall
biosynthesis by inhibiting mycolic acid synthesis, respectively (Table 1). XDR and TDR are,
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therefore, due to resistance to several second-line drugs
including fluoroquinolones in conjunction with MDR. For
better management of drug resistance and rapid detection of
resistance, knowledge of the mechanism of resistance at the

molecular level is extremely important for an effective treatment
regimen to be prescribed.

More often, drug resistance in Mtb is associated with mutations
within the drug targets; however, not all mutations within the

FIGURE 1 | Structures of first-line drugs and ethionamide, a second-line drug.

TABLE 1 | Drug targets and the mode of action (Louw et al., 2009; Zhang and Yew, 2009).

Drug Target Gene Drug mode of action

Ethambutol Arabinosyl transferase embCAB Inhibits arabinogalactan synthesis

Streptomycin Ribosomal protein S12 rpsL Inhibits protein synthesis
16S rRNA rrs
7-Methylguanosine methyltransferase gidB

Pyrazinamide Pyrazinamidase pncA Disrupts plasma membrane and energy metabolism (inhibits pantothenate and CoA
synthesis)

Rifampicin β subunit of RNA polymerase rpoB Inhibits RNA synthesis

Isoniazid Fatty acid enoyl acyl carrier protein
reductase A

InhA Inhibits mycolic acid synthesis

Catalase peroxidase katG
β-Ketoacyl-ACP synthase kasA
NADH dehydrogenase ndh
Alkyl hydroperoxidase reductase ahpC

Ethionamide Flavin monooxygenase ethA Disrupts cell wall biosynthesis by inhibition of mycolic acid synthesis
Fatty acid enoyl acyl carrier protein
reductase A

InhA

Transcriptional repressor ethR

Kanamycin/Amikacin 16S rRNA rrs Inhibits protein synthesis

Capreomycin/
Viomycin

rRNA methyltransferase tlyA
16S rRNA rrs

Fluoroquinolones DNA gyrase gyrA Introduces negative supercoils in DNA molecules
gyrB
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organism are associated with resistance. Drug resistance mechanisms
are driven mainly by single-nucleotide polymorphisms or other
polymorphisms resulting in the modification of drug targets
(Palomino and Martin, 2014). Therefore, understanding the
mechanism of action and resistance of the drugs is of paramount
importance. Of the first-line drugs, ethambutol, which is active
against fast-multiplying bacteria, disrupts the synthesis of
arabinogalactan in the cell wall by targeting the mycobacterial
arabinosyl transferase enzyme encoded by the gene embB,
encapsulated in the embCAB operon, and mutations in the
embB306 gene confers ethambutol resistance (Zhang and Yew,
2009). On the other hand, streptomycin, a drug active against
slow-growing bacteria, irreversibly binds to the 30S ribosome
subunit, blocking translation thereby inhibiting protein synthesis.
Chromosomally acquired streptomycin resistance is associated with
mutations in the rpsL, rrs, and gidB encoding for ribosomal protein
S12, 16S rRNA, and 7-methylguanosine methyl transferase,
respectively (Zhang and Yew, 2009). Similarly, resistance to
rifampicin, a key component in the first-line treatment of TB that
binds to the β subunit of RNA polymerase, has been linked to
mutations in a region of the 81 bp region of the rpoB gene.Whilst the
gene encodes for the β subunit of RNA polymerase, rifampicin
resistance is mostly due to mutations at positions 516, 526, and
531 (Goldstein, 2014; Uddin et al., 2020). This is achieved by
inhibition of elongation of the messenger RNA, which interferes
with transcription (Uddin et al., 2020).

