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Editorial on the Research Topic

Breakthrough in Imaging-Guided Precision Medicine in Oncology

INTRODUCTION

In the era of precision medicine in oncology, medical imaging is pivotal for a broad spectrum of
indications, ranging from early detection of malignant lesions to response assessment in advanced
metastatic disease. The Research Topic “Breakthrough in imaging-guided precision medicine in
oncology” aimed to share disruptive technologies in the field of imaging-guided precision medicine
in oncology. The goal was to discuss new concepts and discoveries in the field of imaging
biomarkers derived from a quantitative analysis of data contained in medical images.
This editorial aims to provide an at-a-glance overview of the 34 articles from 282 authors
published in this guest editorial, which collectively support the concept that imaging biomarkers
can be used as clinical decision tools, benefiting the outcomes of oncologic patients. Moreover, it
provides an overview of research trends at the crossroads between radiology, nuclear medicine,
computer science, biochemistry, pathology, and oncology.
NEW IMAGING TECHNOLOGIES FOR PRECISION MEDICINE

Software: Radiomics, Machine-Learning, Deep-Learning, Artificial
Intelligence
Capturing the general complexity of tumor biology has become a key challenge in precision
medicine. Boosted by the recent evolution of computer science and artificial intelligence (AI) in the
field of medical imaging, new powerful image-based analyses have emerged. Radiomics, a large-scale
image-based approach derived from OMIC, requires sophisticated workflows consisting of image
May 2022 | Volume 12 | Article 90856117
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acquisition, lesion segmentation, feature extraction, and machine
learning that has benefited -and could further benefit- from
controlling its variation (Zhao et al.).

In this guest editorial, several authors have unraveled potential
indications of radiomics for precisionmedicine approaches. To face
the growing complexity of multidimensional quantitative data, AI
appears tobeapromisingway toassist practitioners in the future.AI
can extract and quantify key image information such as its
morphological, textural, and molecular features, which can
convert subjective qualitative tasks to objective quantitative
analysis (Li et al.). For instance, radiomics-based imaging
biomarkers, such as 18F-fluciclovine, could be utilized in the
detection and management of biochemical-recurrent prostate
cancer (Shaikh et al.). Radiomics-based nomogram on 18F-
Fluorodeoxyglucose (FDG) positron emission tomography/
computed tomography scan (PET/CT) rad-score, combined with
clinicopathological factors, was proposed as a new method to
personalize management of patients with non-small cell lung
cancer. This approach may effectively strengthen the limitations
of TNM staging methodology when evaluating lung cancer
prognosis (Yang et al.). These radiomics models combining
multi-omics analyses could provide a more holistic overview of
tumor behavior and predictive capabilities. As an example,
combining AI with ultrasound and pathological tests was utilized
to tailor personalized therapies for patients with thyroid cancer (Li
et al.). Additionally, radiomics-based prediction of histological
subtypes was identified through the use of activation maps, which
identified specific regions responsible for signature activation and
was used to guide treatment decisions in non-small cell lung cancer
(Vuong et al.).

There is an ongoing quest toward obtaining reproducibility and
generalizable results to characterize image phenotypes (Zhao
et al.). Therefore, understanding and controlling the sources of
variation is necessary. This requires collaborative multidisciplinary
approaches with consistent workflows (Zhao et al.). One approach
to mitigate variability is by performing standardized image
processing. As illustrated in (Ammari et al.), brain magnetic
resonance imaging (MRI) pre-processing techniques are
essential to ensure reliable and reproducible radiomics-based
models. For instance, the field strength in MRI (1.5T vs 3T) had
a significant influence on a wide range of radiomics feature values,
and images acquired with a distinct field strength in MRI should
not be used interchangeably to build radiomics models
(Ammari et al.).

Hardware: New Devices, New
Acquisition Protocols
Whatever imaging modality is considered, the improvement of
patient management related to hardware evolutions perfectly
illustrates the great contribution of technology in precision
medicine. For example, preoperative Spectral CT imaging,
which utilizes the energy spectrum curve and slope parameters,
was beneficial in providing an objective approach to the
preoperative staging of thymic epithelial tumors (Zhou et al.).
Deep inspiration breath-hold reduced respiratory motion during
radiotherapy allowing for more precise and accurate
Frontiers in Oncology | www.frontiersin.org 28
radiotherapy (Naumann et al.). An acquisition protocol
incorporating deep inspiration breath-hold with optical
surface-guided radiotherapy and image-guided radiotherapy
was utilized to ensure reproducibility and accurate tumor
localization in surface body radiotherapy (Naumann et al.).
Finally, image-guided tissue biopsies using large gauge coaxial
needles enabled multiple tissue biopsies in a single pass (Khan
et al.). These high-yield samples could be beneficial in better
understanding the molecular and genomic characteristics of
tumors, ultimately assisting in the development of biomarkers
of clinical and translational relevance (Khan et al.).

Multimodal Hybrid Imaging
Multiparametric imaging offers unique opportunities to evaluate
tumor characteristics at an advanced multidimensional imaging
level. A literature review supported the utility of hybrid 18F-FDG
PET/CT imaging modalities in the management of patients with
muscle-invasive bladder carcinoma, suggesting that it may be
used to guide precision medicine (Girard et al.). Additionally,
PET, CT, and MRI used synergistically could provide
complementary information with potentially beneficial clinical
applications (Decazes et al.).

Metabolic and Molecular Imaging
The pathogenesis of neoplastic tumors and their metabolic
processes can be targeted through molecular imaging to better
understand and characterize the tumor. PET imaging detection is
based on the radionuclide labeling of molecular probes,
providing almost unlimited opportunities to map numerous
physiological or pathophysiological targeted processes.
Numerous relevant molecular probes constitute a powerful
arsenal to characterize several tumor biological processes in
vivo. For example, isocitrate dehydrogenase enzyme (IDH)
mutations is a known occurrence in gliomagenesis (Zhou
et al.). A metabolic PET/CT-based nomogram model utilized
easy-accessible imaging metrics and clinical features and was
shown to provide predictive information for IDH mutational
status in patients with gliomas (Zhou et al.). Another example is
the use of fulvestrant, which is an estrogen receptor antagonist
drug approved for postmenopausal women with HR-positive
and HER2-negative metastatic breast cancer (Liu et al.). PET
with dual tracers 16a-[18F]fluoro-17b-estradiol and 18F-FDG,
was utilized as prognostic imaging biomarkers to predict the
efficacy of fulvestrant therapy in patients with ER-positive
metastatic breast cancer (Liu et al.).
GUIDING INITIAL TREATMENT DECISION

Precision Diagnosis: Grade,
Stage, Genomics
The role of imaging in initial staging and treatment planning has
been extensively demonstrated. Research combining initial
imaging and artificial intelligence, including Radiomics, is a
growing field that will help to better address some routine
clinical challenges that every physician has to face.
May 2022 | Volume 12 | Article 908561
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As a radiologist, noninvasive image-based diagnosis can be
challenging. As an example, differentiating solitary brain
metastasis from glioblastoma multiforme can be difficult, and
completely change patient’s management. To this end, a
radiomics based classifier that evaluates the morphological
differences on post-contrast 3DT1 weighted MRI was
developed to distinguish between solitary brain metastasis and
glioblastoma multiforme (de Causans et al.). Another example is
the non-invasive detection of intrahepatic cholangiocarcinoma.
Radiomics-based models may improve the diagnostic accuracy of
intrahepatic cholangiocarcinoma (Xue et al.). In addition,
Radiomics-based biomarkers can offer key insights into
precision diagnostics, disease classification, prognostication,
and therapeutic management in neuro-oncology (Shaikh et al.).

Lung cancer remains a leading cause of cancer-related deaths
(El Ayachy et al.) despite recent therapeutic advances in the field
such as immunotherapy. Radiomics was used to identify candidate
biomarkers that could enhance our understanding of the
microbiology of lung cancer (El Ayachy et al.). In addition, 18F-
FDG PET/CT radiomics nomogram combined with
clinicopathologic factors could be used to predict survival
outcomes in patients with lung adenocarcinoma with an EGFR
mutation (Yang et al.). This approach could be utilized to provide a
more precise diagnosis and offer personalized treatment guidance
for patients with EGFR mutations (Yang et al.).

Another example is the impact of imaging improvements in
common cancers such as prostate cancer. Prostate lymph node
dissection clinical nomograms have the potential to predict non-
regional lymph node metastasis in prostate cancer patients (Jiao
et al.). The use of clinical nomograms in conjunction with Ga-
PSMA PET/CT could enhance the detection of distant lymph
node metastasis and guide clinical decision-making (Jiao et al.).

Baseline Prognostic and Predictive
Imaging Biomarkers
Baseline imaging plays a key role in clinical care patient
management. Indeed, it allows for assessing tumor burden,
potential extension, and can also determine prognosis. The
development of radiological or hybrid tools that combine
several features will help to better target treatment in order to
personalize therapies. For instance, a nomogram and risk
stratification system in early-stage cervical cancer patients
(stage IB1 and IB2) could have clinical utility in predicting
progression-free survival (Xu et al.). SUV peak and HPV-16
were shown to independently impact disease progression
(Xu et al.) Artificial Intelligence could also play a key role as
prognosis tool. In (Wang et al.), CT radiomics offered an
objective approach to predicting the risk of malignant
gastrointestinal stromal tumors by using various machine-
learning algorithms. Of note, machine-learning models require
multicenter testing prior to their use in clinical decision-making
(Wang et al.). Metabolic imaging plays a major role as a baseline
investigation in clinical routine. It has also a dominant role in
predicting response. In (Aide et al.), 18F-FDG PET metabolic
heterogeneity of estrogen receptors was used to assist in
Frontiers in Oncology | www.frontiersin.org 39
noninvasively identifying patients with the worst event-free
survival in breast cancer.

Baseline imaging is also used to guide treatment strategies in
focal therapies such as radiation therapies. CT radiomics could
be utilized to localize radioresistant sub-volumes in tumors,
serving as a predictive biomarker in radiotherapy (Bogowicz
et al.). This methodology could be employed to identify potential
targets for dose intensification (Bogowicz et al.).

The use and application of new technologies in the medical
field require significant scientific rigor and exact knowledge of
limits and bias. This is all the more applicable in this era of
artificial intelligence. For instance, it was demonstrated that
prognostic radiomics signatures must control for confounding
variables to avoid inaccurate prediction of survival outcomes in
patients with clear cell renal cell carcinoma (Lu et al.).
ASSESSING TUMOR SENSITIVITY
TO TREATMENTS

Immunotherapies have become part of the standard-of-care of a
wide range of cancers. These therapies have improved clinical
outcomes compared to other treatments, such as chemotherapy
or targeted therapies. Unfortunately, only a fraction of patients
experiences such therapeutic success. Therefore, the early
identification of biomarkers in patients that are unlikely to
benefit from immunotherapies is a crucial step in selecting
appropriate candidates.

Chimeric antigen receptor (CAR) targeting CD19 antigen, a
form of immunotherapy used to treat non-Hodgkin’s
lymphoma, is frequently complicated by relapses (Vercellino
et al.). This strongly suggests further evaluation of the use of
medical imaging such as PET/CT for the monitoring of patient
response and the optimization of medical care, including risk
stratification (Vercellino et al.).

Another clinical drawback with immunotherapies relates to
their safety. The incidence of severe immune-related adverse events
is not negligible and can even lead to the death of the patient. In
(Ederhy et al.) the focus was on cardiovascular toxicities,
particularly myocarditis, under immune checkpoints inhibitors.
This adverse effect should be recognized promptly due to the high
fatality rate (30-50%) (Ederhy et al.). Medical imaging could play
an important role in optimizing the management of immune-
related myocarditis, including diagnosis, prognostication,
treatment decision, and follow-up (Ederhy et al.).

Given the fact that immunotherapy is based on restoring tumor
elimination by the immune system, novel patterns of response and
progression have emerged, such as pseudoprogression,
hyperprogression, abscopal effect, and durable response after
treatment. Dissociated response, is an additional pattern defined
as heterogeneous-responding lesions in the same patient. While
dissociated response has historically been labeled as an
unfavorable prognostic pattern, immunotherapy with immune
checkpoint inhibitors has revealed that it could in fact be a
favorable prognostic pattern (Humbert and Chardin).
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New response criteria standardization has been developed,
aiming to include these novel patterns of response and progression
during the course of immunotherapy. In (Castello et al.), the
development of the immune metabolic response criteria by 18FDG
PET/CT, called “imPERCIST”, was shown to optimize the prediction
of clinical benefit in immunotherapy regimens (Castello et al.). These
criteria may be beneficial in evaluating the response to
immunotherapy, and subsequently guiding clinical decision-
making. However, it is important to note that a wide range of
novel criteria have been designed for 18F-FDG PET/CT (i.e.,
PECRIT, PERCIMT, iPERCIST), and have not been prospectively
validated. Hence, a large-scale multicenter validation should be
performed prior to implementation in the daily routine.

A similar question regarding the response criteria is raised for
patients with pancreatic neuroendocrine tumors. Specific criteria
should be further developed since the current literature reveals a
lack of standardization and comparable methodological
approaches in the evaluation of pancreatic neuroendocrine
tumors (Partouche et al.).

DIAGNOSIS AND MANAGEMENT OF
COVID-19 IN CANCER PATIENTS

The pandemic of COVID-19 has impacted medical, economic,
social, and environmental practices worldwide. During its peak,
clinicians had to rethink the management of patients with a
diagnosis of cancer. On the one hand, cancer patients are at
increased risk of serious complications due to their
comorbidities, therapy, and immune dysregulation. Therefore,
one strategy was to delay medical imaging to avoid exposure and
subsequent risk of infection. On the other hand, the role of
imaging is critical for cancer management, hence delaying
management can be detrimental to the patient’s prognosis. In
this collection, several papers deciphered strategies to optimize
the management of cancer patients while in treatment.

Patients requiring systemic therapies during the pandemic
could be screened with reverse transcription-polymerase chain
reaction (RT-PCR) prior to initiating therapy and rescreened at
15 days if positive. Those exhibiting respiratory symptoms or
signs of acute inflammatory syndrome, could undergo a CT scan
or CT angiogram, respectively, to guide clinical decision-making
(Viansone et al.). Strategies were proposed so that radiation
Frontiers in Oncology | www.frontiersin.org 410
oncology departments could provide strategies to identify
COVID-19 infection and ensure the optimization of patient
care by the use of specific workflows, which include RT-PCR,
CT scans, and social distancing (Sun et al.). Finally, strategies for
screening and early detection of COVID-19 were proposed in
patients with hematologic malignancies due to their
immunosuppressive state, to mitigate the spread in this patient
population (Assi et al.).
CONCLUSION

In conclusion, this guest editorial shared proof of concepts
results using disruptive technologies or concepts in the field of
imaging-guided precision medicine in oncology. It further
demonstrates that medical imaging is pivotal for a broad
spectrum of indications. The next step forward will be the
prospective validation of these findings in large multicenter
prospective studies.
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COVID-19 has been declared a pandemic by the world health organization. Patients

with cancer, and particularly hematologic malignancies may be at higher risk for severe

complications due to their malignancy, immune dysregulation, therapy, and associated

comorbidities. The oncology community has been proactive in issuing practice

guidelines to help optimize management, and limit infection risk and complications from

SARS-COV-2. Although hematologic malignancies account for only 10% of all cancers,

their management is particularly complex, especially in the time of COVID-19. Screening

or early detection of COVID-19 are central for preventative/mitigation strategy, which is

the best current strategy in our battle against COVID-19. Herein, we provide an overview

of COVID-19 screening strategies and highlight the unique aspects of treating patients

with hematologic malignancies.

Keywords: hematologicmalignancies, hematology, COVID-19, coronavirus, screening, polymerase chain reaction,

CT scan

INTRODUCTION

In December 2019, infection with a novel betacoronavirus, subsequently named SARS-CoV-2, has
been reported in a cluster of pneumonia cases in the Wuhan region of China (1). The pathogen
showed a rapid spread that led to a global pandemic and a public health emergency of international
concern due to the burden on the healthcare system and lack of specific treatments. By April
26th 2020, the COVID-19 outbreak has affected more than 2.8 million people and claimed the
lives of more than 190,000 patients around the globe (2). Patients with cancer are regarded as a
more vulnerable population because of their immunosuppressive state induced by the malignancy,
therapy, and associated comorbidities (3, 4). As a result, despite the limited available data, the
oncology community has been pro-actively engaged in issuing guidelines to help clinical practice
with the goal of decreasing exposure and complication risks from COVID-19 among patients with
cancer. For instance, recommendations have emerged to consider on a case-by-case basis, whenever
possible, options of delaying/dose reducing treatment, using lower-intensity therapy, postponing
unnecessary radiological evaluations, and prioritizing telemedicine (5–9).

Hematologic malignancies encompass a wide range of neoplasms, including leukemia,
lymphoma, multiple myeloma, myelodysplastic syndrome and myeloproliferative neoplasms,
which all account for 10% of all malignancies (10). Although some patients present with indolent

11

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01267
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01267&domain=pdf&date_stamp=2020-07-03
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:samy.ammari@gustaveroussy.fr
https://doi.org/10.3389/fonc.2020.01267
https://www.frontiersin.org/articles/10.3389/fonc.2020.01267/full
http://loop.frontiersin.org/people/972284/overview
http://loop.frontiersin.org/people/948471/overview
http://loop.frontiersin.org/people/894448/overview
http://loop.frontiersin.org/people/887872/overview


Assi et al. COVID-19 Screening in Hematologic Malignancies

diseases that may not require immediate therapy, many
patients harbor aggressive diseases, often life-threatening, which
necessitate rapid intervention with intensive chemotherapy,
high dose radiation and/or hematopoietic stem cell transplant
(HSCT). Prior studies have shown that patients with hematologic
malignancies are at higher risk for severe lower respiratory
tract infections, notably due to lymphopenia, neutropenia,
hypogammaglobinemia, steroid administration, and graft-
versus-host disease, it is unclear how this may be applicable to
COVID-19 (11–13).

The triage of patients according to their COVID-19 status
(confirmed, high- or low level of suspicion) has been the key
measure in limiting in-hospital contaminations (14). The absence
of a rapid screening system for assessing COVID-19 status in
patients is problematic, and the current recommendations are
only based on anecdotal and theoretical evidence extrapolated
from the management of other infectious diseases. Herein,
we provide an overview of COVID-19 screening strategies
and highlight the complex aspects of caring for patients with
hematologic malignancies.

RISK FACTORS FOR COVID-19 IN
PATIENTS WITH HEMATOLOGIC
MALIGNANCIES

Literature on COVID-19 in hematologic malignancies is sparse
and mainly derived from case series that are focused on patients
with solid tumors. Two cases series from China showed a higher
incidence (1 vs. 0.3%), and a higher case-fatality rate (5 vs. 1%)
in patients with cancer compared with the overall population
(4, 15). However, the relative contribution of cancer or cancer
therapy to their infectious risk of COVID-19 is uncertain given
that the majority of patients either had a remote history of cancer,
were not on active anticancer therapy, and/or had multiple
comorbidities. Notably, none of the patients had a hematologic
malignancy (4, 15).

Patients with hematologic malignancies might be at higher
risk of contracting and experiencing complications from
COVID-19, such as hospitalization, intensive care unit
(ICU)/invasive ventilation, sepsis, cytokine dysregulation,
multiorgan failure and/or death (16). Reasons for this
higher risk are multifactorial (Table 1). First, hematologic
malignancies are directly tied to an immunocompromised status
due to humoral and cellular immune dysfunction (17–20).
Second, a large number of therapies employed for hematologic
malignancies are highly immunosuppressive, even more than
standard chemotherapies used for solid tumors. Examples
include myelosuppressive chemotherapy for acute leukemia,
conditioning regimens for hematopoietic stem cell transplant
(HSCT), prolonged use of steroids, lymphodepleting agents
used for chimeric antigen receptor (CAR) T-cell therapy, and
radiation therapy. Third, a high proportion of patients with active
hematologic malignancies, especially when on active therapy,
are constantly exposed to medical facilities and healthcare staff,
which puts them at higher exposure risk. This includes frequent
travels and visits for outpatient infusional therapies, laboratory

checks or transfusions, longer infusions of certain therapies
(anti-CD20 antibodies in lymphoma, daratumumab in multiple
myeloma), and the need for hospitalization for other therapies
(e.g., induction chemotherapy for acute leukemia). Fourth, many
hematologic malignancies occur in older patients (median ages
in multiple myeloma, CLL, acute myeloid leukemia, follicular
lymphoma, and diffuse large B-cell lymphoma are 72, 70,
68, 65, and 64 years, respectively) with multiple coexisting
comorbidities (cardiovascular and lung diseases), which are
among the highest risk factors for COVID-19-related morbidity
and mortality in large Chinese cohorts (4, 15, 21). Fifth, clinical
care for patients with hematologic malignancies requires
more medical resources (equipment and staff) than for other
patients due to the high risk nature of their diseases such
as the need for frequent and close monitoring, transfusion
burden, high rate of elective and urgent hospital admissions,
and crucial need for clinical trial enrollment. Therefore, as
clusters of outbreaks can overwhelm the healthcare system
capacity, the detrimental effect may be even more pronounced
on patients with hematologic malignancies. Sixth and last, many
patients with hematologic malignancies may be directly harmed
by travel restrictions affecting delivery of crucial therapies
such as stem cells and CAR products from unrelated donors
(22, 23). On the other hand, a large proportion of patients
with hematologic malignancies, especially acute leukemia or
transplant candidates/recipients have been adopting social
distancing and preventative precautious measures regardless of
the COVID-19 crisis, whichmay have reduced their exposure risk
of COVID-19. Moreover, some targeted therapies commonly
used in hematologic malignancies, particularly JAK-STAT
pathway inhibitors and bruton tyrosine kinase inhibitors (e.g.,
ibrutinib), have been postulated to have a protective effect
in decreasing virus infectivity (24) and abrogating cytokine-
mediated lung injury, respectively (25). Clinical trials are
ongoing to further investigate the role of such therapies in
patients with COVID-19 (NCT04375397, NCT04320277).

COVID-19 IN PATIENTS WITH
HEMATOLOGIC MALIGNANCIES

To our knowledge, at the time of writing this review, only 10
cases of COVID-19 have been published to date in the English
literature in patients with hematologic malignancies. Details
are summarized in Table 2 (23, 25–27). Data on screening for
COVID-19 in hematologic malignancies are limited. A Chinese
cross-sectional survey aimed to evaluate the incidence and
outcome of COVID-19 among patients with chronic myeloid
leukemia (CML) conducted over 1 week in February 2020 (23).
Among 392 patients who took the survey, 12 patients were
suspected to have COVID-19 infection based on their clinical
presentation, but only 2 cases were confirmed using PCR and
CT for an incidence of 0.6%. When the authors classified
patients according to CML response milestones (according to
the 2020 European Leukemia Net guidelines), the incidence
of COVID-19 was 0.3% (1 of 299) among patients with
optimal response as opposed to 2% (1 of 50) among patients
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TABLE 1 | Unique considerations for COVID-19 in patients with hematologic

malignancies.

Patient-related factors

Older age patients

Multiple coexisting comorbidities (cardiovascular and lung diseases)

Disease-related factors

Immunocompromised status due to humoral and cellular immune

dysfunction

Treatment-related factors

More frequent use of immunosuppressive therapies

Higher exposure risk to medical facilities and staff (frequent travels/medical

visits, transfusions, and the need for hospitalization for certain therapies)

System-related factors

Overwhelmed healthcare system and complexity of care

Potential impact of travel restrictions affecting delivery of crucial therapies

such as stem cells and CAR T-cells from unrelated donors

Decreased availability or access to crucial and immediate clinical trials (travel

restrictions, trials placed on hold, research team understaffing or

re-assignments)

CAR, chimeric antigen receptor.

with poor response raising the possibility that good disease
control may be related to a lower incidence of COVID-19
(23). These findings must be interpreted with caution given
that the relative contribution of CML diagnosis and therapy
(imatinib) as a risk-factor may be questionable. The patient
with “suboptimal response” to CML therapy was 89 years old
with cardiac history, in hematologic remission and only residual
molecular disease on Imatinib and succumbed from COVID-
19 due to multiorgan failure including myocardial damage.
In addition, tyrosine kinase inhibitors (e.g., imatinib) are not
myelosuppressive and not known to increase infectious risks
especially in the setting of hematologic and cytogenetic remission
such as this case.

The American Society of Hematology Research Collaborative
has recently launched a COVID-19 international registry for
patients with hematologic malignancies (28). By April 23rd,
2020, there were 64 patients reported to have COVID-19.
Underlying malignancies were as follows: acute leukemia
(31%), non-Hodgkin lymphoma (22%), chronic lymphocytic
leukemias (16%), myeloproliferative neoplasms (16), plasma
cell neoplasms (11%), and Hodgkin’s lymphoma (6%).
Sixty percent of these patients were undergoing active
anticancer therapy at the time of COVID-19; among whom
60% were undergoing induction therapy, and 20% were on
maintenance/consolidation therapy.

An age-matched comparison of patients with cancer (n =

105) and without cancer (n = 536) was presented at the
American Association for Cancer Research 2020 virtual meeting
(29). Multivariable analysis showed that cancer diagnosis was
associated with higher rates of death and ICU (intensive care
unit) admissions from COVID-19. Patients with hematologic
malignancies had the highest severity of symptoms (6 out 9
patients [66.67%]) high risk of ICU admission or use of invasive
mechanical ventilation [4 and 2 out 9 patients, respectively [44.4
and 22.2%] and death rate (3 out 9 patients [33%]). Although
authors reported that 4 out of the 9 patients with hematologic

malignancies had severe immunosuppression, no information
was provided on disease status or treatment details. Therefore,
the small sample number and lack of detailed clinical data on
patients with hematologic malignancies limit generalizability of
this observation.

SCREENING STRATEGIES

The COVID-19 pandemic has added another major burden
to cancer care of all specialty’s units, especially hematology
and HSCT units. Due to limited testing and screening, little
information is known about the incidence of asymptomatic
carriers, who maybe as contagious as symptomatic patients (30–
32). Efforts have been made to triage COVID-19 patients to
separate units in order to avoid inpatient cross-contamination
to other patients, thus, highlighting the importance of screening
strategies. Additional testing strategies have been rapidly
developed to better identify patients with COVID-19. Since
SARS-CoV-2 is an RNA-virus, reverse transcriptase-polymerase
chain reaction (RT-PCR) is the obvious diagnostic test to confirm
virus shedding (33). However, the sub-optimal sensitivity has
limited its reliability in clinical practice. The test can be obtained
from nasopharyngeal swabs or sputum samples, and results are
generally reported within 4–48 h (34). Nasopharyngeal swabs
may lack sensitivity after the first week of COVID-19 infection
due to the natural history of the disease. The virus was shown
to transiently infect the upper respiratory system until it spreads
more toward the lungs. This is extrapolated from data showing a
higher rate of RT-PCR positivity > 90% on days 1–3 of illness, vs.
< 80% at day 6, and vs. < 50% after day 14 (35). False negatives
can also be attributed to the poor quality of the specimen and
type of specimen obtained (36). Another appealing screening
strategy is serologic testing of SARS-CoV-2 antibodies to identify
persons that are potentially “immune” and thus at minimal risk of
contagion or complications, both at individual and public health
levels (37). This also has important therapeutic implications
by identifying potential candidates to donate blood for the
preparation of convalescent plasma, an investigational product
in the management of severely ill COVID-19 patients (38).

Due to limitations associated with PCR testing, including
limited testing capacity, high false-negative rates, and delays
in having the results, chest imaging has emerged as a potent
diagnostic tool for COVID-19. Chest radiographs have a low
sensitivity in early or mild disease and therefore, are not ideal
screening tools. In one study, twenty percent of patients had
normal chest radiographs at any point during the course of
their illness (39). In contrast, chest computed tomography
(CT) scan is more sensitive, especially in the presence of
typical findings, such as bilateral, peripheral patchy ground-glass
opacities, predominantly in the lower lobes (33, 40, 41). Although
the American College of Radiology recommends that chest
CT scan be reserved for symptomatic patients with suspected
COVID-19-related complications and discourages its use for
screening purposes, these guidelines may not be applicable
for patients with cancer, especially hematologic malignancies
undergoing immunosuppressive therapies (42). Since many
radiological findings may be seen with other etiologies such
as opportunistic infections or drug-induced pneumonitis, the
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TABLE 2 | Published cases of COVID-19 in patients with hematologic malignancies.

Disease Demographics/Therapy Presentation Infectious course Treatment Outcome Reference

MM 60/M/thalidomide

maintenance

Hypoxia

Chest pain

+ PCR

CT: GGO

Nasal O2 support

High IL-6

Antibiotics, steroids,

and tocilizumab

Recovery (26)

CLL 39/M/chlorambucil Fever/respiratory

symptoms

+ PCR

CT: GGO

Non-invasive ventilation IVIG, steroids,

nebulized

alpha-interferon.

Also resumed

Reduced

dose chlorambucil

Recovery (27)

WM Pt 1: 65/M/ibrutinib

Pt 2: 61/M/ibrutinib

Pt 3: 72/F/ibrutinib

Pt 4: 67/F/ibrutinib

Pt 5: 71/M/ibrutinib

Pt 6: 58/M/ibrutinib

Pt 1–5:

Fever/respiratory

symptoms

Pt 6: Fever/respiratory

symptoms

CT: GGO

Pt 1: ICU Pt 2:

Not hospitalized

Pt 3: Not hospitalized

Pt 4: Not hospitalized

Pt 5: Not hospitalized

Pt 6: Mechanical

ventilation and intensive

care unit

Pt 1: HCQ+AZ

Pt 2–5: None

Pt 6: HCQ+AZ+ IVIG,

and tocilizumab

All pts

continued Ibrutinib

Pt 1: Improved

Pt 2: Recovery

Pt 3: Recovery

Pt 4: Recovery

Pt 5: Recovery

Pt 6: Improved

(25)

CML Pt 1: 89/F/Imatinib

Pt 2: 47/M/HQP1351

Pt 1: Respiratory

symptoms + CT: GGO

Pt 2: Fever/respiratory

symptoms + PCR

CT: negative

Pt 1: Respiratory and

renal failure. Myocardial

damage

Pt 2: Hospitalized.

Mild course

NA Pt 1: Death 3 days

after hospitalization

Pt 2: Recovery

(23)

MM, multiple myeloma; CLL, chronic lymphocytic leukemia; WM, Waldenstrommacroglobulinemia; CML, chronic myeloid leukemia; M, male; F, female; PCR, polymerase-chain reaction;

CT, computed tomography; GGO, ground-glass opacities; IVIG, intravenous immunoglobulin; O2, oxygen; HCQ, hydroxychloroquine; AZ, azythromycine.

TABLE 3 | Screening strategies for COVID-19 patients.

Screening Test Advantages Limitations

RT-PCR Ease of testing

Standardized

High false negative rates

Limited accessibility

Delay in test result

Chest-X Ray Low cost

Easy access

Rapid result

Low sensitivity

Radiation exposure

Chest CT scan High sensitivity

Great tool for AI techniques

Rapid result

Low specificity

Radiation exposure

Antibody serology identification of immune response

Potential therapeutic implication (plasma donors)

Not standardized

Limited access

role of radiologists is primordial in confirming diagnosis of
COVID-19 (43). Vascular thickening, and peripheral distribution
seem to be more characteristic of COVID-19 than other viral
infections (44). The concordance between PCR and CT scan
has been addressed in a Chinese cohort from the Wuhan
region of 1,014 patients with suspected COVID-19. Ninety-seven
percent of patients had positive CT scans. However, important
observations were notable. Initially, CT scan was more sensitive
in detecting early infections (88%, compared with 59% with
PCR). Moreover, CT scan was better in assessing recovery;
42% had signs of radiological improvement before RT-PCR
turned negative (33). Therefore, CT scan may have a higher
yield than PCR for diagnosis and monitoring. Similar findings
were shown by Fang et al. (40) (chest CT sensitivity of 98
vs. 71% with PCR; p < 0.001). One meta-analysis showed a
positive predictive value reaching 90.4% for chest CT scan.

Taken together, these findings support the superiority of CT
over PCR for detection and screening of COVID-19 especially
in endemic areas and for higher-risk patients such as those
with hematologic malignancies. Nonetheless, many challenges
remain before implementation to screen for asymptomatic
carriers (Table 3) (45). Artificial intelligence (AI) techniques
may increase the sensitivity and specificity of imaging tools to
screen for COVID-19 infections (46). Deep learning techniques
have been successfully used to differentiate bacterial and viral
infections with specific lung injuries, suggesting that it could be
a promising tool for the diagnosis and screening of COVID-19
(47, 48). AI can improve image acquisition through automation
of the scanning procedure and reshaping of the workflow,
which would limit the human-to-human contact and avoid
virus transmission. These techniques can also increase the
accuracy of the COVID-19 diagnosis through the delineation
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of suspected infection on chest CT scan and radiography with
different segmentation methods (49). Deep learning tools for the
detection of COVID-19 infections are currently being developed
with promising results such as the COVID-19 detection neural
network (COVNet) (50).

PUBLISHED GUIDELINES FOR COVID-19
SCREENING

Despite the paucity of current available data, several medical
societies have provided clinical practice guidelines for
management of patients with hematologic malignancies
in order to optimize therapy and limit infection risk and
complications (9, 51). Consensus recommendations have been
based on extrapolated information from other coronavirus
epidemics and expert opinions based on educated assumptions.
Social distancing, quarantine measures, clear guidance on
the importance of hand hygiene, and avoiding high-risk
exposures are recommended to halt the virus transmission (52).
Preventative strategies also include screening for COVID-19
symptoms or fever at the hospital entrance for all patients,
caregiver/visitors, and healthcare workers (53). Serial RT-PCR
screening of healthcare workers, once every week or every 2
weeks can be another proposed measure for infection control
(54). Initial evaluation of patients with hematologic malignancies
or undergoing hematopoietic cell transplantation should at least
include clinical history and examination, and laboratory and
radiological evaluation to document active respiratory viral
infections (55, 56). In patients with acute myeloid leukemia, up
to 50–75% of patients present with fever and thus are at risk of
delayed or missed diagnosis (57, 58). The European Hematology
Association recommends testing for COVID-19 with RT-PCR
in all newly diagnosed patients with acute and chronic leukemia
undergoing intensive chemotherapies and before every cycle
of therapy. No recommendations regarding the screening
role of chest CT scan have been issued (5). According to the
American Society of Hematology guidelines, screening of
patients with chronic lymphocytic leukemias presenting with
mild symptoms depends on the availability of testing and
the need to isolate those who test positive (59). Regarding
multiple myeloma, it is generally recommended to screen
all newly diagnosed patients for COVID-19 in the inpatient
and outpatient settings (60, 61). Screening is widely used and
strongly recommended before autologous and allogeneic HSCT
(6, 62).

According to the European Society for Blood and Marrow
Transplantation guidelines, COVID-19 should be ruled-
out in all patients, including asymptomatic ones, before
undergoing conditioning chemotherapy (62). Additionally,
patients planned to receive CAR-T cell therapy or HSCT
should abide by home isolation for at least 2 weeks before
lymphodepleting or conditioning chemotherapy. In case of
close exposure to a patient with confirmed COVID-19, any
elective therapy should be deferred for at least 2–3 weeks
before undergoing a new RT-PCR screening to confirm
negativity (62, 63). As for donors, COVID-19 positive

patients should be excluded while those in contact should
be isolated for 4 weeks unless the patient is asymptomatic
and the procedure is urgent, then it can be considered after
negative testing.

Screening measures in the pre-CAR T cell phase should
include screening for symptoms for all patients before apheresis
and CAR T cell infusion. RT-PCR testing is considered
within 48–72 h before apheresis and recommended within
48–72 h before lymphodepleting chemotherapy and 7 days
within CAR T cell infusion. A repeat evaluation of RT-
PCR within 72 h of CAR T cell infusion to detect interim
COVID-19 infection and perform serologic testing for COVID-
19 seroconversion once available (22, 64). That being said,
stem cell and CAR-T cell recipient patients residing in
high-endemic areas or who have been in contact with
suspected COVID-19 patients should undergo RT-PCR testing
while those who tested positive should undergo a CT scan
and oxygen need evaluation (62). The American Society
for Transplantation and Cellular Therapy recommends that
asymptomatic patients whose cellular therapy cannot be delayed
should be tested within 72 h before their admission or
initiation of the conditioning regimen. Also, asymptomatic
allogenic donors should be screened 72 h before collection
while autologous donors with chemo-mobilization should be
screened 72 h before chemotherapy and cell collection and
those on GCSF and plerixafor on the day of GCSF start,
respectively (6).

Last, blood transfusions should be carefully monitored
during this outbreak. Blood donors should be screened
for any suspicious signs or close exposure to COVID-
19 present in at least the past 2 weeks (65). The WHO
has issued specific guidelines on maintenance and
safety of blood products supply during the COVID-19
pandemic (66).

CONCLUSION

Patients with hematologic malignancies are thought to be
particularly vulnerable for severe illness from COVID-19. The
outbreak has added a large burden to the complexity of cancer
care in hematologic malignancies on many aspects. Balancing
the management of COVID-19 and its complications and
management of cancer is particularly challenging in patients
with hematologic malignancies, especially when treating with
curative intent, which is often the case in many blood cancers.
In the context of limited available scientific data in a such
young and rapidly evolving field, physicians are left for now
with their clinical judgement, educated guesses and consensual
expert opinions (Figure 1). Until the advent of effective anti-viral
therapy or vaccines, preventative behavioral strategy remains
our best model to help protect our patients. Screening for
asymptomatic carriers and immune persons has a central role in
optimizing mitigation strategy to maintain safety at individual
and public health levels. Despite the availability of RT-PCR,
antibody serology, and CT scan as complementary diagnostic
tools, several limitations exist in implementing a cost-effective
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FIGURE 1 | (A) Proposed screening strategy for COVID-19 in patients with hematological malignancies. (B) CT-scan is a sensitive tool, but its specificity for the

diagnosis of COVID-19 is around 37%, according to recent meta-analysis. It has not been evaluated in patients with hematological malignancies but could be even

lower due to a higher rate of infection caused by immune suppression. (C) COVID-19 pneumonia in a 58-year-old patient with diffuse B lymphoma treated with R

(Continued)
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FIGURE 1 | ACVBP. Symptoms were cough and fever. SARS-CoV-2 rt-PCR was positive. On CT-scan, the CT score CORADS was 5. The axial CT image showed

ordinary COVID-19 pneumonia with multiple regions of subpleural GGO (Ground Glass opacity) with superimposed inter and intralobular septal thickening. (D)

Pneumocystis in a 58-year-old patient followed for acute leukemia. The clinical exam revealed a cough and fever. The patient was lymphopenic. CT-scan showed

diffused ground-glass opacities. SARS-CoV-2 rt-PCR was negative. The final diagnosis was pneumocystis. (E) Diffuse pulmonary condensation in a 55-year-old

patient with AML in febrile aplasia. SARS-CoV-2 rt-PCR was negative. A positive aspergillus antigenemia was confirmed by culture of bronchoalveolar lavage fluid.

screening strategy that can be applicable on a large scale. A
tiered approach targeting patients at pre-defined higher risk
(pre-conditioning or other intensive chemotherapy regimens,
before prolonged use of steroids or anti-CD20 antibodies etc.)
may be a better way and warrants more exploration. Despite
the numerous difficulties during the pandemic, the oncology
community has been very adaptive in adjusting to the new
challenges. In addition, scientific and technological progress
is evolving rapidly, which gives hope to the oncology, and
international communities.
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Purpose: In this study, we developed and validated a radiomics nomogram by combining

the radiomic features extracted from 18F-fluorodeoxyglucose positron emission

tomography/computed tomography (18F-FDG PET/CT) images and clinicopathological

factors to evaluate the overall survival (OS) of patients with non-small cell lung

cancer (NSCLC).

Patients and Methods: A total of 315 consecutive patients with NSCLC (221 in the

training cohort and 94 in the validation cohort) were enrolled in this study. A total of 840

radiomic features were extracted from the CT and PET images. Three radiomic scores

(rad-scores) were calculated using the least absolute shrinkage and selection operator

(LASSO) Cox regression based on subsets of CT, PET, and PET/CT radiomic features.

A multivariate Cox regression analysis was performed for each rad-score combined with

clinicopathological factors to determine the independent risk factors. The OS nomogram

was constructed based on the PET/CT rad-score and independent clinicopathological

factors. Validation and calibration were conducted to evaluate the performance of the

model in the training and validation cohorts, respectively.

Results: A total of 144 (45.71%) women and 171 (54.29%) men with NSCLC

were enrolled in this study. The PET/CT rad-score combined with the clinical model

had the best C-index (0.776 and 0.789 for the training and validation cohorts,

respectively). Distant metastasis, stage, carcinoembryonic antigen (CEA), and targeted

therapy were independent risk factors for patients with NSCLC. The validation curve
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showed that the OS nomogram had a strong predictive power in patients’ survival. The

calibration curve showed that the predicted survival time was significantly close to the

observed one.

