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Editorial on the Research Topic

Advanced Technologies and Perspectives on Sustainable Microalgae Production

Algae are photoautotrophs like plants, produce their food by fixing atmospheric carbon dioxide in the
presence of sunlight. They produce half of the total atmospheric oxygen, hence supporting all lifeforms on
the earth. They can be unicellular or multicellular, microalgae or macroalgae and occur naturally in moist
areas, freshwater, andmarine environments. Being the primary producers inmarine ecosystems, they form
the base of most aquatic food webs. They multiply rapidly, have short generation time, and hence can
spread across large areas in less time. They can withstand harsh environments without compromising
survival due to their highly adaptive nature and can accumulate a wide range of products like fatty acids
(oils), carbohydrates, chromophores (carotenoids, chlorophyll, phycobiliproteins), antioxidants, vitamins,
enzymes, polymers, peptides, toxins, and sterols. These high-value products find diverse applications in
biofuel production, food/feed supplements, nutraceuticals, cosmetics, natural colouring agents, and
therapeutic and pharmaceutical fields. Apart from these, algae became extensively used in
bioremediation, wastewater treatment, biochar and biofertilizers.

Microalgae has gained high interest in the global bioenergy sector as a third-generation biofuel
feedstock with, potential to meet global transportation fuel demand. The algal biomass serves as
sources of biofuels such as biodiesel, bioethanol, biohydrogen, biomethane, and gasoline. Algae-
based fuels are carbon-neutral because they tend to not disturb carbon emission-fixation balance
and could significantly reduce the rising threats of global warming, unlike coal-based fossil fuels.
Microalgal strains with higher lipid and/or fermentable sugar content are exploited for biodiesel
and bioethanol production. These strains are isolated, cultivated under controlled conditions of
optimized pH, temperature, nutrients, and light in photobioreactors and open raceway ponds
over large areas, followed by harvesting and downstream processing to obtain the required
product. The natural oil content in algae comes in the range of 20–50 percent of its dry weight and
the oil yield far exceeds that from terrestrial crops. However, algal cultivation requires higher
maintenance and harvesting costs, and advanced technologies for conversion to biofuels.
Achieving indefinite availability of algal biofuels in higher volumes for fulfilling future
demands is a big challenge in terms of capital investment and technological support. This
makes algal-based biofuel production not commercially viable and economically feasible when
compared to other conventional biofuels.

Various cost-effective strategies for improving commercial viability of algae-based biofuels have been
proposed, one of them being co-production of value-added products from algae. The algal biomass is a rich
natural source of antioxidants, polyunsaturated fatty acids (PUFAs), vitamins, and minerals and has the
potential to serve as nutrient-enriched supplements to food diets, in therapeutic, cosmetic, and
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pharmaceutical applications. Their supplementation in small
quantities would be suffice for meeting adequate nutritional
demands of the larger population. Microalgal PUFAs like omega-
3-fatty acids [Docosahexaenoic acid (DHA) and Eicosapentaenoic
acid (EPA)] and omega-6-fatty acids [Arachidonic acid and gamma-
linolenic acid (GLA)] offer many health-promoting benefits and
treatment of diseases related to the cardiac and vascular system,
nervous system, arthritis, obesity, mental health, and various
autoimmune disorders. The supplementation of these nutrient-
rich algal sources into dietary intakes of poultry, aquaculture,
animal feeds and human diets enhance food quality and overall
health of the consuming population. This ensures greater food
security to maintain the nutritional status of population,
foreseeing a disease-free healthy future. Considering the reckless
usage of fossil fuels and shrinking of cultivable land, the Alga,
primary producer of aquatic ecosystem may gain a significant
place in ensuring the food security, environment conservation by
sequestering CO2 and liberation of oxygen in near future.
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Isolation and Characterization of
Novel Chlorella Vulgaris Mutants
With Low Chlorophyll and Improved
Protein Contents for Food
Applications
Lisa Schüler 1†, Etiele Greque de Morais 1†, Mafalda Trovão 2, Adriana Machado 2,

Bernardo Carvalho 2, Mariana Carneiro 3, Inês Maia 1, Maria Soares 2, Paulo Duarte 1,

Ana Barros 2, Hugo Pereira 1, Joana Silva 2 and João Varela 1*

1Marine Biotechnology Group, Centre of Marine Sciences, University of Algarve, Faro, Portugal, 2 Allmicroalgae Natural

Products S.A., Pataias, Portugal, 3 LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy,

Faculty of Engineering of the University of Porto, Porto, Portugal

Microalgae are widely used as food supplements due to their high protein content,

essential fatty acids and amino acids as well as carotenoids. The addition of microalgal

biomass to food products (e.g., baked confectioneries) is a common strategy to attract

novel consumers. However, organoleptic factors such as color, taste and smell can be

decisive for the acceptability of foods supplementedwithmicroalgae. The aim of this work

was to develop chlorophyll-deficient mutants of Chlorella vulgaris by chemically induced

random mutagenesis to obtain biomass with different pigmentations for nutritional

applications. Using this strategy, two C. vulgaris mutants with yellow (MT01) and white

(MT02) color were successfully isolated, scaled up and characterized. The changes in

color of MT01 and MT02 mutant strains were due to an 80 and 99% decrease in their

chlorophyll contents, respectively, as compared to the original wild type (WT) strain. Under

heterotrophic growth, MT01 showed a growth performance similar to that of the WT,

reaching a concentration of 5.84 and 6.06 g L−1, respectively, whereas MT02 displayed

slightly lower growth (4.59 g L−1). When grown under a light intensity of 100 µmol

m−2 s−1, the pigment content in MT01 increased without compromising growth, while

MT02 was not able to grow under this light intensity, a strong indication that it became

light-sensitive. The yellow color of MT01 in the dark was mainly due to the presence of

the xanthophyll lutein. On the other hand, phytoene was the only carotenoid detected

in MT02, which is known to be colorless. Concomitantly, MT02 contained the highest

protein content, reaching 48.7% of DW, a 60% increase as compared to the WT. MT01

exhibited a 30% increase when compared to that of the WT, reaching a protein content

of 39.5% of DW. Taken together, the results strongly suggest that the partial abrogation
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of pigment biosynthesis is a factor that might promote higher protein contents in this

species. Moreover, because of their higher protein and lower chlorophyll contents, the

MT01 and MT02 strains are likely candidates to be feedstocks for the development of

novel, innovative food supplements and foods.

Keywords: heterotrophic cultivation, microalgae, nutritional applications, pigments, protein, randommutagenesis,

scale-up

INTRODUCTION

The consumer demand for health-promoting and nutritional-
rich foods has been increasing over the last few years. Microalgae
are a sustainable biological resource with a well-balanced
biochemical profile, rich in protein and bioactive compounds
such as carotenoids and essential fatty acids that provide potential
benefits for human health (Lucas et al., 2018). Nevertheless,
from the thousands of microalgal strains currently described
and identified, only a narrow number of strains are currently
approved for human consumption. In the EU, Arthrospira
platensis (“spirulina”) and Chlorella vulgaris are approved for
human consumption due to a long history of safe use, being well-
established in the market, while odontella aurita and tetraselmis
chui were recently approved as novel foods by the european food
safety authority (EU, 2017/2470).

Microalgal biomass is widely commercialized worldwide
in the nutraceutical sector as food supplements (e.g., tablets
and capsules), while in the food market they are normally
incorporated as a natural food colorant or as a healthy
supplement, able to enhance the nutritional value of conventional
food products (e.g., bars, pasta and cookies; Sahni et al., 2019).
Nevertheless, the incorporation of microalgae in food products
faces challenges mainly due to their organoleptic characteristics,
including a strong color, taste and odor (Lafarga, 2019). The
sensory attributes of foods are directly linked to the consumer
acceptance whereby the color is the first parameter observed by
the consumer and can be decisive for whether or not to include
the food in their diet (Delwiche, 2012). Therefore, microalgal-
based food products that are usually green in color comes
with very low sensorial acceptance by the consumer. Moreover,
chlorophyll, the pigment responsible for the green color of
microalgae and higher plants, usually imparts a grassy taste to tea
(van Lelyveld and Smith, 1989). Therefore, these less favorable
organoleptic characteristics of microalgal biomass need to be
modified in order to improve its acceptance in food products.

Alternative strategies to improve the organoleptic qualities of
food containing microalgal biomass have included the extraction
of the target compounds with the concomitant removal of
chlorophyll or the addition of ingredients such as chocolate to
improve the final flavor and color (Lucas et al., 2018). Another
option could be isolation of novel microalgal strains with
improved organoleptic characteristics. Random mutagenesis is
an interesting cell modification tool for food applications, as
it is not considered a method that generates genetic modified
organisms (GMOs), because it does not introduce any foreign
genetic material into the target cell (Zimny et al., 2019, directive
2001/18/ec). By exposure of the target cells to physical (e.g.,

UV light) or chemical mutagenic agents (e.g., ethyl methane
sulfonate), strains with improved characteristics are generated.
Upon mutagenesis, it is important to apply a selection procedure
to screen for the desired mutants, e.g., abiotic stress factors such
as light intensity. Furthermore, when the genes of the carotenoid
biosynthetic pathway are targeted, specific inhibitors can be
used such as compactin, diphenylamine, nicotine or norflurazon
(Cordero et al., 2011; Chen et al., 2017; Huang et al., 2018).

Accordingly, the aim of this work was to develop chlorophyll-
deficient mutants of C. vulgaris by chemically induced
random mutagenesis in order to obtain biomass with different
pigmentations for nutritional applications. The heterotrophic
growth performance under light and dark conditions of wild
type (WT) and established mutants was evaluated as well as their
proximate biochemical composition and pigment profile. One of
the mutants was scaled up to evaluate the growth performance
in 5-L and 200-L fermenters and determine their feasibility as
future feedstocks for the food industry.

MATERIALS AND METHODS

Wild Type Inoculum and Growth
Chlorella vulgaris was obtained from Allmicroalgae Natural
Products S.A. culture collection. The cryopreserved cultures
stored in liquid nitrogen were transported to the Center of
Marine Sciences (University of Algarve) on dry ice. The inoculum
was transferred to a 50mL centrifuge tube containing 20mL of
culture medium, comprising 0.1% glucose, 0.25% yeast extract
and 0.5% peptone. The culture was later divided into several
250-mL Erlenmeyer flasks with a working volume of 50mL
containing the same medium and incubated in an orbital shaker
at 28± 2◦C under constant shaking (100 rpm).

Random Mutagenesis and Selection of
Chlorophyll-Deficient Mutants
Cells of C. vulgaris growing exponentially (3.2 × 106 cells
mL−1) were concentrated 10-fold by centrifugation (3,000 g,
3min) and treated with 150, 200, 250, 300, 350, and 400mM
ethyl methane sulfonate (EMS, Merck, USA) for 1 h under mild
agitation in the dark (FAO/IAEA, 2018). By addition of sodium
thiosulfate to a final concentration of 5%, the reaction of EMS
was stopped, and cells were pelleted by centrifugation at 3,000 g
for 3min. Cells were washed thrice with sterile distilled water and
incubated for 24 h in the dark to prevent light-dependent DNA
repair. For the determination of the cell survival rate, cells were
plated onto Plate Count Agar (PCA; VWR, Portugal) in serial
dilutions and incubated at 30◦C for 72 h in the dark. The mutant
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selection was carried out by visual observation of the plates in
dim light. A colony with yellow color was picked, sub-cultured
several times on PCA plates and subsequently transferred into
liquid media. This yellow mutant was grown to exponential
phase and subjected to a second round of random mutagenesis
using 300mM EMS. This time, mutant selection was performed
on PCA plates with the carotenoid biosynthesis inhibitor
norflurazon, which blocks phytoene desaturase (Breitenbach
et al., 2001; Koschmieder et al., 2017). To choose the lowest
concentration that inhibits cell growth of the mutant, cells
were previously spread onto 2, 4, 8, and 10µM of norflurazon
plates. Only at 10µM the authors obtained plates without any
colonies, whereas lower concentrations led to a lawn of cells.
Therefore, upon mutagenesis, cultures were plated onto PCA
plates containing 10µMof norflurazon and incubated at 30◦C in
the dark for 1 week. Herbicide-resistant white colonies were sub-
cultured several times, first on plates containing norflurazon and
afterwards on plates without herbicide to confirm the phenotypic
stability of the mutants.

Experimental Trials in Erlenmeyer Flasks
Experimental trials were conducted to evaluate the heterotrophic
growth performance and biochemical composition of WT and
established mutants under dark and light conditions. The trial
was conducted in 250-mL Erlenmeyer flasks, with a final working
volume of 50mL, using a heterotrophic basal medium (HM;
Barros et al., 2019) supplemented with glucose (20 g L−1).
Cultures were then placed in two orbital shakers at 30◦C and 200
rpm. A spotlight was kept on top of one orbital shaker using a
photon flux density of 100µmol m−2 s−1 (light condition), while
the other orbital shaker was covered with aluminum foil (dark
condition). All experimental trials were carried out in triplicate.

Growth Comparison of Wild Type vs.
Mutant in 5-L and 200-L Fermenters
The seed for heterotrophic growth was obtained sequentially
in 50- and 250-mL cultures in, respectively, 250-ml and 1000-
mL Erlenmeyer flasks, in order to reach a volume of 5 L in a
bench-top fermenter (New Brunswick BioFlo R© CelliGen R©115;
Eppendorf AG, Hamburg, Germany), which was later used to
inoculate a 200-L fermenter, developed and assembled in-house.
Temperature in both fermenters was maintained at 30◦C and
pH at 6.5 by addition of ammonia solution (24% m m−1). As in
the Erlenmeyer flask tests, HM medium was used (Barros et al.,
2019), but glucose was added in fed batch so that a non-limiting
concentration of 1 to 20 g L−1 was kept. Samples were collected
aseptically for supernatant analysis or biomass concentration
analysis. Throughout the growing period the air inlet flowrate
was adjusted to maintain∼1 vvm. Accordingly, the agitation rate
ranged from 100 to 1,200 rpm, so that the dissolved oxygen in the
medium was not a limiting factor for culture growth.

Sampling and Growth Assessment
Sampling of each culture was done twice a day in order to analyze
growth parameters, namely optical density (OD) at 600 nm
using Genesys 10S UV-Vis spectrophotometer (Thermo Fisher

Scientific, Massachusetts, USA), pH and optical microscopy
(Zeiss Axio Scope A1, Oberkochen, Germany).

Dry weight (DW) determination was only possible for the
samples of cultures grown in fermenters. Culture samples were
filtered using pre-weighed 0.7µm GF/C 698 filters (VWR,
Pennsylvania, USA) and dried at 120◦C until constant mass
was obtained using a DBS 60–30 electronic moisture analyzer
(KERN & SOHN GmbH, Balingen, Germany). All dry weight
samples were washedwith demineralized water to remove growth
medium salts. Whenever the previous procedure could not be
carried out, a DW vs. optical density correlation developed in-
house for this strain was used. Biomass productivity was obtained
by equation 1 and growth rate by equation 2.

P
(

g L−1 d−1
)

=
DWf − DWi

tf − ti
(1)

µ
(

d−1
)

=
ln

(

DWf /DWi

)

tf − ti
(2)

Proximate Composition
The protein content was determined by CHN elemental analysis,
according to the procedure provided by the manufacturer using
a Vario el III (Vario EL, Elemental Analyzer system, GmbH,
Hanau, Germany). The final protein content was calculated by
multiplying the percentage of nitrogen by 6.25.

The lipid content was determined using the Bligh and Dyer
(1959) method described in Pereira et al. (2011) with minor
modifications. Briefly, freeze dried samples were extracted with
methanol through bead-milling with glass beads, using a Retsch
MM 400 mixer mill at 30Hz for 3min to ensure effective
cell disruption. The tubes were centrifuged (10,000 g) and the
supernatants were collected to new vials. The pellets suffered a
second extraction and both methanol supernatants were pooled.
Chloroform and water were added to the methanol (2:1:2) and
the tubes were vortexed for 5min. Afterwards, the samples were
centrifuged to obtain a biphasic system and the lipid extract was
separated. A known volume of the extracts was transferred to pre-
weighed tubes, evaporated and weighted in order to determine
the lipids gravimetrically.

The ash content was determined by burning the freeze-
dried biomass in a furnace (J. P. Selecta, Sel horn R9-L,
Barcelona, Spain) at 550◦C for 6 h. The carbohydrate content was
determined by difference of the remaining macronutrients.

Chlorophyll Content
A culture volume corresponding to 10mg of biomass was
taken from each sample and centrifuged for 15min, at
2,547 g (HERMLE Labortechnik GmbH, Wehingen, Germany).
Chlorophyll extraction was performed in acetone by successive
zirconia bead milling. The supernatant was collected by
centrifugation and re-extraction of the biomass was performed
until colorless. The absorbance of the supernatant was measured
in a Genesys 10S UV-Vis spectrophotometer (Thermo Scientific,
Massachusetts, USA) at 630, 647, 664 and 691 nm. The
chlorophyll a content was then estimated according to the
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following equation by Ritchie (2008):

Chla = −0.3319 Abs630 − 1.7485 Abs647 + 11.9442 Abs664

− 1.4306 Abs691 (3)

Carotenoid Profile
The extraction of carotenoids was carried out on ice and
under dim light to avoid oxidation. Approximately 5mg of
freeze-dried biomass was weighed in a glass vial, ∼0.6 g of
glass beads (425–600µm) and 1mL of ice-cold methanol
containing 0.03% butylhydroxytoluene (BHT) were added.
Cells were disrupted using a Retsch MM 400 mixer mill at
30Hz for 3min. To collect the supernatant, the samples were
centrifuged for 3min at 21,000 g. The remaining biomass was
extracted repeatedly with 1mL of methanol/BHT by vortexing
for 10 s, followed by centrifugation until both the pellet and the
supernatant became colorless. The extracts were combined, and
methanol was evaporated under a gentle nitrogen flow. Prior
to HPLC analysis, the extracts were resuspended in 1mL of
methanol and filtrated through 0.22µm PTFE filter to remove
suspended particles.

Carotenoid analysis was performed by HPLC as described
previously (Schüler et al., 2020). Briefly, a Dionex 580 HPLC
System (DIONEX Corporation, USA) consisting of a PDA 100
Photodiode-array detector, STH 585 column oven set to 20◦C
and a LiChroCART RP-18 (5µm, 250 × 4mm, LiChrospher)
column was used. Carotenoid separation was achieved using a
mobile phase composed of solvent A acetonitrile:water (9:1; v
v−1) and solvent B ethyl acetate with the following gradient: 0–
16min, 0–60% B; 16–30min, 60% B; 30–32min 100% B and
32–35min 100% A. All carotenoids were detected at 450 nm
and 280 nm and analyzed with Chromeleon Chromatography
Data System software (Version 6.3, ThermoFisher Scientific,
Massachusetts, USA). The quantification was carried out using
calibration curves of neoxanthin, violaxanthin, lutein, zeaxanthin
and β-carotene standards (Sigma-Aldrich, Portugal). Phytoene
was identified by its specific absorbance profile at 280 nm and
only quantified as equivalent to lutein. Injection volume of both
extracts and standards was 100 µL.

Statistical Analysis
Statistical analyses were performed with R software (version
3.6.1). Statistical significance was tested using analysis of
variance (one-way ANOVA) and Tukey HSD post-hoc at a 0.05
probability level.

RESULTS AND DISCUSSION

Development of Mutants
In the first stage of this work, chlorophyll-deficient mutants
of C. vulgaris were obtained by random mutagenesis using
the alkylating agent ethyl methane sulfonate (EMS). Different
concentrations of EMS were tested on the WT to find the
concentration, which resulted into a survival rate between 5
and 10% (Figure 1). The selection of the correct survival rate
is critical to increase the likelihood that the survivors contain
at least one mutation, but also to avoid the selection of cells

FIGURE 1 | Survival rate of heterotrophic Chlorella vulgaris upon exposure to

different ethyl methane sulfonate (EMS) concentrations on plate count agar

(PCA) plates.

containing multiple mutations, which are often detrimental to
growth. The selection and further scale up of the mutants were
carried out in the absence of light and with glucose as carbon
source to suppress the need for energy supply via photosynthesis,
and thus promoting the growth of chlorophyll-deficient mutants.
After treatment of the cells with a concentration of 300mM
of EMS, a yellow colony indicating the absence of chlorophyll
emerged onto the plate. The repeated sub-cultivation on solid
media of this mutant, MT01, confirmed the stability of the yellow
color throughout 10 generations. Most probably, a mutation in
the photosynthetic machinery is the reason for the reduction of
chlorophyll in this mutant (Tiwari et al., 2019).

Thereafter, a second random mutagenesis was conducted on
MT01, with subsequent selection of mutants by their resistance
to the carotenogenic pathway inhibitor norflurazon. A wide
range of concentrations of norflurazon was tested to find out
that 10µM was the minimal lethal concentration to MT01. This
selection procedure gave rise to white colonies with resistance
to the bleaching herbicide norflurazon. After sub-cultivation,
only one mutant maintained the white color when the herbicide
was removed from the media over 10 generations. This mutant,
MT02, most probably contains an irreversible mutation in
the phytoene desaturase gene leading to the inhibition of the
following steps within the carotenoid and/or plastoquinone
biosynthetic pathways (McCarthy et al., 2004; Qin et al., 2007).
Other studies on Chlorella zofingiensis and Chlorella sorokiniana
used a similar approach to obtain mutants with accumulation of
zeaxanthin or lutein, respectively (Chen et al., 2017; Huang et al.,
2018). In those cases, the inhibitors diphenylamine or nicotine
were used to select for mutations in genes coding for enzymes
involved in carotenoid biosynthesis.

Wild Type vs. Mutants in Dark and Light
Conditions
Growth Performance
C. vulgaris WT and mutants were grown in 250-mL Erlenmeyer
flasks under light and dark conditions, to assess the effect of light
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FIGURE 2 | Growth curves of wild type and mutants, under light and dark

conditions grown in 250-mL Erlenmeyer flasks for 48 h.

on growth performance and biomass color (Figure 2). After a
lag phase of about 20 h the cultures grew exponentially until the
depletion of glucose, which led to cell death after 48 h.

The WT along with the yellow mutant MT01, both in the
dark, reached the highest DW after 45 h of growth, 5.84 and
6.06 g L−1, respectively. Under light conditions, the WT and
MT01 achieved a similar DW (p > 0.05), 5.52 and 5.38 g
L−1, respectively, but significantly lower than that obtained
under dark conditions (Figure 2). Several pale-green C. vulgaris
mutants reported in literature also showed biomass productivity
similar to that of theWT strain used, however, under autotrophic
conditions (Shin et al., 2016; Dall’Osto et al., 2019). Furthermore,
those mutants showed with increasing light intensity higher
biomass productivities (up to a 68% increase) than that of the
WT. Those studies further showed that the changes observed
not only improved growth performance, but also the pigment
profile, at the cost of higher sensitivity to light. Interestingly,
all these phenotypes were associated to smaller antenna sizes in
the photosynthetic machinery of the mutants (Shin et al., 2016;
Dall’Osto et al., 2019).

The white mutant MT02 displayed a significantly lower
biomass concentration in the dark compared to the WT and
MT01 (p < 0.05), attaining a maximum DW of 4.59 g L−1 after
45 h of growth. Moreover, MT02 was not able to grow under light
conditions, achieving only 0.08 g L−1 of DW at the end of the
assay. Similarly, Kamiya (1985) also described light, particularly
blue light, as inhibitory for growth, cell division and glucose
uptake for colorless Chlorella mutants. Nonetheless, in the dark,
MT02 displayed a promising growth performance, which was
statistically indistinguishable from that of the WT (p > 0.05).
In spite of enhancing pigment content, exposure to excess light
might lead to a more or less noticeable growth inhibition, which
in this case was observed not only in the white MT02 mutant
growth, but also in the WT and yellow MT01 mutant cultures
exposed continuously to light.

Pigment Profile
Macroscopically, WT cultures displayed a green color and
acquired a more intense green color when grown under a

spotlight (Figure 3). MT01 cultures presented an intense yellow
color under dark conditions, which was reversed back to green
when cultures were exposed to light conditions. On the other
hand, MT02 cultures exhibited a white tonality and absence of
any other color under dark conditions, while no biomass was
produced under light conditions.

In order to characterize the color of WT and mutant strains
under light and dark conditions, the chlorophyll and carotenoid
content of the cultures were analyzed. It is evident that light
significantly increased the chlorophyll content of WT and
mutant cultures (p < 0.05) (Figure 4). Although, MT01 and
WT exhibited equivalent growth performances (p > 0.05), MT01
contained significantly lower chlorophyll content than the WT
(p < 0.05) under both light and dark conditions. WT cultures
displayed the highest chlorophyll content, 9.16mg g−1 under
dark conditions, which was enhanced to 14.06mg g−1 in the
presence of light. MT01 cultures grown in the dark registered
1.69mg g−1 of chlorophyll, while under light exposure 8.02mg
g−1 of chlorophyll was detected, which granted them the green
coloration. In fact, no significant differences were observed
between the chlorophyll content ofWT grown in the dark and the
light grown MT01 displaying a pale green color (p>0.05). This
is in agreement with studies of C. vulgaris, where EMS-induced
light green mutants with a 50% reduced chlorophyll content
compared to the WT were selected (Shin et al., 2016; Dall’Osto
et al., 2019). However, cultures in those studies were grown under
autotrophic conditions as the objective was to enhance biomass
productivities and photosynthetic efficiencies.

The MT02 mutant, however, displayed only residual
chlorophyll contents grown in the dark (0.045mg g−1).
Although not easily visible, after some days of light exposure,
MT02 started to acquire a pale green tonality, which was
evidenced by the detection of an increased chlorophyll content
in the biomass as compared with the dark cultured biomass
(0.25mg g−1; p < 0.05). This is in accordance with studies on
EMS-induced white mutants of Chlamydomonas reinhardtii
and Chlorella vulgaris, which showed a pale green color due
to a 40-fold decrease in chlorophyll content compared to the
WT (Kamiya, 1985; McCarthy et al., 2004). However, with the
mutants developed in this work, which are heterotrophically
cultivated, it is possible to maintain a stable non-green color
under dark conditions.

The carotenoid profile of C. vulgaris WT was mainly
composed of lutein and β-carotene, while neoxanthin,
violaxanthin and zeaxanthin were only detected in minor
quantities (Table 1). The carotenoid profile of MT01 showed
the same characteristics as compared with the WT, however,
with lower contents of 0.93 ± 0.01 and 1.70 ± 0.13mg
g−1 DW in the dark, respectively. As lutein is the major
carotenoid, this can explain the yellow color of MT01 under
dark conditions (Figure 3). Huang et al. (2018) also obtained a
yellow Chlorella mutant by random mutagenesis with similar
growth performances of the wild type strain. That mutant
strain displayed a dysfunction in carotenoid ketolase enzyme,
which prompted zeaxanthin accumulation (up to 7.00mg g−1)
enhanced by high-light irradiation, nitrogen depletion and
glucose feeding. Those treatments also led to the accumulation of
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FIGURE 3 | Different coloration of wild type and mutant cultures, dry weight filters and freeze-dried biomass, grown under light and dark conditions in 250-mL

Erlenmeyer flasks, after 42 h.

FIGURE 4 | Chlorophyll content (mg g−1) of Chlorella vulgaris wild type and

mutants grown in 250-mL Erlenmeyer flasks under dark and light conditions.

Values are given as means ± standard deviation of three biological

replicates (n = 3).

other carotenoids, such as β-carotene (7.18mg g−1) and lutein
(13.81mg g−1), which together imparted their yellowish hues to
the biomass. In addition, Dresbach and Kowallik (1974), which
also established a chlorophyll-free C. vulgarismutant pointed out
that carotenoid biosynthesis might be enhanced by permanent
irradiation with blue light. Moreover, several positive effects

on human health such as the reduced risk for cardiovascular
disease and age-related macular degeneration as well as cancer
prevention have been attributed to lutein (Astorg, 1997; Ma
et al., 2012; Han et al., 2015). Therefore, it could be interesting
to study the accumulation of this pigment in MT01 by testing
other stressing or stimulating factors, such as nitrogen depletion,
glucose feeding and other light wavelengths or intensities.

Increased light intensity seems to promote the induction

of carotenoids in both WT and MT01 by about 1.6-fold
(Table 1). This is most probably related with the function

of carotenoids, as they are important pigments involved not
only in light harvesting, but also in the protection of the

photosynthetic apparatus from excess light (Mulders et al.,
2014). As expected, the content of violaxanthin decreased with

the concomitant increase of the photoprotective xanthophyll

zeaxanthin (Table 1). Remarkably, the content of β-carotene

in MT01 cultivated under light conditions increased 10-fold
compared with cells under dark conditions, confirming the

importance of this carotenoid as photoprotective pigment in

this microalga. Conversely, as its white color indicated already,
all colored carotenoids were absent in the MT02 mutant; the

only carotenoid detected was the colorless phytoene with 2-fold

higher concentrations as compared with the WT under dark
conditions (Table 1). Phytoene is a linear carotenoid without

a conjugated system of double bonds, which has already been
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TABLE 1 | Carotenoid content of Chlorella vulgaris WT and chlorophyll-deficient mutants MT01 and MT02 grown in 250mL Erlenmeyer flasks under light and dark

conditions.

Culture Condition Neoxanthin Violaxanthin Lutein Zeaxanthin β-carotene Phytoene

(mg g−1 DW) (mg g−1 DW) (mg g−1 DW) (mg g−1 DW) (mg g−1 DW) (mg g−1 DW)*

WT Dark 0.085 ± 0.008b 0.043 ± 0.007a 1.280 ± 0.077b 0.007 ± 0.001b 0.284 ± 0.036b 0.194 ± 0.010e

Light 0.181 ± 0.012a 0.033 ± 0.007ab 1.853 ± 0.060a 0.010 ± 0.001a 0.585 ± 0.047a 0.252 ± 0.012d

MT01 Dark 0.005 ± 0.001d 0.033 ± 0.010ab 0.858 ± 0.003c 0.003 ± 0.001c 0.034 ± 0.001c 0.320 ± 0.004c

Light 0.038 ± 0.009c 0.016 ± 0.006b 1.167 ± 0.079b 0.009 ± 0.001ab 0.322 ± 0.026b 0.363 ± 0.008b

MT02 Dark 0 0 0 0 0 0.414 ± 0.010a

Light n.a. n.a. n.a. n.a. n.a. n.a.

Different letters indicate significant differences (p > 0.05) between strains and treatments. Values are given as means ± standard deviation of three biological replicates (n = 3).

n.a., not analyzed due to insufficient biomass sample. *Values calculated as lutein-equivalent contents.

TABLE 2 | Proximate composition of macronutrients of Chlorella vulgaris WT and

mutants presented as percentage of dry weight.

Culture Condition Proteins Lipids Carbohydrates Ashes

(% DW) (% DW) (% DW) (% DW)

WT Dark 30.5 ± 0.8e 15.4 ± 1.9a 48.8 ± 2.9a 5.4 ± 0.5d

Light 35.3 ± 0.4d 15.8 ± 1.5a 42.2 ± 1.8b 6.6 ± 0.7c

MT01 Dark 39.5 ± 0.9c 18.4 ± 1.8a 32.0 ± 1.1c 10.1 ± 0.2b

Light 45.5 ± 0.8b 14.3 ± 2.3a 27.5 ± 3.3c 12.7 ± 0.4a

MT02 Dark 48.7 ± 1.3a 14.9 ± 2.4a 27.1 ± 2.1c 9.3 ± 0.2b

Light n.a. n.a. n.a. n.a.

Different letters indicate significant differences (p > 0.05) between strains and treatments.

Values are given as means ± standard deviation of three biological replicates (n = 3).

n.a., not analyzed due to insufficient biomass sample.

reported to be ineffective in photoprotection (León et al., 2005).
This is most probably the reason why MT02 was not able to
grow under light conditions. Phytoene, however, has gained
interest in the cosmetic industries due to its absorption of UV
radiation, anti-inflammatory and anti-oxidant effects (Meléndez-
Martínez et al., 2018). Therefore, it would be interesting to
study the accumulation of this carotenoid in the C. vulgaris
MT02 strain under specific growth conditions to maximize
its production.

Proximate Composition of Main Macronutrients
The comparison of the composition of main macronutrients
revealed significant differences between WT, MT01 and MT02 in
terms of protein, ash, and carbohydrate contents (Table 2). MT02
grown in the dark displayed the highest protein content, 48.7% of
DW, followed by MT02 grown in the light and dark conditions,
45.5 and 39.5% of DW, respectively (p< 0.05). TheWT displayed
the lowest protein content under light and dark conditions, 35.3
and 30.5% of DW, respectively (p < 0.05). On the other hand,
the highest carbohydrate content (48.8 and 42.2% of DW, in the
dark and in the light, respectively) was achieved by the WT (p
< 0.05), while MT01 and MT02 presented similar carbohydrate
contents (27.1–32.0% of DW; p > 0.05). Interestingly, despite the
great variations found in chlorophyll content between cultures
and conditions, no significant differences in total lipid content

FIGURE 5 | Growth curves of wild type vs. MT01 mutant in 5-L and 200-L

fermenters. Values are given as means ± standard deviation of three biological

replicates (n = 3).

were detected, which ranged from 14.3 to 18.4% of DW in all
cultures and conditions (p > 0.05). The WT revealed the lowest
ash content (5.4 and 6.6% of DW in the dark and in the light,
respectively), followed by MT01 and MT02 grown in the dark
(9.3–10.1% of DW), whereasMT02 grown under light conditions
displayed the highest ash content (12.7% of DW; p < 0.05). The
conditions (light vs. dark) affected protein, carbohydrate and ash
significantly, resulting in higher content of both protein and ash,
and lower content of carbohydrates, when cells were exposed to
light (p < 0.05).

Both higher amounts of proteins and lower amounts of
chlorophyll detected in both mutants may suggest a truncated
chlorophyll antenna size of the photosystems as reported in other
chlorophyll-deficient mutants (Polle et al., 2002; Shin et al., 2016;
Dall’Osto et al., 2019). Those chlorophyll-deficient mutants have
been characterized with similar or even higher protein levels,
namely chlorophyll-binding proteins and thylakoid membrane
proteins (Polle et al., 2002; Gu et al., 2017). Furthermore, a
previous report revealed that higher light exposure induces the
accumulation of proteins; thus, in this case, low light might have
induced the synthesis of larger photosynthetic units, resulting in
higher protein content in the light (Seyfabadi et al., 2011). While
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TABLE 3 | Mean and maximum biomass productivities and growth rates of Chlorella vulgaris WT and mutant MT01 in 5- and 200 L fermenters.

Strain/fermenter Mean productivity Batch maximum productivity* Mean specific growth rate Batch maximum specific growth rate*

(g L−1 d−1) (g L−1 d−1) (d−1) (d−1)

WT 5-L Ferm 42.44 ± 5.31a 48.22 2.67 ± 0.32ab 2.92

MT01 5-L Ferm 41.03 ± 1.56a 42.11 2.98 ± 0.04a 3.01

WT 200-L Ferm 30.98 ± 2.25b 33.06 2.38 ± 0.08b 2.47

MT01 200-L Ferm 30.07 ± 1.47b 31.73 2.46 ± 0.26ab 2.64

Same letters in superscript after the values denote significant statistical differences (p > 0.05) between values on the same column. Values are given as means ± standard deviation of

three biological replicates (n = 3).

*Batch maximum productivity and batch maximum specific growth rate correspond to maximum mean productivity and mean specific growth rate obtained among the three

replicates, respectively.

the higher content of carbohydrate found in the dark conditions
was probably due to the accumulation of polysaccharides such
as starch. In addition, increased ash content in chlorophyll-
free biomass has also been previously reported (Li et al.,
2016), suggesting that the mineral metabolism might have also
been affected in the mutants. Overall, WT cultures revealed
proximate composition values within those previously reported
for C. vulgaris grown in heterotrophic conditions (Kim et al.,
2019; Canelli et al., 2020), while MT01 and MT02 displayed
significantly higher protein contents. Therefore, the low ash
associated with high protein contents of mutants, adds to these
cultures improved nutritional profiles with commercial interest
for their application as feedstocks for food products.

Scale-Up Case Study: MT01 Growth
Validation in 5-L and 200-L Fermenters
In order to validate the previous results, the WT and MT01
growth performance was compared at a larger scale in 5-L and
200-L fermenters (Figure 5).

In the 5-L fermenters, growth was similar for both strains (p
> 0.05) reaching a maximum DW of 100.94 and 110.85 g L−1 for
the WT and MT01 cells, respectively, ∼60 h upon inoculation.
Similarly, no significant differences (p > 0.05) were observed
in the growth of MT01 and WT in the 200-L fermenters as
shown by the key process indicators (KPI; Table 3). Final DW
here obtained was of 99.39 and 97.13 g L−1 for WT and MT01
strains, respectively, after ∼75 h. These values are below those
previously reported for the WT strain of 174.5 g L−1 (Barros
et al., 2019). Nevertheless, the aforementioned dry weight was
obtained after 7 days of growth, whereas in this run only 3
days are considered. A similar scale-up case study for a mutant
of Chlorella pyrenoidosa was obtained by Song et al. (2018).
In this case, the mutant obtained yielded 81.9 and 84.9 g L−1

of biomass in the 5-L and 2,000-L fermenters, respectively. As
in this study, the authors point out to the homogeneity and
growth patterns of their mutant upon scale-up as a strong
indicator of the suitability of the mutant strain for industrial
biomass production.

Concurrently, there were no statistical differences (p > 0.05)
in the maximum nor in the average specific growth rate of WT
and MT01 growth in the scales tested: 5 L and 200 L. This is an
excellent indicator of the robustness of this mutant for industrial

scale heterotrophic production. Maximum productivities were
also similar for both strains throughout scale-up (p > 0.05).
On the other hand, the average productivity was higher (p <

0.05) for both strains in the 5-L fermenter compared to the
200-L, given the shorter lag phase observed in these growth
curves. In fact, the KPI for the WT and MT01 strains in the
200-L fermenter are well in accordance with the previously
reported for the WT grown in the same 200-L fermenter –
productivity of 27.54 ± 5.07 g L−1 d−1 and mean growth
rate of 0.92 ± 0.11 d−1 (Barros et al., 2019). Furthermore,
the biomass productivity and specific growth rate obtained for
the MT01 strain were higher than those previously obtained
for a C. pyrenoidosa mutant (19.68 g L−1 d−1 and 1.44 d−1,
respectively) using a reactor with a volume of 2,000 L (Song et al.,
2018).

CONCLUSIONS

The established Chlorella vulgaris strains with yellow
(MT01) and white (MT02) colors showed high biomass
productivities comparable to the wild type. The color
change in MT01 and MT02 cells were due to a 5- and
180-fold decrease in chlorophyll contents and the presence
of lutein and phytoene, respectively, when the cells were
grown heterotrophically in the dark. Both mutants displayed
improved protein contents compared to that of the WT
with a 60% increase under heterotrophic growth. MT01
was successfully scaled up to industrial 200-L fermenters,
reaching a concentration of about 100 g DW L−1. Because
of this growth performance as well as improved organoleptic
and nutritional characteristics, both new strains MT01 and
MT02 show a high potential for applications in the food
and nutraceutical industries for novel products based on
microalgal biomass.
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For efficient downstream processing, harvesting remains as one of the challenges
in producing Nannochloropsis biomass, a microalga with high-value omega-3 oils.
Flocculation is an effective, low-energy, low-cost method to harvest microalgae.
Chitosan has been shown to be an effective food-grade flocculant; however, commercial
chitosan is sourced from crustaceans, which has disadvantages including concerns
over heavy-metal contamination. Thus, this study tests the flocculation potential of
mushroom chitosan. Our results indicate a 13% yield of chitosan from mushroom. The
identity of the prepared chitosan was confirmed by Fourier-transform infrared (FTIR)
spectroscopy. Furthermore, results show that mushroom chitosan can be an alternative
flocculant with >95% flocculation efficiency when tested in 100-mL jar and 200-L
vertical column photobioreactor. Applications in a 2000-L raceway pond demonstrated
that thorough mixing of mushroom chitosan with the algal culture is required to achieve
efficient flocculation. With proper mixing, mushroom chitosan can be used to produce
food-grade Nannochloropsis biomass suitable for the production of vegan omega-3 oils
as a fish oil alternative.

Keywords: Nannochloropsis, flocculation, mushroom, chitosan, harvesting, vegan, omega-3

INTRODUCTION

Microalgae are photosynthetic microorganisms that grow in various environments. In recent years,
research on microalgae has shifted from their use as biofuel to the production of nutraceuticals
such as omega-3 fatty acids, carotenoids, and protein. Nannochloropsis sp. is a marine microalga,
which contains high amounts of omega-3 fatty acids in the form of eicosapentaenoic acid (EPA) that
has been proposed as a suitable vegan alternative for fish oil (Chua and Schenk, 2017). Its protein
content can reach 36% of the biomass (Schulze et al., 2016) and even 46% according to our own
data. Because of these abundant high-value products, Nannochloropsis sp. has gained interest from
investors for large-scale cultivation.
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In large-scale microalgae cultivation systems, one of the
main challenges is harvesting the cells (Mathimani and Mallick,
2018). Conventional methods of harvesting include filtration
and centrifugation. However, because of the small cell size
(2–5 µm) of Nannochloropsis, these conventional harvesting
methods require expensive equipment, which are also energy-
intensive. Hence, harvesting can cost up to 30% of the total
capital investment (Milledge and Heaven, 2013). An easy,
simple, and low-cost method of harvesting is by flocculation
(Vandamme et al., 2013). The most common and cheapest
flocculant used is alum (Vandamme et al., 2013). However,
this method contaminates the final harvested biomass with
high amounts of aluminum, which makes the product not
suitable for human and animal consumption. Another well-
studied flocculant is chitosan (Vandamme et al., 2013; Chua
et al., 2019). Chitosan is a linear polysaccharide derived from
the deacetylation of the abundant natural polymer chitin, which
is mainly composed of N-acetyl-D-glucosamine monomer units
(Dimzon and Knepper, 2015). Numerous research papers have
already proven the effectivity of chitosan to flocculate microalgae
cells (Şirin et al., 2012; Xu et al., 2013). We have previously
shown the importance of the pH of the chitosan–microalgae
mixture to have high flocculation efficiencies (Chua et al., 2019).
All chitosan samples tested were sourced from crustacean shells.
However, crustacean-sourced chitosan has several disadvantages
including heavy metal contamination (Ghormade et al., 2017).
Previous studies have shown that chitosan can also be extracted
from mushrooms (Yen and Mau, 2006; Erdogan et al., 2017)
or even mushroom wastes (Wu et al., 2004). Thus, in this
study, we produced and tested the effectiveness of mushroom
chitosan for flocculating Nannochloropsis cells. The results
were further verified in large-scale cultures, i.e., a 200-L
vertical column photobioreactor culture and a 2000-L raceway
pond culture.

MATERIALS AND METHODS

Microalgae Culture
Nannochloropsis oceanica BR2 (Genbank accession JQ423160)
was obtained from the microalgae culture collection of the
University of Queensland Algae Biotechnology culture collection
(Lim et al., 2012; Brown et al., 2019). The species was
initially grown in a 250-mL flask using 20 g/L Ocean Nature
Sea Salt (Aquasonic Pty. Ltd., NSW, Australia) enriched
with f/2 medium (per L water): 75 mg NaNO3, 5 mg
NaH2PO4·H2O, 30 mg Na2SiO3·9H2O, 3.15 mg FeCl3·6H2O,
4.36 mg Na2EDTA·2H2O, 9.8 µg CuSO4·5H2O, 6.3 µg
Na2MoO4·2H2O, 22 µg ZnSO4·7H2O, 10 µg CoCl2·6H2O,
180 µg MnCl2·4H2O, 200 mg thiamine HCl, 1 µg biotin, and
1 µg cyanocobalamin (Guillard, 1975; Ma et al., 2018; Chua
et al., 2019). The culture was continuously illuminated with
fluorescent light (70 µmol photons m−2s−1) and aerated with
filtered (through 0.2-µm pore size membrane filter) air. The
culture was then gradually scaled up to the larger volumes (2 and
20 L) until it was transferred to outdoor cultures with volumes
of 200 and 2000 L. The 200-L culture was grown in a vertical

column photobioreactor with a diameter of 36 cm and a height
of 2 m. The culture was maintained at pH 8.2 for optimum
growth by bubbling CO2 (food-grade, 99.99% pure) at 1 vvm.
Apart from maintaining the pH, CO2 was also the sole source
of carbon for the culture. On the other hand, the 2000-L culture
was grown in a 10 m2 raceway pond that had 1 m wide channels
and a depth of 10 cm. The pond was mixed using an air-lift
system and pH was controlled and maintained at 8 by automatic
additions of CO2.

Preparation of Chitosan From Mushroom
Chitosan was prepared from 50 g of Shiitake mushroom powder
(Austral Herbs, NSW, Australia) following the method by
Mohammed et al. (2013) with some modifications. Briefly,
the mushroom powder was mixed with 5% NaOH solution
in 1:8 ratio of powder to NaOH solution. The mixture
was stirred at 120 r/min for 2 h at 60◦C. Then, the
sample was washed three times with distilled water. The
crude chitin was deacetylated by refluxing in 50% (w/v)
NaOH for 2 h at 100◦C. The resulting liquor was then
centrifuged, and the pellet was continuously washed until the
pH was neutral. Finally, the pellet was lyophilized to obtain
the crude chitosan. The entire procedure was carried out
with 500 g mushroom powder for testing in the large-scale
microalgal cultures.

Characterization of the Prepared
Mushroom Chitosan
The crude mushroom chitosan was characterized using a
Fourier-transform infrared (FTIR) spectrophotometer (Thermo
Scientific Nicolet 700) fitted with an attenuated total reflectance
accessory and a diamond crystal internal reflection element.
The resulting spectrum was compared to the commercial
chitosan (Sigma).

Elemental Analyses of Chitosan
Elemental analyses for heavy metals in chitosan samples were
performed in duplicates as previously described (Aslam et al.,
2019). Included in the analyses were two crustacean chitosan
samples (Sample 1: Biomedical Chitosan, Australia; Sample
2: Qingdao Yunzhou Biochemistry Co., Ltd., China) and the
mushroom-derived chitosan from the present study (Sample 3).

Testing the Prepared Mushroom
Chitosan for Nannochloropsis
Flocculation
A similar method was used to test for the flocculation efficiency
of the prepared mushroom chitosan as described in Chua et al.
(2019). The optimized parameters (chitosan concentration of
25 ppm, culture optical density of 2, adjustment of pH to 6 after
chitosan addition, and increase of final pH to 10 after mixing the
chitosan) were used for the test.

The prepared mushroom chitosan was compared to
commercial chitosan and mushroom powder. All samples
were suspended in 1% acetic acid. Samples were collected at
mid-height at 5, 15, and 30 min and the absorbance of the
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samples was measured at 440 nm to evaluate the flocculation
efficiency. The flocculation efficiency was calculated using Eq. 1:

Flocculation efficiency(in %) =

(
1−

ODt

OD0

)
× 100 (1)

where OD0 and ODt are the OD values of the cultures before and
after the flocculation test, respectively. The culture absorbance
was measured at 440 nm since this is the absorption maximum
of chlorophyll a which is abundantly present in Nannochloropsis.

Further, a pilot scale testing of mushroom chitosan for
flocculation was performed on Nannochloropsis cultivated in a
200 L vertical column photo-bioreactor and 2000 L open raceway
pond. Both these cultures were maintained at pH 8 through
CO2 supplementation. The final pH of the cultures was set
by adding KOH. The same method was used to calculate the
flocculation efficiency.

Fatty Acid Quantification and Profiling
Fatty acid methyl esters from chitosan-harvested N. oceanica
BR2 biomass were quantified by gas chromatography-mass
spectrometry (GC-MS) as previously described (Ma et al., 2018).
The analysis was done in triplicates.

Statistical Analysis
The lab scale flocculation test was performed in triplicates.
Tukey’s multiple comparisons test was used to test the
significance among groups. Comparisons with p-values < 0.05
considered as statistically significant.

RESULTS

Preparation of Mushroom Chitosan
Mushroom chitosan was prepared from mushroom chitin via
alkaline treatment. From the mushroom powder used, 17.22 g
of crude extract was obtained after the first alkaline treatment.
The first alkaline treatment was necessary to remove the protein
contaminants (Wu et al., 2004; Mohammed et al., 2013; Erdogan
et al., 2017). The amount of crude extract was further reduced
after the second alkaline treatment to 6.16 g, which equates to
a 12.32% yield. For the 500 g-mushroom powder, 157.02 g of
crude chitin were obtained resulting in a 31.4% yield. After the
second alkaline treatment, 68 g of crude chitosan were obtained
for a final yield of 13.60%. Figure 1A shows the appearance of
the mushroom chitosan after it has been lyophilized. The final
yields obtained for both the small scale and large-scale extractions
were comparable to those in literature (Yen and Mau, 2006;
Di Mario et al., 2008).

Infrared spectroscopy (Figure 1B) results indicated that
chitosan was successfully prepared from the extracted mushroom
chitin. Peaks at 3400–3200 cm−1 correspond to the N–H and O–
H stretching. The peaks around the 1660 cm−1 region correspond
to the C = O stretching from the amide group while the peak
at 1600 cm−1 is the amine peak (Dimzon and Knepper, 2015).
Finally, the peaks at 1024, 1373, and 2870 cm−1 correspond to
the C–O bending, C–H bending, and C–H stretching from the
polymer backbone, respectively.

Flocculation Efficiency of the Prepared
Crude Mushroom Chitosan
The crude mushroom chitosan was tested on N. oceanica
BR2 using previously optimized conditions which were:
culture OD of 2, 25 ppm chitosan, adjusting the pH to 6
after chitosan addition, and increasing the final pH to 10
after mixing the chitosan into the culture (Chua et al., 2019).
Similar to the results in Chua et al. (2019), no flocculation
was observed without increasing the final pH to 10. Results
indicated that that the crude mushroom chitosan can induce
flocculation similar to the commercial chitosan (p > 0.05)
with flocculation efficiency values > 94% after 5 min
(Figure 2). On the other hand, the mushroom powder only
yielded an average flocculation efficiency value of 66% even
after 30 min.

Testing of Mushroom Chitosan in a
Pilot-Scale Harvesting
The effectiveness of mushroom chitosan to induce flocculation
of N. oceanica BR2 was tested at pilot scale using a 200-L
vertical column photo-bioreactor and a 2000-L open raceway
pond. Figures 3A,B show the 200-L column photo-bioreactor
before and after the flocculation procedure, respectively. In this
case, a flocculation efficiency of 98.3% was achieved. As for
the 2000-L raceway pond, it had an initial OD of 2.9. So, a
50-mL sample was obtained before testing. Flocculation was
observed after adding chitosan into the 50-mL sample as shown
in Figure 3D indicating that 25 ppm of mushroom chitosan
is still effective. Mixing was performed by using an air-lift
system, and the chitosan was poured in and mixed for 10 min.
Figures 3F,G show some of the flocs that formed after the
chitosan was added and these flocs were not present before
chitosan addition as shown in Figure 3E. The entire procedure
yielded 64% flocculation efficiency after 1 h of settling. After
24 h, samples were collected at different points of the pond, and
the average OD was 0.787, yielding 73% flocculation efficiency.
Figure 3C summarizes the flocculation results of the 200- and
2000-L culture.

To determine which type of chitosan (mushroom- or
crustaceae-derived) is a safer option for human consumption,
elemental analyses were performed using two samples
of crustacean and one sample of mushroom chitosan
from the present study. These showed that heavy metals
varied greatly for the two crustacean-derived samples,
with chromium and nickel levels as high as 47.44 and
27.21 mg/kg, respectively, while mushroom-derived chitosan
did not contain any concerning heavy metal contamination
(Supplementary Table S1).

Fatty Acid Profiling of Mushroom
Chitosan-Harvested N. oceanica BR2
Biomass
The mushroom chitosan-harvested biomass has EPA levels up
to 41.3(±0.3)% of the total fatty acid content. Other fatty acids
detected were palmitic acid (C16:0, 15.0 ± 0.6%), palmitoleic
acid (C16:1, 34.4 ± 0.8%), oleic acid (C18:1, 2.8 ± 0.3%),
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FIGURE 1 | (A) Commercial chitosan (left) and crude mushroom chitosan (right). (B) Infrared spectra of commercial chitosan (top) and mushroom chitosan (bottom).

FIGURE 2 | Flocculation efficiency for mushroom chitosan compared to the commercial chitosan from crustacean. Shown are mean values ± SE of three replicates.

linoleic acid (C18:2, 1.8± 0.2%), and arachidonic acid (C20:4n-6,
4.7± 0.3%). Supplementary Table S2 lists the fatty acid profile of
the mushroom-harvested N. oceanica BR2 biomass together with
profiles from other studies for comparison.

DISCUSSION

Chitin is popularly known to be extracted from the shells of
crustaceans such as crabs and shrimps. Earlier estimates have
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FIGURE 3 | Mushroom chitosan-mediated flocculation of N. oceanica in a 200-L tower culture: (A) before flocculation and (B) after flocculation. The resulting
flocculation efficiencies are presented in (C). The red arrow indicates the sampling point; and in a 2000-L raceway pond: (D) testing on a 50-mL sample, (E) before
flocculation, (F,G) after flocculation.

shown that more than 80,000 tons of chitin is obtained from
marine by-products (Ghormade et al., 2017). However, there
are some disadvantages to marine-derived chitosan including
seasonal variation and possible heavy metal contamination
(Ghormade et al., 2017; Abo Elsoud and El Kady, 2019).
This was also confirmed in the present study (Supplementary
Table S1). In addition, fungal chitosan is suitable for vegans and
is free from allergenic shrimp protein, which can be included
in the final harvested biomass (Arcidiacono and Kaplan, 1992;
Dhillon et al., 2013).

To theoretically estimate the comparative production
expenses of chitosan from mushroom and crustaceans, the
literature outlines that due to the inconsistent structure of
chitin and chitosan from crustaceans, fungal (mushroom in
this case) may represent a better alternative (Di Mario et al.,
2008; Hassainia et al., 2018; Jones et al., 2020). Furthermore,
fluctuations in seasonal supply of various animal sources and
challenges in raw material standardization cause high variability
in terms of deacetylation degree and molecular mass. These

results may interfere in final flocculation efficiency of the
chitosan. Unlike crustacean chitin, fungal chitin has more
consistent physical and chemical properties, is not limited
by seasonal and regional variation, and does not require the
aggressive acid treatment that crustacean chitin needs for
purification and demineralization to remove calcium carbonate
and other minerals (Di Mario et al., 2008; Hassainia et al., 2018;
Jones et al., 2020). In addition, from an environmental economics
and sustainability point of view, crustacean chitosan production
is likely to generate more waste than fungal chitosan. In the
traditional process of chitin extraction from crustaceans, calcium
and proteins are removed by HCl and NaOH, respectively. The
remaining material is usually bleached with KMnO4 or H2O2
and deacetylation is performed with hot concentrated alkaline or
acidic solution. These harsh treatments can result in considerable
amounts of wastes and deleterious trace contaminants (Bierhalz
et al., 2016). Therefore, chitosan produced from mushroom
waste is safer, more environmentally friendly, more reliable in its
supply, and suitable for vegetarians.
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A difference in color between the crude mushroom chitosan
and the commercial chitosan was observed, which could be
because the mushroom chitosan was not purified. The yellowish
color was also obtained by Yen and Mau (2006). Further
purification may be conducted by refluxing the crude powder
in HCl or acetic acid (Wu et al., 2004; Darwesh et al., 2018).
Decolorization may also be performed to improve the color
(Yen and Mau, 2006; Mohammed et al., 2013). However, these
processes will increase the cost of producing the chitosan
flocculant. Nevertheless, even without the purification step, IR
spectroscopy revealed the successful preparation of mushroom
chitosan. The same characteristic peaks were observed in the
IR spectrum of the mushroom chitosan when compared to the
commercial chitosan.

Chitosan has been demonstrated as a good alternative
bio-flocculant (Xu et al., 2013; Chua et al., 2019). Our
flocculation test results confirm that mushroom chitosan was
successfully prepared and has similar flocculation properties as
the commercial chitosan. Mushroom powder did not flocculate
the cells, which indicates that chitosan is the active ingredient and
can only be obtained after deacetylation. Recently, Pugazhendhi
et al. (2019) discussed the chemical mechanism of cationic
polymers for microalgae flocculation. Because chitosan is cationic
at acidic pH; thus, the lowering of the pH was necessary. In
another study by Blockx et al. (2018), they demonstrated that high
pH is necessary to flocculate microalgae in seawater medium.
Thus, it was necessary to increase the pH after chitosan addition.
This demonstrates that mushroom chitosan can indeed be used
to harvest Nannochloropsis biomass that would then be suitable
for vegetarians or even vegans. The fatty acid profile, which was
not different from those in literature, further supports that the
mushroom chitosan-harvested biomass can indeed serve as an
alternative source of fish oil.

Previous studies (Table 1) have tested different flocculants to
harvest Nannochloropsis spp. In the current study, mushroom
chitosan has resulted in almost similar flocculation efficiency of
>94% as compared to the previously reported chemical-based
flocculants such as Al2(SO4)3 and FeCl3, but at much lower
concentrations. Therefore, in this case, chitosan has advantage
over chemical flocculants, which are not recommended for
food-grade applications of harvested biomass. On the other
hand, mung bean protein concentrate can be avoided since it

TABLE 1 | Comparison of different flocculants used for Nannochloropsis sp.
harvesting.

Flocculant Concentration Flocculation
efficiency

References

Aluminum sulfate 82.5 ppm >95% Chua et al., 2019

Ferric chloride 82.5 ppm >95% Chua et al., 2019

Tanfloc 10 ppm 98% Roselet et al., 2016

AFlok-BP1 160 ppm 92% Fuad et al., 2018

Mung bean protein
concentrate

20 mL/L >90% Kandasamy and
Shaleh, 2017

γ-Polyglutamic acid 22 ppm 96% Zheng et al., 2012

Mushroom chitosan 25 ppm >94% This study

can drive the food debate over its use for harvesting purpose.
Tanfloc showed a comparable flocculation efficiency and at an
even lower concentration compared to the mushroom chitosan
concentration used in this study. However, it is not clear if Tanfloc
can be used in food production as it is currently sold for water
and wastewater treatment (TANAC, S.A.1). To our knowledge,
this is the first study to report the use of mushroom chitosan for
microalgae flocculation.

Higher flocculation efficiencies were observed in the 200-L
vertical column photobioreactor compared to the air-lift raceway
pond. The low flocculation efficiency was likely caused by the
suboptimal mixing of the chitosan into the pond culture, as
the mixing was significantly more efficient in the 50-mL and
200-L cultures (>95 and 98.3% yield, respectively). The raceway
pond was slowly mixed using an air-lift system achieved with
microbubbles, which may have also affected the performance
since the bubbles disrupted the large flocs. Even after 24 h,
the flocculation efficiency did not reach >90%. This result
clearly indicated that the cells have not interacted properly
with the chitosan. Bleeke et al. (2015) and Pugazhendhi et al.
(2019) discussed the importance of mixing speed, intensity,
and time. Mixing using a paddle-wheel system may provide a
better flocculation performance as the mechanism less disruptive
to the large flocs as they pass through. Koley et al. (2017)
have demonstrated the effectivity of chitosan with flocculation
efficiencies of ∼90% to flocculate Scenedesmus obliquus and
Chlorella vulgaris cultured in raceway ponds. However, the
cultures had to be pumped into 1000-L tanks, which was easier
to mix with a large motor-driven stirrer. Further optimization
on the mixing of the chitosan into the pond culture would be
necessary along with economic feasibility studies to improve the
attractiveness of chitosan for use in microalgae harvesting.

CONCLUSION

Mushroom chitosan was prepared by extracting and
deacetylating chitin from mushroom powder and was verified
using FTIR. Results showed that the prepared mushroom
chitosan had similar flocculation efficiency as commercial
crustacean-derived chitosan. Furthermore, chitosan can be
sustainably prepared utilizing the wastes from mushroom
industries and using it for harvesting promotes the chemical-
free harvesting protocol for microalgae for food and/or feed
applications. While chitosan was also found suitable for
harvesting of large culture volumes, the requirement for efficient
mixing should be considered. The availability of mushroom
chitosan harvested Nannochloropsis offer an affordable and
sustainable fish oil replacement product suitable for vegans.
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Fucoxanthin (Fx), a kind of primary carotenoids in brown seaweeds and diatoms, has
attractive efficacy in human’s healthcare including loss weight, the prevention of diabetes
and Alzheimer’s disease. Marine diatom Phaeodactylum tricornutum is now realized as
a promising producer for commercial Fx production due to its higher content of Fx than
brown seaweeds with easily artificial cultivation and Fx extraction. In the present study,
to improve Fx production in P. tricornutum, the mixotrophic cultures were applied to
optimize initial cell density, light intensity, light regime and nitrogen supplementation.
The results showed that the higher initial cell density (1 × 107 cells mL−1) and
lower light intensity (20 µmol m−2 s−1) were favorable for biomass production and
Fx accumulation. The maximal Fx content [16.28 mg g−1 dry weight (DW)] could be
achieved under blue light (BL), but the highest biomass concentration (5.53 g L−1)
could be attained under red: blue light (R: B, 6:1) in the batch culture. A novel two-
phase culture approach was developed to increase the biomass concentration to the
highest value (6.52 g L−1) with the maximal productivity of Fx (8.22 mg L−1 d−1)
through light shift from R:B ratio (6:1) in phase 1 to R:B ratio (5:1) by enhancing BL
and tryptone addition in phase 2. The content and intracellular amount of Fx were
also increased 8% and 12% in phase 2 compared to phase 1. The expression levels
analysis revealed that genes encoding phytoene synthase (PSY), zeaxanthin epoxidase
(ZEP), and fucoxanthin-chlorophyll-protein b (FCPb) were upregulated significantly, with
downregulation of the gene encoding violaxanthin de-epoxidase (VDE), leading to the
improvement of Fx in phase 2. The present study demonstrated the two-phase culture
strategy could promote Fx productivity through enhancing biomass production and
increasing Fx content, indicating that strengthening BL coupled with adding tryptone
were effective to facilitate Fx production by mixotrophic cultivation of marine diatom
P. tricornutum.

Keywords: fucoxanthin, Phaeodactylum tricornutum, light regime, two-phase culture, qRT-PCR
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INTRODUCTION

Fucoxanthin is a kind of primary carotenoids and draws
increasing attention because of its functions of anti-oxidant, anti-
obesity, and anti-cancer as well as effects against Alzheimer’s
disease (Vilchez et al., 2011; Fu et al., 2015; Xiang et al., 2017).
The commercial source of Fx is mainly from brown seaweeds,
which are difficult to meet the market demands due to the
low productivity, low quality and high cost. Currently, marine
diatom Phaeodactylum tricornutum is realized as a promising
producer for commercial production of Fx since it grows fast and
contains higher amount of Fx [1% to 6% of dry weight (DW)],
which is over one hundred-fold of brown seaweeds (Rajauria
et al., 2017; McClure et al., 2018). P. tricornutum is usually
cultivated in deep tanks and open ponds for aquaculture, as well
as in artificial photobioreactors recently for industrial purpose
under autotrophic mode (Gao et al., 2017; Delbrut et al., 2018).
Importantly, most strains of P. tricornutum could use glycerol
and urea as organic carbon and nitrogen source, and biomass
could reach to 3∼15 g L−1 under mixotrophic mode (Garcia
et al., 2005; Huang et al., 2015; Nur et al., 2019). However, the
mixotrophic P. tricornutum has not been applied in large-scale
cultivation system because of the technological barriers mainly on
the big risk of contamination when use organic nutrients in open
system (Matsumoto et al., 2017). Compared to the autotrophic
culture, the mixotrophic culture enhanced the cell growth rate
and biomass production, but reduced the photosynthesis activity,
leading to the decreased content of photosynthetic pigments (Liu
et al., 2009). The content of carotenoids in P. tricornutum under
mixotrophic conditions was usually 0.5∼0.7% of DW, in which
Fx portion was even lower (Ceron-Garcia et al., 2013; Patel et al.,
2019). It seems difficult to achieve high biomass and high Fx
content simultaneously, resulting in the low productivity of Fx by
mixotrophic P. tricornutum. Therefore, developing an applicable
approach of mixotrophic P. tricornutum is vital to commercial
production of Fx.

Light regime, including light intensity, light quality and
light/dark cycle, is indispensable in the mixotrophic cultivation.
In P. tricornutum, Fx binds with Chl a + c and proteins to
form FCP complex (Durnford et al., 1999), playing an important
role in light harvesting and non-photochemical quenching
(NPQ) (Havurinne and Tyystjarvi, 2017; Wang et al., 2019).
Different from other microalgae, the specific structure of FCP
in P. tricornutum allows it to capture blue-green light and
supports its application in artificial cultivation system (Wang
et al., 2019). At present, the impacts of light quality (presented
as light spectrum) on P. tricornutum were usually investigated
under autotrophic mode. For example, red light could promote
cell growth and blue light (BL) could enhance Fx accumulation

Abbreviations: Chl a, chlorophyll a; CRISO, carotenoid isomerase; Ddx,
diadinoxanthin; DMAPP, dimethylallyl diphosphate; Dtx, diatoxanthin; DXS,
1-deoxy-D-xylulose 5-phosphate synthase; FCP, fucoxanthin-chlorophyll-protein;
Fx, fucoxanthin; G3P, glyceraldehyde-3-phosphate; GGPP, geranylgeranyl
diphosphate; GPPS, geranyl pyrophosphate synthase; IDI, isopentenyl
diphosphate: dimethylallyl diphosphate isomerase; IPP, isopentenyl
pyrophosphate; LCYB, lycopene β-cyclase; PDS, phytoene desaturase; PSY,
phytoene synthase; VDE, violaxanthin de-epoxidase; ZDS, ζ-Carotene desaturase;
ZEP, zeaxanthin epoxidase.

(Sirisuk et al., 2018; Wang S. et al., 2018). Also, blue LED light
could save 50% and 75% energy input compared to red-blue
LED light and white fluorescent light, respectively, which is
beneficial for industrial use (Wang S. et al., 2018). Under green
light, the intracellular amount of Fx was similar with white light
(WL), while the ratio of FCP in thylakoid membrane proteins
was significantly increased (Zhao, 2015). Accordingly, a two-
phase culture with different light regimes has been used for
promoting biomass and Fx production. For example, a hetero-
photoautotrophic two-phase cultivation with white: blue light
(1:1) induction was used in marine diatom Nitzschia laevis for Fx
accumulation (Lu et al., 2018). Two-phase culture using different
light regimes has also applied in inducing lipid accumulation
in P. tricornutum (Sirisuk et al., 2018; Jung et al., 2019). It is
noteworthy that light is not only energy source in the mixotrophic
culture of microalgae, but also a role of inducing factor in
accumulation of biomass and bioactive compounds in diatom.
So far, it is still lack of reports for improving Fx production by
mixotrophic P. tricornutum under different light regimes.

The whole genome sequencing of P. tricornutum was
completed in 2008, which provides the biological basis for
transcriptome analysis of gene expression and regulation (Bowler
et al., 2008). Transcriptome and metabolome analysis indicated
that the central-carbon metabolism, especially glycolysis, was
enhanced by glycerol, the organic carbon source used in the
mixotrophic mode, leading to the increase of cell growth
rate and the final cell density (Villanova et al., 2017). The
expression levels of genes involving Fx biosynthesis were
investigated in recent years, but the reports are rare. For
instance, the genetic engineering study demonstrated that the
overexpression of DXS and PSY genes could result in the
significantly increase of Fx content (Kadono et al., 2015; Eilers
et al., 2016). Under autotrophic condition, the most of genes
involving Fx biosynthesis, including PSY, PDS, ZDS, LCYB,
and ZEP were upregulated by blue or green light (Coesel
et al., 2008; Valle et al., 2014). It is still very limited to know
the regulation of genes expression in Fx biosynthesis pathway
under different light regimes and two-phase culture mode under
mixotrophic conditions.

In the present work, the mixotrophic P. tricornutum was
cultivated in shake flasks to optimize the growth conditions for
improving Fx production. Initial cell density, LED light intensity
and light quality were firstly investigated to obtain optimal
parameters, subsequently a two-phase culture approach was
developed for promoting Fx productivity by LED light shift and
nitrogen supplementation. The expression levels of several key
genes in Fx biosynthesis pathway were analyzed by quantitative
real time polymerase chain reaction (qRT-PCR), aiming to reveal
the metabolic regulation in two-phase culture process.

MATERIALS AND METHODS

Microalgal Strain and Seed Culture
Marine diatom P. tricornutum CCMP 1327 was kindly provided
by Dr. Hanhua Hu in Institute of Hydrobiology, Chinese
Academy of Sciences, Wuhan, China. The seed culture was
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applied in 250-mL Erlenmeyer flasks containing 100-mL
modified f/2 medium (Guillard, 1975) under mixotrophic
condition. Temperature at 20◦C was setup with continuous
illumination of 10 µmol m−2 s−1 under white LED light and
rotating speed of 150 r/min in shaking incubator. The modified
f/2 medium contained (per liter): 20 g sea salt, 9.20 g glycerol
(0.10 mol L−1), 10 mg NaH2PO4.H2O, 30 mg Na2SiO3.9H2O,
3.15 mg FeCl3.6H2O, 4.36 mg Na2EDTA.2H2O, 9.80 µg
CuSO4.5H2O, 6.30 µg Na2MoO4.2H2O, 22 µg ZnSO4.7H2O,
10 µg CoCl2.6H2O, 180 µg MnCl2.4H2O. In addition, 1.17 g L−1

of tryptone and 0.30 g L−1 of urea (1:1, N mol/N mol) were added
into the medium to final concentration of total nitrogen (TN) at
0.02 mol L−1. The medium was autoclaved at 121◦C for 20 min
followed by urea addition using stock solution filtered through
0.45 µm membrane. The seed culture in late logarithmic phase
was harvested by centrifugation and re-suspended in the medium
above as the inoculum for subsequent experiments.

Optimization of Initial Cell Density and
Light Intensity
A series of initial cell densities (1 × 106, 4 × 106, 7 × 106,
1 × 107 cells mL−1) were investigated by adding the inoculum
and culturing for 14 days. Then, various light intensities (10,
20, 30, 40, 50, 100, 150, 200 µmol m−2 s−1) were evaluated
at initial cell density of 1 × 107 cells mL−1 by cultivation
for 12 days. The other culture conditions were same as the
seed culture. Cell density, glycerol and nitrogen concentration
were measured every 2 days during the cultivation. Biomass,
content and volumetric concentration of Fx were measured at the
end of cultivation.

Optimization of Light Regimes and
Nitrogen Supplementation
White Light and Red: Blue Light
To explore the effects of different LED light qualities on biomass
production and Fx accumulation, the full-spectrum WL and
different red: blue lights (R:B, 0:1, 6:1, 1:1, 1:2, 1:0) were evaluated
at initial cell density of 1 × 107 cells mL−1 under 20 µmol
m−2 s−1 of light intensity. Cell density, biomass, glycerol and
nitrogen concentration were measured every 2 days during the
cultivation. The content and volumetric concentration of Fx were
analyzed at the end of cultivation.

Light Shift and Nitrogen Supplementation in
Two-Phase Culture
Two-phase culture approach was investigated to promote
biomass and Fx production by light shift and nitrogen
supplementation through two batch cultures.

In batch 1, R: B light (6:1) at 20 µmol m−2 s−1 was used
in the mixotrophic cultivation for 6 days in phase 1, and then
shifted to BL at 20 µmol m−2 s−1 with tryptone (T), urea (U)
or the mixture (T:U = 1:1, N mol) addition in the medium to
final concentration of TN (0.02 mol L−1) in phase 2. The culture
without nitrogen addition in phase 2 was set as the control.

In batch 2, the two-phase culture with light shift to BL
and tryptone addition (BL + T) was set as the control. In the

experimental groups, R: B light (6:1) at 20 µmol m−2 s−1 was
used to culture for 6 days in phase 1, then BL was strengthened
alone to form various R: B lights (5:1, 3:1, 1:1) at 25 µmol
m−2 s−1, or shifted to pure green light (GL) at 20 µmol m−2 s−1

with tryptone addition in phase 2. The cell growth and nutrient
consumption were monitored every 2 days during the cultivation.
Fx production were analyzed at the end of culture. The cells
in the culture of R: B light (5:1) at 25 µmol m−2 s−1 on the
6th, 8th, 10th, 12th day were collected for Fx detection and
total RNA isolation.

Analytical Methods
Cell Growth and Biomass Concentration
Cell density was determined by CytoFLEX flow cytometry
(Beckman-Coulter, United States). Specific growth rate (µ, d−1)
of cells was calculated by the following formula:

µ (d−1) = (lnNt − lnN0)/(t− t0) (1)

where Nt and N0 are the cell density (cells mL−1) at time t(d) and
time t0 (d) (Chen et al., 2017).

2-mL cell suspension was collected in a pre-weighed tube
and centrifuged at 3300 × g for 3 min. The pellet was washed
twice and dried in a 60◦C oven to a constant weight for biomass
measurement. The biomass productivity (PBiomass, mg L−1 d−1)
was calculated by following formula:

PBiomass(mg L−1 d−1) = (DWt − DW0)/(t− t0)× 1000 (2)

where DW0 and DWt are the biomass concentration (g L−1) at
time t0(d) and time t(d) (Chen et al., 2017).