Pyrazinamide is also a key antituberculosis (TB) drug that
substantially enhances the activity of novel agents bedaquiline
(BDQ) and pretomanid (PA50) in murine models of TB. A vital
attribute of this prodrug is its ability to inhibit semidormant bacteria in
acidic environments. In its activity, the prodrug is converted by
pyrazinamidase/nicotinamidase to its active form, pyrazinoic acid
which inhibits membrane transport by disrupting the bacterial
membrane energetics. Resistance to pyrazinamide is mainly
characterized by mutations clustered at positions 3–17, 61–85, and
132–142 in the pncA gene that codes for mycobacterial enzyme
pyrazinamidase (PZase) (Zhang et al., 2014). The association of
multiple mutations throughout the pncA gene with PZA resistance
makes it difficult to develop a test for detecting PZA resistance
(Piersimoni et al., 2013). In most instances, molecular methods are
applied to investigate PZA resistance by screening mutations in pncA
genes in distinct epidemiological regions offering a much more rapid
alternative method compared to that of conventional bacteriology
(Khan et al., 2019). Miotto identified 280 mutations in 1950 clinical
strains (Miotto et al., 2014), which were categorized into four groups:
very high–confidence resistance mutations, high-confidence resistance
mutations, mutations with an unclear role, and mutations not
associated with phenotypic resistance based on the confidence level.

Isoniazid and ethionamide are effective drugs for the treatment of
TB; however, several clinical MDR-TB strains have shown high levels
of resistance (Machado et al., 2012). Structurally, INH and ETH are
highly similar, both containing the pyridine ring; however, ETH is a
second-line drug primarily used to treatMDR-TB, and just like INH, it
is a prodrug that requires metabolic activation (DeBarber et al., 2000).
Although the active metabolites of both drugs inhibit an NADH-enoyl
acyl protein reductase, InhA, the drugs have independent activation
pathways. The validated drug target InhA is an enzyme involved in

fatty acid biosynthesis II, which is important in the bio-production of
mycolic acids. These long-chain fatty acids are responsible for the
unique impermeable nature of theMycobacterium tuberculosis cell wall
(Dover et al., 2004; Timmins and Voja, 2006).

INH is activated by the catalase-peroxidase KatG to INH-
NAD and INH-NADP adducts that effectively inhibit InhA
(Timmins and Voja, 2006). Resistance to INH has been
attributed to mutations or deletion in the active site of the
katG gene, which encodes the enzyme, KatG (Hameed et al.,
2018), at position S315 and position 15 in the InhA promoter
region. Also, mutations in ahpC, kasA, and ndh encoding for alkyl
hydroperoxidase reductase, β-ketoacyl ACP synthase, and
NADH dehydrogenase, respectively, are associated with INH
resistance (Nayak et al., 2017). Cross-resistance occurs
between INH and its structural analog, and ETH has been
attributed to mutations in the InhA promoter.

On the contrary, ETH is activated by the enzyme EthA
encoded by the gene Rv3854c to the toxic S-oxide then to 2-
ethyl-4-aminopyrimidine (DeBarber et al., 2000; Baulard et al.,
2000). The transcription of the FAD-containing monooxygenase,
EthA, is controlled by another gene ethR that encodes the protein,
EthR. Earlier studies of the resistance mechanism of ethionamide
revealed that an increase in the amount of EthR, a member of the
TetR repressors, reduces the amount of EthA and results in
ethionamide resistance by mycobacterium tuberculosis
(DeBarber et al., 2000; Baulard, 2000). Mutation studies on
MDR-TB isolates revealed the presence of EthR F110L
mutants implicated in resistance to ETH. The residue F110
occupies a central position in the long cylindrical and
hydrophobic ligand-binding site of EthR.

Similar to INH, ethionamide (ETH) is a second-line prodrug
activated by the monooxygenase encoded by the ethA gene. Once
activated, it forms an adduct with NAD, which inhibits the enzyme
enoyl-ACP reductase, thus disrupting mycolic acid synthesis.
Transcription of the monooxygenase, ethA is negatively regulated
by ethR; hence, allosteric inhibition of ethR would enhance activation
of ETH and computer some of the mutation processes.

The advances in computational techniques and expansions in
bioinformatics and chemoinformatics have brought a sigh of
relief in the study of mutations and provided a rapid drug
susceptibility testing important in the detection and control of
MDR/XDR TB (Shinnick et al., 2005). Therefore, in this article,
we analyze the effective application of computational techniques
and tools in the study and understanding of molecular target
mutations in conferring drug resistance to first-line drugs and
also analyze how we are applying these methods to identify
inhibitors that would circumvent resistance in ethR, a gene
implicated in the resistance of ethionamide as well as highlight
prospects in fast and cost-effective advances to understand drug
resistance of antituberculosis drugs.