Conclusion: A radiomic nomogram based on 18F-FDG PET/CT rad-score and

clinicopathological factors had good predictive performance for the survival outcome,

offering feasible, and practical guidance for individualized management of patients

with NSCLC.

Keywords: non-small cell lung cancer, PET/CT, radiomics, survival outcome, risk stratification

INTRODUCTION

Lung cancer is a malignant tumor with the highest morbidity and
mortality worldwide (1). Non-small cell lung cancer (NSCLC) is
the most common pathological type of lung cancer, accounting
for ∼85% of all patients with lung cancer (1, 2). Considering
that early signs and symptoms of NSCLC do not manifest in
some patients, ∼70% of patients have developed metastasis at
the time of diagnosis and thus have lost the opportunity for
surgical treatment (3, 4). The tumor-node-metastasis (TNM)
staging system is currently the most commonly used tumor
staging system worldwide and is considered to be the most
valuable method for assessing the prognosis of malignant tumors
(5–7). However, the TNM staging system still has several
limitations when used to evaluate lung cancer prognosis in
clinical practice. There are notable differences in the prognosis
of tumors in the same stage, indicating that the TNM staging
system cannot be used alone to fully evaluate the prognosis
of patients with NSCLC. Thus, a comprehensive analysis of
the TNM staging system in combination with other tumor
biological characteristics that affect the prognosis of patients
with NSCLC should be performed (8, 9). Therefore, determining
additional effective prognostic indicators other than the TNM
staging system, evaluating patients’ responses to treatment at
an early stage, and predicting the overall survival (OS) of
patients are considered important to achieve individualized
medical treatments.

With the development of genomic biology and technology,
survival-related genomic characteristics have been included
in the prognostic evaluation of several diseases, thereby
improving the accuracy of the prognostic evaluation of several
patients. However, the main limitation of these invasive
technologies is that they cannot capture comprehensive
information on the spatiotemporal heterogeneity of
tumors (10–13). Therefore, an effective method is urgently
required to comprehensively quantify the spatiotemporal
heterogeneity of tumors and to evaluate the prognosis of
several diseases. 18F-fluorodeoxyglucose positron emission

Abbreviations: C-index, Harrell’s concordance index; CEA, carcinoembryonic

antigen; HR, hazard ratio; MTV, metabolic tumor volume; NSCLC, non-small

cell lung cancer; NOS, not otherwise specified; PET/CT, positron emission

tomography/computed tomography; rad-score, radiomic score; SUVmax,

maximal standard uptake value; SUVmean, mean standard uptake value; TLG,

total lesion glycolysis; TNM, tumor-node-metastasis.

tomography/computed tomography (18F-FDG PET/CT) is
an important imaging method widely used for functional
metabolic and anatomical/morphological imaging of various
types of malignant tumors and metastatic lesions. 18F-FDG
PET/CT provides not only intuitive imaging differences through
image comparisons, but also several metabolic parameters to
distinguish metabolically active or inactive tumor tissues. In
particular, PET/CT has been widely used in clinical practice
for the establishment of diagnosis, staging, efficacy monitoring,
and prognostic evaluation of NSCLC (14–16). Several studies
have confirmed that the FDG uptake of primary tumors is an
independent risk factor for patients with early NSCLC (17, 18),
but its application value in the prognostic evaluation of NSCLC
is still controversial (19, 20). As an emerging and promising
image analysis tool, radiomics is a non-invasive quantitative
research method that can be used to convert medical images
into mineable data for the identification of tumor heterogeneity.
The integration of genetic pathology and imaging multimodality
could improve the non-invasive quantitative analysis of tumor
spatiotemporal heterogeneity and microenvironment (21, 22).
Studies have shown that radiomics may have good predictive
prognostic performance and decision support in oncology
(23, 24). In previous studies, the texture characteristics or
radiomics based on 18F-FDG PET/CT have been used to predict
the EGFR and KRAS mutation status in patients with NSCLC,
to evaluate NSCLC radiation tumor response, to predict the
prognosis of patients with NSCLC after stereotactic body
radiotherapy, and to stratify the risk of patients with poor
prognosis. The results of these studies showed that the PET/CT-
based texture characteristics or radiomics had good classification
or predictive prognostic performance. Radiomics based on
PET/CTmay provide complementary information for predicting
survival in patients with lung cancer (25–29). A nomogram is
based on multivariate regression analysis and includes important
influencing factors related to tumor prognosis. By constructing
an intuitive graph using a statistical predictive model, the
nomogram provides the numerical probability of a clinical
event. The nomogram has become the focus of interest in cancer
research in recent years and is considered a useful tool for
quantifying risk (30–32).

Therefore, this study primarily aimed to construct a predictive
model of the OS nomogram based on the radiomic features
of PET/CT combined with the clinicopathological factors to
predict prognosis and risk stratification as well as to determine
the role of radiomic features in predicting the prognosis of
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FIGURE 1 | Flowchart of patient enrollment, eligibility, and exclusion criteria of the dataset.

NSCLC. To improve the prognostic assessment of patients with
NSCLC, advancements in the areas of individualized treatment
and precision medicine are necessary.

PATIENTS AND METHODS

Patients and Clinicopathological Data
The institutional review board of Jinling Hospital, Medical
School of Nanjing University approved this retrospective study
and waived the need to obtain informed consent from the
patients. This was a retrospective study, and the medical
records of patients between October 2007 to August 2016 were
reviewed. The medical records were searched consecutively,
and 343 patients who had a lung tumor as assessed by
histopathological analysis were identified. Patients with the
following characteristics were included in the study: (a) patients
undergoing PET/CT examination within 1 month before surgery
or biopsy, (b) patients who did not receive antitumor treatment
before PET/CT examination, and (c) patients with histologically
confirmed NSCLC through surgery or biopsy. However, patients
with the following characteristics were excluded: (a) patients with
partial loss of PET or CT images (n = 15); (b) patients with
diseases not related to NSCLC (n = 2), (c) patients with unclear
tumor boundaries that could not be accurately delineated (n =

9), and (d) patients with metastases in the lung (n= 2). The final
cohort included 315 patients (Figure 1). We randomly divided
the patients into the training cohort (n= 221) and the validation

cohort (n = 94) with a 7:3 ratio. Clinicopathological data were
obtained from the patients’ medical records, which included age,
sex, family history, smoking history, histological grade, lymph
node metastasis, distant metastasis, and TNM stage (defined
according to the eighth edition of the TNM classification and
staging system by the American Joint Committee on Cancer),
histologic type (adenocarcinoma, squamous cell carcinoma, or
not otherwise specified [nos]), treatment methods (surgery,
chemotherapy, targeted therapy, and radiotherapy), thyroid
transcription factor-1 (TTF-1) level, carcinoembryonic antigen
(CEA) level, tumor location, and PET/CT metabolic parameters
were obtained (Table 1). The survival information of these
patients was obtained through telephone calls. Follow-up data
were collected from October 2007 to January 2019. The mean
and median follow-up periods were 37.99 (95% confidence
interval [CI], 35.464–40.522) and 36.00 (range, 20.00–52.00)
months, respectively. The endpoint of this study was OS, which
was defined as the period from the date of 18F-FDG PET/CT
examination to the date of telephone follow-up or the date of the
patient’s death.

PET/CT Image Acquisition and Analysis
Patients underwent PET/CT imaging (Biography 16, Siemens,
Erlangen, Germany) using 18F-FDG synthesized by the Canadian
EBCO TR19 medical cyclotron and chemical synthesis system.
All PET/CT acquisitions were carried out in free breathing
mode, and no steps were taken to correct for motion. The
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TABLE 1 | Clinicopathological factors of patients in the training and validation

cohorts.

Characteristic Training cohort

N = 221

Validation cohort

N = 94

P-value

Gender - no. (%) 1.000

Female 101 (46.0) 43 (46.0)

Male 120 (54.0) 51 (54.0)

Age-yr 62 (54.00-69.00) 64 (55.25-70.00) 0.672

Family history- no. (%) 0.487

No 211 (95.0) 92 (98.0)

Yes 10 (5.0) 2 (2.0)

T stage–no. (%) 0.879

T1 74 (33.5) 28 (29.8)

T2 74 (33.5) 34 (36.2)

T3 24 (10.9) 9 (9.6)

T4 49 (22.2) 23 (24.5)

N stage- no. (%) 0.630

N0 85 (38.5) 37 (39.4)

N1 33 (14.9) 9 (9.6)

N2 55 (24.9) 25 (26.6)

N3 48 (21.7) 23 (24.5)

M stage- no. (%) 0.439

M0 118 (53.4) 45 (47.9)

M1 103 (46.6) 49 (52.1)

Histologic type- no. (%) 0.445

Adenocarcinoma 210 (95.0) 92 (97.9)

Squamous cell carcinoma 9 (4.1) 2 (2.1)

NOS 2 (0.9) 0 (0.0)

Surgery- no. (%) 0.054

No 133 (60.2) 68 (72.3)

Yes 88 (39.8) 26 (27.7)

Chemotherapy- no. (%) 1.000

No 114 (51.6) 45 (47.9)

Yes 107 (48.4) 92 (97.9)

Targeted therapy- no. (%) 0.584

No 168 (76.0) 68 (72.3)

Yes 53 (24.0) 26 (27.7)

Radiotherapy- no. (%) 0.352

No 202 (91.4) 82 (87.2)

Yes 19 (8.6) 12 (12.8)

Smoking status- no. (%) 0.955

No 141 (64.0) 61 (65.0)

Yes 80 (36.0) 33 (35.0)

Histologic grade- no. (%) 0.982

Poorly differentiated 81 (37.0) 34 (36.0)

Moderately differentiated 102 (46.0) 43 (46.0)

Highly differentiated 38 (17.0) 17 (18.0)

Lymph node metastasis- no. (%) 0.663

No 85 (38.0) 33 (35.0)

Yes 136 (62.0) 61 (65.0)

Distant metastasis- no. (%) 0.380

No 110 (50.0) 41 (44.0)

Yes 111 (50.0) 53 (56.0)

(Continued)

TABLE 1 | Continued

Characteristic Training cohort

N = 221

Validation cohort

N = 94

P-value

Stage- no. (%) 0.847

I 52 (23.5) 22 (23.4)

II 18 (8.1) 7 (7.4)

III 36 (16.3) 12 (12.8)

IV 115 (52.0) 53 (56.4)

TTF-1- no. (%) 0.239

Negative 107 (48.0) 38 (40.0)

Positive 114 (52.0) 56 (60.0)

CEA 4.55 (2.30-17.50) 7.55 (3.33-37.55) 0.023

SUVmax 7.32 (4.85-10.04) 6.80 (4.07-9.67) 0.358

SUVmean 4.42 (2.96-6.48) 4.07 (2.51-6.12) 0.337

TLG(g) 31.12 (15.67-83.55) 32.05 (16.64-67.81) 0.812

MTV(cm3 ) 8.17 (4.93-16.33) 9.01 (5.14-18.76) 0.733

CEA, carcinoembryonic antigen; MTV, metabolic tumor volume; NOS, not otherwise

specified; SUVmax, maximal standard uptake value; SUVmean, mean standard uptake

value; TTF-1, thyroid transcription factor-1; TLG, total lesion glycolysis.

radiochemical purity was >95%. All acquisitions were carried
out in a free-breathing mode. The patients fasted for 6–8 h
before undergoing the scan. Patients were intravenously injected
with 18F-FDG (5.55 MBq/kg) and underwent a whole-body
PET/CT scan of the skull base to the upper part of the thigh,
and the data included CT and PET scans. The CT scanning
parameters were as follows: power, 120 kV; current, 140 mAs;
slice thickness and spacing, 5mm; matrix, 512×512; and tube
rotation speed, 0.8 s/r. The PET acquisition parameters were
as follows: three-dimensional at 3 min/bed; iterative algorithm;
iterations, 4; subset, 8; resolution, 4.1mm lateral, 4.6mm axial;
matrix, 128 × 128; voxel size, 5.3 × 5.3 × 5.3 mm3. These
settings were the same for all included patients. Images were
reconstructed using an iterative reconstruction method resulting
in CT, PET, and PET/CT fusion images that were transferred
to a post-processing workstation. We used Microsoft Viewer
software (version VB10, Siemens) to calculate the metabolic
parameters on the PET images. PET images were first converted
to SUV images in the software without other processingmethods.
Then, the 3-dimensional region of interest (ROI) was manually
delineated by a radiologist (W.Q.G.) to calculate the maximum
standard uptake value (SUVmax, with a threshold set to 40%),
mean standard uptake value (SUVmean), and metabolic tumor
volume (MTV). Subsequently, the total lesion glycolysis (TLG)
(TLG=SUVmean×MTV) was calculated.

Tumor Segmentation
Our study followed and adhered to the Image Biomarker
Standardization Initiative (IBSI) guidelines (33), and the software
(Radiomics, Frontier, Siemens) used was IBSI-compliant. A
volume of interest(VOI)was drawn semiautomatically around
the tumor by a chest radiologist (Y.B., 9 years of experience) in
the lung diagnosis using the radiomics prototype (Radiomics,
Frontier, Siemens) and confirmed by another chest radiologist
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(W.Q.G., 5 years of experience). Both radiologists were blinded
to the patients’ clinical information. Firstly, we import CT
images into radiomics prototype software (Radiomics, Frontier,
Siemens). In the segmentation module, a few segmentation
tools were available for semiautomatic delineation of the tumor
in three dimensions. The segmentation was semiautomatically
produced by drawing a line across the boundary of the tumor,
then, the tool automatically find the neighboring voxels in 3D
space with the same gray level through an automatic algorithm,
and this is a Random Walker-based lesion segmentation for
solid and subsolid lung lesions (34). The first step is to obtain
a superset of voxels that may be part of the lesion. This can be
implemented efficiently as a 3 D region growing starting from
the center of the ROI. Then the thresholds can be fixed for
lesions or determined adaptively from an analysis of the density
distribution in the ROI. The region growing results in complete
lesion and additionally parts of the attached vasculature. A
morphological opening operation is applied to remove the vessels
finally (35). If the segmentation wasn’t right, the operators could
correct it manually in the 3D domain using the radiomics
prototype. The algorithm aimed at K-way image segmentation
with given seeds indicating regions of the image belonging to
the K objects(the objects to be segmented). Each seed specifies
a location with a user-defined label. The algorithm labels an
unseeded pixel by resolving the question: Given a random walker
starting at this location, what is the probability that it first
reaches each of the K seed points? It will be shown that this
calculation may be performed exactly without the simulation
of a random walk. By performing this calculation, we assign a
K-tuple vector to each pixel that specifies the probability that
a random walker starting from each un-seeded pixel will first
reach each of the K seed points. A final segmentation may be
derived from these K-tuples by selecting for each pixel the most
probable seed destination for a random walker. By biasing the
random walker to avoid crossing sharp intensity gradients, a
quality segmentation is obtained that respects object boundaries
(including weak boundaries) (36). And then in the radiomics
module to click the computer features tool to calculate the
CT radiomic features, and export the CT Masks+STL at the
same time. Then we import the PET image into the software.
If the tumor on the PET image is not at the same slice as the
CT, we manually adjust the slice of PET image. Then, the CT
Masks+STLwill be imported into the software to cover the tumor
on the PET image. If the CT Masks+STL does not cover the
tumor, two radiologists(Y.B; W.QG) manually adjusted the CT
Masks+STL through edit tools and reached a consensus to ensure
that the CT Masks+STL completely covered the tumor lesions
on the PET image as much as possible, and then use the same
method to extract PET radiomic features. So, the 3D ROI (VOI)
was delineated on CT image, and could be used by the PET image
when the PET image were transformed to the CT image space
using the transformation matrix obtained in PET-CT fusion.

Radiomic Feature Extraction
The Radiomic features from volumes of interest were then
computed with both CT and PET images on a prototype
that interfaces with the PyRadiomics library in manner similar

to the 3D slicer’s Radiomics plugin (34). The PyRadiomics
library provides a variety of options to customize image pre-
processing before feature extraction. Laplacians of Gaussian
filtering, wavelet filtering, and non-linear intensity transforms
were selected for image pre-processing. The feature classes
contain 162 first-order features, 12 shape features, and 666
texture features. We also extracted numerous features (e.g.,
wavelets) that have not yet been standardized or validated by the
IBSI. As a result, a total of 840 radiomic features were extracted
from the CT and PET images using the software (Figure 2). The
IBSI guidelines for reporting all necessary details are provided in
the Supplemental Material.

Feature Selection and Radiomics
Signature Construction
Considering the redundancy of the features and to reduce
model overfitting, feature engineering was performed using
two methods, Spearman correlation test and the least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis. The Spearman correlation test was initially used to
reduce feature redundancy, and a cutoff value of 0.9 was adopted.
A ten-fold cross-validation LASSO Cox regression method,
which is suitable for the regression of high-dimensional data
in survival analysis, was conducted to select the most useful
predictive features from the training cohort. The specified step
of the LASSO Cox analysis included determining the optimized
hyperparameter λ, which ensured that the model had the least
deviance. Features with non-zero coefficients were preserved.
The rad-score was calculated via a linear combination of selected
features weighted by their respective coefficients. Three rad-
scores including the CT, PET, and PET/CT rad-scores for each
patient were calculated using PET, CT, and PET/CT features,
respectively (Figure 2).

Clinicopathological Factor Analysis
Clinicopathological factors including PET/CT metabolic
parameters were analyzed using a univariate Cox proportional
hazards regression analysis. Factors with p < 0.05 were
analyzed using the Kaplan–Meier curve and log-rank test.
These significant factors were combined into a multivariate Cox
proportional hazards regression analysis to identify independent
risk factors.

Construction and Validation of OS
Nomogram
Before constructing the OS nomogram, the performance of each
rad-score was evaluated using the concordance index (C-index).
The largest rad-score integrated with the independent factors was
used to construct the nomogram. The prognostic ability of the
nomogram was evaluated in the training cohort and validated
in the validation cohort. The discrimination performance of
the nomogram was assessed using Harrell’s C-index. The C-
index ranges between 0.5 and 1.0, with 0.5 indicating a random
distribution of data and 1.0 indicating the outcome of the model
perfectly predicting the observed survival information. The
calibration curves of the nomogram were subsequently drawn
for the patients’ 5-year OS. The calibration curves were used
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FIGURE 2 | The workflow in developing a radiomic overall survival nomogram. Computed tomography (CT) and positron emission tomography (PET) images were

segmented semiautomatically using the Siemens radiomics prototype. Features including histogram features, shape features, texture features, and wavelet features

were extracted from CT and PET images using the software. Three rad-scores were calculated using the least absolute shrinkage and selection operator Cox

regression based on subsets of CT, PET, and PET/CT radiomic features. The predictive ability of CT, PET, and PET/CT rad-scores on overall patient survival was

evaluated. The overall survival nomogram was constructed based on the PET/CT rad-score and clinicopathological factors.

to determine the independent risk factors and also illustrated
both survival probabilities predicted by the nomogram and the
observed probabilities.

Statistical Analysis
R software (version 3.5.0, www.Rproject.org) was used for
statistical analysis in this study. LASSO was conducted using
the “glmnet” package, while the “hdnom” package was used for
the survival analysis. All statistical tests were two-sided, with
a significance level of 0.05. Finally, a decision curve analysis
was conducted using the “rmda” package to determine the
clinical usefulness of radiomics nomogram by quantifying the net
benefits at different threshold probabilities (37).

RESULTS

Clinical Characteristics of Patients
The study patients were divided into two groups: the training
cohort with 221 patients (120 men and 101 women) and a
validation cohort with 94 patients (51 men and 43 women).
There were no significant differences in sex, family history,
smoking status, histological grade, lymph node metastasis,
distantmetastasis, TNM stage, and TTF-1 level (p= 0.054–1.000)
between the training and validation cohorts. CEA levels were
significantly different between the training and validation cohorts
(p = 0.023). Other clinicopathological characteristics are shown
in Table 1.

Establishment of Multivariate Cox
Proportional Hazards Model
Before constructing the final model, we used a multivariate Cox
regression analysis to test the hazard ratio (HR) of each parameter
and to determine its significance in the probability of death.
The results were as follows: distant metastasis (HR, 1.94 [95%
CI, 1.17–3.21]), (HR, 1.71 [95% CI, 0.81–3.61]); stage (HR, 3.24

TABLE 2 | HR analysis for the different independent clinicopathological factors for

clinical model.

Training cohort Validation cohort

HR p value 95% CI for HR HR p value 95% CI for HR

Lower Upper Lower Upper

Distant metastasis 1.94 0.010 1.17 3.21 1.71 0.162 0.81 3.61

Stage 3.24 <0.001 1.74 6.02 8.34 0.001 2.28 30.56

CEA 1.12 0.007 1.03 1.21 1.18 0.035 1.01 1.37

Targeted therapy 0.35 <0.001 0.22 0.56 0.41 0.023 0.19 0.89

CEA, carcinoembryonic antigen; HR, hazard ratio.

[95% CI, 1.74–6.02]), (HR, 8.34 [95% CI, 2.28–30.56]); CEA (HR,
1.12 [95% CI, 1.03–1.21]), (HR, 1.18 [95% CI, 1.01–1.37]) and
targeted therapy (HR, 0.35 [95% CI, 0.22–0.56]), (HR, 0.41 [95%
CI, 0.19–0.89]) were the independent risk factors in the training
and validation cohorts, respectively (Table 2).

Important Radiomic Features Selection
and Calculation of the Rad-Score: Model
Construction and Comparison
We performed a selection using the LASSO regression
model on the PET/CT features, as shown in Figures 3A,B.
To calculate the rad-score, the following six important
features were selected from the 840 radiomic features,
as shown in Figure 3C: PET_wavelet_HLH_glcm_Inverse
Variance, CT_wavelet_LLL_glrlm_Long Run Low Gray Level
Emphasis,PET_wavelet_LHL_firstorder_Maximum,CT_wavelet_
LHL_firstorder_Mean, PET_wavelet_HLL_firstorder_Kurtosis,
and CT_original_glszm_Small Area High Gray Level Emphasis.
Subsequently, the rad-scores were calculated. The PET/CT
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FIGURE 3 | (A,B) Radiomic features were selected using the ten-fold cross-validation least absolute shrinkage and selection operator Cox regression model in the

training cohort (number of patients: 221). The following two steps were included: determining the hyperparameter/lambda with a partial likelihood deviance as the

criterion (top row) and using the optimized/lambda (the vertical dashed line) to select features with nonzero coefficients (bottom row). (C) A total of six important

radiomic features were selected.

rad-score was determined using the following formula: Rad-
score=0.19×CT_original_glszm_SmallAreaHighGrayLevel
Emphasis+0.07×CT_wavelet_LHL_firstorder_Mean+0.017×
CT_wavelet_LLL_glrlm_LongRunLowGrayLevelEmphasis+
0.028×PET_wavelet_HLH_glcm_InverseVariance+0.104×PET_
wavelet_HLL_firstorder_Kurtosis+0.05×PET_wavelet_LHL_first
order_Maximum−0.019.

We constructed three rad-scores based on CT features, PET
features, and PET/CT combined features. The C-index of the
rad-scores is shown in Table 3. Among these three rad-scores,
the CT rad-scores were 0.685 and 0.658 in the training and
validation cohorts, respectively. The PET rad-score had a lower
C-index (0.662 and 0.611 for the training and validation cohorts,
respectively) than the CT rad-score. The PET/CT rad-score had
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TABLE 3 | Harrell’s concordance index of different modalities.

Modality Training cohort Validation cohort

C-index 95% CI C-index 95% CI

CT 0.685 (0.654–0.716) 0.658 (0.593–0.723)

PET 0.662 (0.609–0.715) 0.611 (0.540–0.682)

PET/CT 0.706 (0.663–0.749) 0.661 (0.540–0.682)

Clinical model 0.730 (0.691–0.769) 0.774 (0.707–0.841)

TNM stage 0.552 (0.504–0.072) 0.531 (0.435–0.144)

Tumor volume 0.607 (0.554–0.080) 0.644 (0.560–0.127)

TNM stage and tumor volume 0.618 (0.568–0.076) 0.635 (0.548–0.132)

Radiomics nomogram (PET/CT

combined with Clinical model)

0.776 (0.741–0.811) 0.789 (0.724–0.854)

PET/CT, positron emission tomography/computed tomography.

the best C-index (0.706 and 0.661 for the training and validation
cohorts, respectively). The C-index values of the clinical model
with clinicopathological factors were 0.730 and 0.774 in the
training and validation cohorts, respectively (Table 3). The C-
index values of the TNM stage and tumor volume (0.618
and 0.635 for the training and validation cohorts, respectively)
were significantly higher than that of the TNM stage (0.552
and 0.531, respectively) or tumor volume (0.607 and 0.644,
respectively) alone (Table 3). A rad-score was combined with the
clinicopathological factors to construct a nomogram based on
LASSO, as shown in Figure 4A. The C-index (0.776 and 0.789 for
the training and validation cohorts, respectively) of the PET/CT
rad-score combined with the clinical model was higher than
that of the clinical model without the rad-score (Table 3). The
validation of the nomogram showed that it had good predictive
performance, as shown in Figures 4B,C. The calibration curve
showed that the predicted probability was significantly close to
the actual survival time of patients, as shown in Figures 4D,E.
We also analyzed the association of PET/CT rad-score, OS
nomogram, tumor volume, stage, and clinical model with the
survival time of patients with NSCLC using a Kaplan-Meier
analysis. Figures 5A–E shows the survival probability of the
patients in the high-risk or low-risk cohorts. The results of
the log-rank test indicate significant discrimination between the
two groups.

To determine the clinical usefulness of the radiomics
nomogram model, a decision curve analysis was performed. The
decision curve analysis showed that the radiomics nomogram
had a higher overall net benefit than 4 other clinical models
(tumor volume, TNM stage, TNM stage, and tumor volume, and
clinical model) across the majority of the range of reasonable
threshold probabilities as shown in Figure 6.

DISCUSSION

In this study, we used 18F-FDG PET/CT radiomics to investigate
the prognosis of patients with NSCLC. We extracted radiomic
features from CT and PET, constructed a radiomics signature,
and calculated the rad-score. Subsequently, we compared the

predictive performance of CT, PET, and PET/CT rad-scores to
determine the prognosis of patients with NSCLC. Considering
that PET/CT has the best predictive performance among
the three modalities, we further combined the PET/CT
rad-score with the clinicopathological factors to predict
the prognosis of patients with NSCLC. In addition, we
performed Cox proportional hazards regression analysis on the
clinicopathological risk factors and selected the independent risk
factors related to the patient’s prognosis. Finally, we constructed
two prediction models based on LASSO: clinical models with
and without the rad-score. In addition, 3 other clinical models
were established (TNM stage, tumor volume, and tumor volume)
to predict the prognosis of patients with NSCLC. Our results
showed that the OS nomogram had good predictive performance
for prognosis and could successfully stratify patients into
high-risk and low-risk groups.

We extracted 840 radiomic features from CT, PET, and
PET/CT images. To avoid redundancy and overfitting caused
by the small sample size and additional radiomic features, we
used the LASSO method to select important radiomic features.
LASSO can be used to select biomarkers from high-dimensional
radiomic features to overcome the problem of a small sample
size and to select features that are most relevant to survival
time (38). In addition, the LASSO method with cross-validation,
as presented in this study, can be used to elegantly address
issues of overfitting, collinearity, and multiple-hypothesis testing
in feature selection. The LASSO method was also used to
select radiomic features related to prognosis that were consistent
with previous reports (39, 40). Furthermore, our prediction
performance after using the LASSO method was better than
the prediction performance of previous studies (38, 41, 42).
Finally, we selected a total of six important radiomic features to
construct CT, PET, and PET/CT radiomics signatures. The rad-
scores were subsequently calculated for the three modalities to
compare their predictive performances, revealing that PET/CT
had the best predictive performance. Hence, we further studied
the PET/CT modality, and combined the PET/CT rad-score
with the clinicopathological factors that acquired good predictive
performance with the C-index (0.776 and 0.789 for the training
and validation cohorts, respectively). Our results showed that
TNM staging was inconsistent with prognostic assessment;
therefore, the prognosis cannot be predicted well. Radiomics
can be used to comprehensively and quantitatively assess the
spatiotemporal heterogeneity of tumors, and when combined
with clinicopathological factors, the predictive performance of
prognosis may be improved. According to Kirienko et al. (43),
the Cox proportional hazards regression model was established
based on CT, PET, and PET/CT radiomic signatures to predict the
disease-free survival of patients with NSCLC. The results showed
that the Cox proportional hazards regression models including
radiomic features for the CT, PET, and PET/CT images had areas
under the curve (AUCs) of 0.75, 0.68, and 0.68, respectively.
The addition of clinicopathological risk factors to the Cox
proportional hazards regression models resulted in AUCs of 0.61,
0.64, and 0.65 for the CT, PET, and PET/CT images, respectively.
Mattonen et al. (44) constructed a Cox proportional hazards
model that included stage and an MTV plus penumbra texture
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FIGURE 4 | (A) Establishment of a comprehensive nomogram by combining the positron emission tomography/computed tomography (PET/CT) rad-score and

clinicopathological factors for predicting the 5-year overall survival of patients with non-small cell lung cancer. (B,C) A validation analysis of the nomogram showed
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FIGURE 4 | that the area under the curve (AUC) at five time points was obtained on the training and validation cohorts. The AUC for predicting the prognosis from 1–5

years was >0.7. With the extension of follow-up time, the predicted AUC gradually increased, indicating that the nomogram has a good performance in predicting

prognosis. (D,E) The calibration curve was used to estimate the 5-year overall survival predicted using a nomogram. The diagonal gray line represents an ideal

evaluation, and the blue line represents the performance of the nomogram. The calibration curves for the training and validation cohorts showed the calibration of two

cohorts in terms of the agreement between the estimated and observed 5-year outcomes.

feature to predict recurrence/progression in NSCLC based on
the LASSO method. The results showed that the C-index of the
training and validation sets of this multivariate model were both
0.74. Wang et al. (45) used the consensus clustering method to
automatically select the stable and prognostic radiomic features
and subsequently constructed a multivariate Cox proportional
hazards model that incorporated CT radiomic, clinical, and
hematological features. These were found to be more predictive
with a C-index of 0.792 and retained a C-index of 0.743 in the
cross-validation analysis, therefore outperforming the radiomic,
clinical, or hematological models. In addition, Dissaux et al.
(27) and Oikonomou et al. (28) used PET/CT-based radiomics
to predict the prognosis of patients with lung cancer who
were treated with stereotactic body radiotherapy (SBRT). The
results showed that radiomic features derived from PET/CT were
associated with local control in patients with NSCLC undergoing
SBRT, and can be used as predictors of OS, disease-specific
survival, and regional control. Radiomics on PET/CT provided
complementary information for the prediction of control and
survival in patients with SBRT-treated lung cancer and could be
helpful in clinical decision-making. The above studies showed
that radiomic features were related to prognosis and had good
prognostic predictive performance. Although some of the studies
were multi-center studies, the sample sizes were generally small;
therefore, the prediction model may have been overfitted. Our
prediction model has better predictive performance and our
sample size was much larger compared to previous studies. Our
results indicated that the rad-score from the CT, PET, or PET/CT
group has a favorable predictive power for survival. Moreover,
the PET/CT rad-score had the best performance among the three
rad-scores and could improve the predictive performance of the
PET/CT models when combined with the clinicopathological
factors. Hence, we believe that more tumor details are contained
in the PET/CT entity model compared to an individual CT
or PET entity model, a finding consistent with the findings of
previous studies.

Additionally, we performed univariate Cox regression analysis
on the clinicopathological factors to test the HR of each
parameter and to determine its significance in the probability of
death. The results showed that distant metastasis, stage, CEA, and
targeted therapy were independent risk factors; We subsequently
constructed a nomogram by combining the PET/CT rad-score
and clinicopathological factors. The calibration curve showed
that the predicted probability was significantly close to the
actual survival time of patients. The validation of the OS
nomogram showed that with the extension of follow-up time,
the AUC for predicting prognosis gradually increased, and our
results indicated that the OS nomogram had good predictive
performance. We also evaluated the reliability of the PET/CT
rad-score, OS nomogram, tumor volume, stage, and clinical

model in predicting patient survival using a Kaplan–Meier
analysis. The results of the Kaplan–Meier analysis demonstrated
that the OS nomogram can clearly divide the patients into
high-risk and low-risk groups, indicating that our nomogram
had a strong predictive power in patients with high and low
risks. Thus, it is considered significantly robust and reliable,
and can be used as evidence for additional treatment and close
follow-up in patients with poor prognosis, which is consistent
with the research results of Dessroit et al. (29). In addition,
the decision curve analysis demonstrated that the radiomics
nomogram was superior to 4 other clinical models (tumor
volume, TNM stage, TNM stage and tumor volume, and clinical
model) across the majority of the range of reasonable threshold
probabilities, which indicated that the radiomics nomogram
added incremental value to the traditional staging system and
other clinicalpathologic factors for individualized estimations.
We believe that with the combination of the rad-score and
clinicopathological factors to construct an OS nomogram, the
predictive performance was largely improved, suggesting that the
rad-score played an important role in the predictive accuracy
of the OS of patients with NSCLC, a result that was consistent
with the results of previous studies (46, 47). It is worth
nothing that because of variations in technical parameters or
inconsistent imaging parameters, a limited sample size, and
heterogeneous patient characteristics, radiomic features may
be insignificant in predicting prognosis in certain situations.
Therefore, cohorts and validation datasets need to be evaluated,
methodologies need to be standardized, and data on studies
that evaluate radiomic features need to be harmonized in
future studies, especially those with retrospective multi-centric
datasets (48, 49).

Our study has some limitations, including the relatively small
sample size and single-center cohort, the retrospective nature
of the data, and the lack of external validation, which may
have introduced selection bias, thereby resulting in poor model
generalization and capacity. However, we plan to rapidly expand
the sample size, and multi-center cohorts should be recruited
for validation in the near future. Secondly, in this study, all
texture matrices using 26-connectivity to find the neighboring
voxels with distance 1 and 13 angles. Finally, the value of a
feature is calculated for each angle separately, after which the
mean of these values is used. However, it has been shown
this strategy leads to less informative features compared to
extracting the feature from as single matrix implementing all
13 directions, so, strategy should be implemented to merge
the angle specific features into the texture matrix in future
studies. Thirdly, We measured four metabolic parameters in
a different way (different volume, different software) than the
other radiomic features. It may lead to a bias in the comparison
of the potential value of these four metrics with respect to
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FIGURE 5 | (A–E). Predictive performance of the PET/CT rad-score, overall survival nomogram, tumor volume, stage, and clinical model Kaplan-Meier survival

analysis of the patients in the high- and low-risk groups in the training cohort. Kaplan-Meier analysis for the PET/CT rad-score (A), overall survival (OS) nomogram (B),

tumor volume (C), stage (D), and clinical model (E). The patients were stratified into high- and low-risk groups based on PET/CT rad-score (A, p < 0.0001, log-rank

test), OS nomogram (B, p < 0.0001, log-rank test), tumor volume (C, p < 0.0001, log-rank test), stage (D, p < 0.0001, log-rank test), and clinical model (E, p <

0.0001, log-rank test).
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FIGURE 6 | Decision curve analysis for each model. The y-axis denotes the

net benefit, which was calculated using true-positive and false-positive results.

The radiomics nomogram model has the highest net benefit at the threshold

from 0.1 to 0.9 among all positive predictions (line labeled “All”), all negative

prediction (line labeled “None”), and another 4 clinical models (line labeled

“Tumor volume, tumor-node-metastasis [TNM] stage, TNM stage and tumor

volume, and clinical model”).

all other features calculated by pyradiomics. And the stability
and repeatability of the MTV and TLG values derived from
a volume determined through a fixed threshold at 40% of
maximum intensity are still controversial. So, we will try to
use a consensus of several manual delineation instead of fixed
thresholding to calculate tumor metabolic volume in the near
future study (50, 51). In addition, all PET/CT acquisitions were
carried out in free breathing mode, and no steps were taken
to correct for motion may lead to extraction of features might
have been suboptimal in the case of small lesions affected by
motion, but also in some larger heterogeneous uptakes affected
by motion blur.

In conclusion, the identified radiomic signature based on
PET/CT can be potentially used as a biomarker for risk
stratification of the OS in patients with NSCLC. The OS
nomogram combining radiomics and clinicopathological factors
for individualized OS estimation may provide more precise
guidance for the accurate diagnosis and treatment of NSCLC in
clinical practice.
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Glioma Helps Predict IDH Mutation
Weiyan Zhou 1†, Zhirui Zhou 2†, Jianbo Wen 3†, Fang Xie 1, Yuhua Zhu 1, Zhengwei Zhang 1,

Jianfei Xiao 1, Yijing Chen 1, Ming Li 1*, Yihui Guan 1* and Tao Hua 1*

1 PET Center, Huashan Hospital, Fudan University, Shanghai, China, 2Department of Radiotherapy, Huashan Hospital, Fudan
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Purpose: We developed a 11C-Methionine positron emission tomography/computed

tomography (11C-MET PET/CT)-based nomogram model that uses easy-accessible

imaging and clinical features to achieve reliable non-invasive isocitrate dehydrogenase

(IDH)-mutant prediction with strong clinical translational capability.

Methods: One hundred and ten patients with pathologically proven glioma who

underwent pretreatment 11C-MET PET/CT were retrospectively reviewed. IDH genotype

was determined by IDH1 R132H immunohistochemistry staining. Maximum, mean and

peak tumor-to-normal brain tissue (TNRmax, TNRmean, TNRpeak), metabolic tumor

volume (MTV), total lesion methionine uptake (TLMU), and standard deviation of SUV

(SUVSD) of the lesions on MET PET images were obtained via a dedicated workstation

(Siemens. syngo.via). Univariate and multivariate logistic regression models were used

to identify the predictive factors for IDH mutation. Nomogram and calibration plots were

further performed.

Results: In the entire population, TNRmean, TNRmax, TNRpeak, and SUVSD of

IDH-mutant glioma patients were significantly lower than these values of IDH wildtype.

Receiver operating characteristic (ROC) analysis suggested SUVSD had the best

performance for IDH-mutant discrimination (AUC = 0.731, cut-off ≤0.29, p < 0.001).

All pairs of the 11C-MET PET metrics showed linear associations by Pearson correlation

coefficients between 0.228 and 0.986. Multivariate analyses demonstrated that SUVSD
(>0.29 vs. ≤0.29 OR: 0.053, p = 0.010), dichotomized brain midline structure

involvement (no vs. yes OR: 26.52, p = 0.000) and age (≤45 vs. >45 years OR:

3.23, p = 0.023), were associated with a higher incidence of IDH mutation. The

nomogram modeling showed good discrimination, with a C-statistics of 0.866 (95% CI:

0.796–0.937) and was well-calibrated.

Conclusions: 11C-Methionine PET/CT imaging features (SUVSD and the involvement of

brain midline structure) can be conveniently used to facilitate the pre-operative prediction

of IDH genotype. The nomogram model based on 11C-Methionine PET/CT and clinical

age features might be clinically useful in non-invasive IDH mutation status prediction for

untreated glioma patients.

Keywords: methionine, PET, nomogram, gliomas, isocitrate dehydrogenase mutation
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INTRODUCTION

Gliomas are the most prevalent malignant primary tumors
of the brain. Over the past years, isocitrate dehydrogenase
enzyme (IDH) mutations have been proven to be an inciting
event in gliomagenesis, which made a great difference in the
molecular and genetic route of oncogenic progression and
clinical outcome (1). IDH mutations were identified in low
grade glioma (LGG) and secondary glioblastoma multiforme
(GBM) with a high percentage but in primary GBM with a
much lower percentage (2). Glioma patients with IDH mutation
had been prone to significantly better progression-free survival
than those IDH wildtype counterparts, irrespective of grade or
received treatments (3). Thereafter, some IDH wildtype LGGs
can be as aggressive and have prognoses that are quite similar
to GBMs (4). The gold standard of IDH mutations detection
relies on immunohistochemistry or genetic sequencing of the
surgical specimens. Given the inherent risk of surgery or biopsy,
substantial research efforts have focused on the pre-operative
non-invasive prediction of IDH mutational status in gliomas.

In 2016, the World Health Organization (WHO) updated
the classification criteria for central nervous system tumors,
in which IDH mutation and 1p/19q codeletion made a
significant difference in the latest classification of glioma (5).
The amino acid PET imaging has become increasingly important
in evaluating the atypical non-enhancing gliomas as well as
the differentiating tumor progression from treatment-related
changes (6). Response Assessment in Neuro-Oncology (RANO)
working group proposed that amino acid positron emission
tomography (PET) imaging should be used in all aspects of
gliomamanagement combined withmagnetic resonance imaging
(MRI). L-[methyl-11C]methionine (11C-MET) PET imaging has
been widely used in glioma grading, differential diagnosis, tumor
scope definition, brain biopsy site determination, radiotherapy
planning, prognostication, and treatment monitoring (7–12).

