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Editorial on the Research Topic

Machine Learning for Non/Less-Invasive Methods in Health Informatics

1. INTRODUCTION

At the time of writing this editorial, COVID-19, as an unprecedented pandemic, has caused more
than 4.4 million people left us foreverdeaths worldwide (with more than 210 million confirmed
cases) in the world1. As researchers, this fact urges us to think about how to leverage the power
of advanced technologies in improving the life quality of human beings and fighting against the
ongoing and/or future pandemic. In particular, the core technology of artificial intelligence (AI),
i. e., machine learning (ML) (1), has been playing an increasingly important role in leading the
frontiers of Medicine improving the field of medicine 4.0.

In recent years, non/less-invasive methods are have been fast developing in clinical practice,
which can considerably reduce the pains and burdens to patients physiologically and psychological
pain of patiently. On the one hand, benefited from the breakthroughs in big data, the internet of
things (IoT), 5G, cloud computing, high performance computing (HPC), and wearable sensors,
and other AI-enabled methods have been successfully applied to tremendous scenarios such as
diagnose, treatment, and management of diseases, assisted living, and rehabilitation training.
On the other hand, there are existing challenges and technical and ethical issues that need
to be addressed. To this end, we organized a research topic entitled “Machine Learning for
Non/Less-Invasive Methods in Health Informatics” to build an open forum for scientists, engineers,
and clinicians to exchange their studies, insights, and perspectives via a multidisciplinary point
of view. The collection work lasted for 1 year (from February 2020 to February 2021), and finally
it leadsled to 16 articles accepted and published after the peer-reviewed process. There are 127
authors involved in this research topic which has attracted more than 22 000 views (to as of
September 2021).

In the following parts of this editorial, we will make a brief description of the published
research articles within this research topic. After that we give our perspectives toward
future work.

1https://coronavirus.jhu.edu/map.html.
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2. DATA MODALITIES

Figure 1 shows the proportion of articles that used one kind of
data modality in our collected contributions. We can find that
medical imaging dominated in the application, which is related
to computer vision (CV).

2.1. Image
Aging population has Aging populations have become an
inevitable challenge for both developing and developed countries,
which and is continuously attracting efforts from the community
of AI and IoT (2). The early diagnosis of brain diseases, e. g.,
Alzheimer’s disease (AD) (3), can be very much important
essential for benefiting guaranteeing a safe, easy, and independent
life for the elderly, particularly for those who are living alone.
Song et al. proposed a multimodal image fusion method that
combines the representations learnt from themagnetic resonance
imaging (MRI) (4) and the positron emission tomography
(PET) (5). In their method, both the contour and the metabolic
characteristics of the subject’s brain tissue are retained.

Diagnosis of cancer via imaging has always been regarded as a
crucial computer-aided form of medical technology. Li et al. built
a dataset of pulmonary lesions with multiple-level attributes and
fine contours. Wang et al. contributed two articles in their recent
studies on tumor segmentation: One used octave convolutions
to learn multiple-spatial-frequency features from the computed
tomography (CT) (6) images for liver tumor segmentation. The
other one proposed a framework of multi-modalities interactive
feature learning for brain tumor segmentation.

A hierarchical deep learning (DL) (7) network was proposed
by Hong et al. in their work for diagnosing multiple visual
impairment diseases. A family of multi-task and multi-label
learning classifiers was employed to represent different levels of
eye diseases. Forte et al. proposed a DL method for identification
of acute illness and facial cues of illness. Interestingly, their
experiments demonstrated that the synthetically generated data
can be used to develop algorithms for health conditions.

FIGURE 1 | The proportion (in [%]) of the articles in our research topic by

viewing the data modalities.

2.2. Audio
Compared to its counterpart, CV, computer audition (CA) has
been underestimated for a long time in the field of digital
health. Nevertheless, audio as a novel digital phenotype, is
attracting more attention in recent decades than ever before (8).
Specifically, the analysis of cough sound has been found to be
efficient in for an early-diagnosis of COVID-19 (9). Hou et al.
proposed a novel feature set based on non-linear acoustic
characteristics extracted from the snore sound. Their method can
be used for estimating the severity levels of the obstructive sleep
apnoeaapnea (OSA) (10). Li and Tian proposed an unsupervised
learning method based on variational auto-encoders (VAEs) for
detection of abnormal heart sounds. Yang et al. shared their
clinical opinions of CA- based methods for bowel sound analysis
and its potential in diagnosis of intestinal obstruction. Besides the
aforementioned physiological diseases, audio can also be applied
to the diagnosis of psychiatric diseases. For instance, Zhang et al.
proposed a speech emotion recognition framework based on pre-
trained attentive convolutional neural network, which may be
adopted for developing a speech-driven method for detection
of depression.

2.3. Wearable
Li et al. studied the ML-based models for estimating the
associations between the body accelerations and the large-scale
objective sleep data. Their study contributed to an objective
evaluation of sleep quality by considering the seasonal changes in
meteorological factors (e. g., ambient temperature, humidity, and
sunlight). Ishaque et al. showed us a review on analyzing the heart
rate variability (HRV) data and its associations in to morbidity,
pain, drowsiness, stress, and exercise via signal processing (SP)
and ML methods.

2.4. Others
Guo et al. used ML and DL models to predict the proximity
to catastrophic decompensation from the synthetic electronic
health record (EHR) data. This method can improve the
timing of high-risk heart failure (HF) (11) surgical intervention.
Elgendi et al. showed that unsupervised learning models can
be used to reveal the novel correlates of chronic pelvic pain
(CPP) (12) in women. Zhu et al. implemented ML models for
predictingto predict the central lymph node metastasis in T1-
T2, non-invasive, and clinically node negative papillary thyroid
carcinoma (13). Sang et al. introduced a model using blood
markers and logistic regression for diagnosis of fibrosis in
southeast Asian patients suffering from the non-alcoholic fatty
liver disease (NAFLD) (14).

3. PERSPECTIVES

It is encouraging to see the state-of-the-art ML models are being
successfully applied to the field of non/less-invasive methods in
health informatics. Nevertheless, we understand that there still
exist several challenges: First, the data scarcity is restraining the
reproducibility and sustainability of the relevant studies. Taking
bowel sound analysis work as an example, the publicly accessible
database is extremely limited. There is an urgent demand for
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future collaborations between experts in AI and medicine to
build open access databases. Second, breaking the walls between
disciplines can never be an easy work. When reading the articles
written by authors from different backgrounds, wemay find there
are limitations and drawbacks caused by knowledge frontiers.
For instance, computer scientists can be more professional than
clinicians in conducting a good ML/DL experiment whereas the
latter may be clearer than the former about the motivation and
the significance of the proposed research. Basic knowledge and
skills training is a prerequisite for future training of experts in
digital health. Third, multi-modal learning has already shown
its superior performance to models trained by mono-modal. In
future work, one should take image, audio, wearable, and other
possible modalities into account when studying the complex
associations between diseases and subjects’ health data. Last but
not least, ethical issues were not fully discussed in this research
topic collection. We cannot ignore this important factor when
working toward a human-centredcentered medical AI. Experts

from social and humanity sciences are very welcome to be on
board with usto collaborate with us.
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Objective: Although many clinical metrics are associated with proximity to

decompensation in heart failure (HF), none are individually accurate enough to

risk-stratify HF patients on a patient-by-patient basis. The dire consequences of

this inaccuracy in risk stratification have profoundly lowered the clinical threshold for

application of high-risk surgical intervention, such as ventricular assist device placement.

Machine learning can detect non-intuitive classifier patterns that allow for innovative

combination of patient feature predictive capability. A machine learning-based clinical

tool to identify proximity to catastrophic HF deterioration on a patient-specific basis

would enable more efficient direction of high-risk surgical intervention to those patients

who have the most to gain from it, while sparing others. Synthetic electronic health

record (EHR) data are statistically indistinguishable from the original protected health

information, and can be analyzed as if they were original data but without any privacy

concerns. We demonstrate that synthetic EHR data can be easily accessed and

analyzed and are amenable to machine learning analyses.

Methods: We developed synthetic data from EHR data of 26,575 HF patients

admitted to a single institution during the decade ending on 12/31/2018. Twenty-seven

clinically-relevant features were synthesized and utilized in supervised deep learning and

machine learning algorithms (i.e., deep neural networks [DNN], random forest [RF], and

logistic regression [LR]) to explore their ability to predict 1-year mortality by five-fold

cross validation methods. We conducted analyses leveraging features from prior to/at

and after/at the time of HF diagnosis.

Results: The area under the receiver operating curve (AUC) was used to evaluate

the performance of the three models: the mean AUC was 0.80 for DNN, 0.72 for

RF, and 0.74 for LR. Age, creatinine, body mass index, and blood pressure levels

were especially important features in predicting death within 1-year among HF patients.
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Conclusions: Machine learning models have considerable potential to improve

accuracy in mortality prediction, such that high-risk surgical intervention can be applied

only in those patients who stand to benefit from it. Access to EHR-based synthetic data

derivatives eliminates risk of exposure of EHR data, speeds time-to-insight, and facilitates

data sharing. As more clinical, imaging, and contractile features with proven predictive

capability are added to these models, the development of a clinical tool to assist in timing

of intervention in surgical candidates may be possible.

Keywords: electronic health record (EHR), machine/deep learning, heart failure, synthetic data, surgical

intervention

INTRODUCTION

Heart failure (HF) patients comprise the largest, most
rapidly growing, and most expensive subset of patients
with cardiovascular disease1. In the early stages of new-onset HF,
the clinical prediction of each patient’s potential for a favorable
response to medical therapy is critical since it determines
initial management and sets the stage for their ultimate clinical
course. This prediction is confounded by the fact that these
patients commonly present in profound clinical HF with
severely impaired left ventricular (LV) function (ejection fraction
<20%) (1), only to subsequently demonstrate a very favorable
response to medical therapy. Despite the gravity of their initial
presentation, they are essentially cured by medical therapy alone.
Conversely, many patients with an identical clinical presentation
do in fact suffer precipitous deterioration (2).

Unfortunately, the poor prognostic performance of the
qualitative metrics (echocardiographic, functional, metabolic,
and others) that currently drive HF therapeutic clinical
algorithms leaves little hope of accurate one-on-one individual
patient risk-stratification (3). In fact, because of the lack of
metrics that can accurately and reliably predict catastrophic
hemodynamic deterioration, many HF programs have
adopted a very low threshold for early and highly invasive
surgical intervention (4). Thus, upon initial presentation
with profound LV impairment, congestive symptoms, and
borderline hemodynamics, new-onset HF patients are often
rushed off to invasive surgery for intra-aortic balloon pump,
extracorporeal membrane oxygenator (ECMO) support, or
ventricular assist device (VAD) placement with immediate
listing for cardiac transplantation (2). It is tragic to subject
patients to the significant risks of surgical intervention if they
can be managed on medical therapy alone. Similarly, however,
over-compensating toward medical therapy in these critically
ill patients also has a major downside: we are equally unable
to determine which of these patients will suddenly deteriorate
while on medical therapy. This deterioration is often so rapid
and unheralded that sudden death or severe end-organ failure
preclude any further efforts (5). All too often, we are left with
patients whose “windows of opportunity” have passed under
our watch.

Thus, our inability to accurately and consistently differentiate
these two patient subsets at the time of presentation results in

1Available online at: www.americanheart.org

high-risk surgery being unnecessarily applied to some patients,
while being denied to others who have the most to gain from
it. Improving the accuracy of the metrics utilized to predict
response to guideline-directed medical therapy has obvious
potential to more accurately direct the clinical use of highly
invasive, risky, and expensive HF surgical intervention. We
seek to more accurately identify HF medical therapy non-
responders on a one-by-one basis. This would enable their
targeting for intense surveillance with an appropriately lowered
threshold for early evaluation for high-risk therapy—while
simultaneously sparing those who will ultimately respond to
lower-risk medical therapy.

Machine learning can detect non-intuitive classifier patterns
that allow for innovative combination of patient feature
predictive capability (6). Recently, deep learning algorithms have
been successfully used in electronic health record (EHR) data
from healthcare fields. Deep learning algorithms can effectively
capture the informative and useful features and patterns from the
rich healthcare information in EHR data (7). For example, a very
recent study showed that deep-learning-based model achieved
significantly higher accuracy to predict mortality among acute
heart failure patients than the existing score models and several
machine learning models by using EHR data (8–13).

One of the problems with deep learning applications
in heart failure is the management of large volumes of
incomplete EHR information. The specter of public exposure
of protected individual patient health information is also
an important consideration when accessing the often-massive
datasets commonly used in deep learning analysis of healthcare
information (14). In regard to these concerns, synthetic electronic
health record (EHR) data are statistically indistinguishable from
that of original protected health information, and can be
analyzed as if they were original data but without any privacy
concerns (15).

In this investigation, we utilize an entirely synthetic
dataset derived from a large cohort of HF patients seen
at a single institution to test several machine learning
methodologies regarding their prediction of HF outcomes.
Using entirely synthetic data, we developed and compared a
deep learning model—deep neural networks (DNN) (16)—with
two machine learning models—random forest (RF) (17) and
logistic regression (LR) (18)—to predict 1 year mortality among
heart failure patients. Feature importance determinations by a
tree-based classifier (19) were utilized to optimize comparison of
model performance.
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TABLE 1 | Included 27 features and examples of feature values.

Feature names Feature description and value examples

Gender Gender (e.g., Female, Male)

Primary race Race (e.g., White, Black, Asian, Other)

Age at event Age of patients when the first time diagnosed

with HF

Visit group Visit types (e.g., Inpatient visit, Outpatient visit,

Emergency room visit, Observation Same day

Visit, Ancillary, Pre-visit, Series)

Source diagnosis Diagnosis types (e.g., Cardiomyopathy,

unspecified, Dilated cardiomyopathy, Other

cardiomyopathies, Secondary cardiomyopathy,

unspecified’,

Cardiomyopathy due to drug and external

agent’,

Cardiomyopathy in other diseases classified

elsewhere, Alcoholic cardiomyopathy,

Cardiomyopathy in diseases classified

elsewhere Nutritional and

metabolic cardiomyopathy)

Diagnosis type Diagnosis types (e.g., Final Diagnosis,

Admitting, Reason for visit, Interim)

Facility Facility (e.g., BJC/Washington University)

Present on admission If HF present on admission (e.g., Yes, No, Ns)

Principal problem If HF is the principal problem (e.g., True, False)

Problem class Problem class (e.g., Chronic, Temporary)

Severity Severity (e.g., High)

BMI-Age at measurement Age of patients at the measure of BMI

BMI-Average calculated bmi The numeric value of BMI

BP-Age at Measurement Age of patients at the measure of BP

BP-Diastolic The numeric value of BP Diastolic

BP-Systolic The numeric value of BP Systolic

Steroids-Age at medication order Age of patients at the order date of Steroids

VHD-Condition Valvular heart disease (VHD) (e.g., Endocarditis,

valve unspecified, unspecified cause,

Endocarditis, valve unspecified)

Echo-Surgery code Echocardiogram (Echo) (e.g., 1070001163)

kidD-Age at event Kidney disease (KidD) (e.g., Chronic kidney

disease, stage 3 (moderate), Hypertensive

chronic kidney disease, unspecified, with

chronic kidney disease stage I through stage IV,

or unspecified, Hypertensive heart and chronic

kidney disease with heart failure and stage 1

through stage 4 chronic kidney disease, or

unspecified chronic kidney disease, Chronic

kidney disease, unspecified, End stage renal

disease, Hypertensive chronic kidney disease

with stage 1 through stage 4 chronic kidney

disease, or unspecified chronic kidney disease,

Chronic kidney disease, Stage III (moderate),

Chronic kidney disease, stage 2 (mild), Cystic

kidney disease, unspecified)

creatinine-Age at event Age of patients at the measure of creatinine

creatinine-Result value numeric The numeric value of creatinine

SMK-Smoking tobacco status Smoking (SMK) status (e.g., Former Smoker,

Never Assessed, Never Smoker, Current Every

Day Smoker, Unknown If Ever Smoked, Heavy

Tobacco Smoker, Smoker, Current Status

Unknown)

SMK-Age at event Age of patients at the smoking

(Continued)

TABLE 1 | Continued

Feature names Feature description and value examples

AF-Condition Atrial fibrillation (AF) (e.g., Atrial fibrillation,

Paroxysmal atrial fibrillation, Unspecified atrial

fibrillation, Chronic atrial fibrillation, Persistent

atrial fibrillation)

AF-Age at event Age of patients at the diagnosis of AF

diab • Diabetes (diab)—Identify diabetes presented

based on if one of the following presented.

• Fasting gluecose

• Hemoglobin A1c

• Diagnosis (e.g., Diabetes mellitus without

mention of complication, type II or

unspecified type, not stated as uncontrolled,

Type 2 diabetes mellitus

without complications)

METHODS

Data Source and Study Design
In this study, the electronic health records (EHR) data was
from a single hospital, Barnes-Jewish Hospital from a large
academic medical center, Washington University in St Louis.
These data were synthesized by MDClone platform, which
can create synthetic electronic health data that is statistically
equivalent to original data, but contains no actual patient
information2. The synthetic data generation platform creates a
computationally derived data set which is statistically identical
to that of the original patients. The computationally-derived
variables and their pairwise correlations had the same or very
similar distributions as the relationships among variables in
the original data (20). We included a Spearman’s correlation
comparison between the variables in the original compared
to the variables derived from the MDClone synthetic data
platform (Supplementary Figure 1). The original patient cohort,
from which the synthetic data was derived, were admitted for
treatment at Barnes-Jewish Hospital with an admitting diagnosis
of heart failure during the decade ending on 12/31/2018.
Our goal was to predict their proximity to catastrophic HF
decompensation by predicting 1-year mortality based upon
features contained in their EHR after/at or prior to/at the earliest
diagnoses of heart failure. We studied 26,575 (26,600) patients if
using features prior to/at (if after/at) heart failure diagnoses.

For the feature extraction, we discarded features whose
missing values rate exceeded 70%, as we expected that they may
cause a substantial difference between features available prior
to/at and after/at the time of HF diagnosis. For example, the
feature “CABG—Procedure code” was included in the case of
after/at HF diagnosis, but was excluded from the case of prior
to/at HF diagnosis as it had a missing value rate more than
70%. For all others, we imputed any missing values as the mean
value for the continuous variables and the mode value for the
categorical variables. Under the criteria, there were 27 features
and one outcome (death) were included in our study. The

2https://www.mdclone.com/
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included features and possible value examples for each feature
were listed in Table 1.

We classified the heart failure patients into two groups based
upon their mortality dates: a positive class (patients who died
within 365 days of initial HF presentation) and a negative class
(patients who did not die or died later than 365 days after HF
presentation). There were 1,768 (1,735) positive patients and
24,807 (24,865) negative patients if using features prior to/at
(after/at) the first heart failure diagnosis dates.

Statistical Analysis
We then applied machine learning and deep learning models to
predict the all-cause mortality within 1 year by using features
either prior to/at or after/at heart failure diagnoses. The three
models employed were deep neural networks (DNN), random
forest (RF) and logistic regression (LR). For each model of each
prediction, we utilized five-fold cross validation by dividing the
dataset into five-folds, with each fold serving as a test dataset
and the remaining four-folds comprising a training dataset.
There was a significant imbalance between the positive and

negative classes. We utilized Synthetic Minority Over-sampling
Technique (SMOTE) (21) to deal with the imbalanced issue by
oversampling positive patients to the same amount of negative
patients in each cross validation, i.e., the four-folds training
datasets was oversampled by SMOTE while the remaining one-
fold which served as testing dataset kept as original without using
SMOTE to oversample.

Our DNN was comprised of an input layer (with 27
dimensions), 5 hidden layers (with 256, 256, 128, 64, and 32
dimensions, respectively) and a scalar output layer. We used the
Sigmoid function (22) at the output layer and ReLu function
(23) at each hidden layer. Binary cross-entropy was used as loss
function and Adam optimizer (24) was used to optimize the
models with amini-batch size of 64 samples. The hyperparameter
of network depth was searched from 2 to 8 hidden layers. To
avoid overfitting, an early stopping technique was used which
would stop training when the monitored loss metric stopped
improving after 5 epochs. We set the maximum epochs at 50.
The LR and RF models were configured by the default options
in package of Scikit-learn in Python 3. We performed a grid

FIGURE 1 | The Flowchart of our work.
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search of hyperparameters for the RF model by five-fold cross
validation. We searched the number of trees in the forest for 100,
200, 500, and 700, and we considered the number of features for
the best split according to auto, sqrt, and log2. We also did a
grid search of hyperparameter tuning for LR models by five-fold
cross validation. In penalization, we searched the norm for L1
and L2 norm, and the inverse value of regularization strength for
10 different numbers spaced evenly on a log scale of [0, 4]. We
achieved the best hyperparameters on the default configurations
for both RF and LR models.

TABLE 2 | Characteristics [mean (SD) or n (%)] of the two study populations.

Demographics After/at heart failure

(n = 26,600)

Prior to/at heart

failure

(n = 26,575)

Age 63 (17) 63 (17)

Gender

Female 11,116 (41.8) 11,103 (41.8)

Male 15,484 (58.2) 15,418 (58.0)

Race

White 15,218 (57.2) 15,420 (58.0)

Black 4,738 (17.8) 5,015 (18.9)

Other/unknown 6,644 (25.0) 6,140 (23.1)

BMI 29.6 (6.3) 29.8 (6.2)

Diastolic blood pressure (DBP, mmHg) 73 (15) 75 (15)

Systolic blood pressure (SBP, mmHg) 127 (23) 131 (23)

Valvular heart disease (VHD) present 327 (1.2) 388 (1.5)

Echocardiogram (ECHO) present 38 (0.1) 5 (0.0)

Creatinine level 1.63 (1.01) 1.41 (0.88)

Current smoker 703 (2.6) 191 (0.7)

Diabetes present 3,809 (14.3) 5,174 (19.5)

Finally, we investigated the feature importance to better
understand which features played more important roles
compared to others by tree-based classifiers. We quantified
the importance of features by ordering them in an ascending
order. The prediction performances were then validated by using
different numbers of top features in the three machine learning
models. Figure 1 represents a flowchart of our data analysis.
Analyses were conducted by using the libraries of Scikit-learn,
Keras, Scipy, Matplotlib with Python, version 3.6.5 (2019).

RESULTS

The average age for the two study populations was 63 (Table 2).
Approximately 58% of patients in both groups were male and
white. There were 327 patients (388 for prior to/at heart failure)
who also had a diagnosis of valvular heart disease (VHD) and
14% (19% for prior to/at heart failure) of the patients had
diabetes. The average creatinine level was 1.63 (1.41 for prior
to/at heart failure) for patients. Approximately 7% of the patients
of both study populations died within 1 year from the earliest
diagnosis of heart failure.

Figure 2 shows the prediction performance for 1-year
mortality by using after/at and prior to/at first diagnosis heart
failure start date. All the 27 features are used for these predictions.
In the two study groups, DNN models outperformed the other
two models of RF and LR and achieved the highest AUC values:
the mean AUC value of DNN was 0.82 (0.80) compare to RF
and LR with 0.74 (0.72) and 0.74 (0.74) in the five-fold cross
validation models.

Figure 3 shows the feature importance by the tree-based
classifier method for both cases. In the first case of after/at
heart failure diagnosis, it shows that the most important features
included blood pressure, creatinine levels, body mass index
(BMI) etc. In the case of prior to/at heart failure diagnosis, the

FIGURE 2 | Prediction performance by deep neural network (DNN), random forest (RF) and logistic regression (LR). (A) Is using features after and at heart failure

diagnoses date; (B) is using features prior to and at heart failure diagnoses date.
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FIGURE 3 | Feature importance study by tree-based classifier. (A) Is using features after/at heart failure diagnoses date; (B) is using features prior to/at heart failure

diagnoses date.

most important features were age at the first diagnosis of heart
failure, creatinine, and BMI.

Figure 4 shows the prediction performance by using all
different numbers of top features for 3 models of DNN, RF and
LR. For example, if # of top feature = 12, it means the models
used only the top 12 important features listed in Figure 3 in each
case. In all cases, DNN models outperformed RF and LR models.
The AUC values were markedly reduced in both study groups
when the features dropped from 12 to 11, for all three machine
learning models.

DISCUSSION

In this study, we utilized 10-year synthetic EHR data by
MDClone platform to identify heart failure patients to predict
the mortality of patients within 1 year from the first diagnoses
of heart failure by machine learning and deep learning models.
We also investigated the top important features by tree-based
classifier and tested all different possible numbers of top features
as the inputs for all the three models in both two cases.

Our results indicated that the deep learning model DNN
can effectively predict the mortality within 1 year of patients
by using features such as measurements and diagnoses from
either after/at or prior to/at the first diagnoses of heart failure.
Our results also indicated that features such as blood pressure,
BMI and creatinine levels are the most informative ones, and
in all cases DNN models outperformed RF and LR models.
Three models consistently indicated that there was a significant
reduction in accuracy of model prediction, as represented by
AUC values, when the number of most important features
utilized in the model were reduced from 12 to 11, suggesting
that 12 features would be a potential threshold if a reduction in
features is necessary.

The case of using features from prior to/at HF diagnosis was to
provide insights into the 1-year mortality prediction at the time
of HF diagnosis, in which a mortality prediction risk score was
calculated for patients at the time of HF diagnosis. The case of
using features from after/at HF diagnosis to enhance the 1-year
mortality prediction following HF diagnosis. At each follow-
up time point, a predicted 1-year mortality risk score could be

Frontiers in Digital Health | www.frontiersin.org 6 December 2020 | Volume 2 | Article 57694513

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Guo et al. Mortality Prediction by Deep Learning

FIGURE 4 | Model performance with different numbers of top features for DNN, RF and LR.

calculated for patients. Based on these scores, providers may
make particular treatment decisions to optimize prevention and
more effectively manage these patients.

The use of synthetic EHR data in deep learning models
to predict 1-year mortality among heart failure patients is
unique to this investigation, which also emphasized the use of
feature importance to guide mechanistic hypotheses in this HF
patient population. This use of synthetic EHR data containing
no protected health information uniquely allows a broader
application of our results by enabling the sharing of data without
risk of exposure of individual patient EHR information. In future
work, we plan to pursue additional statistical analyses such as
permutation tests and statistical comparisons to investigate the
impact of feature importance. We acknowledge that our current
DNN model had a relatively simple structure with 5 hidden
layers. In future work, we will investigate more complicated
structures of DNN models with more hidden layers (e.g., from
2 to 32) and evaluate other novel deep learning models.

LIMITATIONS

This study is limited by the small number of health-related
features included in our machine learning applications. Many
features were not used in our models because of a high

proportion of missing values. As the EHR continues to expand
health data inclusion and improve in the accuracy, consistency,
and completeness of the data included, model performance will
almost assuredly improve by the inclusion of clinical variables
with proven predictive capability.

CONCLUSIONS

Machine learning models have obvious and considerable
potential to improve accuracy in the risk stratification of HF
patients. The ability to use EHR variables to identify HF patient
proximity to HF decompensation and death would allow the
more accurate and timely application of high-risk surgical
intervention. Access to synthetic data derivatives speeds time-
to-insight using EHR data, and allows the sharing of massive
datasets—while simultaneously reducing privacy concerns by
eliminating the risk of personal data exposure. As the EHR
becomes more complete, the inclusion of advanced clinical,
imaging, and contractile features—with proven predictive
capability—in predictive machine learning models can be
expected to improve their accuracy. As the accuracy of machine
learning, and especially deep learning, models improves, the
development of a clinical tool capable of assisting clinicians
in the timing of intervention in surgical candidates may be
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possible. Further, our ability to quantify individual EHR feature
impact on mortality prediction may allow the generation
of non-intuitive mechanistic hypotheses leading to potential
preventative clinical intervention.

DATA AVAILABILITY STATEMENT

The datasets for the current study are available from the
corresponding author on reasonable request. Requests to access
these datasets should be directed to aixia.guo@wustl.edu.

ETHICS STATEMENT

Ethical approval was not provided for this study on human
participants because synthetic electronic health data that
contains no actual patient information was used. The ethics

committee waived the requirement of written informed consent
for participation.

AUTHOR CONTRIBUTIONS

RF contributed to the study design. AG conducted the analysis
and wrote the manuscript. RM, FM, BC, and MP provided
insightful discussions, reviewed the results and revised the
manuscript. All authors contributed to the article and approved
the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdgth.
2020.576945/full#supplementary-material

REFERENCES

1. Niebauer J, Clark AL, Anker SD, Coats AJS. Three year mortality in heart

failure patients with very low left ventricular ejection fractions. Int J Cardiol.

(1999) 70:245–7. doi: 10.1016/S0167-5273(99)00088-1

2. Inamdar A, Inamdar A. Heart failure: diagnosis, management and utilization.

J Clin Med. (2016) 5:62. doi: 10.3390/jcm5070062

3. Rastogi A, Novak E, Platts AE, Mann DL. Epidemiology, pathophysiology and

clinical outcomes for heart failure patients with a mid-range ejection fraction.

Eur J Heart Fail. (2017) 19:1597–605. doi: 10.1002/ejhf.879

4. Ministeri M, Alonso-Gonzalez R, Swan L, Dimopoulos K.

Common long-term complications of adult congenital heart disease:

avoid falling in a H.E.A.P. Expert Rev Cardiovasc Ther. (2016)

14:445–62. doi: 10.1586/14779072.2016.1133294

5. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res.

(2004) 95:754–63. doi: 10.1161/01.RES.0000145047.14691.db

6. Liu H, Fu Z, Yang K, Xu X, Bauchy M. Machine learning for

glass science and engineering: a review. J Non Cryst Solids. (2019)

119419. doi: 10.1016/j.nocx.2019.100036

7. Goodfellow I, Bengio Y, Courville A. Deep Learning. Montreal, QC: MIT

Press (2016).

8. Kwon J, Kim K-H, Ki-Hyun J, Lee SE, Lee HY, Cho. Artificial intelligence

algorithm for predicting mortality of patients with acute heart failure. PLoS

ONE. (2019) 14:e0219302. doi: 10.1371/journal.pone.0219302

9. Bello GA, Dawes TJW, Duan J, Biffi C, de Marvao A, Howard LSGE, et al.

Deep learning cardiac motion analysis for human survival prediction. Nat

Mach Intell. (2019) 1:95–104. doi: 10.1038/s42256-019-0019-2

10. Awan SE, Bennamoun M, Sohel F, Sanfilippo FM, Dwivedi G. Machine

learning-based prediction of heart failure readmission or death: implications

of choosing the right model and the right metrics. ESC Hear Fail. (2019)

6:428–35. doi: 10.1002/ehf2.12419

11. Adler ED, Voors AA, Klein L, Macheret F, Braun OO, Urey MA, et al.

Improving risk prediction in heart failure using machine learning. Eur J Heart

Fail. (2020) 22:139–47. doi: 10.1002/ejhf.1628

12. Guo A, Pasque M, Loh F, Mann DL, Payne PRO. Heart failure

diagnosis, readmission, and mortality prediction using machine

learning and artificial intelligence models. Curr Epidemiol Reports.

(2020). doi: 10.1007/s40471-020-00259-w

13. Angraal S, Mortazavi BJ, Gupta A, Khera R, Ahmad T, Desai NR, et

al. Machine learning prediction of mortality and hospitalization in heart

failure with preserved ejection fraction. JACC Hear Fail. (2020) 8:12–

21. doi: 10.1016/j.jchf.2019.06.013

14. Nass SJ, Levit LA, Gostin LO. Beyond the HIPAA Privacy

Rule: Enhancing Privacy, Improving Health Through Research.

Washington, DC: National Academies Press (2009). doi: 10.17226/

12458

15. Foraker RE, Mann DL, Payne PRO. Are synthetic data derivatives the

future of translational medicine? JACC BASIC TO Transl Sci. (2018) 3:716–

8. doi: 10.1016/j.jacbts.2018.08.007

16. Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn.

(2009) 2:1–127. doi: 10.1561/2200000006

17. Ho TK. Random decision forests. In: Proceedings of the International

Conference on Document Analysis and Recognition. ICDAR. (1995). p.

1:278–82.

18. Hosmer D, Lemeshow S, Sturdivant RX. Model-building strategies

and methods for logistic regression. In: Applied Logistic Regression.

(2013). doi: 10.1002/9781118548387

19. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression

Trees. New York, NY: Routledge(2017). doi: 10.1201/9781315139470

20. Foraker R, Yu S, Michelson A, et al. Spot the difference: comparing

results of analyses from real patient data and synthetic derivatives. JAMIA

OPEN. (2020).

21. Chawla N V., Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:

synthetic minority over-sampling technique. J Artif Intell Res. (2002)

16:321–57. doi: 10.1613/jair.953

22. Han J, Moraga C. The influence of the sigmoid function parameters on

the speed of backpropagation learning. In: Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics. Heidelberg: Springer. (1995). p.

930. doi: 10.1007/3-540-59497-3_175

23. Nair V, Hinton GE. Rectified linear units improve Restricted Boltzmann

machines. In: ICML Proceedings, 27th International Conference on Machine

Learning (Madison, WI: Omnipress). (2010).

24. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: CoRR

International Conference on Learning Representations. (2014). arXiv:1412.6980

[cs.LG]

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Guo, Foraker, MacGregor, Masood, Cupps and Pasque. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Digital Health | www.frontiersin.org 8 December 2020 | Volume 2 | Article 57694515

https://www.frontiersin.org/articles/10.3389/fdgth.2020.576945/full#supplementary-material
https://doi.org/10.1016/S0167-5273(99)00088-1
https://doi.org/10.3390/jcm5070062
https://doi.org/10.1002/ejhf.879
https://doi.org/10.1586/14779072.2016.1133294
https://doi.org/10.1161/01.RES.0000145047.14691.db
https://doi.org/10.1016/j.nocx.2019.100036
https://doi.org/10.1371/journal.pone.0219302
https://doi.org/10.1038/s42256-019-0019-2
https://doi.org/10.1002/ehf2.12419
https://doi.org/10.1002/ejhf.1628
https://doi.org/10.1007/s40471-020-00259-w
https://doi.org/10.1016/j.jchf.2019.06.013
https://doi.org/10.17226/12458
https://doi.org/10.1016/j.jacbts.2018.08.007
https://doi.org/10.1561/2200000006
https://doi.org/10.1002/9781118548387
https://doi.org/10.1201/9781315139470
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/3-540-59497-3_175
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


METHODS
published: 18 December 2020

doi: 10.3389/fdgth.2020.600604

Frontiers in Digital Health | www.frontiersin.org 1 December 2020 | Volume 2 | Article 600604

Edited by:

Kezhi Li,

University College London,

United Kingdom

Reviewed by:

Chenggang Lai,

Walmart Labs, United States

Omero Benedicto Poli Neto,

University of São Paulo, Brazil

*Correspondence:

Mohamed Elgendi

moe.elgendi@gmail.com

Specialty section:

This article was submitted to

Health Informatics,

a section of the journal

Frontiers in Digital Health

Received: 30 August 2020

Accepted: 08 October 2020

Published: 18 December 2020

Citation:

Elgendi M, Allaire C, Williams C,

Bedaiwy MA and Yong PJ (2020)

Machine Learning Revealed New

Correlates of Chronic Pelvic Pain in

Women.

Front. Digit. Health 2:600604.

doi: 10.3389/fdgth.2020.600604

Machine Learning Revealed New
Correlates of Chronic Pelvic Pain in
Women
Mohamed Elgendi 1,2,3*, Catherine Allaire 2,3, Christina Williams 2,3, Mohamed A. Bedaiwy 2,3

and Paul J. Yong 2,3

1 School of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada, 2 Faculty of

Medicine, University of British Columbia, Vancouver, BC, Canada, 3 British Columbia (BC) Children’s & Women’s Hospital,

Vancouver, BC, Canada

Chronic pelvic pain affects one in seven women worldwide, and there is an urgent

need to reduce its associated significant costs and to improve women’s health.

There are many correlated factors associated with chronic pelvic pain (CPP), and

analyzing them simultaneously can be complex and involves many challenges. A newly

developed interaction ensemble, referred to as INTENSE, was implemented to investigate

this research gap. When applied, INTENSE aggregates three machine learning (ML)

methods, which are unsupervised, as follows: interaction principal component analysis

(IPCA), hierarchical cluster analysis (HCA), and centroid-based clustering (CBC). For our

proposed research, we used INTENSE to uncover novel knowledge, which revealed

new interactions in a sample of 656 patients among 25 factors: age, parity, ethnicity,

body mass index, endometriosis, irritable bowel syndrome, painful bladder syndrome,

pelvic floor tenderness, abdominal wall pain, depression score, anxiety score, Pain

Catastrophizing Scale, family history of chronic pain, new or re-referral, age when first

experienced pain, pain duration, surgery helpful for pain, infertility, smoking, alcohol use,

trauma, dysmenorrhea, deep dyspareunia, CPP, and the Endometriosis Health Profile

for functional quality of life. INTENSE indicates that CPP and the Endometriosis Health

Profile are correlated with depression score, anxiety score, and the Pain Catastrophizing

Scale. Other insights derived from these ML methods include the finding that higher

body mass index was clustered with smoking and a history of life trauma. As well,

sexual pain (deep dyspareunia) was found to be associated with musculoskeletal pain

contributors (abdominal wall pain and pelvic floor tenderness). Therefore, INTENSE

provided expert-like reasoning without training any model or prior knowledge of CPP.

ML has the potential to identify novel relationships in the etiology of CPP, and thus can

drive innovative future research.

Keywords: obstetrics, gynecology, chronic pelvic pain in women, endometriosis, quality of life, infertility, data

science, artificial intelligence
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1. INTRODUCTION

Chronic pelvic pain affects nearly 15% of women, with major
impact on quality of life and health care costs (1, 2). The
etiology of chronic pelvic pain (CPP) is very complex, involving
many interrelated and correlated factors over the course of
one’s life, including the presence or absence of endometriosis.
Recently, Yosef et al. (3) performed an exploratory analysis
of multifactorial variables independently associated with the
severity of CPP in women. Among the findings, they found that
abdominal wall pain (i.e., pain related to the abdominal wall
musculature), tenderness of the pelvic floor musculature, and
Pain Catastrophizing Scale were independently associated with
the severity of CPPwith significance of p ≤ 0.05, but surprisingly,
no association with endometriosis. However, the authors used
multiple linear regression and thus did not investigate the
simultaneous dynamics between factors. In complex clinical
conditions, such as CPP, straightforward regression analyses may
provide an incomplete view of the impact of each factor in
relation to other factors.

It is our understanding that, as it currently stands, minimal
effort has been made to examine different factors simultaneously
using artificial intelligence (AI), with a focus on the network
dynamics between potential factors, in this area of medicine.
Thus, in this study, we utilize AI-informed machine learning
(ML) methods to uncover the hidden interactions among all
factors and explore the importance of each factor for CPP
in women.

2. MATERIALS AND METHODS

2.1. Pelvic Pain and Endometriosis Dataset
This study is a re-analysis of cross-sectional data from Yosef et al.
(3) (N = 656 subjects), which are taken from a prospective
database from a tertiary referral center for pelvic pain and
endometriosis using the REDCap system (4, 5). Participants
from December 2013 to September 2015 were included, who
completed an online questionnaire and underwent a complete
history/examination. Exclusion criteria included age > 50 or
menopausal (6). The sample characteristics have been published
previously (3), with a mean (± 1 standard deviation) age
of 34.5 (±7.6) years and body mass index (BMI) of 25.3
(±5.7) kg/m2, with 49% of the sample nulligravid and 74%
of the sample Caucasian, who had underlying diagnoses of
endometriosis (57%), irritable bowel syndrome (53%), painful
bladder syndrome (43%), and abdominal wall trigger points
(27%). We chose 25 factors of clinical importance in this cohort
based on the initial analysis of Yosef et al. (3), as shown inTable 1.

2.2. Pre-processing Step
To standardize the values of each factor, we applied the Z-score
normalization. It is implemented by subtracting the mean from
each factor, then divide the result by the standard deviation of
each factor as follows: F = (X − X̄)/(σ ),
where F is the normalized factor vector, X is the raw factor
vector, (X̄ = 1

N

∑N
n=1 Xn) is the mean of the factor vector,

TABLE 1 | The 25 factors of clinical importance to chronic pelvic pain used in

this study.

Variable name Description

Age Years

Parity Nulliparous (no childbirth) vs. Parous (at least one

childbirth)

Ethnicity Other vs. Caucasian

Body mass index (BMI) kg/m2

Endometriosis (3) Absent/not suspected (prior negative

laparoscopy or not clinically suspected) vs.

clinically suspected (based on history and/or

tenderness on examination (6)) vs. confirmed

present (prior surgical diagnosis or current

nodule or endometrioma on exam/imaging)

Irritable bowel syndrome (IBS)

(7)

Present vs. Absent

Painful bladder syndrome

(PBS) (8)

Present vs. Absent

Pelvic floor tenderness Tenderness of the levator ani pelvic floor

musculature on examination, as a sign of

myofascial pelvic pain syndrome: Present vs.

Absent

Abdominal wall pain Abdominal wall pain diagnosed by the Carnett

test (1), with abdominal tenderness not changing

or worsening with tensing of the abdominal wall

musculature, often secondary to myofascial

trigger points: Present vs. Absent

Depression Patient Health Questionnaire-9 questionnaire (9)

Anxiety Generalized Anxiety Disorder-7 questionnaire (10)

Pain catastrophizing Pain Catastrophizing Scale (11) (measurement of

magnification or rumination on symptoms, as

well as feelings of helplessness)

Family history of chronic pain Yes vs. No vs. Do not know

Referral type New or re-referral

Age when first experienced

pain

Years

Pain duration Years

Patient report that prior surgery

was helpful for pain

Yes vs. No vs. No prior surgery

Infertility Yes vs. No vs. Never tried for pregnancy

Smoking Yes vs. No

Alcohol use Drinks/week

Trauma Based on 7 questions about childhood or adult

sexual, physical, or emotional abuse3 (scored

from 0–7)

Dysmenorrhea Menstrual cramps (rated 0–10)

Deep dyspareunia Pain with deep penetration during sexual activity

(rated 0–10)

Chronic pelvic pain Chronic pain in the pelvic (rated 0–10)

Endometriosis Health

Profile-30 (12)

indicating worse quality-of-life)

(σ = 1
N−1

∑N
n=1(Xn−X̄)2) is the standard deviation of the factor

vector,N is the number of subjects, which equals 656 in this work.

2.3. INTENSE Algorithm
INTENSE, a newly developed interaction ensemble method that
utilizes various clustering models (13) was used. Multiple models
for clustering are used in existing literature; however, each has
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its own set of rules for defining factors with “mathematical
similarity.” When implementing the INTENSE method, results
are aggregated from three different interaction methods, with a
different mathematical view for each:

1. Interaction based on principal component analysis examines
correlations between all factors based on eigen values.

2. Interaction based on connectivity clustering examines
distance-wise similarity between each two factors.

3. Interaction based on centroid clustering examines distance-
wise similarity between all factors and the proposed number
of centroids.

4. INTENSE aggregates findings from the above interactions
for a consensus regarding how all the factors in the dataset
interact with each other.

Since each method for interactions has limitations, such as
the initial value used, fixed thresholds, and so on, INTENSE
was created. When combining results from various interaction
models that utilized different geometrical concepts, the output
will be an aggregate of agreed upon results, thus creating a more
robust conclusion.

2.3.1. Interaction Principal Component Analysis
A correlation-based machine learning method was used in this
study, referred to as the IPCA, proposed in a previous study (13).
As an unsupervised ML technique, within set of observations
of attributes that are potentially correlated, it identifies linearly
uncorrelated attributes (in this instance, factors). A decorrelation
process is first used that does not need any initial conditions
for the processed attributes. Next, the Pearson’s correlation is
applied. In the absence of any training of labeling, IPCA can
automatically reveal hidden interactions between factors, and
provide a true level of learning where new behaviors among
the factors examined are uncovered. Algorithm 1 shows the
pseudocode of IPCA.

2.3.2. Hierarchical Cluster Analysis
An unsupervised ML approach, termed the hierarchical cluster
analysis (HCA), connects “factors” and based on their distance,
groups are formed. Among biosignals, HCA can visualize and
quantify dissimilarities. To provide a hierarchical cluster, the
Euclidean distance d = ||a− b||2 was implemented, also referred
to as the dendrogram. “Average” is utilized here as the linkage
criterion to determine the distance between all factors as a
function of the pairwise distances between observations,which

is defined as d(W, v) =
∑ d(w[i],v[j])

|w|×|v| , for all data points

i and j, where |w| and |v| are the cardinalities of clusters
|w| and |v|, respectively.

2.3.3. Centroid-Based Clustering
A well-known and relatively simple centroid-based algorithm
for clustering, known as the K-means clustering (centroid-
based clustering, CBC) is used here. The number of factors
F is divided into K disjoint clusters. The statistical means of
a group of factors form clusters. In other words, the factors
with minimum distance between them and their statistical mean
formulate an independent cluster. To find the minimum distance

Algorithm 1: Interaction Principal Component Analysis
(IPCA).

// Assume that there is a set ofM factors

{Ŵ1,Ŵ2, ...,ŴM , }

// Shape the size for each factor to be N × 1, where N =

number of subjects

Ŵ
N×1

// Normalize factors

9j =
1

N

N∑

i=1

Ŵi,j i = 1, 2, ...,N; j = 1, 2, ...,M

σj =
1

N − 1

N∑

i=1

(Ŵi,j − 9j)
2

Zj = (Ŵi,j − 9j)/σj

// Keep iterating until two factors or more found to be
inter-correlated
while j ∈ Z′, j < 2 do

// Compute covariance matrix C from Z

C =
1

M
Z′Z

// Calculate eigen values and eigen vectors

Cv = ev

// Rank eigen values in descending order and their eigen
vectors

PCj = SORT(e, v,′ descending′)

// Examine correlation between factors and PCs
for j = 1 :M do

for k = 1 :M do
rj,k = CORR(PCj,Zk)

end

end

// find Z factors that are correlated PCs with a
correlation greater than 0.5

Z′
j = FIND(Zj, |r > 0.5|)

end

between a group of factors and their corresponding statistical
mean, the within-cluster sum-of-squares, also known as inertia,
is commonly used. Inertia is defined as: ||fi − µj||

2, where fi is
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FIGURE 1 | Heat map of the interaction principle component analysis (IPCA) based on the determined 25 factors from the Pelvic Pain and Endometriosis database.

The interaction zone refers to the number of principle components (PCs) where two or more factors are correlated, while the non-interaction zone refers to the number

of PCs that have only single factor that is not correlated with any other factors.

all values in factor i, and µj refers to the mean of all factors in
cluster j. It is highly recommended to apply PCA before CBC
clustering to reduce dimensionality and visualize the results in
two dimensions.

2.3.4. Ensemble Method
We used the “majority voting” rule to combine conceptually
different interaction recommendations by different methods. In
other words, in majority voting, the consistent interactions
suggested by different clustering methods are the ideal
and more meaningful interactions. For example, if the
recommendations are

1. IPCA 7−→ C1 (f1, f3), C2 (f5, f7), C3 (f8, f9, f10)
2. HCA 7−→ C1 (f1, f3, f5), C2 (f8, f9)
3. CBC 7−→ C1 (f1, f3, f6), C2 (f6, f7)

then the ensemble decision is that f1 and f3 interact strongly and
more strongly correlated among all other factors.

2.4. Software
We used Python 3.6.5 software and Matlab 2018b software to
analyze the data.

3. RESULTS

The significance of the 25 principal components extracted from
the database are shown in Figure 1. Most of the variance
is explained by PC1 (40%), which reflects the relevance
and importance of factors correlated with PC1; 23% of the
variance is explained by PC2, and lastly ∼17% of variance
is explained by PC3. It can be seen that PC1 is the
most important, followed by PC2. PC25 shows to be the
least important.

A correlation matrix heat map, shown in Figure 1,
demonstrates the interaction between factors and all PCs.
Diagonal entries are equal to one. There are four 25× 25 blocks.
The correlation matrix for PCs in the top right block contains
zeros, confirming that the principle components (PCs) are
mutually orthogonal, and hence are not correlated. Correlation
between all factors is shown in the bottom-left block, and thus,
there no correlation was reported.

As seen in Figure 1, the 25× 25 heatmap contains interesting
results about the factors interaction. IPCA involves two steps:
First, it identifies the most strongly interacting factors, following
which IPCA is run again on theses selected factors. In the first
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FIGURE 2 | Number of dimensions needed to account for 75% of the total variance.

step, IPCA identified 12 factors that are interacting with each
other: age, parity, endometriosis, depression score, anxiety score,
Pain Catastrophizing Scale, first pain, pain duration, infertility,
CPP, and Endometriosis Health Profile. These 12 factors are
located within the first four PCs (PC1–4), which are located
in the interaction zone in Figure 1. The IPCA algorithm found
that there is no interaction between PCs and factors after
PC4; therefore, it used only the factors associated with the
first four PCs. This was confirmed by running a cumulative
sum for all PCs. Figure 2 visualizes the cumulative sum of
PCs and shows that 12 dimensions (i.e., PCs) are needed to
account for 75% of the total variance, which is above the
70% cut-off point (14) for determining the optimal number
of PCs. Note that the non-interaction zone shown in Figure 1

contains only individual factors that are not interacting with
other factors.

The last step of IPCA shows the interactions between the
previously determined 12 factors. As shown in Figure 3, the
first column shows significant correlation-based interactions
between PC1 and CPP, Endometriosis Health Profile, Pain
Catastrophizing Scale, anxiety score, and depression score.
Chronic pelvic pain, Endometriosis Health Profile, Pain
Catastrophizing Scale, anxiety score, and depression score
factors move in the same direction. Clinically, this suggests
that higher CPP severity, worse quality-of-life, and more
anxiety, depression, and pain catastrophizing, all correlate with
each other.

In the second column age, and age at first pain, and parity
are moving together, which is another kind of AI produced
by IPCA, and indicates that younger age, earlier age at first
pain, and nulliparity are all correlated. In contrast, these

variables are strongly inversely correlated with infertility, which
suggests that having never tried for pregnancy is associated
with younger age, earlier age at first pain, and nulliparity.
The third column shows that endometriosis and pain duration
move in the same direction, and both are inversely correlated
with age at first pain. This is another level of AI produced
by IPCA, and demonstrates that those with younger age at
first pain have a longer pain duration and also are more likely
have a confirmed diagnosis of endometriosis. PC4–12 show no
interactions between factors.

The interaction based on hierarchical clustering of factors is
shown in the dendrogram. A hierarchy is built that progressively
merges the independent factors to generate clusters. The 25
factors were used, and the process works based on determining
how close each set of two factors are. The factors were
clustered according to their similarity, as shown in Figure 4.
By visually inspecting Figure 4 shows that the changes in the
CPP and Endometriosis Health Profile are similar and are
both clustered with anxiety score, depression score, and Pain
Catastrophizing Scale. This is a kind of AI recommendation
produced by HCA, and it suggests that the anxiety score,
depression score, and Pain Catastrophizing Scale are good
correlates for CPP and Endometriosis Health Profile. This
finding is in agreement with the IPCA finding, as shown in
Figure 3.

As can be seen in Figure 4, the most interesting
recommendation produced using HCA is clustering alcohol,
ethnicity and infertility as one group, such that infertility was
correlated with non-Caucasian ethnicity and less alcohol use.
Note that HCA was able to detect a non-linear correlation
compared to the traditional linear bivariate correlation that was
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FIGURE 3 | Heat map of the interaction principle component analysis (IPCA) between 12 factors using the Pelvic Pain and Endometriosis database, and the black

arrow indicates the direction of the correlation. The interaction zone refers to the number of principle components (PCs) where two or more factors are correlated,

while the non-interaction zone refers to the number of PCs that have only single factor that is not correlated with any other factors.
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FIGURE 4 | Hierarchical cluster analysis (HCA) analysis of all 25 factors in the Pelvic Pain and Endometriosis database. The star represents the factor of interest,

which is chronic pelvic pain (CPP). Four factors in zone #1 are directly associated with CPP, while two factors in zone #2 are indirectly associated with CPP.

not able to detect a correlation between ethnicity and alcohol
(i.e., r = 0.158), ethnicity and infertility (i.e., r = 0.068), and
alcohol and infertility (i.e., r = 0.065).

Interestingly, as shown in Figure 4, HCA grouped BMI with
trauma and smoking, suggesting a correlation between the three
(patients who are smoking and have been traumatized have
higher BMI in this database). In fact, HCA showed that trauma
and smoking are together directly associated with BMI. Note
that HCA was able to detect a non-linear correlation compared
to the traditional linear bivariate correlation that was not able
to detect a correlation between trauma and BMI (i.e., r =

0.0176), trauma and smoking (i.e., r = 0.217), and BMI and
smoking (i.e., r = 0.108).

The third geometrical interaction for our factors is CBC,
which represents an alternative clustering method. Initially, CBC
requires the desired number of clusters to process the data. We
tested the inertia and found that the ideal number of clusters
that reduces the distance between factors and their centroids is
five. Then CBC was set up with five clusters, with respect to
CPP, CBC clustered anxiety score, Pain Catastrophizing Scale,
depression score, and Endometriosis Health Profile as one cluster,
the first cluster on the left side of Figure 5. This finding is

in agreement with the IPCA and HCA findings, as shown in
Figures 3, 4, respectively.

Also, CBC clustered four factors (age, family history of chronic
pain, parity, and alcohol use per week) as one cluster with respect
to CPP. Note that IPCA and HCA confirmed the correlation
between age and parity (older age and higher parity/more
deliveries), and CBC is in agreement with this finding. In
addition, CBC clustered nine factors (BMI, infertility, trauma,
deep dyspareunia, smoking, irritable bowel syndrome, painful
bladder syndrome, pelvic floor tenderness, and abdominal wall
pain) as one cluster with respect CPP. Note that CBC clustered
BMI with trauma and smoking, confirming the effects of BMI on
smoking and trauma, which is in agreement with HCA finding.
Moreover, CBC clustered age when first experienced pain with
surgery being helpful (younger age when first experienced pain
associated with surgery having been helpful).

It is worth mentioning that IPCA found CPP to be interacting
with Pain Catastrophizing Scale, anxiety score, depression score,
and Endometriosis Health Profile. HCA showed an indirect
(placing both in the same group, but not close to each other)
association between irritable bowel syndrome, painful bladder
syndrome, and CPP. Both irritable bowel syndrome and painful
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FIGURE 5 | Centroid-based clustering (CBC) analysis of all 25 factors in the Pelvic Pain and Endometriosis database using five clusters. Four factors (Pain

Catastrophizing Scale, anxiety score, depression score, and Endometriosis Health Profile) are formulated in one cluster with respect to chronic pelvic pain (CPP). Also,

four factors (age, family history of chronic pain, parity, and alcohol use per week) are formulated in one cluster with respect to CPP. Nine factors [body mass index

(BMI), infertility, trauma, deep dyspareunia, smoking, irritable bowel syndrome, painful bladder syndrome, pelvic floor tenderness, and abdominal wall pain] are

formulated in one cluster with respect to CPP. Interestingly, age at first pain and history of surgery are correlated with each other with respect to CPP.

bladder syndrome were placed on the left side of CPP in
a different group, as shown in Figure 4. Interestingly, HCA
showed an association between abdominal wall pain, pelvic
floor tenderness, and deep dyspareunia. This points toward
the importance of musculoskeletal contributors (abdominal wall
trigger points and myofascial pelvic pain syndrome of the pelvic
floor) to sexual pain.

4. DISCUSSION

In this study, we utilized ML approaches to characterize factors
that are correlated with CPP. To achieve this, we compared
our results with those of a previously published study on
the same dataset. The previous study (3) from our group
on independent associations with factors suggested that seven
factors were correlated with CPP: BMI, abdominal wall pain,
pelvic floor tenderness, Pain Catastrophizing Scale, painful
bladder syndrome, smoking, and history of adult trauma.
However, these results showed the independent importance of
each factor for chronic pelvic pain assessment. Our simultaneous
analysis using INTENSE found that CPP and Endometriosis
Health Profile are correlated with depression score, anxiety score,
and Pain Catastrophizing Scale.

It was notable that endometriosis was not associated with
chronic pelvic pain, as reported in our previous study (3)
using regression analyses. However, in this current study, IPCA
found an interesting collective relationship, where PC3 shows
that those with younger age at first pain are more likely
to have had surgery for endometriosis, which was reported
as helpful. This was an interesting kind of AI observation,
produced using IPCA. Clinically this makes sense, as patients
with earlier onset pain and longer pain duration are more
likely to undergo surgery to confirm the diagnosis and treat
the endometriosis.

Our ML approach was also able to identify other unique
relationships that were not apparent with routine regression
analyses on the same dataset (3). For example, higher BMI
was associated with a history of life trauma (15) and smoking
(Figure 3). While the factors underlying this relationship are
complex, one hypothesis is that life trauma could predispose to
smoking as well as lifestyle habits that give risk to obesity. This
hypothesis warrants further study.

Another interesting finding was that HCA clustered
abdominal wall pain andmyofascial pelvic pain of the pelvic floor
musculature with deep dyspareunia (sexual pain) (Figure 4).
This points to the importance of musculoskeletal factors in the
etiology of sexual pain specifically, among women with pelvic
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pain. The same relationship with musculoskeletal factors was
not seen for dysmenorrhea (menstrual cramps), indicating
that dysmenorrhea may have a different pathophysiology
compared to sexual pain. These unique aspects of the etiology of
different types of pelvic pain, discovered using ML, also warrant
future study.

A limitation of the study is the inherent heterogeneity of
chronic pelvic pain, where multiple underlying diagnoses can
be present. While the sample size (> 500) helps to capture this
heterogeneity in part, additional multi-center research is needed
with even larger sample sizes given the complex multifactorial
nature of chronic pelvic pain.

5. CONCLUSION

In this study, we have described our evaluation of the impact of
chronic pelvic pain on various factors using machine learning
approaches. INTENSE can to detect complex relationships
between different factors for chronic pelvic pain, without the
need for any previous training or knowledge, and is a completely
unsupervised interaction method. The results of the MLmethods
showed agreement on the significant correlation between chronic
pelvic pain and Endometriosis Health Profile-30, depression
score, anxiety score, and Pain Catastrophizing Scale. Other
unique relationships were also identified with ML, which provide
data to drive future research.
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This paper proposes a new perspective of analyzing non-linear acoustic characteristics

of the snore sounds. According to the ERB (Equivalent Rectangular Bandwidth) scale

used in psychoacoustics, the ERB correlation dimension (ECD) of the snore sound

was computed to feature different severity levels of sleep apnea hypopnea syndrome

(SAHS). For the training group of 93 subjects, snore episodes were manually segmented

and the ECD parameters of the snores were extracted, which established the gaussian

mixture models (GMM). The nocturnal snore sound of the testing group of another 120

subjects was tested to detect SAHS snores, thus estimating the apnea hypopnea index

(AHI), which is called AHIECD. Compared to the AHIPSG value of the gold standard

polysomnography (PSG) diagnosis, the estimated AHIECD achieved an accuracy of

87.5% in diagnosis the SAHS severity levels. The results suggest that the ECD vectors

can be effective parameters for screening SAHS.

Keywords: apnea hypopnea index, correlation dimension, non-linear acoustic characteristics, snore sound, sleep

apnea hypopnea syndrome

INTRODUCTION

Snoring is one of the most important symptoms of Sleep Apnea Hypopnea Syndrome (SAHS) and
carries much information for diagnosing the upper airway disorder (1). Snoring sounds can be
recorded by a non-contactmicrophone using acoustical property analysis for the screening of SAHS
(2, 3). The pitch and spectral characteristics of snoring have been widely applied (4, 5). The total
airway response for a snore was extracted to examine SAHS by a higher-order statistics algorithm
(6). Multiclass classification of snoring was acquired on the acoustic analysis of snore sounds (7). A
genetic algorithm was applied to select the better features that can be extracted from the time and
spectral domains of full-night recordings to determine the Apnea Hypopnea Index (AHI) value (8).
The rhythmic variations in the snores were described to assess the AHI (9). HiddenMarkov models
with Mel frequency cepstral coefficients (MFCC) were used to classify subjects into different ranges
of the AHI (10). Our previous work used snore spectral information to estimate the AHI (11).
Traditional time and frequency analysis and the classic method for snore sounds were adopted in
the studies mentioned above.