METHOD

To give a detailed account of how the computational techniques
have been applied in the study of the contributions of mutations
to the emergence of drug-resistant Mycobacterium tuberculosis,
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an extensive literature search was performed. A description of the
mechanisms of action of the first-line drugs rifampicin and
isoniazid as well as ethionamide, a second-line drug is given.
An analysis of the common computational methods used to study
the mutations in relevant genes for each drug was performed.
Lastly, a detailed account of the importance of F110 in ethR, a
transcription regulator implicated in the resistance of
ethionamide, is presented. Modeling of the proteome for
mycobacteria, and identification of the hotspots and
druggability of the proteins are given.

Computational Approaches
A variety of computational techniques that include comparative
(homology) modeling, molecular dynamics, protein–ligand
docking, and structure-based optimization of ligands (Figure 2)
have been successfully used to study the impact of mutations at
atomic levels on protein–ligand binding and interactions and how
they negatively affect ligand affinity by the mutant proteins (Phelan
et al., 2016; Zhang et al., 2019; Jamal et al., 2020). Advanced
approaches that include machine learning alongside artificial
intelligence, bioinformatics, and cheminformatics databases have
also been successfully used to buildmodels and tools that can predict
mutation and determine their capabilities in conferring resistance
(Jamal et al., 2020; Ghosh et al., 2020; Sandgren et al., 2009).

Effect of Mutation in rpoB on Protein–RIF
Interactions
Pang and co-workers approached RIF mutations with a
computational approach. They used homology modeling to
generate a three-dimensional structure of the wild type rpoB
based on the crystal structure of Thermus aquaticus (Taq) core
RNAP complexed with RIF. Discovery Studio 3.1 was used for

this structural analysis exercise. The protein was modeled using a
Build Homology module within the Protein Data Bank; a loop
refinement module fromModeller was used to perform structural
refinements, and energy minimizations were performed with the
Smart Minimizer algorithm. The Build Mutants module was used
for building mutants Ser531Leu, His526Asp, His526Gly,
His526Leu, His526Arg, and Leu533Pro, and the Align and
Superimpose Proteins module was used to compare the wild-
type and mutant structures. Their study sought to evaluate the
effects of mutating specific amino acid residues involved in the
binding of RIF on protein–ligand interactions. The mutated
protein–ligand interactions are evaluated subsequently using
the Analyze Ligand Interactions and Structure Monitor
module. They discovered that the mutated target protein had
some level of resistance for RIF as it showed a decrease in its
binding affinity. Mutations in His526Asp and Ser531Leu
significantly reduced the affinity of rpoB for RIF by
introducing charge repulsion and conformational changes in
rpoB, respectively. The other strains with mutations
His526Gly, His526Leu, His526Arg, and Leu533Pro exhibited
low-level resistance (Pang et al., 2013). On the other hand,
Zhang approached this challenge in exploring resistance
mechanisms by combining the molecular dynamics simulation,
molecular mechanics generalized-Born surface area calculation,
dynamic network analysis, and residue interaction network
analysis. Molecular dynamics simulations were all performed
with the Amber14 package, and it was observed that the
binding free energies of RIF with the three mutants H451D/Y/
R decreased with molecular mechanics generalized-Born surface
area calculations. Dynamic network analysis and residue
interaction network analysis indicated increased flexibility
within the binding pocket due to mutation of residue 451
which in turn weakened Q438, F439, M440, D441, and S447

FIGURE 2 | Common computational approaches applied to study the effect of mutations on protein–ligand interactions.
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residue interactions within the binding pocket. Such flexibility
allowed for residues meant that a hydrogen bond to RIF was lost,
thus accounting for decreased RIF binding in the mutant RNA
polymerase. Changes within the binding pocket in the H451R
mutant are extensive, giving too much freedom for RIF to move
within the pocket (Zhang et al., 2019). Therefore, H451D/Y/R
mutations increased the flexibility of the active pocket which in
turn weakened the binding ability of Mtb RNA polymerase with
RIF. Thus, the H451D/Y/R mutations weaken the interaction of
the mutated residue with its adjacent residues. In similar work
involving homology modeling of rpoB and docking calculations
of RIF, Kumar and Jena have shown that two mutants S450L and
H445Y exhibit low binding affinity toward the wild type rpoB,
which has high affinity for the RIF molecule (Kumar and Jena,
2014).