Radiomics analysis from multimodality MRI or FDG PET
images have been reported to be sufficient for IDH prediction
(13). A recent study (14) by Maldjian et al. evaluated the
usefulness of a non-invasive, only T2 weighted MRI based deep-
learning method for the determination of IDH status. The
results are inspiring since T2-weighted MR imaging is widely
available and routinely performed in the assessment of gliomas.
Some studies have explored the relationship between amino acid
uptake characteristics of gliomas and IDH mutation status (15–
19). We aimed to develop a novel and convenient statistical
model that combines PET features and clinical factors for an
IDH-predictive signature. Nomogram is a prediction tool that
creates a simple pictorial representation of a statistical prediction
model that generates a probability of a clinical event and aid
in clinical decision-making (20, 21). It is “a form of line chart
showing scales of the variables involved in a particular formula
in a way that corresponding values for each variable lie in a
straight line intersecting all the scales.”(22) Therefore we tried to
establish a MET PET/CT-based nomogrammodel that uses easy-
accessible imaging metrics and clinical features to add reliable
predictive information for IDH mutational status in patients
with gliomas.

MATERIALS AND METHODS

Study Population
We conducted a retrospective study of patients with histologically
proven diffuse glioma who underwent 11C-MET PET/CT
between February 2012 and November 2017 at a single
center. Inclusion criteria: (1) all patients were confirmed
to have glioma histological diagnosis and IDH1 R132H
immunohistochemistrical staining results. (2) PET images for
every patient were of good quality with no obvious artifacts.
Exclusion criteria: (i) patients who received treatment by
radiotherapy, chemotherapy, or chemoradiotherapy before PET
imaging. (ii) glioma patients with no precise histological grading
or IDH1R132H staining results. (iii) poor image quality with
artifacts affecting the semi-quantitative analysis. (iv) hypo- or
iso-metabolism of 11C-MET compared to the background which
is not applicable for threshold-based tumor volume delineation
procedures. Moreover, the interval between PET imaging and
subsequent tumor resection or biopsy was no more than 100 days
for grade II or III gliomas and no more than 30 days for grade IV
glioblastomas. A total of 110 cases were eligible for inclusion.

11C-MET PET/CT Imaging Protocol
11C-MET was synthesized by the GE Healthcare-Tracerlab-FXc
11C radiolabelling module semi-automatically. 11C-CO2 was
produced by SIEMENS RDS III cyclotron, and homo-cysteine
was used as the precursor. The radiochemical purity of the
obtained sterile product was higher than 95%. All patients had
fasted for at least 4 h before imaging. At 10–15min after an
intravenous bonus injection of 11C-MET (370–550MBq), a static
PET scan was subsequently collected for 20min with a Siemens
Biograph 64 HD PET/CT (Siemens, Erlangen, Germany) in
3-dimensional (3D) mode. PET images were reconstructed
using the filter back projection (FBP) with Gaussian filter
(FWHM3.5mm) and a 256∗256matrix, providing 64 contiguous
transaxial slices of 5 mm-thick spacing. Attenuation correction
was performed using a low-dose CT (150 mAs, 120 kV, Acq.
64∗0.6mm) before the emission scan.

11C-MET PET/CT Data Analysis
All PET/CT images were analyzed using a dedicated workstation
(Siemens.syngo.via). Semi-quantitative analysis of tumor
metabolic activity was obtained using SUV normalized to body
weight. All parameters were assessed in 3-dimensional volumes.
Mean standardized uptake values (SUVmean) of the normal
contralateral frontal cortex were calculated as references. A
predefined threshold method at 1.3-times of the corresponding
reference SUVmean (23, 24) was applied. The brain MRI of
patients were reviewed initially to locate the possible tumor
region. A VOI isocontour of the tumor region were applied,
semi-quantitative PET imaging analysis were carried out
after the lesion delineation procedures. The above-mentioned
procedures were carried out by two experienced nuclear
medicine physicians separately to double confirm the correct
inclusion and reproducible parameters measurements of the
glioma lesion. For those multifocal glioma patients in our group,
the specific surgical resected or biopsied lesion for pathological
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examination were included in our research in order to avoid bias.
Each VOI generated a maximum of SUV (SUVmax), a mean
SUV (SUVmean), a peak SUV (SUVpeak), a standard deviation
of SUVmean (SUVSD), a metabolic tumor volume (MTV) and
a total lesion methionine uptake (TLMU). The total lesion
methionine uptake (TLMU) was defined as the MTV multiplied
by the SUVmean within the tumor boundary. SUVpeak was
the highest mean SUV from a fixed 1-cm3 spherical volume
centered over the highest metabolic part of the tumor. The lesion
SUV/normal contralateral cortical SUVmean was defined as the
tumor-to-normal brain tissue ratio (TNR) of 11C-MET uptake.

Physicians would examine the interested glioma lesions to
decide whether brain midline structure were involved or not,
mainly taking MET PET images for reference. The brain
midline structures included corpus calloum, cingulate gyrus,
thalamus, third ventricle and brain stem. As illustrated above, two
physicians performed VOI delineation for each included patient
to confirm the brain midline structure involvement status and
to obtain two sets of MET metric features. In order to build
a relatively stable integrated 11C-MET PET/CT metrics-based
model, we evaluated the inter-observer agreement indices for
those obtained results.

Neuropathologic Analyses
Histological specimens were obtained by surgery or stereotactic
brain biopsy. H&E staining and immunohistochemical analysis
were performed by an experienced neuropathologist according to
the current WHO guidelines. IDH status of the surgical samples
was identified with an antibody to the IDH1 (R132H) mutation
by immunohistochemical staining.

Establishment of a MET PET-Based
Nomogram and Validation of the Model
Performance
Participant’s age, gender and brainmidline structure involvement
were used as potential predictors, together with those MET-PET
metrics, to perform the univariate logistic regression analysis
for developing a prediction model of IDH mutation. Those
MET-PET metrics share a deep homology, so we first evaluated
their correlations to avoid overfitting in the nomogram model
building. After that, the MET PET metrics-based nomogram
was then designed based on a multivariable logistic analysis
results in the whole group with the aim of providing the
clinician with a quantitative tool used in the prediction of IDH
mutation status. The nomogram model validation involved the
quantitative assessment of the nomogram’s accuracy in IDH
mutation prediction by use of Harrell’s concordance index (C-
statistic) and calibration curve. The corrected C-index, which
is used to quantify the level of concordance between predicted
probabilities and actual chance, was measured to predict the
accuracy (discrimination) of the nomogram (20, 25). A relatively
corrected C-index could be calculated after bootstrap analyses
using 1,000 resamples. The calibration curve was used to estimate
how closely the modeled nomogram estimated the risk relative to
the actual risk of IDH status (mutant or wildtype), accompanied
by the Hosmer-Lemeshow test (26).

Statistical Analysis
All continuous variables are expressed as mean ± standard
deviation or median and range. Categorical variables are
expressed as percentages. For continuous variables, an
independent sample t-test was used to compare the two groups,
while the chi-square test was applied to calculate P-values for
categorical variables. Inter-observer agreements on 11C-MET
PET metrics and dichotomized location results were assessed
with interclass correlation coefficients (ICC) and Cohen’s kappa
coefficient analysis, respectively, defined as poor (<0.2), fair
(0.21–0.4), moderate (0.41–0.6), good (0.61–0.8), and very good
(0.8–1.0). All PET activity measuring indices were compared
with each other using scatter plots and Pearson correlation
coefficients. Receiver operating characteristic (ROC) analysis
was performed to calculate the area under the ROC curve (AUC)
for each PET semi-quantitative parameters. The Delong test was
used in the comparison of ROC curves. The AUC of ROC curves
analysis and the Delong test were performed by using MedCalc
for windows (version11.3.3.0, MedCalc software, Mariakierke,
Belgium). Univariate and multivariate logistic regression models
were used to identify the predictive factors for an IDH mutation.
A nomogram was formulated based on the results of multivariate
logistic regression analysis and by using the rms package of
R, version 3.6.1 (http://www.r-project.org/). The predictive
performance of the nomogram was measured by concordance
index (C-Statistics) and calibration with 1000 bootstrap samples
to decrease the overfit bias. All other statistical analysis was
performed using the Prism Software version 8.0 (GraphPad, San
Diego. CA). In all analyses, P < 0.05 was considered to indicate
statistical significance.

RESULTS

Patient Demographics
The demographic data of the patients included in this study
are listed in Table 1. Of the 110 patients who were evaluated
retrospectively, 67 (59.32%) were male, and 43 (40.68%) were
female, with a mean age of 45.5 years (range 10–71). The
majority of patients (80/110) underwent tumor resection. The
post-surgical histological examination demonstrated 59 grade II
diffuse glioma, 32 grade III anaplastic tumors, and 19 grade
IV glioblastomas, among which 61 patients confirmed IDH-
wildtype while 49 patients were IDH-mutant. Patients with IDH-
wildtype were more likely to present with lesions involving the
midline structures, while there was no significant difference
in gender distribution between these two groups (detailed in
Table 2).

Inter-reader Agreement in 11C-MET PET
Results
The dichotomized location results of the interested tumor lesion
yielded very similar values for both readers, and accordingly, the
inter-observer kappa was satisfactory (κ = 1.0, p < 0.0001). The
ICC also showed perfect agreement for the five 11C-MET PET
volume-based metrics (ICC > 0.95, p < 0.0001). Therefore, only
the results of reader one were considered for further analysis.
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The absolute values for all 11C-MET PET metrics based on
IDH-genotype were given in Table 2.

Correlations of 11C-MET PET Metrics
All pairs of volume-based 11C-MET PET metrics showed a
linear association, which was quantified by Pearson correlation
coefficients. There were strong correlations between paired
TNRs, i.e., TNRmax, TNRmean, and TNRpeak, and SUVSD with
r values ranging from 0.843 to 0.986 (p < 0.0001). The volume-
related features, including MTV and TLMU, also correlated

TABLE 1 | Clinicopathological features of 110 patients.

Characteristic Numbers (Percentage %)

Age (median, range) 45.5 years old (10–71)

Gender

Male 67 (59.32%)

Female 43 (40.68%)

Primary tumor location

Frontal 27 (24.54%)

Parietal 6 (5.45%)

Temporal 20 (18.18%)

Occipital 1 (0.91%)

Cerebellum 5 (4.55%)

Deep brain structure 14 (12.73%)

Multifocal 37 (33.64%)

WHO grade classification

Grade II 59 (55.09%)

Grade III 32 (28.81%)

Grade IV 19 (16.10%)

IDH status

Mutant (Grade II/III/IV) 42/7/0 (85.71%/14.29%/0.00%)

Wildtype (Grade II/III/IV) 17/25/19 (27.87%/40.98%/31.15%)

Type of operation (surgery/stereotactic biopsy)

Grade II 47/12 (79.66%/20.34%)

Grade III 21/11 (65.63%/34.37%)

Grade IV 14/5 (73.68%/26.32%)

strongly with each other (r = 0.927, p < 0.0001). Intratumoral
heterogeneity feature SUVSD and TNRs demonstrated fair or
moderate associations withMTV (r= 0.228–0.370, p< 0.05) and
TLMU (r = 0.342–0.430, p < 0.0001) (detailed in Table 3 and
Supplementary Figures 1A,B).

Pre-operative 11C-MET PET/CT ROC
Analysis for IDH Mutation
As shown in Table 2, IDH-wildtype patients had significantly
higher TNRmax, TNRmean, and TNRpeak values. Lower SUVSD

values were shown in IDH-mutant patients. Lower MTV and
TLMU values were also observed in the IDH-mutant group,
albeit not significantly so.

In the ROC analysis, the highest AUC of 0.731 (95%CI: 0.638–
0.811) was reached by the SUVSD value, with the best cut-off
value at 0.29, a specificity of 60.66% and a sensitivity of 77.55%,
followed by the TNRmax value with an AUC of 0.678, the best
cut-off value at 2.99, a specificity of 59.02% and a sensitivity
of 75.51%. Their optimal cutoff, AUC, sensitivity, specificity
values, etc., for the abovementioned 11C-METMET PET metrics
were listed in Table 4. Their AUC curves were displayed in
Supplementary Figure 2.

Further pairwise comparisons of ROC curves confirmed that
the AUC of SUVSD differed significantly from any other MET
PET metrics (p < 0.05, details in Supplementary Table 1).

Predicting IDH-Mutant Gliomas and
Construction of the Nomogram
In univariate analysis, the MET PET metrics including SUVSD,
TNRmax, TNRpeak and TNRmean, except for MTV and TLMU,
were significantly associated with IDH mutation (p < 0.05 for
all the variables). Considering their collinearity and the AUC
curve comparison results for the MET PET metrics, SUVSD was
selected as the only MET PET feature for further multivariate
logistic regression analysis. In multivariate logistic regression
analysis, the three factors, i.e., participant’s age, the involvement
of midline structure, and SUVSD, were found to be significant
independent predictors. We demonstrated that SUVSD (>0.29 vs.
≤0.29 OR: 0.053, p= 0.010), brainmidline structure involvement

TABLE 2 | Clinical features and 11C-MET PET metrics based on IDH-genotype.

PET Metric All patients (n = 110) IDH-mutant (n = 49) IDH-wildtype (n = 61) P-valuea

Age (mean ± SD) 45.08 ± 13.56 42.63 ± 10.6 47.05 ± 15.35 0.090

Age (≤45/>45 years) 55/55 31/18 24/37 0.013

Gender (M/F) 67/43 27/22 40/21 0.263

Midline Involvement (yes/no) 37/73 2/47 35/26 0.000

TNRmax 1.7719 ± 0.3038 1.6692 ± 0.2474 1.8544 ± 0.3211 0.001

TNRmean 3.2421 ± 1.3193 2.8277 ± 1.1741 3.5749 ± 1.3440 0.002

TNRpeak 2.8114 ± 1.1222 2.4739 ± 0.9704 3.0824 ± 1.1690 0.004

MTV 48.6750 ± 54.9081 44.9551 ± 53.7083 51.6631 ± 56.1161 0.525

TLMU 87.9881 ± 104.0785 68.5628 ± 86.9409 103.5920 ± 114.3505 0.071

SUVSD 0.3783 ± 0.2819 0.2551 ± 0.1781 0.4772 ± 0.3108 0.000

acomparison between IDH-mutant and IDH-wildtype.
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TABLE 3 | Correlation of 11C-MET PET metrics.

PET Metric TNRmax TNRmean TNRpeak MTV TLMU SUVSD

TNRmax 1 0.843 0.986 0.364 0.419 0.861

TNRmean 1 0.872 0.242 0.342 0.855

TNRpeak 1 0.370 0.430 0.876

MTV 1 0.927 0.228

TLMU 1 0.401

SUVSD 1

TABLE 4 | The Performance of 11C-MET PET metrics and age feature for IDH-mutation prediction.

PET metric Cutoff AUC (95% CI) ACC SEN SPE PPV NPV Youden-index

SUVSD ≤0.29 0.731 (0.638–0.811) 68.18% 77.55% 60.66% 61.30% 77.10% 0.3821

TNRmax ≤2.9886 0.678 (0.582–0.764) 66.36% 75.51% 59.02% 59.70% 75.00% 0.3453

TNRmean ≤1.7051 0.679 (0.583–0.765) 65.46% 69.39% 62.30% 59.60% 71.70% 0.3168

TNRpeak ≤2.8191 0.660 (0.564-0.748) 65.45% 79.59% 54.10% 58.20% 76.70% 0.3369

Age ≤45 0.630 (0.533–0.720) 62.73% 65.31% 60.66% 57.10% 68.50% 0.2596

Midline involvement yes 0.766 (0.676–0.842) 74.54% 95.92% 57.38% 64.40% 94.60% 0.5330

CI, Confidence interval; AUC, Area under the receiver-operating characteristic curve; ACC, Accuracy; SEN, Sensitivity; SPE, Specitivity; PPV, Positive predictive value; NPV, Negative

predictive value.

TABLE 5 | Univariate and multivariate regression analyses for IDH mutation prediction.

Multivariate analysis

Univariate analysis Model 1 Model 2

Variable OR (95% CI) P OR (95% CI) P OR (95% CI) P

Age (≤45 vs. >45) 2.655 (1.223–5.765) 0.014 3.232 (1.180–8.854) 0.023

Gender (male vs. female) 0.644 (0.298–1.394) 0.264

Midline structure Involvement (no vs. yes) 31.635 (7.035–142.248) 0.000 26.523 (5.547–126.831) 0.000 24.461 (5.305–112.789) 0.000

MTV 0.998 (0.991–1.005) 0.525

TLMU 0.996 (0.992–1.001) 0.090

TNRmean 0.093 (0.020–0.435) 0.003

TNRmax 0.605 (0.427–0.857) 0.005

TNRpeak 0.574 (0.385–0.856) 0.007

SUVSD 0.02 (0.003–0.157) 0.000 0.053 (0.006–0.497) 0.010 0.048 (0.006–0.411) 0.006

C–index 0.866 (0.796–0.937) 0.843 (0.766–0.920)

(no vs. yes OR: 26.52, p = 0.000) and age (≤45 vs. >45 years OR:
3.23, p = 0.023), were associated with a higher incidence of IDH
mutation (shown Table 5).

Age does not correlate with SUVSD (r = 0.0370, p = 0.7010).
Lesions involving brain midline structure (73 cases) showed
higher SUVSD (0.3147 ± 0.2501 vs. 0.5038 ± 0.3017, p = 0.007)
compared to lesions without brain midline involvement (37
cases), but no age predominance (45.67± 12.10 vs. 43.92± 16.19,
p = 0.5245) was observed for brain midline involvement (shown
in Supplementary Figure 3).

After that, a nomogram was constructed on the basis of the
multivariate logistic regression (for details, see Figure 1A). The
nomogram (model 1) showed good discrimination efficacy, with
a C-statistics of 0.866 (95%CI: 0.796–0.937). The calibration

curve of the nomogram also indicated good agreement between
predicted probability and actual occurrence in the whole cohort
(Figure 1B). TheHosmer-Lemeshow test indicated no significant
difference (p > 0.05), suggesting that there was no departure
from a perfect fit. Meanwhile, we built model 2 only using
MET PET information, i.e., brain midline structure involvement
and SUVSD derived from lesion VOI, with a C-statistics of
0.843 (95%CI: 0.766–0.920), suggesting that age information
dichotomized by 45 years old do enhance the predictive
ability for IDH genotype. Figure 2 illustrates a comparison of
two representative grade II glioma cases with similar images
by visual analysis. Our 11C-MET PET/CT-based nomogram
could effectively distinguish between IDH-mutant and IDH-
wildtype gliomas.
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FIGURE 1 | (A) The nomogram developed in the whole cohort using the SUVSD metric, the age, and the brain midline structure involvement of the patients. 0

represents ≤ 45 years for age or without brain midline structure involvement and 1 represents >45 years for age or with brain midline involvement, respectively; SD =

100*SUVSD. (B) Calibration plots of the nomogram for predicting IDH mutation. The y-axis represents the actual probability, and the x-axis represents the predicted

probability.

FIGURE 2 | Upper row: example of a patient with a 11C-MET-positive lesion in the left temporo-parietal lobe, moderate TBRmax of 3.21 and moderate MTV of 46.1ml

(A) without contrast-enhancement in CE-T1 MRI (B) and an obvious flair alteration in T2 MRI (C) but with a moderate SUVSD of 0.31 (>0.29); histopathological

analysis revealed an IDH-wildtype, diffuse astrocytoma (WHO grade II). Lower row: example of a patient with a 11C-MET-positive lesion in the left frontal lobe,

moderate TBRmax of 2.46 and moderate MTV of 31.3ml (D) without contrast-enhancement in CE-T1 MRI (E) and a flair alteration in T2 MRI (F) but with a small

SUVSD of 0.26 (<0.29); histopathological analysis revealed an IDH-mutant, diffuse astrocytoma (WHO grade II).
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DISCUSSION

In the present study, we confirmed an association between
volume-based 11C-MET PET quantification metrics and IDH
mutational status for untreated glioma patients and further
constructed a novel and intuitive statistical model to help
clinicians and radiologists non-invasively predict glioma IDH
mutation. As expected, our data demonstrated that TNRs and
SUVSD were significantly lower in the IDH-mutant group
compared with those IDH-wildtypes, which are consistent with
those of Kim et al. (15) 11C-MET PET derived SUVSD showed
the most excellent ability to identify whether glioma had an
IDH mutation or not besides other MET PET metrics. Single-
parameter SUVSD, which is a sort of tumor imaging heterogeneity
feature, had the best prediction efficacy in IDH mutation. It is
reasonable to hypothesize that themore heterogeneous the tumor
MET PET imaging, the more likely IDH status is to be wildtype.

11C-MET PET played a significant role in evaluating the O6-
methylguanylmethyltransferase methylation (MGMT) status in
gliomas (27, 28). PET imaging was suggested to be informative
for preoperatively differentiating gliomas according to 2016
WHO classification, particularly for differentiating IDH-wildtype
and IDH-mutant tumors (19). A study of hybrid 11C-MET
PET/MRI imaging including 39 glioma patients described that
ROC analysis of TNRmax had a high AUC of 0.79 for predicting
IDH status (16). Another study retrospectively evaluated 109
patients with newly diagnosed glioma also indicated that 11C-
MET uptake was negatively correlated with IDH mutational
status. The MET uptake of IDH-wildtype glioblastoma was
significantly higher than that of IDH-mutant glioma (17).
TNRmax derived from 11C-MET PET appears to be superior
to MRS in differentiating IDH status with a ROC of 0.67 (18).
The investigations on the relationship between amino acid tracer
uptake and IDH status were not totally consistent. One O-(2-
18F-fluoroethyl)-L-tyrosine(18F-FET) PET research in a mixed
group of glioma patients, which included 16 oligodendrogliomas
(IDH mutated and 1p/19q co-deleted), 27 astrocytomas (IDH
mutated only) and 47 glioblastomas (IDH-wildtype), suggested
that gliomas with IDHmutation are typically shown with a lower
tumor to brain ratios(TNRmean and TNRmax), prolonged time
to peak, and a slow-rise time-activity curve of 20–50min (29). By
contrast, another 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine
(18F-FDOPA) imaging study in a total of 43 newly diagnosed
glioma cases described paradoxically higher 18F-FDOPA uptake
in diffuse grade II and III gliomas with IDH mutation (30). This
inconsistency may be explained by the different amino acids PET
probe uptake models in glioma (31). The expression level of L-
type amino acid transporter in glioma is positively proportional
to the intake value of MET, while the expression level of amino
acid transporter is positively correlated with the microvascular
density of glioma (32). Literature has shown that local blood flow
in IDH wildtype glioma is higher than that of IDH mutants (33).

Our study differs from the abovementioned ones in that
it indicated one predictive model for proper pre-operative
prediction of IDH status in glioma patients. We aimed to develop
a nomogram which is independent of histopathologic features,
such as tumor grade or oligodendrocyte component, etc. The

model showed good discrimination and was well-calibrated. Pre-
operative lesion VOI SUVSD should be important in daily clinical
practice, which is a convenient and repetitive PET imaging
parameter obtained through glioma VOI delineation. The origin
of this PET imaging parameter could reflect the intratumoral
heterogeneity to some degree. The SUVSD difference derived
from 11C-MET PET images between IDH-mutant and IDH-
wildtype gliomas may help understand the possible internal
link of intratumor heterogeneity and IDH mutation. Our model
showed that the middle line structure involvement is associated
with IDH mutational status. Things that need to be clarified is
that this kind of brain midline structure involvement was also
decided by VOI delineation, which could be more extensive and
broader than the enhanced tumor volume in MRI. Moreover,
age information has shown reasonable predictive potential and
enhanced the predictive ability for IDH genotype. We report
for the first time the application of 11C-MET PET/CT metrics
and clinical age feature based nomogram in IDH genotyping for
untreated glioma patients.

From specific clinical perspective, this nomogram model has
some positive features. Firstly, our predictive model takes the
advantage of being able to be rapidly acquired by a radiologist
without requiring specialized software extracting texture features
from high-order matrixes. Secondly, it is based on repetitive
MET-PET metrics and some important clinical features, which
is easily for understanding and clinically viable. This nomogram
model displayed the potential to be used as a standalone
diagnostic modality for patients with excessive surgical risk
related to patient’s comorbidities, advanced age, deep-seated, or
brain stem tumors, etc.

There are some limitations to the present study. First, as this
was a single-center study, with more cases are recruited, the
training and validation group will be set for further external
validation ormulticenter validation to assess the potential clinical
utility of our model further. Furthermore, next-generation
sequencing for the IDH genotype was not available for this
retrospective study, and some patients with the mutation may
have been misidentified. Non-canonical IDH mutations can be
found in IDH1 R132H immune-negative LGG (34). These points
would be addressed in future work.

CONCLUSIONS

This study proved that SUVSD derived from regular glioma VOI
delineation in MET PET imaging is a novel and convenient
semiquantitative parameter for the glioma IDH prediction. The
nomogram model combining with age, brain midline structure
involvement, and SUVSD demonstrates the potential in non-
invasive IDH mutation status prediction for untreated glioma
patients and showed reasonable convenience in clinical practice.
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Introduction/Aim: Immunotherapy with immune checkpoint inhibitors (ICIs) has

positively changed the history of several malignant tumors. In parallel, new challenges

have emerged in the evaluation of treatment response as a result of their peculiar

anticancer effect. In the current study, we aimed to compare different response criteria,

both morphological and metabolic, for assessing response and outcome in patients with

advanced non-small cell lung cancer (NSCLC) treated with ICI.

Materials and Methods: Overall, 52 patients with advanced NSCLC candidate

to ICI were prospectively evaluated. Inclusion criteria comprised whole-body

contrast-enhanced CT and 18F-FDG PET/CT at baseline and at the first response

evaluation 3 or 4 cycles after ICI. Response assessment on CT was performed according

to RECIST 1.1 and imRECIST criteria, whereas metabolic response on PET was

computed by EORTC, PERCIST, imPERCIST, and PERCIMT criteria. The concordance

between the different tumor response criteria and the performance of each criterion to

predict progression-free survival (PFS) and overall survival (OS) were calculated.

Results: Inclusion criteria were fulfilled in 35 out of 52 patients. We observed a low

agreement between imRECIST and imPERCIST (κ = 0.143) with discordant response in

20 patients, particularly regarding stable disease and progressive disease groups. Fair

agreement between imRECIST and EORTC (κ = 0.340), and PERCIST (κ = 0.342),

and moderate for PERCIMT (κ = 0.413) were detected. All criteria were significantly

associated with PFS, while only PERCIMT and imPERCIST were associated with OS. Of

note, in patients classified as immune stable disease (iSD), imPERCIST, and PERCIMT

well-differentiated those with longer PFS (p < 0.001, p = 0.009) and OS (p = 0.001,

p = 0.002). In the multivariate analysis, performance status [hazard ratio (HR) = 0.278,

p= 0.015], imRECIST (HR= 3.799, p= 0.026), and imPERCIST (HR= 4.064, p= 0.014)

were predictive factors for PFS, while only performance status (HR = 0.327, p = 0.035)

and imPERCIST (HR = 3.247, p = 0.007) were predictive for OS.
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Conclusions: At the first evaluation during treatment with ICI, imPERCIST criteria

correctly evaluated treatment response and appeared able to predict survival. Moreover,

in patients with iSD on CT, imPERCIST were able to discriminate those with

longer survival. This advantage might allow for earlier therapy modification based on

metabolic response.

Keywords: non-small cell lung cancer, checkpoint inhibitors, 18F-FDG PET/CT, RECIST, EORTC, PERCIST,

imPERCIST, PERCIMT

INTRODUCTION

Several clinical studies have demonstrated the successful
therapeutic approach of immune checkpoint inhibitors (ICIs)
in patients affected by different malignancies when compared
with chemotherapy. As a matter of fact, these new agents, acting
against cytotoxic T-lymphocyte-associated antigen (CTLA)-4,
and anti-programmed death (PD)-1 or its ligand (PD-L1),
have been approved so far for over 18 types of cancer
(1–3). However, owing to the peculiar response patterns
observed in these immune-modulating agents, in parallel with
the increased use of ICI, also the assessment of tumor
response by medical imaging has become more challenging.
Indeed, PD-1/L1 and CTLA-4 blockage aims to restore
the immune response by recalling neutrophils, macrophages,
and activating T cells within the tumor microenvironment.
Consequently, because of tumor inflammation, malignant lesions
might appear stable, or even larger either in size or in
metabolic activity before effective shrinkage occurs, making
it difficult to discriminate between true progression from
the so-called pseudo-progression (4–7). To overcome these
limitations, numerous response criteria have been proposed,
starting with the traditional Response Evaluation Criteria
in Solid Tumors (RECIST) 1.1 (8). The main peculiarity
of the new morphological criteria developed in the ICI
era, such as immune-related response criteria (irRC) and
immune-modified (im)RECIST, is that the appearance of new
lesions is not always synonymous with progression of disease,
but requires confirmation at least after 4–8 weeks (9, 10).
Likewise, metabolic criteria based on 18F-fluorodeoxyglucose
positron emission tomography/computed tomography (18F-FDG
PET/CT) have been modified aiming to improve diagnostic
accuracy during immunotherapy. Of note, new lesions are
considered a sign of progression according to their number
and size or if metabolic activity is greater than a determined
cut-off, as proposed by PET Response Evaluation Criteria
for Immunotherapy (PERCIMT) and Immunotherapy-modified
PET Response Criteria in Solid Tumors (imPERCIST) criteria,
respectively (11, 12).

The purpose of the present study was to investigate
the concordance between morphological and metabolic
criteria for early response evaluation and to correlate
findings with survival in patients with advanced non-
small cell lung cancer (NSCLC) undergoing treatment with
checkpoint inhibitors.

MATERIALS AND METHODS

Study Population
From December 2015 to May 2019, patients with
histopathologically proven advanced NSCLC who were
scheduled to undergo ICI treatment were enrolled. Prospective
data were collected from patients (n = 42) adhering to the
same diagnostic trial, registered at https://clinicaltrials.gov/
(NCT03563482), and from other clinical trials for ICI (n = 10).
Eligible patients were required to have both contrast-enhanced
CT and 18F-FDG PET/CT scan within 1 month before starting
ICI and a second scan at the first restaging after 3 cycles
for pembrolizumab or 4 cycles for nivolumab (Figure 1).
Moreover, all patients repeated CT every 3 or 4 cycles until
confirmed progression. Other exclusion criteria were as follows:
primary malignancy other than NSCLC; no lesion on 18F-FDG
PET/CT above the minimum standardized uptake value (SUV)
normalized to lean body mass (SUL) as defined by PERCIST
(1.5 × liver SUL + 2 SDs of liver SUL) (13); plasma glucose
level was ≥200 mg/dL before 18F-FDG PET/CT. The study has
been approved by the local institutional review board and in
accordance with Declaration of Helsinki and Good Clinical
Practice guidelines. Written informed consent was obtained in
all cases.

Imaging Protocol
18F-FDG PET/CT

PET/CT scans were performed as previously described (14).
A GE ADW4.6 workstation (GE Healthcare, Waukesha, WI,
USA) was used to display images, which were interpreted by
two experienced nuclear medicine physicians. For the semi-
quantitative analysis, the threshold of the volumes of interest
(VOIs) was set at 0.5 by PETVCAR (GE Healthcare). The
maximum SUV (SUVmax) was defined as the value of the highest
pixel and average SUV (SUVmean) as the mean SUV related
to the tumor burden. To determine the peak SUV corrected
for lean body mass (SULpeak), the reviewer placed a sphere or
cube as the VOI around the hottest lesions (up to five lesions,
no more than two per organ). Within this VOI, the software
searched for the 1.0-cm3 sphere that encompassed the voxels
with the highest average SUL. For background activity, a 3-cm-
diameter spherical VOI was delineated in the right lobe of the
liver or in the descending thoracic aorta for patients with liver
involvement. Response of SULpeak (%) was defined as (sum of
baseline SULpeak—sum of follow-up SULpeak)/(sum of baseline
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FIGURE 1 | Flowchart of patient accrual.

SULpeak) × 100. Target lesions on follow-up scans were not
necessarily the same as target lesions at baseline (13).

Response Assessment
Two physicians (E.L., A.C.), specializing in immunotherapy
evaluation, reviewed all consecutive scans to reach a consensus.
Morphological evaluation was determined according to RECIST
1.1 and imRECIST (8, 10). Metabolic response on 18F-FDG
PET/CT was defined according to the European Organization
for Research and Treatment of Cancer (EORTC) criteria,
PERCIST, and its variation imPERCIST (12, 13, 15). Response
Evaluation Criteria for Immunotherapy (PERCIMT) were also
considered in our analysis (11). Supplementary Table 1 details
the response categories. Briefly, we consider four response
categories: complete response (CR), partial response (PR), stable
disease (SD), and progressive disease (PD) for morphological
criteria. Likewise, complete metabolic response (CMR), partial
metabolic response (PMR), stable metabolic disease (SMD),
and progressive metabolic disease (PMD) were considered for
metabolic criteria.

Statistical Analysis
The concordance among response criteria was assessed using
Cohen’s κ coefficient. Agreement between the two assessments
was categorized as poor (weighted κ < 0.2), fair (weighted
κ = 0.21–0.40), moderate (weighted κ = 0.41–0.60), good
(weighted κ = 0.61–0.80), and almost perfect (weighted κ >

0.80) (16). Progression-free survival (PFS) was calculated as the
interval from the date of initiation of ICI to the date of either
disease progression or death, whereas overall survival (OS) was
calculated as the duration between the date of initiation of
immunotherapy and the date of death from any cause (17). PFS
and OS were analyzed using the Kaplan–Meier method and log-
rank test. Then, forward stepwise multivariate regression analysis

was performed to identify factors correlated with PFS and OS
based on the calculation of hazard ratios (HRs) and 95% CI (14).
Variables included in the final multivariate analysis were selected
according to their clinical relevance and statistical significance
in a univariate model (cut-off, p < 0.10). All statistical analyses
were carried out using the Statistical Package for Social Sciences,
version 23.0, for Windows (SPSS, Chicago, IL), and p <0.05 were
considered to be statistically significant (17).

RESULTS

Patient Characteristics
Out of the 52 patients with metastatic NSCLC enrolled in
the clinical trial, 35 patients (23 men and 12 women) were
included in the analysis as they had both CT and 18F-FDG
PET/CT at baseline and at the first restaging. Patients were
treated with a standard schedule of nivolumab (n = 19),
pembrolizumab (n = 14), and nivolumab/ipilimumab (n = 2).
Twelve patients (34.3%) presented at diagnosis with advanced
metastatic NSCLC, whereas the other 23 patients (65.7%) were
treated with one or more anticancer therapies. The median
number of immunotherapy cycles was 9 (range, 2–47).

The clinical characteristics of patients are summarized
in Table 1.

Response Comparison for imRECIST and
Standard Metabolic Criteria (EORTC,
PERCIST)
In our study, all cases of PD at first evaluation according
to RECIST 1.1 were all confirmed after at least 4 weeks
according to imRECIST. As response rates between RECIST
1.1 and imRECIST were comparable, we used only the latter
for our analysis. Classification between imRECIST and EORTC
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TABLE 1 | Patient characteristics.

N (%)

Age median (range) 75 (51–86)

Gender

Male 23 (65.7)

Female 12 (34.3)

Smoking history

Former/current 31 (88.6)

Never 4 (11.4)

Performance status

0 19 (54.3)

≥1 16 (45.7)

Line of treatment

0 12 (34.3)

1 12 (34.3)

≥2 11 (31.4)

Histology

Adenocarcinoma 25 (71.4)

Squamous cell carcinoma 6 (17.1)

Other 4 (11.5)

Tumor PD-L1 expression level

Positive 15 (42.9)

Negative 8 (22.9)

Indeterminate or missing 12 (34.2)

TABLE 2A | Comparison between imRECIST and metabolic criteria (EORTC).

imRECIST EORTC

CMR PMR SMD PMD Total

CR 0 0 0 0 0

PR 1 2 0 1 4

SD 1 5 3 6 15

PD 0 1 0 15 16

Total 2 8 3 22 35

criteria was concordant in 20 patients (57.1%) with a moderate
agreement between the two assessments (κ = 0.340,Table 2A). In
particular, the change of response category was most frequently
seen in patients classified as SD by imRECIST criteria: of 15
patients with SD, 6 (40%) were reclassified to CMR/PMR as the
decrease in the sum of the diameters of the target lesions was
<30%, while the decrease in the sum of SUVmax was more
than 25%, whereas another 6 (40%) were reclassified to PMD
by EORTC as new lesions were detected on 18F-FDG PET/CT.
Similar levels of agreement were obtained comparing imRECIST
and PERCIST criteria (κ = 0.342, Table 2B).

Response Comparison for imRECIST and
Immune-Related Metabolic Criteria
(imPERCIST, PERCIMT)
imRECIST and imPERCIST were discordant in 20 patients
(57.1%) with low agreement in the response classification
between the two assessments (κ = 0.143, Table 3A). When

TABLE 2B | Comparison between imRECIST and metabolic criteria (PERCIST).

imRECIST PERCIST

CMR PMR SMD PMD Total

CR 0 0 0 0 0

PR 1 2 0 1 4

SD 1 5 4 5 15

PD 0 1 1 14 16

Total 2 8 5 20 35

CR, complete response; PR, partial response; SD, stable disease; PD, progressive

disease; CMR, complete metabolic response; PMR, partial metabolic response; SMD,

stable metabolic disease; PMD, progressive metabolic disease.

TABLE 3A | Comparison between imRECIST and immuno-related metabolic

criteria (imPERCIST).

imRECIST imPERCIST

CMR PMR SMD PMD Total

CR 0 0 0 0 0

PR 1 2 0 1 4

SD 1 5 8 1 15

PD 0 2 9 5 16

Total 2 9 17 7 35

TABLE 3B | Comparison between imRECIST and immuno-related metabolic

criteria (PERCIMT).

imRECIST PERCIMT

CMR SMD PMD Total

CR 0 0 0 0

PR 1 3 0 4

SD 1 11 3 15

PD 0 4 12 16

Total 2 18 15 35

CR, complete response; PR, partial response; SD, stable disease; PD, progressive

disease; CMR, complete metabolic response; PMR, partial metabolic response; SMD,

stable metabolic disease; PMD, progressive metabolic disease.

adopting imPERCIST criteria, tumor responses were upgraded in
2 (10%) patients and downgraded in 18 (90%) patients. Notably,
of 16 patients classified as PD according to imRECIST, 9 were
reclassified as SMD according to imPERCIST, as the increase
in the sum of the longest diameters of the target lesions was
more than 20%, while the increase of overall SULpeak was
<30%, and 2 patients as PMR because SULpeak reduction was
>30%. Furthermore, of 15 patients classified as SD according to
imRECIST, 1 was classified as PMD according to imPERCIST, as
new lesions were detected on PET/CT contributing to summed
SULpeak for PMD, but not on CT, and 6 patients as PMR, as
the decrease in the sum of the longest diameters of the target
lesions was <30%, while the decrease in the SULpeak was more
than 30%. On the other hand, the level of agreement was higher,
although moderate, when comparing imRECIST with PERCIMT
(κ = 0.413), with concordance in 23 patients (65.7%). Overall, 9
patients were downgraded and 3 upgraded (Table 3B).
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FIGURE 2 | Kaplan–Meier curves with log-rank (Mantel–Cox) test obtained for PFS and OS according to the different morphological and metabolic response criteria.

Clinical Outcome and Prognosis
The median duration of follow-up was 13.7 months (range,
2–28.7 months). Median PFS and OS for all patients was 5.6
months (95% CI, 3.1–8.1 months) and 15.3 months (95% CI,
8.9–21.6 months), respectively. With imRECIST, the median
PFS was 6 months for patients with PR, 23 months in those
with SD, and 2 months in those with PD. The median PFS in
patients with PR was significantly longer than in those with
PD (p = 0.031), but was not significantly longer than in those
with SD (Figure 2). Among all metabolic parameters, PMD rate
was comparable according EORTC, PERCIST, imPERCIST, and
PERCIMT, with a median PFS of 3.2, 2.6, 1.8, and 1.9 months,
respectively (Figure 2). However, while there was no statistical
difference between SMD and PMD according to EORTC and
PERCIST criteria, patients with SMD according imPERCIST and
PERCIMT had longer PFS than those with PMD (p = 0.004
and p < 0.001, respectively). At the time of analysis, 16 patients
(45.7%) had died. OS curve according to EORTC criteria was not
significant (Figure 3) and showed only a tendency for imRECIST
criteria (p = 0.06) (Figure 2). On the other hand, PERCIST,
imPERCIST, and PERCIMTwere significantly associated withOS
(p = 0.027, p = 0.001, and p = 0.008, respectively), with similar
survival for CMR/PMR group (median not reached) (Figure 2).
Moreover, OS between SMD and PMD according to imPERCIST
and PERCIMT was statistically significant (p = 0.002 and
p = 0.006, respectively), whereas according to PERCIST, it
was not.