Glycerol and Nitrogen Concentrations
Glycerol concentration (g L−1) was determined by M-100
Biosensors (SIEMAN, China). The TN concentration (TN,
mg L−1) was determined by DR2700 spectrophotometer (HACH,
United States) with reagent No. 2714100 (Qin et al., 2018).
The nutrient consumption rate (CR, mg L−1 d−1) and biomass
yield per TN consumed (YX/TN, mg mg−1) were calculated by
following formula:

Glycerol CR
(
mg L−1 d−1)

= (GC0 − GCt)/(t− t0)× 1000 (3)

where GCt and GC0 are the glycerol concentration (g L−1) at time
t (d) and time t0 (d).

TN CR
(
mg L−1 d−1)

= (NC0 −NC1 +NC2 −NCt)/(t− t0) (4)

where NCt and NC0 are the TN concentration (mg L−1) at time
t(d) and time t0(d), NC1 and NC2 are the TN concentration (mg
L−1) before and after the nitrogen addition on the 6th day in two-
phase cultivation.

YX/TN(mg mg−1) = (DWt − DW0)/(NC0 −NC1 +NC2 −NCt)

× 1000 (5)

where DW0 and DWt are the biomass concentration (g L−1) at
time t0 (d) and time t (d), NCt and NC0 are the TN concentration
(mg L−1) at time t (d) and time t0 (d), NC1 and NC2 are the TN
concentration (mg L−1) before and after the nitrogen addition on
the 6th day in two-phase cultivation.
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Pigments
Natural pigments were extracted by organic solvents, and the
qualitative and quantitative analysis were carried out by high
performance liquid chromatography (HPLC) method modified
from references (Zang et al., 2015; Chen et al., 2017). Briefly, 10-
mg freeze-dried algal powder was mixed with ceramic bead and
the mixture of acetone: methanol (1:1, v/v) precooled at 0–10◦C
in 15-mL tube, and then disrupted using the grinder (Tissuelyser-
24, JINGXIN, China) at 70 Hz for 30 s. The supernatant was
collected by centrifugation at 5900 × g for 3 min after freezing
in the liquid nitrogen for 30 s. The disruption and centrifugation
process were repeated until the pellet was colorless, and then
dried all supernatants by nitrogen flow gas. 1-mL methanol:
methyl tert-butyl ether solution (1:1, v/v) was added to dissolve
the residue and filtered through a 0.22 µm nylon membrane for
further pigments detection.

High performance liquid chromatography system (DIONEX
P680, Thermo Scientific, Waltham, MA, United States)
equipped with PDA detector and YMCTM Carotenoids column
(150 mm × 4.6 mm, 3 µm) was employed for pigments analysis.
The column temperature was maintained at 30◦C, the flow
rate was 0.8 mL min−1, and detection wavelength was 440 nm.
Methanol and methyl tert-butyl ether were employed as mobile
phases A and B, respectively. The gradient program was as
followed: 0∼6 min, A: 95%→80%, B: 5%→20%; 6∼12 min,
A: 80%→60%, B: 20%→40%; 12∼19 min, A: 60%→55%,
B: 40%→45%; 19∼20 min, A: 55%→95%, B: 45%→5%;
20∼23 min, A: 95%, B: 5%. The peaks of pigments were
characterized according to the retention time of Fx and Chl
a standards (Sigma-Aldrich Chemical Co., St. Louis, MO,
United States), and external standard curve was used for
quantification. The volumetric concentration of Fx (VCFx,
mg L−1), intracellular amount of Fx (CCFx, pg cell−1) and Fx
productivity (PFx, mg L−1 d−1) were calculated by the following
formula:

VCFx(mg L−1) = Biomass(g L−1)× Fx content (mg g−1, DW)
(6)

CCFx(pg cell−1) = VCFx(mg L−1)/Cell density(cells mL−1)
(7)

PFx(mg L−1 d−1) = (VCFxt − VCFx0)/(t− t0) (8)

where VCFx0 and VCFxt are the volumetric concentration of Fx
(mg L−1) at time t0(d) and time t(d).

Quantitative Real Time PCR
To evaluate the expression levels of key genes in Fx biosynthesis
pathway during two-phase culture, total RNA isolation from cells
under R:B light (5:1) group on the 6th, 8th, 10th, 12th day was
carried out using Plant RNA Kit (Omega, America) for qRT-PCR
analysis. Evo M-MLV RT Kit for gDNA clean and SYBR Green
Premix Pro Taq HS qPCR Kit (Accurate biotechnology, China)
were employed. qRT-PCR analysis was performed on CFX96
TouchTM Deep Well Real-Time PCR Detection System (Bio-rad,
America). The gene coding β-actin was selected as an internal
control (Xie et al., 2014). The sequences of target genes were

TABLE 1 | Primer sequence of key genes in fucoxanthin biosynthesis pathway.

Gene Primer (5′-3′) Gene Primer (5′-3′)

β-actin GACTCCACCTTCCAGACCATTA LCYB GCATTGCGACGTACATGGTC

GACCCTCCAATCCAAACAGAG TCGTCGAGCTTCACTCTTGG

DXS AGCCAATTCTGGACTCGGTG ZEP1 GGCACTCGAACGCATCAATC

GCAAGGCAACAGTGAGTTCG TCGAAGCGTACCAACCAGTC

PSY CCACGCCGAACATGCTTTAG ZEP2 ATACACCGTCTTTGCGGGAG

GACTTCTTGCACTTGTGCCG CCATCACCGACATCACTCGT

PDS1 TTCTCCACGACACTCAAGGC ZEP3 CGGTTTTTCTGTGCTGGGTG

CCGGTTTCGATCCAGTCTCC AGTCTTGAATGGCGGCAGAA

PDS2 GTGTTCTCGGTGGCAGTCTT VDE TTCCATCAAGGCGCAAAAGC

GAGCCGACGCTAGAGAAGTC GCTGGGAGGTTTCTCGTTCA

ZDS TTGGACTCGATGGAAGGTGC FCPb AGCACCGCTTGGATTCTACG

CCGCTTTCCTCTTTCGCTTG TGCCAAGTATCCAGCAACGG

obtained from KEGG database1 and primers shown in Table 1
were designed by NCBI.2 Total RNA samples were performed in
triplicates. The relative expression levels of target gene transcripts
were normalized using β-actin as reference gene by the 2−11Ct

method (Livak and Schmittgen, 2001).

Statistical Analysis
All data were performed in biological triplicates and presented as
mean ± standard deviation (SD). Origin V9.0 software was used
to plot figures. The statistical analysis was performed by one-way
analysis of variance (ANOVA) and LDS t-test with SPSS V22.0
software. Significant differentiation level were set at ∗p < 0.05 and
∗∗p < 0.01 by compared with control group.

RESULTS AND DISCUSSION

Effects of Initial Cell Density and Light
Intensity
The effects of initial cell density was shown in Figure 1A. The
rapid increase of cell growth were observed in the first 8 days but
slowed down in the next 6 days. With the increase of initial cell
density, the average specific growth rate of cells was significantly
decreased (p < 0.01) (Table 2). The highest final cell density
(6.72 × 107 cells mL−1) and the maximal biomass concentration
(3.73 g L−1) were achieved at the highest initial cell density
(1 × 107 cells mL−1) (Figures 1A,C). Even though the highest
content (18.61 mg g−1) and intercellular amount of Fx (1.23 pg
cell−1) were attained at 4 × 106 cells mL−1 (Figure 1C and
Table 2), the highest volumetric concentration of Fx reached to
59.66 mg L−1 at the highest initial cell density (1 × 107 cells
mL−1) (Table 2). Therefore, for improving biomass and Fx
production in a shorter time, the highest initial cell density was
the option in the following experiments.

To further promote the cell growth under high cell density,
the effects of light intensity were evaluated. Interestingly, the
increase of light intensity had no obviously negative effect on

1https://www.kegg.jp/kegg-bin/show_organism
2https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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FIGURE 1 | Effects of initial cell density and light intensity on cell growth (A,B), biomass concentration and fucoxanthin content (C,D) in the mixotrophic growth of
P. tricornutum. Significant differentiation level was set at * p < 0.05 and ** p < 0.01 compared with initial cell density of 1 × 107 cells mL-1 and light intensity of
20 µmol m-2 s-1, respectively.

TABLE 2 | Effects of initial cell density and light intensity on cell growth, fucoxanthin production and nutrient consumption in the mixotrophic growth of P. tricornutum.

µ (d−1) Volumetric Fx Consumption rate (mg L−1 d−1) Intercellular Fx Chl a (mg g−1) Fx/Chl a

concentration (mg L−1) amount (pg cell−1)
Glycerol TN

Initial cell density (cells mL−1)

1 × 106 0.24 ± 0.00** 30.84 ± 0.98** 164.98 ± 5.42** 4.50 ± 0.33 0.81 ± 0.01** NA NA

4 × 106 0.18 ± 0.01** 57.07 ± 1.66 188.87 ± 6.35** 7.33 ± 0.33** 1.23 ± 0.04** NA NA

7 × 106 0.15 ± 0.00** 53.06 ± 1.46* 199.87 ± 3.18* 7.00 ± 0.17** 0.86 ± 0.02 NA NA

1 × 107 0.13 ± 0.00 59.66 ± 2.40 220.04 ± 9.53 9.50 ± 0.17 0.89 ± 0.04 NA NA

Light intensity (µmol m−2 s−1)

10 0.15 ± 0.00** 45.11 ± 2.23** 136.11 ± 4.81** 8.71 ± 0.38** 0.79 ± 0.02** 24.63 ± 0.67* 0.63 ± 0.04**

20 0.21 ± 0.01 76.78 ± 4.26 227.78 ± 9.62 15.88 ± 0.13 0.66 ± 0.01 28.63 ± 1.55 0.56 ± 0.01

30 0.17 ± 0.00* 66.09 ± 1.97** 166.67 ± 8.33** 13.00 ± 1.00** 0.96 ± 0.04** 25.50 ± 0.66* 0.60 ± 0.02*

40 0.16 ± 0.01** 50.13 ± 4.35** 155.56 ± 4.81** 9.32 ± 0.57** 0.79 ± 0.03** 16.49 ± 0.40** 0.71 ± 0.00**

50 0.14 ± 0.01** 42.81 ± 4.62** 119.44 ± 9.62** 8.17 ± 0.17** 0.77 ± 0.02** 14.94 ± 1.33** 0.68 ± 0.04**

100 0.12 ± 0.01** 27.04 ± 0.89** 141.67 ± 8.33** 8.50 ± 0.50** 0.57 ± 0.04* 8.99 ± 0.16** 0.72 ± 0.02**

150 0.13 ± 0.01** 26.20 ± 2.13* 122.22 ± 4.81** 7.83 ± 0.50** 0.53 ± 0.03** 7.84 ± 0.14** 0.81 ± 0.08**

200 0.11 ± 0.00** 22.01 ± 0.46** 144.44 ± 4.81** 7.59 ± 0.25** 0.55 ± 0.03** 7.53 ± 0.42** 0.77 ± 0.01**

Data are expressed as mean ± SD of three replicates. NA-No detected. Significant differentiation level with * p < 0.05 and ** p < 0.01 compared with initial cell density
1 × 107 cells mL−1 and light intensity 20 µmol m−2 s−1, respectively.

biomass production from 30 to 200 µmol m−2 s−1 (Figure 1D),
but an inhibiting effect on cell density was observed (Figure 1B).
The highest biomass concentration (4.80 g L−1) and Fx content

(16.03 mg g−1) could be reached at light intensity of 20 µmol
m−2 s−1 (Figure 1D). The content and intercellular amount
of Fx significantly decreased when the light intensity exceeded
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30 µmol m−2 s−1, which was consist with the previous studies.
For instance, the Fx content reached the maximal value at
13.5 µmol m−2 s−1 (Gomez-Loredo et al., 2016) and dropped
from 7.50 mg g−1 to 1.10 mg g−1 when the light intensity
increased from 30 to 180 µmol m−2 s−1 in P. tricornutum (Wang
H. et al., 2018). However, the cell growth and biomass production
were both decreased with the increase of light intensity under
autotrophic condition, which may be explained by the photo-
inhibition (Wang H. et al., 2018). Besides, Fx and Chl a contents
were significantly reduced but fucoxanthin-to-chlorophyll a ratio
(Fx/Chl a) was significantly increased from 20 µmol m−2 s−1 in
this study (p < 0.05) (Table 2). Since Chl a exists not only in
FCP, but also in free Chl a (Nymark et al., 2009), the increase
of Fx/Chl a ratio indicated that free Chl a degraded more than
that in FCP, resulting in higher degradation of Chl a in total
Chl a than Fx when cells exposed to high light. Similarly, both
of Fx and Chl a contents decreased sharply with the increase of
light intensity in autotrophic P. tricornutum (Nur et al., 2019;
Conceicao et al., 2020). The transcriptome analysis indicated that
the genes encoding enzymes in biosynthesis of GGPP, which is
the precursor of both Chl a and Fx, were downregulated upon
high light intensity in P. tricornutum, leading to the reduction
of Chl a and Fx (Nymark et al., 2009). When cells were exposed
to high light, NPQ was activated to convert excess light energy
into heat energy (Nymark et al., 2009). In diatoms, Ddx cycle
plays a critical role in NPQ, which protects cell from high-light
damage (Hao et al., 2018). Under high light, the contents of Ddx
and Fx were lower than low light (Conceicao et al., 2020), which
due to the upregulation of VDE promoted the conversion of Ddx
to Dtx and violaxanthin to zeaxanthin, leading to the decline of
Fx (Nymark et al., 2009). Therefore, the dim light at 20 µmol
m−2 s−1 is favorable for cell growth and Fx accumulation under
mixotrophic condition without photo inhibition.

Effects of Light Quality
The light spectrums of WL and various red: blue lights (R: B, 0:1,
6:1, 1:1, 1:2, 1:0) were shown in Figure 2A. The wavelength of WL
was ranged from 402 nm to 760 nm, and the peak wavelength of
blue and red light was 452 nm and 636 nm, respectively. As shown
in Figure 3A, the cells grew rapidly under red: blue lights and
the highest biomass concentration (5.53 g L−1) with productivity
(351.39 mg L−1 d−1) could be achieved at R: B light (6:1), which
was 1.22- and 1.38-fold higher than WL (p < 0.01) (Figure 3B
and Table 3). Even though the biomass productivity in R: B light
(6:1) and R: B light (1:2) were similar (Table 3), which might
due to the nutritional limitation in the late phase of culture,
the former in biomass productivity was 4.12% higher than the
later. Similarly, the previous study indicated that the biomass
was significantly higher at the mix of red and blue light than the
fluorescent WL in autotrophic culture of P. tricornutum, but it
was similar in the group between R:B (70:30) and R:B (30:70),
which was consist with this study (Sirisuk et al., 2018). The
increase of biomass in the first 6 days (Figure 3B) was due to the
prior uptake of tryptone and urea as carbon and nitrogen source,
which explained the slow consumption of glycerol in this period
(Figure 3C). The maximum average glycerol consumption rate

during 12-days cultivation reached to 327.78 mg L−1 d−1, while
the highest biomass yield per TN consumed (YX/TN) reached to
28.49 mg mg−1 at R: B light (6:1) (Table 3). Moreover, the highest
Fx content (16.28 mg g−1) and Chl a content (32.68 mg g−1) were
attained under BL (Figure 3D and Table 3), which were 12% and
36% higher than WL (p < 0.01), respectively. These results were
similar with that the Fx and Chl a contents were significantly
higher under BL than WL in autotrophic P. tricornutum and
Coscinodiscus granii (Sirisuk et al., 2018; Su, 2019). However, the
biomass concentration (3.63 g L−1) under BL was the lowest one
(Figure 3B) in this study. Compared to WL, the results indicated
that R: B light (6:1) could promote the cell growth and biomass
production, but BL has positive effect on Fx accumulation.

The similar reports could be found that P. tricornutum
produced more biomass under higher proportion of red light in
mixture light under autotrophic condition (Sirisuk et al., 2018),
but higher contents of xanthophyll cycle pigments (including
Fx) were obtained under BL (Jungandreas et al., 2014). The
light qualities, red, green, and blue light, played a vital role in
regulation of carbon flow distribution. For example, the shift
from BL to red light increased the intermediates of glycolysis and
promoted the accumulation of carbohydrates. On the contrary,
the shift of red light to BL led to the accumulation of amino
acids and tricarboxylic acid (TCA) cycle intermediates, as well as
biosynthesis of proteins (Jungandreas et al., 2014). The previous
study indicated that the expression of photosynthesis-related
nuclear genes were light quality-independent, while the energy
transfer efficiency, photo protection and PSII repair related genes
were highly dependent on light quality, especially BL (Valle
et al., 2014). Similar results were observed in another research,
in which compared to red light, BL performed larger pool
size of xanthophyll cycle pigments and higher value of NPQ
and de-epoxidation state [DES = Ddt/(Ddx + Ddt)], which
meant BL showed more capacity of photo protection (Costa
et al., 2013). BL not only influenced the genes expression to
regulate metabolism, but also directly regulate the activities of
specific enzymes, like nitrate reductase (Azuara and Aparicio,
1983). The significant reduction of C/N ratio in cells under
BL indicated that it performed higher nitrogen assimilation in
cells compared to red light (Jungandreas et al., 2014). This
phenomenon was similar in our study, the nitrogen consumption
rate was increased with higher proportion of BL in the mixed light
except R:B (1:1) (Table 3). For the reason why TN consumption
rate at R:B (1:1) was higher than at (1:2), it might be due to
that the nitrogen source used in this study was the mixture
of tryptone and urea. Perhaps more TN was used as carbon
source at R: B (1:1), resulting in the higher TN consumption
rate with the lower consumption rate of glycerol in this group.
Interestingly, when cells were exposed to WL, BL, and red light,
respectively, after dark treatment, the transcript levels of PSY,
PDS, ZEP, and FCPb increased immediately upon blue and
WL, while the expression levels were much lower in response
to red light (Coesel et al., 2008). Additionally, transcriptome
analysis indicated that the transcripts under BL were enriched
in Fx-related expressed sequence tag (EST) database (Coesel
et al., 2008), and the expression of PSY, PDS, ZDS, and ZEP3
were enhanced, resulting in the promotion of Fx production
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FIGURE 2 | The light spectrum of white light (WL) and various red: blue lights (1:0, 6:1, 1:1, 1:2, 0:1) (A) and light regimes in the two-phase culture (B).

(Costa et al., 2013; Valle et al., 2014). Therefore, choosing R: B
light (6:1) as the optimal light in phase 1 and BL as inducing light
in phase 2 were carried out in further experiments.

Effects of Light Shift and Nitrogen
Supplementation in Two-Phase Culture
Feeding substrates in batch culture is a common approach
in microalgal cultivation which benefits biomass and bioactive
compounds production (Ceron-Garcia et al., 2013; Lu et al.,
2018). Fx exists in FCP, and sufficient nitrogen is essential
not only for biomass production, but also for Fx accumulation
(McClure et al., 2018; Wang H. et al., 2018; Nur et al., 2019). Thus,
the effects of light shift and nitrogen supplementation in phase 2
were evaluated in two batch cultures.

In the batch 1, the mixotrophic cells were cultivated at R:B
light (6:1) for 6 days in phase 1, then light shifted to pure
BL for induction with or without supplementation of nitrogen
[tryptone, T; urea, U; or the mixture, T:U = 1:1 (N mol)] in
different groups in phase 2. As shown in Figure 4A, the culture
groups of BL + T or BL+ the mixture in phase 2 could observe
the promotion of cell growth compared to BL group, but BL+ U
inhibited the cell growth as well as Fx production (Figure 4B).
The final cell density and biomass concentration reached to the
highest value of 1.30 × 108 cells mL−1 and 5.80 g L−1 by
tryptone addition (Figures 4A,B), which were 23% and 58%
higher than the control group (BL) (p < 0.05), respectively. The
highest biomass productivity achieved 373.61 mg L−1 d−1 under
tryptone addition, which was significant higher than BL + U
and the control group (Table 4). In contrast, the previous study
showed that successive supplementation of 0.01 mol L−1 urea
in mixotrophic growth of P. tricornutum led to 5.37-fold higher
biomass, while the biomass was reduced when urea concentration
exceeded 0.01 mol L−1 with 0.10 mol L−1 glycerol (Garcia
et al., 2005). This phenomenon was caused by that the cells
prioritized to utilize amino acids in tryptone as carbon and

nitrogen source in phase 1, while the higher urea residual after
urea addition in phase 2 exceed the optimum concentration,
leading to the negative impact on cell division and Fx production
in this study. As shown in Figure 4B and Table 4, the highest
content (13.21 mg g−1) and volumetric concentration (76.58 mg
L−1) of Fx were attained by tryptone addition in phase 2, with
the consumption rate of glycerol (233.33 mg L−1 d−1) and
TN (13.69 mg L−1 d−1). Besides, the intercellular amount of
Fx was significantly increased up to 0.61 pg cell−1 in BL + T
group in phase 2, which was 1.42-fold higher than the control
group (BL) (Table 4). Compared to the group of 12-days
cultivation under R: B light (6:1) (Figures 3B,D), the biomass,
Fx content and volumetric concentration were increased by
5%, 7%, and 12% under the two-phase culture in batch 1
(Figure 4B), respectively.

In the batch 2, to verify the inducing effect on Fx production,
after cultivated at R: B light (6:1) for 6 days in phase 1,
various light shifts were evaluated in phase 2 compared with
the control group (BL + T). Among them, BL was enhanced
solely to form R: B lights (5:1, 3:1, 1:1), or light shifted to
pure green light (GL). All of the groups were combined with
tryptone addition in phase 2. The light spectrums were shown
in Figure 2B. Interestingly, the cell growth showed obvious
difference from the 6th day in phase 2 but reached to a similar
level of final cell density (Figure 4C), leading to a same specific
growth rate in all groups (Table 4). However, the nutrition
consumption rates were different (Table 4), which affected the
metabolic flux of nutrients converted to intercellular components
(carbohydrates, proteins, lipids etc.) in different groups, resulting
in the difference of biomass concentrations. The highest biomass
concentration (6.52 g L−1), which was 17% higher than the
control group (BL + T) (p < 0.01), was achieved with the
maximum productivity (402.78 mg g−1 L−1) in R: B (5:1) + T
group in phase 2 (Figure 4D and Table 4). Glycerol consumption
rate and YX/TN were consistently increased with the increasing
biomass, and reached to the highest value in R: B (5:1)+ T group
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FIGURE 3 | The cell growth (A), biomass (B) and glycerol concentration (C), fucoxanthin production (D) at white light (WL) and various red: blue lights (1:0, 6:1, 1:1,
1:2, 0:1). Significant differentiation level was set at * p < 0.05 and ** p < 0.01 compared with white light (WL).

TABLE 3 | Nutrients consumption, biomass and Fx production at white light and various R: B lights under the mixotrophic mode.

Light quality µ (d−1) Biomass productivity (mg L−1 d−1) Consumption rate (mg L−1 d−1) YX/TN (mg mg−1) Chl a (mg g−1)

Glycerol TN

White light (WL) 0.16 ± 0.00 254.17 ± 7.22 216.67 ± 8.33 11.18 ± 0.16 22.73 ± 0.82 23.97 ± 1.85

R:B (1:0) 0.15 ± 0.00* 223.61 ± 2.41** 222.22 ± 9.62 11.83 ± 0.17** 18.90 ± 0.14** 29.28 ± 0.87*

R:B (6:1) 0.17 ± 0.00* 351.39 ± 9.62** 327.78 ± 4.81** 12.33 ± 0.17** 28.49 ± 0.48** 20.53 ± 0.95*

R:B (1:1) 0.17 ± 0.00* 256.94 ± 2.41 238.00 ± 6.77* 13.75 ± 0.25** 18.69 ± 0.50** 22.26 ± 1.39

R:B (1:2) 0.17 ± 0.00* 337.50 ± 8.33** 291.67 ± 8.33** 12.50 ± 0.17** 26.45 ± 0.86** 23.76 ± 0.46

R:B (0:1) 0.15 ± 0.01* 193.06 ± 2.41** 201.39 ± 6.36 13.17 ± 0.50** 14.68 ± 0.58** 32.68 ± 0.95**

TN, total nitrogen; YX/TN, biomass yield per total nitrogen consumed. Data are expressed as mean ± SD with three replicates. Significant differentiation level with *p < 0.05
and **p < 0.01 compared with white light (WL).

in phase 2 (Table 4), respectively. Compared to the control group
(BL + T) in phase 2, even though the Fx content was lower
in R:B (5:1) + T group (p < 0.05), the intercellular amount of

Fx was similar in the two groups (Table 4) but the volumetric
concentration of Fx (84.48 mg L−1) achieved the highest level
(p < 0.05) (Figure 4D). Therefore, the shift to R: B (5:1) with
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FIGURE 4 | Effects of light shift and nitrogen supplementation on cell growth (A,C) and fucoxanthin production (B,D) in two phase of two batch cultivation. In batch
1 (A,B), the mixotrophic cells grew at R: B light (6:1) for 6 days in phase 1, then light shifted to pure blue light (BL) with (+) nitrogen supplementation in phase 2.
Nitrogen source was presented as urea (U), tryptone (T) and their mixture at a ratio (T:U = 1:1, N mol). Significant differentiation level was set at ** p < 0.01 compared
with blue light (BL) shift. In batch 2 (C,D), blue light was strengthened solely to form R: B lights (5:1, 3:1, 1:1), or shifted to pure blue light (BL) or pure green light
(GL), respectively, with (+) tryptone (T) addition in phase 2. Significant differentiation level was set at * p < 0.05 and ** p < 0.01 compared with blue light shift with
tryptone addition (BL + T) in batch 2.

TABLE 4 | Effects of LED light shift and nitrogen supplementation in two-phase culture strategy.

Strategy µ (d−1) Biomass productivity Consumption rate (mg L−1 d−1) YX/TN Intercellular Fx Fx/Chl a

(mg L−1 d−1) (mg mg−1) amount (pg cell−1)
Glycerol TN

Batch 1: blue light shift with nitrogen supplementation in phase 2

BL 0.21 ± 0.00 208.33 ± 4.17 144.44 ± 4.81 11.75 ± 0.08 17.73 ± 0.23 0.43 ± 0.02 0.65 ± 0.03

BL + T 0.22 ± 0.00** 373.61 ± 6.36** 233.33 ± 14.43** 13.69 ± 1.21* 27.41 ± 2.12** 0.61 ± 0.03** 0.63 ± 0.02

BL + U 0.18 ± 0.00** 201.39 ± 8.67 180.56 ± 4.81** 10.81 ± 0.41* 18.64 ± 0.14** 0.57 ± 0.02** 0.67 ± 0.02

BL + the mixture (T:U = 1:1) 0.22 ± 0.00** 240.28 ± 4.81** 238 ± 17.35** 12.22 ± 0.77 19.70 ± 1.10* 0.43 ± 0.01 0.68 ± 0.01

Batch 2: light shift with tryptone addition in phase 2

R:B (5:1) + T 0.16 ± 0.00 402.78 ± 6.36** 386.11 ± 9.62** 9.33 ± 0.67 43.27 ± 2.42** 0.95 ± 0.02 0.45 ± 0.05

R:B (3:1) + T 0.16 ± 0.00 338.89 ± 13.39 366.67 ± 14.43** 9.67 ± 0.67 35.11 ± 1.27 0.89 ± 0.00* 0.45 ± 0.01

R:B (1:1) + T 0.16 ± 0.00 286.11 ± 6.36** 297.22 ± 4.81* 9.33 ± 0.67 30.73 ± 1.52 0.85 ± 0.01** 0.43 ± 0.01

BL + T 0.16 ± 0.00 338.89 ± 6.36 275.00 ± 8.33 10.11 ± 0.51 33.55 ± 1.04 0.94 ± 0.02 0.45 ± 0.04

GL + T 0.16 ± 0.00 273.61 ± 9.62** 247.22 ± 4.81** 8.78 ± 0.35* 31.18 ± 0.61* 0.63 ± 0.02** 0.62 ± 0.05*

N, nitrogen; TN, total nitrogen; YX/TN, biomass yield per total nitrogen consumed; Fx, fucoxanthin. U, urea; T, tryptone; T:U = 1:1, the mixture of tryptone and urea; BL,
pure blue light; GL, pure green light. Data are expressed as mean ± SD in three replicates. Significant differentiation level with *p < 0.05 and **p < 0.01 compared with
the control groups [blue light shift (BL) in batch 1, blue light shift with tryptone addition (BL + T) in batch 2], respectively.

tryptone addition in phase 2 was the best option to encourage
more biomass production and accumulation of intercellular Fx,
leading to an increasing volumetric concentration of Fx.

It is noteworthy that the cell density was increased rapidly
in GL + T in phase 2 (Figure 4C), but the lowest biomass
concentration was observed (Figure 4D). Similarly in the
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previous report, the biomass entered stable phase and the lipid
content increased by 53% and 29% when light shifted from R:B
(50:50) (Sirisuk et al., 2018) and BL (Jung et al., 2019) to green
light, respectively. Additionally, the content and intercellular
amount of Fx were the lowest in GL + T compared to other
groups, resulting in the lowest volumetric concentration of Fx
(Figure 4D and Table 4). It was reported that carotenoids content
was reduced after 3-days green light exposure (Jung et al., 2019),
and the genes encoding LCYB, ZEP1, and ZEP 2 performed
high initial transcription levels, then balanced out the difference
after 24 h exposure to green light (Valle et al., 2014), which
explained the reduction of Fx under green light. Additionally, the
previous study indicated that Chl a was more inhibited compared
to carotenoids under green light induction (Jung et al., 2019).
These results explained the increase of Fx/Chl a ratio under green
light in Table 4. Therefore, shifting to green light was neither the
option for biomass nor for Fx production.

Bioprocess Analysis of R: B (5:1) + T
Group in the Batch 2
To further understand the physiological response and regulation
mechanism of cells in R: B (5:1) + T group in the batch 2, the

biomass and Fx production, nutrient consumption were analyzed
in the two-phase culture. The cell samples were taken from the
culture in phase 2 at four time points (6th, 8th, 10th, and 12th
days) to evaluate the Fx content and key genes expression in Fx
biosynthesis pathway.

As shown in Figure 5A, the biomass increased slowly with
low biomass productivity (208.33 mg L−1 d−1) in phase 1,
and then the cells utilized glycerol more quickly for rapid
growth from 4th day, which might be due to the exhaustion
of available amino acids in tryptone as carbon source of prior
utilization. With the rapid consumption of glycerol in phase 2,
the biomass productivity reached to 597.22 mg L−1 d−1, which
was 2.87-fold higher than phase 1 (p < 0.01) (Figures 5A,B).
The glycerol consumption rate achieved 533.33 mg L−1 d−1

in phase 2, resulting the 223% increase in the final biomass
concentration (Figures 5A,B). However, the consumption rate
of TN was lower in phase 2 (Figure 5B), which might be
caused by a slow urea consumption in the medium since 6th
day. The addition of tryptone provided sufficient organic carbon
and nitrogen for biomass production in phase 2, while the
Fx content and intercellular amount reached to the highest
level (13.26 mg g−1 and 0.95 pg cell−1) on the 8th and 12th
day, respectively (Figure 5C). At the end of cultivation, the

FIGURE 5 | Bioprocess analysis of R: B (5:1) + T group in the batch 2. Production and nutrient consumption (A,B) in two-phase culture, fucoxanthin content and
intercellular amount (C), genes expression levels in fucoxanthin biosynthesis pathway on the 6th, 8th, 10th, 12th days in phase 2 (D). Significant differentiation level
was set with * p < 0.05 and ** p < 0.01 compared with that at 6th day in phase 1, respectively. The color boxes indicate the expression values of log2FC (8th/6th),
log2FC (10th/6th), and log2FC (12th/6th).
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TABLE 5 | Biomass, fucoxanthin content and productivity from P. tricornutum in this study compared to the previous literatures.

Strain Trophic
mode

Carbon source Nitrogen source Light strategy Biomass
(g L−1)

Biomass
productivity (mg

L−1 d−1)

Fucoxanthin References

Productivity (mg
L−1 d−1)

Content (% DW)

P. tricornutum
CCMP 1327

M 0.1 mol L−1 glycerol 0.02 mol N L−1,
mixture (T:U = 1:1), with
T addition

Batch 2∗ 6.52 597.22 (Phase 2) 8.22 (Phase 2) 1.30 This study

P. tricornutum SAG
1090-6

M Spruce hydrolysates
(contain 2 g L−1 glucose)

Yeast extract (C/N,60) 100 µmol
m−2 s−1, L:D,
14:10 h

3.31 254# – 0.51 (carotenoids) Patel et al., 2019

P. tricornutum
UTEX 640

M 0.1 mol L−1 glycerol,
Semi-continuous culture

0.85 g L−1 NaNO3 465 µmol m−2 s−1 12.08 1008 – 0.70 (carotenoids) Ceron-Garcia et al.,
2013

P. tricornutum
UTEX 640

M 0.1 mol L−1 glycerol 0.01 mol L−1 urea 165 µmol m−2 s−1 2.87 396.24# – 0.49 (carotenoids) Garcia et al., 2005

0.1 mol L−1 glycerol 0.01 mol L−1 urea
successive
implementation

165 µmol m−2 s−1 15.40 1524# – –

P. tricornutum
CCAP1055/1

A 0.5% CO2 0.075 g L−1 NaNO3 150 µmol m−2 s−1 <0.2 – – 2.68 Conceicao et al.,
2020

P. tricornutum
CS-29

A 1% CO2 0.75 g L−1 NaNO3 150 µmol m−2 s−1 0.37 – 2.16 5.92 ± 2.28 McClure et al.,
2018

P. tricornutum A 1% CO2 1.45 g L−1 KNO3 300 µmol m−2 s−1 4.05 (Day
9)

– 4.73# (Day 6) 1.03 (Day 3) 0.66 (Day 12) Gao et al., 2017

M-Mixotrophy; A-autotrophy; T-tryptone. Batch 2∗- Phase 1: R:B light (6:1) at 20 µmol m−2 s−1 for 6 days; Phase 2: R:B light (5:1) at 25 µmol m−2 s−1 for 6 days. #-maximum biomass/fucoxanthin productivity during
the cultivation.
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content and intercellular amount of Fx increased by 8% and
12% compared to day 6 (p < 0.05) (Figure 5C). Through
enhancing biomass concentration and Fx content in phase 2, the
Fx productivity increased to 8.22 mg L−1 d−1, which was the
highest level ever reported so far (Table 5).

It is known that biosynthesis of Fx involved in
methylerythritol phosphate (MEP) pathway, IPP pathway
and Fx formation (Bertrand, 2010). However, the final steps of Fx
formation were not know completely so far (Lohr and Wilhelm,
2001; Dambek et al., 2012; Figure 5D). The DXS and PSY are
two key rate-limiting enzymes to control the biosynthesis of Fx.
The previous study indicated that the overexpression of DXS
and PSY could raise the content of Fx by 2.40- and 1.80-fold
in P. tricornutum, respectively (Eilers et al., 2016). Under the
mixotrophic condition, glycerol consumption could supply
abundant G3P (Villanova et al., 2017), which is the substrate
of DXS and carbon skeleton of carotenoids biosynthesis. In
this study, the expression of DXS was almost stable from 6th to
10th day, but decreased 1.46-fold on the 12th day compared to
the 6th day (Figure 5D), suggesting that the BL strengthening
with tryptone addition induced more carbon flux to TCA
cycle and protein biosynthesis rather than pigments formation
(Jungandreas et al., 2014). In contrast, the expression of PSY
was 0.70-fold downregulated on the 8th day and significantly
upregulated (|log2fold change| > 2, p < 0.01) from the 10th day.
Similarly, the previous report indicated that BL induction was
proved to upregulate the expression of PSY under autotrophic
condition in P. tricornutum (Coesel et al., 2008). One possible
reason for the delay of PSY response was that the cells need
time to adapt to light shift (Jungandreas et al., 2014), the other
possibly reason relate to the expression of genes encoding ZEP.
There were three types of ZEP identified in P. tricornutum
(Bowler et al., 2008), and the expression levels of ZEP1, ZEP2,
and ZEP3 were 4.87-, 2.06-, and 2.28-fold upregulated on the
8th day compared to 6th day, which not only contributed to the
improvement of Fx content on the 8th day, but also accelerated
the conversion from zeaxanthin to violaxanthin, leading to the
promotion of PSY expression level from 10th day. Additionally,
the expression level of FCPb was 1.70-fold higher on the 8th
day than the 6th day but returned to the initial level from 10th
day. However, the expression of VDE performed an opposite
pattern, in which VDE transcript level changed slightly from
6th to 10th day and was 4.29-fold decreased on the 12th day
(p < 0.01). In the previous report, the accumulation of Fx was
not synchronized with the abundance of PSY transcripts, while
the Fx content at the stationary phase was correlated with the
amounts of PSY transcripts at the exponential phase (Kadono
et al., 2015). Therefore, even though the intercellular amount
of Fx increased slightly on the 8th day, the Fx content on the
8th day in phase 2 was significantly improved which depended
on the upregulation of ZEPs and FCPb. And the reduction
of intercellular amount and content of Fx on the 10th day
might be due to the downregulation of PSY on the 8th day
and to initial transcript level of FCPb on the 10th day. More
importantly, the continued upregulation of PSY and ZEPs with
downregulation of VDE contributed to the final Fx accumulation
(both of intercellular amount and content) on the 12th day

(Figure 5C), which proved that the option of R: B (5:1) + T in
phase 2 was beneficial for enhancing Fx production in two-phase
culture in the batch 2.

It was noteworthy that the expression of ZEPs were
significantly upregulated (| log2fold change| > 2, p < 0.01) when
the culture shifted to phase 2. Among them, ZEP1 was the most
sensitive gene in response to the BL induction (Figure 5D).
A similar phenomenon was observed in the previous study, in
which the increase of ZEP1 transcript level was over 50-fold
higher than ZEP2 and ZEP3 under BL induction after dark
treatment (Coesel et al., 2008). Since violaxanthin cycle and Ddx
cycle were two xanthophyll cycles in diatoms participated in NPQ
(Lavaud et al., 2003), BL and light intensity play vital roles in NPQ
(Bertrand, 2010; Costa et al., 2013). One possible explanation
was that P. tricornutum did not have the specific enzymes
of Dtx epoxidase/diadinoxanthin de-epoxidase (DEP/DDE) in
Ddx cycle, and the enzymes of ZEP/VDE in violaxanthin cycle
played the same role instead (Bowler et al., 2008). So the ZEP1
regulated the transformation from zeaxanthin to violaxanthin
and ZEP3 regulated the conversion from Dtx to Ddx (Nymark
et al., 2009), leading to different response pattern of the ZEP1
and ZEP3 under BL. The another possible explanation was that
ZEP1 and ZEP2 were suggested to be classified into category that
contained light-harvesting complex and enzymes for pigments
synthesis, while ZEP3 was classified as enzyme involved in photo-
protection (Nymark et al., 2013; Valle et al., 2014). In this study,
the high cell density (Figure 4C) resulted in less light exposure
to individual cell during the 6th to 12th day, and ZEP3 might
drive the conversion of violaxanthin to zeaxanthin and Ddx to
Dtx in low light.

In a word, the expression levels of key genes involving Fx
biosynthesis (PSY, ZEPs, FCPb, and VDE) were significantly
regulated by BL strengthening and tryptone addition, which
had positive effects on Fx accumulation, leading to the a great
improvement of Fx production.

CONCLUSION

In this study, the combination of red: blue light at a favorable
ratio in phase 1 and light shift with tryptone addition in phase
2 was employed to significantly improve Fx production by
the mixotrophic P. tricornutum, which achieved the highest
level of ever reported so far. The analysis of gene expression
levels involving Fx biosynthesis revealed that PSY, ZEPs, and
FCPb were upregulated while VDE was downregulated under
BL strengthening and tryptone addition, indicating the possible
regulatory mechanism on the enhanced Fx production in
phase 2. This study developed a novel approach of two-
phase culture to produce Fx efficiently by the mixotrophic
P. tricornutum, which facilitate the scale-up production of Fx by
photo fermentation in the future.
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Microalgae, due to their complex metabolic capacity, are being continuously explored

for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However,

suboptimal yield and productivity of the bioactive of interest in local and robust wild-type

strains are of perennial concerns for their industrial applications. To overcome such

limitations, strain improvement through genetic engineering could play a decisive role.

Though the advanced tools for genetic engineering have emerged at a greater pace, they

still remain underused for microalgae as compared to other microorganisms. Pertaining

to this, we reviewed the progress made so far in the development of molecular tools and

techniques, and their deployment for microalgae strain improvement through genetic

engineering. The recent availability of genome sequences and other omics datasets

form diverse microalgae species have remarkable potential to guide strategic momentum

in microalgae strain improvement program. This review focuses on the recent and

significant improvements in the omics resources, mutant libraries, and high throughput

screening methodologies helpful to augment research in the model and non-model

microalgae. Authors have also summarized the case studies on genetically engineered

microalgae and highlight the opportunities and challenges that are emerging from the

current progress in the application of genome-editing to facilitate microalgal strain

improvement. Toward the end, the regulatory and biosafety issues in the use of genetically

engineered microalgae in commercial applications are described.

Keywords: microalgae, genetic engineering, omics, genome editing, regulatory issues

INTRODUCTION

The proficient photosynthetic microorganisms including green microalgae, diatoms, and
cyanobacteria offer remarkable advantage over the terrestrial plants as a rich source of various
biomolecules to be used for food, feed, and fuel applications. In addition to the faster growth
rate, higher biomass productivity, and ability to synthesize complex metabolites with minimal
resources are some of their key advantages. The wide taxonomic and inherent biochemical diversity
among the microalgal species makes them suitable resource of abundant biomolecules with
industrial and biomedical importance. Owing to this, microalgae have been continuously exploited
for the production of biomolecules such as lipids, proteins, and carbohydrates. Apart from the
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production of secondary metabolites, microalgae have also
been targeted for various applications in nutraceuticals,
pharmaceuticals, dietary supplements, and personal care
products. Microalgae are also utilized for concomitant CO2

sequestration, wastewater treatment, and biomass production
for high-volume low-value products (Yadav et al., 2014; Mehar
et al., 2019). In the last few years, owing to the high lipid
content in microalgae (20–70% of dry cell weight), various
start-up companies in the sector of clean energy production have
attempted for commercialization of microalgae derived biofuels
(Mata et al., 2010; Chisti, 2013). According to a global market
research, the market for algal products across various segments
is expected to grow at a compound annual growth rate of 4.2%
from 2018 to 2025 and will have a total market value of more
than 3.4 billion USD (https://www.alliedmarketresearch.com/
algae-products-market).

Even though the commercial potential of microalgae along
with its market portfolio is well-known, challenges pertaining to
its economic feasibility still remain to be addressed. High biomass
production along with the desired metabolite(s), cost-efficient
dewatering and harvesting of biomass, green and efficient process
for product extraction are some of the broad challenges to further
improve the microalgal process economics. Among all these,
the robust and highly efficient strain with desired characteristics
can substantially improve the economics of upstream processing.
Though various nutritional-, environmental-, and physiological-
alteration-based cultivation have been attempted for improved
microalgal productivities, commercial success remains limited
(Pierobon et al., 2018). This is mainly due to the fact that these
biotechnological amendments in the cultivation processes could
not enhance the inherent metabolic capacity of the microalgae
to hyperaccumulate the desired metabolite(s). For example,
triggering the lipid accumulation in microalgae through nutrient
deprivation inevitably lowers the cell division, thereby making it
difficult to simultaneously achieve high lipid accumulation and
high growth rate, thus decreasing the final lipid productivity
(Lenka et al., 2016).

In this context, the genetic engineering of microalgae can
help to overcome the inherent limitation of metabolic capacity
for higher accumulation of desired biomolecules, thus eventually
improving the economic feasibility of the production process.
Though the wide taxonomic and genetic diversity among the
microalgae offer several opportunities for genetic modifications,
the scarcity of genomic resources and genetic tools limits the
progress in algal bioengineering. For instance, the information
of genome sequence, metabolic pathway maps, and the other
genetic resources that are the key to identify target gene(s) is
available only for the limited (mostly model) microalgal strains.
However, despite the available genome sequence information,
the annotation, and the gene functional studies related to
the microalgae are still very limited. Since many of the
microalgal genome sequences will be studied in near future,
the computational biology and the bioinformatics may play an
important role in precise genome assembly and its annotation.
In addition, the multiomics datasets for microalgae can also
be explored to improve the biorefinery capabilities and the
quality of the microalgal bioproducts (Fayyaz et al., 2020).

Moreover, the functional genetic screening through genome scale
mutant libraries and their high-throughput screening may help
to make robust strategies for microalgal strain improvement.
Therefore, such information is extremely essential for purpose-
specific bioengineering of microalgal strains. The typical strategic
path from the integration of different datasets to the microalgal
strain improvement is illustrated in Figure 1. In the process
of genetic-engineering-based strain improvement, the molecular
tools for stable transformation, selective screening, and precise
gene targeting are extremely important to accomplish the genetic
modification. Unlike other microorganisms, such as bacteria,
yeast, and fungi, the microalgal bioengineering suffer the lack of
efficient genetic tools and techniques.

Considering these shortcomings, in this review, we have
thoroughly mapped the information regarding the evolution
of genetic modification strategies from the conventional to
the emerging genome-editing tools and their implication
in microalgae bioengineering. Although the bioengineering
of microalgae holds the great potential to improve process
economics, the risk assessment, biosafety, and regulatory issues
pertaining to the use of genetically engineered microalgae
must be considered and are summarized in this review.
We attempt to comprehensively describe the resources for
microalgae bioengineering, including omics resources, mutant
resources, and their high throughput screening methodologies,
transformation methods, selective markers, and precise gene-
editing tools. We have also illustrated the applications of genetic
engineering in the key areas of microalgal research, such as
production of biomass, lipids, and bioactive molecules with the
help of case studies along with the strategies used till date for the
improvement of algal strains.

ADVANCEMENT IN THE RESOURCES FOR
MICROALGAL RESEARCH

Omics Resources
Genomic and Transcriptomic Resources
Until 2008, only three microalgal species, namely
Chlamydomonas reinhardtii, Thalassiosira pseudonana, and
Phaeodactylum tricornutum, had been sequenced (Fu et al.,
2019). In the last decade, revolution in “next-generation
sequencing” technologies has led to the swift increase in
the available number of draft as well as completed genomes
of algal species (Table 1). Recently, Fu et al. (2019) have
reviewed the efforts to sequence the genome of diverse
group of microalgal species. The three sequencing projects,
including one transcriptome sequencing and two genome
sequencing projects, have been undertaken to generate the
genetic resource for algal species. The transcriptome sequencing
project named Marine Microbial Eukaryote Transcriptome
Sequencing Project aimed to sequence nearly 700 marine
microbial species of 17 phyla (Keeling et al., 2014). The sequence
information of this dataset is available at iMicrobe Project
(www.imicrobe.us/#/projects/104) and Sequence Read Archive
(SRA) (BioProject PRJNA231566). Among the other sequenced
transcriptomes, 140 are of marine microalgae species. Most
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FIGURE 1 | The schematic of data and resource driven strategy for microalgal bioengineering. (A) Resource generation and enrichment: The high-throughput

technologies, intense computation and bioinformatic analysis, and the extensive research interest on microalgae can generate high-quality curated data. The genomic

and transcriptomic data of model organisms provides a basic understanding of the biosynthetic pathway. This imperative information is aided by proteomics and

metabolomics that offers functional insights for bioproduct discovery in microalgae. Also, the metabolomic data can be implemented to novel microbial isolates with

limited genomic and transcriptomic information. (B) Strain development and resource refinement: The leads from metabolic models and the use of state-of-the-art

technologies, such as genome-editing and high-throughput variant selection can be used for microalgae strain development. Often the metabolic flux shifts of the

mutants implies an organism’s evolution to optimize flux rearrangement. The objective of the flux balance shift can be biomass production or enhanced production of

desired product. Moreover, the information obtained from fine-tuned modeling and genomic-editing experiments create resource avenues for further discoveries.

of these sequenced species are culturable and taxonomically
well-defined. Therefore, unambiguously the dataset has bias
toward the gene prediction of relatively selected group of
culturable isolates. Indeed, this transcriptomic data is still very
helpful because it provides the extensive reference dataset

for novel gene discovery and construction of computation-
based metabolic models. One of the two genome sequencing
projects, the ALG-ALL-CODE, was launched at NYU Abu
Dhabi (lassb.abudhabi.nyu.edu/algallcode.php) and aimed
at sequencing over 120 genomes of algal isolates belonging

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 September 2020 | Volume 8 | Article 91441

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Kumar et al. Microalgal Bioengineering for Industrial Application

to several evolutionarily distinct phylum. Till date, the draft
genome assemblies for 21 isolates are available in public domain,
while the draft genome assemblies for 106 isolates will be
available in near future. The other recently launched genome
sequencing project is the 10KP, which aimed to generate genomic
resource for 10,000 plants and eukaryotic microbes. Among
the 10,000 genomes, at least 1,000 green algae (microalgae
and macroalgae), and 3,000 photosynthetic and heterotrophic
protists (majority will be of microalgae) are expected to be
sequenced in 10KP genome sequencing initiative (Cheng
et al., 2018). At present, around 60 algal accessions have been
sequenced and their complete or draft genomes are available
at “Phytozome” (phytozome.jgi.doe.gov) and “The Greenhouse”
(greenhouse.lanl.gov). The complete or near to complete
genome sequences for microalgae are summarized in Table 1.
Altogether, these genome sequencing projects will generate a
huge genetic resource for the microalgal species, which remained
untapped due to the lack of information of their metabolic
pathways, regulatory networks, and genetic potentials. In
addition, there are three web-based resources available for algal
genomics. The first database, pico-PLAZA, contains the genome
information and other intuitive tools for functional genomics
of 16 photosynthetic algal species (http://bioinformatics.psb.
ugent.be/pico-plaza/) (Vandepoele et al., 2013). The second
database is AlgaePath (http://algaepath.itps.ncku.edu.tw) that
provides the details of gene expression based metabolic pathway
prediction in Chlamydomonas reinhardtii and Neodesmus sp.
UTEX 2219-4 (Zheng et al., 2014). The third one holds the
information of gene co-expression data for two algal species
(Chlamydomonas reinhardtii and Cyanidioschyzon merolae) and
is available at ALCOdb (http://alcodb.jp) (Aoki et al., 2016).
In addition, the random information of complete and draft
genome sequence is available at JGI Genome Portal (https://
genome.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.
gov). Besides the availability of robust computational methods,
the complementation of the genome datasets with other omics
datasets is indeed required for rational use of synthetic biology
approach. For instance, the advantage of different omics datasets
(genomics, proteomics, and metabolomics) and their integration
for biological research is recently exemplified by sulfur-metabolic
capacity of 14 diverse and representative strains of microalgae
from different clades and habitats (Nelson et al., 2019).

Proteomic Resources
The quantitative data of protein expression under different
experimental conditions is advantageous for better
understanding of regulatory pathways, which differ at the
post-transcriptional level. Since, several studies failed to give a
high correlation between transcriptomic and proteomic data
(Haider and Pal, 2013), the availability of quantitative proteomic
and transcriptomic data under defined experimental condition
will provide strategic insights for strain improvement in
microalgae. In particular, several analyses have been performed
to identify the proteome dynamics and the corresponding
transcriptome analysis. However, this was mainly focused to
understand the lipid metabolism in model and/or oleaginous
microalgae with potential of biofuel production (Table 1). The

literature mining shows that the majority of proteomics studies
were performed under experimental conditions, including
nitrogen starvation, copper deprivation, light intensity regimes,
heterotrophic cultivation, and salt stress (Table 1). The majority
of differentially abundant proteins were found to have functions
in metabolic pathways related to fatty acid and lipid metabolism,
carbohydrate metabolism, photosynthesis, and cell structure
integrity and maintenance. In addition, the large numbers of
algal proteins have been predicted through genomic sequence
analysis and the information is available at the Uniprot (https://
www.uniprot.org) and Protein Data Bank archive (https://
www.rcsb.org). In an attempt to comprehensively cumulate the
structural, physicochemical, and functional information of algal
proteome, the non-redundant protein database of 31 algal species
was developed and is available at Algal Protein Annotation Suite
(Alga-PrAS) (Kurotani et al., 2017).

Metabolomics and Metabolic Models
The metabolites are the intermediate or end products of the
cellular regulatory processes that are implicated through the
transcriptome and proteome, and thus represent the cellular
response to the stimulus. Some metabolites are also involved in
the regulation of cellular responses by regulating the activity of
enzymes involved (Wegner et al., 2015). Thus, information of
metabolic profile in response to the experimental conditions may
help to target the processes or pathways, which could be helpful
in metabolic-engineering of microalgal strains. The quantitative
and qualitative analysis of metabolites is now fairly possible
even though they have a wide variation in chemical properties,
such as polarity, charge, solubility, volatility, and molecular
weight. This has become possible due to the advances in non-
targeted metabolite profiling and its platforms, such as capillary
electrophoresis-mass spectrometry, gas chromatography-mass
spectrometry, liquid chromatography-mass spectrometry,
Fourier transform ion cyclotron resonance-mass spectrometry,
and nuclear magnetic resonance spectroscopy. Similar to the
transcriptome and proteomic studies in microalgae, the majority
of metabolomic (though only few untargeted metabolic studies
reported) studies were also focused on lipid metabolism under
various environmental conditions (Table 1). Recently, the
potential of single-probe mass spectrometry technology has
been demonstrated for near in-situ analyses of single cell of
Scrippsiella trochoidea under nitrogen starving and light vs. dark
conditions to analyze the lipid content and lipid profile (Sun
et al., 2018). This single-cell-targeted metabolomics may prove
to be instrumental in the future algal research, since it reduces
the chances of experimental artifacts and confounds, thereby
minimizing the cell to cell metabolic variability. Unlike genome
and transcriptome databases, unfortunately, no dedicated
database is available for the microalgal metabolomics. Although
the attempts were made to reconstruct genome-scale metabolic
models at system level, they are based on the information of the
genome, transcriptome, and scarcely available experimental data.
For organisms like C. reinhardtii, Chlorella spp., P. tricornutum,
and some blue-green algae (cyanobacteria), the genome-scale
metabolic models are available. The core metabolic models and
genome-scale system-level metabolic networks available for
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TABLE 1 | List of microalgae and diatoms with complete or near to complete genome, and the overview of reported omics studies.

Organism (strain used

for genome

sequencing)

Genome size (Mb) Conditions or aim of omics studies Focus Accession numbers and

references

Transcriptomic studies Proteomic studies Metabolomic studies/

metabolic models

Auxenochlorella

protothecoides

(0710)

22.92 Response to temperature and

phosphate stress; trophic

growth conditions; oil

accumulation

Response to temperature,

nitrogen and phosphorus

starvation, ionizing radiation;

trophic growth conditions, oil

accumulation,

Response to temperature

and, phosphate and nitrogen

starvation, copper stress; oil

accumulation, glycome

profiling, trophic growth

conditions / Genome scale

and core metabolic model

Biofuel PRJNA428835, PRJNA484804

(Li et al., 2013, 2014b; Gao et al.,

2014a; Sibi et al., 2014; Wu et al.,

2015; Park and Choi, 2018; Park

et al., 2018; Vogler et al., 2018;

Xing et al., 2018)

Bathycoccus prasinos

(RCC 1105)

15.07 Normal growth conditions - - Comparative

analysis

PRJNA231566, https://www.

imicrobe.us/#/projects/104

Bigelowiella natans

(CCMP2755)

91.41 High light stress and small

RNA profiling

Profiling of proteins targeted to

plastid and peri-plastid space

- Model Organism GSE124831, GSE115762

(Hopkins et al., 2012)

Botryococcus braunii

(Showa)

184.32 Response to nitrogen

deprivation, high salt, cobalt

enrichment, NaHCO3, salicylic

acid, methyl jasmonate, and

acetic acid

- Response to different

nutrients, growth phases;

tetraterpenoid and

hydrocarbons analysis /

Genome scale metabolic

model

Hydrocarbons and

biofuels

FY358876, GES71296,

SRP161189, GSE96585 (Molnar

et al., 2012; Cornejo-Corona

et al., 2016; Thapa et al., 2016;

Blifernez-Klassen et al., 2018)

Chlamydomonas

debaryana

(NIES-2212)

120.36 - - Oxylipin analysis, lipid profiling

in response to different light

and CO2 levels

de los Reyes et al., 2014;

Toyoshima and Sato, 2015, 2018;

Yoshitomi et al., 2019

Chlamydomonas

reinhardtii

(CC-503 cw92 mt+)

120.4 Response to nutrient

starvation, oxidative and heat

stress, high light intensity,

diurnal cycle; ciliogenesis;

lipid accumulation

Response to nitrogen and sulfur

starvation; exposure to high

salinity, high CO2, dark and

anoxic conditions; lipid mutant,

lipid droplet proteins

Response to nitrogen

starvation, dark and anoxic

conditions / Genome scale

and core metabolic model

Model organism GSE17970, PRJNA379963 (May

et al., 2009; Chen et al., 2010;

Baba et al., 2011; Nguyen et al.,

2011; Longworth et al., 2012;

Mastrobuoni et al., 2012; Choi

et al., 2013; Chaiboonchoe et al.,

2014; Wase et al., 2014;

Sithtisarn et al., 2017; Salguero

et al., 2019)

Chlorella pyrenoidosa

(FACHB-9)

56.99 Response to CO2 deprivation,

bisphenol A, salt stress, high

light stress, glucose starvation

and hydroxyl radical; trophic

growth conditions

Dried biomass, exposure to

inhibitor of mitochondrial

respiratory electron transport

Lipid profiling under copper

stress and different nitrate

levels / Core metabolic model

Biofuels SRX399080, GSE40028,

GSE69816, PRJNA292642,

PRJNA526277 (Yang et al., 2000;

Sibi et al., 2014; Liu et al., 2018b;

Wan et al., 2018; Zhang et al.,

2018; Duan et al., 2019)

Chlorella sorokiniana

(1230)

58.53 Response to nitrogen

deprivation, different pH, and

high CO2

Response to inoculum sizes, light

intensity and glucose

concentrations, nitrogen

starvation; bioactive peptide

analysis

Response to high-density

cultivation and UV radiation;

fatty acid profiling

Biofuels GAPD00000000, GSE98781,

GCUV00000000 (Lu et al., 2013;

Ma et al., 2013; Rosenberg et al.,

2014; Li et al., 2015a; Chen et al.,

2017; Kumar et al., 2018; Tejano

et al., 2019)

(Continued)
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TABLE 1 | Continued

Organism (strain used

for genome

sequencing)

Genome size (Mb) Conditions or aim of omics studies Focus Accession numbers and

references

Transcriptomic studies Proteomic studies Metabolomic studies/

metabolic models

Chlorella variabilis

(NC64A)

46.16 Response to early phase of

Chlorella virus-1 infection

- Nitrogen deprivation and

long-chain alkenes/Genome

scale metabolic model

Biofuels SRP026413 (Juneja et al., 2016;

Sorigue et al., 2016)

Chlorella vulgaris

(NJ-7)

39.08 Response to nitrogen

starvation and salt stress

Response to nitrogen depletion

and repletion, heterotrophic and

Na induced lipid accumulation,

S-nitrosylated proteome in

nitrogen deplete and replete

condition

Lipid profiling under copper

stress, effect of graphene

oxide nanomaterial, N-glycan

profiling / Core metabolic

model

Biofuels LDKB00000000 (Guarnieri et al.,

2011, 2013; Sibi et al., 2014; Li

et al., 2015b; Ouyang et al.,

2015; Henard et al., 2017; Zuñiga

et al., 2018; Mocsai et al., 2019)

Chloroidium sp.

(CF)

54.31 - Normal growth conditions /

Genome scale metabolic

model

Ecological

importance

Nelson et al., 2017, 2019

Chromochloris

zofingiensis

(SAG 211-14)

58 Response to nitrogen

deprivation, high light;

heterotrophic conditions,

different growth conditions

Lipid droplets analysis Lipid and carotenoid profiling

in response to glucose

Carotenoids and

fatty acids

SRP067324, GSE92515 (Wang

et al., 2019c; Zhang et al., 2019)

Coccomyxa sp.

(LA000219)

48.54 Response to arsenic

treatment

- Response to arsenic

treatment

Model organism and

biofuels

Koechler et al., 2016

Coccomyxa

subellipsoidea

(C-169)

48.83 Response to CO2

supplementation; miRNA

profiling

- Response to nitric oxide,

cadmium stress, carbon

source, nitrogen starvation,

phytohormones

Biofuels GSE76638 PRJNA428141

(Kováčik et al., 2015; Allen et al.,

2017; Liu et al., 2018a; Wang

et al., 2019e)

Cyanidioschyzon

merolae

(10D)

16.55 Response to diurnal cycle,

different CO2 level, blue and

red light, UV irradiance

Response to low temperature

acclimatization; photosystem II

proteins

Response to different CO2

level, diurnal cycle;

hydrocarbon and lipid profiling

in response to cyanobacterial

Acyl-ACP Reductase

overexpression

Model organism GSE37673, GSE83828,

GSE100372 (Krupnik et al., 2013;

Rademacher et al., 2016;

Nikolova et al., 2017; Miyagishima

et al., 2019)

Dunaliella salina

(CCAP 19/18)

343.7 Response to osmotic and

oxidative stress, nitrogen

depletion, salinity, high light;

different growth phases

Response to arsenate, high

salinity, high light and high

bicarbonate ion level; flagella

composition

Response to nitrogen

starvation

Halophile, Biofuels,

β-carotene and

glycerol production

Katz et al., 2007; Jia et al., 2009,

2016; Gu et al., 2014; Ge et al.,

2016; Lv et al., 2016; Zhao et al.,

2016; Wei et al., 2017b; Wang

et al., 2019d

Emiliana huxleyi

(CCMP1516)

167.68 Response to nitrogen, sulfate

and phosphorus starvation,

calcium concentrations,

elevated temperature and

CO2

Response to different calcium

concentration

Response to host-virus (E.

huxleyi virus) interaction,

phosphorus and nitrogen

starvation; lipidomic

Coccolithophore GSE24341, E-MTAB-2274,

SRP017794, SRX756940 (Benner

et al., 2013; Rokitta et al., 2014;

Hunter et al., 2015; McKew et al.,

2015; Wördenweber et al., 2018)

Fistulifera solaris

(JPCC DA0580)

49.74 Response of nutrient depleted

and replete conditions on lipid

accumulation and its

degradation

Lipid droplet proteins - Biofuels DRA002404 (Nonoyama et al.,

2019)

(Continued)
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TABLE 1 | Continued

Organism (strain used

for genome

sequencing)

Genome size (Mb) Conditions or aim of omics studies Focus Accession numbers and

references

Transcriptomic studies Proteomic studies Metabolomic studies/

metabolic models

Fragilariopsis cylindrus

(CCMP1102)

80.54 Response to temperature,

high CO2, prolonged

darkness, and nitrogen and

iron limitation; small RNA

profiling

Response to temperature, salinity

stress, prolonged darkness, high

CO2, iron starvation

Response to different growth

phases

Psychrophile E-MTAB-5024, GSE57987 (Lyon

et al., 2011; Boroujerdi et al.,

2012; Kennedy et al., 2019)

Galdieria sulphuraria

(074W)

13.71 Response to cold acclimation Photosystem-II analysis - Extremophile PRJNA487158, GSE89169

(Thangaraj et al., 2010)

Guillardia theta

(CCMP2712)

87.15 Small RNA profiling under light

and dark conditions, mRNA

splicing analysis

Response to different light

intensities

- Eukaryote

endosymbiosis

GSE124831, SRR747855

(Kieselbach et al., 2018)

Haematococcus

pluvialis

(SAG 192.80)

365.78 Response to high light,

salinity, iron, acetate, salicylic

acid and jasmonic acid,

nitrogen depletion and

repletion, photooxidative

stress; distinct growth phases

Cell wall protein, astaxanthin

accumulation, response to high

light stress, salicylic acid, and

jasmonic acid

Lipid analysis, pigments and

protein profiling, live single-cell

analysis

Carotenoids Wang et al., 2004; Tran et al.,

2009; Peled et al., 2011; Gu

et al., 2014; Recht et al., 2014;

Su et al., 2014; Gao et al., 2016;

Baumeister et al., 2019; Luo

et al., 2019

Helicosporidium sp.

(ATCC 50920)

12.37 Transition from free-living

organism to obligate

intracellular parasite

- - Parasite Pombert et al., 2014

Klebsormidium nitens

(NIES-2285)

104.21 Response to auxin treatment

and cold stress

- Response to cold stress Tolerance to UV and

harsh conditions

PRJDB4958, PRJNA500592

(Nagao et al., 2008)

Micromonas commoda

(RCC299)

21.11 Response to different light

regimes and ultra-violet light

stress

Response to chronic phosphate

limitation and subsequent relief,

high light and UV-radiation

- Marine

phytoplankton

Cuvelier et al., 2017; Guo et al.,

2018

Micromonas pusilla

(CCMP1545)

21.96 Response to phycodnavirus

MpV-SP1 infection,

phosphate deplete and

replete, day-night cycle

Phosphate deplete and replete

condition, day-night cycle

Response to phosphate

deplete and replete condition;

different growth phases,

Marine

phytoplankton

PRJNA422663 (van Baren et al.,

2016; Waltman et al., 2016;

Kujawinski et al., 2017)

Micromonas sp.

(ASP10-01a)

19.58 Normal growth conditions - - Marine

phytoplankton

van Baren et al., 2016

Monoraphidium

neglectum

(SAG 48.87)

69.71 Nitrogen deprivation - - Biofuels PRJNA221625 (Jaeger et al.,

2017)

Nannochloropsis

gaditana

(CCMP1894)

30.86 Response to light intensity

regimes and nitrogen replete

and deplete condition

Fresh and atomized biomass Response to light intensity

regimes and nitrogen

deprivation / Genome scale

metabolic model

Biofuels Radakovits et al., 2012; Sorigue

et al., 2016; Ajjawi et al., 2017;

Shah et al., 2017;

Fernandez-Acero et al., 2019;

Patelou et al., 2020

Nannochloropsis

limnetica

(CCMP505)

33.51 - - Nitrogen deprivation Biofuels Sorigue et al., 2016

(Continued)
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TABLE 1 | Continued

Organism (strain used

for genome

sequencing)

Genome size (Mb) Conditions or aim of omics studies Focus Accession numbers and

references

Transcriptomic studies Proteomic studies Metabolomic studies/

metabolic models

Nannochloropsis

oceanica

(LAMB2011)

29.26 Response to different CO2

levels, phosphorus and

nitrogen limitation, light and

dark cycle, fresh water

acclimation; transition from

quiescence to autotrophy

Response to long-term nitrogen

starvation, low CO2;

single-cell-level phenotypic

heterogeneity

Response to osmotic

downshift and nitrogen

depletion

Biofuels Dong et al., 2013; Pal et al.,

2013; Sorigue et al., 2016; Poliner

et al., 2018; Chen et al., 2019;

Wei et al., 2019

Nannochloropsis

oculate

(CCMP525)

26.27 - Nitrogen deprivation, cadmium

stress

Nitrogen deprivation Lipids and protein

content

Kim et al., 2005; Sorigue et al.,

2016; Tran et al., 2016

Ostreococcus

lucimarinus

(CCE9901)

13.2 - - Genome scale metabolic

model

Small genome Krumholz et al., 2012

Ostreococcus tauri

(RCC4221)

13.03 Response to OtV5 virus

infection, light and dark cycle,

iron limitation, and high light;

life cycle stages

Phosphoproteome in response to

casein kinase 2, light dark cycle

Glycerolipid profiling under

nutrient deprived condition,

diurnal variations, nitrogen

deprivation / Genome Scale

metabolic model

Small genome Krumholz et al., 2012; Martin

et al., 2012; Hindle et al., 2014;

Le Bihan et al., 2015; Lelandais

et al., 2016; Sorigue et al., 2016;

Degraeve-Guilbault et al., 2017;

Hirth et al., 2017

Parachlorella kessleri

(NIES-2152)

59.18 Response to salt stress and

sulfur deplete and replete

Salt stress Nitrogen, sulfur and

phosphorus deprivation

Ota et al., 2016a,b; Shaikh et al.,

2019; You et al., 2019

Phaeodactylum

tricornutum

(CCAP 1055/1)

27.45 Response to nitrogen, iron,

carbon and phosphorus

deprivation, cadmium stress,

mixotrophic growth, grazing

stress, different light

intensities, and regimes,

salicylic acid; non-coding

microRNA

Response to nitrogen limitation,

oxidative and dark stress;

phosphoproteomics under high

light, nitrogen, and iron deficiency

Response to blue and red

light, nitrogen and

phosphorus deprivation;

glycerolipid profile;

mixotrophic growth / Genome

scale and core metabolic

model

Model organism PRJEB11970, SRX648639 (Chen

et al., 2014; Ge et al., 2014;

Jungandreas et al., 2014;

Rosenwasser et al., 2014; Yang

et al., 2014; Abida et al., 2015;

Alipanah et al., 2015; Feng et al.,

2015; Bai et al., 2016; Longworth

et al., 2016; Sorigue et al., 2016;

Yoneda et al., 2016; Villanova

et al., 2017; Remmers et al.,

2018; Smith et al., 2019)

Picochlorum sp.

(SENEW3 / DOE 101)

13.39 / 15.25 Response to salinity stress

and high temperature

- - Biofuels PRJNA245752, PRJNA389600

Scenedesmus sp.

(ARA3, ARA)

93.24 Response to phosphorus and

nitrogen starvation, lipid

accumulation

Response to salinity stress; lipid

accumulation

Response to salinity and

arsenic stress; lipid

accumulation

Biofuels PRJNA428298 (Chu et al., 2011;

Arora et al., 2018, 2019; Wang

et al., 2019b)

Scenedesmus obliquus

(UTEX393)

107.72 Response to diurnal changes

and nC60; wild type and

starch less mutant

comparison

Thylakoid membrane proteome,

toxicity of silver nanoclusters

Response to nC60 and silver

nanoparticles; different

photoperiod and growth

phases

Lipid and biomass E-MTAB-7009 (Kantzilakis et al.,

2007; Du et al., 2017; Zhang

et al., 2017; Vendruscolo et al.,

2019; Wang et al., 2019a)

(Continued)
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TABLE 1 | Continued

Organism (strain used

for genome

sequencing)

Genome size (Mb) Conditions or aim of omics studies Focus Accession numbers and

references

Transcriptomic studies Proteomic studies Metabolomic studies/

metabolic models

Symbiodinium minutum

(Mf 1.05b.01)

609.48 Diurnal cycle, cultured, and

freshly isolated cells

- Response to acidification Coral symbiont PRJNA544863 (Jiang and Lu,

2019)

Symbiodinium

microadriaticum

(CCMP2467)

808.2 Response to different

temperature, dark, and salinity

stress; normal growth

conditions, miRNA profiling

- Response to environmental

variation

Coral symbiont GSE47373, GSE47372 (Klueter

et al., 2015; Aranda et al., 2016)

Tetraselmis striata

(LANL1001)

227.95 Normal growth - - PRJNA231566, https://www.

imicrobe.us/#/projects/104

Thalassiosira oceanica

(CCMP1005)

92.18 Response to iron and copper Response to iron and copper;

extracellular superoxide

production

- Model organism PRJNA382002, SRA045825

(Lommer et al., 2012; Diaz et al.,

2019)

Thalassiosira

pseudonana

(CCMP1335)

32.44 Response to nitrogen and

phosphorus deprivation,

salinity, light intensity,

triphenyltin chloride, silicon,

CO2 levels, source of light,

and nitrogen

Response to nitrogen and

phosphorus starvation, light

intensity, salinity, triphenyltin

chloride, CO2 levels, silicon,

micronutrients deficiency,

benzo(a)pyrene, K. brevis

allelopathy; composition of nano-

and micropatterned biosilica cell

wall, mitochondrial and plastid

proteome

Response to phosphate

deplete and replete condition,

cobalamin scarcity; K. brevis

allelopathy

Model organism Carvalho and Lettieri, 2011;

Dyhrman et al., 2012; Du et al.,

2014; Kettles et al., 2014; Kustka

et al., 2014; Luo et al., 2014;

Poulson-Ellestad et al., 2014; Yi

et al., 2014; Jian et al., 2017;

Kujawinski et al., 2017; Chen

et al., 2018; Heal et al., 2019;

Schober et al., 2019

Trebouxia gelatinosa

(LA000220)

61.73 Response to dehydration and

subsequent rehydration

- - Colonization through

symbiosis

PRJNA213702

Volvox carteri f.

magariensis

(Eve)

137.68 Response to low dose of

UV-B radiation; somatic and

reproductive cells

- - Multicellular alga,

model organism

E-MTAB-5691 and GSE104835

Yamagishiella unicocca

(NIES-3982)

134.24 Normal growth condition - - Multicellular alga,

model organism

PRJNA532307
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different microalgal species are given in Table 1. In addition,
some databases, such as KEGG (https://www.genome.jp/kegg/
pathway.html), Reactome (https://reactome.org), and Metacyc
(https://metacyc.org) contain predicted and experimentally
proven metabolic network information and can be explored
for predictive and integrative biology in microalgae. The
information available through the genetic characterization of
cellular pathways, and high throughput genome-scale studies
under different experimental conditions, is contributing toward
the refinement of metabolic models for system-level analysis of
biological processes.