Singh and co-workers investigated mutations of H451. The
Mtb rpoB sequence was obtained from UniProt, the structure was
built through comparative modeling with Modeller, and it was
mutated computationally at position 451 using PyMol.
GROMACS version 5.0 molecular dynamics simulation was
performed on all the structures to obtain stable structures at
40ns. On the stable structures, RIF was docked onto them with
AutoDock 4.2, and ligand–RIF complexes were subjected to
molecular dynamics and molecular mechanics for estimation
of free binding energies in wild-type and mutant systems.
Resistance in the mutants arises due to changes within the
binding pocket when polar and hydrophobic amino acids were
replaced, which affected packing and folding in the vicinity, and
relocation of the binding site itself rendering the RNA exit
channel inaccessible to the drug (Singh et al., 2017).

The aforementioned studies on RIF resistance all have a
consensus on the conference of resistance by the mutations in
the target protein. They showed that mutations in rpoB cause
structural changes within the binding pocket and its vicinity.
They also indicated that interactions between the binding pocket
residues are changed as a result of a mutation within the binding
pocket and its vicinity greatly affecting the location and structure
of the binding pocket. Most of these studies concluded that
mutations that cause extensive structural changes will affect
the way RIF sits in the binding pocket and increase freedom
for the ligand in the pocket, which greatly decreases its affinity.
Mutations that specifically occur within the binding pocket starve
the RIF ligands of residues that contribute to a better binding
affinity.

Effect of Mutation in InhA, and katG on INH
Binding
Computational studies of INH resistance in Mtb have been
extensively studied (Jena et al., 2014). INH is activated by
katG and converted to an active intermediate displaying
antimycobacterial properties; in the presence of NADH, an
INH-NAD adduct is formed. It is the adduct that inhibits
InhA (2-trans-enoyl-acyl carrier protein reductase), blocking
the synthesis of mycolic acid (Dookie et al., 2018). In one
study, homology modeling was employed to predict the 3D
structure of Mtb UDP-galactopyranose mutase (Glf) and

NADH Dehydrogenase (Ndh) with Modeller9v14, and the
sequence in the FASTA format was obtained from the NCBI
database. The NAD binder server was used in the identification of
the binding site; docking studies and visualization were
performed with AutoDock Vina Tool 1.5.4 and Pymol,
respectively. FADH2 and NADH were both found to have a
high affinity for Glf; thus, overexpression of Glf utilizes more
NADH reducing its concentration. This results in decreased
INH-NAD adduct formation thereby causing INH resistance
(Nayak et al., 2017)

In another study, on the influence of mutation in INH, katG
mutations S315T/S315N were modeled with Modeller9v10 and
compared with the wild-type katG. It was observed that INH was
forming a hydrogen bond with the mutant katG which hindered
radical formation. AutoDock Tool 1.5.4 docking calculation
indicated INH-NAD is more effective at inhibiting InhA
compared to INH (Jena et al., 2014). The katG mutation
S315T was computationally observed to decrease the flexibility
of binding site residues, and katG mutants at His276Met,
Gln295His, and Ser315Thr decreased the stability and
flexibility of the mutant protein associated with INH
resistance. Mutation of the arylamine N-acetyltransferase
(NAT) enzyme increases the stability and catalytic activity of
the enzyme making the NAT-INH interaction ineffective.
Mutations in the ahpC result in overexpression of the protein,
which is a compensatory mechanism for loss of activity due to the
katGmutation; thus, the ability to defend against oxidative stress
is maintained within the system (Jena and Wankhade, 2016;
Waghmare, and Harinath, 2016). Just as in the RIF studies,
conformational changes and pocket flexibility changes greatly
affect the atomic-level interactions between the target protein and
the drug compound, and the trend shows a decreased affinity for
the drug by mutant protein targets.

Other Studies on the Effect of Mutation Mtb
Drug Resistance
Deedler applied machine learning approaches toMtb isolates that
had undergone whole-genome sequencing. Nonparametric
classification tree and gradient-boosted tree models were used
to predict drug resistance alongside uncovering any associated
new mutations. Resistance markers to drugs other than the drug
of interest was used in fitting separate drug models for each drug
based on the presence and absence of the co-occurrent resistance
markers. Predictive performance testing was performed alongside
laboratory drug-susceptibility testing. The performance was
highest for resistance to first-line drugs, amikacin, kanamycin,
ciprofloxacin, moxifloxacin, and multidrug-resistant
tuberculosis. The inclusion of resistance markers led to
improved results (Deelder et al., 2019).