However, the irregular and turbulent airflow that is produced within the upper airway
tissue vibrations that cause the snore, such as the intensity of respiratory airflow, vibration on
the soft palate, thick tongue root, and epiglottic hypertrophy, etc. could be non-linear (12).
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It was suggested that linear analysis methods were limited and
that more useful information could be obtained using chaos
theory to analysis the snore (13, 14). The largest Lyapunov
exponent and entropy were calculated to classify snore-related
sounds with multiclass system (15).

In this paper, a new correlation dimension was proposed
to analyze the non-linear properties of snoring sounds for
automatic AHI prediction. In contrast to the conventional
correlation dimension, the all frequency region was divided
into multi-sub-bands on an equivalent rectangular bandwidth
(ERB) scale, and the correlation dimensions were calculated in
each sub-band. Therefore, ERB correlation dimension (ECD)
vectors were extracted rather than a single correlation dimension.
The gaussian mixture model (GMM) was applied to build the
ECD vector models. Whole-night snore sounds of patients were
detected in our experiments, and then, the AHIECD values were
estimated. The early experimental studies have been published
in Chinese journals, when the experiment is the number of
60 snorers in reference (16). This research continues to now
increased to 120 snorers. In other words, the experimental results
of adding 60 people dropped slightly from the original 90 to 87%.
It illustrates the robustness of new features. This study further
adds a comparison with the classic feature MFCC. Compared to
the polysomnography (PSG) diagnosis, our non-linear features
achieved higher accuracy than the MFCC based snore spectrum
information in the severity levels of the SAHS. The ECD vectors
were found to characterize various severity levels of snores.

ERB CORRELATION DIMENSION

The phase space reconstruction technique has been widely used
in the field of chaos and fractal theory (17), and it has been used in
some applications in medical and speech signals (18–20). It could
be more comprehensive disclosure of snore implied information
by transforming them to high-dimensional space. The general
representation of a snore is a time series. Let a one-dimensional
discrete series s(n) be denoted by the snore signal, that is get by
sampling rate Fs.

Based on the Takens embedding theorem (21), the phase
space reconstruction could transform a one-dimensional time
series into a high-dimensional phase space vector Y ǫ Rm as in
Equation (1).

Y = [Y1 Y2 · · · Yi · · · YI]

Where

Yi = [s (ni) s (ni + τ) · · · s
(
ni + (m− 1)τ

)
]
T

(1)

Here, τ is the time delay, andm is the embedding dimension. The
reconstruction vector Y is an m-dimensional vector with I phase
points. The appropriate time delay was selected according to the
autocorrelative function (AR function) (22). The time delay τ is
an integer multiple of the sampling interval: τ =n/Fs.

The purpose of choosing the embedding dimension is to
make the original chaos attractor and the reconstructed attractor

topology equivalent. We used the false nearest neighbor (FNN)
method to determine the embedding dimension m (23). As
the embedding dimension m increases, the orbit of the chaotic
motion will gradually open, and the false nearest neighbors will
be gradually eliminated, until the trajectory tends to be stable
and the proper m is obtained (24). When the frame length was
> 150 ms, the slope of the correlation integral curve increased
very slowly. Finally in our snore work, the time delay of 0.75 ms
and the embedding dimension of 15 were confirmed by the above
method with a frame length of 150 ms.

The traditional correlation dimension has only a single
parameter, it is difficult to make a more comprehensive analysis
of complicated signals. Based on the ERB scale related to
auditory perception (25, 26), several sub-bands were divided
from the whole frequency band of the snore signal. Phase
space reconstruction was performed in each of the sub-band
signals of the snore. Then, the correlation dimension on these
sub-bands were calculated, which obtained auditory sub-band
ERB correlation dimension (ECD) vectors. The flow chart of
extracting the ECD is shown in Figure 1.

Equation (2) is the correlation integral Cq (I, r) of the qth
subband, which calculates the probability that the distance of
paired (Yiq, Yjq) is smaller than r.

Cq (I, r) =
1

I (I − 1)

I∑

i,j=1

θ(r −
∣∣Yi,q − Yj,q

∣∣) (2)

Where θ (·) is the Heaviside function, and if x < 0, θ (x) = 0; if
x > 0, then θ (x) = 1. The correlation dimension D is estimated
based on the ratio of the logarithm of the correlation integral and
the logarithm of the distance r, as in Equation (3).

Dq=
lnCq(I, r + 1r)− lnCq(I, r)

ln (r + 1r)− ln r
(3)

Therefore, the correlation dimension of the qth subband was
calculated by Equations (2, 3) based on the Grassberger-Procaccia
(GP) algorithm (24). Finally, we get the ECD vector by arranging
and integrating ERB subband’ correlation dimension, as in
Equation (4).

FIGURE 1 | Flow chart of the ECD calculation.
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ECD (n) = [D1 (n) D2 (n) · · · Dq (n) · · · DQ(n)](4)

In this study, the gap of the adjacent sub-bandwas one bandwidth
of the ERB scale, the frequency range of 60 Hz to 4 kHz was
divided into 24 sub-bands, that isQ= 24, and the 24-dimensional
vector of the auditory sub-band ECDs were extracted.

Moore and Glasberg proposed the relationship between
frequency and ERB scale (25, 26), as in Equation (5).

ERB
(
f
)
= 6.23f 2 + 93.39f + 28.52

ERBS
(
f
)
= 11.17628 ∗ ln(1+

46.06538f

f + 14678.49
) (5)

where f is physical frequency in kHz. ERB(f ) is the calculated
rectangular bandwidth of the equivalent filter in Hz. ERBS(f ) is
the ERB scale in physical frequency f in Hz.

SNORE ECD FEATURES

Snore Data
Snore sounds were recorded in the sleep monitoring laboratory
in the Department of Otolaryngology of Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital by a non-contact
ambient microphone, and simultaneously, polysomnography
(PSG) diagnosis was performed. The recording uses a non-
contact microphone Sony EM-C10, which is hung on the head
of the bed, about 30 cm away from the patient’s nose and
mouth. The recording sound card is Creative Audigy 4 Value, the
desktop computer is Dell Inspiration 570, the recording software
Adobe Audition 3.0, the sampling frequency is 8 kHz sampling,
16 bit quantization, and saved as WAV audio files. The recording
duration is 7 h from 10:30 p.m. to 5:30 a.m. the next morning. In
this test experiment, the half hour before the beginning and the
end are removed, and 6 h of recording are used. The details of
recording for snore sounds were the same as literature (11).

The AHIPSG was the apnea hypopnea index as diagnosed
by the gold standard PSG. The severity levels of SAHS were

determined using the AHI value. The subjects with AHI > 30,
15 < AHI ≤ 30, 5 ≤ AHI ≤ 15, and AHI < 5 were classified as
severe (S), moderate (M), mild (L) SAHS, and non-SAHS (N),
respectively (27).

The 213 subjects were consecutively recruited. In our
experiment training phase, the snore episode was cut artificially
from the sound of overnight recordings by a non-contact
microphone on the bedhead, which included 93 subjects from
213. According to synchronized PSG nocturnal monitoring data,
there were two types of snore episodes that were labeled. One
was snoring sound labeled snore events by PSG diagnosis, which
was only resounding and occurred periodically. The other was
a loudly snoring sound appearance behind apnea or hypopnea
events labeled by PSG. We called the former a simple snore
(SIMP) and the latter a SAHS snore (SAHS). These are shown
in Figure 2.

Another 120 subjects from 213 were as a test data set by
their overnight recording of sounds. We removed the starting
30min and the ending 30min of recording. The remaining 6 h
audio signal (11) were used for our test experiments as shown in
Table 1.

The Largest Lyapunov Exponent
The largest Lyapunov exponent (LLE) of snores has been
calculated to measure the rate of local divergence of nearby
trajectories in the state space from dynamical systems theory (28).
The LLE of all type snores are shown in Figure 3. The LLE of the
four types of simple snore and SAHS snore are all positive. A few
of the severe types have the Lyapunov exponent of SAHS snore<

0, accounting for only 2.4% of the severe type of snoring episodes.
The LLE of other types of snores did not appear negative, which
also shows that the chaos of snoring is universal. This conclusion
is consistent with other researches (13, 15, 29).

The mean of the LLE distribution of simple snore is greater
than the LLE distribution of SAHS snore in same severity
level. This phenomenon is common in the four types of snore
signals. In moderate and severe levels, the difference between the
two means of SIMP snore and SAHS snore is increasing. The
results reveal that the orbital divergence speed of SIMP snore is
greater than that of the SAHS snore, and is consistent with the
other study (29). The LLE distribution suggests that unconscious
airflow from simple snoring may have more freedom to roam,

FIGURE 2 | (A) The simple snore wave. (B) The SAHS snore wave.
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TABLE 1 | Snore data for training and test.

Training Data

N L M S

Subjects (number) 10 23 24 36

Gender (M/F) 9/1 21/2 23/1 36/0

Age (years) 42.1 ± 8.5 46.2 ± 12.4 40.4 ± 13.2 45.6 ± 12.5

AHIPSG (events/h) 2.4 ± 1.4 10.8 ± 3.5 24.5 ± 3.8 57.0 ± 16.8

SIMP Episodes

(number)

339 919 480 430

SAHS Episodes

(number)

55 376 480 916

Test Data

Subjects (number) 30 30 30 30

Gender (M/F) 19/11 26/4 25/5 27/3

Age (years) 29.9 ± 8.6 40.7 ± 12.4 43.0 ± 13.8 38.9 ± 11.7

AHIPSG (events/h) 1.9 ± 1.6 9.3 ± 3.0 22.2 ± 4.3 62.5 ± 17.8

Recording length

(minutes)

360 × 30 360 × 30 360 × 30 360 × 30

FIGURE 3 | Largest Lyapunov exponents of snore for different SAHS

severity levels.

while SAHS snoring may form a certain trend of airflow after
being squeezed in the narrow upper airway.

ECD Calculation
According to the illustration in Figure 1, the ECD of the
snore from the training data in Table 1 were calculated. The
distribution of the ECD vectors in each sub-band of the SIMP
snore and SAHS snore of the N, L, M, and S levels, respectively,
are shown in Figures 4A–D. The ECD vectors distinctively
increased with the aggravation of the SAHS severity level
in the middle and high-frequency sub-bands. Moreover, the
distributions of the ECD vectors were not exactly the same for
the SIMP snores and the SAHS snores at the same severity level,

and the ECDs of the SAHS snores were always higher than those
of the SIMP snores.

In our study, the SIMP and SAHS snores of four levels (N,
L, M, and S) were modeled using the Gaussian Mixture Model
(GMM), which formed eight types, including N-simp, N-sahs, L-
simp, L-sahs, M-simp, M-sahs, S-simp, and N-sahs. The ECDs of
the training data in Table 1 were extracted to model eight GMMs
for the training phase (30), and are showed in Figure 5.

RESULTS AND DISCUSSION

Results
Mixture Number of GMM were assigned 2, 12, 12, and 8 for
both SIMP and SAHS snore of N, L, M, and S level, respectively.
GMM was solved by expectation-maximization (EM) algorithm.
Two-fold cross-validation method was employed to evaluate the
performance of clustering and classification of GMM regarding
training data in Table 1. For each type of snore, the rate of being
classified as different types is shown in Figure 6.

According to the PSG clinical diagnosis definition, AHI is
the number of respiration events per hour of sleep. The ECD-
calculated AHI is AHIECD as in Equation (6).

AHIECD =
Number of sleep respiratory events

Duration of nocturnal sleep
events/h (6)

Figure 5 shows the testing phase, there were another 120
participants for the testing data, which consisted of 30 subjects
for each severity level among N, L, M, and S in Table 1. Firstly,
automatic endpoint detection was performed for snore signals
of whole-night recordings to detect the snore sounds (16, 31).
Thus, we obtained candidate respiratory events based on the
unique rhythm of snores (16, 31). Then, the ECD vectors of these
candidate respiratory events were extracted, and we calculated
the probabilities of matching with eight GMMs. On the basis of
the Bayesian maximum posterior probability rule, the maximum
posterior probability winner among the eight GMMs was the
snore type. When some snore episodes in a candidate respiratory
event were classified as any SAHS snores among N, L, M, and S
levels by the GMM, that candidate respiratory event was a true
sleep respiratory event. Finally, the AHIECD score was estimated
by the number of sleep respiratory events and the nocturnal sleep
duration, as in Equation (6).

In the same way, we extracted another feature set that is
MFCC, and estimated the AHIMFCC score also. The MFCC is a
classical feature and widely used automatic speech recognition.
All experiment results in precision and recall were listed in
Table 2.

Comparisons of AHIECD, AHIMFCC, and AHIPSG values of
each subject, consistency with the severity of the gold standard
PSG diagnosis was correctly screened. There are 120 testers in
Table 2, including 30 people of four different severity levels. As
a result of the MFCC classic feature test, 30 people who are
non-ASHS can correctly estimate. Twelve of the 30 mild patients
were incorrectly classified as non-SAHS ormoderate SAHS types.
Eleven of 30 moderate patients were wrongly assorted as mild
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FIGURE 4 | Box plot of ECD vector for different SAHS severity levels. (A) The N level, (B) The L level, (C) The M level, and (D) The S level.

FIGURE 5 | Flow chart of the snore training and testing system.

or severe SAHS types. Thirty patients with severe patients, one
of whom were mistakenly estimated as moderate SAHS patients.
Compared to AHIPSG in the diagnosis of the SAHS severity level,
and the AHIMFCC estimation achieved the mean precision and
recall of 79.25 and 80.00%, respectively, as shown in Table 2.

As a result of the ECD feature test, two out of 30 non-SAHS
people were mistakenly estimated to be mild patients. Thirty
patients with mild patients, eight of whom were incorrectly
estimated to be non-SAHS or moderate patients. Of the 30
patients with moderate disease, five of them were incorrectly
estimated to be mild or severe SAHS patients. Thirty people with

severe patients were correctly estimated. The AHIECD estimation
using our proposed method achieved, respectively, the mean
precision and recall of 87.74 and 87.50% compared to AHIPSG
in the diagnosis of the SAHS severity level as shown in Table 2.

The precision and recall of AHIECD are higher than AHIMFCC

in mild and moderate levels especially.
Comparisons results of AHIECD and AHIMFCC, both features

are good at both ends (i.e., non-SAHS and severe patients).
However, for patients with mild SAHS and moderate SAHS, the
number of errors by usingMFCC is higher than ECD feature. The
precision and recall of AHIECD are higher than AHIMFCC in mild
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and moderate level especially. New fractal features achieve better
results than classical spectral features. Relative literature (16), this
work increased the number of patients in test experiments from
60 to 120 and adds to compares them with the classic feature
MFCC. Therefore, the experimental results of this paper are
almost the same as the initial experiments, once again confirming
the advantages of the new features.

Discussion
Most of the previous studies of detecting snore used the acoustic
characteristics of the speech signal of the active pronunciation (4–
11), that is limit. Because the snoring contained more breathing
sounds than speech. This airflow has more randomness and is
generated by passive vocalization. Thereby, we proposed a new
feature from the chaos and fractal theory to characterize the
irregular extent of snore.

The AHIECD by new features is closer to clinical diagnosis
results than AHIMFCC by conventional parameters. The
distribution scatter plot of AHIPSG vs. AHIMFCC, AHIECD is
shown in Figure 7. The black asterisk represents the result

FIGURE 6 | Confusion matrix of eight types.

of PSG diagnosis AHIPSG, the green pentagram represents
AHIMFCC, and the purple circle represents AHIECD, and the red
dotted line represents the boundary of different severity. The
cohen’s kappa coefficient of AHIECD and AHIPSG consistency is
0.833, and AHIMFCC and AHIPSG consistency is 0.733.

The Bland-Altman-plot is depicted in Figure 8. The ordinate
represents the difference of AHIPSG and AHIECD with pinkish,
the difference of AHIPSG and AHIMFCC with green. The mean
and variance of difference of AHIECD and AHIPSG were smaller
than AHIMFCC. Compared with PSG, 92.50% (111/120) of
AHIECD falls within the consistency limit of 1.96 times variance,
higher than 88.33% (106/120) of AHIMFCC. This further suggests
AHIECD estimated by ERB correlation dimensions is more
accordance with AHIPSG than AHIMFCC.

In terms of the severity of SAHS, especially the N-type and
the severe type, their frequency spectrum has obvious differences.
Therefore, the MFCC parameters maintain a good performance
for the judgment of these two types. The ECD feature is the
same. However, for the intermediate types of mild and moderate,
the accuracy of MFCC’s outcome drops sharply. The ECD we
proposed is much better than MFCC in these two types.

This paper presents a method to measure the degree of
disorder of the snoring signal like noise, which were new features
called the ECD vectors. The correlation dimensions of the
high frequency sub-bands were larger than those of the low-
frequency sub-bands in ECD vector. The maximal correlation
dimension appeared in the 21st ERB sub-band as shown in
Figure 2. This finding suggested that the SAHS snores contain
much more irregular and fast-changing components in the high
frequency range. The ECD vectors could reveal information that
is consistent with the characteristic of the time-domain waveform
of the snore. When the upper airway is blocked, the airway
becomes shorter.When the upper airway rushes open, the airflow
in the narrow area is squeezed, and the turbulent airflow is
released. However, the snore spectrum is attenuated to a smaller
magnitude in the high frequency range, and thus, it is difficult to
give an appropriate description for the mild and moderate level
of a snore, which could be to too small to distinguish different
level. These non-linear methods are expected to provide useful
information for better understanding of irregular snoring sounds
(13, 14). MFCC includes only magnitude of snore spectral, but
our ECD feature completes information in snore sound. When
the upper airway is obstructed, the shortening of the airway leads
to an increase in the medium and high frequency components,
the airflow in the narrow area is squeezed, and some the rapid

TABLE 2 | Precision and recall of AHIMFCC and AHIECD compared AHIPSG.

Levels N L M S Total Correct Mean

Subjects(number) 30 30 30 30 120

Precision of AHIMFCC 85.71% 64.28% 70.37% 96.66% 96 79.25%

Recall of AHIMFCC 100% 60% 63.33% 96.66% 96 80.00%

Precision of AHIECD 100% 81.48% 75.75% 93.75% 105 87.74%

Recall of AHIECD 93.33% 73.33% 83.33% 100% 105 87.50%
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FIGURE 7 | The compared between AHIECD, AHIMFCC, and AHIPSG.

FIGURE 8 | Bland-Altman-plot (the difference of AHIPSG and AHIECD with

pinkish, the difference of AHIPSG and AHIMFCC with green).

change component increases. The Fourier transform shows a
characteristic of global decline and local prominence. Compared
with MFCC, the ERB enlarged partially and highlighted the
anomaly of the mid and high frequency components.

Inspired by the non-linear frequency scale and MFCC
characteristics of the Mel spectrum, we use ERB to set the sub-
band frequency interval to 8, 4, 2, and 1 ERB bandwidth, so
that 3, 6, 12, and 24 subbands are obtained severally in formula
(5). The obvious differentiation the snoring sounds of different
severity appears when dividing three sub-bands but the details
are not enough to distinguish well. As the number of subbands
increases, more and more details provide a richer diversity of
different severity level of SAHS. According to the distribution
of the auditory filter, as it is divided into about 20 subbands in
4 kHz, a set of features is more effective. We adopted one ERB
bandwidth and 24 subbands are obtained in formula (5).

No matter how many take the ERB scale, ECD features
exhibits SAHS severity is directly proportional to the
relationship, that is, the more severe the SAHS, the faster
the ECD rises in the middle and high frequency regions, shown
as in Figure 4.

However, the calculation of the correlation dimension was
time-consuming. This limitation requires us to optimize the
algorithm for the correlation dimension. The nature of the
correlation dimension on the number of more subbands may
need further study.

CONCLUSIONS

Based on the previous experiment, we prove the chaotic nature
of snoring sound by the LLE and perfect a new method
for estimating the AHI value of SAHS using the correlation
dimension vector for snore sounds, which was superior to the
conventional spectrum analysis. The ECD vectors might be
closely related to the SAHS severity level and reveal the effect of
different SAHS severities on the upper airway. The correlation
dimension of the sub-bands reveals the inherent information of
the mid and high frequencies, while the Fourier transform has
its limitations. Chaos provides many quantitative parameters for
exploring the nature of this internal information. It could be a
study about correlation between fractal dimension and internal
physical properties of sleep respiratory sound. There is a positive
effect on the development of a medical supplementary diagnosis
and in-home healthcare in the internet era.
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Lung cancer is a life-threatening disease and its diagnosis is of great significance. Data

scarcity and unavailability of datasets is a major bottleneck in lung cancer research. In

this paper, we introduce a dataset of pulmonary lesions for designing the computer-aided

diagnosis (CAD) systems. The dataset has fine contour annotations and nine attribute

annotations. We define the structure of the dataset in detail, and then discuss the

relationship of the attributes and pathology, and the correlation between the nine

attributes with the chi-square test. To demonstrate the contribution of our dataset to

computer-aided system design, we define four tasks that can be developed using

our dataset. Then, we use our dataset to model multi-attribute classification tasks.

We discuss the performance in 2D, 2.5D, and 3D input modes of the classification

model. To improve performance, we introduce two attention mechanisms and verify the

principles of the attention mechanisms through visualization. Experimental results show

the relationship between different models and different levels of attributes.

Keywords: deep learning, radiology, pulmonary dataset, classification, attention

1. INTRODUCTION

Lung cancer is caused by tumors which leads to the fastest increase in morbidity and mortality. It
has a significant negative impact on the health of subjects. Therefore, the early diagnosis of lung
lesions is of great significance for the treatment of lung cancer.

The early form of lung cancer is categorized as pulmonary nodules, which are clinically
examined using computed tomography (CT). The characteristics of pulmonary nodules in CT
images are diverse, which results in a large workload for radiologists to diagnosis the disease and
leads to the subjective assessment of features. Therefore, accurate and quantitative analysis of the
appearance characteristics of lung nodules is very essential for doctors to determine whether the
nodules will grow into malignant tumors.

In recent years, with the development of deep learning technology (1), lung nodule diagnosis has
made unprecedented progress in detection (2–7), segmentation (8–11), classification (2, 6, 12–15),
and registration (16, 17) tasks. In order to improve the performance of the model, there is a great
need of large datasets and accurate annotation of pulmonary lesions.

There are many publicly available datasets of pulmonary nodules. However, there are some
shortcomings in the existing datasets, and the diversity of lesions cannot be balanced in these
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datasets. For example, LIDC/IDRI (18) has rich attributes,
however, it only marks nodules, and the prediction of other
pulmonary diseases cannot be performed.

In this paper, we propose a dataset of lung lesions that
could help the development of a pulmonary computer-aided
diagnosis system. Our dataset is multi-centered, data-diversified,
and informative. The proposed dataset is rich in lesion types
and covers most of the signs of lung lesions. The lesions of the
dataset are labeled with contours and attribute annotations by
experienced radiologists using a professional tool. The attribute
annotations are composed of nine attributes that are most
useful for pathological assessment. In order to make the selected
attributes hierarchical, we have selected multi-level attributes:

• Low-level attributes: Margin, spiculation, etc, which can be
judged basically by the local features of the lesion;

• Middle-level attributes: Pleural indentation, vessel
convergence, etc, which need to be judged by the relationship
with the surrounding tissue around the lesion or cavity and
calcification, which need to be judged by the relationship
between local features and global features of the lesion;

• High-level attributes: The type and the location of the lesion,
which requires to be judged by the abstract features of the
entire lesion.

In order to describe the proposed dataset clearly, we first
count the characteristics of our dataset, define the data storage
format and data annotation rules for our dataset. We then
propose the contours annotation format. We also focus on the
correlation between the attributes of the lesions. In order to study
the relationship between multiple attributes, we calculated the
probability of a total of 27 categories of 9 different attributes
using the chi-square test and conditional probability, and infer
the correlation with the attributes by probability.

In order to illustrate the practical significance of our dataset,
we discuss several applications that could be studied using
our dataset, and then select the attribute classification for
further study. First, we model the attribute classification and
then explored the performance of the 2D, 2.5D, and 3D input
modes on the accuracy of the model. Through experiments,
we demonstrate that there is implicit competition between
multiple attributes, we, therefore, use two attention mechanisms
to filter different feature activations for different attributes. Our
experiments show that the attention mechanisms have different
effects on attribute classification.

2. RELATED WORK

In this section, we briefly discuss the existing datasets of lung
nodules and the relevant classification methods.

2.1. Lung Nodule Datasets
2.1.1. LUNA16 Dataset
The LUNA16 (4) dataset was designed for the Open Pulmonary
Nod Challenge, which screened 888 CT volumes from a large
dataset LIDC/IDRI as challenge data. Their slice thickness is
within 2.5 mm and the nodule size is greater than 3 mm,
which was annotated by more than 3 experimental doctors using
tow-phase annotation. The detection annotations of a nodule

in LUNA16 use the center coordinates and diameter of the
inscribed circle of the nodule. In contrast, we use the gravity
center coordinates as the center coordinates of the nodule and
the longer geometric moment as the diameter to generate the
world coordinates. For small round nodules, the two datasets
are not much different, but the need is to detect large lesions
with irregular shapes and our proposed approach achieves better
results for large lesion detection.

2.1.2. LIDC/IDRI Dataset
The LIDC/IDRI (18) dataset labels each nodule with a contour
and nine attributes. Besides the benign and malignant nodules,
the other eight attributes are all the appearance attributes of the
nodules. In contrast, in our dataset, two of the attributes are
the basic attributes of the lesion, five are appearance attributes,
and two have relationships with the tissue surrounding the lesion
in context. These attributes are richer and can better represent
a lesion.

2.1.3. LISS Database
The LISS (19) database has 271 CT volumes, including
677 abnormal regions. These abnormal regions are divided
into nine categories, which are called common CT imaging
signs of lung disease (CISLs). In other words, there is
only one CISLs label for each abnormal region. Although
it can better help medical scholars learn a certain type
of disease (12), it is not very good for CAD system
development, because it cannot capture the relationship between
disease signs.

2.1.4. ILD Database
The ILD (20) database has 108 image series with more than
1946 ROIs. This dataset is a multimedia collection of cases of
interstitial lung disease (ILDs). These ROIs are divided into
13 categories, which are lung tissue patterns from histological
diagnoses of ILDs. The lesions in the ILD dataset are large, and
the annotations are all high-level attributes. The dataset does not
focus on a certain nodule, but on the pathology presented by a
piece of tissue.

2.2. Lung Nodule Classification
The classification of lung nodules based on deep learning can be
divided into two types of methods: one is to judge the benign
and malignant lung nodules. Some methods directly predict
the benign and malignant nodules by CT images, and other
methods use different attributes of the nodules as the auxiliary
basis to judge the benign and malignant nodules, such as (21–
23). The other type of method has classified the disease, such
as DeepLung (2) or LISCs classification (12). Dey et al. (21)
have built a network that produces multiple outputs from multi-
scale features to judge the benign and malignant nodules. Nibali
et al. (22) has made a three-column configuration to fuse the
features generated from three axes. Song et al. (14, 23) proposed
methods that split the whole image into patches and predict the
lesions. In contrast, Gao et al. (13) have used the whole image
for classification. With the development of computationally
efficient computers, the 3D models such as (24) has achieved
an impressive performance in nodule classification. He (12)
proposed a method to generate images for data augmentation,
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FIGURE 1 | Lesions in our dataset. Except for some small nodules, which are marked with a circle, such as the second image in the first row, other lesions are

marked by a very close contour. The six images in the first row are different types of lesions, and in the second to fourth rows, each set of three images are spiculation,

lobulation, calcification, cavity, vessel convergence, and pleural indentation.

which achieved a good improvement in performance. Zhu et al.
(2) detected the position of the nodules first, then cropped the
sent the nodules before feeding it into a classification model to
predict one of nine attributes.

Multi-attribute classification is a problem to classify multiple
targets using one model. There are currently two approaches to
solve this problem. The first is to regard it as a classification task
with a fixed number of categories, and solve attribute correlation
in one model by using multiple branches to decompose the
relationship between multiple targets onto each branch. The
second is to treat it as a multi-label classification task, with the
positive attribute as the label of the lesion, then each lesion has
a floating number of labels, and the labels are decoupled using
different methods. In this paper, we use the first method to
classify different attributes in a model using a fixed number of
branches, and use two attentionmechanisms to help decouple the
correlation among the attributes.

3. LUNG LESION DATASET

In this section, we provide a description of our dataset. CT data
were collected from four hospitals. The body parts examined
are mainly the chest and abdomen. Among them, the chest CT
was mostly thin (less than 3 mm), and the abdomen CT was
mostly thick (greater than or equal to 5 mm). Figure 1 shows
examples of lesions in our dataset. As shown in Figure 1, except
for some small nodules, which are marked with circles, such as
the second image in the first row, other lesions are marked by a
very close contour.

Table 1 shows the parameter comparison of our dataset with
several other public datasets. Same with LUNA16, our dataset
annotates lesion with contour, which is shown in Figure 1.
Compared with box and polygon, contour annotation has
more generalization ability to different tasks, such as location,
detection, and segmentation. At the same time, though the
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TABLE 1 | The statistical result of comparing our dataset parameters with other datasets.

Dataset Annotation Lesion attributes Multiple categories Scans Lesion amount Lesion size (mm) Slice thickness (mm) Pixel spacing (mm)

LUNA16 contour 9 X 888 1,186 3.25–32.27 0.45–2.50 0.461–0.976

LISS (2D) Box 9 × 252 511 – 5.0 0.42–1.00

LISS (2D) Box 9 × 19 166 – 1, 1.25 0.60–0.87

ILD Polygon 13 × 108 1,946 – 1.00–2.00 0.40–1.00

Ours Contour 9 X 694 5,113 0.83–191.32 1.00–2.00 0.176–0.977

number of scans in our dataset is not the largest, the number
of lesion annotations and the range of lesion size in our dataset
are. These annotations support more robust models. Moreover,
the thickness of the slices of our datasets is relatively uniform,
especially compared to LUNA 16. It reduces unnecessary
processing of the data and makes it easier to use.

3.1. File Storage and Annotation Format
The raw data obtained from the hospital contains some sensitive
information of subjects, and the data collected from different
hospitals are stored in different ways, making the data difficult to
use directly for analysis. Therefore, we first desensitize the data
by removing subjects’ sensitive information and retain only the
necessary information, such as weight. Then, we store the CT
volumes and annotation files as described below.

We define the directory structure to store files as follows:

c t _ t y p e / h o s p i t a l / y e a r / month / day / s u b j e c t _ i d / s e r i e s _ i d .

The directory with series_id SE01 stores the CT data with
DICOM format, and the directory with series_id SE01_01_0n
stores the contour annotation file aid_loc .anno, where n is
the identification number of the doctor who annotated the
scans; aid is the number of the annotation in the CT for
correspondence with the attribute information; loc is the slice
number in the CT volume, and the description in the DICOM
file is SliceLocation (0020, 1041). An anno file represents
an annotation. Each anno file has a different aid, but two
anno files can have the same loc, indicating that the two
annotations are in the same slice. It uses a dictionary to store the
annotation information we need to use in the CAD tasks. The
keywords of the anno format are SeriesID, NoduleSerialNumber,
InstanceNumber, Origin, Dimension, Spacing, Coords, XMin,
XMax, YMin, YMax. Among them, SeriesID is a unique number
of a DICOM volume which described as SeriesInstanceUID
(0020, 000E), NoduleSerialNumber and InstanceNumber are aid
and loc, respectively as mentioned above, Origin, Dimension,
Spacing are the information from DICOM volume, Coords is the
contour coordinate of this annotation, and its value is relative
to the size of this slice. (XMin, YMin), (XMax, YMax) are the
coordinates of the lower left and upper right corners of the
bounding box of this annotation.

The CT volumes in our dataset contain lesions, while those
without lesions have been removed by manually screening of RIS
reports. For repeated subject numbers, such as two volumes of
one subject, we map one of them to a new subject number and
retain the correspondence to restore the original number.

3.2. Two-Phase Annotation Process
We use a two-phase annotation process to label the lesions. We
label the contours of the lesions in the first phase, then label the
attributes of the lesions in the second phase.

3.2.1. Contour Annotation Criterion
The contours are marked by experienced radiologists. In order to
save the doctor’s time and to increase the density of the lesion, we
first manually screen the RIS report, retain the CT volume with
the lesion in the description, and remove the volume without the
lesion from the dataset. In order to standardize the process of
marking the lesions, we have prescribed a rule formarking lesions
with the doctor as follows:

• Mark all visible lesions;
• If the lesion is too small to draw the contour, circle the lesion

with a circle tool;
• If the lesion is larger than one slice, mark the lesion every three

consecutive slices;
• Draw a contour as close as possible to the edge of a lesion.

After the marking process, we perform a secondary screening
to remove the annotations which are too discontinuous to
be processed as contours. Then, we convert the annotations
into anno format and mark lesion numbers. In this way, the
contour annotations and the attribute annotations correspond
with respective file names.

3.2.2. Attribute Annotation Criterion
After discussed with the doctor, we selected nine attributes that
are commonly used in clinical diagnosis as attribute annotations
for the dataset. A detailed description of these attributes will be
provided in section 5.2. Each lesion is independently labeled by a
doctor, and we record the doctor’s number for each lesion that
can be used to identify the doctor if an error is discovered in
the annotation.

In order to simplify the labeling of attributes, we implement an
attribute labeling tool to collect and manage labels. We associate
the slice of the contour with the lesion number so that it is
convenient to label the attributes with the corresponding slice.
When the attribute information is marked, the corresponding
subject number and label number are recorded to correspond
to the contour number. It should be noted that the contour
annotation and the attribute annotation are not one-to-one
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matched. Some problematic contour annotations are filtered out
in the previous step, and no attribute annotation is performed.
Finally, we only select lesions with both contour and attribute
annotations into the dataset. The number of attributes is reported
in Table 1. As can be noted, the categories of some attributes are
very unbalanced. This brings great challenges to the performance
of our attribute classification algorithm.

4. ATTRIBUTES AND PATHOLOGY

We initially selected 15 attributes that are commonly used
in clinical diagnosis, and then selected 9 attributes for our
dataset based on their importance. The number of categories
of these attributes is not balanced and the distributions are not
independent. Here we briefly describe the importance of these
attributes in clinical diagnosis and then discuss the correlation
between attributes from the statistics point of view.

4.1. Attributes Description
Among the 9 attributes we selected, besides the basic attribute,
lesion type, and lesion location, there are vessel convergence
and pleural indentation which represent the relationship between
the lesion and the surrounding tissue. On the other hand,
margin, calcification, lobulation, spiculation, cavity represent the
apparent features of the lesion. The description of the significance
of these nine attributes is as follows.

4.1.1. Lesion Type
The first row of Figure 1 shows six different lesion types. For
the lesion type, we choose placeholder, nodule, ground glass
opacity, air containing space, mutation, and pleural effusion. The
difference between placeholders and nodules is that the lesions
with a diameter of less than 30 mm are nodules, and those larger
than 30 mm are placeholders. Except for the difference in size,
the other attributes of the two lesion types are roughly similar.
The air containing space is different from the cavity in pathology.
The air containing space (Figure 1, the fifth image in the first
row) is a pathological enlargement of the physiological cavity
in the lung, while the cavities (Figure 1, the last three images
in the third row) often appears in nodules or placeholders. In
the air containing space lesions, the wall of the lesion is thinner
and more uniform, mostly occurring in the subpleural area, and
the size varies greatly. This means that the location of the air
containing space is fixed and there are no apparent attributes
such as spiculation and lobulation.

4.1.2. Lesion Location
The location of the nodule is represented by five categories
of lobes, including the right upper lobe, the right middle lobe,
the right lower lobe, the left upper lobe, and the left lower
lobe. Statistics show that the occurrence of lesions has little
relationship with the location. The lesion location is only a basic
attribute of the lesion, and it cannot be used as a basis for judging
its pathological nature. Some lesions are large and span multiple
lung lobes, so we mark them as 0, and do not include it in the five
categories above.

4.1.3. Margin
The margin attribute describes whether the outer boundary of a
nodule is clear. We defined two main categories for this attribute:
clear and unclear margin. Though the margin of a benign mass
is often smooth, while that of a malignant mass is often unclear,
inflammation may also cause an unclear margin of placeholder.
Therefore, it cannot be used as the sole basis for judging benign
and malignant lesion, and needs to be judged in combination
with other attributes.

4.1.4. Calcification
The calcification attribute describes lesions whose density is
significantly higher than other soft tissues in the mediastinal
window, usually with CT values above 100 Hu. The first three
images in the third row of Figure 1 show lesions of calcification.
The white region in the images represents calcification.
Calcification is a pathologically metamorphic lesion, which is
more common in the healing stage of ductal tuberculosis lesions
in the lung tissue or lymph nodes; calcification can also occur in
tumor tissues or cyst walls. Usually, the greater the proportion of
calcification in the lesion, the greater the likelihood of its being
benign. Based on this, we classify the calcification attributes into
three categories: no, partial, and total calcification.

4.1.5. Lobulation
The lobulation attribute indicates that the nodule or mass grows
at different speeds in various directions or is blocked by the
surrounding structure. The contours may have a plurality of
arcuate protrusions, and the curved phases are concave cuts to
form a lobulated shape. The last three images in the second row
of Figure 1 show the lesions of lobulation. We can clearly see the
convex part of the masses. We simply define two categories for
this attribute: with and without lobulation.

4.1.6. Spiculation
The spiculation attribute is characterized by a radial, unbranched,
straight, and strong thin line shadow extending from the edge of
the nodule to the periphery, and the proximal end of the shadow
is slightly thicker. The first three images in the second row of
Figure 1 show lesions of spiculation. As shown in Figure 1, the
burrs of the lesion are often not circled in the scope of annotation.
The spiculation is not connected to the pleura, and distinct
from the pleural depression.We classify the spiculation attributes
into no, short and long spiculation; 5 mm burrs are called
short spiculation, and larger than 5 mm burrs are called long
spiculation. The pathological basis of the burr is the fiber band in
which the tumor cells infiltrate into the adjacent bronchial sheath
and local lymphatic vessels, or the tumor promotes connective
tissue formation. Benign nodular inflammatory pseudotumor,
tuberculoma can also be seen burrs, but longer, softer, more often
formed by hyperplastic fibrous connective tissue. The possibility
of lung cancer should be considered when there is a burr in
solitary lung nodules.

4.1.7. Cavity
The cancerous cavities are mostly located in the anterior segment
of the upper lobe and the basal segment of the lower lobe. Most
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of the cavities larger than 3 cm in diameter are tumors. Most
cancerous cavities present an irregular or lobulated outer edge
and irregular inner edge. Those with a wall thinner than 4 mm
are mostly benign lesions, and those thicker than 15 mm are
mostly malignant lesions. The last three images in the third row
of Figure 1 show the lesions of a cavity. We simply defined two
categories for this attribute: with and without cavity.

4.1.8. Vessel Convergence
The vessel convergence attribute appears on the slices as one
or more vessels around the pulmonary nodule that touch with,
cut or pass through the placeholder at its edge. The appearance
of vessel convergence is related to the size of the placeholder
or nodule. The lesions less than 1 cm in diameter have fewer
vessel convergence signs. The first three images in the last row
of Figure 1 shows the lesions of vessel convergence. Images of
the cavities and vessel convergence are similar, because the blood
vessels look like cavities when they are transacted. A multi-
vessel-directed lesion presents vessel convergence, which leads to
a higher chance of malignancy. In particular, the phenomenon
that one blood vessel leads to a nodule or tumor is not only
seen in malignant nodules, but also in benign lesions such as
tuberculosis, inflammatory pseudotumor, or hamartoma. We
simply defined two categories for this attribute: with and without
vessel convergence.

4.1.9. Pleural Indentation
The typical pleural indentation shows a small triangular shadow
or a small trumpet shadow on the visceral surface of the visceral
pleura. The bottom of the triangle is on the inside of the chest
wall, the tip points on the nodule, and the nodule and the triangle
shadow can be connected by a linear shadow. The last three
images in the last row of Figure 1 shows the lesions of pleural
indentation. Peripheral lesions of the pleural indentation are
often accompanied by other imaging signs. The pathological basis
and imaging manifestations of pleural indentation in benign and
malignant lesions are different. We simply define two categories
for this attribute: with and without pleural indentation.

4.2. Correlation Between Attributes
In order to evaluate the correlation between attributes, we used
the chi-square test. We assume that if the two attributes are
independent of each other, their data distribution should not
affect each other, which means that the proportional relationship
between the categories of one attribute is the same under each
category of the other attribute. If the chi-square test value
calculated by the two attributes is greater than the statistical
significance, there is a correlation between the two attributes. The
approximate calculation equation for the chi-square test statistic
is as follows:

χ2 =
∑ (

f0 − fe
)2

fe
(1)

where f0 is the actual number of observations and fe is the
expected number of times. The larger the value of fe, the Equation
(1) approximately obeys the chi-square distribution. To simplify

the calculation of the chi-square test, we used a variant of
Equation (1):

χ2 =
∑

(
fxy −

fxfy
N

)2

fxfy
N

= N




R∑

x=1

C∑

y=1

f 2xy

fxfy
− 1



 (2)

where fx and fy represent the number of samples of the categories
of two different attributes x and y, respectively, R and C are
the number of categories of fx and fy, and the total number of
attributes is N. The degree of freedom df of the independence
test is calculated as follows:

df = R× C − R− C − 1 = (R− 1) (C − 1) (3)

We use the data shown in Table 2 and select a significance
level of 0.05 for calculation. Figure 2A shows the result of
the chi-square test. As the results show, there is a strong
correlation between the three attributes of margin, speculation,
and lobulation. Meanwhile, there is a strong correlation between
vessel convergence and spiculation, margin, lobulation and lesion
type, pleural indentation, and margin.

To further explore the specific relationship between the
various categories of attributes, we calculated the conditional
probability between a total of 27 categories for all attributes. The
equation for calculating the conditional probability is as follows:

P (X|Y) =
P (XY)

P (Y)
(4)

where P(X) and P(Y) represent the probabilities of two categories
X and Y , P(X|Y) represents the probability of X to occur when Y
is present, and P(XY) represents the probability of co-occurrence
for X and Y . The value of P(X|X) is 1, which is represented
by white color in Figure 2B. We calculated the conditional
probability between each of the two categories. As shown in
Figure 2B, the white color represents a probability of 1 and the
black color represents a probability of 0, while the lighter gray
color represents higher conditional probability values.

According to the statistical results, there is a strong correlation
between different lesion types and other attributes. For the
placeholder, their margins are almost unclear, the degree of
lobulation is more obvious, the degree of spiculation and the
degree of pleural indentation are the highest among other lesion
types. The nodules, ground glass, and mutation categories have a
small number of spiculation and lobulation, and more features
of vessel convergence and pleural indentation. For cavity and
pleural effusion, they almost have no other attributes and their
margins are all clear.

The margin attribute is highly correlated with lobulation,
vessel convergence, and pleural indentation. When vessel
convergence and pleural indentation are present, they are often
accompanied by lobulation, and the margin is not very clear.
The calcification attribute is concentrated in the nodules, and the
cavity is also related to the margin and lobulation.
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TABLE 2 | The distribution of each attribute category used for experiments.

Attribute Categories Lesions Attribute Categories Lesions Attribute Categories Lesions

Lesion type Placeholder 675 Lesion location Right upper 496 Calcification None 1,902

Nodule 728 Right middle 151 Partial 62

Ground glass opacity 220 Right lower 286 Total 50

Air containing space 153 Left upper 374 Cavity Without 1,924

Mutation 208 Left lower 271 With 90

Pleural effusion 30 Margin Clear 887 Vessel Convergence Without 1,461

Spiculation None 1,198 Unclear 1,127 With 553

Long 307 Lobulation Without 1,015 Pleural Indentation Without 1,222

Short 509 With 999 With 792

FIGURE 2 | The visualization of chi-test and conditional probabilities. (A) is the visualization of the chi-test result. (B) is the visualization of conditional probabilities. The

brighter grid means that the attributes indicated by its row and column numbers are more relevant. For (A), the meaning of labels 1–9 is listed in legend, and for (B),

the legend lists the meaning of label in each group.

5. TASKS OF DATASET

Our dataset is rich in data and diverse in annotations, which
means that our dataset can be used for several tasks and aid in the
development of CAD systems. We recommend using our dataset
for the following tasks:

(1) Detection: Some of the lesions in our dataset are smaller
than 30 mm, which are nearly circular and suitable for
lung nodules detection. This can be helpful for the initial
diagnosis of lung cancer.

(2) Segmentation: The lesions larger than 30 mm are all marked
with precise contours. These lesions are more complex in
shape and are suitable for the lung lesion segmentation task.
This can be helpful for volume measurement and further
treatment.

(3) Classification: Multiple attributes of the lesion are suitable
for multi-task lung disease prediction. This can be helpful to
judge benign and malignant tumors.

(4) Reconstruction: At present, medical datasets are small, and
their size is not enough for deep learning. Our dataset has
various types of data, and we can use real data to train
generative adversarial networks to generate synthetic data.

In this paper, we focus on exploring the correlation
between attributes. We, therefore, perform multi-attribute

classification and report our experimental results
in section 6.

5.1. 2D, 2.5D, 3D Modes for Classification
In order to study the importance of the inputmode for themodel,
we use different data dimensions for the same data and the model
for classification experiments.

We use three input modes including 2D, 2.5D, and 3D.
Assuming that the size of a CT volume is H × W × C,
which corresponds to the three axes of X-Y-Z, the diameter
of a lesion is d, the three input modes are expressed
as follows:

5.1.1. 2D Mode
The lesion is cut out from the grayscale slice in which it is located
with a length d of side, and fed to a 2D network for prediction.
The input size is d × d × 1. The 2D input mode can retain the
lesion at the spatial structure in the X-Y direction, but the context
information in the Z direction cannot be captured.

5.1.2. 2.5D Mode
The grayscale image of the lesion and the five images above and
below are cut out by the bounding box, and fed to the 2D network
for prediction. The number of input channels is 5, and the input
size is d × d × 5. Compared to the 2D input mode, the 2.5D
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FIGURE 3 | The structure of our basic classification model.

FIGURE 4 | The structures of the two attention modules. In the figures above, blue boxes represent the convolutional layers,
⊕

represents the element-wise sum,

and
⊗

represents the spatial-wise reweight in (A) and channel-wise reweight in (B).

input mode is supplemented by a fixed number of slices in the
Z direction.

5.1.3. 3D Mode
In the X-Y-Z direction where the lesion is located, the bounding
box (d × d × d) is cropped and fed to the 3D network for
prediction. 3D network can capture the correlation on the Z-
axis of the whole lesion by convolution. Compared with 2D, the
information of 2.5D is more detailed, but the amount of 3D
network parameters is more than that of 2D network, which can
cause the deep learning model to overfit as the size of training
data is small.

The architecture of our basic model is shown in Figure 3.
In order to extract the relationship of nine attributes, we use a
ResNet-based network (25) to extract the characteristics of the
nodule and then use nine classification branches to predict nine
attributes independently. We will explain the details and the
results in section 6.1.

5.2. Two Attention Mechanisms
Through the experiments, we found that there is an implicit
competition between multiple attributes during training. In the
training phase, when the loss value is stable, the accuracy of
some attributes increases while the accuracy of other attributes
decreases. To solve this problem, we add an attention module
in front of each attribute classifier to focus the activation on the
features which are useful for classification. In this way, different
input features for attributes are extracted, which could mitigate
the conflict between attributes. Inspired by (26–28), we employed
soft-attention and self-attention, commonly used mechanisms
that compute a weight matrix used to filter noise and to focus
on important features. These two attention mechanisms are
described below in our model, and Figure 4 shows the structure
of the two attention modules.

5.2.1. Soft-Attention Module
As shown in Figure 4A, we add a soft-attention module (26)
before feeding the features into the classifier to filter out
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shallower features with deeper features. While preserving the
spatial structure, the attention module extracts a mask from the
features to suppress noise which is not related to the attribute to
improve accuracy.

Assuming that feature map x ∈ R
N×Cx×H×W from the basic

model is the input feature for the attention model, and feature
map xg ∈ R

N×Cg×H×W is from a deeper layer as the gate, we
firstly use 1 × 1 convolutional layer to get the same number
of channels Cg for both the features, then sum the features x
and xg together and add a non-linear transform ReLU which
can be formulated as σ1 (x) = max (0, x). So far, the feature
x is mixed with richer semantic information xg , and we use
a 1 × 1 convolutional layer to fuse the channel information
and retain the spatial information, and get a mask xm with
a value of [0, 1] through the sigmoid function which can be

formulated as σ2 (x) =
(
1+ e−x

)−1
. Finally, we use the mask

xm to spatial-wise reweight the feature map x and get the output
feature x̂. After filtering by the soft-attentionmodule, the features
x̂ are re-weighted by high-dimensional semantic information
in the spatial dimension, which is more conducive to multi-
attribute classification.

5.2.2. Self-Attention Module
As shown in Figure 4B, we add a self-attention module (27,
28) before the features and fed to the classifier to squeeze the
spatial structure of a feature map into one vector with spatial
information. Then, we gather and filter the information to
enhance the activation related to that attribute, and add the
information to the original feature map to enhance the feature.

TABLE 3 | Performance of the basic model on the 3D, 2.5D, and 2D modes.

Attributes
Categories Accuracy Sensitivity Specificity

3D 2.5D 2D 3D 2.5D 2D 3D 2.5D 2D

Lesion type Placeholder 0.8636 0.8182 0.8864 0.7451 0.8780 0.7959 0.9500 0.9344 0.9561

Nodule 0.7460 0.6984 0.7619 0.8545 0.8462 0.9057 0.8621 0.8288 0.8636

Ground glass opacity 0.8800 0.8000 0.8000 0.8462 0.8333 0.8000 0.9793 0.9640 0.9638

Air containing space 0.9375 1.0000 0.9091 0.9375 0.4400 0.7143 0.9935 1.0000 0.9933

Mutation 0.8235 0.9286 0.8571 0.8235 0.8667 0.8571 0.9805 0.9932 0.9866

Pleural effusion 1.0000 1.0000 1.0000 1.0000 1.0000 0.7500 1.0000 1.0000 1.0000

Margin Clear 0.8437 0.8523 0.8636 0.8617 0.8427 0.8261 0.8052 0.8243 0.8310

Unclear 0.8267 0.8133 0.7867 0.8052 0.8243 0.8310 0.8617 0.8427 0.8261

Spiculation None 0.8672 0.8083 0.8083 0.9407 0.9604 0.9604 0.6792 0.6290 0.6290

Long 0.3333 0.6000 0.7333 0.4167 0.2571 0.2558 0.9371 0.9531 0.9667

Short 0.7143 0.2857 0.4286 0.4878 0.2963 0.6316 0.9385 0.8529 0.8889

Lobulation Without 0.8972 0.8990 0.9091 0.9143 0.9271 0.9375 0.8333 0.8507 0.8657

With 0.8594 0.8906 0.9062 0.8333 0.8507 0.8657 0.9143 0.9271 0.9375

Calcification None 0.9937 0.8684 0.7763 0.9464 0.9565 0.9516 0.6667 0.2000 0.1282

Partial 0.0000 0.2500 0.2500 0.0000 0.1176 0.0741 0.9529 0.9589 0.9559

Total 0.6667 1.0000 1.0000 1.0000 0.3750 0.2500 0.9941 1.0000 1.0000

Cavity Without 0.9819 0.9557 0.9367 0.9702 0.9742 0.9801 0.0000 0.1250 0.1667

With 0.0000 0.2000 0.4000 0.0000 0.1250 0.1667 0.9702 0.9742 0.9801

Vessel convergence Without 0.9618 0.8618 0.8780 0.8936 0.8548 0.9076 0.8333 0.5641 0.6591

With 0.6250 0.5500 0.7250 0.8333 0.5641 0.6591 0.8936 0.8548 0.9076

Pleural indentation Without 0.8500 0.8125 0.7946 0.8430 0.8922 0.9082 0.6400 0.6557 0.6462

With 0.6275 0.7843 0.8235 0.6400 0.6557 0.6462 0.8430 0.8922 0.9082

Lesion location Right upper 1.0000 0.7083 0.7083 1.0000 1.0000 1.0000 1.0000 0.8793 0.8793

Right middle 0.8571 0.7500 0.7500 1.0000 0.3000 0.3000 0.9934 0.9929 0.9929

Right lower 1.0000 0.8750 0.8333 0.9630 0.6562 0.7143 1.0000 0.9746 0.9672

Left upper 1.0000 0.7143 0.8571 0.9118 0.9524 0.9231 1.0000 0.9380 0.9677

Left lower 0.9348 0.9783 0.9565 1.0000 0.8491 0.8462 0.9739 0.9897 0.9796

Average 0.7513 0.7511 0.7816 0.7671 0.7006 0.7184 0.8305 0.7995 0.8116

Bold value means better performance, compared between 2D, 2.5D, 3D.
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Assuming that feature map x ∈ R
N×Cx×H×W is generated

from the basic model as the input feature of the attention
model, we use a channel squeeze and spatial excitation branch
to transform x to extract the spatial information and reweight
the origin x with the transform of itself. We use a global pool
which can squeeze x to a vector z ∈ R

N×Cx×1×1. Then use
two fully connected layers to transform the vector z to ẑ =

W1

(
σ1(W2 · z)

)
withW1 ∈ R

C×C/16 andW2 ∈ R
C/16×C and the

activation σ1.We also use the non-linear function σ2 to transform
the values to [0, 1] to get the channel mask xm. Finally, we use
the xm to channel-wise reweight the feature map x and get the
output feature x̂. After filtering by the self-attention module, the
features x̂ are re-weighted by the information after squeeze and
excitation in the spatial dimension, which is more conducive to
multi-attribute classification.

6. EXPERIMENTAL RESULTS

In this section, we first verify that the proposed model can learn
the correlation between attributes, and then empirically select
the best input mode, and verify the attention mechanism on this
input mode.

We used part of the data with a thickness of 1.0–2.0 mm in
our experiments, which has 355 CT volumes and 2014 lesions
labeled with 9 attributes in our dataset. The dataset has been
split into 8:2 as the training set and validation set, with 1,847
lesions in the training set and 163 lesions in the validation set.
During training, we randomly select 30% of the data for data
augmentation i.e., random flip and rotation. As Table 2 shows,
the number of categories in the dataset is unbalanced, which
could affect the convergence of the model. We use weighted cross

TABLE 4 | Performance of the basic, soft-attention, and self-attention models on the 2D mode.

Attributes
Categories Accuracy Sensitivity Specificity

Basic model Soft-att Self-att Basic model Soft-att Self-att Basic model Soft-att Self-att

attention Lesion type Placeholder 0.8864 0.8182 0.8636 0.7959 0.7347 0.7755 0.9561 0.9298 0.9474

Nodule 0.7619 0.6825 0.7302 0.9057 0.8776 0.9787 0.8636 0.8246 0.8534

Ground glass opacity 0.8000 0.9200 0.8800 0.8000 0.7419 0.7857 0.9638 0.9848 0.9778

Air containing space 0.9091 1.0000 0.9091 0.7143 0.7857 0.7143 0.9933 1.0000 0.9933

Mutation 0.8571 0.9286 1.0000 0.8571 1.0000 0.7368 0.9866 0.9933 1.0000

Pleural effusion 1.0000 1.0000 0.8333 0.7500 0.8571 0.8333 1.0000 1.0000 0.9936

Margin Clear 0.8636 0.8523 0.8636 0.8261 0.8621 0.8352 0.8310 0.8289 0.8333

Unclear 0.7867 0.8400 0.8000 0.8310 0.8289 0.8333 0.8261 0.8621 0.8352

Spiculation None 0.8083 0.7750 0.7917 0.9604 0.9894 0.9500 0.6290 0.6087 0.6032

Long 0.7333 0.5333 0.4667 0.2558 0.3478 0.2500 0.9667 0.9500 0.9407

Short 0.4286 0.7500 0.5357 0.6316 0.4565 0.4286 0.8889 0.9402 0.8984

Lobulation Without 0.9091 0.9091 0.9192 0.9375 0.9474 0.9479 0.8657 0.8676 0.8806

With 0.9062 0.9219 0.9219 0.8657 0.8676 0.8806 0.9375 0.9474 0.9479

Calcification None 0.7763 0.8158 0.8224 0.9516 0.9538 0.9398 0.1282 0.1515 0.1000

Partial 0.2500 0.2500 0.0000 0.0741 0.1111 0.0000 0.9559 0.9586 0.9437

Total 1.0000 1.0000 1.0000 0.2500 0.2000 0.3333 1.0000 1.0000 1.0000

Cavity Without 0.9367 0.8734 0.9557 0.9801 0.9857 0.9805 0.1667 0.1304 0.2222

With 0.4000 0.6000 0.4000 0.1667 0.1304 0.2222 0.9801 0.9857 0.9805

Vessel convergence Without 0.8780 0.7967 0.8211 0.9076 0.9515 0.9182 0.6591 0.5833 0.5849

With 0.7250 0.8750 0.7750 0.6591 0.5833 0.5849 0.9076 0.9515 0.9182

Pleural indentation Without 0.7946 0.7857 0.7589 0.9082 0.9167 0.9551 0.6462 0.6418 0.6351

With 0.8235 0.8431 0.9216 0.6462 0.6418 0.6351 0.9082 0.9167 0.9551

lesion Location Right upper 0.7083 0.7083 0.7083 1.0000 1.0000 0.9714 0.8793 0.8793 0.8783

Right middle 0.7500 0.7500 0.7500 0.3000 0.3333 0.3000 0.9929 0.9929 0.9929

Right lower 0.8333 0.8333 0.8750 0.7143 0.6897 0.7241 0.9672 0.9669 0.9752

Left upper 0.8571 0.8214 0.9286 0.9231 0.9200 0.9630 0.9677 0.9600 0.9837

Left lower 0.9565 0.9565 0.9565 0.8462 0.8302 0.8980 0.9796 0.9794 0.9802

Average 0.7816 0.8032 0.7763 0.7184 0.7183 0.7155 0.8116 0.8117 0.8128

Bold value means better performance, compared between different models.
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entropy loss to reduce the impact of data imbalance during the
training phase.

In the experiments, each model has four blocks. The first
one is a convolutional block and the other three are residual
blocks. At the end of the model, there are nine classifier blocks
for the classification of nine attributes, respectively. We use the
reweighted logistic loss to balance the numbers of categories.
During the training phase, we set the learning rate to 0.01
with warm restart (29) and use SGD to optimize the model.
The momentum was set to 0.09, the weight decay was set
to 10−4 and the batch size was set to 64. Since the model
converges quickly, we have trained 200 epochs for each model
and choose the model with the smallest validation loss as the
best model.

The imbalanced data causes that no valid features can be
learned, and results in low sensitivity of the model to this
attribute. As shown in Tables 3, 4, categories with too few
samples, such as partial calcification and with cavity, were not
recognized. A given category prediction may have the following
four cases: TP, True Positive; FP, False Positive; TN, True
Negative; FN, False Negative.

To evaluate the imbalanced categories of each attribute, we use
three metrics to score the results. Accuracy (ACC) is the basic
metric to evaluate the result, which can be calculated as:

ACC =
TP + TN

P + N
(5)

Sensitivity (SE), also called the true positive rate, means the
probability that a sick person is diagnosed as positive, which can
be calculated as:

SE =
TP

TP + FN
(6)

The larger the SE value, the more sensitive our model is in
diagnosing this category.

Specificity (SP), also called the true negative rate, means the
probability that a person who is actually not sick is diagnosed as
negative, which can be calculated as:

SP =
TN

FP + TN
(7)

The larger the value of SP, the more accurate our model is for the
diagnosis of this category.