Mutant Resources for Microalgae
The mutant library for an organism is the best available tool
to accelerate the functional characterization of enormous set of
uncharacterized genes for better understanding of fundamental
biological processes. The potential of such mutant libraries has
been exemplified by those that are available for organisms such
as Saccharomyces cerevisiae (www.sequence.stanford.edu/group/
yeast_deletion_project/deletions3) and Arabidopsis thaliana
(www.arabidopsis.org/portals/mutants/index.jsp). The mutant
libraries are instrumental in the reverse genetic studies. However,
generating such libraries for microalgae is limited by the lack
of efficient transformation and genetic manipulation protocols
(discussed in later sections). The insertional mutagenesis through
random non-homologous end-joining is the method of choice
to generate the mutant libraries. Till date, only two genomewide
random insertion mutant libraries have been generated for C.
reinhardtii using the insertional mutagenesis approach. The first
collaborative project, Chlamydomonas Library Project (CLiP)
was launched in 2010 by Jonikas (now at Princeton University,
USA) and Grossman at Carnegie Institution for science (USA),
Fitz-Gibbon (University of California Los Angeles, USA),
and Lefebvre (University of Minnesota, USA) to generate the
genome-scale insertional mutant library for C. reinhardtii. The
mutants from this library have been released for the research
community and other stakeholders on periodic basis. The
complete library featuring more than 62,000 mutants that covers
83% of nuclear protein-encoding genes is now available at
Chlamydomonas Resource Center (www.chlamycollection.org/
products/clip-strains). Importantly, the mutants in this library
are fully mapped for insertion sites and indexed with unique
DNA barcode for high-throughput screening of pooled mutants
for a particular trait or biological process (Li et al., 2016b, 2019).
Similarly, the Huang group at Institute of Hydrobiology, China,
generated another insertional mutant library of C. reinhardtii
with ∼150,000 insertional mutants (Cheng et al., 2017).
Although this library contains higher number of mutants than
that of CLiP, the list of mutants and their mapping information
is not available in public domain. In addition, a non-indexed
insertional mutant library of C. reinhardtiiwith∼49,000mutants
was also developed and is available for the scientific community
at Chlamydomonas Resource Center (http://chlamycollection.
org). The potential utility of these mutant libraries can be
attributed to the discovery of novel candidate genes involved in
biological and physiological processes, such as photosynthesis,

lipid biosynthesis, and intraflagellar transport in microalgae
(Dent et al., 2015; Li et al., 2016b, 2019).

In addition to the insertional mutagenesis, the mutagenic
agents are being regularly used to generate the mutant strains
with desired traits. Several attempts have been made using
forward genetic approach to characterize the genes involved
in the molecular pathways targeting a desired trait. Since the
C. reinhardtii is considered as premier reference organism
for understanding the basic algal metabolism and biological
processes, most of the forward genetic screens have been
performed in this model organism. These forward genetic
screening in C. reinhardtii and some other model microalgae
have been performed mostly to identify the genetic factors
responsible for desirable traits, such as higher biomass and cell
culture density (Thung et al., 2018), enhanced lipid content
(Cagnon et al., 2013; Lee et al., 2014), or to understand the
basic cellular processes such as photosynthesis (Dent et al., 2015;
Li et al., 2019), non-photochemical quenching (Schierenbeck
et al., 2015), lipid metabolism (Li et al., 2016b; Schulz-Raffelt
et al., 2016; Cheng et al., 2017), and flagellar responses (Hilton
et al., 2016; Cheng et al., 2017). In an integrative approach, the
P. tricornutum mutants with enhanced carotenoid biosynthesis
were subjected to genome-scale metabolic network simulation
to identify the metabolic reactions that are highly correlated
with the carotenoid biosynthesis (Yi et al., 2018). This study
exemplified the use of system-biology approach to target the
key pathway(s) that should be considered during bioengineering
in diatoms. Recently, using a modified approach named as
bulked mutant analysis and bulked mutant RNA sequencing, the
single nucleotide polymorphisms and indels were identified that
are associated to the growth-related genes in Nannochloropsis
oceanica (Liang et al., 2019). These methods of forward genetic
screen have the potential to facilitate the genetic investigation of
diverse microalgae with various desirable traits.

High-Throughput Screening
Methodologies for Microalgae
The previous section reviewed various genomic and mutant
resources that are available for the microalgae research. The
resources for microalgal forward genetics have the potential to
revolutionize the identification of mutants with desired traits,
however limited to availability of the rapid screening methods.
Moreover, the screening of microalgae natural pools to identify
functional components is low due to the lack of effective rapid
and high-throughput analysis tools (Lee et al., 2013). In addition,
this also limits our capacity for the real-time monitoring of
process for target compound production using microalgae. To
enrich the mutants capable of accumulating high lipid content,
Sharma et al. (2015) developed and validated a high-throughput
work flow strategy based on in-situ analysis of lipid bodies
using confocal Raman microscopy combined with fluorescence
activated cell sorting (FACS). A precise and efficient Raman
platform was developed to distinguish the contrasting features
of lipids such as chain length and saturation level in lipid-
expressing cells generated through UV mutagenesis. Terashima
et al. (2015) introduced another high-throughput advanced
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technique, named Chlamydomonas high-lipid sorting (CHiLiS),
which enables to isolate mutants with high lipid content. CHiLiS
is based on the fact that Nile Red (lipid detecting dye)-stained
lipid pools were enriched by using FACS. In this method, the
staining extent was raised to a certain level for increasing the
enrichment tendency without interfering with the cell’s viability.
These high-throughput methods have the potential of selecting
the mutant strains that can be used either for the understanding
of molecular basis of high lipid accumulation or engineering of
microalgae for maximizing the production of lipids. Based on
the staining of lipid bodies with fluorescent dyes, several high
throughput systems are available commercially. Semi-automated
QPixTM 400 Series system from Molecular Devices is one such
example (https://www.moleculardevices.com/sites/default/files/
en/assets/brochures/biologics/qpix-400-systems). The Fourier
transform infrared spectroscopy also demonstrated its sensitivity
to screen mutants of C. reinhardtii for variation in their lipid
and carbohydrate profile under specific nutrient stress conditions
(Bajhaiya et al., 2016). Based on this screening, nutrient
starvation response genes (PSR1, SNRK2.1, and SNRK2.2) with
possible role in lipid and starch accumulation were identified.

In an another approach, to isolate the algal cells with superior
photosynthetic activity, the high-throughput microfluidics were
used in the microalgal selection process (Kim et al., 2016). This
system used the strong positive relationship between phototaxis
and photosynthetic efficiency, where the competitive phototactic
response was employed to isolate the highly photosynthetic
efficient strains at the single-cell level using a microfluidic
system. Also, the putative candidate genes related to the
transcriptional regulation (JGI Chlre4, protein ID: 525919,
516641, 513996), cellular metabolism (519327, 523869, 515661)
signal transduction (516786), flagellar function (518826), and
membrane transport (protein ID; 516748, 516786, 513005,
520695, 512634) were identified, that might have some role
in enhanced photosynthetic activity and phototactic response
in mutant strains. The putative candidate genes identified
in this study may be cataloged for their use in microalgal
strain engineering strategies. Even after the identification of
photosynthetic efficient microalgal strains, optimization of the
light conditions remains critical to augment system efficiency.
Recently, a novel high-throughput screening system was
developed by Sivakaminathan et al. (2018), which simulates
fluctuating light regimes in mass cultures. This high-throughput
miniaturized light system is capable of screening up to 18
different combinations of light regime and up to 1,728 conditions
to evaluate species-specific light conditions for maximum
photosynthetic efficiency and productivity.

For the screening of biopigments accumulation, a 96-
well microplate-based high-throughput assay was developed to
identify P. tricornutummutants with high carotenoid content (Yi
et al., 2018). The assay was based on the fact that fluorescence
intensity of chlorophyll a and neutral lipids (stained with
fluorescence dye) has a significant correlation with the carotenoid
content during exponential growth phase of P. tricornutum.
Generally, the in-situ optical detection-based methods fail to
provide detailed information on the pigment composition in
microalgae because of the possible overlapping of absorbance

and emission spectra of various pigments. In such cases, the
extraction and subsequent detection is the only method of
choice. However, the extraction of a particular pigment type
is a time-consuming multi-step process that also required a
suitable extraction solvent to effectively extract the pigment. A
rapid and reliable microwave-assisted extraction and subsequent
detection of microalgal pigment using relevant method could
be helpful in developing high-throughput screening platform
for microalgal pigments (Pasquet et al., 2011). An enzyme-
linked immunosorbent assay (ELISA) onmicrotiter platform was
developed by Jirásková et al. (2009) to detect the presence of
phytohormones, such as abscisic acid, indole-3-acetic acid, cis-
and trans-zeatin, and isopentenyladenosine in microalgae. This
high-throughput application of ELISA-based microtiter platform
can be extrapolated to the other bioactive compounds if suitable
antibodies and/or antigens are available. Likewise, a simple and
inexpensive high-throughput bioassay was developed to screen
the algal mutants or isolates producing high H2 under saturating
light intensity (Wecker and Ghirardi, 2014). The screening assay
used the agar overlay of Rhodobacter capsulatus bacteria carrying
a green fluorescent protein that responds to H2 produced by
single algal colony. Among the other high-throughput screening
methods, the phenotype microarray technologies have also
shown promise to screen-defined metabolic activities in response
to array of different drugs, chemicals, and metabolites (www.
biolog.com).

Genetic Engineering in Microalgae
Transformation Technologies and Selectable Markers
The first nuclear transformation of C. reinhardtii using
polyethylene glycol or poly-L-ornithine was demonstrated in
early 1980’s. Here, the complementation of arginine-requiring,
cell-wall deficient mutant was performed through successful
integration of yeast arg4 locus (Rochaix and Dillewijn, 1982). In
the late 1980’s, the successful stable nuclear transformation in C.
reinhardtii was demonstrated using the biolistic transformation
approach to deliver the native genes to complement auxotrophic
growth in mutants (Debuchy et al., 1989; Kindle et al., 1989;
Mayfield and Kindle, 1990). Later in the 1990’s, the success
of glass bead agitation and electroporation were demonstrated,
where the later was found to be the most efficient method
to transform the nuclear genome of C. reinhardtii (Kindle,
1990). The droplet electroporation on microfluidic chip was
found to have threefold higher transformation efficiency than
the electroporation cuvettes (Qu et al., 2012). In addition, the
use of other methods by employing silicon carbide whiskers
(Dunahay, 1993), Agrobacterium tumefaciens (Kumar et al.,
2004), and nanoparticles (Kim et al., 2014) have been also
demonstrated to successfully transform the nuclear genome of C.
reinhardtii. The methods for the nuclear transformation in other
microalgal species such as Phaeodactylum, Nannochloropsis,
Dunaliella, and Haematococcus are available (Table 2). The
various transformation techniques and the selectable markers
used for the screening of transformants, and mainly includes the
use of antibiotic, herbicide resistance, and auxotrophic markers
are listed in Table 2. The evolutionary divergence of the cellular
machinery in microalgae, however, limits the use of existing plant
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TABLE 2 | List of microalgae and the molecular tool and techniques available for their genetic engineering.

Organism Genetic tools and techniques References

Transformation Genetic manipulation Selectable markers

Botryococcus braunii Electroporation Gene integration and expression Antibiotic: aphVIII Berrios et al., 2016

Chlamydomonas reinhardtii Biolistic, glass bead agitation,

electroporation, and

agrobacterium-mediated

Gene expression, RNA

interference, gene-editing using

ZFNs and CRISPR

Antibiotic: aphVIII, aphVII, nptII,

addA, tetX, hph, and ble.

Autotrophic: arg and trp.

Herbicide:

2-fluoroadenin resistance

Kim and Cerutti, 2009;

Greiner et al., 2017; Mini

et al., 2018

Chlorella pyrenoidosa Electroporation Gene integration and expression Antibiotic: nptII Run et al., 2016

Chlorella sorokiniana Biolistic Gene integration and expression Autotrophic: nr Dawson et al., 1997

Chlorella vulgaris Electroporation, glass bead

agitation, and

agrobacterium-mediated,

Gene integration and expression Antibiotic: nptII and aphVII Cha et al., 2012; Muñoz

et al., 2018

Chromochloris zofingiensis Biolistic Gene integration and expression Herbicide:

norflurazon-resistance

Liu et al., 2014

Coccomyxa sp. Biolistic and electroporation Gene integration and expression,

gene-editing using CRISPR

Autotrophic: umps Kasai et al., 2018;

Yoshimitsu et al., 2018

Coccomyxa subellipsoidea Electroporation Gene integration and expression Antibiotic: hptII Kania et al., 2019

Cyanidioschyzon merolae PEG-mediated Gene integration and expression,

RNAi

Antibiotic: cat

Auxotrophic: ura

Ohnuma et al., 2009;

Sumiya et al., 2015;

Fujiwara et al., 2017

Dunaliella salina Electroporation, biolistic, glass

beads agitation, and

agrobacterium-mediated

Gene integration and expression Antibiotic: aphVII and nptII

Herbicide: bar

Auxotrophic: nr

Li et al., 2007; Radakovits

et al., 2010; Srinivasan and

Gothandam, 2016

Fistulifera solaris Biolistic Gene integration and expression Antibiotic: nptII Muto et al., 2013

Gonium pectorale Biolistic Gene integration and expression Antibiotic: aphVIII Lerche and Hallmann, 2009

Haematococcus pluvialis Biolistic Gene integration and expression Antibiotic: aadA

Herbicide:

norflurazon resistance

Steinbrenner and

Sandmann, 2006; Yuan

et al., 2019

Monoraphidium neglectum Electroporation Gene integration and expression Antibiotic: aphVII Jaeger et al., 2017

Nannochloropsis gaditana Electroporation Gene integration and expression,

gene-editing using CRISPR

Antibiotic: aphVII, nptII and

BSD

Ajjawi et al., 2017

Nannochloropsis limnetica Electroporation Gene integration and expression Antibiotic:aphVII and nptII Chen and Hu, 2019

Nannochloropsis oceanica Electroporation Gene integration and expression,

RNAi, gene-editing using

CRISPR

Antibiotic: sh ble and nptII Li et al., 2014a; Poliner

et al., 2018; Osorio et al.,

2019

Nannochloropsis oculata Electroporation Gene integration and expression Antibiotic: sh ble Li et al., 2014a

Ostreococcus tauri Electroporation and

PEG-based

Gene integration and expression Antibiotic:nptII and neo van Ooijen et al., 2012;

Sanchez et al., 2019

Parachlorella kessleri Biolistic and

agrobacterium-mediated

Gene integration and expression Antibiotic: nptII and aadA Rathod et al., 2013

Phaeodactylum tricornutum Biolistic, electroporation, and

bacterial conjugation

Gene integration and expression,

gene-editing using MNs,

CRISPR, and TAELNs

Antibiotic: nat, sat-1, addA, sh

ble and cat

Autotrophic: ura

Herbicide: 5-fluoroorotic acid

and 2-fluoroadenine resistance

Daboussi et al., 2014; Serif

et al., 2018; Sharma et al.,

2018

Scenedesmus obliquus Electroporation Gene integration and expression Antibiotic: cat Guo et al., 2013

Symbiodinium

microadriaticum

silicon carbide whiskers Gene integration and expression Antibiotic:nptII and hpt Te et al., 1998

Thalassiosira pseudonana Biolistic and bacterial

conjugation

Gene integration and expression,

gene-editing using CRISPR

Antibiotic: nat and sat-1 Karas et al., 2015

Volvox carteri f. magariensis Biolistic Gene integration and expression,

gene-editing using CRISPR

Antibiotic: hpt and BSD

Autotrophic: nr

Ortega-Escalante et al.,

2019a,b

or othermicrobe-based selectable markers for selection purposes.
For instance, the trait stacking in the industrially important
microalgae “Nannochloropsis” through genetic engineering is

mostly limited by the availability of selectable markers (Verruto
et al., 2018). The use of auxotrophic selection marker is
mostly a desirable trait; however, a pre-requisite that the
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strain to be transformed must be auxotrophic mutant for the
selectable marker, which may sometimes interfere with the
experimental setup.

Despite the recent advancement in the transformation
technologies, the microalgae transformation is still facing the
problem of low efficiency, except in Chlamydomonas when
compared to the plant system. In an advancement, the
development of nuclear episomal vector to transform diatoms
via conjugation-based method that directly deliver the vector
from E. coli to diatom provides an efficient method for diatom
transformation (Karas et al., 2015). This method offers several
advantages over the conventional transformation methods such
as capacity to deliver large DNA fragments (may be multiple
genes from a pathway), stable self-replication of episomal
vector (due to presence of yeast-derived regulatory sequences,
CEN/ARS), loss of transgene upon removal of selection pressure,
and low possibility of positional or epigenetic effects (Doron
et al., 2016). Recently, the application of conjugation-based
method in CRISPR/cas9 mediated genome-editing of Pt MYBR1
gene in P. tricornutum (Sharma et al., 2018) and nitrate reductase
gene (NR) in Nannochloropsis oceanica (Poliner et al., 2019)
has been demonstrated to generate transgene-free mutants.
Although 20–100 times higher transformation efficiency and
rapid transformant appearance was observed in the conjugation-
based method, there was a significant delay in the appearance
of mutants in the positive transformants (Sharma et al., 2018).
The plausible explanation for this delayed mutant appearance
was attributed to the lower Cas9 expression due to higher rate
of cell division in conjugatively transformed cells. In addition,
the episomal vector system adapted for diatom was able to
transform the green oleaginousmicroalgaeAcutodesmus obliquus
and Neochloris oleoabundans through bacterial conjugation
(Muñoz et al., 2019). Although the transformation efficiency
was sufficiently higher as compared to the biolistic-based vector
delivery system, this application of diatom adapted episomal
vector system in other microalgae has some limitations that are
discussed in the following section.

Genome-Editing
Over the years, significant progress has beenmade to improve the
catalog of available tools for genetic engineering in microalgae,
with the ultimate aim to improve the feasibility of microalgae as
a model organism for scientific and/or industrial applications.
In the past decade, the gene-editing tools such as zinc-
finger nucleases (ZFNs), meganucleases (MNs), transcription
activator-like effector nucleases (TALEN), and clustered regularly
interspaced short palindromic repeats (CRISPR/Cas9) have been
emerged as the efficient tools for genome-editing in many
organisms (Razzaq et al., 2019). All these tools are able to
introduce a double-strand break at targeted DNA sequence
that can be further repaired via either non-homologous end-
joining (may disrupt gene through mutations) or homologous
recombination (may insert or replace gene with exogenous
donor DNA) (Jeon et al., 2017). The CRISPR is often used
interchangeably to the term genome-editing; however, the ZFNs
and TALENs were among the first molecular tools available
for the genome-editing. The applicability of these tools largely

depends on the factors such as cost, complexity, and ability
to cause multiple edits simultaneously. Among the others, the
CRISPR/cas9-mediated genome-editing system now became the
state-of-the-art tool due to its simplicity and versatility.

The initial reports of gene-editing in microalgae were from
ZFN-mediated genome-editing. Sizova et al. (2013) and Greiner
et al. (2017) used engineered ZFNs to target the COP3 and
COP4 genes in C. reinhardtii. However, the efficiency of the
ZFNs was only observed in the tailored model strain of C.
reinhardtii. In addition, it was also suggested that ZFNs prefer
the homology-directed repair when supplied with larger donor
DNA (>750 bp) for the clean and predictable gene modification.
Beside the recent developments in the ZFN technology, the
most challenging task is to create unique ZFNs with high
specificity and affinity toward the target sites. This requires
the validation of ZFNs using gene targeting selection system
before conducting the actual experiment (Sizova et al., 2013).
Meanwhile, the use of MNs and TALENs was also demonstrated
to target the uridyl diphosphate (UDP)-glucose pyrophosphorylase
in P. tricornutum for enhanced lipid accumulation (Daboussi
et al., 2014). The use of TALENs for the disruption of urease
gene through homologous recombination has been successfully
achieved in P. tricornutum (Weyman et al., 2015). Similarly,
in an attempt to evaluate the use of uridine monophosphate
(UMP) synthase as an endogenous positive selectable marker
for DNA-free genome editing, Serif et al. (2018) used TALEN
to generate knock-out mutants of UMP synthase gene in P.
tricornutum.Although the efficiency of the gene disruption using
TALENs was quite low (only 16%), the applicability of TALENs
for gene-editing in microalgae has been established. However,
though the use of TALENs for gene-editing has been exemplified
in several organisms, no report has been observed till date in
Chlamydomonas. The functioning of transcription activator-like
effectors (TALEs) has been established in Chlamydomonas to
induce the expression of endogenous genes, ARS1 and ARS2
through the binding of gene-specific artificially designed TALEs
to the promoter region of the targeted genes (Gao et al., 2014b).
This study indicates that the TALEs coupled to nuclease(s) can
(TALENs) be used as one of the approaches to target the gene-
editing in Chlamydomonas.

The successful use of CRISPR/cas9 system in microalgae
species was first demonstrated by Jiang et al. in C. reinhardtii
(Jiang et al., 2014). In this study, four genes were successfully
edited through the expression of codon-optimized Cas9 gene
and corresponding single guide RNA (sgRNA). However, the
constitutive expression of Cas9 shows cytotoxic effect in C.
reinhardtii that reduce the cell viability of transformants (Ng
et al., 2020). Therefore, the transient delivery of in-vitro
assembled Cas9/sg RNA ribonucleoprotein (RNP) complex via
electroporation is a promising methodology to efficiently edit
genes in C. reinhardtii without the cytotoxic effect of Cas9, and
this approach was established recently (Shin et al., 2016a; Baek
et al., 2016a). The use of Cas9/sgRNA-RNP-complex-mediated
approach could exempt the genome-edited microalgae from the
regulations of genetically modified organism (GMO) regulations,
since it does not involve the integration of foreign DNA
(cas9 gene) in the host genome. In addition, the Cas9/sgRNA
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RNP complex further reduces the off-target effects and is less
cytotoxic to the cells because of transient expression of cas9, thus
improving the efficiency of gene-editing. In an effort to improve
the efficiency of CRISPR/Cas9 system in C. reinhardtii, Jiang
and Weeks (2017) employed gene-within-a-gene methodology
that uses hybrid Cas9 gene containing an artificial intron having
sgRNA gene. Although the hybrid cas9 system was functional
in Chlamydomonas, the improvement in the efficiency of gene
editing was only marginal. A higher editing-efficiency of up to
9 and 3.3% in Chlamydomonas was observed by Greiner et al.
(2017) after using a Cas9 gene from Staphylococcus aureus and
S. pyogenes, respectively. Recently, Guzmán-Zapata et al. (2019)
used transient expression of S. pyogenes cas9 to disrupt the
atp9 gene in Chlamydomonas with efficiency of up to 30% on
preselected 2-fluoroadenine resistant colonies. This approach of
pre-selection based on the editing of selectable marker gene could
also be used for the multiplexed editing. In another approach,
an ortholog of cas9, Cpf1 was used in single-step co-delivery
of CRISPR/Cpf1 RNP complex along with single-stranded DNA
repair template, and this approach resulted in∼10% efficiency for
precise gene-editing inC. reinhardtii (Ferenczi et al., 2017). Using
dcas9 (dead cas9, nuclease defense), the functioning of a variant
of CRISPR, named as CRISPRi (CRISPR interference) was also
established in C. reinhardtii through downregulation of PEPC1
expression to enhance the lipid content (Kao and Ng, 2017).

Besides Chlamydomonas, the adaptability of the CRISPR
system was also successfully demonstrated for another model
marine microalgae P. tricornutum. Using codon-optimized S.
pyogenes cas9, the disruption of P. tricornutum CpSRP54 gene
with 31% efficiency indicates that, unlike Chlamydomonas,
the Cas9 constitutive expression is not likely to be toxic
for diatoms (Nymark et al., 2016). Recently, Sharma et al.
(2018) compared the effect of constitutive and transient
expression of cas9 on editing frequency and stability of mutant
lines generated through biolistic and bacterial conjugation,
respectively. Although the efficiency of CRISPR-induced targeted
mutations were similar for both methods, the use of conjugation-
based episomal CRISPR/Cas9 system is capable of avoiding re-
editing of mutant lines caused by constitutive expression of
Cas9 in the progeny (Sharma et al., 2018; Slattery et al., 2018).
Intriguingly, the simultaneous knock-out of multiple genes has
also been demonstrated in P. tricornutum through the delivery
of Cas9/sgRNA RNP complex (Serif et al., 2018). In addition, the
CRISPR/cas9 system was also able to edit urease gene in another
diatom, T. pseudonana with up to more than 60% of disruption
efficiency (Hopes et al., 2016). The application of CRISPR
system on industrially important oleaginous marine microalgae
N. oceanica was first demonstrated through the disruption of
nitrate reductase gene (Wang et al., 2016), however with a very
low efficiency of nearly 1%. Later, the cas9 editor line of N.
gaditana was developed that constitutively expressed the cas9
and was used for editing of targeted transcription factor genes
with high efficiency range of up to 78% (Ajjawi et al., 2017). In
the recent past, various strategies have been successfully applied
for gene-editing in several microalgal species. However, the
above literature shows the inconsistency in the editing-efficiency
of CRISPR system across the microalgal species and is still a

concern. Thus, the identification of novel or optimized nucleases
that may prove to be useful in gene-editing in microalgae is
required. Moreover, the constitutive expression of Cas9 (or other
nucleases) may sometime induce the undesired re-editing of
the mutant lines (Slattery et al., 2018). In this context, the
episomal-vector system has the advantage of transient Cas9
(or other nucleases) expression that can prevent re-editing of
mutant lines, which is a common complication associated with
the constitutive expression of Cas9. Moreover, the elimination
of episomal CRISPR/Cas9 vector from the host upon removal
of selection pressure makes the mutant lines be considered
as non-transgenic. In contrast to diatom, using similar vector
system, recently Muñoz et al. (2019) were not able to rescue
the episomal plasmids from positive transformants of green
oleaginous microalgae Acutodesmus obliquus and Neochloris
oleoabundans. Moreover, the continuous subculturing in the
selection-free medium was not sufficient to remove the episomal
vector. This indicates the possible chromosomal integration
event even in the bacterial conjugation-based episomal vector
delivery. Therefore, the episomal maintenance of delivered
plasmids in microalgae other than diatoms through diatom-
adapted, yeast-derived centromeric sequences (CEN/ARS) is
not possible yet. Rather, episomal maintenance is a function
of species-specific adaptation of yeast centromeric regions that
should be optimized before the wider application of episomal
vectors in microalgal bioengineering.

CASE STUDIES FOR GENETIC
ENGINEERING IN MICROALGAE

The previous sections reviewed key resources that can augment
the bioengineering in microalgae. This section describes the
various algal bioengineering research such as: the enhancement
of (1) photosynthesis and biomass production, (2) lipid
production, (3) the production of biomolecules, and other value-
added products.

Photosynthetic Efficiency and Biomass
Production
Enhanced CO2 fixation through augmentation of photosynthetic
efficiency is the key process to improve microalgae biomass
production, a pre-requisite to develop microalgae as the next-
generation feed-stock. The carbon fixation is dependent on
multiple factors, where selectivity and velocity of RuBisCo
enzyme remains one of the major factors. RuBisCo is capable
to fix CO2 as well as O2 into 3-phosphoglycerate and 2-
phosphoglycolate, where 2-phosphoglycolate is undesirable and
toxic to the cells. The phenomenon called photorespiration
occurs in the mitochondrion and peroxisome, which uses
2-phosphoglycolate to release CO2. These futile side reactions
ultimately hamper the photosynthetic activity. Therefore,
attempts have been made to simultaneously improve the
selectivity and catalytic rate of RuBisCO through genetic
engineering, though with limited success (Du et al., 2003;
Spreitzer et al., 2005). Alternatively, the problem of RuBisCO
selectivity can be mitigated by controlling the design
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consideration of cultivation system to enrich the CO2 supply.
Nevertheless, in order to improve the catalytic rate of RuBisCO,
its genetic modification is preferable mode than to select
efficient RuBisCO from the diverse pool of natural variants.
In one such effort, the small subunit of RuBisCO enzyme of
Chlamydomonas has been replaced with that of Arabidopsis,
spinach, and sunflower to enhance the carboxylation catalytic
efficiency and CO2/O2 specificity (Genkov et al., 2010). Although
the hybrid RuBisCO enzyme had 3–11% increase in specificity,
the velocity of the enzyme remained same. Likewise, several
amino-acid residues have been identified in the conserved region
of small subunit of the RuBisCO that can be the potential target
for engineering RuBisCo to improve its catalytic efficiency (Du
et al., 2000; Spreitzer et al., 2001; Genkov et al., 2006; Genkov
and Spreitzer, 2009). In another approach through regulation
of RuBisCo activity, the photosynthetic biomass production in
N. oceanica was substantially enhanced upon overexpression of
RuBisCO activase (Wei et al., 2017a). Beside RuBisCO the other
relatively low abundant enzymes of Calvin cycle regeneration
phase, such as fructose−1,6-bisphosphatase (FBPase), fructose
1,6-bisphosphate aldolase (FBA), and sedoheptulose 1,7-
bisphosphatase (SBPase) are the prime target to manipulate the
photosynthetic activity. Recently the engineering of Calvin cycle
through the overexpression of cyanobacterial FBA was found
to enhance the photosynthetic capacity of C. vulgaris (Yang
et al., 2017). Similarly, the overexpression of Chlamydomonas
SBPase was reported to improve the photosynthetic activity in
Dunaliella bardawil (Fang et al., 2012). The FBPase was found
to enhance the photosynthetic efficiency upon overexpression in
higher plants (Tamoi et al., 2006). However, its overexpression
in Chlamydomonas had detrimental effect on growth and
photosynthetic activity under high CO2 photoautotrophic
conditions. This was mainly due to the reduced amount of
glyceraldehyde−3-phaspahte because there was enhanced
conversion of fructose−1,6-bisphosphate into fructose−6-
phosphate (Dejtisakdi and Miller, 2016). This indicates that in
microalgae the reaction catalyzed by the FBPase is not a rate
limiting one that can be targeted to improve the photosynthetic
efficiency and concomitant biomass accumulation.

The photosynthetically efficient microorganisms operate the
CO2-concentrating mechanisms (CCMs) to increase the CO2

concentration in the proximity of RuBisCO, which eventually
reduce the photorespiration and promote carboxylation. In
comparison to the terrestrial plants, the green microalgae
have efficient CCM because of sequestration of the enzymes
of photosynthetic machinery in the pyrenoid or peroxisome
(Mackinder, 2018; Hennacy and Jonikas, 2020). Several
functional and regulatory factors have been identified, which
are responsible to facilitate the carboxylation reaction of
RuBisCO through CCM. Among these factors CIA5, transporter
of inorganic carbon (Ci) and carbonic anhydrases (CA) are
considered as the targets for manipulation to increase the
photosynthetic performance and eventually biomass yield
(Moroney et al., 2011; Wang et al., 2015; Yamano et al.,
2015; Gee and Niyogi, 2017). However, there are no such
reports on successful engineering of CCM components in
microalgae, and thus it remains a challenge to enhance the
carbon fixation process.

On the other hand, the cultivation of microalgae at high cell
density often encounters a problem of photo-limitation because
of light shading. The high light intensity at the surface cell layers
saturates the photosynthetic process and causes photoinhibition,
whereas excess energy is dissipated through non-photochemical
quenching. Meanwhile, the low-light intensity at the lower layer
of cells compels them to perform photorespiration instead of
photosynthesis. This uneven distribution of the light intensity
results in suboptimum photosynthetic efficiency that eventually
reduces the biomass yield. Reducing the size of antenna or
light-harvesting complex is one of the approaches that has the
potential to improve the light transmission and light absorption
capacity. For instance, the reduction of chlorophyll b content
and consequent reduction of antenna size in Chlamydomonas
through RNAi-mediated silencing of chlorophyllide a oxygenase,
resulted in enhanced photosynthetic activity and higher growth
rate as compared to chlorophyll b mutant under saturating
light conditions (Perrine et al., 2012). Similarly, the C. vulgaris
mutant with truncated antenna size and reduced chlorophyll
a and b content, generated through random mutagenesis
of chloroplast signal recognition particle (CpSRP43), exhibit
enhanced photosynthetic efficiency associated with reduced non-
photochemical quenching and higher biomass yield (Shin et al.,
2016b, 2017). The engineering of photosystem II protein D1
isoform in Chlamydomonas showed enhanced photosynthetic
efficiency under saturating light conditions (Vinyard et al.,
2014). In another novel approach, the diatom P. tricornutum
was engineered to establish a concept of intracellular spectral
recompositioning for improved light absorption and consequent
higher biomass production (Fu et al., 2017). In this case, the
overexpressed green fluorescent protein absorbs the excess blue
light energy from incident light and subsequently emits energy
as green light that can be harvested by accessory pigments.
Thus, spectral recompositioning eventually improves the light
absorption and reduces the non-photochemical quenching and
may mitigate the problem of photoinhibition at high cell
density cultures through deeper penetration of emitted green
light. A similar ecological mechanism has been observed in
the coral-algae symbionts to acclimatize deep water light
environment by facilitating homogenous distribution of available
light energy (Smith et al., 2017). Although significant information
is availed through genetic engineering to get insight into the
photosynthetic efficiency, most of these leads are from the
model algal systems. Moreover, this information is yet to be
applied for large scale applications. In addition, the design
consideration of cultivation system has significant effect on
the photosynthetic efficiency and eventually on productivity.
Therefore, there is a need of more comprehensive and cumulative
approach, such as fine tuning the flux balance of Calvin cycle
toward enhanced CO2 fixation or perturbation of multiple targets
at once to get a synergistic effect. The various strategies to
improve photosynthetic efficiency and biomass production are
illustrated in Figure 2.

Lipid Production
Lipids from microalgae are at the center of attention due to
their yield and nutraceutical importance. The quantity, quality,
and the type of lipids synthesized by microalgae not only
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FIGURE 2 | Illustration of various genetic-engineering strategies used in microalgae to improve (A) photosynthetic efficiency and biomass production, (B) value-added

product synthesis, and (C) lipid production.

help in diversifying their application but influence the biodiesel
properties if chosen for the fuel purpose (Shekh et al., 2016).
For researchers working in this area, lipid productivity remains
a key parameter for strain selection. In fact, the kind of lipids
a microalga accumulates plays a key role in its commercial
utilization for food, feed, or fuel purpose. Over the years,
a trade-off between enhancing microalgal lipid content by
various means without compromising the lipid productivity was
targeted. Various augmentations in environmental, nutritional,
and physiological conditions for cultivation of microalgae, as
well as genetic manipulations, have been attempted for enhanced
lipid production (Figure 2). However, genetic engineering of
the robust strains for enhanced lipid production remains
one of the most viable options to improve the process

economics. In the recent past, various genes involved in lipid
biosynthesis were knocked-out or overexpressed to examine
their effects on lipid accumulation. Acetyl-CoA Carboxylase
(ACCase), which encodes enzyme for fatty acid synthesis,
was overexpressed for the first time in 1996 by Dunahay
et al. (1996). Even though the overexpression of ACCase was
characterized by 2- to 3-fold increase in ACCase activity, it
could not lead to increased lipid accumulation (Sheehan et al.,
1998). However, upregulation of ACCase in tandem with malic
enzyme, which catalyzes malate to pyruvate conversion, was
effective in enhanced lipid accumulation in D. salina (Talebi
et al., 2014). Overexpression of diacyl glycerol acyl transferase,
which catalyzes the final step in TAG synthesis, is often-used
strategy, which also resulted in lipid enhancement (Niu et al.,
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2013; Iwai et al., 2014; Li et al., 2016a). Also, the enhanced
expression of pyruvate dehydrogenase, acetyl-CoA synthase,
phosphoenolpyruvate carboxylase, NAD(H) kinase, and glycerol
kinase has resulted in hyperaccumulation of lipids in various
microalgal species. Simultaneous expression of multiple acyl
transferases from S. cerevisiae and Yarrowia lipolytica in Chlorella
minutissima resulted in twofold lipid accumulation (Hsieh et al.,
2012). Overexpression of RuBisCO activase in N. oceanica has
resulted in an increase in the productivity, thereby increasing
lipid accumulation (Wei et al., 2017a). Inhibiting the expression
of a multifunctional lipase/phospholipase/acyltransferase in T.
pseudonana resulted in enhanced lipid accumulation without
compromising the growth (Trentacoste et al., 2013). On the
other hand, it is known that the transcriptional regulation can
influence metabolomic flux of the system as transcription factors
can target multiple regulatory points in a metabolic pathway.
Overexpression/knockdown of transcription factors targeting the
upregulation of lipid biosynthesis genes may accumulate higher
lipids. In one of the efforts, knockdown of a single transcription
regulator ZnCys in N. gaditana resulted in twofold increase
in lipid content (Ajjawi et al., 2017). Strategies to prevent the
degradation of synthesized lipids were also studied to improve
lipid yields. A knock-out mutant of the phospholipase A2 gene
(C. reinhardtii) had the total lipid content increased up to
64.25% (Shin et al., 2019). In another study, a 10-fold increase
in TAG was reported upon silencing the cht7 gene encoding
a TAG lipase (Tsai et al., 2014). Most recently, CRISPR/Cas9-
based technology for gene manipulation in C. vulgaris was
used wherein a fragment of Cas9 with sgRNA designed on
omega-3 fatty acid desaturase (fad3) gene was constructed.
This has resulted in 46% (w/w) higher accumulation of lipid
content (Lin and Ng, 2020). Even though various studies to
genetically engineer microalgae for enhanced lipid accumulation
have been attempted, they are mostly restricted to model and/or
selected microalgae strains. The recent advancements in gene-
editing technologies especially CRISPR/Cas9 may allow the gene
manipulations in commercially important oleaginous strains so
as to improve the process economics.

Biomolecules and Value-Added Products
Beside lipids, microalgae are rich in biomolecules such as
carotenoids with potential application in human health. The
accumulation of biopigments in microalgae is known to be
affected by various biotic and abiotic factors, the details of which
have been recently reviewed by Saini et al. (2020). Since the
carotenoid biosynthesis pathway has been extensively studied,
the metabolic engineering, in addition to the mutant screening,
has been applied to enhance the production of carotenoids in
microalgae. Perturbing the pathway enzymes such as phytoene
synthase and phytoene desaturase, microalgae have known
to enhance the production of carotenoids (Steinbrenner and
Sandmann, 2006; Couso et al., 2011; Dambek et al., 2012;
Tran et al., 2012; Liu et al., 2014; Eilers et al., 2016; Galarza
et al., 2018). In addition, several other enzymes involved in
the subsequent steps of the carotenoid pathways have also
been targeted. For instance, the overexpression of Haematococus
pluvialis gene encoding β-carotene ketolase in Dunaliella salina

resulted in production of astaxanthin (Anila et al., 2016).
The downregulation of squalene epoxidase through RNAi in
Chlamydomonas was found to accumulate squalene (Kajikawa
et al., 2015). Similarly, the knock-out mutant of zeaxanthin
epoxidase in Chlamydomonas had significantly higher zeaxanthin
content than the wild type (Baek et al., 2018). However, diverting
the flux toward desired metabolites is not that simple and
may require perturbation of multiple genes of a pathway.
In one such recent example, the overexpression of three
exogenous enzymes, namely oxidosqualene cyclase (from Lotus
japonicus) and cytochrome P450 along with its native reductase
(from Medicago truncatula) in P. tricornutum, leads to the
production of triterpenoids viz. lupeol and botulin (D’Adamo
et al., 2019). Similarly, the production of sesquiterpenoids and
diterpenoids through genetic engineering ofChlamydomonas has
also been reported (Lauersen et al., 2016, 2018; Wichmann et al.,
2018). The introduction of additional copy of gene encoding
gateway enzyme of terpenoid pathway, 1-deoxy-D-xylulose 5-
phosphate synthase (dxs), resulted in enhanced accumulation
of fucoxanthin in P. tricornutum (Eilers et al., 2016). However,
the hyperaccumulation of carotenoids or any other secondary
metabolites sometimes causes feedback inhibition. Therefore,
generating an additional metabolic sink (in a place other than the
site of production) or expressing the flux controlling enzyme(s)
that can resist the feedback inhibition could be the possible
strategies. However, this strategy may get limited by the lack
of information on transporters or the flux controlling enzymes.
Here the genomic information can substantially improve the
scenario of metabolic engineering in microalgae.

The algal nuclear or chloroplast engineering has been
extensively carried out using synthetic biology approach for
the production of recombinant proteins having therapeutic
properties. Some of the inherent features of algae such
as lack of infectious agents or toxins, efficient folding of
complex proteins and scope for the development of whole
algae as low-cost oral vaccine, makes them ideal platform
for heterologous production and offer several advantages over
the better established microbial and mammalian systems.
Although, most of the chloroplast transformation attempts
have been made in the model microalgae Chlamydomonas, the
successful chloroplast engineering has also been demonstrated
in few other microalgal species [reviewed by Siddiqui et al.
(2020)]. It was reported that over 100 different recombinant
proteins have been successfully expressed in algal chloroplast.
Among these recombinant proteins, the vaccines, antibodies and
immunotoxins, and therapeutic proteins are the major targets
(Dyo and Purton, 2018). The production of whole algal cells
as oral vaccines specially for farm animals, where the fusion
of protein adjuvant (cholera toxin B subunit: CTB) to the N-
terminus of the antigen facilitates the antigen absorption through
gut epithelium, provided an alternative low-cost vaccination
strategy. Moreover, this bioencapsulation of therapeutic proteins
has advantages of long-term storage at room temperature and
also protects them from the degradation in animal stomach
(Dreesen et al., 2010; Gregory et al., 2013). Besides all these
advantages, the yield of the recombinant proteins is still a major
concern to adopt algae as protein production platform. Although
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several recombinant proteins have been successfully produced
through genetic engineering of nuclear genome, a much lower
success rate with production yield of only up to 0.25% of
total soluble proteins was reported (Scranton et al., 2016). In
comparison, the production of proteins through chloroplast
engineering may reach up to 0.1–5% of total soluble protein (Dyo
and Purton, 2018). Nevertheless, the nuclear expression of the
protein offers some interesting features such as ability to target
the protein to secretory pathway or to the specific organelles
that may also allow the post-translational modification of the
proteins (Lauersen et al., 2015). The various signal peptides have
been used to target the proteins either to secretory pathway
or to an organelle. Recently, the performance of two in-silico
identified signal peptides (1,3-α-glucosidase and SAD1p derived)
to efficiently secrete expressed reporter protein in C. reinhardtii
has been successfully demonstrated (Molino et al., 2018). The
different promoters and their respective 5’ UTRs as well as
their synthetic variants have been used to derive the expression
of transgene in order to mitigate the constrains of inefficient
transgene expression in microalgae (Coragliotti et al., 2011;
Specht and Mayfield, 2013; Gimpel et al., 2015). For example,
the use of strong promoter such as 16S ribosomal RNA fused
to 5’UTRs of endogenous photosynthetic genes can be used to
enhance the expression of transgene to some extent (Rasala et al.,
2011). However, the performance of the endogenous 5′UTRs
to translate the gene of interest is still the major constrain.
The intrinsic features of photosynthetic genes derived 5′UTRs
are also responsible for feedback regulation of translation. It
does so through “control by epistasis of synthesis” that prevent
overaccumulation of protein subunit in the absence of other
subunits of the protein assembly (Coragliotti et al., 2011). In
addition, the constitutive expression of the transgene negatively
impacts the growth of the transgenic algae as an extra metabolic
burden. Therefore, the use of inducible promoter to tightly
regulate the expression of transgene could be the better strategy
to improve the growth efficiency, and hence the productivity of
desired product (Fajardo et al., 2020). The various promoters
used so far in the microalgal research are given in Table 3. The
advancement in the synthetic biology and our understanding on
the regulation of protein synthesis in microalgae will enable us to
improve the protein expression level in microalgae so as to make
microalgae a feasible host system for commercial application. The
various strategies to improve production of bioactive of interest
in microalgae are illustrated in Figure 2.

RISK ASSESSMENT, BIOSAFETY, AND
REGULATORY ISSUES

Though genetic engineering is considered as one of the
most potent tools to augment production of commercially
valuable metabolites in microalgae, it inevitably invites varying
opinions on the safe use of genetically modified (GM) algae
for consumption and environment. On the contrary, several
algal performance-improvement strategies, which could have
environmental and ecological threats, are in use without
much debate. In many parts of the world, strict laws/policies

require transgenic/recombinant algae to undergo regulatory
compliances. When research and policy complement each other,
technological advances move at a rapid pace. In this case, even
if various researchers across the globe are working on strain
improvement for enhanced microalgae performance through
genetic modifications, their commercial use is restricted. Reports
indicate that the Florida-based biotechnology company named
Algenol was given approval for use of GM cyanobacteria
for cultivation in outdoor closed-photobioreactor. At the
same time, the secretariat of the Convention on Biological
Diversity in its 2015 report has raised the concerns over
strict physical containment of these GM microorganisms by
the company (https://www.cbd.int/ts/cbd-ts-82-en.pdf). It is
arguably said that the U.S. Environmental Protection Agency
(US-EPA) relies upon a regulatory regime-Toxic Substances
Control Act (TSCA), which has become outdated and is
incapable of assessing the novel risks arising out of the new
biotechnological inventions. Under TSCA, companies are only
required to file a Microbial Commercial Activity Notice for
commercialization of a new GM microorganism. Till date, no
outdoor cultivation of GM microalgae is reported probably due
to various predictable and unexpected risks associated with
its open cultivation (Nethravathy et al., 2019). Cultivation of
GM microalgae possesses several risks, which includes spills
that may become uncontrollable. These algae upon proliferation
compete with natural species and may outgrow them. In fact,
the genetically modified traits of the organisms may provide
them the competitive advantage in natural ecosystem. Risks also
exist for genetic contamination /interbreeding with wild-type or
sexually compatible strains. Threats of harmful algal blooms,
negative impacts on ecosystem, increased selection pressure,
horizontal gene transfer, health and environmental impacts,
unpredictable future of GM traits, loss of management control,
and ethical concerns are some of the major concerns associated
with cultivation of GM algae (Nethravathy et al., 2019). Apart
from regulations for the use of GM algae, strict biosecurity laws
are required to safeguard the importation of foreign species
(GM and/or wild-type) to the local environment. Though the
import and use of foreign algae strains, which are non-native
to local environment, have a very little regulatory control, the
associated risk of these strains dominating the local species
must be seriously considered (Campbell, 2011). The concrete
environmental risk due to algal spills must not only be limited
to the GM aspect of the strains. Further, assessment needs to
be carried out considering fitness of invading foreign species in
comparison with local algal community along with intricacies
and population stability characteristics of the ecological system in
question (Henley et al., 2013). To further improve the situations
for the use of GM algae, in-depth cost-benefit analysis of GM
microalgae to society and environment must be carried out.
Strict monitoring of the handling and cultivation process with
health and environmental risk assessment analysis are integral
to design the biosafety regulations for GM microalgae. Since
GM algae are considered as one of the solutions to overcome
techno-economic challenges in algal industry, it is imperative that
various stakeholders including business promoters and policy
makers collectively reach to a consensus on a road map for the
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TABLE 3 | List of endogenous and heterologous promoters used in microalgae research.

Target species Promoters Nuclear (N)/ chloroplast

(C) expression

Salient features References

Ankistrodesmus

convolutus

AcRbcS promoter N Light-regulated promoter Thanh et al., 2012

C. reinhardtii ARG7 promoter N Strong promoter Specht et al., 2015

β-TUB2 promoter N Constitutive promoter Crozet et al., 2018

CABII-1 N Light-dependent promoter Doron et al., 2016

Cyc6 and Cpx1 promoter N Copper- and oxygen-dependent

promoter

Quinn et al., 2000

CrGPDH3 promoter N Salt inducible promoter Beltran-Aguilar et al., 2019

Fea1 promoter N Iron-responsive promoter Barjona do Nascimento

Coutinho et al., 2019

HSP70A-RBCS2 promoter N Strong hybrid promoter Lauersen et al., 2015

HSP70A promoter N Strong promoter activity Schroda et al., 2000

psaD promoter N Light-responsive constitutive

promoter

Crozet et al., 2018

sap11 promoter N Synthetic strong promoter Scranton et al., 2016

RBCS2 promoter N Strong promoter activity Lumbreras et al., 1998

psaA promoter C Light-responsive strong promoter Michelet et al., 2011

psbA promoter C Light-responsive strong promoter Rasala et al., 2011

psbD promoter C Light-responsive strong promoter Rasala et al., 2011

atpA promoter C Constitutive promoter activity Rasala et al., 2011

16S promoter-psbA 5’ UTR C Strong promoter Rasala et al., 2011

rbcL promoter C Light-responsive strong

constitutive promoter

Rasala et al., 2011

Chaetoceros gracilis Lhcr5 promoter N Constitutive promoter Ifuku et al., 2015

C. vulgaris CaMV35S promoter N Constitutive promoter Chow and Tung, 1999

CvpsaD promoter N Light-responsive promoter Kim et al., 2018

Chlorella ellipsoida Ubi1- Ω promoter N Strong constitutive expression Chen et al., 2001

Cyclotella cryptica ACCase promoter N Constitutive promoter Dunahay et al., 1996

Cylindrotheca fusiformis fruα3 promoter N Strong constitutive expression Fischer et al., 1999

D. salina LIP promoter N Light-inducible promoter Baek et al., 2016b

GAPDH promoter N Constitutive promoter Doron et al., 2016

Fistulifera sp. fcpB promoter N Constitutive promoter Muto et al., 2013

H4 promoter N Constitutive promoter Muto et al., 2013

H. pluvialis CaMV 35S N Constitutive promoter Kathiresan et al., 2009

Ptub promoter N Strong promoter Yuan et al., 2019

rbcL promoter C Light-responsive strong

constitutive promoter

Gutiérrez et al., 2012

P. tricornutum CaMV 35S promoter N Constitutive promoter Chow and Tung, 1999

U6 promoter N Constitutive promoter Serif et al., 2018;

Stukenberg et al., 2018

Lhcf promoter N Light-dependent promoter Lepetit et al., 2010

NIT promoter N Ammonium inducible promoter Chu et al., 2016

pPhAP1 promoter N Strong promoter Lin et al., 2017

Pt211 promoter N Strong constitutive promoter Zou et al., 2018

fcp promoter N Constitutive promoter Watanabe et al., 2018

V-ATPase promoter N Strong constitutive promoter Watanabe et al., 2018

ef2 promoter N Constitutive promoter Seo et al., 2015

HASP1 promoter N Strong constitutive promoter Erdene-Ochir et al., 2019

rbcL promoter C Light-responsive strong

constitutive promoter

Xie et al., 2014

N. oceanica β-tubulin promoter N Constitutive promoter Li et al., 2014a

CMV viral promoter N Constitutive promoter Osorio et al., 2019

(Continued)
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TABLE 3 | Continued

Target species Promoters Nuclear (N)/ chloroplast

(C) expression

Salient features References

ef promoter N Constitutive promoter Poliner et al., 2018

Ribi promoter N Bidirectional strong constitutive

promoter

Poliner et al., 2018

EM7 promoter N Constitutive promoter Osorio et al., 2019

NIT promoter N Ammonium inducible promoter Jackson et al., 2019

VCP promoter N Constitutive promoter Li et al., 2014a

rbcL promoter C Light-responsive strong

constitutive promoter

Gan et al., 2018

N. gaditana TCT promoter N Constitutive promoter Ajjawi et al., 2017

RPL24 promoter N Constitutive promoter Ajjawi et al., 2017

4ALL promoter N Constitutive promoter Ajjawi et al., 2017

EIF3 promoter N Constitutive promoter Ajjawi et al., 2017

N. oculata HSP70A-RBCS2 promoter N Strong hybrid promoter Shih et al., 2015

N. salina TUB promoter N Constitutive promoter Koh et al., 2019

UEP promoter N Constitutive promoter Koh et al., 2019

T. pseudonana Lcfs9 promoter N Constitutive promoter Poulsen et al., 2006

NIT promoter N Nitrate inducible promoter Poulsen et al., 2006

Volvox carteri LHCBM1 promoter N Constitutive promoter Tian et al., 2018

nitA promoter N Nitrate inducible promoter von der Heyde et al., 2015

ISG promoter N Developmental stage (embryonic

inversion) specific promoter

Hallmann and Sumper,

1994

Arylsulfate promoter N Sulfur starvation inducible

promoter

Hallmann and Sumper,

1994

use of GM algae in future. Various federal governments across the
globe must bring in place the policies and regulations that govern
the safe use of GM algae for human and environmental benefit.

CONCLUSION AND FUTURE PROSPECTS

Currently, economically feasible, environmentally sustainable,
and replicable microalgal processes with higher technology
readiness levels are required for ease of doing algal business.
To improve the economic feasibility of the algal processes, the
genetic engineering of microalgae is at forefront for development
of robust microalgal strains. Advances in the high-throughput
technologies and molecular biology tools have facilitated the
biotechnological approach to engineer the microalgal strains for
performance improvement. The synergy of microalgal multi-
omics datasets and the advanced molecular tools offer a rapid
and predictable strategic path for the strain improvement. In this
review, various microalgal resources such as genome sequence,
mutant libraries, high-throughput screening methodologies, and
genetic tools and techniques were summarized that holds the
potential for the development of microalgae as a next-generation
renewable resource. In addition, the catalog of various omics
study under different conditions across the diverse microalgal
species is generated (Table 1). Despite the variation in the inter-
and intraspecies omics datasets, the several conserved factors
can be mined to predict the biological outcomes with the
comprehensive use of system biology approach. Various omics-
based approaches must aim to enhance microalgal capacities

to produce high value metabolites. Future research may focus
on developing purpose-specific robust bioengineered strains for
high photosynthetic efficiency, high CO2 fixation, and high
biomass productivities. Also, targeted enhancement of low-
volume, high-value metabolites of biomedical applications from
microalgae must be considered using genetic engineering.

Though the genetic engineering of microalgae holds great
potential to improve process economics, it is limited mainly due
to the unavailability of the genetic information for robust and
commercially suitable strains. In recent times, rapid advances
in DNA synthesis, genetic manipulation tools and techniques,
availability of functional genomes have improved the chances to
better engineer microalgae with complex functions. However, the
lack of genetic strain design principles is still hurting the progress
in this area. Further, once the genetically improved strains are
developed, safety to human health and environment will define
its commercial success. Therefore, it is recommended that strict
regulations and monitoring should be in place to evaluate the
environmental and human health risk of using GM microalgae
particularly in outdoor cultivation. Here, the recent development
in precise genome editing technologies such as non-transgenic
and marker-free CRISPR has the potential to revolutionize the
microalgal bioengineering for the production of non-GMO algal
products. The non-GMO tag to the bioengineered microalgae is
expected to improve the biosafety and alleviate the regulatory
issues associated with the usage of GM microalgae. In view
of uncertainty within the academic and industrial community
regarding the regulations for the use of GM strains, and the
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inadequacy of current regulations for the use of GM algae, a
clear road map for regulatory regime covering the commercial
use of GM microalgae is urgently required. Since the robustness
of non-model microalgae species has advantages in commercial
and industrial applications over model species, there is a need to
develop advanced research tools for the non-model microalgal
species. Moreover, to improve the economic competitiveness of
algal-derived products, the development of efficient extraction
methods or the use of whole cells is needed. Indeed, beside all the
developments, bio-prospection for novel and robust microalgae
with industrial viability must continue.
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Scenedesmus quadricauda CASA CC202, a potent freshwater microalga is being
used as a biofuel feedstock, which accumulates 2.27 fold lipid during nitrogen
stress induction. Upon nitrogen starvation, S. quadricauda undergoes biochemical and
metabolic changes that perturb the cell to cope up the stress condition. The nitrogen
stress-induced biochemical changes in mitochondrion exhibits due to the oxidative
stress-induced Reactive Oxygen species (ROS) generation at high membrane potential
(1ψm). The predominant ROS generated during nitrogen starvation was H2O2, OH−,
O2·
− and to suppress them, scavenging enzymes such as peroxidase and catalase

increased to about 23.16 and 0.79 U/ml as compared to control (20.2, 0.19 U/ml). The
targeted metabolic analysis showed, stress-related non-proteinogenic amino acids and
energy equivalents elevated during the initial hours of nitrogen starvation. The nitrogen
stress-triggered biochemical and metabolic changes along with other cellular events
eventually lead to lipid accumulation in S. quadricauda.

Keywords: microalgae, biofuel, nitrogen stress, Reactive Oxygen species, mitochondria, metabolic changes

INTRODUCTION

Microalgae are renowned as biofuel feedstock as it has the potential to meet current energy
requirements. It has been well addressed that they accumulate increased lipid content per cell. The
storage lipids in microalgae were synthesized in two steps such as de novo synthesis of fatty acids
in plastids and triacylglycerol (TAG) biosynthesis in endoplasmic reticulum (ER). The Acetyl CoA
from Calvin cycle is converted into Malonyl ACP and by the action of fatty acid synthase complex
fatty acids were synthesized and free fatty acids were released in the plastid. Further the free fatty
acids were entering into the ER and TAG synthesis by Kennedy pathway occurs (Wang et al., 2018).
When an oleaginous (oil-producing) microalgae exposed to nitrogen stress which accumulates
more lipid as an energy reserve (Lim et al., 2012). One such microalga, Scenedesmus quadricauda
CASA CC202 which accumulates about 2.27 fold lipid during nitrogen starvation (Anand and
Arumugam, 2015). In order to adapt the harsh environmental stimuli, several stress-responsive
changes were occurring in the cell. Primarily the biomolecules such as lipid and carbohydrate
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GRAPHICAL ABSTRACT | Selective metabolomic and biochemical changes during nitrogen stress in microalga.

level increase with a reduction in protein and photosynthetic
pigments under nitrogen starvation (Msanne et al., 2012; Anand
and Arumugam, 2015).

The actual biochemical and metabolic events in nitrogen
stress mediated lipid accumulation and other abiotic stress is
poorly addressed. It is complex cascade of reactions resulting
in an increased lipid accumulation. An array of cellular events
that switches on the lipid biosynthesis pathway to maintain
the C/N homeostasis of the cell. The initial stress markers
and signaling molecules lead to a tremendous rearrangement
of metabolic pathways. The byproduct of these metabolic
rearrangements is mainly activating the energy-saving shunt
pathways and its associated reactions (Sweetlove et al., 2002;
Bolton, 2009; Recht et al., 2014). Also, these stimulate an
increased carbon channeling into fatty acid synthesis under
nitrogen starvation. Therefore, a selective metabolomic study, is
envisioned to understand the stress mediated lipid accumulation
in S. quadricauda.

As mentioned above metabolic rearrangements of cells during
nitrogen starvation is induced by various stress signaling
molecules. The stress signaling molecules like Reactive Oxygen
species (ROS), Ca2+, Melatonin, Abscisic acid, etc helps the cell
to sense the unfavorable environment. It eventually activates
cascade of signal transductions to initiate a series of counter-
reactions, which will lead to tolerance of the stressed cell.

Reactive Oxygen species which are formed by redox reactions
of the reactive forms of molecular Oxygen including H2O2,
O2·
− or OH− radicals during abiotic stress are recognized

as signals to activate the defense response (Vranova et al.,
2002) and also as a second messenger to activate several
signaling cascades (Shi and Collins, 2017). The increased ROS
accumulation during prolonged nitrogen starvation, leads to
an oxidative damage and eventually promotes neutral lipid
accumulation in Dunaliella salina. An increase in both ROS
production and lipid peroxidation were observed under nitrogen
starvation in association with increased lipid accumulation
(Yilancioglu et al., 2014). Thus ROS have direct effects on neutral
lipid accumulation in microalgae under nitrogen starvation.
Therefore, the understanding of an initial biochemical changes
under nitrogen starvation need to be unraveled.

Along with the metabolic and biochemical changes, nitrogen
stress also induces alterations in an internal bimolecular pattern
and morphology. As a preliminary study, the morphological
variation in S. quadricauda was characterized in the present
study. Scenedesmus is a pleomorphic strain which changes its
morphology during nitrogen starvation as unicells or coenobia
(Anusree et al., 2017). As the microalga is having these
peculiar characteristics the nitrogen stress-driven morphological
variation in a population of S. quadricauda has not been
completely studied.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 October 2020 | Volume 8 | Article 58563271

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-585632 October 16, 2020 Time: 13:22 # 3

Sulochana and Arumugam Selective Metabolomic Profile – Nitrogen Stress

Finally, the stress responses may be activating the genes
of lipidomic, carbon and other metabolic pathways leading to
neutral lipid accumulation is remain unexplored. The major
evidence for the query covers different omics approaches
like transcriptomics, proteomics, lipidomics and metabolomics
which explains the key regulators and proteins for TAG
accumulation under nitrogen starvation (Miller et al., 2010;
Boyle et al., 2012; Park et al., 2015; Javee et al., 2016). The
monogenic approach may not reveal a complex reactions of
stress mediated lipid accumulation. Thus the present study
aims to study the initial stress associated morphological,
biochemical, and metabolic changes in nitrogen stress-mediated
lipid accumulation in a comprehensive manner.

MATERIALS AND METHODS

Culturing and Induction of Nitrogen
Stress
Scenedesmus quadricauda CASA CC202 were cultivated on Bold
Basal Medium (BBM; Nichols and Bold, 1965), in a fabricated
algal culture rack placed in an air conditioned Algal culture
room maintained at 25◦C. Philips Fluorescent tubes were used for
illumination with a light intensity of 40 µmol/m2/s (Apogee Full
spectrum Quatum meter – MQ 500) and the light–dark period
was regulated by automated timer. The composition of media
wherein (g/l): NaNO3 – 25; CaCl2.2H2O – 2.5; MgSO4.7H2O –
7.5; K2HPO4 – 7.5 KH2PO4 17.5; NaCl – 2.5, trace elements are
(mg/l) FeCl3.6H2O – 97; MnCl2.4H2O – 41; ZnCl2.6H2O – 5;
CoCl2.6H2O – 2; Na2MoO4.2H2O – 0.75, and the media also
contain vitamins (g/l) Biotin 0.1; vitamin B12 1; Thiamine 0.2.
The pH of the media was adjusted to 6.8–7. The nitrogen starved
medium (N−) completely lacks the NaNO3 as nitrogen source.

The nitrogen stress induction was performed in two-stage
cultivation processes; in the first stage, the microalgae are grown
in control (N+) media to obtain maximum cell density (240× 106

cells/ml). Further, in the second stage, the harvested biomass
was washed twice with distilled water and re-inoculated to the
nitrogen starved (N−) medium (Anand and Arumugam, 2015;
Minhas et al., 2016; Sulochana and Arumugam, 2016).

Effect of Nitrogen Stress Induction in the
Morphology of S. quadricauda
Morphological Variation
Twenty microliter of the sample was dropped into a clean
microscopic slide covered with a coverslip and the slide was
allowed to stand for a few minutes. After that, the slide was
observed under a light microscope (Di LEICA DM 200).

Morphological Variation in a Population
of S. quadricauda and Detection of
Mitochondrial Membrane Potential by
Flow Cytometry Analysis
The same samples were used for detecting the mitochondrial
membrane potential of nitrogen stressed S.quadricauda. The
sample of 1 ml taken from nitrogen stress-induced (N−) and

respective control (N+) in the microcentrifuge tube from the
three experimental replicates (n = 3). From that 100 µl sample
was taken and diluted with 900 µl autoclaved distilled water
and the pellet was obtained by centrifugation at 10,000 rpm
for 10 min. Then the pellet was collected and washed twice
with phosphate buffer saline (PBS) (pH 7.4). The washed pellet
was fixed with 2.5% glutaraldehyde in PBS of 50 µl for 5 min.
The pellet was then collected by centrifugation at 10,000 rpm
for 5 min and washed with 1 ml PBS and again pelleted by
centrifugation. The washed pellet was resuspended in 1 ml of
Rhodamine 123 dye (SIGMA-ALDRICH, CAS No. 62669-70-
9) (1 mg/ml ethanol stock) of 10 µl diluted with 990 µl of
distilled water and incubated for 5 min at 20◦C. After incubation,
the excess dye was washed away by centrifugation and was
resuspended pellet in 1 ml of PBS. Then the fluorescent intensity
was analyzed by flow cytometry BD FACS AriaTM II excitation
at 505 nm and emission at 534 nm using software BD FACS
DivaTM (Morris et al., 1985; Baracca et al., 2003). The mean values
of three independent replicates showing morphological variation
(cell size) were plotted as a graph with standard deviation
as an error bars.

Quantification of Reactive Oxygen
Species and Antioxidant Enzymes During
Nitrogen Starvation
Measurement of H2O2
The control (N+) and nitrogen starved (N−) algal cells from
three experimental replicates were harvested by centrifugation
and resuspended in 0.1% w/v Trichloro Acetic Acid (TCA)
solution for sonication. The total cell lysate was collected by
centrifugation at 13000 rpm for 10 min. After that 0.5 ml of
the supernatant was taken into fresh tubes and added 0.5 ml of
10 mM phosphate buffer (pH 7.0). To that add 1 ml of 1 M
potassium iodide and mix the contents well. The absorbance of
the solution was read at 390 nm. A standard curve was plotted
using known concentrations of H2O2 and from that, the H2O2
concentration (µmol H2O2/gFW) of the sample was calculated
(Velikova et al., 2000). The mean values of three independent
of H2O2 concentration were plotted as a graph with standard
deviation as an error bars.

Quantification of O2·−

The control (N+) and nitrogen starved (N−) algal cells of three
experimental replicates (n= 3) were harvested by centrifugation,
sonicated with 5 ml of 65 mM potassium phosphate buffer (pH
7.8). The cell lysate was collected by centrifugation at 12,000 rpm
for 5 min. From that 1 ml of supernatant was taken into a fresh
tube and mixed with 0.9 ml of 65 mM potassium phosphate buffer
(pH 7.8). About 0.1 ml of 10 mM hydroxyl ammonium chloride
was added to the mixture and incubated at 25◦C for 20 min.
After the incubation, 1 ml of 17 mM sulphanilic acid, and 1 ml
of 7 mM α-naphthylamine were added to the mixture. Again the
tubes were incubated for 20 min and the absorbance was read at
530 nm. The mean values of three independent replicates of O2·

−

concentration were plotted as a graph with standard deviation as
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an error bars. Sodium nitrite was used to plot the standard curve
from that the production of O2·

− was calculated (Liu et al., 2010).

Measurement of OH−

The control (N+) and nitrogen starved (N−) algal cells of three
experimental replicates (n = 3) were harvested by centrifugation
and sonicated with 2 ml of 50 mM potassium phosphate buffer
(pH 7.0). Then the homogenate was centrifuged at 12,000 rpm
for 5 min. From that 0.5 ml of supernatant was taken into a
fresh tube and added 0.5 ml of 50 mM potassium phosphate
buffer (pH 7.0) containing 2.5 mM of 2-deoxy ribose. The tubes
were kept at 35◦C in dark for 1 h. After the incubation 1 ml
of 1% Thiobarbituric acid (TBA) in 0.5 M sodium hydroxide
and 1 ml of acetic acid were added and mixed well. The tubes
were boiled for 30 min and immediately cooled on ice. Further,
the absorbance was read at 532 nm and the OH− content was
expressed as absorbance units per gram of Fresh Weight (FW;
Halliwell, 2006). The mean values of three independent replicates
of OH− concentration were plotted as a graph with standard
deviation as an error bars.

Lipid Peroxidation
Microalgal cells of three independent replicates from N+ and
N− samples were harvested by centrifugation at 8000 rpm for
10 min. Then the cells were sonicated in 2 ml of 80:20 (v/v)
ethanol: water and the lysate were collected by centrifugation
at13,000 rpm for 10 min. Further, 1 ml of the supernatant was
taken into fresh test tubes and added 1 ml of TBA solution [20%
(w/v) TCA, 0.01% butylated hydroxytoluene and 0.65% TBA].
The samples were mixed well and heated at 95◦C for 25 min
and cooled. The contents were centrifuged at 13,000 rpm for
10 min and the absorbance of the supernatant was read at 450,
532, and 660 nm (Hodges et al., 1999). The mean values of three
independent replicates were plotted as a graph with standard
deviation as an error bars.

Malondialdehyde (MDA) (µmol/gFW) = [6.45 × (A532–
A600)] – [0.56× A450]/FW

Estimation of Antioxidant Enzymes
Catalase Assay
Catalase activity was determined using catalase calorimetric
activity kit (Invitrogen, EIACATC). Nitrogen stressed (N−)
and control (N+) algal pellet (100 mg) were collected by
centrifugation at 8000 rpm for 10 min. Further, the pellet was
homogenized or sonicated in 1 ml of cold 1× assay buffer (as
provided by the manufactures) per 100 mg of cells. Then the
content was centrifuged at 10,000 rpm for 15 min at 4◦C. Collect
the supernatant and assay immediately, or store at ≤ −70◦C.

As dilution of standards for catalase assay was prepared as
described by the manufactures instructions. In brief, one unit
of catalase decomposes 1 µmol of H2O2 per minute at pH
7.0 and 25◦C. About 10 µl of catalase standards was added
to one tube containing 190 µl 1× assay buffer and labeled as
5 U/ml catalase. 100 µl of 1× assay buffer was added to each
of six tubes labeled as follows: 2.5, 1.25, 0.625, 0.313, 0.156, and
0 U/ml catalase. Serial dilutions of the standard were prepared as
described in the kit manual.

Accurately 25 µl of standards or diluted samples were added
to the appropriate wells. Then added 25 µl of H2O2 reagent into
each well and incubated for 30 min at room temperature. After
that 25 µM of the substrate was added into each well. Again
added 25 µl of 1× Horse Radish Peroxidase (HRP) solution
into each well and incubated for 15 min at room temperature,
further, the absorbance was read at 560 nm. Curve fitting software
with a four-parameter algorithm (Graph pad prism2) was used
to generate the standard curve and catalase activity of samples.
The mean values of three independent replicates were plotted as
a graph with standard deviation as an error bars.

Peroxidase Assay
The peroxidase activity was quantified using Peroxidase activity
assay kit (SIGMA-ALDRICH, MAK092). As dilution of standards
for peroxidase assay was prepared as described by the
manufactures instructions. In brief, about 10 µl of the 12.5 mM
H2O2 solution was diluted with 1240 µl of assay buffer to prepare
a 0.1 mM standard solution. Then 0, 10, 20, 30, 40, and 50 µl
of the 0.1 mM standard solution was added into a 96 well plate,
generating 0 (blank), 1, 2, 3, 4, and 5 nmol/well standards.
Further, the assay buffer was added to each well to make up
the volume to 50 µl. To each standard curve well, 50 µl of the
standard curve reaction mix was added. Each well was mixed well
and incubated at room temperature for 5 min and absorbance
was read at 570 nm.

About 10 mg of the algal pellet (N+ and N−) was sonicated
with 150 µl of assay buffer and centrifuged at 15,000 rpm for
10 min. Then 50 µl of the master reaction mix was added to each
sample and positive control well. The contents in the well were
mixed well by pipetting and incubated the plate at 37◦C for 3 min,
then the initial measurement was read at 570 nm (T initial).
The assay was performed in the dark. The measurements were
taken until the value of the test exceeded that of the standard.
The final measurement [(A570) final] for calculating the enzyme
activity would be the value before the most active sample is near
or exceeds the end of the linear range of the standard curve. The
time of the penultimate reading is T final.

The change in measurement from T initial to T final for
samples was calculated.

1A570 = (A570) final− (A570) initial

The 1measurement value (1A570) of each sample was
compared to the standard curve to determine the amount of
H2O2 reduced during the assay between T initial and T final
(B). The Peroxidase activity of a sample was determined by the
following equation:

Peroxidase Activity= [B× Sample Dilution Factor]/(Reaction
time)× V

B, Amount (nmol) of H2O2 reduced between T initial and T
final; Reaction Time, T final–T initial (min); V, Sample volume
(ml) added to well.

Peroxidase activity reported as nmol/min/ml = milliunit/ml,
where one unit of peroxidase is defined as the amount of enzyme
that reduces 1.0 µmole of H2O2 per minute at 37◦C. The mean
values of three independent replicates of peroxidize activity were
plotted as a graph with standard deviation as an error bars.
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Targeted Metabolite Analysis by LC-MS
The S. quadricauda cells were collected by centrifugation at
8000 rpm for 10 min at room temperature. Metabolites were
extracted from control or different time point samples from two
independent biological replicate by homogenizing with liquid
nitrogen in a prechilled sterile mortar and pestle. The samples
then suspended with a mixture of 1 ml of methanol: water (80:20).
Subsequently, the supernatant was collected by centrifugation at
8000 rpm for 10 minutes at 4◦C and the extracted metabolites
were stored at −20◦C for LC-MS analysis. The mobile phase
used for LC-MS is a mixture of triethylamine (A, 60%) and
methanol (B, 40%) containing 0.1% formic acid adjusted to pH
4.2 and separated through a 1.9 µM C18 Shimadzu shim pack
GISS column (Dimension 2.1 mm × 150 mm). The column
temperature was maintained at 4◦C and the temperature of the
drying gas in the ionization source was 300◦C. The gas flow was
10 l/min and the capillary voltage was 4 kV and the detection
was using electrospray ionization (ESI)-MS. The LC-MS 8045
(Shimadzu, Japan) chromatogram was analyzed and the results
were plotted by a heat map. The mean values of two experimental
results were calculated and the data were used for the heat
map generation (Supplementary Table 1). The heat map was
generated using heat mapper (an online tool to interpret the
metabolomic analysis) (Babicki et al., 2016).