In a bid to understand the molecular consequences of
polymorphisms within loci associated with antituberculosis
drugs, Portelli and co-workers employed computational
methods to quantify point mutations in conferring resistance.
Homology models of target proteins were built with UCSF
Chimera 1.1, and protein–ligand docking and protein–ligand
interactions were carried out with GLIDE and Arpeggio,
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respectively. Portelli et al., 2018 concluded that mutational effects
are mostly imparted via steric or electrostatic changes within the
protein, leading to functional changes and affecting target–drug
interactions. They also noted that most phenotypically resistant
mutations act allosterically, and the introduction of variants
affects the drug–protein complex stability, leading to
resistance. Frequently occurring mutations do not confer
extreme changes in parameters; the protein retains its
functionality, but the drug–protein complex is weakened.
Mildly stabilizing mutations may confer local fitness
advantages. Drug-resistant mutations within the protein are
enhanced while maintaining stability within the protein
function. It was also concluded that concurrent mutations in
close topological proximity enable localized effects of the
mutation, and their combination with external mutations
ensures different mechanisms that lead to drug resistance.

Nakatani and Helen, 2017 predicted that the alr M319T
mutation observed in an XDR strain of Mtb would likely
confer resistance to D-cycloserine (DSC) as it had been noted
that the acquisition of this mutation occurred with treatment of
DSC suggesting that the mutation is sufficient and necessary to
confer resistance. Molecular modeling of the C-8T, M319T,
Y364D, and R373L mutations provided insights into how
resistance is conferred upon treatment with DSC. DSC
covalently binds to an alr cofactor pyridoxal 5′-phosphate
(PLP); this act irreversibly inhibits alr through disruption of
the alr-PLP covalent bond (Fenn et al., 2003). A generated model
ofMtb, alr, and DSC highlighted the residues 319 and 364 located
directly in the active site. A mutation to aspartic acid at residue
364 introduced a shorter negatively charged side chain. Such a
change affects the positioning of the phosphate moiety in PLP,
potentially affecting PLP orientation in the active site. The
location of the residue 319 mutation could alter the
interactions with 364, likely affecting DSC inhibition. Alr
functions as a homodimer, and the R373L mutation is not
located directly in the active site; however, it is close to M319
and D320 and the dimer interface. Such a mutation is most likely
going to disrupt molecular interactions at the dimer interface and
greatly destabilizing the DSC binding site. This study was
strategic to the pharmaceutical sector in 2015 amidst a Global
Drug Facility declaration of a price reduction of the DSC drug.
Understanding the resistance mechanisms was important for
facilitating phenotypic and genotypic drug susceptibility
testing (Stop, 2015).

Malik et al. (2012) provided insights into fluoroquinolone
resistance through functional genetic analyses and structural
modeling techniques. Crystal structures of the N-terminal and
C-terminal domains for gyrA and gyrB were superimposed on the
crystal structure of the complex of Streptococcus pneumoniae
gyrase with a DNA substrate and levofloxacin, all obtained from
the Protein Data Bank using the tool Coot (Emsley and Kevin,
2004). This study highlights that gyrB mutations M330I, V340L,
R485C, D500A, D533A, A543T, A543V, and T546M are not
sufficient to confer drug resistance. N538D, E540V, and R485C +
T539N mutations did confer resistance to all fluoroquinolones
whilst N538K and E540D conferred resistance to moxifloxacin
only, and D500H and D500N mutations conferred resistance

only to levofloxacin and ofloxacin. The importance of this study
was in explaining minimum inhibitory concentrations as
observed in experimental work; molecular modeling explained
how resistance came about to be through a 3D spatial orientation
of substitute residues in the mutant proteins.