We average out accuracies of all categories for each attribute,
and average the scores of all attributes as the final score to
represent the performance of the model.

FIGURE 5 | The results of the 2D, 2.5D, 3D input modes. As can be noted, the 3D mode has better results on spiculation, lobulation, cavity, vessel convergence, and

pleural indentation.

FIGURE 6 | The results of the base model and two attention models. As can be noted, the self-attention module has better results on lobulation, pleural indentation,

and lesion location attributes; the soft-attention module has better results on lesion type, margin, spiculation, calcification, cavity, and vessel convergence attributes.
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6.1. Results for Input Modes
In order to select the most suitable input mode for the attribute
classification of lung lesions, we train the 2D, 2.5D, and 3D
model with the same structure described in Figure 3. To ensure
the fairness of the three models, we do not adjust the hyper-
parameters for different models. Each model was trained with
200 epochs and a batch size of 64. To evaluate the performance
of the models, we chose the average accuracy of the model with
the lowest validation loss as the metric. The average accuracy
scores of the 3D, 2.5D, 2D model are 0.7513, 0.7511, and
0.7816; the average sensitivity are 0.7671, 0.7006, and 0.7184;
and the average specificity are 0.8305, 0.7995, and 0.8116,
respectively. As Figure 5 shows, the three models have almost
the same scores in lesion type and margin, and the model
with 2D mode has better scores in spiculation, lobulation,
vessel convergence, and pleural indentation. Table 3 shows the
accuracy, sensitivity, and specificity of each category for each
attribute. From the experimental results, we note that the higher-
level attributes, such as lesion type and lesion location, are
more sensitive to the 3D mode and the lower-level attributes,
such as spiculation and lobulation, are more sensitive to the
2D mode.

During training, we noticed that the 3D model has more
parameters than the 2Dmodels, which led to longer training time
and slower convergence. Meanwhile, the 2D model has better
average accuracy than the 3D model. So, we chose the 2D mode
as the basic model for the following experiments.

6.2. Results for Attention Mechanisms
In order to improve the performance of the basic model, we
have used two attention mechanisms to enhance the feature
before feeding it to the classifiers. We called the model with
the soft-attention module Soft-Att, and the model with the self-
attention module Self-Att. Since the number of parameters of
the two attention modules is not large, we use the same hyper-
parameters as the basic model to train the two models. Similar to
the previous section, we used a batch size of 64 and 200 epochs
for training and taking the accuracy of the model with the lowest
validation loss as the metric. The average accuracies scores of the
basic model, Soft-Att and Self-Att are 0.7816, 0.8032, and 0.7763;
the average sensitivities are 0.7184, 0.7183, and 0.7155; and the
average specificities are 0.8116, 0.8117, and 0.8128, respectively.

As Figure 6 shows, the soft-attentionmodule has better results
on margin, vessel convergence, lesion type, and spiculation

FIGURE 7 | The lesions with two heatmaps from the basic model, soft-Att, self-Att, respectively, in the lesion type and lobulation attributes. The color means the

importance of the feature in that position. The red color indicates an important feature. As the figures show, the attention model focuses the features on one point and

self-attention spreads the features in the spatial dimension.
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attributes, and the self-attention module has better results on
lobulation, pleural indentation, and lesion location attributes.
Due to the near-zero sensitivity of calcification and cavity
attributes, we do not take their accuracy into comparison. As
reported in Table 4, the two models with attention modules have
better performance than the basic model.

The heatmaps in Figure 7 visualize the attention mechanisms.
Compared with the basic model, the red value of soft-attention
is concentrated at one point. This is because soft-attention
uses higher-layer semantic information to filter the low-layer
features, which makes the features spatially smoother and more
focused. This is a good feature for high-level attributes because
it is concentrated at the point that best reflects the attribute,
but it does not fully reflect the local information relationship.
Compared with the basic model, the red value of self-attention
is more scattered in the spatial dimension. This is because self-
attention extracts channel information by compressing spatial
information using its own features, and it is more comprehensive
in spatial information due to multi-channel fusion. This is a
good feature for low-level attributes because its local information
relationships are more spatially refined, but because of the noise
in the spatial dimension, it may not be appropriate for high-
level attributes.

7. CONCLUSION

This paper presents a dataset of lung lesions with fine contour
annotation and attribute and explores the correlation between
the attributes of the dataset. To demonstrate the contribution
of this dataset to the development of CAD systems, we
explore two issues of medical data modeling using attribute
classification tasks.

One of the issues is the effect of the 2D, 2.5D, 3D input
mode on the classification model. The 2D mode works well
for low-level attributes that do not require local information
relationships between lesions and surrounding tissues, while the
3Dmodeworks better for high-level attributes that require higher
contextual relationships. The 2.5D mode is a trade-off between
the lightweight of the 2D model and the context information of
the 3D model.

The second is the impact of the two attention mechanisms
on the model. Soft-attention can better handle the noise in the

spatial dimension and concentrate on the features at one point,
which is beneficial for the classification of high-level attributes.
Self-attention can better integrate the spatial information in the
channel dimension, and complement the local relationship in
the spatial dimension, which is beneficial for the classification of
low-level attributes.

In the future, we mainly want to explore and address the
following three issues:

1. For the three categories of cavity, partial calcification,
and long spiculation, the sensitivity is almost zero due
to the high degree of the category imbalance. We will
explore novel methods to improve the accuracy of these
three categories.

2. We will use the correlation between attributes to establish a
loss function suitable for multi-attribute classification from
the statistical learning strategy.

3. There is not a single metric that can well measure the
performance of a multi-attribute model. We will build
evaluation metrics for multi-task modeling.
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Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of fibrosis. Liver

biopsy remains the gold standard for the confirmation of fibrosis in NAFLD patients.

Effective and non-invasive diagnosis of advanced fibrosis is essential to disease

surveillance and treatment decisions. Herein we used routine medical test markers and

logistic regression to differentiate early and advanced fibrosis in NAFLD patients from

China, Malaysia, and India (n1 = 540, n2 = 147, and n3 = 97) who were confirmed by

liver biopsy. Nine parameters, including age, body mass index, fasting blood glucose,

presence of diabetes or impaired fasting glycemia, alanine aminotransferase, γ-glutamyl

transferase, triglyceride, and aspartate transaminase/platelet count ratio, were selected

by stepwise logistic regression, receiver operating characteristic curve (ROC), and

hypothesis testing and were used for model construction. The area under the ROC

curve (auROC) of the model was 0.82 for differentiating early and advanced fibrosis

(sensitivity = 0.69, when specificity = 0.80) in the discovery set. Its diagnostic ability

remained good in the two independent validation sets (auROC = 0.89 and 0.71) and

was consistently superior to existing panels such as the FIB-4 and NAFLD fibrosis score.

A web-based tool, LiveFbr, was developed for fast access to our model. The new model

may serve as an attractive tool for fibrosis classification in NAFLD patients.

Keywords: NAFLD, hepatic fibrosis, advanced fibrosis, FIB-4, NFS, logistic regression

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD), the manifestation of metabolic syndrome in the liver
that is linked to obesity and insulin resistance, is one of the most frequent chronic liver diseases
(CLDs) and affects approximately 6–40% of the general population, depending on the population,
ethnicity, and diagnostic criteria (1, 2). Most NAFLD patients have simple steatosis without
fibrosis. Diverse stages of fibrosis and/or cirrhosis may develop in the context of non-alcoholic
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steatohepatitis (NASH). Advanced fibrosis (stage 3–4) is
increasingly recognized as the leading cause of hepatocellular
carcinoma and liver transplantation (3). Meanwhile, advanced
fibrosis is at an increased risk for liver-related and cardiovascular-
related mortality (2, 4). As a consequence, patients with
NAFLD should be assessed for the extent of fibrosis,
especially the presence of advanced fibrosis, because of its
prognostic implications.

Liver biopsy is regarded as the gold standard for the
diagnosis and monitoring of hepatic fibrosis progression
in patients with NAFLD. However, this invasive procedure
cannot be performed routinely in a large-scale population
due to its inherent shortcomings (5). In the last decade, a
number of non-invasive approaches based on blood markers,
such as the aspartate transaminase/alanine transaminase
ratio (AST/ALT ratio) (6), AST to platelet ratio index (APRI)
(7), FIB-4 (based on age, AST, ALT, and platelet (PLT)] (8),
NAFLD fibrosis score [NFS; based on age, body mass index
(BMI), impaired fasting glycemia or diabetes (DM/IFG),
AST/ALT, PLT, and albumin (ALB)] (9), FibroMeter (10),
and others (11), have been applied to predict and distinguish
the progression of hepatic fibrosis in CLD patients due to
their simple operation, few complications, and widespread
application (12). Some of them (or their combinations)
have been recommended as an auxiliary method for liver
fibrosis and cirrhosis diagnosis and monitoring, treatment
selection, and risk stratification in some countries and
regions (13), although their universality and performances
are still waiting for further assessment in larger and special
populations (14–16).

Along with the increasing amounts of biomedical data and
the popularity of artificial intelligence, machine learningmethods
have been actively used to develop various tools for disease
state assessment (17–19). For example, our group constructed
a gradient boosting (GB) machine learning model to stage liver
fibrosis and cirrhosis in patients with hepatitis B virus (n =

576) and hepatitis C virus (n = 484) infection (20). Using
the same four parameters of the famous scoring system FIB-
4, our method showed steady and significant improvements
in comparison with FIB-4. In addition, we quantitatively
profiled 98 serum metabolites in 1,006 participants (including
504 CLD patients and 502 normal controls) and identified
four serum metabolite markers, taurocholate, tyrosine, valine,
and linoelaidic acid, which can reliably evaluate the stage
of fibrosis by jointly using two machine learning methods,
least absolute shrinkage and selection operator and random
forest (RF) (21). The prediction models were steadily superior
to existing scoring systems, including the APRI, FIB-4, and
AST/ALT ratio, with greater sensitivity, specificity, area under
the receiver operating characteristic curve (auROC) and area
under the precision–recall curve (auPR). However, in further
studies and clinical applications, increasing attention has been
given to the limitations of machine learning models. First, the
computational process of a model is a “black box” to users,
and no formula can be given. This ambiguity has impeded its
popularity in clinical practice. Second, the overfitting problem
is increasingly recognized in patients with diverse backgrounds.

Machine learning models usually require a much higher number
of training samples and more independent validation sets (to
avoid overfitting) than conventional methods due to their
complicated structure and a large number of parameters. As
large-scale (e.g., over 2,000) samples of liver biopsy-confirmed
NAFLD patients are not easy to obtain, complex machine
learning methods are considered to be an over-examination for
NAFLD patients. Thus, the contradiction between the sample size
demand and the poor compliance of patients could not be solved
in the short term.

Logistic regression (LR), a simple and classical method, has
been used in thousands of studies for disease status assessment.
Considering the limitations of machine learningmethods and the
practical value of LR, in this report, we constructed an LR model
for the differentiation between early and advanced fibrosis in
NAFLD patients. Our strengths include the following: (1) Three
independent cohorts with sample sizes of 540, 147, and 97 were
used for model construction and validation; (2) All the patients
were evaluated by liver biopsy; (3) Our model used routine
medical test markers that can be obtained during routine medical
examinations regardless of the medical condition; (4) Diagnostic
performances were examined and compared comprehensively
with FIB-4 and NFS; and (5) An integrated web tool, LiveFbr,
was developed for biological research and clinical application.
This paper is organized as follows: SectionMaterials andMethods
introduces the cohorts, data sets, and methodology for model
construction and validation. Section Results introduces the basic
characteristics of the cohorts, the process of parameter selection
and model construction, and the results of model evaluation.
Section Discussion summarizes the work and highlights its
strengths and limitations.

MATERIALS AND METHODS

Cohorts and Ethics
A total of 784 patients with hepatic fibrosis from three
independent cohorts were enrolled in this study. Except for
cohort 1, the other two cohorts were collected prospectively
from anonymous data sets of existing studies. The discovery set
(cohort 1) comprising 540 participants was recruited by authors
from Zhongshan Hospital Affiliated to Fudan University, China.
Liver biopsy specimens were acquired from all patients who
met the diagnostic criteria for NAFL or NASH and underwent
liver biopsy (22). Subjects were excluded from the study if
they had any of the following conditions: history of cancer,
alcoholic intemperance, or other causes of chronic liver disease.
Peripheral venous blood samples were taken after a 12-h fasting
period. The samples were provided in a de-identified fashion,
and the lab staff who prepared the samples were blinded to
the clinical information. This study conformed to the ethical
guidelines of the 1975 Declaration of Helsinki, and approval was
obtained from the Research Ethics Committee of Zhongshan
Hospital Affiliated to Fudan University (no. B2013-132, date:
November 2013). Written informed consent was obtained from
each participant. Validation set 1 (cohort 2), consisting of 147
patients, and validation set 2 (cohort 3), consisting of 97 patients,
were recruited by the author from University of Malaya Medical
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FIGURE 1 | The main pages of the web tool LiveFbr.

Frontiers in Medicine | www.frontiersin.org 3 February 2021 | Volume 8 | Article 63765249

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Sang et al. Non-invasive Diagnosis of NAFLD Fibrosis

Center at different periods (set one was recruited between
November 2012 and April 2014, and set 2 began from 2016; for
detailed information, please refer to the original publications)
(23, 24).

Liver Biopsy
Liver biopsies with ultrasound-guided 1.6-mm-diameter needles
were performed by professionally trained operators for patients
in the discovery set (cohort 1). For the validation sets (cohorts
2 and 3), percutaneous needle biopsy examinations were
performed by one of two experienced operators (WKC and
SM) using an 18-G Temno R© II semi-automatic biopsy needle
(Cardinal Health, Dublin, Ohio, USA) (24). All liver tissue
samples of each cohort were examined by an experienced
pathologist who was completely blinded to the research
design. The non-alcoholic fatty liver disease activity score
was used to assess hepatic status based on a standardized
histological scoring system (25), namely, included steatosis (0–
3), lobular inflammation (0–3), hepatocellular ballooning (0–2),
and fibrosis (0–4).

TABLE 1 | Clinical and demographic characteristics of the discovery cohort.

Discovery set All (n = 540) Early fibrosis

(S0–2)

(n = 391)

Advanced

fibrosis

(S3–4)

(n = 149)

p-value

Age (year) 46.76 ± 13.42 44.39 ± 13.44 52.99 ± 11.22 <0.001

ALB (g/L) 4.44 ± 0.41 4.46 ± 0.43 4.37 ± 0.37 0.087

ALT (IU/L) 76.50 ± 49.94 76.25 ± 50.83 77.14 ± 47.69 0.664

AST (IU/L) 47.11 ± 26.40 44.17 ± 25.98 54.81 ± 26.00 <0.001

BMI (kg/m2 ) 30.38 ± 5.18 30.23 ± 5.28 30.79 ± 4.87 0.200

FBG (mmol/L) 6.36 ± 2.01 6.10 ± 1.80 7.03 ± 2.38 <0.001

GGT (IU/L) 67.77 ± 60.97 64.98 ± 63.51 75.08 ± 53.25 <0.001

HbA1c (%) 6.61 ± 1.43 6.52 ± 1.44 6.86 ± 1.39 0.001

HDL (mmol/L) 1.11 ± 0.28 1.10 ± 0.26 1.14 ± 0.33 0.115

LDL (mmol/L) 2.95 ± 1.16 3.01 ± 1.20 2.76 ± 1.01 0.134

PLT (109/L) 226.70 ± 61.46 235.70 ± 61.20 203.07 ± 55.79 <0.001

TBIL (µmol/L) 12.45 ± 7.08 12.27 ± 7.30 12.93 ± 6.45 0.095

TC (mmol/L) 5.01 ± 1.23 5.06 ± 1.29 4.88 ± 1.06 0.423

TG (mmol/L) 2.02 ± 1.43 2.14 ± 1.58 1.72 ± 0.87 0.001

AST/ALT 0.73 ± 0.38 0.70 ± 0.41 0.80 ± 0.28 <0.001

AST/PLT 0.57 ± 0.39 0.50 ± 0.31 0.75 ± 0.49 <0.001

DM/IFG (no/yes) 233:307 190:201 43:106 <0.001

Sex (M/F) 282:258 221:170 61:88 0.002

Values are expressed as mean ± SD. P-values determined by comparing the

characteristics of individuals with early (fibrosis stage 0–2) and advanced fibrosis (fibrosis

stage 3–4) were evaluated using an independent-samples t-test or Wilcoxon–Mann–

Whitney test. Chi-square test or Fisher’s exact test, when appropriate, was used to

compare categorical variables.

ALB, albumin; ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass

index; FBG, fasting blood glucose; GGT, gamma-glutamyl transferase; HbA1c, glycated

hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PLT, platelet;

TBIL, total bilirubin; TC, total cholesterol; TG, triglyceride; DM/IFG, presence of diabetes

or impaired fasting glycemia.

Blood Sample Collection and Test
For subjects in the discovery set, routine fasting (12 h)
blood samples were collected. Biochemical measurements
were performed using standard laboratory procedures. The
ALB concentration was examined by the bromocresol green
method. Fasting blood glucose (FBG) was assessed by the
glucose oxidase method. The level of low-density lipoprotein
cholesterol (LDL) was calculated by the Friedewald equation. The
concentrations of γ-glutamyltransferase (GGT), high-density
lipoprotein cholesterol, total cholesterol, triglyceride (TG), total
bilirubin, PLT, ALT, and AST were measured by an automated
bioanalyzer (Hitachi 7600, Hitachi, Tokyo, Japan). Glycated

FIGURE 2 | Flowchart of the study design. In step 1 of parameter set

selection, stepwise logistic regression, receiver operating characteristic curve,

and hypothesis testing were used jointly for preselection, and the final set was

determined from all possible combinations. In step 2 of model construction

and validation, the logistic regression (LR) model was constructed using the

optimal parameter set and was compared with GIB-4 and non-alcoholic fatty

liver disease fibrosis scores on the discovery set. Then, the LR model was

validated on the validation sets. Its independence from possible confounders

was evaluated. Its performances were compared to those of other machine

learning methods. In step 3, we developed a web tool for fast applications.
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hemoglobin (HbA1c) was estimated by a high-pressure liquid
chromatography analyzer (HLC-723 G7, Tosoh Corporation,
Japan). Detailed sample collection and test information for the
validation sets can be found in the original reports (23, 24).

Model Construction and Validation
Marker Selection
Biological markers are characteristics that are objectively
measured and evaluated as indicators of normal biological
processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention (26). Marker selection is carried out
to eliminate irrelevant or redundant markers (features) and
select key features that are truly relevant to the study aim.
This step is important to reduce the number of features and to
simplify a subsequentmodel construction. In this study, two steps
were taken for marker selection. First, three methods, including
stepwise logistic regression, receiver operating characteristic
curve analysis, and hypothesis testing [Student’s t-test for
normal parameters, Wilcoxon–Mann–Whitney test for non-
normal parameters, and chi-square test or Fisher’s exact test (if
the expected count is <5 in contingency tables) for categorical
parameters] were applied separately for all parameters. The
parameters that met two or more conditions (auROC > 0.6,
stepwise logistic regression p < 0.05, or hypothesis testing p
< 0.05 between early and advanced fibrosis) were screened out
for further selection. Second, all possible combinations among
these selected parameters were used to construct numerous LR
models. The final optimal parameter set was determined by
balancing the number of parameters and themodel performances
(primarily based on the value of auROC + auPR). The design of
our two-step strategy was advanced and effective. The first step
reduced the data size and simplified the problem. The second
step is time-consuming but necessary, as it is not unusual that
a model with fewer parameters performs better than that with
more parameters, probably due to the complicated synergistic

and competitive relationships among parameters. All these were
conducted on the discovery set.

Model Construction and Validation
Based on the optimized parameters, an LR model was established
on the full discovery set to differentiate early and advanced
fibrosis (S0–2 vs. S3–4). The performances of the LR predictive
score were evaluated by ROC and PR curve, auROC, auPR,
accuracy, F1 value, and sensitivity (when specificity is 0.8)
and were compared with FIB-4 and NFS. The ROC curve is
a comprehensive method reflecting sensitivity and specificity.
The PR curve is a comprehensive method reflecting recall and
precision. auROC and auPR are the area values under these
curves. The larger the area is, the better the classification
performance. We also employed Wilcoxon tests and box plots
to compare FIB-4, NFS, and LR scores in early vs. advanced
fibrosis. These results were further validated in two independent
validation sets.

To estimate the independence of the LR model on potential
confounders, we further applied LR to the predictive score of
the model and five parameters that were significantly different
between early and advanced fibrosis but were not used in LR
model construction.

Considering the good performance of machine learning
methods in our previous studies, we constructed an RF and a GB
model using the optimal parameter set (with default parameter
settings) and compared their performance with that of our
LR model.

Code, Data, and Web Tool Availability Statement
R (v 4.0.2) was used for data analysis and figure plotting in this
study. The LR, RF, and GB models were built by the stats (v
4.0.2), randomForest (v 4.6–14), and gbm (v 2.1.8) packages,
respectively. The data sets and code for result generation

FIGURE 3 | Receiver operating characteristic curves (A) of the logistic regression (LR) model (purple), FIB-4 (gray), and non-alcoholic fatty liver disease fibrosis scores

(NFS) (yellow) and boxplot (B) of LR, FIB-4, and NFS scores when differentiating S0–2 vs. S3–4 on the discovery set. P-values were calculated using the Wilcoxon test.

Frontiers in Medicine | www.frontiersin.org 5 February 2021 | Volume 8 | Article 63765251

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Sang et al. Non-invasive Diagnosis of NAFLD Fibrosis

are accessible at https://github.com/chentianlu/LiveFbr. A web-
based tool, LiveFbr, has also been developed to provide fast
access to our diagnosis system (https://metabolomics.cc.hawaii.
edu/software/LiveFbr/, Figure 1).

Definitions
The formula of FIB-4 was age × AST (IU/L)/[PLT (×109/L) ×
√
ALT (IU/L)] (8). The formula of NFSwas−1.675+ 0.037× age

(years)+ 0.094× BMI (kg/m2)+ 1.13×DM/IFG (yes= 1, no=
0)+ 0.99×AST/ALT ratio−0.013× PLT (×109/L)−0.66×ALB
(g/dl) (9). The AST/ALT ratio was calculated as AST (IU/L)/ALT
(IU/L). The AST/PLT ratio was calculated as AST (IU/L)/PLT
(×109/L). The F1 score of a group was calculated as 2PR/(P +

R), where P and R were the precision and the recall of the group,
respectively. The accuracy was calculated as (true positive + true
negative)/all samples.

RESULTS

Basic Characteristics of the Discovery Set
A total of 540 biopsy-proven NAFLD patients were involved in
model discovery. Two-thirds of the participants, 391 (72.41%),
had early fibrosis, and the remaining one-third, 149 (27.59%),
were diagnosed with advanced fibrosis. Generally, patients with
advanced fibrosis were older, with a higher proportion of females,
and had impaired fasting glycemia or the presence of diabetes.
In addition, their AST, FBG, GGT, HbA1c, AST/ALT ratio, and
AST/PLT ratio levels were higher, and the PLT and TG levels were
lower than those of early fibrosis patients (more details are listed
in Table 1).

Optimal Parameter Set Selection
Two steps were conducted for optimal parameter set selection
using all the samples in the discovery set (step 1 in Figure 2).
After the first step, 14 of the 18 parameters were preselected by
logistic regression, ROC, and hypothesis testing: AST, AST/ALT
ratio, AST/PLT ratio, DM/IFG, FBG, GGT, PLT, TG, ALT, BMI,
LDL, HbA1c, and sex. In the second step, all possible parameter
combinations among them were used to construct numerous
LR models. Eight parameters were finally selected, balancing the
number of parameters used and the values of auPR + auROC,
accuracy, and F1 score (Supplementary Figure 1). The optimal
parameter set consisted of age, ALT, BMI, DM/IFG, FBG, GGT,
TG, and AST/PLT ratio.

Model Construction
An LRmodel was constructed to differentiate early and advanced
fibrosis among NAFLD patients using the optimal parameter
set on the full discovery set. According to the LR model, the
LR score could be obtained as follows: −5.26952 + 0.041784
× age −0.01357 × ALT + 0.043788 × BMI + 0.574987 ×

DM/IFG + 0.089424 × FBG + 0.001741 × GGT −0.490716
× TG + 7.738743 × AST/PLT ratio. As Figure 3A and Table 2

show, the auROC and auPR values of our model (0.82 and 0.63,
respectively) were higher than those of FIB-4 (0.79 and 0.58)
and NFS (0.75 and 0.49), indicating the superiority of the LR
model relative to FIB-4 and NFS. We further assessed the group
differences in the LR model-generated predictive score and the
FIB-4 andNFS scores. All the scores were significantly (Wilcoxon
test, p < 0.05) different between early and advanced fibrosis
(Figure 3B). The detailed classification performances of the LR
model, FIB-4, and NFS are listed in Table 2. As expected, most

TABLE 2 | Performances of the logistic regression (LR) model, FIB-4, and non-alcoholic fatty liver disease fibrosis scores (NFS) in the diagnosis of advanced liver fibrosis.

Method Accuracy F1_S0-2 F1_S3-4 auROC auPR Specificity Sensitivity

Discovery set

LR model 0.78 0.86 0.46 0.82 0.63 0.80 0.69

FIB4_1.45 0.73 0.81 0.52 0.79 0.58 0.80 0.58

FIB4_3.25 0.75 0.85 0.20 0.79 0.58 0.80 0.58

NFS_-1.455 0.68 0.74 0.57 0.75 0.49 0.80 0.47

NFS_0.676 0.74 0.84 0.19 0.75 0.49 0.80 0.47

Validation set 1

LR model 0.84 0.90 0.60 0.89 0.62 0.80 0.81

FIB4_1.45 0.82 0.88 0.60 0.85 0.60 0.80 0.71

FIB4_3.25 0.79 0.88 0.11 0.85 0.60 0.80 0.71

NFS_-1.455 0.77 0.84 0.59 0.85 0.57 0.80 0.74

NFS_0.676 0.80 0.88 0.17 0.85 0.57 0.80 0.74

Validation set 2

LR model 0.74 0.82 0.56 0.71 0.61 0.80 0.50

FIB4_1.45 0.65 0.75 0.43 0.63 0.54 0.80 0.38

FIB4_3.25 0.69 0.81 0.12 0.63 0.54 0.80 0.38

NFS_-1.455 0.46 0.45 0.48 0.59 0.39 0.80 0.25

NFS_0.676 0.65 0.78 0.15 0.59 0.39 0.80 0.25

FIB4_1.45 and FIB4_3.25 indicate FIB-4 with different thresholds of 1.45 and 3.25. NFS_-1.455 and NFS_0.676 indicate NFS with different thresholds of −1.455 and 0.676.
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FIGURE 4 | Receiver operating characteristic curves (A,C) of the logistic regression (LR) model (purple), FIB-4 (gray), and non-alcoholic fatty liver disease fibrosis

scores (NFS) (yellow) and boxplot (B,D) of LR, FIB-4, and NFS scores when differentiating S0–2 vs. S3–4 on the validation sets. P-values were calculated using the

Wilcoxon test.

TABLE 3 | Results of logistic regression (LR) with the LR score only and the LR score + possible confounders.

Dataset Parameters B Wald OR (95% CI) P-value

Discovery set LR score 1.000 87.602 2.718 (2.225–3.384) <0.001

Discovery set LR score + possible confounders 0.981 50.612 2.667 (2.054–3.529) <0.001

Validation set 1 LR score 1.266 25.085 3.545 (2.258–6.120) <0.001

Validation set 1 LR score + possible confounders 1.057 7.204 2.879 (1.387–6.554) 0.007

Validation set 2 LR score 0.903 9.159 2.466 (1.461–4.739) 0.002

Validation set 2 LR score + possible confounders 1.139 5.679 3.124 (1.307–8.717) 0.017

Possible confounders were aspartate transaminase (AST), glycated hemoglobin, platelet, AST/alanine transaminase ratio, and sex.

of the criteria of the LR model were the highest compared with
those of FIB-4 and NFS.

Model Validation
The LR model obtained by the discovery set was validated
in two independent validation sets. Validation set 1 consisted

of 147 NAFLD patients, 116 with early fibrosis and 31 with
advanced fibrosis, and validation set two consisted of 97
NAFLD patients, 65 with early fibrosis, and 32 with advanced
fibrosis. More specific demographic and biological information
is available in Supplementary Table 1. As expected, the LR
model performed best with the highest auROC, auPR, and
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sensitivity (when specificity was 0.8) of 0.89, 0.62, and 0.81,
respectively, for validation set 1 and 0.71, 0.61, and 0.50,
respectively, for validation set 2 (Figures 4A,C and Table 2).
Moreover, the group differences of the LRmodel were apparently
more significant than those of the NFS and FIB-4 in both
validation sets (Figures 4B,D). In summary, the LR model was
consistently superior to FIB-4 and NFS for early and advanced
fibrosis classifications.

Model Independence Evaluation
The 14 parameters selected by step 1 were distinctly different
between early and advanced fibrosis in the discovery set and were
possible confounders for fibrosis staging. Among them, AST,
HbA1c, PLT, AST/ALT ratio, and sex were not chosen in our LR
model. Hence, logistic regression was applied to the independent
assessment of the LR score for these confounders (Table 3). The
crude OR (95% CI) of the LR score was 2.718 (2.225–3.384)
in the discovery set, 3.545 (2.258–6.120) in validation set 1,
and 2.466 (1.461–4.739) in validation set 2, with all p < 0.05.
After adjusting for AST, HbA1c, PLT, AST/ALT ratio, and sex,
the LR score was still statistically significant (p < 0.05) in the
discovery and validation sets, indicating the independence of
our model.

Performance Comparison With Other
Machine Learning Methods
Two machine learning models, an RF and a GB model, were
constructed using the optimal parameter set and the discovery
set and then tested by the validation sets. The auROC, auPR,
and sensitivity (when specificity was 0.8) of the GB model were
0.83, 0.63, and 0.70, respectively, for the discovery set, 0.83, 0.54,
and 0.74, respectively, for validation set 1, and 0.71, 0.60, and
0.47, respectively, for validation set 2. The auROC, auPR, and
sensitivity of the RF model were 0.83, 0.76, and 0.68, respectively,
for the discovery set, 0.89, 0.59, and 0.81, respectively, for
validation set 1, and 0.69, 0.58, and 0.41, respectively, for
validation set 2. Comparatively, the LR model had better or
comparable auROC, auPR, and sensitivity values than the GB and
RF models in the discovery and validation sets.

DISCUSSION

NAFLD has become a significant health problem worldwide;
therefore, accurate and reliable assessment of the severity in
the NAFLD population is increasingly crucial for treatment
decisions and long-term monitoring. A fundamental purpose
in the control and management of NAFLD patients is to
distinguish those who are more likely to develop significant
fibrosis as recently emphasized in the American Association for
the Study of Liver Diseases practice guidance, the European
Association for the Study of the Liver guidelines, and the
Chinese Society of Hepatology guidelines (13, 27, 28). Attempts
to establish non-invasive approaches for the stratification of
NAFLD patients have yielded various diagnostic panels, indices,
and imaging modalities (8, 29, 30) that might be applied in lieu of
liver biopsy.

In this study, an LR model was constructed to differentiate
early and advanced fibrosis. First, three independent data sets
with 784 participants from major ethnic groups in Southeast
Asia (Chinese, Malay, and Indian) were used to assess the
performance of our model. Our LR model shows admirable
diagnostic performance in the discovery and validation sets,
although the result in validation set 2 was slightly inferior to
that in validation set 1. We carefully compared these data sets
and believe that the following differences might lead to different
performances: (1) In original studies, validation set 1 was
collected for a fibrosis study, and validation set 2 was collected
for a steatosis study. The collection criteria for validation set 1
weremore similar to those of the discovery set; (2) The patients in
validation set 2 were generally older than those in the discovery
set and validation set 1; (3) The proportion of patients who
had DM or IFG in validation set 2 (no/yes = 10:87) were quite
different from that in the discovery set (233:307) and validation
set 1 (67:80, Table 1 and Supplementary Table 1). Second,
compared with the markers included in FIB-4 and NFS, three
additional parameters, FBG, GGT, and TG, were used in our
new model. These markers are routine medical test parameters
and are also used in other serological diagnostic tools for staging
fibrosis or for diagnosing steatosis in patients with NAFLD.
Thus, the performance improvement did not come at the cost
of the clinical burden. Third, the two-step parameter selection
strategy is advanced and practical. In addition to the commonly
used difference analysis, all possible combinations of parameters
were involved. This is a time-consuming but necessary step
to ensure the best solution. Fourth, the performance of our
LR model was evaluated comprehensively. Its independence
from other parameters was examined. Its diagnostic capability
was comparable with some machine learning methods,
although LR is sometimes also categorized as a machine
learning method.

The limitations of our study include the following: (1) It
is well-known that virus infection, NAFLD, heavy drinking,
and abnormal immune systems are different etiologies of
fibrosis. The patterns of blood parameters and the manner
of fibrosis progression in NAFLD patients differ from those
in patients with other etiologies. Therefore, our LR model
cannot be used directly on other CLD patients. Investigations
into different patterns of blood test parameters among CLD
patients of various etiologies and the development of general
diagnostic tools are ongoing; (2) Longitudinal studies are
necessary to further validate the effectiveness and stability of
the current findings as well as cross-sectional studies; (3) Our
model was validated only by samples from Southeast Asia. Its
performances in different data sets were slightly different. Further
validation in more and diverse populations is necessary prior to
clinical application.

In summary, we constructed a scoring model for the
distinction of advanced fibrosis in NAFLD patients. We
validated its overall superiority to existing indices and its
independence from possible confounders in two independent
data sets. The online tool LiveFbr was developed, through
which NAFLD patients can obtain auxiliary results of their liver
fibrosis severity.
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Trends in Heart-Rate Variability
Signal Analysis
Syem Ishaque*, Naimul Khan and Sri Krishnan

Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON, Canada

Heart rate variability (HRV) is the rate of variability between each heartbeat with respect

to time. It is used to analyse the Autonomic Nervous System (ANS), a control system

used to modulate the body’s unconscious action such as cardiac function, respiration,

digestion, blood pressure, urination, and dilation/constriction of the pupil. This review

article presents a summary and analysis of various research works that analyzed

HRV associated with morbidity, pain, drowsiness, stress and exercise through signal

processing and machine learning methods. The points of emphasis with regards to

HRV research as well as the gaps associated with processes which can be improved

to enhance the quality of the research have been discussed meticulously. Restricting

the physiological signals to Electrocardiogram (ECG), Electrodermal activity (EDA),

photoplethysmography (PPG), and respiration (RESP) analysis resulted in 25 articles

which examined the cause and effect of increased/reduced HRV. Reduced HRV was

generally associated with increased morbidity and stress. High HRV normally indicated

good health, and in some instances, it could signify clinical events of interest such as

drowsiness. Effective analysis of HRV during ambulatory and motion situations such as

exercise, video gaming, and driving could have a significant impact toward improving

social well-being. Detection of HRV in motion is far from perfect, situations involving

exercise or driving reported accuracy as high as 85% and as low as 59%. HRV

detection in motion can be improved further by harnessing the advancements in machine

learning techniques.

Keywords: heart rate variability, wireless sensors, drowsiness, stress, morbidity, exercise, machine learning

1. INTRODUCTION

HRV has been associated with many research studies involving morbidity and mortality,
stress, fatigue and athletic performance. HRV is primarily used to assess the function of the
autonomic nervous system (ANS), it consists of the sympathetic nervous system (SNS) and the
parasympathetic nervous system (PNS) which coordinates the activities of the body’s unconscious
actions as a part of the peripheral nervous system. SNS is known as the fight and flight response,
it operates within the middle of the spinal cord and activates in response to stress causing an
increase in HR, constriction of blood vessels and an increase in blood pressure in order to maintain
homeostasis, a healthy/stable state of the body. PNS is known as the rest and digest mechanism,
the activities of the PNS contradicts SNS, it relaxes the heart which slows down the heart rate,
lowers stress and decreases blood pressure. SNS and PNS work together to maintain a balance,
also known as the sympathovagal balance, allowing humans to be safe and sound or an imbalance
would indicate abnormalities associated with the heart (1). Time and frequency domain methods
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are two of the most common approaches used to accurately
assess the function of the ANS (2). Time domain parameters
include features such as: (a) standard deviation of NN (normal
R-peaks)- intervals (SDNN), (b) square root of the mean of
the sum of the squares of differences between successive NN-
intervals (RMSSD) and, (c) proportion of the number of NN-
interval difference of successive NN- interval which are greater
than 50 ms divided by the total number of NN-interval (PNN50)
(3). NN intervals were used instead of RR intervals in order
to emphasize the use of normal R-peaks. These methods can
efficiently analyze HRV through the analysis of the R-R interval
which can indicate changes in the HR due to the activities of
the SNS or PNS but it’s not a sufficient method to discriminate
between the SNS and PNS (3). Frequency domain methods such
as LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz), LF/HF ratio are
often utilized to differentiate between the activity of the SNS
and PNS. LF primarily indicates the activity of the SNS but
is also partially associated with the activity of the PNS, while
HF indicates the activity of the PNS, and their ratio LF/HF is
used to determine the sympathovagal balance (3). These indices
have made it possible to detect many abnormalities, diseases and
possible indication of mortality due to the distorted activity of the
heart and the peripheral nervous system. HRV has been used for
various applications in research studies which include: analysis of
mental and physical stress, classification of drowsiness and other
sleep states, analysis of athletic performance and fatigue, studying
the correlation between a sedentary lifestyle and mental/physical
well-being and analysis of anxiety and depression and various
other morbidities associated with reduced HRV.

Kim et al. (4) presented a review paper to analyze HRV and
stress, the study described the physiological function associated
with stress, as well as HRV related to specific parts of the
brain/heart anatomy responsible for the changes associated
with stress. The paper presented information related to the
anatomy/physiology behind stress, but neglected trends in
wearable devices used for data collection, different types of
signal processing algorithms used for HRV feature extraction
and analysis, machine learning algorithms used for classification
of pathologies, wireless monitoring of HRV to improve the
health care system and ultimately patient’s health and the
various applications associated with HRV research (as shown in
Figure 1).

FIGURE 1 | Some important applications of HRV (5).

This article will analyze the various abnormalities associated
with HRV, their detection and analysis using an ECG
(electrocardiogram), Respiration, GSR and other wearable
devices. The impact of pathologies on the human body and
mental state as well as the possible gaps that are associated with
each research study.

2. METHODS

The literature survey was performed through Ryerson University
Library and Archives (RULA) online system. PubMed, IEEE
Xplore, Web of Science (WoS), Scopus were the primary search
databases directed from RULA. The search was allocated toward
HRV studies using ECG, EDA, RESP, PPG signal analysis, few
papers involved the analysis of EEG or EOG, but were not
considered to present information primarily based on ECG,
EDA, RESP, and PPG signal analysis. All the reviewed articles
were published after 2010 to present information which is not
outdated, except one paper which was used to present the
function of time and frequency domain analysis. The relevant
papers which were reviewed and summarized described the
morbid conditions/situation associated with HRV in depth and
in detail, any paper which only briefly discussed HRV were not
considered. Papers which primarily focused on factors outside
of HRV were also not considered. More than 70 papers were
reviewed but most of themwere not considered for meta-analysis
since they did not provide an in-depth analysis of HRV to
examine cardiac pathologies, exercise or drowsiness. Accounting
for repetitive topics, 18 major concepts were discussed in depth
from 25 articles (as shown in Figure 2). The gaps associated with
each article were acknowledged and presented.

HRV has a wide range of applications, some of those
applications were presented in Table 1. The upcoming sections
will scrutinize various research experiments which transpired
through the analysis of HRV, investigate the changes within a
patient’s/subject’s HRV due to certain activities and morbidities.
It will also examine the void and inconsistency of each research
study and outline future direction for HRV research, areas which
requires more attention in order to become a more efficient
procedure which can have a positive impact on people’s lives and
prevent chaotic outcomes.

3. TRENDS IN HEART RATE VARIABILITY

In this section, we discuss the trends and evolution of HRV from
the oldest upto the most recent research conducted. HRV is not
a new topic by any means, initial research on this topic was
conducted during the early 1940s. Over the years, along with the
significance of HRV analysis, feature extraction and modalities
used to assess HRV have also evolved.

Features play an important role in discriminating the
underlying function associated with any physiological signal.
The evolution of features used to analyze HRV is depicted
in Figure 2. The earliest feature utilized to analyze HRV was
HR from time domain. In 1940, Knox studied the variation in
HR due to exercise through mean and standard deviation of
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FIGURE 2 | Flow chart for HRV article selections which were used for meta-analysis.

TABLE 1 | Research paper associated with HRV detected using an ECG, type of study, results of HRV, concepts being analyzed.

References Features Application Modality Notable results Method of analysis

Rosenberg et al. (6) LF, HF, LF/HF 1D/2D stress study ECG 2D accuracy 90% 2D scatter plot.

Blood et al. (7) LF, HF, LF/HF Depression ECG HRV decreases Frequency Domain

Molina et al. (8) RMSSD, LF Posture ECG HRV Reduced Time Domain

Leti and Bricout (9) RMSSD, LF Overtraining ECG SNS Dominant Time, Frequency

Walker et al. (10) SDNN, HF Noise ECG HRV Reduced Time, Frequency

Wang et al. (11) R-R, LF/HF CHF ECG 100% acc SVM, KNN

Huang et al. (12) LF, HF Anxiety ECG HRV Reduced LF, HF

Pinheiro et al. (13) LF, SDNN MI ECG HRV Reduced Frequency Domain

Toni et al. (14) LF/HF, LF, HF CVD ECG HRV Reduced Frequency Domain

Shi et al. (15) HR, SDNN Emotion ECG LF/HF inc Time, Frequency

Ponnusamy et al. (16) RMSSD, HF Seizure ECG HRV Reduced Time, Frequency

Howells et al. (17) HF Bipolar ECG HRV Reduced HF

Rios et al. (18) R-R, RMSSD Drowsiness ECG HRV Inc Time Domain

Jung et al. (19) RMSSD, HF Fatigue ECG HRV Reduced Time, Frequency

Rahim et al. (20) LF, HF, LF/HF Drowsiness ECG, PPG HRV Reduced Frequency Domain

Georgiou et al. (21) RMSSD, HF Exercise ECG, PPG 91–99% acc Time, Frequency

Gontier (22) LF, HF, LF/HF Mind Wander ECG LF dec Time, Frequency

Vicente et al. (23) LF, HF, LF/HF Drowsiness ECG 98% spec LDA

He et al. (24) ApEn, LF Stress ECG 17.3% err CNN

Schmidt et al. (25) LF, HF, ST Stress ECG, GSR 80% (3 labels) Adaboost

Cho et al. (26) SCL, LF/HF Stress GSR, PPG 95% acc KELM NN

each subject’s pulse rate (27). This translated to classification of
abnormal variability associated with cardiac pathology. In 1958,
Simonson studied the amplitude of the QRS complex (28). He
derived the mean and SD associated with normal subjects and

differentiated them from patients with cardiac pathology. HRV
was more distinguishable using animal studies, due to the level
of invasiveness allowed for animals. In 1968, Lynch studied the
variation in HRV due to shock applied to dogs (29). The data
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FIGURE 3 | Evolution of feature analysis for HRV from 1940 to 2020.

was analyzed using mean and SD of heart rate. A major change
occurred around 1969–1970s, R-R intervals were emphasized
for their ability to better analyze HRV from ECG which led
to the development of time domain features such as RMSSD,
pNN50, and SDNN. In 1977, Rompelman et al. presented a
literature which compared the various methods used to analyze
HRV and demonstrated that R-R intervals were more accurate
for measuringHRV in comparison toHR (30). Researchers didn’t
just stop there, during the 1990s R-R were deemed less effective
in comparison to spectral analysis methods. More studies were
conducted, which primarily assessed PSD features such as LF,
HF and LF/HF associated with ANS impairment due to cardiac
pathologies (30, 31). In 2006, Poincaré plots were introduced
to present a visual representation of non-linear scatter plots
corresponding to cardiac pathologies and reduced HRV (32).
Recently joint time-frequency is a recurring trend which is
gaining a lot of attention from researchers (2). It is capable of
tracking instant changes in HRV through a shorter period, which
can effectively diagnose exercise and cardiovascular diseases.
Figure 3 depicts the evolution of HRV feature analysis from
1940 to 2020.

Figure 4 delineates the evolution of healthcare devices used to
detect physiological signals, which can be analyzed to assess HRV.
Data collection is the key ingredient which allows researchers
to analyze and detect cardiac pathologies associated with an
impaired HRV. Upto the 1980s,
cardiotachometer were most commonly used to record a person’s
electrical signal and record their HR for HRV research (33).
Although ECG was developed in 1924, it took about 60 years
for them to become affordable for public research. 2 lead ECG’s
were typically used during the 1980s for HRV research (34). HRV
was not just related to heart beat, it also involved blood pressure,
mental activity and respiration.

From the 1990s and onwards, HRV research became more
diverse. HRV was also analyzed by measuring BP and respiration
using PPG and thoracic belt (35). This expanded theories and
problems related to impaired HRV, it also added more depth
to HRV analysis through information obtained from various
physiological signals. Twelve lead ECGs were introduced in 2000,
this allowed researchers who were collaborating with clinicians
to analyze various cardiac pathologies more effectively (36). The
signals obtained were smoother andmore efficient in comparison
to signals from other ECGs which used fewer electrodes. The

FIGURE 4 | Evolution of medical devices utilized for HRV data acquisition.

FIGURE 5 | Trends in machine learning for HRV classification.

current trend involves the use of wearable devices to detect
physiological signals, these are much more flexible and portable
in comparison to the traditional ECG and PPG devices (25, 37).

Figure 5 describes the common techniques used to classify
HRV using machine learning algorithms from 2010 to present.
Machine learning has been part of many research studies since
the mid 2000’s. Although it was initially developed in 1950,
supervised methods did not become popular until the 2000s.
Literature for machine learning was nothing less than an instant
success, within the past decade there have been numerous
books, literature, research papers, industrial work and health
care innovation based on machine learning. It’s hard to pinpoint
a specific focus in this domain, so we narrowed the timeline
to beyond 2010 and focused on common machine learning
topics that were the focus for many research conducted on
HRV. Supervised learning has been the most common method
to classify various cardiac pathologies and symptoms related to
HRV since 2010 (37, 38). Supervised models learn the data and
predict labels through learnedmapping, which allowmodels such
as DT, LDA, and SVM to predict labels based on corresponding
features (39). Many research papers in 2011 revolved around
identifying the most important features through feature selection
algorithms, in order to obtain better classification accuracy and
reduce classification time (39, 40). In addition to automatic
diagnosis and classification, researchers have implemented
shorter windows to extract features associated with physiological
function from real-time (41, 42). Deep learning has been utilized
more often for HRV research from 2018 to improve automatic
classification through real-time. They are capable of detecting
hidden patterns from the input through hidden layers, iteratively
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minimizing errors in data prior to classification. This makes
the algorithm more efficient for extracting relevant information
related to the topic being analyzed, improves classification
accuracy and requires less features for real-time classification
(24, 43). An emerging trend on the rise from 2019 is the use of
unsupervised deep learning to classify mental stress associated
with HRV using autoencoder (44). Self organizing map (SOM) is
a dimensional reduction method trained through unsupervised
learning, which can indicate the most effective features required
to classify stress with high accuracy (26).

4. HRV TRENDS FOR DATA COLLECTION

This sections illustrates the various data collection methods
used to detect and analyze HRV. Table 2 reveals the biomedical
devices utilized, how they made a significant contribution to the
corresponding research and their limitations. Wearable devices
are recurrently used in recent HRV research, further indicating
the emphasis on remote andwirelessmonitoring of HRV, in order
to make life easier and improve monitoring the health of patients
suffering from severe cardiac diseases.

4.1. Smartphones and HRV
Recent smartphones are more than just a device used for
communication and listening to music, these devices include
embedded sensors, accelerometers, microphones, digital camera,
and various apps based on measuring the affective state
(neural, emotion, stress) of an individual. These features allowed
researchers to conduct valuable experiments which required
wireless monitoring of physiological activity, position, speech
patterns, facial expression and affective state, in order to analyze
stress levels, behavior and emotion at anytime and anywhere,
thus promoting better human health and well-being (45, 46).

Prolonged work periods without sufficient rest/recovery
periods can reduce happiness and lead to chronic stress due
to mental workload (45). Recent development in technology
which integrates artificial intelligence/machine learning (AI/ML)
provides insight about a persons stress level at work, during social
encounters and sleep. Muaremi et al. (45) utilized smartphones to
collect audio, communication and physical activity data during
work periods and a wearable Wooho chest belt was used to
collect HRV data during sleep. They were able to classify stress
using HRV features with only 59% accuracy, indicating that
although these advancements are quite fascinating and promotes
a healthier lifestyle, it wouldn’t be considered effective or rational
to use such methods to monitor the health of subjects who
are suffering from chronic stress or impaired HRV. The most
critical aspect of wearable sensors is their inability to produce
accurate data. Utilizing such methods would only seem feasible
for empirical studies. They are nowhere near the level required to
be effective for use by people suffering from stress or impaired
HRV. Smartphones are not designed to promote a healthy
lifestyle unlike a wearable ECG sensor, using it for the purpose
of diagnosing work stress would require further modification
of the design, which would make it more adaptable for health
care interventions.

4.2. Wearable Devices and HRV
Smartphones and wireless ECG, EEG, and EDA devices would
make it possible to detect cardiovascular diseases associated with
HRV impairment before it becomes chronic and fatal (46). They
make it feasible for health practitioners and people suffering from
various cardiovascular diseases (Diebetes, Hypertension) to act
proactively and minimize severe outcomes by monitoring their
physiological activity throughout the day, including during sleep.
Machine learning enable them to predict stress and negative
emotions associated with their daily activities, minimizing certain
activities may lead to a greater level of productivity and a better
sense well-being.

ECG is the most commonly used device with respect to
HRV detection (6, 21, 25, 37). Rosenberg et al. (6) utilized a
wireless ECG sensor during various situations to measure stress
response associated with conference presentations, mental stress
test, emergency, and pain. Schmidt et al. (25) utilized Emphatica
E4 to measure BVP, EDA, ACC, and TEMP and RespiBAN to
detect respiration and ACC (accelerometer). The data collected
was used to develop WESAD, a public database which consists
of data required to effectively analyze affective states and stress.
Cho et al. (26) analyzed HRV, skin conductance (SC)/sweat and
skin temperature (SKT) through data collected using a PPG,
EDA, and SKT, respectively. They were able to classify stress
with high accuracy, using a novel feed forward neural network
algorithm and integrated features. Georgiou et al. (21) revealed
that wearable devices can detect HRV at rest with 85% accuracy
using a PPG and 99% accuracy using an ECG which deteriorates
to 85% accuracy during exercise.

Ambulatory detection of HRV is the current resolve for most
researchers who hope to make a pragmatic and positive impact
on the health and well-being of patients suffering from CVD,
hypertension, diabetes, chronic stress and myocardial infarction.
Patients suffering from these pathologies need to be monitored
throughout the day in order to prevent a serious calamity.
Remote monitoring of HRV would undoubtedly benefit senior or
chronic patients, who are suffering from cardiovascular diseases
but cannot make the effort to visit the hospital all the time, due to
the considerable distance and lack of physical ability.

Schmidt et al. (25) were able to classify binary classes of
stress by analyzing data collected through wireless sensors with
93.6% accuracy using multinomial logistic regression model.
They were able to classify low, mid and high level of stress
with 72% accuracy using a random forest algorithm, further
demonstrating that chronic stress is hard to predict, although
stress can be distinguished from a relaxed state with high
efficiency. Cho et al. (26) were able to detect severe stress with
wireless PPG, EDA, and SKT sensors from a VR task with 95%
accuracy using a kernel based extreme learning machine (K-
ELM) algorithm. Although there were numerous studies which
classified stress with high accuracies using HRV features, they
completely neglected statistical analysis of the data. Machine
learning algorithms cannot differentiate between efficient data
and errors. They are highly susceptible to biased predictions
which arise from biased training datasets, a high classification
accuracy can be achieved from erroneous data, if the training
data is biased. Physiological signal analysis and statistical analysis
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TABLE 2 | Data collection methods, their Pros and Cons.

References Modality Pros Cons

Rosenberg et al.

(6)

Wearable ECG Detect stress with 90% accuracy
Less effective during pain

and non-stationary situations

Blood et al. (7) Holter ECG
Effectively detect

depression and HRV
Accuracy of results

Molina et al. (8) 12-lead ECG
Accurate correlation between

HRR and HRV
May cause scar

Leti and Bricout (9) Polar RS 800
Detect fatigue and

HRV in motion
Accuracy of Results

Walker et al. (10) GE Light ECG
Effectively analyze

Noise exposure and HRV

Did not detect correlation

between noise and BP

Wang et al. (11) Wearable ECG
Discriminate between CHF

and NSR with 91.3% acc

RMSSD is not

accurate

Huang et al. (12) 12-lead ECG
Effectively determine HRV

due to stroke and hemodialysis

LF/HF ratio is

not accurate

Pinheiro et al. (13) PTB recorder
Determine prognosis of

patients following MI

Cannot deduce

causality behind results

Toni et al. (14) Clickholter ECG

Detect HRV in

motion due to

antidepressants and exercise

LF/HF, RR

are not accurate

Shi et al. (15) RM6240B ECG

Effectively

discriminate between HRV

of happiness and sadness

RMSSD, pNN50 and

SampEn are not accurate

Howells et al. (17) MP150 Biopac

Accurately analyzed HRV

due to meditation

and BD wirelessly

Results lacked

most ECG measures

Rios et al. (18) Gear S, PPG
Possibly recognize drowsiness

while in motion

No results

were obtained

Jung et al. (19) ECG sensor

Wireless analysis of

HRV due to

drowsiness and fatigue

Accuracy of

results

Georgiou et al. (21) ECG,PPG
Analyze HRV

with 91-99 % accuracy

Accuracy reduces

during motion

Gontier (22) eMotion Faros

Efficiently detect

correlation between

awareness and HR

Did not find

robust correlations

Vicente et al. (23) eXim Pro
Detect drowsiness

while in motion

Detect drowsiness with

62% sensitivity

He et al. (24) custom ECG
Detect stress

using ulta-short epoch

Accuracy of classification

was not revealed

Schmidt et al. (25)
RespiBAN

Empatica E4

Detect stress

with 93% accuracy

May have resulted

from overfitting

Cho et al. (26)
Biopac PPG

EDA,UIM

Detect stress

with 95% accuracy

Not a viable

solution in real-life

can provide an effective corroboration that the data utilized
were an efficient representation of a subjects physiological
function. Venkatesan et al. (47) developed a novel DENLMS
adaptive filter for remote health care applications, in order to
remove white noise from ECG signals obtained from patients
suffering from cardiac arrhythmia. SVM classifier performed
better than other ML algorithms and classified normal/abnormal

cardiac arrhythmia with 96% accuracy using HRV features
extracted from the preprocessed signal through discrete wavelet
transform. Although research is seemingly headed toward
the right direction, most wearable ECG devices still require
much improvement before they can be used to accurately
diagnose heart attack or other cardiovascular diseases. Recent
smartwatches did not present accurate information about a
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subject’s HR with respect to their daily life, research studies which
used wearable watches to improve weight loss demonstrated that
the device produced an ineffective measurement of a person’s
HR and did not improve weight loss (48). Wearable devices can
provide real-time data which can motivate patients to be more
careful and promote better self-management in order to prevent
chronic outcomes but affordability, adaptability and functionality
are still a major concern with wearable devices, especially if they
were to be integrated with ML, which poses a major set back
and might be the reason that prevents the deployment of such
devices. Wearable devices such as a wearable ECG sensor can be
utilized to monitor a person’s cardiac signal, HR and HRV, which
are indicative of chronic outcomes such as myocardial infarction,
but they still require further enhancement before they can be
considered an effective method for such diagnosis.

4.3. Drowsiness and HRV
Around 10–30% of all road crashes are associated with
fatigue and drowsy driving. Recent smart watches and portable
ECGs are efficiently being utilized to antedate drowsiness,
in order to alert the driver prior to any possible accidents.
Accelerometer and gyrometer has been examined to assess the
users HRV and physical activity, which allows for the detection
of drowsiness/fatigue prior to the transition to stage 1 sleep
(drowsiness) (18). There is a high correlation between PPG and
ECG in terms of detecting HR, Lee et al. proposed a method
to automatically remove noise from PPG using a PPG strap
which can be used to accurately detect HR while driving, PSD
can be utilized to detect HRV in frequency domain, making it
a simple and effective method to detect drowsiness through a
persons HR (49). Physiological signals such as an ECG have been
described as the most accurate representation of drowsiness in
comparison to vehicle basedmethod (lane position of the vehicle)
and behavioral method (yawning, eye blinking) (49). Although
it has yet to be fully established, wireless ECG sensors might
be capable of effectively detecting drowsiness, while the driver
is driving. In addition, GSM modules can be utilized to send
continuous signals to the control room, DCmotor can be used to
control the speed of the vehicle upon drowsy detection since the
driver’s reaction would be distorted, LCD can be used to monitor
the driver’s condition and LED in the rear side of the vehicle can
signal the vehicle behind the drowsy vehicle to slow down (50).
Roy andVenkatasubramanian (51) proposed a similar idea which
involved using an accelerometer to detect motion, SMS to send an
alert message to the control room and microcontroller to process
the analog signal prior to its analysis through labVIEW and
Matlab. Research based on drowsy driving is still relatively new in
comparison tomyocardial infarction and hypertension which has
been studied for over 30 years, which is one of the biggest reasons
for lack of adequate research concerning drowsy driving. A
reliable and accurate method to detect drowsiness while a person
is driving is still a part of ongoing research, it makes sense in
theory but HRV is complex and becomes more intricate to detect
in motion such as exercise (only 78.6–85% accuracy in frequency
domain) and it is especially worse during drowsy driving (21).
Vicente et al. (23) conducted a study which involved truck drivers
using a drowsy detection detector as well as a sleep deprivation

detector and the accuracy of the results were 0.59 and 0.62
sensitivity, respectively. The results indicate that when a truck is
in motion, there are a lot of errors associated with wireless ECG
detection, some parts of the signal were blank while in motion.
Specificity and predictivity were 0.98 and 0.96 using a drowsiness
episodes detector and 0.88 and 0.80 using a sleep deprivation
detector, disclosing that detection of the signal was the hardest
part during this process, specifying drowsiness/awake state upon
detection was very accurate through the data analysis of ECG
signals using the linear discriminant analysis (LDA) algorithm.
The biggest impediment with regards to drowsy detection is the
level of interference associated with electrodes. Electrodes are
often attached to a person which can hinder their movement,
driving requires constant steering to maneuver the vehicle, which
produces error and loss of signal detection. Other methods which
involve sensors attached to steering wheels are also hindered by
the constant placement of both hands on the steering wheel. Most
vehicle based measures are deemed unreliable and inaccurate.
Most empirical methods that provide partial results which are
somewhat indicative of a person’s HRV are often imprecise due
the lack of control associated with driving, wireless devices still
require sensors to be attached to a person which hinders a
person’s ability to drive and move freely. Smartwatches which
are capable of detecting a person’s heart rate would be the least
intrusive while driving, but would require extensive modification
and testing before it could be considered a valid option to prevent
drowsy driving. The cost to develop a smartwatch capable of
interpreting a person’s HRV and drowsiness would be much
greater than the current wireless ECG sensors, making it a
less likely solution for drowsiness detection which results in
thousands of casualties each year.