We then analyzed the value of immune-metabolic criteria, i.e.,
imPERCIST and PERCIMT, in patients showing SD on CT. In

these patients, both imPERCIST and PERCIMTwell-differentiate

patients with longer survival, expressed by both PFS (p < 0.001
and p = 0.009, respectively) and OS (p < 0.001 and p = 0.002,

respectively) (Figure 3).

Finally, we also performed a multivariate analysis including
all clinical variables and response criteria which were significant
at univariate Cox proportional-hazards model. According to our
results, performance status (HR = 0.278, p = 0.015), imRECIST
(HR = 3.799, p = 0.026), and imPERCIST (HR = 4.064,
p = 0.014) were predictive factors for PFS, while only
performance status (HR = 0.327, p = 0.035) and imPERCIST
(HR= 3.247, p= 0.007) were predictive for OS (Table 4).

DISCUSSION

Immunotherapy with ICI has introduced new challenges for
medical imaging. This involves anatomical imaging, such as CT
or MRI, as well as functional imaging, expressed by nuclear
medicine techniques. In fact, with the growing use of ICI,
atypical response patterns have been detected and described,
such as pseudo-progression, hyper-progression, and dissociated
response (14, 18). With this regard, one of the primary goals for
the medical community is the early identification of patients who
will not respond to ICI to permit a rapid switch of therapeutic
line, to reduce the risk of immune-related adverse events, and
to decrease the economic impact of these drugs, which remain
very expensive. At the same time, it is important to avoid the
premature treatment withdrawal for patients with therapeutic
benefit (19, 20). For these reasons, many different immune-
related scales have been proposed in the last years, but none
of them has been routinely adopted in clinical practice, hence
the debate is still open (21). Furthermore, only few studies
have been published providing a direct comparison between CT-
based and PET-based criteria, most with small cohorts and in
melanoma setting (22–25). Only Rossi et al. (26) have recently
compared anatomic and metabolic criteria in NSCLC patients
treated with nivolumab.
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FIGURE 3 | Kaplan–Meier curves with log-rank (Mantel–Cox) test obtained for PFS and OS in patients presenting with SD on imRECIST and classified according to

immune-related metabolic criteria (imPERCIST, PERCIMT).

In our study, we aimed to compare different response
criteria in patients with advanced NSCLC treated with anti-
PD-1/PD-L1 at first evaluation, after approximately 8 weeks.
We adopted standard anatomic criteria as RECIST 1.1 and its
immune-variation imRECIST, the latter combining cut-off values
and unidimensional size of RECIST 1.1 and irRC criteria for
interpretation of new lesions. Indeed, the main caveat is that
irRC criteria require bidimensional measurements of tumor
lesions hardly to apply in routine. Moreover, along with standard
EORTC and PERCIST criteria, we also investigated imPERCIST
and PERCIMT criteria. The latter can be considered the variation
of irRC in which the metabolic dimensions of new lesions are
embedded in the overall tumor burden (11).

In our study, we demonstrated a low overall agreement
between imRECIST and imPERCIST, particularly for patients
in the PD category. In fact, more than half of patients, i.e.,
69%, classified as PD were downgraded to either SMD (9/16)

or PMR (2/16) according to imPERCIST. Our results suggest
that the sum of SULpeak from new lesions appears more reliable
than diameter measurement, allowing to detect a therapeutic
response as early as 8 weeks since ICI started. Hence, imPERCIST
could help to avoid an early interruption of ICI therapy. On
the other hand, our findings showed a moderate agreement
between imRECIST and PERCIMT, with only 4 out of 16
patients with PD downgraded according to SMD, highlighting
once again that metabolic activity expressed by SULpeak is
optimal than metabolic measurement for new lesions. This is
in line with a recent study in melanoma patients treated with
ICI, where PERCIMT criteria were demonstrated suboptimal
for the identification of disease progression (22). Furthermore,
our results are apparently opposite to those of Rossi et al.
(26), who compared different PET- and CT-based response
criteria in a similar cohort. In fact, they demonstrated limited
prognostic value of the SMD group who had a survival similar to
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TABLE 4 | Univariate and multivariate Cox proportional-hazards regression analysis for prediction of PFS and OS.

Parameters PFS OS

Hazard ratio 95% CI P-value Hazard ratio 95% CI P-value

Age (median) 0.935 0.423–2.067 ns 1.110 0.413–2.984 ns

Gender 0.519 0.231–1.164 ns 0.332 0.122–0.905 0.031

Smoking history 1.407 0.480–4.129 ns 2.668 0.747–9.545 ns

Histology 0.700 0.208–2.356 ns 1.701 0.583–4.962 ns

Performance status 0.479 0.216–0.998 0.071 0.289 0.102–0.815 0.019

imRECIST 3.962 1.826–8.596 0.001 1.893 0.786–4.560 ns

EORTC 2.330 1.360–3.994 0.002 2.445 1.116–5.359 0.026

PERCIST 2.572 1.483–4.460 0.001 3.020 1.289–7.078 0.011

imPERCIST 3.388 1.826–8.596 0.001 3.904 1.701–8.958 0.001

PERCIMT 3.321 1.571–7.019 0.002 4.157 1.477–11.706 0.007

Multivariate cox proportional-hazards regression analysis

Gender – – – 0.729 0.301–1.524 ns

Performance status 0.278 0.099–0.791 0.015 0.327 0.116–0.922 0.035

imRECIST 3.799 1.169–12.340 0.026 – – –

EORTC 0.730 0.078–6.800 ns 0.005 0.001–2.394 ns

PERCIST 0.890 0.086–9.256 ns 1.235 0.053–2.210 ns

imPERCIST 4.064 1.329–12.426 0.014 3.247 1.385–7.611 0.007

PERCIMT 1.742 0.418–7.258 ns 3.749 0.635–22.114 ns

ns, not significant; OS, overall survival; PFS, progression-free survival.

PMD patients. However, in their study, no significant difference
between PERCIST and imPERCIST was found, whereas in our
study among 20 patients classified as PMD according PERCIST,
13 were downgraded to SMD or PMR. In our opinion, this is the
main reason for the different results obtained between our study
and that from Rossi et al.

As shown in the Kaplan–Meier curves, we observed a
positive impact of early PET and CT response on PFS,
while only metabolic immune-related response criteria were
prognostic for OS, confirming the role of 18F-FDG PET/CT
in predicting final clinical response to immunotherapy already
underscored in previous studies in melanoma (24, 25). In
fact, as visible on imRECIST survival curves, SD patients
had a survival profile similar to PR curve. When selecting
only patients with SD by imRECIST, both imPERCIST and
PERCIMT criteria were able to identify three further survival
curves (Figure 3). This evidence supports the hypothesis
that SD group comprises a heterogeneous cohort with
different prognosis, some with clinical benefit and others
without. Hence, from this perspective, immune-related
response criteria could be useful for monitoring the efficacy of
immunotherapy, by identifying responders vs. non-responders
as well as by predicting clinical outcomes, as arisen from our
multivariate analysis.

Nevertheless, our study presents some limitations. The main
one is related to its relatively small cohort. Furthermore, the use
of different PET/CT scanners may have caused some variability
in metabolic parameter measurement, although all patients were
imaged in the same scans throughout the study. Third, in our
study we have investigated the most validated 18F-FDG PET-

based criteria so far, whereas we did not consider other metabolic
parameters or variables, such as metabolic tumor volume,
total lesion glycolysis, circulating tumor cells, neutrophil-to-
lymphocyte ratio, and their combination, which recently have
been demonstrated to predict PFS andOS in patients treated with
ICI (17, 27, 28).

In conclusion, our study encourages the use of immune-
metabolic response criteria by 18F-FDG PET/CT, in particular
imPERCIST, to assess early response and to predict long-
term outcomes in patients with NSCLC under ICI therapy.
However, our first findings need to be validated in a larger
prospective study.
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INTRODUCTION

Prostate cancer is a challenging disease for both physicians and patients. It requires a
multidisciplinary team of urologists, medical oncologists, radiation oncologists, radiologists, and
pathologists. Current management options include radical prostatectomy (RP), external beam
therapy, brachytherapy, high-intensity focused ultrasound, cryotherapy, or watchful waiting (1).
Although initial management of prostate cancer is difficult, there is even more uncertainty when
patients have biochemical recurrence (BCR) prostate cancer (BCRPCa), which is described as a
rise in prostate-specific antigen (PSA) levels in patients with prostate cancer who have undergone
surgery or radiation (1). This is because with BCRPCa, the site of recurrence can be elusive.
The multidisciplinary team needs the best data possible to ascertain treatment and management
options, while the patient deserves answers on the state of his disease.

After radical prostatectomy, up to a third of patients will experience BCRPCa (1). BCRPCa has
risen in recent years and now affects, by some estimates, 25,000 men annually in the United States
(2). Spratt et al. (2) reason that this rise is largely due to the discouragement of routine PSA
screening from the US Preventative Task Force, causing an increase of men presenting with
high-risk localized cancer (2, 3). This trend has also been observed in Europe and was the impetus
for the European Association of Urology (EAU) latest policy statement to reevaluate PSA screening
(4, 5). In addition, there is <10% utilization of adjuvant radiation therapy despite support from the
American Urological Association (AUA), American Society for Radiation Oncology (ASRO), and
American Society of Clinical Oncology (ASCO) (2).

The definition of BCRPCa depends on the initial treatment strategy. Any strategy that does not
remove all prostate epithelial tissue will demonstrate a nadir in PSA values instead of the expected
undetectable PSA values seen with RP. The AUA as well as the EAU guidelines define BCR after
RP as an initial PSA value of≥0.2 ng/ml confirmed by subsequent PSA value of≥0.2 ng/ml (1). To
predict the probability of metastasis, BCR must be taken with clinical factors such as initial PSA
level, Gleason score, pathological findings after surgery, and post-BCRPCa PSA kinetics.

After confirmation of BCRPCa, imaging is vital to supply the data needed by the
multidisciplinary team to direct management. Imaging can change management in up to 70%
of patients (1, 6). The determination of local salvage therapy, systemic therapy, surveillance, or
the addition of androgen deprivation depends on confident detection (or the lack thereof) of
recurrence and distinguishing between local recurrent andmetastatic disease (7). It should be noted
that a change in management does not necessarily translate to a change in morbidity or mortality.
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Current National Comprehensive Cancer Network (NCCN)
guidelines allow consideration of a multitude of imaging
modalities (8). However, it is our opinion that the
recommendations should be streamlined to the most effective
imaging modalities available in answering the clinical question
with the highest level of confidence available. The imaging
studies with the highest positive rate at the lowest PSA can lead
to early salvage radiation therapy.

CURRENT LANDSCAPE OF IMAGING IN
BIOCHEMICAL RECURRENCE PROSTATE
CANCER

Transrectal ultrasound (TRUS) can only evaluate the prostate bed
and detects <50% of recurrence when PSA is <0.5 ng/ml (1).
Computed tomography (CT) has poor anatomical resolution in
the treated prostate bed, and unless recurrence is of substantial
size, it is of limited use for local recurrence. CT can be helpful in
evaluating for distant metastasis; however, CT has been reported
to be positive in only 14% of cases (9). Any lesion seen on Tc-
99m methyldiphosphonate (MDP) bone scintigraphy is highly
non-specific. In fact, bone scintigraphy with BCRPCa has a
positive rate of <5% when PSA is <7.0 ng/ml (10). The other
obvious limitation of bone scintigraphy is that it cannot detect
soft tissue recurrence.

The benefit of PET/CT is that it combines functional data
ascertained by the radiotracer with limited anatomical data from
the CT portion. 18F-NaF PET/CT is a bone imaging study that
detects areas of increased bone turnover similar to Tc-99mMDP,
allowing it to detect osseous metastases (11). Although 18F-NaF
PET/CT has been shown by Jadvar et al. (12) to outperform 18-
FDG PET/CT in the detection of occult osseous metastases, it has
a similar constraint as bone scintigraphy in that it is confined
to detecting osseous recurrence where other modalities can
detect both osseous and soft tissue recurrence. The true-positive
detection rate for occult osseous metastases by 18F-NaF PET/CT
is 16.2%, and the median PSA levels for positive vs. negative
PET/CT scans is reported as 4.4 and 2.9 ng/ml, respectively
(12). 18F-FDG PET/CT, making use of glucose metabolism
with a radiolabeled glucose analog, has a low sensitivity for
BCRPCa, with only 28% detection of recurrence when PSA is
<1.5 ng/ml (1). 11C-choline leverages the function of choline
in cell membranes and lipid biosynthesis. 18F- or 11C-choline
PET/CT is only of utility when PSA is >2.0 ng/ml (1). It has
been observed that when PSA is <0.4 ng/ml, 11C-choline PET
shows a dismal positive rate of only 21% (2). 18F-fluciclovine
is a leucine amino acid analog and a novel PET radiotracer
recently Food and Drug Administration (FDA) approved for
use. Prostate cancer upregulates amino acid metabolism, giving
18F-fluciclovine its effectiveness as a radiotracer. At low PSA
levels, it has a substantial positive detection rate. At PSA values
of <1.0 ng/ml, 1.0–2.0 ng/ml, and≥2.0 ng/ml, detection rates are
reported as 72.0, 83.3, and 100%, respectively (13). Additionally,
Lovec et al. (14) reported a positive rate above 50% with men
with PSA values below or equal to 0.3 ng/ml. Although the
NCCN guidelines report only a marginally better sensitivity and

specificity range for 18F-fluciclovine compared to 11C-choline,
studies comparing them head-to-head have shown that 18F-
fluciclovine is superior (8, 15). Furthermore, Nanni et al. (15)
reported the true positives at all PSA levels were generally higher
with 18F-fluciclovine than 11C-choline.

Multi-parametric magnetic resonance imaging (mpMRI) is
highly sensitive for local recurrence with its superior anatomic
and tissue resolution. A positive rate of up to 94% has been
reported with median PSA of 0.59 ng/ml (1). With respect to
its application in prostate cancer imaging, mpMRI sequences
involve various advanced sequences. The two most important
sequences include diffusion-weighted imaging (DWI), which
measures Brownian motion of water molecules within a voxel of
tissue, and dynamic contrast enhancement (DCE) T1 imaging,
which highlights vascular perfusion to tissue. DWI signal may be
degraded secondary to the blooming artifact caused by surgical
metallic clips or retained rectal air (16). Additionally, with short
tau inversion recovery (STIR) imaging and DCE T1 imaging,
osseous lesions are readily detected. In fact, MRI can detect
changes in bone marrow prior to osteoblastic response which
is needed for other types of bone-specific imaging (17). Post-
therapy scar and fibrosis either does not enhance or demonstrates
late enhancement. Malignancy, however, demonstrates early
enhancement (18). The added benefit of mpMRI is that it
can tease out local disease from focal treatment change that
often occurs from focal therapies such as cryoablation and
high-intensity focused ultrasound (18). Diagnostic CT or the
CT portion of a PET/CT cannot provide the same level of
anatomical detail of the treatment-altered prostate bed asmpMRI
of the prostate.

In patients with BCRPCa, it is imperative to deliver salvage
radiation therapy (RT) as early as possible (ideally PSA
<0.5 ng/ml). This means that finding recurrence with the lowest
possible PSA is invaluable. Of the imaging modalities available,
the ones that detect disease with the lowest PSA value are 18F-
fluciclovine PET/CT and mpMRI. 18F-fluciclovine is effective in
detecting both local recurrence and distant metastatic disease,
while mpMRI has very high utility in detecting local recurrence.
In fact, a whole-body MRI would obviate the need for bone-
specific imaging modalities given its superiority to both bone
scintigraphy and 18F-NaF PET/CT (17). Hence, it is our opinion
that there is no need for any other imaging modality except
18F-fluciclovine PET/CT combined with mpMRI, including a
whole-body sequence, for BCRPCa, and ideally, 18F-fluciclovine
PET/MRI, if available, for the added benefit of superior
osseous detection (Figure 1). This approach will give the
multidisciplinary team the structural and functional information
to make early management decisions with high confidence.

FUTURE DIRECTIONS IN BIOCHEMICAL
RECURRENCE PROSTATE CANCER
IMAGING

Molecular imaging approaches applied in the management
of BCRPCa management include prostate-specific membrane
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FIGURE 1 | Right anterior prostate bed recurrence as seen on multi-parametric MRI (mpMRI) with 18F-fluciclovine PET/CT. There is diffusion signal on calculated

b-1400 diffusion-weighted imaging (DWI) (red arrow) (A) with corresponding low apparent diffusion coefficient (ADC) values (red arrow). (B) Anatomical correlation is

noted on T2 Half-Fourier acquisition single-shot turbo spin echo (HASTE) imaging (red arrow). (C) Lesion is confirmed to contain upregulated amino acid transport,

seen in prostate cancer, in the 18F-fluciclovine image (red arrow) (D).

antigen (PSMA) radiotracers bound either to gallium (68Ga-
PSMA) or to fluoride (18F-DCFPyL). PSMA is a membrane
glycoprotein that is overexpressed by prostate cancer cells. Ga-
PSMA PET is currently undergoing Phase III trials in the US
and appears to outperform 18F-fluciclovine with a positive rate
of 73% at a PSA range as low as 0.5 to 1.0 ng/ml and a positive
rate of>50% at the remarkably low PSA range of 0.20–0.29 ng/ml
(1). It should be noted that 68Ga-PSMA is already clinically
available in Europe and outperforms 18F-fluciclovine (19). 18F-
DCFPy is a PSMA radiotracer that produces images with higher
resolution and is currently in phase II trials (2). It has been shown
to successfully identify recurrent disease and lead to a change in
management in 60% of patients and in up to 28% of patients who
had negative CT or MR findings (20). It has been shown to detect

bone metastases as accurately as 18F-NaF PET/CT but is superior
to the latter given its ability to detect non-osseous disease at low
PSA values, making it a more useful study overall (21).

BCRPCa as well as primary prostate cancer is ripe for
quantitative imaging biomarker development using radiomics
as a methodology. Radiomics may be defined as a process of
extracting quantified data from medical images as single-order
(histogram-based) and second-order (texture analysis-based)
features, which are then classified into clusters (or signatures)
that best align with an underlying pathophysiologic process
(Figure 2). Radiomic analysis performed on pretreatment
mpMRI has been shown to predict BCRPCa, which has
implications for predicting response to adjuvant therapy (22,
23). In addition, radiomic texture analysis has been shown to
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FIGURE 2 | Graphical schema of the radiomics process that involves lesion identification, drawing regions of interest, image preprocessing followed by radiomic

feature extraction and classification that provides the imaging biomarker for predicting biochemical recurrence. Reused from Fernandes et al. (28) under the Creative

Commons License.

predict biochemical relapse as well as BCRPCa-free survival
after prostatectomy [area under the curve (AUC) 0.76]
(24). Furthermore, MR radiomic signatures [using T2W and
apparent diffusion coefficient (ADC) images] can accurately
predict the response to carbon ion radiotherapy (CIRT) for
prostate cancer as well (25). Recently, radiomics has been
shown to predict Decipher score (an mRNA-based genomic
test that predicts the occurrence of prostate cancer metastasis
after radical prostatectomy) by differentiating between low and
intermediate/high scores (with an AUC of 0.92) (26, 27).

Imaging is central to BCRPCa treatment decisions.
Current practice in the US should be reformed to use
18F-fluciclovine and moving to a PSMA-based radiotracer
as currently approved in Europe once FDA approved

in the USA in conjunction with mpMRI or as PET/MR
where available. The future is bright in the fight against
BCRPCa with growing research in imaging-based
precision medicine practices including radiomics-based
imaging biomarkers.
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Vanessa Calamai2, Monia Bali3, Nasir Khan3, Annette Bryant2, Claire Saffery2,
Charles Dearman2, Ruwaida Begum2, Sheela Rao2, Naureen Starling2, David Watkins2,
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Background: Image-guided tissue biopsies are critically important in the diagnosis and
management of cancer patients. High-yield samples are also vital for biomarker and
resistance mechanism discovery through molecular/genomic analyses.

Patients and Methods: All consecutive patients who underwent plugged image-
guided biopsy at Royal Marsden from June 2013 until September 2016 were included
in the analysis. In the next step, a second cohort of patients prospectively treated within
two clinical trials (PROSPECT-C and PROSPECT-R) were assessed for the DNA yield
from biopsies assessed for complex genomic analysis.

Results: A total of 522 plugged core biopsies were performed in 457 patients [men,
52%; median age, 63 years (range, 17–93)]. Histological diagnosis was achieved in 501
of 522 (96%) performed biopsies. Age, gender, modality, metastatic site, and seniority
of the interventionist were not found to be significant factors associated with odds
of failure on a logistic regression. Seventeen (3.3%) were admitted due to biopsy-
related complications; nine, three, two, one, one, and one were admitted for grade
I/II pain control, sepsis, vasovagal syncope, thrombosis, hematuria, and deranged
liver functions, respectively; two patients with right upper quadrant pain after liver
biopsy were found to have radiologically confirmed subcapsular hematoma requiring
conservative treatment. One patient (0.2%) developed grade III hemorrhage following
biopsy of a gastric gastrointestinal stromal tumor (GIST). Overall molecular analysis
was successful in 89% (197/222 biopsies). Prospective validation in 62 biopsies gave
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success rates of 92.06 and 79.03% for DNA extraction of >1 µm and tmour content of
>20%, respectively.

Conclusion: The probability of diagnostic success for complex molecular analysis is
increased with plugged large coaxial needle biopsy technique, which also minimizes
complications and reduces hospital stay. High-yield DNA acquisition allows genomic
molecular characterization for personalized medicine.

Keywords: coaxial core-needle biopsy system, tissue biopsies, formalin-fixed paraffin-embedded, clinical trials,
genomic analysis

INTRODUCTION

While cancer management and treatment options have
significantly improved during the last few years, our knowledge
and understanding about mechanisms of response, and/or
resistance to anticancer therapies remain relatively sparse.
To date, this relative lack of understanding is partially
due to difficulties in accessing prospectively collected
tissue and blood samples from systemic anticancer therapy
(SACT)-resistant tumors.

Image-guided tissue biopsies are not just important in
establishing an accurate histopathological diagnosis and standard
cancer management; high-yield samples are also vital in
understanding the molecular and genomic characteristics of
tumors. Genomic analyses on tumor samples broadly fall into
two categories including (1) targeted approaches investigating
a limited number of genes that are known to influence clinical
decision making and (2) whole exome or genome sequencing
frequently adopted in exploratory research studies to learn about
new mechanisms of response or resistance to SACT (1, 2).
Conventional formalin-fixed paraffin-embedded (FFPE) samples
obtained during diagnostic procedures may not be sufficient
for such analyses to be realized. For instance, the data from
The Cancer Genome Atlas (TCGA) studies showed that fresh
frozen material from primary tumor resection specimens was
associated with a tumor content of 60% (3). Moreover, using
FFPE DNA for large-scale genomic studies may demonstrate
mutations that have occurred as a result of the fixation
process, which makes it difficult to distinguish real tumor
variants from these fixation artifacts. Furthermore, low-quality
fragmented DNA can fail quality control in the preanalytical stage
impairing success rates.

While a number of retrospective studies have demonstrated
the safety and accuracy of diagnostic biopsies (4–6), data
interpretation from such studies has often been hampered
by small numbers, the lack of information on yield for
molecular/genomic characterization of tumors, and the lack
of prospective validation. At Royal Marsden (RM), we have
been using coaxial core-needle biopsy (CNB) system and
a preformed gelatin sponge sealing device to conduct solid
organ core biopsies in order to minimize the number of
passes and reduce the risk of complications, respectively.
We present here the largest dataset demonstrating the safety
and accuracy of this approach. Moreover, we took the
opportunity to utilize a cohort of patients from two prospective

clinical trials to validate tumor yields from biopsies in these
translational studies.

MATERIALS AND METHODS

Study Design
All consecutive patients who underwent plugged image-
guided biopsy at RM from June 2013 until September 2016
were included in the analysis. Data including gender, age,
primary tumor, biopsy site, needle gage, interval between
biopsy and discharge, incidence of complications, and biopsy
success were collected. The study was approved by the RM
Institutional review board.

Biopsy Technique
The biopsies were performed by a Consultant Interventional
Radiologist (IR) or an IR fellow under supervision. Ultrasound
and CT guidance was used based on the location of the
lesion. Conscious sedation was administered along with local
anesthesia, when required, to maximize cooperation and improve
patient experience (Figure 1). A 15- or 17-G coaxial needle
was inserted under direct image guidance at the edge of the
lesion and two to six cores were obtained with a 16- or 18-
G automatic core-biopsy needle (True-Core II, Argon Medical
Devices, Frisco, TX, United States), respectively. Different areas
inside the lesion were sampled by changing the angle and position
of the coaxial needle. After the samples were collected, one
to four preformed 16- or 18-G gelatin foam pledgets (Hunter
biopsy-sealing device, Vascular Solutions Inc., Minneapolis, MN,
United States) were deployed through the coaxial along the
tract of the needle to facilitate hemostasis. The gelatin resorbs
completely within 12 weeks.

Validation Cohort
In the second step, a validation cohort of patients prospectively
treated within two clinical trials was used to assess the DNA yield
utilized for genomic analysis. The two trials included PROSPECT-
C [clinical trials.gov number (NCT02994888)] (2, 7) and
PROSPECT-R [clinical trials.gov number (NCT03010722)] (1);
phase II, open label, non-randomized studies of antiepidermal
growth factor receptor (anti-EGFR) monoclonal antibodies
and regorafenib in patients with RAS wild type and RAS
mutant refractory metastatic colorectal cancer (CRC),
respectively. All participants in both studies were required
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FIGURE 1 | Biopsy examples of patients within the study (A) A computed tomography (CT) of a patient with a highly vascular retroperitoneal mass thought to be too
high risk to biopsy at the local hospital. Surgery was also considered to be high risk of R1/R2 resection, and a CT-guided biopsy was recommended by our
multidisciplinary team (MDT). (B) Biopsy was performed with a 15-G/16-G coaxial needle. The tract was plugged with 16-G Hunter plugs, and there were no
complications. The biopsy showed an inflammatory myofibroblastic tumor, which responded well on steroids and an operation was avoided. (C) PET/CT of a
57-year-old patient with relapsed Hodgkin’s lymphoma after six cycles of ABVD chemotherapy. There was response in all sites of disease with the exception of a
plaque of tissue behind the fundus of the stomach, which appear [18F]-fluorodeoxyglucose (FDG) avid on PET scan. A decision of the MDT was made to biopsy the
lesion in order to exclude transformation of lymphoma. (D) The 17-G coaxial needle was placed medial to the left adrenal and above the splenic vessels adjacent to
the lesion. Three cores were taken, and the tract was plugged. There were no complications. The biopsy showed Hodgkin’s lymphoma, which responded well to
systemic therapy and consolidation RT. (E) Coronal CT images of a 48-year-old patient with a large tumor of the inferior vena cava (IVC) extending from the level of
the renal veins to the right atrium. Occluded hepatic veins and ascites can be seen on the scan. (F) The lesion was biopsied with a 15-G/16-G coaxial needle. (G)
The tract was plugged with three gelfoam pledgets. A diagnosis of leiomyosarcoma of the IVC was made, and the procedure had no complications.
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to have mandatory pretreatment biopsies (6 cores), biopsies
at partial response in PROSPECT-C and stable disease
at 2 months in PROSPECT-R (6 cores), and at the time
of progression (6–12 cores from two suitable progressing
metastatic sites).

Prospective Tissue Collection
Procedures
Fresh frozen and FFPE tissue samples were obtained, and plasma
collection was conducted as per the study protocols at the
clinically relevant defined time points. Sixteen-gage core biopsy
was used to collect three or four fresh biopsy specimens and
one or two specimens fixed in formalin and paraffin embedded.
Within the trials, approximately 25% of the total length of
a core was detached for primary culture, and the remaining
∼75% of the core was snap frozen and used for genomic
analysis. One core was transported to establish tumor-derived
organoids and targeted panel validation (8). One core was
used for genomic analysis after being placed into cryovials and
immediately snap frozen in liquid nitrogen. The remaining two
cores were placed straight into formalin and embedded in paraffin
wax. Primary morphological and immunohistochemical analysis
was performed by the histopathologist on the FFPE specimen for
confirmation of diagnosis. The samples were then stored in the GI
and Lymphoma Research Bank of the RM, anonymized by trial
number and time point.

Tissue Sample Processing
Biopsy cores were snap frozen in liquid nitrogen at the time of
collection. Genomic gDNA and mRNA were co-extracted from
cores using the Qiagen All-Prep kit. DNA was also isolated from
whole blood samples using the Qiagen QIAamp DNA Blood Mini
kit (Figure 2).

Whole Exome Sequencing
A minimum of 500 ng of gDNA was prepared for whole
exome sequencing (WES) using the Agilent SureSelect Human
All Exon v5 capture library, according to the manufacturers’
protocol. The resulting libraries were sequenced to a mean
depth of 100× using paired-end 100 reads on an Illumina
HiSeq 2500. High-quality reads were aligned to the National
Center for Biotechnology information (NCBI) reference genome
(hg19) using BWA (v0.7.12) and SAMtools (v0.1.19) to remove
duplicates. Tumor content was estimated based on the CNVkit
(v0.8.1) copy number profile.

Sanger Sequencing
For patients with a known tumour variant, PCR was
performed on 20 nanograms of gDNA using M13F/R-tailed
mutation specific primers (Life Technologies; Supplementary
Table 1) and Q5 High-Fidelity 2 × Master Mix (NEB) on
an Eppendorf Mastercycler Nexus GSX1. Primer-specific
annealing temperatures for Q5 polymerase were established
using the NEB online Tm calculator. PCR products were
cleaned using Qiaquick PCR purification kit (Qiagen), and
15 ng DNA was submitted for M13F and M13R sequencing

using the Mix2Seq service (Eurofins Genomics). Ab1 traces
were visualized and compared to the reference sequence using
ApE software1. Sample tumour content was estimated from the
relative abundance of wild-type and variant peaks (Figure 3 and
Supplementary Table 1).

Statistical Design
The success rate of biopsies was determined by the ability to
perform standard molecular testing on tissue specimens and
safety determined by frequency of complications and extended
hospital stay. Encrypted data were collected in a password-
protected Excel file and statistical analysis performed using
STATA13. Chi-squared analysis was undertaken to identify
baseline characteristics that provided independent association
with failure and success rates.

RESULTS

Overall Safety of Image-Guided Biopsies
and Cox Regression Analysis
A total of 522 tissue biopsies were performed in 457 patients
[men, 48%; median age, 63 years (range, 23–86)] (Supplementary
Table 2). Two, three, and four biopsies were obtained from
51 (11.2%), 13 (2.8%), and 1 (0.2%) patients, respectively, at
different time points as part of clinical trial protocols. Histological
diagnosis was achieved in 501 of 522 (96%) performed biopsies.
Same-day discharge was achieved for 444 (85.1%) procedures
as outpatients, 35 (6.7%) and 17 (3.3%) had planned inpatient
and elective procedures, respectively, and 8 (1.5%) patients were
kept in for overnight observation after a late evening procedure.
Seventeen (3.3%) were admitted with the following biopsy-
related complications: grade I/II pain control (nine), sepsis (one),
vasovagal syncope (two), thrombosis (one), hematuria (one),
and deranged liver functions (one). Two patients with right
upper quadrant pain had radiologically confirmed subcapsular
hematoma requiring conservative treatment. One patient (0.2%)
developed grade III hemorrhage requiring transfusion of 2 U
of packed red blood cells following biopsy of a gastric
gastrointestinal stromal tumor (GIST). In 21 of 522 biopsies,
diagnosis was not achieved due to sampling error during needle
placement. These were small lesions not well visualized with
ultrasound and CT, and normal tissue adjacent to the lesion
was consequently biopsied. When patients were divided into two
groups including those who underwent “liver biopsy” (n = 284
biopsies from 231 patients) and all other biopsies except liver,
i.e., “others” (n = 238 biopsies from 228 patients). Success rates of
95.02 and 98.32% were observed in the two groups, respectively
(Supplementary Tables 3A,B).

Chi-Squared Tests to Assess Covariates
of Failure
Results from chi-squared tests showed that the covariates
of age category at earliest biopsy date, gender, modality

1https://openwetware.org/mediawiki/index.php?title=ApE_-_A_Plasmid_
Editor_(software_review)&oldid=753142
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FIGURE 2 | Maximum DNA yield of the whole analyzed cohort from PROSPECT-C and PROSPECT-R patients. (A) Cases with DNA yield >10 µg are plotted against
right Y-axis. (B) Cases divided according to their DNA concentration. Median value and with 95% CI represented in gray bars. In the small square cases with DNA
concentration < 100 ng/ml are plotted against the left Y-axis.

of image guidance, metastatic site, and seniority of the
interventionist were not associated with the occurrence of
failure. Association of site of biopsy (others vs. liver), however,
showed a significant trend in favor of other organs vs. liver,
although the difference was not found to be numerically
and clinically of significant impact (p = 0.053). Patients
who had biopsy within clinical trials (n = 163 biopsies)
vs. those who underwent routine clinical diagnostic biopsies
(n = 338) showed a success rate of 98.79 and 95.48%,
respectively. Chi-squared test demonstrated significance in

favor of patients treated within clinical trials (p = 0.07;
Supplementary Table 4).

Validated Genomic Testing in Patients
With Metastatic Colorectal Cancer
Given that metastatic colorectal cancer (mCRC) patients
underwent genomic profiling for clinically actionable mutations
such as KRAS, NRAS, and BRAF analysis routinely with a
clinically validated COBAS panel, we rationalized separating this
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c.GGT>GAT
p.G12D

Se

A High tumour content

C Low tumour content D Undetectable tumour content

B Medium tumour content

c.GGT>GAT
p.G12D

c.GGT>GTT
p.G12V

c.GGTGGC
p.G12/G13 wt

FIGURE 3 | Sanger sequencing for KRAS p.G12/G13 mutation with example of (A) high tumour content, (B) medium tumour content, (C) low tumour content, and
(D) undetectable tumour content.

cohort from the remaining patients. Of the total 144 patients with
mCRC, 17 repeat charts and 38 patients who were referred from
other hospitals were excluded. Of the remaining 89 patients, 2
(2.25%) had a failed molecular analysis due to insufficient DNA

extraction—29 (32.58%), 6 (6.74%), and 3 (3.37%) were found
to have KRAS exons 2–4, NRAS exons 2–4, and BRAF v600
mutations, respectively. Moreover, 36 patients were tested for
TP53 and PIK3CA mutation; 26 (72.22%); and 5 (13.89%) were
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found to have these mutations, respectively. These results are
largely consistent with previously published literature.

gDNA Extraction From Biopsy: A Cohort
of PROSPECT-C and PROSPECT-R
Studies
DNA was extracted from 62 biopsies taken from our prospective
PROSPECT-C and PROSPECT-R trials and in 65% of cases;
sufficient gDNA for WES was achieved from a single core. Two
or three tissue cores were needed to yield sufficient DNA for 27
and 8% of the biopsy time points, respectively (Supplementary
Figure 1). When required, utilizing all available tissue cores
allowed gDNA extraction rate of 100%. Tumor content was
determined for 62 biopsies (75.61%) in the analyzed cohort and
was estimated as >20% in 79.03% of cases (Table 1).

Assessment of Biopsy Tumor Content
All patients entering the PROSPECT trials were tested for
KRAS/NRAS mutations in the archival tumor biopsy by standard
COBAS methodology, as this precluded entry into PROSPECT-
C study (2). As a result, all patients entering the PROSPECT-R
trial had a cataloged KRAS/NRAS variant that could be used to
investigate the tumor content of the respective biopsy samples
(1). Mutation profiles for KRAS/NRAS have previously been
shown to be highly concordant between samples from the same
colorectal tumor (9). We therefore estimated the cancer cell
content of biopsy samples using Sanger sequencing to detect

TABLE 1 | DNA extraction and estimated tumor content.

PROSPECT-C PROSPECT-R Total

Number of BL 15 31 46

Number of PD 15 21 36

Number of pairs (BL/PD) 7 19 26

Attempted DNA extraction (total) 30 33 63

Attempted DNA extraction (BL) 15 31 46

Attempted DNA extraction (PD) 15 2 17

Attempted DNA extraction (pairs BL/PD) 7 2 9

DNA yield > 1 µg (total) 27 31 58

DNA yield > 1 µg (BL) 13 29 42

DNA yield > 1 µg (PD) 14 2 16

DNA yield > 1 µg (pairs BL/PD) 6 2 8

Estimated tumor content (total) 30 32 62

≥20% 22 27 49

<20% 8 5 13

Estimated tumor content (BL) 15 31 46

≥20% 11 27 38

<20% 4 4 8

Estimated tumor content (PD) 15 1 16

≥20% 11 0 11

<20% 4 1 5

Estimated tumor content in BL/PD pairs 7 1 8

≥20% 4 0 4

<20% 3 1 4

BL,baseline; PD, progressive disease.

the likely truncal KRAS/NRAS mutations identified previously
by clinical sequencing assays. Samples were scored according to
the following criteria: “high” tumor content if the variant base
was detected at an intensity exceeding or equal to the wild-type
base; “medium” if the variant base was detected at >25% of the
intensity of the wild-type base; “low” if the variant base was
clearly detected above background but at <25% of the intensity
of the wild-type base; and “not detected” if the variant base
could only be detected within the background noise or not at
all (Table 2 and Figure 3). Further cores were extracted and
sequenced if the first had low or no detectable tumor content
(Table 2). In five cases, an additional core had medium tumor
content where the first tested core has low/not detectable tumor
content. Out of the 49 samples tested, 39 were scored as medium
or high tumor content (Table 2).

DISCUSSION

Tissue biopsies are often considered as the gold standard for
diagnostic and research purposes; however, there are many
logistical, technical, and ethical challenges in the successful
appliance of tissue biopsies in the clinic. To our knowledge, we
present the largest dataset of tissue biopsies with a prospective
validation cohort demonstrating high tumor yield and ability
to perform genomic analysis via image-guided tissue sampling
(10, 11).

Biomarker discovery requires validation in prospective clinical
trials; however, tissue collection procedures need to be optimized
such that the valuable tissue obtained during trials is processed
successfully (12, 13). Moreover, even within a resource-friendly
environment, molecular profiling studies have often suffered
due to inadequacy of samples; failure rates reportedly vary
between 15 and 33% (14–17). Keeping these issues in view, we
ensured that prebiopsy scans were discussed in person with a
radiologist, and only the most amenable lesions were chosen for
pretreatment biopsies; experienced radiologists were then able to
target multiple cores (6) from the periphery of the chosen lesions.
The current study demonstrates that a strong infrastructure and
good communication allows high-quality tumor samples to be
obtained in a time-efficient manner. The coaxial biopsy technique
used at the RM has the advantage of puncturing the capsule
of solid organs (liver, kidney, spleen) only once, minimizing

TABLE 2 | Sample tumor content estimated from Sanger sequencing.

PROSPECT-R

Number of samples sequenced: 49

Number of cores sequenced per sample:

1 core: 35

2 cores: 10

3 cores: 4

Number of high tumor content cores: 12

Number of medium tumor content cores: 27

Number of low tumor content cores: 6

Number of cores with no detectable tumor content: 22
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the injury to normal tissues, improving patient experience, and
at the same time acquiring multiple large cores for diagnosis
and molecular analysis. The application of preformed gelatin
sponge sealing device at the biopsy tract provides a mechanical
matrix that facilitates clotting. Gelfoam pledgets, due to their
bulk, surface-acting hemostatic agents, slow the flow of blood,
protect the forming clot, and offer a framework for the deposition
of the cellular elements of blood, decreasing the risk of major
bleeding (18). The grade III hemorrhage in our series was only
0.2%, which compares favorably with the 0.5–2% seen in large
series in the literature using Tru-Cut needles with or without
coaxial technique (19, 20).