Effect of Mutation on ethR-Ligand Binding
Affinity
Resistance to ETH has been linked to mutations in the ethR, ethA,
and inhA genes (Hameed et al., 2018) that collectively play crucial
roles in the activity of the drug. As a regulator, the N-terminus
helix-turn-helix (HTH) domains of the dimeric EthR bind DNA
sequences responsible for the transcription of EthA and suppress
its expression (Wolff and Nguyen, 2012). This process is
controlled by small–molecular weight ligands that bind to the
allosteric binding pocket of EthR located in the C-terminal end
(Mugumbate et al., 2015). Binding of the ligands induces
molecular conformational changes that increase the distances
between DNA binding domains of the enzyme, inhibit DNA
binding, and hence increase the transcription of EthA. For this
reason, EthR has been validated as a suitable drug target for a new
collection of antituberculosis compounds that would boost the
activity of ETH. Targeting the resistance pathway of
antituberculosis drugs has long been proposed (Wolff and
Nguyen, 2012); therefore, independent research groups have
deposited the apo and bound structures of EthR into the
Protein Data Bank (PDB, https://www.rcsb.org/). These
structures reveal that the protein is characterized by a long
hydrophobic and promiscuous pocket that binds to
structurally diverse small molecules like dioxane and long
molecular chains with more than 30 atoms. The residue F110
is centrally positioned in the binding pocket with its aromatic side
chain strategically positioned to participate in protein–ligand
interactions (Figure 3).

In a previous study (Bishi, et al.), we carried out docking
calculations of a Maybridge dataset containing more than
200 drug-like compounds to investigate binding modes and
protein–ligand interactions. The results indicated that F110
played a crucial role in ligand binding, supporting the
observation that F110L drastically reduces ligand affinity
(Brossier et al., 2011). Most ligands were stabilized by a
cascade of pi–pi interactions, where F110 played a central role
by linking pi–pi interactions from the ligand to Phe114 (Figure 3)
in a way that will stabilize the bound ligand and increase ligand
affinity. This implies that the F110L mutation disrupts the pi–pi
cascade and reduces the ligand–binding affinity.

Application of Machine Learning and
Artificial Intelligence Approaches
Bioinformatics was employed for studies concerned with
mutations focusing on Mtb. Ghosh and co-workers developed
a Drug Resistance–Associated Genes database (DRAGdb) which
is a repository of mutational data of drug resistance–associated
genes (DRAGs) across ESKAPE (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
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baumannii, Pseudomonas aeruginosa, and Enterobacter spp.).
Homoplasy is observed in six genes namely gidB, gyrA, gyrB,
rpoB, rpsL, and rrswithmutations related to drug resistance being
observed at the codon level. A single-nucleotide mutation that
was associated with resistance to amikacin, gentamicin,
rifampicin, and vancomycin in Staphylococcus aureus was an
indication of pleiotropy. The database compiles Mtb drug-
resistance genes across bacterial species allowing for
homoplasy and pleiotropy identification in genes (Ghosh et al.,
2020).

In their recent efforts, Jamal and co-workers developed
machine learning algorithms alongside artificial intelligence to
study and predict resistance in the genes rpoB, inhA, katG, pncA,
gyrA, and gyrB for the drugs rifampicin, isoniazid, pyrazinamide,
and fluoroquinolones. Machine learning algorithms naïve Bayes,
k nearest neighbor, support vector machine, and artificial neural
network were used to build the prediction models. Further
molecular docking and molecular dynamics simulations were
carried out on predicted resistance causing mutant proteins and
their wild-type counterparts. This study evaluated protein
conformation and its impact to confirm the observed
phenotype (Jamal et al., 2020).

DISCUSSION

The application of machine learning and artificial intelligence in
mutation studies is a fast-growing trend in computational
research. At the center of it all, bioinformatics and
cheminformatics databases are contributing a lot of
information that is needed by machine learning algorithms to
predict drug resistance–conferring mutations. Information was
gathered across species in the experimental work, where the
previously mentioned mutations and their influence on drug

resistance were observed in detail, and the lack of hereafter is used
to train machine learning algorithms in identifying possible novel
mutations that might occur and probe their potential in
conferring resistance. Usage of multiple layers or algorithms
(deep learning) and artificial intelligence has greatly improved
the accuracy of drug resistance andmutation prediction tools that
have been made available to researchers (Deelder et al., 2019;
Jamal et al., 2020).