4.4. Video Game and HRV
HCI (human to computer interaction) is one of the various
methods utilized for stress analysis, cognitive games such as
stroop test are often utilized to assess a subjects ability focus
while they are subjected to distraction. Fernandes et al. (52)
developed a novel method in order to design a video game
FlappyHeartPC which used ECG signals as the input, bridging
the gap between human physiology and gaming, such interaction
might spark more interest within the user for a boring activity
(which is relaxing and beneficial for stress reduction health) such
as mediation, fishing, or simply analyzing your physiological
signal in a lab. The game design includes a tailor belt worn below
the chest with electro-textile electrodes was used as the interface
between the sensor and the skin, data acquisition required
Bitalino (a specialized data acquisition board), python was used
to design the signal processing algorithm used to process/filter
the input ECG signal, detect QRS complex and calculate HR.
Unity 3D was the engine which made the development of the
game possible which can utilize HR as the input for certain
physiological analysis (52). The video game is a great innovation
which can be utilized for science and excitement but it did
not have a specific purpose outside of the gaming business.
There have been numerous claims by the gaming industry
which proclaims that videos can be utilized to stimulate the
brain and improve cognitive abilities associated with memory,
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FIGURE 6 | Process flow chart for HRV analysis and classification.

reasoning and processing speed. Unlike 2D video games, 3D
video games often allow the user to be notably immersed within
the virtual environment and absorb more complex information
which stimulates the hippocampus. Analyzing just the heart rate
alone would not provide sufficient information to analyze an
individual’s HRV. Python packages can be used to scrutinize
the detected ECG signal through time, frequency and non-
linear methods but the extracted data may not be accurate
enough to validate the users physiological function. However,
it can be utilized to improve human health by implementing a
stress detection algorithm into the game. If ML learning can be
embedded, there are various possibilities with regards to health
care applications such as predicting stress and low HRV, which
can also antedate cardiovascular diseases.

5. HRV TRENDS FOR FEATURE ANALYSIS

5.1. HRV and Signal Processing Methods
HRV detection is a complex procedure which requires a
series of actions, in order to accurately measure the rate of
change associated with the R-R interval obtained from the

QRS complex, the raw ECG signal first needs to be filtered,
processed and reconstructed. Raw ECG signals need to be filtered
in order to remove baseline wander, powerline interference
and muscle noise (53, 54). After filtering, the ECG signal is a
lot smoother and cleaner, which makes it easier to detect the
QRS complex. Researchers have developed and innovated many
robust R-peak detection algorithms prior to feature extraction
such as: Pan-Tompkins alorithm, wavelet transform algorithm
and empirical mode decomposition (EMD) algorithm (55–57).
Time domain parameters can be extracted using the R-peaks
detected but in order to secure frequency domain parameters,
spectral transformation of the QRS complex is required through
PSD (power spectral density), which can be obtained through
Fast Fourier Transform (represents frequency components),
Autoregressive (reduces spectral leakages to improve the
resolution of the data), Welch Periodogram and Lomb Scargle
Periodogram analysis of the QRS complex. Time domain
parameters are statistical evaluations of the ECG signal (presents
statistical properties) and frequency domain parameters describe
how power (variance) is dispersed as a function of frequency
(58). Figure 6 demonstrates the process required to extract
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TABLE 3 | Time and frequency domain features.

Features Description

HR The rate of change associated with R-R intervals from HR represents HRV. Increases due to stress

SDNN The standard deviation of interval between two normal heartbeats (NN). NN measures the total power. Decreases in response to

stress. SDNN =

√
1

N−1

∑N
j=1(RRj − RR)2

RMSSD The root mean square of successive differences between normal heartbeats. Primarily manipulated by PNS activity.

RMSSD =

√
1

N−1

∑N
j=1(RRj+1 − RRj )2

pNN50 Represents the percentage of the difference associated with NN interval which differ more than 50 ms.It shares a strong

correlation with PNS activity, RMSSD, HF

SD1 Non-linear variables derived from the Poincaré plot. Shares a high correlation with HF, RMSSD. Decreases due to stress

SD2 Non-linear variables derived from the Poincaré plot. Shares a high correlation with LF. Increases in response to stress

ApEN Represents the ratio between SD2 and SD1. Shares a high correlation with LF/HF. Increases due to stress

GSR std Standard deviation associated with electrodermal activity. Increases during stress

GSR mean Mean value obtained from measuring the rate of change associated with EDA activity. Increases during stress

Resp Rate Represents breathing rate, increase in Resp rate leads to increased PNS activity, HF and decreased LF, SNS activity. Increases in

response to stress

VLF Represented within the VLF band (0.0033–0.04 Hz) and it is mediated by SNS activity

LF Represented through 0.04–0.15 Hz within the PSD, it is mostly used to indicate SNS activity but can specify PNS activity

HF Represented by the frequency range of 0.15–0.40 Hz and solely indicates PNS activity

LF/HF Represents ANS activity, increases in response to increased stress and decreased HRV

HRV features from an ECG signal, perform HRV analysis and
classify/predict impaired HRV. Table 3 illustrates the time and
frequency domain features used to analyze HRV and their
correlation to stress.

5.2. HRV and Stress
As described in Figure 7, stress is primarily associated with
the activity of the SNS, increased LF (0.04–0.15 Hz) band in
frequency domain and reducedHRV. It activates due to perceived
danger (such as a deadline, financial worries, exam) and increase
in cortisol levels causing the activation of SNS which mobilizes
the body’s activity under stress in order to react/respond rapidly
to any dangerous situations (6). Rosenberg et al. (6) analyzed
the levels of stress in response to various situations including
public speaking, math, exercise, mediation, pain and cognitive
tests. ECG signal obtained through a wireless ECG sensor was
processed to measure HR, time and frequency domain features
such as SDNN, PNN50, RMSSD, LFn, HFn, LFp, HFp, LFiA,
HFiA. LF/HF (normalized, power, instantaneous) were extracted
to measure HRV as well as SNS and PNS activity associated
with HRV. There are different levels of stress depending on
the person’s HRV, most often 1D frequency domain methods
such as sympathovagal balance (LF/HF ratio) were used since
they are more efficient/ simpler than the time domain methods
(RMSSD, PNN50, SDNN), which takes longer to assess, although
the efficiency of the method can be significantly improved (6,
23). Rosenberg et al. used a 2D scatter plot (LF Vs. HF on
a 2D scatter) using multiple variables such as LFn, LFn, LFp,
HFp, LFiA, HFiA and their ratio and compared it with the 1D
methods (LF/HF ratio or LF, HF computed independently) for
different stress tests such as: mental stress, pain, emergency,
meditation, and pain. The results concluded that 2D scatter
plots were much more efficient than 1D univariate methods, 2D

results produced accuracy of 90% or above, whereas 1D methods
were around 70%. 1D variables are very linear, unlike stress,
they cannot effectively discriminate between 2 tests (such as:
Math and exercise) that lead to similar heart rates. However,
2D scatter plots can efficiently differentiate between each ANS
activity due to the different activities, resulting in much more
efficient results and categorization of ANS activities (SNS and
PNS activity) due to different stress states. The accuracy of the
experiment is questionable since only 10 participants were used,
which is less indicative of the overall population, one individual
can have distinct patterns which is not comparable to the rest
of the world during exercise or math. Another questionable
result would be the result of the HR, exercise should result in a
higher HR since the heart starts pumping faster to pump blood
to the rest of the body during exercise, in order to match the
incremental demand of the exercise, resulting in an increased
HR upto 5 min post exercise. LF value during exercise was
also rather low, exercise promotes efficient use of one’s energy
allowing an individual to be more awake/alert throughout the
day, which is more associated with the activity within the LF
band. A 3D assessment which includes time would probably
result in a more comprehensive analysis, effectively specifying the
periods associated with increased levels of stress.

5.3. Short-Term Signal Analysis and HRV
Rosenberg et al. (6) have also indicated that time of the epoch
used to assess HRV in time domain is very important, 3 min
is the minimum epoch that can be used by RMSSD in order to
measure fatigue in athletes, but 5 min epoch are optimal for stress
analysis, otherwise preprocessing the signal may lead to filtering
out valuable information which would result in inadequate, less
efficient output and representation of HRV activity associated
with stress. Castaldo et al. (41) analyzed HRV using ultra-short
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FIGURE 7 | Describes LF and HF associated with stress, drowsiness, awake,

and fatigue.

term HRV features in order to assess mental stress in real-time.
Theoretically stress is generally associated with perception, it
can be due to internal perception such as negative emotions of
anger, anxiety, fear, depression and mood swings or it may be
induced by external perception of the world around us, such as
an upcoming exam, presentation or deadline which causes us to
worry, lose sleep and accumulate stress (37). MeanNN, stdHR,
HF features resulted in the best accuracy when classified through
an automated classifier such as TPOT, which classifiedHRVusing
various ML models (SVP, MLP, neighbor search IBK, C4.5, and
LDA) and indicated which algorithm was able to classify stress
with the highest accuracy (41). Statistical testing is an essential
component of every research study, in order to verify, validate
and understand the significance of the results obtained. Statistical
hypothesis testing legitimizes the efficiency of the results and
encourages further expansion of notable methods which can
have a significant impact on people suffering from drowsiness,
impaired HRV, and cardiovascular diseases (59). Current trends
in machine learning hints that there is a bigger initiative for
real-time analysis, various algorithms were developed to permit
real-time analysis using ultra-short term epochs of 3 min and
under (60). In certain cases even 1 min epoch can produce data
which can be analyzed to effectively classify HRV using specific
features, some features are peripheral, by reducing such features,
HRV can be classified in real-time and with higher accuracy (41).
Most PSD methods such as FFT, Lomb Scargle periodogram and
Autocorrelation are capable of producing useful results which
can be used to detect HRV from only 3 min, but it requires the
subject to be stationary and stable. Experiments which involve
motion (e.g., exercise, driving) produce erroneous results. Most
research studies emphasized the use of time domain features to
analyse HRV from short-term durations, which is also simpler to
extract than frequency domain features. Time domain features
are not consistent and often vary, which makes HRV analysis
very complicated and flawed. Frequency domain features are
more accurate in comparison to time domain methods but do
not produce valid data from shorter windows since the rate of

change associated with R-R intervals are being compromised as
well. Short-term duration does not allow the data to fully grasp
the activity of the heart, HRV is derived from the rate of change
due to fluctuations in HR, shorter windows produce less data and
less accurate results. Short-term duration results in minimizing
most of the data which also removes valuable information needed
to understand the overall condition of the subject (2, 61). Pre-
processing is also limited by short-term durations since most
of the data might be filtered out if the data is noisy, which is
reasonable from subjects under stress. Short-term data can make
a significant contribution to the health of patients suffering from
CVD, by allowing them to monitor their heart rate in real-time
from a distance using ambulatory ECG sensors but extensive
research is needed to find viable solutions which can minimize
the motion artifacts and reduce errors.

5.4. Low/Reduced HRV
Lower/reduced HRV transpire as a result of increased SNS
activity and reduced PNS. It often infers that higher HR/blood
pressure leads to various morbidities and increases the chances
of mortality. HRV of patients/subjects suffering from depression
is very low, VLF (0.003–0.04 Hz) has been positively associated
with depression and it is also one of the strongest indicators of
depression (7). Blood et al. were able to make these diagnoses
using correlation analysis (scatter plots), which compares the
activity of the LF, VLF, and HF due to various symptoms
associated with depression. The research study also revealed that
low HF (equivalent to low HRV) emanate more anger, sadness,
peer problems, and anxiety, while decreased VLF would cause
the development of chronic inflammation, and dysregulation
of VLF (associated with metabolic process, thermoregulation,
renin angiotensin, regulates blood pressure and fluid balance)
which would result in more fatigue and depression (7, 27,
62). The research neglected any possible solution to counteract
depression, wireless sensors can be incorporated into biofeedback
systems in order tomonitor a person’s HRV and provide feedback
to improve their emotional well-being by increasing their HRV.
Nexus has developed biofeedback devices which are capable
of measuring physiological activity associated with impaired
HRV and providing solutions to improve their physiological
function. Mendi developed a biofeedback device to strengthen
cognitive function associated with lowHRV and stress, which can
improve depressive symptoms as well. Interaxon also developed
a biofeedback device the muse to counteract low HRV and
stress through guided meditation. These devices are expensive
and would not be considered as a cure for chronic conditions
such myocardial infarction but they can improve depressive
symptoms which is often associated with prolonged stress and
imbalanced physiological parameters associated with impaired
ANS activity. Reduced HRV is a risk predictor of heart failure
after acute myocardial infarction, a warning sign for diabetic
neuropathy, and has been associated with patient suffering from
sleep apnea, dilated cardiomyopathy, fetal distress as well as
congestive heart failure (11). Decrease in HRV is correlated to
reduced SDNN and a shorter R-R interval. Significantly lower
LF along with a reduced HRV antedates sudden cardiac death
for patients suffering from CHF, due to the impaired activity of
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the ANS, which is unable to respond/react accordingly to the
treacherous situation. Both time and frequency domain variables
(such as SDNN, LFn, HFn, LF/HF) were used as predictor of
morbidity/mortality within the study conducted by Wang et al.
(11). Moreover lower HRV and vagal tone indicated through low
HF, shorter R-R interval and smaller RMSSD values are associated
with epileptic seizure (16). A study conducted by Shiro et al.
analyzed the correlation between HRV, chronic neck pain and
shoulder pain specifically within females (63). Common cause
of neck and shoulder pain is repetitive/over work which can
cause an increase of intramuscular glutamate and lactate within
the traps. Isometric contraction was performed to indicate the
effect of muscle load, LF/HF was lower (increased HRV) within
the relaxed and pain free subject but it was inactive for the
pain group which was attestation of impaired ANS activity (63).
Inactivity of LF/HF is not a clear and concise representation
of ANS dysfunction, 2D scatter plots may have provided more
efficient results. Undetected signals can also produce dormant
results, ECG sensors are not as competent when monitoring
subjects in motion. Interpolation is capable of estimating rational
values which can be used to fill in the missing values. The results
would not be perfect but it may produce frequency domain
values which can reveal the most likely outcome due to neck and
shoulder pain. A research study analyzed HRV due to fatigue, in
order to prevent athlete performance burnout and overtraining
(9). Competition has been associated with increased LF/HF and
SNS dominance, indicating that athlete’s may suffer from more
fatigue, stress and anxiety during competition (64, 65). Studies
revealed that HRV and HF decrease with an increase in age
(9). Aerobic training positively impacts HRV and HF, which
was indicated through the positive correlation with time domain
parameters such as SDNN and RMSSD and HF. Excessive
training can cause impairment of the cardiovascular control
system, negatively impact a competitors mood/state which has
been associated with injury and fatigue, resulting in reducedHRV
and HF. Increased SNS activity which is specified through an
increase in LF, compensates for reduced cardiac performance and
helps recover normal blood flow. High SNS is also associated
with fatigue during training which correlates to reduced HRV
and HF (64, 65). Two days after the competition, an increased
HF suggested a rise in PNS activity and HRV, disseminating
that exercise/training improves vagal tone and helps to maintain
ANS modulation (64). Unlike Fourier transform which neglects
the time-localization information, wavelet transform extract
information with respect to time and frequency, which is
excellent to detect HRV information which is not stationary.
It can detect the instantaneous change associated with HR
due to exercise more efficiently than common PSD methods
such as fft and AR periodogram which is more effective for
frequency domain analysis and stationary processes (2). Missing
data and ECG signal recording inactivity is a common problem
associated with monitoring HRV in motion and during exercise.
Interpolation, reconstruction of large gaps and reconstruction
with localized estimation are few methods which can help rectify
the data and extract feasible frequency domain features (66).
There is a higher probability/occurrence of myocardial infarction
associated with older women as a result of lower HRV and

ANS dysfunction (13). HRV analysis also revealed that SDNN,
RMSSD, triangular index were significantly worse for women
than men, additionally reduced HRV is the strongest predictor of
myocardial infarction (13, 67). Resting HR is a robust indicator
of myocardial infarction and coronary death within women,
low HR as well as increased HR associated with depression
antedates coronary artery disease. Women and men require
different treatments for an accurate prognosis due to sexual
dimorphism associated with men and women. Time domain
methods are not capable of differentiating between SNS and
PNS activity which can make data analysis somewhat biased
and based on preconceived assumptions. Statistical t-test or chi
squared tests can corroborate the plausibility of the data and
help determine whether the results presented are statistically
significant (3). Patients suffering from stroke and requiring
hemodialysis also indicated a lower HRV, post dialysis presented
an increased VLF, LF, TP, and LF/HF ratio (12). VLF is robust in
terms of prognosis for CHF. Lower HRV is also associated with
adverse cardiac states, increased morbidity and mortality within
patients suffering from ESRD (end stage renal disease). Relaxing
music such as classical music improved HRV in patients with
cardiovascular dysfunction and dementia. Interestingly classical
music at high intensity also reduced HRV, although sufficient
analysis was not provided. LF was reduced during heavy metal
which may indicate that it is harmful and causes increased
fatigue. Higher intensity of music increased sympathetic tone on
HR, the reaction designate that music is perceived as a threat
by the ANS and may induce stress/fatigue (68). The frequency
domain data was analyzed via FFT algorithm which is capable of
producing miscellaneous results due to its inability to apprehend
transient signals through unspecified capture windows. Specific
ranges within the capture windows are capable of producing
valid results depending on the duration of the transient signal,
otherwise it can result in data leakage which distorts the feature
values obtained. Bandwidth filtering of the signal was not
mentioned, which can lead to aliasing and result in incorrect
frequency and amplitude. Do Amaral et al. (68) identified that
music can increase or reduce HRV based on the type of music
and its impact on HRV. Music therapy involving soothing music
improves HR, it has been utilized to improve cardiac function
after taking cardiotoxic medication (68, 69). Heavy metal and
metal rock reduced HRV and the modulation of the heart
indicated through reduced SDNN. Although SDNN is capable
of interpreting the overall HRV, it can increase or decrease as
a result of decrease in HRV. Its simple to compute but does
not provide sufficient information to understand ANS activity
associated with reduced HRV (3). Kubios was used to analyze the
data, its a software which automatically produces results in time
and frequency domain. It uses automatic filters which are likely
to produce imprecise results if the signal is very noisy (21).

6. HRV TRENDS USING MACHINE
LEARNING

This section discusses the recent studies which classified HRV
using machine learning algorithms. Table 4 demonstrates the
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TABLE 4 | Recent publications based on HRV + Machine Learning. The accuracy

produced and the theoretical computational cost required by the algorithm.

References Accuracy (%) Computational cost ML algorithm(s)

Castaldo

et al. (41)

94,88,94,94 0(n),0(kd),0(nlogn),0(nd2) MLP, SVM, C4.5,LDA

Cho et al. (70) 90.19 0(n · k · d) CNN

Cho et al. (26) 95 0(n4) K-ELM

Coutts et al.

(71)

83
0(W)

W = 4IH+ 4H2 + 3H+ HK
LTSM

Taye et al. (72) 98.6
0(W)

W = IH+ HK
ANN

Arsalan et al.

(73)

92.85 0(n) MLP

Lima et al.

(38)

80 0(n*log(n)∗d ∗ k) Random Forest

Kublanov

et al. (74)

91.3,87.8,

87.1,88.2

0(nd2),0(kd),

0(n*log(n)*d), 0(c ∗ d)
LDA,SVM,DT,NB

Ma et al. (75)
96.58,

98.2

0(n · k · d),

0(n)

CNN,

MLP

Persson et al.

(76)

77.5,83.4,

82.4,85.4

0(nd),0(n2),

0(nt),0(n*log(n)*d*k)

KNN, SVM,

AdaBoost, RF

accuracy achieved and the computational cost associated each
machine learning algorithm. In order to make a significant
impact and connect to as many patients as possible, remote
monitoring and analysis of HRV needs to improve. Machine
learning is revolutionizing society. It is progressing at a very fast
rate to make remote monitoring of HRV effective and accessible
to everyone. HRV analysis through machine learning is creating
a major impact in research and the world at large, making it
possible to accurately antedate diseases, lower healthcare cost and
help patients make the right decision, with regards to treatments
and therapies.

6.1. Stress Classification Through HRV
Analysis
Alhitary et al. (37) have indicated that people need a little bit
of stress in their life to stay focused, alert and energetic, so
that they can solve the problems they face in their daily life.
Alhitary et al. (37) also revealed that if people let stress linger
around and continue to worry, it can evolve into chronic stress,
leading to more anxiety, lack of coordination and reduced level
of productivity. If stress is not detected early, it often leads to
many heart related diseases such as hypertension and CVD. In
addition to increasing the chance of an infection, it is also a major
cause of emotional trauma such as depression. Schmidt et al. (25)
developed WESAD, a multimodal public dataset using wearble
devices, which includes data for stress and affective emotions.
They detected the affective states of users through Emphatic
machines such as RespiBAN and Empatica E4, which was placed
on their chest and wrist, respectively, to assess their neural state
(baseline brain activity), stress levels and amusement condition
(emotional state, in this scenario humor was induced). Utilizing

the machine learning classification algorithm Adaboost, they
were able to classify stress/no stress conditions with 93% accuracy
using features obtained from physiological signals (e.g., ECG,
EDA, Respiration, skin temperature, accelerometer). Adaboost
is a boosting classifier which is considered a strong learner, it
is made up of cascade of weak learners such as DT. Unlike
weak learners, boosting models learn from the training data and
iteratively reduce error by adding a weak learner based on the
weight associated with the error. It can predict labels with high
precision, by adapting to the training data andminimizing errors.
It takes longer to train adaboost and it is not effective for learning
imbalanced training data (77).

6.2. HRV Analysis Using Random Forest
Lima et al. (38) revealed that research experiments are sometimes
unpredictable as LF and LF/HF activity during stress decreased
for certain circumstances where stress was detected. Delineating
the changes in ANS activity plays a significant role toward
preventing CVD and stress. ANS is regulated by the CNS,
it comprises multiple neuroanatomical structures. CNS sends
a signal to the SA node in order to adjust to physiological
arousal, it’s also responsible for responding and adapting
to environmental changes (38). The structures of the brain
influences the activity of the heart. In contrast to the theory
that SNS activity increases during stress, LFnu decreased for
some subjects during instances of stress. In order to efficiently
classify stress and detect the event, they implemented a SVM
algorithm which included an optimal hyperplane to separate
subjects whose LFnu increased and decreased during stress (38).
There was also a contradictory decrease in LF, LF/HF ratio during
stress phases. Using time domain HRV features such as: HR,
RR-interval and SD1/SD2, they were able to classify stress with
80% accuracy through Random forest (RF) classifier. SCL, SCR
and rise time extracted from EDA resulted in 77% accuracy
using RF. Stress labels were obtained by comparing the results
to a baseline for both experiments (38). These features used to
predict stress are not consistent with the theories associated with
ANS activity, stress was classified by comparing the results to
a baseline signal and HR which always varies was a prominent
predictor of stress in this scenario. Classification report which
includes TN, TP, FN, FP accuracy behind stress detection would
better indicate the reason behind the contradictory results, which
varies from standard theories associated with ANS activity (such
as: a decrease in contrast to an increase in LF, LF/HF ratio
during times of stress). RF is a bagging algorithm which also
implements an ensemble of decision trees much like Adaboost.
In contrast to most strong learners which are prone to overfitting
and memorizing the data, bagging algorithms reduce variance in
a data which improves accuracy and reduces overfitting. Most
models perform more effectively if features with linear pattern
are utilized, RF is a curve based algorithm which can efficiently
adapt to non-linear parameters. It also requires a longer training
period and a lot of computational power to handle the excessive
number of decision trees used (A standard classification process
for a RF algorithm is shown in Figure 8).
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FIGURE 8 | A standard classification process for a RF algorithm. Source:

Montantes (78).

6.3. Classifying HRV From ECG and EDA
Features Through ML Classification
Algorithms
Posada and Bolkhovsky (79) conducted a study to assess
Psychomotor vigilance (PVT-measures reaction time), auditory
working memory (n-back task), visual search (ship task) through
ECG, EDA features, and ML classification algorithms. Lack of
sleep due to stress reduces vigilance and the ability of working
memory regresses with prolonged lack of sleep. The detection
of the activities indicated that PVT, auditory working memory
and ship search all had different effects on ANS. SCL, TVsym,
and LFn which are SNS biomarkers were the most significant
differences associated with EDA and ECG activity during each
task. Data was classified using linear kNN, linear SVM, LDA
with 66, 66, and 62% classification accuracies, PVT along with
ship search was classified with 69% classification accuracy using
kNN, while working memory was classified with 69% accuracy
using LSVM. The study was conducted upto 24 h, classification
after 20 h indicates that ANS activity diminished after 20 h
of wakefulness, but surprisingly recovered after 24 h (79). In
order to improve the low classification accuracy, feature selection
would be an appropriate method to reduce the number of
features which are futile. Dimensional reductionmethods such as
PCA can also be used to classify the data with the most valuable
features, which can also reduce model complexity, improve
classification accuracy and reduce overfitting (80). Training data
is almost of no importance for KNN algorithms, it is an instance
based algorithmwhich cannot derive any discriminative function
from the training data, large number of features makes it difficult
for the algorithm to derive the distance between each dimension,
which also results in a low accuracy. Noisy data-set also hinders
performance, outliers and missing data have to be optimized
to improve performance. Noisy data also negatively impacts
SVM, making feature engineering an essential component to
improve performance (81). Noise can produce flawed data which
is random and is not normally distributed, if the data set is non-
gaussian, it negatively impacts LDA algorithms ability to preserve

the complex structure data needed for an efficient classification.
Data wrangling is often utilized prior to training/testing a
dataset, to minimize outliers, missing data and transform the
data-set in order to make it more appropriate, which would
make it more efficient and effective for classification using
unsupervised models (82). There is a recurring trend between
low classification accuracy and irrelevant features, although
more data may improve classification accuracy, the appropriate
feature selection method is capable of significantly improving
the efficiency of the results (83). Ideally more features result in
better accuracy, but Taye et al. (72) demonstrated that innovating
features based on the specific domain is a much more efficient
approach. They were able to reduce 7 dimensions and improve
classification accuracy by 26.6% using a novel QRS complex
feature engineering method. This is another example of reducing
the computational costs while improving the efficiency of the
methods. Additional research which combines such methods
with wearable devices will allow researchers to dive deeper and
further reduce the gap which prevents remote monitoring and
diagnosis of HRV from being accessible to everyone in today’s
healthcare. COVID-19 has really addressed an urgent need for
remote health solutions, researchers can revolutionize healthcare
by combining ML with HRV in order to reduce stress and
cardiac pathologies.

6.4. HRV Associated With Affective
Computing, Classified Through NN and
SVM
Mobile devices which can monitor health accurately can
positively impact a large population of people. This research
is targeting more than just CVD and stress, it is expanding to
cancer detection, muscle injuries, circadian rhythm and affective
emotion (emotion, stress due to age and gender). Rukavina et al.
(84) analyzed physiological signals obtained through EMG, EDA,
ECG and respiration to distinguish between various affective
states based on gender and age. NN and SVM reported the
highest classification accuracy using features Mean, Std, fEMG,
low valence low arousal (LVLA), low valence high arousal
(LVHA), high valence low arousal (HVLA), high valence high
arousal (HVHA), and neutral. Mean and std were analyzed to
detect skin conductance associated with SNS activity. Valence
and arousal state were scrutinized by studying the correlation
between neural states and emotions. Performance was evaluated
using the leave one out cross validation (LOOCV) method. The
classification accuracy was blunted by a small dataset, which can
be improved through more trials and additional features (84, 85).

Pathoumvanh et al. (86) revealed that ECG biometrics are
different from affective states, they were able to classify HRV
conditions with 97% classification accuracy and also achieved
80% robustness study accuracy, using only a single beat ECG
feature and LDA algorithm. LDA is a simple model that predicts
labels based on the highest probability obtained through Bayes
theorem. Fisher’s linear discriminant analysis is an extension of
LDA which can reduce RMS dimensions and classify data with
higher precision. Unlike DT, it’s not prone to overfitting (87).
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FIGURE 9 | Process of transforming data in a deep learning ELM algorithm.

Source: Terry-Jack (88).

6.5. Stress Induced Through VR
Environment and Classified Using Extreme
Learning Machine (ELM)
Cho et al. (26) were able to classify stress with 95% accuracy
using features obtained from three physiological signals (PPG,
ECG, EDA) through Kernel based Extreme Learning Machine
(K-ELM). K-ELM is based on a single hidden layer feedforward
neural network which generates input weights and hidden layer
biases, it requires less resources to classify results with high
accuracy and leave one out cross validation (LOOCV) was used
to evaluate the classifier. KELM is capable of discriminating
between classes with high efficiency due to its ability to
transform data which is hard to distinguish into linearly separable
data while utilizing specific features (as shown in Figure 9).
However, the features are selected randomly without utilizing
an established algorithm like CNN, which makes the results
unreliable and random for a specific dataset. The algorithmmight
not effectively classify other data-set as efficiently. LOOCV takes
advantage of one feature to evaluate model performance, it has
a high variability despite classifying labels with high accuracy.
LOOCV also requires a lot of time to fit and evaluate the
data. The experiment unfolds the possibilities which exist for
wireless monitoring of stress, accurate results produced from
HRV through a wireless device is an indication of phenomenal
solution that is yet to be produced in health care due to the
lack of efficiency, this is an indication of many possibilities that
may arise within the next decade for wireless monitoring of HRV
and human health through the use of machine learning and
wearable devices.

6.6. Convolutional Neural Network (CNN)
Used to Detect Stress Through HRV
Whether it involves stress, CVD or drowsiness detection, one
of the limiting factor that exists within most innovations is
their inability to perform during real-time applications. He et al.
(24) was able to classify cognitive stress using features which
were observed in real-time through ultra short 10 s windows.
They utilized Lomb scargle periodogram to obtain the PSD from
the detected R-peaks. CNN was used to understand the 0.04–
20 Hz band from the PSD and extract the relevant features
from the input layer. CNN utilizes automatic feature learning
for fast and accurate analysis of cognitive stress through HRV
features. CNN is similar to other deep learning methods, but
it also consists of a convolutional layer in its hidden layer
(process flow chart shown in Figure 10). It can automatically
capture the relevant information from the input unlike other
feedforward neural networks, it can reduce the image features to
the point where the information becomes very simple to process
without losing valuable features required to make an accurate
prediction. A typical architecture for HRV classification using
a CNN algorithm is shown in Figure 11. In order to classify
stress using data from the PSD, 10 layers were utilized which
included an input layer of size 799 × 1 × 1, a convolutional
layer that consisted of 6 filters with size 4 × 1 × 1, batch
layer, RELU layer, dropout layer, 3 fully connected layers with
batch normalization between them, softmax layer and an output
layer. Batch normalization layer normalizes the data, reduces
overfitting, and allows each layer to learn independently. RELU
layer is essential for effectively updating the data with each
iteration. Dropout layer is used to reduce overfitting. Fully
connected layers connect the information obtained after being
filtered with the output later, in order to classify the data.
Softmax layer allows for multiclass classification of the data.
CNN produced a 17.3% error rate, which was 7.2 and 32.6%
lower than SVM, using comB (combined) feature and LF/HF
ratio, respectively. CNN performed better than conventional
methods in terms of ER and FAR (false acceptance rate) (24).
CNN is really an extension of deep learning models which only
use fully connected hidden layers, it’s more effective due to its
ability to reduce errors through the convolutional layer. Unlike
most deep learning models, the convolutional layer allows the
model to adapt to the input data more effectively, the activation
depth significantly improves due the number of filters, resulting
in better classification (43). One of the biggest advantages of
CNN is its ability to predict labels with high accuracy using less
features than standard deep learning models. Overfitting is the
downside to all deep learning models, batch size and epochs
allow the model to update the weight and minimize error, but
such a method is also prone to overfitting especially if its a
smaller dataset. The development of CNN has made remote
monitoring of HRV much more effective and simpler. CNN
is a powerful algorithm which can be used to extract valuable
features from raw ECG signals obtained through a wireless ECG
sensor, and classify HRV and stress with a high accuracy of
90.19% (70). The results are biased, most CNN algorithms are
very prone to overfitting and memorizing the data, especially
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FIGURE 10 | A typical CNN architecture for stress classification using HRV parameters.

FIGURE 11 | An example of a CNN algorithm process flow chart. Source: Aishwarya (89).

if the data-set is very small. Although it can be combined with
wireless sensors to monitor heart rate and classify HRV from a
distance, further research should be conducted with 50 people
and larger datasets, in order to better verify the significance
of developed algorithms for remote monitoring of HRV. The
positive outcomes does hint that if researchers continue to
improve existing CNN algorithms and the efficacy of analyzing
data obtained through wireless sensors, remote monitoring of
HRV can make a huge impact on the lives of others who are
stressed due to work, suffering from cardiovascular diseases or
are incapable of going to a clinician for routine checkups (90).
The computational time complexity of convolutional layers is

0(n) = 0(
∑d

l=1 nl−1 · s
2
l
· nl · m

2
l
), where l represents the index

of the convolution layer, d represents the depth, nl represents
the number of filters in the l-th layer, nl−1 describes the number
of input channels, sl indicates the spatial size of the filter and
ml represents the spatial size of the output feature map (91). A
typical 1D convolutional layer has a computational complexity
of 0(n · k · d), further demonstrating the high computational
resources and time required for a basic CNN architecture
(92). Outside of HRV, there are numerous research conducted
to reduce the computational cost of CNN, which typically
compromises the output and classification accuracy (93). Inouchi
et al. (93) developed a functionally-predefined kernel which
significantly reduced the number of training parameters without
compromising the accuracy. Further contribution toward similar

methods catered toward HRV research can create a significant
change within the healthcare system, such as reducing the
number tedious hours needed from healthcare professionals and
improving patient outcomes while decreasing healthcare costs.

7. CONCLUSION

This article which presented various summaries and reviews
of the different applications associated with HRV research
emphasized that reduced HRV is associated with increased
morbidity and stress. Lower HRV is associated with increased
SNS activity, which increases HR and blood pressure, presenting
an immediate indication of the threat perceived by the ANS,
which reacts to maintain normal function of the body and keep
the body in a state of homeostasis. HRV in motion is less efficient
in comparison to many other research studies such as stress and
myocardial infarction. Numerous studies have indicated the lack
of accuracy associated with exercise and drowsiness detection,
this aspect of HRV research requires more attention and should
be improved, in order to prevent injuries which may occur
from performance fatigue near a sports competition or accidents
associated with drowsy driving. HRV research will continue to
expand due to its relevance in science, health and wellness of the
heart. ML algorithms, AI (artificial intelligence) and frequency
domain analysis of HRV can cause a huge impact in people’s lives
in a short period, if it is accurate, thus researchers go with the flow
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and improve these processing methods to improve lives/health of
patients, prevent possible road accidents and enhance the quality
of life.

7.1. Future Direction
HRV is a prominent topic concerning the activity of the heart
and the ANS, although research has been steadily increasing,
data analysis of HRV in motion is far from where it should
be especially concerning drowsiness. Vicente et al. (23) and
Georgiou et al. (21) have explained that HRV is hard to detect
in motion, whether it involves exercise or drowsy driving,
accuracy of HRV detection declines due to motion. Detection
method in motion is a concern and should be a priority for
improvement with regards to future research involving HRV.
Machine learning algorithms, frequency domain analysis have
been effective for stress analysis and remote monitoring of
cardiovascular diseases through HRV analysis. Expansion in
these domains of data analysis could provide effective/efficient
results that produce an accurate representation of a person’s
HRV, which is easy to compute and can analyse a lot of data at
once, making the detection process a lot smoother and quicker.
Machine learning can be utilized to improve prognosis, since it
can better assess medical records through logical algorithms in
comparison currents scoring tools, which utilize a generalized
thought process. CNN is a great algorithm that can effectively

predict pathologies from X-ray images, at a faster rate than
radiologists. Recent development also suggests that machine
learning algorithms can create an immense impact toward public
health, antedating infectious diseases and increasing the chances
of preventing a chronic outcome.
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Alzheimer’s disease (AD) is an irreversible brain disease that severely damages human

thinking and memory. Early diagnosis plays an important part in the prevention and

treatment of AD. Neuroimaging-based computer-aided diagnosis (CAD) has shown

that deep learning methods using multimodal images are beneficial to guide AD

detection. In recent years, many methods based on multimodal feature learning

have been proposed to extract and fuse latent representation information from

different neuroimaging modalities including magnetic resonance imaging (MRI) and

18-fluorodeoxyglucose positron emission tomography (FDG-PET). However, these

methods lack the interpretability required to clearly explain the specific meaning of the

extracted information. To make the multimodal fusion process more persuasive, we

propose an image fusion method to aid AD diagnosis. Specifically, we fuse the gray

matter (GM) tissue area of brain MRI and FDG-PET images by registration and mask

coding to obtain a new fused modality called “GM-PET.” The resulting single composite

image emphasizes the GM area that is critical for AD diagnosis, while retaining both

the contour and metabolic characteristics of the subject’s brain tissue. In addition, we

use the three-dimensional simple convolutional neural network (3D Simple CNN) and

3D Multi-Scale CNN to evaluate the effectiveness of our image fusion method in binary

classification and multi-classification tasks. Experiments on the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset indicate that the proposed image fusion method

achieves better overall performance than unimodal and feature fusion methods, and that

it outperforms state-of-the-art methods for AD diagnosis.

Keywords: Alzheimer’s disease, multimodal image fusion, MRI, FDG-PET, convolutional neural networks,

multi-class classification

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive brain disorder and the most common cause of dementia
in later life. It causes cognitive deterioration, eventually resulting in inability to carry out activities
of daily life. AD not only severely degrades patients’ quality of life but also causes additional distress
for caregivers (1). At least 50 million people worldwide are likely to suffer from AD or other
dementias. Total payments in 2020 for health care, long-term care, and hospice services for people
aged 65 and older with dementia are estimated to be $305 billion (2). And the number of AD
patients is estimated to be 115 million by 2050. Therefore, accurate early diagnosis and treatment
of AD is of great importance.
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Currently, the pathogenesis of AD is not fully understood.
The academic community generally believes that AD is related
to neurofibrillary tangles and extracellular amyloid-β (Aβ)
deposition, which cause loss or damage of neurons and synapses
(3, 4). In general, the AD diagnostic system classifies a subject
into one of three categories: AD, mild cognitive impairment
(MCI), and normal control (NC). The main clinical examination
methods for AD include neuropsychological examination
and neuroimaging examination (5), in which computer-aided
diagnosis is of great help in screening at-risk individuals.
Psychological auxiliary diagnosis of AD uses the Mini-Mental
State Examination (MMSE) and Clinical Dementia Rating (CDR)
to help clinicians determine the severity of dementia. With the
rapid development of neuroimaging technology, neuroimaging
diagnosis has become an indispensable diagnostic method for
AD. In particular, magnetic resonance imaging (MRI) and
positron emission tomography (PET) are popular and non-
invasive techniques used to capture brain tissue characteristics.

Structural MRI has become a commonly used structural
neuroimaging in AD diagnosis because of its high resolution
for soft tissue and its ability to present brain anatomical details.
Progression of AD results in gross atrophy of the affected regions,
including degeneration in the temporal lobe and parietal lobe, as
well as parts of the frontal cortex and cingulate gyrus (6). Brain
ventricles, which produce cerebrospinal fluid (CSF), become
larger in AD patients. And the brain cortex shrivels up, with
severe shrinkage occurring particularly in the hippocampus area.
MRI, which provides three-dimensional (3D) images of brain
tissues, enables clear observation of these structural changes in
the patient’s brain. Notable results were reported by a number
of studies of clinical diagnosis of AD using MRI. Klöppel et al.
(7) first segmented the whole brain into gray matter (GM), white
matter (WM), and CSF, and used GM voxels as features of
MR images to train a support vector machine to discriminate
between AD and NC subjects. Owing to the strong relationship
of GM with AD diagnosis, compared with WM and CSF (8, 9)
only considered spatially normalized GM volumes, called GM
tissue densities, for classification. Similarly, Zhu et al. (10) only
computed the volume of GM as a feature for each region of
the 93 regions of interest in the labeled MR image and used
multiple-kernel learning to classify the neuroimaging data. These
studies indicate that GM tissue is the most important area for AD
classification using MRI (11, 12).

PET imaging has a critical role as a functional technique
that enables clinicians to observe activities related to the human
brain quickly and precisely, with particular applications in early
AD detection (13). As stated in (14), PET images captured via
diffusion of radioactive 18-fluorodeoxyglucose (FDG) have been
used to obtain sensitive measurements of cerebral metabolic
rates of glucose (CMRglc). CMRglc can be used to distinguish
AD from other dementias, predict and track decline from
NC to AD, and screen at-risk individuals prior to the onset
of cognitive symptoms. FDG-PET is particularly useful when
changes in physiological and pathological anatomy are difficult
to distinguish (15). For instance, the volume of brain structures
commonly decreases with age (e.g., in individuals older than 75
years), making it difficult to determine whether a person’s brain

is in a normal or diseased state only using the brain anatomical
changes observed byMRI. In such cases, PET canmore effectively
detect the disease status of subjects.

Structural MRI can reflect the changes of brain structure,
whereas functional PET images can capture the characteristics
of brain metabolism to enhance the ability to find lesions
(16). Therefore, it has been proposed that multimodal methods
combining MRI and PET images could improve the accuracy
of AD classification (17–19). Feature fusion strategies are
commonly used in multimodal learning tasks, combining high-
dimensional semantic features extracted from different unimodal
data (20, 21). For example, Shi et al. (22) used two stacked deep
polynomial networks (SDPNs) to learn high-level features ofMRI
and PET images, respectively, which were then fed to another
SDPN to fuse the multimodal neuroimaging information.
Similarly, Lu et al. (23) used six independent deep neural
networks (DNN) to extract corresponding features from different
scales of unimodal images (such as those obtained by MRI or
PET); the features were then fused by another DNN. Related
studies show that a feature fusion strategy can indeed achieve
better experimental performance than use of unimodal data
alone (24, 25). However, such a method is a “black box,” lacking
sufficient interpretability to explain the exact reason for better
or worse results in a particular case. In addition, deep learning
methods based on feature fusion always greatly increase the
number ofmodel parameters, as amulti-channel input network is
used to extract heterogeneous features from different modalities.

Compared with feature fusion strategies, multimodal medical
image fusion is a more intuitive approach that integrates relevant
and complementary information frommultiple input images into
a single fused image in order to facilitate more precise diagnosis
and better treatment (26). The fused images have not only
richer modal characteristics but also more powerful information
representation. Besides, GM is the most important tissue for
AD auxiliary diagnosis, which can show the brain’s anatomical
changes in MRI scans and the overall level of brain metabolism
in PET scans. Motivated by these factors, we propose an image
fusion method that fuses GM tissue information from MRI and
FDG-PET images into a new GM-PET modality. During the
fusion process, only the key GM areas are preserved, instead of
the full MRI and PET information, to reduce noise and irrelevant
information in the fused image and enable the subsequent feature
extraction to focus on the crucial characteristics.

The main contributions of this work are two-fold. (1) A
novel image fusion method is proposed for AD diagnosis to
enhance the information representation ability of neuroimaging
modalities by fusing the key GM information from MRI and
PET scans into a single composite image. (2) We propose
two 3D CNN for AD diagnosis, i.e., 3D Simple CNN and
3D Multi-Scale CNN, to evaluate the performance of different
modalities in AD classification tasks. We also prove that
the proposed fused modality with its powerful information
representation can provide better diagnostic performance and
adapt to different CNN.

The rest of this paper is organized as follows. section 2
describes the dataset used and our image fusion method. Our 3D
Simple CNN and 3D Multi-Scale CNN are introduced in section
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2.3 to extract the features and perform classification based on
the neuroimaging data. In section 3, classification experiments
for AD vs. NC, MCI vs. NC, AD vs. MCI, and AD vs. MCI vs.
NC are conducted to evaluate the effectiveness of our proposed
image fusion in an AD diagnostic framework. The discussion and
conclusion are presented in sections 4 and 5, respectively.

2. MATERIALS AND METHODS

2.1. Datasets
The data used in the study were acquired from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
(https://adni.loni.usc.edu/). ADNI is a longitudinal multicenter
study designed to develop clinical, imaging, genetic, and
biochemical biomarkers for the early detection and tracking of
AD. ADNI makes all data and samples available for scientists
worldwide to promote AD diagnosis and treatment (27, 28).
The ADNI researchers have collected and integrated analyses
of multimodal data, mainly from North American participants.
The dataset contains data from different AD stages. In this study,
subjects were selected who had both T1-weighted MRI and
FDG-PET scans captured in the same period. MRI scans labeled
as MPRAGE were selected as these are considered the best with
respect to quality ratings. A total of 381 subjects from the ADNI
were selected, comprising 95 AD subjects, 160 MCI subjects, and
126 NC subjects. Clinical information for the selected subjects is
shown in Table 1.

The MRI and FDG-PET images in ADNI have undergone
several processing steps. In detail, the MRI images are processed
by the following steps: Gradwarp, B1 non-uniformity, and
N3. Gradwarp corrects image geometry distortion caused by
the gradient model, and B1 non-uniformity corrects image
intensity non-uniformity using B1 calibration scans. Finally, an
N3 histogram peak-sharpening algorithm is applied to reduce
the non-uniformity of intensity. The need to perform the
image pre-processing corrections outlined above varies among
manufacturers and system RF coil configurations. We used the
fully pre-processed data in our experiments.

In order to obtain more uniform PET data among different
systems, the baseline FDG-PET scans are processed by the
following steps. (1) Co-Registered dynamic: six 5-min FDG-
PET frames are acquired within 30–60 min post-injection, each
of which is co-registered to the first extracted frame. The
independent frames are co-registered to one another to lessen
the effects of patient motion. (2) Averaging: six co-registered
frames obtained are averaged. (3) Standardization of image and

TABLE 1 | Demographic information for subjects. Values are presented as mean

± standard deviation.

Subjects Number Male/

Female

Age MMSE CDR

NC 126 71/55 75.25 ± 5.82 29.58 ± 0.66 0.02 ± 0.18

MCI 160 108/52 76.97 ± 8.23 26.14 ± 0.81 1.38 ± 2.00

AD 95 54/41 76.52 ± 6.96 18.56 ± 4.20 2.87 ± 3.60

voxel size: the averaged image is reoriented into a standard 160
× 160 × 96 voxel image grid with 1.5 mm cubic voxels after
anterior commissure–posterior commissure correction, followed
by intensity normalization using a subject-specific mask so that
the average value of voxels within the mask is exactly one. (4)
Uniform resolution: the normalized image is filtered with a
scanner-specific filter to obtain an image with a uniform isotropic
resolution of 8 mm full width at half maximum, in order to
smooth the above-mentioned images.

2.2. Proposed Image Fusion
To make the multimodal fusion process more interpretable, we
propose fusing MRI and PET scans at the image field. The
fused image modality is then fed into a single-channel network
for diagnosis of subjects. This approach greatly reduces the
number of model parameters compared with the multi-channel
input network using feature fusion. Our proposed AD diagnostic
framework with multimodal image fusion method is presented
in Figure 1. It is composed of several parts: image fusion, feature
extraction, and classification. First, our image fusion method can
obtain a new GM-PET modality from the MRI and PET images.
Subsequently, the semantic features are extracted from the GM-
PET images. Finally, the classifier consisting of a fully connected
(FC) layer and a softmax layer is used to classify subjects from
different groups.

The proposed multimodal image fusion can merge
complementary information from different modality images so
that the composite modality conveys a better description of the
information than the individual input images. As depicted in
Figure 2, our proposed image fusion method only extracts the
GM area that is critical for AD diagnosis from FDG-PET, using
the MRI scan as an anatomical mask. The GM-PET modality
contains both structural MRI information and functional PET
information. The details of our image fusion method include the
following steps.

(a) Skull-stripping is performed on structural MRI scans
using the “watershed” module in FreeSurfer 6.0 (29), as shown
in Figure 2A. The watershed segmentation algorithm can strip
skull and other outer non-brain tissue to produce the brain
volume with much less noise and irrelevant information.
As expected, the result, called SS-MRI, preserves only the
intracranial tissue structure and removes areas of irrelevant
anatomical organs.

(b) As shown in Figure 2B, SS-MRI is affine transformed to
MNI152 space (30), a universal brain atlas template, using the
FLIRT (FMRIB’s Linear Image Registration Tool) module (31) in
the FSL package. FLIRT is a fully automated robust and accurate
tool for intra- and inter-modal brain image registration by linear
affine (31, 32). The registration aims to remove any spatial
discrepancies between subjects in the scanner and minimize
translations and rotations from a standard orientation. This helps
to improve the precision of the subsequent tissue segmentation.
This registered MNI-MRI is used as the input modality to
unimodal AD classification tasks.

(c) The GM area is segmented from the MRI scan using
the FAST (FMRIB’s Automated Segmentation Tool) module
(33) in the FSL package. FAST segments a 3D brain image
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FIGURE 1 | Proposed AD diagnostic framework with multimodal image fusion method.

FIGURE 2 | Proposed multimodal image fusion method. In the MRI pipeline, we executed the following steps in sequence: (A) skull-stripping, (B) registration of

SS-MRI to MNI152, and (C) segmentation of MRI tissue. The phased output of the MRI pipeline guided the subsequent processing of PET images, as shown by the

green arrows. In the PET pipeline, we performed the following steps: (D) registration of Origin-PET to MNI-MRI, (E) mapping MNI-PET to GM-MRI, and (F) registration

of MNI-GM-PET to Origin-PET.

into different tissue types, while correcting for spatial intensity
variations (also known as bias field or RF inhomogeneities). The
underlying method is based on a hidden Markov random field
model and an associated expectation-maximization algorithm.

The whole automated process can produce a bias-field-corrected
input image and probabilistic and/or partial volume tissue
segmentation. It is robust and reliable compared with most finite
mixture model-based methods, which are sensitive to noise. As
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shown in Figure 2C, the segmentation output of GM tissue is
called GM-MRI.

(d) MNI-PET is obtained by co-registering the FDG-PET
image to its respective MNI-MRI image using the FSL FLIRT
module, as shown in Figure 2D. This gives the FDG-PET image
the same spatial orientation, image size (for example, 182 × 218
× 182), and voxel dimensions (for example, 1.0 × 1.0 × 1.0
mm) as the MNI-MRI. After co-registration, the MNI-PET and
MNI-MRI obtained are in the same sample space.

(e) The GM-MRI obtained in step (c) is used as an anatomical
mask to cover the full MNI-PET image. MNI-GM-PET is
obtained by a mapping operation, as illustrated in Figure 2E.
So far, we have obtained the anatomical structure of GM
on FDG-PET images. Nevertheless, compared with Origin-
PET from coronal-axis and transverse-axis views, the mapped
grayscale values in MNI-GM-PET images change significantly
after MNI152 spatial registration; thus, they cannot reflect the
true metabolic information as the Origin-PET does.

(f) In order to solve the grayscale deviation problem
mentioned above, MNI-GM-PET is co-registered to the
corresponding Origin-PET image, using the FSL FLIRT module,
to obtain the GM-PET image, as shown in Figure 2F. On the
one hand, this registration operation eliminates the deviation
caused by affine transformation and preserves the true grayscale
distribution of the original PET image; on the other hand,
it ensures that the GM-PET has the same spatial size as the
Origin-PET, that is, the MNI-GM-PET size of 182 × 218 × 182
is reduced to the original PET size of 160 × 160 × 96. This
resolution reduction could also save computational time and
memory costs.

2.3. Networks
At present, CNN is attracting increasing attention owing to its
significant advantages in medical image classification tasks. In
two-dimensional (2D) CNN approaches, where the 3D medical
image is processed slice-by-slice, the anatomical context in
directions orthogonal to the 2D plane is completely discarded.
As discussed recently by (34), 3D CNN can greatly improve
performance by considering the 3D data as a whole input,
although the computational complexity and memory cost are
increased owing to the larger number of parameters. To evaluate
the effectiveness of the fused GM-PET modality in different
CNNs, this paper introduces the 3D Simple CNN and 3D Multi-
Scale CNN, designed by observing the characteristics of AD
classification tasks, which will be explained in detail below.

2.3.1. 3D Simple CNN
Considering the tradeoffs between the feature capture capabilities
of 3D CNN and the potential overfitting risk caused by a small
dataset, we propose a 3D Simple CNN to capture AD features
from medical images. As shown in Figure 3, the 3D Simple CNN
contains 11 layers, of which there are only four convolutional
layers. Compared with deeper networks, the 3D Simple CNN has
far fewer parameters and can better alleviate overfitting problems.

Specifically, the base building block, called Conv-block(s, n),
consists of three serial operations: Conv3D(s, n), which stands for
3D convolution with n filters of s× s× s size, batch normalization

(35), and a rectifier linear unit (ReLU). In this architecture, the
“Feature Extraction” module is mainly composed of four Conv-
blocks with parameters (3,8), (3,16), (3,32), and (3,64). That is,
the convolution kernel sizes are (3, 3, 3), and the number of
channels doubles in turn. There is also a 3D max-pooling layer
with a pooling size of (2, 2, 2) between every two Conv-blocks.
Besides, we add a global average pooling (GAP) layer and a
dropout layer with a rate of 0.6 to avoid overfitting. After the
Feature Extractionmodule, we connect an FC layer and a softmax
layer for AD classification. In general, the 3D Simple CNN can be
regarded as a baseline network for evaluating our image fusion
method because of its plain structural composition.

2.3.2. 3D Multi-Scale CNN
Numerous UNet-based networks have been proven effective in
biomedical image recognition tasks (36–38), as the U-shaped
network architecture with skip connections can obtain both
relevant context information and precise location information.
Motivated by the observation that features both from low-level
image volumes and high-level semantic information can be
obtained at different resolution scales, a 3D Multi-Scale CNN is
proposed for AD classification, as shown in Figure 4.

The Feature Extraction module is used to extract and merge
multi-scale features, and a classifier module consisting of an
FC layer and a softmax layer predicts the group labels. The
Feature Extraction module consists of seven convolutional
layers (Conv1–Conv7) where the first four convolutional layers
generate feature maps in a coarse-to-fine manner, and the last
two layers (Conv6 and Conv7) are obtained by up-sampling the
combined output of the “skip connection.” These convolutional
layers are designed using a conventional CNN structure with
kernel sizes of (3, 3, 3) and channel numbers as shown in
Figure 4. Taking into account the overfitting problem, we
properly reduce the channel numbers of convolutional layers.
Detailed image features are often related to shallow layers,
whereas semantically strong features are often associated with
deep layers. It is desirable to obtain both types of features for AD
classification by integrating information from different scales.
Hence, the skip connection is used to combine features from
both shallow and deep convolutional layers. More specifically,
the down-sampled outputs of convolutional layers 1 and 2 are
combined with the outputs of convolutional layers 7 and 6,
respectively. Besides, the outputs of convolutional layers 4 and 5
are concatenated. Owing to the limitations of GPUmemory when
using 3D scans as inputs, three scales are used here. For each scale
feature, we apply a GAP layer and a dropout layer to retain multi-
resolution features, after which the outputs are concatenated
to feed the following classifier. It is expected that multi-scale
features with different levels of information will contribute to the
diagnosis of AD.

3. EXPERIMENT AND RESULTS

3.1. Pre-processing
As inputs to CNN, 3D data with a generally high resolution
would consume more computing resources during network
training. Therefore, we process the input data using cropping and
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FIGURE 3 | 3D Simple CNN architecture for AD classification.

FIGURE 4 | 3D Multi-Scale CNN architecture for AD classification.

sampling operations to speed up the calculation of singleton data.
(1) Cropping: As shown in Figure 2, there are many background
areas with a pixel value of 0 outside the brain tissue area in
each modality image. Without affecting the brain tissue regions,
we appropriately reduce these meaningless background areas to
decrease the size of the input data. Specifically, MRI is cropped
from 182 × 218 × 182 to 176 × 208 × 176. In addition, PET
and GM-PET are both cropped from 160 × 160 × 96 to 112
× 128 × 96. (2) Sampling: Each sample is divided into two by
taking every other slice along the transverse axis. Concretely, the
sizes of the MRI, PET, and GM-PET images become 176 × 208
× 88, 112 × 128 × 48, and 112 × 128 × 48, respectively. This
can double the number of samples while reducing the resolution,
which is conducive to better iteration and optimization of the
network model.

3.2. Experimental Setup
In this paper, the networks involved are implemented in the
Tensorflow (39) deep learning framework. We execute four
classification tasks, i.e., AD vs. NC, AD vs. MCI, MCI vs. NC, and
AD vs. MCI vs. NC, whereas previous studies such as (40) and
(41) only classified AD vs. NC, which are the easiest groups to

distinguish. We conduct comparative experiments on unimodal
and multimodal data. For the network optimizer, Adam with
an initial learning rate of 1e-4 is used to update the weights
during training. The binary cross-entropy is applied as the loss
function in the binary-classification task, whereas the categorical
cross-entropy is used in the three-classification task.

We adopt a 10-fold cross-validation strategy to calculate the
measures, so as to obtain a fairer performance comparison. We
randomly divide the subjects in the dataset into 10 subsets,
with one subset used as the test set, another subset used as
the validation set, and the remaining eight subsets used as the
training set. We train each experiment during 500 epochs and
use two strategies to update the learning rate. (1) When the loss
in the validation set does not decrease within 30 epochs, the
learning rate drops to one-tenth of the current level. (2) When
the accuracy in the validation set does not increase within 20
epochs, the learning rate is reduced by half. At the same time, an
early stopping strategy is applied. That is, the training is stopped
if the loss on validation does not decrease within 50 epochs. The
classification accuracy (ACC), sensitivity (SEN), and specificity
(SPE) are selected as the evaluation measures. We report the
results as themean± SD (standard deviation) of the 10-fold tests.
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We aim to comprehensively evaluate the effectiveness of our
image fusion method in the proposed diagnostic framework
for AD classification tasks. In addition to considering other
unimodal scans (for example, MRI and PET) as inputs, we
present an AD diagnostic framework with the feature fusion
method as a benchmark. As shown in Figure 5, the Feature
Extraction module is used to obtain semantic information from
the 3D volumes of MRI and PET images, respectively. After
the extracted features are concatenated, three FC layers with
unit numbers of 64, 32, and 16, respectively, perform the
correlation fusion. Moreover, a GAP layer and a dropout layer
are applied to avoid overfitting. Finally, the classification module,
which consists of an FC layer and a softmax layer, predict the
group labels.

3.3. Performance
3.3.1. Results for AD vs. NC
In the classification of AD vs. NC, Table 2 shows the results of
unimodal and multimodal modalities with different networks.
The multi-modality-based methods such as the feature fusion
method and the proposed image fusion method achieve better
performance, because they successfully fuse MRI and PET
information. Between the two multimodal methods, our image
fusion method has better overall indicators. With the 3D Simple
CNN, our image fusion method obtained the best classification
accuracy of 94.11 ± 6.0% and specificity of 95.04 ± 5.7%,

and the second best sensitivity of 92.22 ± 6.7%. The feature
fusion method achieved the best sensitivity of 94.44 ± 7.9%
but showed lower accuracy and specificity. With the 3D Multi-
Scale CNN, the proposed image fusion method for AD diagnosis
achieved the best classification accuracy of 94.11 ± 4.0%,
sensitivity of 93.33 ± 7.8%, and specificity of 94.27 ± 6.3%.
Moreover, it showed improvements in classification accuracy,
sensitivity, and specificity over the unimodal methods of at least
4.75, 6.27, and 3.46%, respectively. Overall, our image fusion
method achieved the overall best performance in the AD vs. NC
classification task.

3.3.2. Results for MCI vs. NC
Table 3 shows the results for different modalities in the
classification of MCI vs. NC with different networks. The
proposed image fusion method showed significant performance
superiority. With the 3D Simple CNN, our image fusion
method achieved the best classification accuracy of 88.48 ±

6.5%, sensitivity of 93.44 ± 6.5%, and specificity of 82.18 ±

12.3%. It also showed improvements in classification accuracy,
sensitivity, and specificity over the feature fusion method of at
least 6.11, 1.25, and 11.62%, respectively, indicating that the
proposed image fusion method fuses multimodal information
in a more effective way. When applying the 3D Multi-Scale
CNN, our image fusion method still achieved the best accuracy
of 85.00 ± 9.4% and specificity of 85.60 ± 11.7%, and

FIGURE 5 | AD diagnostic framework with multimodal feature fusion method.

TABLE 2 | Results of different modalities with different networks for AD vs. NC (UNIT:%).