Statistical Analysis
All the experiments were carried out in triplicate unless otherwise
specified. The results are represented as mean value ± standard
deviation with error bars in the figure. The data were
analyzed by one-way ANOVA and the P value was calculated
using Tukey HSD test.

RESULTS AND DISCUSSION

Nitrogen Stress-Induced Morphological
Variation in a Population of
S. quadricauda
Nitrogen being an integral part of biomolecules such as proteins
of an organism and thus it’s deficiency in the medium affects
the enzymes required for cell division and eventually the
growth of microalgae. As a primary analysis, microscopic
images were observed. The nitrogen stress-induction leads
to morphological changes and cell death (Supplementary
Figure 1a,b). Morphological changes studied in a few cells under
a microscope will not represent the phenomena at population
level. Thus the variation in size of the cell due to nitrogen
stress induction was studied in a population of S. quadricauda
by flow cytometry analysis. The forward scatter analysis, the
control cells were gated in such a way that large cells were
presumed to represent 10% of the population and it compares
to nitrogen stressed cells. The gated region represents the “region
of hypertrophy” (Figure 1A). The population statistics of the cell
enlargement showed that there is a 2.6% cell size enlargement in
nitrogen stress-induced S. quadricauda (Figure 1B). The values
were obtained from three independent replicates and standard
deviation as an error bars.

According to Anand and Arumugam (2015), the cell size
of S. quadricauda was enlarged in nitrogen starved condition.
The accumulation of lipid droplets in S. quadricauda leads to
variation in cell size. Similarly, the cell length was doubled
in Acutodesmus dimorphus under nitrogen starved conditions
(Chokshi et al., 2017). Symbiodinium, when cultured under
nitrogen stress, the average cell size was observed as 7.35 and
6.96 µm at day 5 and 7 when compared to control (6.54 µm).
Moreover, significant changes in the size and lipid droplets
induced the morphological changes in Scenedesmus obtusiusculus
and Symbiodinium during nitrogen starvation (Jiang et al., 2014).

Biochemical Changes During Nitrogen
Starvation
Changes in Mitochondrial Membrane Potential
During Nitrogen Starvation
Nitrogen stress induces perturbations in mitochondrial
membrane potential (1ψm), which is one of the signals to
the stress through mitochondria. The increased mitochondrial
membrane potential is directly proportional to the increased
fluorescence of Rhodamine 123 (Rh123). The higher the 1ψm,
the more Rhodamine 123 is taken up into the matrix. Also,
the increased mitochondrial membrane potential leads to an
elevated ROS generation. Here in S. quadricauda the rate of
fluorescence of Rh 123 is increased during nitrogen stress. Eight
thousand cells were taken to analyze the population and from
that the fluorescence retained by the cells were represented in
percentage. Thus is a 25% elevation in fluorescence of Rh 123
retained in the mitochondria of 24 h nitrogen stress-induced
S. quadricauda when compared to control cells (Figure 2).
Also, the 48 and 72 h samples revealed an increased membrane
potential during the onset of nitrogen stress. Thus it implies
that there is a fluctuation in mitochondrial membrane potential
during onset of nitrogen stress. As the stress progresses, increased
ROS generation observed in mitochondria and which eventually
leads to metabolic rearrangements.

Mitochondrion plays a major role in cellular adaptation to
abiotic stresses and is known to induce oxidative stress (Pastore
et al., 2007). Mitochondrial membrane potential (1ψm) is the
driving force for ATP synthesis in mitochondria and it is
generated by the proton-pumping electron transport chain. It has
been reported that a correlation between membrane potential and
ROS, as it generates more ROS at high membrane potential (Suski
et al., 2012). Similarly, mitochondrial membrane potential and
ROS generation were elevated in S. quadricauda during nitrogen
starvation. Rhodamine 123 is a cationic, lipophilic fluorescent
probe used to assay mitochondrial membrane potential in
populations of apoptotic cells and it was measured according
to the rate of fluorescent decay which is proportional to the
mitochondrial membrane potential (Baracca et al., 2003).

Reactive Oxygen Species Generation
During Nitrogen Stress-Mediated Lipid
Accumulation
The mitochondria are the primary producers of ROS and also
it depends on the metabolic state of mitochondrion during
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FIGURE 1 | Nitrogen stress induced morphological variation in a population of S. quadricauda. (A) Flow cytometry analysis of control (N+) and nitrogen starved (N−)
S. quadricauda P2 represents the population and SSC-A, FSC-A represents the Side Scattered light-Area. Forward Scattered light-Area respectively. (B) Population
statistics of enlarged cells during nitrogen starvation (T) and control S. quadricauda. The mean values of three independent triplicates (n = 3) were plotted with
standard deviation as error bars.

nitrogen stress. The increased production of ROS is a sign of
stress at a molecular level and the subsequent accumulation
of oxidative damage. The H2O2 accumulation during nitrogen
stress-induced S. quadricauda showed an elevated level at 24
and 48 h (P < 0.0001) of incubation around 7 and 11 µM
respectively compared to control (0.17 µM) (Figure 3A). The
O2·
− radical in the nitrogen stressed S. quadricauda showed

around 3.09 µM on 24 h of incubation and it was a lower
concentration compared to nitrogen-rich S. quadricauda where
the O2·

− concentration was about 7.13 µM (Figure 3B). The
O2·
− concentration in the treated samples (N−) found to be

significant at 99% confidence level with respect to control. Also,
the level of hydroxyl radical elevated during the initial hours of
nitrogen stress induction (Figure 3C).

Lipid peroxidation is the oxidative degradation of lipids.
The free radicals steal electrons from the membrane lipids and
cause severe cell damage. Lipid peroxidation was determined
in terms of MDA content in the cells. The MDA was elevated
during the 72 h of incubation and it was around 1.13 µM.
The MDA content was lower during the initial hours of stress
induction (Figure 4A).

Even though ROS are highly reactive and potent toxic to
the cells, they are having beneficial roles in abiotic stress.
These include (i) diversion of electrons from the photosynthetic
machinery in chloroplast to prevent the overload of the

antenna and subsequent damage (Choudhury et al., 2017);
(ii) regulation of metabolic fluxes during abiotic stress; and
vital role as (iii) mediating signal transduction reactions
which make the cells adapt to the stress by activating
other pathways (Vaahtera et al., 2014; Considine et al., 2015;
Mignolet-Spruyt et al., 2016; Mittler, 2017). Chokshi et al., 2017,
reported that 3 days nitrogen starved Acutodesmus dimorphus
showed 2-fold elevated levels of H2O2 than the control and
simultaneously 4-fold reduction in O2·

− in nitrogen starved cells.
H2O2 and O2·

− are showing the inverse relationship, as highly
reactive O2·

− is converted into H2O2 by the enzyme superoxide
dismutase (SOD). According to them the OH- and MDA did
not vary significantly in nitrogen stressed A. dimorphus. But in
Chlorella sorokiniana C3 showed a significant increase in the
MDA level during nitrogen starvation-induced oxidative stress
(Zhang et al., 2013).

Antagonistic Antioxidant Enzymes
During Nitrogen Stress
Catalase and Peroxidase Activity in S.quadricauda
Under Nitrogen Stress
In order to clear-off the highly ROS, the free radical
scavenging enzymes were also elevated during nitrogen
stress induction. Catalase is the enzymes which speed up the
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FIGURE 2 | Nitrogen stress induced changes in mitochondrial membrane potential of 5. quadricauda by flow cytometry. Mitochondria were stained by
Rhodamine123. Blank represents the auto fluorescence of S.quadricauda; N+-control. N− – Nitrogen starved S. quadricauda at 24 h. 48 and 72 h. The experiments
were carried out in duplicates (n = 2). The percentage values in each histogram represents the percentage cells retained the fluorescence of Rh 123 and the
population of cells were fixed at 8000.

FIGURE 3 | Reactive Oxygen species generation in nitrogen stress induced (N−) S. quadricauda and control (N+). (A) H2O2, (B) O2·
−, and (C) OH− generation

during nitrogen stress induced at 0, 24, 48, and 72 h and the control S. quadricauda. The experiments were carried out in triplicate (n = 3) and the values were
represented as a mean value with ± standard deviation as error bars. One-way ANOVA followed by Tukey HSD test for each treatment with respect to control.
**Iindicate significant differences compared to control (P < 0.01). ***Indicates highly significant differences compared to control (P < 0.001).

conversion of H2O2 to water and oxygen. During nitrogen
stress, H2O2 generation was elevated at the same time the
catalase activity was also found to be increased significantly
(P < 0.01). The catalase activity was observed to be about
0.8 U/ml (Figure 4B).

The peroxidase is heme-containing proteins which catalyze
the conversion of H2O2 into the water and an activated donor
molecule. It utilizes H2O2 from various organic and inorganic
substrates. Relatively, peroxidase enzyme in S. quadricauda
was less active for H2O2 oxidoreduction. As it was evidenced
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FIGURE 4 | (A) Level of lipid peroxidation (MDA) under nitrogen stress induction in S. quadricauda. (B) Catalase activity in nitrogen stress induced (N−)
S. quadricauda and control (N+). (C) Peroxidase activity in nitrogen stress induced (N−) S. quadricauda and control (N+). The experiments were carried out in three
independent triplicates (n = 3) and standard deviation were represented as error bars. One-way ANOVA followed by Tukey HSD test for each treatment with respect
to control. **Indicate significant differences compared to control (P < 0.01).

from Figure 4C, there is a deviation in peroxidase activity at
48 h of nitrogen stress induction (23.16 mU/ml) compared to
control (20.22 mU/ml).

The overproduction of toxic ROS was neutralized by the
antioxidant scavenging enzymes such as SOD, catalase and
ascorbate peroxidase during nutrient starvation (Ali et al., 2005;
Bhaduri and Fulekar, 2012; Fan et al., 2014; Yilancioglu et al.,
2014; Ruiz-Dominguez et al., 2015; Salbitani et al., 2015). Also,

the Yilancioglu et al. (2014), in D. salina observed an elevated
level of catalase and peroxidase activity under nitrogen-deficient
conditions. Their experimental evidence suggested that the lipid
accumulation might be partially induced by ROS mediated
oxidative stress under nitrogen starvation. In order to prove that,
they induced oxidative stress by H2O2 and the results showed
that increased lipid accumulation during induced oxidative stress
with full strength nitrogen source in D. salina. In addition to

FIGURE 5 | The heat map of nitrogen stress induced S. quadricauda at 0, 24, 48, and 72 h and the control i.e., nitrogen sufficient S. quadricauda represented in X
axis. The targeted metabolites were represented in Y axis and the map was generated by heat mapper. The mean values of experimental duplicates (n = 2) were
used to generate metabolite expression heat map.
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TABLE 1 | Role of different metabolites induced by nitrogen stress in eukaryotes.

Targeted metabolites Role

GABA Regulation of energy metabolism
Bypasses two steps in TCA cycle

Glutamate Precursor of chlorophyll

Arginine Regulation of energy metabolism

Sucrose Promotes cell expansion and storage

Citrate Intermediate of TCA cycle

Succinate Intermediate between the glyoxylate
cycle and TCA cycle

GTP Regulation of energy metabolism

ATP Regulation of energy metabolism

Glucose-6-Phosphate Intermediate of glycolysis

NAD Regulation of energy metabolism

NADH Regulation of energy metabolism

NADP Regulation of energy metabolism

NADPH Regulation of energy metabolism

that, they have claimed that oxidative stress itself can trigger
lipid accumulation and suggested that the lipid accumulation was
mediated by oxidative stress during nitrogen starvation.

Metabolic Changes During Nitrogen
Starvation
Targeted Stress Metabolite Analysis by LC-MS
During nitrogen stress, several changes are happening in the cell
and the cellular events triggered by the stress, finally leads to
TAG accumulation as an energy reserve. Metabolomics is one
of the omics studies which help to understand the metabolic
rearrangement of the cell during nitrogen stress. In order to
address the metabolic changes governed by nitrogen stress,
several metabolites were listed and its role was discussed in
Table 1. The metabolic changes are mainly associated with
the liberation of low molecular weight biomolecules and their
levels during abiotic stress condition (Supplementary Table 1).
The integrated targeted metabolic analysis was characterized
by LC-MS analysis. The heat map results showed stress-related
non-proteinogenic amino acids and energy equivalents elevated
during the initial hour of nitrogen starvation (Figure 5). The
non-proteinogenic amino acids like Gamma Amino Butyric Acid
(GABA), glutamate and arginine were observed in maximum
peak area at 72, 24 and 0 h of nitrogen stress induction
respectively. Also, the energy equivalents such as NADH and
ATP are highly reactive during 72, 0 h of nitrogen stress
induction (Figure 5).

The metabolic changes during nitrogen starvation showed
low molecular weight secondary metabolite accumulation and
metabolic rearrangement to cope up the stress (Salama et al.,
2019). To adjust the metabolic changes, microalgal species
modulates their metabolite synthesis (Paliwal et al., 2017).
An elevated level of sugars (glucose, sucrose, and fructose)
was observed in salinity and they have a role in osmotic
homeostasis, carbon storage as well as scavenging of free
radicals (Rosa et al., 2009). Several researchers proposed that
the fatty acid synthesis was promoted by the hyperactivity of

Tricarboxylic acid (TCA) cycle (Sweetlove et al., 2010; Hockin
et al., 2012; Lee et al., 2012). According to Guerra et al., 2013,
the hyperactivity of TCA cycle occurs because the lipid synthesis
needs more ATP together with the reduction power of NADPH
during nitrogen starvation. The lipid synthesis after nitrogen
starvation creates a C/N imbalance and it can be adjusted
by the protein degradation to take out the amino acids. The
amino acids such as leucine, isoleucine, and valine take part
in the synthesis of Acetyl CoA (Allen et al., 2011; Ge et al.,
2014) which is the precursor of fatty acid synthesis. Also,
the glutamate forms the precursor for chlorophyll synthesis.
Gamma Amino Butyric Acid is a non- protein amino acid
whose levels are found to be increased during the response to
nitrogen stress (Xupeng et al., 2017). The present study also
indicates that the energy equivalents and non-proteinogenic
amino acid-like GABA was found elevated during nitrogen
starvation in S. quadricauda. During abiotic stress metabolites
of glycolysis and TCA cycle along with these amino acids
showed an initial increase in levels followed by a decrease
(Zhang et al., 2016).

CONCLUSION

The nitrogen stress leads to oxidative stress-induced ROS
generation at high membrane potential (1ψm). The
predominant ROS generated were H2O2, OH−, O2·

− and
in order to suppress the ROS, antioxidant scavenging enzymes
like peroxidase and catalase were elevated. Also, it showed an
inverse correlation between O2·

− and H2O2, also the OH−
and lipid peroxidation in terms of Malondialdehyde. The
Metabolic changes are mainly associated with the liberation
of low molecular weight biomolecules and their levels during
abiotic stress condition. The integrated metabolic analysis
revealed that stress-related non-proteinogenic amino acids and
energy equivalents are elevated during nitrogen starvation.
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Microalgae are often used as nutritional supplements for aquatic animals and are
widely used in the aquaculture industry, providing direct or indirect nutrients for many
aquatic animals. Microalgae are abundant in nature, of high nutritional value, and some
of them are non-toxic and rich in antioxidants so that they can be explored as a
medicinal carrier for human or animals. Natural wild-type microalgae can be adopted
as an immunostimulant to enhance non-specific immune response and improve
growth performance, among which Haematococcus pluvialis, Arthrospira (Spirulina)
platensis, and Chlorella spp. are commonly used. At present, there have been some
successful cases of using microalgae to develop oral vaccines in the aquaculture
industry. Researchers usually develop recombinant vaccines based on Chlamydomonas
reinhardtii, Dunaliella salina, and cyanobacteria. Among them, in the genetic modification
of eukaryotic microalgae, many examples are expressing antigen genes in chloroplasts.
They are all used for the prevention and control of single infectious diseases and most
of them are resistant to shrimp virus infection. However, there is still no effective strategy
targeting polymicrobial infections and few commercial vaccines are available. Although
several species of microalgae are widely developed in the aquaculture industry, many
of them have not yet established an effective and mature genetic manipulation system.
This article systematically analyzes and discusses the above problems to provide ideas
for the future development of highly effective microalgae recombinant oral vaccines.

Keywords: aquaculture industry, microalgae, immunostimulant, oral vaccine, polymicrobial infections

INTRODUCTION

The aquaculture industry has developed rapidly in recent years and provided more fish products for
human food supply than that did capture fisheries for the first time in 2014 (Pauly and Zeller, 2017).
According to the model proposed by Kobayashi et al. (2015), in face of the rapid expansion of global
fish demand and the relatively stable capture fisheries, aquaculture is expected to fill the widening
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gap between food supply and demand, especially in Asia.
By 2030, aquaculture will provide about 62% of fish for
human consumption. Moreover, after 2030, aquaculture is likely
to continue to dominate the future global fish supply and
grow sustainably.

However, the outbreak of diseases will bring severe losses
to the aquaculture industry economically. Severe diseases in
aquaculture are mostly caused by viruses and various protists,
as well as bacteria (Lafferty et al., 2015). Although some
bacterial diseases can be treated by several vaccines and
antibiotics effectively, others cannot be solved by antibiotics.
With the abuse of antibiotics, the amount of antibiotic-
resistant bacteria and the risk of remaining antibiotics and
antibiotic-resistant bacteria in aquatic products transferring
to the human body have been increasing (Costa et al.,
2015), arising great attention globally, which leads to the
development of new antibiotic alternatives to control the
diseases. Recently, the developed vaccines using microalgae
as carriers have been increasingly applied to the aquaculture
industry, which provides new ideas for diseases prevention and
control in aquaculture.

As an essential part of aquatic ecosystems like oceans
and lakes, microalgae is of great significance to the aquatic
environment, the health of aquatic animals, and the balance
of the ecosystem (Figure 1). The cells of microalgae are
rich in active nutrients such as proteins, polyunsaturated
fatty acids (PUFAs), polysaccharides, and essential amino
acids, which can promote the growth of fish, shrimp, crab,
and shellfish. Therefore, they can be used as a basic feed
for fish and other economic aquatic animals directly or
indirectly (Yaakob et al., 2014). In addition, microalgae also
play an important role in regulating and judging the quality
of aquaculture water. For example, algae cells can absorb
nutrients such as nitrogen and phosphorus to improve the
water quality and maintain a good dynamic balance, thereby
enhancing the disease resistance of aquatic animals and
improving the survival rate (Taelman et al., 2013). Due to
the increasing importance of microalgae in aquaculture, this
article reviews the aspects of microalgae in the prevention
and control of diseases in aquaculture. Before conceiving
and writing this review, we had searched the literature
thoroughly, whatever in the past few years or decades.
There are roughly hundreds of papers in the field of algae
application in aquaculture. However, there is few of systematic
summary of the existing research conclusions, especially few
about evaluation of microalgae as immunostimulants and
recombinant vaccines for disease prevention and control
in aquaculture. Charoonnart et al. (2018) reviewed the
genetic engineering of microalgae to produce therapeutic
proteins and biomolecules against aquaculture diseases, in
which some research cases were listed and summarized.
Abidin et al. (2020) focused on the potential and application
of genetically modified microalgae in aquaculture, and
evaluated the feasibility of microalgae as a vaccine carrier
from a technical perspective. This article systematically
analyzes and discusses the above problems, including some
examples of commercial application, in order to provide ideas

for the future development of highly effective microalgae
recombinant oral vaccines.

THE IMPORTANCE OF MICROALGAE AS
FEED FOR AQUACULTURE INDUSTRY

For a long time, microalgae have provided direct or indirect
nutrition to the early stages of growth of many aquaculture fish,
shellfish, and invertebrates (Priyadarshani and Rath, 2012). In
the larval stages of mollusks, echinoderms, crustaceans, and
some fish, the feeding method is usually filter feeding, during
which microalgae are the source of nutrients (Hemaiswarya
et al., 2010; Kaparapu, 2018). Tredici et al. (2009) have
reviewed the cultivation patterns of microalgae used for
feeding. They introduced the development of microalgae
biotechnology, especially the new culture techniques, and
focused on the practical and potential applications of
algae in the nutrition of aquatic animals, which can take a
dominant position in this ecosystem. Shields and Lupatsch
(2012) have summarized the current state of algae use
in aquaculture and developments in algal biomass as an
ingredient in formulated animal feeds. Microalgae provide
an important direct or indirect feed source for the early
developmental stages of many aquatic species, and traditionally,
in hatcheries for aquatic animals, microalgae farming is
large-scale, generally in outdoor ponds or large pools.
However, in intensive aquaculture hatcheries, microalgae
breeding is usually carried out in specialized bioreactors,
managing different algae species regularly through artificial or
automated means.

Microalgae are generally single cells of size from several
to dozens of micrometers. The individual size and structural
function of microalgae as well as the feeding structure and
digestive function of aquatic animals exist differences. Thus
different aquatic animals require nutrients from respective
types of feeding microalgae at different growth stages. For
example, microalgae rich in eicosapentaenoic acid (EPA)
or docosahexaenoic acid (DHA) (Chaetoceros calcitrans,
Isochrysis galbana, etc.) are usually provided for marine
mollusks in the early development stage (Ran et al., 2020).
Microalgae that are inseparable from the whole-life growth and
development of shellfish, such as Tetraselmis spp., Thalassiosira
pseudodonana, and C. calcitrans, are usually supplied for
crustaceans. Nannochloropsis spp. are mainly used in the culture
of rotifers. Dunaliella salina is often used for pigmentation
of aquatic animals (Borowitzka, 1997). As the number and
species of aquaculture animals increase, so does the demand
for suitable microalgae in the aquaculture industry. At the
growth and metamorphic development stage of fish, shrimp,
shellfish, and crab larvae, the mixed feeding of microalgae
and animal-based natural bait would lead to better results
(Shields and Lupatsch, 2012).

At present, there are dozens of kinds of bait microalgae that
can be popularly applied in large-scale seedling production all
over the world. Microalgae are the major source of food for
zooplankton and small-size fish, and subsequently a valuable
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FIGURE 1 | The importance of microalgae in the aquaculture industry. Microalgae can provide direct or indirect nutrition for aquatic animals and can be immune
stimulants for diseases control, also play an important role in regulation of water quality.

source of vital nutrients as fodder for fish in the upper echelons
of the food chain, microalgae-based feeds offer promising
food sources for sustainable aquaculture industry (Yarnold
et al., 2019). Shah et al. (2017) reviewed the latest progress
of microalgae as a supplement or feed additive to replace
fishmeal and fish oil in aquaculture. According to the nutrient
requirements of fish, good selection of microalgae species can
improve its conversion rate in fish body, thus studying the
nutrient composition of different microalgae is necessary to
support aquaculture. In addition, the safety and regulatory issues
of microalgae feed applications also need to be considered.
Also, the cost of high-quality algal biomass is considerably
higher than fishmeal or grain-based feed components, possibly
limiting its large-scale application. It is worth noting that
the algal biomass applied to the aquaculture feed industry is
mainly in the form of pasting, thus the cost could be greatly
reduced in this form (Raja et al., 2018). Of course, the algae
species that are being developed and commonly used are usually
non-toxic, harmless, nutritious, and easy to grow on high
density at large scale.

Although the value of bait microalgae is increasingly
recognized, in order to meet the development needs of aquatic
animal larvae, further screening and directional cultivation of
microalgae is indispensable. Moreover, it is urgent to establish
the nutritional value evaluation system of microalgae bait and
study new breeding methods and technologies to improve the

nutritional value of bait microalgae. In conclusion, microalgae are
absolute highly-demanded products in the field of aquaculture,
with unique advantages and broad application prospects.

MICROALGAE CAN BE EXCELLENT
IMMUNOSTIMULANTS OR
ANTIOXIDANTS

Natural microalgae are rich in natural products, pigments,
proteins, vitamins, PUFAs, and polysaccharide derivatives, and
are the natural feed of aquatic animals, so it has inherent
advantages to use them to develop microalgae additives. Bioactive
substances from microalgae have natural antibacterial activity,
which could eventually kill or inhibit the growth of pathogenic
bacteria. Some polysaccharides were reported to increase the
phagocytic capacity of macrophages and the gene expression
level of pro-inflammatory cytokines, thereby activating natural
immune response (Mohan et al., 2019). In addition, some
PUFAs have unique regulatory effects on growth performance,
membrane permeability, enzyme activity, immune function, etc.
Yaakob et al. (2014) reviewed the contribution of microalgae
in the nutritional requirements of aquatic feed. The nutrients
contained in different microalgae are also different, and these
main biomass ingredients in aquatic animals can play a role in
enhancing the immune system and improving the function of
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anti-infection. From the perspective of the application status of
microalgae feed in fish nutrition, microalgae also play a positive
role in improving the growth performance, disease resistance,
and skin color of edible fish (Roy and Pal, 2014; Molino et al.,
2018). Because the nutrient characteristics of different algae are
different, they can be used differently in aquaculture, so it is
necessary to study the economic benefits of microalgae as feed
additives to different aquaculture animals.

Haematococcus pluvialis
There are lots of studies that used pigment-rich algae species
as feeding additives. Sheikhzadeh et al. (2012) found that
astaxanthin-rich Haematococcus pluvialis was added to fish
feed in different proportions. Especially when the ratio is
0.3%, it promotes the physiological and metabolic functions
of rainbow trout (Oncorhynchus mykiss), and improves the
antioxidant activity of fish tissue effectively. Li et al. (2014)
compared the effects of adding astaxanthin and H. pluvialis in
feed on growth performance, antioxidant activity, and immune
response of large yellow croakers (Pseudosciaena crocea). They
found that dietary supplementation of both astaxanthin and
H. pluvialis can improve the growth performance of large yellow
croakers, whereas the latter is more effective. Furthermore, when
the additive proportion of H. pluvialis is 0.28–0.56%, it can
significantly improve the blood indices of large yellow croakers,
and improve antioxidant and immune capacity. Astaxanthin can
enhance the salinity stress tolerance, and salinity stress test is
a widely used criterion to predict the health status of shrimp.
Xie et al. (2018) found that dietary supplementation of 0.33–
0.67% H. pluvialis improved the survival rate of white shrimp
Litopenaeus vannamei under the salinity stress. One of the
lipid peroxidation products malondialdehyde (MDA) and mRNA
expression of superoxide dismutase (SOD) and glutathione
peroxidase (GSH-PX) decreased in white shrimp larval livers
after salinity stress, whereas total antioxidant capacity (T-AOC)
increased. In addition, they demonstrated that the addition of
H. pluvialis is mainly enhanced by the regulation of the NF-κB
pathway, which indicated that the astaxanthin might improve
the anti-inflammation and immune property. Thus, the intake
of these substances or algae powder can improve the antioxidant
performance as well as has a beneficial effect on innate immunity.
Notably, there is a significant economic barrier in natural algal
powder application, as that synthetic astaxanthin produced from
petrochemicals is considerably cheaper than natural sources from
H. pluvialis, and therefore the synthetic form dominates in the
aquaculture industry (Shah et al., 2016).

Arthrospira platensis (Spirulina)
Arthrospira platensis (also known as Spirulina) is a kind of
cyanobacteria that has become increasingly popular worldwide
as a dietary supplement, one of the most nutritious foods
known to human, and is often used as a feed additive
in aquaculture. Mahmoud et al. (2018) studied the effect
of dietary adding A. platensis on nile tilapia (Oreochromis
niloticus) growth performance, immune response, and the
oxidation resistance. They found that dietary supplementation of
A. platensis has no effect on the growth performance of tilapia,

but significantly improves the antioxidant capacity and ability
to resist the infection of Pseudomonas fluorescens, especially
when adding proportion is 1%. Radhakrishnan et al. (2014)
used A. platensis and Chlorella vulgaris instead of fishmeal to
feed Macrobrachium rosenbergii. In all feeding groups, 50% of
the fishmeal replacement group showed better non-enzymatic
antioxidant activity, while no significant increases were shown in
enzymatic antioxidant performance. Macias-Sancho et al. (2014)
added different proportions of A. platensis to the fishmeal of
the white shrimp L. vannamei. With the increasing proportion,
the number of granular hemocytes increased significantly and
the reduction of hemolymph cellular apoptosis prevented the
early stage of virus infection. Yeganeh et al. (2015) evaluated
the effect of dietary addition of A. platensis on the immune
function of rainbow trout (O. mykiss). They found the immune
response increases when supplementation ratio at 7.5 and 10%,
and hematology and serum biochemistry related indicators
of rainbow trout improved. Adel et al. (2016) have explored
the effects of adding A. platensis diet on humoral immunity
and mucosal immune response, and disease resistance of great
sturgeon (Huso huso). They found that adding 5 or 10% of
A. platensis significantly increased serum IgM, and the activity of
lysozyme and the total protein content on the mucosa increased,
thereby improving the ability of the great sturgeon to resist
various pathogens. Chen et al. (2016) investigated the effects
of A. platensis dried powder on the immune response of white
shrimp L. vannamei. A. platensis can induce degranulation
of shrimp hemocytes and increase oxidative stress response
in vitro experiments. The 3 and 6% A. platensis diet feeds
significantly stimulated shrimp innate immunity by increasing
the expression of pattern recognition proteins (PRPs) like LGBP,
as well as by increasing lysozyme activity, phagocytic activity,
and resistance against Vibrio alginolyticus. Yu et al. (2018) found
that feeding coral trout (Plectropomus leopardus) diets containing
A. platensis (especially 10%) significantly improved their growth
performance and the antioxidant status of livers, and enhanced
the immune ability and resistance against Vibrio harveyi. Promya
and Chitmanat (2011) found that adding 5% A. platensis or
Cladophora spp. to the diet increased the number of red and
white blood cells of African sharptooth catfish, and improved
lysozyme activity in sera. Raji et al. (2018) explored fishmeal
replacement with A. platensis and C. vulgaris in African catfish
Clarias gariepinus, which have significantly improved the activity
of CAT and the number of white blood cells. This indicates that
the supplementation of these microalgae can stimulate immune
response and improve the ability to fight infection.

Chlorella spp.
From the view of nutrition, C. vulgaris is rich in nutrients,
containing 61.6% proteins, 12.5% fat, 13.7% carbohydrates, trace
elements, various vitamins, and minerals, and is generally used as
growth promoter and immunopotentiator (Ahmad et al., 2018).
Khani et al. (2017) have studied the effect of C. vulgaris on
immunological parameters of koi carp Cyprinus carpio. They
found that the addition of 5% dry C. vulgaris powder to koi
carp diet can make fish with the highest level of IgM and
lysozyme activity, resulting in resistance to both unsuitable
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environmental conditions and outbreaks of infectious diseases.
Xu et al. (2014) indicated that when feeding gibel carp Carassius
auratus gibelio with C. vulgaris as the dietary additive, with
the increase of dietary proportion (0.4–2.0%), the relevant
immunological parameters (SOD, POD, LZM, etc.) of gibel carp
also showed an increasing trend. Zhang et al. (2014) also studied
the effect of feeding C. vulgaris on the immune status of gibel
carp (C. a. gibelio) and analyzed the relevant immunological
parameters, reporting that C. vulgaris could increase the level of
IgM and IgD, interleukin-22, and chemokine(C-C motif) ligand
5 in some tissues. Zahran and Risha (2014) and Zahran et al.
(2018) found that dietary supplementing C. vulgaris at 10%
could protect nile tilapia O. niloticus against arsenic-induced
immunotoxicity and oxidative stress. Maliwat et al. (2017) added
C. vulgaris to the giant freshwater prawn M. rosenbergii, which
improved the prophenol oxidase activity and the total amount
of hematocytes of M. rosenbergii postlarvae and could enhance
the larval survival to Aeromonas hydrophila infection, especially
at the supplementation ratio of 6%. Galal et al. (2018) found
that C. vulgaris dietary supplementation could protect nile tilapia
O. niloticus from being exposed to sub-lethal concentrations of
penoxsulam herbicide and improve its anti-infective capacity
against Aeromonus sobria.

Other Algae Species
Research by Das et al. (2013) has shown that long-term dietary
supplementation of dry Microcystis aeruginosa can significantly
improve the immunity and the survival rate of Indian major carp
Labeo rohita. However, M. aeruginosa can secrete some toxins
that threaten health. They found that when feeding L. rohita in a
ratio of 0.1%, it could significantly stimulate the immune system,
improving the defense against A. hydrophila. Lyons et al. (2017)
found that controlling the intestinal microbial community by
dietary supplementation of 5% Schizochytrium limacinum might
be a promising method to improve the intestinal health and
nutrient utilization of rainbow trout O. mykiss. Nevertheless, it
should be highlighted that the heterotrophic protist S. limacinum
is technically not an algae, although it is often (incorrectly)
named as such in publications and marketing (Leyland et al.,
2017). What is noteworthy is that S. limacinum is rich in
PUFAs and can be applied to the aquaculture industry. Salvesen
et al. (1999) fed juvenile turbot Scophthalmus maximus L. with
microalgae I. galbana matured water and found that such green
water could improve the survival rate of juvenile turbot as
well as accelerate its growth performance and ability to inhibit
the proliferation of bacteria. Molina-Cárdenas and Sánchez-
Saavedra (2017) found that six benthic diatom species had
inhibitory effects on the growth of three common pathogens
(V. alginolyticus, Vibrio campbellii, and V. harveyi), which
could infect mollusks, shellfish, and fish. Moreover, many
reports about the antibacterial properties of microalgae have
pointed out that some metabolites secreted by microalgae can
prevent pathogenic microorganisms from infecting their host.
For example, marine algal polysaccharides play an antiviral role
by inhibiting the adhesion of viruses (Ahmadi et al., 2015). And
dietary supplementation of marine-derived polysaccharides can

improve the growth, immune response, and disease resistance of
aquatic animals (Mohan et al., 2019).

The researches mentioned above have shown that these
microalgae can successfully enhance the innate immune function
of the host, improve the antioxidant capacity, or reduce the
infection of the pathogens to a certain extent. Therefore, some
wild-type microalgae can act as effective immunostimulants. In
addition, some studies have shown that microalgae can be used
as a platform for protein production and drug delivery through
genetic engineering. Although microalgae and its extracts have
significant ability to prevent and control aquatic animal bacterial
diseases, the antibacterial mechanism is still unclear, which
should be strengthened in the future.

GENETIC MODIFIED MICROALGAE HAS
GREAT POTENTIAL IN DISEASE
CONTROL

The Potential for Microalgae as
Bioreactors to Produce Vaccines or
Other Products
The development of microalgae cells as vaccine has long
attracted the attention of scientists. In human diseases, the
first reported antigen expressed using microalgae as a carrier
was the capsid protein VP1 of foot-and-mouth disease virus
(FMDV). Researchers assembled the gene of the cholera
toxin B subunit (CTB) and the gene encoding VP1 into a
chloroplast expression vector of Chlamydomonas reinhardtii,
and finally integrated the chloroplast genome for expression.
The expression level of the fusion protein can reach 3% of
the total soluble protein (TSP) after detection (Sun et al.,
2003). So far, researchers have used microalgae as a host to
express relevant antigens of human diseases into preclinical
trials (Rosales-Mendoza, 2016b). For example, in the field of
parasitic and infectious diseases, multiple antigens such as
Pfs25/28, D2-CTB, and Pfs25/28, D2-CTB, have been expressed
in microalgal cells, respectively, against Plasmodium falciparum,
Staphylococcus aureus, human papilloma virus, hepatitis B virus,
and HIV (Specht and Mayfield, 2014; Rasala and Mayfield,
2015; Yan et al., 2016). In the field of non-infective diseases,
genetically engineered microalgae have been developed for
diseases such as type I diabetes, atherosclerosis, hypertension,
allergies, and tumors (Rasala and Mayfield, 2015; Rosales-
Mendoza, 2016b). There are also many successful reports on the
use of microalgal cells to develop animal pathogenic vaccines.
A number of microalgal recombinant subunit vaccines have
been developed against classical swine fever virus, FMDV, etc.
(Specht and Mayfield, 2014; Rasala and Mayfield, 2015; Rosales-
Mendoza, 2016a; Yan et al., 2016). Throughout these studies,
C. reinhardtii was used as a mature host system to express
antigenic proteins, and the expression of foreign proteins is
mainly between 0.1 and 5% TSP (Specht and Mayfield, 2014).
Although C. reinhardtii is a model organism, due to random
integration event, nuclear transformation is often accompanied
by transgenic silencing, while transgenes inserted into the
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TABLE 1 | Research on developing genetically modified microalgae vaccine in aquaculture.

Number Pathogen Antibacterial
peptides (AP)
Antigen (Ag)

Expression
host

Vector Promoter Position Expression
(yield)

Protection
Object

Effect References

1 R. salmoninarum Ag:p57 C. reinhardtii
[CC744]

/ / Chloroplast and
plasma
membrane

/ Oncorhynchus
mykiss

Produced
p57-specific
immunoglobulins
(IgM) in different
tissues

Siripornadulsil
et al., 2007

2 A. salmonicida Ag:AcrV, VapA C. reinhardtii
[WT, FUD50,
FUD7]

pGA4 psaA, atpA
psbD, psbA

Chloroplast AcrV: 0.8% TP
VapA: 0.3% TP

/ / Michelet et al.,
2011

3 WSSV Ag:VP28 C. reinhardtii
[CC741 mt+,
Fud7 mt−]

pBA155 pSR229 psbA, atpA,
psbD

Chloroplast 0.1–10.5% TSP Shrimp / Surzycki et al.,
2009

4 WSSV Ag:VP28 D. salina
[UTEX-1644]

pUX-GUS Ubil Chloroplast 78 mg/100 mL
culture

Shrimp 59% Protection
rate

Feng et al.,
2014

5 WSSV Ag:VP28 Anabaena sp.
[PCC 7120]

pRL-489 psbA Cytoplasm 34.5 mg/L
culture
Expression
efficiency:
1.03% (dry
weight)

Shrimp 68% Protection
rate

Jia et al., 2016

6 WSSV Ag:VP28 Synechocystis
sp. [PCC 6803]

pRL-489 psbA Cytoplasm / Shrimp 88.42%
Relative survival

Zhai et al.,
2019

7 WSSV Ag:VP28 C. reinhardtii
[TN72]

pASapI atpA Chloroplast detectable Shrimp 87% Relative
survival

Kiataramgul
et al., 2020

8 WSSV Ag:VP19, VP28 Synechococcus
sp. [PCC 7942]

pRL-489 psbA Cytoplasm vp19, vp28, vp
(19 + 28) 5.0,
4.7, and 4.2%,
(dry weight)

Shrimp Activity of PO,
SOD, CAT, and
LYZ changed

Zhu et al., 2020

9 YHV dsRNA-
YHV(RNA)

C. reinhardtii
[CC503
cw92mt+]

pSL18 psbD Nucleus 41 ng/100 mL(1× 108

cells)
Shrimp Increasing 22%

protection
Somchai et al.,
2016

10 YHV dsRNA-
YHV(RNA)

C. reinhardtii
[CC-5168]

pSRSapI psaA Chloroplast 16.0 ± 0.9 ng
dsRNA/L
late-log phase
culture

Penaeus
vannamei
Shrimp

50% survival at
8 day-post
infection

Charoonnart
et al., 2019
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chloroplast genome by homologous recombination are not
silenced and offer a platform for the production of recombinant
proteins. Hence, the chloroplast homologous recombination is
the main expression method, and nuclear transformation is
randomly integrated as the auxiliary. Researchers also explored
Chlorella ellipsoidea as an expression host to heterologously
express and purify the rabbit defensin (NP-1). They obtained a
small molecule defensin peptide NP-1 with high bacteriostatic
activity, which also made it possible to produce such antibacterial
peptides on a large scale with algae (Bai et al., 2013). At present,
the application of microalgae and microalgae products in the
pharmaceutical industry is attracting more and more attention.
As the biotechnology for algae active substance research gradually
matures, the use of microalgae for research and development of
new drugs or vaccines has great potential.

Prevention of Aquaculture Diseases by
Microalgae Vaccine
It is worth noting that the microalgae oral vaccines have been
designed and developed for specific pathogens in the field of
aquaculture, and their immunoprotection has been explored. In
order to prove the feasibility of the microalgae can be utilized as
a oral delivery vector, Kwon et al. (2019) fed zebrafish (Danio
rerio) on a diet of green fluorescent protein (GFP)-expressed
C. reinhardtii, clear fluorescent signals in the intestinal tract can
be detected by laser confocal image and immunostain, and GPF
can also be detected in zebrafish serum, which indicates that the
orally delivered proteins were protected until they were released
in the gut. The research demonstrated the ability of C. reinhardtii
as an oral delivery platform for recombinant bioactive proteins.
The researchers Siripornadulsil et al. (2007) expressed the antigen
protein p57 of Renibacterium salmoninarum in C. reinhardtii,
and studied the effects of in vivo algae cell soaking and algae
meal addition on the immune response induced by iris fish
larvae. Their results showed that antibody production can be
detected by soaking for 2 h or by adding 4% of the microalgae
feed. Moreover, it was confirmed that the transgenic microalgae
oral administration of this antigen presentation method could
completely induce antibody production in blood, skin, epithelial
tissue, and mucosa. Michelet et al. (2011) successfully genetically
modified C. reinhardtii and efficiently expressed the two
antigenic proteins AcrV and VapA of Aeromonas salmonicida
in chloroplasts with different promoters and different expression
methods. Feng et al. have successfully achieved the heterologous
expression of VP28 protein with green alga D. salina and
cyanobacteria Anabaena sp., and have explored the ability of the
transgenic microalgae vaccine against white spot syndrome virus
(WSSV). The results showed that genetically modified microalgae
can effectively improve disease resistance and delay the death of
shrimp (Feng et al., 2014; Jia et al., 2016). Subsequently, Zhai et al.
(2019) highly expressed the VP28 protein in Synechococcus sp.,
and the expression efficiency was three times higher than that in
Anabaena. In their recent research, Synechocystis PCC6803 was
successfully carried out heterologous expression of VP28 protein.
Oral transgenic Synechocystis PCC6803 can increase the enzyme
activities in immune system and enhance the defense ability of TA
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WSSV infection in juvenile prawn. And these VP28 transgenic
algae cells can be directly fed as juvenile shrimp bait without
extraction and purification, which are expected to be applied to
the aquaculture industry on a large scale. Somchai et al. (2016)
constructed a shrimp yellow head virus (YHV) RNAi vector in the
C. reinhardtii system, which improved survival by 22% after oral
administration to prawn larvae. In the same way, Charoonnart
et al. (2019) engineered the chloroplast genome of C. reinhardtii
to express double-stranded RNA (dsRNA) designed to knock
down key viral genes, Shrimps fed with dsRNA-expressed algal
cells prior to YHV infection had 50% survival at 8 day-post
infection, whereas only 15.9% survival rate was observed in
control groups, and RT-PCR results revealed a lower infection
rate in dsRNA-expressing algae treated shrimp compared to
control groups. In all cases, aquatic animals were direct protected
by feeding genetic modified microalgae. The above research and
explorations give the direction for the development and large-
scale application of genetically modified microalgae recombinant
vaccines in the aquaculture field (Table 1).

In addition, many international patents about recombinant
microalgae vaccines for the prevention and control of aquatic
diseases have been published or authorized (Table 2). This
indicates that the theoretical research of microalgae vaccines
is also extending to practical commercial applications. Beta-
nodavirusare causes severe diseases, such as viral nervous
necrosis (VNN) or viral encephalopathy and retinopathy (VER),
which is detrimental to the growth and reproduction of marine
fish, especially their larvae. In a patent filed by TransAlgae
lnc. in Israel (Chen, 2016), the researchers selected Nervous
Necrosis Viruses (NNV) capsid protein or fragment as an antigen
to be expressed in microalgae subcellular compartment. The
recombinant protein was delivered into the mucosal immune
system of white grouper Eyineyhelus aeneus or the European
sea bass Dicentrarchus labrax juvenile fish. The experimental
results showed that the exogenous antigens could be presented
successfully and stimulate the specific immune response in the
fish body, so that transgenic microalgae could improve the
survival rate of juvenile fish. At present, the company has been
developing pipeline products for a fish disease and two major
shrimp’s diseases in the aquaculture industry. In a patent filed
by Durvasula and Durvasula (2008), the researchers introduced a
DNA fragment encoding the antigen into a variety of microalgae,
and the exogenous DNA fragment encoding product containing
one or more key epitopes of the pathogen, such as WSSV,
V. harveyi, etc. In one embodiment, the transgenic D. salina
was initially fed to Artemia, and then the latter was used to
feed shrimp larvae. In this method, the antigen molecule was

presented indirectly to shrimp and successfully induced antibody
within the gut tissue. Therefore, the oral administration of
recombinant microalgae step by step is a measure conducive to
the safety of commercial aquaculture. Similarly, in the patent
applied by Tsai and Li (2011), one of the preferred examples used
Nannochloropsis as an expression vector to express the foreign
gene-encoded products, including rYGH of Acanthopagrus latus,
Bovine lactoferricin (LFB), and capsid protein of WSSV (VP28).
They, respectively, demonstrated that recombinant microalgae
had the effects of the promotion of growth, the resistance to
pathogens, and the resistance to viruses for the aquatic animals.
The patent filed by the Ohio State University showed that the
antigen can be delivered to the host through oral vaccination
with transgenic microalgae and successfully induced immune
response (Sayre et al., 2017). In one preferred embodiment, the
successful expression of the foreign protein p57 can be detected
from the fish mucus.

Recently, a number of researches on the application
of genetically modified microalgae in aquaculture and the
protection of intellectual property rights have been emphasized
(Tables 1, 2). It is worth noting that many emerging
algae companies (TransAlgae, Microsynbiotix, and Triton
Algae) embarked on this trend and developed genetically
modified organism (GMO) methods. In the current cases,
oral administration leads to significant protective immunity
and survival rate of orally vaccine animals. Oral delivery of
antigens to aquatic organisms with microalgae can protect the
antigen molecule from the degradation of metabolic digestive
system. However, the detailed mechanism of antigen molecular
presentation has not been dissected. The research on the
direct or indirect oral feeding of recombinant microalgae for
aquatic organisms is expected to better prevent, ameliorate,
or treat diseases or disorders of aquatic animals in the
aquaculture industry.

Resistance of Microalgae Oral Agent to
Polymicrobial Diseases
Various microorganisms such as bacteria, fungi, viruses, and
even parasites infect the same biological host in different
combinations. This process that causes acute or chronic diseases
is called polymicrobial infection (Brogden et al., 2005). In the
field of aquaculture, polymicrobial infection is a long-term and
common phenomenon. Currently, the strategy for developing
oral agents against polymicrobial infections using microalgae
as a platform is mainly to heterologously express antimicrobial
peptides. LFB is an antimicrobial peptide that can kill or

TABLE 3 | Comparison of several systems used in oral vaccine development.

Organism Diversity of genetic tools Growth rate Modification capacity Cultivation cost Biosecurity

Bacteria ++++ ++++ + + ++

Yeast ++++ +++ +++ + +++

Mammalian cell +++ +++ ++++ ++++ ++++

Higher plant +++ + +++ ++ ++++

Microalgae ++ +++ +++ + ++++
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inactivate many pathogens (Tsai and Li, 2011). Li and Tsai
(2009) used the Nannochloropsis oculata as a host, expressed a
broad-spectrum antibacterial peptide bovine lactoferricin (LFB),
which has explored the antibacterial ability in vitro and in vivo.
The experimental result showed that medaka fish fed with
LFB-containing transgenic microalgae would have bactericidal
defense against Vibrio parahaemolyticus infection in its digestive
tract. After being infected by V. parahaemolyticus, the survival
rate of the experimental group fed with transgenic microalgae
increased to 85%. He et al. (2018) introduced the heterozygous
antimicrobial peptide gene (Scy-hepc) into Chlorella sp., and
evaluated the antibacterial effect of transgenic microalgae in vitro
and in vivo. It was found that the extract of transgenic
microalgae had antibacterial ability to the experimental bacteria.
In vivo experiments, the relative survival rates of the Sparus
macrocephalus and hybrid grouper fed with transgenic Chlorella
after infected by A. hydrophila were 80 and 55%, respectively.
Overall, the above examples provide some ideas for the
development of a polymicrobial targeted recombinant microalgae
vaccine in the aquaculture industry.

PROSPECT OF ALGAL-BASED ORAL
RECOMBINANT VACCINES

In fact, algae cells are known as the natural green factories.
They have the advantages of high photosynthesis efficiency,
direct use of solar energy, and CO2 fixation ability. Through
genetic manipulation, a series of high value-added products
such as pharmaceutical proteins, functional enzyme, and food
additives can be efficiently expressed, which has unparalleled
advantages (Georgianna and Mayfield, 2012; Dyo and Purton,
2018). The specific attributes and limitations of each system
should be evaluated before selecting the most suitable oral
vaccine development platform (Table 3). Compared with
bacterial expression systems, eukaryotic microalgae can complete
complex protein folding and modification to form active
proteins that meet people’s specific needs for antigens and
antibodies. Compared with yeast expression systems, microalgae
can photosynthesize, sequestrate carbon, and reduce greenhouse
gas emissions. Compared with genetically modified higher plants,
it has a shorter culture cycle and is less restricted by seasonal
weather conditions. Compared with the mammalian cell culture,
it has lower production costs and can be easily scaled up.
In addition, the microalgae-derived protein is biocompatible
and can be directly consumed by animals without isolation
and purification, thereby avoiding the cost of purification and
extraction (Leon-Banares et al., 2004). It is important to stress
that microalgae and cyanobacteria are extremely diverse with
100,000s of different species spread across the tree of life.
Nowadays, a handful of these are recognized as edible (e.g., have
GRAS status) and are used as food or feed components, which can
serve as the cell factory to synthesize valuable products and oral
delivery vehicle for subunit vaccines at the same time (Rosales-
Mendoza et al., 2016). Therefore, it is completely feasible to apply

algae cell metabolic engineering and synthetic biology research to
the development of aquatic vaccines.

At present, a variety of aquatic vaccines have been developed
(Plant and Lapatra, 2011; Dadar et al., 2016). However, most of
the vaccines usually need to be purified or need to be packaged
with adjuvants. High cost and complicated processes (e.g., most
of them require immunization by injection) have limited their
application in large-scale aquaculture. Microalgae can be used
as bait feed additive for aquatic animals in the form of living
cells or powder, or made into granular bait as an additive,
which generally has the effects of promoting growth, enhancing
resistance, improving larval survival and body color for a variety
of aquatic animals. At the same time, aquatic animals can
obtain considerable immunity by oral administration, avoiding
the physical damage caused to animals by injection or immersion
immunization, reducing the operating cost and the burden
on animals themselves. Therefore, if the antigen is highly
expressed in the microalgae cells and the transgenic microalgae
can be consumed as oral vaccine, it is expected to play an
important role in the prevention and control of aquatic diseases
(Mutoloki et al., 2015). As a feed for aquatic animals, algae
cells can be used as a carrier to present heterologous expressed
antigens which not only supplement nutrition but also play the
role of vaccine.

Microalgae meet the sustainable development needs of
multiple industries due to its unique advantages. However,
there are still some problems with the microalgae expression
system, such as low expression efficiency and poor stability,
low recombinant protein content, immature genetic platform,
etc. In addition, the situation of polymicrobial co-infection in
aquaculture is becoming increasingly severe, whereas at present,
there are no effective prevention and treatment measures for
multi-pathogen infections, and related research is relatively
scarce. In the future, with the development of oral vaccines
using microalgae as a carrier, broad-spectrum antibacterial
activity and multivalent recombinant microalgae vaccines are
expected to flourish.
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Cyanobacteria are photosynthetic prokaryotes being developed as sustainable
platforms that use renewable resources (light, water, and air) for diverse applications
in energy, food, environment, and medicine. Despite the attractive promise that
cyanobacteria offer to industrial biotechnology, slow growth rates pose a major
challenge in processes which typically require large amounts of biomass and are often
toxic to the cells. Two-stage cultivation strategies are an attractive solution to prevent
any undesired growth inhibition by de-coupling biomass accumulation (stage I) and the
industrial process (stage II). In cyanobacteria, two-stage strategies involve costly transfer
methods between stages I and II, and little work has been focussed on using the distinct
growth and stationary phases of batch cultures to autoregulate stage transition. In
the present study, we identified and characterised a growth phase-specific promoter,
which can serve as an auto-inducible switch to regulate two-stage bioprocesses in
cyanobacteria. First, growth phase-specific genes were identified from a new RNAseq
dataset comparing two growth phases and six nutrient conditions in Synechocystis sp.
PCC 6803, including two new transcriptomes for low Mg and low K. A type II NADH
dehydrogenase (ndbA) showed robust induction when the cultures transitioned from
exponential to stationary phase growth. Behaviour of a 600-bp promoter sequence
(PndbA600) was then characterised in detail following the expression of PndbA600:GFP
in Synechococcus sp. PCC 7002. Culture density and growth media analyses showed
that PndbA600 activation was not dependent on increases in culture density per se but
on N availability and on another activating factor present in the spent media of stationary
phase cultures (Factor X). PndbA600 deactivation was dependent on the changes
in culture density and in either N availability or Factor X. Electron transport inhibition
studies revealed a photosynthesis-specific enhancement of active PndbA600 levels.
Our findings are summarised in a model describing the environmental regulation of
PndbA600, which can now inform the rational design of two-stage industrial processes
in cyanobacteria.

Keywords: cyanobacteria, biotechnology, two-stage cultivation strategy, stationary phase, promoter,
transcriptomics, nutrient limitation
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INTRODUCTION

Cyanobacteria are being developed as sustainable platforms
that use renewable resources (light, water, and air) for
diverse industrial applications, including the manufacturing of
commodity and high-value products and remediation of heavy
metals or salt (Amezaga et al., 2014; Al-Haj et al., 2016; Singh
et al., 2016, 2017; Miao et al., 2020). This phylum of oxygenic
photosynthetic bacteria inhabits virtually every niche across the
planet and, coupled with its metabolic plasticity, lends itself to a
vast variety of industrial settings and processes (Thajuddin and
Subramanian, 2005; Xiong et al., 2017). Cyanobacteria produce a
diverse palette of natural products with applications in energy,
food, environment, and medicine, and are easily engineered
for recombinant production (Camsund and Lindblad, 2014;
Dittmann et al., 2015; Singh et al., 2017).

Despite the attractive promise that cyanobacteria offer to
industrial biotechnology, they present unique challenges which
have hampered its adoption by an industry currently dominated
by well-established heterotrophic systems, such as Escherichia coli
and Saccharomyces cerevisiae. While similarly amenable to high-
throughput screening and engineering, many cyanobacterial
strains still pose key technical difficulties such as cultivation
and transformation—issues that have long been optimised
for their heterotrophic competitors. With the collection of
data and progress in technology, these barriers are gradually
coming down. For instance, energetic and economic costs of
cultivation and product purification are alleviated by rapid
developments in photobioreactor and downstream processing
technologies (Pierobon et al., 2018). Substantial effort has also
been directed towards the development of molecular tools
to genetically engineer these photosynthetic prokaryotes in
which both standard prokaryote and photosynthetic eukaryote
toolboxes are ineffective (Berla et al., 2013; Camsund and
Lindblad, 2014; Santos-Merino et al., 2019). Despite the
improvements in cultivation systems and the identification
of relatively fast-growing cyanobacterial strains, however, slow
growth rates continue to pose a major challenge to cyanobacterial
biotechnology (Gale et al., 2019).

Industrial applications typically require a large biomass to
obtain sufficient productivity. It is, therefore, important to
avoid any growth inhibition during biomass accumulation in
order to generate the optimal biomass as quickly as possible.
In addition, computational analyses indicate trade-offs between
biomass production and product synthesis in cyanobacteria
(Knoop and Steuer, 2015). Two-stage cultivation strategies are,
therefore, an attractive approach to decouple the industrial
process (stage II) from biomass accumulation (stage I). Growth
inhibition is thus minimised by alleviating issues arising from
product/process toxicity, and stage I growth rates/stage II
productivity is maximised by preferentially allocating resources
(carbon precursors, ATP energy, and NAD(P)H reducing power)
to growth or productivity, respectively (Burg et al., 2016).

In cyanobacteria, two-stage cultivation strategies typically
require extra steps between stages I and II that add monetary
and energetic costs to the process. The most common
approach involves physical transfer of cultures from stage I to

stage II, promoting conditions using centrifugation, filtration,
flocculation, or sedimentation (Monshupanee et al., 2016;
Kushwaha et al., 2018; Testa et al., 2019; Aziz et al., 2020).
Alternatively, stage II can be induced by the application
of physical and/or chemical stimuli such as changing light
conditions for pigment production or temperature and salt stress
for polysaccharide production in Spirulina (Lee et al., 2012, 2016).
Strategies which eliminate these extra steps between stages I and
II can greatly improve the economic feasibility of these systems.

Batch grown systems are well-suited for two-stage approaches.
Bacterial growth is characterised by three successive phases:
lag phase, exponential growth phase, and stationary phase.
Cyanobacterial batch cultures show a similar growth pattern
with the exception of an extended growth phase comprised of a
shorter early growth phase, from which exponential growth rates
are commonly reported, and a longer late growth phase, often
termed the linear growth phase, as the cultures transition to the
stationary phase (Schuurmans et al., 2017). Inherent differences
between the growth and stationary phases of batch systems can
be used to regulate two-stage processes and initiate stage II
once maximum culture density has been achieved in the late
growth/early stationary phase neither with any manipulation of
culture nor with any added cost to the process.

Promoters are regulatory elements in the DNA that function
as biological switches. Ideally, promoters controlling two-stage
processes should be inactive during stage I and become active at
the onset of stage II (Supplementary Figure S1). Auto-inducible
promoters, which respond to endogenous signals, have the
distinct advantage of not requiring any additional supplements,
thus simplifying and improving the sustainability of the process.
In the case of two-stage processes, promoters that specifically
respond to changes in growth phase, particularly the transition
to stationary phase, are ideal candidates. Libraries of stationary
phase promoters have been developed for E. coli (Miksch
et al., 2005). While orthogonal promoters derived from other
organisms are generally preferred in order to avoid interference
of engineered systems by host machinery, well-established
prokaryotic tools perform poorly in cyanobacteria (Huang et al.,
2010). In cyanobacteria, several growth phase-responsive genes
and promoters have been reported for some model strains
(Ludwig and Bryant, 2011; Berla and Pakrasi, 2012; Kopf
et al., 2014; Ruffing et al., 2016). However, we still lack a
detailed understanding of activation/deactivation behaviours and
of performance across strains.

In this study, we aimed to identify and characterise
an auto-inducible promoter for two-stage batch cultivation
strategies in cyanobacteria using the approach presented in
Figure 1. Two different species of cyanobacteria were used
to avoid potential issues with genetic instability or cross-talk
between native expression machinery and engineered expression
systems (Camsund and Lindblad, 2014; Gordon and Pfleger,
2018). First, RNA sequencing analyses comparing transcriptional
profiles across growth phases and nutrient conditions led to
the identification of robust growth phase-specific genes and
thus candidate promoters in the freshwater cyanobacterium
Synechocystis sp. PCC 6803. Next, the behaviour of a promoter,
PndbA600, was characterised in response to changing culture
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FIGURE 1 | Workflow for the identification and characterisation of growth
phase-specific promoters. Synechocystis sp. PCC 6803 was cultivated in
numerous different conditions. RNA sequencing of samples harvested during
early and late growth phases led to the identification of condition-independent,
growth phase-specific genes and candidate promoters. Heterologous
promoter behaviour was characterised using a green fluorescent protein
(GFP)-based assay in Synechococcus sp. PCC 7002.

density, growth media, and cellular redox status using a green
fluorescent protein (GFP) assay in Synechococcus sp. PCC
7002. Our findings are summarised in a model describing the
environmental regulation of PndbA600, which can inform the
rational design of sustainable, two-stage industrial processes
in cyanobacteria.

MATERIALS AND METHODS

Strains and Culture Conditions
Cyanobacterial Strains
Synechocystis sp. PCC 6803 was grown photoautotrophically
in Dreschel flasks in water baths equilibrated to 30◦C with
photoperiod 12 h/12 h light/dark and light intensity 80 µmol
photons m−2 s−1. Synechococcus sp. PCC 7002 was grown
photoautotrophically in Bijou bottles maintained at 30◦C in
a walk-in environmental growth chamber (Conviron model

MTPS72) with photoperiod 16 h/8 h light/dark and light intensity
150 µmol photons m−2 s−1. Cultures had a working volume
of 60–75% relative to the culture vessel capacity, which were
illuminated with fluorescent cool white lights and sparged with
humidified ambient air.

Growth Media
For control conditions, Synechocystis cultures were grown in
BG11 medium (Stanier et al., 1971) and Synechococcus cultures
were grown in A + medium (Stevens and Porter, 1980). For
low nutrient conditions, individual nutrients (N, P, K, S, and
Mg) were reduced to the indicated concentrations relative to the
concentration in control BG11 or A+medium, and counter ions
were replaced with control concentrations of KCl, MgCl, Na2SO4
or NaH2PO4 (see Supplementary Tables S1 and S2 respectively).
To obtain “spent” media, the supernatant of stationary phase
Synechococcus cultures (cultivated for ≥ 5 weeks) was harvested
after centrifugation at 4,000 g for 20 min at room temperature,
and filter-sterilised.

Culture Setup
Twenty millilitre control medium was inoculated with strains
maintained as DMSO stocks at −80◦C or on solid media
maintained at 23◦C. For control and low nutrient conditions,
20 ml cultures were grown to optical density (OD) 1–5, diluted
to OD 1 in the relevant growth medium and 0.5 ml was
used to inoculate 150 ml in the relevant growth medium.
For promoter activation and deactivation experiments, 750 and
150 ml cultures were grown in control conditions to low density
(OD < 5, GFP < 300) and high density (OD ≥ 12, GFP > 850),
respectively. Cells were harvested by centrifugation at 4,000 g for
20 min at room temperature, the supernatant was removed, and
the pellets were washed and resuspended at OD 1 or 12 (for low
and high density, respectively) in the relevant growth medium.

Electron Transport Inhibitors
3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, aka Diuron;
Sigma) or malonic acid (Sigma) were added at the indicated
concentrations to either young (1-week old cultures, OD < 5,
GFP < 300) or mature (4-week old cultures, OD ≥ 12,
GFP > 850) 150 ml cultures grown in control conditions.

Growth Monitoring
Growth was monitored by measuring OD at 730 nm (OD730)
within the linear range (OD 0.05–1.00) of a Lambda 45 UV/VIS
Spectrophotometer (PerkinElmer).

RNA Analyses
Total RNA was extracted using the RNeasy Mini Kit (Qiagen,
Venlo, Netherlands). Frozen cell pellets were resuspended in
700 µl Buffer RLT and cells were disrupted using 0.5 g of 0.5 mm
diameter glass beads for 5 min at 30 Hz in a TissueLyser (Qiagen,
Venlo, Netherlands). Following centrifugation at 10,000 g for
1 min, the supernatant was applied to the RNeasy spin column
and RNA purified as recommended by the supplier.

For RNA sequencing, messenger RNA (mRNA) was
enriched using the MICROBExpress Kit (Ambion, Austin,
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TX, United States). RNA quality was assessed before
and after mRNA enrichment using an Agilent R© 2100
BioanalyzerTM. Complementary DNA (cDNA) libraries were
generated using TruSeq Stranded mRNA Library Prep Kit
(Illumina) and sequenced using the Illumina MiSeq System
at Glasgow Polyomics. Reads were processed and mapped
to the Synechocystis genome (GenBank assembly accession
GCA_000009725.1) using TopHat and Cuffdiff software
(Trapnell et al., 2012). A total of 640,131,273 reads were obtained
with average reads of 16.4 million reads per sample and an
average length of 75 base pairs. A total of 546,270,878 reads
(85.3%) were mapped to the genome with a tolerance of a 2 base
pair mismatch. The number of reads mapped to each coding
sequence was calculated and normalised for gene length (number
of fragments mapped per kilobase of gene) and library depth
(total number of aligned reads in the experiment). Data are
thus presented as fragments per kilobase of gene per million
reads mapped (FPKM).

For each condition and time point, replicate samples from
three independently grown cultures were sequenced, resulting
in a total of 39 RNAseq datasets (1 control condition × 3 time
points × 3 replicates + 5 low nutrient conditions × 2 time
points× 3 replicates). The raw RNA sequencing data are available
from the European Nucleotide Archive, accession number
PRJEB40560. Significant differences between conditions and time
points were determined using Cuffdiff software (Trapnell et al.,
2012). Multi-dimensional scaling of the RNA sequencing data
was performed using the CummeRbund visualisation package
(Trapnell et al., 2012).

For quantitative real-time PCR (qPCR), total RNA was
isolated from different cultures to those used for RNA sequencing
experiments, resulting in a total of 36 qPCR samples (6 nutrient
conditions × 2 time points × 3 replicates). cDNA libraries
were generated using random primers with the QuantiTect
Reverse Transcription Kit (Qiagen, Venlo, Netherlands). qPCR
was performed in a StepOnePlus Real-Time PCR System (Life
Technologies). Primers were designed to amplify 110–155 bp
products with a 60◦C annealing temperature (Table 1) using
Primer 3 software (Untergasser et al., 2012) and interrogated
using Brilliant III Ultra-Fast SYBR Green QPCR Master Mix
(Agilent). Primer pair efficiencies were determined using serial
dilutions of gel purified RT-PCR product. Standard curves were

TABLE 1 | Primer sequences for quantitative real-time PCR.

Target Forward primer sequence Reverse primer sequence

gene (5′–3′) (5′–3′)

slr0211 CCTGCTCCGGGCCTTGG CTGGTATTGAATGGGGCCAC

slr0451 GAACAACAGGCCAGGGTAG CGTAGTTCTTGCCGTTGGTG

sll0401 GAGAGTAGAAGCCGTTACCC GCTGACGGAGAAGGAGCC

slr1697 CCCGATTTAACACCAATGTCC GACTCAATATTGCTGGTAGCC

slr0073 GGAATATTGCACTCGTCTGGG GCCAAGGTACGGTAGGAATG

slr2144 CAACAGTGACGGTCTGACC CACCACTGCTTGCCCATCC

psbA1 CCTGTGGTCACGGTTCTGTT TGCCATCAATATCCACCGGG

rnpB GTGAGGACAGTGCCACAGAA GATACTGCTGGTGCGCTCTT

ndbA GACAAAAACGGTGCTCTGGG CTCAAATCCGGGTTGACCAC

slr1747 GTTGCCCTCCCCTTGGTG GAATATGGCTCGAATCCAACAC

included in all qPCR runs to transform threshold cycles into
RNA concentrations, which were ratioed against the internal
control slr0211. For replication, assays were performed using
cDNA from three independently grown cultures. Significant
differences between conditions and time points were determined
by two-way ANOVA with Tukey (HSD) post-hoc analysis
using SigmaPlot software (Systat). Negative (no template)
controls were included and a melting curve analysis was
performed in all assays.

Promoter Analyses
A 600 bp sequence occurring directly upstream of the ndbA
gene, PndbA600, was amplified from Synechocystis genomic DNA
using primers containing BioBrick prefix and suffix overhangs for
cloning into the pAQ1BB transformation vector: forward primer
5′- gaattcgcggccgcttctagagTTAATGGATCGTTACCATTCCCAC
-3′ and reverse primer 5′- ctgcagcggccgctactagtaAGCAACGGCG
AAAATATTACGATTTG-3′. Following sequence confirmation
in the pGEM-T Easy vector, PndbA600 was cloned upstream
of a synthetic RBS-reporter construct comprised of RBS3
and GFP BioBrick part BBa_E0040 in the pAQ1BB vector
(Madsen et al., 2018) to generate pAQ1BB:PndbA600:RBS3:GFP
(Supplementary Figure S2). The sequence of the promoter-
reporter construct is presented in Supplementary Figure S3. The
promoter-GFP construct was integrated into a neutral site in the
Synechococcus genome by natural transformation and verified
by PCR amplification and sequencing to generate the transgenic
Synechococcus PndbA600:GFP strain. GFP was measured at
regular intervals during culture growth by adjusting culture
density to OD730 0.25–0.30 and measuring fluorescence using
480 nm excitation and 514 nm emission wavelengths using a
LS 55 Luminescence Spectrophotometer (PerkinElmer, Waltham,
MA, United States).

RESULTS

Environmental Conditions to Control
Growth Phase Transition in
Synechocystis Batch Cultures
Stationary phase can be induced by many different factors
including nutrient limitation, toxic by-product accumulation, or
a variety of stress factors such as pH or temperature (Nyström,
2004). For robust separation of general responses to changes in
the growth phase from specific responses to individual factors,
several different conditions inducing transition to stationary
phase were required. Nutrient deficiencies limit the growth of
cyanobacteria (Hirani et al., 2001; Richaud et al., 2001) and
were used here to induce the stationary phase. Synechocystis
sp. PCC 6803 was cultivated under control conditions (BG11)
and low levels of individual nutrients as reported before, with
12.5% N, P, or S in BG11 background. In addition, two new
low nutrient conditions were tested, 12.5% Mg and 12.5% K in
BG11 background. Nutrients are co-supplied with a counter ion
as an electrically neutral salt, so counter ions were replaced up to
the control concentration (Supplementary Table S1). Figure 2A
shows that Synechocystis sp. PCC 6803 batch cultures cultivated
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FIGURE 2 | Growth and transcriptomics of Synechocystis sp. PCC 6803. (A) Culture density (OD730) of Synechocystis batch cultures cultivated under control
(BG11) and low nutrient conditions (12.5% N, P, S, Mg, or K in BG11 background, Supplementary Table S1). Solid arrows show when samples were collected for
RNA sequencing from all conditions. Dashed arrow indicates additional samples collected from control conditions. Data are means ± S.E.M. of three independent
cultures. (B) Multi-dimensional scaling plot of 39 RNAseq expression profiles. Distances between points reflect relative similarities between samples based on
genome-wide transcript levels. Symbols and colours are same as in (A). Open symbols represent early growth phase samples (day 4). Closed symbols represent late
growth phase samples (day 8 in low nutrient and day 16 in control conditions). Hatched circles represent control samples harvested on day 8.

in all five low nutrient conditions transition to the stationary
phase at an earlier time (day 8) and lower density (OD730 1.5–4.2)
compared to the control condition (day 16, OD730 8.7). Thus, low
nutrient conditions were used to induce early transition to the
stationary phase in response to specific environmental stimuli.

RNA Sequencing of Early and Late
Growth Phases in Synechocystis
To compare the transcriptomes of early and late growth
phases, time points were selected for RNA sequencing based
on the growth curves (black arrows in Figure 2A). Early
samples were harvested during the exponential growth phase
(day 4), and late samples were harvested as the cultures
transitioned into the stationary phase (day 8). To account for
later transition to the stationary phase, control cultures were
also harvested on day 16. For replication, three cultures were
independently grown in each condition. RNA purification and
sequencing is described in Materials and Methods (Section
“RNA Analyses”), and the normalised transcript levels for all
genes in all 39 samples, together with statistical parameters,
are available in Supplementary Table S3. Transcript counts are
presented as FPKM.

Figure 2B shows a multi-dimensional scaling plot based on
normalised FPKM values in the 39 RNAseq samples. Early
samples generally group together with the exception of BG11-
N, suggesting a distinct early response to low N. Additionally,
samples harvested on day 8 under control conditions cluster
with early samples, reflecting that nutrients were not yet limiting

in this condition and control cultures were still in the early
growth phase. Late samples separate according to condition
with close grouping of replicates, demonstrating nutrient-specific
transcriptional responses. Greater variation is observed in late
control samples, possibly due to simultaneous limitation of
multiple nutrients in the optimised BG11 medium in which
nutrients deplete at equal rates.

Robust, Late Growth Phase-Specific
Genes of Synechocystis
To identify condition-independent, growth phase-responsive
genes, we looked for genes that were upregulated in the
late growth phase compared to the early growth phase in
all of the conditions tested. Genes were, therefore, selected
from the RNA sequencing dataset based on a significance
value of p < 0.05 between early and late samples within
each condition and log2(late/early) > 1 for all six conditions.
Table 2 presents 24 late growth phase-specific genes from the
Synechocystis RNA sequencing dataset. The majority of genes
are annotated as hypothetical proteins (16/24, 67%); however,
there are also genes with annotated functions in cell killing,
energy metabolism, photosynthesis and respiration, regulatory
functions, and transport.

RNAseq expression profiles were verified using real-time
qPCR. Three new Synechocystis cultures were grown for each of
the six nutrient conditions, and samples were harvested during
the early and late growth phases (36 samples total). To control
for potential biases introduced during mRNA enrichment for the
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TABLE 2 | Late growth phase-specific genes of Synechocystis sp. PCC 6803.