Structure-guided drug discovery has lately become paramount
to combat the emergence of Mtb drug-resistant strains which
pose a concern to global public health. The rapid expansion of
genome sequencing and pathway annotations has shown a
positive impact on the progress of drug discovery.
Computational tools have been developed to address the effect
of mutations on the structure and function of proteins. The
mutation cutoff scanning matrix (mCSM) is a machine
learning approach which predicts the structural and functional
effects of mutations on the target proteins. Its variants are capable
of predicting the effects of mutations on protein stability,
protein–protein interaction, and protein–ligand interactions
(Pandurangan and Blundell 2020). EnCOM and FoldX are
tools that are capable of predicting the effects of mutations on
flexible protein conformations (Schymkowitz et al., 2005;
Frappier et al., 2015). Rapid assessment of many mutations
that are difficult to access with experimental methods has been
made possible through predictive learning with machine learning
algorithms (Waman et al., 2019).

Machine learning techniques have also been developed to
address the need to improve TB resistance prediction in less-
studied drugs. Rapid detection of antimicrobial resistance is vital
in the prevention of existing drug resistance amplification, given
that resistance markers are known; machine learning techniques
are capable of timely prediction of resistance for a givenMtb drug.
Machine learning methods are capable of ranking mutations

FIGURE 3 | The residue F110 facilitates the pi–pi cascade (grey rings) between aromatic residues in the binding pocket of EthR (yellow) and the ligand (purple),
which later translates into a structural modification of the HTH motif and inhibition of DNA binding. Analysis of the interactions was performed using Aperggio (http://
bleoberis.bioc.cam.ac.uk/arpeggioweb/) and viewed using PyMol.

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 6438497

Mugumbate et al. Drug resistant Mycobacterium tuberculosis

133

http://bleoberis.bioc.cam.ac.uk/arpeggioweb/
http://bleoberis.bioc.cam.ac.uk/arpeggioweb/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


regarded as important and mutations from other genes associated
with resistance to other drugs; this reflects on multidrug
resistance from taking second-line drugs after taking first-line
drugs, which is a huge advantage over experimental methods
(Kouchaki et al., 2019).

DeepAMR has been developed with the task of identifying
co-occurrent resistance within anti-TB drugs. This machine
learning technique had a high performance with mean
AUROC (Area Under the Receiver Operating Characteristics)
from 94.4 to 98.7% for predicting resistance to four first-line
drugs, RIF, EMB, INH, and PZA multi-drug resistant TB
(MDR-TB) and pan-susceptible TB (PANS-TB: MTB that is
susceptible to all four first-line anti-TB drugs). DeepAMR
achieved its best mean sensitivity of 94.3, 91.5, 87.3, and
96.3% for INH, EMB, PZA, and MDR-TB, respectively.
High-performance machine learning models have made the
predictions of co-occurrent drug resistance to be performed
timely and prevented amplification of existing resistance (Yang
et al., 2019).

The use of machine learning and artificial intelligence makes
them possible to identify novel resistance markers which are very
difficult and costly to investigate with experimental methods. The
timely and rapid prediction of drug resistance has made it
possible for drugs to be returned to the discovery pipeline for
optimization in a structure-guided drug design approach. To this
end, the application of these techniques makes it possible for

scientists to comprehensively study the protein–drug interactions
at very little cost and shorter time frames.

Proposed Computational Protocol
The Application of computational tools (Table 2) in
understanding mutations that confer drug resistance in
Mycobacterium tuberculosis still require a canonization of
the process for a standard result output. Initially, 3D
structures of drug targets are obtained from the Protein
Data Bank followed by point mutations which may be
performed by changing an amino acid in a protein sequence
with Pymol (Figure 4). In the absence of a 3D structure, the
primary sequence of the protein is obtained from UniProt (a
freely accessible database of protein sequences and functional
information). 3D structures are modeled through a process
known as homology/comparative modeling of proteins with a
standalone program such as Modeller or, alternatively, an
online server such as SWISS-MODEL (expasy.org).
Molecular dynamics simulations are performed for energy
minimizations of the wild-type and mutant drug targets
obtaining the most stable protein structures; standalone
programs such as GROMACS and Amber are used for
performing the task (Singh et al., 2017; Zhang et al., 2019).
In computational chemistry, energy minimizations which may
also be referred to as geometry optimization entail the
exploration of the conformational space for a collection of