Network Modalities ACC SEN SPE

3D Simple CNN Unimodal MRI 89.80 ± 4.7 86.31 ± 12.0 91.97 ± 5.5

Unimodal PET 92.10 ± 5.8 89.13 ± 9.7 94.27 ± 4.1

Feature fusion 93.22 ± 3.8 94.44 ± 7.9 91.62 ± 7.5

Proposed image fusion 94.11 ± 6.0 92.22 ± 6.7 95.04 ± 5.7

3D Multi-Scale CNN Unimodal MRI 88.88 ± 6.8 86.11 ± 13.9 90.43 ± 4.5

Unimodal PET 89.36 ± 9.1 87.06 ± 16.3 90.81 ± 7.5

Feature fusion 93.66 ± 5.3 93.33 ± 9.4 93.50 ± 6.3

Proposed image fusion 94.11 ± 4.0 93.33 ± 7.8 94.27 ± 6.3

Bold value mean the best indicator value under the same conditions.
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the second best sensitivity of 84.69 ± 12.5%. In terms of
specificity, our method far exceeded other methods by at least
11.33%. Generally speaking, the proposed image fusion method
achieved the overall best performance in the MCI vs. NC
classification task.

3.3.3. Results for AD vs. MCI
In the classification of AD vs. MCI, Table 4 shows the results
of unimodal and multimodal modalities with different networks.
With the 3D Simple CNN, our image fusion method for AD
diagnosis achieved the best classification accuracy of 84.83 ±

7.8% and specificity of 94.69 ± 6.3%, and the second best
sensitivity of 68.29 ± 19.8%. Moreover, the proposed image
fusion method showed improvements in classification accuracy,
sensitivity, and specificity over the unimodal methods by at least
6.53, 10.83, and 5.00%, respectively. With the 3D Multi-Scale
CNN, our image fusion method obtained the best classification
accuracy of 80.80 ± 5.9% and sensitivity of 71.19 ± 14.6%, and
the second best specificity of 85.94 ± 11.8%. Compared with
the feature fusion method, which achieved the best specificity,
the proposed image fusion method showed improvements in
classification accuracy and sensitivity of 0.33 and 17.78%,
respectively. On the whole, our method outperformed the other
methods and showed the best overall performance in the AD vs.
MCI classification task.

3.3.4. Results for AD vs. MCI vs. NC
Table 5 shows the results of different modalities for the
classification of AD vs. MCI vs. NC with the 3D Simple

CNN and 3D Multi-Scale CNN. As MCI is a transitional state
between AD and NC, many confounding factors are introduced
in the multi-class task. Clearly, the classification task of AD
vs. MCI vs. NC is more difficult than the above binary-
classification tasks. In this case, our image fusion method still
showed the best performance on all evaluation indices, whereas
the unimodal and feature fusion methods were particularly
lacking in power for the three-classification task. With the
3D Simple CNN, the best classification accuracy, sensitivity,
and specificity were 74.54 ± 6.4, 59.41 ± 8.2, and 85.41 ±

4.2%, respectively. Compared with other methods, our image
fusion method showed improvements in classification accuracy,
sensitivity, and specificity of at least 9.06, 10.73, and 6.27%,
respectively. With the 3D Multi-Scale CNN, our image fusion
method achieved the best classification accuracy of 71.52± 5.0%,
sensitivity of 55.67 ± 6.2%, and specificity of 83.40 ± 3.3%.
Furthermore, our image fusionmethod showed improvements in
classification accuracy, sensitivity, and specificity over the other
methods of at least 3.37, 4.03, and 2.37%, respectively. Clearly,
our image fusion method showed significant advantages in the
multi-class task.

3.3.5. Comparisons With State-of-the-Art Methods
The proposed image fusion method was evaluated and compared
with the state-of-the-art multimodal approaches for each task-
specific classification (Table 6). The results indicate that our
method (Image Fusion + 3D Simple CNN) achieved the highest
accuracy and outperformed other multimodal methods for each
AD diagnostic task. Although our multimodal image fusion

TABLE 3 | Results of different modalities with different networks for MCI vs. NC (UNIT:%).

Network Modalities ACC SEN SPE

3D Simple CNN Unimodal MRI 79.46 ± 9.4 87.50 ± 16.1 69.15 ± 10.7

Unimodal PET 72.00 ± 7.8 72.81 ± 10.5 70.56 ± 12.2

Feature fusion 82.37 ± 9.0 92.19 ± 13.1 69.74 ± 18.0

Proposed image fusion 88.48 ± 6.5 93.44 ± 6.5 82.18 ± 12.3

3D Multi-Scale CNN Unimodal MRI 76.01 ± 8.8 77.50 ± 13.4 74.27 ± 9.7

Unimodal PET 68.55 ± 5.4 65.94 ± 13.5 70.64 ± 14.8

Feature fusion 83.17 ± 6.5 90.63 ± 15.7 73.55 ± 16.7

Proposed image fusion 85.00 ± 9.4 84.69 ± 12.5 85.60 ± 11.7

Bold value mean the best indicator value under the same conditions.

TABLE 4 | Results of different modalities with different networks for AD vs. MCI (UNIT:%).

Network Modalities ACC SEN SPE

3D Simple CNN Unimodal MRI 72.47 ± 7.8 46.59 ± 18.8 87.50 ± 12.1

Unimodal PET 78.30 ± 10.3 57.46 ± 20.1 89.69 ± 10.9

Feature fusion 81.00 ± 8.1 68.33 ± 15.3 88.75 ± 9.2

Proposed image fusion 84.83 ± 7.8 68.29 ± 19.8 94.69 ± 6.3

3D Multi-Scale CNN Unimodal MRI 68.40 ± 8.4 52.70 ± 19.7 77.50 ± 11.9

Unimodal PET 73.07 ± 15.3 61.90 ± 27.6 79.38 ± 16.9

Feature fusion 80.47 ± 9.4 53.41 ± 25.1 95.94 ± 5.1

Proposed image fusion 80.80 ± 5.9 71.19 ± 14.6 85.94 ± 11.8

Bold value mean the best indicator value under the same conditions.
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TABLE 5 | Results of different modalities with different networks for AD vs. MCI vs. NC (UNIT:%).

Network Modalities ACC SEN SPE

3D Simple CNN Unimodal MRI 64.00 ± 8.6 47.10 ± 9.5 78.08 ± 6.5

Unimodal PET 60.65 ± 9.7 43.50 ± 10.6 75.49 ± 7.3

Feature fusion 65.48 ± 5.9 48.68 ± 6.7 79.14 ± 4.3

Proposed image fusion 74.54 ± 6.4 59.41 ± 8.2 85.41 ± 4.2

3D Multi-Scale CNN Unimodal MRI 66.24 ± 5.9 49.56 ± 6.6 79.72 ± 4.3

Unimodal PET 59.98 ± 7.1 42.83 ± 7.0 74.98 ± 5.9

Feature fusion 68.15 ± 9.4 51.64 ± 10.5 81.03 ± 6.9

Proposed image fusion 71.52 ± 5.0 55.67 ± 6.2 83.40 ± 3.3

Bold value mean the best indicator value under the same conditions.

TABLE 6 | Comparative performance of our classifiers vs. competitors. Numbers in parentheses denote the numbers of AD/MCI/NC subjects in the dataset used.

Approach Dataset Accuracy (%)

AD vs. NC MCI vs. NC AD vs. MCI AD vs. MCI vs. NC

(42) MRI+PET

(85/169/77)

91.4 82.1 – 53.79

(20) MRI+PET

(51/99/52)

91.4 77.4 70.1 –

(21) MRI+PET+CSF+Genetic

(37/75/35)

91.8 79.5 – 60.2

(23) MRI+PET

(238/217/360)

84.59 85.96 – –

(24) MRI+PET

(93/204/100)

93.26 74.34 – –

(10) MRI+PET+CSF

(210/541/160)

88.02 84.14 – –

(43) MRI+PET

(160/187/160)

92.51 82.53 – –

(19) fMRI+SNP

(37/37/35)

81.0 80.0 – –

Our Method

(Image Fusion+3D Simple CNN)

MRI+PET

(95/160/126)

94.11 88.48 84.83 74.54

Bold value mean the best indicator value under the same conditions.

method is time-consuming during the pre-processing steps,
the network parameters are greatly reduced because only the
composite image is fed into the classification network instead
of a set of images of different modalities. In other words,
the computation complexity and the memory cost of the
proposed image fusion method are no higher than those of
competing methods.

3.4. Visualization
To further illustrate the plausibility of our image fusion method,
we visualized origin images and the corresponding features in
different modalities for different subject groups, as shown in
Figure 6. The picture on the left in each cell is a slice of the subject
in different modalities. From the MRI and PET modality slices,
we observed that the AD subject had the most obvious brain
tissue loss and decrease in metabolism, respectively, followed by
the MCI subject, whereas the NC subject had a healthy brain
imaging scan. From the GM-PET slices, we observed that the GM

area was delineated while maintaining the same pattern as that of
the PET modality. GM-PET well-inherited the ability of MRI to
express atrophy of brain tissue and the ability of PET to observe
metabolic levels. As only the GM region was retained, there
was no noise information around the brain tissue in the GM-
PET images; in particular, the irrelevant skull area was cleanly
removed. Based on the richness of the information expressed by
the images, there is no doubt that our proposed image fusion
method achieved better results.

It was worth investigating whether the multimodal GM-PET
provided the feature extraction module of the CNN with ample
information. We applied 3D Grad-CAM technology (44) to
visualize the region of interest in the second convolutional layer
of the 3D Simple CNN, shown as the right picture of each cell
in Figure 6. The highlighted areas in the output images of Grad-
CAM represent the key areas on which the convolutional layer
focuses. In the outputs of the MRI slices, the focus was on the
contour and edge texture areas, as outlined by the red circles. In
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FIGURE 6 | Examples of different modality images for AD, MCI, and NC subjects. In each of the nine cells (A–I), the picture on the left is a subject slice and the picture

on the right is the Grad-CAM result for that slice. The red circle in the 3D Grad-CAM results outlines the contour areas of common interest in the MRI and GM-PET

images, while the yellow circle outlines the metabolic characteristic areas of common interest in the PET and GM-PET images.

the outputs of the PET slices, the areas of interest were highly
consistent with the areas of high metabolic levels, as represented
by the yellow circles. As expected, the convolutional layer on
GM-PET considered both contour and metabolic information at
the same time. Namely, the GM-PET modality provides more
abundant characteristics for AD diagnosis.

4. DISCUSSION

As multimodal data can provide more comprehensive

pathological information, we propose an image fusion method
to effectively merge the multimodal neuroimaging information

from MRI and PET scans for AD diagnosis. Based on the
observation that GM is the tissue area of most interest in

AD diagnostic researches (10, 11, 45), the proposed fusion
method extracts and fuses the GM tissue of brain MRI and
FDG-PET in the image field so as to obtain a fused GM-PET
modality. As can be seen from the image fusion flow, shown
in Figure 2, the GM-PET image not only reserves the subject’s
brain structure information from MRI but also retains the
corresponding metabolic information from PET. With the
3D Grad-CAM technology, we observe that the convolutional
layer that extracts the GM-PET features can capture both
contour and metabolic information, indicating that the GM-PET
modality can indeed provide richer modality information
for classification tasks. Moreover, our proposed image fusion
method, through its registration operation, better solves the
heterogeneous features alignment problem between multimodal

images, compared with methods based on multimodal
feature learning.

In addition, the 3D Simple CNN and 3D Multi-Scale CNN
are presented to perform four AD classification tasks, comprising
three binary-classification tasks, i.e., AD vs. NC, AD vs. MCI
and MCI vs. NC, and one multi-classification task, AD vs.
MCI vs. NC. The 3D Simple CNN, with a plain structure,
was proposed first as a baseline network. Then we proposed
a 3D Multi-Scale CNN network that combines information
from different scale features while capturing context information
and location information. In order to prevent over-fitting, we
designed these two networks using the following strategies: 1) Use
fewer convolutional layers; (2) reduce the number of channels
of the convolutional layer; (3) use GAP and dropout layers to
reduce redundant information. Furthermore, the proposed AD
diagnostic framework uses a single-input network instead of
the multiple-input network used in feature fusion methods, as
our image fusion method fuses multimodal image scans into a
single composite image. Therefore, our image fusion method can
greatly reduce the number of CNN parameters.

Extensive experiments and analyses were carried out to
evaluate the performance of our proposed image fusion method.
According to the classification results shown in Tables 2–5,
the multimodal methods, including feature fusion and the
proposed image fusion method, achieved better performance
than the unimodal methods, as the multimodal methods
contained abundant and complementary information. Our
image fusion method outperformed the feature fusion method,
especially in the complex three-classification task. Moreover,
both the 3D Simple CNN and 3D Multi-Scale CNN produced
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consistent results indicating that our image fusion method
had the best overall performance, with great adaptability to
different classification networks. And our image fusion method
also achieved better performance compared with the state-
of-the-art multimodal-learning-based methods. Although the
proposed image fusion method always showed the best accuracy,
sometimes its performance was not optimal in terms of sensitivity
and specificity. In order to solve this problem, we will further
focus on WM and CSF tissues and combine their information
with the existing GM information to provide better support for
AD auxiliary diagnosis in the future.

5. CONCLUSION

We propose an image fusion method to combine MRI and PET
scans into a composite GM-PET modality for AD diagnosis. The
GM-PET modality contains both brain anatomic and metabolic
information and eliminates image noise subtly so that the
observer can easily focus on the key characteristics. To further
evaluate the applicability of the proposed image fusion method,
3D Grad-CAM technology was used to visualize the area of
interest of the CNN in each modality, showing that both the
structural and functional characteristics of brain scans were
included in the GM-PET modality. A series of evaluations
based on the 3D Simple CNN and 3D Multi-Scale CNN
confirmed the superiority of the proposed image fusion method.
In terms of experimental performance, our proposed image
fusion method not only overwhelmingly surpassed the unimodal

methods but also outperformed the feature fusion method.

Besides, the image fusion method showed better performance
than other competing multimodal learning methods described in
the literature. Therefore, our image fusion method is an intuitive
and effective approach for fusing multimodal information in AD
classification tasks.
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Speech emotion recognition (SER) is a difficult and challenging task because of

the affective variances between different speakers. The performances of SER are

extremely reliant on the extracted features from speech signals. To establish an effective

features extracting and classification model is still a challenging task. In this paper,

we propose a new method for SER based on Deep Convolution Neural Network

(DCNN) and Bidirectional Long Short-Term Memory with Attention (BLSTMwA) model

(DCNN-BLSTMwA). We first preprocess the speech samples by data enhancement and

datasets balancing. Secondly, we extract three-channel of log Mel-spectrograms (static,

delta, and delta-delta) as DCNN input. Then the DCNN model pre-trained on ImageNet

dataset is applied to generate the segment-level features. We stack these features of

a sentence into utterance-level features. Next, we adopt BLSTM to learn the high-level

emotional features for temporal summarization, followed by an attention layer which can

focus on emotionally relevant features. Finally, the learned high-level emotional features

are fed into the Deep Neural Network (DNN) to predict the final emotion. Experiments

on EMO-DB and IEMOCAP database obtain the unweighted average recall (UAR) of

87.86 and 68.50%, respectively, which are better than most popular SER methods and

demonstrate the effectiveness of our propose method.

Keywords: speech emotion recognition, deep convolutional neural network, attentionmechanism, long short-term

memory, deep neural network

1. INTRODUCTION

As the most natural and convenient medium in human communication, speech signals not only
contain the linguistic information like semantic and language type, but also contain rich non-
linguistic information, such as facial expression, speech emotion, and so on. In recent years, with
the continuous development of artificial intelligence, speech emotion recognition (SER) plays a
crucial role in human-machine interactions (Ayadi et al., 2011). More and more researchers are
attracted by the study that computer automatically recognize speech emotions of people. Speech
emotion recognition has become an attractive research topic in many fields, such as speaker’s
semantic and culture, but also contain a wealth of paralinguistic information, such as emotion.

Speech emotion recognition is under great challenges. Firstly, there are too few datasets in the
speech field as it is difficult and time-consuming to build high-quality speech emotion database.
Secondly, different data in the database has different speakers whose gender, age, language, and
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culture etc are different. Finally, the emotions in speech are often
based on sentences rather than just certain words. So how to
use LLDs and sentence-level features to improve the accuracy of
emotion recognition is a difficult point in current research. The
traditional speech emotion recognition methods usually contain
three steps (Deng et al., 2014). The first step is data preprocessing,
including data normalization, speech segmentation, and other
operations. Next step is feature extraction from the speech
signals using some machine learning algorithms. These features
are usually called Low-Level Descriptors (LLDs), such as
Fundamental Frequency(F0) (Origlia et al., 2010), Formant
(Deng et al., 2013),Mel Frequency CepstrumCoefficient (MFCC)
(Milton et al., 2014), etc. Finally, appropriate classifiers are
selected for speech emotion classification, including Support
Vector Machine (SVM) (Chen et al., 2012), Gaussian Mixture
Model (GMM) (Bhaykar et al., 2013), Hidden Markov model
(Schuller et al., 2003), etc. However, a major disadvantage of
those methods lies in the involved traditional machine learning
technology which requires prior knowledge of all necessary
features (such as fundamental frequency, energy, etc.) affecting
emotion recognition. And the extraction process may lose some
important information.

To address this problem, the deep learning techniques
provide reasonable solutions in feature extraction for SER. One
of the most popular deep learning methods is DNN, which
have shown excellent performances in extracting discriminative
features especially in image classification. For speech emotion
recognition, using deep learning technology can automatically
extract deep speech emotional features and learn the correlation
between features. It has shown better performance compared
with the traditional methods.

Originally, Han et al. (2014) proposed a DNN and ELM
model in 2014, which adopted the highest energy fragments to
train DNN model and extract effective emotional information.
In 2014, Mao et al. (2014) first used convolutional neural
network (CNN) to learn the emotional salient features of
SER, and demonstrated the feasibility of CNN model on
several benchmark data sets. Lee and Tashev (2015) used
bidirectional long short-term memory (BLSTM, a special
type of RNN) to extract high-level emotional representation
which contained its temporal dynamics information. In 2016,
Trigeorgis et al. (2016) proposed a convolutional RNN
(CRNN) network which used the raw speech data to predict
emotional changes.

Although DNN has achieved great success in SER, there are
still some problems. First, the speech signal is quite different
due to the variance of speaker’s style, content, and environment.
Second, DNN learned high-level feature representations from
Low-Level Descriptors (LLDs) which cannot sufficiently extract
emotional features. Then researchers began to use spectrograms
to represent speech signals. The horizontal axis of spectrogram
represents the information in time domain and the vertical
axis represents the frequency information, making it a decent
speech representation that retains the important emotional
features of speech. Then CNN is used to automatically extract
emotional features from spectrograms which has achieved
superior performance in the field of SER.

In 2017, Badshah et al. (2017) used spectrograms and DCNN
model to extract features related to speech emotion. They
demonstrated the effectiveness of the method and achieved a
good result of 84.3% on Berlin Emo-DB. Zhang et al. (2017)
proposed a new method which directly to use three channels of
log Mel-spectrograms as the pre-trained DCNN’s input. Then,
they used pyramid matching algorithm (DTPM) to normalize
the segment-level features with unequal length. They verified the
effectiveness of pre-trained DCNN model with 3-D log Mels on
four speech databases. In 2018, Zheng et al. (2018) proposed
a new SER model combine with convolutional neural network
(CNN) and random forest (RF). They adopted CNN to extract
the emotional features from spectrograms, and then used RF for
classification. The satisfactory results proved that their model was
robust and reasonable.

While spectrogram can retain emotional features well, there
is an important and common problem in the above researches
that the emotion labels of segments after speech segmentation
are marked at the utterance-level. However, not all segments in
an utterance contain emotional feature, such as silent frames
and emotion irrelevant frames. Therefore, it is important to
reduce the influence of these irrelevant segments. Attention
mechanism can increase relatively high weights to emotion-
related features, emphasizing the importance of these features,
and reduce the influence of irrelevant features. It can help the
network automatically focus on the emotion relevant segments
and obtain discriminative features with utterance-level for SER.

Attention mechanism is adapted for speech emotion
recognition work well (Mirsamadi et al., 2017). Zhao et al.
(2018) proposed a new method combining Fully Convolutional
Networks (FCNs) and attention-based RNNs for speech
emotion recognition. The experimental results showed the high
performance of the proposed method in IEMOCAP (Busso
et al., 2008) and CHEAVD (Li et al., 2017) dataset. Mu et al.
(2017) used distributed convolutional neural network (CNN) to
automatically learn the emotion features from the raw speech
spectrum, and they used bidirectional BRNN to obtain the time
information from the CNN output. Finally, the output sequence
of BRNN was weighted by attention mechanism algorithm to
focus on the useful part of emotion. The weighted accuracy
(WA) and unweighted accuracy (UA) of 64.08 and 56.41%
were obtained from the IEMOCAP dataset, respectively. Lee
et al. (2018) proposed a model combining the convolutional
neural network with the attention mechanism and the text
data. The promising experimental result in the CMU-MOSEI
database proved the effectiveness of the combination of the
two modalities.

Inspired by Zhang et al. (2017) and Zhao et al. (2018), in
this paper, we propose a novel method based on DCNN and
Bidirectional Long Short-Term Memory with attention model
(DCNN-BLSTMwA). As illustrated in Figure 1, we first conduct
data enhancement operation by adjusting different speech
playing speed on the original speech data and use balancing
datasets weight method to solve the problem of unbalanced
emotion data distribution. Secondly, log Mel-Spectrograms
(static, delta, delta-delta) of three channels are extracted as the
DCNN input. And we initialize parameters by using pre-trained
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FIGURE 1 | The overview of our proposed method using ADCNN-BLSTM model for SER.

model on ImageNet dataset. Then, we fine-tune the DCNN
with our speech data to extract segment-level features and all
the segment-level features of a sentence are combined into an
utterance-level feature as the input of BLSTM-Attention model.
Next, the BLSTM further captures time-frequency relationship
of utterance-level features, and the attention model is used to
make the emotion features more prominent. After attention
layer, we have extracted high-level utterance-level features.
Finally, we adopt fully-connected DNN classifier for emotion
classification. Abundant experiments on the Berlin Emotional
database (EMO-DB) and the Interactive Emotional Dyadic
Motion Capture database (IEMOCAP) demonstrate the stable
and robust performance of our propose method. The main
contributions of our paper can be summarized as follows:

(1) To solve the problem of the small number of training
samples for DCNN network training, we use data
enhancement and speech segmentation to expand the
number of samples. Firstly, we propose a data enhancement
method based on overlapping window segmentation,
which is not tried in the current DCNN method based
on spectrogram and pre training. Secondly, for the
preprocessing of overlapping window segmentation, we
use BLSTM to enhance the time dimension correlation
of DCNN speech data, and add attention mechanism to
improve the speech segment Feature extraction, which
has not been tried by the existing methods combining
attention mechanism. Besides, we prove that the pre-trained
DCNN model can reduce the influence of small sample to
train deep network and improve the accuracy of speech
emotion recognition.

(2) We demonstrate that the three channels of log Mel-
spectrograms (3-D log-Mels) as DCNN input is suitable
for affective feature extraction which achieves better
performance than LLDs. It is natural and will not lose the
important emotional features. Besides, we investigate the
effects of different number of channels in Mel-spectrograms.

(3) To solve the impact of silent frames and emotion irrelevant
frames, an additional attention model is adopted to

automatically focus on emotion relevant information. The
propose DCNN-BLSTMwA model produce discriminative
utterance-level features and the experimental results
manifest that this method outperforms the baseline
(DNN+ELM) by 16.30% for EMO-DB and 17.26% for
IEMOCAP respectively.

The rest of this paper is distributed as follows. Section 2
describes our method and the structure of DCNN-BLSTMwA.
The experimental process and the details of the parameter setting
are reviewed in section 3. Section 4 analyzes and describes the
experimental results. Conclusions are provided in section 5,
followed by the future work.

2. PROPOSED METHODOLOGY

In this section, we introduce our newmethod DCNN-BLSTMwA
for speech emotion recognition. Firstly, speech samples need to
be preprocessed to reduce individual differences. Secondly, we
generate the input of DCNNs from the speech signals, the three-
channel log Mel-spectrograms (static, deltas, and delta-deltas).
And we describe the process of pre-trained and fine-tuning. Then
we introduce the structure of DCNN-BLSTMwAwhich is used to
extract emotion features at utterance-level. Finally, we use a three
layers fully-connected DNN modal for emotion classification
by utterance-level features, see section 2.5 for more details of
the DNN.

2.1. Preprocessing
The speech emotion database is usually composed of multiple
speakers (Neumann and Vu, 2017), whose speech exist
differences and variations due to age, gender, cultural etc.
Therefore, it is necessary to do speech preprocessing before
extracting emotion features. Firstly, zero mean and unit variance
are calculated for speech standardization and reducing the
impact of individual differences problem. Then, we enhance the
speech data according to different speech speed and sampling
frequency due to DCNN’s training requires a large amount
of labeled data and data enhancement can make up for small
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data samples. Changing the original speed of the speech to
a certain extent may change the emotion in the speech, such
as speeding it up by 1.5 times or even 2 times. However, we
controlled the change of voice speed within the interval of 0.8–
1.2, and performed a manual secondary check on the data set
after data enhancement, which is equivalent to manually labeling
the speech data, proving that this will not change the sample
label. Finally, we use data balancing method to make the training
data be balanced relatively. Because the number of samples in
each class of database is different, there exist the phenomenon
of data imbalance influencing the DCNN’s training effect. More
detail process of data enhancement and balancing datasets will be
introduced in section 3.2.

2.2. Log Mel-Spectrograms
In recent years, CNN has showed excellent performance in
speech emotion recognition (Kim et al., 2017; Weißkirchen
et al., 2017). Different from the CRNN model proposed in
Trigeorgis et al. (2016), the input of DCNN model is fixed,
that is, it should be appropriately calculated from 1-D speech
signals. Abdel-Hamid et al. (2014) used the extracted log Mel-
spectrograms and organized it into a 2-D array as the CNN input.
Chan and Lane (2015) found that 2-D convolution is superior
to 1-D convolution in the case of limited data. Motivated by
research (Zheng et al., 2018), we use three-channel log Mel-
spectrograms as DCNN input. The process of generating three-
channel log Mel-spectrograms as follows. Firstly, a pre-emphasis
is performed on the speech data to amplify the high frequency
part. Then, the hamming window of 25 ms is used to divide
it into smaller frames for each speech sentence, the shift is 10
ms. After that, STFT is used to generate the whole log Mel-
spectrogram of an utterance. In this paper, we adopt 64 Mel-filter
banks from 20 to 8,000 Hz. Then, a context window of 64 frames
is adopted to extract the static Mel-spectrogram. The frame shift
size of 32 frames is used to generate overlapping segments of
Mel spectrogram. The overlapping segments is the key of speech
segmentation. As a result, the static Mel-spectrogram is obtained
at the size of 64×64. The first 64 represent the number of Mel-
filter banks and the other is represent 64 frames of segment
window. The length of a segment is 64 frames, that is 655 ms
(10 ms × 63 + 25 ms). Some studies have proved that over
250ms can express an emotion enough (Wöllmer et al., 2013),
so the segmentation length of this paper is reasonable. In section
3.3, we will compare the relationship between context window
size and the recognition accuracy to find the best effects of the
segment length. After generating staticMel-spectrogram, the first
and second temporal derivatives are employed to obtain other
two channers of Mel-spectrograms. We calculated the first and
second order regression coefficients along the timeline as the
delta and delta-delta coefficients of the Mel-spectrograms. As
shown by (1), mi are log-Mels, and Pi are outputs. md

i are the
deltas features of the log-Mels, we use the formula is given by
(2). A popular choice for N is 2. And the delta-deltas features
mddi are calculated by taking the time derivative of the deltas, as
shown in (3). In this way, three-channel of Mel-spectrograms are
extracted. The three-channel of Mel-spectrograms as the DCNN
input can be expressed as X, X ∈ RF×T×C where F is the number

of Mel-filter banks represent the frequency dimension, T is the
segment length parallel with the frame number in a segment
window, and C is the number of channels. In this paper, we
generate three channers of Mel-spectrogram, so the C is 3. The
size of X is 64× 64×3, it is similar with a colorful image.

mi = log(Pi) (1)

md
i =

∑N
n=1 n(mi+n −mi−n)

2
∑N

n=1 n
2

(2)

mddi =

∑N
n=1 n(m

d
i+n −md

i−n)

2
∑N

n=1 n
2

(3)

2.3. Pre-training and Finetuning
In this section, we introduce pre-training and finetuning
technology. The technology of initialize parameters with pre-
trained model is transfer learning which is wildly used in field
of image classification (Krizhevsky et al., 2012) and speech
recognition (Dahl et al., 2011). Although speech task and image
task are two different fields, they get the same network input
after preprocessing. The input of DCNN in our model is the
spectrum map, which is also a picture. And we proved that
the transfer learning is effective through experiments as shown
in Table 4. As the number of samples in database is relatively
small and with the network become deeper, small-scale samples
could easy to cause overfitting. And it can also easy to fall into
local solution (Yanai and Kawano, 2015). Firstly, the pre-trained
model adopted the initialization weight parameters trained by
natural scene image database (ImageNet) of 1,000 classes on the
annual competition which is now known as the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) whose recognition
accuracy is higher than 95%. Then we finetune the weight by
using our speech emotion database. This process can accelerate
the speed of network convergence and better fitting the network
with small number of samples. More details about fine-tuning of
pre-trained DCNN are given in section 3.2.

2.4. Architecture of DCNN-BLSTMwA
In this section, we introduce the architecture of
DCNN-BLSTMwA model to analyze 3-D log Mel-spectrograms
for SER. First, the deep emotion features are extracted from the
3-D log spectrograms by DCNN. Next, we stack the segment-
level 3-D DCNN sequence features of a sentence into the
utterance-level features. Then we input these utterance-level
features into the Bi-directional LSTM (long short-term memory)
to extract higher level features with the long-time information.
In this way, the high-level features in the two dimensions
are obtained. After BLSTM, an attention layer is devoted to
highlighting emotion features and reducing the distractions of
unrelated segments. Finally, DNN model is adopted to classify
the utterance-level features for SER.

2.4.1. DCNN Model
As shown in Figure 2, in this paper we use the classic Alexnet
network (Abdel-Hamid et al., 2014) as the DCNN model. The
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FIGURE 2 | The structure of the DCNN model and the training and fine-tuning process.

DCNN model includes five convolution layers, three max-
pooling layers, and two fully connected layers. The size of the
convolution kernel of the first layer is 11 × 11 × 96, and the
step size is 4 × 4. After the convolution layer of the c1, c2, and
c5, there is a max-pooling layer. The pooling size of all pooling
layers is 3 × 3, and the step size is 2 × 2. The size of the second
convolution kernel is 5 × 5 × 256, while the second and third
convolution layer is 3 × 3 × 384. The last convolution kernel
of c5 is 3 × 3 × 256. The step size of all convolution layers is 1
× 1. The fully connected layer contains 4,096 linear units, and
the output is the segment-level emotional features of the 4,096-
dimensional. And the activation function we use Relu. After the
last fully connected layer, a dropout layer is followed to minimize
the influence of overfitting. Because the input of Alexnet is the
fixed size of 227 × 227 pixels, the Mel-spectrograms is 64 × 64
× 3 obtained in section 2.2 this paper. So, we need to reshape the
size of DCNN input into 227 × 227 × 3. In this paper, we adopt
linear interpolation method to modify the Mel-spectrograms the
size, and then input them into DCNNmodel. More details about
parameters setting and fine-tuning of pre-trained DCNN are
given in section 3.2.

2.4.2. BLSTM Layer
After extracting and segment-level emotion features with the
DCNN model, we stack the segment-level feature sequences
into utterance-level with the same length of a sentence. Then
we input utterance-level features into BLSTM to extract higher
level features for temporal summarization. The structure of
combining DCNN and BLSTM can have better performance
because DCNN can extract spectral features and BLSTM can
extract temporal features from log Mel-spectrograms. These two
parts of features are complementary features. Each direction
of BLSTM contains 128 cells, after BLSTM we get the 256-
dimensional high-level feature representation. We define it as Y ,
Y = {y1, y2, . . . , yi, . . . , yn}, where yi is a feature representation, t
is the dimension of BLSTM.

2.4.3. Attention Layer
Attention layer: In a speech, not all the segments are related
to emotion such as silent frame and pause segments. These
irrelevant features will affect the training and final recognition

performance. Attention mechanism can reduce the influence of
this problem. Initially, the attention mechanism was applied to
image recognition and machine translation. When mimicking
human to listen a speech, people often focus on certain
strong tones which is more contribute to emotion expression.
Therefore, in this paper, attention layer is adopted to focus
on emotion features, and weaken the irrelevant ones (e.g.,
silent frame). Rather than simple operations like max-pooling
or average-pooling, attention layer can help to produce the
discriminative utterance-level feature representation for final
speech emotion classification.

αi =
exp(µTyi)∑J
j=1 exp(µ

Tyj)
(4)

Z =

I∑

i=1

αiyi (5)

As shown in Figure 3, the output of the bidirectional LSTM is
Y . First, we calculate attention weight αi. αi is obtained from a
softmax function as the Equation (4). In evaluate (4), the weight
µ is obtained by the process of training. Then, we calculate
the utterance-level feature representations Z, where Z is got by
performing a weighted sum on Y . As shown in Equation (5), we
finally produce the higher utterance-level feature Z for SER.

2.5. DNN Classification
In this section, we introduce the architecture of classification
for SER. We gain the final utterance-level features (Z), DNN is
used to emotion classification. First, DNN classification model
was constructed, and then the utterance-level features were used
for DNN training. Finally, we produce the output of DNN as
the result of SER. DNN has three layers, the first layer contains
512 cells with a dropout layer. And the second and third layer
contains 256 cells, the output is one of the 7 classes emotion.
In this way, we achieve the speech emotion recognition by
proposed method.
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FIGURE 3 | The structure of BLSTM and attention layer and the working process.

3. EXPERIMENTS

3.1. Datasets
In this paper, in order to prove and evaluate the performance
of our propose method, we perform abundant speech emotion
recognition experiments on Berlin Emotional database (EMO-
DB) (Burkhardt et al., 2005) and the Interactive. Emotional
Dyadic Motion Capture database (IEMOCAP) (Busso et al.,
2008). EMO-DB corpus contains 535 emotional utterance,
including seven different emotions: anger, joy, sadness, neutral,
boredom, disgust, and fear. The process of this database is that
ten professional native German-speaking actors (five men and
five women) is asked to imitate the six or seven emotions,
and utter 10 sentences in the tone of this emotion. The 10
sentences are five long sentences and five short sentences
respectively, which are commonly used in daily communication.
The recordings of this database were performed in an extremely
quiet room with high-quality equipment at a sampling rate of 16
kHz, 16-bit resolution, and mono channel. The average length
of speech file is about 3 s. Twenty participants are required to
score the labels, and assess the quality of collected the recordings.
IEMOCAP corpus totally contains 10,039 utterances and consists
of five sessions, each of which collected the recordings from a
pair of actors in scripted and improvised scene (onemale and one
female). Each utterance is labeled by 3 annotators. If their marks
are inconsistent with one another, the data is invalid. The average
length of speech file is about 4.5 s at the sample rate of 16 kHz.
In this paper, we only use the improvised speech data and use
utterances at the emotion labels between four emotion categories,

i.e., angry, sad, happy, and neutral. Because the improvised data
is more natural and help to the task of SER.

3.2. Experiment Setup
There are only 535 speech samples in Berlin emotional database
(Burkhardt et al., 2005), and the number of each emotion
category is different. And in IEMOCAP database, there are 3,784
speech samples. Although the number of speech samples is
enough in IEMOCAP, the number of each emotion category is
unbalanced. The problem of the unbalanced data distribution
may influence the training effect of DCNN model. The data
distribution of EMO-DB and IEMOCAP as shown in Figure 4. It
is difficult to train the DCNN model in the case of small amount
of data and unbalanced data distribution.

To solve the problem of small samples, we employ the
method of data enhancement to expand the speech samples.
The details of process: according to the sampling frequency and
the playing speed of speech, we conduct data enhancement by
adjusting the speed at 0.8, 0.9, 1.0, 1.1, and 1.2 times of the raw
speech, respectively. The enhanced data will not lose emotional
information, so it can not affect the recognition effect. After data
enhancement, we obtain 4 times more than raw speech, and
obtain 2,675 sentences at last. To some degree, we solved the
problem of small amount of data.

To solve the problem of unbalanced data distribution, we
calculate the weight of each category at whole database. The
details of process: according to the proportion of each category
in all samples, we calculate the weight of the category. Then
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FIGURE 4 | Data distribution of EMO-DB database and IEMOCAP.

TABLE 1 | The unweighted average recall (UAR) (%) of the different number of

channers (The value of C) in log Mel-Spectrograms.

The value of C C=1 C=2 C=3

EMO-DB 80.37 ± 6.17 85.05 ± 8.75 87.86 ± 6.92

IEMOCAP 62.38 ± 4.58 66.25 ± 6.65 68.50 ± 6.20

TABLE 2 | The unweighted average recall (UAR) (%) of different multiples of

samples and the effects of data enhancement on EMO-DB database.

Times 1 3 5

(speech speed) (1.0) (0.9,1.0,1.1) (0.8,0.9,1.0,1.1,1.2)

Average accuracy 80.92 ± 6.38 84.72 ± 7.76 87.86 ± 6.92

In parentheses is the different speech speed compare with raw samples.

TABLE 3 | The unweighted average recall (UAR)(%) for SER with or without

attention model.

Model Without attention With attention

(architecture) (DCNN-BLSTM) (DCNN-BLSTMwA)

EMO-DB 80.17 ± 6.57 87.86 ± 6.92

IEMOCAP 65.14 ± 4.94 68.50 ± 6.20

in the process of DCNN training, network parameters are
adjusted according to the weight of each category. For example,
the number of Disgust is minimal, it’s weight will be largest.

TABLE 4 | The unweighted average recall (UAR)(%) for SER with or

without pre-training.

Model Without Pre-training With pre-training

EMO-DB 81.31 ± 4.89 87.86 ± 6.92

IEMOCAP 64.04 ± 5.24 68.50 ± 6.20

And in the process of training, the influence of this class on
network parameters will increase accordingly. The smaller the
number of categories, the greater the weight and the greater the
impact on parameters. Indirectly, the problem of unbalanced
data distribution can be eased.

In this way, we reduce the impact of these two issues after data
enhancing and balancing weight. Next, we introduce the details
of speech segmentation and DCNN training.

The length of each utterance in database is different, in order
to better fine-tuning of the DCNN network, we split each speech
into equal-length segments. The length of each segment is set as
3 s. If the segment is larger than 3 s, we cut off the redundant
part. Otherwise, zeros padding is used for smaller than 3 s. In this
paper, we use the PyTorch framework to implement our method.
We use the librosa− toolkit to extract 3-D log Mel-spectrograms
(static, delta, and delta-delta). Then we stack the three-channer
log Mel-spectrograms, and speech segmentation method is used
to obtain segment-level speech data as described in section 2.2.
The label of each speech segment is consistent with sample label.
Since we normalize the sentences at the equal-length of 3 s, each
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sentence has the same number of segment-level features, which
can be input into DCNNmodel for training more reasonable.

The training process and details are as follows: First, the
network initial parameters are copied from Alexnet training with
ImageNet. And then we finetune the DCNN model by using
our speech segments, which contain the three-channel log Mel-
spectrograms. As shown in Figure 2, the size of spectrogram is
227 × 227 × 3 as DCNN input, and a softmax layer is used
to predict emotion categories at training. After finetuning the
DCNN model, we take the output of its FC7 layer as segment-
level emotional feature Xi. After that, all Xi of an utterance are
stacked together to form the utterance-level feature X. X =

{X1,X2, . . . ,Xi, . . . ,Xn}, where Xi is the segment-level features,
and n is the number of segments, and every utterance has the
same n. Then we inputX into BLSTM-Attentionmodel to further
extract higher level features. The parameters of the model are
optimized by minimizing the cross-entropy objective function.
The batch-size is set to 128, the epoch = 20, and the initial
learning rate is set to 10−4, using Adam optimizer with Nestorov
momentum, and the momentum was set to 0.9.

The utterance-level features X were input into the BLSTM
model to extract the features of temporal information, and the
output Y is input into an attention layer to highlight emotional

feature. Finally, the utterance-level features were classified by the
DNN model with three linear layers. The parameters of DNN
are also optimized by minimizing the cross-entropy objective
function. The batch-size is set to 16, the epoch is 30, and the
initial learning rate is set to 5×10−6, using Adam optimizer
with Nestorov momentum, and the momentum was set to 0.9.
To get the results more reliable, we performed the “Leave-one-
Speaker-out” (LOSO) cross-validation on EMO-DB, eight people
are selected as training data, one as validation data, and the last
one as test data in each experiment. For IEMOCAP, evaluation is
performed in 5-folds, four sessions are selected as training data,
one as test data. For each experiment, we test three times and
take the average accuracy. Finally, we calculate the unweighted
average recall (UAR) of all speakers or sessions as our final
experiment results. For each speaker, we test three times and take
the average accuracy as the speaker’s result. Then, we calculate
unweighted average recall (UAR) of all speakers as our final
experiment results.

3.3. Experiment Results
(1) Firstly, we tested the effects of the number of channels in

log Mel-Spectrograms. We used DCNN-BLSTMwA model
to investigate the effects. Specifically, we extracted 3-D log

FIGURE 5 | The relationship of context window size and the recognition accuracy(%) on the EMO-DB dataset.
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FIGURE 6 | The relationship of context window size and the recognition accuracy(%) on the IEMOCAP dataset.

TABLE 5 | The compare of our proposed approach with several popular methods

on EMO-DB.

Author Method UAR(%) Year

K. Han DNN-ELM (Han et al., 2014) 71.56 ± 8.43 2014

Q. Mao CNN (Mao et al., 2014) 85.20 ± 0.45 2014

S. Zhang DCNN+DTPM (Zhang et al., 2017) 87.31 ± 6.95 2017

M. Chen CRNN+Attention (Mingyi et al., 2018) 82.82 ± 4.99 2018

Baseline 2-CNN-LSTM 78.01 ± 6.91 2019

Proposed DCNN+LSTM+Attention 87.86 ± 6.92 2019

Mel-Spectrograms (static, delta, and delta-delta) and only
adopted 1-D Mel-Spectrograms (static) when C = 1, and
2-D Mel-Spectrograms (static and delta) when C = 2 as
DCNN input, respectively. The average accuracy as shown
in Table 1. When C = 1, average accuracy obtained 80.37%
of EMO-DB and 62.38% of IEMOCAP which is better
than some traditional methods. This indicates that the high
performance of log Mel-Spectrograms. The average accuracy
reached 85.05% of C = 2 and 87.86% when C = 3, increasing
4.68 and 7.49%, respectively on EMO-DB. And The average

TABLE 6 | The compare of our proposed approach with several popular methods

on IEMOCAP.

Author Method UAR(%) Year

K. Han DNN-ELM (Han et al., 2014) 51.24 ± 8.24 2014

S. Mirsamadi RNN+Attention (Mirsamadi et al., 2017) 58.80 ± 4.70 2017

Z. Zhao Att-BLSTM-FCNs (Zhao et al., 2018) 60.10 ± 4.01 2018

M. Chen CRNN+Attention (Mingyi et al., 2018) 64.74 ± 5.44 2018

D. Luo HSF-CRNN (Luo et al., 2018) 63.98 ± 7.56 2018

Baseline 2-CNN-LSTM 58.23 ± 5.21 2019

Proposed DCNN+LSTM+Attention 68.50 ± 6.20 2019

accuracy obtained 66.25% of C = 2 and 68.50% when C =
3, increasing 3.87 and 6.12%, respectively on IEMOCAP.
This demonstrated that the first order and second order
derivatives of Mel-spectrogram contains helpful emotional
information, and the combine of three-channel of Mel-
spectrograms can improve the performance for SER.

(2) Secondly, we proved the effects of data enhancement by
different multiples of samples with different speed of speech
as shown in Table 2. Also, we used the proposed model to
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test it. We found that the accuracy rate increased by 3.80%
when we tripled the samples. And it increased by 6.94%
when we expanded the data by 5 times. Because we use
the different sampling frequency and the playing speed to
enhance the samples, the important information will not lose
in a speech. The good results prove that data enhancement
can help the training of deep network model and improve
the final classification accuracy.

(3) Table 3 reveals the effects of the attention model. We found
that after using the attention model, the average accuracy
increased by 7.69% of EMO-DB and 3.36% of IEMOCAP.
Abundant experiments proved the powerful performance of
attention model, which can focus on important emotional
features and help to extract higher utterance-level features
and improve the accuracy for SER.

(4) Table 4 shows the effects of pre-trained DCNN model.
We tested the performance of without pre-trained DCNN
model by using the same architecture of our proposed
method. The initial parameters were randomly initialized
with a standard normal distribution. The average accuracy
of without pre-training was 81.31% of EMO-DB and 64.04%
of IEMOCAP, we improved 6.55 and 4.46%, respectively
by using initial parameters from ImageNet for pre-training.
This demonstrates that pre-trained DCNN model not only
speeds up the network convergence, but also improves the
classification accuracy.

(5) Next, in order to find the best effects of the segment
length, we designed different segment length to compare
the relationship between context window size and the
recognition accuracy. we tested context window size ranges

FIGURE 7 | Confusion matrix of ADCNN-BLSTM with an average accuracy of 87.86% on the EMO-DB dataset.
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in (16, 32, 48, 64, 80, 100, 128), and the effects as
shown in Figures 5, 6 of EMO-DB and IEMOCAP database
respectively. We found that the context window size of
64 obtained best effects both on these two databases. This
demonstrates that the image size of 64 × 64 reshape to 227
× 227 was best size of DCNN’s input for training.

(6) Then, we compared our proposed approach with several
popular methods as shown in Tables 5, 6. We first built the
baseline by using 2 convolution layers follow by LSTM. The
first convolution layer contains 16 kernels of size 5 × 5 with
the stride size of 1 × 1 and the second 32 kernels of size 5 ×
5 with the same stride size of 1 × 1. Each convolution layer
followed by a Max-pooling layer. The LSTM contains 512
cells with 0.5 dropout rate. Similarly, we also adopted 3-D log
Mel-Spectrograms as input to extract the emotional features.

The average accuracy of 2 CNN-LSTM is 78.09% of EMO-
DB and 58.23% of IEMOCAP which are better than the
method of DNN-ELM. As shown in Tables 5, 6, the average
accuracy is 87.86% of EMO-DB and 68.50% of IEMOCAP,
and our proposed method is better thanmost of popular SER
methods in recent years. This demonstrates the promising
performance of our approach.

(7) Finally, we present the confusion matrix consistent with
the results of DCNN-BLSTMwA to further analyze the
recognition accuracy as shown in Figure 7, where the
vertical axis represents the true label and the horizontal axis
represents the predicted label. In the confusion matrix of
EMO-DB, we find that sad achieves the highest recognition
rate of 1 while happy is the lowest accuracy of 0.71, and the
anger and boredom also obtain pretty good recognition rate

FIGURE 8 | Confusion matrix of ADCNN-BLSTM with an unweighted average recall of 68.50% on the IEMOCAP dataset.
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at 0.94 and 0.95, respectively. Similarly, as shown in Figure 8,
the happy is also the lowest accuracy of 0.33 on IEMOCAP
database. And anger and sad achieve relatively good result
of 0.86 and 0.84, respectively, neutral is 0.71. The reason
may be that sad and anger are relatively intense emotions
and highly diacritical among these emotions. Thus, these two
emotions obtain better results. And to some extent, happy
emotion features is a little similar with anger, so 21% happy
samples are misclassified into anger on EMO-DB. However,
there are 50% happy samples are misclassified into neutral
on IEMOCAP. We attribute the misclassification to neutral
is at the center of these emotions and the happy emotion
closing to the center is hard to distinguish. In addition, we
find that 9% neutral are misclassified into boredom, it may
be the similar activation level between neutral and boredom.
All in all, the average accuracy of 87.86% of EMO-DB and
68.50% of IEMOCAP are promising results and demonstrate
the performance of our methods.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new method based on pre-
trained DCNN model and BLSTM with attention model
(DCNN-BLSTMwA) for speech emotion recognition. We first
enhanced the speech samples and balanced datasets. Then 3-
D log Mel-spectrograms (static, delta, delta and delta) were
extracted from the speech signal as DCNN input. DCNN
extracted the segment-level features which were stacked to
obtain the utterance-level features. Then higher utterance-level
features were further extracted through BLSTMwith an attention
model and finally, the DNN model was used for final SER.
Experiments on EMO-DB database have shown the promising
performance of our proposed method compared with some
popular SER methods. The average accuracy in terms of UAR
is 87.86% of EMO-DB and 68.50% of IEMOCAP, respectively,
which are better than most popular SER methods of recent years.

Additionally, we have also proved the robust performance and
feasibility of the method.

In the future, we will try to construct a more stable deep
neural network to fit more speech signals for SER. And we will
combine the LLDs features and DCNN extracted features to
realize speech emotion recognition. In addition, we are going
to initial the parameters of other speech emotion database
rather than ImageNet. It may help promote the training
performance of deep neural model and increase the accuracy
for SER.
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Purpose: While there are no clear indications of whether central lymph node dissection

is necessary in patients with T1-T2, non-invasive, clinically uninvolved central neck lymph

nodes papillary thyroid carcinoma (PTC), this study seeks to develop and validate models

for predicting the risk of central lymph node metastasis (CLNM) in these patients based

on machine learning algorithms.

Methods: This is a retrospective study comprising 1,271 patients with T1-T2 stage,

non-invasive, and clinically node negative (cN0) PTC who underwent surgery at the

Department of Endocrine and Breast Surgery of The First Affiliated Hospital of Chongqing

Medical University from February 1, 2016, to December 31, 2018. We applied six

machine learning (ML) algorithms, including Logistic Regression (LR), Gradient Boosting

Machine (GBM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Decision

Tree (DT), and Neural Network (NNET), coupled with preoperative clinical characteristics

and intraoperative information to develop prediction models for CLNM. Among all

the samples, 70% were randomly selected to train the models while the remaining

30% were used for validation. Indices like the area under the receiver operating

characteristic (AUROC), sensitivity, specificity, and accuracy were calculated to test the

models’ performance.

Results: The results showed that ∼51.3% (652 out of 1,271) of the patients had pN1

disease. In multivariate logistic regression analyses, gender, tumor size and location,

multifocality, age, and Delphian lymph node status were all independent predictors

of CLNM. In predicting CLNM, six ML algorithms posted AUROC of 0.70–0.75, with

the extreme gradient boosting (XGBoost) model standing out, registering 0.75. Thus,

we employed the best-performing ML algorithm model and uploaded the results to a
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self-made online risk calculator to estimate an individual’s probability of CLNM (https://

jin63.shinyapps.io/ML_CLNM/).

Conclusions: With the incorporation of preoperative and intraoperative risk factors, ML

algorithms can achieve acceptable prediction of CLNM with Xgboost model performing

the best. Our online risk calculator based on ML algorithm may help determine the

optimal extent of initial surgical treatment for patients with T1-T2 stage, non-invasive,

and clinically node negative PTC.

Keywords: papillary thyroid carcinoma, central lymph node metastasis, machine learning algorithms, lymph node

dissections, prediction model

INTRODUCTION

Papillary thyroid carcinoma (PTC) is one of the most common
type of endocrine malignancies with a favorable prognosis (1, 2).
Nevertheless, central lymph node metastasis (CLNM), the first
station of metastasis, occurs in 30–90% of patients following their
first surgery and is correlated with an increased risk of local
recurrence (3, 4).

The clinical community has reached a general consensus
that central lymph node dissection (CLND) for therapeutic
purposes is appropriate in PTC patients with suspected cervical
lymph node metastasis (LNM) (5). By contrast, however,
there is a growing controversy over the role of prophylactic
central lymph node dissection (pCLND) due to the lack of
randomized controlled data (6–8). Generally speaking, pCLND
is not recommended for a subset of patients with small (T1 or
T2), non-invasive, clinically node-negative (cN0) PTC according
to the 2015 American Thyroid Association (ATA) guidelines
(9), whereas the Japanese Society of Thyroid Surgery and the
Chinese Thyroid Association both strongly recommend routine
pCLND for cN0 PTC patients in order to stage disease and
prevent recurrence. While an incomplete nodal resection in
the first surgery may lead to disease recurrence and a second
operation (10), it is also important to avoid unnecessary CLND
in view of surgical complications such as hypoparathyroidism
and recurrent laryngeal nerve injury. Ideal treatment decision-
making should be based upon individual patients rather than
“one size fits all” approach recommended by guidelines. This
highlights the importance of accurate prediction of CLNM
occurrence with a more personalized therapeutical schedule.

Machine learning (ML), as a novel type of artificial intelligence
(AI), is starting to be widely applied to health-care data analysis
(11, 12). By capitalizing on the robust prediction ability of ML
algorithms, it may be possible to develop prediction tools which
in some cases outperform traditional statistical modeling, and
thus giving better prediction of CLNM status. Unfortunately, no
current studies have trained ML algorithms to predict CLNM in
this subset of PTC.

Hence, the purpose of this study is to develop ML-based
models using preoperative and intraoperative clinicopathological
characteristics to predict the likelihood of CLNM for
individualized treatment and to obtain the best ML algorithms
for online CLNM prediction in PTC.

METHODS

Study Population
We retrospectively retrieved the data of in-patients who
underwent thyroid surgery at the Department of Endocrine and
Breast Surgery of the First Affiliated Hospital of Chongqing
Medical University from December 2016 to December 2018.

Data Collection
Criteria for inclusion were to be a PTC patient with a
tumor size no larger than 40mm (T1-T2), a non-invasive
tumor, and no evidence for lymph nodes metastases (cN0)
based on ultrasound (US) data. Tumor size was classified
according to the 8th edition of American Joint Committee
on Cancer (AJCC) Staging Standards. Criteria for exclusion
were distant metastasis, previous thyroid surgery, or
incomplete information. This study was approved by the
local institutional ethics committee board. Demographic and
clinicopathological characteristics data were collected as follows:
gender, age, tumor size, tumor location, chronic lymphocytic
thyroiditis (CLT), multifocality, bilaterality, and the presence
of LNM.

Surgical Strategy
At our institution, it is customary to perform pCLND for
PTC patients and the detailed surgical procedures were
described in previous articles (13, 14). Soft tissues in
the prelaryngeal and pretracheal regions were removed
and marked as the Delphian (Figure 1) and pretracheal
LNs, respectively. Those two subgroups were sent for
intraoperative frozen section examination. Then, we
proceeded to perform the thyroid lobectomy and ipsilateral
paratracheal LN dissection and the paratracheal LN was
also sent for frozen section examination. Lastly, all surgical
specimens were sent for post-operative histopathologic
evaluation. The Delphian lymph node (DLN) was not taken
into account in the calculation of central compartment
lymph nodes.

Statistical Analyses
The Fisher’s exact test and Student’s t-test were used for discrete
and continuous parameters, respectively. For the independent
risk factors of CLNM, a multivariable logistic regression analysis
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FIGURE 1 | ROC curve analysis of machine learning algorithms for prediction

of CLNM patients with T1-T2 stage, non-invasive, and clinically node negative

PTC in the validation set. LR, Logistic regression; GBM, Gradient boosting

machine; RF, Random forest; DT, Decision tree; NNET, Neural network;

Xgboost, Extreme gradient boosting; ROC, receiver operating characteristic;

AUC, area under the curve.

with backward stepwise selection was used to calculate the odds
ratios (ORs) with 95% confidence intervals (CIs).

ML algorithm is characterized by its extraordinary
performance better than traditional regression approaches
in predicting outcomes within large data bases (15–17). In
this study, we randomly split our dataset into two groups,
namely the training sets (70%) for ML model development
and the validation sets (30%) for performance evaluation and
we repeated this random splitting until the patient data were
equally distributed in both sets (Supplementary Table 1).
We developed six types of ML algorithms to model our data:
Logistic regression (LR), Gradient boosting machine (GBM),
Extreme gradient boosting (XGBoost), Random forest (RF),
Decision tree (DT), and Neural network (NNET). In the training
process, tuning was considered for ML-based models to avoid
overfitting and the best hyper-parameter for ML models was
5-fold cross-validation. Then the ML algorithms were further
trained by using the R software to predict the risk of CLNM
and we evaluated the predictive ability of each ML classifier,
with the same hyper-parameter, in validation sets where the
area under the receiver operating characteristic (AUROC)
value, and the corresponding sensitivity, specificity, as well as
overall accuracy of ML algorithms were all calculated. In the
comparison of ML algorithms’ performance, the closer to 1
the AUC was, the better the classification model performed.
Afterwards, based on the best-performing model, we created
an online risk calculator that can make predictions with newly
entered PTC patient data, and thus making the risk of CLNM
in those patients easily accessible to clinicians. A total of 100
independent training simulation results were used to evaluate the
variable importance of each CLNM-predicting ML model. All
statistical analyses were performed by using R software, version
3.4.1 (R Foundation for Statistical Computing, Vienna, Austria).
The R packages “caret,” “e1071,” “random-forest,” “nnet,” “gbm,”
“rpart,” “GLM,” “pROC” were used for ML algorithms and

“shiny” package for web application. A two tailed P < 0.05 was
deemed statistically significant.

RESULTS

Demographics Features
The clinicopathological characteristics of 1,271 PTC patients
with T1-T2, non-invasive, clinically node-negative disease were
summarized (Table 1). Of the 1,271 eligible patients, the average
age was 42.15 ± 10.49 years (range 18–80 years). The ratio of
male to female patients was 1:2.7. The mean tumor size was
9.92mm (median = 8mm). Eight hundred and ninety seven
patients (70.6%) had papillary micro-carcinomas. Central lymph
node metastases were positive in 652 (51.3%) cases.

Univariate and Multivariate Logistic
Regression Analyses of CLNM
In univariable analysis, tumor size, gender, age, multifocality,
bilateral lesions, and DLN status were all significantly associated
with the occurrence of CLNM in overall population (P <

0.001), whereas there was no significant difference between
CLNM-positive and CLNM-negative patients in terms of their
tumor location or CLT status. In multivariable logistic regression
analysis (Table 2), all parameters (age, gender, CLT, DLN,
multifocality, bilaterality and tumor size, and location) were
included. The results showed that male gender (OR 1.534, 95%CI
1.158–2.030), larger tumor size (OR 1.080, 95% CI 1.053–1.107),
multifocality (OR 1.583, 95% CI 1.172–2.139), DLN metastasis
(OR 6.454, 95% CI 4.246–9.651), and tumor located in inferior
pole [vs. upper pole, (OR 1.507, 95% CI 1.080–2.103)] are
independent positive predictors of CLNM while older age (OR
0.975, 95% CI 0.964–0.986) was a negative predictor. Variables of
bilateral lesions and CLT were rejected by multivariable analysis.

Performance of Machine Learning
Algorithms
Comparisons of the performance of prediction among the sixML
algorithms models in validation sets are detailed in Table 3 and
Figure 1. It turned out that the XGBoost model demonstrated the
highest performance of predicting CLNM, whose AUROC was
0.750, sensitivity 0.667, specificity 0.674, and accuracy 0.670 in
validation sets. Accordingly, we chose the XGBoost model as the
final prediction model.

Relative Importance of Variables in
Machine Learning Algorithms
The relative importance of variables in each CLNM-predicting
ML algorithm is shown in Figure 2. We can see there are
general trends of evidence: although slight differences are shown
in the importance of variables among those ML algorithms,
factors including Delphian lymph node metastasis, tumor size,
age, gender, multifocality rank top five without fail. On the
contrary, variables like bilateral lesions, tumor location in
middle or isthmus pole and CLT make little contribution to
CLNM prediction. The importance of high-ranking variables
in the XGBoost model is arranged as follows in a descending
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TABLE 1 | Demographic and clinicopathologic variables of the whole cohort grouped by lymph node status.