Gene ID Gene symbol Gene product Functional category

slr1747 Cell death suppressor protein Lls1 homologue Cellular processes

slr2132 Phosphotransacetylase Energy metabolism

sll0549 Hypothetical protein Hypothetical

sll0528 Hypothetical protein Hypothetical

slr1119 Hypothetical protein Hypothetical

sll1675 Hypothetical protein Hypothetical

sll1355 Hypothetical protein Hypothetical

sll1274 Hypothetical protein Hypothetical

sll1769 Hypothetical protein Hypothetical

sll1158 Hypothetical protein Hypothetical

sll1884 Hypothetical protein Hypothetical

slr1674 Hypothetical protein Hypothetical

slr0959 Hypothetical protein Hypothetical

slr0292 Hypothetical protein Hypothetical

sll6052 Hypothetical protein Hypothetical

sll6053 Hypothetical protein Hypothetical

sll6054 Hypothetical protein Hypothetical

sll6055 Hypothetical protein Hypothetical

slr1498 hypD Putative hydrogenase protein HypD Other categories

slr1675 hypA1 Putative hydrogenase protein HypA1 Other categories

slr0851 ndbA Type 2 NADH dehydrogenase Photosynthesis and respiration

slr0741 Transcriptional regulator Regulatory functions

slr0096 Low affinity sulphate transporter Transport and binding proteins

slr0529 ggtB Glucosylglycerol transport system substrate-binding protein Transport and binding proteins

RNA sequencing analyses, cDNA for qPCR analyses was generated
from total RNA. slr0211 (encoding a hypothetical protein) was
selected as a reference gene for qPCR normalisation based on low
standard error of FPKM across the 39 RNAseq samples and low
variation of Ct values across the 36 qPCR samples (Figure 3A).
While there were small differences in the level of upregulation
within individual conditions, there was an overall excellent
agreement between RNAseq and qPCR expression profiles for
ndbA (slr0851, encoding a type II NADH dehydrogenase,
Figures 3B,C) and slr1747 (encoding a homologue of the cell
death suppressor protein Lls1, Supplementary Figure S4). While
these genes are adjacent to one another on the Synechocystis
chromosome, they are independent transcriptional units (Kopf
et al., 2014), and both showed significantly higher transcript levels
in the late growth phase compared to the early growth phase in
all six nutrient conditions. The level of ndbA upregulation was
relatively consistent across the conditions tested; therefore, this
gene was selected for promoter analyses.

Heterologous Activity of the ndbA
Promoter, PndbA600, in Synechococcus
Heterologous systems have several advantages for the
characterisation of molecular tools for metabolic engineering.
For example, the interference from native regulatory machinery
is minimised, such as small RNAs important for adaptation
to changing environments in cyanobacteria (Hu and Wang,
2018). Furthermore, introduction of high copy numbers of an

endogenous, or even homologous, promoter could outcompete
the native promoter (or vice versa) and potentially cause
genetic instability in cyanobacteria (Gordon and Pfleger, 2018).
Although there is a potential for common regulatory machinery,
such as transcription factors across cyanobacteria, Synechocystis
promoters are routinely used to drive the heterologous expression
in Synechococcus sp. (Huang et al., 2010; Wang et al., 2012).
We therefore used an established GFP-based promoter assay
in Synechococcus sp. PCC 7002 (Madsen et al., 2018), to assess
whether the ndbA promoter controls growth phase-specific
transcription. For this, we analysed the 600 bp sequence directly
upstream of the ndbA start codon, which, in addition to the
core promoter, includes the 5′UTR and other potential genetic
features. This sequence was designated PndbA600 and cloned
upstream of a GFP reporter gene and integrated into a neutral
site in the Synechococcus genome. Following confirmation
by PCR and sequencing, the transgenic strain Synechococcus
PndbA600:GFP was grown in A + (control) medium, and GFP
fluorescence per cell (GFP normalised to OD730 of the GFP
sample) was measured throughout culture growth. Figure 4A
shows that under control conditions the OD730-normalised GFP
fluorescence was low during the early stages of growth followed
by a sharp increase in week 3, concomitant with transition to the
late growth phase. High levels were then maintained over several
weeks of the stationary phase. Notably, PndbA600 showed two
distinct levels of the promoter activity with low activity at low
density (OD < 10.7, GFP < 450) and high activity at high density
(OD > 10.75, GFP 636-3590; Figure 4B). The GFP signal reflects
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FIGURE 3 | Native ndbA transcript levels. (A) Variation of Ct values
determined using NormFinder software (Andersen et al., 2004). qPCR was
performed with 36 samples representing the early and late growth phases of
three independent cultures of Synechocystis cultivated under control (BG11)
and low nutrient conditions (12.5% N, P, S, Mg, or K in BG11 background).
White circles represent reference genes used in other studies (Foster et al.,
2007; Pinto et al., 2012). Black circles represent genes selected from the RNA
sequencing dataset based on low standard error. Data are means ± S.E.M. of
three independent cultures. slr0211 was selected as reference gene for further

(Continued)

FIGURE 3 | Continued
experiments. (B,C) Transcript levels of ndbA determined by (B) RNA
sequencing (normalised to gene length and read counts as FPKM) and (C)
qPCR (normalised to slr0211) in the early (white bars) and late (black bars)
growth phases of Synechocystis cultivated under control (BG11) and low
nutrient conditions (12.5% N, P, S, Mg, or K in BG11 background). Data are
means ± S.E.M. of three independent cultures. Different letters indicate
significant difference across all conditions (p < 0.05; two-way ANOVA using
Tukey (HSD) post-hoc analysis).

PndbA600 promoter activity: background fluorescence levels
in the wild-type and no promoter controls were lower than
those observed in Synechococcus PndbA600:GFP (GFP < 120).
These combined results show that the 600 bp upstream sequence
of ndbA, PndbA600, shows both growth phase- and culture
density-specific activity in Synechococcus sp. PCC 7002 grown in
control conditions.

Effect of Culture Density on PndbA600
Activity
Culture density, possibly due to direct cell-to-cell interactions,
has been suggested as a factor controlling cell division
and the transition into stationary phase in cyanobacteria
(Esteves-Ferreira et al., 2017). Additional factors could
include self-shading and thus light limitation in higher
density cultures or extracellular metabolites e.g., signalling
molecules secreted to the growth medium (Abisado et al.,
2018; Clark et al., 2018). To investigate the relationship
between culture density and promoter activity in more
detail, we attempted to separate the effect of culture density
from the effect of the growth medium. For this experiment,
Synechococcus PndbA600:GFP cultures were grown to
either low density to investigate PndbA600 activation or
high density to investigate PndbA600 deactivation. Culture
density was then modulated by harvesting the cells and
resuspending them at either low or high density. Growth media
were modulated by resuspending the cells in either a fresh
(control) medium or a spent medium harvested from stationary
phase cultures.

We first investigated PndbA600 activation using young,
low density cultures with low promoter activity. Figure 5A
shows that increasing culture density from low to high OD
is not sufficient to activate PndbA600. GFP fluorescence only
increased after a period of growth in the fresh medium for
both low to low and low to high OD cultures (see also
Supplementary Figure S5A). By contrast, resuspending low
density cultures in the spent medium led to rapid PndbA600
activation with faster activation in cultures resuspended at low
density compared to high density (Figure 5B and Supplementary
Figure S5B). These results suggest that PndbA600 activation is
not dependent on high culture density per se but requires one
or more components of the spent stationary phase medium,
designated as Factor X.

PndbA600 deactivation was then investigated using mature,
high density cultures with high promoter activity. Figure 5C
shows that decreasing culture density from high to low OD in
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FIGURE 4 | Heterologous PndbA600 activity under control conditions.
(A) Promoter activity (black circles, GFP fluorescence normalised to OD730,
left axis) in Synechococcus PndbA600:GFP. Culture density (OD730, right axis)
is shown with white circles. Data are means ± S.E.M. of three independent
cultures grown in control A + media. (B) Promoter activity (GFP fluorescence
normalised to OD730) against culture density (OD730) of Synechococcus
cultures grown in control conditions. Data are shown for the following lines:
wild-type (no GFP, squares, n = 7), no promoter (Synechococcus transformed
with GFP, triangles, n = 6), Synechococcus expressing GFP under the control
of PndbA600 (Synechococcus PndbA600:GFP, circles). Measurements taken
after maximum culture density was achieved are not shown.

a fresh medium resulted in a rapid loss of GFP fluorescence
(within 1 week), indicating rapid deactivation of PndbA600.
The promoter then regained activity as the culture moved
again into the late growth phase (see also Supplementary
Figure S5C). PndbA600 deactivation requires the decrease in
cell density: mature, high density cultures resuspended at high

density in fresh media maintained high promoter activity.
PndbA600 deactivation also requires the fresh growth medium:
mature, high density cultures resuspended at low density in
spent media maintained high promoter activity (Figure 5D and
Supplementary Figure S5D). This suggests that the alleviation
of Factor X from the spent stationary phase medium is
a co-requirement for PndbA600 deactivation. In summary,
PndbA600 deactivation requires both low cell density and
fresh growth medium.

The Effect of Nutrient Availability on
PndbA600 Activity
We have shown that the spent medium of stationary phase
cultures is able to modulate PndbA600 activity by both inducing
promoter activation and inhibiting promoter deactivation.
A possible explanation for these responses may be the
low nutrient levels in the spent stationary phase medium.
The native expression profile in Synechocystis suggested
that PndbA600 activation in the late growth phase occurs
independent of nutrient depletion. However, this might not
be the case in Synechococcus. We, therefore, investigated the
nutrient dependence of PndbA600 activity in Synechococcus
PndbA600:GFP using A + with low levels of individual
nutrients. Counter ions co-supplied with nutrients were replaced
up to the control concentration (Supplementary Table S2).
Unlike the optimised BG11 medium for Synechocystis, we found
that nutrient ratios in the standard A + medium used for
Synechococcus are not optimally adjusted, and different nutrients
become limiting at different concentrations (Figure 6). Timing
of PndbA600 activation and, thus, correlations between the
promoter activity, culture density, and the growth phase differed
across nutrient conditions.

When comparing the promoter activity relative to the
growth phase transition, promoter activation occurred during
the transition to the stationary phase at > 75% of maximum
culture density under control conditions (Figure 4A). Lowering
N in the growth medium accelerated PndbA600 activation,
whereby promoter activation occurred during the active growth
phase at < 50% of maximum culture density (Figure 6A). By
contrast, PndbA600 activation was delayed in media with low K
or low Mg with promoter activation first occurring > 1 week
after reaching maximum culture density (Figures 6B,C) and
was completely abolished in low P (Figure 6D). In summary,
PndbA600 activation, relative to the growth phase transition, is
accelerated by lowering N and delayed by lowering other essential
nutrients (and thus increasing the relative N level), suggesting
that PndbA600 may be activated by the depletion of N relative
to other nutrients in the media.

Plotting promoter activity directly against culture OD
demonstrated promoter activation at high density (OD > 10.75)
under control conditions (Figure 4B). Figure 6E shows that
PndbA600 activation occurred at lower culture densities in
media with 20% N (OD > 1.84) and 2% K (OD > 6.15).
By contrast, PndbA activation required a much higher culture
density (OD > 17) in media with 0.5% Mg. No PndbA activation
was seen in 10% P at any OD. The varying culture OD
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FIGURE 5 | The effect of culture density on PndbA600 activity. PndbA600 activity (GFP fluorescence normalised to OD730) in Synechococcus PndbA600:GFP
cultures pre-grown to certain density and resuspended to another density at time point 0. Cultures shown in (A,B) were started from young, low density cultures with
low promoter activity (OD < 5, GFP < 300). Cultures shown in (C,D) were started from mature, high density cultures with high promoter activity (OD > 12,
GFP > 850). Cultures were resuspended to low (black symbols) or high (white symbols) density in fresh control media (A,C) or spent media of stationary phase
cultures (B,D). Data are means ± S.E.M. of three independent cultures. Accompanying growth curves are presented in Supplementary Figure S5.

requirements for PndbA activation under different low nutrient
conditions reflect a combination of the maximum culture OD
achieved and the timing of PndbA activation relative to the
transition to stationary phase.

To investigate the effects of N supply in more detail,
Synechococcus PndbA600:GFP cultures were grown in control
conditions and resuspended at OD 1 in growth media containing
either 0 or 100% N in a background of the control A +medium.
Again, young Synechococcus PndbA600:GFP cultures grown to
low density were used to investigate PndbA600 activation, and
mature cultures grown to high density were used to investigate

PndbA600 deactivation. Figure 7A confirms that PndbA600
activation requires the lack of N: early promoter activation
was observed in N-deficient media (see also Supplementary
Figure S6A). Similarly, PndbA600 deactivation requires the
presence of N: mature, high density cultures resuspended at
low density in N-deficient media maintained active levels of
GFP fluorescence, albeit at a slightly lower level (Figure 7B and
Supplementary Figure S6B). Combined, these results confirm
that PndbA600 specifically responds to N levels, with promoter
activation upon N depletion and promoter deactivation upon
N replenishment.
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FIGURE 6 | The effect of nutrient deficiency on PndbA600 activity. PndbA600 activity (black circles, GFP fluorescence normalised to OD730, left axis) in
Synechococcus PndbA600:GFP cultures grown under low nutrient conditions (Supplementary Table S2). (A) 20% N, (B) 2% K, (C) 0.5% Mg, and (D) 10% P in
A + background. Culture density (OD730, right axis) is shown with white circles. Data are means ± S.E.M. of three independent cultures. (E) PndbA600 activity (GFP
fluorescence normalised to OD730) against culture density (OD730) in Synechococcus PndbA600:GFP grown in control (A+, black circles, n = 20) and low nutrient
conditions (A + background; 20% N, red squares, n = 3; 10% P, green triangles, n = 3; 0.5% Mg, purple crosses, n = 3; 2% K, blue plusses, n = 3). Data represent
measurements taken as culture density increased. Measurements taken after maximum culture density was achieved are not shown. For promoter activity under
control conditions see Figure 4.
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FIGURE 7 | The effect of N supply on PndbA600 activity. PndbA600 activity (GFP fluorescence normalised to OD730) in Synechococcus PndbA600:GFP grown in
media containing 0 or 100% N in A + background. Cultures shown in (A) were started from young, low density cultures with low promoter activity (OD < 5,
GFP < 300, black symbols), and cultures shown in (B) were started from mature, high density cultures with high promoter activity (OD > 12, GFP > 850, white
symbols). All cultures were resuspended to OD 1 in the indicated media at time point 0. Data are means ± S.E.M. of three independent cultures. Accompanying
growth curves are presented in Supplementary Figure S6.

Early Kinetics of PndbA600 Activation
We have identified two types of media that accelerate the
activation of PndbA600: the spent medium of stationary phase
cultures and N-deficient medium. The spent medium is a
complex solution comprised of a combination of different
levels of multiple nutrient deficiency, as well as extracellular
metabolites that have been secreted by the cells throughout
culture growth. To check whether N depletion is the cause
of PndbA600 activation in the spent medium, we compared
PndbA600 activation in response to the spent medium with
N-deficient medium (Figure 8). In the spent medium, PndbA600
activation is > 10-fold faster (within 30 min in low to low
OD, spent media) compared to N-deficient medium (with 24 h
in low to low OD, 0% N, A+). This suggests that nutrient
deficiency, specifically N depletion, is not sufficient to explain
the rapid activation in the spent medium and that other factor(s)
contribute to PndbA600 activation.

The Effect of Electron Transport
Inhibition on PndbA600 Activity
Type II NADH dehydrogenases play a central role in the
respiratory metabolism of bacteria; however, this is not the case
in cyanobacteria where NdbA function remains unclear (Howitt
et al., 1999; Lea-Smith et al., 2016; Huokko et al., 2019). A role
in redox sensing has been proposed (Howitt et al., 1999), so we
tested the effect of changing cellular redox status on promoter
activity by disturbing electron transport. For this experiment,
electron transport inhibitors specific to photosynthesis [DCMU,
which blocks the plastiquinone binding site of photosystem II
(Duysens and Sweers, 1963)] or respiration [malonic acid (MA),
which competitively inhibits succinate dehydrogenase complex II
(Pardee and Potter, 1949)] were applied to low or high density

FIGURE 8 | Early kinetics of PndbA600 activation. Early responses of
PndbA600 in Synechococcus PndbA600:GFP to different treatments at time
point 0: low OD < 5 to low OD 1 in fresh control medium (black circles), low
OD < 5 to low OD 1 in spent medium (black squares), low OD < 5 to high OD
12 in spent medium (white squares), or low OD < 5 to low OD 1 in N-deficient
medium (0% N in A + background, black triangles). Data are means ± S.E.M.
of three independent cultures.

cultures of Synechococcus PndbA600:GFP grown under control
conditions. Inhibitors were applied at two concentrations: a lower
concentration, which allowed for growth of low density cultures
(0.1 µM DCMU and 4 mM MA), and a high concentration,
which inhibited the growth of low density cultures (1 µM
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FIGURE 9 | The effect of electron transport inhibition on PndbA600 activity. PndbA600 activity (GFP fluorescence normalised to OD730) in Synechococcus
PndbA600:GFP 1 week (white bars) and 3 weeks (black bars) after treatment with DCMU or malonic acid at the given concentration. OD indicates low (OD < 5) or
high (OD < 12) culture density at the start of treatment. Control are untreated cultures. Data are means ± S.E.M. of at least three independent cultures. Inset shows
culture growth starting from low OD in the different conditions.

DCMU and 10 mM MA; Figure 9). When the inhibitors were
applied at low concentration in young, low density cultures,
PndbA600 activation in the late growth phase still occurred,
albeit at a lower level than without inhibitor. The slight decrease
in activity may reflect the slower growth and lower density
of the inhibitor-treated cultures. By contrast, high inhibitor
concentrations resulted in a lack of culture growth and of
PndbA600 activation. In mature, high density cultures, low
concentrations of inhibitors did not alter PndbA600 activity.
At high concentrations, however, DCMU increased PndbA600
activity 1.79-fold in high density cultures whereas MA did not.
These results show that the inhibition of photosynthesis, but not
respiration, enhances PndbA600 activity in high density cultures.

DISCUSSION

Two-stage cultivation strategies are an attractive solution
to growth/productivity trade-offs in cyanobacteria; however,
the costly addition of extra steps between growth (stage
I) and production (stage II) is often required to initiate

stage II (Lee et al., 2012, 2016; Monshupanee et al., 2016;
Kushwaha et al., 2018; Aziz et al., 2020). Less effort has
been made towards utilising inherent features of cyanobacterial
cultures to distinguish between stages and thus auto-induce
transgene expression in stage II, cutting costs and improving
economic feasibility. Auto-inducible production systems have
been engineered using nutrient-deficiency responsive regulators
(Liu et al., 2011; Asada et al., 2019); however, their applications
may be limited by the regulatory nutrient and the timing
of deficiency. Here, we instead opted to develop regulatory
systems based on growth phase transitions in batch cultures and
endogenous regulation by stationary phase promoters. A few
studies led to the identification of cyanobacterial growth phase-
responsive genes and promoters (Foster et al., 2007; Berla and
Pakrasi, 2012; Ruffing et al., 2016); however, the knowledge is
still very limited for the stationary phase and its regulation in
cyanobacteria. In this study, we identified a small subset of
genes that specifically respond to growth phase transition in
Synechocystis sp. PCC 6803. Furthermore, we report the first
detailed description of the complex environmental responses of
a growth phase-responsive promoter of cyanobacteria.
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General Responses to Changes in
Growth Phase
Common responses of nutrient limitation studies form the
main foundation of knowledge surrounding stationary phase in
cyanobacteria and generally involve increased catabolism and
decreased anabolism (Schwarz and Forchhammer, 2005). Direct
comparisons of cyanobacterial growth phases have focussed on
transcriptional responses in at most two conditions (Foster
et al., 2007; Ludwig and Bryant, 2011; Berla and Pakrasi, 2012;
Kopf et al., 2014). These studies have led to the identification
of differentially expressed genes; however, it is difficult to
differentiate between genes involved in general responses to
changes in the growth phase and specific responses to the
conditions in which the cultures were grown. Furthermore, it
is often difficult to confirm that these datasets do in fact reflect
stationary phase gene expression as low stationary phase ODs are
commonly reported without any accompanying growth curves.
Here, we present a comprehensive RNA sequencing dataset
that enables the robust separation of growth phase-specific
responses from condition-specific responses in Synechocystis
sp. PCC 6803 (Supplementary Table S3). Our dataset agrees
with general, growth phase-related downregulation of genes
involved in photosynthesis, energy metabolism, and translation
reported by previous nutrient limitation studies (Hirani et al.,
2001; Richaud et al., 2001). Of the genes upregulated in the
late growth phase/early stationary phase, 67% are annotated as
hypothetical proteins reflecting a large gap in knowledge that
persists on growth phase-specific responses in the extensively
studied model cyanobacterium Synechocystis sp. PCC 6803.
Besides their purpose for this study, the datasets provided
in Supplementary Table S3 represent a new resource for
understanding transcriptional responses of Synechocystis sp.
PCC 6803 to individual nutrient deficiencies (including new
transcriptomes in low Mg and low K).

Orthogonal Promoter Behaviour in
Cyanobacteria
Orthogonal molecular parts are preferred for metabolic
engineering in order to avoid the interference of engineered
systems by host machinery and genetic instability arising
from endogenous DNA sequences (Camsund and Lindblad,
2014). Well-established prokaryotic tools such as IPTG- and
tetracycline-inducible systems from E. coli perform poorly in
cyanobacteria (Huang et al., 2010). Promoters derived from
other species of cyanobacteria appear to have greater success
despite regulatory differences between cyanobacterial species
(Huang et al., 2010; Wang et al., 2012; Gordon and Pfleger,
2018). For example, the phycocyanin promoters (Pcpc) of
Synechocystis sp. PCC 6803 and PCC 6714 have been used
to drive heterologous expression in Synechococcus sp. PCC
7002 and PCC 7942 (Markley et al., 2015; Gao et al., 2016).
Furthermore, a previous report showing higher activity of the
heterologous phycocyanin promoter in the early growth phase
of Synechococcus sp. PCC 7002 agrees with the expression
profiles of the native phycocyanin operon in our Synechocystis sp.
PCC 6803 RNAseq dataset (Madsen et al., 2018). Nevertheless,

our detailed analysis of heterologous PndbA600 activity in
Synechococcus sp. PCC 7002 revealed clear differences to the
endogenous ndbA expression profiles in Synechocystis sp. PCC
6803. While expression patterns were similar under control
conditions (Figures 3B,C, 4A,B), closer examination under
nutrient limitation revealed differences in correlations between
the gene expression, culture density, and the growth phase in
the two species (Figure 6). The promoter activation during the
late growth phase observed under control conditions in this
study is not an artefact of the assay, as evidenced by previous
characterisation of an early growth phase-specific promoter using
the same approach (Madsen et al., 2018). While this suggests that
the condition-dependent activation profiles of PndbA600 should
reflect promoter response to growth phase status, further studies
using a truncated version of PndbA600, which has lost the ability
to respond to changes in the growth phase, will strengthen
this finding. This study, therefore, highlights the importance of
thorough characterisation of molecular components to enable
rational design and accurate prediction of the behaviour of more
complex assemblies in non-standard conditions.

Environmental Regulation of PndbA600
This study also presents the first detailed analysis of a
growth phase-responsive promoter of cyanobacteria. Responses
to changing environmental stimuli, including culture density,
growth media, nutrient availability, and cellular redox status,
showed differing requirements for PndbA600 activation and
deactivation (Figure 10). PndbA600 activation could be induced
either by lowering N supply or presenting Factor X from
the spent medium of stationary phase cultures. Interestingly,
culture density per se had no effect on PndbA600 activation,
but low culture density was required for PndbA600 deactivation
in addition to sufficient N supply and the absence of Factor
X. Furthermore, PndbA600 may respond in a dose-dependent
manner to Factor X. Increasing the relative amount of Factor X
per cell may have a proportionate effect on PndbA600 activity.
For example, PndbA600 activation in spent media was > 100-fold
faster in young cultures resuspended at low density compared
to high density (Figures 5B, 8). PndbA600 activity in spent
media was also higher in mature cultures resuspended at low
density compared to high density (Figure 5D). Similarly, mature
cultures transferred from spent to N-deficient media showed a
visible reduction in GFP fluorescence, which could be due to
the removal of Factor X (Figure 7B). Additional analyses are
required to identify Factor X, which could be either a downstream
response to N limitation or an unrelated extracellular metabolite
e.g., signalling molecule secreted by stationary phase cells.
Compositional analyses of spent media fractions paired with gene
expression and promoter analyses could yield further insights
into stationary phase and its regulation in cyanobacteria.

While heterologous promoter activity may not accurately
reflect endogenous transcriptional regulation, this study could
provide initial insights into growth phase-specific regulation
and NdbA function in cyanobacteria. The ndbA gene encodes
a type II NADH dehydrogenase of unknown function. The
ability of ndbA knockout strains of Synechocystis sp. PCC
6803 to grow under otherwise lethal high-light conditions in
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FIGURE 10 | Model of the environmental regulation of PndbA600. Promoter
activation and, thus, transcription occur in response to either low N or Factor
X of the spent stationary phase medium. Once activated, promoter activity
can be further increased using the photosynthesis-specific inhibitor DCMU.
Promoter deactivation requires low culture density, sufficient N supply, and the
absence of Factor X.

a PSI-less background led to the suggestion of a regulatory
role for NdbA and monitoring of, e.g., cellular redox status
(Howitt et al., 1999). In support of these functions, native
NdbA localises to the thylakoid membrane (Huokko et al.,
2019), and the PndbA600 promoter responds to disturbances
in electron transport in the heterologous expression host
(Figure 9). Specifically, heterologous PndbA600 responds to
photosynthetic, but not respiratory, inhibition, whereby the key
difference is the reduction of NADP + in photosynthesis and
oxidation of NADH in respiration. These findings, paired with
the presence of NADH binding motifs in the ndbA coding
sequence (Howitt et al., 1999), suggest that NAD(P)+ /NAD(P)H
balance may be an important factor regulating PndbA600/NdbA
activity levels.

Industrial Applications
This study describes first steps towards developing regulatory
systems to drive stage II of a two-stage cultivation system
in cyanobacteria. Libraries of stage II promoters can now
be constructed based on PndbA600 or other late growth
phase-responsive promoters and, subsequently, used to
optimise heterologous metabolic pathways for industrial
production or fine-tune endogenous metabolic pathways
supplying precursors necessary for the engineered process.
Similarly, libraries of stage I promoters can be constructed
to optimise growth, potentially improving growth rates
and thus decreasing time scales until the initiation of
stage II. Furthermore, many additional analyses can be

performed on the RNAseq dataset to identify genes/promoters
with any combination of growth phase- and/or nutrient-
specific activity for diverse applications in industry,
e.g., biosensors.

Stationary phase may not be suitable for all industrial
applications or commercial products, and therefore, a careful
selection of products and processes is important. While
general decreases in anabolism occurs during the stationary
phase, select processes continue at appreciable levels even
after prolonged starvation (Schwarz and Forchhammer, 2005).
Notable examples are secondary metabolites important for
human health, particularly as anti-infective drugs such as
antibiotics (Ruiz et al., 2010). Here, we used a new approach
for the robust separation of growth phase- vs. condition-specific
processes. This approach can also complement bioprospecting
for new secondary metabolites in cyanobacteria and other
microorganisms by comparing transcriptomic and metabolomic
data across a variety of conditions to identify genes and
unravel biosynthetic pathways underpinning the production
of interesting metabolites. The large proportion (67%) of late
growth phase-specific genes encoding hypothetical proteins
identified in Synechocystis sp. PCC 6803 highlights the strength of
this approach, as well as the great potential for the identification
of new cyanobacterial products and pathways.

As a chassis, Synechococcus sp. PCC 7002 has numerous
advantages for industrial production, including relatively fast
growth rates and high tolerance to various parameters such
as light, temperature, and salinity (Nomura et al., 2006).
Another desirable feature we have observed in this strain is
sedimentation in the stationary phase, which allows for easy
biomass harvest at the end of stage II without the need for
energy-demanding techniques such as centrifugation (data not
shown). Perhaps, the most sustainable application of PndbA600-
driven two-stage cultivation strategies involves seeding the
engineered Synechococcus cultures in the fresh growth medium,
biomass accumulation during stage I until nutrient depletion
results in the auto-induction of stage II, and finally application-
specific downstream processing of the biomass and supernatant.
Recycling stage II cells to seed new cultures is not ideal as
we observed a decrease in the amount of biomass attained, no
increase in promoter activity, and no decrease in time to stage II
(high to low OD in fresh media, Supplementary Figure S5C).
By contrast, maximum biomass can be further increased by
concentrating low density cultures in fresh nutrients to generate
higher culture densities compared to control conditions (low
to high OD in fresh media, Supplementary Figure S5A).
Alternatively, if the expense of time is greater than the benefit of
high biomass, stage II can be induced at lower culture densities by
using nutrient limitation to significantly reduce timescales. Early
induction could prove particularly profitable if nutrient-specific
responses increase the productivity of stage II cells. Finally, stage
II productivity can be further improved by increasing the activity
of the auto-inducible promoter, either by engineering PndbA600
or adding supplements such as DCMU.

This study provides the first insights into the regulation
of stationary phase in cyanobacteria. Additional studies to
identify DNA motifs present within growth phase-responsive
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promoters, transcription factors that bind to these motifs,
and other regulatory molecules will provide further important
insights to this still elusive phase of cyanobacteria. Unravelling
these mysteries and expanding the foundation of knowledge
surrounding these organisms will be of great value to both
academia and industry.
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Currently, most commercial recombinant technologies rely on host systems. However,
each host has their own benefits and drawbacks, depending on the target products.
Prokaryote host is lack of post-transcriptional and post-translational mechanisms,
making them unsuitable for eukaryotic productions like phytochemicals. Even there
are other eukaryote hosts (e.g., transgenic animals, mammalian cell, and transgenic
plants), but those hosts have some limitations, such as low yield, high cost, time
consuming, virus contamination, and so on. Thus, flexible platforms and efficient
methods that can produced phytochemicals are required. The use of heterotrophic
microalgae as a host system is interesting because it possibly overcome those
obstacles. This paper presents a comprehensive review of heterotrophic microalgal
expression host including advantages of heterotrophic microalgae as a host, genetic
engineering of microalgae, genetic transformation of microalgae, microalgal engineering
for phytochemicals production, challenges of microalgal hosts, key market trends, and
future view. Finally, this review might be a directions of the alternative microalgae host
for high-value phytochemicals production in the next few years.

Keywords: microalgae, heterotroph, phytochemical, transformation, host system

INTRODUCTION

Plant chemicals or phytochemicals are chemicals that may have biological activities produced by
plants. Phytochemical sources come from fruits, vegetables, whole grains, nuts, seeds, leaves, bark,
flowers, and other part of plants. Bioactive phytochemicals have been extensively studied in vitro
and in vivo models due to their great potential for human consumption. Generally, phytochemicals
were classified into six major categories based on their chemical structures and characteristics
(Figure 1) including lipids, carbohydrates, terpenoids, phenolics, alkaloids, and other nitrogen-
containing compounds (Xiao et al., 2016). Similarly, microalgae are promising natural sources of
various bioactive compounds, such as polysaccharide paramylon, polyunsaturated fatty acids, and
pigments (e.g., phycocyanin, phycoerythrin, astaxanthin, and etc.) (Chakdar et al., 2020).

Currently, most commercially obtainable recombinant technologies rely on host systems, which
are organisms that can produce valuable proteins and bioactive compounds via genetic engineering,
such as bacteria, yeast, transgenic animals, and transgenic plants. However, each host has their own
benefits and drawbacks, depending on the target products. When eukaryotic plant compounds
are the set goal, bacteria and yeast are not suitable because they lack post-transcriptional and
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post-translational mechanisms (e.g., glycosylation, splicing, and
protein assembly) (Koo et al., 2013). Even though bacteria are
frequently used for recombinant proteins, bacterial endotoxin
and protease contaminants are concerned in biopharmaceutical
products. Yeast is an excellent eukaryotic host because of
its low cost and up-scalability, however, hypermannosylation,
which commonly occurs in yeast, leads misfolded proteins
and activity malfunction (Yusibov and Mamedov, 2010). Most
biopharmaceutical products are manufactured in animal cells,
but animal hosts still have some limitations, such as low yield,
high cost, expensive medium, and virus contamination, making
them unsustainable as a host in medical applications. Plant-based
expression systems can solve the following problems, such as
having a eukaryotic mechanisms, no hypermannosylation, and
etc. However, plant hosts have to deal with some limitations
and environmental issues, including the spread of genetically
modified plants (GMO), allergic reactions to plant components,
contamination of proteins, regulation of medical protein
permission, and a long production period (Koo et al., 2013).

Eukaryotic algae, especially green microalgae, share
evolutionary ancestry with land plants (Novoveska et al.,
2019; Saini et al., 2019). They hold incredible metabolic
potential and possess most criteria for being a good host
of eukaryotic phytocompound expression. These criteria
include: (i) microalgae are a various group of microscopic
plants that share a common ancestor, thus it might have less
complexity to modify their genetic pathway for producing plant
chemicals, (ii) many microalgal species have ability to grow
in extreme conditions, so the cost will be minimized related
to no steady environmental conditions, (iii) post-translational
modification pathways of microalgae are numerous to enable
proper maturation for a variety of protein, especially for plant
compounds (Scaife et al., 2015; Weiner et al., 2018).

Normally, microalgae are considered photoautotrophic
organisms, whereas heterotrophic cultivation, which can use
external carbon sources under dark conditions, has also been
used to obtain high value products. Heterotrophs have many
advantages compared to autotrophs, such as growing on a larger
scale, having more FDA-approved standards and protocols for
industrial fermenters, and ability to grow in higher cell density,
among others (Rasala and Mayfield, 2015). Green microalgal
hosts have been continually developed for expression. In this
paper, several green microalgal hosts and their genetic toolboxes,
including transformation methods, vectors, promoters, and
selectable markers are presented, with a major focus on
heterotrophic microalgae for phytochemical biosynthesis in an
attempt to address the above concerns.

ADVANTAGES OF HETEROTROPHIC
MICROALGAE AS A HOST

Microalgae are also known as single-cell algae that have a
vital role in the food chain. Interestingly, microalgae can
produce other nutrients that are also found in higher plants,
including synthesizing lipids, fatty acids, proteins, nucleic
acids, carbohydrates, fibers, starches, vitamins, and antioxidants
(Klamczynska and Mooney, 2017). Unicellular microalgae

present in a wide range of habitats and can be cultured
in three cultivation conditions: autotrophic, heterotrophic, or
mixotrophic mode (Figure 2). Autotrophic microalgae use
energy from photosynthesis to grow, while some microalgae
can grow in the dark using organic compounds as carbon
and energy sources, which is called heterotrophic microalgae.
Mixotrophic microalgae can use both supplied organic carbons
and light energy in cultivation. Nowadays, many researchers have
studied the production of pharmaceutical proteins, antibodies,
and valuable compounds in microalgae (Koo et al., 2013;
Dreesen et al., 2010).

Recently, attention has been drawn to microalgae as simple
models for a sustainable source of high-value compounds,
ranging from therapeutic proteins to biofuels (Rosenberg et al.,
2008; Huang et al., 2010; Gong et al., 2011; Yang et al., 2016).
Apparently, autotrophs and mixotrophs have drawbacks, which
are described in detail below. Hence, the focus moves to
heterotrophic microalgae that can grow well in the dark, like yeast
and bacteria, by using simple carbon sources, such as glucose.
Other advantages of heterotrophic microalgae for expression of
phytochemicals include the following:

(1) Compared with traditional used host, prokaryotic hosts are
the most commonly used platforms. Due to post-translational
modification and protein localization are important for the
production of phytocompounds or eukaryotic substances,
whereas, prokaryotic Escherichia coli is not always the
easiest hosts for this process (Yang et al., 2016). However
another eukaryotic hosts including insect, mammalian cells,
and transgenic animals may overcome these obstacles, but
these systems might suffer from other limitations, such as
virus contamination, proteolysis, expensive cost, incorrect
glycosylation, high nutrient requirement, and long generation
time (Gomes et al., 2016). Hence, alternative hosts are still
needed. For example, eukaryotic microalgae, this is because they
give the advantages of fast growing, low cost, ease manipulation,
and etc. (Yang et al., 2016). Moreover, they allow glycosylated
proteins to be secreted into the cell from post-translational
modification pathways (Lauersen et al., 2013). The comparison
of advantages and disadvantages to produce plant compounds
among host systems and other methods is summarized in
Table 1.

(2) Compared to plant cultivation and synthesized
phytochemicals, microalgae are easily scalable in fermenters
or bioreactors compared to plant cultivation because they
can be constructed on any land type or industrial site (Melis,
2012). This shows that microalgae are non-seasonal, not
dependent on climatic conditions, and do not need arable
land (Lopes et al., 2019). Even if plant compounds can be
synthesized by using chemicals instead of cultivation, in
some cases, the complexity of their structure, which requires
difficult multistep reactions, leads to high costs, very low
yield, and unwanted effects for pharmaceutical product.
Synthesized compounds are designed and utilized synthetic
DNA parts, whereas metabolic engineering involves protein
and pathway optimization for improving the yield of products
(Stephanopoulos, 2012).

(3) Compared to transgenic plant, microalgae share
evolutionary ancestry with land plants. That means genetic
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FIGURE 1 | Characterization of phytochemicals (adapted from Xiao et al., 2016).

manipulation techniques might be easily adapted to microalgae,
such as codon optimization, intron addition, expression
methods, and vectors (Scaife et al., 2015). For transgenic plants
to express any gene, there are limitations. First, plant cell
suspension culture or plant tissues can grow in fermenters, but
they are limited to a few plant species compared to a wide range
of microalgae. Microalgae cells might be more favorable for
plant compounds production than yeast, bacteria, or others hosts
because microalgal cellular environments are suitable for those
exogenous plant enzymes. Additionally, microalgae metabolism
contains production of precursors which are more associated
with phytocompounds production more than prokaryotic host
(Lauersen, 2018). For transgenic plants, there are only a few
examples that have been commercially developed and there
are still bottlenecks for commercial production, compared to
a microalgal host. Second, the procedures to transform genes
take longer periods of time than in a microalgal host; for
example, expression in tomato requires more than a year, while
green microalgae need a few days (Canto, 2016). Moreover,
microalgae require only a few months to scale up compared to
transgenic plants; for instance, tobacco plants take 6 months
to grow after regeneration. However, apart from Faè et al.
(2017) research, it is assumed that the specific activity of the
enzyme produced by Chlamydomonas and tobacco are alike,
as both proteins synthesis machinery in chloroplast is highly
conserved. Faè et al. (2017) suggested that algal molecule farming
is still desirable for high value pharmaceutical production.
Third, there are concerns about transgenic plants transferring
genes to the environment via pollen, which might not occur
in microalgae, especially in heterotrophic microalgal hosts
because there is no in and out for contaminated sources
in the fermenter. Forth, product expression from plants
might be contaminated with agrochemicals and fertilizers, so

downstream cultivation after expression should be considered
(Gomes et al., 2016). Finally, the main differences between
the application of higher plant systems and microalgae for
biotechnology is the scalability of cultivation in fermenters
(Yu et al., 2013).

(4) Compared among microalgae cultivation, heterotrophic
microalgae have more benefits, such as cheaper nutrients, low
cost of instruments, and easy to operate and maintain. They
can be adapted to a large scale with no cell density and
less-stress concerns in only a few weeks (Yang et al., 2016).
Autotrophs use CO2 and light as inorganic carbon and energy
sources, whereas heterotrophs use organic carbon as a source of
carbon and energy (Lopes et al., 2019). Several species including
Chlamydomonas reinhardtii, Auxenochlorella protothecoides,
Chlorella pyrenoidosa, C. vulgaris, and C. zofingiensis can be
grown in low-cost industrial waste products (Abreu et al.,
2012). Although autotrophic microalgae can be cultured in
large scale production, there are some disadvantages: only a
few centimeters of light/sunlight penetrate the surface, which
reduces cell growth; high cell density is related to low yield;
high cost of transparent material for gaining light; difficult to
design narrow photo-bioreactors; significant financial investment
for energy use and maintenance; difficult to maintain in mono-
culture; need continuous and clean water; and not compatible
with pharmaceutical or food production (Wolf et al., 2016;
Barros et al., 2019). For biomass yields, heterotrophs make 50–
100 g/L of cell dry weight. This number is higher than that
of autotrophs, which reach a maximum 30 g/L of cell dry
weight (Perez-Garcia et al., 2011). Moreover, under heterotrophic
conditions, Chlorella growth is approximately 5.5 times higher
than cultures under light conditions (Yu et al., 2013). In
particular, the period for scale-up of heterotrophic microalgae
is shorter than autotrophic microalgae (Figure 3). In addition,
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FIGURE 2 | Microalgae cultivation status.

the overall area cultivation for heterotrophs is 12 times less
than that of autotrophs (Barros et al., 2019). From one study,
it was shown that there is high impact of heat and energy
use for autotrophs, but for heterotrophic microalgae, these
are controlled by glucose feedings (Smetana et al., 2017).
The carbon intermediates of heterotrophs are transformed
into main metabolic pathways, replacing photosynthetically
produced molecules (Morales-Sánchez et al., 2015). While, some
autotrophs are able to grow in the dark, the central carbon
metabolism of autotrophic growth involves incomplete pathways
or the absence of an enzymatic reaction, which is a primary
cause of obligation to consume vital substrates, particularly
sugars, and other carbon sources (Morales-Sánchez et al.,
2015). Thus, culturing heterotrophs in a fermenter might be
a better option.

(5) In medicine, where production for humans is regulated
under strict safety aspects (Gellissen, 2005), there are a variety
of suitable microalgae that can be selected from their Generally
Recognized as Safe (GRAS) status, depending on the purpose. For
example, Chlorella vulgaris (a green alga) is normally used as a
food additive, feed for animals, and diet supplements. Moreover,
Arthrospira platensis (Spirulina platensis; a cyanobacterium),
which has high protein and nutrient contents, is consumed as

food and feed (Yaakob et al., 2014). Therefore, this is a great
opportunity to develop these microalgae as a host.

(6) When considering the environmental impact of host
systems, there are three main indicators, namely less greenhouse
gas emissions, low water supply, and efficiency of land use.
Heterotrophic microalgae offer these three main criteria. A study
found that whole algae protein has a lower water footprint than
beef and whey but more protein per hectare than other sources
(Klamczynska and Mooney, 2017). Moreover, using simple media
for the cultivation of algae is as low as $0.002 per liter compared
to mainly using mammalian hosts, which cost $150 per gram
(Taunt et al., 2018).

A suitable heterotrophic microalgae should have the following
essential criteria: ability to grow without light, can be cultured
on inexpensive and easily sterilized media, rapidly adapt to
new surroundings, and the ability to endure hydrodynamic
stress in fermenters and other equipments (Chen and Johns,
1996; Wen and Chen, 2003). Many factors have to be
considered for culturing heterotrophic microalgae, including
temperature, medium salinity (NaCl), pH, and dissolved O2.
In the heterotrophic status of Chlorella sorokiniana, high
aeration increased cell growth, fatty acid yield, and unsaturated
dienoic and trienoic fatty acids; conversely, this decreased
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TABLE 1 | Brief comparison of merits and demerits among different host systems and plant cultivation.

Prokaryote host Eukaryote host
Plant cultivation
(without
engineering
technology)

Bacteria Yeast Mammalian
cells

Transgenic
animals

Transgenic
plants

Plant cell
suspension

Microalgal host

• Share evolutionary ancestry with plants

• More favorable for plant compounds

Autotroph Mixotroph Heterotroph

• Higher growth
rate and biomass

• Effect of
temperature is
unknown

• Common use
• Rapid growth
• Low cost
• High yield

• Widely used
• Rapid growth
• Low cost
• Biosafety

• Proper protein
folding
• Effective
transcriptional
and translational
modification

• Proper protein
folding
• Appropriate
post-translational
modification
• Proper
glycosylation

• Effective
transcriptional
and translational
modification
• Low cost
(1–5$/mg for
production)
• Localized to
different organs

• Rapid growth
(compared to
transgenic plant)
• Can secrete
products into
culture or maintain
them in the cell
• Grow in
Fermenter (less
environment
concerns)

• Stainable
source
• Have more
genetic toolboxes

• Grow well in the dark
(same as yeast and
bacteria)
• Use simple carbon
sources and wastewater
• Easy scaling up
• Cheaper nutrients
• Low industry cost
• No cell density concerns
• Requires less area than
autotrophs

• Extract the
product from the
original sources

• No
chaperones
• No post-
translational
modifications
• Have
insoluble
inclusion
bodies
• Endotoxin
• Not suitable
for plant
products

• High cost
(compared to
bacteria)
• Over-expression
(e.g., mannose
glycosylation or
disulfide bond
misfolding)
• Not suitable for
plant compounds

• Higher cost
(500,000$/animal)
• Low yield
• Animal virus
contamination
• Long production
period

• Long cycle time
• Imprecise
growth conditions
• Gene flow
contamination
• Toxic alkaloids
from tobacco

• Unclear
permeability of
plant cell wall
• Limited to a few
plant species
• Less success
• Lower yield

• a few depth of
light penetration
into surface
• Low yield due
to cell density
• Higher cost
• Requires clean
water
• Less yield than
heterotrophs

• Less genetic engineering
research compared to
autotrophs

• Cannot grow on
every land type or
industrial site
• Depend on
seasonality and
climatic conditions
• Less productive
per unit land area
compared to
microalgae

• Higher cost
(150$/g)
• Complicated
technology
• Protein
contamination
with animal
viruses
• Incorrect
glycosylation
• Long
generation time

�, advantages; �, disadvantages.
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FIGURE 3 | Comparison of time consumption between autotrophic and heterotrophic routes of Chlorella vulgaris. Culture volumes (liters) and duration (d: days) of
each scale up step are demonstrated (Barros et al., 2019).

cell lipid content (Chen and Johns, 1991). In heterotrophic
metabolism, carbon is broken down in the same way used
by bacteria. Complex molecules, like starch, are metabolized
via the Embden-Mayerhoff-Parnas Pathway (EMP pathway or
glycolysis) or the Pentose Phosphate pathway (PPP). However,
heterotrophic culturing has some limitations, including high
cost by adding more organic substrates, contamination or
competition with other microorganisms, and unproduced light-
induced metabolites (Perez-Garcia et al., 2011).

GENETIC ENGINEERING OF
MICROALGAE

Recently, the development of microalgae biotechnological
platforms has been continually progressed, especially from a
genetic engineering perspective. Microalgae have potential to act
like a cell factory to produce other compounds and proteins at
economical levels. To date, over 40 different microalgae species,
such as Chlamydomonas reinhardtii, Dunaliella salina, Chlorella
vulgaris, and Haematococcus pluvialis, have been successfully
genetically manipulated. The available genetic tools are for both
nuclear and chloroplast transformation for C. reinhardtii and
Phaeodactylum tricornutum, however, there is still a lack of
genetic toolboxes and applications compared to others host
systems. In the green microalgal host area, algal genome
data and transformation protocols are available (Gangl et al.,
2015). However, research is rarely found for heterotrophic
microalgal hosts, even if they are normally used on an industrial
scale. These hosts have less limitation in the recombinant
technological field compared to autotrophic microalgae and
some other hosts.

Microalgae generally consist of nuclear, mitochondrial, and
plastid genomes (Radakovits et al., 2012). Compared between
nuclear and chloroplast transformation, which are crucially
different (Table 2), chloroplast transformation allows higher
accumulation of the desired protein (Faè et al., 2017). Several
complete genomic resources are available in some species,
such as the model of green microalga C. reinhardtii. Recently,
many reports described genetic engineering of the chloroplast,
which has small genome (205 kb) and less-complexity with
only 99 genes. Although chloroplast transformation is also
feasible for plenty of plant species, such as tobacco, tomato,
and petunia, there are still fundamental challenges and less
achievement reports than those for nuclear transformation
(Gong et al., 2011). Nowadays, low cost sequencing technologies
make more fully sequenced genomes of algae strains available
(Jaeger et al., 2017). However, engineering strategies across
all microalgae are difficult because their genetic contexts
are highly specific, variable, and often poorly understood.
Even if C. reinhardtii was a model organism, there is lack
of a viable commercial production process and food safety
(Taunt et al., 2018).

The chloroplast of green algae consists of gene machinery,
including the ribosomes and translation factors, however, it
is not similar to bacteria because the chloroplast contains
a wide range of chaperones, protein disulfide isomerase,
and peptidylprolyl isomerases. These chaperones aid in
complex protein folding, and as a consequence, this unique
biochemical environment allows for the expression of high-
valuable biopharmaceuticals (Rasala and Mayfield, 2015). In
fact, heterotrophic processes might limit the development of
chlorophyll because it is no longer needed for metabolism
(Klamczynska and Mooney, 2017).
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TABLE 2 | Differences between nucleus and chloroplast transformation; adapted
from Rasala and Mayfield (2015).

Genome engineering Nucleus Chloroplast

Gene expression
mechanism

Eukaryotic Prokaryotic

Silencing More Less

Protein localization Cytoplasm, nucleus,
chloroplast, ER*,
mitochondria, secretion

Chloroplast

Modifications Phosphorylation,
glycosylation, disulfide
bond

Phosphorylation,
disulfide bond

Accumulation levels Low (as high as 0.25% TSP
reported)

High (1-21% TSP*)

Transformation methods Electroporation, particle
bombardment, glass
beads, PEG*,
Agrobacterium

Particle
bombardment,
glass beads,
Agrobacterium

Integration mode Non-homologous end
joining

Homologous
recombination

Inducible gene expression Nutrient, chemical,
physiological

Light inducible

*ER, endoplasmic reticulum; TSP, total soluble protein; PEG, polyethylene glycol
mediated transformation.

Currently, several new expression systems are commercially
available, but some of them are private and need licensing.
Many researchers are looking for other microalgal hosts
because of the advantages of rapid growth, low cost, cheap
medium, ease of culture, and board industrial applications.
For example, Chlorella which has been chosen because
for its fast growth with high cell density under various
culture modes and adaptability to different conditions is
interesting as a potential newcomer host for heterologous
protein expression (Yang et al., 2016; Klamczynska and
Mooney, 2017). They can be cultured in both autotrophic and
heterotrophic culture.

Moreover, reducing culture time and high biomass might
be better options for choosing microalgae that can double
their biomass in less than 24 h, such as Chlorella sorokiniana,
which has a doubling time of less than 3 h (Sorokin, 1967)
and a new transgenic time of around 2 months on an
industrial scale (Mayfield et al., 2007). One of the fastest
growing species is Chlorella vulgaris, thus this specie is
another promising algae model for genetic engineering. Chlorella
species are future hosts for protein and glycoproteins, while
diatom Phareodactylum tricornumtum has been shown to
produce a fully functional anti-hepatitis antibody with high-
mannose glycan (Mathieu-Rivet et al., 2014; Yang et al., 2016;
Vanier et al., 2017).

For human consumption, Spirulina and Chlorella are best-
known for nutritional properties. They are consumed in many
forms, such as tablets, capsules, and liquids (Aron et al.,
2020; Khoo et al., 2020), so this familiarization might be
the answer for producing recombinant biopharmaceuticals in
these microalgal hosts. Although there are many reports of
successful recombinant technology in algae, there is only one

report of transferring recombinant production to a large scale
(Gangl et al., 2015). This shows that there are still gaps in
the knowledge transfer from a lab scale to industrially relevant
growth conditions for recombinant production. However, the
cheap cost of culturing, potential for large-scale in fermenter
growth, and many GRAS status species are advantages of
heterotrophic microalgae. In the future, gaps might be filled in
as the industry is continually growing.

GENETIC TRANSFORMATION OF
MICROALGAE

There are many transformation methods for the delivery of
genes into algal cells, including agitation by glass beads or
silicon carbide whiskers, electroporation, polyethylene glycol
(PEG) mediated transformation, particle bombardment, and
Agrobacterium-mediated transformation (Kim et al., 2014).
The cell wall of algae is a physical barrier for foreign DNA
because of the cell membrane. Hence, many transformation
methods depend on cell excluding the cell wall, which is
called protoplasts. For instance, Chlamydomonas cell walls,
which consist of glycoproteins and cellulose or chitin, can
be degraded by autolysins, while Chlorella cell walls are
composed of sugar polymers that can be degraded by sugar
digesting enzymes (Kim et al., 2014). The most frequently
used methods are particle bombardment and electroporation,
however, agitation methods that have a lower transformation rate
are often used because of the minimal equipment required. In
contrast, Agrobacterium-mediated transformation has not been
extensively used, and less information is known about its use
in microalgae (Barrera and Mayfield, 2013). This transformation
method is normally used in plant systems, thus, some researchers
adapted this method for microalgae. From one report, some
microalgae were electro-transformed, but the transformants
were just a few. While Agrobacterium-mediated transformation
had much more transformation rate when compared between
ten microalgae (Suttangkakul et al., 2019). Thus, choosing
the transformation method is determined by the cell size,
nature of the cell wall, species, target organelles, cost, and
especially the aim of the interested product. A comparison
and some limitations of transformation methods are shown
in Table 3.

Vector Construction
Common strategies have been considered, including increasing
transcription levels by choosing strong promoters with
appropriate enhancers and leader sequences, the improvement
of translation via codon usage optimization, control of transgene
copy number, gene product targeting by using signal peptide,
and host genome position (Table 4).

To generate a plasmid vector, which is the critical step for
genetic transformation, the vector might include the genetic
elements (e.g., promoters, enhancers, reporters, marker genes,
and codon usage). Promoters are a crucial factor for gene
expression and have a significant transcriptional regulation effect.
There are different types of optional promoters. In general,
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TABLE 3 | Comparison between transformation methods.

Methods Techniques Cost Trans-
formant*

Limitations References

Glass bead DNA delivery is based on
agitating protoplasts or cell
wall-deficient using glass beads
or silicon carbide whiskers with
foreign DNA.

Low 1,000 - Effect of shear stress
- Requires cell wall-deficient
strain

Kim et al., 2014

Particle bombardment -DNA-coated gold or tungsten
micro-particle is delivered by
using a specialized tool.
-Does not require removal of
the cell wall.

Very high Very good - Expensive tools
- Size of the particle is an
important factor for nuclear or
plastid transformation (smaller
size increases penetration)
- Low repeatability
- Complex operation process

Potvin and Zhang, 2010;
Kim et al., 2014

Agro bacterium Using Agrobacterium, DNA is
transformed into host cells.

Low 20x glass bead - Related to biological
compatibility
- Less known in microalgal host

Barrera and Mayfield, 2013

Electroporation Using an electric pulse to push
DNA into cells

High 2,500–7,137 - Uses specialized equipment
- Requires strains without or a
reduced cell wall
- Random integration of genes
- Optimal conditions depend on
species (osmolality,
temperature, concentration of
DNA, voltage, electroporation
buffer, pulse length, field
strength, and capacitance)
- If extreme conditions are
used, it may cause a low cell
viability due to the presence of
cell walls.

Barrera and Mayfield, 2013

PEG-mediated DNA delivery is based on
agitating protoplasts or cell
wall-deficient with PEG and
foreign DNA.

Medium 356–2,250 - Requires cell wall-deficient
strain
- Factors affect the
transformation (starting
material, Agrobacterium
density, co-cultivation
conditions, acetosyringone
concentration, etc.)

Cha et al., 2012

*transformant unit: cfu per µg DNA.

high gene expression is positively correlated with a strong
promoter. Some native promoters, including heat shock protein
70A (HSP70A), Rubisco small submit (RBCS2), or photosystem
I protein D (psaD), are used in C. reinhardtii (Kim et al.,
2018). Moreover, an inducible promoter is the one feasible choice
for solving the effect of some proteins that might work on
the growth of transgenic cells. Interestingly, some heterologous
promoters that are widely used in plant transformation have
been utilized in microalgae, such as the cauliflower mosaic
virus (CaMV) 35S promoter and p1’2’ Agrobacterium promoter,
which drives the expression of GUS reporter genes (Jaeger
et al., 2017). Thus, this can be a good sign for using
microalgae as a plant compound host. Additionally, other
commonly used promoters for microalgae are RBCS2, psaD,
fcp, Pδ, GAPDH, CABII-1, NIT1, Ubi1-�, LIP, B12-responsive
element, Actin1, NR gene, and CYC6 promoters. Currently,
some researchers suggested that synthetic algal promoters (saps)
can be used based on the characteristics of strong promoter

motifs (Scranton et al., 2016). According to the research on
Chlorella sp., expression promoters are in the early stages of
development; only heterologous promoters from plant systems
were used, such as 35S, ubiquitin, and NOs promoters (Run
et al., 2016). Thus, further studies on expression and gene
regulation in these microorganisms are necessary. From some
studies, it was suggested that even when using the same
construct, there are still variable expression patterns among
different transformants, related to the number and location of
recombination events. With supporting enhancers, transgene
expression can be activated, no matter where the location of a
target promoter is (Smallwood and Ren, 2013).

Reporter Genes
Reporter genes that encode easily recognizable proteins are useful
for studying transformation efficiency, protein localization,
and stability of transgenes. While selectable markers are
proteins for helping the selection of positive transformants by
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TABLE 4 | Some microalgal expression methods, vectors, and selectable markers.

Strains Plasmids Promoters Expression methods Selectable markers/
Reporter genes

References

Scenedesmus
acutus

pCXSN-GEP psaD, RBCS2 Agrobacterium Hygromycin B Suttangkakul et al., 2019

Chlamydomonas
reinhardtii

pET-vp28 atpA Glass bead Spectinomycin Kiataramgul et al., 2020

pER123 – Glass bead Paromonycin Mooi et al., 2018

pSL18_HR HSP70A Electroporation Paromomycin Perozeni et al., 2018

Atp B-int psaA Helium gun bombardment Spectinomycin Faè et al., 2017

pChlamy3 LIP Glass beads Hygromycin Baek et al., 2016

pMS4-3 B12-responsive element Electroporation METE reporter gene Helliwell et al., 2014

pCRD1-5 CYC6 Electroporation Luciferase Quinn et al., 2003

cabII-1 chimeric CABII-1 Electroporation GUS Blankenship and Kindle, 1992

Phaeodactylum
tricornutum

pHY21 Pt211 Electroporation GUS, DGAT2 Zou et al., 2018

pHY11 FCP Electroporation Chloramphenicol
acetyltransferase (CAT)

Xue et al., 2015

Chromochloris
zofingiensis

pCZT1 RBCS Gold bombardment,electroporation PDS gene for
herbicides

Mooi et al., 2018

Chlorella
pyrenoidosa

pGreeII 0029 Ubiquitin Electroporation NptII, eGFP Run et al., 2016

Chlorella vulgaris pCAMBIA1304 CaMV 35S Electroporation Hygromycin Koo et al., 2013

pPt-ApCAT NR gene Electroporation Chloramphenicol Niu et al., 2011

Chlorella ellipsoidea pSoup NIT1 Electroporation NptII Bai et al., 2013

Claculinopsis
fusiformis

pble Pδ Bombardment Zeocin Fischer et al., 1999

Dunaliella salina pUCG-Bar GAPDH Electroporation Herbicide PPT Jia et al., 2012

being resistant to antibiotics (e.g., spectinomycin, kanamycin,
erythromycin, chloramphenicol), herbicides (e.g., sulfometuron
methyl, glufosinate, norflurazon), or having a function as
a metabolic mutant (e.g., photoautotrophic growth, arginine
free media, nitrate salt presented media) (Morales-Sánchez
et al., 2015). Although antibiotic resistance genes are usually
used for selecting the transformant, metabolic selection is
considered to be environmentally friendly (Doron et al., 2016).
Particularly, stable transformation depends on the use of a
suitable selection marker.

Condon Optimization
Codon optimization is also important to consider because it
significantly affects translation efficiency and protein expression
levels. Codon bias from tRNA abundance can be quite
different not only for various species genomes but for various
organelles. The length of vector construction can lead to false
positive transformants in microalgal hosts. The efficiency of
positive transformants can range from 2–50% depending on
the construct (Baier et al., 2018). Microalgae are still being
used more than P. tricoronutum (diatom) because diatom
is sensitivity and slow growth, even though they have less-
complex genetic data.

When DNA synthesis is more reliable and cheap, it may
soon be possible to design and construct complex metabolic
pathways in microalgae (Lauersen et al., 2018). In recent years,
many vectors, toolboxes, and strategies have been developed
for the model microalgae Chlamydomonas, but these cannot be

applied for all microalgae. Until now, non-model microalgae
were still a challenge because of the lack of development in
tools and strategies (Suttangkakul et al., 2019). In some cases,
they can produce recombinant proteins in the same way as
Chladmydomonas reinhardtii.

Protein Degradation
Proteases can degrade foreign proteins, so knockdown
technologies, such as RNAi, are used to limit proteolysis.
Methods to control this limitation are still required for further
improvement in microalgae. Furthermore, foreign protein
toxicity should also be considered; for example, the cholera
toxin-B subunit is toxic to tobacco cells only when expressed in
the cytosol (Daniell et al., 2001). Thus, similar aspects should be
considered when using microalgae as a host.

Secretion Product
In eukaryotes, secretion can ensure proper glycosylation of
proteins, which plays an important role in determining
yield, biological function, stability, and half-life of production.
Nevertheless, these mechanisms of protein glycosylation in
higher plants remain unknown (Mathieu-Rivet et al., 2014).
Therefore, secretion of expressed protein into the medium is
widely used in heterotrophic microalgal hosts (Demain and
Vaishnav, 2009). In general, secretion yields more than 10 mg/L
are a minimum for commercial processes (Hellwig et al.,
2014), while heterotrophic microalgae could have a yield more
than 1 g/L. In 2017, reports supported potential of transgenic
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microalgae as a host for the secretion of recombinant production
(Ramos-Martinez et al., 2017).

MICROALGAL ENGINEERING FOR
PHYTOCHEMICALS PRODUCTION

Microalgae have great potential to produce novel metabolites
and other high-value compounds. Plant secondary products
or specialized metabolites are some of the most crucial target
compounds (Gangl et al., 2015). These plant compounds have
been used in many areas, including pharmaceuticals, chemicals,
food industries, and medicines. Moreover, approximately 50%
of all approved medicines are from plant compounds (Lassen
et al., 2014). Recently, some researchers and biotechnologies aim

to replace many types of plant compounds with microorganisms
via genetic technology because various substances are normally
found in small amounts in plant, which means that some
parts of the plant are wasted biomass. Moreover, there
remains an imperfect production of the chemical on an
industrial scale for some types of compounds. More recently,
microalgae have become fascinating and interesting hosts to
produce heterologous isoprenoids, which are high-value plant
secondary metabolites. Researchers have strongly suggested that
pharmaceutical products, such as terpenoids, are not only
produced in plant chloroplasts but also in microalgal chloroplasts
(Bock and Warzecha, 2010). Some algae accumulate a large
percentage of triacylglycerol (TAGs), which is similar to those
found in plant oils (Hu et al., 2008). Unfortunately, some high-
value compounds, such as terpenoids, are less expressed in

TABLE 5 | Recent phytochemicals manufactured in microalgae.

Microalgal hosts Phytochemical productions Functions Cultivation modes References

Porphyridium sp. • Carbohydrates: Exopolysaccharides
(EPS)
• PUFAs: Arachidonic acid (AA)
• Protein-pigment complexs:
B-phycoerythrin, etc.

High-value bioactive
substances (food,
medicine, nutrition)

Phototroph, Mixotroph,
Heterotroph

Li et al., 2020

Chlamydomonas reinhardtii,
Synechococcus elongatus

• Cannabinoids:
delta-9-tetrahydrocannabinoid
(19-THC), cannabidiol (CBD), etc.

Treat a wide range of
medical conditions
(e.g., AIDS, neuropathic
pain, spasticity)

Phototroph Laban, 2019

C. reinhardtii • Hydrocarbons: terpenoids High-value plant
secondary metabolites
(antioxidant, dietary,
supplement, pigment)

Phototroph Lauersen, 2018

• Metabolites: Cytochrome P450
enzymes (P450s) which is involved in
the biosynthesis of complex plant
metabolites (e.g., paclitaxel
accumulation in plant; Taxus baccata)

Paclitaxel as a natural
source cancer drug

Phototroph Gangl et al., 2015

Scenedesmus sp. • Pigments: β-carotene (red-orange
found plants and fruits), Lutein

Health food, dietary,
supplements,
cosmetics, feed

Phototroph Chen et al., 2017

Dunaliella sp. • Pigments: β-carotene, astaxanthin Food coloring,
antioxidant,
anti-allergic,
anti-inflammatory

Phototroph Saha et al., 2018;
Barkia et al., 2019

Haematococcus sp. • Pigments: β-carotene, astaxanthin Antioxidant,
anti-inflammatory

Barkia et al., 2019

Chlorella sp. • Pigments: lutein (a large amount of
lutein present in marigold flowers)
• Proteins: whole, dried microalgae

Antioxidant, dietary,
cosmetic, pigment

Phototroph,
Heterotroph

Sun et al., 2016

C. pyrenoidosa • Micronutrients: polyphenols
(present in diverse plants)

Pharmacological
activities, antioxidant

Phototroph Olasehinde et al., 2017

Neochloris oleoabundans • Fatty acids: triacylglycerols (TAGs)
(major component of vegetative oils)

Great nutritional,
nutraceutical value,
edible oils, and
industrial purposes.

Phototroph Chungjatupornchai
et al., 2019

Botryococcus braunii • Hydrocarbons: alkadiene,
botryococcene
• Metabolites: phenolics, carotenoids

high-quality fuel
applications,
antioxidant, medical
values

Phototroph Cheng et al., 2018;
Kempinski and
Chappell, 2019

Green algae, Volvox carteri • Phytohormones: auxin, abscisic
acid, cytokinin, ethylene

Plant hormone Phototroph Lu and Xu, 2015
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E. coli and Saccharomyces cerevisiae because those compounds
need special localization and post-translational modification
(Chemler and Koffas, 2008). In 2018, the invention of producing
cannabinoids, which is a phytocompound, in an algae host was
presented for a patent. The expression systems and method can
convert a fatty acid into a cannabinoid in an algae host (Laban,
2019). Recent studies have shown the ability of microalgal host
to express, post-translationally modify, fold, and secrete plant
chemicals and proteins (Table 5).

Additionally, some studies have attempted to convert
autotrophic algae into heterotrophs by using genetic
manipulation to adapt microalgae to different growth conditions
(Taunt et al., 2018). However, some studies have reported that
the yield of Chlorella was 200 ng/L to 11.42 mg/L, which is
lower than other hosts, including plants (0.1 µg/L to 247 mg/L),
mammalian cells (0. 55–80 mg/L), and insect cells (80–300 mg/L).
Fortunately, rapid growth of Chlorella might gain higher yield
(Yang et al., 2016).

CHALLENGES OF MICROALGAL HOSTS

The major challenge is bacterial contamination in heterotrophic
microalgal culture and biomass since the faster grow of bacterial
populations is a consequence of commercial applications.
Thus, sterilization steps are necessary, which cause a higher

cost on a large scale due to equipment demands, such as
autoclaves, laminar flow cabinets, and boilers. Besides, the use
of industrial wastes in the culture medium could be risky for
high microbial load. However, lower cost sterilization methods,
including sodium hypochlorite usage, are another option to
investigate for replacing expensive sterile tools on a large scale
(Peiris et al., 2012).

Another major concern is the need for aeration and efficient
mixing in the liquid medium for avoiding transfer limitations
that can reduce cell biomass and yield (Lopes et al., 2019). In
this sense, technological development of bioreactors is required
to provide adequate oxygen under gentle stirring at a large scale
without the presence of dead zones. Today, the limitations of
industrial scale rely on the future development of a bioreactor
which can operate in a larger scale (Severo et al., 2019).

Additionally, microalgal hosts, especially under heterotrophic
cultivation, are still challenged by some obstacles for
phytochemical production. Microalgae recombinant techniques
for molecular development, including enhancing transcription,
improving translation efficiency, and minimizing post-
translational degradation, and process development, such as
improving cultivation methods and optimizing scale-up culture,
are needed. In the United States and Europe, biopharmaceutical
industries are using microbial fermentation and mammalian
cells for production. Host system research using microalgae
should be encouraged over other hosts. Although, genetically

FIGURE 4 | Recombinant protein global market the forecast trends in 2025 (Coherent Market Insights, 2020).
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modified microalgae have less of a chance to survive in the
environment, it is suggested to analyze the risks before staring
industrial production outdoors (Wijffels et al., 2013).

KEY MARKET TRENDS

The growth of valuable protein and compound markets has
continually increased in research and development. Therapeutic
applications from biopharmaceuticals have become bestsellers
for the treatment of many chronic conditions, like diabetes,
cancer, psoriasis, multiple sclerosis, rheumatic diseases, and

inflammatory bowel diseases. The biopharmaceutical market was
valued at approximately US$ 199.7 billion in 2013 and might
reach US$ 497.9 billion in 2020; hence, an overall compound
growth rate of 13.5% per year (Xu and Zhang, 2014). Many
application trends of recombinant proteins in the global market
in 2025 are shown in Figure 4 (Coherent Market Insights, 2020).

Over 50 different biopharmaceuticals have been successfully
produced in microalgae (Lauersen et al., 2013). Microalgae
represent a third-generation biofuel and an energy source.
Moreover, their short life cycle, environmental adaptation, and
wide range of distribution serve as good criteria for economic
systems. According to global market research, various products

FIGURE 5 | Several new products derived from microalgae in different stages (early development, advanced development, and commerce) of development (adapted
from Jacob-Lopes et al., 2019).
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from algae are expected to grow at 4.2% annual growth
rate from 2018 to 2025. Furthermore, a total market value
is more than 3.4 billion US$, while no biopharmaceuticals
produced from microalgae have been approved for commercial
production (Taunt et al., 2018; Kumar et al., 2020). However, for
reasons of high cost and unavailability of genetic information
for commercially suitable strains, they have not yet reached
industrial maturity and commercial success. So far, a considerable
effort has been given to tackle the bottleneck of various
methods, including various nutritional-, environmental-, and
physiological alteration of cultivation, metabolic and genetic
engineering (Pierobon et al., 2018; Chen and Lee, 2019). To
meet large market demand, a high technological level and
the use of mechanized harvests are required. Exploring the
integration of new efficient technology of downstream processes
including extraction, concentration, conversion, and purification
of recombinant product from microalgae should be considered
in future studies.

To date, economic feasibility of some heterologous production
will not be achieved with microalgal host, for example,
sesquiterpenoid cosmetic and perfume have already been
produced by microbial fermentation in the market under the
name Clearwood by Firmenich (Lauersen, 2018). However, other
productions still have been possibly produced in microalgal host,
the return on investment can be achieved in short term. Recently,
microalgae productions are continuingly developed in three
stages of microalgae-based process developments (Figure 5).
Commercialized microalgae products are sold on the market
with authorization at least one county, such as omega-6 oils,
whole dried microalgae cookies, whole dried microalgae noodles,
and phycoerythrin. Some of the products are in advanced
development which is in the multiple field trails and has more
than one proof of concepts, including beta-glucan, fucoxanthin,
whole biomasses, exocellular polysaccharides, fatty acids, and
proteins. However, most of them are in early development
stage that has only few proofs of concepts namely enzymes,
antioxidants, antimicrobials, carbohydrates, lutein, bulk oil, and
high-value compounds. Furthermore, demanding of high value
compounds is increasing. For instant, the high value pigments
like β-carotene make a selling price up to US$ 790 per kg (Jacob-
Lopes et al., 2019). Recently, the carotenoid market has been
reached US$ 1.53 billion until 2021 (Fernandes et al., 2018).
Especially, heterotrophic microalgae have much attention for
commercial applications because they overcome the difficulties
of supplying CO2 and light compared to autotrophic microalgae
(Hu et al., 2017). The cost of dry biomass for heterotrophic
cultivation was US$ 2, whereas autotrophic cultivation was
around US$ 11. Nevertheless, through the economic aspect,
the main costs of heterotrophic cultivation are the set-up,
equipment costs, and organic carbon source costs (Lowrey
et al., 2015). About 80% of production costs spend to culture
medium, so the replacement of alternative organic carbon sources
can reduce approximately 40% (Santos et al., 2017). While
many species of microalgae can be cultured in wastewater
to reduce the costs of carbon source and other nutrition,
they can use organic carbon and inorganic N and P from
wastewater and also remove heavy metals (Jareonsin et al., 2019).

Therefore, researchers are more likely to use wastewater
from industrial applications, including livestock, kitchen, or
pig wastewater on heterotrophic microalgae to enhance the
economic feasibility and sustainability of production (Qin et al.,
2019). However, the production of biopharmaceutical products
might be challenged by using those wastewaters because of
safety concerns.

Owing to biosafety concerns, the way to the world
market requires approval of all genetically modified organisms
(GMOs). Some organizations, such as European Food Safety
Authority (EFSA)1 and OECD meeting on the Biosafety
and Environmental Uses of Micro-Organisms, prepared a
guidance protocol for risk assessment of genetically modified
microorganisms (OECD, 2015). For instance, the protocols
recommended that GM microorganisms should be grown in
closed bioreactors, tubular reactors, or polyethylene sleeves,
additionally, selection markers should be removed. Once the
genetically improved strain is developed, biosafety will define its
commercial success.

CONCLUSION AND FUTURE VIEWS

Tremendous breakthroughs in the new discovery of novel
expression platforms for producing biopharmaceuticals or
phytochemicals are needed. Heterotrophic microalgae are a
sustainable and scalable host for recombinant technology.
Microalgae share many attributes with higher plants, such as
glycosylation patterns and having low risk of contamination
by viruses or prions. Unlike higher plants, the closed-system
of heterotrophs in fermenters is attractive because of safety
aspects for biopharmaceutical products, cost-effectiveness, well-
controlled environment, fast growth, and high yield on
a large scale, suggesting the use of these organisms as
alternative biotechnology. Thus, the genetic tools and design
concepts of heterotrophic microalgae should be developed for
increasing the number of known microalgae species under
heterotrophic conditions.

Microalgae cultivation is well known to be the most profitable
business in biotechnological industry since it has less waste.
Additionally, the development of other GRAS species that have
been grown commercially, such as Chlorella sp., Dunaliella salina,
and Haematococcus pluvialis, may provide opportunities for
reducing costs and scaling-up; moreover, these promising hosts
will help to expand the various applications for recombinant
microalgae-based production. Apparently, expanding basic or
applied research for the use of autotrophic and heterotrophic
microalgae is necessary.