Common concerns about trials mandating research biopsies
include the lack of patient understanding about the purpose of
such studies and the potential risks associated with additional
interventional procedures within the research protocols (21–
24). In the case of our PROSPECT-C trial (1, 2), patients
included in the study had access to anti-EGFR antibody
treatment via the cancer drug fund (CDF) independent of
the research biopsy findings, which meant that the research
biopsies were of no direct patient benefit. In order to
ensure that patients clearly understood the purpose of their
participation in PROSPECT-C and other research studies, a
prospective patient-based survey at the RM was performed.
Remarkably, it showed that most patients who consented
to a research biopsy gave an altruistic reason (e.g., to help
research and/or others) as to why they agreed to participate
(25). A common concern regarding trial-related invasive
intervention is procedure-related complications. Notably,
the biopsy complication rates in more than 500 patients
in our cohort (including patients on PROSPECT studies)
were extremely low and compared favorably with published
literature (26, 27). The technical reasons for success can be
attributed to the use of large gage coaxial needles, which
enable multiple tissue cores to be sampled with a single
pass. Subsequent application of gelatin foam pledgets via
a coaxial cannula at withdrawal effectively seals the biopsy
track and minimizes hemorrhage (<1%), thus enabling
safe same-day discharge in the majority of patients. This
technique, however, needs to be carefully considered in
appropriate patients; for example, any attempt to biopsy lung
parenchyma would carry a significant risk of the gelfoam
pledget deploying in a pulmonary vein resulting in systemic
embolus. We, however, acknowledge that the exceptional
safety observed in our cohort may not be reproducible in a
less resource-friendly environment, as it is highly operator
dependent, and thus, clinicians are encouraged to audit
their own data when determining the need for requesting
tissue biopsies.

Following the safe acquisition of biopsy material, the
processing of tumor samples has its own challenges. First, the
acquired sample contains a mixture of cancer cells and stroma
(connective tissue, blood vessels, and inflammatory cells). It is
well established that stromal infiltration may lead to problems
in interpreting genomic data (28, 29). In contemporaneous
studies conducted at the RM (e.g., FOrMAT study), sample
failure rates were high with only 16% of samples showing

tumor content of >50% (30). The FOrMAT study collected
a range of GI tumor samples including pancreatic cancers,
which are more likely to be dominated by inflammatory and
stromal cells (31), but it relied on using only FFPE tissues.
FFPE tissue has limitations for complex genomic studies, as
the DNA yield and quality are affected by the process of
fixation and paraffin embedding (32–36). The PROSPECT studies
benefited from parallel analysis using both FFPE and fresh
frozen tissue, where the former was used for pathological
assessment and the latter for molecular characterization and
genomic analysis. By utilizing all available tissue cores as
required, we achieved a gDNA extraction of >90% and an
estimated tumor content of >20% in 87.27% of the cases.
These data compare favorably with a recent large-scale study
comprising of >10,000 patients, who were subjected to a
hybridization-based next-generation sequencing (NGS) panel
capable of detecting all-protein coding mutations, copy number
alterations, and selected promoter mutations and structural
rearrangements (37).

We next took into account the limitations of tumor
estimates generated by subjective pathological assessment
of tumor morphology and cellularity estimates. Cellularity
can be estimated by quantifying the mutant alleles using
technologies, such as Sanger or Ion Torrent sequencing,
but this requires prior knowledge of the mutation (29,
38); in PROSPECT-R, Sanger sequencing was used to assess
tumor content, as RAS mutation was a prerequisite for
entry into the study. However, only patients with no known
RAS pathway mutation could participate in PROSPECT-C,
so alternative techniques were required for tumor cellularity
estimates. An unbiased statistical approach that directly measures
tumor content from the DNA sample, therefore, allowed
us to take into account factors such as tumor ploidy
and intratumor heterogeneity (ITH). This study highlights
the safety of tissue biopsies and has significant clinical
implications in the management of various malignancies—
repeat biopsies should be considered in clinically relevant cases,
for example at the time of progression on targeted therapies.
Moreover, recent data by our group (1, 2) and others have
demonstrated strong concordance between solid and liquid
biopsies, and thus, the latter can be considered where a
clinically validated panel is available and answers the relevant
clinical question.

CONCLUSION

Oncologic management and clinical trial participation require
accurate histological and molecular characterization. Image-
guided biopsies using large gage coaxial needles enable multiple
tissue cores to be obtained with a single pass. This increases
the probability of diagnostic success for complex molecular
analysis. Applying gelatin foam pledgets via the coaxial cannula
following biopsy to seal the track reduces hemorrhagic risk and
enables safe same-day discharge in the majority of patients.
By successfully obtaining sufficient number of tumor tissue
samples within prospective trials, such studies can further the
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understanding of tumor biology and help develop biomarkers of
clinical and translational relevance. Ultimately, this will enhance
the application of personalized medicine in the clinic.
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When evaluating metastatic tumor response to systemic therapies, dissociated response

is defined as the coexistence of responding and non-responding lesions within the

same patient. Although commonly observed on interim whole-body imaging, the current

response criteria in solid cancer do not consider this evolutive pattern, which is,

by default, assimilated to progression. With targeted therapies and chemotherapies,

dissociated response is observed with different frequencies, depending on the primary

cancer type, treatment, and imaging modality. Because FDG PET/CT can easily assess

response on a lesion-by-lesion basis, thus quickly revealing response heterogeneity, a

PET/CT dissociated response has been described in up to 48% of women treated for a

metastatic breast cancer. Although some studies have underlined a specific prognostic

of dissociated response, it has always ended up being described as an unfavorable

prognostic pattern and therefore assimilated to the “Progressive Disease” category

of RECIST/PERCIST. This dichotomous imaging report (response vs. progression)

provides a simple information for clinical decision-support, which probably explains the

relatively low consideration for the dissociated response pattern to chemotherapies

and targeted therapies until now. With immune checkpoint inhibitors, this paradigm is

quickly changing. Dissociated response is observed in around 10% of advanced lung

cancer patients and appears to be associated to treatment efficiency. Indeed, for this

subset of patients, a clinical benefit of immunotherapy and favorable prognosis are

usually observed. This specific pattern should therefore be considered in the future

immunotherapy-adapted criteria for response evaluation using CT and PET/CT, and

specific clinical managements should be evaluated for this response pattern.

Keywords: dissociated, response, immunotherapy, metastatic cancer, heterogeneous response, imaging

INTRODUCTION

When evaluating tumor response to systemic therapies in the metastatic setting, dissociated
response (also termed mixed response, or heterogeneous response) is usually defined as the
coexistence of responding and non-responding lesions within the same patient (Figure 1).
Although dissociated response is a commonly observed evolutive pattern to systemic therapies,
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FIGURE 1 | A 60-year-old women with metastatic adenocarcinoma treated with pembrolizumab. On first PETinterim at 8 weeks of treatment (three cycles), the

maximum intensity projection image (MIP) showed a metabolic progression of a bone lesion of the sacrum (light blue arrow), of a left mediastino-hilar mass (green

arrow) and of lung nodules (purple arrows). The subsequent PETinterim, performed at 12 weeks of treatment (5 cycles), showed a dissociated response with

disappearance of the bone lesion of the sacrum (light blue arrow), clear metabolic regression of the left mediastino-hilar mass (green arrow) and metabolic progression

of the lung nodules (purple arrows). A thyroiditis was also observed (yellow arrow). Because, the clinical status of the patient remained stable, the treatment was

continued and the patient finally obtained a prolonged durable clinical benefit of immunotherapy (16 months of treatment).

little is known about the biological specifications or the
prognostic significance of this atypical pattern. This review aims
to report what we already know about dissociated response
in the setting of targeted therapies and chemotherapies, and
highlight the new knowledge gained with the appearance
of immunotherapy.

PHYSIO-PATHOLOGICAL HYPOTHESES

A combination of factors may explain the underlying biological
mechanisms of a dissociated tumor response.

Firstly, because genomic instability occurs during the clonal
evolution of solid cancers, multiple coexisting metastases can
arise from genetically different tumor clones (1, 2). Indeed,
cancerous cells not only undergo clonal evolution from a
single progenitor cell into more aggressive and therapy resistant
cells, but also exhibit branched evolution, whereby each
tumor develops and preserves multiple distinct sub-clonal
populations (2). This genotypic and phenotypic heterogeneity is
an unfavorable prognostic factor for survival and can explain a
dissociated response, particularly when using targeted therapies
due to their selective pressure on tumor evolution (1–3).

Secondly, micro-environmental differences among metastatic
sites can also induce heterogeneous responses. For instance,
systemic therapies have a lower diffusion in bone tissue which
is due to highly complex and variable interactions between
tumor cells, bone cells and the bone matrix and can lead to a

lower efficiency. Concerning brain metastasis, the blood-brain
barrier can be a critical obstacle to the diffusion of certain drugs
even though they are effective in other organs. Moreover, the
heterogeneity of the immune environment of the lesions can
actively influence therapeutic response and therefore explain
different responses across lesions (4).

Some authors have suggested exercising caution when
observing a dissociated response (5). Indeed, some unrelated
processes may be pitfalls and erroneously mimic a mixed
response. These pitfalls include: Synchronous neoplasms,
inflammatory processes observed on FDG PET/CT (fat necrosis,
diverticulitis. . . ) or treatment-related effects (radiation-induced
inflammation. . . ). Thus, Clark et al. have defined an apparent
dissociated response on FDG PET/CT to be a red flag that should
lead to reconsider whether all findings are metastases of the same
cancer. But we believe that radiologists and nuclear physicians
are aware of this risk and that this pitfall rarely explain the
heterogeneous response pattern assessed on PET/CT.

IMPACT OF THE IMAGING MODALITY ON
RESPONSE ASSESSMENT

What is striking concerning the few papers that have studied
dissociated response is that most were performed using FDG
PET/CT. At baseline, PET/CT is a highly sensitive imaging
technique that can quickly depict the whole metastatic pool
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of lesions since hypermetabolic lesions appear with a high
contrast. After initiating systemic treatment, FDG-PET/CT
provides a whole-body quantitative assessment of treatment-
induced changes in tumoral glycolysis and can be used to assess
response on a lesion-by-lesion basis early on. Thus, a unique
lesion with discordant evolution within the whole tumor load can
easily be detected, revealing response heterogeneity (6–8). This
explains why, even though the dissociated response pattern can
also be assessed with CT, it is mostly described in PET/CT studies.

It’s worth noting that dissociated response can be observed
at any time during the imaging follow-up of a patients treated
with systemic therapies. Despite the fact that most studies have
evaluated dissociated response occurrence during the first 2 or
3 months of treatment (Table 1), it is currently unknown if it is
more likely to be observed at early or late evaluation time points.

IMPACT OF THE PRIMARY CANCER TYPE
AND TREATMENT TYPE

A dissociated response can be observed with chemotherapies,
targeted-therapies or immunotherapies, but its frequency varies
across treatment types and primary cancer types. It seems
more common in cancers with heterogeneous molecular profiles
between metastases, such as breast cancer (16), and has recently
been described with treatments targeting the immune response
(Table 1). Surprisingly, few studies have evaluated the prognostic
significance of such an atypical pattern.

Chemotherapies + Targeted Therapies in
Solid Cancers
Metastatic Breast Cancer (mBC)
In mBC, monitoring the treatment response with CT scan is
hampered by the high frequency of bone metastases (70%)
for which the apparent size does not necessarily change with
treatment response (17, 18). The Response Evaluation Criteria
in Solid Tumors (RECIST V1.1) specify that only lytic or mixed
bone lesions with soft tissue components can be considered
as measurable lesions (19). Because FDG PET/CT does not
have this limitation, mBC is one of the first solid cancers for
which PET has been routinely used to assess response. This
is also the first metastatic setting in which the dissociated
response was described. In 2010, Huyge et al. showed the intra-
individual variability of the PET/CT metabolic response among
lesions in bone-dominant metastatic breast cancer patients (12).
These women were treated with different systemic therapies:
chemotherapy (78%), hormone therapy (35%), anti-HER2
targeted therapy (4%). The metabolic response was analyzed
according to the European Organization for Research and
Treatment of Cancer (EORTC) criteria. Dissociated metabolic
response occurred in 48% of patients, concerning mostly bone
lesions, and tended to be associated with a better outcome than
homogeneous non-response (p = 0.07). This result may suggest
that, in case of dissociated disease evolution, the prognosis
will depend on the number, the localization and the intrinsic
aggressivity of the progressing lesion. This is, to our knowledge,
the only available study on this topic in mBC.

Non-small-cell Lung Cancer (NSCLC)
In 2014, using CT scan, Lee et al. published a retrospective study
including 68 patients with NSCLC who received second line
EGFR-TKIs after a progression under systemic treatment (11).
They observed that 32% of patient showed a dissociated response,
and that this pattern was more frequent than homogeneous
progression (19% of patients). Dong et al. published a larger
retrospective study in 2017, including 246 consecutive patients
with NSCLC and a response assessment with FDG PET/CT (3).
The overall incidence of dissociated response was 21.5% and
tended to occur more often in patients with advanced NSCLC
(IIIB-IV) than those with earlier disease (I-IIIA) (30.0 vs. 5.8%, p
< 0.001) and in patients treated with targeted therapies (EGFR-
TKI) compared to those treated with chemotherapy (47.2 vs.
28.0%, p = 0.008). A dissociated response was an independent
unfavorable prognostic factor for PFS (p = 0.04) and OS (p
= 0.006) compared to patients with homogeneous evolution
(homogeneous response or non-response). Interestingly, patients
having a dissociated response were further categorized into those
with “efficacious” dissociated response (i.e., only local PET-
based disease progression and few clinical symptoms) and those
with “inefficacious” dissociated response (the other patients).
Most of the patients with efficacious dissociated response (65%)
maintained prior regimens, with or without local intervention,
whereas most patients with inefficacious dissociated response
(63%) switched to next-line regimens. Compared to patients
with an inefficacious dissociated response, the patients with an
efficacious one showed a significant improvement in progression-
free survival (9.4 vs. 3.8 months; p = 0.012) and overall survival
(26.5 vs. 9.5 months; p = 0.027). This result underlines the need
to recognize different patterns of dissociated response in NSCLC
to improve outcome prediction for these patients.

Metastatic Colorectal Cancer (mCRC)
In a prospective multicentric study including 92 patients with a
mCRC treated with a combination of sorafenib and capecitabine,
a dissociated response was observed in one third of patients
on interim FDG PET/CT (7). The presence of at least one
metabolically non-responding lesion was associated with a poor
outcome compared to patients without any metabolically non-
responding lesions. But no prognostic difference was observed
between patients with a dissociated response and patients with a
homogeneous non-response. Therefore, the study concluded that
the presence, but not the number, of non-responding lesions was
the most important prognostic determinant. In a smaller study,
only including nine patients with advanced KRAS wild-type
mCRC treated with anti-EGFR therapy, a dissociated response
was observed in nearly half of the patients (10).

Melanoma
In a Phase I monocentric trial evaluating the metabolic response
of 23 patients with a BRAF mutant metastatic melanoma treated
with dabrafenib, an heterogeneous PET response was observed in
26% of patients on the first interim PET performed 2 weeks after
treatment initiation, and was associated with a shorter time-to-
progression compared to homogeneous response (9). No patients
with homogeneous lesion progression was observed which is
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TABLE 1 | Summary of publications concerning dissociated response in solid cancers.

References First author No. of

patients

Primary cancer Study

design

Drug class Imaging

modality

% of

DR

Prognostic significance of DR Timing after

treatment

initiation

CHEMOTHERAPIES AND TARGETED THERAPIES IN SOLID CANCERS

(9) M. S. Carlino 23 Melanoma (≥ 2 lesions) Monocentric

Prospective

BRAF inhibitor PET/CT 26% DR = Shorter TTP than

homogeneous responder

Day 15

(7) A. Hendlisz 92 Metastatic colorectal

cancer

Multicentric

Prospective

Sorafenib +

Capecitabine.

PET/CT 32% The presence of at least one

non-responding lesion is associated

with a poorer out-come

Day 21

(10) E. J. van Helden 9 Advanced KRAS wild-type

colorectal

adenocarcinoma

Monocentric

Prospective

EGFR inhibitor PET/CT 43% - Week 4

(11) Y. Lee 68 Advanced NSCLC (IIIB-IV) Monocentric

Retrospective

EGFR-TKIs CT and

others

32% - Mostly at

Week 8

(3) Z. Y. Dong 246 Advanced or metastatic

NSCLC

Monocentric

Retrospective

Chemotherapy or

EGFR-TKIs

PET/CT 21% DR = an independent unfavorable

prognostic factor for PFS and OS

NK

(12) V. Huyge 25 Bone-dominant

metastatic breast cancer

Monocentric

Retrospective

Different systemic

therapies

PET/CT 48% TTP tends to be higher in patients

with DR compared to those with a

homogeneous non-response.

≤ 12 months

IMMUNOTHERAPIES IN SOLID CANCER

(13) M. Tazdait 160 Advanced NSCLC Monocentric

Retrospective

PD-1/L1

inhibitors

CT 7.5% DR = better overall survival than true

progression

Mostly at

Week 6

(14) T. Tozuka 62 Advanced NSCLC Monocentric

Retrospective

PD-1/L1

inhibitors

CT 9% DR = favorable prognosis compared

to homogeneous progression

≤2 months

(15) O. Humbert 50 Advanced NSCLC (III-IV) Monocentric

Prospective

PD-1 inhibitors PET/CT 10% DR is associated with a clinical benefit

of immunotherapy

Month 3

DR, dissociated response; TTP, time-to progression; CT, Computed tomography; PET/CT, Positron emission tomography/computed tomograpy; NSCLC, Non-Small Cell Lung Cancer; EGFR, Epidermal growth factor receptor; EGFR-TKI,

epidermal growth factor receptor-tyrosine kinase inhibitor; PD1, programmed cell death-1; PD-L1, programmed death-ligand 1.
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consistent with the high level of activity of dabrafenib in these
patients. It is worth noting that the more commonly reported
measure of 1SUVmax (metabolic change in the hottest lesion)
was not found to be a prognostic biomarker in this study.

Immunotherapies in Solid Cancer
Immunotherapy with immune checkpoints inhibitors represent
a recent breakthrough in the treatment of various metastatic
cancers, showing a benefit in overall survival (OS) across a
broad range of cancer types (20–23). Indeed, a subset of
patients with metastatic cancer can demonstrate a clinical
benefit that can last several years even after stopping the
treatment (20–23). Nonetheless, most patients do not exhibit
response to immunotherapy and identifying patients that will
benefit from immunotherapy as early as possible remains a
crucial issue.

Because tumor shrinkage is not the unique pattern of tumor
response anymore, immunotherapy has raised new challenges in
the evaluation of tumor response, as much with CT than with
PET/CT. Indeed, some responding-patients can have a transient
increase in tumor burden and metabolism, or appearance of
new lesions, followed by a delayed response or stability. This
specific immune-related response pattern is termed ‘pseudo-
progression’ (PsPD) and is explained by the immune infiltration
of tumors that can both induce a morphologic and metabolic
increase of lesions (24, 25). This has been integrated in
new immunotherapy-adapted criteria for CT to maintain the
treatment in patients beyond a first imaging progression: the
iRECIST (26). When using FDG PET, new immune-related
response criteria for solid tumors have also been proposed, but
without any consensus.

Beyond pseudo-progression, three recent studies have shown
that a dissociated response is another atypical evolutive pattern of
response to immunotherapy in advancedNSCLCwith prognostic
significance. Dissociated response is defined as the coexistence of
responding and non-responding lesions within the same patient.
Using CT imaging, Tazdait et al. retrospectively evaluated 160
patients with NSCLC treated with anti-PD1/PD-L1 drugs (13).
They applied different morphologic imaging criteria (RECIST
V1.1, iRECIST, irRECIST) and found, on the first CT evaluation,
7.5% of patients exhibiting a dissociated response. Atypical
patterns (pseudo-progression + dissociated response) were
associated with a better overall survival than true progressions.
Another retrospective study including 62 NSCLC patients also
observed a dissociated response in 9.2% of patients treated with
PD-1/L1 inhibitors, and confirmed the improved OS associated
to this pattern compared to homogenous progression (14.0 vs.
6.6 months) (14).

Using FDG PET/CT, our team recently published a
prospective study including 50 patients with NSCLC treated with
pembrolizumab/nivolumab and demonstrating that 12% of the
population had a pseudo-progression and 10% had a dissociated
response (15). Unlike what had been done in previous studies,
the dissociated response was not defined on the first PET/CT
evaluation showing a PERCIST disease progression, but on
the subsequent confirmatory PET evaluation performed a few
weeks later (3 months after treatment initiation). Because all

these patients with dissociated response had a preserved clinical
status and a limited number of progressive lesions, the patients’
oncologists decided to maintain the therapy. A 6-months
clinical benefit of immunotherapy was reached for all of them.
Thus, it’s worth noting that a dissociated response, contrary to
pseudo-progression, is not only described on the first PET exam
showing a metabolic tumor progression but can be described at
later time-points of disease progression.

To sum up, a dissociated response appears to be a common
evolutive pattern during immunotherapy (around 10% of treated
patients), as frequent as the well-described pseudo-progression
pattern. As Tazdait et al. have mentioned, this profile can
be difficult to identify when using the conventional RECIST
assessment, and requires a deep analysis of CT images (13),
whereas this pattern can be easier to identify with PET/CT
due to its ability to analyze the whole pool of lesions with
great sensitivity. These studies also underlined that a dissociated
response corresponds to a sign of treatment efficacy rather than
failure, with a favorable outcome compared to homogeneous
progression. Yet the prognostic value of the other atypical
evolutive pattern, i.e., pseudo-progression, still needs to be
explored. Furthermore, the best time point to assess these
evolutive patterns will need to be defined: on the first or on the
subsequent imaging evaluation?

CURRENT STRATEGIES AND FUTURE
DIRECTIONS

Studying tumoral heterogeneity requires assessing the response
of the whole baseline metastatic tumor load without restriction
in number of lesions nor sites. However, both morphological
(RECIST V1.1, iRECIST. . . ) and metabolic (EORTC, PERCIST)
response criteria only consider a limited number of operator-
selected target lesions (19, 26, 27). Thus, the clinical scenario of
a dissociated response of a single metastatic lesion has currently
neither been integrated to morphological nor to metabolic
criteria of response. More concerning, a proper, consensual
name has not even been given to this pattern yet, as it can be
referred to as “mixed response,” “heterogeneous response,” or
“dissociated response.”

There is no clear consensus concerning the cut-off of changes
in lesion size or metabolism (SUV) to define response or
progression at a lesion level and therefore to define dissociated
response at a patient level. In our point of view, dissociated
response on CT exam should be inspired of RECIST V1.1 criteria
and defined as a concomitant relative decrease in size >30% in
some lesions and relative increase in size >20% in others (and/or
presence of new lesions). On PET/CT, dissociated response
definition should be inspired by PERCIST criteria and defined
as a concomitant relative decrease >30% in some tumor lesions
metabolism (1SUV) and relative metabolic increase >30% in
others (and/or new hypermetabolic lesions).

The low consideration for this evolutive pattern may
be because the response assessment is usually reported
dichotomously by the radiologist (progression vs. response) to
ease the clinician that needs to take a decision to continue
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FIGURE 2 | Illustration of two different dissociated response patterns in patients with NSCLC treated with immunotherapy and subsequent clinical management.

(A) A continuous progression of one isolated metastatic lesion was observed across successive PET/CT exams (yellow line), while the 3 other metastatic lesions were

responsive to treatment (orange, blue and gray lines). The Multidisciplinary Tumor Board decided to continue immunotherapy with concomitant local radiotherapy on

the progressive lesion (blue arrow). (B) Transient immune activation “one after the other” of various metastatic lesions was observed. This pattern is very close to the

standard pseudo-progressive pattern. In this pattern, the Multidisciplinary Tumor Board decided to maintained immunotherapy, with no need of local treatment.

or change the treatment. Although a specific prognostic value
of dissociated response has been underlined in some types of
solid cancers, it was always considered as an unfavorable pattern
of response. Dissociated response was therefore included in
the “Progressive Disease” category of RECIST/PERCIST, based
on the assumption that “one progressive lesion is enough to
define progression.”

With immune checkpoints inhibitors, the paradigm is quickly
evolving: dissociated response is becoming a favorable prognostic
pattern that absolutely needs to be distinguished from true
progression. When a dissociated response to immunotherapy is
observed, the continuation of the immune checkpoint inhibitors
can provide a durable response (15). In our experience,
different patterns of dissociated response can be observed in the
immunotherapy setting (Figure 2):

- the continuous progression of oligo-metastatic lesions across
successive exams, while the rest of the metastatic disease
is under control. Because these few lesions show consistent
resistance to immune therapies in consecutive exams, adding
local ablative treatments to the growing lesions while pursuing
the immune check-points inhibitors, may be a way to restore
the prognosis.

- transient immune activation “one after the other” of various
metastatic lesions, a pattern that is very close to the standard
pseudo-progressive pattern. In this pattern, immunotherapy
should be maintained, with no need of local treatment.

Thus, a dissociated response requires a specific categorization
and should be captured in the future immunotherapy-adapted
guidelines and criteria for CT and PET/CT, as is pseudo-
progression in iRECIST. Further prospective works will be
necessary to study the frequency and prognostic significance of
the different dissociated patterns and optimize the best clinical
management for each of them.
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INTRODUCTION

Significant advances have been made in the realm of medical image analysis in the past few
decades, aimed at improving our understanding of the disease—how it develops, behaves, and
responds to treatment. Advanced imaging strategies using magnetic resonance imaging (MRI) and
positron emission tomography (PET) provide structural and functional phenotypic biomarkers
that correlate with key disease processes. Radiomics-based biomarkers provide a deeper analysis
of pathophysiologic processes and insights to better diagnose, classify, stratify, and prognosticate
brain tumors, and to assess their response to therapy.

Radiomics in Neuro-Oncology
Radiomics is an imaging analysis methodology that involves the extraction of quantifiable features,
which serve as biomarkers for structural changes as well as pathophysiological processes in disease
entities. Applying radiomics yields a numerical dataset that can be parsed, processed, and analyzed
using machine learning methods (1). Radiomics-based biomarkers can provide key insights in
the diagnosis, classification, and therapeutic management of various solid tumors. It is also
beginning to have an impact in themanagement of neuro-oncological diseases, including low-grade
gliomas, glioblastoma multiforme (GBM), and brain metastases (2). There is a wide spectrum of
radiomics applications in this field, ranging from accurate classification of brain lesions (gliomas
vs metastases, IDH-wild type vs. -mutant tumors), therapy planning (radiation therapy response
prediction), and immunotherapy response assessment.

Methodology
Radiomics analysis may be performed on computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), and single-photon emission computed
tomography (SPECT). Lesion identification and image segmentation are performed as the first
steps and can be a manual or automated process, followed by 3D reconstruction performed on
these regions of interest.

The next step is that of feature extraction and classification (FE/FC). These features are
categorized as shape features (morphology-based), first-order statistics (histogram-based), and
second-order statistics (texture analysis) features (3). Furthermore, higher-order statistics may
also be extracted using mathematical transforms (such as Minkowski functionals, Laplace features,
wavelet transforms, etc.) (4). Feature extraction produces several numerical values (depending on
the imaging modality and the library used for extraction), which are then analyzed using advanced
statistical or machine learning (ML) approaches, which may be supervised or unsupervised, and
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include cluster analysis, support vector machine (SVM), random
forest, convolutional neural network (CNN), and deep learning
neural network (DLNN) (see Figure 1) (5). The main purpose
is to train a model to identify radiomics features that can
serve as imaging biomarkers for disease processes. This is
followed by model validation and includes methods such as
k-fold cross-validation to test the skill of the ML model.
More recent works in neuro-oncology involving DLNN have
revolved around automated tumor segmentation, quantification
of disease burden, pseudoprogression assessment, multi-omics-
based disease characterization, and prognostication.

DISCUSSION

The Current Imaging Biomarker Landscape
in Neuro-Oncology
A noninvasive imaging biomarker may be described as a
characteristic feature identifiable on an imaging study that
indicates a key disease process. The key step is to establish these
new biomarkers through correlation with ground truths, which
could be the previously imaging-based “gold standards,” clinical
outcomes, or pathologic evidence. There is an increasing fund
of quantitative imaging biomarkers (QIB) that are catalyzing the
practice of precision medicine (6). In clinical trials, the QIBs
are being used as surrogate endpoints, which can significantly
reduce the time and incurred costs (7). QIBs are being explored
as predictive classifiers for clinical trials, which can be used for
patient selection/recruitment and in the timely determination of
responders vs. nonresponders.

Brain lesions are structurally and functionally complex, and
there is a growing focus on noninvasive methods to study
this complexity to assess the disease status. Gliomas are a
heterogeneous set of tumors, based on their issue, cellular, and
molecular characteristics. The role of nonimaging biomarkers
in gliomas and GBMs is well known, i.e., IDH1 mutation (8)
and methylguanine-DNA methyltransferase (MGMT) promoter
methylation (9). However, the role of imaging biomarkers
in disease stratification or management guidance of GBM is
less established.

Multiple imaging biomarkers have been identified for brain
metastasis from various primary tumors. Multiparametric
MRI, which includes apparent diffusion coefficient (ADC)
and perfusion-weighted sequences, is used extensively in the
clinical management of brain tumors. Perfusion-weighted and
permeability MRI have been used for detection, delineation,
and therapy response assessment of malignant brain lesions
(10). Dynamic susceptibility contrast-enhancedMRI (DSC-MRI)
deriving relative cerebral blood volume (rCBV) and cerebral
blood flow (rCBF) values have led the quantifiable image
biomarker discovery (11). Higher rCBV in the peritumoral
edema, which may contain infiltrating angiogenic tumor cells,
is indicative of primary intrinsic tumor as opposed to pure
vasogenic edema seen in metastatic disease (12). However,
the evidence for ADC to do the same is weak. Also,
rCBV measurement from the solid tumoral region is another

established discriminative biomarker for distinguishing GBM
from the other tumor types (13).

Magnetic resonance spectroscopy (MRS) allows us to
assess tissue metabolites noninvasively and has yielded several
biomarkers of interest, such as choline (Cho)/creatinine (Cr)
ratio, which is, for example, lower in cerebral metastases than
in GBMs (14). Similarly, the peritumoral Cho/NAA ratio has
also been shown to be useful to that effect (15). Furthermore,
decreased creatine/phosphocreatine (Cr) values in patients with
low-grade gliomas (WHO grade II) have been shown to correlate
with better prognosis in terms of longer progression-free times
and later malignant transformation (16). High levels of glycine
have been reported in biopsies of patients with GBM (17). These,
among other metabolites such as lactate, have been implicated as
important MRS-based biomarkers for brain tumors.

18F-Fluorodeoxyglucose (FDG) PET/CT and more recently
PET/MR has traditionally had a limited role in the management
of primary brain tumors, primarily due to FDG biodistribution
in the brain, hence there is an increasing role for amino-
acid PET tracers in neuro-oncology. 18F-Fluoro-ethyl-tyrosine
(FET) has been shown to detect recurrence in previously treated
glioblastomas and is influenced byMGMTpromotermethylation
status (18). FET-PET-based biological tumor volume in newly
diagnosed GBM has been shown to be a prognostic imaging
biomarker for survival, independent of MGMT promoter
methylation (19). However, it is important to note that the
role of this biomarker for survival outcomes modeling has not
been established. High tumoral amino-acid uptake using 11C-
methionine (MET) PET is another well-studied biomarker for
malignant gliomas and is independently associated with poor
prognosis (20). α-[11C]Methyl-L-tryptophan PET has also been
shown to predict longer overall survival (21).

Radiomics-Based Imaging Biomarkers in
Neuro-Oncology: A Novel Paradigm
Radiomic signatures are providing the next-generation imaging
biomarkers that have implications in the management of brain
tumors. These signatures are based on combinations of first-
order histogram-based features (Haralik features, kurtosis, and
entropy) and second-order texture analysis features (such as
gray-scale run lengths). Key areas in neuro-oncology where
radiomics has been initially applied are the following:

• Precision diagnostics and disease stratification/classification:

Since primary and metastatic brain tumors are histologically
and genetically heterogeneous, and it is important to
understand the role tumor heterogeneity plays in the
natural history of cancer, its response to therapy, and
prognosis/outcomes (22–24). The extracted radiomics features
provide a numerical value for the heterogeneous tumor
microenvironment changes (25). GBM is a notoriously
aggressive cancer, given its therapeutic resistance and high
recurrence rate, both of which have underpinnings in its
molecular heterogeneity (26). Radiomics has provided insights
into the tissue and molecular heterogeneity and correlated
with the underlying genetic alterations (27–29). Furthermore,
molecular heterogeneity of GBM at the transcriptomic level
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FIGURE 1 | Radiomics features used in this study were distributed in three different techniques focused primarily on statistical approaches: (A) first-order statistics,

(B) second-order statistics through the GLCM, and (C) higher-order statistics through the GLRLM. ADC, apparent diffusion coefficient; FLAIR, fluid-attenuated

inversion recovery; GLCM, gray-level co-occurrence matrix; GLCMT, gray-level co-occurrence matrix transpose; GLRLM, gray-level run-length matrix; L, length of

homogeneous runs for each gray level; ROI, region of interest; T1W, T1-weighted precontrast; T1W+C, T1-weighted postcontrast; T2W, T2-weighted. (Reused from

Florez E, Nichols T, E Parker E, T Lirette S, Howard CM, Fatemi A. Multiparametric magnetic resonance imaging in the assessment of primary brain tumors through

radiomic features: a metric for guided radiation treatment planning. Cureus. (2018) 10:e3426. doi: 10.7759/cureus.3426, under the CC-BY license).
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can be assessed using radiomics and may provide a framework
to classify/stratify GBMs (30). Shofty et al. (31) demonstrated
the ability of radiomics analysis of multiparametric MRI to
stage 1p/19q co-deleted low-grade gliomas with sensitivity,
specificity, and accuracy of 92, 83, and 87%, respectively
(31). There is an interest in reclassifying many cancer
types from the conventional histological basis to that based
on radiogenomic signatures shedding light into various
tissue heterogeneity patterns as they are better aligned with
therapeutic responsiveness (32, 33).

• Disease prognostication and prediction modeling: There are
multiple prognostic determinants for brain tumors, including
the histologic subtype, specific genetic mutations, degree
of anaplasia, degree of necrosis of fibrosis, degree of de-
differentiation, local infiltration, vasculogenesis and resulting
vascular scavenging, and hypoxia. For most of these processes,
radiomics analysis can provide some degree of quantification,
such as wavelet transforms for the degree of vascularity or
Minkowski functionals for the degree of necrosis (34). Zhang
et al. (35) demonstrated the use of Minkowski features among
others to help differentiate radiation necrosis from tumor
progression in patients with brain metastases undergoing
gamma-knife surgery. MR-based radiomics analysis has been
shown to predict overall survival and progression-free survival
in GBM (36). Radiomics signatures correlate with and predict
the expression of key molecular biomarkers in brain tumors,
such as Ki-67 expression in low-grade gliomas or IDH
mutation in GBM (37, 38). These early predictive models
may provide bases of re-classifying cancers based on their
progression and prognosis, allowing indolent cancers to be
managed more conservatively while reserving more aggressive
therapeutic approaches for more aggressive cancers. This is
exemplified by a study by Davatzikos et al. where they showed
that molecular features depicted by radiomics provided better
risk stratification of GBM beyond theWHO classification (39).
Furthermore, radiomics can help in the assessment of medical
complications associated with brain tumors, such as epilepsy
in patients with low-grade gliomas, which facilitates better
disease management (40).

• Therapy response assessment and monitoring: Radiomics-
based phenotype assessment of cancer lesions is an effective
tool in the sensitivity profiling against therapeutic options
(such as quantifying hypoxia to determine chemosensitivity),
as well as an early assessment of therapy response (41–
43). The standard visual assessment of radiological images
for this purpose has been plagued by the confounding
pseudoprogression. Current MRI techniques and human-
based interpretation are tedious and prone to high
interpersonal variability for accurate classification and
prognostication of gliomas (44). The current Response
Assessment in Neuro-oncology (RANO) criteria are
used for GBM and the immunotherapy RANO (iRANO)
criteria have been introduced to address the issue of
pseudoresponse/pseudoprogression for both conventional
chemoradiation and immunotherapies (45). Novel approaches
using multiparametric MR and/or PET imaging combined

with radiomics-based texture analysis can help evaluate
subtle microstructural as well as functional changes at
earlier time points than standard imaging (46). These can be
quantifiable harbingers of true therapy response assessment
and debunking pseudo-progression more accurately and
earlier than conventional approaches. A multicenter study
performed by Elshafeey et al. (47) using MR-based radiomics
analysis for immunotherapy response assessment in GBM
yielded an accuracy, specificity, and sensitivity of 91, 91, and
88%, respectively.

Radiomic tumor signatures can be incorporated into
a multidimensional, multi- “omics” model, which uses
genetic/molecular determinants to create a holistic genotype–
phenotype the landscape of cancer and have the potential for
informing the prognosis and accurately predicting/assessing
therapy response (48). New approaches, such as using
Multi Assay Experiment (MAE) as the container for multi-
omics analysis, facilitates the process of data compilation
and integration required for such complex analyses (49).
Furthermore, quantitative scoring scales based on such ML-
based analytical models have applications in clinical management
as well as “go/no-go” decision-making in clinical trials (50, 51).

Generally speaking, there are factors that hinder the full-scale
application and widespread acceptance of radiomics in the field
of neuro-oncology. This includes the lack of user-friendly, FDA-
approved software programs that perform radiomic analysis, the
lack of a generalizable model to use for predictions, and the lack
of a prospective study to show the added value of radiomics
compared with the conventional ROI and histogram analysis.

Specific to its clinical application in neuro-oncologic
management, there are certain gaps where radiomics
has yet to make an impact. These include providing
biomarkers for the precision guidance of the therapeutic
management of brain tumors, particularly GBM. Genetic
markers that are implicated in the prognostication and
therapy guidance of GBM include gene amplification of
epidermal growth factor receptor (EGFR), TP53, and PTEN
mutation, among others (52, 53). Developing radiomic
signatures that correlate with these genetic markers
can help develop noninvasive imaging biomarkers for
risk/severity stratification, survival outcomes, and therapy
response prediction and assessment for these patients.
Furthermore, having such radiomic biomarkers can catalyze the
development of novel therapeutics using these genetic markers
as targets.

The scope of radiomics applications is growing.
When vetted through robust statistical analyses
and real-world applications, it can augment the
shift toward personalized, precision-based practices
in neuro-oncology.
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Background: Reductions in tumor movement allow for more precise and accurate
radiotherapy with decreased dose delivery to adjacent normal tissue that is crucial
in stereotactic body radiotherapy (SBRT). Deep inspiration breath-hold (DIBH) is an
established approach to mitigate respiratory motion during radiotherapy. We assessed
the feasibility of combining modern optical surface-guided radiotherapy (SGRT) and
image-guided radiotherapy (IGRT) to ensure and monitor reproducibility of DIBH and to
ensure accurate tumor localization for SBRT as an imaging-guided precision medicine.

Methods: We defined a new workflow for delivering SBRT in DIBH for lung and
liver tumors incorporating SGRT and IGRT with cone beam computed tomography
(CBCT) twice per treatment fraction. Daily position corrections were analyzed and for
every patient two points retrospectively characterized: an anatomically stable landmark
(predominately Schmorl’s nodes or spinal enostosis) and a respiratory-dependent
landmark (predominately surgical clips or branching vessel). The spatial distance of
these points was compared for each CBCT and used as surrogate for intra- and
interfractional variability. Differences between the lung and liver targets were assessed
using the Welch t-test. Finally, the planning target volumes were compared to those
of free-breathing plans, prepared as a precautionary measure in case of technical or
patient-related problems with DIBH.

Results: Ten patients were treated with SBRT according this workflow (7 liver, 3 lung).
Planning target volumes could be reduced significantly from an average of 148 ml in
free breathing to 110 ml utilizing DIBH (p < 0.001, paired t-test). After SGRT-based
patient set-up, subsequent IGRT in DIBH yielded significantly higher mean corrections
for liver targets compared to lung targets (9 mm vs. 5 mm, p = 0.017). Analysis of spatial
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distance between the fixed and moveable landmarks confirmed higher interfractional
variability (interquartile range (IQR) 6.8 mm) than intrafractional variability (IQR 2.8 mm).
In contrast, lung target variability was low, indicating a better correlation of patients’
surface to lung targets (intrafractional IQR 2.5 mm and interfractional IQR 1.7 mm).

Conclusion: SBRT in DIBH utilizing SGRT and IGRT is feasible and results in
significantly lower irradiated volumes. Nevertheless, IGRT is of paramount importance
given that interfractional variability was high, particularly for liver tumors.

Keywords: stereotactic body radiation, Deep-inspiration breath-hold, surface-guided radiation therapy, Image-
guided radiation therapy, precision radiation oncology, lung tumor, liver metastasis

INTRODUCTION

Focused delivery of high radiation doses to an extracranial tumor
in few fractions is defined as stereotactic body radiotherapy
(SBRT). It has become a commonly available and recognized
treatment option for early stage primary tumors of or
oligometastases from liver and lung primaries with a high rate
of local control, often comparable to surgical resection (1–3).
Due to technological advances in radiotherapy over the last
decade, radiation plans with highly conformal dose distributions
are widely available. This sculpted delivery of radiation dose
is dependent on three-dimensional on-board imaging allowing
image-guided radiotherapy (IGRT), which is now standard in
modern linear accelerators. These improvements facilitate precise
patient positioning and a safe and accurate characterization of
dose deposition that are mandatory for SBRT. Nevertheless,
moving targets are still challenging and respiratory motion
management is the most crucial aspect for safe and effective
utilization of SBRT (4).