Charteristics Total (N = 1,271) No (%) CLNM- (N = 619) CLNM+(N = 652) P-value

Gender <0.001

Male 339 (26.67) 132 (38.94) 207 (61.06)

Female 932 (73.33) 487 (52.25) 445 (47.75)

Age (years) 41.38 ± 11.09 43.18 ± 11.39 39.68 ± 10.51 <0.001

≤55 1,140 (89.69) 534 (46.84) 606 (53.16) <0.001

>55 131 (10.31) 85 (64.89) 46 (35.11)

Tumor size (mm) 9.92 ± 5.69 8.53 ± 4.27 11.24 ± 6.34 <0.001

≤10mm 897 (70.57) 491(54.74) 406 (45.26) <0.001

10–20mm 305 (24.00) 115 (37.70) 190 (62.30)

>20mm 69 (5.43) 13 (18.84) 56 (81.16)

Bilateral <0.001

No 1,071 (84.3) 544 (50.79) 527 (49.21)

Yes 200 (15.7) 75 (37.50) 125 (62.50)

Tumor location 0.127

Upper 304 (23.92) 152 (50.00) 152 (50.00)

Middle 545 (42.88) 280 (51.38) 265 (48.62)

Inferior 380 (29.90) 171 (45.00) 209 (55.00)

Isthmus 42 (3.30) 16 (38.10) 26 (61.90)

Multifocality <0.001

Absence 1,002 (78.77) 514 (51.30) 488 (48.70)

Presence 269 (21.23) 105 (39.03) 164 (60.97)

CLT 0.573

No 988 (77.73) 477 (48.28) 511 (51.72)

Yes 283 (22.27) 142 (50.18) 141 (49.82)

DLN status <0.001

Negative 1,051 (82.69) 589 (56.04) 462 (43.96)

Positive 220 (17.31) 30 (13.64) 190 (86.36)

Continuous data are shown as mean ± standard deviation.

–, negative; +, positive; CLNM, central lymph node metastasis; CLT, chronic lymphocytic thyroiditis; DLN, Delphian lymph node.

TABLE 2 | Univariate and multivariate logistic regression analysis of variables in predicting CLNM in whole cohort.

Variables Univariate analysis Multivariate analysis

OR (95%CI) P OR (95%CI) P

Multifocality (+/–) 1.645 (1.250–2.165) <0.001 1.583 (1.172–2.139) 0.003

Age 0.971 (0.961–0.981) <0.001 0.975 (0.964–0.986) <0.001

Gender (Male/Female) 1.716 (1.332–2.221) <0.001 1.534 (1.158–2.030) 0.003

DLN status (+/–) 8.074 (5.392–12.092) <0.001 6.454 (4.246–9.651) <0.001

Tumor size (mm) 1.103 (1.077–1.130) <0.001 1.080 (1.053–1.107) <0.001

Tumor location 0.127 0.043

Upper Reference Reference

Middle 0.946 (0.715–1.253) 0.701 1.059 (0.887–1.447) 0.719

Inferior 1.222 (0.903–1.654) 0.193 1.507 (1.080–2.103) 0.016

Isthmus 1.625 (0.838–3.151) 0.151 1.445 (0.692–3.018) 0.327

Bilateral (+/–) 1.720 (1.261–2.346) 0.001

CLT (+/–) 0.927 (0.712–1.207) 0.573

DLN, Delphian lymph node; CLT, chronic lymphocytic thyroiditis; CLNM, central lymph node metastasis; –, negative; +, positive.

Frontiers in Medicine | www.frontiersin.org 4 March 2021 | Volume 8 | Article 635771103

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhu et al. Machine Learning Algorithms for PTC

TABLE 3 | Predictive performance comparison of the six types of machine learning algorithms in the validation sets.

Methods AUROC Sensitivity Specificity Accuracy

LR 0.739 0.693 0.648 0.670

GBM 0.748 0.661 0.663 0.662

RF 0.695 0.741 0.596 0.668

DT 0.701 0.603 0.622 0.613

NNET 0.745 0.693 0.663 0.678

XGBoost 0.750 0.667 0.674 0.670

LR, Logistic regression; GBM, Gradient boosting machine; RF, Random forest; DT, Decision tree; NNET, Neural network; XGBoost, Extreme gradient boosting.

FIGURE 2 | Relative importance ranking of each input variable for predition of CLNM in the machine learning algorithms. (A) Logistic regression. (B) Decision tree. (C)

Gradient boosting machine. (D) Neural network. (E) Random forest. (F) Extreme gradient boosting.

order: Delphian lymph node metastasis, tumor size, age, gender,
multifocality and tumor location.

Web-Based Calculator
An online calculator based on the best-performing model was
established for clinicians to predict patients’ risk of developing
CLNM by simply inputing readily available preoperative
and intraoperative clinicopathological variables (https://jin63.
shinyapps.io/ML_CLNM/) (Figure 3).

DISCUSSION

In this study, we developed and validated multiple popular
machine learning algorithms to predict CLNM in patients
with T1-T2, non-invasive, cN0 PTC. A comparison of ML
algorithms identified that the XGBoost model gave the greatest
performance. To make the application of this model available,
we further established an online calculator for estimating
the individual probability of CLNM in this subset patients
with PTC. This ML-based model may potentially guide
intraoperative decision-making.

It is noteworthy that the 2015 ATA guidelines (9) asserted
that “thyroidectomy without pCLND is adequate for small (T1
or T2), non-invasive, clinically node-negative PTC.” Yet, the risk
of metastatic lymph nodes among this subgroup is unequal and
a “one-size fits all” approach may raise concerns that in the
long run it would bring potentially disastrous consequences for
patients exempted from pCLND. Our data demonstrate that up
to 51% of patients with T1-T2, non-invasive, cN0 PTC harbored
central lymph node metastases. Such a high incidence of regional
lymph node involvement is similar to other findings (18–20)
and indicates that thyroid cancer is predisposed to LNM and
that preoperative ultrasound currently fails to detect a massive
number of patients with clinically significant lymph nodal disease
(21, 22). Therefore, an accurate diagnosis of lymph node status
carries much weight in helping clinicians determine the precise
treatment for patients as well as informing the patients of
prognoses and we advocate a selective approach to pCLND,
particularly for cases with a high risk of CLNM.

Preoperative variables including larger tumors, younger age,
male, multifocality, and tumor location in inferior portion
are identified as the most important contributing predictors
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FIGURE 3 | The web-based calculator for predcting central lymph node metastasis in patients with T1-T2 stage, non-invasive, and clinically node negative PTC.

of CLNM-positive status by ML algorithms. The finding that
younger age is highly predictive of CLNM in our research is
similar to previous studies (23, 24). In addition, multifocal PTCs
have been shown to be prone to CLNM and our results are
consistent with previous reports, suggesting that multifocality is
a positive predictor of CLNM (25, 26). It has been previously
demonstrated by Thompson et al. (27) and Yang et al. (28) that
larger tumors are significantly associated with an increased risk
of nodal spread while we have found that rates of lymph node
involvement surge in tumor sizes> 20mm, compared with those
in tumor sizes of 10–20mm and < 10mm (81.2 vs. 62.3 and
45.3%). Bilateral lesions are related with CLNM in the univariate
analysis, but show insignificance in multivariate analyses after
adjustment of confounders. All results have been confirmed in
ML algorithms. Our study suggests that males are frequently
found to be more susceptible to CLNM, which is supported by
findings of previous studies (12, 29).

Nevertheless, the aforementioned factors in previous studies
are mainly based on preoperative information and are still
insufficient to achieve a reliable prediction. Besides, few studies
have evaluated the predictive values of intraoperative factors.
At our institution, lymph nodes in central compartment
are classified as DLN, pretracheal and paratracheal nodes,
respectively, and then routinely sent for frozen section
examination separately. It was revealed in our previous study
that the status of DLN based on frozen section examination
was an independent predictor of CLNM and associated with
poor prognostic features (14). And our findings of the present
study further proves it, showing that 86.3% of DLN-positive

patients have CLMN, compared with 43.9% of DLN-negative
patients. The DLN status, in particular, is the strongest predictor
in nearly all analytical approaches. Thus, we recommend
routine intraoperative frozen section examination of DLN not
only because the dissection of DLN can be performed safely
without additional complications, but more importantly, it is
a critical variable predicting further nodal metastases and aids
in determining the extent of LN dissection. As intraoperative
frozen section examination plays an essential role in immediate
assessment of nodal status during an operation (30–32), it
appears to be more promising in accurately predicting risks of
LNM in subregion of central compartment when compared with
preoperative evaluations alone.

Compared with studies attempting to predict the risk of
central compartment lymph node metastases in PTC (12, 27,
28, 33, 34), our work has several strengths. First, few studies
have ever focused on the subgroup of patients who suffer from
clinically low-risk PTC. In fact, we found that a massive number
of patients harbor clinically significant lymph node metastases
which have not been detected by pre-oprative ultrasound.
Furthermore, while ML approaches have shown unparalleled
diagnostic performance in differentiating between benign and
malignant thyroid nodules in recent reports (35, 36), there is,
however, little research in the available literature on applying ML
algorithms to lymph node metastases in PTC. To the best of our
knowledge, this is the very first study to develop a prediction
model using ML algorithms for real-time risk evaluation of
CLNM with easy-to-use clinical data and fortunately, our model
shows a great predictive power, which distinguishes itself from
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linear models adopted by previous researches. Finally, in order to
make this ML-based model easy to use, we established an online
application based on it, which is now available for clinicians to
facilitate individualized surgical treatment by calculating the risk
for each patient: (https://jin63.shinyapps.io/ML_CLNM/). For
instance, if a patient is identified to have a high probability of
CLNM during surgery, then pCLND may be considered despite
contradiction to the current ATA guidelines.

This study, however, also has limitations. First, the nature
of a retrospective study might have resulted in selection bias.
Second, the ML algorithm model we established, to some extent,
was confined to one single institution, which might restrict
its generalizability pending further validation in real-world
scenarios. Third, predictve value was not high enough because
the information in our current clinical database is to a certain
degree limited.

CONCLUSIONS

We developed and validated ML algorithms for individualized
prediction of CLNM in T1-T2 stage, non-invasive, and
clinically node negative PTC patients by utilizing readily
available preoperative variables and intraoperative frozen section
examination. The ML-based prediction model can accurately
identify whether patients are at high-risk of CLNM and its
accompanying online risk calculator can serve as an easy-to-
use tool for clinicians to make precise surgical decisions. In
the future, our goal is to further integrate imaging, molecular
and genetic data to improve our model performance in the
realm of personalized medicine and more studies covering wider
populations are also warranted for further validation.
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Automatic segmentation of brain tumors from multi-modalities magnetic resonance

image data has the potential to enable preoperative planning and intraoperative volume

measurement. Recent advances in deep convolutional neural network technology have

opened up an opportunity to achieve end-to-end segmenting the brain tumor areas.

However, the medical image data used in brain tumor segmentation are relatively

scarce and the appearance of brain tumors is varied, so that it is difficult to find a

learnable pattern to directly describe tumor regions. In this paper, we propose a novel

cross-modalities interactive feature learning framework to segment brain tumors from

the multi-modalities data. The core idea is that the multi-modality MR data contain

rich patterns of the normal brain regions, which can be easily captured and can be

potentially used to detect the non-normal brain regions, i.e., brain tumor regions.

The proposed multi-modalities interactive feature learning framework consists of two

modules: cross-modality feature extracting module and attention guided feature fusing

module, which aim at exploring the rich patterns cross multi-modalities and guiding

the interacting and the fusing process for the rich features from different modalities.

Comprehensive experiments are conducted on the BraTS 2018 benchmark, which show

that the proposed cross-modality feature learning framework can effectively improve the

brain tumor segmentation performance when compared with the baseline methods and

state-of-the-art methods.

Keywords: brain tumor segmentation, deep neural network, multi-modality learning, feature fusion,

attention mechanism

1. INTRODUCTION

Brain cancer is an aggressive and highly lethal malignancy that has received more and more
attention and presented multiple technical challenges for studies on brain tumors. Owing to the
diversity of the appearance and morphology of brain tumors, accurately automatically segmenting
tumor areas from multi-modality magnetic resonance image (MRI) sequences is a difficult but
meaningful issue in field of artificial intelligence and assisted diagnosis (1). In this paper, we study a
deep-learning based automatic brain tumor segmentation network to assist clinicians in improving
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the diagnostic efficiency of brain tumors. For the automatically
tumor segmentation task, the input medical images are multi-
modality data and the corresponding segmentation masks
contain multi areas of the brain tumor. Specifically, the input
multi-modality medical image consist of four MRI modality,
i.e., T1-weighted (T1) modality, contrast enhanced T1-weighted
(T1c) modality, T2-weighted (T2) modality, and T2 Fluid
Attenuation Inversion Recovery (FLAIR) modality. The goal of
brain tumor segmentation is to determine the volume, shape,
and localization of brain tumor areas, i.e., the whole tumor (WT)
area, the tumor core (TC) area, and the enhancing tumor (ET)
core area, which play crucial roles in brain tumor diagnosis
and monitoring.

To achieve automatic brain tumor segmentation, some
methods use the deep convolutional neural network (DCNNs)
to extract the features of tumors and determine the labels of
multi-class pixels in the end-to-end fashion. However, existing
brain tumor segmentation methods (2–4) usually consider this
task as a semantic segmentation problem for common nature
images, which methods omit the great disparity between the
medical image and the common nature image. Specifically, there
are two-fold distinct properties between these two kinds of
images: (1) As a departure from the common nature image, the
medical image usually consist of multiple MRI modalities that
capture different pathological properties. (2) The geometrical
shape, spatial position, and texture structure of tumor in medical
images are complex and changeable, and the tumor does not have
a specific, regular pattern of appearance. Therefore, such existing
approaches would not obtain the optimal solutions.

Due to the above discussions properties, for the brain
tumor segmentation task, the deep learning based segmentation
methods still has challenging issues needed to be addressed.
First, the existing methods cannot fully mine the potential
knowledge in multi-modalities. Specifically, the previous works
use simple parameter-sharing feature extractors to obtain
features of different modal data and directly concatenate the
information from different modality data. Such feature extraction
and processingmethods lack a datamining strategy for effectively
informational fusing and extracting knowledge from complex
data structures. Second, due to the nonspecific structural pattern
in the tumor area, the existing supervised learning-based
segmentation methods, which are guided only by a manually
annotated foreground and background segmentation ground
truth, are difficult to learn the complete discriminant information
of brain tumor.

To address these issues, in this paper, we proposed a
novel interactive modality deep feature learning framework
to learn the discriminant information of brain tumor from
the multi-modality MRI data. Considering the fact that the
texture and spatial position of normal organs in medical images
have specific structural patterns, and deep neural networks
can easily learn discriminant information from such regular
patterns. Meanwhile, radiologists need to combine information
from multiple modalities to determine the full range of areas
of a brain tumor. For the multi-modality MRI data, the
intra-modality information describes the discriminant feature

between the normal organ and the lesion area (i.e., brain
area and tumor area) in medical images, the inter-modality
information provides additional cross-modal constraints for
determining the visual boundaries and different regions of the
brain tumor. Specifically, the proposed interactive modality deep
feature learning framework consists of the cross-modality feature
extraction and the normal region-guided feature fusion.

Figure 1 illustrates the proposed learning framework briefly.
In the cross-modality feature extracting process, we adopt a two-
step feature interacting strategy to extract the interactive features
across different modality data. The first feature interacting
step concatenates multi-modality image data in channel-wise to
extract the low-level interactive features at input level, and the
second feature interacting step integrates the high-level features
of different modality pairs to extract the high-level interactive
features. In the normal region-guided feature fusion, we propose
a novel reverse attention-based feature fusion framework to
collectively enhance the features of normal brain region from
different modality data. This encourages the feature extracting
network to learn intrinsic patterns that are helpful to determine
the normal brain area from each modality data. The intuition
behind this process is that the reverse attention mechanism
enhance the non-tumor regions in the brain MRI data, and those
regions contain rich structure and texture information of normal
brain regions.

2. RELATED WORKS

2.1. Brain Tumor Segmentation
Brain tumor segmentation is a hot topic in the medical image
analysis and machine learning community. It has received great
attention in the past few years. Early efforts in this filed designed
hand-crafted features and adopted the classic machine learning
models to predict the brain tumor areas. Due to the rapid
development of the deep learning technique (5–9), the recent
brain tumor segmentation approaches mainly apply the deep
features and classifiers from the DCNN models. Based on the
type of the convolutional operation used in the DCNN models,
we briefly divide the existing methods into two groups, i.e.,
the 2D CNN-based methods and 3D CNN-based method. The
2D CNN-based methods (10–12) apply the 2D convolutional
operations and split the 3D volume samples into 2D slices or 2D
patches.While the 3DCNN-basedmethods (13–16) apply the 3D
convolutional operations, which can take the whole 3D volume
samples or the extracted sub-3D patches as the network input.

2.2. Multi-Modality Feature Learning
Multi-modality feature learning is gaining more and more
attention in the recent years as the multi-modality data can
provide richer information for sensing the physical world.
Existing works have applied multi-modality feature learning
in many computer vision-based tasks such as 3D shape
recognition (17–20) and retrieval (21–24), survival prediction
(25), RGB-D object recognition (26), and person re-identification
(27). Among these methods, Bu et al. (21) built a multi-
modality fusion head to fuse the deep features learnt by
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FIGURE 1 | A brief illustration of the proposed multi-modality interactive feature learning framework for brain tumor segmentation.

a CNN network branch and a deep belief network (DBN)
branch. To integrate multiple modalities and eliminate view
variations, Yao et al. (25) designed a deep correlational
learning module for learning informative features on the
pathological data and the molecular data. Wang et al.
(28) proposed a large-margin multi-modal deep learning
framework to discover the most discriminative features for each
modality and harness the complementary relationship between
different modalities.

3. DATASET DESCRIPTION

We implement all experiments on BraTS 2018 benchmark
(29–31) to evaluate the performance of proposed brain tumor
segmentation. The BraTS 2018 benchmark dataset contains four
modalities, i.e., T1, T1-c, T2, and FLAIR, for each patient.
The BraTS 2018 benchmark has two subsets: a training set,
which contains 285 subjects, and a validation set containing
66 subjects with hidden ground truth. Each subject holds a
manual expert segmentation of three tumor sub-compartments:
edema (ED), ET, and necrotic tissue combined with non-
enhancing tumor (NCR/NET). In the official BraTS evaluation,
these sub-compartments are combined into three hierarchical
labels: WT, TC, and ET. WT is a combination of all tumor
sub-compartments (i.e., ET, NCR/NET), TC combines ET and
NCR/NET, and ET is defined by the ET sub-compartment.
Aiming at yielding uncertainty estimates for these hierarchical
tumor regions, we combined the tumor sub-compartment
labels into the hierarchical labels before the training of the
automated segmentation models. The BraTS 2018 dataset comes
preprocessed; the subjects and MR images are co-registered
to the same anatomical template, resampled to unit voxel
size (1 × 1 × 1), and skull stripped. When implementing
the experiments on each of the benchmarks, we randomly
select the 80% data in training set to train the brain tumor
segmentation models while use the rest of the data in training
set to test the segmentation performance. We additionally
normalized each MR image subject-wise to zero mean and
unit variance.

4. METHODS

The aim is to segment the brain tumor regions including the WT
region, the TC region, and the enhancing TC region from multi-
modalityMRI data. For this purpose, we propose to build amulti-
modality-based single prediction multi-region segmentation
method that utilizes the cross-modalities interactive features
from MRI data. In this work, we propose to train a cross-
modalities interactive feature extracting and fusing network
using reverse attention guidance and use the trained network for
segmenting brain tumor regions in MRI data.

In this section, we first describe the network architecture
and the workflow of the proposed multi-modalities brain tumor
segmentation framework and also including the details of the
cross-modality feature extracting process and the attention-
guided feature fusion that are two important interactive feature
learning modules. Then, we introduce the implement details of
the training process and experiments.

4.1. Multi-Modalities Brain Tumor
Segmentation Network
Given an input MRI data X = {xT1, xT1c, xT2, xFLAIR}, where
the variables xT1,xT1c,xT2, and xFLAIR represent the T1-weighted
modality, the contrast-enhanced T1-weighted modality, the T2-
weighted modality, and the fluid attenuation inversion recovery
modality, respectively, we follow the work (32) to split the multi-
modalities input X to form two modality pairs Xg1 = {xT1, xT1c}
and Xg2 = {xT2, xFLAIR}, which encourages the information
within each modality pair tends to be consistent while the
information from differentmodality pairs tends to be distinct and
complementary. The cross-modality feature extracting module
takes the modality pair as input, and outputs the interactive
features of the multi-modalities data. Then, the attention-guided
feature fusion module takes the interactive features as input and
output the fused cross-modality interactive feature. Finally, the
segmentation results of the brain tumor region are generated
from the fused cross-modality interactive feature. The network
architecture of our proposed multi-modalities brain tumor
segmentation framework is shown in Figure 2. Each component
will be elaborated as follows.
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FIGURE 2 | Illustration of the network architecture of the segmentation process.

FIGURE 3 | Illustration of the details of the reverse co-attention block, where the “A” represents the average operation.

4.1.1. Cross-Modality Feature Extracting Module
Current popular multi-modalities feature extracting network
usually rely on a single simple interactive strategy, i.e., the
channel concatenation (33) or the parameters sharing (34).
The channel concatenation strategy only considers the common
features among different modalities, but ignore the richness of
the features brought by the modes; conversely, the parameters
sharing strategy only pays attention to the richness of features
brought by multi-modalities, but ignores the common features
among different modalities. To effectively interact features

between different modalities, we employ the combinational
strategy of both the channel concatenation and the parameters
sharing to extract the common features among similar modalities
and use the information between different modalities to improve
the richness of the features. Specifically, we use a CNN-based
network to extract the common features in a modality pair
where the modalities sharing consistent feature for common
pathological areas and normal areas, as shown in Figure 2. The
cross-modality feature extracting module has two input channels
corresponding to the two MR images from one modality pair,
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FIGURE 4 | Illustration of the details of the feature fusion block, where the operation “C” represents the channel-wise concatenation.

i.e., Xg1 = {xT1, xT1c} or Xg2 = {xT2, xFLAIR}. Meanwhile,
the feature extractor is sharing parameters for extracting the
interactive features of the different modality pairs.

Considering the low-level features contribute less to
segmentation performance but demand more computational
resources, we aggregate the high-level features to predict the
common brain tumor areas in eachmodality pair. Specifically, for
an input modality pair xg1 = {xT1, xT1c} (or xg2 = {xT2, xFLAIR),
each modality data with size h × w × l, five levels of features
fi, i = 1, . . . , 5 with resolution [h/2k−1,w/2k−1, l/2k−1] can be
extracted from the cross-modality feature extracting network.
Then, we follow the work (35) to divide interactive features fi
into low-level features group {fi, i = 1, 2} and high-level features
group {fi, i = 3, 4, 5}. The low-level features contain lots of
modality information, which are not applicable to interactive
features fusion between multi-modalities. Thus, we employ the
partial decoder Dp (35) to only aggregate the high-level feature
{fi, i = 3, 4, 5} with a cascade fashion. The interactive feature of
one modality pair is computed by the fDp = Dp(f3, f4, f5), and we
also can obtain the global mapMg of the input modality pair.

4.1.2. Attention Guided Feature Fusing Module
The global map Mg is formed by the high-level features {fi, i =
3, 4, 5}, which captures the high-level information such as normal
brain areas and tumor areas. However, the rich diversity of
brain tumor regions makes it impossible for feature extraction
models to extract a learnable structural pattern from this region.
Compared with brain tumor regions, the normal brain regions in
the training images are regularly distributed, and these structural
patterns are easier to perceive and extract. Motivated by this
observation, we propose a cross-modality features fusing strategy
to progressively discriminative brain regions through an erasing
foreground object manner [pranet 27,4]. Instead of predicting the
non-normal regions (brain tumor areas) directly, we propose to
determine the normal brain regions in the multi-modalities MR
data by learning the reverse attention (35) from the high-level
features. The proposed attention-guided feature fusing module

consists of two blocks: the feature fusion block and the reverse
co-attention block.

As shown in Figure 3, the reverse co-attention block takes two
side-output feature maps from two modality pairs as input and
outputs a reverse co-attention weight. The side-output feature
maps Mi, i = 3, 4, 5 are generated by the previous FFD (feature
fusing block). In each reverse co-attention block, a sigmoid
operation and a reverse operation are used to generate the reverse
attention weight Ri. The reverse attention weight Ri is a negative
salient object detection in the computer vision community (36–
39) and can be formulated as Equation (1):

Ri = ⊖(σ (Mi)) (1)

where the ⊖ denotes a reverse operation subtracting the input
from all 1’s matrix E and σ is the Sigmoid function. To explore
the high-level interactive features of the two modality pairs,
we average the reverse attention weights from the two cross-
modalities feature extracting module to generate a reverse co-
attention weights Ri.

The details of feature fusing block is shown in Figure 4. This
block tasks the high-level features of the two modality pairs and
a reverse co-attention weight as input to generate the side-output
feature maps and the interactive feature map. The reverse co-
attention weight enhances the features of the common interest
regions in the twomodality pairs, and weakens the features of the
common no interest regions, which will enable deep integration
of features between multiple modality pairs. Specifically, the

output interactive features {f i, i = 3, 4, 5} of each modality pair
can be obtained by element-wise multiplying (

⊗
) the high-level

feature {fi, i = 3, 4, 5} by the reverse co-attention weight Ri, as
Equation (2):

f i = fi
⊗

Ri+1 (2)

We concatenate the reverse co-attention feature of the two
modality pairs in channel-wise to deeply fuse the features of the

Frontiers in Medicine | www.frontiersin.org 5 May 2021 | Volume 8 | Article 653925112

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. Multi-Modalities Interactive Feature Learning

two modality pairs. The final segmentation result is obtained by
progressively superpose the fused features.

4.2. Learning Process and Implementation
Details
4.2.1. Loss Function
Our loss function consist of segmentation loss Lsg and saliency
detection loss Lsd. The Lsg is Dice Similarity Coefficient
(DSC) (32), which evaluates the similarity between two higher-
dimensional sets, i.e., the segmentation masks and the ground-
truth masks, and can be formulated as Equation (4):

Lsg(Y,U) = 1−
2× |Y

⋂
S|

|Y| + |S|
(3)

where Y and S represent the ground-truth annotation
and the segmentation mask for the desired brain tumor
areas, respectively.

The saliency detection loss Lsd implements deep supervision
for the three side-output feature maps {M3,M4,M5} and the
global map Mg , which prevents the model from being heavily
affected by the unbalance among different types of tumor areas.
We adopt weighted binary cross entropy (BCE) loss to achieve
this proposal. The weighted BCE loss pays more attention to
hard pixels rather than assigning all pixels equal weights (35).
The definitions of these losses are the same as in [21,26] and
their effectiveness has been validated in the field of salient object
detection. Each map is up-sampled M

up
i to the same size as the

ground-truth map G, which is obtained by dividing the tumor
regions annotation into three separate binary maps (i.e., WT
map, ET map, and TC map). The deep supervision loss Ldeep can
be formulated as Equation (4):

Ldeep = Lsd(G,M
up
g )+

5∑

i=3

Lsd(G,M
up
i ) (4)

The total loss function Ltotal can be formulated as Equation (5):

Ltotal = αLsg(Y,U)+ (1− α)(Lsd(G,M
up
g )+

5∑

i=3

Lsd(G,M
up
i ))

(5)
where the weight α is empirically set to 0.7.

4.2.2. Implementation Details
We follow the work (32) to adopt the pre-trained parameters of
transition generative networks to initialize the feature extracting
network in our methods. Specifically, each of the input modality
data was normalized to have zeromean and unit variance, and the
inputs of both the cross-modality feature transition are randomly
sampled from the training data set, and the input patch size is
128 × 128 × 128. We also employ U-net as backbone, where
the base number of filters is 16 and increased to twice after
each down-sampling layer. We use Adam optimizer with an
initial learning rate is 10-e4 and λ is 10 to optimize the objective
function. The network branches were implemented in Pytorch on

four NVIDIA GTX 1080TI GPU. It totally takes 5 h to complete
the training process and the test speed is 2.5 s per subject.

5. EVALUATION METRICS

The performance of the segmentation algorithm is evaluated
based on two metrics, i.e., the Dice score, and the 95th percentile
of the Hausdorff Distance (Hausdorff95).

The Dice score is a commonly used metric for measuring the
segmentation accuracy at the pixel level. It is a statistical gauge of
the similarity between two sets of samples. Given S, a set of pixels
belonging to a ground truth of the segmentation mask of brain
tumor regions, and P, a set of pixels belonging to a predicted
segmentation mask of the brain tumor regions.The Dice score
is defined as in Equation (6), where | · | denotes set cardinality.
The Dice score ranges from 0 (no overlap between S and P) to 1
(perfect overlap between S and P), and the lower is better.

Dice =
2× |S

⋂
P|

|S| + |P|
(6)

The 95th percentile of the Hausdorff Distance (Hausdorff95) is
a boundary-based segmentation accuracy evaluation metric. It
calculates the distance between the two point sets. Considering
the predicted segmentation mask P and the ground-truth mask
S, the Hausdorff distance between the two set is defined as
Equation (7):

dH(S, P) = max[maxp∈Pmins∈S[D(S, P)],maxs∈Sminp∈P[d(S, P)]]
(7)

where the dH(x, y) denotes the distance between pixels x ∈

P and y ∈ S. We follow the work (40) to use Euclidean
distance to calculate the pixel-wise distance. The Hausdorff
distance represents the longest distance from P (respectively S)
to its closest point in S (respectively P). It is the most extreme
value from all distances between the pairs of the nearest pixel
on the boundaries of S and P. Finally, the score of Hausdorff
distance is multiplied by 95% to eliminate the interference from
outlier points.

In this work, the predicted segmentation masks are compared
with the ground-truth masks via Dice score and the 95th
percentile of Hausdorff distance (Hausdorff95). A higher Dice
coefficient and a lower Hausdorff distance indicate the efficacy
of the brain tumor segmentation method.

6. RESULTS

This section presents quantitative and qualitative evaluations
of the performance of the proposed segmentation method to
segment the three brain tumor regions in the multi-modality
MRI data.

6.1. Ablation Study of the Proposed
Approach
For the analysis of the contribution and the effect of our proposed
branches for brain tumor segmentation task, we conduct the
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TABLE 1 | Ablation study of the proposed approach and the other baseline

models on the BraTS 2018 validation set.

Methods
Dice score Hausdorff95

WT ET TC Average WT ET TC Average

“fg1” 0.698 0.793 0.808 0.766 4.412 9.614 8.184 7.403

“fg2” 0.517 0.876 0.749 0.714 10.461 5.668 9.472 8.534

“fg1+2” 0.674 0.818 0.782 0.758 5.072 6.101 8.562 6.578

“Ours w/o CA” 0.778 0.885 0.819 0.827 3.841 5.912 7.291 5.681

“Ours w AT” 0.789 0.897 0.836 0.841 4.690 4.912 6.912 5.505

Ours 0.801 0.909 0.854 0.855 3.879 4.571 6.411 4.954

Higher Dice scores indicate the better results, while lower Hausdorff95 scores indicate

the better results.

experiments on the following baseline models. The first two
baseline models train the single-modality-pair feature extracting
modules “fg1” and “fg2” with the input modality data Xg1 =

{xT1, xT1c} or Xg2 = {xT2, xFLAIR}, respectively. The third
baseline model “fg1+2” fuses the prediction of “fg1” and “fg2”
by directly computing the average of the obtained segmentation
maps without using any feature fusing strategies proposed in
this paper. The first three baselines are designed to analyze
the contribution of the multi-modalities of the MRI data for
segmenting the brain tumor regions. We also introduce two
baseline models “Ours w AT” and “Ours w/o CA” to analyze
the contribution of the proposed reverse attention-guided feature
fusion and segmentation module. Specifically, “Ours w AT”
represents the feature fusion module use, a saliency attention
strategy (41) to fuse the cross-modalities features, and “Ours w/o
CA” represents the feature fusion module use, the independent
reverse attention that do not interact between the modality
pairs to guide the feature fusing. We use the parameters of
the pre-trained generative feature transition network (32) to
initialize all the aforementioned baseline models, and these
baselines are fine-tuned on the same training data as our
method. The experimental results are reported in top rows
of Table 1.

By comparing single-modality pair modules (“fg1” and “fg2”)
and the multi-modality pair baseline “fg1+2”, we observe
that the baseline achieves more stable performance than the
single-modality pair modules, but it does not achieve the
better comprehensive performance than baseline “fg1.” This
can demonstrate that the arbitrary feature fusion has limited
improvement on segmentation performance due to the lack
of effective fusion strategy. By comparing the attention-guided
feature fusion baselines (i.e., “Ours w/o CA” and “Ours w
AT”) with the “fg1+2”, we can observe that the attention-guided
feature fusion can improve the segmentation performance.
It demonstrates that the performance improvement of our
method mainly comes from the well-designed multi-modalities
feature fusion and learning strategy. By comparing “Ours”
with baselines “Ours w/o CA” and “Ours w AT,” we can
observe that the common attention of modality pairs plays an
important role in fusing informative features and predicting
accurate tumor areas (see “Ours w/o CA” vs. “Ours w AT”),

TABLE 2 | Comparison results of the proposed approach and the other

state-of-the-art models on the BraTS 2018 validation set.

Methods
Dice score Hausdorff95

WT ET TC Average WT ET TC Average

Myronenko (33) 0.823 0.910 0.867 0.866 3.926 4.516 6.855 5.099

Isensee et al. (42) 0.809 0.913 0.863 0.861 2.410 4.270 6.520 4.400

Puch et al. (2) 0.758 0.895 0.774 0.809 4.502 10.656 7.103 7.420

Chandra et al. (3) 0.767 0.901 0.813 0.827 7.569 6.680 7.630 7.293

Ma et al. (4) 0.743 0.872 0.773 0.796 4.690 6.120 10.400 7.070

Chen et al. (43) 0.733 0.888 0.808 0.810 4.643 5.505 8.140 6.096

Zhang et al. (32) 0.791 0.903 0.836 0.843 3.992 4.998 6.369 5.120

Ours 0.801 0.909 0.854 0.855 3.879 4.571 6.411 4.954

Higher Dice scores indicate the better results, while lower Hausdorff95 scores indicate

the better results.

and the reverse attention mechanism can further improve the
segmentation performance (see “Ours” vs. “Ours w AT”). The
ablation analysis demonstrates the contribution of our proposed
cross-modality feature extracting module and attention guided
feature fusing module for improving the performance of brain
tumor segmentation.

6.2. Comparison With State-of-the-Art
Methods
To evaluate the effectiveness of the proposed brain tumor
segmentation model, on the BraTs2018 dataset, we follow the
work of (32) to compare the segmentation performance of the
proposed method with seven state-of-the-art methods including
three ensemble-models methods, i.e., Myronenko (33), Isensee
et al.(42), Puch et al.(2), and four single-prediction methods:
Chandra et al. (3), Ma et al. (4), Chen et al.(43), and Zhang et
al. (32). The quantitative results are reported in Table 2. The
performances of the segmentation models were evaluated with
the Disc score and Hausdorff95. From Table 2, we can observe
that our methods achieve the best performance when comparing
with the state-of-the-art single-prediction methods both in terms
of Dice score and Hausdorff95. When comparing with the
ensemble-models methods, our method has the second best
performance. Usually, the ensemble-models methods can usually
obtain better performance than the single-prediction methods,
since the ensemble models methods integrate multiple brain
tumor segmentation models that are trained by using different
views or different training subsets, while the single prediction
methods only use one segmentation model to implement
multi-brain tumor areas segmentation tasks. However, the
ensemble-models methods require training multiple models
with more training data, which means higher complexity both
in computational cost and time consumption. Considering
the balance between time cost and algorithm performance,
the performance of our method is satisfactory. Thus, the
comparison results in Table 2 demonstrate the effectiveness of
the proposed approach.

In Figure 5, we also show some examples of the brain
tumor segmentation results for quantitative analysis. From
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FIGURE 5 | Some examples of segmentation results of our proposed brain tumor segmentation on BraTs 2018 dataset.

Figure 5, we can observe that our method is more able to
segment the details of the tumor areas, including TC areas,
enhancing TC areas, and WT areas. The quantitative analysis
results further illustrate the effectiveness of our proposed
segmentation method.

7. CONCLUSION

In this work, we have proposed a novel attention-guided cross-
modality feature learning framework for segmenting brain
tumor areas from the multi-modality MRI data. Considering
the fact that the texture and spatial position of normal organs
in medical images have specific structural patterns, and deep
neural networks can easily learn discriminant information
from such regular patterns, we propose to mine the common

normal patterns across the multi-modality data to captures
the discriminative features between brain tumor areas and
normal brain areas. The proposed learning framework consists
of a cross-modality feature extracting module and an attention
guided feature fusing module. By building a two-step feature
interacting strategy, our proposed feature extracting module
explores the multi-modalities interactive features that capture
the rich information of the multi-modalities MRI data. The

attention-guided feature fusing module encourages the feature
extracting module to learn the structure patterns of the normal

brain areas and aggregates the cross-modalities features in
reasonable manner. Comprehensive experiments are conducted
on BraTS 2018 benchmark, which demonstrate the effectiveness
of our approach when compared to baseline models and state-of-
the-art methods.
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distributed power control algorithm for cyber-physical-systems in coal mine

tunnels. Comput Netw. (2019) 161:210–9. doi: 10.1016/j.comnet.2019.04.017
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Three-dimensional (3D) liver tumor segmentation from Computed Tomography (CT)

images is a prerequisite for computer-aided diagnosis, treatment planning, and

monitoring of liver cancer. Despite many years of research, 3D liver tumor segmentation

remains a challenging task. In this paper, we propose an effective and efficient method for

tumor segmentation in liver CT images using encoder-decoder based octave convolution

networks. Compared with other convolution networks utilizing standard convolution

for feature extraction, the proposed method utilizes octave convolutions for learning

multiple-spatial-frequency features, thus can better capture tumors with varying sizes

and shapes. The proposed network takes advantage of a fully convolutional architecture

which performs efficient end-to-end learning and inference. More importantly, we

introduce a deep supervision mechanism during the learning process to combat potential

optimization difficulties, and thus the model can acquire a much faster convergence rate

and more powerful discrimination capability. Finally, we integrate octave convolutions

into the encoder-decoder architecture of UNet, which can generate high resolution

tumor segmentation in one single forward feeding without post-processing steps. Both

architectures are trained on a subset of the LiTS (Liver Tumor Segmentation) Challenge.

The proposed approach is shown to significantly outperform other networks in terms of

various accuracy measures and processing speed.

Keywords: liver, liver tumor, deep learning, octave convolution, segmentation

1. INTRODUCTION

According to the World Health Organization, liver cancer was the second most common cause
of cancer deaths in 2015. Hepatocellular carcinoma (HCC) is the most common primary liver
cancer and the sixth most common cancer. Each year, the incidence and death rates of liver cancer
are steadily increasing. In addition, the liver is also a common site for secondary tumors. It is
an important factor leading to human death. With the rapid development of tumor radiation
technology, radiotherapy has entered the stage of precision radiotherapy represented by image
guidance and adaptive radiotherapy. Precision radiotherapy needs to accurately delineate the target
area (tumor) of radiotherapy to guide treatment and subsequent radiation plans. But at this stage,
accurate target area delineation in clinical medicine needs to be done manually by experienced
physicians, and its accuracy and efficiency completely depend on the physician’s clinical experience.
This work is not only time-consuming, but also poorly reproducible.
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Using computer image processing technology, combined with
medical imaging diagnostic technology, early diagnosis, three-
dimensional modeling, and quantitative analysis of liver diseases
can enable doctors to have sufficient data before surgery, make
preoperative planning, improve the success rate of surgery, and
make reasonable preparations for an effective treatment plan.
The accurate and reliable segmentation of liver contours from
abdominal CT images is the first step in the early diagnosis
of liver disease, the estimation of liver size and condition, and
three-dimensional modeling. It is also a very critical step. The
segmentation results have a direct effect on subsequent work. In
actual clinical applications, the liver contour is usually manually
segmented from CT images by physicians with relevant practical
experience and professional knowledge. However, this process
is very time-consuming and energy-consuming, and is subject
to the subjective factors, experience, and knowledge of different
physicians. The effect of the difference will often result in
different segmentation results. Therefore, in order to reduce the
workload of doctors, improve work efficiency, and obtain more
objective and accurate segmentation results, computer-aided
diagnosis technology must be introduced to help professional
doctors segment liver CT images.

To solve this problem, researchers have invested in the
research and come upwith a number of approaches. Over the past
few decades, they have focused on developing algorithms such
as level sets, watershed, statistical shape models, region growth,
active contour models, threshold processing, pattern cutting,
and traditional machine learning methods that require manual
extraction of tumor features.

Traditional liver segmentation methods are based on image
processing methods, and mainly rely on some shallow features
of the image, such as grayscale, statistical structure, and
texture to segment liver contours. This feature can be obtained
directly from the image or obtained by artificially designed
extraction operators. These shallow features are less robust, not
representative, and susceptible to noise interference. Practice has
proved that it is often those abstract and deep features that are
more representative. Deep learning technology canmine the deep
abstract features of data from a large amount of data and apply
them to liver segmentation tasks to improve the accuracy and
robustness of segmentation.

Region growing, thresholding, or clustering methods have
been widely used inmedical image segmentation because they are
fast, easy to implement, and have relatively low computational
costs. However, the main drawback of these methods is that
they use only strength information. As a result, this method
is prone to boundary leakage at blurred tumor boundaries.
Therefore, prior knowledge or other algorithms are integrated to
reduce under-segmentation or over-segmentation (1–3). Anter
et al. (1) present an automatic tumor segmentation method
using adaptive region growth. A marker-controlled watershed
algorithm was used to detect the initial seed points of regional
growth. Yan et al. (4) present a semi-automatic segmentation
method based on watershed transformation. They first manually
placed seed points in the tumor area as markers, and then
performed watershed transformation to delineate and extract
tumor contours in the image. Therefore, the density information

of the tumor can be obtained as a threshold to separate the
hepatic lesion from its adjacent tissues. Then, the threshold is
refined from the segmented lesion to obtain accurate results.
DAS and Sabut (3) used adaptive thresholding, morphological
processing, and nucleated fuzzy C-means (FCM) algorithms
to segment liver tumors from CT images. Moghbel et al. (5)
present an automatic tumor segmentation scheme based on
supervised random Walker method. FCM with the function of
cuckoo optimization is used for PIXEL marking of final random
Walker segmentation.

Active contour methods, such as fast moving and level
set algorithms, are popular segmentation techniques. However,
good initialization and velocity function are needed to obtain
accurate segmentation results, especially for tumors with uneven
intensity and weak boundaries. Li et al. (6) present a new level
set model that combines edge- and region-based information
with prior information. An FCM algorithm is used to estimate
the probability of tumor tissue. Li et al. (6) present a semi-
automatic method for segmentation of liver tumors from
magnetic resonance (MR) images, which uses a fast-moving
algorithm to generate initial labeled regions and then classifies
other unlabeled voxels through a neural network. A graph cutting
method has also been widely used inmedical image segmentation
(7, 8), which can achieve global optimization solutions. Stawiaski
et al. (7) present an interactive segmentation method based
on watershed and graph cutting. When held in conjunction
with the 2008 Liver Tumor Segmentation Challenge (LTSC08)
competition [in conjunction with the 2008 Medical Image
Computing and Computer-Assisted Intervention (MICCAI)
conference], the method achieved the highest accuracy compared
to other semi-automatic or automated methods. Linguraru et al.
(8) present an automatic pattern segmentation method that
uses pattern cutting with Hessian-based shape constraints to
bias speckle-like tumors. However, the main drawback of such
techniques based on level sets or graphic cuttings is their high
computational cost, especially for 3D volume data.

Recently, deep learning (9–21) has penetrated into a variety
of applications and surpassed the state-of-the-art performance
in many fields such as image detection, classification, and
segmentation (22–26), which also excites us to use this technique
in the liver tumor segmentation task. Many researchers have
already used deep learning methods to explore the task of
liver tumor segmentation. In practical applications, CNN shows
excellent feature extraction capabilities. Among them, fully
convolutional neural networks (FCN) as an improved network of
CNN have been widely used in the field of image segmentation.
Different from image classification, semantic segmentation needs
to determine the category of each pixel to achieve accurate
segmentation. FCN replaces the last fully connected layer of
CNN with a deconvolution layer to achieve pixel-to-pixel
classification. The application of FCN and its derivatives in image
segmentation continues to expand. Its encoder is the same as
the 13 convolutional layers in VGG-16. The decoder maps the
features extracted by the encoder to the encoder with the same
resolution as the input. When the feature is extracted from small
to small, the decoder gradually enlarges the extracted feature
to the size of the input image from small to large. However,
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the traditional FCN network has poor edge segmentation and
low accuracy, which cannot meet the requirements of medical
image segmentation. Li et al. (6) propose a H-DensU-Net,
which consists of 2D and 3D U-Net, for the segmentation of
liver tumors. 2D U-Net is used to extract tumor features in
individual sections, while 3D U-Net is used to understand tumor
spatial information between sections. Sun et al. (27) present a
method of liver tumor segmentation based on multi-channel full
convolutional network (MC-FCN). They designed an MC-FCN
to train contrast-enhanced CT images at different imaging stages,
because each stage of the data provides unique information about
the pathological features of the tumor. However, these neural
networks are fully connected between adjacent layers, which leads
to problems such as over-parameterization and over-fitting for
tumor segmentation tasks. In addition, the number of trainable
parameters in a fully connected neural network is related to the
size of the input image, which results in higher computational
costs when processing high-resolution images.

One of the challenges of deep learning for medical image
processing is that the samples provided are often relatively
small, and U-Net still performs well under this limitation. As
an image semantic segmentation network, U-Net was mainly
used to process medical images when it was proposed. The
U-Net network is a CNN-based image segmentation network,
mainly used for medical image segmentation. When it was
first proposed, it was used for cell wall segmentation. Later,
it has excellent performance in lung nodule detection and
blood vessel extraction on the fundus retina. Including the
CT image segmentation of liver tumor lesions. In specific
implementation, this type of method can use deep features
to locate liver tissue regions and use shallow features to
achieve accurate segmentation results. Many medical image
segmentation problems are improved based onU-Net. According
to the adopted form of U-Net network architecture, it can be
divided into single network liver tumor segmentation method,
multi-network liver tumor segmentation method, and u. A
liver tumor segmentation method combining Net network and
traditional methods. Regardless of the calculation and memory
performance, the 3D network can combine the image layer
information to ensure a change continuity between the interlayer
image masks, and the segmentation effect is better than 2D.

Considering clinical suitability and segmentation accuracy as
well as processing time, our goal is to develop an efficient, robust,
and accurate method for tumor segmentation. Therefore, in this
paper, a deep learning method based on learning and decoding
layered features with multiple spatial frequencies is proposed to
achieve 3D liver tumor segmentation from CT images. The main
contributions of this work are three-fold:

• Due to observe the CT liver tumor image can be decomposed
to describe the structure of the smooth change (such as the
shape of the tumor) mutations in the low spatial frequency
components and describe the details of (the edge of the tumor,
for example) the high spatial frequency components, so we
use the octave convolution (28) encoder block for building
characteristics, and use them to study neural network layered
multiple frequency characteristics of multiple levels.

• We propose to decompose the convolution feature graph into
two groups at different spatial frequencies and process them
with different extended convolution at their corresponding
frequencies (one octave apart). Storage and computation can
be saved because the resolution of low frequency graphs can
be reduced. This also helps each layer to have a larger receive
field to capture more contextual information. Importantly, the
proposed blocks are fast in practice and can reach speeds close
to the theoretical limit.

• More importantly, we introduce deep supervision to
the hidden layer, which can accelerate the optimization
convergence speed and improve the prediction accuracy.

• In addition, the proposed network is superior to the
benchmark U-Net in terms of segmentation performance and
computing overhead, while achieving better or comparable
performance to the latest approach on open data sets.

2. METHODS

U-Net is modified on the basis of the existing CNN structure
for classification, that is, the original fully connected layer of
CNN is changed into a convolutional layer. FCN is composed
of convolution and deconvolution. Through the process of
convolution and deconvolution, based on end-to-end learning,
the classification of each pixel of the image is completed, thereby
realizing the segmentation of the entire input image. U-Net
realizes the semantic segmentation of images through an end-
to-end network structure. The end-to-end network can reduce
manual preprocessing and subsequent processing and make the
model from the original input to the final output as much
as possible. The network learns the features by itself, and the
extracted features are also integrated into the algorithm. The
network model can be automatically adjusted according to the
data, thereby increasing the overall fit of the model, and the cost
of end-to-end network learning is lower than that of non-end-to-
end network structure.

2.1. Encoder Part
The liver tumors often have varying sizes and shapes. The
low- and high- frequency components of tumors focus on
capturing the style of tumor and edge information, respectively.
Motivated by this observation, we hypothesize that adopting
a multi-frequency feature learning approach may be beneficial
for segmenting the tumor from liver CT images. Therefore,
the octave convolution (28) is adopted as an extractor for
multifrequency features in this work. The computational
graph for multifrequency feature transformations of the octave
convolution is illustrated in Figure 1. Let XH and XL denote the
inputs of high- and low- frequency feature maps, respectively.
The high- and low-frequency outputs of the octave convolution
are given by ŶH = fH→H(XH) + f L→H(XL) and ŶL =

f L→L(XL) + fH→L(XH), where fH→H and f L→L denote two
standard convolution operations for intra-frequency information
update, whereas fH→L and f L→H denote the process of inter-
frequency information exchange. Specifically, fH→L is equivalent
to first down-sampling the input by average-pooling with a scale
of two and then applying a standard convolution for feature
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transformation, and f L→H is equivalent to up-sampling the
output of a standard convolution by nearest interpolation with
a scale of two.

To calculate these items, working (28) splits the convolution
kernel Winto two components W = [WH ,WL]is responsible
for convolved with XHand XL. Each component can be further
divided into in-frequency and in-frequency parts: WH =

[WH→H ,WL→H]and WL = [WL→L,WH→L], whose parameter
tensor shape is shown in Figure 2. Especially for the high-
frequency feature graph, we use A to calculate its regular
convolution for in-frequency update at the position (p, q)and for

FIGURE 1 | Computation graph of the multifrequency feature transformation

of octave convolution. The operation mainly contains two processes of the

inter-frequency information exchange (fL→H and fH→L) and intra-frequency

information update (fL→L and fH→H).

FIGURE 2 | The octave convolution kernel. k × k octave convolution kernel W

is equivalent to vanilla convolution kernel because they have exactly the same

number of parameters.

inter-frequency communication. We can fold the up-sampling of
the feature tensorXLinto convolution without explicit calculation
and storage of the up-sampling function as follows:

YH
p,q =YH→H

p,q + YL→H
p,q

=
∑

i,j∈Nk

WH→H

i+ k−1
2 ,j+ k−1

2

XH
p+i,q+j

+
∑

i,j∈Nk

WL→H

i+ k−1
2 ,j+ k−1

2

XL(⌊ p
2

⌋
+i

)
,(⌊

q
2⌋+j)

(1)

where ⌊·⌋represents a lower bound operation. Similarly, for low-
frequency characteristic graphs, we use regular convolution to
calculate in-frequency update. Note that since the graph is an
octave lower, the convolution is also low frequency W.R.T. High
frequency coordinate space. For inter-frequency communication,
we can fold the subsample of the feature tensor XH into the
convolution again, as shown below:

YL
p,q =YL→L

p,q + YH→L
p,q

=
∑

i,j∈Nk

W⊤

i+ k−1
2 ,j+ k−1

2

XL
p+i,q+j

+
∑

i,j∈Nk

WH→L

i+ k−1
2

, j+
k− 1

2
X⊤
(2∗p+0.5+i),(2∗q+0.5+j)

(2)

where multiplying a factor 2 to the locations (p, q) performs
down-sampling, and further shifting the location by a half step
is to ensure the down-sampled maps are well-aligned with the
input.

2.2. Decoder Part
Deconvolution is a convolution operation, which is the inverse
process of pooling. In U-Net, the pooling operation reduces
the size of the input picture, but in the image segmentation
process, each pixel needs to be classified, and finally a segmented
image with the same dimension as the input picture is obtained.
Therefore, the generated heat map (heat map) is restored
to the original image dimensions. Through reverse training,
deconvolution can achieve the effect of output reconstruction
and input, so that the output image can be restored to the same
dimension as the input image.

On the one hand, in the process of feature coding as shown
in the Figure 3, although the spatial size of the feature graph
gradually decreases, the feature graph gradually loses spatial
details. This compression effect forces the kernel to learn more
discriminations with higher levels of abstraction. On the other
hand, multi-frequency feature extraction alone is not sufficient to
perform dense pixel classification for liver tumor segmentation.
A process is needed to decode the feature map to recover spatial
detail and generate a high-resolution probabilistic map of the
tumor. A simple way to do this is to use bilinear interpolation,
which unfortunately lacks the ability to learn the decoding
transformation that transpose convolution has. Therefore, we
choose the transpose convolution to up-sample the feature.

Frontiers in Medicine | www.frontiersin.org 4 May 2021 | Volume 8 | Article 653913121

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. Liver Tumor Segmentation

2.3. The Proposed Network
In this section, a novel encoder-decoder based neural network
architecture called OCunet is proposed. After end-to-end
training, the proposed OCunet is able to extract and decode
layered multifrequency features for the segmentation of liver
tumors in full-size CT images. The computational pipeline
of OCunet consists of two main processes, namely feature
encoding and decoding. By using octave convolution, we design
multi-frequency feature encoder block and decoder block for
hierarchical multi-frequency feature learning and decoding. By
sequentially stacking multiple encoder blocks (as shown in
Figure 4), layered multifrequency features can learn to capture
details of the low frequency components that describe smooth
changes in the structure (such as the main blood vessels)
and the high frequency components that describe details of
sudden changes (including the fine components), as shown
in Figure 3.

2.4. Loss Function
The learning of the 3D network is formulated as a problem of
minimizing the per-pixel binary classification error relative to
the ground mask, but the optimization process is challenging. A
major problem is the disappearance of the gradient, which makes
the loss back propagation ineffective in the early layers. This
problem is likely to bemore serious in 3D and will inevitably slow
down the convergence rate and the discriminating ability of the
model. To address this challenge, we used additional monitoring
injected into some hidden layers to counteract the negative effects
of gradient disappearance. Specifically, we used an additional
deconvolution layer to amplify some of the lower- and mid-level
feature quantities, and then used the Softmax layer to obtain
dense predictions for calculating classification errors. Using the
gradient obtained from the prediction of these branches and
the last output layer, the effect of gradient disappearance can be
effectively mitigated.

FIGURE 3 | Detailed network architecture of the proposed network.

FIGURE 4 | Training data provided by LiTS-challenge.
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FIGURE 5 | Example of tumor segmentation results from a testing image.

Since the number of voxels belonging to the foreground is
much smaller than the number belonging to the background
(i.e., the liver), this problem of data imbalance usually leads to
a prediction bias when using traditional loss functions. In order
to solve this problem, the loss function, Dice coefficient (DICE),
which represents the similarity measure between the ground
truth and the predicted score graph, is proposed.

3. EXPERIMENTS

3.1. Datasets
The LiTs dataset1 includes 130 contrast-enhanced 3D abdominal
CT scan images from 6 different clinical sites, of which 130 cases
are used for training and the remaining 70 are used for testing.
The CT scan is accompanied by reference annotations of the liver
and tumors made by a trained radiologist. The data set contains
908 lesions. The data set has significant differences in image
quality, spatial resolution, and vision. The in-plane resolution
is 0.6 × 0.6mm-1.0 × 1.0mm, slice thickness (layer spacing) is
0.45–6.0 mm, the axial slice size of all scans is fixed at 512 ×

512 pixels, but the number of slices per scan It ranges from 42 to
1,026 sheets.

Further test data were provided by the Radiology Centre of
the Medical University of Innsbruck. The data set contains CT
scans of patients with liver cancer, with reference notes drawn
up by medical scientists. Because deep learning methods can
achieve better performance if the data has a consistent size or
distribution, all data is normalized to strength values between
[0,1] before starting optimization.

3.2. Implementation Details
Our OCunet was implemented with PyTorch library. We trained
the network from scratch with weights initialized from Gaussian
distribution. The learning rate was initialized as 0.1 and divided
by 10 every 1,000 epochs. Each training epoch took around 2 min
using a GPU of NVIDIA GTX 2080Ti.

3.3. Metrics
(1) Precision: Precision, or the positive predictive value,

refers to the fraction of relevant instances among the

1https://competitions.codalab.org/competitions/17094

total retrieved instances.

Precision =
TP

TP + FP
. (3)

(2) Recall: Recall, also known as sensitivity, refers to the fraction
of relevant instances retrieved over the total amount of
relevant instances.

Recall =
TP

TP + FN
. (4)

(3) Accuracy: Accuracy refers to the fraction of relevant
instances among the total instances.

Accuracy =
TP + TN

TP + TN + FP + FN
. (5)

(4) Specificity: Accuracy refers to the fraction of retrieved
instances among the total amount of relevant instances.

Specificity =
TN

FP + TN
. (6)

(5) DICE Score: also called the overlap index, is the most
commonly used index to verify the segmentation of medical
images, and it usually represents the repetition rate between
the segmentation result and the mark. The value range of
DICE is 0 1, 0 means real. The experimental segmentation
result and the labeling result deviate seriously, and 1 means
that the experimental segmentation result and the labeling
result completely coincide. It is defined as follows:

Dic(A,B) =
2|A ∩ B|

|A| + |B|
. (7)

where A is the estimated maps, B denotes the ground truth,
|A ∩ B| represents the number of pixels common to both
images. The higher value of the dice coefficient denotes the better
segmentation accuracy.
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FIGURE 6 | Compared results of tumor segmentation with different methods.

3.4. Evaluation on Test Data
Figures 5, 6 show tumor segmentation results from training
and test images, respectively. The red is a liver tumor. We
compare the basic facts with the results generated by FCN,U-Net,
UNet++, and 3DU-Net. In order to visualize the simplicity of the
results caused by network differences, here we train the network
only on the axial plane. In Figure 5, by FCN, U-Net, UNet++,
and 3DU-Net provide results showed in the first, second, third,
and fourth columns, we can see that in the FCN and U-Net
segmentation results, residual connection can distinguish to
some extent of tumor, but will miss part should belong to the
tumor tissue. In UNet++ more accurate segmentation results can
be predicted through intense connection, but compared with the
result of a split, a split less than 3DU-Net still exists, thanks
to combat training strategy, and can recognize more voxels
belonging to the tumor. In the Figure 6, the results obtained from
the test image show a similar appearance to the training image.
However, it can be seen that liver tumors produced by 3DUNet
are segmented more accurately. Although the segmentation
results provided by 3DU-Net still have some unsegmented tumor
tissue, it has been significantly improved compared to the other
two methods, demonstrating the effectiveness of the algorithm.
The quantitative results are reported in Table 1.

3.5. Ablation Study
In this section, we conduct experiments to investigate the
effectiveness of different modules of our model. Starting from
our baseline, we gradually inject our modifications on the whole
structure. The results are summarized in Table 2, from which
we can see that octave convolution is an effective block for liver
tumor segmentation. In addition, we can find that the deep
supervision can promote the performance the proposed method.

4. CONCLUSION

In this work, we propose a new network for segmentation of
liver tumors. We solve the problem of reducing the extensive
spatial redundancy in the original CNN model, and propose a
novel Octave convolution operation to store and process the low
frequency and high frequency features respectively to improve
the model efficiency. In addition to octave convolution, the well-
designed OCunet can also extract layered features with multiple
spatial frequencies and reconstruct accurate tumor segmentation.
Thanks to the design of layeredmulti-frequency features, OCunet
is superior to the baseline model in terms of segmentation

TABLE 1 | Comparing different methods with the proposed dataset on the liver

tumor segmentation task.