The challenges to meet the economic demand are
multifaceted, including quantities, qualities, and cost-
effectiveness. Improving yield and product quality in some
microalgal hosts remain to be addressed. A small number
of microalgal hosts are approaching commercialization
as the demand for therapeutics and other production is
continually growing. These still remain some limitations for

1https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2006.374
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being microalgal host, such as difficult engineering due to the lack
of a high-efficiency genetic toolbox (especially for heterotrophic
microalgae), less-available molecular specific toolkits, short-term
stability genetic system, and less efficient manipulation outside
laboratory. To counter these limitations of phytocompounds
using microalgal host, the basal study of molecular elements,
such as identification and cloning of promoters, enhancers,
and terminator should be studied up more. The innovation
and toolkits for microalgae are also need to be specifically
improved. Using industrial or agricultural waste contained
with less microbial load should be adapted to medium for
sustainability and saving cost for industrial scale. Indeed,
fundamental knowledge and research are also necessary, making
more research on various cultivation conditions a good option
within the next few years.

Many plant chemicals that are of pharmaceutical interest are
waiting to be produced by the benefits of genetic engineering
of microbial synthesis on an industrial scale. In terms of
sustainability, combined with economic, environmental, and
short life cycle benefits, hetero- and autotrophic microalgae may
reach this goal.
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Microalgae are considered to be a highly promising source for the production of
biodiesel. However, the regulatory mechanism governing lipid biosynthesis has not been
fully elucidated to date, and the improvement of lipid accumulation in microalgae is
essential for the effective production of biodiesel. In this study, LEAFY COTYLEDON1
(LEC1) from Arabidopsis thaliana, a transcription factor (TF) that affects lipid content,
was transferred into Chlorella ellipsoidea. Compared with wild-type (WT) strains,
the total fatty acid content and total lipid content of AtLEC1 transgenic strains
were significantly increased by 24.20–32.65 and 22.14–29.91%, respectively, under
mixotrophic culture conditions and increased by 24.4–28.87 and 21.69–30.45%,
respectively, under autotrophic conditions, while the protein content of the transgenic
strains was significantly decreased by 18.23–21.44 and 12.28–18.66%, respectively,
under mixotrophic and autotrophic conditions. Fortunately, the lipid and protein content
variation did not affect the growth rate and biomass of transgenic strains under the two
culture conditions. According to the transcriptomic data, the expression of 924 genes
was significantly changed in the transgenic strain (LEC1-1). Of the 924 genes, 360 were
upregulated, and 564 were downregulated. Based on qRT-PCR results, the expression
profiles of key genes in the lipid synthesis pathway, such as ACCase, GPDH, PDAT1,
and DGAT1, were significantly changed. By comparing the differentially expressed
genes (DEGs) regulated by AtLEC1 in C. ellipsoidea and Arabidopsis, we observed that
approximately 59% (95/160) of the genes related to lipid metabolism were upregulated in
AtLEC1 transgenic Chlorella. Our research provides a means of increasing lipid content
by introducing exogenous TF and presents a possible mechanism of AtLEC1 regulation
of lipid accumulation in C. ellipsoidea.
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INTRODUCTION

The sustainable development of biofuels has gained considerable
attention in recent years (Koutra et al., 2018). Microalgae biomass
and the energy-rich compounds derived from microalgae, such
as carbohydrates and lipids, have emerged as the most popular
feedstock for the production of biofuels (Wijffels and Barbosa,
2010; Du et al., 2019). The first- and second-generation biofuel
feedstock, such as palm, soya beans, rapeseed and wheat, had the
disadvantage that the cultivation of these crops might compete
for limited arable farmland, which indirectly affects food security
and prices (Zhu et al., 2016; Park et al., 2019).

Furthermore, compared with other biofuel feedstocks and
terrestrial plants, microalgae are more appropriate for biofuel
production because (1) as photosynthetic organisms, microalgae
are able to capture solar energy and use water and atmospheric
CO2 with high efficiency to accumulate biomass in the form
of organic ingredients, such as lipids (Hu et al., 2008); (2)
they could grow in seawater or industrial/domestic wastewaters
with a relatively high growth rate (Venkata et al., 2015);
and (3) microalgae are environmentally friendly resources for
biomass energy, and they could reduce the greenhouse gas
effect (Chisti, 2007). However, several factors may limit stable
production of microalgae: (1) it is difficult to select appropriate
strains that could produce on a large scale and contain high
levels of lipids (Xiong et al., 2010); and (2) environmental
factors, such as light, temperature, pH, available nutrients,
and higher cost of cultivation, restrict microalgae production
(Shin et al., 2018).

Some microalgae species, such as Botryococcus braunii
(57–64%), Schizochytrium sp. (50–77%), and Neochloris
oleoabundans (35–65%), have a high lipid content but slow
growth rate and low oil production rates (Rao et al., 2007).
However, several other species, such as Chlamydomonas
reinhardtii, Chlorella pyrenoidosa, and Navicula pelliculosa,
have a high growth rate but a low oil content (<15%) (Hu
et al., 2008). Thus, it appears to be difficult to locate the
microalgae with simultaneous high cell growth rate and
high cellular lipid content. Many efforts have been made to
overcome these challenges, such as strain selection (Remmers
et al., 2018), the improvement of culture nutrition (especially
N, P, and S limitation), and other improvements in growth
conditions (temperature, light, and pH) (Guschina and
Harwood, 2006; Markou and Nerantzis, 2013; Li-Beisson et al.,
2019).

Recently, the rapid development of multiple approaches,
including omic analysis, genetic engineering, genome editing,
and metabolic pathway engineering, provided efficient ways
to increase the lipid content in microalgae. Omics analyses
identified complete gene sets encoding fatty acid and
triacylglyceride biosynthetic pathways of Chlorella vulgaris
UTEX 395 (Guarnieri et al., 2018). Compartmentalized genome
scale metabolic model iAJ526 was reconstructed with 1,455
reactions, 1,236 metabolites, and 526 genes for Chlorella
variabilis (Juneja et al., 2016). Proteomic analysis of C. vulgaris
showed the mechanisms governing lipid accumulation in algae
(Guarnieri et al., 2013). Fan et al. sequenced the 56.8-Mbp

genome of C. pyrenoidosa FACHB-9 to investigate the rapid
switch of the intracellular energy storage form from starch to
lipids and showed that overexpression of an NAD(H) kinase
from Arabidopsis increased cellular lipid content by 110.4% (Fan
et al., 2015). Chakraborty et al. (2016) found nitrate limitation
(1 mM) was suitable for the enhancement of lipids, resulting
in the highest yield (48.26% w/w) by using the Taguchi model.
Ma et al. (2019) reported that overexpressing ACCase and
PEPC genes in a lipid-poor wild strain MC-1 could increase
lipid content by 28.6%. In 2014, the CRISPR/Cas9 system was
reported to have worked successfully in C. reinhardtii (Jiang
et al., 2014). Lin and Ng used CRISPR/Cas9 to edit the fad3 gene
and achieved an accumulation of lipid content higher by 46%
(w/w) in C. vulgaris FSP-E (Lin and Ng, 2020).

Clearly, the first step of the lipid biosynthesis, acetyl-CoA
carboxylase (ACCase), plays a vital role in metabolic flux to lipid
biosynthesis, since ACC catalyzes the carboxylation of acetyl-
CoA to form malonyl-CoA, the first intermediate product in the
fatty acid elongation pathway (Kim, 1997; Davis et al., 2000).
Next, a series of reactions for fatty acid production are catalyzed
by fatty acid synthase (FAS) (Subrahmanyam and Cronan,
1998). However, lipid synthesis and accumulation are controlled
by multiple genes. A number of studies show transcription
factors (TFs) that regulate multiple genes play an important
role in regulating the lipid biosynthesis and metabolic pathways.
Overexpression of the soybean TFGmDof4 significantly enhances
the lipid content of Chlorella ellipsoidea (Zhang et al., 2014).
Kang et al. reported that Wrinkled1, a TF of Arabidopsis,
enhanced lipid production in the microalgae Nannochloropsis
salina (Kang et al., 2017).

LEC1 is a central regulator that controls many aspects of seed
development, including the maturation phase during which seeds
accumulate storage macromolecules and embryos acquire the
ability to withstand desiccation in Arabidopsis (West et al., 1994).
The induced overexpression of LEC1 can affect ABI3, FUS3,
WRINKLED1 and other TFs and improve the overall level of fatty
acid synthesis-related gene expression (Mu et al., 2008). Shen
et al. (2010) found that the overexpression of corn ZwLEC1 gene
under embryo-specific weak promoter EPA1 could significantly
increase the oil content of transgenic maize, but plant leaves are
reduced to approximately half of the leaves of the wild type.
C. ellipsoidea is a unicellular eukaryotic organism that has no
differentiation of tissues and may be a good receptor of LEC1
overexpression without lethal or harmful effects to the host cell.

In this study, we investigated the feasibility and the
mechanism for improving the lipid content of C. ellipsoidea by
the overexpression of AtLEC1. The results indicated that the
lipid content of transgenic C. ellipsoidea strains was significantly
increased under mixotrophic and autotrophic culture conditions,
but the growth rate of the strains was not affected. In addition,
RNA-seq data showed that AtLEC1 significantly regulated 924
genes of C. ellipsoidea, and we found the regulation mechanism of
AtLEC1 in C. ellipsoidea to have some differences compared with
the regulation mechanism in Arabidopsis. Our study provided a
new route for engineering microalgae to increase the lipid content
and help to elucidate the mechanism of lipid accumulation in
C. ellipsoidea regulated by LEC1 from a higher plant.
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MATERIALS AND METHODS

Strain and Culture Conditions
The C. ellipsoidea strains used in this study were grown in Endo
medium (Appleyard, 1954) for the mixotrophic culture and in
KNOP medium (McLEOD, 1958) for the autotrophic culture in a
rotary shaker (DZ-900, Zhongkepusen Co., Ltd., Beijing, China),
200 rpm at 25◦C under illumination (100 µmol photons/m2/s).

AtLEC1 Expression Vector Construction
and Transformation of C. ellipsoidea
The cDNA of AtLEC1 was generously provided by Prof. Jianru
Zuo (Institute of Genetics and Developmental Biology, Chinese
Academy of Sciences). The AtLEC1 cDNA was cloned into
a T-vector (pEASY-Blunt Cloning Vector, TransGen Biotech.
Ltd., Beijing, China), and later inserted at SpeI and NotI

sites of pGreen0029 driven by UBI promoter from maize,
which was named pGreen0029-Ubi-AtLEC1-Nos (pAtLEC1)
(Figure 1A). C. ellipsoidea was transformed using plasmid
pAtLEC1 according to the previously described method (Bai
et al., 2013). Briefly, strains were cultured to the logarithmic
phase in Endo medium, mixed with 0.2 M mannitol and 0.2
M sorbitol and kept on ice for 1 h. The resuspended strains
were mixed with electroporation buffer (0.08 M KCl, 0.005 M
CaCl2, 0.01 M HEPES, 0.2 M mannitol, and 0.2 M sorbitol),
a final concentration of 20 µg/mL pAtLEC1 plasmid, a final
concentration of 10 µg/mL plasmid pSoup, and 25 µg/mL
salmon sperm DNA. The strains were transformed with a
Baekon 2000 (Baekon Co., CA, United States) electroporation
device. After electroporation, the strains were screened using
SE agar selection medium containing 30 mg/L G418. The
selected individual strains were subcultured in SE liquid medium
containing 15 mg/L G418.

FIGURE 1 | AtLEC1 transformation vector and detection of AtLEC1 transgenic strains. (A) A schematic map of the AtLEC1 plasmid. (B) PCR analysis of WT, CK,
and AtLEC1 transgenic lines. M: Marker; 1: pAtLEC1 vector; 2-5: LEC1-1, LEC1-2, LEC1-3, LEC1-4; 6: CK; 7-8: LEC1-5, LEC1-6; 9: WT. (C) Detection of the
expression of AtLEC1 in transgenic lines by RT-PCR. M: Marker; 1: WT; 2: CK; 3-6: LEC-1, LEC-2, LEC-3, LEC-4.
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Characterization of Transgenic Strains
With PCR
Genomic DNA isolation, total RNA isolation, PCR amplification,
and cDNA synthesis were performed as previously described
(Zhang et al., 2014). All relevant primer sequences used for PCR
and RT-PCR are listed in Supplementary Table 1. Identification
of transgenic strains was carried out using a pair of primers, P1
and P2. The reaction conditions were as follows: denaturation
at 95◦C for 10 min, 30 cycles of 94◦C for 30 s, 55◦C for 30 s,
and 72◦C for 2 min followed by final extension at 72◦C for
10 min. Total RNA was isolated using an RNA extraction kit
(Takara). The reverse transcriptome product was diluted by a
factor of 10 for RT-PCR amplification, in which total 20 µL
reaction mixtures contained 10 µL 2 ×M5 HiPer plus Taq HiFi
PCR Mix (Mei5 Biotechnology), 1 µL primer P3, 1 µL primer
P4, 1 µL template, and 7 µL ddH2O. The reaction conditions
were as follows: denaturation at 94◦C for 5 min, 28 cycles of
94◦C for 1 min, 55◦C for 1 min, and 72◦C for 20 s, and a final
extension step of 72◦C for 5 min. RT-PCR products were analyzed
by electrophoresis on 1% agarose gel. For the verification of the
selected gene expression level, qRT-PCR analyses were performed
on a LightCycler R© 480. The 20-µL reaction mixtures contained
10 µL EvaGreen 2 × qPCR MasterMix (abmGood.com), 1 µL
of each primer (10 µM), 1 µL template, and 7 µL ddH2O. The
reaction conditions were as follows: 1 cycle 95◦C for 10 min,
40 cycles of 95◦C for 10 s, and 60◦C for 30 s. To normalize the
amount of transcripts in each sample, the relative abundance
of 18S rRNA was determined and used as an internal standard
control. The gene expression value was the difference (Ct)
between the target gene and the reference gene.

Biomass and Everyday Growth Rate
Analysis
The biomass of AtLEC1 transgenic strains and the WT were
analyzed under mixotrophic and autotrophic culture conditions
at 25◦C and illumination (100 µmol photons/m2/s) in Endo
medium and KNOP medium, respectively. The C. ellipsoidea
biomass concentration (w/v) was equivalent to a specific value
of the strain dry weight (DW) that was determined by OD 540
according to the following empirical formula:

DW
(
g/L

)
= (OD540 + 0.0097)/0.4165 (1)

The everyday growth rate (EGR) was calculated according to the
equation (White et al., 1991):

EGR = (X2− X1) /X1 (2)

X1 was the biomass concentration on the initial day; X2 was the
biomass concentration on the next day.

Measurement of the Soluble Proteins,
Carbohydrate, Lipid Content, and the
Fatty Acid Composition
To measure the daily growth rate (DGR) and biomass of the
AtLEC1 transgenic and the WT strains, we collected cultured
algae after the 1st day (1D), 5th day (5D), and 9th day (9D)

under mixotrophic culture conditions and the 5th day (5D),
10th day (10D), and 15th day (15D) under autotrophic culture
conditions. Each sample had three biological replicates, and
the freeze-dried biomass was collected to measure the soluble
proteins, carbohydrate, lipid content, and fatty acid composition.
The carbohydrate content was analyzed based on the procedure
published by Miao and Wu (2004). Proteins were extracted
following the procedure of Rausch (1981) and were quantified
using the Bradford method (Bradford, 1976). Lipid extraction
was performed by the Soxhlet method that was similar to
the procedures reported by Folch et al. (1957). The fatty acid
compositions were qualitatively and quantitatively determined
using a TurboMass Gas Chromatograph Mass Spectrometer
(PerkinElmer, MA, United States) with a capillary column (BPX-
70, 30 m × 0.25 mm × 0.25 µm) using the method as
previously described (Song et al., 2010). The Nile red staining
followed a previous method (Greenspan et al., 1985), which
was used to visualize the intracellular lipid bodies as indicators
of TAG formation.

Photosynthetic Pigment Content
Measurement
Photosynthetic pigment content was measured according to
the previous method (Fargasová and Molnárová, 2010). Briefly,
0.02 g of a freeze-dried Chlorella powder sample was mixed with
4 mL of 95% (v/v) ethanol in an airtight tube and agitated at
room temperature overnight in the dark until the color turned to
white. After centrifugation at 5,000 rpm for 5 min, the ethanol
phase was removed, and more 95% (v/v) ethanol was added
to a volume of 25 mL. Next, the sample was measured with a
spectrophotometer at wave lengths of 665 nm (A665), 649 nm
(A649), and 470 nm (A470). The 95% ethanol was used as a
blank control. The amount of chlorophyll a (Ca) was calculated
as Ca = 13.95 × A665 − 6.88 × A649; chlorophyll b (Cb) as
Cb = 24.96 × A649 − 7.32 × A665; and carotenoids (Cc) as
Cc = (1000 × A470 − 2.05 × Ca − 114.8 × Cb)/245. The
total content of chlorophyll per fresh weight was calculated as
C = 2× (Ca+ Cb+ Cc)/W.

Illumina-Based RNA-Seq Analysis
For the gene expression analysis by RNA-seq, the transgenic
AtLEC1-1 strain and the WT strain were collected on the 5th day
of cultivation under mixotrophic conditions. Three independent
biological replicates were used for the data analysis. The cDNA
library was sequenced on an SE flow cell using Illumina Genome
Analyzer IIx (Illumina, San Diego, CA, United States). Finally,
8.08 Gb clean data (total) with more than 90.92% of Q30 were
generated from two GAIIx single-end lanes. Using SOAPdenovo
with the parameters “-K31–d3–R,” 775,293 contigs with an N50
contig size of 2,072 bp were obtained (Li et al., 2009). To detect
the differentially expressed genes (DEGs), we first mapped the
short reads to the reference genes using the Burrows Wheeler
Alignment tool (BWA) program with default parameters. For the
validation and annotation of the assembled contigs, a sequence
similarity search was conducted against a non-redundant protein
database using the BLASTx algorithm with an E-value threshold
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of 10−3. The results demonstrated that of 13,566 contigs, 7,559
(55.72%) showed significant similarity to known proteins in the
non-redundant (Nr) database. Contigs with a similarity greater
than the threshold were annotated using GO, the molecular
function, biological process, and cellular component ontologies1

by the Blast2GO program (Conesa et al., 2005).The RNA-seq data
(PRJCA003770) were available in the BIG Data Center2.

Analysis of Sequence Similarity
To detect protein sequence similarities of LEC1 among different
species, a total of 13 homologous genes of AtLEC1 were
selected from Glycine max, Brassica napus, Micromonas pusilla,
Micromonas commode, Coccomyxa subellipsoidea, Ostreococcus
lucimarinus, C. reinhardtii, Volvox carteri, Dunaliella salina,
Saccharomyces cerevisiae, Homo sapiens, and Mus musculus, and
the sequence similarity analysis was subsequently performed
through software DNAstar v7.1.0. Phylogenetic tree was
inferred using the neighbor-joining method and the bootstrap
consensus tree inferred from 1,000 replicates in MEGA v7.0
(Kumar et al., 2016).

Statistical Analysis
P-values (means± SD) were calculated with Student’s t-test (two-
tailed) by Microsoft Excel. ∗Significance at p < 0.05 and ∗∗
significance at p < 0.01 were used for the comparison with the
control based on Student’s t-test. The experimental replicates,
sample size, and significance level of p-values are described in
the figure legends.

RESULTS

AtLEC1 Expression in C. ellipsoidea
Does Not Affect Growth
In our study, we transferred an Arabidopsis gene AtLEC1 into
C. ellipsoidea using the AtLEC1 expression vector pAtLEC1
according to a previous method (Bai et al., 2013). A schematic
map of the AtLEC1 plasmid (Figure 1A), PCR analysis of
AtLEC1 transgenic strains and detection of the expression of
AtLEC1 in transgenic strains by RT-PCR are presented in
Figures 1B,C. The primers used in our study are listed in
Supplementary Table 1. The AtLEC1 transgenic and wild-
type (WT) C. ellipsoidea strains were cultured according to a
previously described method (Zhang et al., 2014). To detect the
effect of AtLEC1 on C. ellipsoidea growth, the DGR and the
biomass concentration of transgenic and WT were measured
under mixotrophic and autotrophic conditions. The growth
curves of AtLEC1 transgenic strains showed no significant
difference compared with the growth curves of WT under
mixotrophic culture conditions (Figures 2A,B) and autotrophic
culture conditions (Figures 2C,D). Photosynthetic pigment
content was an important growth index in C. ellipsoidea. We
collected the strains on the 1st day, 5th day, and 9th day
of cultivation to measure the chlorophyll content, including

1http://www.geneontology.org
2https://bigd.big.ac.cn/databases

chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll
content under mixotrophic culture conditions. The result
indicated that the total photosynthetic pigment content of WT
strains ranged between 9.22 and 9.42 mg/g, and transgenic strain
LEC1-1 was 9.69–10.25 mg/g, LEC1-2 was 10.02–10.47 mg/g,
and LEC1-3 was 10.10–10.32 mg/g. Except for the chlorophyll a
higher in transgenic strains than WT, there were no significant
differences between them (Figure 2E). In addition, there was no
significant difference between AtLEC1 transgenic strains and WT
cultured on the 5th day, 10th day, and 15th day under autotrophic
culture conditions (Figure 2F). In other words, the AtLEC1
transformation did not affect the growth and photosynthesis in
C. ellipsoidea, which established a foundation for further research.

Expression of AtLEC1 Increases the
Lipid Content in C. ellipsoidea
Compared with WT, the lipid productivity of transgenic strains
was significantly higher than the lipid productivity of WT
under mixotrophic and autotrophic culture conditions. Under
mixotrophic culture conditions (Figure 3A), on the 5th day,
the lipid content of WT was 270.64 mg/g, while the lipid
content of transgenic strains LEC1-1, LEC1-2, and LEC1-3
was increased by 12.14–22.28%, reaching 303.51–330.95 mg/g.
On the 9th day, the lipid content was 287.33 mg/g, while
the lipid content of transgenic strains LEC1-1, LEC1-2, and
LEC1-3 increased by 22.14–29.91%. Under autotrophic culture
conditions (Figure 3B), on the 10th day, the lipid content
of the WT was 150.96 mg/g, while the lipid content of the
transgenic strain was increased by 21.69–30.45%. On the 15th
day, the lipid content of transgenic strains was increased by
9.28–22.77%. Gas chromatography/mass spectrometry (GC/MS)
analysis indicated that the main types of fatty acids of AtLEC1
transgenic strains and WT were not changed, but the content
of total fatty acids C18:1 (oleic acid) and C18:2 (linoleic acid)
increased significantly in the transgenic strains under both
mixotrophic and autotrophic culture conditions (Figures 3C,D).
Under mixotrophic culture conditions, on the 5th day, the
C18:1, C18:2 and total fatty acid content of the transgenic
strains increased by 22.70–41.25, 19.07–26.14, and 13.19–18.16%,
respectively. On the 9th day, the C18:1, C18:2 and total fatty
acid content of the transgenic strains increased by 36.40–64.58,
20.67–23.25, and 24.20–32.65%, respectively (Figure 3A). Under
autotrophic culture conditions, on the 5th, 10th, and 15th days
of cultivation, the total fatty acid content of the transgenic
strains increased by 8.29–39.61, 18.88–23.13, and 24.40-28.87%,
respectively (Figure 3B). The lipid increase in transgenic strains
could also be clearly observed by Nile red staining (Figure 3E).
Oil droplet fluorescence was measured on a Varian 96-well
plate spectrofluorometer, and the results showed that transgenic
strains can accumulate more oil droplets than WT strains. At
the same time, the carbohydrate content of the three transgenic
strains was not significantly different (Figures 4B,D), while
the protein content was significantly decreased (Figures 4A,C)
compared to the protein content of the WT. In brief, under
mixotrophic culture on the 9th day, the protein content in
WT was 288.53 mg/g, the protein content in LEC1-1 was
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FIGURE 2 | Growth characterization of AtLEC1 transgenic Chlorella ellipsoidea. (A) Every growth rate (EGR) of AtLEC1 transgenic strains under mixotrophic culture
conditions for 9 days. (B) The biomass of AtLEC1 transgenic strains under mixotrophic culture conditions. (C) The EGR of AtLEC1 transgenic strains under
autotrophic culture conditions for 16 days. (D) The biomass of AtLEC1 transgenic strains under autotrophic culture conditions. (E) The chlorophyll content of AtLEC1
transgenic strains under mixotrophic culture conditions. (F) The chlorophyll content of AtLEC1 transgenic strains under autotrophic culture conditions. WT, wild type;
LEC1-1, LEC1-2, LEC1-3, three AtLEC1 transgenic strains. The values are the means of three biological replicates. Asterisks indicate statistically significant
differences, Student’s t-test: *p < 0.05, **p < 0.01 compared with WT under the same conditions.

decreased by 18.23%, reaching 235.93 mg/g, the protein content
in LEC1-2 was decreased by 19.67%, reaching 231.77 mg/g,
and the protein content in LEC1-3 was decreased by 21.44%,
reaching 226.66 mg/g. Under autotrophic culture for 15 days,
the protein content in WT was 404.13 mg/g, in LEC1-1 was
decreased by 12.28% reaching 354.50 mg/g, in LEC1-2 was
decreased by 14.99% reaching 343.53 mg/g, and in LEC1-3
was decreased by 18.66% reaching 328.71 mg/g. These results
demonstrated that the overexpression of AtLEC1 significantly

increased oil production and decreased the protein content in
C. ellipsoidea.

Transcriptome Analysis of AtLEC1
Strains
Transcriptome analyses for transgenic AtLEC1-1 and WT strains
were obtained using the Illumina GAIIx platform. The RNA
sample was collected at the stage of mixotrophic culture
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FIGURE 3 | Effect of AtLEC1 on Chlorella fatty acid composition and lipid content. (A) The lipid content in AtLEC1 transgenic strains under mixotrophic culture
conditions. (B) The lipid content in AtLEC1 transgenic strains under autotrophic culture conditions. (C) The fatty acid composition and total fatty acids in AtLEC1
transgenic strains under mixotrophic culture conditions. (D) The fatty acid composition and total fatty acid content in AtLEC1 transgenic strains under autotrophic
culture conditions. (E) Observation and determination of oil droplets in C. ellipsoidea and WT by Nile red staining. WT, wild type; LEC-1, LEC-2, LEC-3, three AtLEC1
transgenic strains; Bars = 5 µm. The values are the means of three biological replicates. Asterisks indicate statistically significant differences, Student’s t-test:
*p < 0.05, **p < 0.01 compared with WT under the same conditions. 1D, 5D, 9D, 10D, and 15D were the 1st, 5th, 9th, 10th, and 15th days, respectively.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 February 2021 | Volume 9 | Article 626162132

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-626162 February 12, 2021 Time: 13:42 # 8

Liu et al. AtLEC1 Significantly Increased Lipid Content of Chlorella

FIGURE 4 | Effect of AtLEC1 on protein content and carbohydrate content. (A) The protein content in AtLEC1 transgenic strains under mixotrophic culture
conditions. (B) The carbohydrate content in AtLEC1 transgenic strains under mixotrophic culture conditions. (C) The protein content under autotrophic culture
conditions. (D) The carbohydrate content in AtLEC1 transgenic strains under autotrophic culture conditions. 1D, 5D, 9D, 10D, and 15D were the 1st, 5th, 9th, 10th,
and 15th days, respectively.

conditions for 5 days. After the quality control, 38,967 unigenes
with an average length of 791 bp were obtained, 7,788 unigenes
of which can be annotated by public databases such as COG,
GO, KEGG, Swiss-Prot, NR, and pfam. We found expression of
10,823 genes was changed, including 5,413 upregulated genes and
5,410 downregulated genes (Supplementary Table 2). To explore
the functional information of unigene transcription, MapMan
v3.53 was used to classify the metabolic pathways. According to
the criteria to determine differential expression of genes [false
discovery rate (FDR) ≤ 0.01] (Ness et al., 2011), 924 DEGs were
identified, including 360 significantly upregulated genes and 564
significantly downregulated genes (Figure 5A), and 471 DEGs
were annotated by different public databases (Supplementary
Table 2). Compared with the transcriptome data of Arabidopsis
with overexpression of AtLEC1, 269 of 924 DEGs in C. ellipsoidea
showing protein sequence similarity with 245 genes from
Arabidopsis were classified into 28 known pathways (Figure 5B
and Supplementary Figure 1). Compared with WT, DEGs
relative to five pathways were significantly upregulated in
AtLEC1 strains, including the minor CHO metabolism, the
glycolysis, the fermentation, the metal stress and the secondary
metabolism (Supplementary Figure 1). In contrast, DEGs
relative to six pathways were significantly downregulated,
including the gluconeogenesis/glyoxylate cycle, the oxidative
pentose phosphate, the amino acid metabolism, the cofactor
metabolism, the tetrapyrrole synthesis, and the nucleotide
metabolism (Supplementary Figure 1). The transcriptome
indicated that some of these genes were significantly changed
in protein, RNA metabolism and transporter in the AtLEC1
transgenic strains (Supplementary Table 3). Therefore, these

3http://mapman.gabipd.org/home

genes may be involved in the regulation of lipid accumulation in
AtLEC1 transgenic Chlorella.

Verification of the Regulatory Function of
AtLEC1 by qRT-PCR
The relative expression level of 15 significantly regulated genes
associated with lipid and fatty acid metabolism were analyzed
by qRT-PCR (Figure 6). The WT and transgenic LEC1-1,
LEC1-2, and LEC1-3 strains were collected on the 1st day, 5th
day, and 9th day of cultivation under mixotrophic conditions.
Three independent transgenic strains were analyzed. The results
indicated that the expression levels were the highest on the
5th day (logarithmic stage) and decreased on the 9th day
(plateau stage). The results (Figures 2B, 3A) suggested that the
accumulation of biomass and lipid content reached its maximum
value on the 9th day, indicating that the gene expression was
earlier than the lipid accumulation. Therefore, the strain growth
on the 5th day may be a vital period for lipid accumulation
in C. ellipsoidea. Furthermore, we observed that in transgenic
AtLEC1 strains on the 5th day, the expression levels of some genes
related to lipid synthesis were higher compared with the genes in
WT, such as ACC (Ce.101511 and Ce.91597), GPDH (Ce.61185,
Ce.81049, and Ce.82444), PDAT (Ce.67794), DGAT (Ce.70246),
and NF-Y (Ce.NF-YA) (Figure 6). Interestingly, the expression
level of DGAT1 (Ce.70246) in transgenic strains was 26.85–28.5

times higher than the expression level in WT. DGAT was the
rate-limiting enzyme of TAG synthesis in the Kennedy pathway
(Lehner and Kuksis, 1996). In addition, we found there were
no significant differences for partial genes of ACCase, FAS, and
GPDH, such as ACCase (Ce.56171, Ce.80365 and Ce.71421), FAS
(Ce.86271), and GPDH (Ce.78368), in transgenic AtLEC1-1 and
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FIGURE 5 | RNA-seq in transgenic AtLEC1-1 Chlorella under mixotrophic culture conditions. (A) Volcano plot showing the differential expression gene analysis of
transgenic AtLEC1-1 and wild-type strains. (B) Differential expression analysis of AtLEC1-1 strains involved in metabolic regulation. Notes: 1. Photosynthesis; 2.
Major carbohydrate metabolism; 3. Minor CHO metabolism; 4. Glycolysis; 5. Fermentation; 6. Gluconeogenese/glyoxylate cycle; 7. Oxidative Pentose Phosphate; 8.
TCA/org conversion; 10. Cell wall synthesis; 11. Lipid synthesis; 13. Amino acid handling factor; 15. Metal stress; 16. Secondary metabolism; 17. Hormone
synthesis; 18. Cometabolism; 19. Pyrrole metabolism; 20. Coercion; 21. Redox regulation; 23. Nucleotide synthesis; 24. Biodegradation of xenobiotics; 26. Others;
27. RNA; 28. DNA; 29. Protein; 30. Signal; 31. Cells; 33. Developmental diversity; 34. Carrier protein; 35. Not classified.

WT, which may function diversely. These results suggested that
AtLEC1 in Chlorella could increase the expression level of such
genes as ACC and GPDH, especially DGAT, thereby helping to
explain the increasing lipid accumulation in Chlorella.

AtLEC1 Regulates the Protein and
Carbohydrate Metabolic Networks
To investigate whether the protein and carbohydrate were
involved in AtLEC1 metabolism regulation, WT and transgenic
LEC1-1, LEC1-2, and LEC1-3 strains were cultured on the 1st
day, 5th day, and 9th day under mixotrophic conditions. The
candidate genes related to protein and carbohydrate metabolism
were selected (Supplementary Table 4), and the expression
level of these genes was detected by qRT-PCR to verify the
regulation function of AtLEC1 (Figure 7). On the 5th day of
culture, the expression level of protein biosynthesis-related genes,
such as Ce.59398 (nitrogen assimilation regulatory), Ce.75003
(nitrite transporter), Ce.6021 (ribosomal protein 60S subunit
L23), Ce.6463 (TCP-1/cpn60 chaperonin family protein), Ce.3024
(TCP-1/cpn60 chaperonin family protein), and Ce.6962 (germin-
like protein), were downregulated. The expression level of storage
protein-related genes in WT, such asCe.6962 andCe.3951 (RmlC-
like cupin superfamily protein), was approximately 16- and 4-
fold, similar to the expression level of storage protein-related
genes in LEC1-1, respectively. These results may explain why
the protein accumulation significantly decreased in the AtLEC1
transgenic strain compared with the protein accumulation in
WT. Among six selected genes that were related to carbohydrate
metabolism (Ce.3222, Ce.7504, Ce.8451, Ce.4421, Ce.6877, and
Ce.5786), the expression levels of Ce.3222 and Ce.7504 genes
were significantly increased in AtLEC1 transgenic strains on
the 5th day. Ce.3222 and Ce.7504 may be involved in Rubisco
function in the dark reaction of photosynthesis, and their

increased expression could increase the raw materials for de novo
synthesis of fatty acids.

Among eight selected genes that were related to signal
transduction (Ce.8227, Ce.7158, Ce.1278, Ce.8956, Ce.1245,
Ce.8398, Ce.7337, and Ce.6996), the expression level of Ce.1245
and Ce.6996 was upregulated in AtLEC1 transgenic strains on the
5th day of culture. Among 7 selected genes that were related to
material transport (Ce.6313, Ce.3018, Ce.4615, Ce.5277, Ce.3824,
Ce.6325, and Ce.16975), the expression level of five genes was
downregulated in AtLEC1 transgenic strains, except for Ce.4615
and Ce.16975. The expression levels of the genes encoding short-
chain fatty acid dehydroreductase, Ce.19209 and Ce.1132, were
downregulated in AtLEC1 transgenic strains.

DISCUSSION

AtLEC1 Increased the Lipid Content but
Did Not Affect the Growth in
C. ellipsoidea
With the development of biotechnology and molecular biology,
multiple approaches have provided insight into the mechanisms
of lipid synthesis and accumulation in microalgae. Based
on the transcriptome and lipidome of C. reinhardtii under
heat stress, a phospholipase A2 homolog and the DAG
acyltransferase gene DGTT1 were identified (Légeret et al.,
2016). Cecchin et al. (2020) sequenced the nuclear and organelle
genomes of C. vulgaris 211/11P by combining next-generation
sequencing and optical mapping of isolated DNA molecules
and identified 10,724 nuclear genes, 121 chloroplast genes and
48 mitochondrial genes. LEC1 is an important TF, and its
function in microalgae has not been elucidated. In our study,
the total fatty acid content and total lipid content in AtLEC1
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FIGURE 6 | Expression of lipid accumulation-related genes in AtLEC1 transgenic strains. WT, wild type; LEC-1, LEC-2, LEC-3, three AtLEC1 transgenic strains; 1D,
5D, and 9D were sampled on the 1st, 5th, and 9th days under mixotrophic culture conditions. The relative abundance of 18S rRNA was used as an internal standard
control. The values are the difference (Ct) between the target gene and the reference gene. The values are the means of three biological replicates. Asterisks indicate
statistically significant differences, Student’s t-test: *p < 0.05, **p < 0.01 compared with WT under the same conditions.
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FIGURE 7 | Expression of protein and carbohydrate metabolism-related genes in AtLEC1 transgenic strains. WT, wild type; LEC-1, AtLEC1 transgenic strain; 1D,
5D, and 9D were sampled on the 1st, 5th, and 9th days under mixotrophic culture conditions. The relative abundance of 18S rRNA was used as an internal standard
control. The values are the difference (Ct) between the target gene and the reference gene. The values are the means of three biological replicates. Asterisks indicate
statistically significant differences, Student’s t-test: *p < 0.05, **p < 0.01 compared with WT under the same conditions.

transgenic C. ellipsoidea strains were significantly increased
by 24.2–32.65 and 22.14–29.91% under mixotrophic culture
conditions, respectively. Under autotrophic conditions, the total
fatty acid content and total lipid content were significantly
increased by 24.4–28.87 and 21.69–30.45%, respectively. Notably,
the overexpression of AtLEC1 did not affect the growth rate
of strains, but the protein content significantly decreased.
In higher plants, LEC1 is expressed primarily in embryonic
tissues and plays an important biological function in controlling
late embryonic development and cotyledon formation (Kwong
et al., 2003; Wang and Perry, 2013). Loss-of-function Lec1
mutations cause phenotypically abnormal embryos (Meinke,
1992), defects in storage protein and lipid accumulation

(Santos-Mendoza et al., 2008), and etiolation-related phenotypes
in early seedlings in Arabidopsis (Huang et al., 2015). The
overexpression of BnaLEC1 under a seed-specific promoter
(Napin A) from B. napus caused the Arabidopsis transgenic
plants to be abnormal after germination with complete death
or sterility. However, when the promotor activity is only 18%
of the original, plant growth and propagation are normal with
a remarkable improvement in lipid content (Tan et al., 2011).
Our results suggested that AtLEC1 can improve microalgae oil
productivity and that it has advantages for improving Chlorella
lipid content over that of higher plants, which can eliminate
the unfavorable characteristics caused by the different tissue and
organ differentiation of higher plants.
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AtLEC1 Regulated the Gene Expression
of C. ellipsoidea
LEC1 served as a key regulator to coordinate the expression of
fatty acid biosynthetic genes. In our study, key genes related to
lipid synthesis were identified, including ACCase (Ce.101511 and
Ce.91597), GPDH (Ce.61185, Ce.81049, and Ce.82444), PDAT1
(Ce.67794), and DGAT1 (Ce.70246). Their expression levels were
higher in the transgenic strains than in the WT. ACCase activity
is directly related to fatty acid accumulation (Leyva et al., 2014).
DGAT is the rate-limiting enzyme of TAG synthesis in the
Kennedy pathway (Lehner and Kuksis, 1996). Our results showed
that AtLEC1 could enhance the expression of lipid biosynthesis-
related genes to improve lipid content in C. ellipsoidea. LEC1
encodes a nuclear factor YB (NF-YB) subunit of NF-Y (or the
CCAAT box–binding factor HAP3), which is a heterotrimer
consisting of three subunits (NF-YA, NF-YB, and NF-YC) and
is highly conserved in all eukaryotic organisms (Edwards et al.,
1998; Lotan et al., 1998; Mu et al., 2013). Although the homolog
of AtLEC1 was not detected in our RNA-seq, three members
of the NF-Y gene family, CeNF-YA, CeNF-YB, and CeNF-YC,
were found. Only the expression of CeNF-YA was enhanced in
the transgenic cells. The results suggested that the expression of
one of the NF-Y members can be affected by AtLEC1 and may
contribute to the increase in lipid accumulation.

Several studies have indicated that LEC1 is directly involved
in regulating photosynthesis and chloroplast function during
seed development in higher plants (Willmann et al., 2011;
Allorent et al., 2015). LEC1 controls distinct gene sets at different
developmental stages, LEC1 binding alone does not appear to
be sufficient to regulate gene expression, and LEC1 function is
partially dependent on ABSCISIC ACID INSENSITIVE3 (ABI3),
FUSCA3 (FUS3), and WRINKLED1 (WRI1) in the regulation
of fatty acid biosynthesis in higher plants (Mu et al., 2008;
Pelletier et al., 2017; Jo et al., 2020). However, there were
no members of the ABI3VP1/B3 family in our transcriptomic
database; therefore, the homologous genes of FUS3, ABI3 or
LEC2 were not found. WRI1 belongs to AP2-EREBP/ERF, which
plays an important role in fatty acid biosynthesis in higher plants
(Focks and Benning, 1998). In our study, 10 TF genes (AP2-
EREBP/ERF family) were selected, namely, Ce.7138, Ce.4614,
Ce.1006, Ce.3182, Ce.6245, Ce.5515, Ce.5831, Ce.2945, Ce.11419,
and Ce.2372, for their expression detection in WT, and AtLEC1
transgenic Chlorella grown under mixotrophic culture for 1,
5, and 9 days was analyzed by qRT-PCR. Surprisingly, the
expression of these genes was not detectable (data not shown).
The differential regulatory patterns due to the great genomic
diversity between higher plants and unicellular green algae need
to be studied further.

Difference Between the Genes
Regulated by AtLEC1 in Arabidopsis and
in Chlorella
To analyze the differences in the regulatory network affected by
AtLEC1 between Chlorella and higher plants, the transcriptomes
of AtLEC1 Chlorella and AtLEC1 transgenic Arabidopsis
(GSE12137) were analyzed. As in previous studies, in

AtLEC1 transgenic Arabidopsis, approximately 425 genes
were significantly upregulated and 262 genes were significantly
downregulated in transgenic seedlings when AtLEC1 was
induced by estradiol, and over 58% of known enzyme-coding
genes were upregulated in the plastidial fatty acid synthetic
pathway (Mu et al., 2008). In our study, according to the
annotation, 220 regulated Chlorella genes were annotated (134
genes were upregulated and 86 genes were downregulated)
by 180 genes (97 genes were upregulated and 83 genes were
downregulated) from Arabidopsis genes (Supplementary Table 5
and Supplementary Figure 2). Among these genes, 60 genes
in Arabidopsis and 72 genes in Chlorella were upregulated,
such as Ce. 6624 (CAC3), Ce. 6305 (BCCP2), and Ce. 1815
(MOD1/ENR1), which were key genes controlling fatty acid
biosynthesis flux. Approximately 59% (95/160) of genes related
to lipid metabolism annotated by MapMan were upregulated in
the AtLEC1 transgenic Chlorella strain compared with the WT.
In transgenic Arabidopsis and Chlorella, overexpression of LEC1
downregulated the expression of 39 genes in Arabidopsis and 45
genes in Chlorella, such as Ce.59398 and Ce.75003, relative to
protein biosynthesis, which were key genes controlling nitrogen
metabolism (Supplementary Table 2).

Compared with overexpression of LEC1 in Arabidopsis,
some homologous genes had different changeable trends in
Chlorella. The 41 genes in LEC1 overexpression Arabidopsis
were upregulated but not their 43 homologous genes in AtLEC1
transgenic Chlorella, and their functions were involved in protein
biosynthesis, vitamin metabolism and tetrapyrrole synthesis
(Supplementary Table 2). The 26 genes were downregulated in
LEC1 overexpression Arabidopsis, but their homologous genes in
AtLEC1 transgenic Chlorella were upregulated (Supplementary
Table 2). However, only 6 genes of Chlorella had the same
regulation model with their homologous genes of Arabidopsis
with the overexpression of AtLEC1. For example, Ce.3222 and
Ce.7504 were significantly downregulated and could interact
with Rubisco in the dark reaction of photosynthesis, whereas the
other four genes Ce.6081 (related to cell development), Ce.7764
(ethanol dehydrogenase), Ce.4276 (ATPase), and Ce.6877
(aldehyde dehydrogenase) were significantly upregulated.
The functions of the protein-modified related genes Ce.1480
and Ce.4858, encoding Golgi body localization proteins, were
contrary to their regulation in Arabidopsis. Thus, it would be of
a great interest to dissect the differences in AtLEC1 function in
Chlorella and Arabidopsis.

We did not find AtLEC1-Like sequences in C. ellipsoidea.
In the alignment of protein sequences between AtLEC1 and
other species, 14 homologs of AtLEC1 were screened, and
the similarities among them were 34.9–78.3%. The selected
genes/proteins include AtLEC1-like from algae (MpuLEC1L,
CsuLEC1L, MspLEC1L, OluLEC1L, CreLEC1L, VcaLEC1L, and
DsaLEC1L), and higher plants (GmLEC1, BnLEC1, and AtL1L),
and several NF-Y subunits (ScHAP323, HsNF-YB24, MmNF-
YB38, and CeNF-YB) (Supplementary Table 6). All of these
genes contain a conserved HFD domain (Nardone et al., 2017)
(Supplementary Figure 3). LEC1 in higher plants derived only by
a suitable promoter can be used to improve the seed oil content
(Mu et al., 2008; Tan et al., 2011). However, homologs of LEC1
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from the algae may improve the oilseed crop without abnormal
agricultural traits through the genetic engineering due to no
function differentiation for specific tissues as in higher plants,
which warrants further investigation.

The AtLEC1 could significantly increase the lipid content and
decrease the protein content of C. ellipsoidea without affecting
the growth rate of strains and biomass under mixotrophic culture
and autotrophic culture conditions. Transcriptome sequencing
analysis showed that AtLEC1 could promote expressions of 59%
of the genes related to the lipid biosynthesis in C. ellipsoidea,
but the differences of mechanism of AtLEC1 in regulating lipid
accumulation in C. ellipsoidea and Arabidopsis thaliana warrants
further investigation. In general, our research provides a new
means of improving the lipid content in Chlorella and may help
to elucidate the mechanism governing lipid accumulation in
Chlorella.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

ZH and CF designed and supervised the study. XaL, DZ, and
JZ performed the experiments. XaL, DZ, XuL, and CF analyzed
the data. XaL and DZ wrote the manuscript. ZH, YC, YH,
and CF revised the manuscript. RR-CW helped to direct the
graduate research, interpreted and discussed data, and revised the
manuscript. All authors have read and approved the manuscript.

FUNDING

This research was supported by a project from the Ministry
of Science and Technology of China (grant number:

2016YFD0100506), the Ministry of Agriculture of China for
transgenic research (grant numbers: 2018ZX08020002-003-005
and 2016ZX08009003-004), the Department of Inner Mongolia
Science and Technology (grant number: 2020CG0058), and the
National Natural Science Foundation of China (grant numbers:
31570365 and 31701331).

ACKNOWLEDGMENTS

The authors thank Dr. Lili Bai, Prof. Rongru Sun, and Prof.
Shimin Zhao (Institute of Genetics and Developmental Biology,
Chinese Academy of Sciences) for providing technical assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2021.626162/full#supplementary-material

Supplementary Figure 1 | AtLEC1 regulated metabolism pathway.

Supplementary Figure 2 | Venn diagram showing the differentially expressed
genes in AtLEC1 transgenic C. ellipsoidea and A. thaliana.

Supplementary Figure 3 | Sequence analysis of LEC1 from different species.

Supplementary Table 1 | Primers used for gene cloning, detection of genes by
PCR and quantitative real-time PCR.

Supplementary Table 2 | All the differentially expressed genes based on the
transcriptomic analysis between the LEC1-1 strain and the wild-type strain.

Supplementary Table 3 | Genes related to protein metabolism, RNA metabolism
and transport in AtLEC1 transgenic C. ellipsoidea.

Supplementary Table 4 | AtLEC1 regulated candidate genes related to protein
and carbohydrate metabolism in the metabolic network.

Supplementary Table 5 | Differentially expressed genes in AtLEC1 transgenic
C. ellipsoidea and A. thaliana.

Supplementary Table 6 | Protein sequence homologous alignment of AtLEC1
from different species.

REFERENCES
Allorent, G., Osorio, S., Vu, J., Falconet, D., Jouhet, J., Kuntz, M., et al.

(2015). Adjustments of embryonic photosynthetic activity modulate seed
fitness in Arabidopsis thaliana. N. Phytol. 205, 707–719. doi: 10.1111/nph.
13044

Appleyard, R. (1954). Segregation of new lysogenic types during growth of a doubly
lysogenic strain derived from Escherichia Coli K12. Genetics 39, 440–452.

Bai, L., Yin, W., Chen, Y., Niu, L., Sun, Y., Zhao, S., et al. (2013). A new strategy
to produce a defensin: stable production of mutated NP-1 in nitrate reductase-
deficient Chlorella ellipsoidea. PLoS One 8:e54966. doi: 10.1371/journal.pone.
0054966

Bradford, M. (1976). A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Anal. Biochem. 72, 248–254. doi: 10.1006/abio.1976.9999

Cecchin, M., Berteotti, S., Paltrinieri, S., Vigliante, I., Iadarola, B., Giovannone,
B., et al. (2020). Improved lipid productivity in Nannochloropsis gaditana in
nitrogen-replete conditions by selection of pale green mutants. Biotechnol.
Biofuels 13:78. doi: 10.1186/s13068-020-01718-8

Chakraborty, S., Mohanty, D., Ghosh, S., and Das, D. (2016). Improvement of
lipid content of Chlorella minutissima MCC 5 for biodiesel production. J. Biosci.
Bioeng. 122, 294–300. doi: 10.1016/j.jbiosc.2016.01.015

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306. doi:
10.1016/j.biotechadv.2007.02.001

Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., and Robles, M.
(2005). Blast2GO: a universal tool for annotation, visualization and analysis
in functional genomics research. Bioinformatics 21, 3674–3676. doi: 10.1093/
bioinformatics/bti610

Davis, M. S., Solbiati, J., and Cronan, J. E. (2000). Overproduction of acetyl-CoA
carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia
coli. J. Biol .Chem. 275, 28593–28598. doi: 10.1074/jbc.M004756200

Du, H., Liao, X., Gao, Z., Li, Y., Lei, Y., Chen, W., et al. (2019). Effects of methanol
on carotenoids as well as biomass and fatty acid biosynthesis in Schizochytrium
limacinum B4D1. Appl. Environ. Microbiol. 85, 01243–012419e. doi: 10.1128/
aem.01243-19

Edwards, D., Murray, J. A., and Smith, A. G. (1998). Multiple genes encoding
the conserved CCAAT-box transcription factor complex are expressed in
Arabidopsis. Plant. Physiol. 117, 1015–1022. doi: 10.1104/pp.117.3.1015

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 February 2021 | Volume 9 | Article 626162138

https://www.frontiersin.org/articles/10.3389/fbioe.2021.626162/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2021.626162/full#supplementary-material
https://doi.org/10.1111/nph.13044
https://doi.org/10.1111/nph.13044
https://doi.org/10.1371/journal.pone.0054966
https://doi.org/10.1371/journal.pone.0054966
https://doi.org/10.1006/abio.1976.9999
https://doi.org/10.1186/s13068-020-01718-8
https://doi.org/10.1016/j.jbiosc.2016.01.015
https://doi.org/10.1016/j.biotechadv.2007.02.001
https://doi.org/10.1016/j.biotechadv.2007.02.001
https://doi.org/10.1093/bioinformatics/bti610
https://doi.org/10.1093/bioinformatics/bti610
https://doi.org/10.1074/jbc.M004756200
https://doi.org/10.1128/aem.01243-19
https://doi.org/10.1128/aem.01243-19
https://doi.org/10.1104/pp.117.3.1015
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-626162 February 12, 2021 Time: 13:42 # 14

Liu et al. AtLEC1 Significantly Increased Lipid Content of Chlorella

Fan, J., Ning, K., Zeng, X., Luo, Y., Wang, D., Hu, J., et al. (2015). Genomic
foundation of starch-to-lipid switch in oleaginous Chlorella spp. Plant. Physiol.
169, 2444–2461. doi: 10.1104/pp.15.01174

Fargasová, A., and Molnárová, M. (2010). Assessment of Cr and Ni phytotoxicity
from cutlery-washing waste-waters using biomass and chlorophyll production
tests on mustard Sinapis alba L. seedlings. Environ. Sci. Pollut. Res. Int. 17,
187–194. doi: 10.1007/s11356-009-0136-2

Focks, N., and Benning, C. (1998). wrinkled1: A novel, low-seed-oil mutant of
Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate
metabolism. Plant. Physiol. 118, 91–101. doi: 10.1104/pp.118.1.91

Folch, J., Lees, M., and Sloane, S. G. (1957). A simple method for the isolation and
purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.

Greenspan, P., Mayer, E. P., and Fowler, S. D. (1985). Nile red: a selective
fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100, 965–973. doi:
10.1083/jcb.100.3.965

Guarnieri, M. T., Levering, J., Henard, C. A., Boore, J. L., Betenbaugh, M. J.,
Zengler, K., et al. (2018). Genome sequence of the oleaginous green alga,
Chlorella vulgaris UTEX 395. Front. Bioeng. Biotechnol. 6:37. doi: 10.3389/fbioe.
2018.00037

Guarnieri, M., Nag, A., Yang, S., and Pienkos, P. (2013). Proteomic analysis
of Chlorella vulgaris: potential targets for enhanced lipid accumulation.
J. Proteomics 93, 245–253. doi: 10.1016/j.jprot.2013.05.025

Guschina, I. A., and Harwood, J. L. (2006). Lipids and lipid metabolism in
eukaryotic algae. Prog. Lipid Res. 45, 160–186. doi: 10.1016/j.plipres.2006.01.001

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M.,
et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production:
perspectives and advances. Plant J. 54, 621–639. doi: 10.1111/j.1365-313X.2008.
03492.x

Huang, M., Hu, Y., Liu, X., Li, Y., and Hou, X. (2015). Arabidopsis LEAFY
COTYLEDON1 mediates postembryonic development via interacting with
PHYTOCHROME-INTERACTING FACTOR4. Plant Cell 27, 3099–3111. doi:
10.1105/tpc.15.00750

Jiang, W., Brueggeman, A. J., Horken, K. M., Plucinak, T. M., and Weeks, D. P.
(2014). Successful transient expression of Cas9 and single guide RNA genes
in Chlamydomonas reinhardtii. Eukaryot. Cell 13, 1465–1469. doi: 10.1128/ec.
00213-14

Jo, L., Pelletier, J. M., Hsu, S. W., Baden, R., Goldberg, R. B., and Harada, J. J. (2020).
Combinatorial interactions of the LEC1 transcription factor specify diverse
developmental programs during soybean seed development. Proc. Natl. Acad.
Sci. 117, 1223–1232. doi: 10.1073/pnas.1918441117

Juneja, A., Chaplen, F. W. R., and Murthy, G. S. (2016). Genome scale metabolic
reconstruction of Chlorella variabilis for exploring its metabolic potential for
biofuels. Bioresour. Technol. 213, 103–110. doi: 10.1016/j.biortech.2016.02.118

Kang, N., Kim, E., Kim, Y., Lee, B., Jeong, W., Jeong, B., et al. (2017). Increased
lipid production by heterologous expression of AtWRI1 transcription factor
in Nannochloropsis salina. Bioresour. Technol. 10:231. doi: 10.1186/s13068-017-
0919-5

Kim, K. H. (1997). Regulation of mammalian acetyl-coenzyme A carboxylase.
Annu. Rev. Nutr. 17, 77–99. doi: 10.1146/annurev.nutr.17.1.77

Koutra, E., Economou, C., Tsafrakidou, P., and Kornaros, M. (2018). Bio-based
products from microalgae cultivated in digestates. Trends Biotechnol. 36, 819–
833. doi: 10.1016/j.tibtech.2018.02.015

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular evolutionary
genetics analysis version 7.0 for Chakraborty ger datasets. Mol. Biol. Evol. 33,
1870–1874. doi: 10.1093/molbev/msw054

Kwong, R., Bui, A., Lee, H., Kwong, L., Fischer, R., Goldberg, R., et al. (2003).
LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo
development. Plant Cell 15, 5–18. doi: 10.1105/tpc.006973

Légeret, B., Schulz-Raffelt, M., Nguyen, H. M., Auroy, P., Beisson, F., Peltier,
G., et al. (2016). Lipidomic and transcriptomic analyses of Chlamydomonas
reinhardtii under heat stress unveil a direct route for the conversion of
membrane lipids into storage lipids. Plant. Cell. Environ. 39, 834–847. doi:
10.1111/pce.12656

Lehner, R., and Kuksis, A. (1996). Biosynthesis of triacylglycerols. Prog. Lipid. Res.
35, 169–201. doi: 10.1016/0163-7827(96)00005-7

Leyva, L., Bashan, Y., Mendoza, A., and de-Bashan, L. (2014). Accumulation of
fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to
activity of acetyl-CoA carboxylase, temperature, and co-immobilization with

Azospirillum brasilense [corrected]. Naturwissenschaften 101, 819–830. doi: 10.
1007/s00114-014-1223-x

Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K., et al. (2009). SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967.
doi: 10.1093/bioinformatics/btp336

Li-Beisson, Y., Thelen, J., Fedosejevs, E., and Harwood, J. (2019). The lipid
biochemistry of eukaryotic algae. Prog. Lipid. Res. 74, 31–68. doi: 10.1016/j.
plipres.2019.01.003

Lin, W. R., and Ng, I. S. (2020). Development of CRISPR/Cas9 system in Chlorella
vulgaris FSP-E to enhance lipid accumulation. Enzyme Microb. Technol.
133:109458. doi: 10.1016/j.enzmictec.2019.109458

Lotan, T., Ohto, M., Yee, K. M., West, M. A., Lo, R., Kwong, R. W., et al.
(1998). Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo
development in vegetative cells. Cell 93, 1195–1205. doi: 10.1016/s0092-
8674(00)81463-4

Ma, C., Ren, H., Xing, D., Xie, G., Ren, N., and Liu, B. (2019). Mechanistic
understanding towards the effective lipid production of a microalgal mutant
strain Scenedesmus sp. Z-4 by the whole genome bioinformation. J. Hazard.
Mater. 375, 115–120. doi: 10.1016/j.jhazmat.2019.04.079

Markou, G., and Nerantzis, E. (2013). Microalgae for high-value compounds and
biofuels production: a review with focus on cultivation under stress conditions.
Biotechnol. Adv. 31, 1532–1542. doi: 10.1016/j.biotechadv.2013.07.011

McLEOD, G. (1958). Delayed light action spectra of several algae in visible and
ultraviolet light. J. Gen. Physiol. 42, 243–250. doi: 10.1085/jgp.42.2.243

Meinke, D. W. (1992). A homoeotic mutant of Arabidopsis thaliana with leafy
cotyledons. Science 258, 1647–1650. doi: 10.1126/science.258.5088.1647

Miao, X., and Wu, Q. (2004). High yield bio-oil production from fast pyrolysis
by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 110, 85–93.
doi: 10.1016/j.jbiotec.2004.01.013

Mu, J., Tan, H., Hong, S., Liang, Y., and Zuo, J. (2013). Arabidopsis transcription
factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis,
embryogenesis, and seed development. Mol. Plant. 6, 188–201. doi: 10.1093/
mp/sss061

Mu, J., Tan, H., Zheng, Q., Fu, F., Liang, Y., Zhang, J., et al. (2008). LEAFY
COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis.
Plant. Physiol. 148, 1042–1054. doi: 10.1104/pp.108.126342

Nardone, V., Chaves-Sanjuan, A., and Nardini, M. (2017). Structural determinants
for NF-Y/DNA interaction at the CCAAT box. Biochim. Biophys. Acta. Gene.
Regul. Mech. 1860, 571–580. doi: 10.1016/j.bbagrm.2016.09.006

Ness, R., Siol, M., and Barrett, S. (2011). De novo sequence assembly and
characterization of the floral transcriptome in cross- and self-fertilizing plants.
BMC Genomics 12:298. doi: 10.1186/1471-2164-12-298

Park, S., Nguyen, T. H. T., and Jin, E. (2019). Improving lipid production by strain
development in microalgae: Strategies, challenges and perspectives. Bioresour.
Technol. 292:121953. doi: 10.1016/j.biortech.2019.121953

Pelletier, J., Kwong, R., Park, S., Le, B., Baden, R., Cagliari, A., et al. (2017).
LEC1 sequentially regulates the transcription of genes involved in diverse
developmental processes during seed development. Proc. Natl. Acad. Sci. 114,
E6710–E6719. doi: 10.1073/pnas.1707957114

Rao, A., Dayananda, C., Sarada, R., Shamala, T., and Ravishankar, G. (2007). Effect
of salinity on growth of green alga Botryococcus braunii and its constituents.
Bioresour. Technol. 98, 560–564. doi: 10.1016/j.biortech.2006.02.007

Rausch, T. (1981). The estimation of micro-algal protein content and its meaning
to the evaluation of algal biomass. Comparison of methods for extracting
protein. Hydrobiologia 78, 237–251. doi: 10.1007/BF00008520

Remmers, I., Wijffels, R., Barbosa, M., and Lamers, P. (2018). Can we approach
theoretical lipid yields in microalgae? Trends Biotechnol. 36, 265–276. doi: 10.
1016/j.tibtech.2017.10.020

Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M., and Lepiniec,
L. (2008). Deciphering gene regulatory networks that control seed development
and maturation in Arabidopsis. Plant. J. 54, 608–620. doi: 10.1111/j.1365-313X.
2008.03461.x

Shen, B., Allen, W., Zheng, P., Li, C., Glassman, K., Ranch, J., et al. (2010).
Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize.
Plant. Physiol. 153, 980–987. doi: 10.1104/pp.110.157537

Shin, Y., Choi, H., Choi, J., Lee, J., Sung, Y., and Sim, S. (2018). Multilateral
approach on enhancing economic viability of lipid production from microalgae:
a review. Bioresour. Technol. 258, 335–344. doi: 10.1016/j.biortech.2018.03.002

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 14 February 2021 | Volume 9 | Article 626162139

https://doi.org/10.1104/pp.15.01174
https://doi.org/10.1007/s11356-009-0136-2
https://doi.org/10.1104/pp.118.1.91
https://doi.org/10.1083/jcb.100.3.965
https://doi.org/10.1083/jcb.100.3.965
https://doi.org/10.3389/fbioe.2018.00037
https://doi.org/10.3389/fbioe.2018.00037
https://doi.org/10.1016/j.jprot.2013.05.025
https://doi.org/10.1016/j.plipres.2006.01.001
https://doi.org/10.1111/j.1365-313X.2008.03492.x
https://doi.org/10.1111/j.1365-313X.2008.03492.x
https://doi.org/10.1105/tpc.15.00750
https://doi.org/10.1105/tpc.15.00750
https://doi.org/10.1128/ec.00213-14
https://doi.org/10.1128/ec.00213-14
https://doi.org/10.1073/pnas.1918441117
https://doi.org/10.1016/j.biortech.2016.02.118
https://doi.org/10.1186/s13068-017-0919-5
https://doi.org/10.1186/s13068-017-0919-5
https://doi.org/10.1146/annurev.nutr.17.1.77
https://doi.org/10.1016/j.tibtech.2018.02.015
https://doi.org/10.1093/molbev/msw054
https://doi.org/10.1105/tpc.006973
https://doi.org/10.1111/pce.12656
https://doi.org/10.1111/pce.12656
https://doi.org/10.1016/0163-7827(96)00005-7
https://doi.org/10.1007/s00114-014-1223-x
https://doi.org/10.1007/s00114-014-1223-x
https://doi.org/10.1093/bioinformatics/btp336
https://doi.org/10.1016/j.plipres.2019.01.003
https://doi.org/10.1016/j.plipres.2019.01.003
https://doi.org/10.1016/j.enzmictec.2019.109458
https://doi.org/10.1016/s0092-8674(00)81463-4
https://doi.org/10.1016/s0092-8674(00)81463-4
https://doi.org/10.1016/j.jhazmat.2019.04.079
https://doi.org/10.1016/j.biotechadv.2013.07.011
https://doi.org/10.1085/jgp.42.2.243
https://doi.org/10.1126/science.258.5088.1647
https://doi.org/10.1016/j.jbiotec.2004.01.013
https://doi.org/10.1093/mp/sss061
https://doi.org/10.1093/mp/sss061
https://doi.org/10.1104/pp.108.126342
https://doi.org/10.1016/j.bbagrm.2016.09.006
https://doi.org/10.1186/1471-2164-12-298
https://doi.org/10.1016/j.biortech.2019.121953
https://doi.org/10.1073/pnas.1707957114
https://doi.org/10.1016/j.biortech.2006.02.007
https://doi.org/10.1007/BF00008520
https://doi.org/10.1016/j.tibtech.2017.10.020
https://doi.org/10.1016/j.tibtech.2017.10.020
https://doi.org/10.1111/j.1365-313X.2008.03461.x
https://doi.org/10.1111/j.1365-313X.2008.03461.x
https://doi.org/10.1104/pp.110.157537
https://doi.org/10.1016/j.biortech.2018.03.002
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-626162 February 12, 2021 Time: 13:42 # 15

Liu et al. AtLEC1 Significantly Increased Lipid Content of Chlorella

Song, L., Lu, W., Hu, J., Zhang, Y., Yin, W., Chen, Y., et al. (2010). Identification
and functional analysis of the genes encoding Delta6-desaturase from Ribes
nigrum. J. Exp. Bot. 61, 1827–1838. doi: 10.1093/jxb/erq051

Subrahmanyam, S., and Cronan, J. E. (1998). Overproduction of a functional
fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli.
J. Bacteriol. 180, 4596–4602. doi: 10.1128/jb.180.17.4596-4602.1998

Tan, H., Yang, X., Zhang, F., Zheng, X., Qu, C., Mu, J., et al. (2011). Enhanced
seed oil production in canola by conditional expression of Brassica napus
LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant. Physiol.
156, 1577–1588. doi: 10.1104/pp.111.175000

Venkata, M. S., Rohit, M., Chiranjeevi, P., Chandra, R., and Navaneeth, B. (2015).
Heterotrophic microalgae cultivation to synergize biodiesel production with
waste remediation: progress and perspectives. Bioresour. Technol. 184, 169–178.
doi: 10.1016/j.biortech.2014.10.056

Wang, F., and Perry, S. (2013). Identification of direct targets of FUSCA3, a key
regulator of Arabidopsis seed development. Plant. Physiol. 161, 1251–1264.
doi: 10.1104/pp.112.212282

West, M., Yee, K., Danao, J., Zimmerman, J., Fischer, R., Goldberg, R., et al. (1994).
LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and
cotyledon identity in Arabidopsis. Plant Cell 6, 1731–1745. doi: 10.1105/tpc.6.
12.1731

White, P., Kalff, J., Rasmussen, J., and Gasol, J. (1991). The effect of temperature
and algal biomass on bacterial production and specific growth rate in freshwater
and marine habitats. Microb. Ecol. 21, 99–118. doi: 10.1007/bf02539147

Wijffels, R. H., and Barbosa, M. J. (2010). An outlook on microalgal biofuels.
Science 329, 796–799. doi: 10.1126/science.1189003

Willmann, M., Mehalick, A., Packer, R., and Jenik, P. (2011). MicroRNAs regulate
the timing of embryo maturation in Arabidopsis. Plant. Physiol. 155, 1871–1884.
doi: 10.1104/pp.110.171355

Xiong, W., Gao, C., Yan, D., Wu, C., and Wu, Q. (2010). Double CO(2) fixation in
photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel
production. Bioresour. Technol. 101, 2287–2293. doi: 10.1016/j.biortech.2009.
11.041

Zhang, J., Hao, Q., Bai, L., Xu, J., Yin, W., Song, L., et al. (2014). Overexpression
of the soybean transcription factor GmDof4 significantly enhances the lipid
content of Chlorella ellipsoidea. Biotechnol. Biofuels 7:128. doi: 10.1186/s13068-
014-0128-4

Zhu, L., Li, Z., and Hiltunen, E. (2016). Strategies for lipid production improvement
in microalgae as a biodiesel feedstock. Biomed. Res. Int. 2016:8792548. doi:
10.1155/2016/8792548

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Liu, Zhang, Zhang, Chen, Liu, Fan, Wang, Hou and Hu. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 15 February 2021 | Volume 9 | Article 626162140

https://doi.org/10.1093/jxb/erq051
https://doi.org/10.1128/jb.180.17.4596-4602.1998
https://doi.org/10.1104/pp.111.175000
https://doi.org/10.1016/j.biortech.2014.10.056
https://doi.org/10.1104/pp.112.212282
https://doi.org/10.1105/tpc.6.12.1731
https://doi.org/10.1105/tpc.6.12.1731
https://doi.org/10.1007/bf02539147
https://doi.org/10.1126/science.1189003
https://doi.org/10.1104/pp.110.171355
https://doi.org/10.1016/j.biortech.2009.11.041
https://doi.org/10.1016/j.biortech.2009.11.041
https://doi.org/10.1186/s13068-014-0128-4
https://doi.org/10.1186/s13068-014-0128-4
https://doi.org/10.1155/2016/8792548
https://doi.org/10.1155/2016/8792548
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-642671 March 23, 2021 Time: 12:38 # 1

ORIGINAL RESEARCH
published: 23 March 2021

doi: 10.3389/fbioe.2021.642671

Edited by:
Zhengquan Gao,

Shandong University of Technology,
China

Reviewed by:
El-Sayed Salama,

Lanzhou University, China
Pau Loke Show,

University of Nottingham Malaysia
Campus, Malaysia

*Correspondence:
Alexander Mathys

Alexander.Mathys@hest.ethz.ch

Specialty section:
This article was submitted to

Bioprocess Engineering,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 16 December 2020
Accepted: 19 February 2021

Published: 23 March 2021

Citation:
Haberkorn I, Off CL, Besmer MD,

Buchmann L and Mathys A (2021)
Automated Online Flow Cytometry

Advances Microalgal Ecosystem
Management as in situ,

High-Temporal Resolution
Monitoring Tool.

Front. Bioeng. Biotechnol. 9:642671.
doi: 10.3389/fbioe.2021.642671

Automated Online Flow Cytometry
Advances Microalgal Ecosystem
Management as in situ,
High-Temporal Resolution
Monitoring Tool
Iris Haberkorn1, Cosima L. Off1, Michael D. Besmer2, Leandro Buchmann1,3 and
Alexander Mathys1*

1 Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland, 2 onCyt
Microbiology AG, Zurich, Switzerland, 3 Bühler AG, Uzwil, Switzerland

Microalgae are emerging as a next-generation biotechnological production system
in the pharmaceutical, biofuel, and food domain. The economization of microalgal
biorefineries remains a main target, where culture contamination and prokaryotic
upsurge are main bottlenecks to impair culture stability, reproducibility, and consequently
productivity. Automated online flow cytometry (FCM) is gaining momentum as
bioprocess optimization tool, as it allows for spatial and temporal landscaping, real-
time investigations of rapid microbial processes, and the assessment of intrinsic cell
features. So far, automated online FCM has not been applied to microalgal ecosystems
but poses a powerful technology for improving the feasibility of microalgal feedstock
production through in situ, real-time, high-temporal resolution monitoring. The study
lays the foundations for an application of automated online FCM implying far-reaching
applications to impel and facilitate the implementation of innovations targeting at
microalgal bioprocesses optimization. It shows that emissions collected on the FL1/FL3
fluorescent channels, harnessing nucleic acid staining and chlorophyll autofluorescence,
enable a simultaneous assessment (quantitative and diversity-related) of prokaryotes
and industrially relevant phototrophic Chlorella vulgaris in mixed ecosystems of different
complexity over a broad concentration range (2.2–1,002.4 cells · µL−1). Automated
online FCM combined with data analysis relying on phenotypic fingerprinting poses
a powerful tool for quantitative and diversity-related population dynamics monitoring.
Quantitative data assessment showed that prokaryotic growth phases in engineered
and natural ecosystems were characterized by different growth speeds and distinct
peaks. Diversity-related population monitoring based on phenotypic fingerprinting
indicated that prokaryotic upsurge in mixed cultures was governed by the dominance
of single prokaryotic species. Automated online FCM is a powerful tool for microalgal
bioprocess optimization owing to its adaptability to myriad phenotypic assays and
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its compatibility with various cultivation systems. This allows advancing bioprocesses
associated with both microalgal biomass and compound production. Hence, automated
online FCM poses a viable tool with applications across multiple domains within the
biobased sector relying on single cell–based value chains.

Keywords: Chlorella vulgaris, phenotypic fingerprinting, online flow cytometry, microalgae, prokaryotes

INTRODUCTION

Cellular agriculture and along with it renewable biobased
materials relying on single-cell biorefineries as, for instance,
those associated with yeasts, bacteria, and microalgae, are gaining
momentum. Microalgae have attracted attention as a sustainable
means of a next-generation biotechnological production system
for the food, feed, pharmaceutical, nutraceutical, and biofuels
sector. They are of emerging interest owing the sustainable
notion of their connected value chains. Microalgal biomass is
characterized by a beneficial composition with protein contents
of up to 65%, depending on the species employed or lipid
contents with a beneficial ratio of ω6- to ω3-polyunsaturated
fatty acids. Industrial products extracted from microalgae,
for instance, include β-carotene, lipids, polysaccharides, and
vitamins such as vitamin B12, proteins, or phycocyanin (Hyka
et al., 2013; Caporgno and Mathys, 2018; Canelli et al., 2020;
Rischer et al., 2020).