In order to compensate for target motion, the International
Commission on Radiation Units and Measurements (ICRU)
introduced the concept of an internal margin to account for
respiratory-induced changes in size, shape and position of a
clinical target volume (CTV) (5). The addition of these internal
margins to the CTV results in an internal target volume (ITV)
to which further external margins for planning uncertainties
are added to obtain a final planning target volume (PTV). This
PTV is the volume that in the end receives the prescribed
radiation dose. Yet, when this motion-encompassing approach
is used for SBRT, the final PTV may become large or close to
organs at risk (OAR), impeding the delivery of the high radiation
doses needed for effective treatment. As a consequence, motion
mitigation techniques were developed, which include: abdominal
compression, beam-gating and breath-hold (6). Abdominal
compression significantly reduces movement of the diaphragm
and enables a good set-up accuracy for SBRT of liver and lower
lung lobe targets in free-breathing (7, 8). For gated treatments
an individual part of the respiratory cycle, usually the end-exhale
phase, is chosen as a treatment window and further mitigates
respiratory motion (4, 9). Tracking of targets with the beam
is another method to manage respiratory motion, but requires
real-time imaging during the treatment delivery (4, 10). The
most reduction of respiratory movement, however, is achieved
by breath-hold techniques that primarily target deep inspiration,

which is tolerated longer than the end-exhale breath-hold phase
and also carries less residual motion than gating of free breathing
(4, 11).

For precise and accurate SBRT delivery, the reproducibility
of deep inspiration breath-hold (DIBH) is crucial and has to be
confirmed for several breath-hold cycles that are needed for a
SBRT session. Depending on the PTV size, the beam-on time
for SBRT typically varies between 2 and 5 min, despite already
higher dose rates obtained by omission of the commonly used
flattening filter (12). Reproducibility of DIBH can be assessed
without additional radiation dose by either optical surface
imaging solutions, such as AlignRTTM (Vision RT, London,
United Kingdom), or active breathing control devices, such as
ABCTM (Elekta, Stockholm, Sweden), which both reduce residual
spatial uncertainties to 1–2 mm in standard radiotherapy of
breast and lung cancer (13, 14).

Nevertheless, only limited data on SGRT and DIBH for SBRT
is available. Here, we present our initial experience in utilizing
a combination of SGRT and IGRT for patient positioning and
treatment monitoring during SBRT of lung and liver targets.

MATERIALS AND METHODS

Study Design and Patient Selection
Ten patients transferred for lung or liver SBRT to our department
in 2018/19 were included in this pilot study. Only patients
who could hold their breath for at least 30 s were eligible
for study inclusion. All patients gave informed consent for an
individualized SBRT approach using DIBH instead of treatment
in free-breathing and abdominal compression which is standard
of care. For monitoring of correct DIBH reproducibility the hard-
and software tools of Vision RT Ltd. (London, United Kingdom)
were used. These commercial solutions are officially approved
and licensed for this purpose. The analysis was approved by the
local ethics committee (S-063/2019).

Radiotherapy Planning
Planning simulation was performed for all patients in vacuum
cushion immobilization (BlueBAG BodyFIXTM, Innovative
Technologie Völp (IT-V), Innsbruck, Austria). The edges of
the cushion near to the target area were folded and smoothed
to prevent shadowing and concealment of parts of the body
surface for appropriate optical surface-guidance. Abdominal
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compression was not used to mitigate free breathing motion
as it would prevent DIBH, recognition of the body surface
by shadowing and could potentially modify the patient’s
surface in an unreproducible manner. The AZ-733V Respiratory
Gating System (Anzai Medical Co., Ltd., Japan) was utilized
for registration of breathing motion and recording of time
resolved, four-dimensional (4D) CTs. After 4D-CT acquisition,
the respiratory belt was unstrapped and additional CT series in
free-breathing as well as DIBH were recorded.

All CT data were transferred to our institutional treatment
planning system (RayStation 6B, RaySearch Laboratories,
Stockholm, Sweden). Target volumes were delineated using
available contrast-enhanced imaging in both free-breathing and
DIBH sequences. Planning target volumes (PTV) were generated
in DIBH by adding a 3–5 mm safety margin to the clinical
target volume (CTV). The CTV was created from the gross
tumor volume (GTV) with an isotropic margin of 5–7 mm to
account for microscopic spread. In contrast, the free-breathing
PTV was created by a 2–3 mm expansion of an internal target
volume (ITV) that integrated all motion information of the
CTV extracted from the 4D-CT data. Treatment plans were
calculated for both DIBH and free-breathing PTV, with the latter
prepared as a precautionary measure in case of technical issues
or patient-related problems with breath-hold.

Treatment Delivery
The SBRT workflow of this study incorporates positioning
and monitoring of patients in DIBH with surface-guidance
(Figure 1A). A screenshot of the software (AlignRTTM version
5.1.1, Vision RT, London, United Kingdom) used for DIBH
positioning and monitoring is shown in Figure 1B.

In brief, the software allows for accurate patient set-up
in DIBH and a radiation-free real-time feedback of DIBH
positioning during the treatment session. Reproducibility of
DIBH position was validated in-room by one to two repetitions.
To verify the surface-guided position, a fast cone-beam computed
tomography (CBCT), which lasts a breath-hold of 30 s, was
acquired in DIBH. After registration to the planning CT, the
couch was moved in DIBH accordingly and this new image
guided position directly captured as a new surface reference in the
SGRT software. To validate the reproducibility of tumor position
in different breath-hold sequences, an additional fast CBCT was
acquired. If a new registration resulted in shifts >2 mm, the couch
was moved in DIBH as needed and the reference surface updated.
Finally, orthogonal 2D-MV portal imaging was acquired in DIBH
to confirm correct isocenter positioning.

After correct patient positioning the treatment was delivered
in DIBH by a linear accelerator (Versa HD, Elekta, Stockholm,
Sweden) using a flattening filter free (FFF) technique to reduce
beam-on time whenever possible. We decided to set the
individual defined region of interest (ROI), for which the SGRT
software calculates differences in patient’s actual surface and
the reference surface, to the lower thorax to measure thoracic
motion during DIBH and to avoid large distances between
the treatment isocenter and the ROIs’ centroid in liver SBRT.
During treatment delivery the maximum allowed position error
was 3 mm and 2◦ for translational and rotational differences,

respectively. For patients’ comfort the treatment delivery was
also stopped every 20–40 s to allow for breaks and prevent
patients from becoming out of breath. The overall treatment time
including positioning and IGRT varied between 20 and 60 min
depending on various patient specific factors concerning breath-
hold (maximum tolerated breath-hold duration, time until
normalization of the respiratory rate, reproducibility of breath-
hold) resulting in different numbers of breath-holds needed.

Data Analysis
Differences in couch coordinates were assessed during the course
of daily CBCT imaging (intrafractional) and compared to the
derived shifts from subsequent treatment days (interfractional).
For each patient and CBCT, a static, breathing-independent
anatomic landmark (mostly Schmorl’s nodes or enostosis of
the spine at the level of the gross tumor) and a moving,
breathing-dependent landmark (such as clips near the liver target
lesion or a pulmonary vessel branching adjacent to the lung
target lesion) were defined and their intra- and interfractional
positions compared.

Statistical Analysis
Prism 7.04 software (GraphPad, San Diego, CA, United States)
was used to perform statistical analysis and graphical plotting of
results. Results were considered significant when the two-tailed
p-value was less than 0.05. D’Agostino and Pearson omnibus
K2 normality tests suggested a Gaussian distribution for the
continuous variables of the vector length of position correction
and spatial distance of fix and moving points, gross tumor
volumes (GTV) and planning target volumes as well as the
differences in planning target volumes in free-breathing and
in DIBH for the same patient. Statistical differences between
volumes of lung and liver targets were assessed using unpaired
t-tests with Welch correction (Welch t-tests), which are more
reliable for populations with unequal sample sizes and different
variances than Student’s t-test. Paired t-tests were conducted
for comparison of PTVs in DIBH and in free-breathing of
the same patients. Frequencies of needs for a second position
correction were grouped by target location and analyzed in
a 2 × 2 contingency table and differences analyzed using
Fisher’s exact test.

RESULTS

As a proof of concept analysis, we performed SBRT in DIBH
in a total of 10 patients and for 41 treatment fractions using a
combination of CBCT image- and surface-guidance for position
verification and monitoring of DIBH. Details of our workflow
are depicted in Figure 1 and explained in the methods section.
Targets were either a primary tumor or single metastasis of
the lungs and liver in 3 and 7 patients, respectively. Details
on patients’ demographics and treatment delivery are shown in
Table 1. Lung targets were mostly small peripheral lesions and
could be treated in 3 fractions. In contrast, the liver tumors
differed in size and some lesions were adjacent to organs at
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FIGURE 1 | (A) Work flow of patient set-up and localization until treatment delivery together with (B) an example screenshot of one of our SBRT patients showing a
typical region of interest (ROI) placed to the lower thorax for DIBH monitoring of a liver target.

TABLE 1 | Patient demographics and treatment patterns.

No. Sex, age Primary tumor Target lesion Irradiation technique Dose and fractionation Prescription isodose†

L1 f, 38 Breast cancer Lung metastasis 3DCRT 15 Gy ×3 65%

(segment 8 left) (8 beams, FFF)

L2 f, 69 NSCLC primary 3DCRT 15 Gy ×3 65%

(segment 3 left) (8 beams, FFF)

L3 f, 59 NSCLC Lung metastasis 3DCRT 15 Gy ×3 65%

(segment 9 right) (9 beams, FFF)

H1 f, 56 Breast cancer Liver metastasis (segment IVa/VIII) IMRT – VMAT 7.5 Gy ×8 80%

(3 arcs, FF)

H2 m, 76 HCC Liver metastasis IMRT – VMAT 15 Gy ×3 65%

(segment VII) (2 arcs, FF)

H3 m, 74 HCC Liver metastasis (segment VI) IMRT – VMAT 7.5 Gy ×8 80%

(2 arcs, FFF)

H4 m, 48 Pancreas Liver metastasis (segment VI/VII) IMRT – VMAT 15 Gy ×3 65%

(2 arcs, FFF)

H5 m, 53 Prostate Liver metastasis (segment VI) IMRT – VMAT 6 Gy ×6 80%

(2 arcs, FF)

H6 m, 62 Pancreatic NEC Liver metastasis (segment VIII) IMRT – VMAT 9 Gy ×3 80%

(2 arcs, FF)

H7 f, 54 Breast cancer Liver metastasis (segment IVa) IMRT – VMAT 15 Gy ×3 65%

(2 arcs, FFF)

†PTV-encompassing isodose. 3DCRT, 3D conformal radiotherapy; FF, flattening filter; FFF, flattening filter free; HCC, Hepatic cellular carcinoma; IMRT, intensity modulated
radiotherapy; NSCLC, Non-small lung cancer; PTV, Planning Target Volume; VMAT, volumetric arc therapy.
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risk such as the gastrointestinal tract requiring individual dose
fractionations between 3 and 8 fractions.

Daily Position Correction
Despite correct alignment of patients’ surface to the reference
surface in DIBH, a subsequent CBCT-based image correction was
required for most treatment fractions. These couch shifts ranged
from −7 to 9 mm, −25 to 12 mm, and −13 to 12 mm in lateral,
longitudinal and vertical direction, respectively. Nevertheless,
median values of all shift directions of first CBCT were close to
zero. Grouping patients by target location revealed higher shifts
for tumors in the liver compared to lung targets. Highest ranges
were observed for shifts in cranial-caudal direction along the
y-axis (Figure 2A).

The mean lengths of applied position correction vectors were
5.4 mm (2.0–10.2) and 8.8 mm (1.7–26.9) for lung and liver
targets, respectively. Compared to liver targets, the correction
vectors of lung targets were significantly smaller (p = 0.0172,
Welch’s t-test, Figure 2B).

A second position verification by CBCT in DIBH utilizing
the newly captured reference surface could confirm a correct
set-up in most cases. A new couch shift was required in 1 of 9
(11%) and 7 of 34 (21%) treatment sessions for lung and liver
targets, respectively. Despite higher rates for liver SBRT, there
was no significant difference in the frequency of the need for a
second position correction for lung and liver targets (p = 1.0,
Fisher’s exact test).

Intra- and Interfractional Variability
The planning CT and the two CBCTs acquired for every
treatment session and each patient were retrospectively analyzed
for intra- and interfractional difference. Figure 3 shows the
calculated spatial distances from an individually selected,
breathing-independent point (mostly bony structures of the
spine at the level of the target) to another individually chosen,
breathing-dependent point near the gross tumor (mostly surgical
clips or a vessel branching) for each patient and CBCT.

In case of a perfect match, the distances between the
breathing-independent point and the breathing-dependent point
were equal for every imaging series (planning CT and CBCT).
Equality of distances of first and second CBCT as well as of
planning CT and first CBCT would correspond to no intra- and
no interfractional difference, respectively.

Intra-fraction distances of both lung and liver targets were
close to the line of equality (Figure 3A). On average, the
intrafractional differences were 1.6 mm (-3.9 to 0.5) and 1.2 mm
(-27.8 to 28.3) for targets in the lungs and liver, respectively.
Despite higher ranges for liver targets compared to lung targets
the interquartile ranges (IQR) for both lung and liver targets
were similar (2.5 mm vs. 2.8 mm). There were no significant
differences of intrafractional spatial distances between lung and
liver target location (p = 0.12, Welch’s t-test).

In contrast, mean interfractional differences for lung targets
were 0.9 mm (0.7–2.1; IQR 1.7 mm), whereas in liver targets
the average difference was 3.8 mm (−32.7 to 13.8) with a higher
IQR of 6.8 mm (Figure 3B). These interfractional differences
were statistically significant (p = 0.01, Welch’s t-test), indicating

higher variability between treatment sessions for liver SBRT
compared to lung SBRT.

Differences in Treated Volumes
The mean gross tumor volumes (GTV) of lung targets, liver
targets and all lesions were 1.9, 67, and 48 ml, respectively,
with significantly smaller GTVs for lung targets (p = 0.018,
Welch’s t-test). The mean internal target volumes (ITV) which
comprise the clinical target volumes (CTV) with additional
margins obtained from 4D-CT data in free-breathing was 108 ml
for all lesions. By using DIBH these margins could be omitted
and the CTV in DIBH was 28% smaller (77 ml, p < 0.01, paired
t-test, Figure 4A). Consequently, planning target volumes of all
targets could be reduced significantly by 26% from an average of
148 ml in free-breathing (FB) to 110 ml utilizing DIBH (p< 0.01,
paired t-test). This reduction of target volumes by using DIBH
was seen for both lung and liver targets. However, statistical
significance was not reached for the smaller sub-group of lung
targets (Figure 4B).

DISCUSSION

We share a new work-flow for SBRT in DIBH by combining
SGRT and IGRT in patients with targets in the lungs and liver and
demonstrate feasibility. Utilizing DIBH for SBRT significantly
reduced the irradiated volumes compared to free-breathing
treatment plans. SGRT enabled initial couch shifts based on first
CBCT in DIBH to be close to zero, but the ranges and absolute
correction vectors of liver targets were significantly higher when
compared to lung targets. This interfractional variability resulted
in a daily need for position correction and for an updated
reference surface for most patients for every treatment session.
Intrafractional movements on the other hand, were quite low
with second CBCTs in DIBH rarely requiring correction of
patient positioning in both liver and lung SBRT. Most liver
SBRT patients exhibited reproducible intrafractional positioning
in DIBH. In contrast to targets in the liver, both intra- and
interfractional variability of lung targets was small indicating a
better correlation of patients’ surface to lung targets rather than
to liver targets.

Deep inspiration breath-hold was introduced many years ago
for radiotherapy of left sided breast cancer patients to reduce the
irradiated heart volume by enlarging the distance of the heart
to the chest well (15). Reproducibility was ensured by the active
breathing coordinatorTM (ABCTM, Elekta, Stockholm, Sweden),
a commercial device consisting of a nose clamp and a mouthpiece
that is connected to a breathing tube containing a valve which
closes once a pre-defined target air volume is inhaled by the
patient. The prospective United Kingdom HeartSpare Study
compared this ABCTM-assisted breath-hold with a voluntary
breath-hold technique and found that the latter was non-inferior
in terms of reproducibility and normal tissue sparing. Moreover,
voluntary breath-hold was faster and preferred by both patients
and therapists (16).

Surface-guided radiotherapy describes the use of
commercially available surface imaging solutions that were
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FIGURE 2 | Box plots with boxes extending from 25th to 75th percentiles. Whiskers are drawn down to 5th and up to 95th percentiles, respectively. (A) Couch shifts
are shown in left (+) to right (–), cranial (+) to caudal (–) and anterior (+) to posterior (–) directions along the x-, y-, and z-axis, respectively. Values were grouped by
target location and derived from first CBCTs for position verification after alignment of current DIBH surface to that of the reference surface. (B) Length of correction
vectors of first CBCTs for image-guidance in DIBH and grouped by target location. Statistical difference was calculated by Welch’s t-test.

FIGURE 3 | Assessment of (A) intra-and (B) interfractional variations by comparison of absolute distances between a breathing independent point to a breathing
dependent movable point of first compared to second CBCT and of planning CT compared to first CBCT for every fraction, respectively. Values are grouped by
target location. The dotted line indicates theoretical equality of distances in imaging.

primarily developed to assist with patient set-up before
radiotherapy delivery. These tools precisely indicate the spatial
difference of a region of interest (ROI) on the patients’ body
surface and a corresponding reference surface generated from
the external contour of the planning simulation CT, facilitating a
fast and accurate patient set-up with six degrees of freedom (17).
SGRT is non-invasive, patients are not exposed to additional
radiation dose, it basically does not rely on skin marks and allows
monitoring of DIBH with most data available for SGRT with
DIBH for adjuvant radiotherapy in left sided breast-cancer (18).
Since SGRT allows not only monitoring of the patient-setup and
breathing before, but also during treatment it is of particular
interest for SBRT to ensure a safe, accurate and precise dose
delivery during the entire treatment session.

For SBRT in targets that move with respiration, an abdominal
compression is traditionally employed to mitigate breathing
motion and to decrease the residual range of motion, as assessed
during time resolved CT acquisition. These 4D-CT data are used
to create a PTV that encompasses the tumor during the entire
breathing cycle or to define a specific gating window which
results in reduced irradiation volumes but, on the other hand,
extend treatment delivery time (4). Several reports, however,
have commented that the 4D-CT information from planning is
not necessarily representative of the motion amplitude during
treatment (19, 20). Moreover, breathing patterns may change
both within and between treatments (intra- and interactionally)
(21, 22). Therefore, we tested the feasibility of combining SGRT
with IGRT to enable SBRT in DIBH.
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FIGURE 4 | Volumes of gross tumor (GTV), clinical target volume (CTV), internal target volume (ITV) and planning target in DIBH (CTV DIBH and PTV DIBH) as well as
in free-breathing (ITV FB and PTV FB) for (A) all patients and (B) grouped by target location. Statistical differences were calculated by paired t-test.

Earlier data on SGRT and SBRT in free-breathing suggests that
the pre-imaging treatment set-up for SBRT can be improved by
SGRT compared to in-room laser localization of skin tattoos or
skin marks (23). Moreover, SGRT reliably detects intrafractional
shifts during treatment delivery when deviations extend 2 mm,
as confirmed by CBCT (24). In addition, DIBH improves
image quality and reduces craniocaudal registration uncertainties
compared to free-breathing in lung cancer radiotherapy (25).
Furthermore, using breath-hold for SBRT delivery reduces
motion artifacts that is especially important for small lung tumors
that are poorly visualized on imaging even with modern linear
accelerators (26). Yet to perform IGRT in combination with
DIBH, imaging within a breath-hold of approximately 30 s
was required. We achieved this through our technique by not
performing a complete gantry rotation and instead using a higher
than standard gantry rotation speed without appreciable loss
of image information. As previously suggested, faster CBCTs
show no significant registration differences compared to standard
CBCTs and a higher gantry velocity with fewer projections
produces fewer reconstruction artifacts (27).

We observed highest interfractional variability in cranio-
caudal direction and lowest in left-right direction, underpinning
the idea that respiratory motion, which is mostly performed by
the diaphragm, impacts most on target localization. Indeed, using
SGRT for positioning of breast cancer patients in free-breathing
showed least errors for lateral set-up compared to imaging (28).
Our data further suggest a higher correlation of thoracic DIBH
surface to intrathoracic targets than to abdominal targets, despite
the fact that we chose to set the ROI for DIBH monitoring to the
lower thorax for both thoracic and abdominal targets. Indeed, the
correlation of skin to tumor is not necessarily constant, especially
for liver and pancreas as previously reported (29, 30). In addition,
lung volumes in DIBH may not necessarily always be the same for

every breath-hold, although SGRT may confirm a match within a
ROI on the patient’s body surface to the corresponding reference
surface. Such variations in lung volumes during breath-hold were
recently reported to have an impact on target localization (31).

Previous work on employing active breathing coordinator
(ABCTM)-controlled breath-hold for lung and liver SBRT
reported good intrafractional reproducibility of liver position in
the majority of patients. However, interfractional reproducibility
was worse, suggesting a need for daily image guidance (31–
33). Another study, conducted by Lu et al., also found higher
interfractional than intrafractional motion but observed clinically
significant intrafractional motion >3 mm in 26 and 47% of
patients with liver and lung cancer, respectively (34). This
intrafractional differences could be explained by an intra-
breath-hold residual motion of the diaphragm that was recently
estimated by an ultrasound-based monitoring of the diaphragm
dome during ABCTM-controlled breath-holds to be <2 mm and
<5 mm in 59 and 95% of 385 DIBHs in 13 patients (35).

The most elegant solution for precise and accurate SBRT
in DIBH is probably possible with MR-guidance since on-
board magnetic resonance (MR) imaging in linear accelerators
(MR-LINAC) for set-up and treatment delivery is non-invasive,
exposes the patient to no additional radiation and allows for
direct target localization and real-time visualization (36). In
contrast, SGRT remains an indirect visualization of the patient’s
surface although it gives feedback of localization in real-time, too.
Nevertheless, MR-LINACs are currently rarely available and there
are still some issues concerning reliability of gating and tracking
procedures, the additional time needed for dose-optimization
and the dose delivery time, that is yet mostly slower than in
conventional linear accelerators (37). Thus, a SBRT session in
DIBH at a MR-LINAC would require a patient to perform more
breath-holds. In addition, a MR LINAC treatment is not an
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option for every patient depending on body size, claustrophobia
and metal implants or implanted electronic devices.

CONCLUSION

Surface-guided radiotherapy in DIBH for lung and liver tumors
using a combination of SGRT and IGRT is feasible. This
approach is easy to incorporate in contemporary practice and
does not require any breathing tubes connected to the patient.
Nevertheless, daily 3D imaging is of paramount importance
given that interfractional variability is high, particularly in
DIBH for liver SBRT.
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Bladder cancer (BC) is the 10th most common cancer worldwide. Approximately one
quarter of patients with BC have muscle-invasive disease (MIBC). Muscle-invasive
disease carries a poor prognosis and choosing the optimal treatment option is critical
to improve patients’ outcomes. Ongoing research supports the role of 2-deoxy-2-
(18F)fluoro-D-glucose positron emission tomography (18F-FDG PET) in guiding patient-
specific management decisions throughout the course of MIBC. As an imaging modality,
18F-FDG PET is acquired simultaneously with either computed tomography (CT) or
MRI to offer a hybrid approach combining anatomical and metabolic information that
complement each other. At initial staging, 18F-FDG PET/CT enhances the detection of
extravesical disease, particularly in patients classified as oligometastatic by conventional
imaging. 18F-FDG PET/CT has value in monitoring response to neoadjuvant and
systemic chemotherapy, as well as in localizing relapse after treatment. In the new era of
immunotherapy, 18F-FDG PET/CT may also be useful to monitor treatment efficacy as
well as to detect immune-related adverse events. With the advent of artificial intelligence
techniques such as radiomics and deep learning, these hybrid medical images can be
mined for quantitative data, providing incremental value over current standard-of-care
clinical and biological data. This approach has the potential to produce a major paradigm
shift toward data-driven precision medicine with the ultimate goal of personalized
medicine. In this review, we highlight current literature reporting the role of 18F-FDG
PET in supporting personalized management decisions for patients with MIBC. Specific
topics reviewed include the incremental value of 18F-FDG PET in prognostication, pre-
operative planning, response assessment, prediction of recurrence, and diagnosing
drug toxicity.

Keywords: PET – Positron Emission Tomography, bladder cancer, muscle invasive bladder cancer,
immunotherapy, staging
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INTRODUCTION

Bladder cancer (BC) is the 10th most common cancer worldwide,
with approximately half a million new cases diagnosed globally
and 200,000 related deaths per year (1). At diagnosis, 75% of
the patients have non-muscle invasive BC whereas the remaining
25% have muscle invasive disease (MIBC). While non-muscle
invasive BC is characterized by frequent recurrence (50–70%) but
a relatively low propensity to progress (10–15%), MIBC has a
poor prognosis with high rates of metastasis and 5-year survival
<50% despite radical surgery (2).

The current standard treatment for MIBC is based on
radical cystectomy (RC) with prior cisplatin-based neoadjuvant
chemotherapy (NAC) in eligible patients (cT2-T4aN0M0) (3).
For patients with more advanced stage disease or for those
who recur after radical surgery, cisplatin-based combination
chemotherapy remains the standard of care for first-line systemic
treatment (3).

Recent advances in the field of immunotherapy are reshaping
the therapeutic landscape for patients with BC. Specifically,
immune checkpoints inhibitors (ICIs) have demonstrated
promising results in both localized and metastatic settings (4–
6). To date, five anti-PD(L)1 monoclonal antibodies have been
approved by the US Food and Drug Administration in the
second-line setting. This current shift in treatment strategy has
created an unmet need to re-evaluate the clinical use of existing
imaging techniques.

Although traditionally imaging of patients with BC has
predominantly focused on CT (including CT urography)
and MRI, 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron
emission tomography/computed tomography (PET/CT) may
have the potential to offer additional diagnostic information due
to its unique ability to image metabolism. Indeed, urothelial
carcinoma, much like many other solid tumors, is characterized
by alterations of glucose metabolism and overexpression of
glucose transporters (GLUT-1 and GLUT-3) (7).

This review presents the most recent advances in 18F-FDG
PET-guided personalized medicine in the context of MIBC.
Through a review of the current literature, we present the
potential clinical value of 18F-FDG PET/CT and PET/MRI for
risk stratification at diagnosis, monitoring of treatment response,
and detection of recurrence during follow-up.

RISK STRATIFICATION AT DIAGNOSIS

Data supporting the potential role of 18F-FDG PET/CT for
initial staging of MIBC are continuously increasing. Current
data suggest that 18F-FDG PET/CT improves the detection
of extravesical disease and can therefore substantially improve
management decisions.

Tumor Detection
2-Deoxy-2-(18F)fluoro-D-glucose positron emission
tomography/computed tomography performance for tumor
detection in the bladder is hampered by urinary excretion of
18F-FDG (8). Several studies have proposed using adapted

protocols (hyperhydration, forced diuresis and refilling, or filling
the bladder in a retrograde manner). Utilizing these techniques,
authors report sensitivities between 50 and 96% (9–17). However,
to date, 18F-FDG PET/CT has not be shown to improve primary
tumor detection and staging, when compared to cystoscopy and
morphological imaging alone performed with CT and especially
MRI (18).

Lymph Node Staging
Currently, the benefit of 18F-FDG PET/CT over contrast-
enhanced CT (CECT) alone for lymph node (LN) staging remains
controversial, since both modalities have excellent specificity but
relatively poor sensitivity.

A recent meta-analysis including 14 studies and 785 patients
reported that the pooled sensitivity and specificity of 18F-
FDG PET/CT for initial pelvic LN staging, in a per patient
analysis, were 57% [95% CI 49–64%] and 92% [95% CI 87–
95%], respectively (19). One major limitation of the current
literature is the heterogeneous methodologies across published
studies, notably regarding study designs, inclusion criteria,
administration of NAC, injection–acquisition time in PET, the
use of forced diuresis, the administration of contrast media for
PET/CT, and interpretation criteria for both CECT and PET/CT
(20). Studies comparing performance of CT to hybrid 18F-
FDG PET/CT for pelvic LN staging with pathological analysis
of extended pelvic LN dissection samples as a reference are
presented in Table 1. Pooled sensitivities for CT and PET/CT are
38% [95% CI 29–47%] and 52% [95% CI 45–60%], respectively,
while the pooled specificities are 91% [95% CI 88–94%] and 92%
[95% CI 89–95%], respectively. Few studies have suggested a
potential role for metabolic analysis by ruling out nodal disease
in PET negative enlarged pelvic LNs (21, 22) (Figure 1A).
Moreover, higher standardized uptake values (SUVmax) in LNs
has been correlated with higher recurrence risk, independent of
pathological findings (23).

To our knowledge, there is only a single study of 18 patients
comparing 18F-FDG PET/CT and conventional MRI for pelvic
LN staging in MIBC. With pathology as the gold standard,
authors reported sensitivity and specificity of 80% and 80% for
MRI, and 93 and 88% for 18F-FDG PET/CT, respectively. There
was no statistically significant difference. However, this study was
limited by small sample size and the lack of multiparametric MRI
sequences such as diffusion-weighted imaging (DWI) (24).

Distant Metastatic Staging
Along with detecting nodal involvement, 18F-FDG PET/CT’s
greatest strength is probably in detecting distant metastases
during initial staging. In a patient-based analysis, 18F-FDG
PET/CT sensitivity ranges between 54 and 87%, while specificity
ranges between 90 and 97% for the detection of distant metastases
from BC (15, 25–27). One study reported 18F-FDG PET/CT to be
more sensitive than CT alone for detection of distant metastases,
with sensitivities of 54 versus 41%, respectively. Both modalities
showed similar very high specificities of 97 and 98%, respectively
(26). Thus, 18F-FDG PET/CT revealed more lesions suspected
to be metastasis or second primary cancer than conventional
imaging (26, 28–30). 18F-FDG PET/CT changed management
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TABLE 1 | CT alone and 18F-FDG PET/CT performances for LN staging, with pathology as a gold standard, without preoperative chemotherapy.

First author Year CT criteria PET/CT criteria Sensitivity Specificity Accuracy

CT PET/CT CT PET/CT CT PET/CT

Girard (22) 2019 SA > 8 mm SUVmax > 4, and/or
SA > 10 mm, and/or
SUVmax > 2 and SA > 8 mm

7/17 8/17 38/44 42/44 45/61 50/61

Pichler (91) 2017 SA > 8 mm SA > 10mm, and/or PET
subjective analysis

5/11 7/11 54/59 52/59 59/70 59/70

Uttam (92) 2016 SA > 10 mm SUVmax > 2.5 3/3 3/3 6/12 7/12 9/15 10/15

Jeong (93) 2015 SA > 10 mm or necrosis SUVmax > 2.5 5/17 8/17 43/44 41/44 48/61 49/61

Aljabery (94) 2015 LA ≥ 10 mm SUVmax > 2.5 7/17 7/17 33/37 32/37 40/54 39/54

Rouanne (95) 2014 SA > 10 mm PET subjective analysis NA 13/26 NA 74/76 NA 87/102

Goodfellow (26) 2014 SA > 8 mm SA > 8 mm and/or PET
subjective analysis

13/28 19/28 64/65 62/65 77/93 81/93

Hitier-Berthault (96) 2013 LA > 10 mm PET subjective analysis 2/22 8/22 27/30 26/30 29/52 34/52

Swinnen (97) 2010 NA PET subjective analysis 6/13 6/13 35/38 37/38 41/51 43/51

Kibel (33) 2009 NA PET subjective analysis NA 7/10 NA 30/32 NA 37/42

Pooled [95% CI] 37.5%
(48/128)

[29.1–46.5%]

52.4%
(86/164)

[44.5–60.3%]

91.2%
(300/329)

[87.6–94.0%]

92.2%
(403/437)

[89.3–94.6%]

76.1%
(348/457)

[72.0–80.0%]

81.4%
(489/601)

[78.0–84.4%]

SA, short axis; LA, long axis; LN, lymph node; SUVmax , maximum standardized uptake value; NA, not available.
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FIGURE 1 | 18F-FDG PET/CT images of three patients at different time points
in the course of MIBC. (A) A 76-year-old man presented with an enlarged
external iliac lymph node at initial staging without any 18F-FDG uptake (red
arrowheads). The N0 status was confirmed by pathological examination of
pelvic lymph node dissection sample. (B) A 67-year-old man was
oligometastatic with one enlarged latero-aortic lymph node on CT at initial
staging and 18F-FDG PET/CT revealed several other retroperitoneal lymph
node metastases (orange arrowheads). (C) In a 62-year-old man who
presented MIBC with osseous, hepatic, and nodal metastases at diagnosis
(blue arrowheads), 18F-FDG PET/CT demonstrated complete metabolic
response after three cycles of chemotherapy and then a locoregional and
hepatic relapse after the fifth chemotherapy cycle (green arrowheads).
18F-FDG PET/CT, 2-deoxy-2-(18F)fluoro-D-glucose positron emission
tomography/computed tomography; MIBC, muscle invasive bladder cancer.

over conventional imaging in a range of 18–68% of patients (25,
29, 31, 32), and resulted in less additional tests in 70% of patients
(25). The presence of FDG-avid regional LNs or extra pelvic
lesions was an independent predictor of overall survival (28, 33),
whereas it was not statistically significant for the counterpart
conventional CECT findings (28).

In conclusion, the current literature suggests that 18F-
FDG PET/CT provides an incremental value for nodal and
distant staging in MIBC at initial diagnosis. However, due
to its significant cost for healthcare systems (34), prospective
studies with high evidence level are still needed before its
use can be formally adopted into consensus guidelines and
recommendations (3, 18, 35, 36). In support of its role in distant
staging, a recent consensus statement revealed that 18F-FDG

PET/CT is the imaging modality of choice to avoid over-
treatment in oligometastatic patients with an agreement of 88%
of participants (37) (Figure 1B).

Metabolic Prognostic Factors
Several prognostic biomarkers can be extracted from 18F-
FDG PET using routine clinical workstations. The mainstream
prognostic imaging biomarkers are baseline metabolic tumor
burden (TMTV), baseline total lesion glycolysis (TLG), and
SUVmax. All have been associated with overall survival in a wide
range of cancers and treatments (38–40). With the paradigm
shift of immunotherapy, authors have evaluated the potential
role of appraising host metabolism in lymphoid tissues such as
the bone marrow. They have demonstrated that increased bone
marrow metabolism is associated with shorter overall survival
and systemic immune suppression (41, 42).

In patients with advanced BC, such prognostic factors have
not been reported as of yet. Additionally, there are no studies
demonstrating that these biomarkers can predict response to
chemotherapy or ICIs. In a proof of concept study, Chen et al.
suggested that higher 18F-FDG uptake by BC may be associated
with elevated PD-1/PD-L1 expression, potentially guiding the
decision to select patients for ICIs (43, 44).

RESPONSE EVALUATION

Based on a limited number of studies, 18F-FDG PET/CT appears
to be a valuable tool for monitoring response to chemotherapy
both in the neoadjuvant and metastatic settings. While the
performance of 18F-FDG PET/CT in evaluating tumor sensitivity
to immunotherapy has been demonstrated in several solid
malignancies, it remains to be established for MIBC.

Neoadjuvant or Induction Treatment
There have been a few studies that have focused on the
performance of 18F-FDG PET/CT in monitoring the response of
BC to NAC. In terms of primary bladder tumor evaluation after
NAC, 18F-FDG PET/CT has demonstrated 75% sensitivity and
90% specificity in identifying patients with complete pathologic
response (45). After induction chemotherapy in pelvic LN
metastatic patients, responders were distinguished from non-
responders with a sensitivity of 83–100% and a specificity of
67–94% with 18F-FDG PET/CT, compared to 88 and 33%,
respectively, with conventional CECT. Complete responders
were correctly identified with 67–75% sensitivity and 46–90%
specificity with 18F-FDG PET/CT, compared to 64 and 60%
with CECT, respectively (45–47). These results suggest that 18F-
FDG PET/CT may be useful to assess response to neoadjuvant
or induction chemotherapy, but is of limited interest to select
patients for RC due to low predictive value in detecting residual
LN involvement (47, 48).

To our knowledge, there is no published study investigating
the role of 18F-FDG PET/CT in evaluating response after
preoperative immunotherapy.
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Metastatic Bc: Chemotherapy
2-Deoxy-2-(18F)fluoro-D-glucose positron emission
tomography/computed tomography is useful for evaluating
response to systemic chemotherapy (Figure 1C). In one study,
18F-FDG PET/CT using the European Organization for Research
and Treatment of Cancer (EORTC) criteria outperformed CT
interpretation alone based on Response Criteria in Solid
Tumors (RECIST) criteria for the prediction of response to
first-line systemic chemotherapy (cisplatin and gemcitabine)
(49). Furthermore, early response assessment using 18F-FDG
PET/CT predicted progression-free survival and overall survival
after two cycles of combination of methotrexate, vinblastine,
doxorubicin, and cisplatin (MVAC) in first-line metastatic
chemotherapy (50).

Metastatic Bc: Immunotherapy
The long-term benefit of first-line immunotherapy compared
to carboplatin-based chemotherapy was recently reported in
patients with metastatic or locally advanced urothelial carcinoma
(5). In this new era of immuno-oncology, the treatment
paradigm is shifting toward restoring tumor elimination by the
immune system. This new treatment paradigm has introduced
novel patterns of response and progression, such as pseudo-
progression and hyperprogression, which have been observed
in a wide range of cancers, particularly using 18F-FDG
PET/CT (51).

Pseudo-progression is a well-described novel immune-related
pattern of response. Pseudo-progression is defined as a transient
increase followed by a decrease in apparent total tumor
burden. Its incidence is highly variable between studies, ranging
between 2 and 10%, depending on tumor type, treatment, and
patients (52, 53). Pseudo-progression incidence rates have been
reported as ranging between 1.5 and 17% of patients with
advanced urothelial carcinoma on immunotherapy (54). Thus,
the majority of apparent early progressive disease visualized
on 18F-FDG PET/CT represents true progression rather than
pseudo-progression (55).

Hyperprogression is defined as a rapid increase in tumor
growth rate (≥2-fold) compared to the expected growth
rate in cancer patients treated with Anti-PD-1/PD-L1 agent.
Hyperprogression occurs with an incidence of 9% in solid tumors
and is associated with a poor outcome (56). The definition of
hyperprogression on 18F-FDG PET/CT is currently controversial
since metrics differ between institutions (57).

Immune-related adverse events (IrAEs) are well-known side
effects of ICIs that can involve almost all organs. IrAEs in patients
with MIBC treated with ICIs occur in up to 23% of patients,
similar to patients with other solid malignancies (6). 2-Deoxy-2-
(18F)fluoro-D-glucose positron emission tomography/computed
tomography performed during the treatment for restaging
and/or response assessment can also reveal a wide range of
IrAEs, (e.g., sarcoidosis-like syndrome, thyroiditis, hypophysitis,
enterocolitis, interstitial pneumonitis, pancreatitis, and arthritis)
with an accuracy of 83% (58, 59). Authors recently reported
that shared genetic factors impact risk for IrAEs and survival on
immunotherapy in BC (60).

To date, there have been no studies investigating the specific
role of 18F-FDG PET/CT in evaluating the response of advanced
BC to immunotherapy.

RECURRENT DISEASE

Few published studies have evaluated the diagnostic performance
of 18F-FDG PET/CT in detecting relapse of BC after systemic
chemotherapy and/or RC (Figure 1C). Sensitivity is reported to
be between 87 and 92% and specificity between 83 and 94%, with
a significant change in the management of up to 40% of patients
compared to conventional imaging alone (61–63). Alongi et al.
reported SUVmax > 6 and TLG > 8.5 of recurrent bladder
tumors as the most significant predictors of 2-year progression-
free survival (61).

TECHNICAL CONSIDERATIONS, NEW
TRACERS, AND DEVICES

Although several studies have demonstrated the clinical utility of
18F-FDG PET/CT throughout the management of patients with
BC, technical caveats should be considered.

Pet Technology
Over the past decade the gradual spread of 3D PET equipped
with time-of-flight technology and using iterative reconstruction
algorithms including point-spread-function correction has
significatively improved image quality. More specifically, these
recently developed technologies have enhanced detectability
of subcentimeter foci of disease (64) and therefore may
significantly influence performances of PET/CT in regard to
nodal disease (65).