FIGURE 4 | Proposed protocol for studying the effect of mutations on protein–ligand interaction.
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atoms to find a proper molecular arrangement in space which
is energy favorable and stable; it is also referred to as the global
energy minimum (Jabeen et al., 2019). The resultant structures
are then subjected to molecular docking, where the position of
the ligand when bound to a protein receptor is predicted for
the drug’s wild type and mutated targets. AutoDockTools and
Glide among other standalone software packages may be used
for this task (Kumar and Jena 2014; Jamal et al., 2020).
Protein–ligand complex structures may also undergo energy
minimization with molecular dynamics (Kumar and Jena,
2014; Portelli et al., 2018). In the presence of a 3D structure
complexed with the preferred drug, molecular mechanics is
employed to probe free binding energies and compare
protein–ligand complexes for wild-type and mutated drug
targets (Zhang et al., 2019). Recent trends that are being
explored in the field of computational work include the
usage of machine learning algorithms to build prediction
tools (Lee et al., 2020). Studies that make use of
mathematical models alongside bioinformatics for drug
resistance mutations have also been reported (Fonseca et al.,
2015). There has also been an exploration of artificial
intelligence alongside machine learning algorithms for drug
resistance mutation predictive tests (Deelder et al., 2019).

CONCLUDING REMARKS

With the increase in the number of drug-resistant and
multidrug-resistant strains of Mtb, a need has arisen for
techniques that are rapid for extensive studies of the
previously mentioned mutations. Computational methods

(Figure 4) present us with the opportunity to rapidly carry
out these studies in silico with outputs comparable with
experimental work at high confidence at even lower costs.
Such methods have been extensively employed in exploring
drug resistance in rifampicin, isoniazid, and ethionamide with
the findings correlating to what is observed in experimental
work; structural changes within the mutant protein drastically
reduce protein–ligand binding affinity.

Machine learning and artificial intelligence have brought about
massive changes and advancements in studying mutations and
drug resistance in Mtb and other diseases. These techniques have
made it possible to identify resistance markers within the whole
genome Muzondiwa et al., 2020, to predict drug resistance for a
given molecule, and to predict co-occurrent drug resistance
between two or more drugs. The techniques are driven by big
data (Table 3), and to that effect, smaller specific repositories/
databases (Drug Resistance–Associated Genes database) have
been created for the sole purpose of helping researchers who
are studying mutations. Computational tools have also been
created for the identification of resistance markers and
prediction of drug resistance (DeepAMR). Predictive learning
makes it possible for scientists to identify potentially unwanted
drug characteristics that may not be picked up with experimental
methods, greatly reducing the risk for drug failure and saving time
and money in the process.
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TABLE 2 | Computational tools used in the study of mutations.

Computational tool Use References

AutoDock Molecular docking and visualization Morris et al. (2009)
Glide Molecular docking and visualization Friesner and Mainz (2006)
Pymol Molecular visualization DeLano (2002)
Gromacs Molecular dynamics simulations Van Der Spoel et al. (2005)
Amber Molecular dynamics simulations Case et al. (2005)
Modeller Homology or comparative modeling of protein 3D structures Webb and Sali (2016)
Discovery Studio Molecular visualization Studio (2008)
Arpeggio A web server for calculating and visualizing interatomic interactions in protein structures Jubb et al. (2017)
UCSF Chimera Interactive visualization and analysis of molecular structures and related data Pettersen et al. (2004)
DeepAMR Predicting co-occurrent resistance of Mycobacterium tuberculosis Yang et al. (2019)
EnCom Predicting the effects of mutations on flexible protein conformations Frappier et al. (2015)
FoldX Schymkowitz et al. (2005)

TABLE 3 | Databases used alongside computational packages.

Database Information contained References

UniProt Protein sequence and functional information Consortium (2015)
Protein Databank Protein 3D Structures Berman et al. (2000)
DRAGdb Mutational data of drug resistance–associated genes Ghosh et al. (2020)
NCBI Biological data and small-molecule database Wheeler et al. (2006)
ChEMBL Binding, functional, and ADMET information for a large number of drug-like bioactive compounds Gaulton and LouisaBellis (2012)
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