The economization of microalgal bioprocesses remains a
main target, which comprises optimizing the productivity
and reproducibility of microalgal biomass and compound
production. Flow cytometry (FCM) poses a viable technology
for improving the feasibility of the bioprocesses associated
with microalgal biorefineries. Microalgae are a diverse group
of microorganisms differing in their morphology, ecology,
physiology, and biochemistry. FCM enables a rapid and accurate
discrimination and quantification of different cells, as well as
a depiction of physiological states based on their inherent cell
characteristics. So far, FCM has been applied for the monitoring
of bioprocesses associated with, for example, astaxanthin, oil,
or glucose production (Hyka et al., 2013). The development of
automated tools adjunctive to FCM that enable online and inline
culture monitoring further perpetuates the application of the
technology for single-cell bioprocess management. Automated
online FCM enables spatial and temporal landscaping, as well
as investigations of rapid processes on a quantitative and
phenotype-related base harnessing intrinsic cell features in situ,
at real-time, and at high-temporal resolution.

An important aspect in optimizing the feasibility of microalgal
bioprocesses in terms of reproducibility and productivity
is associated with the management of culture ecologies.
Phototrophic microalgae production as monocultures is not
a realistic scenario on industrial scale. Additionally, culture
contamination, for example, caused by the extraneous invasion of
parasitic prokaryotic species or microalgal grazers, was reported
as a primary bottleneck to impairing microalgal productivities.

Abbreviations: FCM, flow cytometry; FSC, forward scattered light intensities;
HFL3, higher red fluorescence emission; HNA, high nucleic acid; LNA, low nucleic
acid; SSC, sideward scattered light intensities; TCC, total cell concentration.

Culture contaminations can lead to biomass and consequently
economic losses (Enzing et al., 2014). A real-time detection and
quantification tool allows taking immediate countermeasures as a
response to microbial disturbances caused by such contaminants
or to the upsurge of prokaryotic counts during culture.
Thus, it could contribute to the stability, reproducibility, and
consequently productivity of microalgal feedstock production.
FCM is advantageous over traditional techniques, such as
plating, which are often laborious and fail to reflect complex
ecosystems, as it allows for a fast and reproducible detection and
enumeration of cultivable and non-cultivable microorganisms
(Hammes and Egli, 2005). Microalgae can be easily distinguished
from prokaryotic organisms or abiotic particles based on their
size and granularity, i.e., forward (FSC) and sideward (SSC)
scattered light intensities, respectively (Haberkorn et al., 2019).
The nucleic acid content or pigment autofluorescence provide
additional, distinctive features (Hammes and Egli, 2010; Hyka
et al., 2013; Prest et al., 2013; Besmer et al., 2014).

These phenotypic properties reflecting inherent cellular
features allow establishing FCM data analysis approaches that
enable a community characterization beyond a detection and
purely quantitative assessment. Props et al. (2016) established
a data analysis approach relying on phenotypic fingerprinting
that enabled the assessment of prokaryotic community dynamics
in aquatic ecosystems. In combination with automated online
FCM, they demonstrated a detection of contaminations based on
alterations in the phenotypic fingerprint and thus α-diversity of
the prokaryotic community in situ and in real-time. Establishing
such approaches for microalgal cultures could contribute
to contamination management or also support ecological
engineering approaches. These insights could contribute to
optimizing microalgal bioprocess feasibility by supporting
the development of technological innovations for improved
upstream performance. For instance, Haberkorn et al. (2021)
showed that nanosecond pulsed electric field processing (nsPEF)
could aid in fostering the upstream performance of microalgal
feedstock production. Progress in implementing nsPEF on an
industrial scale in non-axenic cultures has so far been hampered
by a lack in understanding microalgal-bacterial interactions and
the underlying intracellular treatment mechanisms. Automated
online FCM combined with data analysis relying on phenotypic
fingerprinting could perpetuate the understanding of the
underlying microbial community responses. It provides real-
time data on community diversity and insights into intrinsic cell
responses following nsPEF treatments, by, for instance, depicting
alterations in pigment, protein, and lipid content (Le Chevanton
et al., 2013; Shurin et al., 2013; Cho et al., 2015; Zhang et al., 2018).

Automated online FCM is also a viable option for bioprocess
optimization related to microalgal compound production. FCM
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is adaptable to myriad phenotypic assays and is, together with
the automation module, compatible with various cultivation
systems. Hence, it enables monitoring microalgal compounds,
including proteins, lipids, or pigments in situ and at real-
time (Hyka et al., 2013). Hence, automated online FCM
could also aid in perpetuating microalgal production from
monocultures through a quantification of microalgal counts in
real-time, e.g., as response to external treatment stimuli. The
assessment of compositional alterations in real-time, such as
those related to pigment, lipid, or protein content, poses another
option (Gao et al., 2020). The application of online FCM-
based monitoring has yet been limited to the assessment of
prokaryotes in aqueous ecosystems. Consequently, procedures
and protocols for microalgal cultures are lacking. Thus, the
study aimed to assess the feasibility of automated online
FCM as an in situ, high-temporal resolution monitoring
tool for the assessment of population dynamics in non-
axenic Chlorella vulgaris cultures. The present study (1)
provides a staining protocol and gating strategy that allow a
simultaneous assessment (quantitative and diversity-related) of
prokaryotes and microalgae in mixed ecosystems. It highlights
the applicability harnessing industrially relevant phototrophic
C. vulgaris in coculture with indigenous prokaryotes as the case
study. (2) As a proof of concept, dynamic microbial events
were tracked using C. vulgaris in five different ecosystems
of defined and undefined cocultures with prokaryotes. (3)
The study is the first to demonstrate the applicability of
basic (detection and quantification) and advanced (phenotypic
fingerprint) data analysis combined with automated online FCM
to microalgal cultures.

MATERIALS AND METHODS

Axenic C. vulgaris Culture
Axenic C. vulgaris SAG 211-12 was originally obtained from the
culture collection of algae at Goettingen University, Germany.
Cultures were maintained on modified diluted seawater nitrogen
(DSN) medium agar plates (1.5% agar) using nitrate (141.65 g
L−1 NaNO3) as nitrogen source under ambient conditions
(30.3 µmol · photons · m−2

· s−1, 24 ± 1◦C, ambient
CO2 = 400 ppm) (Pohl et al., 1987; Haberkorn et al., 2020).
For experiments, axenic cultures were grown by transferring
single C. vulgaris colonies in 150-mL cultivation volume
of sterile, modified DSN medium using 500-mL Erlenmeyer
flasks. Cultures were stored in a shaking incubator (Multitron
Pro; Infors AG, Bottmingen, Switzerland) applying cultivation
conditions described by Haberkorn et al. (2019) for 7 days.

Cocultures
Tistrella mobilis TH-33 (KF783213.1), Pseudomonas
pseudoalcaligenes CLR9 (KF478199.1), and Sphingopyxis sp.
AX-A (JQ418293.1) were maintained at −80◦C in 80% vol/vol
glycerol (80% vol/vol in dH2O). For experiments, all prokaryotic
cultures were streaked out onto separate tryptic soy broth (TSB)
agar plates (3% TSB, 1.5% agar) and incubated (30◦C, 5 days).
Subsequently, liquid cultures were prepared by transferring

single bacterial colonies into 35 mL liquid TSB (3% in dH2O)
and incubating at 30◦C for 36 h.

For the experimental cultures, prokaryotic cells in the early
exponential growth were used. Therefore, prokaryotic cell counts
were quantified in the liquid cultures by manual FCM. Cultures
were diluted with filtered (0.1-µm, Millex-GP, Millipore; Merck
KGaA, Darmstadt, Germany) water (Evian; Danone, Paris,
France) to a total cell concentration (TCC) below than 2.0 × 105

cells · mL−1. Samples were stained with a SYBR R© Green I
solution (working solution: 1:100 in 0.1-µm filtered dimethyl
sulfoxide; Life Technologies, Eugene, OR, United States; final
stain concentration: 1:10,000), incubated for 10 min at 37◦C in
the dark, and manually assessed on the flow cytometer and cell
counts determined.

Based thereon, cultures were standardized to 107 cells ·mL−1

and washed three times in 35 mL modified DSN (10,000 × g;
5 min) to remove excess TSB. Subsequently, cultures were stored
in 35-mL cultivation volume using sterile, modified DSN, and
100-mL Erlenmeyer flasks in a shaking incubator (Multitron Pro;
Infors AG) at 30◦C, 150 rpm, 70% relative humidity, 400 ppm
CO2, and 36 µmol · photons · m−2

· s−1 until coculture
establishment. Cocultures with C. vulgaris were established
16 h (Tistrella sp., Sphingopyxis sp.) or 4 h (Pseudomonas sp.)
following standardization. See Table 1 for inoculation ratios of
experimental cultures. Cocultures with three prokaryotic strains
were established such that equal shares of each prokaryotic
strain were obtained. The samples were cultivated in a shaking
incubator (Multitron Pro; Infors AG) at 30◦C, 150 rpm, 70%
relative humidity, 400 ppm CO2, and 36 µmol · photons · m−2

·

s−1 for 3 days. Technical constraints of the sampling robot
allowed to assess one culture by automated online FCM. As the
study did not encompass a fully ecological scope, but rather
aimed at demonstrating the feasibility of automated online FCM
for microalgae–prokaryote cocultures, each coculture experiment
was conducted once.

Flow Cytometry
All samples were measured on a BD AccuriTM C6 Plus flow
cytometer (BD Accuri Cytometers, San Jose, CA, United States)
equipped with a 20-mW laser emitting at a wavelength of 488 nm.
This allowed a collection of signals related to (1) FSC and (2) SSC
light intensities, (3) green (533 ± 30 nm; FL1 channel), and (4)
red fluorescence intensity (> 670 ± 25 nm; FL3 channel). The
collection of those signals allowed to quantify (A) cell size, (B) cell
granularity, (C) nucleic acid content (by SYBR R© Green I staining),
and (D) chlorophyll autofluorescence, respectively. Before each
experiment, the calibration of the flow cytometer was assessed
with calibration beads (BDTM CS&T RUO Beads; BD Biosciences,
San Jose, CA, United States).

Manual flow cytometer measurements were always conducted
with an analyzed volume of 50 µL, a flow rate of 66 µL · min−1,
and a lower threshold of 800 on the FL1-H channel. Automated
online FCM was conducted with a fully automated sampling,
staining, and incubation robot (OC-300; onCyt Microbiology
AG, Zurich, Switzerland) combined with the BD AccuriTM C6
Plus flow cytometer. Samples were taken continuously at 25-min
intervals throughout the entire experiment until termination on
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TABLE 1 | Coculture combinations of C. vulgaris with the prokaryotic strains Sphingopyxis sp., Tistrella sp., and Pseudomonas sp. assessed by automated online FCM,
as well as corresponding initial and final cell concentrations [cells · µL−1].

Coculture Initial cell concentration [cells · µL−1] Final cell concentration [cells · µL−1]

C. vulgaris Prokaryotes C. vulgaris Prokaryotes

1 C. vulgaris–Sphingopyxis sp. 46.5 2.4 49.0 37.0

2 C. vulgaris–Tistrella sp. 27.2 2.2 48.0 28.4

3 C. vulgaris–Sphingopyxis sp., Tistrella sp., Pseudomonas sp. I 43.6 2.6 39.1 47.6

4 C. vulgaris–Sphingopyxis sp., Tistrella sp., Pseudomonas sp. II 66.4 126.6 66.7 1002.4

5 C. vulgaris–undefined; spontaneous, fortuitous contamination 45.6 2.2 49.2 39.9

Cocultures were established and assessed as single cocultures (n = 1).

day 3 and measured using the same standard flow cytometer
settings described for manual FCM. For each measurement
point, a single sample was collected, diluted 1:100 with 0.1-
µm filtered water (Evian; Danone), stained with SYBR R© Green
I (working solution: 1:5,000 in 0.22-µm filtered 10 mM TRIS
buffer, pH 8.0 containing 50 mM sodium thiosulfate; final
stain concentration: 1:10,000) and incubated (10 min, 37◦C).
Subsequently, the sample was pumped to the flow cytometer
and measured for 90 s (equivalent to an analyzed volume of
approximately 61 µL). Between sampling, all internal tubing, the
syringe pump, and the incubation/mixing chamber were rinsed
with sodium hypochlorite solution (1% active chlorine), sodium
thiosulfate solution (100 mM), and ultrapure water (Besmer et al.,
2014, 2016, 2017a,b; Besmer and Hammes, 2016).

Staining Protocol Validation
The operating principle of the staining robot for automated
online FCM comprises first a sampling step from the culture,
followed by an incubation with the stain, and subsequently a
measurement step on the FCM, which was adopted for staining
protocol validation. Additionally, the nucleic acid staining of
prokaryotic communities harnessing SYBR R© Green I (37◦C,
10 min) was shown to provide sensitive and reproducible
quantitative data and phenotypic fingerprints on prokaryotes
during automated online FCM (Besmer and Hammes, 2016;
Besmer et al., 2016, 2017a,b; Props et al., 2018). As the study
aimed at establishing a staining protocol for the simultaneous
assessment of prokaryotes and microalgae, the feasibility of
applying the staining protocol for the assessment of C. vulgaris
was investigated. Six discreet subsamples of axenic C. vulgaris
SAG 211-12 were stained with SYBR R© Green I. Each sample
was measured manually and individually on the flow cytometer
in quintuplicates applying the same conditions as described
in section “Flow Cytometry” assessing cells at a staining
temperature of 37◦C for 5, 8, 10, and 15 min. Additionally, the
effect of the staining temperature was investigated by staining
cells for 10 min at 4, 37, and 40◦C. Negative controls were
analyzed using SYBR R© Green I in filtered water only, following
the same staining protocol.

Gating
Gate establishment for microalgae first encompassed assessing
fresh and axenic C. vulgaris culture. Aliquots of the same

axenic C. vulgaris sample were diluted with filtered (0.1-µm,
Millex-GP, Millipore; Merck KGaA) water (Evian; Danone) to
obtain a cell concentration below 2.0 × 105 cells · mL−1.
Subsequently, six discrete sub-samples were stained (37◦C,
10 min) with SYBR R© Green I (working solution: 1:5,000 in 0.22-
µm filtered 10 mM TRIS buffer, pH 8.0 containing 50 mM
sodium thiosulfate; final stain concentration: 1:10,000) in the
dark and measured in quintuplicate (Besmer et al., 2017b).
Samples were measured manually and separately on the flow
cytometer. Negative controls were analyzed using SYBR R© Green
I in filtered water only, following the same staining protocol.
The microalgal gate was established based on green (FL1) and
red (FL3) fluorescent intensities. Microalgal gates were validated
for their fit throughout all samples obtained in this study
(Figures 1C–F). Gates for assessing prokaryotes in coculture with
C. vulgaris were initially adopted from Prest et al. (2013) and
included prokaryotic regions for low (LNAp) and high nucleic
acid content (HNAp) organisms (Figures 1A–F). Prokaryotic
gates were validated for their fit throughout all samples by
first assessing axenic prokaryotic cultures, followed by applying
the gates to prokaryotes in coculture with C. vulgaris. No
compensation was applied.

Data Analysis
Raw data were collected with the BD AccuriTM C6 software
(v1.0.1; BD Accuri Cytometers). Each measurement point
generated a single FCS file, which was exported to the R
statistical environment (R-Studio, v1.1.456). Data and statistical
assessment were performed using the functionalities offered by
the flowCore (v1.38.2) and Phenoflow (v1.1.2) packages. Virtual
gating was applied following the gating strategy described in
Staining Protocol Validation.

For data obtained from automated online FCM of the
established cocultures, basic FCM data analysis (detection
and quantification) was conducted for both C. vulgaris and
prokaryotic (HNAp gate) communities. Data analyses relying
on phenotypic fingerprints, and based thereon the phenotypic
diversity index, were established for the prokaryotic community
employing the HNAp domain of the multispecies assemblages
and the undefined culture to assess shifts in the prokaryotic
community relating to phenotypic diversity-based alterations.
Therefore, the Diversity_rf function was used (number of
bootstraps, n = 3), employing an adapted analytics approach
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FIGURE 1 | Gating strategy established using dual-density-plots on the green (FL1) and red (FL3) fluorescent channels. Gates, including microalgal, HNAp, LNAp,
and HFL3p domains, are shown for (A) axenic Tistrella sp., (B) axenic Sphingpyxis sp., (C) Tistrella sp.–C. vulgaris coculture, (D) Sphingopyxis sp.–C. vulgaris
coculture, and Sphingpyxis sp., Tistrella sp., Pseudomonas sp.–C. vulgaris coculture inoculated to a lower (E) and higher (F) initial prokaryotic concentration than
C. vulgaris.

initially suggested by Props et al. (2018) for prokaryotes in
aquatic ecosystems. Briefly, the function performs bivariate
kernel density estimation on selected phenotypic traits (FL1-A,
FL3-A, FSC-A, and SSC-A) and concatenates the obtained values

to a one-dimensional feature vector, the phenotypic fingerprint.
The phenotypic fingerprint then serves for calculating the
phenotypic diversity index. In analogy to taxonomy, i.e., relative
abundance-based α-diversity, the phenotypic diversity index
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resembles the “effective number of phenotypic states” in a
microbial community. Following Props et al. (2018), the Hill-
diversity metric of order two was employed as α-diversity
measure to put equal weight on the richness and evenness.

A t test was performed to statistically assess data obtained
from gate establishment. A non-significant Shapiro–
Wilk test (P > 0.05) and F test (P > 0.05) indicated
normal distribution and homogeneity of variances of the
obtained data, respectively. A Wilcoxon rank-sum test was
conducted to assess statistical significances of data collected
from staining protocol validation, as the data were not
normally distributed.

RESULTS

Gate Definition
Applying the microalgal gate based on the emission spectra of
SYBR R© Green I and of chlorophyll (autofluorescence) provided
a valid and reproducible approach to assess microalgal cell
counts in fresh C. vulgaris samples. No significant difference
was found between the datasets collected on the FSC/SSC and
FL1/FL3 channels (t test; t = -2.09, df = 10; P = 0.06; n = 30).
Quantitative assessment revealed a relative standard deviation of
3.1% and 3.2% of counts collected on the FSC/SSC and FL1/FL3
channels, respectively, indicating low intrasample variation.
Counts collected on the FL1/FL3 channels were shown to
represent C. vulgaris biomass yields, indicating that the staining
protocol (SYBR R© Green I; 37◦C, 10 min) and subsequent count
determination employed in this study represented C. vulgaris
cell counts and biomass yields well (Haberkorn et al., 2019).
No shift was observed in microalgal nucleic acid or chlorophyll
content throughout the cocultures assessed, which was indicated
by a 100% coverage within the gate established on the FL1/FL3
fluorescent channels.

In the prokaryotic domain, the emission collected on
the FL1/FL3 fluorescent channels revealed the presence of
different clusters (Figures 1A–F). Gates for assessing prokaryotic
populations were initially adopted from Prest et al. (2013), who
proposed a discrimination of prokaryotic regions characterized
by low (LNA) and high nucleic acid (HNA) content. Albeit
axenic prokaryotic cultures located in the HNA domain suggested
by Prest et al. (2013), coculture with C. vulgaris resulted in a
shift of the localization of prokaryotes on the FL1/FL3 channels
toward lower emission on the green (FL1) and red (FL3)
fluorescent channels (Figures 1A–D). Additionally, prokaryotes
in the multispecies assemblage located at the intersection of
the initial LNA and HNA domains proposed by Prest et al.
(2013) prevented a clear discrimination of the two populations
(Figures 1E,F). Hence, LNAp and HNAp gates for assessing
prokaryotes in coculture with C. vulgaris required adaptation
toward lower emission on the green (FL1) (1.5 × 104) and red
(FL3) fluorescent spectrum. For a majority of cocultures, counts
collected in the LNAp gate were negligible and might have been
associated with background scattering.

Cocultures, such as those established with Sphingopyxis sp.
(Figure 1D) and three prokaryotic strains (Figures 1E,F),

indicated the presence of an additional prokaryotic cluster that
emitted higher on the red fluorescence (FL3) channel, resulting
in the establishment of a third gate denoted as HFL3p. However,
signal collected within the HFL3p gate could not be confirmed
for all cocultures. In fact, counts obtained within the HFL3p gate
could quantitatively negligible during coculture. Some studies
describe those signals collected in the HFL3p domain to be
associated with background noise or scattering (Hammes et al.,
2008; Hammes and Egli, 2010; Prest et al., 2013). In addition,
the presence of a HFL3p domain yet remains unreported
for microalgal and prokaryotic aquatic ecosystems. Hence,
diversity assessment of prokaryotic communities including
HFL3p fractions would be speculative. Thus, the HFL3p fraction
was excluded from subsequent community diversity analysis.

Indistinct signal at fluorescent intensities lower than those
proposed for the LNAp domain on the green (FL1) fluorescent
channel, as well as at higher fluorescent intensities on the
red (FL3) fluorescent channel, was associated with background
scattering and thus excluded from further analysis (Figures 1A,B;
Berney et al., 2008).

Staining Protocol Validation
No significant difference was observed between a staining time
of 10, 5, 8, or 15 min (at 37◦C) on the FL1/FL3 fluorescent or
on the FSC/SSC channels. Significantly higher (P < 0.05) counts
were obtained when staining cells at 37◦C (10 min) than at 4◦C,
whereas no difference was observed when increasing the staining
temperature to 40◦C (Figure 2).

Online Monitoring of Culture Dynamics
Establishing gates for prokaryotes and C. vulgaris based
on the intensities collected on the green (FL1) and red
(FL3) fluorescent channels enabled the discrimination of
microalgal and prokaryotic populations and thus a simultaneous
quantitative and diversity-related (multispecies assemblage,
undefined coculture) assessment during automated online FCM.

Sphingopyxis sp. showed a 15.1-fold count increase from 2.4
to 37.0 cells · µL−1 with an initial lag phase lasting the first
72.5 h of cultivation and subsequent exponential growth phase,
not outnumbering C. vulgaris throughout the entire cultivation
period (Figure 3A and Table 1). Visual inspection of FL1/FL3
fluorescent intensities indicated the presence of a prokaryotic
cluster that was emitting higher on the red (FL3) fluorescent
channel (Figure 1D). Tistrella sp. counts increased 13.1-fold
during cultivation but did not surpass C. vulgaris cell counts
(Figure 3B and Table 1). An initial lag phase lasted approximately
50 h followed by an accelerated growth phase until the end of the
cultivation period. Most of the counts were collected in the HNAp
domain. With continuing cultivation, the share of cells located
in the HFL3p gate increased, leading to a maximum of 8 cells ·
µL−1. However, visual inspection of density plots obtained on
the FL1/FL3 fluorescent channels did not show distinct clusters
or patterns that would substantiate the presence of Tistrella sp. in
the HFL3p gate.

Inoculating the multispecies assemblage of C. vulgaris and
Tistrella sp., Sphingopyxis sp., and Pseudomonas sp. to a
lower concentration than C. vulgaris resulted in an 18.7-fold
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FIGURE 2 | Chlorella vulgaris cell counts collected on the green (FL1) and red (FL3) fluorescent and FSC/SSC channels after nucleic acid staining with SYBR R©

Green I. The effect of varying the staining times (min) at 5, 8, 10, and 15 min at a staining temperature of 37◦C (A,B) and the effect of the different staining
temperatures 40◦C, 37◦C, and 4◦C at a staining time of 10 min (C,D) were assessed (n = 30).

prokaryotic count increase with an initial lag phase followed
by an exponential growth phase that started approximately
50 h after inoculation (Figure 3C and Table 1). During the
initial lag phase, clusters within the HFL3p gating domain
were observed, which remained at constant 12.8 ± 2.2 cells ·
µL−1 throughout the entire cultivation period. During culture
of the multispecies assemblage, the phenotypic diversity index
increased by 59.7% from initial 1,465.5± 89.1 a.u. to a maximum
of 2,341.1 ± 66.6 a.u. approximately 26 h after inoculation
followed by a decline of 28.2% to 1,680.5± 19.3 a.u. at the end of
the cultivation period (Figure 4A). Inoculating the multispecies
assemblage to a higher concentration than C. vulgaris resulted in
an immediate incidence of exponential prokaryotic growth for
the first 37.5 h of cultivation, with a clear dominance of counts
collected in the HNAp gating domain (Figure 3D and Table 1).

Although the maximum observed prokaryotic cell concentration
amounted to 1,305.7 cells · µL−1 (37.5 h after inoculation),
the overall prokaryotic count increase was only 10-fold. After
reaching a maximum of 1,305.7 cells · µL−1, prokaryotic
counts decreased 1,002.4 cells · µL−1. Cells collected in the
HFL3p gating domain were high at a constant concentration of
47.6 ± 9.2 cells · µL−1 throughout the cultivation period. The
phenotypic diversity index increased by approximately 17.1%
from initial 1,131.4 ± 21.7 a.u. to a maximum of 1,324.5 ± 6.0
a.u. (Figure 4B).

The protocol was also applicable to prokaryotes in the
coculture based on short-term spontaneous fortuitous
contamination. Prokaryotes initially showed decelerated
growth, followed by an exponential increase at the end of the
cultivation period leading to a maximum cell concentration of
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FIGURE 3 | Growth dynamics of C. vulgaris and prokaryotes in mixed ecosystems. Data is presented for single cocultures that were established from C. vulgaris
with (A) Sphinogpyxis sp., (B) Tistrella sp., Sphinogpyxis sp., Tistrella sp., and Pseudomonas sp. inoculated to a (C) lower or (D) higher initial concentration than C.
vulgaris, and (E) a coculture based on spontaneous, fortuitous contamination of axenic C. vulgaris cultures. FCM assessed C. vulgaris total cell concentration
(TCCm).
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FIGURE 4 | Prokaryotic phenotypic diversity index of C. vulgaris–prokaryote mixed ecosystems. Data are presented for single cocultures that were established from
C. vulgaris with Sphingopyxis sp., Tistrella sp., and Pseudomonas sp. inoculated to (A) a lower or (B) higher initial concentration than C. vulgaris and (C) a coculture
based on spontaneous, fortuitous contamination of axenic C. vulgaris cultures. Error bars denote bootstrap errors (n = 3).

39.9 cells · µL−1, where the HNAp fraction clearly dominated
(Figure 3E and Table 1). The phenotypic diversity index initially
showed no decisive pattern fluctuating between 2,000 and 3,000
a.u. but revealed a distinct peak with a maximum of 1,553± 39.0
a.u. 78.4 h after inoculation followed by a decline to 944.1± 10.2
a.u. at the end of the cultivation period (Figure 4C).

DISCUSSION

Because microalgae have emerged as a next-generation
biotechnological production system for the biobased

domain, delivering feedstock and high-value components,
the economization of their connected value chains remains
a main target. Important for optimizing the reproducibility
and productivity of microalgal feedstock production are stable
cultures, which can be supported by the in situ, real-time
monitoring and management of culture ecologies. The study
showed that the protocol employed harnessing chlorophyll
autofluorescence and nucleic acid staining based on SYBR R©

Green I in conjunction with automated online FCM provided a
rapid and sensitive approach for microalgal culture assessment.

A clear advantage of microalgae is their naturally occurring
pigments and size, which allows distinguishing them from
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abiotic particles, other microalgal species, or bacteria. In this
study, harnessing the autofluorescence of chlorophyll enabled
discriminating C. vulgaris from bacteria and abiotic particles
using the red fluorescent (FL3, > 670 nm) channel and
thus facilitated gating microalgae during coculture. Microalgal
pigments, including chlorophyll, are gaining increasing relevance
as bioproducts for the industrial exploitation of microalgae.
Chlorophyll, for example, has applications in the cosmetics, food,
pharmaceutical, and nutraceutical domain (da Silva Ferreira
and Sant’Anna, 2017). The feasibility of microalgal bioproduct,
i.e., pigment assessment harnessing their naturally occurring
autofluorescence, opens promising applications. Automated
online FCM could be employed as an online and inline
monitoring and management tool for optimizing bioprocesses
associated with microalgal pigment production. Industrially
relevant microalgae, such as Dunalliella salina, Haematococcus
pluvialis, and Scenedesmus almeriensis, which lack in chlorophyll,
are producers of other commercially exploited, high-value
pigments, such as carotenoids including astaxanthin (excitation:
488 nm; emission: 675 nm) (Ukibe et al., 2008; Enzing et al.,
2014). Harnessing the autofluorescence of those pigments by
FCM allows circumventing chemical or toxic staining, extraction,
and analysis protocols, whereas automated online FCM provides
the additional advantage of real-time data acquisition for
bioprocess management.

Microalgal pigment content does not necessarily correlate
with biomass yields but responds to variations in light,
temperature, and nutrient availability, which impedes its use as
a measure for biomass yield quantification (da Silva Ferreira
and Sant’Anna, 2017). To enable a quantitative assessment
of cocultures, cells were stained with SYBR R© Green I (37◦C,
10 min), which was shown to enable a sensitive quantification
of prokaryotes by FCM with limits at cell concentrations as low
as 0.1–1 cells · µL−1 (Prest et al., 2013; Besmer and Hammes,
2016; Besmer et al., 2017a,b). In this study, no significant
difference was observed between C. vulgaris counts collected
on the FSC/SSC and FL1/FL3 fluorescent channels. Hence,
the nucleic acid staining protocol employed (SYBR R© Green I,
37◦C, 10 min) served as a valid and reproducible approach for
quantifying microalgal and prokaryotic counts simultaneously
during coculture by automated online FCM. Accordingly,
Haberkorn et al. (2019) showed that axenic C. vulgaris counts
collected on the FL1/FL3 channels following a staining with
SYBR R© Green I corresponded well with those collected on the
FSC/SSC channels and actual C. vulgaris biomass yields.

The staining protocol employed enabled a sensitive, rapid
quantification of microalgal and prokaryotic populations at
different concentrations and of different complexity. Automated
online FCM enabled discriminating different growth phases of
prokaryotes, as well as fluctuations and concentration peaks
at high-temporal resolution and within a broad concentration
range (2.2–1,002.4 cells · µL−1). Prokaryotic growth in coculture
was characterized by lag phases lasting up to or longer
than 2 days, while other cultures showed an immediate
incidence of exponential growth. Individual cocultures and the
multispecies assemblage inoculated to a lower concentration
than C. vulgaris yielded higher prokaryotic counts than the

multispecies assemblage that was inoculated to a higher
concentration than C. vulgaris. Inoculating prokaryotes to a
higher concentration than C. vulgaris resulted in an immediate
incidence of exponential prokaryotic growth followed by an
8-fold prokaryotic count increase. Conversely, inoculating
prokaryotes to a lower concentration than C. vulgaris resulted
in an extended lag phase and an 18.7-fold prokaryotic
count increase. Oligotrophic environments were reported as
being dominated by slow-growing prokaryotic populations
(Klappenbach et al., 2000). The high salt content and the absence
of organic carbon sources in the initial DSN medium suggest
a classification of the environment as oligotrophic promoting
slow-growing prokaryotes. Both bacteria and microalgae were
shown as being capable of releasing dissolved organic carbon
into the environment in coculture providing a carbon source for
growth, which might have supported prokaryotic growth even
under oligotrophic conditions (Cho et al., 2015). The ability
of automated online FCM in conjunction with the established
staining protocol (SYBR R© Green I, 37◦C, 10 min) to depict
prokaryotic community dynamics in situ, in real-time, and at
high-temporal resolution covering different concentration ranges
yields promising applications of the technology as an online
and inline monitoring tool during microalgal culture. Hence,
incorporating automated online FCM into microalgal feedstock
production could support culture management, as it enables
taking immediate countermeasures in case of contamination or
prokaryotic upsurge.

In the prokaryotic gating domain, the emissions collected
on the FL1/FL3 fluorescent channels revealed the presence of
different clusters. SYBR R© Green I is sensitive toward nucleic acids,
including DNA and RNA (Proctor et al., 2018). Assuming a
complete penetration of the stain into the cells, shifts in the green
(FL1) fluorescence intensity can occur because of alterations in
the nucleic acid content, for instance, that observed for different
prokaryotic communities owing to their difference in genome
size or during different growth stages of prokaryotes (Prest et al.,
2013; Buysschaert et al., 2018). Various studies have described
in depth and also characterized prokaryotic HNA and LNA
fractions in aquatic ecosystems, resulting in a gating approach
as suggested by Prest et al. (2013) (Lebaron et al., 2002; Bouvier
et al., 2007; Besmer et al., 2014, 2017a; Props et al., 2018;
Zhao et al., 2018). Initial gate establishment for prokaryotic
communities encompassed adopting those gates suggested by
Prest et al. (2013) to enable discriminating the different clusters.
However, employing the same gating strategy did not allow for a
clear discrimination of HNA and LNA prokaryotic fractions on
the FL1/FL3 fluorescent channels. Instead, prokaryotes showed
lower emission on the green fluorescence channel (FL1) in
coculture with C. vulgaris and thus located at the fringe of the
suggested border separating HNA and LNA domains demanding
an adaptation tailored to the C. vulgaris cocultures investigated
in this study. HNA and LNA fractions appear as two domains
separated by their fluorescence intensity on the green fluorescent
channel (FL1) after staining with SYBR R© Green I. The required
shift of the gating domains might relate to a deceleration of
prokaryotic metabolic activity in coculture with C. vulgaris
and consequently lower fluorescence intensity on the green
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fluorescence (FL1) channel. Hyka et al. (2013) reported that the
nucleic acid content of microalgae can also fluctuate, depending
on the phase of the cell cycle, but no alterations were observed
in this study. Additionally, prokaryotic presence or elevated
growth did not affect the nucleic acid content of C. vulgaris,
which was indicated by 100% coverage in the established gate
and the applicability of the same gate to C. vulgaris in axenic
and non-axenic cultures. However, future studies employing
automated online FCM for assessing microalgal dynamics over
longer cultivation periods or the impact of processing on
microalgal physiology might consider adapting the proposed
gate toward higher or lower emission on the green fluorescent
(FL1) channel. Most prokaryotic counts were collected in the
established HNAp gating domain. LNAp fractions, on the other
hand, were characterized by low counts. These observations are
in accordance with other studies showing that the majority of
read counts in aquatic, prokaryotic ecosystems are associated
with the HNA domain (Prest et al., 2013; Besmer et al., 2016;
Proctor et al., 2018). In turn, the presence of prokaryotes
characterized by LNA contents was confirmed by several studies
for aquatic ecosystems. However, LNAp domains yet remain
unreported for microalgal ecosystems. Although the presence
of LNA content prokaryotes in this study cannot be excluded,
a clear identification of LNA prokaryotes remains challenging
for two reasons. First, the LNAp fraction was characterized by
low counts. The corresponding gating domain might have also
captured counts from background scattering. Hence, it remains
questionable whether the counts captured in the LNAp domain
might have been affiliated with background noise or LNA-
content prokaryotes. Second, a partially unclear allocation of
LNAp counts, i.e., a location at the fringe of the gating border,
to the gating domain further impeded a clear identification of
prokaryotic clusters that might have been associated with an
LNAp domain. An unclear allocation of counts into the gating
domain supports the assumption that counts collected in the
LNAp gating domain were related to background scattering.
Furthermore, an unclear allocation could relate to changes
in the metabolic state of cells that lead to a shift in their
location on the density plots obtained from FCM. For instance,
bacterial sporulation, such as that reported for species of the
order Bacillales, increases the level of dye uptake, resulting
in higher emission on the respective channel (Zhang et al.,
2020). Members affiliated with the order of Bacillales were
also reported for microalgal cultures (Steichen et al., 2020).
To study those interactions, fluorescence-activated cell sorting
would allow separating the different prokaryotic populations
of interest. Combining the sorting with taxonomic assessments
based on, for instance, 16S rDNA amplicon sequencing would
allow identifying the populations of interest. Subsequently, more
complex interactions between selected prokaryotic species of
each fraction with microalgae could be studied employing
engineered cocultures.

Hence, an LNAp domain as suggested by Prest et al. (2013)
was not applicable in the cocultures assessed in this study and
was thus excluded from further diversity analysis. However,
future studies investigating more complex microalgal ecosystems
might relate back to an LNAp gating domain for a prokaryotic

diversity assessment or contamination monitoring, as several
studies have shown the existence of prokaryotes in complex
aquatic ecosystems to locate in the LNAp domain (Proctor et al.,
2018). Cocultures, such as those established with Sphingopyxis
sp. (Figure 1D) and three prokaryotic strains (Figures 1E,F),
indicated the presence of an additional prokaryotic cluster
that emitted higher on the red fluorescence (FL3) channel,
which was denoted as HFL3p domain. Interestingly, higher
emittance on the red fluorescence (FL3) channel was observed for
prokaryotes, including Sphingopyxis sp. in individual coculture
with C. vulgaris, as well as in both multispecies assemblages.
Certain members affiliated with Sphigomonadaceae were reported
being capable of pigment formation, involving carotenoids, such
as asthaxanthin or bacteriochloropohyll a, which can cause an
increase of the red fluorescence (FL3) intensity (Rosenberg et al.,
2014). The rise-time periods of the HFL3p fraction observed
during those cocultures could thus relate to an induction of
pigment formation or to a count increase of cells forming those
pigments during coculture. However, the presence of prokaryotes
located in the HFL3p domain could not be confirmed for all
cocultures. In fact, counts obtained within the HFL3p were
quantitatively negligible during coculture. Some studies describe
those signals collected in the HFL3p domain to be associated with
background noise or scattering (Hammes et al., 2008; Hammes
and Egli, 2010; Prest et al., 2013). Although low counts might
not serve as sole exclusion criterion of the HFL3p cluster, a lack
in stable occurrence throughout all cocultures combined with an
open affiliation of the cluster to prokaryotic organisms and the
resultant potential of bias through background noise inclusion
led to the exemption of the HFL3p cluster from the diversity
analysis in this study.

Combining automated online FCM with data analysis
relying on phenotypic fingerprinting based on inherent cell
characteristics provides a powerful tool for detecting, tracking,
and quantifying prokaryotic disturbances or contaminations
and could also pose a viable option for microalgal cultures
(Buysschaert et al., 2018; Props et al., 2018). In this study,
diversity assessment based on prokaryotic phenotypic
fingerprints did not allow for a discrimination of different
prokaryotic strains, which could relate to similarities in the
phenotypic parameters assessed. But phenotypic fingerprinting
indicated that the differences in prokaryotic growth patterns were
associated with a dominance of one or two strains within the
multispecies assemblage. For the multispecies assemblage with
prokaryotes inoculated to a lower concentration than C. vulgaris,
the phenotypic diversity index increased 1.6-fold within the
initial 26 h of cultivation. Conversely, the phenotypic diversity
index only gradually increased for the multispecies assemblage
with higher initial prokaryotic counts leading to a maximum
1.2-fold increase at the end of the cultivation period. An increase
in the phenotypic diversity index relates to an increase in the
evenness component and thus equalization of the different
community members (Props et al., 2018). This equalization
could relate to an assimilation of phenotypic characteristics
among community members. Hence, phenotypic fingerprinting
indicated that during coculture of the multispecies assemblage
inoculated to higher prokaryotic than C. vulgaris concentration,
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one or two of the three strains dominated throughout the
entire cultivation period that governed the growth performance
and resulted in overall decelerated prokaryotic growth. The
information obtained by automated online FCM, combined
with data analysis relying on phenotypic fingerprinting, poses
a powerful tool that could improve not only the understanding
of population dynamics underlying complex ecosystems but
also their response to external events. For instance, the
implementation of emerging processing technologies, such as
nsPEF in single cell–based biorefineries, remains hampered by
a lack of understanding the underlying ecosystem responses
or treatment mechanisms (Buchmann and Mathys, 2019;
Haberkorn et al., 2021). This situation could be overcome by
implementing automated online FCM in combination with data
analysis approaches relying on phenotypic fingerprinting to
assess responses in real-time. Additionally, Helisch et al. (2020)
highlight the importance of long-term stability of non-axenic
microalgae-based ecosystems as crucial to establish life-support
systems for long-term space exploration, which demands in situ
monitoring tools, such as automated online FCM, which provide
data at high-temporal resolution for optimal process control.

CONCLUSION

Automated online FCM poses a powerful technology for
improving the feasibility of microalgal feedstock production
through providing data on culture dynamics in situ and
at high-temporal resolution. Harnessing emissions collected
on the FL1/FL3 fluorescent channels, obtained by nucleic
acid staining and chlorophyll autofluorescence, enables a
simultaneous assessment of prokaryotes and C. vulgaris in
artificially engineered and natural cultures over a broad
concentration range (2–1,002 cells · µL−1). Automated online
FCM in combination with data analysis relying on phenotypic
fingerprinting provides information on quantitative and

diversity-related community dynamics. Simultaneously, the
study highlights different prokaryotic community fractions in
microalgal cultures. Differences in the nucleic acid content
and pigmentation could allow distinguishing them by FCM.
In that context, characterizing non-axenic C. vulgaris cultures
beyond phenotypic assessments proposed in this study on a
taxonomic base could further advance automated online FCM
by identifying populations of interest. Such assessments provide
a better understanding of the underlying microbial network
interactions. The study lays the foundations for an application
of automated online FCM implying far-reaching applications to
impel and facilitate the implementation of innovations targeting
at microalgal bioprocesses optimization.
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Search for new and renewable sources of energy has made research reach the tiny little
tots, microalgae for the production of biodiesel. But despite years of research on the
topic, a definitive statement, declaring microalgae as an economically, environmentally,
and socially sustainable resource is yet to be seen or heard of. With technological and
scientific glitches being blamed for this delay in the progress of the production system,
an assessment of the sustainability indices achieved so far by the microalgal biodiesel
is important to be done so as to direct future research efforts in a more coordinated
manner to achieve the sustainability mark. This article provides a review of the current
economic, environmental, and social status of microalgal biodiesel and the strategies
adopted to achieve them, with suggestions to address the challenges faced by the
microalgal biodiesel production system.

Keywords: microalgae, biodiesel, sustainability, economic, environmental, social

INTRODUCTION

Living in an age where life revolves around energy in all forms, a crisis of sustainability is indeed
indispensable. With the continued consumption of fossil fuels by the expanding populations,
maintaining economic, environmental and social sustainability is a difficult proposition. Hence,
strong abatement practices and policies to encourage research on renewable energy resources are
being developed. It is in this context that energy in the form of biofuels is being produced from
renewable resources of plant origin. Although various other alternatives like geothermal, wind
and solar energy are being surveyed, bioenergy is looked at as a strong resource of energy in
the coming years.

In such a scenario, the presence of objectionable facts such as issues of food security and energy
balance in the first- and second-generation biofuels and the desire for new, sustainable energy
resources has brought into limelight, a garden pond nuisance, microalgae, as a promising renewable
fuel feedstock. Reports of its high oil yields, dramatic GHG savings, faster growth rate, more
harvesting cycles and higher carbon fixation rates, all devoid of any negative effects on farming
are reasons of its sudden popularity (Balat and Balat, 2010).

Research on microalgae as a source of energy were extensively carried out in the 1970s, in
the United States, but shortage of adequate funding and shift of focus to other feedstocks and
technologies gradually brought an end to the research program (Demirbas, 2011). However,

Abbreviations: ARRA, American Recovery and Reinvestment Act; BECCS, bioenergy for carbon capture and sequestration;
BTU, British thermal unit; CO2, carbon dioxide; EROI, energy return on investment; FER, fossil energy ratio; GGE,
gallons of gasoline equivalent; GHG, greenhouse gas; ILO, International Labor Organization; IPCC, intergovernmental panel
for climate change; ITUC, International Trade Union Confederation; LCA, life-cycle assessment; LCIA, life-cycle impact
assessment; MJ, mega joules; NEB, net energy balance; NER, Net energy ratio; POP, pathways out of poverty; UNEP, United
Nations Environment Programme.
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with the spurt of concerns today, regarding climate change, food
vs. fuel feud, land use change, etc., resulting due to the use
of first- and second-generation biofuel feedstocks, the need for
search of alternative energy sources has aroused and reawakened
interest in microalgae. Although microalgae possess several
advantages as compared to first- and second-generation biodiesel
feedstocks and are being experimented on different aspects
worldwide, sustainable microalgal biodiesel production appears
to be a difficult target to reach with regard to its economic,
environmental and social positioning. This review extends its
scope to identifying the sustainability indices achieved through
microalgal biodiesel production and addressing the knowledge
gaps in this area for focused research and innovations.

SUSTAINABLE BIOFUELS

Definition
The term ‘sustainability’ has been rightfully defined by the
World Commission on Environment and Development as “the
development that satisfies the needs of the present generations
without compromising the ability of the future generations to
meet their own needs.” Sustainable development comprehends
economic, social, and ecological standpoints of conservation and
change (Figure 1) (UNCED, 1992).

Despite the widespread use of the term, ‘sustainability,’ human
beings fail to cater to the basic requirements for a sustainable
society which is clearly reflected through their activities
of environmental degradation, overconsumption, population
growth and their quest for indefinite economic growth in
a closed system.

Parameters to Be Considered for
Sustainable Biofuel Production
For achieving economic sustainability, low-cost production
strategies with greater output to input ratio is imperative besides
being available at affordable market rates. At times, the need to
maximize returns from investments overlooks the environmental
considerations giving rise to negative implications. Additionally,
the demand for economic gains affects food production and
availability, creating adverse impacts on the society. Hence, to
balance between economic and environmental sustainability,
higher productivity must be targeted.

Environmental sustainability can be assessed through use
of environment friendly, renewable sources of energy along
with use of chemicals and machines during the production
process with minimum negative environmental impact. These
assessments are done with the help of some indicators which can
either be global (GHG emissions, renewable energy) or regional
(water management, soil and resource depletion, local pollution,
etc.). Moreover, the government and private led directives,
schemes and initiatives for spreading awareness and activity, also
contribute toward environmental sustainability in a major way
(Afgan, 2008).

Social sustainability can be ascertained through
implementations of certification schemes, scorecards and
regulations for mitigating the negative impacts such as

child labor, minimum wage, compensation for lost land
and resources etc (Haye and Hardtke, 2009). However, evidences
of implementation of these measures in reality, has been very
limited, suggesting lower degrees of interest or awareness
for establishing social sustainability. Low social and political
participation and contrasting social norms have been few of
the many reasons for this debacle. Hence a participation of
society and resources for a collaborative effort toward social and
economic development and sustainability should be planned.

The basic criteria and indicators for production of sustainable
biofuels have been clearly stated by Silva Lora et al. (2011)
(Table 1). The report also mentions that for assessing the
sustainability of biofuels, parameters like life cycle impact
assessment, quantification of substituted fossil energy, energy
allocated for co-product development and changes in soil
utilization should be importantly considered.

MICROALGAL BIODIESEL
PRODUCTION: THE SUSTAINABILITY
CHECK

Algae biodiesel industry is starting to take off. Algae projects
see an emerging trend in the production of algal-based drop in
fuels and various high-value products. In a bid to realize the
sustainability index, extensive research efforts are being carried
out by researchers, academicians and industrialists worldwide to
improve the economic and environmental benefits from algal
biodiesel through improvement in upstream and downstream
processes. Despite such widespread research activities in the
field, many questions still remain unanswered. What exactly
is the sustainability index? How far are we from reaching the
sustainability mark? Is the same sustainability index applicable
to all nations and societies? Although the sustainability index is a
concept as vague as, ‘to each his own,’ in this world of expanding
problems and populations, to ensure continued efforts in the
right direction and at the right pace, a sustainability check of the
microalgal biodiesel production system is indispensable.

Economic Sustainability
Biodiesel production is an energy intensive process. All
the processes during biodiesel production, starting from
procurement of raw materials to processing, manufacturing,
storing and marketing, contribute toward the product’s economic
feasibility. The decision to use a particular biodiesel initially
depends on its cost competence. So research efforts to bring
down the cost of microalgal biodiesel to comparable rates with
conventional petroleum diesel are being focused on. Hence,
for ensuring cost effectiveness of the microalgal biodiesel,
few important strategies are generally followed, such as (i)
increasing the amount of energy captured from the atmosphere,
(ii) increasing the amount of energy harvested from the
microalgal biomass, (iii) increasing the biomass yield of the
resource, (iv) increasing the number of co-products produced,
(v) decreasing the energy input during downstream processes,
and (vi) increasing the ability of the product to be stored for a
longer period of time.
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FIGURE 1 | Economic, environmental and social aspects of sustainable biofuels.

TABLE 1 | Criteria and sustainability indicators for sustainable biofuel production (Silva Lora et al., 2011).

Criteria Sustainability indicators

(i) Should be carbon neutral in terms of GHG emissions. (i) Economic indicators (cost of production).

(ii) Should have no negative water footprint and land use change problems. (ii) Output/input ratio (net energy analysis).

(iii) Should not challenge food security. (iii) Substituted fossil fuel per hectare.

(iv) Should be economically affordable by the society. (iv) Avoided GHG emissions (CO2 savings).

(v) Should not disturb the biodiversity. (v) Environmental impacts evaluation using impact categories indicators.

(vi) Carbon emissions due to land use changes.

(vii) Renewability indicators (energy accounting).

Over the past few years, remarkable advancement has been
achieved in the microalgal biodiesel production systems, with
respect to technological and economic development. While
way back in 2010–2011, the microalgal biodiesel was produced
at more than $100/GGE (Gallons of Gasoline equivalent) in
a paddle- wheel driven microalgal pond cultivation system
(National Research Council [NRC], 2012), over the years,
through technological advancement, cost of algal biodiesel
production has been lowered to $7.50/GGE (National biodiesel
board [NBB], 2009) is further estimated to come down to
$3.00/GGE by 2030 (Office of Energy Efficiency and Renewable

Energy [EERE], 2017). This cost cut can be attributed to
modifications in cultivation, strain selection, harvesting and
extraction technologies and co-product development, all of
which determine the final cost of the product, i.e., biodiesel.
Various organizations and companies have proposed different
cost reduction strategies. Few examples include the use of jet
mixer technology for direct extraction of lipids from wet algal
biomass by researchers from University of Utah (Mohanty, 2019),
use of patented harvesting and algae oil extraction systems by
Missing Link Technology and Algae Venture Systems (Lane, 2014),
and use of patented quantum fracture technology for efficient
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and innovative single step oil extraction from microalgae by
Origin Oil Co., (Eckelberry and Eckelberry, 2008). Interestingly,
this invention by Origin Oil Co., claims to reduce microalgal
biodiesel cost to $2.00/GGE. In addition to inventions in the
production and conversion process, various companies like
Sapphire Energy, Muradel, Solazyme, Algae.Tec, Cellana and
Neste Oil, BioProcess Algae and Algenol are setting up large-
scale production units for attaining commercial feasibility of algal
oil (European Technology and Innovation Platform Bioenergy
[ETIP], 2014). Through co-ordinated research and development
activities, microalgal biodiesel production is gradually moving
from economic uncertainity to economic feasibility. Specifics of
few selected strategies adopted for reducing the cost of microalgal
biodiesel production have been listed in Table 2.

Although microalgal biodiesel production is a topic being
researched worldwide, reports on detailed cost analysis of the
final product (as an effect of the entire production system),
is limited, nevertheless production models with cost reduction
calculations anticipating a competitive market for microalgal
biodiesel, substitute the limitation (Richardson et al., 2010; Harun
et al., 2011). Microalgal biodiesel is gradually moving toward
being more cost effective but complete economic parity with
petroleum diesel is yet to be realized. With diesel currently
costing $3.08/gal (Diesel Prices, 2021) on an average throughout
the world, to make it comparable with algal diesel an equivalent
market price is inevitable. For this to be achieved, algal biomass
yields (given that all integrated systems based on algal biomass
processing are constrained by high cultivation variability) will
have to be increased approximately from 12 to >30 gdw/m2/day
on a sustained basis, the energy-return-on-investment (EROI)
for harvesting algae from ponds ideally would need to be >20,
i.e., no more than 5% of the energy content of the algae
should be spent during harvesting and the lipid extraction
and conversion efficiency to biodiesel should be improved

so as to ensure minimum expenses in the defined process
(Stephens et al., 2010; Olivieri et al., 2013; Barry et al., 2015;
Barsanti and Gualtieri, 2018). Additionally, further lessening of
microalgal biodiesel prices can be accomplished by focusing on
maximizing lipid content in high biomass yielding microalgal
strains and valorization of the algal biomass, as it results
in more substantial cost reduction (Bellou et al., 2014; Zhu,
2015). Photobioreactors are also known to be very effective
for producing high biomass and lipid productivities, but given
the construction and operation challenges such as overheating,
fouling, improper gas exchange etc., this option appears less
sustainable for commercial use. A study by Veeramuthu and
Ngamcharusrivichai (2020) demonstrated algal biodiesel cost to
be $20.53 and $9.84 per gallon using a PBR and open raceway
pond cultivation method, respectively. Reports in support of this
claim have also been published by various other researchers and
companies like Weissman et al. (1988), Craggs et al. (2011),
Efroymson et al. (2020), Ganesan et al. (2020), Jo et al. (2020)
including National renewable energy laboratory (Davis, 2017)
and the Solix (Kanellos, 2009). In Table 3 below, different
strategies being followed in the last 5 years over and above the
ones mentioned in Table 2 above, with an anticipation to reduce
the final selling price of microalgal biodiesel, are highlighted.

Reduction in algal biodiesel costs through coupling of
economic and environmental sustainability, is yet another
emerging potential strategy for the future. Use of fossil
fuel releases CO2 into the atmosphere which is sequestered
back by microalgae for growth and product development.
This technology called the BECCS has been rated as the
most technologically and economically potential solution for
mitigating the impact of GHG emissions, by the IPCC (National
biodiesel board [NBB], 2009). Additionally, tax credits and/or
carbon credit policies provide further cost reductions by
incentivising carbon capture for bioenergy production (Sayre,

TABLE 2 | Strategies adopted for reducing the cost of microalgal biodiesel production.

Sl No. Estimated cost of
microalgal biodiesel
($/gallons of gasoline
equivalent)

Strategy adopted References

(1)
$7.50

Use of a newly discovered microalgal strain, Chlorella sp. DOE1412, with a robust ability to
accumulate high quantity of lipid under variety of conditions when grown in a self-designed
open pond cultivation system, the Aquaculture Raceway Integrated Design (ARID) with an
integrated temperature control mechanism, and harvested through electrocoagulation (EC), a
low-energy harvesting method for subsequent oil extraction and upgradation to biodiesel
without using any solvents in a hydrothermal liquefaction chamber.

National Alliance for
Advanced Biofuels
and Bioproducts
[NAABB], 2014

(2) $2.68
$1.58
$3.67
$2.11

Simultaneous lipid extraction and transesterification in a mixer containing methanol and sodium
hydroxide through ultrasonication of the harvested microalgal biomass with an annual average
productivity of
30 g/m2/day using CO2 from flue gas
60 g/m2/day using CO2 from flue gas
30 g/m2/day using pure CO2

60 g/m2/day using pure CO2.

Nagarajan et al.,
2013

(3) $4.35 Use of a high lipid containing (41% dcw) microalgal strain with an annual average productivity of
30 g/m2/day processed through hydrothermal liquefaction technique and purified for biodiesel
production while simultaneously utilizing the spent biomass for production of other value-added
products such as bioethanol and methane. Re-circulation and re-use of water and solvents
through the biorefinery system has also been applied.

Davis et al., 2011
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TABLE 3 | Research efforts in the last 5 years with an anticipation to reduce the final selling price of microalgal biodiesel.

Sl. no. Targeted step Adopted strategy References

(1) Strain improvement Fluorescence-activated cell sorting to analyze single-cell fluorescence and sort cells with
high fucoxanthin and lipid productivities.

Gao et al., 2021

(2) Strain improvement Post-treatment processing using H2SO4 + Ca (OH)2 for enhanced ethanol production from
algae.

Seon et al., 2020
Südfeld et al., 2021

(3) Strain improvement Use of coral inspired 3D materials for higher biofuel production by increasing the photon
resident time for enhanced light absorption by algal cells.

Wangpraseurt et al., 2020

(4) Strain improvement Strain improvement through high-throughput screening platforms i.a. involving single-cell
methodologies such as fluorescence-activated cell sorting (FACS) for the identification and
isolation of better-performing strains by combining qualitative staining of lipid bodies using
the fluorophoric dye BODIPY with FACS methodology.

(5) Strain improvement Use of broad range and wide variety of carbon sources for enhancing growth and lipid
accumulation in algae.

Patnaik and Mallick, 2019

(6) Strain improvement Researchers at Tokyo Institute of Technology have identified an enzyme belonging to the
glycerol-3-phosphate acyltransferase (GPAT) family as a promising target for increasing
biofuel production from the red alga Cyanidioschyzon merolae.

Fukuda et al., 2018

(7) Strain improvement Researchers at Los Alamos National Laboratory, with colleagues at NREL and the University
of Georgia report that a freshwater production strain of microalgae, Auxenochlorella
protothecoides UTEX 25, is capable of directly degrading and utilizing non-food plant
substrates, such as switchgrass, for cell growth. In addition, the use of plant substrates
increases lipids production.

Vogler et al., 2018

(8) Strain improvement Rapid screening of high lipid accumulating microalgal strains through droplet microfluidics
based screening platform.

Kim et al., 2017

(9) Strain improvement Doubling of lipid content while sustaining growth using CRISPR-Cas 9 for modulating a
transcriptome regulator in Nannochloropsis gaditana.

Ajjawi et al., 2017

(10) Strain improvement Discovery of an algal photoenzyme that converts algal fatty acids to alkanes and alkenes
under low-light driven conditions.

Sorigué et al., 2017

(11) Microalgal
cultivation and
valorization

Use of iron oxide nanoparticles for improved growth and biogas production in algae. Rana et al., 2020

(12) Microalgal
cultivation

Use of tannery wastewater for growth and biofuel production from green microalgae
through bioremediation.

Nagi et al., 2020

(13) Microalgal
cultivation

Outdoor open pond batch production of green microalga Botryococcus braunii for high
hydrocarbon production using different salinity concentrations.

Ruangsomboon et al.,
2020

(14) Microalgal
cultivation

Use of iron and magnesium addition for improving population dynamics and high value
product formation in microalgae grown in anaerobic liquid digestate.

Ermis et al., 2020

(15) Microalgal
cultivation

A simplistic approach of algal biofuels production from wastewater using a Hybrid
Anaerobic Baffled Reactor and Photobioreactor (HABR-PBR) System.

Khalekuzzaman et al., 2019

(16) Microalgal
cultivation

Use of 40,000L closed raceway ponds for algal growth and lipid accumulation under
biphasic nitrogen starved conditions.

Bagchi et al., 2019

(17) Microalgal
cultivation

Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of
microalgae reactors. This technique enables homogeneous illumination of large reactor
volumes with high optical density eventually increasing the rate of reproduction by 93%.

Wondraczek et al., 2019

(18) Microalgal
cultivation

Multi-bandgap Solar Energy Conversion via Combination of Microalgal Photosynthesis and
Spectrally Selective Photovoltaic Cell for higher biomass production.

Cho et al., 2019

(19) Microalgal
cultivation and
product extraction

Discovery of a new mechanical algal milking technique for extracellular production of
polysaccharides and phycobilliproteins.

Uchida et al., 2020

(20) Product extraction Pulsed Electric Fields-Assisted Extraction of Valuable Compounds From Arthrospira
Platensis.

Carullo et al., 2020

(21) Product extraction Electroporation as a Solvent-Free Green Technique for Non-Destructive Extraction of
Proteins and Lipids From Chlorella vulgaris.

Eleršek et al., 2020

(22) Microalgal
harvesting

Effective harvesting of Nannochloropsis microalgae using mushroom chitosan Chua et al., 2020

(23) Microalgal
harvesting and
valorization

Induction of flocculation and photobiological hydrogen production under anaerobic
conditions using an engineered chemoenzymatic cascade system.

Chen et al., 2020

(24) Microalgal
cultivation and
harvesting

Use of a Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a
thermoreversible sol-gel transition to efficiently culture and harvest microalgae clusters
without affecting the productivity as compared to that in traditional culture in a well-mixed
suspension.

Estime et al., 2017

(Continued)
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TABLE 3 | Continued

Sl. no. Targeted step Adopted strategy References

(25) Microalgal
harvesting

Use of pine bark, a natural substrate for immobilization of microalgae grown in wastewater
for easy and cost-effective separation of algal cells.

Garbowski et al., 2020

(26) Microalgal
harvesting

Use of cellulose nanofibrils for cost-effective microalgal harvesting through encapsulation of
microalgal cells by nanofibrous structure formation.

Yu et al., 2016

(27) Microalgal
valorization

To develop a thin-layer artificial biofilm technology for sustainable and long-termethylene
photoproduction, where recombinant Synechocystis sp. PCC 6803 cells holding ethylene
forming enzyme (Efe) from Pseudomonas syringae are entrapped within the natural polymer
matrix, thus forming the thin-layer biocatalytic structure.

Vajravel et al., 2020

(28) Microalgal
valorization

Chlorella vulgaris extract as a serum replacement that enhances mammalian cell growth
and protein expression.

Ng et al., 2020

(29) Microalgal
valorization

Researchers were able to increase hydrogen production by combining unicellular green alga
called Chlamydomonas reinhardtii with Escherichia coli bacteria. The teamwork of the algae
and bacteria resulted in 60% more hydrogen production than they are able to produce if
algae and bacteria work separately.

Fakhimi et al., 2019

(30) Microalgal
valorization

Use of algal protein from the de-oiled biomass as a replacement of the commercially
available fish meal under an algal refinery approach.

Patnaik et al., 2019

(31) Microalgal
valorization

Microalgal Protein Extraction From Chlorella vulgaris FSP-E Using Triphasic Partitioning
Technique With Sonication.

Chia et al., 2019

(32) Microalgal
valorization

Mild Fractionation of Hydrophilic and Hydrophobic Components From Neochloris
oleoabundans Using Ionic Liquids.

Desai et al., 2019

(33) Microalgal
valorization

Synthesis of benzene, an elementary petrochemical, along with other hydrocarbons. Pingen et al., 2018

(34) Downstream
processing

A synthetic protocol to the fixation of carbon dioxide by converting it directly into aviation jet
fuel using novel, inexpensive iron-based catalysts.

Yao et al., 2020

(35) Downstream
processing

The use of jet mixer technology for direct extraction of lipids from wet algal biomass by
researchers from University of Utah.

Mohanty, 2019

(36) Downstream
processing

Low-temperature catalyst based Hydrothermal liquefaction of harmful Macroalgal blooms,
and aqueous phase nutrient recycling by microalgae.

Kumar et al., 2019

(37) Downstream
processing

Bleaching, deoxygenation and hydroisomerization of crude extracted algal lipids to
renewable diesel.

Kruger et al., 2017

(38) Downstream
processing

Establishment of axenic cultures of armored and unarmored marine dinoflagellate species
using density separation, antibacterial treatments and stepwise dilution selection.

Lee et al., 2021

(39) Technique and
technology
advancement

A simple and non-destructive method for chlorophyll quantification of Chlamydomonas
cultures using digital image analysis for easy and fast assessment of growth.

Wood et al., 2020

(40) Technique and
technology
advancement

Metabolomics as a tool for understanding the molecular basis for these metabolic and
physiological changes, and for early detection of stress in freshwater alga
Poterioochromonas malhamensis exposed to silver nanoparticles.

Liu et al., 2020

(41) Technique and
technology
advancement

Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for
genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii.

Kang et al., 2020

(42) Technique and
technology
advancement

Development of a species-specific transformation system using the novel endogenous
promoter calreticulin from oleaginous microalgae Ettlia sp.

Lee et al., 2020

2010). In the following section, we consider details of the
suggested strategy for achieving environmental sustainability
while taking care of the cost effectiveness that is consequent to
the entire process.

Environmental Sustainability
The impact that the microalgal biodiesel production process
has on the environment during its entire life cycle decides
its environmental sustainability. Starting from the choice of
the cultivation area to use of nutrients for growth and lipid
accumulation enhancement, to use of different energy intensive
harvesting techniques followed by extraction of lipids using
different extracting solvents and then conversion of the extracted

lipid to biodiesel, all contribute toward the environmental
sustainability of the product. This sustainability index can be
verified by the use of certain indicators such as GHG emissions,
energy security, water management, soil and resource depletion,
local pollution, etc. Tools such as Life Cycle Impact Assessment
(LCIA) are used for measuring these indicators. LCAs can
highlight areas of concern and focus the future research efforts on
aspects of the supply chain that carry the largest environmental
burden (US Environmental Protection Agency [EPA], 2010).

Global warming due to increasing concentrations of
greenhouse gases in the atmosphere is a daunting environmental
challenge in today’s world. Of the different greenhouse gases
present, CO2 is majorly responsible for this problem. CO2
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is naturally present in the atmosphere, but activities such as
burning of forests, mining and burning coal increase their
concentrations to dangerous levels in the atmosphere by
converting the carbon stored in the solid state to gaseous state
(Sayre, 2010). Microalgae are widely known for being potential
sequesters of large amounts of CO2 from the atmosphere
thus lowering GHG emissions relative to petroleum diesel.
Additionally, their ability to recycle the released CO2 from
the different stages of the microalgal biodiesel process within
their own system, categorizes them as an environmentally
sustainable resource. Many researchers have reported that algal
biodiesel has the ability to reduce the GHG emissions by half
(55,400 g of CO2 equivalent per million BTU) as compared
to what is emitted by low sulfur diesel fuel (101,000 g of
CO2 equivalent per million BTU) (Brune et al., 2009; Gude
et al., 2012). This is further confirmed by the United States
Environmental protection agency as per which algal/microalgal
biodiesel has the potential to meet the Renewable Fuel Standard
requirement 2007 by reducing 50% of GHG emissions as
compared to petroleum diesel (Sissine, 2007). With petroleum
diesel having GHG emissions about 90 g CO2 eq/MJ of fuel,
for warranting minimum negative impact on the environment,
several strategies have been developed and adopted worldwide in
order to reduce CO2 emissions, details of which have been listed
in Table 4.

Negative emissions signify an outlet of CO2 from the
atmosphere whereas reduced emissions signify a reduced inlet
of CO2 into the atmosphere. Both have their own respective
benefits, but with the OECD Environmental Outlook 2050
at the 2011 United Nations Climate Change Conference,
suggesting achieving CO2 concentration targets at lower than
450 ppm by the Bioenergy for Carbon Capture and Storage
Technology (BECCS), negative emissions should be critically
pursued (National biodiesel board [NBB], 2009).

Microalgae are environmentally sustainable resources
emitting green house gases during biodiesel production in
quantities lower than that emitted during petroleum diesel
production. This can be justified from the Table 4 above, which
shows GHG emissions from microalgal biodiesel production
systems lesser than 90 g CO2 eq/MJ of fuel, recorded for
petroleum diesel. But this may not always be true, as microalgal
biodiesel production systems in certain cases emit more than
2–10-fold higher greenhouse gases as compared to petroleum
diesel (Zaimes and Khanna, 2013). The reason for this variation
lies in differences in operational and input parameters of the
microalgal biodiesel production process and the interplay
between them and the use to which the produced biodiesel is
put to. Additionally, the emissions and NER value may also vary
from place to place depending on the government regulations
and policies and the co-products produced, as highlighted by a
research study on corn ethanol by Farrell et al. (2006). On the
mention of the operational and input parameters, it is important
to note that there are some influencing factors which decide the
GHG emission values of the production chain (Figure 2). The
factors primarily are cultivation > harvesting > drying > oil
extraction/conversion > transport of feedstock > final fuel
product, with a decreasing order of importance as regards to

their contribution to the final GHG emission figures. Although
the figures look promising, yet excessive reliance on few
assumptive data sets of selective parameters in some analyses,
make way and arouse the need for more elaborate research on
the details of the influencing parameters.

Today’s distressing circumstances require that the world emit
a total of no more than 1,200 gigatonnes of carbon by the
end of this century. That is about 30 years’ worth of carbon
emissions at existing levels. But these situations also anticipate
absorption of upto 1,000 gigatons of carbon through the above-
mentioned merger of bioenergy and carbon capture and storage
(CCS), a combination known by the abbreviation BECCS (Azadi
et al., 2014). This would then lead to an increase in the total
positive emissions (emissions that can be recirculated among
the biological system without causing any negative impact on
the atmosphere) from 1,200 to 2,200 gigatonnes. Other options
such as afforestation, storage of carbon in the soil, and direct
air capture of carbon also exist, but are dependent on certain
interlinked factors such as land use change and chopping down
of trees which transform them from carbon sequestering to
carbon releasing strategies. On the other hand, carbon stored in
the soil is constantly at the risk of being disturbed. Direct air
capture technologies like artificial trees and scrubbing towers are
remarkably gee-whiz and show great promise, but are years away
from commercialization, currently even more expensive than
already very expensive CCS, and we shouldn’t forget that they
have a voracious energy appetite themselves. Other possibilities
such as the geoengineering techniques of ocean fertilization or
enhanced weathering of natural or artificial minerals remain
unproven at scale and are already raising hackles amongst
some environmentalists. And these are not prominent in any of
the considered scenarios (US Environmental Protection Agency
[EPA], 2010). As a result, BECCS remains the top bet in the GHG
emissions sweepstakes.

Another key metric often considered in microalgal biodiesel
analysis is NEB which is defined as the difference between
the energy value of the output fuel and the total primary
energy consumed in producing the fuel (Zaimes and Khanna,
2013). As such a positive NEB is one important criterion for
an environmentally sustainable transportation fuel, because it
indicates that more energy is produced than is consumed via
the system. EROI and NER are two other energy metrics and
represent the ratio of the energy of the final fuel to the direct and
indirect primary energy required for its production (Stephenson
et al., 2010). Thus, if EROI and NER values are less than unity,
then the system has a negative NEB. A variation of EROI
known as FER or EROIfossil considers only the consumption
of primary fossil energy throughout the fuel supply chain
and thus measures how much fuel product is generated per
unit investment of primary fossil resources. As such EROIfossil
values provide a surrogate measure for the renewability of
the biofuel. Accordingly, EROIfossil values more than unity are
desirable, because more energy is produced via the biofuel
than the fossil energy consumed throughout the supply chain
(Vasudevan et al., 2012).

With an energy content of 5–8 kWh/kg (18,000–28,800 kJ/kg
dry cell weight), feasibility of microalgal biodiesel production
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TABLE 4 | GHG emissions by microalgal biodiesel production system and strategies adopted for their reduction.

Sl no. GHG emissions
(g CO2eq/MJ of
biodiesel)

Strategy adopted References

(1) −11.4 In this Well to Wheel (WTW), Scenedesmus dimorphous with an annual biomass productivity of
13 g/m2/day was cultivated in open raceway ponds fed with fertilizer grade N, P, K and industrial
flue gas as carbon source. The entire process chain moved from harvesting of the biomass using
bio-flocculation and dissolved air floatation followed by centrifugation to use of hydrothermal
liquefaction for further processing to bio-oil. The energy expenses and GHG emissions were
balanced by recycling of nutrients present in the aqueous phase from the HTL unit, bypassing the
need of drying and the co-product credits of the combustible gases emitted from the hydrothermal
system for improving the energetics of the biodiesel production process.

Bennion et al., 2015

(2) 71 In this Well to Wheel (WTW), green microalgae with an annual biomass productivity of 25 g/m2/day
and lipid content of 25% (dcw) was cultivated in open raceway ponds fed with recirculated growth
media from the liquid digestates and biogas as carbon source. The entire process chain moved
from harvesting of the biomass using bio-flocculation and dissolved air floatation followed by
centrifugation to lipid extraction from wet biomass using n-hexane and transesterification using
methanol. The energy expenses and GHG emissions were balanced by water and 66% nitrogen
and 90% phosphorous recycling and the co-product credits of biogas produced during anaerobic
digestion and processed through combined heat and power technique for use on-site during the
biodiesel production process.

Yuan et al., 2015

(3) 28.50 In this Well to Wheel (WTW) Life cycle analysis, an algal biomass productivity of 20 g/m2/day and
lipid content of 30% (dcw) was assumed in open raceway ponds fed with nutrients from a
wastewater source. The entire process chain moved from harvesting of the biomass through
bio-flocculation and gravity clarifiers to use of solar dryers for drying the harvested biomass for lipid
extraction by hexane and transesterification to biodiesel by using methanol. The energy expenses
and GHG emissions were balanced by 89% of nutrient and solvent recycling and the co-product
credits of glycerine produced during transesterification and biogas generated from anaerobic
digesters which were used in providing electricity through the entire production process.

Woertz et al., 2014

(4) 35.2 In this Well to Wake (WTW) Life cycle analysis, algae with an annual biomass productivity of
20 g/m2/day and a lipid content of 14% (dcw) was cultivated in open raceway ponds fed with
nutrients from a wastewater treatment plant (WWTP). The entire process chain moved from
harvesting of the biomass using settling tanks followed by centrifugation to processing in a
hydrothermal liquefaction unit for bio-oil production and transportation to a refinery for upgradation
of the extracted oil eventually transporting it to the airport for use as jet fuel. The energy expenses
and GHG emissions were balanced by nutrient recycling of the aqueous phase of the hydrothermal
liquefaction unit, but a major contribution to GHG emission neutralization was brought about by the
integration of the hydrothermal liquefaction unit to the algal cultivation and dewatering system in the
WWTP instead of integrating it in the refinery along with the upgradation unit thus bypassing the
extra energy lost in transporting the extracted oil to the refinery for upgradation.

Fortier et al., 2014

(5) 41 In this Well to Wheel (WTW), green microalgae with an annual biomass productivity of 22 g/m2/day
and lipid content of 30% (dcw) was cultivated in open raceway ponds fed with fertilizer grade N, P,
K and waste flue gas as carbon source. The entire process chain moved from harvesting of the
biomass using gravity clarifiers followed by centrifugation to lipid extraction from wet biomass using
n-hexane and transesterification using methanol. The energy expenses and GHG emissions were
balanced by the co-product credits of biogas and methane generated through anaerobic digestion
and hydrothermal gasification, respectively, eventually producing heat and electricity through
combined heat and power technique for use during the biodiesel production process.