Rationale for Diuretic Protocols
Although detection and characterization of primary bladder
tumors is not the aim of 18F-FDG PET/CT, adapted protocols
are of interest in terms of improving LN staging in pelvic
malignancies by lowering artifacts caused by concentrated
urinary radioactivity (66). Due to its diagnostic performance
with respect to nodal disease, 18F-FDG PET/CT protocols for
BC should integrate forced diuresis (with 20 mg to 40 mg of
furosemide intravenously) and oral hyperhydration (1.5–2 L) in
everyday clinical practice (10, 16). Supplementary delayed pelvic
images may be helpful in selected patients with inconclusive
standard images.

Early Dynamic Acquisitions
In an effort to improve tumor conspicuity through an increase
of tumor-to-urine SUVmax ratio, few authors have investigated
the utility of early dynamic acquisitions, before radioactive
urine has had a chance to fill the bladder (13, 67, 68).
In these proof-of-concept studies, the authors suggested that
such dynamic acquisitions might improve tumor detection and
staging; however, the impact on LN staging was not evaluated.
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Other Pet Tracers
In an effort to overcome the limitations of excreted urinary
18F-FDG in the setting of BC and pelvic LN evaluation,
additional PET tracers have been studied. These studies have not
demonstrated sufficient improvement to justify implementation
of these tracers in everyday practice.

11C-Acetate PET/CT has been investigated in small cohorts.
It has not shown significantly different results compared to MRI
and CECT for tumor detection and LN staging (69–71).

In BC patients before cystectomy, 11C-Choline PET/CT
detected pelvic LN involvement with an accuracy of 81%
(sensitivity of 90% and specificity of 71%) (72). In an intra-
patient comparison, 11C-choline PET/CT appeared to have no
significant advantage compared to 18F-FDG PET/CT (73). In
two studies comparing 11C-Choline PET/CT to conventional
imaging for LN staging, sensitivity was of 42–58% and specificity
was 66–84% for 11C-Choline PET/CT, compared to 14–75% and
56–90%, respectively, with CECT alone (74, 75). At initial staging,
11C-Choline PET/CT was not able to significantly predict overall
survival or cancer-specific death (76). Graziani et al. studied the
performance of 11C-Choline PET/CT in detection BC relapse.
The authors reported a sensitivity of 67% and a specificity of 85%
for local relapse and a sensitivity of 90% and specificity of 92% for
distant relapse (77). These results are in line with the performance
of 18F-FDG PET/CT.

Regarding the investigation of bone metastases, 18F-sodium
fluoride PET/CT has been shown to reveal more bone metastases
than standard bone scintigraphy (78) or 18F-FDG PET/CT (79).

Rationale for Pet/Mri
Thanks to its superior contrast resolution, MRI is currently the
most effective non-invasive imaging modality for local staging
of BC, with an accuracy between 92 and 98% for detection of
muscle invasion (18, 80). In spite of this contrast resolution,
MRI’s anatomical sequences (T2 weighted, T1 weighted) have not
been shown to be superior to CECT in detecting LN involvement.
Combining functional sequences such as DWI and dynamic
contrast enhancement (DCE) still results in a relatively low
sensitivity (80). Thus, MRI and PET complement one another
for the staging of BC; the former is useful for local staging, the
latter for distant metastasis detection, while together they may be
synergistic for revealing pelvic LN involvement.

To date, only small studies have been published investigating
the role of PET/MRI in MIBC. In a prospective pilot study
including 24 patients, Rosenkrantz et al. highlighted the potential
interest of hybrid 18F-FDG PET/MRI over MRI alone including
DWI, especially to detect pelvic LN involvement with an accuracy
of 95% for PET/MRI versus 76% for MRI alone, as well as
non-nodal extravesical pelvic involvement with an accuracy of
100 versus 91%, respectively (81). In contrast, another recently
published pilot study investigating PET/MRI in MIBC patients
after NAC (N = 18, with LN involvement in only three patients)
showed a sensitivity of 80% and a specificity of 56% for detection

of the primary tumor, and 0% and 100%, respectively, for
detection of LN involvement (82).

Rationale for Artificial Intelligence
Recent advances in artificial intelligence (AI) techniques are able
to harness routine PET images into data that can be mined to
extract imaging biomarkers for purposes of guiding precision
medicine for BC. The term AI encompasses distinct fields such
as deep learning, and radiomics, which go beyond the scope
of this review. AI can be leveraged on clinical data, molecular
and genetic biomarkers, and imaging for several narrow tasks
in BC. While there are currently no studies published on the
use of AI on 18F-FDG PET images for BC, promising results of
its application using CT and MRI images have been reported in
terms of predicting the depth of invasion of the primary tumor
(83), grade (84), local and systemic staging (85), and assessment
of treatment response (86). Additionally, AI based on PET/CT
images has been used in other malignancies to predict nodal
disease (87), risk stratification (88), treatment response (89),
and patient outcomes (90). The main advantages of using AI
is its potential reproducibility, as compared to the inherently
subjective interpretation of medical images by physicians as well
as the ability to harness large quantities of data that may escape
the pattern recognition abilities of humans.

CONCLUSION AND FUTURE
DIRECTIONS

There is strong and still evolving evidence supporting the
utility of 18F-FDG PET/CT in the management of MIBC.
18F-FDG PET/CT appears to outperform and/or complement
conventional imaging techniques for several tasks. Current
data support the idea that 18F-FDG PET/CT may help to
select the most efficacious treatment for each patient at each
step of MIBC management. There is some agreement among
the medical community that 18F-FDG PET/CT is relevant to
guide management at initial staging in patients considered as
oligometastatic by conventional imaging, such as patients with
enlarged pelvic LN. However, to date, prospective studies with
high level of evidence are lacking in order to allow the systematic
adoption of 18F-FDG PET/CT in structured guidelines. With the
advent of AI, the broad range of clinical, biological, anatomical,
and metabolic data may be harnessed in order to lead to improved
precision medicine.
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Yingjian Zhang1,2,3,4,5, Shaoli Song1,2,3,4,5* and Zhongyi Yang1,2,3,4,5*

1 Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China, 2 Department of Oncology,
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China, 4 Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China, 5 Department of Nuclear
Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, China

Objective: The purpose of this study was to employ dual tracers 16a-[18F]fluoro-17b-
estradiol (18F-FES) and [18F]fluorodeoxyglucose (18F-FDG) as imaging biomarkers in
predicting progression-free survival (PFS) in ER-positive metastatic breast cancer (MBC)
patients receiving fulvestrant therapy.

Methods:We retrospectively analyzed 35 HR+HER2- MBC patients who underwent 18F-
FES and 18F-FDG PET/CT scans prior to fulvestrant therapy in our center. The SUVmax
across all metastatic lesions on the PET/CT were assessed. The heterogeneity of ER
expression was assigned by the presence of any 18F-FES negative lesions for patients
with entirely 18F-FES positive lesions categorized into two groups by the median ratio of
FES/FDG SUVmax, low FES/FDG, and high FES/FDG. PFS were estimated by the
Kaplan-Meier method and compared by the log-rank test. Univariate and multivariate
analyses were performed using the Cox proportional hazard model.

Results: In total, 12 patients had both 18F-FES negative and positive lesions, indicating
the heterogeneity of ER expression in metastatic lesions. These patients had a low median
PFS of 5.5 months (95% CI 2.3–8.7). Of patients with entirely 18F-FES positive lesions, 11
had a low FES/FDG, and 12 had a high FES/FDG. These groups had a median PFS of
29.4 months (95% CI 2.3–56.5) and 14.7 months (95% CI 10.9–18.5), respectively. The
patients were stratified in three categories based on incorporating both 18F-FES and 18F-
FDG imaging results that were significantly correlated with PFS by univariate analysis (P <
0.001) and multivariate analysis (P = 0.006).
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Conclusion: 18F-FES and 18F-FDG PET could serve as prognostic imaging biomarkers
for ER-positive MBC patients treated with fulvestrant therapy.
Keywords: heterogeneity, ER expression, breast cancer, FES/FDG, fulvestrant
INTRODUCTION

Breast cancer is the most common cancer in women worldwide.
According to U.S. cancer statistics, about 276,480 newly
diagnosed cases are estimated in 2020, resulting in
approximately 42,170 deaths (1). It is the second most
common cause of cancer death in women. Approximately
70%–80% of breast cancers are hormone receptor (HR)-
positive, and endocrine therapy plays a vital role in the
management of such cancers (2).

Fulvestrant, a pure anti-estrogen drug that exerts no partial
agonist effects, is approved for postmenopausal women with
HR+ metastatic breast cancer (MBC) and disease progression
following the prior failure of other endocrine therapy (3, 4).
Although many patients have a prolonged clinical response to
fulvestrant, there are still some patients who are unable to benefit
or develop resistance. Therefore, the identification of clinical or
molecular markers that predict which patients with MBC might
benefit from Fulvestrant is vitally important because it helps to
individualize treatment and could significantly improve the
management of breast cancer. The level of ER expression has
been shown to provide important prognostic information, and in
most cases, higher levels of tumor ER expression are associated
with more noteworthy clinical benefit from conventional
endocrine therapy (5). A biopsy was routinely utilized to
discriminate between ER-positive and ER-negative lesions.
However, this gold standard method may not be representative
of ER heterogeneity. Furthermore, collecting a biopsy sample
from metastatic tissue is not always feasible in daily practice
because of the characteristics of lesion location and the risk
associated with biopsy.

Positron emission tomography (PET) with 16a-[18F]fluoro-
17b-oestradiol (18F-FES) has been proposed as a noninvasive
method to visualize and quantify ER expression in recurrent or
metastatic lesions (6, 7). Early clinical studies focused on sole
18F-FES PET imaging to predict clinical response to endocrine
therapy, rarely performed in combination with 18F-FDG imaging
(8–10). Kurland and colleagues evaluated the ability of 18F-FDG
and 18F-FES to predict progression-free survival (PFS) in 84
patients treated by salvage endocrine therapy for ER-positive
MBC (11). They summarize that, although 18F-FES PET is not
predictive of the patient’s PFS in the whole population, it is
meaningful that this imaging could stratify the patients with high
FDG uptake. However, this study fails to discuss the response to
different endocrine therapies because of differences in the
pharmacodynamics of different ER antagonists (12). We have
previously reported that early change in SUVmax of 18F-FES
PET/CT could be used to predict response to fulvestrant (13).
Nevertheless, this method still requires a 28-day period of
fulvestrant treatment before the effect can be observed.
299
Therefore, the purpose of our study was to evaluate the clinical
value of dual tracers 18F-FDG and 18F-FES at baseline in
predicting the response of fulvestrant in HR-positive MBC patients.
METHODS

Patients
In this retrospective analysis, we evaluated 35 HR+/HER2- MBC
patients who were treated with 500 mg fulvestrant and underwent
both 18F-FES PET/CT and 18F-FDG PET/CT scans within 4 weeks
before initiating treatment betweenMay 2016 andMarch 2019. The
lag time between the two scans was within 1 week. All data were
retrospectively collected from the medical records. To ensure the
sensitivity and specificity of 18F-FDG and 18F-FES imaging, patients
with ER antagonist discontinuation for less than 5 weeks and
medical comorbidities (diabetes, a chronic infection, or chronic
inflammatory conditions) were not enrolled in this study (12, 14).
The enrolled patients had performed 18F-FES scans for one of the
following purposes: 1) predicting response to fulvestrant, a phase II
study (NCT03507088, n = 23) or 2) identifying the ER status of
metastatic lesions for clinical practice (n = 12). The study was
approved by the Fudan University Shanghai Cancer Center Ethic
Committee and Institutional Review Boards for clinical
investigation, and the need for informed consent was waived as it
is a retrospective study.
Fulvestrant and Clinical Follow-Up
Fulvestrant 500 mg was administered by intramuscular injection
on days 1, 15, and 29 and every 28 days after that. For
premenopausal women, patients received concurrent
luteinising hormone-releasing hormone analogues (LHRHa).
Treatment continued until progressive disease (PD) or other
criteria for discontinuation were met in terms of adverse events
or a patient’s decision to withdraw.

Clinical follow-up was performed every 3 months by
radiologic imaging (e.g., diagnostic CT, MRI, bone scan, 18F-
FDG), serum tumor markers, and evaluation of symptoms until
disease progression or death. PFS was defined as the time from
fulvestrant treatment to disease progression or death from any
cause. For patients with measurable disease, tumor response was
determined by an experienced radiologist according to the
Response Evaluation Criteria in Solid Tumors (RECIST)
version 1.1 and was blinded to the results of baseline 18F FES
and 18F FDG PET/CT. Patients with only non-measurable
lesions were considered to have disease progression when there
was a definite progression of existing lesions or when new lesions
were detected at follow-up.
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PET/CT Procedure
The synthesis and quality control of 18F-FDG and 18F-FES were
performed as reported in our previous study (15).

18F-FDG PET/CT imaging was done according to standard
clinical procedures. All patients fasted for at least 6 h and had
serum glucose levels less than 10 mmol/L before the intravenous
injection of 18F-FDG (3.7–7.4 MBq/kg). The patients were kept
lying comfortably in a quiet, dimly lit room before and after the
tracer injection. About 1 h after tracer injection, the patients were
administered 1 L of plain water orally and then scanned in the
PET/CT (Siemens Biograph 16HR PET/CT or mCT Flow PET/
CT scanner). About 222 MBq of 18F-FES was injected
intravenously over 1–2 min. The scanning was initiated 1 h
after administration of the tracer on the same PET/CT scanner as
the 18F-FDG. The detail of PET/CT acquisition parameters were
described as reported in prior studies (16).

Image Analysis
PET images were reviewed and analyzed by two board-certified
nuclear medicine physicians using a multimodality computer
platform (Syngo, Siemens, Knoxville, TN, USA). All parameters
were assessed in 3-dimensional volumes. Regions of interest
(ROI) were manually drawn over lesions by an experienced
nuclear medicine physician using the PET images with the
corresponding noncontrast CT serving as a guide, and the
contours of lesions were checked for concurrence by a second
experienced nuclear medicine physician. In case of a discrepancy
between the two physicians, consensus was reached on a final
reading for the statistical analyses. Semiquantitative analysis of
tumor metabolic activity was obtained using standardized uptake
value (SUV) normalized to body weight. A lesion showing
uptake intensity higher than with adjacent normal tissue
background was defined as positive for 18F-FDG and 18F-FES,
and hypermetabolic foci estimated by inflammatory or
physiologic activity were not considered. We used the cutoff
value of SUVmax ≥ 1.8 to define 18F-FES positivity and quantify
the ER expression based on our previous study (17). Lesions seen
on 18F-FES and 18F-FDG PET/CT images were also identified
and localized by other conventional imaging techniques (bone
scan, diagnostic CT, MRI, or ultrasound). In patients with
extensive metastatic lesions, an arbitrary maximum of 20
randomly chosen lesions of 18F-FDG PET correspond to the
18F-FES avid lesions according to the guidelines of the European
Association of Nuclear Medicine (EANM) (18). Due to high
physiological 18F-FES uptake, patients with liver lesions were not
included in the 18F-FES analysis (19).

Statistical Analysis
All PET imaging parameters were dichotomized using the
median as a threshold. For patients with entirely FES positive
lesions, the FES/FDG ratio of each tumor was calculated, and the
median value was selected as the cutoff to distinguish between
high and low FES/FDG.

The survival analyses were estimated by the Kaplan–Meier
method and compared by the log-rank test (image parameters
and demographic factors). Univariate and multivariate analyses
Frontiers in Oncology | www.frontiersin.org 3100
were estimated using the COX proportional hazards model and
expressed as a hazard ratio with corresponding 95% confidence
intervals and P values. Multivariate analysis with the stepwise
model by forward selection was performed with those variables
that had proven significant on univariate analysis to explore
independent predictors of PFS. All data analyses were performed
using IBM SPSS Statistics software, version 20.0 (IBMCorporation,
Armonk, NY, USA). Two-sided P values of less than 0.05 were
considered to indicate statistically significant differences.
RESULTS

Patient Characteristics and Treatment
Outcome
The characteristics of the 35 enrolled MBC patients are listed in
Table 1. At the time of analysis (Jan. 2020), 26 patients (74.3%)
experienced progression, and all of them were radiologic PD. The
median follow-up period was 9.5 months (range: 2.1–30.0), and
the median PFS was 12.2 months (95% CI: 4.7–19.7). Twenty-six
patients had measurable lesions according to RECIST version
1.1, four patients had non-measurable visceral lesions, and five
patients had only bone metastases. Twenty-four of the 35
patients (68.6%) experienced clinical benefit from fulvestrant
treatment as indicated by PFS ≥ 24 weeks. Furthermore,
fulvestrant was well tolerated in all patients and no patients
who discontinued treatment due to adverse events.

PET/CT Analysis
In total, 235 metastatic lesions were identified in 35 patients. The
number of lesions found per patient ranged from 1 to 20 with a
median of 6 lesions per patient. Lesions were located in lymph
nodes (n = 78), bones (n = 117), lungs (n = 15), pleural (n = 9), soft
tissue (n = 15), and the liver (n = 1). All these metastatic lesions
were 18F-FDG avid. In addition, using a cutoff value of SUVmax ≥
1.82 to define 18F-FES positivity, 17 lesions were 18F-FES negative
(nine lymph nodes, six bone lesions, one lung metastatic, and one
soft tissue) in 12 (34.3%) of 35 patients, showing remarkable
heterogeneity of ER expression in these metastatic breast cancer
patients. Interestingly, one patient had liver metastases and also
had FES-negative metastases elsewhere, so this patient was
included in the 12 patients with heterogeneous ER expression.

On the 18F-FDG scan, the median SUVmax values among all
lesions were 4.92 (range 1.68–40.74). On the 18F-FES scan, the
median SUVmax values among 217 18F-FES positive lesions
(excluding 17 18F-FES negative lesions and one liver metastatic)
was 4.7 (range 1.8–22.8). On a per-patient level, the median
SUVmax of 18F-FDG and 18F-FES was 4.4 (range 2.1–15.5) and
4.5 (range 2.0–13.5), respectively. For patients with entirely 18F-
FES positive lesions, the median ratio of FES/FDG SUVmax was
0.96 (range 0.2–3.2). The detailed PET parameters of each
patient are shown in Supplemental Table 1.

Prediction of Response to Fulvestrant
We first examined the significance of conventional clinical
parameters. Patients with disease-free interval (DFI) ≥ 5 years
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had a longer PFS compared to those with less time of DFI
(median PFS 12.2 months vs. 3.1 months, P = 0.047). However,
this was of borderline significance in univariate analysis (P =
0.054). Other clinical risk factors (age, menopausal status,
presence of visceral disease, de novo metastatic disease,
histology of primary breast cancer, number of disease sites,
bone-only disease, prior palliative chemotherapy, and lines of
endocrine therapy for MBC) were not significantly related to PFS
(Table 2).

Next, we tested whether the PET parameters correlate with
survival in patients treated with Fulvestrant. The cutoff value of
SUVmax of determined by the median value of 18F-FDG and
18F-FES was 4.4 and 4.5, respectively. It is regrettable that neither
of the single parameters of the two scans was significantly
associated with PFS (P > 0.05) (Table 2). We also analyzed the
Frontiers in Oncology | www.frontiersin.org 4101
data stratified by low/high FDG and FES SUVmax, and there is
no predictive value of PFS (Supplemental Figure 1).

Given the significant heterogeneity of ER expression in these
patients with metastatic breast cancer, they may fail to respond to
endocrine therapy. The population was stratified in three categories:
1) The heterogeneous group (n = 12) had both 18F-FES negative and
positive sites (Figure 1); 23 patients with entirely 18F-FES positive
lesions further divided into two groups by the median FES/FDG
SUVmax ratio (the median value was 0.96). 2) The other groups are
the low FES/FDG group (FES/FDG < 0.96, n= 11, Figure 2A) and
3) the high FES/FDG group (FES/FDG ≥ 0.96, n = 12, Figure 2B).
Patients with the heterogeneity of ER expression were significantly
associated with shorter PFS compared to those without 18F-FES
negative lesions in univariate analysis (P < 0.001, Figure 3). Median
PFS was 5.5 months (95% CI 2.3–8.7) for the heterogeneous group,
29.4 months (95% CI 2.3–56.5) for the low FES/FDG group, and
14.7 months (95% CI 10.918.5) for the High FES/FDG (Table 2).

In multivariate analysis, a three-way PET classifier (FES
heterogeneous, low FES/FDG, and high FES/FDG groups)
remained the only independent, statistically significant
prognostic factor for PFS (P = 0.006). Although DFI was a
trend in the log-rank test, they were not considered as statistically
independent prognostic factors (P = 0.052).
DISCUSSION

Our results have demonstrate that an integrated parameter
derived from 18F-FDG and 18F-FES PET may have prognostic
value for fulvestrant therapy in patients with ER-positive
metastatic breast cancer. In our relatively small cohort, all
clinical risk factors and single PET parameters were not
significantly associated with PFS on multivariate analyses,
whereas the PET classifier of 18F-FDG and 18F-FES
remained significant.

Other scholars and our previous studies have confirmed that
18F-FES PET can noninvasively and systematically assess ER
status in patients with recurrent or metastatic breast cancer, and
as an imaging biomarker for predicting response to endocrine
therapy (13, 17, 20, 21). Nevertheless, 18F-FES PET is challenging
to monitor nonfunctional ER lesions, which might potentially
lead to losing sight of ER-negative lesions. Some studies have
used 18F-FDG PET/CT together with 18F FES-PET for the
identification of 18F FES negative lesions (22).

To our knowledge, this is the first dual-tracer PET study
evaluating the effect of fulvestrant on 18F-FDG and 18F-FES in
patients with ER-positive MBC. Several previous studies have
described the prognostic value of single 18F-FDG or 18F-FES PET
in ER-positive MBC (9, 12, 13, 23). However, these studies have
certain limitations, such as under a specific population or needng
a period of treatment to play a predictive role. Another study
investigates the utility of 18F-FDG and 18F-FES PET on variety
endocrine therapy in patients with ER-positive MBC but did not
attempt to predict the efficacy of fulvestrant precisely (11).
Consistent with other 18F-FES PET studies, our results
indicated that baseline 18F-FES SUVmax was not correlated
TABLE 1 | Patient demographics and disease characteristics.

Characteristics N = 35 %

Median age, years 56.0 (40-78)
Menopausal status
Premenopausea 7 20.0
Postmenopause 28 80.0

Histology of primary breast cancer
Ductal 29 82.8
Lobular 4 11.4
Mucinous 1 2.9
Tubular 1 2.9

DFIb

≤5 y 10 28.6
>5 y 16 45.7

PgR status
Positive 31 88.6
Negative 4 11.4

Metastatic sites
Non-visceral 25 71.4
Bone 20 57.1
Bone-only 5 14.3
Visceral disease 10 28.6
Any lung 7 20.0
Pleural 5 14.3
Liver 1 2.9

No. of disease sites
1 16 45.7
2 13 27.1
≥ 3 6 17.1

De novo metastatic disease 9 25.7
Prior line of therapies for metastatic disease
0 28 80.0
1 5 14.3
2 2 5.7

Prior ET for metastatic disease
None 30 85.7
Yes 5 14.3

Prior chemotherapy for metastatic disease
None 31 88.6
Yes 4 11.4

PFS
Events 26 74.3
Censored 9 25.7
ER, estrogen receptor; PgR, progesterone receptor; ET, endocrine therapy; PFS,
Progression-Free Survival; DFI, Disease-free interval.
aFor premenopausal women, fulvestrant was given upon on the administration of
gonadotropin-releasing hormone agonist.
bPatients with stage IV breast cancer at initial diagnosis were excluded (N = 9).
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with treatment outcome (9). The predictive value of 18F-FDG
PET in patients with ER-positive MBC for fulvestrant therapy
was proved by our previous study (23). In the current study,
however, we did not find that sole 18F-FDG SUVmax provides
independent prognostic information for fulvestrant. An
explanation for this could be that the populations of the two
studies were different because patients with only bone metastasis
were excluded from the previous research.

Kurland and colleagues’ study demonstrated that the FES/
FDG ratio appears to provide a reasonable summary of
synchronous ER expression for patients with highly discordant
18F-FES uptake across tumor sites in predicting clinical response
to endocrine therapy (22). Furthermore, based on our previous
study it was proposed that the ratio of SUVmax-FES/FDG
showing potential in predicting neoadjuvant chemotherapy
Frontiers in Oncology | www.frontiersin.org 5102
response of breast cancer (24). Besides, one study has also
suggested that patients with low or absent 18F-FES uptake in
metastases may be unlikely to benefit from endocrine therapy
(25). Our recent research showed that patients with entirely 18F-
FES positive lesions have a median PFS that is nearly twice of
patients with negative 18F-FES (14.6 months vs. 7.2 months), and
the difference was of borderline significance (P = .081) (13).
Hence, we hypothesized that the ratio of FES/FDG and the
heterogeneous uptake of FES would predict response to
fulvestrant therapy. Therefore, the current study combines the
above two concepts into one classification scheme by sorting
patients into three groups (heterogeneous disease, low FES/FDG,
and high FES/FDG) based on 18F-FDG and 18F-FES PET scans.
Our results suggest that, for ER-positive MBC, patients with the
heterogeneity of ER expression by 18F-FES PET were unlikely to
TABLE 2 | Univariate and multivariate Cox regression analyses for prediction of progression-free survival (PFS).

Parameters No. Event Median PFS Log-rank Univariate analysis Multivariate analysis

(95% CI) P value HR (95% CI) P value HR (95% CI) P value

Age
<65 25 19 7.0(5.9-8.2) 0.318 0.64(0.27-1.54) 0.322 NA
≥65 10 6 15.5(11.0-20.0)

Menopausal status
Pre-menopause 7 6 5.6(5.3-5.9) 0.416 0.68(0.27-1.73) 0.419 NA

Post-menopause 28 20 13.1(3.8-22.4)

Disease-free interval
≤5 y 10 10 3.1(0.0-6.4) 0.047* 0.42(0.17-1.01) 0.054 / 0.052
>5 y 16 11 12.2(1.5-22.9)

Histology of primary breast cancer
Ductal 29 22 9.5(0.1-18.9) 0.593 0.72(0.21-2.43) 0.595 NA
Lobular 4 3 14.7(4.0-20.4)

No. of disease sites
1 16 11 12.2(2.7-21.6) 0.202
2 13 9 13.1(3.7-22.5) 1.13(0.46-2.78) 0.267 NA
≥3 6 6 5.6(4.7-19.7) 2.42(0.86-6.82)

Visceral disease
No 25 19 9.5(1.6-17.5) 0.440 0.71(0.29-1.71) 0.443 NA
Yes 10 7 13.8(0.0-27.7)

Bone only disease
No 30 23 12.2(3.8-20.7) 0.709 1.26(0.24-2.68) 0.710 NA
Yes 5 3 2.4(2.0-2.8)

De novo metastatic disease
No 26 21 7.0(0.0-14.3) 0.167 0.51(0.19-1.36) 0.176 NA
Yes 9 5 18.4(10.9-25.9)

Prior palliative chemotherapy
No 31 22 12.2(3.4-21.0) 0.516 1.43(0.48-4.22) 0.518 NA
Yes 4 4 6.6(0.0-16.8)

Lines of endocrine therapy for MBC
1 28 20 12.2(3.1-21.3) 0.479 1.39(0.55-3.51) 0.482 NA
≥2 7 6 6.6(5.3-7.9)

FDG SUVmax
<4.4 17 12 15.5(9.2-21.8) 0.186 1.72(0.76-3.91) 0.192 NA
≥4.4 18 14 6.6(5.6-7.6)

FES SUVmax
<4.5 17 13 12.2(2.9-21.5) 0.995 0.99(0.45-2.19) 0.995 NA
≥4.5 18 13 7.0(0.0-20.5)

FES/FDG ratio
With FES negative 12 12 5.5(2.3-8.7) <0.001* <0.001* 0.006*
<0.96 11 6 29.4 (2.3-56.5) 0.09(0.03-0.32) 0.10(0.02-0.49)

0.27(0.09-0.78)≥0.96 12 8 14.7 (10.9-18.5) 0.22(0.08-0.59)
October 2020
 | Volume 10 | Article
PFS, progression-free survival; CI, confidence interval; HR, hazard ratio; MBC, metastatic breast cancer; SUVmax, maximum standard uptake value.
*P ≤ 0.05; N/A: Analysis not performed as univariate analysis not significant.
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benefit from fulvestrant, and it may indicate that potential
changes in ER expression of tumor in explaining endocrine
therapy resistance, whereas patients with totally 18F-FES
positive in metastases are potential candidates for fulvestrant,
particularly those with low FES/FDG.

Our study reports an incremental refinement of the classifier
by integrating both 18F-FES and 18F-FDG imaging results based
upon a smaller cohort but a more uniformly treated patient
population compared with previous studies. Kurland et al.
demonstrate that patients with low FDG uptake (indolent
tumors) had a longer median PFS with high FDG uptake and
high average FES uptake had a moderate median PFS and with
high FDG uptake and low average FES uptake had a shorter
median PFS (11). Nevertheless, this study differed from our
current research in several respects. Patients had received
Frontiers in Oncology | www.frontiersin.org 6103
different kinds of endocrine therapy, including aromatase
inhibitor combined with or without fulvestrant, tamoxifen,
and fulvestrant. Moreover, patients with the heterogeneity of
ER expression were not individually analyzed, and those
patients tended to develop resistance to endocrine therapy.
We, therefore, analyzed those patients with the heterogeneity
of ER expression independently, which may not benefit from
sole fulvestrant, and it might be better to change management
by adding complementary treatments, such as chemotherapy,
everolimus, or cyclin-dependent kinases 4 and 6 (CDK4/6)
inhibitors. In the current study, we report that patients with
100% 18F-FES positive and low FES/FDG had a longer median
PFS (29.4 months, 95% CI 2.3–56.5) compared with high FES/
FDG (14.7 months, 95% CI 10.9–18.5). Consistent with our
previous study, patients with high baseline 18F-FDG tumor
FIGURE 1 | Representative cases of heterogeneous group. A 50-year-old female patient has both 18F-FES positive and negative lesions. The left rib shows
significant uptake on FDG but not on FES. For this patient, the PFS was 3.7 months, and she did not receive clinical benefit from fulvestrant treatment.
A B

FIGURE 2 | Representative cases of FES/FDG group. Patients with 100% of the 18F-FES positive metastatic lesions were divided into two groups by the median
ratio of FES/FDG SUVmax (0.96). (A) Low FES/FDG. A 59-year-old female patient with the range of 18F-FDG and 18F-FES SUVmax was 5.3–40.7 and 4.1–15.5,
respectively. This patient’s median FES/FDG was 0.52, which was lower than the median FES/FDG of all patients. She has received fulvestrant treatment for 27.6
months until progress. (B) High FES/FDG. A 67-year-old female patient with the range of 18F-FDG and 18F-FES SUVmax was 3.0–8.1 and 8.8–16.0, respectively.
This patient’s median FES/FDG was 2.32, which was higher than the median FES/FDG of all patients, and the PFS was 14.7 months.
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uptake had a longer PFS (23); one of the possible reasons is that
17b-estradiol (E2) increases ER-dependent PI3K/Akt
activation-mediated Glucose uptake signaling pathway in HR-
positive breast cancer cell lines (26).

Increasing evidence suggests that, in addition to ER
expression, progesterone receptor (PR) expression may also be
related to the prognosis of fulvestrant therapy (27). The Zhao
et al. study had reported that the 18F-FDG/18F-FES SUV ratio
was correlated with ERa, PR expression (28). Therefore, the FES/
FDG ratio may be more representative of comprehensive ER, PR
expression, and could be a potential imaging biomarker to
predict survival on fulvestrant therapy in patients with HR-
positive breast cancer.

There were several limitations to our study. First, the
retrospective nature of this study and the heterogeneous
patient population, perhaps with inherently different
prognostic factors, are a major limitation. Our study shows
that patients with a high FES/FDG ratio have shorter survival
than those with a low FES/FDG ratio. This is the opposite of what
we expected: that patients with greater FES-avidity and lower
FDG-avidity would be expected to lead to longer survival.
However, most of the current studies indicate that patients
with FES negative or positive lesions are related to prognosis;
there is no direct linear relationship between the level of FES
uptake and clinical outcomes. The FES/FDG ratio may reflect the
two biological functions of hormone receptors and glucose
metabolism in metastases and may be more valuable for
predicting fulvestrant treatment. Third, the sample size was
relatively modest. Despite the small cohort, the results were
statistically significant.
CONCLUSIONS

Our data suggest that dual 18F-FDG and 18F-FES PET imaging
could be a potential predictor of efficacy to fulvestrant therapy
Frontiers in Oncology | www.frontiersin.org 7104
among HR+HER2- MBC patients. These findings indicate that
endocrine therapy should be individualized for patients with ER-
positive MBC, particularly the presence of 18F-FES negative lesions.
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Value of 18F-FDG PET/CT-Based
Radiomics Nomogram to Predict
Survival Outcomes and Guide
Personalized Targeted Therapy
in Lung Adenocarcinoma With
EGFR Mutations
Bin Yang1†, Hengshan Ji2†, Jing Zhong1†, Lu Ma1†, Jian Zhong1†, Hao Dong3†,
Changsheng Zhou1, Shaofeng Duan4, Chaohui Zhu5, Jiahe Tian6, Longjiang Zhang1,
Feng Wang7, Hong Zhu2* and Guangming Lu1*

1 Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China,
2 Department of Nuclear Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China, 3 College
of Medical Imaging, Xuzhou Medical University, Xuzhou, China, 4 Institute of Precision Medicine, GE Healthcare China,
Shanghai, China, 5 Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China, 6 Department of
Nuclear Medicine, The Chinese People's Liberation Army (PLA) General Hospital, Beijing, China, 7 Department of Nuclear
Medicine, First People’s Hospital of Nanjing, Nanjing, China

Objectives: To investigate the development and validation of a radiomics nomogram
based on PET/CT for guiding personalized targeted therapy in patients with lung
adenocarcinoma mutation(s) in the EGFR gene.

Methods: A cohort of 109 (77/32 in training/validation cohort) consecutive lung
adenocarcinoma patients with an EGFR mutation was enrolled in this study. A total of
1672 radiomic features were extracted from PET and CT images, respectively. The least
absolute shrinkage and selection operator (LASSO) Cox regression was used to select the
radiomic features and construct the radiomics nomogram for the estimation of overall
survival (OS), which was then assessed with respect to calibration and clinical usefulness.
Patients with an EGFRmutation were divided into high- and low- risk groups according to
their nomogram score. The treatment strategy for high- and low-risk groups was analyzed
using Kaplan–Meier analysis and a log-rank test.

Results: The C-index of the radiomics nomogram for the prediction of OS in lung
adenocarcinoma in patients with an EGFR mutation was 0.840 and 0.803 in the training
and validation cohorts, respectively. Distant metastasis [(Hazard ratio, HR),1.80],
metabolic tumor volume (MTV, HR, 1.62), and rad score (HR, 17.23) were the
independent risk factors for patients with an EGFR mutation. The calibration curve
showed that the predicted survival time was remarkably close to the actual time.
Decision curve analysis demonstrated that the radiomics nomogram was clinically
useful. Targeted therapy for patients with high-risk EGFR mutations attained a greater
November 2020 | Volume 10 | Article 5671601106
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benefit than other therapies (p < 0.0001), whereas the prognoses of the two therapies
were similar in the low-risk group (p = 0.85).

Conclusions: Development and validation of a radiomics nomogram based on PET/CT
radiomic features combined with clinicopathological factors may guide targeted therapy
for patients with lung adenocarcinoma with EGFR mutations. This is conducive to the
advancement of precision medicine.
Keywords: lung adenocarcinoma, positron emission tomography/computed tomography, radiomics, nomogram,
targeted therapy
INTRODUCTION

Lung cancer is the leading cause of cancer deaths in the world
and has the highest morbidity and mortality rates among all
malignant tumors (1, 2). Non-small cell lung cancer (NSCLC)
accounts for 85% of all lung cancers (3, 4). Due to the lack of
early clinical symptoms, lymph node metastasis or distant
metastasis has already occurred by the time of diagnosis, and
it is usually too late for surgical intervention (5, 6).
Although the prognosis of lung cancer has improved
significantly with improvements in treatment methods, the
5-year survival rate for lung cancer patients remains at 17–
18% (7, 8).

The tumor, node, and metastasis (TNM) staging system is
currently the most valuable and commonly used tumor staging
system for assessing the prognosis of malignant tumors (9–12).
However, in clinical practice, it is found that the TNM staging
system continues to have many shortcomings in the prognostic
evaluation of lung cancer. The survival time of patients at the
same stage may differ. Therefore, a TNM-based one-size-fits-all
strategy might not be suitable for all patients. In addition, it is
not currently possible to fully predict the progression and
outcome of disease in patients with NSCLC. Therefore,
identification of patients at high risk of death would be
valuable for guiding therapy (13–15). New methods of
prognostic assessment are urgently needed to achieve
personalized treatment. A nomogram is an intuitive chart
prepared by establishing a statistical prediction model, which
includes important tumor prognosis factors. A nomogram is
regarded as a tool for quantifying risks and has become the
focus of cancer research (16–18).

The18F-fluordeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) can provide
functional, metabolic, anatomical, and morphological imaging.
Its’ metabolic parameters can reflect the metabolism of tumor
tissue. Studies have shown that FDG uptake in primary tumors is
an independent risk factor for patients with early NSCLC (19,
20), although the value of the prognosis in evaluation of
advanced NSCLC patients remains controversial (21, 22).
tigen; EGFR, epidermal growth factor
NSCLC, non-small cell lung cancer;
y/computed tomography; SUVmax,
, mean standard uptake value; TKIs,
glycolysis.
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Moreover, the 18F-FDG PET/CT features of lung cancer are
significantly correlated with T stages, N status, pathological
stages, and tumor grades (23–25). Therefore, it has been widely
used in the diagnosis, staging, and monitoring of the therapeutic
effects and prognostic evaluation of NSCLC (26). Radiomics is
the high-throughput extraction and analysis of quantitative
features from images. Consequently, the prognostic evaluation
of NSCLC by PET/CT can be improved (27). Currently, several
attempts have been made to improve the performance of
predictive models. However, the prognostic prediction
performance of radiomics models in these studies was
generally poor. Thus the prognostic performance of radiomics
has room for further improvement (15, 28). A few studies have
evaluated the use of 18F-FDG PET/CT radiomics features to
predict the NSCLC prognosis; nevertheless the effect of the driver
gene mutation status and treatment methods was ignored. The
prognosis of patients with NSCLC is closely related to the
driving gene mutation status and treatment. So, it is necessary
to conduct independent research with these patients to achieve
individualized treatment.

The main purpose of this study was to develop a radiomics
nomogram based on 18F-FDG PET/CT radiomic features
combined with clinicopathological factors to predict the survival
outcomes of patients diagnosed with lung adenocarcinoma with
an epidermal growth factor receptor (EGFR) mutation. We also
endeavored to provide guidance for treatment strategies and
prognostic evaluation of patients with an EGFR mutation.
MATERIALS AND METHODS

Patients
The institutional review board of Affiliated Jinling Hospital,
Medical School of Nanjing University approved this
retrospective study and waived the requirement to obtain
informed consent from the patients. In our retrospective
investigation, the following inclusion criteria were applied to
select patients from the medical database: a) an 18F-FDG PET/
CT examination within 1 month prior to surgery or biopsy, b) no
anti-tumor treatment received before the 18F-FDG PET/CT
examination, c) with surgical or biopsy specimens confirmed
by pathology, and d) with EGFR mutation detection results. The
exclusion criteria were as follows: a) patients with partial loss of
PET or CT images, b) patients with metastases in the lung, and
November 2020 | Volume 10 | Article 567160
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c) images with unclear boundaries of the tumor that could not be
accurately delineated.

Altogether, 174 consecutive lung adenocarcinoma patients
were identified by applying the above-mentioned inclusion/
exclusion criteria from the institutional database between July
2009 and August 2016, and 109 cases were patients with an EGFR
mutation. Among those with EGFRmutations, 44 had the 19DEL,
61 had the 21L858R-mutation and four had other EGFR
mutations sites. We randomly divided patients with the EGFR
mutation into training (n = 77) and validation (n = 32) cohorts
following a 7:3 ratio. The clinicopathological data obtained from
medical records included age, sex, family history, smoking history,
Frontiers in Oncology | www.frontiersin.org 3108
histological grade, lymph node metastasis, distant metastasis,
TNM stage (defined according to the eighth edition of the TNM
classification and staging system by the American Joint
Committee on Cancer), thyroid transcription factor-1 (TTF-1)
(− or one + was defined as negative, ≥two + was defined as
positive), Ki-67 (≤25%was defined as low expression and >25% as
high expression), carcinoembryonic antigen (CEA), and PET/CT
metabolic parameters (Table 1). The follow-up time was from July
2009 to January 2019. The endpoint of this study was overall
survival (OS), which was defined as the time from the date of the
18F-FDG PET/CT examination to the date of telephone follow-up
or the date of the patient’s death.
TABLE 1 | Characteristics of the training and validation cohorts.