Metrics FCN U-Net UNet++ 3DU-Net 3D Attention OCunet

Precision 0.872 0.896 0.901 0.914 0.926 0.939

Recall 0.923 0.930 0.931 0.925 0.951 0.962

Accuracy 0.912 0.930 0.942 0.951 0.956 0.959

Specificity 0.909 0.917 0.918 0.957 0.966 0.967

DICE 0.923 0.942 0.945 0.958 0.961 0.963

TABLE 2 | Ablation study results.

Metrics Precision Recall Accuracy Specificity DICE

w/o Octave Conv. 0.921 0.939 0.938 0.942 0.947

w Octave Conv. 0.928 0.946 0.944 0.950 0.951

Add 1 Loss 0.930 0.951 0.948 0.958 0.957

Add 2 Loss 0.936 0.959 0.952 0.962 0.960

OCunet 0.939 0.962 0.959 0.967 0.963

performance and computational overhead. A large number of
experiments show that the proposed method based on octave
convolution converges quickly and can produce high quality
segmentation results.

At present, the development direction of deep learning
in liver tumor segmentation is mainly concentrated in the
following points: (1) The training of deep learning algorithms
needs to rely on a large number of data sets, and due to its
particularity and sensitivity, medical images need to be manually
obtained and labeled by experts. The process is very time-
consuming. Therefore, it is not only necessary for medical
providers to provide more data support, but also to adopt
enhanced methods for the data set to increase the size of the
data set. The use of three-dimensional neural network and
network deepening is a future research direction of this field;
(2) The use of multi-modal liver images for segmentation and
the combination of multiple different deep neural networks to
extract deeper image information and improve the accuracy of
liver tumor segmentation are also a major research direction in
this field; (3) Currently most medical image segmentation uses
supervised deep learning algorithms. However, for some rare
diseases that lack a large amount of data support, supervised
deep learning algorithms cannot exert their performance. To
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overcome the lack of data for the available problems, some
researchers will transfer the supervised field to the semi-
supervised or unsupervised field. For example, the GAN network
is proposed. Combining the GAN network with other higher-
performance networks, further research can be carried out in
the future.
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INTRODUCTION

Intestinal obstruction (IO) is a common acute abdominal disease with abdominal pain, distension,
vomiting, and constipation. IO, especially mechanical IO (MIO), may need emergency surgery,
since it possibly has high morbidity and mortality in cases of perforation, intestinal fistula,
peritonitis, etc. Until now, the diagnosis of IO has still relied on abdominal imaging examination
(computerized tomography, X-ray), but its application is limited by its radiation, high cost, and
requirement for expensive, large equipment as well as professional technicians.

Bowel sound (BS) auscultation is not only safe and effective but also non-invasive for the
diagnosis of IO. However, BS has strong subjectivity and randomness, and susceptibility to noises.
Doctors have poor accuracy for BS auscultation, which was only 84.5% in normal people and even
lower in patients with IO (only 70–80%) (1).

Notably, the etiology, location, and severity of all IO patients cannot be determined depending
on imaging examination, symptoms and signs, and traditional auscultation of BS. As a result,
intestinal ischemic necrosis or intestinal fistula may not be found in some patients until surgery,
which possibly leads to delayed diagnosis and appropriate treatment with increasing the incidence
of complications. Computer audition (CA), including machine learning (ML) and deep learning
(DL), deals with the complex problem of understanding and analyzing sounds, such as heart sound,
lung sound, and BS (2). Characteristics of BS can be automatically extracted and analyzed by
powerful ML and DL. That might provide a new way to solve the above problems.

This opinion article aims to highlight the opportunities and challenges of CA for BS analysis
in IO.

CHARACTERISTICS OF BS

Different from heart sounds and breath sounds, there is no standard definition or classification of
BS at present. This may be due to difference in duration, location, sensor of BS acquisition, and
inconsistent acoustic characteristics used for classification.

In 1975, Dalle et al. used computers to analyze BS for the first time and divided BS
into three types by using their duration as the classification index (3). Recently, according to
duration, frequency, waveform, auditory perception, and mechanisms for the production, Du et
al. classified BS as a single burst, multiple bursts, continuous random sound, harmonic sound,
and a combination sound (4). When it comes to characteristics of BS in IO, there are few
studies. Unfortunately, the available study showed that auscultation of BS was non-specific for
diagnosing IO since there was no significant difference in sound-to-sound interval, dominant
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frequency, and peak frequency between patients with IO and
those without IO (5). In the near future, CA may help us reveal
more information about BS in IO.

CA FOR BS ANALYSIS IN IO

Recently, CA has greatly facilitated BS analysis, including the
following stages, acoustic sensor, the advanced digital signal
processing,ML, andDL (2). DL has brought about breakthroughs
in processing images, videos, and audios. The pivotal aspect of
DL is that the features of signals can be learned from data using
a general-purpose learning procedure. Although its application
in audio recognition is still in the initial stage, it shows great
advantages in terms of non-invasiveness and big data processing
ability. Domestic and foreign scholars have established a DL
model based on auscultation data of heart sounds and breath
sounds for rapid identification of COVID-19 and its real-time
and remote diagnosis (6). Unfortunately, there are few studies on
DL for BS analysis in IO. Wang used back-propagation neural
networks (BPNNs) for BS analysis based on spectral frequency.
It was found that BPNNs may have the ability to recognize
BS, with possible applications in digestive function evaluation,
recovery monitoring after operation, and auxiliary diagnosis of
bowel problems (7). The application of BPNNs in IO remains to
be further confirmed. In addition, there is still no database of BS
auscultation data for normal people and patients with IO.

CLINICAL DEMAND FOR CA OF BS
ANALYSIS IN THE DIAGNOSIS AND
TREATMENT OF IO

Difficulty in Etiological Diagnosis of IO
IO can be roughly divided into three categories based on etiology,
includingMIO, dynamic IO, andmesenteric vascular obstruction
(MVO) (8). Patients with different causes of IO are supposed to
have different treatment and prognosis. Therefore, it is crucial
to precisely discriminate etiologies. Usually, abdominal imaging
examinations, endoscopy, and traditional BS auscultation may
reveal causes of most IO cases. However, it is difficult to identify
MVO and MIO in some insidious condition by using the above
traditional diagnosis methods, which could easily lead to missed
diagnosis or misdiagnosis. CA of BS analysis, especially ML and
DL with advantages in non-invasiveness and big data processing
ability, has the potential to diagnose IO of unknown etiology.
Zaborski et al. demonstrated that the number of impulses of
BS contributed to identify MIO caused by some tumors and
diffuse peritonitis (9). Nevertheless, it is still unable to distinguish
between benign and malignant tumors. Therefore, CA of BS
analysis may provide a new way for etiologic diagnosis of IO.

Difficulty in Identification of IO Location
According to the location, IO can be classified into high
IO (duodenum and jejunum), low IO (small intestine), and
colorectal obstruction (10). The site of IO determines the choice
of internal treatment and surgical operation. However, in some
cases, there are discrepancies between imaging findings and

clinical conditions. So, endoscopy is needed for further diagnosis.
However, application of endoscopy is not suitable for the
patients with severe cardiopulmonary disease, unstable vital sign,
acute cerebral accident with complications of cardiac infarction,
respiratory depression, hypotension, infection, perforation, etc.
Ching et al. found that multi-channel acquisition of BS could
be used to identify the possible location of IO with significant
difference in sound characteristics (sound duration and peak
frequency) between large bowel and small bowel obstruction (5).
Unfortunately, the location of IO by BS analysis is relatively
rough at present with no information about specific intestinal
segment provided. Therefore, there is still a long way to go for
BS analysis to guide clinical work.

Difficulty in Identification of IO Severity
In severe cases of IO, perforation, intestinal fistula, intestinal
ischemia and necrosis, peritonitis, and even death may occur.
They probably need emergency surgery to alleviate the condition,
while mild incomplete IO can be relieved by conservative
treatments. Early identification of the severity of IO may help
to develop appropriate treatment and improve the prognosis
of patients. In most cases, the patients can get timely surgical
treatment since most complications may be recognized by
imaging examination, symptoms, and signs of the patients.
However, some other patients had abdominal pain relieved after
medical treatment with no imaging findings of perforation,
intestinal fistula, etc. Surprisingly, ischemic necrosis of the
intestinal segment, and even intestinal fistula were found during
surgery of those patients. Yoshino et al. used a signal processor
to analyze the BS among 21 patients with MIO to evaluate the
severity of IO based on the frequency and peak values of BS (11).
However, there has been a lack of severity scoring systems for
IO in clinical practice up to now. In relevant studies, the results
could not be compared with clinical grading standards, which
resulted in insufficient strength of evidence. More large sample
prospective clinical studies of BS analysis may be expected to
solve this problem.

Difficulty in Monitoring of Intestinal Motility
for IO Patients
Clinicians usually judge the recovery of intestinal motility in
patients with MVO, dynamic IO by traditional BS auscultation,
so as to guide the timing of enteral nutrition initiation. However,
in clinical work, we observed that vomiting and abdominal
distension occurred again after eating among some patients
whose BS returned to normal. The above symptoms were relieved
again after fasting with slow peristalsis and poor motility in
intestinal radiography. Therefore, traditional BS auscultation
cannot accurately determine the recovery of intestinal motility.
In addition, repeated imaging examinations cause increased
radiation exposure. Non-invasive CA of BS analysis is expected
to break through this bottleneck. Spiegel used an acoustic
gastrointestinal surveillance (AGIS) biosensor to identify and
predict the patients at high risk of postoperative IO and to help to
determine the timing of enteral nutrition initiation after surgery
(12). In the near future, BS analysis is expected to judge the
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recovery of intestinal motility more accurately and to determine
optimal timing for enteral nutrition.

DISCUSSION

At present, application research on CA for BS analysis in
IO is relatively rare and not deep enough, and there are
many aspects worthy of further improvement. ML and DL
have been successfully applied in the field of acoustic-based
disease diagnosis (13, 14). Since BS analysis is also one kind of
acoustic-based disease diagnosis technology, we expect that the
introduction of ML and DL techniques into the BS field will
contribute to the research in the field.

First of all, the characteristics of BS in normal people and IO
patients are still unclear. As a result, there is still no standard
definition or classification of BS. We need to establish BS
information database for ML and DL, analyze the characteristics
of BS and unify its clinical classification and definition with the
same duration, location, sensor of BS acquisition and acoustic
characteristics used for classification. Secondly, in a certain
situation, it is still difficult to identify the cause of IO by using
only conventional diagnostic methods. We need to analyze and
summarize the characteristics of BS in different causes of IO, and
confirm that through clinical trials, so as to achieve etiological
diagnosis of IO by using ML and DL for BS analysis. Thirdly,
location accuracy for IO still needs improvement by using ML
and DL to extract and analyze the characteristics of BS during IO
in different intestinal segments with more specific information
about IO location and sensors that can realize simultaneous
auscultation of different parts of the intestine. In addition, there
has been a lack of severity scoring systems for IO. Consequently,
that possibly leads to the delay of treatment due to inaccurate

judgment for the progress and prognosis of some patients with
IO. We need to develop large sample prospective clinical trials
of BS analysis by using ML and DL to promote establishment
of severity scoring systems for IO. That would help clinicians to
judge the severity of IO in time and effectively, and to improve the
prognosis of the patients. Last but not least, we still have difficulty
in judging the recovery of intestinal function in some IO patients
by traditional BS auscultation, imaging examination, symptoms,
and signs. The characteristics of BS should be analyzed byML and
DL in patients with different course of IO to judge the recovery
of intestinal mobility more accurately and to determine optimal
timing for enteral nutrition.

In conclusion, we are looking forward to making
better use of ML and DL in the diagnosis and treatment
of IO, so as to optimize decision-making for treatment
strategy, provide precise treatment of IO and realize
real-time diagnosis and monitoring of IO as soon
as possible.
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Jiaxu Hong 1,2,3,4*†, Xiaoqing Liu 5*†, Youwen Guo 6‡, Hao Gu 2, Lei Gu 7,8, Jianjiang Xu 1,

Yi Lu 1, Xinghuai Sun 1, Zhengqiang Ye 1, Jian Liu 2, Brock A. Peters 9 and Jason Chen 9‡

1Department of Ophthalmology and Visual Science, Eye, and Ear, Nose, and Thorat Hospital, Shanghai Medical, College

Fudan University, Shanghai, China, 2Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University,

Guiyang, China, 3 Key Laboratory of Myopia, Ministry of Health (Fudan University), Shanghai, China, 4 Shanghai Engineering

Research Center of Synthetic Immunology, Fudan University, Shanghai, China, 5 AI Laboratory, Deepwise Healthcare, Beijing,

China, 6Wuhan Servicebio Technology, Wuhan, China, 7 Epigenetics Laboratory, Max Planck Institute for Heart and Lung
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Early detection and treatment of visual impairment diseases are critical and integral

to combating avoidable blindness. To enable this, artificial intelligence–based disease

identification approaches are vital for visual impairment diseases, especially for people

living in areas with a few ophthalmologists. In this study, we demonstrated the

identification of a large variety of visual impairment diseases using a coarse-to-fine

approach. We designed a hierarchical deep learning network, which is composed of

a family of multi-task & multi-label learning classifiers representing different levels of

eye diseases derived from a predefined hierarchical eye disease taxonomy. A multi-

level disease–guided loss function was proposed to learn the fine-grained variability of

eye disease features. The proposed framework was trained for both ocular surface and

retinal images, independently. The training dataset comprised 7,100 clinical images from

1,600 patients with 100 diseases. To show the feasibility of the proposed framework,

we demonstrated eye disease identification on the first two levels of the eye disease

taxonomy, namely 7 ocular diseases with 4 ocular surface diseases and 3 retinal fundus

diseases in level 1 and 17 subclasses with 9 ocular surface diseases and 8 retinal fundus

diseases in level 2. The proposed framework is flexible and extensible, which can be

inherently trained on more levels with sufficient training data for each subtype diseases

(e.g., the 17 classes of level 2 include 100 subtype diseases defined as level 3 diseases).

The performance of the proposed framework was evaluated against 40 board-certified

ophthalmologists on clinical cases with various visual impairment diseases and showed

that the proposed framework had high sensitivity and specificity with the area under

the receiver operating characteristic curve ranging from 0.743 to 0.989 in identifying all

identified major causes of blindness. Further assessment of 4,670 cases in a tertiary eye

center also demonstrated that the proposed framework achieved a high identification

accuracy rate for different visual impairment diseases compared with that of human
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graders in a clinical setting. The proposed hierarchical deep learning framework would

improve clinical practice in ophthalmology and broaden the scope of service available,

especially for people living in areas with a few ophthalmologists.

Keywords: artificial intelligence, hierarchical deep learning framework, visual impairment disease, coarse-to-fine,

multi-task multi-label

INTRODUCTION

Eye diseases leading to visual impairment are a significant source
of social burden. It is estimated that, as of 2017, 1 billion
people were living with vision impairment worldwide, including
those with moderate or severe distance vision impairment
or blindness caused by unaddressed refractive error (123.7
million), cataract (65.2 million), glaucoma (6.9 million), corneal
opacities (4.2 million), diabetic retinopathy (3.0 million), and
trachoma (2.0 million), as well as near vision impairment caused
by unaddressed presbyopia (826.0 million) (1). In China, the
most frequent cause of visual impairment is cataract, which is
followed by corneal disease and glaucoma (2, 3). In contrast,
age-related macular degeneration and diabetic retinopathy are
more prevalent in the United States (4). Early detection and
treatment of visual impairment diseases are critical and integral
to combating this avoidable blindness worldwide.

A slit-lamp investigation of the ocular surface and retina
using manual interpretation is a widely accepted screening tool
to detect visual impairment diseases. However, this is highly
dependent on the ophthalmologist’s clinical experience, which
is time-consuming and may have an interobserver variation on
the same patient. Automated identification of various visual
impairment diseases via slit-lamp photography has benefits such
as increased efficiency, reproducibility, and access to eye care. To
enable this, artificial intelligence (AI)-based approaches for the
identification of visual impairment diseases are greatly needed,
especially for people living in areas with a limited number
of ophthalmologists.

Recent advances in AI, particularly convolutional neural
networks (CNN)-based deep learning algorithms, have made it
possible to learn themost predictive disease features directly from
medical images given a large dataset of labeled examples (5, 6).
Esteva et al. (7) proposed a dermatologist-level classification of
skin cancer by fine-tuning a pretrained Inception-v3 network
(8). Menegola et al. (9) also conducted experiments comparing
training from scratch with fine-tuning of pretrained networks
on skin lesion images. Their study showed that fine-tuning of
pretrained networks worked better than training from scratch.
Setio et al. (10) applied a multi-view CNN to classify points
of interest in chest computed tomography as nodules or non-
nodules. Similarly, Nie et al. (11) used a three-dimensional CNN
on magnetic resonance images to assess the survival of patients
suffering from brain tumors.

Because of the fine-grained variability in the appearance
of eye lesions, most of the existing eye disease identification
methods focused on a single disease type (such as retinopathy
and macular diseases) via retinal fundus or optical coherence
tomography (OCT) images. Gulshan et al. (12) demonstrated
the detection of diabetic retinopathy by fine-tuning a pretrained

Inception-v3 network on retinal fundus images. Similarly,
Gargeya and Leng (13) performed automated identification of
diabetic retinopathy using a ResNet-based architecture. Li et al.
(14) adopted an Inception-v3 network to detect glaucomatous
optic neuropathy using color fundus images, whereas Burlina
et al. (15) applied both a pretrained model and a newly trained
from a scratch model for automated grading of age-related
macular degeneration from color fundus images. Schlegl et al.
(16) and Treder et al. (17) proposed automated detection of
macular diseases using OCT images. Long et al. (18) developed
a technique for the diagnosis of congenital cataracts. However,
their method was focused on images covering the pupil area
only; therefore, their algorithm could not detect diseases affecting
the peripheral cornea and limbus. To date, there have been
few studies diagnosing ocular surface diseases or identifying
various disease types simultaneously. Ting et al. (19) proposed
a deep learning system for diabetic retinopathy and related
eye diseases using retinal images. Fauw et al. (20) proposed
an Ensemble-based deep learning framework that could make
referral suggestions on retinal diseases by analyzing OCT images.
Li et al. (21) presented a workflow for the segmentation of
anatomical structures and annotation of pathological features in
slit-lamp images, which improved the performance of a deep
learning algorithm for diagnosing ophthalmic disorders. As most
of these algorithms have been derived from datasets of one or
a few ocular diseases, they struggle to detect visual impairment
diseases accurately in large-scale, heterogeneous datasets.

To maximize the clinical utility of AI, we developed a
hierarchical deep learning framework, which enables early
screening and differentiation of a large variety of visual
impairment diseases simultaneously in a coarse-to-fine
manner. Here, a hierarchical architecture means that multiple
classification layers are arranged in a hierarchical way for
different levels. To test the feasibility of the proposed framework,
we identified eye diseases on two different levels of the eye
disease taxonomy. Thereby, in our case, the proposed framework
would first perform disease classification for a lower level (i.e.,
level 1) and then perform a higher-level disease classification
(i.e., level 2). Also, algorithm performance was tested against 40
ophthalmologists in a clinic-based dataset. Finally, we performed
an observational diagnostic assessment comparison of visual
impairment disease screening between the algorithm and the
ophthalmologists in a tertiary eye center.

MATERIALS AND METHODS

Datasets
Our dataset came from two major eye centers in China: (i) the
Eye and ENT Hospital of Fudan University, Shanghai, and (ii)
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FIGURE 1 | Dataset. (A) t-Distributed stochastic neighbor embedding visualization of the collected dataset consisting of 17 major ocular disease classes (100

subtypes), leading to visual impairment, clustered according to deep features generated from the last layer of trained networks. Colored point clouds represent images

with different visual impairment diseases. This visualization represents the ability of our method to objectively separate normal patients from early cases of visual

impairment diseases for referral. (B) Example ocular surface and retinal images for the eye with some common diseases or healthy eye. In this study, the first two

levels of the taxonomy consisting of 17 major ocular disease classes (100 subtypes) were used in performance evaluation.
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FIGURE 2 | A schematic illustration of the predefined eye disease taxonomy and example test set images. (A) Pie-structured eye disease taxonomy. (B) Data

distribution for the first two levels of diseases.

the Affiliated Hospital of Guizhou Medical University, Guizhou.
We used the IM 900 or 600 digital slit-lamp photography system
(Haag-Streit, Switzerland) and CR-2 digital non-mydriatic retinal
cameras (Canon, Japan). All images were annotated by senior
ophthalmologists, where 50% of the proportion included retinal
photographs and no images with the dilated pupil were included.
Our objective was to provide a fast and cost-effective tool
for screening patients with visual impairments. A suspected

participant would be referred to a doctor for further assessment,
including the dilated examination.

Retrospective Dataset
Thirty-two ophthalmologists were invited to grade the images
of the retrospective database. During the training process of
ophthalmologists, a dataset of 100 images (including 25 corneal
disease cases, 25 cataract cases, 25 glaucoma cases, and 25 retinal
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FIGURE 3 | Abstraction of the proposed hierarchical deep learning framework. (A) The proposed network architecture based on the feature network of Inception v3

(Conv 3 × 3/2 indicates that a 3 × 3 convolution kernel was used and stride = 2). The corresponding sizes of the input and output for each module are also shown. In

(Continued)
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FIGURE 3 | our framework, a family of multi-task & multi-label classification layers were used hierarchically to represent various levels of eye diseases. The individual

multi-task classifier layer is defined on the basis of a predefined eye disease taxonomy. Here, the data flow in blue indicates that the backbone is directly connected to

the branch of level 1; the orange means that the backbone is directly connected to the branch of level 2; the flow in black means connecting from the branch of level 1

to the branch of level 2; and the
⊕

is a feature concatenation operation, where features from the black and orange are superimposed; finally, this 8*8 pooling layer is a

global average pooling, which turns the 8*8 feature map into a 1*1 feature map. (B) Different spatial factorized Inception modules are presented here. Inception A

contains the factorization of the original 5 × 5 convolutions, factorizes general n × n convolutions (n = 5 in our study), and has expanded the filter bank outputs.

disease cases) was used for the test. The participants’ results
were compared with those of two senior corneal specialists
(H.G. and J.H.). The participants would not complete the
training until they achieved a κ-value of 0.75 or more. A κ-
value of 0 indicates that observed agreement is the same as
that expected by chance; 1 indicates perfect agreement; 0.75
or more indicates substantial agreement and/or almost perfect
agreement. As a result, 20 ophthalmologists were qualified as
graders to classify images. Each photograph was reviewed with
the same standard and annotated via face-to-face communication
between two ophthalmologists. As all 7,100 images from 1,600
patients collected already had original diagnoses recorded in
medical charts, graders were asked to review, validate, and classify
the images.

Prospective Dataset
A total of 4,670 outpatients agreed to receive the test and got
their ocular surface slit-lamp photographs taken before their
physician visits. Informed consent was obtained from all the
participants. A software practitioner participating in this study
fed these images as input to the trained deep learning software
model. The algorithm generates a probability/confidence score
over the classification nodes in a sequential manner, i.e., level
by level. If the probability/confidence score of any disease
subtype was greater than a predefined threshold, the disease
subtype was diagnosed as positive. To quantitatively compare the
sensitivity and specificity of our algorithm to that of the other 40
ophthalmologists on the diagnostic task of these cases, receiver
operating characteristic (ROC) curves were plotted where each
ophthalmologist was asked about the diagnosis on the basis of
the images. Thirteen additional cases were also independently
collected from clinics for our direct performance test sets.

To explore the visual characteristics of different clinical
classes, we examined the internal image features learned by
the proposed framework using t-distributed stochastic neighbor
embedding (22). As demonstrated in Figure 1A, each point
represents an eye image projected from the n-dimensional output
of the last hidden layer of Inception-v3 backbone into two
dimensions. We see clusters of points of the same clinical
classes. This visualization represents the ability of our method
to objectively separate normal patients from early cases of
visual impairment diseases for a referral. Figure 1B shows a few
examples of images that demonstrate the visual features using
which the proposed hierarchical deep learning framework can
identify and make a diagnosis.

Taxonomy
Inspired by Esteva et al. (7), who defined skin diseases in a
tree structure, we adopted a similar approach to define our

domain taxonomy structure for eye diseases, taking advantage
of fine-grained information embedded within the images. Our
taxonomy represented 100 individual diseases hierarchically
arranged in a Pie structure. It was derived based on the collected
retrospective database with 7,100 images from 1,600 patients
by ophthalmologists using a bottom-up procedure: Individual
diseases—initialized were defined as leaf nodes, and then were
merged on the basis of clinical and visual similarity until the
entire structure was connected.

As shown in Figure 2A, the taxonomy is useful in generating
hierarchical training classes that are both well-suited for machine
learning classifiers and medically relevant. In this study, the first
two levels of the taxonomy were used in performance validation.
Figure 2B illustrates the corresponding data distributions. It is
worth mentioning that due to insufficient numbers of images
for each of the level 3 diseases, we did not perform the level
3 classification. However, the extension to more levels can be
implemented via our flexible and extensive framework with
sufficient training data.

Proposed Hierarchical Deep Learning
Framework
As shown in Figure 3, the proposed hierarchical deep learning
framework is composed of a family of multi-task & multi-
label learning classifiers representing different levels of eye
disease classification derived from the hierarchical eye disease
taxonomy. Here, we used an Inception-v3 CNN as the
backbone of the proposed framework, and the final classification
layer of the Inception-v3 network was replaced with our
novel hierarchical multi-task & multi-label classification
layers. Each task branch consists of several stacked fully
connected units, hierarchically representing various levels
of eye disease classification. As a result, the classification
results of lower levels of classifiers can be used as priors
for higher levels of classifiers, thereby improving the final
classification performance.

We trained the model by minimizing our novel multi-level
eye disease–guided loss function consisting of multiple levels of
losses. The objective function for two levels can be represented
as follows:

LossT = α∗lossl1 + (1− α) ∗lossl2 (1)

where the term LossT is the total loss of the final model, and
lossl1 and lossl2 represent the corresponding losses for levels 1
and 2 of eye disease identification, respectively. α is a weight
parameter that is used to control the balance between the two
losses. For the two levels, α ∈ (0, 0.5), setting more weight
for the higher level because the ultimate goal was to classify
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FIGURE 4 | Performance of the proposed hierarchical deep learning framework. (A) The mean receiver operating characteristic (ROC) curve for various eye diseases

of the first two levels of the eye disease taxonomy. AUC is the area under the ROC curve. (B) Confusion matrices for the first two levels of the eye disease taxonomy.

Conjunct, Conjunctivitis; Cor_Degen, Corneal_Degeneration; Cor_Infec, Corneal_Infectious; Ocu_Cor_Neo, Ocular_Corneal_Neoplasma; Cor_Non_In,

Corneal_Non_Infectious; Intra_Neo, Intraocular_Neoplasma; Normal_Sur, Normal_Surface; Optic_Ner, Optic_Ner; Retinal_Deg, Retinal_Degeneration; Retinal_Det,

Retinal_Detachment; Retinal_Vas, Retinal_Vascular; Normal_Fun, Normal_Fundus.
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higher levels of diseases. Through experiments, we found that
α = 0.3 performed well (i.e., the loss weight ratio 3:7 between
level 1 and 2 classifiers). In this study, we used the sigmoid
function for each class instead of the commonly used SoftMax
function, for multiple diseases may simultaneously exist. Because
of the unbalanced property of data, we applied the focal loss
(23) for the loss function of each level, which reduced the
impact of data imbalance and made the training focus on hard
negatives as well. The focal loss function can be represented
as follows:

FL
(
pt

)
= −

(
1− pt

)γ
log

(
pt

)
(2)

where

pt =

{
p if y = 1

1− p otherwise
(3) (3)

(
1− pt

)γ
is a modulating factor of the cross-entropy loss, with

a tunable focusing parameter γ ≥ 0, p ∈ [0, 1]. During the
training process, various data augmentation methods (including
horizontal and vertical flipping, color jitter, rotation, etc.) were
also applied to all classes independently on-the-fly. It is worth
mentioning that the online data augmentation was aimed at
increasing the diversity of data for generalization rather than
balancing and/or increasing the amount of training data.

Instead of training from scratch, we applied a fine-tuning
strategy on a pretrained model using a multi-step retraining
strategy. In this study, all images were resized to the size of 299×
299 since that is the default input size for the Inception-v3 model.
We used the Inception-v3 model pretrained on the ImageNet
dataset (24) as the initial model and fine-tuned all layers with our
dataset. First, the multi-task branches were trained by freezing
the backbone’s weights for 5 epochs. The Adam optimizer and a
learning rate of 0.0001 and epsilon of 0.1 were used. Then, we
performed a multi-step retraining strategy. In this strategy, we
gradually unfroze the layer weights in steps, with the first few
layers being unfrozen last. The learning rates were progressively
reduced from 0.0001 to 0.000001, whereas other parameters were
kept unchanged. Every step lasted 20 epochs. We used Facebook’s
PyTorch deep learning framework (25) to train, validate, and test
the algorithm networks.

RESULTS

Performance Evaluation
Algorithm performance was measured by the area under the
ROC curve (AUC) and the accuracy rate. The accuracy rate
calculated the percentage of correctly predicted individuals
among the whole test set, whereas the ROC curve was generated
by plotting the curve of sensitivity against specificity, which can
be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

where TP, FP, TN, and FN are true positive, false positive,
true negative, and false negative rates, respectively. TP and TN
represent correctly predicted positives and negatives with respect
to the ground truth labels. FP and FN represent incorrectly
predicted positives and negatives with respect to the ground
truth labels.

In this study, we applied a 5-fold cross-validation strategy
to evaluate the effectiveness of the proposed framework. This
strategy randomly divides the entire dataset into five subsets,
each containing around 20% of the data. Model training and
validation were performed five times. Figure 4A shows that
our framework achieved high sensitivity, specificity, and AUC
for most of the identified diseases. Figure 4B illustrates the
corresponding confusion matrices for disease classification. As
shown in level 1 confusion matrices, the CNN model performed
extremely well on all three retinal fundus diseases, with an
accuracy of 0.91 for glaucoma, 0.98 for vitreoretinal disease, and
0.92 for normal fundus. Meanwhile, the CNN model performed
moderately well on all four ocular surface diseases, with an
accuracy of 0.91 for cataract, 0.90 for surface disease, 0.90 for
neoplasma, and 0.81 for normal surface images. This may be
because fundus images contain more discriminative features
than do ocular surface images. The model confused normal
surface cases with cataract (12.0%) and confused cataract with

FIGURE 5 | Multi-label diagnostic results. The proposed hierarchical deep learning framework is capable of detecting multiple diseases simultaneously on the same

patient: (A) cataract with 76.74% and corneal disease with 75.94% confidence and (B) glaucoma with 79.04% and retinopathy with 51.01% confidence.
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surface disease (5.0%), neoplasm (2.0%), and normal surface
images (2.0%). From these results, we can conclude that it is
easy to confuse the normal surface with cataract because of
appearance similarities, whereas cataract has more appearance
diversity, which can also be confused with other ocular surface

diseases and neoplasms. Similar results can be found in level 2
confusion matrices.

Because of the multi-task & multi-label property of the
proposed framework, the trained model is capable of detecting
multiple diseases simultaneously on the same patient, reflecting

FIGURE 6 | Eye disease classification performance of the proposed hierarchical deep learning framework and ophthalmologists. (A) The proposed hierarchical deep

learning framework was tested against 40 board-certified ophthalmologists in diagnosing the clinical cases of 13 patients in a real-world setting. For each image, the

ophthalmologists were asked to make three diagnoses. The proposed hierarchical deep learning framework outperformed all levels of board-certified ophthalmologists

for all cases. (B) Clinical application of the proposed hierarchical deep learning framework for visual impairment diseases in a tertiary eye center. Discrepancies

between manual grades and the proposed hierarchical deep learning framework results were sent to an independent panel of senior specialists for arbitration.
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true clinical cases. As illustrated in Figure 5, both cataract
and corneal disease were detected simultaneously within a
single ocular surface image with 76.74 and 75.94% confidence,
respectively. Similarly, both glaucoma and retinopathy were
also detected within one retinal image with 79.04 and 51.01%
confidence, respectively. It needs to be mentioned here that
in this study, if the prediction score was > 50%, the system
considered the screening output of the patient with the
corresponding disease. In a real-world setting, if the screening
output of the patient has one of the diseases listed above, the
patient would be referred to a specialist for further diagnosis.

Physicians need to consider not only the screening result but also
the diagnostic severity of the disease to make clinical decisions
for a patient. This was beyond the scope of our study. Our goal
was to provide a fast and cost-effective screening tool for patients
with visual impairment.

Comparison Tests
To both quantitatively and qualitatively demonstrate the
effectiveness of the proposed framework, we also compared it
with 40 board-certified ophthalmologists in diagnosing clinical
cases. The comparison tests used 20 images from 13 patients.

TABLE 1 | Computational cost comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Computational cost Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Training (hours) 12.5 11.2 10.0 11.4 11.0

Inference (seconds) 0.097 0.083 0.069 0.075 0.106

FIGURE 7 | Performance comparison with four deep learning frameworks.
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TABLE 2 | AUC comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Level 1 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.96 0.94 0.92 0.93 0.91

Ocular surface (n = 2,018) 0.95 0.94 0.91 0.93 0.90

Ocular neoplasm (n = 251) 0.93 0.89 0.89 0.91 0.88

Normal surface (n = 205) 0.93 0.93 0.93 0.92 0.90

Weighted average 0.95 0.93 0.91 0.93 0.90

Level 2 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.97 0.95 0.92 0.93 0.91

Conjunctivitis (n = 372) 0.83 0.82 0.81 0.83 0.81

Cornea degeneration (n = 137) 0.89 0.86 0.85 0.89 0.83

Cornea infectious (n = 1,098) 0.96 0.95 0.93 0.94 0.91

Intraocular neoplasma (n = 107) 0.95 0.92 0.90 0.90 0.89

Cornea non-infectious (n = 297) 0.91 0.89 0.93 0.88 0.86

Ocular surface neoplasm (n =

144)

0.90 0.88 0.86 0.87 0.85

Scleritis (n = 114) 0.94 0.93 0.93 0.93 0.90

Normal surface (n = 205) 0.94 0.93 0.94 0.93 0.91

Weighted average 0.94 0.92 0.91 0.91 0.89

Level 1 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.96 0.94 0.91 0.92 0.90

Vitreoretinal disease (n = 2,283) 0.97 0.95 0.93 0.94 0.92

Normal fundus (n = 323) 0.96 0.96 0.94 0.94 0.92

Weighted average 0.97 0.95 0.93 0.94 0.91

Level 2 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.96 0.94 0.91 0.93 0.90

Macular disease (n = 480) 0.89 0.88 0.85 0.86 0.85

Optic nerve disease (n = 467) 0.94 0.94 0.90 0.91 0.89

Refractive error (n = 156) 0.91 0.90 0.89 0.89 0.89

Retinal degeneration (n = 138) 0.96 0.97 0.93 0.96 0.92

Retinal detachment (n = 584) 0.90 0.89 0.87 0.88 0.85

Retinal vascular disease (n =

458)

0.93 0.92 0.89 0.91 0.89

Normal fundus (n = 323) 0.96 0.97 0.93 0.94 0.92

Weighted average 0.93 0.92 0.89 0.91 0.88

Bold value means “Best performance”.

The tested diseases include allergic conjunctivitis, dry eye,
bacterial conjunctivitis, Mooren’s corneal ulcer, keratoconus,
fungal keratitis, viral keratitis, scleritis, age-related macular
degeneration, cataract, primary angle closure glaucoma, myopia,
diabetic retinopathy, and retinal detachment. For this study,
each ophthalmologist was asked for the three most likely
diagnoses of the patient. This choice of question reflects the
actual in-clinic task in which ophthalmologists would decide
whether or not to request further examinations. For a fair
comparison, the proposed hierarchical deep learning framework
also outputs the top three diagnoses with probability/confidence
scores. The outcome was considered “correct” when one of
the three diagnoses made by the proposed hierarchical deep
learning framework or an ophthalmologist included the real

diagnosis for the case. Remarkably, the proposed hierarchical
deep learning framework outperformed all levels of board-
certified ophthalmologists in every case, as shown in Figure 6A

(P < 0.05 in t-test).
In addition, we performed an observational diagnostic

assessment comparison between the proposed framework and
human graders in a tertiary eye center to determine whether
or not the proposed framework can be introduced into visual
impairment disease screening. As demonstrated in Figure 6B,
4,670 consecutive patients visiting the Shanghai Eye and ENT
Hospital were invited to get their slit-lamp photographs taken
before they were checked by their physicians. Discrepancies
between manual grades and the proposed hierarchical deep
learning framework results were sent to a panel of senior
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TABLE 3 | Accuracy comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Level 1 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.93 0.92 0.9 0.91 0.89

Ocular surface (n = 2,018) 0.92 0.9 0.88 0.89 0.87

Ocular neoplasm (n = 251) 0.96 0.97 0.96 0.96 0.95

Normal surface (n = 205) 0.98 0.98 0.99 0.98 0.98

weighted average 0.93 0.92 0.90 0.91 0.89

Level 2 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.94 0.93 0.91 0.92 0.9

Conjunctivitis (n = 372) 0.93 0.93 0.93 0.94 0.92

Cornea degeneration (n = 137) 0.97 0.97 0.97 0.98 0.97

Cornea infectious (n = 1,098) 0.97 0.96 0.94 0.95 0.93

Intraocular neoplasma (n = 107) 0.99 0.98 0.98 0.98 0.98

Cornea non-infectious (n = 297) 0.97 0.98 0.98 0.97 0.97

Ocular surface neoplasm (n =

144)

0.98 0.99 0.98 0.98 0.98

Scleritis (n = 114) 0.99 0.98 0.98 0.98 0.07

Normal surface (n = 205) 0.98 0.98 0.98 0.98 0.99

Weighted average 0.96 0.95 0.94 0.95 0.90

Level 1 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.96 0.95 0.93 0.94 0.93

Vitreoretinal disease (n = 2,283) 0.97 0.96 0.93 0.95 0.92

Normal fundus (n = 323) 0.97 0.98 0.97 0.97 0.97

Weighted average 0.97 0.96 0.93 0.95 0.93

Level 2 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.97 0.96 0.94 0.94 0.93

Macular disease (n = 480) 0.93 0.92 0.91 0.91 0.9

Optic nerve disease (n = 467) 0.96 0.96 0.95 0.95 0.95

Refractive error (n = 156) 0.98 0.99 0.98 0.98 0.98

Retinal degeneration (n = 138) 0.99 0.99 0.98 0.98 0.98

Retinal detachment (n = 584) 0.96 0.95 0.94 0.94 0.93

Retinal vascular disease (n =

458)

0.97 0.96 0.96 0.96 0.96

Normal fundus (n = 323) 0.99 0.98 0.98 0.98 0.98

Weighted average 0.97 0.96 0.95 0.95 0.94

Bold value means “Best performance”.

ophthalmologists for arbitration. Our data showed that the
proposed hierarchical deep learning framework achieved an
acceptable detection accuracy rate for visual impairment disease
screening when compared with that of human graders in a
clinical setting. The detection AUC of the proposed hierarchical
deep learning framework for 17 subclasses in level 2 of visual
impairment diseases ranged from 0.743 to 0.989.

We also compared our algorithm performance with four
previously reported methods, namely Inception-v3 (8), ResNet
(26), DenseNet (27), and Ensemble (28). The Ensemble
model combined all backbone features extracted from the
other three models and applied a tree-based classifier for
the final classification. To have a fair comparison, all the
networks above were also trained as multi-task & multi-label

networks but without the proposed hierarchical architecture.
To be more specific, the last layers of these networks were
replaced with a set of binary classifiers with a flat architecture
for each level of the disease classification. As shown in
Table 1, the computational costs for both the training and
the inference stage were comparable for all models. However,
with the proposed hierarchical architecture, our algorithm
outperformed all four existing methods in most of the diseases.
For example, as shown in Figure 7, for level 1 disease
identification—such as glaucoma—our framework achieved
AUC 0.958, whereas ResNet, DenseNet, Inception-v3, and
Ensemble methods achieved AUC 0.913, 0.940, 0.928, and
0.899, respectively. Similarly, for level 2 disease identification,
such as ocular surface neoplasm, our framework achieved
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TABLE 4 | Recall comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Level 1 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.91 0.9 0.88 0.89 0.86

Ocular surface (n = 2,018) 0.9 0.89 0.86 0.88 0.85

Ocular neoplasm (n = 251) 0.86 0.82 0.8 0.84 0.8

Normal surface (n = 205) 0.81 0.75 0.8 0.75 0.8

Weighted average 0.90 0.88 0.86 0.87 0.85

Level 2 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.9 0.89 0.86 0.88 0.85

Conjunctivitis (n = 372) 0.75 0.73 0.73 0.74 0.73

Cornea degeneration (n = 137) 0.78 0.78 0.78 0.79 0.77

Cornea infectious (n = 1,098) 0.94 0.92 0.89 0.9 0.86

Intraocular neoplasma (n = 107) 0.95 0.9 0.82 0.82 0.86

Cornea non-infectious (n = 297) 0.78 0.8 0.82 0.8 0.76

Ocular surface neoplasm (n =

144)

0.86 0.79 0.73 0.76 0.76

Scleritis (n = 114) 0.91 0.87 0.87 0.87 0.87

Normal surface (n = 205) 0.81 0.8 0.81 0.8 0.82

Weighted average 0.88 0.86 0.84 0.85 0.83

Level 1 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.91 0.89 0.87 0.88 0.86

Vitreoretinal disease (n = 2,283) 0.98 0.97 0.95 0.96 0.95

Normal fundus (n = 323) 0.91 0.92 0.88 0.89 0.86

Weighted average 0.96 0.94 0.92 0.93 0.92

Level 2 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.92 0.9 0.87 0.88 0.84

Macular disease (n = 480) 0.85 0.82 0.8 0.79 0.79

Optic nerve disease (n = 467) 0.86 0.88 0.84 0.84 0.84

Refractive error (n = 156) 0.83 0.81 0.8 0.77 0.81

Retinal degeneration (n = 138) 0.82 0.86 0.79 0.82 0.79

Retinal detachment (n = 584) 0.83 0.79 0.77 0.78 0.75

Retinal vascular disease (n =

458)

0.86 0.84 0.82 0.84 0.8

Normal fundus (n = 323) 0.89 0.91 0.88 0.89 0.86

Weighted average 0.87 0.86 0.83 0.83 0.81

Bold value means “Best performance”.

AUC 0.949, whereas ResNet, DenseNet, Inception-v3, and
Ensemble methods achieved AUC 0.897, 0.896, 0.919, and 0.894,
respectively. More detailed comparison results can be found in
Tables 2–5.

Saliency Maps
To show the interpretation of the proposed framework, we
also created heatmaps via the gradient-weighted class activation
mapping (Grad-CAM) algorithm (29), which can produce
visual explanations for CNN-based deep learning models. Grad-
CAM uses the gradient information flowing into the last
convolutional layer to understand the importance of each
neuron for a decision of interest, thereby highlighting the
important regions in the image for prediction. It first computes

the gradient of the score for a given class with respect to
feature maps of a convolutional layer. Then, these gradients
are average-pooled to obtain the neuron importance weights.
Finally, the coarse heatmap for a given class is generated via
a weighted combination of forward activation maps followed
by a ReLU function. As illustrated in Figure 8, the generated
heatmaps helped indicate the potential corneal lesion regions for
further examination, thereby establishing prediction trust and
interpretation for physicians.

DISCUSSION

In this study, we demonstrated the effectiveness of
the proposed hierarchical deep learning framework in
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TABLE 5 | Precision comparison between the proposed hierarchical deep learning framework and existing deep learning frameworks.

Ours Inception-v3 ResNet34 DenseNet101 Ensemble

Level 1 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.88 0.85 0.81 0.84 0.8

Ocular surface (n = 2,018) 0.96 0.94 0.93 0.93 0.92

Ocular neoplasm (n = 251) 0.7 0.68 0.67 0.7 0.63

Normal surface (n = 205) 0.59 0.75 0.71 0.75 0.71

Weighted average 0.90 0.88 0.86 0.88 0.85

Level 2 anterior segment (n = no. of images)

Cataract (n = 1,120) 0.91 0.89 0.86 0.87 0.85

Conjunctivitis (n = 372) 0.67 0.66 0.63 0.65 0.61

Cornea degeneration (n = 137) 0.64 0.64 0.6 0.7 0.61

Cornea infectious (n = 1,098) 0.95 0.94 0.92 0.93 0.92

Intraocular neoplasma (n = 107) 0.68 0.62 0.62 0.62 0.58

Cornea non-infectious (n = 297) 0.88 0.9 0.91 0.89 0.87

Ocular surface neoplasm (n =

144)

0.99 0.98 0.98 0.99 0.97

Scleritis (n = 114) 0.98 0.97 0.96 0.98 0.95

Normal surface (n = 205) 0.87 0.92 0.93 0.92 0.93

Weighted average 0.88 0.87 0.85 0.86 0.84

Level 1 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.94 0.91 0.86 0.88 0.86

Vitreoretinal disease (n = 2,283) 0.98 0.96 0.95 0.96 0.94

Normal fundus (n = 323) 0.91 0.87 0.93 0.91 0.95

Weighted average 0.96 0.94 0.93 0.93 0.92

Level 2 retinal disease (n = no. of images)

Glaucoma (n = 901) 0.95 0.93 0.89 0.9 0.88

Macular disease (n = 480) 0.7 0.66 0.62 0.64 0.62

Optic nerve disease (n = 467) 0.82 0.85 0.8 0.81 0.79

Refractive error (n = 156) 0.96 0.96 0.99 0.96 0.96

Retinal degeneration (n = 138) 0.82 0.86 0.79 0.79 0.76

Retinal detachment (n = 584) 0.9 0.87 0.84 0.87 0.81

Retinal vascular disease (n =

458)

0.93 0.89 0.89 0.89 0.86

Normal fundus (n = 323) 0.91 0.92 0.93 0.92 0.92

Weighted average 0.88 0.86 0.84 0.85 0.82

Bold value means “Best performance”.

identifying most causes of visual impairment diseases
worldwide. Training the proposed hierarchical deep learning
framework on eye images captured using commonly
available equipment, we outperformed the performance of
40 board-certified ophthalmologists on 13 clinical cases.
Further assessment of 4,670 cases in a tertiary eye center
also demonstrated that the proposed framework achieved
a high identification accuracy rate for different visual
impairment diseases compared with that of human graders
in a clinical setting.

Although we acknowledge that the clinical impression and
diagnosis by an ophthalmologist are based on contextual
factors beyond the visual inspection of the eye, the ability
to classify eye images with the accuracy of a board-certified

ophthalmologist has the potential to profoundly expand
access to vital medical care. It has the potential to aid the
delivery of eye disease screening in developed and developing
countries in a manner that is inexpensive, efficient, and easily
accessible. It can also be used to provide eye care guiding
services in communities and assist doctors in diagnosing visual
impairment diseases.

To validate this technique across the full distribution
and spectrum of visual impairment diseases encountered in
a clinical setting, further research is necessary to evaluate
performance in a large community screening setting. This
method is primarily constrained by data and can be validated
for more visual conditions if sufficient training examples
are provided.
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FIGURE 8 | Saliency maps for images with various common visual impairment diseases. These visualizations are generated automatically, locating regions for closer

examination after a patient is seen by a consultant ophthalmologist. The bluer the color, the lower the attention of the model; the redder the color, the higher the

attention of the model. Visualization maps are generated from deep learning features.

In this study, we applied multiple train–test splits via a 5-
fold cross-validation where we randomly divided the entire
image dataset into five subsets. Splitting data with respect to
patients instead of images is indeed a better strategy; however, the
dataset we had did not contain user identification information
after data anonymization. We added this as a limitation of our
study and would maybe explore it as future work. We would
also conduct further experiments with publicly available datasets
(such as EyePACS; Kaggle) as one of the future works. In the
future, it may also be important to investigate different types
of common patient metadata, such as genetic factors, patient
history, and other clinical data that may influence a patient’s
risk of visual impairment diseases. Adding this information
to the classification model may yield insightful information
outside of strictly imaging information, potentially enhancing the
diagnostic accuracy.
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Seasonal changes in meteorological factors [e.g., ambient temperature (Ta), humidity,

and sunlight] could significantly influence a person’s sleep, possibly resulting in the

seasonality of sleep properties (timing and quality). However, population-based studies

on sleep seasonality or its association with meteorological factors remain limited,

especially those using objective sleep data. Japan has clear seasonality with distinctive

changes inmeteorological variables among seasons, thereby suitable for examining sleep

seasonality and the effects of meteorological factors. This study aimed to investigate

seasonal variations in sleep properties in a Japanese population (68,604 individuals)

and further identify meteorological factors contributing to sleep seasonality. Here we

used large-scale objective sleep data estimated from body accelerations by machine

learning. Sleep parameters such as total sleep time, sleep latency, sleep efficiency,

and wake time after sleep onset demonstrated significant seasonal variations, showing

that sleep quality in summer was worse than that in other seasons. While bedtime did

not show clear seasonality, get-up time varied seasonally, with a nadir during summer,

and positively correlated with the sunrise time. Estimated by the abovementioned sleep

parameters, Ta had a practically meaningful association with sleep quality, indicating that

sleep quality worsened with the increase of Ta. This association would partly explain

seasonal variations in sleep quality among seasons. In conclusion, Ta had a principal role

for seasonality in sleep quality, and the sunrise time chiefly determined the get-up time.

Keywords: sleep seasonality, meteorological factors, big data, acceleration data, Japanese

INTRODUCTION

Several meteorological factors, such as ambient temperature (Ta), humidity, and sunlight, have
significant influences on human biological rhythms, including endogenous circadian rhythms
(e.g., rectal temperature and melatonin rhythms) and sleep–wake cycles (1–3). Especially, seasonal
climatic changes act as rhythmic external cues or perturbations on biological systems that regulate
homeostatic and endogenous processes (1, 4, 5). The response of the systems to these seasonal
inputs results in seasonal variations of biological variables, such as those of sleep properties.
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Seasonal variations in sleep quality or prevalence of insomnia
has been well-studied in terms of associations with characteristic
seasonal changes in sunlight durations, such as the midnight sun
in summer and the dark period in midwinter, especially among
Nordic populations. In the epidemiological survey on Norwegian
sleep using questionnaires, insomnia wasmore frequent in winter
than in other seasons of the year (6). Other Nordic interview
surveys demonstrated that the prevalence of reported insomnia,
particularly sleep onset problems, increased from summer to
winter in northern Norway but decreased in the southern
regions (7). Meanwhile, in a general population in Finland, the
prevalence of sleep dissatisfaction increased during summer (8).

Those sleep seasonality are often explained by an entrainment
of the circadian time-keeping system to photoperiodic changes
(5, 9, 10). However, interestingly, people living in areas with
limited daylight variations had significant sleep seasonality (11,
12). For example, in a survey conducted among young Africans
living in a dry tropical area, the number of awakenings increased
during hot season (11). Furthermore, polysomnography (PSG)
revealed that European expatriates living in a similar tropical
climate showed seasonal differences in sleep quality and that sleep
quality was significantly associated with Ta (12). Hence, seasonal
sleep variations could not be fully explained by the sole basis
of photoperiodic changes among seasons, and sleep seasonality
is probably affected by the modulation of thermoregulatory
processes passively induced by climatic temperature alterations
(5, 11, 12).

Indeed, both laboratory and real-life settings have shown
significant Ta effects on sleep; a study conducted under a
temperature-controlled laboratory reported that Tas outside a
thermoneutral zone were destructive to sleep (13). Further, subtle
manipulations of skin temperature improved sleep latency (SL)
in the elderly (14), while sleep depth enhanced in young adults
(15), without causing alterations in core body temperatures.
Even in a field-based study participated by the elderly with
actigraphy, sleep disturbances were significantly related to skin
temperature fluctuations (16). Therefore, ambient climate (e.g.,
bedroom climate), which possibly affects skin temperature, has
strong modulating effects on sleep quality (17).

Despite that sleep seasonality and its relationship with
meteorological factors have been extensively reported (6–8,
11–13, 17–20), large-scale population studies remain limited.
Besides, almost all population studies largely relied on subjective
sleep assessments. Though sleep seasonality has been intensively
examined in high-latitude countries (e.g., Nordic countries) or
low-latitude areas (e.g., tropical areas close to the equator), that
in middle-latitude countries (e.g., temperate zone areas) has not
been well-elucidated. Furthermore, most studies examined the
effects of only a single meteorological factor on sleep, without
considering the comprehensive effects of various meteorological
factors (e.g., sunrise time, Ta, and humidity).

In examining the seasonal influences of meteorological factors
on sleep, Japan is the best location because it is situated in a
temperate zone with four distinctive, meteorologically separated
seasons (spring, summer, autumn, and winter). Meteorological
variables such as Ta, humidity, and day length change remarkably
among seasons; for instance, in Tokyo, the monthly-based mean

atmospheric air temperature varies from a few degrees to roughly
30◦ throughout a year, and the sunrise time changes from 4:30
AM to 7:00 AM approximately (Figure 1).

Although sleep seasonality is poorly investigated using
objective measures in Japanese populations, two distinctive
studies have been published (16, 19). An actigraphic study in
the elderly reported the decrease of total sleep time (TST) and
sleep efficiency (SE) and the increase of SL and wake time after
sleep onset (WASO) in summer in comparison with those in
winter (16), although the sample size is small. Another sleep
study using a contactless biomotion sensor also reported the
significant increase ofWASO and decrease of SE in summer (19).
However, these two previous studies had some inconsistencies
in sleep parameter values. For example, the SE in the former
study declined ∼10% from winter to summer (winter: 91%,
summer: 81%), but that in the latter declined slightly (winter:
88%, summer: 86%).

Very recently, we examined the effects of age and gender on
sleep among Japanese individuals by using a large-scale trunk
acceleration data recorded from around 80,000 Japan residents
(21, 22) (Figure 2). In that study, we developed an algorithm
to determine sleep–wake states from the acceleration data using
machine learning approaches and then obtained objective sleep
parameters (e.g., sleep duration and SE). The present study aimed
to examine the seasonal variations of sleep parameters in a
Japanese population by using large-scale objective sleep data and
to identity which meteorological factor significantly contributed
to seasonal variations in each sleep parameter, if they exist,
by multiple regression analysis combined with a bootstrapping
method. In other words, this study is a comprehensive sleep
research that used objective sleep measures to examine the effects
of various ambient meteorological factors on Japanese habitual
sleep at the population level.

MATERIALS AND METHODS

Acceleration Database—ALLSTAR
Research Project
We used a database constructed by the ALLSTAR research
project (23–25). The ALLSTAR database has been thoroughly
explained elsewhere (23–25). Briefly, the database stores 24-
h electrocardiography (ECG) data and tri-axial acceleration
data measured by Holter recorders (Cardy Series; SUZUKEN
Co., Ltd.) for clinical purposes by medical facilities all over
Japan (47 prefectures in total). Since November 2007, the
database has stored more than 300,000 analyzable ECG
data (sampling frequency, 250Hz) and ∼80,000 acceleration
data simultaneously measured with ECG (sampling frequency,
31.25Hz), with accompanying information, including the
patient’s age and gender, the recording date and time, and
location (the medical facility’s postal code). Considering that
Holter monitoring is generally conducted in natural daily
circumstances, not in laboratory settings, over 24 h without any
restrictions affecting the patient’s daily activities, we can access
the patient’s physiological data (e.g., acceleration data) during
habitual sleep.
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FIGURE 1 | Monthly variations of meteorological variables; (A) atmospheric air temperature, (B) humidity, (C) barometric pressure, (D) sunrise time, and (E) sunset

time as a function of month. The monthly mean values were calculated for each month by averaging the daily meteorological data recorded at a prefectural capital of

each medical facility on each Holter recording date.

FIGURE 2 | A schematic flow chart of whole research.

Samples
The dataset we used is the same as that reported in our
previous study (22). We utilized 68,604 individual acceleration
data (30,485 males, 37,951 females, and 168 individuals with
unknown gender; age range: 10–89 years old; data length >

20 h) gathered from 2010 to 2016 across Japan. These data were

recorded by more than 1,500 medical facilities in 47 prefectures
in Japan. Table 1 summarizes age and monthly distributions of
the samples. Further, Table 2 shows the mean subjects’ age (±
standard deviation) stratified by month. The ethics committee of
Osaka University approved our study, which conformed to the
Declaration of Helsinki.
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TABLE 1 | Number of samples stratified by month and age group.

Age group Sample size Month

1 2 3 4 5 6 7 8 9 10 11 12

10s 1,314 70 64 101 103 169 180 160 135 92 84 63 93

20s 1,421 111 109 139 114 133 134 144 95 112 121 89 120

30s 2,816 269 208 234 206 216 245 268 186 204 263 245 272

40s 5,448 507 435 508 411 447 452 454 350 376 478 491 539

50s 7,361 694 674 688 559 596 580 640 458 506 682 668 616

60s 14,727 1,305 1,250 1,457 1,264 1,179 1,219 1,085 858 1,067 1,434 1,363 1,246

70s 21,710 1,856 1,783 2,160 1,824 1,780 1,846 1,698 1,242 1,667 2,172 1,939 1,743

80s 13,806 1,157 1,081 1,283 1,197 1,156 1,227 1,084 856 1,100 1,371 1,233 1,061

Total 68,603 5,969 5,604 6,570 5,678 5,676 5,883 5,533 4,180 5,124 6,605 6,091 5,690

Note that the recording of month was missed for one subject.

TABLE 2 | Sleep parameter values by month.

Month Sample number Age TST In-bed time Get-up time SL SE WASO WEP

mean ± SD [min] [hh:mm] [hh:mm] [min] [%] [min] [count]

1 5,969 66.0 ± 15.7 437.8 ± 1.8 22:19 ± 0:01 6:27 ± 0:01 14.1 ± 0.3 92.4 ± 0.1 36.7 ± 0.6 3.78 ± 0.05

2 5,604 66.3 ± 15.4 430.6 ± 1.8 22:26 ± 0:01 6:27 ± 0:01 13.4 ± 0.3 92.3 ± 0.1 36.7 ± 0.7 3.81 ± 0.05

3 6,570 66.4 ± 15.8 426.2 ± 1.7 22:20 ± 0:01 6:18 ± 0:01 13.8 ± 0.3 92.0 ± 0.1 37.8 ± 0.6 3.94 ± 0.05

4 5,678 66.7 ± 16.1 421.0 ± 1.8 22:17 ± 0:01 5:59 ± 0:01 14.7 ± 0.3 91.7 ± 0.1 39.2 ± 0.7 4.19 ± 0.06

5 5,676 65.6 ± 17.2 409.1 ± 1.8 22:22 ± 0:01 6:08 ± 0:01 15.0 ± 0.3 90.7 ± 0.1 42.5 ± 0.7 4.81 ± 0.06

6 5,883 65.6 ± 17.2 402.6 ± 1.7 22:17 ± 0:01 5:59 ± 0:01 16.0 ± 0.3 90.4 ± 0.1 43.5 ± 0.7 5.24 ± 0.06

7 5,533 64.7 ± 17.5 398.6 ± 1.9 22:23 ± 0:01 6:06 ± 0:01 16.0 ± 0.3 89.3 ± 0.2 48.0 ± 0.7 5.9 ± 0.07

8 4,180 64.9 ± 17.6 404.4 ± 2.2 22:13 ± 0:02 6:02 ± 0:02 15.8 ± 0.3 89.4 ± 0.2 49.0 ± 0.9 6.07 ± 0.08

9 5,124 66.7 ± 16.3 404.7 ± 1.8 22:13 ± 0:01 6:01 ± 0:01 16.4 ± 0.4 89.6 ± 0.2 47.5 ± 0.7 5.67 ± 0.07

10 6,605 66.9 ± 15.6 417.2 ± 1.6 22:15 ± 0:01 6:10 ± 0:01 14.8 ± 0.3 90.7 ± 0.1 43.3 ± 0.7 4.73 ± 0.06

11 6,091 66.7 ± 15.3 425.4 ± 1.7 22:19 ± 0:01 6:17 ± 0:01 14.1 ± 0.3 91.9 ± 0.1 39.0 ± 0.7 4.05 ± 0.05

12 5,690 65.3 ± 16.3 429.7 ± 1.8 22:25 ± 0:01 6:23 ± 0:01 13.4 ± 0.3 92.6 ± 0.1 35.3 ± 0.7 3.69 ± 0.05

Sleep parameter values are represented as mean ± SEM. SD, standard deviation.

