About this Research Topic
A microfluidic organ-on-a-chip (μOOC) is a cell culture device, based on microfluidic technology, which contains continuously perfused chambers with cells to simulate organ-level physiology/pathology. The μOOC is not to build a whole living organ, but rather to synthesize minimal functional units that recapitulate organ-/tissue-level functions. The μOOC can be applied to study not only the convention stimulation on cells by molecular/drugs, but also physical forces (fluid shear stress, cyclic strain and mechanical compression), organ-specific cell-cell intercommunication, and organ-organ coupling responses.
There is an emerging need for innovative approaches for the production, control, analysis, and utilization of the μOOC, and even the multiple interconnected μOOC (Human-on-a-Chip). Although the μOOC has attracted much attention and is continuous being studied, there are still many difficult problems to be solved. Some of the most mentioned challenges include microenvironmental (biochemical, biophysical, biomechanical, nutrient, etc.) control, modeling tissue–tissue and multi-organ interactions, and reducing variability (automated control, high-throughput manipulation/analysis, integration of biosensing and etc.).
The aim of the current Research Topic is to cover promising, recent, and novel research trends in the Microfluidic and Organ-on-a-Chip fields, to solve these tough basic problems, and promote the application of these technologies.
This Research Topic welcomes all article types. Areas to be covered in this Research Topic may include, but are not limited to:
• Development of New μOOC devices
• New methods of microenvironmental control inside μOOC devices
• New methods of detection/analysis technology inside μOOC devices
• Tissue–tissue/multi-organ interaction models based on μOOC devices
• Application of the μOOC devices in exploring organ development
• Application of the μOOC devices in the demonstration of the organ physiological functions
• Application of the μOOC devices in the investigation of pathogenesis
• Application of the μOOC devices in the development of novel therapeutic strategies
Keywords: Microfluidic, Organ-on-a-Chip, Tissue Engineering, Cell Communication, Biosimulation
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.