Azadi et al., 2014

(6) 50 In this Well to Wheel (WTW), C. vulgaris with an annual biomass productivity of 23.5 g/m2/day and
lipid content of 25% (dcw) was cultivated in open raceway ponds fed with fertilizer grade N, P, K
and waste flue gas as carbon source. The entire process chain moved from harvesting of the
biomass using aluminum sulfate flocculation followed by centrifugation to use of waste heat dryer
for drying the wet biomass for lipid extraction using n-hexane and transesterification using
methanol. The energy expenses and GHG emissions were balanced by water and 75% nutrient
recycling and the co-product credits of glycerine produced during transesterification, and heat and
electricity produced from the residual de-oiled biomass processed through combined heat and
power technique for use during the biodiesel production process.

Zaimes and Khanna, 2013

(7) −46.92 In this Cradle to Grave (CTG) life cycle analysis, microalgae with an annual biomass productivity of
25 g/m2/day and lipid content of 30% (dcw) was cultivated in open raceway ponds fed with
nutrients from sea water and industrial flue gas as carbon source. The entire process chain moved
from harvesting of the biomass using chemical-hydraulic flocculation with aluminum sulfate and
filtration followed by drying within a thermal dryer for lipid extraction using hexane and
transesterification to biodiesel using methanol. The energy expenses and GHG emissions were
balanced by nutrient and water recycling after lipid extraction and transesterification steps

Pardo-Cárdenas et al., 2013

(Continued)
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TABLE 4 | Continued

Sl no. GHG emissions
(g CO2eq/MJ of
biodiesel)

Strategy adopted References

(8) −53 In this Well to Pond (WTP) life cycle analysis, microalgae with an annual biomass productivity of
25 g/m2/day and lipid content of 25% (dcw) was cultivated in open raceway ponds fed with fertilizer
grade N, P, K and waste flue gas as carbon source. The entire process chain moved from
harvesting of the biomass using settling and dissolved air floatation followed by centrifugation to
processing through hydrothermal liquefaction technique for bio-oil production. The energy expenses
and GHG emissions were balanced by nutrient recycling from the hydrothermal liquefaction
technique and by production of electricity by passing the waste gaseous elements from the
hydrothermal chamber to the combined heat and power unit.

Frank et al., 2013

FIGURE 2 | Factors influencing the GHG emissions from the microalgal biodiesel production system.

with respect to energy security, can be ascertained if the amount
of energy required to produce and process the microalgal
biodiesel is found to be lower than the energy contained per dry
weight of the alga (Yuan et al., 2015). In current day scenario,
petroleum diesel has an EROIfossil of 4.64 but the EROIfossil of
microalgal biodiesel as per published reports is less than unity
(Brentner et al., 2011). Various strategies are currently in progress
to raise the EROIfossil values with some achieving an EROIfossil
of 1.88 through use of energy efficient harvesting and drying
techniques and use of the produced electricity through combined
heat and pressure technique for powering the entire production
process (Chowdhury et al., 2012) and some others achieving an

EROIfossil of 2.01 through integration of the microalgal biodiesel
system with a wastewater treatment plant (Zaimes and Khanna,
2013). Some researchers are with the belief that microalgal
biodiesel can have an EROIfossil of 8 (Stephenson et al., 2010), but
with current research techniques, for improving the desirability
of the microalgal biodiesel, achieving minimum EROI values of 3
is suggested (Marzochella et al., 2010; Vasudevan et al., 2012).

EROIfossil and GHG emissions are indirectly proportional to
each other with an increase in the value of one parameter bringing
about a decrease in the other and vice versa. Hence strategies
to reduce the GHG emissions from the microalgal biodiesel
production process eventually raise the EROIfossil values, thus
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producing an environmentally sustainable biofuel. EROI is not
an absolute indicator of sustainability, but it does help to indicate
where a particular source fits in with regional, national and
global energy markets. In that context, a competitive EROI for
algae biodiesel provides support for a national energy policy that
replaces petroleum.

Social Sustainability
The ability of a product to be sustained for use by the
society and for the society, decides its social sustainability.
This social dimension of microalgal biodiesel sustainability is
decided by its ability to positively impact rural development,
poverty reduction and inclusive growth (Elbehri et al., 2013).
To judge the impact of the biodiesel production system on
the abovementioned indices, factors such as, land ownership
rights, local stewardship of common property resources and
labor rights are mostly looked into Mohr and Linda (2013).
Land being a limited resource, the decision/interest of people
holding rights over the land to earn value from it through
wealth generation or greening of the environment greatly
affects the social sustainability of the microalgal biodiesel.
Similarly, stewardship of local common property resources such
as community forests, common grounds, threshing grounds,
rivers and riverbeds by the co-owners/stewards of the property
is another influencing factor as their agreement to the proposal
of utilizing the common property resources for bioenergy
production at the cost of their dependence on these properties at
the time of need is highly essential. The ability of the microalgal
biodiesel to generate rural employment and welfare by increasing
inflow of capital, fertilizers, infrastructure and technologies
to the agricultural/farm sector thus creating new employment
opportunities, higher wages and increased self-sufficiency in
terms of access to electricity and pumped portable water without
causing any negative impact is another unavoidable factor to
be considered while deciding the social sustainability of the
microalgal biodiesel (Levidow, 2013).

In the market of bioenergy, microalgal biodiesel is like
a new born baby waiting to be nurtured and groomed. In
such a scenario implementation of social certification schemes,
rules, laws or acts for ensuring its social sustainability is
too early to be true. Under such circumstances, with the
Renewable Fuel Standard, 2007 in United States and Renewable
Fuel Quality Directive, 2008 in European Union, mandating
a substantial portion of renewable fuel in the transportation
sector by 2040, countries all over the world are gearing up with
microalgae as a source of biodiesel and encouraging its use by
their people through grants to companies equipped for their
production (GCC, 2016).

With United States leading the world in microalgal research,
majority of research efforts in the field are concentrated here
(Gude et al., 2012). Hence the search for the first steps in
ensuring social sustainability of microalgal biodiesel can be
traced in this nation. The Department of Energy, United States,
as part of the nation’s energy strategy had announced ∼$25
million funding to reduce the price of algal biodiesel below
$5/GGE by 2019. This funding is believed to support creation
of green jobs, innovations, improvement in environment and

national energy security. The funding has been partitioned
to two phases with the first phase concentrating on valuable
co-products development from microalgae besides biodiesel
production and the second phase concentrating on carbon
capture technologies for improved yields of microalgal biomass
(Casey, 2014). Microalgal biodiesel companies with an intention
to form strategic partnerships to attract private investments are
leveraging co-operative agreements of the Energy Department.
For, e.g., Sapphire Energy, an algae based green crude producer
and awardee of the DOE funding has signed two commercial
contract agreements with Phillips 66 and Tesoro (one being an
integrated energy manufacturing and logistics company and the
other being an independent refiner and marketer of petroleum
products) to upgrade its biodiesel to on-spec diesel which
can be used in existing diesel fuel tanks (Liu et al., 2013).
Similarly, contract agreements between United States DOE and
Hawaii Bioenergy, New Mexico State University and California
Polytechnic State University to demonstrate algal biodiesel yields
greater than 2,500 gallons per acre with a funding of $ 16.5
million have also been entered into (Office of Energy Efficiency
and Renewable Energy [EERE], 2014). In addition to these
the United States Government has effectively implemented the
Clean Power Plan of the Environmental Protection agency, and
has been hailed successful by the Algae Biomass Organization
for maximum carbon capture by microalgae, setting federal
guidelines for states to reduce carbon emissions by 32% before
2,030 to regulate the concentration of CO2, an environmental
pollutant, in the atmosphere (Kommers, 2013). Such strategic
actions have also been taken by companies in Canada and the
European Union and various other parts of the world European
biofuels technology platform (EBTP, 2016; NRCC, 2013).

Employment generation by microalgal biodiesel production is
a statistic yet to be derived but with the emergence of numerous
companies interested in working for biodiesel production from
microalgae, employment of laborers in large numbers is expected.
Statistics of job creation from biodiesel production in 2011 (first
and second-generation biodiesel) shows a support of 39,027
jobs and more than $ 2.1 billion in household income in
the United States (national biodiesel board) (National biodiesel
board [NBB], 2009). These jobs created by using economic and
environmentally sustainable means (biodiesel), are categorized
as ‘Green Jobs’ and are more clearly defined by the UNEP as
a job in any field of work be it agriculture, manufacturing,
R&D etc., that contributes substantially to the preservation and
restoration of environmental quality. It is a joint initiative by the
UNEP, the ILO, and the ITUC in the year 2007 (United Nations
Environmental Programme [UNEP], 2008).

With a rush for jobs by the skilled and educated masses,
unemployment among the unskilled rises to alarming levels.
In order to balance this difference, programs like Pathways
out of Poverty (POP), a national workforce training program
by the United States government’s ARRA of 2009 trains
individuals living below or near poverty level with skills needed
to enter the green job market, focusing primarily on the
energy efficiency and renewable energy industries. The training
programs focus on teaching basic literacy and job readiness
skills in addition to providing supportive assistance with
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childcare and transportation to overcome barriers to employment
(Universidad, 2009).

CHALLENGES AND AVENUES FOR
FUTURE RESEARCH

Microalgal biodiesel production has been initiated on a pilot
scale at various places, but a discussion on their ability to
profoundly displace petroleum diesel, has been mostly ignored.
In today’s market condition, microalgal biodiesel is more
expensive than petroleum diesel as the improved economics
of production are inadequate for environmentally sustainable
production let aside the oblivion of social sustainability.
A retrospection of the different research studies on microalgal
biodiesel production system highlights few major challenges in
the production of biodiesel from microalgae eventually hindering
its commercialization. A few essentials are explicitly addressed.

1. The different stages of microalgal biodiesel production
continue to be highly energy intensive impeding
attainment of economic and environmental sustainability.

2. A low-cost arrangement for water, nutrients and CO2
with minimum negative impact on the environment and
microalgal culture quality still appear to be challenging.

3. Maintaining a monoculture inside the raceway ponds
continues to be difficult to achieve.

4. Unsuitability of non-native algae to a new ecosystem
creates risks of microalgal spills.

5. Scaling up of microalgal culture is a big problem with high
degrees of uncertainity about the replication of functional
characteristics in the scaled up cultivation system.

6. Huge variation in GHG emissions and EROI data from
different research studies question the efficacy of the
strategies being adopted.

7. Lack of faster and efficient tools for screening of oleaginous
microalgal strains slows down progress in the field.

8. Lack of complete biochemical and molecular profiling
of oleaginous microalgae restricts informations
and innovations.

9. Lack of detailing of the cultivation and operational
parameters used in the microalgal biodiesel production
system, hinders complete sustainable development of the
production system.

10. Routes for recuperating energy from the microalgal
biomass left after oil extraction are required for attaining
a net positive energy balance during the production of
microalgal biodiesel.

11. Lack of sufficient genetic and metabolic engineering in the
field of microalgal biodiesel confines exploration of genes
that control the production of lipid in microalgae.

12. Wasted energy from captured photons during
photosynthesis is a major challenge in mass
algal cultivation.

13. Uncertainities about policy support and competition from
other fuels further adds to the plight.

With a focus and determination to defy the pessimistic view of
a group of research scientists who claim that microalgal biodiesel
can never outcompete petroleum diesel, research organizations,
institutions and individuals are working with hastened speed to
address the challenges mentioned above. Although fortunately
there has been some success in achieving some near-term goals as
has been mentioned in the previous sections, there still remains
enough work to be done in future, details of which have been
mentioned below.

1. With microalgal cultivation requiring huge inputs of
nitrogen and phosphorous, recycling of nutrients with
special emphasis on the quality and quantity of nutrients
being recycled can be focused on.

2. With reports of 100% nutrient recycling raising the cost of
microalgal biodiesel by $2/Gal as compared to 0% recycle
(Davis et al., 2017), alternative wastewater resources can be
tracked and their complete profiling including nutrient and
bacterial count can be noted down before being used for
cultivation so as to include the pre-treatment costs in the
final economics of the produced biodiesel.

3. Co-products reduce the economic and environmental
burdens of microalgal biodiesel but life cycle impact
assessment studies to understand the type of co-products
which when produced provide maximum benefit in
attaining sustainability, can be done.

4. Use of paddle-wheels in raceway ponds is where
maximum allocation of capital is done. In order to
reduce the cost burdens (National biodiesel board
[NBB], 2009), alternative, less energy intensive
technologies for culture mixing can be explored,
notwithstanding the water pumping step which also
exerts a substantial energy burden.

5. Combined heat and power treatment of the gaseous
substances released from the hydrothermal system is used
to generate electricity to power the entire cultivation
system, but quantification and optimization of the
process can be done to get the exact figures for future
reference and research.

6. Several resource and environmental challenges exist for
scaling up of microalgal culture. To overcome this,
complete detailing about the microalgal strain and the
cultivation system can be done, as knowledge about the
microalgal biology and biochemistry helps us understand
the possible response of the microalga to a designed
cultivation system with a temperature control mechanism
in it as microalgae are extremely susceptible to temperature
variations in open cultivation systems.

7. With monoalgal culture being a difficult target to achieve
in open raceway pond systems, cultivation of algal
consortium can be practiced with an effort to maintain a
functional specificity of accumulating lipids rather than a
species specificity.

8. With chances of microalgal spills due to cultivation of non-
native microalgae in new ecosystems (Gressel et al., 2014),
mutagenesis and transgenics can be explored
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to delete genes that are unnecessary in culture but
obligatory in nature.

9. With different harvesting techniques being experimented
with for finding out a faster and efficient technique
with minimum energy expenses, bioflocculation and
autoflocculation have been found to be most attractive
options (Vandamme et al., 2013). So research on the
chemicals inside the microalgae leading to the respective
phenomenon can be carried out to improvise the
process and eliminate any negativity attached to the
harvesting technologies.

10. Outside blown in dust, being a major impediment
to harvesting costs and a reason for light shading
during microalgal cultivation, can be made to settle
at the bottom of the pond through some innovative
flocculating mechanisms so as to improve productivity in
the cultivation systems.

11. Photosynthesis being the starting point for energy capture
and dissipation, the complex interplay between spectral
range, light capture efficiency and CO2 fixation can be
considered as a crucial area of research.

12. Additionally, development of models of regulatory
network in microalgae to assist in better gene and
metabolic regulation for optimization of the storage of
chemical energy in a particular form, for understanding
the signaling mechanism in algal cells in more complex
algal populations and for development of predator and
pathogen resistance, can allow better biological control in
large scale systems.

13. Microalgal metabolism and growth rate being inversely
proportional to their cell diameters, the surface-to-volume
ratio of the microalgae can be considered to be an
important parameter of research while searching for high
biomass yielding microalgal strains.

The scope of future research in the field of microalgal biodiesel
production, does not limit itself to the few points mentioned
here, but goes deep into an elaboration of the points highlighted.
With some research projects in progress and few more planned
for the future, an analysis of the entire scenario suggests that,
today at this moment, the fundamentals are the problem. Lack of
fundamental knowledge on the factors governing the variations
in the entire algal biodiesel production process result in vague
and inconclusive impact assessment reports.

The question of whether microalgae will be a significant
contributor to biodiesel production before 2030, generally
depends upon the pace of innovations. Few people with a
pessimistic view, are with the belief that with the current pace
of microalgal biodiesel research scaling up to large quantities by
2030 will be a difficult target to achieve. However, more worrying
is the fact that the pace of innovations might be slow enough to
making it an uneconomic strategy to invest in at the commercial
scale as compared to other opportunities.

If companies fail to innovate, they die. But if they fail
to rapidly develop cash-flowing solutions, they cannot attract
capital, and they die that way too. Now, cooperative research
projects, with companies collaborating with institutions to
develop technologies, are an old idea. But planning a roadmap of
innovations by using public funds for research and development
leading to company formation is a new idea that can be
proposed and pursued. The near-term stance for pervasive
use of microalgal biodiesel appears dreary, but biodiesel for
vocation solicitations such as in aviation may be possible in
the medium term.

CONCLUSION

It’s honestly extremely turbulent at this moment with a large
number of innovations going on at too many fronts, just to make
stable forecasts about when microalgal biodiesel will become an
affordable reality. It requires scientists to take too many high-
risk decisions for a faster pace of innovations. However, it is
very clear that counting microalgal biodiesel out, any time before
2030, is a complete no–no for the researchers. What is important
to remember here is that, microalgal biodiesel is based on a
system of systems, not a single technology. Hence, with patience
and perseverance, that which looks daunting today will be a
successfully achieved target, couple of years after.
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The two major bottlenecks faced during microalgal biofuel production are, (a) higher
medium cost for algal cultivation, and (b) cost-intensive and time consuming oil extraction
techniques. In an effort to address these issues in the large scale set-ups, this
comprehensive review article has been systematically designed and drafted to critically
analyze the recent scientific reports that demonstrate the feasibility of microalgae
cultivation using wastewaters in outdoor raceway ponds in the first part of the
manuscript. The second part describes the possibility of bio-crude oil production
directly from wet algal biomass, bypassing the energy intensive and time consuming
processes like dewatering, drying and solvents utilization for biodiesel production. It is
already known that microalgal drying can alone account for ∼30% of the total production
costs of algal biomass to biodiesel. Therefore, this article focuses on bio-crude oil
production using the hydrothermal liquefaction (HTL) process that converts the wet
microalgal biomass directly to bio-crude in a rapid time period. The main product of
the process, i.e., bio-crude oil comprises of C16-C20 hydrocarbons with a reported yield
of 50–65 (wt%). Besides elucidating the unique advantages of the HTL technique for the
large scale biomass processing, this review article also highlights the major challenges of
HTL process such as update, and purification of HTL derived bio-crude oil with special
emphasis on deoxygenation, and denitrogenation problems. This state of art review article
is a pragmatic analysis of several published reports related to algal crude-oil production
using HTL technique and a guide towards a new approach through collaboration of
industrial wastewater bioremediation with rapid one-step bio-crude oil production from
chlorophycean microalgae.
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INTRODUCTION

Renewable energy is typically defined as the energy derived from
natural resources and is naturally replenished continuously.
Renewable energy resources include solar, wind, rain, tidal
waves, geothermal heat, and bioenergy. Renewable energy
resources are found over a wide range of geographical regions
throughout the world as compared to the fossil fuel resources that
are available only in very few countries. A report of Renewable
Energy Policy Network for the 21st century (REN Report, 2014;
REN Report, 2015), the global investments in renewable
technology sectors have been calculated to be US$214 billion.
The countries like United States, China, Norway, and Denmark
have invested a lot in solar, hydro, wind, and biofuels production
sectors (REN Report, 2014; Mathiesen et al., 2015). It is therefore
essential to discuss the importance of bioenergy, a kind of
renewable energy, derived from various biological sources to
generate heat or to produce the liquid transportation fuels
often coined as biofuels. As per an analysis of the scenario in
the recent years, biofuels are among the most widely used
renewable energies that provide approximately 9–10% of the
global primary energy supply (IEA Report, 2013). NS news
agency (NS Energy Report, 2019) has reported that 2,616
thousand bbl day−1 of biofuels were produced in the world
during 2019. The United States followed by Brazil have
conquered the biofuels market with a collective share of
approximately 87% of the world’s production. The
United States is the primary biofuel producer in the world
with a total production of 1,190 thousand bbl day−1. The
country has harnessed ∼46% of the world’s biofuel production
in the year of 2018. It is also to be mentioned that United States is
the world’s top biodiesel producer with a total share of 19%,
equivalent to 136.2 thousand bbl day−1 in 2018 (https://www.
nsenergybusiness.com). These countries and few more, have
diverted their attention towards biofuel production from green
chlorophycean “microalgae” (Galadimaa andMuraza, 2018). The
use of microalgae for biofuel production has numerous
advantages over the other biodiesel production sources, and
hence, these microalgae are often coined as the “Green gold”
for biofuel production (Bagchi et al., 2018).

The major advantages of using microalgae for biofuel
production are enumerated below:

Biofuel derived from the grains and oil seeds have a large land
and carbon imprint, instigating the food vs. fuel argument
(Mandal and Mallick, 2009). Microalgal biomass with a much
faster growth rate has a usual capability to bio-mitigate CO2 while
trapping sunlight with an efficiency of 10–50 times higher than
the common terrestrial plants (Li et al., 2008), Microalgae are
capable of producing higher amounts of oil (58,700–136,900 L
ha−1 year−1) per unit area of land as compared to other oil-
producing crops (Chisti, 2007). Comprehending such high oil
yielding potentials of microalgae with effective CO2 bio-fixation
up to 12–15% in air mixture, the locally isolated green microalga
Scenedesmus obliquus was shown to be a potent alternative as a
renewable source for biomass production with a maximum
biomass yield of 7.01 g L−1 under mixotrophic cultivations in
photobioreactors under controlled culture environment (Bagchi

and Mallick, 2016). As microalgae are aquatic, the microalgae can
be cultivated in freshwater, sea-water, brackish-water, or even
various wastewaters (de Godos et al., 2009). Microalgae are used
for the algal biorefinery studies by sequentially extracting many
important compounds (Patnaik and Mallick, 2015; Patnaik et al.,
2019). After the extraction of bio-oil from microalgae, the algal
biochar can be used as an enhancer of soil fertility along with
preventing soil degradation through efficient carbon
sequesteration in the soil.

However, despite these advantages use of microalgae for biofuel
production is yet to be cost-competitive with fossil-based fuel due
to the upstream and downstream challenges such as high cost of
nutrients, energy-intensive harvesting, drying, lipid extraction, and
transesterification techniques. One of the methods to counter these
problems is large scale cultivation for enhanced biomass
production (Patnaik and Mallick, 2015; Severo et al., 2019). The
large-scale mass cultivations of microalgae in raceway ponds are
well established by several researchers. The large-scale practice in
raceways had started in the early years of 1950s by cultivating the
greenmicroalgaChlorella (Brennan andOwende, 2010) and was in
full operational phase in the late 1960 using the “high rate algal
ponds (HRAP)” with Oswald’s large-raceway-pond designs
(Oswald and Golueke, 1960). Microalgae mass cultivation in
raceway ponds has now been considered as the most promising
means for large scale biomass production in terms of less capital
investment and low running cost compared to the engineered
photobioreactor (PBR) systems. Basically, photobioreactors are
useful to maintain the monoalgal culture but the overall
operational cost is extremely high as compared to the open
large-scale raceway ponds (Bagchi and Mallick, 2016; Bagchi
et al., 2019). One of our recent studies has already shown that
an annual biomass productivity upto a high value of 13.12 tons
ha−1 year−1 can be achieved if cultivated for ten cultivation cycles
per annum. The study was conducted in four numbers of 40,000 L
capacity raceway ponds by Bagchi et al. (2019). In another study by
us at the same geographical location, it was observed that
Scenedesmus accuminatus organism produced a biofuel yield of
2.14 tons ha−1 year−1 in open raceway pond batch cultivation
(Koley et al., 2019). However, contrary to this Zhang et al. (2018)
reported a comparatively lower biofuel yield of 0.79 tons ha−1

year−1 algal biofilm raceway ponds.
Nowadays, waste disposal is a worldwide problem. In the

current scenario, waste discharges from various industries and
city sewages are the primary sources of water pollution.
Conventional wastewater treatment systems do not seem to be
the definitive solution to pollution and eutrophication problems.
Secondary sewage treatment plants are specifically designed to
control the number of organic compounds in wastewaters.
However, pollutants, mainly nitrogen, phosphorus, sulfur are
only slightly affected by this type of treatment. Wastewater
treatment by microalgae using the wastewater or waste
disposal as the growth medium for large-scale algal
cultivations is possibly the best way to solve these tailbacks
effectively (Mallick et al., 2016).

Another serious challenge for the upscaling of biodiesel
production is the exploitation of various low-energy intensive
harvesting and drying techniques and the development of cost-

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 6511382

Bagchi et al. Bio-oil From Microalgae Using Wastewater

170

https://www.nsenergybusiness.com
https://www.nsenergybusiness.com
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


effective lipid extraction methods. Removal of water from the
wet algal biomass is necessary for prolonged storage of the
feedstock and carry out further downstream processes like
lipid extraction followed by biodiesel production. Generally,
wet microalgae contain ∼90% moisture. The drying
technologies are typically utilizing high extensive heat energy,
which puts a significant obstacle to the microalgal biodiesel
market assessment on a profitable basis (Lardon et al., 2009;
Patil et al., 2011; Bagchi et al., 2015). It is also a well-known fact
that the key constraint for downstream process of microalgal
biodiesel production is the enormous expenditures associated
with the extraction of lipids followed by the transesterification
process. There are a lot of researches being carried out for
developing the lipid extraction processes from microalgae. The
Folch method (Folch et al., 1957) and the Bligh and Dyer (Bligh
and Dyer, 1959) technique are the most acclaimed and commonly
practiced total lipid extraction protocols for microalgal biodiesel
production also adopted for large-scale extraction processes
(Kumar et al., 2015). These techniques are performed by using
a considerable volume of solvents as chloroform: methanol: 2:1.
The modified method of the above for the extraction of all lipids
classes was suggested by Matyash et al. (2008) in which Methyl-
tert-butyl ether (MTBE) was utilized as a solvent. The method
proved to be successful in the extraction of almost all lipids classes
to portray entirely accurate lipidomic profiles.

From the above discussions, it is now well understood that
despite numerous independent research works on microalgal
cultivation, wastewater remediation and HTL, a workable
strategy combining all the three factors for reducing the
economic gap between fossil-based and biomass-based fuels is
not available to the extent of our knowledge. Therefore, we in this
review report intend to categorically discuss the important points
reported in various research works related to algal cultivation
using wastewaters and propose a strategy for “waste to wealth”
generation combining microalgal growth and lipid accumulation
with wastewater bioremediation followed by HTL technique for
deriving bio-crude oil directly from wet algal biomass, thereby
recommending a synergistic approach for sustainable biofuel
production.

WASTEWATER UTILIZATION FOR
MICROALGAL CULTIVATION

Laboratory Based Studies
It is prominent that microalgae can bioremediate wastewater
by the removals of ammonium, nitrate, nitrite, and phosphate
from a variety of wastewater sources (Mallick, 2002). Various
Researchers reported that the microalgae could grow in
different kinds of wastewaters, and the wastewater
resources are proved to be the best potential source of
cost-effective biofuel production (Woertz et al., 2009).
However, the wastewater utilization to enhance algal
growth, thereby low-cost lipid production, and the
exploration of microalgae’s pollutant removal efficiency is
still a minimal approach in terms of outdoor large-scale algal
culture exploitations.

The chlorophycean microalga Scenedesmus obliquus has
shown an elevated biomass and lipid yield by utilizing the
mixture of poultry litter and municipal secondary settling tank
discharges in the amount of 15 g L−1 (Mandal and Mallick, 2011).
The swine manure wastewater was successfully utilized for the
cultivation of 97 microalgae obtained from algae-bank and 50
other algal strains isolated from the local waterbodies in
Minnesota, United States of America. The maximum biomass
yield was achieved up to 2.03 g L−1 for the locally isolated
microalgal strain UMN 271 (Zhou et al., 2012). One report
observed that the mixed microalgal consortium was cultivated
in two phases comprising initial growth phase (biomass
enhancement; 8 days) under mixotrophic mode using
domestic sewage wastewater followed by temperature stressed
starvation phase. The biomass yield was recorded high enough in
this production process (Venkata Subhash et al., 2014). Another
report also demonstrated that the microalga Chlorococcum sp.
was grown in sea-water based saline medium supplemented with
waste glycerol available from the biodiesel industries with a
maximum biomass yield was 0.85 g L−1 (Beevi and
Sukumaran, 2015) (Table 1). In continuation, the biomass
yield were found significantly higher as 6.0 g L−1, for the
mixed algal consortium cultivated with the dairy manure as a
rich nutrient source (Table 1) (Chowdhury and Freire, 2015).
The green microalga Chlorella vulgaris was grown under
ammonia-rich wastewater (Markou, 2015). The utilization of
wastewaters was also quite useful for algae cultivation as per
the research work carried out in our lab. The microalga
Chlamydomonas debaryana IITRIND3 was successfully
cultivated in different wastewaters from domestic, sewage,
paper mills, and dairy wastewaters, respectively. The
maximum biomass yield was depicted as 3.66 g L−1 in dairy
wastewater whereas 3.56 g L−1 in domestic wastewater,
respectively (Arora et al., 2016). Biomass yield found in this
process by utilizing the wastewaters was quite productive, and the
yield values are significantly higher than many other reports
published till date. In another study done in this laboratory, the
crude glycerol (CG) was used as low cost by-product obtained
from the biodiesel production process for the cultivation of the
microalga Chlorella minutissima (MCC27), with the maximum
biomass yield 3.13 g L−1, respectively (Table 1) (Katiyar et al.,
2018). It was also demonstrated that the microalga Chlorella sp.
was successfully cultivated in the aerated seafood processing
wastewater for higher biomass accumulation, lipid production
as well as the major nutrients’ removal from the wastewater. The
study also has shown that the total nitrogen (TN) and total
phosphorous (TN) contents in the wastewater were constantly
decreased during the end of the cultivation period of the
microalgae. The total nitrogen concentration was reduced to a
deficient level of 4.11 mg L−1, which was only 3.4% of the initial
concentration. Further calculations have also indicated that ∼93
and ∼50% of the eliminated nitrogen and phosphorous were
assimilated by the alga during the end of the course of the
investigation, showing that the tiny organisms “microalgae”
are effectually the potential sources to utilize for removing the
nitrogen and phosphorous from the wastewater bodies (Gao et al.,
2018) (Table 1). Elystia et al. (2020) has reported that the green
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microalga Chlorella pyrenoidosa was successfully cultivated using
palm oil mill effluent (POME) wastewater as a growth medium
and the maximum specific growth rate was 0.306 days−1 with the
highest number of cells was 3.530 × 107 cells ml−1. However, in
this experiment, the researchers have not specified the exact
biomass yield or biomass productivity. The fresh water
chlorophycean microalga Scenedesmus pecsensis was proved to
be a potential agent of wastewater bioremediation by 68.2%
phosphate and 49.3% nitrogen removal. The alga was
cultivated using rice mill effluent wastewater as a low-cost
medium. The biomass yield was also found to be quite higher
as 5.3 g L−1 (Keerthana et al., 2020).

Utilization of Wastewaters for Large-Scale
Microalgal Cultivation Systems
Basic Concept of Raceway Ponds
Scientists have urged on the essentiality of large-scale microalgae
cultivation for commercial level biofuel production (Moazami
et al., 2011; Moazami et al., 2012). There are two main types for
large-scale microalgae cultivation, closed systems
(photobioreactors) and open ones. A possible low-cost culture
system strategy for bio-oil production on a commercial scale is
the use of raceways ponds or circular tanks (Moheimani and
Borowitzka, 2007; Ashokkumar and Rengasamy, 2012).
Compared to the photobioreactors, raceway ponds are
generally preferable for large-scale algal biomass production
due to the significantly less capital investment and lower
maintenance cost, utilization of wasteland or barren lands, and
easy operation techniques (Chisti, 2008). It is also an essential
factor that the microalgal cultivation inside the raceway ponds
requires the optimum stirring for continuous or semi-continuous
mixing to recirculate the microalgal culture (Chisti, 2016; Koley
et al., 2019). However, there are many limitations of raceway
pond culture of microalgae. Open raceways are more prone to
contamination by other organisms such as bacteria, fungi, other
microalgal starins, diatoms. Achieving elevated productivity and
maintenance of mono-algal strain are the real shortcomings of

cultivation in open raceway ponds (Bagchi et al., 2018).
Therefore, it is very necessary to grow the desired algal starin
in the raceways covered with polyhose made with thick
transparant polythenes. This is also highly essential to protect
the algae from the schorching sunrays particularly in the tropical
regions where the temperature are above 45°C during the summer
season. Several other essential parameters like pH, DO, light
intensity, temperature, aerator speedflow must be monitor time
to time for the optimum productivity in large-scale raceway
ponds (Bagchi et al., 2019; Koley et al., 2019).

Summarization of Study Reports of Microalgal
Cultivation With Wastewaters
The major disadvantages of using the conventional facultative
algal ponds are the maintenance of monocultures, the
requirement of various chemical flocculation techniques that
are generally very costly processes for microalgal harvesting,
and may not deliver regular and effective nutrients’ removal
(Abdel-Raouf et al., 2012). In contrary to this, the use of
shallow, paddle-wheel driven and high rated algal ponds can
generate much more higher amount of algal biomass up to
30–40 tons ha−1 year−1 with a provision to explore the
bioflocculation or self-flocculation techniques that may afford
the cost-effective microalgal harvesting (Slade and Bauen, 2013).
However, some little works are carried out on the utilization of
various domestic, municipal, or industrial wastewaters for the
large- or pilot-scale exploitations of microalgae cultivations in
raceway ponds. Therefore, it is imperative to recapitulate those
findings and discuss them in a precise manner in this review
article. Park and Craggs, in the year 2010, had cultivated the
microalga Pediastrum sp. in a 31.8 m2, 8,000 L volume pilot-scale
raceway pond with domestic wastewater treatment. The raceway
pond was paddle-wheel operated with 1 m wide, galvanized steel
paddle-wheel circulated inside the raceway pond water to provide
the surface velocity of 0.15 m/s. In this study, the areal biomass
productivity was recorded 25 g m−2 day−1 (Table 2). Another
study was conducted with a consortium prepared with 15 native
microalgal strains, successfully cultivated in a 3,800 L capacity

TABLE 1 | Tabulations of various reports on elevated biomass yield by using cost-effective cultivations as the utilization of waste disposal and wastewaters.

Name
of the microalga

Operational description Maximum biomass yield
(g L−1)

References

Scenedesmus obliquus Poultry litter + municipal secondary settling tank wastewater discharges 2.0 Mandal and Mallick
(2011)

Locally isolated microalga Digested swine manure wastewater 2.03 Zhou et al. (2012)
Mixed microalgae culture Mixotrophic mode using sewage wastewater followed by temperature

stressed starvation phase
2.49 Venkata Subhash et al.

(2014)
Chlorococcum sp. RAP13 Sea water-based medium, supplemented with biodiesel industry waste

glycerol
0.85 Beevi and Sukumaran

(2015)
Mixture of algae Dairy manure as a nutrient source 6.0 Chowdhury and Freire

(2015)
C. vulgaris Ammonia-rich wastewater by using poultry litter 1.5 Markou (2015)
Chlamydomonas
debaryana IITRIND3

Algal cultivation in different wastewaters as domestic, sewage, paper mills,
and dairy wastewaters

3.66 Arora et al. (2016)

Chlorella minutissima Crude glycerol (CG) used as low cost by-product 3.13 Katiyar et al. (2018)
Chlorella sp. Seafood processing wastewater 1.55 Gao et al. (2018)
Scenedesmus pecsensis Rice mill effluent wastewater 5.29 Keerthana et al. (2020)
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outdoor raceway pond. This was done by utilizing the industrial
wastewater containing 85–90% carpet industry effluents with
10–15% municipal sewage wastewater. The culture was
supplemented with 6% CO2 sparging, and the overall annual
biomass productivity was calculated as 9.2–17.8 tons ha−1 year−1

(Chinnasamy et al., 2010). Continuation to this, the 8,000 L
capacity raceway ponds were used for the cultivation of the
mixed microalgal consortium as Scenedesmus, Chlorella,
Pediastrum, Nitzschia, Cosmarium, and other filamentous
microalgae. The ponds were fabricated in the wastewater
treatment plants’ location, and the effluents of the plants as
wastewaters were utilized followed; the average areal biomass
was found to be 13.5 g m−2 day−1 (Lee et al., 2014). It is here worth
mentioning that apart from the biomass and lipid productivities
reported in this study, the other important part can be
incorporated to note that the microalgal biomass harvesting
process were made much easier and cheaper in those raceways
with the use of some mesh like substrates attached with the
microalgae, which were simply removed from the microalgal
cultures and the treated wastewaters can be discharged more
easily. The green microalga Chlorella vulgaris was also grown in
the huge-sized, actual large-scale raceway ponds with a full
capacity of 14.62 billion L with the supply of various
wastewaters available from different sources. The culture depth
was set as 30 cm for all studies (Table 2). In a contrary to these
study reports published, Hena et al. (2015) showed that the
annual biomass and lipid productivities could be achieved up
to >150 and >25 tons ha−1 year−1, respectively for the microalgal
consortium, isolated from wastewaters and also grown in

wastewaters, collected from dairy farms, under the semi-large
scale raceway pond cultivation with the working volume of 600 L
of one pond (Table 2). The supplementation of 10% CO2 was
provided for the elevated growth rate of the microalgae. The
raceway pond’s dimension was set as 2.5 × 0.7 × 0.7 m, and the
mixing speed of the paddle-wheel was fixed at 20 rpm throughout
the experimentations. It is indeed highly curious to critically
observe this research work’s results as it demonstrated an
exceedingly high annual biomass and lipid productivities
claimed that are incomparable to many studies reports
published till date for microalgal biomass and lipid production
under large- or semi-large-scale raceway pond cultivations.

Nonetheless to the previous, there are some other reports
which have signified the feasibility of utilizing the wastewaters for
microalgal cultivation and simultaneous bioremediation of the
wastewaters by the algal bodies. In Algeria, the green microalga
Chlorella pyrenoidosa was successfully cultivated in the raceway
ponds constructed in the desert area at the domestic wastewater
treatment plant site. The length, breadth, and depth of the
raceway were 1.5, 0.6, and 0.4 m, respectively, with the culture
working volume of 360 L. The cultures were circulated inside the
raceway pond using the paddle-wheel powered by a 70W electric
gear motor. In this experiment, the maximum areal biomass
productivity was recorded as >35 g m−2 day−1 (Dahmani et al.,
2016). The ability of the microalga for bioremediation, various
parameters like chemical oxygen demand (COD), NH4 –N, and
TP were measured in the course of the cultivation periods, and
their average removal efficiencies were reported as 78, 95, and
81%, respectively (Dahmani et al., 2016). Ammonium, and total

TABLE 2 | Review on biomass productivity of various microalgal species with the utilization of wastewaters as growth medium under raceway pond cultivation.

Test organism Cultivation description Biomass
productivity (areal/annual)

References

Pediastrum sp. Raceway pond microalgal cultivation with domestic
wastewater treatment, raceway pond dimensions: surface
area: 31.8 m2, depth: 0.3 m, 8,000 L of raceway pond
working volume

Areal productivity: 25 g m−2

day−1
Park and Craggs

(2010)

A consortium of 15 native microalgae Raceway ponds had of total 3,800 L capacity, wastewater
containing 85–90% carpet industry effluents with 10–15%
municipal sewage

Annual productivity:
9.2–17.8 tons ha−1 year−1

Chinnasamy et al.
(2010)

Mixed microalgal consortium Raceways were constructed in the wastewater treatment
plant site. 8,000 L; Area- 21 m2

Areal productivity: 13.5 g
m−2 day−1

Lee et al. (2014)

Chlorella vulgaris Volume - 14.62 billion L, 30 cm culture depth; alga cultivation
utilizing wastewaters

Areal Productivity: 15 g m−2

day−1
Rogers et al.

(2014)
A consortium of microalgal isolates collected from
wastewaters

Growth medium: wastewaters from dairy farms; Dimensions:
2.5 × 0.7 × 0.7 m, working volume: 600 L

Annual productivity:
153.54 tons ha−1 year−1

Hena et al. (2015)

Chlorella pyrenoidosa Growth medium: domestic wastewater; raceway dimension:
1.5 × 0.6 × 0.4 m, raceway working volume: 360 L

Areal productivity: 36 g m−2

day−1
Dahmani et al.

(2016)
Mixed microalgal consortium including Chlorella sp.,
Scenedesmus sp., and Stigeoclonium sp. (CSS)

Growth medium: municipal wastewater; 0.4 ton working
capacity high rated raceway pond, optimized culture depth:
20 cm

Areal productivity: 6.16 g
m−2 day−1

Kim et al. (2018)

Parachlorella sp. JD076 Semi-continuous operation in municipal wastewater under
small-scale raceway pond cultivations

Areal Productivity: 22 g m−2

day−1
Yun et al. (2018)

Desmodesmus subspicatus Wastewater mediated algal growth in 2,000 L raceway ponds
(2,000 L × 4 raceways)

Areal Productivity: 28 g m−2

day−1
Schneider et al.

(2018)
Mixed microalgal consortium High rated algal raceway lagoon (length - 30 m and width of

the single channel - 2.5 m), community wastewater utilized.
Areal Productivity: 31.7 g
m−2 day−1

Buchanan et al.
(2018)

Chlorella spp. Oblong shallow raceway pond having total area was 3.6 m2,
culture depth was set as 40 cm and total height was 50 cm

Areal Productivity: 2.5 g m−2

day−1
Romagnoli et al.

(2020)
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phosphate are the primary source of nitrogen and phosphorous in
wastewater, and controlling its toxic effects are the foremost
challenge in wastewater treatment (Yu et al., 2019). In this
direction to bioremediate ammonium, nitrate, nitrate, and
total phosphate in wastewaters, the locally isolated microalga
Chlorella sp. was cultivated in a fabricated outdoor wetland under
the mixotrophic cultivation techniques using the piggery
wastewaters. Various significant parameters for this wetland
cultivation were investigated, such as the aeration rate,
nutrient removal by the alga from wastewaters, biomass yield,
and the fatty acid methyl esters (FAMEs) compositions. The
maximum biomass productivity was recorded as 79.2 mg L−1 d−1

and the total nitrogen (TN), phosphorus (TP) removal
efficiencies were found to be 80.9 and 99.2% (Lee and Chen,
2016), which was much higher than the overall chemical oxygen
demand (COD) value depicted as 74.5%. The best cultivation
temperature was found as 25°C.

Schneider et al. (2018) recorded a maximum biomass
production of 1.12 g L−1 which is equivalent to 28 g m−2 day−1

from the microalga Desmodesmus subspicatus grown with
wastewaters in 8,000 L volume raceway ponds. The interesting
fact was that the wastewater sample was collected from one
university’s toilets after one-time treatment with the up-flow
anaerobic sludge blankets (UASB), which are the reactors.
Another study report also claimed a significantly elevated areal
biomass productivity of >30.0 g m−2 day−1 (Buchanan et al., 2018)
for the consortium of mixed algal bloom cultivated in the high
rated large-scale raceway lagoons of 30.0 m in length. These
facultative raceway ponds were fed with general community
wastewater and septic tank effluents (Table 2). In 2019, Eladel
et al. (2019) recorded a maximum biomass productivity of 0.073 g
L−1 day−1 from Chlorella sorokiniana isolated from local
municipal wastewater. Moreover, algal growth for 10 days in
municipal wastewater depicted a nutrient removal efficiency of
74.20, 83.31, and 78.00% for NO3

–, NH3, and total phosphate,
respectively. Scenedesmus obliquus was proved to be a potent
organism in pilot-scale artificial wastewater processing with 96%
removal of ammonia content (Liu et al., 2019). Another recent
study reported that about 94 and 66% of NH4

+ and PO4
3- were

removed from wastewater medium using microalgae
immobilized on agar (Hu et al., 2020). In continuation, the
oleagenous microalga Chlorella spp. was successfully cultivated
using the wastewater obtained from digestate from biogas plants
in a raceway pond having length (L):width (W) equal to 2:1, total
area was 3.6 m2. The culture depth was set as 40 cm and total
height was 50 cm. The areal biomass productivity was calculated
as 12.5 g m−2 day−1 with a growth yield of 0.25 g L−1 obtained in
just 08 days of cultivation period (Romagnoli et al., 2020). From
the various earlier studies discussed above in detailed, it is well
comprehended that the microalgae are not only capable to thrive
under open pond cultivations using wastewaters as their growth
medium, but also these tiny microorganisms are the best potential
candidates for the harmful nutrient removals from the primary
treated wastewaters.

It is highly imperative to investigate the feasibility of culturing
some oleaginous as well as halophilic or halotolerant and
acidophilic microalgal strains to bioremediate wastewaters

generated from heavy industries like mining, iron/steel, coal,
tanning. The microalgae may offer a favourable and
unconventional alternate to traditional and conventional
technologies in the treatment of heavy metals like arsenic,
copper, cadmium, chromium, and lead which are generally
present in the industrial wastewater samples originated from
heavy industries (Uberoi, 2003). These heavy metal ions can also
cause diabetes, cancer, anemia, osteomalacia, and many neurotic
or nephrotic syndromes (Lefebvre et al., 2006). However, the
execution is not as easy as it sounds. Researchers reported that the
heavy industrial wastewaters were well characterized by their high
alkalinity, resulting in a pH value of ∼8.0 due to these heavy
chemicals used in the technological processes. They have also
recorded that the total dissolved solids (TDS) concentrations of
the industrial wastewaters are up to the elevated level of 37.0 g
L−1. In contrast, the suspended solid concentrations were
measured as 5.3 g L−1 (Leta et al., 2004). Hence, pragmatically
comprehend and perform these experiments are major critical
tasks by the researchers for evaluations and commercialization
aspects (Kongjao et al., 2008).

Economic Feasibility of Using Wastewater for
Microalgal Cultivation
Nowadays, mass- or large-scale cultivations are essentially needed
for the algal biofuel industries, and still, several tailbacks are limiting
the establishment of commercial level algal bio-oil plants
(Grobbelaar, 2012). Microalgal biofuel has gained a tremendous
impetus as an alternative to the conventional fossil fuels but the
economic feasibility is still a big hindrance for its commercial
acceptability throughout the world. One of the several innate
challenges is its high cultivation cost. The most acclaimed
strategies for the large-scale microalgae productions are the algal
growth in raceway ponds that are so termed because of their raceway
like shape (Prussi et al., 2014). However, several researchers have
addressed that the biggest bottleneck for the microalgal cultivations
in the open raceway ponds is the high costs of the chemical-grade
growth medium (Kumar et al., 2015; Bhattacharya et al., 2016;
Karthikeyan et al., 2016). Nowadays, the microalgal cultivation
utilizing the wastewaters in raceway ponds seems to be the
preeminent solution in this regard. Wastewater is a cost-effective
solution and have already proved as an alternative to the cost
incurring algal growth medium (Wu et al., 2014). Since the last
decade, microalgae cultivations using various mixotrophic
techniques have been practiced and an increased interest in
implementing them as part of wastewater treatment coupled with
low-cost biofuel generation using the algal slurry. The algae have the
potential to utilize the inorganic and organic carbon sources in
wastewater bodies vis-à-vis can utilize the inorganic nitrogen and
phosphorous particles in wastewaters. From the above discussion, it
is clear that various studies have reported that the microalgae can
bioremediate more than 90% of the initial nitrogen (ammonia,
nitrate, nitrite) and phosphorous (phosphate) from wastewaters.
The cost of the produced bio-oil can also reduce substantially using
the wastewater where algae can able to thrive even it is highly
polluted with nutients and other particles (Mohsenpour et al., 2021).

Moreover, if we look from the industrial and commercial point
of view, nowadays it is undoubtedly the most indispensable to
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follow some more efficient techniques by which the wastewater
grown wet algal biomass can directly be converted into bio-crude
oil without adopting or involving the numbers of cost-intensive
and time-consuming processes essential for biodiesel production
such as dewatering, drying, lipid extraction with solvents,
followed by the transesterifications. On a serious note, it can
be commented that those lengthy conventional techniques are the
real stumbling blocks for biodiesel production in the commercial
scales. It is also a clear fact that microalgal biodiesel production is
practically an energy and cost-intensive approach due to these
lavish and time-consuming harvesting, drying, and solvent-
mediated lipid production techniques (Mathimani and Mallick,
2018) (Figure 1). These two steps harvesting and drying incur a
substantial economic bottleneck, for higher energy consumption
and lengthy time duration. Scientists have strongly suggested to
use alternative thermochemical techniques to produce the bio-
crude oil directly from the wet microalgal slurries using
thermochemical conversion process (Aliyu et al., 2021).

APPROACHES TOWARDS THE EFFECTIVE
HARNESSING OF BIO-CRUDE OIL USING
HYDROTHERMAL LIQUEFACTION
TECHNIQUE

Prominence of Hydrothermal Liquefaction
Process
Since the last two decades, various methods were practiced to
efficiently cultivate microalgae under large scale biomass
generations and numerous implementations and/or

modifications of several techniques associated with the
different down-streaming processes like harvesting, drying,
lipid extractions, transesterifications, and biodiesel production.
However, there are minimal new approaches to make the algal
biofuels commercially viable and ready to market available with a
quick processing and cost-effective manner. Because of these
facts, a recent trend has been followed by utilizing various
thermochemical conversion techniques that are comparatively
economically worthwhile (Chen et al., 2015). Thermochemical
conversions of algal biomass to biofuel in the form of liquid or gas
is generally useful with the applications of various techniques
such as pyrolysis, direct combustion, torrefaction, gasification,
and liquefaction by the involvement of different catalysts with the
elevated temperatures (Kumar et al., 2017; Kumar et al., 2018).

The most common process for the thermochemical
conversion is pyrolysis, which is involved in the
thermochemical decompositions of organic matters into
energetically useful and condensed liquids, solid residues, and
a mixture of gases in the absence of oxygen and the absence or
presence of catalysts (Morgan et al., 2017). However, the
liquefaction technique is possibly the best suited for the direct
conversion of algal biomass to bio-oil. It offers some energetic
gains than the other alternative methods, such as pyrolysis, by
using wet algal biomass and relatively effectual products’
separations. Remarkably, the bio-crude properties obtained
through all of these thermochemical conversion techniques are
essentially dependent on the algal biomass feedstock’s quality in
carbon and hydrogen andmust be low in nitrogen, sulfur, oxygen,
and ash contents (Cole et al., 2016).

HTL is the technique to convert wet algal feedstocks (∼90%
moisture content wet basis) directly into bio-crude oil at the

FIGURE 1 | Schematic illustration of microalgal biodiesel production techniques focuses on large-scale cultivation strategies in raceway ponds and direct biomass
processing to oil using hydrothermal liquefaction.
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elevated temperature and pressure of ∼200–600°C and
10–25 MPa, respectively in the presence/absence of some
catalyst with a typical processing time of 10–100 min,
depending on the technological efficiencies with their practical
implementations (Biller and Ross, 2011; Zhou et al., 2013; Couto
et al., 2018). It is indeed an interesting fact that the bio-crude oil
extracted with the HTL applications is generally higher than the
overall lipid content of the microalgae because the proteins and
carbohydrates of the algae may also be converted into oil under
the elevated pressure and extreme higher temperature required
for HTL technique (Cheng et al., 2018). Therefore, a wide range of
algae biomass can be converted into crude oils, and it may be
commented that the HTL technology is best suited for the
outdoor, raceway ponds’ cultivated microalgal biomass
processing just after the harvesting. Furthermore, HTL also
resolves the issues of energy balance for biofuel production
process as water along with the catalysts serves as the reaction
medium for this technology (Zhou et al., 2013) evades the
requirements of the drying processes which alone generally
needs 30% of the total production costs of biomass to
biodiesel (Becker, 1994). The most advantageous part of the
HTL process is that the aqueous wastewater which is self-
seperated and is generated after obtaining the bio-crude oil,
can be collected to reuse as the growth medium for the
microalgal cultivations (Peterson et al., 2008; Cheng et al.,
2017). Nonetheless, it was quite frequently observed that the
microalgal lipids might be hydrolyzed and converted into the free
fatty acids at a temperature below 250°C, required for the proper
operation of HTL process. Further increase in the reaction times
and temperatures, the algal cell walls generally break, and the
carbohydrates and proteins may undergo deamination,
decarboxylation, or re-polymerization (Neveux et al., 2014).

The foremost requirement in the HTL technique is that the
microalgal feedstock biomass should not contain a high level of
nitrogen, which is not recommended to produce the qualitative bio-
crude oil. The elevated nitrogen content in the biomass is not
technically feasible for purifying the bio-crude oil using catalysts
(Mehrabadi et al., 2015). The bio-crude oil, rich in nitrogen, oxygen,
or sulfur, may necessitate ample up-grading with hydrogen before
starting a normal purifying process; thereby, the cost-effectiveness
and energy inputs for the bio-oil production process will be much
higher. However, it is a fact that the microalgal biomass usually
contains 3–6% of internal nitrogen, which is stored for use in future
times of cellular proliferation. Therefore, it is essential to modulate
and lowering the internal nitrogen content of algal cells at the ending
of the cultivation periods by the proper management and
manipulations of the culture conditions in open raceway ponds
before harvesting the wet biomass directly for the bio-crude oil
production using HTL process (Duan and Savage, 2011). This major
problem was successfully resolved by a recent technique
demonstrated by the research work of Cole et al. (2016) in which
some suitable organic non-polar solvents were mixed with the algal
biomass slurry just before the operational separation of HTL process.

In hydrothermal conversion technique, the biomass of the
algae is changed by the extreme hot and compressed water into
comparatively shorter carbon chains that have a higher
saturation, and thereby the energy values are also relatively

higher (Brennan and Owende, 2010). The process’s main
product contains the heavy bio-crude oil comprised of
C16–C18 hydrocarbons, and the crude oil yield from this
process is approximately 30–50% of the dry weight (dw) with
a heating value in the range of 30–40 kJ/g. The major by-products
from this HTL process are the gaseous mixtures, which contain
carbon di-oxide, hydrogen, methane, nitrogen, ethane, and
acetylene with some residual solids less than 10%wt, and an
aqueous phase with 20–30 (wt%) yield (Mehrabadi et al., 2015).
The main advantage of considering the HTL technique for large-
scale cost-effective biofuel production from algae is that the
aqueous phase obtained in the HTL process generally contains
a higher amount of essential and major nutrients. This could be
recycled again for the microalgal cultivations by taking the
aqueous phase mixtures as wastewater sample.

Analysis of Various Studies of Catalytic and
Non-Catalytic Hydrothermal Liquefaction
Reactions
HTL of the wet algal biomass, generated from the large-scale
raceway pond cultivations of microalgae by utilizing the
industrial or domestic wastewaters are seemed to be the best
promising approach towards the cost-effective production of the
renewable and sustainable biofuel, replacements to the
conventional fossil fuels. In concern of the large-scale
exploration of the wet microalgal biomass processing, HTL is
one of the most superior technologies for converting biomass to
bio-oil, bypassing the energy and cost-intensive processes like
dewatering, drying, and solvent-mediated lipid extractions
(Figure 2). Several recent works are done for crude bio-oil
production from microalgae using different catalysts or
without any catalysts under hydrothermal explorations. In
2011, Biller and Ross utilized the HTL technique for the two
chlorophycean microalga Chlorella vulgaris and Nannochloropsis
occulata at a temperature and holding time of 350°C and 60 min,
respectively. In another study, the bio-crude oil was produced
from the algaNannochloropsis sp., with the reactions in water at a
temperature of 350°C and holding time of 1 h and in the addition
of various heterogeneous catalysts such as Pd/C, Pt/C, Ru/C, Ni/
SiO2-Al2O3, CoMo/c−Al2O3, and Zeolite. The maximum bio-
oil production and the heating value were depicted as 57.0 (wt%)
and 38.0 MJ kg−1, respectively (Duan and Savage, 2011). The bio-
crude oil yield reported in this research process is incredibly
higher than many other research works on bio-oil yield by using
the HTL technique, published to date. Contrary to using the high-
cost catalysts for reactions in HTL technique, researchers proved
that the overall oil yield was achieved up to ∼45 (wt%) without
any catalysts that can act as stimuli. The mixed microalgal
consortium was heated at 350°C for 60 min under HTL
reactions without any catalyst addition, and the maximum
bio-crude oil yield and heating value (% of energy recovery)
were shown as 44.5 (wt%) and 39.0 MJ kg−1 (Roberts et al., 2013).
The bio-oil yield primarily depends on the HTL process
temperature, catalyst used, the solvent used, reaction time.
Researchers have found exciting findings that the
carbohydrates in the algal biomass can rearrange to aromatic
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compounds, and polymers are converted to monomer units. In
contrast, the proteins components are restored to pyrrole, and
some other amide compounds during the time course of HTL
reaction (Raheem et al., 2018). Figure 3 illustrates a schematic
representation of typical HTL reactor installed in IIT Roorkee.

Some synergistic approaches of the large-scale raceway pond
cultivation coupled with direct bio-oil production from the
wet algal biomass was successfully performed for the
unbranched and filamentous, chlorophycean microalga
Oedogonium sp. under the large-scale cultivation in a

FIGURE 2 | Diagrammatic representation of microalgal cultivation in large-scale raceway ponds with wastewaters coupled with bio-crude oil production using
wet algal biomass hydrothermal processing.

FIGURE 3 | Schematic diagram of a hydrothermal equipment (batch reactor designed by Amar Equipments Mumbai and installed in IIT Roorkee) highlighting its
different parts/componants.
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recirculating aquaculture system consisting of six 10,000 L
parabolic raceway ponds with the dimensions of 7.1 m length,
2.2 m width, and 71.0 cm in depth. The wet algal biomass was
taken for direct HTL technique at the temperature and pressure
of 350°C and 180 bar, respectively. The catalyst was chosen as
Ni2P/SiO2, and the maximum crude oil yield was found to be
22–23 (wt%), whereas the heating value (% energy recovery) was
22.0 MJ kg−1 (Cole et al., 2016). Though it seems that the bio-
crude oil yield was relatively low in this process, the most
significant part of the research work was the overall time
requirement, i.e., only 3 min, which is relevant in cost-effective
bio-oil production (Table 3). In accordance, one recent work has
demonstrated that the maximum bio-oil yield was 44.4 (wt%) and
the heating value (% of energy recovery) was 38.1 MJ kg−1,
respectively, at a reaction temperature of 300°C without the
addition of any catalysts in the conversion for the
hydrothermal process. This study report has also depicted that
the overall conversion time for the HTL process was found as
15 min only (Couto et al., 2018). The research work performed by
Koley et al. (2018) have shown that the biomass of the green
microalga Scenedesmus obliquuswas hydrothermally processed to

obtain the bio-oil varying the temperature and pressure ranges.
However, the best suitable temperature was found to be 300°C
and pressure of 200 bars with a conversion time of 1 h. The study
revealed that the harvested microalgal biomass contained high
oxygen and carbon presence of 36.1 and 48.1%, respectively. The
crude oil content was enhanced as 45.1 (wt%) with the addition of
catalyst as CH3COOH compared to bio-oil content of only 35.7
(wt%) for no addition of any catalysts. The bio-crude oil content
was gained up to the maximum value of 65.7 (wt%), which is
significantly higher under the HTL process application for
microalgal bio-oil production, reported in other studies to
date. In that conversion technique, the most suitable reaction
temperature and processing time were recorded as 350°C and 1 h,
respectively, with the catalyst as CuO/Al-SBS-15, utilized to
fasten the conversion process the HTL chamber (Jing et al.,
2018) (Table 3). In continuation, Xu et al. (2018) has also
experimented with the HTL technique for the wet algal slurry
using various catalysts at a temperature of 350°C for 20 min. In
that course of studies, various combinations of catalysts were
tested for the efficient bio-crude oil yield viz., no catalysts (none),
10% Ni 0.1Ru/CeO2, and 10% Ni/CeO2. The HTL process was

TABLE 3 | Reviews of various recent experimental reports on catalytic/non-catalytic hydrothermal liquefaction process for bio-crude oil production.

Microalgal species The
temperature

of HTL
process (°C)

Holding time
(min)

Catalyst used Bio-crude
yield
(wt%)

Maximum
heating

value (MJ
kg−1)

References

Chlorella vulgaris 350 60 No catalyst 38.0 54.2 Biller and Ross
(2011)1 M Na2CO3 28.0 44.2

1 M HCOOH 28.0 31.7
Nannochloropsis occulata No catalyst 36.0 66.1

1 M Na2CO3 26.0 50.0
1 M HCOOH 28.0 41.1

Nannochloropsis sp. 350 60 Pd/C; Pt/C; Ru/C; Ni/SiO2-Al2O3;
CoMo/γ-Al2O3/Zeolite

57.0 38.0 Duan and Savage
(2011)

Mixed microalgal
consortium

350 60 No catalyst 44.5 39.0 Roberts et al.
(2013)

Nannochloropsis oceanica 300 30 No catalyst 40.1 36.3 Cheng et al. (2014)
Chlorella pyrenoidosa 300 60

13 MPa pressure
NaY, USY, HY 64–68 Not reported Yang et al. (2016)

Oedogonium sp. 350 30 Ni2P/SiO2 22–23 22.0 Cole et al. (2016)
Chlorella sp. 300 30 9 MPa, 10% biomass loading, no

catalyst
32.5 ∼34 Reddy et al. (2016)

Galdieria sulphuraria
CCMEE 5587.1

350 60 Not specified 30.8 Not reported Cheng et al. (2017)

Nannochloropsis salina
CCMP 1776

310 59.1

Aurantiochytrium sp.
KRS101

400 10 Not specified 51.2 ∼33.0 Vo et al. (2016)

Cyanidioschyzon merolae 300 30 12 MPa, 10% biomass loading,
Catalyst 0.5 M KOH/NaOH

22.7 33.7 Muppaneni et al.
(2017)

Microalgal consortium 300 15 No catalyst 44.4 38.1 Couto et al. (2018)
Scenedesmus obliquus 300 60 No catalyst 35.7 35–40 Koley et al. (2018)

CH3COOH 45.1
Chlorella sp. ∼350 60 CuO/Al-SBA-15 65.7 Not reported Jing et al. (2018)
Nannochloropsis sp. 450 60 Ni-Ru/CeO2 + H2 57.1 ∼40 Xu et al. (2018)
Scenedesmus quadricauda 300 30 No catalyst 18.0 Not reported Kiran Kumar et al.

(2018)
Chlorella pyrenoidosa 150–300 Each temp. resting

at 10 min
2.73 g of Deionized water 33.3 34.5 Obeid et al. (2019)

Mixed algal culture 280 60 Not specified 26 ∼35 Carpio et al. (2021)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 65113810

Bagchi et al. Bio-oil From Microalgae Using Wastewater

178

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


further upgraded to a temperature of 450°C for 1 h with a
maximum HTL pressure of 225 bars, and the bio-crude oil
yield was found to be 57.14 (wt%) with the addition of Ni-Ru/
CeO2 + H2 catalysts. The maximum heating value/% energy
recovery has also recorded a value of about 40 MJ kg−1. However,
there are also reports available for the lower bio-crude oil
production using this HTL process. It was optimized that the
maximum crude oil production was only 18.0 (wt%) under the
reaction temperature of ∼300°C operated at a very low pressure of
60 bars (6 MPa) with no use of catalysts. Interestingly, the
microalga S. quadricauda was cultivated in the outdoor large-
scale open raceway ponds with some other species of B. braunii
and C. vulgaris. The GC-MS analysis of the produced bio-oil
confirmed the presence of various organic and fatty acid esters,
some nitrogenous and oxygenous compounds, alkanes, and
hydrocarbons (Kiran Kumar et al., 2018) (Table 3). In a very
recent study, it was found that the bio-oil yield was 26.0 (wt%)
utilizing HTL technique for demineralized wastewater algal
biomass. The wastewater was collected from an wastewater
treatment plant in a swine farm at the University of Illinois
Urbana-Champaign. The optimized reaction temperature was
recorded as 280°C for 1 h reaction time. Moreover, the GC-MS
study revealed that the bio-oil was rich in hydrocarbons and
found comparable with the fuel properties of various
international levels (Carpio et al., 2021).

MAJOR ADVANTAGES AND DRAWBACKS
OF HYDROTHERMAL LIQUEFACTION
PROCESS
HTL process has certain disadvantages despite being the most
effective, suitable, and least time-consuming thermochemical
conversion process for the large-scale, raceway pond grown
with the wastewater mediated cultivation of microalgal slurries
be converted directly into bio-oil for ready to market purpose
servings. Compared with the conventional biodiesel
manufacturing technologies available, the major advantages of
the HTL process are found to be a lot. This HTL technique has
eliminated the essentiality of considering only elevated lipid
yielding microalgae followed by cell disruption, dewatering,
drying, and solvent recovery for lipid extraction process
(Cheng et al., 2017). The most exciting part of the use of HTL
technique is that the large-scale biomass can be processed and
converted into the bio-crude oil in a concise time period of only
30–60 min only. This is very beneficial from the industrial point
of view to make the algal oil commercially viable. But the major
cons of HTL are the necessity of high energy inputs (∼300–500°C)
with the elevated input pressure (∼15–20 MPa). As the products
after the HTL process have constituted a very high content of
nitrogen and oxygen, the product seems to be quite unstable.
There are some further upgrading of the HTL products therefore
decidedly essential. The upgradation involves converting oxygen
to CO2 and nitrogen to ammonia (Faeth et al., 2013; Mehrabadi
et al., 2015).

Since its inception, algal biomass is utilized for biodiesel
production from lipids using transesterification. However,

researchers also tried to harness the biodiesel from lipids
during its first phase. It simultaneously generated the bio-
crude oil from the residual biomass using HTL technique
during its latter stage utilizing the carbohydrates, remaining
lipids, and proteins from the same microalgal biomass. The
competency of using the defatted biomass after lipid
harnessing has a significant impact on the total energy
equilibrium for algal biomass to the biofuel production process
(Xu et al., 2011). In order to exploit the biomass residues
remaining after the lipid harnessing, bio-crude oil can
efficiently be generated from the defatted algal biomass
residues including carbohydrates and proteins. However,
minimal approaches are made in this direction (Cheng et al.,
2014), which are actively produced biodiesel in its former stage
and co-generated the bio-crude oil in its later stage using HTL
technique. Moreover, it is also interesting that a part of the energy
recovery of HTL process may also be possible by using the
outflow of the HTL chamber to heat the inflow with a
convincing positive net energy balance. The aqueous phase
that contains the ammonia and specific nutrients can be
recycled and may be used as an agricultural fertilizer like the
biochar.

The biggest stumbling block for the HTL technology is that it
still not proceeding on a commercial scale for cost-effective
production of bio-crude oil, so the advantages somewhat seem
to be more theoretical (Yang et al., 2014; Smith and Ross, 2016). It
is also noticed that the bio-crude oil is composed of various fatty
acids, amides, and aliphatic molecules, whereas; a part of the bio-
oil contains more nitrogen and oxygen heteroatom aromatic
components. For large-scale biomass processing in HTL, these
heteroatom nitrogen and high molecular weight containing large
molecules in the bio-crude oil are the major concerns for
upgrading bio-crude oil (Elliott et al., 2015). These high
N-containing and high molecular weight components might
be generated from the elevated protein and carbohydrate
comprising microalgal biomass to bio-oil conversion process.
Nevertheless, researchers have recommended that the pre-
treatment processes must remove the carbohydrates for HTL
technique rather than the removing of protein components. This
is essential because the carbohydrate components can produce
some highly aromatic heterocyclic compounds that are very
difficult to upgrade in the whole HTL process (Cheng et al.,
2017). The above discussions regarding the pros and cons of HTL
process evoks that there is a need of design commercial scale
hydrothermal equipment which can process a large-scale
microalgal biomass in a very short period to bio-oil. Recently,
Johannsen et al. (2021) have nicely designed a large-scale HTL
batch reactor for processing of biomass. The core part of the HTL
plant is equipped with 58 type-K thermocouples. 32 of these are
located in the trim heater measuring the temperature of the
individual heat clamps. The rest are located along the 147 m pipe
system, approximately 6 m apart, ensuring a detailed overview of
the temperature profile. The main unit is also outfitted with a trim
heater, reactor, cooler, thermocouples, and heat exchangers. This
large-scale HTL plant made up with the polycarbonate coffer and
inner protective steel and it has the active suction from all areas
(Johannsen et al., 2021). This kind of experimentations are highly

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 65113811

Bagchi et al. Bio-oil From Microalgae Using Wastewater

179

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


needed for pilot plant set up with HTL technique with which the
large-scale algal slurry can be processed to bio-oil in a timely
manner.

UTILIZATION OF HYDROTHERMAL
LIQUEFACTION AQUEOUS PHASE AND
USE OF BIOCHAR
Hydrothermal processing is gaining immense importance for
biomass processing, starting from lignocellulose feedstocks to
the tiny algae for crude oil production (Gai et al., 2014; Guo et al.,
2015; Zheng et al., 2017). However, the HTL process applications
for the wet algal biomass grown under the wastewater mediated
large-scale microalgae cultivation have not yet been fully explored
to date. It is also interesting that the hydrothermal aqueous phase
can be reutilized as a wastewater source for the outdoor
cultivation of microalgae. This aqueous phase which is derived
as a huge quantity at the end of the HTL process, is generated due
to the elevated moisture content (∼90–95% wet basis) of the
wet algal biomass (Lee and Chen, 2016; Leng et al., 2018). The
aqueous phase is generally comprised of high levels of organic
carbon and nitrogen compounds as well as various toxic
components viz. some heavy metals and oxygen or nitrogen
heterocyclic counterparts (ring structure cyclic compound) like
pyrrole and Pyrrolidine. However, a rare study report is for the
disposal of this huge quantity of aqueous phase for the re-
utilization of it coupling with various wastewaters as the
additional growth-promoting nutrient-rich medium for
microalgae (Jena et al., 2011; Hognon et al., 2015).

On the other hand, there is an extreme prerequisite of huge
quantities of the wastewaters rich in nitrogen and phosphorous
for the large-scale commercial level cultivation of microalgae.
Nevertheless, only utilizing the aqueous phase derived through
the HTL process for the mass cultivation of microalgae may not
be able to meet the complete requirement in this case. But the
synergistic approach to utilize the aqueous phase of HTL
conversion process with the industrial and/or domestic
wastewaters as the growth medium for the mass cultivation of
microalgae could be the best possible approach towards the cost-
effective renewable biofuel production in a commercial scale.
There are many reports are available for the reutilization of this
aqueous phase for the evaluation of microalgal cultivations
(Pham et al., 2013). One study report has already
demonstrated the successful outdoor cultivation of microalga
Chlamydomonas reinhardtii with the hydrothermal mediated
aqueous phase wastewater (Becker et al., 2014). However,
several researchers performing different studies have
confirmed that the aqueous phase generated after the HTL
reactions generally was contained various nitrogen, high
phosphate ions that are quite beneficial for the algal growth
but the existence of the heavy metal ions, phenolic and some
furans compounds such as toluene, 2-Methylbenzofuran, and
various toxic nitrogenous compounds such as amino-phenol,
pyridine, piperidinone were also noticed (Huang and Yuan,
2016; Toufiq Reza et al., 2016). These certain chemical
compounds are also inhibitory for the microalgal growth;

hence it has a limitation and the proper research should be
carried out in this area in the near future (Gollakota et al., 2018).
While discussing the recent study reports on HTL process used
for algal bio-crude production, it can also be suggested that the
processed bio-crude may be used like petro-crude in the
petroleum refineries. However, this could be done only after
its proper denitrogenation and deoxygenation. It may also be
commented that the HTL derived aqueous phase re-utilization
with cost-effective hydrothermal processing of algal biomass to
biofuel is a very recent and limited approach and thereby,
challenges still exist in this field. This can be overcome with
future research studies by the technocrats and scientists’ efficient
combined andmutual works in this direction. A recent study have
focused to use the pulse electric field as the pretreatment of
microalgae for the HTL process. This pretreatment method can
reduce the final nitrogen content in the biocrude. In another way
the steam catalytic cracking technique may reduce the oxygenate
level in the bio-crude oil and can enhance the hydrocarbon
content (Aliyu et al., 2021).

Biochar, one of the most important co-products of algal
biorefinery approach are obtained from the hydrothermally
processed algal slurry. One recently published article has
focused on the co-carbonization of algae with some different
feedstocks to generate nitrogen-doped highly microporous
biochar specifically named as hydrochar (Aliyu et al., 2021).
With these techniques the last product of HTL after the
aqueous phase extraction, i.e. biochar will be safe for
agricultural fields with a proper balance of nitrogen, carbon
and oxygen content.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Biomass-based energy is the main form of renewable energy today.
As per the International Energy Agency and many other national
and international organizations, if commitments for global climate-
change are to be met with, then, bioenergy has tremendous potential
to effectively provide a solution for a low carbon global energy
system in the future, specially through decarbonisation of aviation,
shipping and road transport sectors. However, currently exploration
and exploitation of biomass-based resources for bioenergy
production is tragically much below the required quantity needed
to be deployed. Under such circumstances, ramping up of
sustainable biofuel generation through accelerated usage of
renewable resources is pertinent, particularly in the transportation
sector where fuel consumption is estimated to triple by 2030. But
biofuel is a difficult and slightly complicated topic, specially when it
comes to addressing the sustainability index in the low-carbon global
society in the future. This review article therefore re-examines the
current state of biofuel research worldwide and suggests solutions to
overcome the challenges related to lower biomass and oil yield,
longer biomass treatment procedures and multi-step oil extraction
methods during algal biofuel production. It also provides a workable
roadmap through utilisation of biomass-based renewable resources,
more specifically the green chlorophycean microalgae grown in
industrial untreated wastewater for a one-step bio-oil production
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using HTL technique. Additionally, it also addresses the problem of
water scarcity through re-usage of the processed water after
cultivation and/or HTL. Furthermore, such a strategy suggesting
the combination of three factors, namely, microalgal cultivation,
wastewater bioremediation and HTL technique is not available/very
scantily available to the extent of our knowledge. This review article
is therefore expected to be extremely beneficial to the readers for
cost-effective, environmental friendly algal fuel production on a
larger scale for commercial application.
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