Sleep–Wake Inference From the
Acceleration Data Using Machine Learning
Sleep and wake states are often inferred according to body
movements measured by wearable devices (26–29). Following
these approaches, we recently developed algorithms to accurately
estimate minute-by-minute sleep–wake states, as well as sleep
parameters, from trunk acceleration data measured by the Holter
recorder. In this study, we utilized the sleep parameter values
calculated by our algorithms in our previous work (21, 22). Our
algorithms are summarized below.

Using a support vector machine (SVM), we constructed
a sleep–wake classifier (30, 31) that converted tri-axial trunk
acceleration data into a sequence of “sleep” and “wake” labels,
with 1-min time resolution using the statistical features extracted
from the acceleration data. More specifically, we used upper-
body tilt angles and local variances of trunk acceleration data
as input vectors to the machine. Our method was validated by
comparing the outputs of a watch-type sleep monitor (referred to
as an actigraph) manufactured by Ambulatory Monitoring Inc.
(AMI, Ardsley, NY). An AMI actigraph correctly distinguishes

sleep from wakefulness with high accuracy (>90%) (32, 33) and
high sensitivity (>95%) (33, 34) compared with PSG, which is
the gold standard for sleep assessment. Therefore, the actigraph
has been widely used in sleep studies as a PSG substitute (26,
29, 32). Our validation study demonstrated that our SVM-based
method was consistent with the AMI actigraph (accuracy =

94.4% ± 3.8%, specificity = 94.2% ± 5.2%, sensitivity = 94.8%
± 3.9%, and F1-score = 92.0 ± 4.5) (21, 22). Note that while
we used a classical machine learning approach for the sleep–
wake classification, state-of-the-art methods, such as ensemble
tree-based algorithms [e.g., extreme gradient boosting (XGBoost)
(35), or light gradient boosting machine (LightGBM) (36, 37)],
or deep neural networks [e.g., long short-termmemory (38–40)],
may improve classification performance significantly.

Sleep Parameters
We examined seasonality of the following seven sleep parameters
(22, 28, 29): in-bed time, get-up time, SL, WASO, wake episodes
(WEP), TST, and SE. In-bed time is the clock time when a patient
gets into bed to sleep and then switches the light off, while get-up
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time is when a patient finally wakes up in the morning. In-bed
time and get-up time are often ascertained by using data from
the event marker of an actigraph, sleep diary, or ambient light
sensor (29). However, such data were unavailable in the database;
hence, we determined those timings from the acceleration data
(21, 22). Moreover, SL refers to the time it took a patient to fall
asleep; it is the number of minutes between in-bed time and sleep
onset, where sleep onset is the time at the start of the first 10
consecutive minutes of sleep after in-bed time. WASO is the sum
of the awakening minutes from sleep onset to the get-up time.
WEP refers to the number of awakenings between sleep onset and
get-up time. TST is the number of minutes asleep between sleep
onset and get-up time; it can be calculated by subtracting SL and
WASO from time in bed (practically, time in bed was defined by
the period between in-bed time and get-up time). Lastly, SE is
the ratio of TST to time in bed multiplied by 100. Note that these
sleep parameters were strongly related with dynamics in sleep
structures commonly assessed by PSG.

Meteorological Variables
Japan locates in the northern hemisphere, and its climate
is separated into four seasons, namely, spring, summer,
autumn, and winter. Many meteorological variables, such
as Ta and photoperiod length, distinctively change among
seasons (Figure 1). Each season generally lasts 3 months.
Monthly average of atmospheric air temperature is highest
during summer (June–August) and lowest during winter
(December–February). Meanwhile, spring (March–May) and
autumn (September–November) bridge a gap between summer
and winter (Figure 1A). Therefore, atmospheric data show an
annual sinusoidal pattern. Japan experiences a short rainy season,
which generally lasts from the beginning of June to the middle of
July, making the area dampish (Figure 1B).

The sunrise time and sunset time also varies between seasons
(Figures 1D,E). In summer, the sun rises earlier and sets later,
causing a longer daytime; conversely, the sun rises later and
sets earlier in winter, resulting in a shorter daytime. Thus, the
difference in the daytime length between summer and winter is
∼3.5 h. Of note, the daylight-saving time system has not yet been
introduced in Japan.

We downloaded daily meteorological data (mean Ta [◦C],
humidity degree (%), and barometric pressure [hPa]) measured
in the prefectural capital of each medical facility on each
Holter recording date from the open public database of Japan
Meteorological Agency (41). Considering that Holter recordings
were performed over 2 consecutive days to obtain continuous
24-h data, we used the average Ta, humidity, and barometric
pressure values over the recording days.

The sunset/sunrise time on the start/end day of the Holter
recording was downloaded from the public database of the
National Astronomical Observatory of Japan (42).

Statistics
Seasonality of Sleep Parameters
The seasonality (specifically, monthly variations) in each sleep
parameter was examined using a generalized linear model
(GLM). In fitting a GLM, the month of Holter recording was the

categorical variable. Patient’s gender and age were also included
into the GLM because the gender and age effects were significant
in all sleep parameters (21, 22). The age was categorized into eight
groups by 10-year intervals (Table 1).

In addition to the main effects of these categorical variables
(i.e., age group, gender, andmonth), the interaction term between
age and gender was considered as a possible factor affecting
the sleep parameter values. When the interaction term was not
significant, a separate GLMwithout it was created and then fitted
to the data again. If the interaction term was significant, we
stratified the data by gender or age and then tested simple main
effects (i.e., pairwise comparisons) with Bonferroni correction for
multiple comparisons. In fitting GLMs, in-bed time and get-up
time values were represented as an elapsed time (in minutes)
counted from 0:00 on the start day of a Holter recording; hence,
the values ranged from 0 to 2,880 (1,440min× 2 days). Similarly,
the sunrise time and sunset time were represented as an elapsed
time (in minutes) counted from 0:00 of the start and end day of
the recording. The sleep parameter values between July and other
months were compared.

All statistical data were analyzed using SAS software version
9.04 (SAS Institute, Cary, NC, USA). In addition, p-values
were adjusted by Bonferroni adjustment correction for multiple
comparisons. To avoid potential inferential biases caused by a
large sample size, we considered p < 0.01 statistically significant
(43, 44). The results were expressed as the mean and the standard
error of the mean (SEM) except for the coefficient values in
multiple regression analysis explained below.

Multiple Linear Regression Analysis
To identify which meteorological variable (i.e., Ta, humidity,
barometric pressure, sunset time, and sunrise time) contributed
to seasonal variations in each sleep parameter, we further
evaluated multiple linear regression models in which each sleep
parameter was a response variable and meteorological variables
were the explanatory variables.

Several meteorological variables highly correlated with each
other (e.g., Pearson’s correlation was r = 0.70 between Ta and
sunrise time). To avoid the variance inflation caused by high
multicollinearity in the regression analysis, we used a shrinkage-
based variable selection method, which allowed the exclusion of
redundant variables from a regression model. We also combined
a model averaging method based on a bootstrapping algorithm
[PROC GLMSELECT, ModelAverage (45), in SAS software] to
search for a robust and parsimonious model. Each step was
explained below in detail.

Variable selection step: Least Absolute Shrinkage and
Selection Operator (LASSO) (46), which is a popular method
for selecting shrinkage variables, can effectively select important
explanatory variables from a set of candidates potentially
correlated with a response variable, and then estimate the
coefficient values of regressors simultaneously. LASSO belongs to
a particular class of penalized least square regression with the sum
of absolute values of regression coefficients (or L1 norm), making
some coefficients estimated to be zero. In this study, we employed
the modified standard LASSO called the adaptive LASSO
algorithm (47); in forming the LASSO constraint (i.e., penalized
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term), weights were applied to each regression coefficient, leading
to better performance in identifying a parsimonious model. If all
entering explanatory variables were not significant at p < 0.01,
the selection process was terminated, and from the sequence of
models obtained by the selection process, the final model was
chosen using the Schwarz Bayesian Criterion (48). Hence, each
regression coefficient was ensured to be significant (p < 0.01).
To adjust both the gender and age effects, we also included the
categorical variables of gender and age in the regression models.

Model averaging step: We employed a model averaging
method based on a bootstrap method (45, 49) to perform
more stable inferences of models. Model selections by the
adaptive LASSO regression were repeated on bootstrap samples.
The model selected by variable selection possibly varies from
sample to sample; therefore, the importance of each explanatory
variable was scored by using the number of times it was
incorporated in the selected model. Considering that frequently
selected explanatory variables were regarded as true underlying
regressors, we constructed a final model that used merely the
variables above the selection frequency cutoff value. In model
averaging, we calculated the ensemble average of each coefficient
value estimated by fitting the model to each bootstrap sample. In
each bootstrap analysis, 5,000 samples were randomly resampled
from the entire dataset. The frequency cutoff value in this study
was 70%. Effects of the choice of cutoff values were also examined.

RESULTS

Monthly Variations of Sleep Parameters
Figure 3 shows the monthly average values of each sleep
parameter (TST, in-bed time, get-up time, SL, SE, WASO, and
WEP) as a function of month. The mean TST showed a clear
annual cycle with shorter durations during summer and longer
durations during winter (Figure 3A). Specifically, it was shortest
in July (6.64 ± 0.03 h) and longest in January (7.30 ± 0.03 h),
showing a difference of∼40min monthly.

Seasonal variations were similar in both get-up time
(Figure 3C) and SE (Figure 3E), with a nadir in summer. The
mean get-up time was earliest in June (5:59 AM) and latest in
January (6:27 AM). The mean difference of get-up time between
summer and winter was ∼24min (overall mean get-up time:
6:02 AM during summer and 6:26 AM during winter). The
mean SE decreased slightly but significantly by∼2.7% in summer
compared with that in winter (overall mean SE: 89.7 ± 0.1%
during summer and 92.4± 0.1% during winter).

Themean in-bed time was almost constant acrossmonths; any
significant monthly difference was not found between July and
other months (Figure 3B). Overall mean in-bed time was 22:19
in our samples.

The monthly average of SL peaked in summer in an
annual cycle, although the amplitude of differences among
months was subtle (Figure 3D); the mean SL varied between
14.0 and 16.1 min.

Seasonality was noticeable inWASO (Figure 3F). The amount
of time of WASO exceedingly increased during summer, with the
longest duration of 49.0 ± 0.9min in August. Conversely, the
shortest duration of 35.3 ± 0.7min was observed in December.

Similarly, the number of wake episodes slightly, but significantly,
increased during summer compared with the remaining seasons
(Figure 3G).

Meteorological Effects on Sleep
Seasonality
According to multiple regression analysis, three meteorological
variables, namely, humidity, barometric pressure, and the sunset
time, did not significantly contribute to the seasonality of any
sleep parameter. Table 3 summarizes the coefficient values of the
final averaged model for each sleep parameter. Figure 4 shows
the scatter plots between the sleep parameter values and the
meteorological variables shown in Table 3. When the frequency
cutoff value was changed from 65 to 80%, the final averaged
model consistently selected regressors shown in Table 3.

The Ta was selected as a significant regressor in the final
averaged model for all sleep parameters, excepting get-up time.
The Ta was negatively associated with TST and SE (coefficient
value: −1.58 ± 0.04 for TST and −0.111 ± 0.004 for SE;
Figures 4A,C) but positively correlated with SL, WASO, and
WEP (coefficient value: 0.11 ± 0.01 for SL, 0.48 ± 0.01 for
WASO, and 0.082 ± 0.002 for WEP; Figures 4B,D). The linear
relations were considerably clear above 5◦C (Figures 4A–E).
Thus, sleep quality worsened as the Ta increased; this result
possibly explained the worsening of sleep quality during summer.
However, we also found a declining tendency in SE and
WASO below 5◦C (Figures 4C,D). These suggested a U-shaped
correlation of these sleep parameters with Ta.

The sunrise time positively associated with get-up time
(coefficient value: 0.182 ± 0.006; Figure 4F); this result probably
explained the delay of get-up time in winter and the early get-
up time in summer. The sunrise time also significantly correlated
with SE, though the absolute magnitude of the regression
coefficient was practically small (coefficient value: 0.005± 0.001);
the effect size was below 1% even when the sunrise time changed
from 4:30 AM to 7:00 AM.Hence, the sunrise time had practically
no influence on SE. As well, the significant, but subtle negative
relation was confirmed between sunrise time and WEP. The
influence of sunrise time on sleep quality is thought to be limited.

DISCUSSION

The current study aimed (1) to examine seasonality in various
sleep parameters (TST, in-bed time, get-up time, SL, SE, WASO,
and WEP) by using a large-scale objective sleep data of a
Japanese population and (2) to identify meteorological factors
statistically associated with sleep seasonality. This study is the
largest population-based research that used objective sleep data in
real-life settings to examine sleep seasonality and its association
with climatic factors in Japan.

Seasonality in Sleep Parameters
We found clear seasonal variations with an annual cycle in all
sleep parameters, excluding in-bed time. Average monthly values
of TST, get-up time, and SE showed a sinusoidal functional
form with a nadir in summer, while mean SL, WASO, and
WEP peaked during summer. Thus, sleep quality worsened
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FIGURE 3 | Monthly variations of sleep parameters; (A) total sleep time, (B) in-bed time, (C) get-up time, (D) sleep latency, (E) sleep efficiency, (F) wake time after

sleep onset (WASO), and (G) wake episodes. The mean values of each sleep parameter are shown as a function of month (solid black circles). The sinusoidal

functional curve with 1-year period was fitted to the mean values of each sleep parameter (broken blue curve). The error bars are the standard error of mean.

*indicates a significant difference from July (p < 0.01).
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TABLE 3 | Coefficient values of the selected significant regressor by multiple

regression analysis.

Sleep parameter Meteorological variable (regressor)

Ambient

temperature [◦C]

Sunrise time

(elapsed time) [min]

Get-up time [min] - 0.18 ± 0.01

TST [min] −1.58 ± 0.04 -

SL [min] 0.11 ± 0.01 -

SE [%] −0.111 ± 0.004 0.005 ± 0.001

WASO [min] 0.48 ± 0.01 -

WEP [count] 0.082 ± 0.002 −0.0022 ± 0.0003

Values are represented as mean ± SD. The humidity, barometric pressure, and sunset

time were not selected as significant regressors in any regression model. Therefore,

the cells for those regressors are not shown. The bar (-) in a cell indicates that the

corresponding regressor was not selected in the final regression model.

SE, sleep efficiency; SL, sleep latency; TST, total sleep time; WASO, wake time after sleep

onset; WEP, wake episodes.

from winter to summer but then improved from summer to
winter. These are partly comparable with previous research
using objective sleep measures (16, 19), while there are some
inconsistencies in sleep parameter values, such as magnitudes of
seasonal differences or absolute values of SE. These discrepancies
could be influenced by numerous factors, including differences
in measurement devices, patients’ age and gender distributions,
and local climates. Furthermore, the incased frequency in WEP
during summer could be related with increased prevalence of
self-reported insomnia, especially difficulty in maintaining sleep,
in a Japanese population in summer (20).

In our study, seasonal variations were not confirmed in the
in-bed time compared with those in the get-up time. Under
well-controlled laboratory conditions, both sleep and wake-up
times in summer were significantly advanced (5). However,
other studies that objectively assessed sleep in real-life settings
could not find any seasonal shift in bedtime but wake-up time
was significantly advanced during summer (5, 19). Therefore,
bedtimes were less influenced by seasonal climate changes in
real-life settings. We hypothesized that sociocultural factors (e.g.,
lifestyle, work, social role, and family) have a large impact on
bedtimes in habitual sleep.

Meteorological Effects on Sleep
Seasonality
The most noticeable finding of our study was the identification of
meteorological factors contributing to seasonal variations in sleep
parameters, using the robust multiple regression analysis. The
analysis revealed thatTa chiefly determined seasonal variations in
sleep quality (TST, SL, SE, WASO, and WEP) in real-life settings
in the Japanese population. It would be valuable to address
effects of a choice of different classes of sparse regressions. We
tested a ridge regression (L2 penalty) (50, 51) and Elastic net (a
combination of L1 and L2 penalties) (52). Both methods selected
the identical regressors to those of LASSO in the final averaged
models at the selection frequencies ranging from 65 to 80%. This
indicates the robustness of our results.

The seasonal differences in sleep–wake cycles or sleep quality
are commonly interpreted as a consequence of the entrainment of
circadian rhythm to photoperiodic changes among seasons (4–
7, 53–55). However, interestingly, meaningful contributions of
sunlight durations to sleep quality were not detected in our study.

Our results indicated that sleep quality worsened as the Ta
increases, suggesting the principal role of Ta for the seasonality
in sleep quality. Further, SE and WASO exhibited a deteriorating
trend at colder Ta (below 5◦C), indicating that sleep quality
worsened at colder or hotter Ta. These are supported by the
results of previous studies based on actigraphy or contactless
biomotion sensor (16, 19). Although the functional link between
Ta and sleep has remained poorly understood, the contribution
of a feedback system of skin temperature to sleep-regulating
brain areas (preoptic area/anterior hypothalamus) has been
suggested as a possible mechanism (56). Indeed, a direct
manipulation of skin temperature revealed a notable effect on
sleep propensity in the elderly with and without sleep insomnia
(14). Without alternating the core temperature, the induction
of a small increase (0.4◦C) in skin temperature suppressed
nocturnal wakefulness and shifted sleep to deeper stages in
healthy young and elderly, as well as in patients with insomnia
(15). These findings support the interpretation that seasonality in
sleep quality was caused by the modulation of skin temperature
induced by seasonal changes in Ta.

The get-up time did not correlate with Ta. This is explained
by the difference in the timing of a peak or a nadir in annual
cycle of get-up time and Ta; the mean get-up time was earliest
in June, while the Ta was highest in Aug. Meanwhile, the sunrise
time had a nadir in June, similar to get-up time. The results of the
regression analysis reflect such phase differences between sleep
parameters and meteorological variables.

Limitations
This study has several limitations. The first originates from an
ambulatory monitoring in real-life circumstances. Behavioral
thermoregulation, such as the use of air conditioning, clothing,
and bedspreads, might affect our results because it likely changes
both the actual skin and core body temperature. In addition, we
did not consider the duration and intensity of light exposure.
This limitation could be related to the lack of association between
photoperiodic changes and sleep quality. We also did not control
the regional differences. Considering that Japan covers several
degrees of latitude (from 20 to 46◦ north), the meteorological
variables largely differ between southern and northern areas; for
example, the sun rises earlier in northern areas than in southern
areas, and monthly Tas are usually lower in northern areas than
in southern areas.

Other significant limitations are related to the database. As
discussed in our previous study (22), the database probably
included selection biases because Holter recordings were usually
obtained from patients suspected of having some form of a
cardiovascular disease (57). In addition, other clinical conditions
(e.g., sleep problems and depression) were not controlled
because of the unavailability of such information. The effects of
imbalanced age distribution of the samples would be remained.
Further population studies controlled those factors might be
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FIGURE 4 | Scatter plots between sleep parameters and meteorological variables. (A) total sleep time, (B) sleep latency, (C) sleep efficiency, (D) wake time after sleep

onset (WASO), (E) wake episodes are shown as a function of Ta. (F) get-up time, (G) sleep efficiency, and (H) wake episodes are plotted as a function of sunrise time.

Sleep parameter values were averaged every 5◦C for Ta and 10min for sunrise time. The error bars are the standard error of mean. The straight line represents a linear

regression fit.
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important. In addition, assessments of sleep structures (e.g.,
sleep stages) might provide more deeper insights into seasonal
influence on nocturnal sleep. Nevertheless, our findings on sleep
seasonality derived from the largest Japanese population are
scientifically important and informative.
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Background: The inclusion of facial and bodily cues (clinical gestalt) in machine learning

(ML) models improves the assessment of patients’ health status, as shown in genetic

syndromes and acute coronary syndrome. It is unknown if the inclusion of clinical gestalt

improves ML-based classification of acutely ill patients. As in previous research in ML

analysis of medical images, simulated or augmented data may be used to assess the

usability of clinical gestalt.

Objective: To assess whether a deep learning algorithm trained on a dataset of

simulated and augmented facial photographs reflecting acutely ill patients can distinguish

between healthy and LPS-infused, acutely ill individuals.

Methods: Photographs from twenty-six volunteers whose facial features were

manipulated to resemble a state of acute illness were used to extract features of illness

and generate a synthetic dataset of acutely ill photographs, using a neural transfer

convolutional neural network (NT-CNN) for data augmentation. Then, four distinct CNNs

were trained on different parts of the facial photographs and concatenated into one final,

stacked CNNwhich classified individuals as healthy or acutely ill. Finally, the stacked CNN

was validated in an external dataset of volunteers injected with lipopolysaccharide (LPS).

Results: In the external validation set, the four individual feature models distinguished

acutely ill patients with sensitivities ranging from 10.5% (95% CI, 1.3–33.1% for the

skin model) to 89.4% (66.9–98.7%, for the nose model). Specificity ranged from 42.1%

(20.3–66.5%) for the nose model and 94.7% (73.9–99.9%) for skin. The stacked model

combining all four facial features achieved an area under the receiver characteristic

operating curve (AUROC) of 0.67 (0.62–0.71) and distinguished acutely ill patients with

a sensitivity of 100% (82.35–100.00%) and specificity of 42.11% (20.25–66.50%).

Conclusion: A deep learning algorithm trained on a synthetic, augmented dataset of

facial photographs distinguished between healthy and simulated acutely ill individuals,
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demonstrating that synthetically generated data can be used to develop algorithms for

health conditions in which large datasets are difficult to obtain. These results support the

potential of facial feature analysis algorithms to support the diagnosis of acute illness.

Keywords: gestalt, deep learning, facial analysis, synthetic data, acute illness

INTRODUCTION

It is estimated that patients with sepsis alone account for as much
as 6% of all hospital admissions and that while case-fatality rates
are declining, the incidence of sepsis keeps increasing (1, 2).
Early recognition of acute illness is critical for timely initiation
of treatment (1). However, patients admitted to the emergency
department (ED) or intensive care unit (ICU) with critical
conditions such as sepsis often present with heterogeneous signs
and symptoms, making detection and diagnosis challenging (3).
Numerous risk scores based on laboratory variables and vital
signs have been developed in an attempt to tackle this, but
these achieved variable performance or were inferior to clinicians’
informed judgment, also known as the clinical gestalt (4–7).

The clinical gestalt theory states that healthcare practitioners
can actively organize clinical perceptions into coherent
constructs or heuristics to reduce decision complexity, for
example, by analyzing patients’ facial and bodily cues, to estimate
their functional status (8, 9). The value of the clinical gestalt as
a diagnostic tool has been studied in different health conditions
(10–13). In acute coronary syndrome, heart failure, pneumonia,
and COVID-19, the clinical gestalt registered by doctors was
comparable to clinical scores in “ruling in” or “ruling out”
patients with certain symptoms presenting to the ED (10–14).
For sepsis, the Third International Consensus Definitions for
Sepsis and Septic Shock (Sepsis-3) advocates clinicians should,
in addition to systemic inflammatory response syndrome
(SIRS) criteria, use clinical gestalt in screening, treating and
risk-stratifying patients with infection (15).

The clinical gestalt is also increasingly used as the basis
for building deep learning models, with facial pictures being
used to identify different genetic syndromes (16), as well as
to detect coronary artery disease in an emergency setting (17).
However, despite a growing number of studies reporting good
results of deep learning models trained with a variety of clinical
measurements to predict or detect early sepsis, no model has
yet included clinical gestalt or facial feature analysis (18, 19).
One major challenge to the development of a well-performing
deep learning algorithm for facial analysis is the datasets’ size
and quality of the images (20, 21). With small datasets, deep
neural networks will inevitably overfit, i.e., perfectly model the
training data but lack generalizability and therefore perform
poorly in a different validation dataset (21). However, there is
substantial difficulty in obtaining a large gestalt dataset when
privacy concerns associated with collecting facial photographic
data exist, and especially in the emergency setting (22, 23).
The use of simulated or synthetic data and augmenting existing
data may solve this problem, as previously demonstrated for
medical imaging and electronic medical record data (24–27).
Moreover, there is vast literature, including recent studies,

highlighting several key features of acute illness – including “a
tired appearance,” “pale skin and/or lips,” “swollen face,” and
“hanging eyelids” – which can accurately be simulated (28–31).

Thus, to get insight into the usability of gestalt data
in categorizing sick individuals, we used facial photographs
of volunteers simulating these features to represent persons
with and without acute illness. We trained a deep learning
algorithm on facial photographs of simulated acute illness
and a dataset of augmented facial photographs using a style
transfer algorithm. Then, a concatenated model with multiple
convolutional neural networks was validated on an external
dataset of photographs of otherwise healthy volunteers injected
with lipopolysaccharide (LPS).

METHODS

Dataset
An overview of the different steps of this study is provided in
Figure 1. Three different data sources were used. The training
dataset was created through combining two sets of photographs.
First, a set of “simulated” sick faces, where the facial features of
healthy volunteers had been manipulated using make-up, and
second, a set of synthetically generated data resulting from the
transfer of these features onto photographs from an open-source
faces database (32). The validation dataset used data from a
third set of photographs, which consisted of facial photographs
from a previous study of individuals before and after they were
administered LPS to experimentally induce acute illness (33).

Dataset With Simulated Sick Facial Features on

Healthy Volunteers
Facial features characteristic of acute illness were simulated using
make-up on 26 individuals (11 female). These characteristics
of early acute illness included changes in skin color (pallor)
due to vasoconstriction, drooping of mouth corners, and eye
closure, often due to altered mental status (28–31). In total,
seven facial features were simulated: paler skin tone, pale lips,
redness around the eyes, sunken eyes, redness around the nasal
alae, droopy mouth, and more opaque skin. The standard
protocol followed for the make-up application is shown in
Supplementary Table 1 and Supplementary Figures 1–3. Two
photographs of each participant were selected and included in
the study, one without any make-up to represent the “healthy”
control state, and another to represent the “acutely ill” state.
A standardized environment with a gray background and LED
light was used, and photographs were taken with an iPhone 8
camera (4,032× 3,024 pixels) with standardized settings (ISO 22,
RAW, AF, S1/40, MF: 0.9 and AWB in the Halide app). White
balance of the complete set of photographs was standardized by a
professional photographer using Adobe Photoshop (CC 2019).
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FIGURE 1 | Schematic overview of the three datasets, and of the different steps in the study. Starting with data collection from 26 healthy individuals and simulated

acute illness. These features were then extracted and transferred to 164 faces from the Chicago Faces database, resulting in a total of 2,300 images of healthy and

acutely ill individuals. After training the deep learning algorithm, validation was carried out on an external dataset of 19 individuals using a stacked CNN combining 4

individual networks.

Data Augmentation to Expand Training Dataset
To expand the dataset, one hundred sixty-four distinct faces
from the Chicago Face Database (CFD) were retrieved and
taken to represent “non-sick” individuals (32). In addition,
photographs mimicking acute illness were generated using the
same individual faces from the CFD and a neural algorithm
of artistic style transfer. This algorithm transferred the make-
up style representing acute illness to healthy individuals
from the CFD. A VGG19 deep convolutional network
was trained so that it got exposed to each image for 1,500
steps. Male and female participants were separated to
ensure appropriate transfer of features and lower artifact
creation. The one image per subject visually assessed by two
researchers (JCF and AV) to represent the best acute illness
was selected.

Validation Dataset of Individuals With LPS-Induced

Illness
The external validation dataset consisted of the photographs
of 22 individuals before (placebo, healthy) and 2 h after being
injected with LPS. These individuals were mostly male (9
female) and of a similar age (mean 23.4). Camera resolution
settings used were similar to those described before, and
an equally standardized procedure was followed using a
studio set-up. Additional details of these data are provided
elsewhere (33).

Ethics
The study was exempt from ethical approval from the
Medical Ethical Committee of the University Medical Centre
Groningen. For the healthy volunteers, consent was obtained
from all volunteers, including for the use of certain images for
publication. A license for the use of the CFD was obtained by
the study’s authors (JCF and AV). Lastly, consent for collection
and use of the photographs in the validation set was obtained
previously, with the original study being approved by the
regional ethical review board of Stockholm, Sweden (Registration
number 2015/1415-32) and registered in ClinicalTrials.gov
(NCT02529592) (33).

Data Pre-Processing
The simulated photographs and the validation photographs
differed in certain aspects. In the simulated data, the features
of acute illness were more accentuated than in the LPS group.
In addition, the lighting was brighter in the validation data set,
with somewhat dimmer light and more pronounced shadows
and contrasts in the simulated dataset. To correct for this, all
photographs in the simulated set were brightened (gamma =

1.3). All photographs were then resized to 128 × 128 pixels,
and the four facial features (eyes, nose, mouth, and skin)
were extracted separately using computer vision algorithms, as
shown in Figure 2. A Haar cascade facial classifier was used
to identify the entire face region in an image (34, 35). The

Frontiers in Medicine | www.frontiersin.org 3 July 2021 | Volume 8 | Article 661309160

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Forte et al. Deep Learning for Acute Illness

FIGURE 2 | Diagram of the stacked CNN. This shows the combination of each CNN’s inputs and outputs into one final binary classification of “acutely ill” or “healthy”.

facial landmark detector identified the face features, obtained
by training a shape predictor on a labeled dataset (36, 37). The
eyes, nose, and lips were extracted by calculating the minimum
circle enclosing the 2D set of points representing each feature
(given by the facial landmark detector). Finally, the skin area was
extracted by removing the eyes and lips regions and everything
outside the jaw region. Any other background and hair were
removed by thresholding out certain color ranges (between HEX
#000000 and #646464; #a0a0a0 and #aaaaaa were selected based
on observation). The removed regions were replaced with the
dominant color calculated from each face region, ensuring no
other noise is passed down through the CNNs.

Deep Learning Algorithm
A CNN was trained for each facial feature using Keras
with a Tensorflow backend. The individual networks input
is represented by a 128 by 128 pixels RGB image, which is
convolved with a convolution kernel of size (3, 3) after adding
padding, using 128 filters. We use a rectified linear unit (ReLU)
as an activation function, the output being normalized and scaled
through a layer of batch normalization. The subsequent layers

progressively down-sample the image data through groups of
convolution layers (without padding), batch normalization, and
max pooling layers with a pool size of (2, 2). Then, the final
down-sampling layer uses an average pooling layer (with the
same pooling size) to smooth the resulting filters. Finally, the
output is flattened, resulting in a tensor of length 288. This is
passed through two other fully-connected layers, each having a
drop-out layer. The final layer is fully-connected with the output
unit that uses a sigmoidal activation function, which generates
an output value between 0 and 1 representing the probability of
being classified as “ill.”

To build the stacked ensemble combining all the previously
mentioned CNNs, the final layer of all individual networks
was removed, and each vector representation of size 16 was
concatenated, resulting in a vector of size 64 (Figure 2). The
data was then again gradually down-sampled through four
fully-connected layers using ReLU (of size 32, 16, 4, and 1,
respectively). The final activation function for the output is again
the sigmoid function to ensure a value between 0 and 1. Both the
CNNs and the stacked network use an Adam optimizer (adaptive
moment estimation) with an initial learning rate of 0.001 and
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FIGURE 3 | Receiver operating characteristic (ROC) curves and confusion matrices for the final model of all five CNNs in the validation set of 38 images. (A): ROC for

the stacked model. (B): ROC for the eyes. (C): ROC for the nose. (D): ROC for the mouth. (E): ROC for the skin.

values for beta1 = 0.9, beta2 = 0.999, and epsilon = 10−8.
All models used a binary cross-entropy loss function. In order
to minimize overfitting, early stopping and model checkpoints
were used to save the model with the best testing F1 score
during training.

Statistical Analysis
Each CNN was trained using 10-fold cross-validation. The best
model with regard to testing accuracy across all folds was used
to make predictions on the validation data. The different CNN
models’ performance is reported as the respective area under
the receiver characteristic operating curve (AUROC), sensitivity,
specificity, and negative and positive predictive values on the
external validation data (38). Box-and-whisker plots were used
to represent the median and interquartile ranges (25–75%) of all
model AUROCs. All results are presented with a 95% confidence
interval. Confusionmatrices aggregating the predictionsmade by
the final models are provided in Figure 3.

RESULTS

After data augmentation, the training dataset included
photographs from 190 distinct individuals, adding up to a
total of 1,140 healthy images and 1,160 images representing a
state of acute illness for different facial regions, as well as for the
complete face.

The sensitivity and specificity reported for each model pertain
to the best models in the binary classification task and are based

on the confusion matrices presented in Figure 3. The stacked
CNN achieved an AUROC in the validation dataset of 0.67
(95% CI 0.61–0.72), with a sensitivity of 100% (82.4–100.0%)
and specificity of 42.1% (20.3–66.5%). With regard to the four
CNNs trained on individual features, the network with the best
performance at distinguishing between healthy and ill individuals
was the mouth CNN, with an AUROC of 0.68 (0.62–0.74) and
sensitivity of 84.2% (60.4–96.6%) and specificity of 57.9% (33.5–
79.8%). All other CNNs achieved AUROCs between 0.51 and
0.57, with sensitivities between 10.5% (1.3–33.1%) and 89.4%
(66.9–98.7%), and specificities between 42.1% (20.3–66.5%) and
94.7% (73.9–99.9%). The positive predictive values (PPV) for
individual models ranged between 60 and 66.7% for the nose and
mouth models, respectively (Table 1). The negative predictive
values (NPV) ranged between 51.4% for the skin model and
80% for the nose model. For the stacked model, PPV was 63%
(54.1–71.7%) and the NPV was 100%.

The variation in performance of the individual and stacked
models in the validation set across the different folds can be seen
in Figure 4. Despite the marginally higher AUROC of the best
mouth model compared to the stacked model, the stacked model
was the most stable across all folds.

DISCUSSION

In this study, we developed a deep learning algorithm combining
multiple convolutional neural networks to distinguish between
healthy and acutely ill individuals based on facial feature analysis.
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TABLE 1 | Performance of the best models for each feature and the stacked model on the validation set.

Trained on CFD augmented with simulated acute illness photographs

Model AUROC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Mouth 0.68 (0.62–0.74) 84.2 (60.4–96.6) 57.9 (33.5–79.8) 66.7 (53.3–77.8) 78.6 (54.8–91.7)

Nose 0.55 (0.50–0.60) 89.4 (66.9–98.7) 42.1 (20.3–66.5) 60.7 (50.6– 70.0) 80.0 (49.3–94.3)

Skin 0.51 (0.43–0.59) 10.5 (1.3–33.1) 94.7 (73.9–99.9) 66.7 (16.5–95.3) 51.4 (46.8–56.1)

Eye 0.57 (0.55–0.59) 63.2 (38.4–83.7) 57.9 (33.5–79.8) 60.0 (44.4–73.8) 61.1 (43.8–76.0)

Stacked 0.67 (0.61–0.72) 100 (82.4–100.0) 42.1 (20.3–66.5) 63.3 (54.1–71.7) 100.00

Values are presented as the area under the curve (AUROC), sensitivity, specificity, and positive and negative predictive values for 50% disease prevalence with 95% confidence intervals.

PPV, positive predictive value, NPV, negative predictive value.

FIGURE 4 | Box-and-whiskers plot of AUC scores of the final models.

We showed that an algorithm trained on augmented facial data
of simulated acute illness can successfully generalize predictions
on an external dataset of individuals injected with LPS. The
final, stacked model combining eyes, mouth, skin, and nose
distinguished healthy and ill participants with a sensitivity of
100% (95% CI 82.4–100.0), specificity of 42.1% (20.3–66.5), and
AUROC 0.67 (0.61–0.72).

The aim of this study was to investigate how a deep learning
algorithm trained on augmented, facial data of simulated acute
illness would perform in distinguishing between acutely ill and
not ill individuals from an external set of photographs of real
individuals with LPS-induced illness. While clinicians or other
algorithms’ baseline discriminatory ability for acute illness is not
established, previous studies on the identification of acute illness
based on facial features reported an AUROC of 0.62 (0.60–0.63),
with sensitivity and specificity of 52 and 70%, respectively (33).
These results were somewhat improved by the stacked model.
However, both previous studies on the detection of different acute
pathologies by trained physicians, as well as of clinical scores
in sepsis detection, have found better results (7, 12, 13). For
pneumonia and acute rhinosinusitis, the clinical gestalt achieved
AUROCs of between 0.77 and 0.84 (12). Similarly, for acute heart
failure, a specific combination of physical cues was converted

into a score and achieved AUROCs above 0.90, diagnosing up
to 88% of heart failure patients (13). Therefore, we can say
this deep learning algorithm trained on simulated “gestalt” data
distinguished between photographs of acutely ill and healthy
people above chance level, surpassing the performance of non-
experts, but fell below the performance of trained clinicians in
other studies of different health conditions. This has several
potential clinical implications. Firstly, it supports further research
on the use of clinical gestalt for detection of acute illness in the
ED and ICU, alone or possibly in combination with other clinical
parameters. Combining “gestalt” and the modified SIRS score has
already been shown to achieve good predictive performance for
24-h mortality in children (39). In adults, the Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)
support the idea of combining the adult SIRS criteria and clinical
gestalt to screen, triage, and treat patients with infection (15).
And secondly, it suggests that adding “gestalt” to other machine
learning algorithms for sepsis or septic shock detection may be
of value, as these have traditionally focused on vital signs and
electronic health record information (40, 41).

In addition, our study reached some technically interesting
conclusions related to the feasibility of using synthetic data
for deep learning. It is known that the generalizability of deep
learning is lower, and the chance of over-fitting conversely
higher, in small datasets. This is especially true for imaging
data. Therefore, it was an interesting challenge to test whether
synthetic data generation and data augmentation could be valid
methodologies to address the problem of data availability for
certain health conditions in a research setting, be it due to legal-
ethical and privacy concerns or to low prevalence of disease
(21, 22). We found scarce examples in literature of studies
simulating a specific disease-state using techniques such as
facial manipulation with moulage or make-up. One other study
took photographs of volunteers before and after application of
moulage designed to simulate traumatic facial injuries, and found
that upon examination of these photographs by a facial analysis
software, between 39 and 90% of photographs of injured patients

were identified correctly (42). Clearly, synthetic and augmented
datasets have the potential to enable researchers to “tailor” data

to a specific context, but their generation and use is not without
challenges. One immediate challenge is that a definitive measure
for the quality of synthetic data is currently lacking (43). Here,

we attempted to achieve as great a similarity as possible between
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training and test data by using a widely validated methodology
for feature detection and extraction, and then manually selecting
the photographs to be included in the training set (36). Yet, we
found that both the deep learning algorithms identified “healthy”
individuals with higher accuracy. This was also the case for
the non-expert raters in Axelsson et al. ’s study, and could be
due to an inherently greater degree of similarity between the
facial features of healthy individuals than those of the acutely
ill ones (33). However, we cannot rule out the possibility that it
could also be a reflection of the features of acute illness in the
validation dataset being less prominent than in the simulated
training data. Because the risk of dissimilarity between training
and testing data increases as the size of the dataset increases, and
manual verification would not be possible for millions of images,
the development of methodologies and standards to measure
the quality of synthetic data is necessary before it can be used
more widely.

Limitations of this study include the relatively small size
of the training dataset, despite the data augmentation process,
if compared to established clinical image databases for other
diseases (44–46). This prevented us from further tuning the
models’ hyper-parameters on a holdout subset of the data and
may have led to some overfitting. Second, there is a chance
the data are inherently biased regarding the illness features
and the ethnicity of participants. Despite the standardized,
literature-based procedure for acute illness simulation in healthy
volunteers, it is possible that individuals whose sick features
are naturally more discrete were underrepresented. Equally,
both the training and validation datasets included mostly
Caucasian individuals, limiting the generalizability of the model
to other ethnicities. Further tuning of the model on more
ethnically diverse data and testing on a multi-ethnic dataset
is warranted (47). Lastly, the potential for implementation
of the algorithm can only truly be assessed in a dataset
of real ICU or emergency department patients. While LPS
produces physical symptoms similar to sepsis and is a well-
acknowledged model to study sepsis in humans (48), real patient
photographs collected in the ICU or emergency department
would bring different challenges than photographs taken in a
simulated setting. This could be due to noisy data from different
lighting, wires, respirator tubes, and lower standardization
of data.

In conclusion, a deep learning algorithm trained on
synthetic data representing the clinical gestalt of acute
illness was able to distinguish moderately well-between
healthy and acutely ill individuals in an external dataset of
individuals with LPS-induced acute illness. These results
support the value of clinical gestalt as a diagnostic tool for
acute illness. Additionally, synthetically generated data seem
to be a valid alternative methodology to develop models
for health conditions in which large datasets are difficult
to obtain.
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This paper proposes an unsupervised way for Phonocardiogram (PCG) analysis, which

uses a revised auto encoder based on distribution density estimation in the latent space.

Auto encoders especially Variational Auto-Encoders (VAEs) and its variant β−VAE are

considered as one of the state-of-the-art methodologies for PCG analysis. VAE based

models for PCG analysis assume that normal PCG signals can be represented by

latent vectors that obey a normal Gaussian Model, which may not be necessary true

in PCG analysis. This paper proposes two methods DBVAE and DBAE that are based

on estimating the density of latent vectors in latent space to improve the performance of

VAE based PCG analysis systems. Examining the system performance with PCG data

from the a single domain and multiple domains, the proposed systems outperform the

VAE based methods. The representation of normal PCG signals in the latent space is also

investigated by calculating the kurtosis and skewness where DBAE introduces normal

PCG representation following Gaussian-like models but DBVAE does not introduce

normal PCG representation following Gaussian-like models.

Keywords: phonocardiogram analysis, auto-encoder, data density, unsupervised learning, abnormality detection

1. INTRODUCTION

Phonocardiogram (PCG) analysis is a popular way for portable heart surveillance, which makes use
of the heart sound to identify possible anomaly of heart statues. Existing PCG analysis methods use
supervised methods which demands a labor expensive process of labeling. The paper proposes an
unsupervised way of PCG analysis, which identifies abnormal PCG signals based on PCG analysis
with normal signals only.

The main task of the proposed system is to characterize normal PCG signals in an unsupervised
way and then identify abnormal PCG signals as outliers despite the existence of background noise
and sound from other resources. In recent year, many attempts have been made to analyse PCG
signals including the PhysioNet and CinC (Computing in Cardiology Challenge) data Challenge
(1), which contains multiple sets of PCG data where both normal and abnormal PCG signals are
presented and labeled.

With labels of normal and anomaly PCG signals, the PCG analysis can be considered as a
classification problem. Classical machine learning techniques such as Support Vector Machine
(SVM) (2), i-vector based dictionary learning method (3) and solutions based on Markov models
(4) are used to solve the proposed problem besides deep learning algorithms (5, 6). However, as
a supervised problem, PCG data collected needs to cover all types of PCG abnormality, which is
labor expensive.
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Inspired by the Anomalous sound detection (ASD) of
Detection and Classification of Acoustic Scenes and Events
(DCASE) data challenge 2020 (7, 8), the PCG analysis could also
be considered as an unsupervised problem where only normal
PCG signals are analyzed for the identification of anomaly PCG
signals, which is considered as an outlier detection problem. This
solution avoids PCG data collection problem as there is not need
to collect all types of anomaly PCG signals for training.

The outlier detection of high-dimensional data is not a new
research problem. Aggarwal and Yu (9) proposed to use sparse
representation to find outliers. Pang et al. (10) using homophily
couplings to identify outlier with noise. With the development of
deep learning, Variational Automatic Encoder (VAE) (11) and a
variant of VAE: β−VAE (12) are used for outlier detection in the
PCG analysis, where the anomaly score of a PCG signal could be
calculated by the features exacted from latent space of the VAE
(13) or the reconstruction loss of β−VAE (14).

The PCG analysis based on VAE systems is based on an
assumption that normal PCG signals can be represented by
via latent vectors that obey a normal Gaussian distribution
N (0, 1). However, as normal PCG signals could be different
from each other, the representation in latent space obeying
a normal Gaussian distribution may not be the best feature
representing PCG signals. For example, if the PCG collected
from different sources, the PCG features could follow a Gaussian
Mixture Model (GMM) due to different background noise
and recording devices. In extreme cases, the resulting VAE
may serve as a denoise VAE that converts anomaly PCG
signals to normal PCG signals. As a result, this paper proposes
two different ways to model normal PCG signals in a latent
space.

The novelty of this paper is the use of sample density in latent
space during the training process, which removes the assumption
that normal PCG signals can be represented by latent vectors
obeying a normal Gaussian distribution. At the same time, the
KL divergence between latent vector distribution and normal
Gaussian distribution is removed from the loss function, which
potentially removes the assumption that the latent vectors must
follow a normal Gaussian distribution.

Besides, the paper compares the system with and without the
introduction of sampling process in the latent space during the
training process. The proposed system with the sampling process
in latent space follows the procedure that a VAE system is trained
hence is named as Density based β−VAE system (DBVAE).
The proposed system without the sampling process in the latent
space likes a more traditional auto-encoder hence is named as
Density based β−Auto-Encoder (DBAE) system. Both systems
are compared with a β−VAE system, which is a more classical
way for outlier identification.

The proposed method is tested with the Physio/CinC
Heart Sound Dataset (1). There are six subsets of data
collected, where each subset is collected in roughly the
same way but from different places. This paper proposes
two experiments to examine the performance of the
proposed system. Firstly, the training data used is from
the same subset. The resulting systems are evaluated by
data from both the same subset and other subsets. Then

data from different subsets are combined as the data used
for training. The performance of the proposed systems are
tested by the Receiver Operator Characteristic (ROC) test
with Area Under Curve (AUC) values, which avoids the
introduction of thresholds.

Theoretically speaking, the normal PCG representation in
the latent space should follow a Gaussian-like model as there is
a sampling process from Gaussian model during training. For
the proposed DBAE, the resulting normal PCG representation
in the latent space may not follow a Gaussian-like model
due to the removal of sampling process from a Gaussian
model. To examining the resulting normal PCG representation
in the latent space, the kurtosis and skewness of the latent
vectors are measured.

The paper is organized in the following way. Firstly, the
proposed system is introduced. Then we present the results of
the proposed experiments followed by the discussion to conclude
this paper.

2. METHODS

The proposed system is formed by three stages: pre-processing
of the PCG signal, the training of the revised VAE system and
the post-processing stage to produce the anomaly score, which is
then evaluated by a Receiver Operator Characteristic (ROC) test
for Area Under Curve (AUC) values.

2.1. Pre-processing
The Physio/CinC Heart Sound Dataset contains the audio of
heart sound ranges from 5 to 120 s, effectively contains 6–13
cardiac cycles. For easier processing during the training process,
a standardized 6-s length is used for all samples where longer
samples are truncated and shorter samples are padded in a
recurrent way.

As a common way to extract features, the Mel Spectrogram is
calculated with the following configuration engaged: a window
length of 1,024 with a hope length of 512. There are 14 Mel filters
are used. As the sampling rate of the heart sound audio is 2 kHz,
each frame engaged in the Mel Spectrogram lasts 0.51 s.

For data bias removal, the resulting coefficients in the Mel
Spectrogram is standardized according to each row. Given a Mel
Spectrogram SM×N = [S1, S2, . . . , SM]T , the standardized row Ŝi
in a Mel Spectrogram can be written as

Ŝi =
Si −mean(Si)

std(Si)
. (1)

The standardized Mel Spectrogram can be written as Ŝ =

[Ŝ1, Ŝ2, . . . , ŜM]T .
Each five frames of the standardized Mel Spectrogram then

forms a super-frame, which is considered as a data sample in
the training dataset. The starting frame of each super frame is
selected in a rolling manner i.e., there are L− 4 super-frames for
a piece of audio with L frames. Each super-frame lasts about 3 s,
which should contain at least one complete cardiac cycle.
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2.2. Proposed Systems
The motivation of the proposed system is to relax the assumption
that the use of VAE introduced in PCG analysis: there is a way
to represent normal PCG signals whose representation in the
latent space obeys a standardized Gaussian distribution. The
assumption may cause two types of problems: (1) As VAE is
commonly used as a de-noise system, the resulting VAE system
could serve as a de-noise system for PCG signals which converts
anomaly PCG signals to normal ones; (2) If the PCG signals
are collected from multiple sources, the latent representation of
PCG signals is unlikely to follow a single Gaussian model but
a Gaussian Mixture model. As a result, there are two models
proposed in this paper to solve the potential problems.

The first model is named “Density β−VAE” (DBVAE) that
attempts to avoid the resulting latent representation of the
normal PCG signals follows a normal Gaussian distribution
if unnecessary. The DBVAE adopts a VAE system whose loss
function is formed by the combination of reconstruction loss and
the density of samples in the latent space. Adopted from the VAE
framework, there is a re-sampling procedure from a Gaussian
model in the latent space, which makes the representation of
PCG signals in the latent space may potentially follow a Gaussian
distribution. As a result, the DBVAE expects the PCG signals can
be represented by latent vectors following a single-component
Gaussian model.

If the training data collected is from multiple sources, latent
representations for normal PCG signals resulted from DBVAE
may not necessarily follow a single-component Gaussian model
hence the “Density β−Auto Encoder” (DBAE) is introduced.
By removing the re-sampling process in the latent space, the
representation of normal PCG signals in latent space no longer
follows a Gaussian distribution compulsory. The DBAE uses
the same loss function with DBVAE, which pursues a high
density distribution in the latent space. With the proposed loss
function, DBAE could avoid overfitting in the latent space, which
overcomes the problem of auto-encoders may have. Figure 1
gives a more intuitive explanation of the two methods.

The novel point of the proposed systems is to introduce a
sample density based loss function term in the latent space.
We now describe how sample density is estimated in the
proposed systems.

In this paper, the sample density in latent space is defined
as the average distance between each individual sample and the
centroid point of the dataset. The centroid point of the dataset
C = (c1, c2, . . . , cM) is formed by the centroid point of each
dimension, where

ci =
max(zi1, zi2, . . . , ziN)+min(zi1, zi2, . . . , ziN)

2
. (2)

The representation of all samples in the latent space is
represented by ZM×N whose ith dimension for the jth sample
is represented as zij. Using Zj to represent the latent vector
for sample j, The density measurement for all samples is then

proposed as

D =
1

N

N∑

j=1

||Zj − C||2. (3)

Given Lr to represent the reconstruction loss measure by Mean
Squared Error (MSE), the overall loss functions for both DBVAE
and DBAE are

L = Lr + βD. (4)

2.3. Post-processing
The anomaly score for a PCG signal is based on the
reconstruction error of the proposed systems. For each super-
frame (five consecutive frames) in Mel Spectrogram, the MSE
between original Mel Spectrogram and the recovered Mel
Spectrogram is considered as the anomaly score (ai) for this
particular super-frame. The overall anomaly score (a) for a PCG
signal with N frames is

a =
1

N − 4

N−4∑

i=1

ai. (5)

3. RESULTS

We firstly test the performance of the proposed systems with
each single subset. Then we test the performance of the proposed
system when how the subsets are combined. The baseline system
selected is a β-VAE based system (14), which follows the extract
experiment design in this paper.

There are six subset of data in the Physio/CinC dataset labeled
as “a,” “b,” “c,” “d,” “e,” “f.” Given the fact that there are only a few
samples in the subset “c,” the results for subset “c” is omitted when
only a single subset is used as the data source for training. Besides
the single subset tests, this paper also presents the experiments
that use the combination of multiple subsets as the training data
source. Specifically, the subsets with most data are tested (e.g.,
‘a‘ & “e,” “e,” and “f”) and the case of all subsets used is also
tests (subset “c” inclusive). In all cases, 90% normal PCG data is
used for training and the remaining 10% normal PCG data and
all anomaly PCG data are used for testing. In addition, in order
to make the experiment more credible, this paper introduces an
additional data set calledMichigan (15). The experimental results
are labeled “Michigan” with the same training proportion.

As discussed by Higgins et al. (12), in general β > 1 is
necessary to achieve good disentanglement. However, as reported
by Li et al. (14), a smaller β value may help the performance of
PCG analysis. As a result, this paper sets the β values to wider
range: 0.01, 0.1, 1, 10, and 100 to test how the value of β effects
the performance of proposed systems.

As a summary, Table 1 shows the best and worst performed
model for each type of candidate model with different settings of
β values.

From Table 2, the proposed DBAE and DBVAE systems
generally outperform the BVAE system if the value of β is
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FIGURE 1 | In the BVAE method, the latent space only ensures that the sample points roughly obey the standard normal distribution, but there is no specific

requirement for the density of the sample points. In the DBVAE method, the latent space not only retains the characteristic that the sample points obey the standard

normal, but also makes the samples more aggregated by increasing the sample density. The whole process is shown in the figure, taking two-dimensional plane as an

example. Firstly, the edge sample is determined, and the center line of the edge point is made according to the center of the edge sample on each dimension.

Secondly, the average of the center lines of the edge points is calculated to get the center line, and the intersection of the center lines of different dimensions is

defined as the centroid point. Finally, all the sample points shrink to the centroid. In the method of DBAE, the distribution assumption of sample points is canceled and

only the sample density is required. The samples shown in the figure are normal sample points during the training process.

TABLE 1 | Best and worst performed system for all tests in terms of AUC values

(at the first line of each row).

Best a b d e f ae ef ALL Michigan

BVAE (AUC) 0.825 0.559 0.691 0.923 0.846 0.822 0.899 0.786 0.966

when β: 0.01 1.00 100 0.01 100 0.01 0.01 0.01 1.00

DBVAE (AUC) 0.862 0.642 0.845 0.924 0.831 0.861 0.914 0.803 0.966

when β: 0.1 0.01 0.1 0.01 10 0.01 0.01 0.01 1.00

DBAE (AUC) 0.842 0.614 0.940 0.928 0.842 0.887 0.929 0.808 0.944

when β: 0.1 1.00 0.1 0.1 10 0.1 100 1.00 0.01

Worst a b d e f ae ef ALL Michigan

BVAE (AUC) 0.798 0.551 0.583 0.881 0.801 0.765 0.836 0.644 0.725

when β: 1.00 0.1 0.1 1.00 10 100 10 100 0.1

DBVAE (AUC) 0.763 0.523 0.726 0.844 0.787 0.793 0.870 0.719 0.731

when β: 100 0.1 100 100 1.00 100 100 10 0.1

DBAE (AUC) 0.762 0.527 0.75 0.918 0.765 0.851 0.895 0.761 0.616

when β: 10 100 0.01 1.00 100 10 10 100 1.00

The configuration of β is set as the second line of each row. The subsets used for training

is labeled as the title of each column.

properly set. Specifically, when a single subset serves as the data
source for training, the DBVAE has a comparable performance
with DBAE in general whereas when multiple subsets are used as

the data source for training, the DBAE in general outperforms the
DBVAE and DBVAE is better than BVAE baseline.

Moreover, in the experiment presented, the results reveal that
the effects of β differ from the candidate systems. Assuming the
best performed β configuration is βb and the worst performed

β configuration is βw, Table 2 shows the value of δ =
βb
βw

− 1

for all experiments presented, which effectively measures how
much performance be can gained by adjusting the value of β in
extreme cases.

From results of δ, the effects of β value selection can be
summarized as the following: (1) using multiple subsets generally
reduce the effects on β value; (2) BVAE systems are more stable
than DBVAE and DBAE when data from single subset is used;
(3) DBAE improves the stability of system performance when
multiple subsets are used for training.

4. DISCUSSION

The proposed systems pursues different regulations on the
distribution of latent vectors. To show how the PCG signals
is presented in the latent space, the kurtosis and skewness
are measured for the distribution of normal PCG signals. The
definition of kurtosis and skewness is represented as follows.
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TABLE 2 | The ratio δ between the models with best β settings and the worst β

setting in all experiments.

a b d e f ae ef ALL Michigan

BVAE 0.034 0.018 0.185 0.048 0.051 0.074 0.076 0.220 0.332

DBVAE 0.131 0.217 0.164 0.095 0.056 0.085 0.050 0.118 0.321

DBAE 0.105 0.165 0.254 0.011 0.101 0.042 0.037 0.062 0.532

A smaller number indicates less effects of β on system performance.

TABLE 3 | The average skewness and kurtosis for all resulting models in all

experiments.

Skewness (γ1) Kurtosis (γ2)

N (0, 1) 0 0

BVAE 0.115 (±0.093) 1.368 (±0.884)

DBVAE 2.674 (±8.128) 610.499 (±1669.592)

DBAE −0.088 (±0.317) 3.369 (±4.413)

The sign “±” represents then standard deviation of the data. N (0, 1) represents normal

Gaussian distribution.

Given a representation of PCG signal in the latent space [Zj =

(z1j, z2j, . . . , zMj)] and the mean value of all latent vectors (Z), the
skewness (γ1) and kurtosis (γ2) of N samples in the latent space
can be calculated as:

γ1 =

1
N

∑N
i=1(Zj − Z)3

( 1N
∑N

i=1(Zj − Z)2)3/2
(6)

γ2 =

1
N

∑N
i=1(Zj − Z)4

( 1N
∑N

i=1(Zj − Z)2)2
− 3. (7)

Table 3 shows the average value and standard deviation
of the skewness and kurtosis of the distribution in the
latent space. For a normal Gaussian distribution, the
skewness and kurtosis is expected to be 0. A larger kurtosis
value indicates the distribution of latent vectors is more
dense. A skewness value with higher absolute value is
considered as more different with a normal Gaussian
distribution.

It is not surprising to find that BVAE systems produce
a latent vector distribution that is similar with the normal
Gaussian distribution. For DBAE, the resulting latent vectors
in the latent space also follow a unbiased distribution with
gentle variations on kurtosis in most cases, which suggests
the resulting latent vectors follow a Gaussian-like model.
Given the fact that for training data from multiple subsets
should follow and mixture of models, it is interesting to find
that the latent vectors as PCG normal signal representation
follow a Gaussian-like model rather than a mixture of models.
Moreover, it is surprising to find that the DBVAE results
to heavily biased and high dense distribution despite a
sampling process from Gaussian distribution, which suggests

the resulting latent representation for DBVAE model is not
following a Gaussian-like model. As a result, the normal PCG
representation in the latent space needs further investigation in
the future.

The motivation of proposing the DBVAE is to relax the
assumption of the latent representation for normal PCG signals
should follow a normal Gaussian distribution. The motivation
of proposing DBAE is to relax the assumption of the latent
representation for normal PCG signals should follow a Gaussian-
like distribution. Both proposed system are expected to introduce
an improvement of the system performance compared with VAE
systems. Moreover, the DBAE is expected to outperform DBVAE
when multiple subsets are used for training.

The final results confirm that both DBVAE and DBAE
introduce an improvement on performance. DBAE introduces a
small improvement compared with DBVAE when single subset
is used as the source of training data. When multiple subsets
are used for training, DBAE introduces a larger improvement
compared with DBVAE. However, the investigation on the
kurtosis and skewness of the distribution of PCG normal
representation in latent space does not confirm the assumption
this paper made where the DBVAE introduces a normal PCG
representation in the latent space does not follow a Gaussian-like
model but the DBAE introduces a normal PCG representation in
the latent space that follows the a Gaussian-like model which are
not expected.

As a quick conclusion, the introduction of density based auto-
encoder systems, DBAE and DBVAE, improves the performance
of PCG analysis however the latent representation of the
proposed systems for normal PCG signals need investigation
in the future for further improvements. The introduction of
multiple subsets stabilizes the performance of the systems
especially for DBAE, which reduces the efforts of tuning the value
of β in the proposed systems.
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