Characteristics Training cohort (n = 77) Validation cohort (n = 32) Total(n = 109) p-value

Gender-no.(%) 1.000
Female 43 (55.844) 18 (56.250) 61 (55.963)
Male 34 (44.156) 14 (43.750) 48 (44.037)

Age, mean(SD) 60.078 (9.373) 60.625 (8.051) 60.239 (8.972) 0.773
Family history-no.(%) 0.036
No 75 (97.403) 27 (84.375) 102 (93.578)
Yes 2 (2.597) 5 (15.625) 7 (6.422)

Smoking status-no.(%) 0.835
Non-smokers 57 (74.026) 25 (78.125) 82 (75.229)
Smokers 20 (25.974) 7 (21.875) 27 (24.771)

Histologic grade-no.(%) 0.376
Poorly differentiated 33 (42.857) 13 (40.625) 46 (42.202)
Moderately differentiated 35 (45.455) 12 (37.500) 47 (43.119)
Well differentiated 9 (11.688) 7 (21.875) 16 (14.679)

Lymph node metastasis-no.(%) 0.157
Yes 62 (80.519) 21 (65.625) 83 (76.147)
No 15 (19.481) 11 (34.375) 26 (23.853)

Distant metastasis-no.(%) 0.455
Yes 53 (68.831) 25 (78.125) 78 (71.560)
No 24 (31.169) 7 (21.875) 31 (28.440)

Stage-no.(%) 0.988
I/II 9 (11.688) 3 (9.375) 12 (11.009)
III/IV 68 (88.312) 29 (90.625) 97 (88.991)

TTF-1-no.(%) 0.610
Positive 56 (72.727) 21 (65.625) 77 (70.642)
Negative 21 (27.273) 11 (34.375) 32 (29.358)

Ki-67-no.(%) 1.000
≤25% 49 (63.636) 20 (62.500) 69 (63.303)
>25% 28 (36.364) 12 (37.500) 40 (36.697)

CEA-no.(%) 0.344
≤2.60 18 (23.377) 11 (34.375) 29 (26.606)
>2.60 59 (76.623) 21 (65.625) 80 (73.394)

SUVmax-no.(%) 0.198
≤5.33 20 (25.974) 13 (40.625) 33 (30.275)
>5.33 57 (74.026) 19 (59.375) 76 (69.725)

SUVmean-no.(%) 0.511
≤1.74 7 (9.091) 5 (15.625) 12 (11.009)
>1.74 70 (90.909) 27 (84.375) 97 (88.991)

TLG(g) 0.880
≤54.02 51 (66.234) 20 (62.500) 71 (65.138)
>54.02 26 (33.766) 12 (37.500) 38 (34.862)

MTV(cm3) 0.824
≤7.32 35 (45.455) 16 (50.000) 51 (46.789)
>7.32 42 (54.545) 16 (50.000) 58 (53.211)
Novembe
r 2020 | Volume 10 | Article
CEA, carcinoembryonic antigen; MTV, metabolic tumor volume; SUVmax, maximal standard uptake value; SUVmean, mean standard uptake value; TLG, total lesion glycolysis; TTF-1, thyroid
transcription factor-1; EGFR, epidermal growth factor receptor.
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PET/CT Imaging Method, Image
Acquisition, and Measurement of
Metabolic Parameters
Patients underwent PET/CT imaging (Biography 16, Siemens,
Erlangen, Germany) using 18F-FDG synthesized by the Canadian
EBCO TR19 medical cyclotron and chemical synthesis system.
The radiochemical purity was >95%. The patients fasted for 6–8 h
before undergoing the scan. Patients were intravenously injected
with 18F-FDG (3.7–6.66 MBq/kg) and underwent a whole-body
PET/CT scan from the skull base to the upper section of the thigh.
CT scan parameters were as follows: tube voltage120 kV, Tube
current 140 mAs, and layer thickness and layer spacing 5 mm,
matrix 512 × 512, and tube rotation speed 0.8 s/r. The PET
acquisition parameters were as follows: three-dimensional at 3
min/bed, iterative algorithm, iterations four subsets, eight
resolution, 4.1 mm lateral, 4.6 mm axial, matrix 128 × 128,
voxel size 5.3 × 5.3 × 5.3 mm3. The images were reconstructed
using an iterative reconstruction method resulting in CT, PET,
and PET/CT fusion images that were transferred to a post-
processing workstation. We used Microsoft Viewer software
(version VB10, Siemens) to calculate the metabolic parameters
on the PET images. PET images were first converted to SUV
images in the software without other processing methods. Then,
the three-dimensional region of interest (ROI) was manually
delineated by a radiologist (YB) to calculate the maximum
standard uptake value (SUVmax, with a threshold set to 40%),
mean standard uptake value (SUVmean), and metabolic tumor
volume (MTV). Subsequently, the total lesion glycolysis (TLG)
(TLG = SUVmean × MTV) was calculated.

EGFR Gene Detection
EGFR genetic mutations were tested from the affected tumor tissue
sample obtained by surgical resection or biopsy. The amplification
refractory mutation system polymerase chain reaction method
Frontiers in Oncology | www.frontiersin.org 4109
was used to detect mutation sites in four exons (exons 18–21) in
the coding region of the EGFR gene, the results of which were
acquired according to the interpretation principle provided by the
reference test kit. If any exon mutation was detected, the tumor
was identified as an EGFR mutant; otherwise, the tumor was
identified as EGFR wild type.

Tumor Segmentation
A volume of interest (VOI) segmentation was semiautomatically
produced by drawing a line across the boundary of the tumor and
manually adjusted by a chest radiologist (YB, 9 years of experience
in the lung diagnosis) in a three-dimensional domain using the
radiomics prototype (Radiomics, Frontier, Siemens; Figure 1) and
confirmed by another chest radiologist (JS, 15 years of experience).
Then, the tool automatically found the neighboring voxels in 3D
space with the same gray level through an automatic algorithm.
This is the Random Walker-based lesion segmentation for solid
and subsolid lung lesions (29). Both radiologists were blinded to
the patients’ clinical information. The details of the tumor
segmentation are described in Appendix 1.

Feature Extraction, Feature Selection, and
Radiomics Signature Construction
Our study followed and adhered to the Image Biomarker
Standardization Initiative (IBSI) guidelines (30), and the
software used was IBSI-compliant. The medical images were
resampled to the 1 mm × 1 mm × 1 mm voxel size in millimeters
before the subsequent feature extraction steps. The interpolator
used for resampling was B-spline interpolation. For
discretization of the image gray levels, the bin width was set as
25 for CT and 0.1 for PET-SUV. After preprocessing, a total of
1,672 × 2 radiomics features were extracted from the CT and
PET images by the radiomics prototype after imaging
preprocessing. The extracted radiomics feature groups were as
FIGURE 1 | The framework for developing the radiomics nomogram and treatment strategy decisions. The lesions were segmented on Siemens Radiomics
prototype semiautomatically, and 1,672 radiomics features, including first order features, shape related features, and texture features were extracted using the
software after image pre-processing. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to select radiomics features and
clinicopathological factors to construct the radiomics nomogram. Patients with EGFR mutations were divided into high- and low-risk groups according to the rad
score. The treatment strategy was analyzed in the high- and low-risk groups.
November 2020 | Volume 10 | Article 567160

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Radiomics to Guide Personalized Targeted Therapy
follows: a) 18 first-order features, b) 16 size and shape features,
and c) 74 texture encoding features. In total 1,672 radiomics
features were extracted from each per lesion, including 108 from
the original image, 460 [92 × 5] from the LoG-filtered images,
736 [92 × 8] from the wavelet-transformed images, and 368 [92 ×
4] from non-linear intensity transforms (For detailed feature
calculation formulas, please refer to the website: https://
pyradiomics.readthedocs.io/en/latest/features.html#). A
Spearman ’s correlation test was performed using the
‘findCorrelation’ function in the caret package (cutoff, 0.9) to
reduce feature redundancy. The least absolute shrinkage and
selection operator (LASSO) Cox regression method, which is
suitable for the regression of high dimensional data in survival
analyses, was conducted to select the most useful predictive
features from the training cohort (31). A radiomics score (rad
score) was calculated for each patient via a linear combination of
selected features that were weighted by their respective
coefficients (32).

Prognostic Model Establishment
The clinicopathological factors were analyzed using univariate
Cox proportional hazards (CPH) regression analysis to identify
significant risk factors. Significant risk factors with p < 0.05 were
analyzed using the Kaplan–Meier curve and log-rank test.
Significant risk factors were analyzed using multivariate Cox
proportional hazards (CPH) regression analysis to identify
independent risk factors. A clinical model was constructed
based on the independent risk factors. Rad score and
independent risk factors were fused into a single predictive
model based on a multivariate CPH model. The performance
of models was evaluated with the concordance index (C-index).

Construction of the Radiomics Nomogram
and Its Performance
The rad score and independent risk factors were based on
multivariate Cox regression analysis to construct the radiomics
nomogram. The prediction performance of the radiomics
nomogram was assessed using the Harrell’s C-index in the
training and validation cohorts. The C-index ranges from 0.5
to 1.0, where 0.5 indicates random data distribution and 1.0
suggests that the outcome of the model predicted the observed
survival information perfectly. Calibration curves of the
radiomics nomogram were then drawn for 5-year OS of the
patients (33). The calibration curves illustrated both survival
probabilities predicted by nomogram and the observed
probabilities. A decision curve analysis determined the clinical
usefulness of the radiomics nomogram by quantifying the net
benefits at various threshold probabilities.

To Guide the Individualized Targeted
Therapy for Patients With Lung
Adenocarcinoma
Patients with an EGFRmutation were divided into high- and low-
risk groups according to their nomogram score. The treatment
strategy was explored separately in the high- and low-risk cohorts
using Kaplan–Meier analysis and a log-rank test, to find the cohort
that would benefit from the targeted treatment. Additionally, the
Frontiers in Oncology | www.frontiersin.org 5110
various treatment strategies were explored in patients with
different EGFR-mutation sites, to identify which patients could
actually benefit from adjuvant therapy.

Statistical Analysis
The R software (version 3.5.0, www.Rproject.org) was used for all
statistical analyses in this study. LASSO was conducted using the
‘glmnet’ package, while ‘hdnom’ was used for survival analysis.
All statistical tests were two-sided and the significance level was
set at p = 0.05.
RESULTS

Clinical Characteristics
Patient characteristics of the training and validation cohorts were
summarized in Table 1. There were no significant differences in
age, sex, smoking status, lymph node metastasis, or distant
metastasis, etc., between the two cohorts (p > 0.05).

Important Radiomics Feature Selection
and Radiomics Signature Construction
In total, 1,672 radiomics features were extracted from the CT and
PET images, respectively. We performed feature selection using
the LASSO regression model with the PET/CT features (Figures
2A, B). The following ten important features were selected from
1,672 radiomics features (Figure 2C):

CT_wavelet−LLH_glcm_ClusterShade, CT_log−sigma−0−5
−mm−3D_glcm_MaximumProbability,

CT_wavelet−LLH_firstorder_Skewness,PET_wavelet−HHL_
firstorder_Mean,CT_wavelet−HLH_glcm_ClusterShade,
PET_wavelet−HHL_glszm_SmallAreaLowGrayLevel
Emphasis,CT_wavelet−LHL_glszm_SmallAreaHighGray
LevelEmphasis,PET_wavelet−HLL_firstorder_Kurtosis,
PET_wavelet−LHL_glcm_Imc2, and CT_wavelet−LHL_
firstorder_Mean.

Then the rad score was calculated using these ten radiomics
features as follows: rad score = 0.051*PET_wavelet-
HLL_fi r s t o r d e r _Ku r t o s i s + 0 . 0 0 6*PET_wav e l e t -
HLL_glcm_Idn+-0.011*PET_wavelet-LHH_glcm_Imc1
+0.047*PET_wavelet-LHL_glcm_Imc2+-0.011*PET_log-
s i g m a - 0 - 5 - m m -
3D_glszm_SmallAreaLowGrayLevelEmphasis + 0.093.
Prognostic Model Establishment
and Performance of the Multimodality
Prediction Model
We used a univariate Cox regression analysis to test the hazard
ratio (HR) of each factor and to determine its’ significance in the
probability of death. The results were as follows: distant
metastasis (HR, 2.68), metabolic tumor volume (MTV, HR,
2.02), maximal standard uptake value (SUVmax, HR, 2.48),
stage (HR, 4.29), and carcinoembryonic antigen (CEA, HR,
3.16) were the significant risk factors for patients with an
November 2020 | Volume 10 | Article 567160
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EGFR mutation (P < 0.05).The significant risk factors with p <
0.05 were calculated using a log-rank test, and Kaplan–Meier
curves were plotted. Figures 3A–E illustrate the survival
probability of patients in the high-risk or low-risk cohorts. The
results of the log-rank test indicate significant discrimination
between the two groups. A clinical model was constructed based
on multivariate Cox proportional hazards (CPH) regression
analysis of significant risk factors. Distant metastasis [HR,2.97
(95%CI, 1.36–6.51)] and metabolic tumor volume [MTV,
HR,2.26(95%CI, 1.19–4.28)] were the independent risk factors
in the training cohort. Rad score and independent risk factors
were fused into a single predictive model based on the
multivariate CPH regression analysis. Distant metastasis
[HR,1.80(95%CI, 0.80–4.04)], metabolic tumor volume [MTV,
HR,1.62(95%CI, 0.82–3.17)] and rad score [HR,17.23 (95%CI,
6.62–44.81)] were the independent risk factors in the training
cohort. The C-index of the clinical model was 0.694 and 0.729 in
the training and validation cohorts, respectively. The C-index of
the rad score (radiomics model) was 0.819 and 0.737 in the
training and validation cohorts, respectively. A rad score was
combined with the independent risk factors to construct a
combined model (radiomics nomogram) based on multivariate
Cox regression analysis, and the C-index of the combined model
(radiomics nomogram) was 0.840 and 0.803 in the training and
validation cohorts, respectively (Table 2).
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Development of the Radiomics Nomogram
and Its Performance
The rad score was combined with the independent risk factors to
construct a radiomics nomogram based on multivariate Cox
regression analysis (Figure 4A). The C-index of the radiomics
nomogram was 0.840 and 0.803 in the training and validation
cohorts, respectively. The calibration curve result showed that the
predicted probability was remarkably close to the actual survival
time of patients (Figures 4B, C). Kaplan–Meier survival analysis
of patients in the high-risk and low-risk groups in the training
cohort (log-rank test p = 0.001; Figure 4D). A decision curve
analysis showed that the radiomics nomogram had a higher
overall net benefit than the clinical model and the radiomics
model, and had a higher overall net benefit across the majority of
the range of reasonable threshold probabilities (Figure 4E).

To Guide the Targeted Treatment for Lung
Adenocarcinoma in Patients With EGFR
Mutations
According to the cut-off value of nomogram score at 0.369, the
corresponding 5-year overall survival probability was 0.58.
Patients with an EGFR-mutation were divided into high- and
low-risk groups, and the sensitivity of high- and low-risk patients
to chemotherapy and targeted therapy was analyzed. The results
showed that high-risk patients had a higher sensitivity to targeted
A

B

C

FIGURE 2 | The LASSO and ten-fold cross-validation were used to extract the optimal subset of radiomics features. The following two steps were included: determining
the hyperparameter/lambda with a partial likelihood deviance as the criterion (A) and using the optimized/lambda (the vertical dashed line) to select features with non-zero
coefficients (B). (C) LASSO algorithm was used to select the ten radiomics features that contributed the most to the prognostic prediction model.
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therapy (p < 0.0001), indicating that targeted therapy is the main
treatment method for patients with high-risk EGFR mutations,
while the prognoses of the two therapies were similar in the low-
risk group (p = 0.85, Figures 5A, B). In patients with an 19DEL
mutation, there was no significant difference in the sensitivity to
chemotherapy and targeted therapy (p = 0.45). The patients with
a 21L858R-mutation had significant differences in sensitivity to
chemotherapy and targeted therapy, and the patients with a
21L858R-mutation were more likely to benefit from targeted
therapy (p = 0.042; Figures 5C, D). In addition, there was no
significant difference between patients with a 19DEL-mutation
and patients with a 21L858R-mutation in their benefit from
chemotherapy (p = 0.29; Figure 5E).
DISCUSSION

In our study, we developed a radiomics nomogram based on 18F-
FDG PET/CT radiomics features combined with clinicopathological
Frontiers in Oncology | www.frontiersin.org 7112
factors to predict survival outcomes in patients with lung
adenocarcinoma of EGFR mutations, with the aim of providing
guidance for personalized targeted treatment of patients with lung
adenocarcinoma with EGFR mutations.

In the CPH model for evaluating the prognosis of patients
with EGFR mutations, distant metastasis, MTV, stage, CEA, and
SUVmax were the significant prognostic risk factors. Among
them, the patient’s risk of death was higher when the patient had
MTV (>7.32). MTV is a parameter that reflected the metabolic
burden of the whole-body tumor compared with other PET/CT
semiquantitative parameters and related clinicopathological
factors. It can more effectively stratify the risk of patients and
identify high-risk groups. In particular, it can effectively evaluate
the prognosis of patients with advanced lung cancer. This was
consistent with our findings (34, 35). SUVmax is the most used
metabolic parameter of PET/CT in clinical work and only
represents a single pixel value of the tumor metabolism that is
most active in the outlined area. Whether SUVmax is an
independent risk factor for lung cancer remains controversial
(22). Some studies believe that SUVmax can effectively indicate
the degree of tumor differentiation and provide evidence for the
prognosis of patients (36). Our study demonstrated that when
SUVmax (>5.33), the patient’s risk of death increased. This was
consistent with our findings.

In addition, we combined the rad score with independent risk
factors (Distant metastasis and MTV) based on multivariate Cox
regression analysis to construct a radiomics nomogram that
predicted survival outcomes of patients with EGFR mutations.
The results showed that a radiomics nomogram can predict
A B

D E

C

FIGURE 3 | (A–E) Kaplan–Meier analysis for distant metastasis (A), metabolic tumor volume (MTV) (B), maximal standard uptake value (SUVmax); (C), stage (D),
carcinoembryonic antigen (CEA); (E). The patients were stratified into high- and low-risk groups based on distant metastasis (A, p = 0.01, log-rank test), MTV (B, p =
0.027, log-rank test), SUVmax (C, p = 0.036, log-rank test), stage (D, p = 0.029, log-rank test), and CEA (E, p = 0.022, log-rank test).
TABLE 2 | The comparison of prognostic accuracy between the radiomics
model and two other prognostic models.

models Training cohort Validation cohort

C-index 95% CI C-index 95% CI

Radiomics model 0.819(0.764–0.874) 0.737(0.606–0.868)
Clinical model 0.694(0.618–0.770) 0.729(0.599–0.858)
Radiomics nomogram 0.840(0.787–0.893) 0.803(0.689–0.917)
November 2020 | Volume 10 | Article 567160

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Radiomics to Guide Personalized Targeted Therapy
survival outcomes very well. Its’ C-index was 0.840 and 0.803 in
the training and validation cohorts, respectively, which could
stratify high- and low-risk groups quite well. At present, few
studies based on PET/CT radiomics have predicted the survival of
lung cancer patients with EGFR mutations, and their predictive
performances were generally poor (37, 38). Kirienko et al. (28)
used radiomics signatures based on PET/CT to predict disease-
free survival (DFS) of patients with NSCLC after surgery. The
results showed that the AUC of the Cox model based on the
radiomics signature was 0.68, and the AUC was 0.65 after
combining it with clinical predictors. Moreover, the current
study focused mainly on a CT modality while predicting
survival, and the value of the C-index was usually not well i.e.,
did not exceed 0.70. The performance improved after combining it
with clinicopathological factors (39, 40). Our results showed that
the C-index reached 0.803, and our result was a small
breakthrough in the results of previous studies. To guide the
treatment of patients with EGFR mutations, our study analyzed
the effects of different treatment strategies on the prognosis of
patients with EGFR mutations. Our results showed that the rad
score could stratify patients with EGFR mutations into high- and
low-risk groups. For patients who were at high risk, targeted
therapy is recommended to improve survival. For patients at low
risk, there was no significant difference in survival regardless of
whether targeted therapy or chemotherapy was chosen. The
patients with a 21L858R-mutation had significant differences in
Frontiers in Oncology | www.frontiersin.org 8113
sensitivity to chemotherapy and targeted therapy, and the patients
with a 21L858R-mutation were more likely to benefit from
targeted therapy. However, in patients with a 19DEL mutation,
there was no significant difference in the sensitivity to
chemotherapy and targeted therapy. It may be due to the small
sample size and the bias caused by retrospective study. In addition,
there was no significant difference between patients with a 19DEL
mutation and patients with a 21L858R-mutation in their benefit
from chemotherapy. It illustrated that patients with EGFR
mutations may not benefit from chemotherapy. Our results
indicated that radiomics features could identify patients who are
more likely to benefit from targeted therapy among patients with
EGFR mutations, and would benefit from treatment guidance.

Our study had many strengths. First, our study not only
predicted survival outcomes in lung adenocarcinoma patients
with EGFR mutations, but also identified patients with EGFR
mutations who were likely to benefit from targeted therapy
through rad score. We provided guidance for the selection of
treatment methods in patients with EGFR mutations, which was
rarely reported in previous studies. Second, patients in this study
were scanned using the same PET/CT device used in a standard
protocol, which avoided the heterogeneity of image impressions
caused by the use of different scans and reconstruction
parameters. This led to more stable and reliable results.

Our study had some limitations. First, this was a retrospective
study with a small data set and no external validation, which may
A

B

D

C E

FIGURE 4 | (A) A radiomics nomogram for prediction of 5-year overall survival for patients with lung adenocarcinoma of EGFR mutations. (B) Calibration curve of
the radiomics nomogram in the training cohort. (C) Calibration curve of the radiomics nomogram in the validation cohort. Calibration curve for the estimation of 5-
year overall survival as predicted by the nomogram. The nomogram-estimated overall survival is plotted on the x-axis, and the actual overall survival is plotted on the
y-axis. Dash line represents an ideal agreement. (D) The Kaplan–Meier curve showed that this nomogram score could effectively discriminate high-risk patients from
low-risk patients. (E) The decision curve analysis for each model. The y-axis denotes the net benefit, which was calculated using true-positive and false-positive
results. The radiomics nomogram model has the highest net benefit at the threshold from 0.1 to 0.9 among all positive predictions (line labeled “All”); all negative
predictions (line labeled “None”) and two other clinical models (line labeled “Radiomics model and clinical model”).
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have introduced selection bias. Second, we only studied the effect
of treatment on the prognosis of patients with lung
adenocarcinoma and an EGFR mutation status and did not
consider the influence of other genes. Further studies are
essential to evaluate other genes comprehensively.

In conclusion, a 18F-FDG PET/CT rad score combined with
clinicopathological factors can predict the survival outcomes of
patients with lung adenocarcinoma with an EGFRmutation. This
novel and non-invasive approach can be provide with a more
precise imaging diagnosis and personalized treatment guidance
for patients with an EGFR mutant and have a significant clinical
application value.
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FIGURE 5 | High-risk patients with EGFR mutations had a higher sensitivity to targeted therapy (p < 0.0001) (A), while the sensitivity of low-risk patients to targeted
therapy and chemotherapy was not significantly different (p = 0.85) (B). In high-risk patients, the sensitivity of patients with the 19DEL mutation to chemotherapy and
targeted therapy was not significantly different (p = 0.45) (C), while the sensitivity of patients with the 21L858R-mutation to chemotherapy and targeted therapy was
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) has been rapidly spreading since the first patients were
described in Wuhan, China in late December 2019 (1). As of mid-July 2020, nearly 15 million of
confirmed cases and 600,000 deaths have been reported worldwide (2). This global pandemic and
international health crisis has challenged healthcare providers to profoundly re-organize healthcare
systems in order to ensure the continuity of essential treatments, while limiting the risk to patients
and healthcare providers, and simultaneously handling shortages in personnel, beds, and
equipment (3).

Increasing evidence suggests that cancer patients and especially those undergoing treatment
might be at higher risk of developing severe forms of COVID-19 (4–7). Indeed, anticancer
treatment such as chemotherapy and radiotherapy that induce neutropenia and/or lymphopenia,
as well as targeted therapy or immune-check point inhibitors, may worsen the course of COVID-19,
although this is still debated (3, 8) For this reason, cancer societies have recommended to adapt the
management of cancer patients by de-escalating cytotoxic chemotherapy, delaying non-urgent
treatments, and considering non-surgical options when feasible (9, 10). In radiation oncology, some
indications remain non-deferrable, such as chemoradiotherapy for locally advanced tumors,
brachytherapy, and urgent palliative treatment, particularly in patients with rapidly growing
tumors (11). In addition, radiotherapy capacity may even need to be increased as an alternative
treatment to compensate for surgery cancellations. While hypofractionated radiotherapy schedules
may help to limit the number of hospital visits, daily sessions for at least 2 weeks remain the rule for
most curative treatments, with some plans lasting up to 7–8 weeks (12, 13). Moreover, strategy
relying only on patient selection and prioritizing treatment management alone may not be sufficient
in a prolonged healthcare crises (10). Active and effective strategies of early detection of COVID-19
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should therefore be discussed and tailored for radiation oncology
departments, especially since a significant proportion of patients
are asymptomatic (14).
SARS-COV-2 DETECTION AND
COVID-19 DIAGNOSIS

COVID-19 is an infectious respiratory disease caused by a novel
coronavirus called SARS-CoV-2 (15). The accepted standard
routine laboratory method to diagnose COVID-19 consists of the
use of reverse transcription polymerase chain reaction (rt-PCR)
to detect viral RNA in respiratory samples. However,
performance of nasopharyngeal and oropharyngeal swabs is
questioned since several studies have shown a high number of
false negative results (16, 17). In a cohort of 213 patients with
mild to severe symptoms of COVID-19, Yang et al. reported
positive rates ranging from 73.3% for nasal swabs performed less
than 7 days after illness onset on patients with severe symptoms
and 53.6% for nasal swabs performed more than 8 days after
illness onset on patients with mild symptoms. Wang et al.
reported low positive rates of 32% for pharyngeal swabs (126/
398 patients) and 63% for nasal swabs (5/8 patients). Moreover,
rt-PCR has other limitations including the availability of testing
kits, the need for adapted infrastructure, training of personnel for
high quality swab samples, and relative lengthy turnaround times
for test results.

On the other hand, some authors have suggested computed
tomography (CT) could be pivotal for the diagnosis and the
screening of COVID-19 (18, 19). In a cohort of 1,014 patients, Ai
et al. reported a positive rate of 59% for rt-PCR (601/1014) and
88% for chest CT (888/1014), with 97% of positive rt-PCR
patients having also a positive chest CT (580/601) (18). The
higher sensitivity of chest CT compared to rt-PCR was
confirmed in a recent meta-analysis [94% (5% CI: 91%, 96%)
vs. 89% (95% CI: 81%, 94%), respectively] (20). However, this
study highlighted the low specificity of chest CT [37% (95% CI:
26%, 50%)] with poor positive predictive value (PPV) for
populations with low expected prevalence of COVID-19,
limiting its routine use for mass screening and diagnosis in the
overall population, especially since CT scans also expose people
to ionizing radiation. Therefore, the general consensus is to not
recommend chest CT for diagnosing COVID-19 and to reserve
CT for patients with worsening symptoms (21, 22). However,
several authors have suggested that imaging could help patient
triage in a resource-constrained environment, especially when
the pre-test probability of COVID-19 is high (21, 22).
Nevertheless, with a high negative predictive value (NPV)
estimated between 90.6% and 99.8%, chest CT imaging could
still be very valuable in specific situations, such as in screening
patients undergoing radiotherapy.

Recently, serological tests have become more widespread (23).
Detection of IgM antibodies associated with symptoms is highly
suggestive of SARS-CoV-2 infection. IgM antibodies may be
detectable around 5 to 10 days after the onset of symptoms, with
a mean time for seroconversion of 10 to 12 days for IgM, and 12
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to 14 days for IgG (23–26). However, whether an antibody
response with neutralizing antibodies is associated with
protective immunity is still unclear, and higher IgG
concentration have been reported in patients with severe
COVID-19 infection (27). While these tests were not
recommended for systematic screening by the World Health
Organization (28), they were recommended by the French Haute
Autorité de Santé in patients with negative RT-PCR and clinical
suspicion for COVID-19 (29).
OPTIMIZING MEDICAL IMAGING
IN RADIOTHERAPY DURING THE
COVID-19 PANDEMIC

Feasibility and Benefit of Chest CT
in Radiation Therapy
Radiation therapy requires each patient to undergo a simulation
CT scan for treatment planning. This CT allows the visualization
and delineation of target tumor volumes to irradiate and normal
tissues to spare, the calculation and the optimization of the
radiation dose, and the reproducibility of patient positioning
(30). An additional chest CT scan or extending the scan coverage
of a simulation CT could therefore be easily performed for each
patient without modifying patient’s visit or the radiotherapy
workflow. Moreover, the expected additional delivered radiation
dose to the chest is low, around 12 mGy [interquartile range
(IQR), 7–17 mGy] (31, 32), and may be considered as negligible
for patients undergoing radiotherapy. Indeed, even for non-
thoracic treatment, the estimated dose at 30 cm from the
irradiated field is estimated to be 0.05%–0.7% of the delivered
dose (33). For example, the estimated dose received to the chest
for a pelvic treatment of 45 Gy would correspond to 2–26 times
the dose of a chest CT. In addition, free-breathing chest CTs are
routinely performed during the CT simulation for patients with
lung and breast cancers, metastases to the thoracic and lumbar
spine, and sometimes for head and neck cancers. In certain
indications, such as in breast cancer, deep inspiration breath hold
radiotherapy technique allows acquisition of breath-hold
chest CT.

For patients with other cancers, the additional chest CT could
also serve as a baseline for reference, in addition to screening for
COVID-19. Indeed, cancer patients may have progressive
cancer- or cancer-treatment related lung abnormalities, which
may be complicated to interpret if the patient becomes
symptomatic. Moreover, the rate of incidental findings in
cancer patients may be relatively high: a study of 510 patients
reported incidental findings in up to 28% of patients, including
3.4% of patients with a significant finding that either changed the
cancer therapy or required immediate treatment (34).
Early Detection of COVID-19 in Patients
Undergoing Radiotherapy
The lack of large epidemiological studies and the difficulty of
estimating the true incidence of COVID-19 cases make it
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challenging to determine whether cancer patients are more or
less vulnerable to SARS-CoV-2 in comparison with the overall
population. Indeed, among COVID-19 patients, an important
proportion of patients are asymptomatic, but may still be
contagious (35–37). A voluntary screening on 10,797 patients
in Iceland, with 87 COVID-19 positive patients (0.8%) of whom
57% were asymptomatic (14). Moreover, with an incubation
period between 3 to 6 days (15, 38), a study estimated that up to
44% [95% CI (25–69)] of secondary cases may have been infected
by pre-symptomatic cases (36). Cancer patients undergoing
treatment may have compromised immunity, potentially
increasing their morbidity and mortality from COVID-19.
Miyashita et al. reported 5,688 COVID-19 patients, including
334 patients with cancer. Intubation was more frequent in cancer
patients [RR: 1.89 95% CI (1.37–2.61)], but there was no
significant excess risk of death (5). Kuderer et al. reported in a
study of 928 patients with history of cancer that there was an
increased 30-day mortality in patients with active cancer
[progressing vs. remission: Odds ratio = 5.20, 95% CI (2.77–
9.77)] (39).

Radiotherapy treatment requires frequent hospital visits for
the patients, a flow of multiple patients per day on the same
machine, and involvement of an entire team of healthcare
professionals including a medical dosimetrist, medical
physicist, radiation oncologist, radiation therapists, oncology
nurses, caregivers, and medical secretaries. Strategies for early
detection of COVID-19 are therefore of utmost importance to
ensure patient and medical staff safety during the COVID-19
pandemic, especially in regions with high prevalence and
documented community spread.

Proposal of COVID-19 Testing for
Asymptomatic Patients in Radiation
Oncology Departments
A workflow including systematic nasopharyngeal swab and chest
CT for asymptomatic patients is currently being evaluated in our
Radiotherapy department, as the prevalence of COVID-19 was
high in our region, with up to 11.9% of individuals infected
(range: 7.6% to 19.4%) according to epidemiologic models (40).
Inspiratory breath hold chest acquisition is made during the
simulation CT, with the same CT acquisition protocols
conventionally used in radiology. While free-breathing
acquisitions are usually done in radiotherapy, they are more
susceptible to motion artifacts and may obscure or even mimic
subtle ground-glass opacities commonly seen in COVID-19, and
regular cone-beam CT (CBCT) positioning review may require
comparison with reference chest CT. Images are then reviewed
by both the treating radiation oncologist and an experienced
radiologist for imaging findings suggestive of COVID-19 such as
ground-glass opacity, condensation, reticulation, interlobular or
intralobular septal thickening, nodules, and distribution of the
lesions (41). For suspected COVID-19 patients on either
radiological findings or clinical symptoms but negative RT-
PCR, directed nasopharyngeal swab and inflammatory blood
test are repeated before the onset of radiotherapy. This procedure
allows the classification of patients into three different categories
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with specific management according to the COVID-19
probability (Figure 1):

1) Confirmed or probable cases: We propose using a dedicated
treatment room with adapted personal protective equipment
{protective masks against inhalation of droplets, such as FFP2
(filtering facepiece type 2) masks [standard NF EN 149 (42)],
gown, gloves, eye protection, and apron} and a dedicated
accelerator for the irradiation of suspected and/or confirmed
COVID-19 patients, which may help to avoid deferring
treatment. On a case by case basis taking into account
symptoms, deferring radiotherapy after the acute phase of
infection is discussed. However, this approach using a
dedicated room for confirmed or probable cases is only
feasible in large centers with a high number of accelerators.

2) Uncertain cases: We propose in these patients close
monitor ing of c l inical symptoms and repeat ing
nasopharyngeal swabs. Further investigation might be
proposed according to the multidisciplinary team, such as
CT follow-up or other microbiology investigation and
specimens. These patients are preferably scheduled for
treatment at the end of the day.

3) Unlikely cases: We propose using standard personal protective
equipment and routine radiotherapy treatment protocol.

In addition to CT scan and rt-PCR screening, we have
undertaken a global reorganization of our radiation oncology
department with implementation of barrier precautions and
social distancing. Prior to entry, patients are asked to answer a
short checklist to screen for clinical symptoms, such as fevers,
chills, cough, etc., and reception staff measure the temperature of
patients at the entrance. All medical staff and patients are
required to wear surgical masks in the department. The flow of
patients in the radiation oncology department has also been
rethought. The simulation CT is dedicated to COVID-19
patients only on Friday, allowing a two-day interval before
using the scanner again for patients without COVID-19.
Whenever possible, we encourage COVID-19 patients to wait
for their session in their car or in the taxi in order to limit the
time spent in the waiting room, and therefore, limiting the risk of
SARS-CoV-2 transmission.

These screening strategies have the most potential and
maximum benefit during the peak of COVID-19 cases and
adjustments need to be made according to the evolution of the
pandemic and the pre-test probability of COVID-19 in a
particular area, as low prevalence of COVID-19 leads to a low
PPV, especially for chest CT (20). For instance, while systematic
baseline RT-PCR testing is recommended in Canada by the
Ontario provincial Ministry of Health guidelines for cancer
patients undergoing immunosuppressive cancer treatment,
including radiation therapy, high priority testing criteria for
asymptomatic patients in the event of testing limitations were
defined, included age ≥ 60 years, performance status ≥ 2,
comorbid conditions or impaired immunity, significant
smoking history and lung tissue in the radiation treatment
volume (43).
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CONCLUSION

The COVID-19 pandemic has significantly impacted the delivery
of care to cancer patients, leading to delays in providing adequate
treatment. While postponing treatments and providing remote
consultations were feasible in the early stages of the pandemic,
these temporary measures are no longer sustainable as the
pandemic continues. Hospitals and medical services need to
Frontiers in Oncology | www.frontiersin.org 4120
develop and adopt long-term strategies to continue providing
cancer care during the pandemic. In patients undergoing
radiotherapy, we propose using chest CT and rt-PCR screening
for early detection of COVID-19, especially since a number of
patients are asymptomatic and cancer patients might be more
vulnerable than the overall population. Rethinking the flow of
patients is also critical to allow the continuation of care, with
implementation of barrier precautions and social distancing.
FIGURE 1 | COVID-19 patients management in radiotherapy according to chest CT + rt-PCR screening. PPE, personal protective equipment.
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Introduction: In the field of personalized medicine, radiomics has shown its potential to
support treatment decisions. However, the limited feature interpretability hampers its
introduction into the clinics. Here, we propose a new methodology to create radiomics
feature activation maps, which allows to identify the spatial-anatomical locations
responsible for signature activation based on local radiomics. The feasibility of this
technique will be studied for histological subtype differentiation (adenocarcinoma versus
squamous cell carcinoma) in non-small cell lung cancer (NSCLC) using computed
tomography (CT) radiomics.

Materials and Methods: Pre-treatment CT scans were collected from a multi-centric
Swiss trial (training, n=73, IIIA/N2 NSCLC, SAKK 16/00) and an independent cohort
(validation, n=32, IIIA/N2/IIIB NSCLC). Based on the gross tumor volume (GTV), four
peritumoral region of interests (ROI) were defined: lung_exterior (expansion into the lung),
iso_exterior (expansion into lung and soft tissue), gradient (GTV border region), GTV+Rim
(GTV and iso_exterior). For each ROI, 154 radiomic features were extracted using an in-
house developed software implementation (Z-Rad, Python v2.7.14). Features robust
against delineation variability served as an input for a multivariate logistic regression
analysis. Model performance was quantified using the area under the receiver operating
characteristic curve (AUC) and verified using five-fold cross validation and internal
validation. Local radiomic features were extracted from the GTV+Rim ROI using non-
overlapping 3x3x3 voxel patches previously marked as GTV or rim. A binary activation
map was created for each patient using the median global feature value from the training.
The ratios of activated/non-activated patches of GTV and rim regions were compared
between histological subtypes (Wilcoxon test).

Results: Iso_exterior, gradient, GTV+Rim showed good performances for histological
subtype prediction (AUCtraining=0.68–0.72 and AUCvalidation=0.73–0.74) whereas GTV and
lung_exterior models failed validation. GTV+Rim model feature activation maps showed
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that local texture feature distribution differed significantly between histological subtypes in
the rim (p=0.0481) but not in the GTV (p=0.461).

Conclusion: In this exploratory study, radiomics-based prediction of NSCLC histological
subtypes was predominantly based on the peritumoral region indicating that radiomics
activation maps can be useful for tracing back the spatial location of regions responsible
for signature activation.
Keywords: lung cancer, computed tomography, peritumoral radiomics, radiomics activation maps, local
radiomics, interpretability
INTRODUCTION

Personalization of therapy options for patients with oncological
diseases has gained great importance in recent years.
Differentiation of non-small cell lung cancer (NSCLC) patients
into histological subtypes, i.e., lung adenocarcinoma (ADC, ~50%)
and squamous cell carcinoma (SCC, ~40%) (1) is for example an
important factor in the choice of systemic treatments (2). Current
biomarker assessments are often based on invasive interventions
to extract a single-pin-pointed measurement. Consequently, there
are many clinical scenarios with a clinical need for alternatives to
tissue-based assessment of tumor histology: e.g., challenging
anatomical locations for biopsy, unfavorable risk-benefit ratio
for biopsy, history of more than one malignancy, or
characterization of two simultaneously identified lung nodules.

Quantitative, image-based biomarkers, so-called radiomic
features, can potentially overcome these obstacles (3–6).
Extracted from medical images such as computed tomography
(CT), those features rely on mathematical definitions to depict
image-related characteristics. Features can often be subdivided
into four main types: shape, intensity, texture and filtered based
features, providing a 3D profile of the region of interest (ROI)
(2). Radiomics has shown increasingly its potential usefulness in
diagnosis, prognosis and response assessment (4, 6–8). For
example, Aerts et al. showed that CT based radiomics was able
to predict overall survival (OS) in NSCLC and head and neck
cancer patients (concordance index=0.65, 0.69, respectively)
treated with radiochemotherapy (5). Further, radiomics was
reported prognostic for NSCLC patients treated with targeted
therapies such as nivolumab, docetaxel and gefitinib with
promising results (9, 10). Next to OS, other endpoints have
been reported such as disease-free survival (11) or distant
metastasis (12). Moreover, radiomics has shown to be useful
for response assessment, i.e., in prediction of pathological
complete response (13, 14). Identified radiomics features
prognostic for survival in NSCLC were associated with image
related tumor heterogeneity in CT imaging (15), i.e., entropy (16)
or busyness (7) based on filtered images.

However, the quantitative and highly complex methodical
nature of radiomics is a two-edged sword. Compared to
manually assessed measures in radiological reports, these
radiomic features lack in their interpretability, challenging the
methodology to emerge from a research topic to a useful tool in
clinical settings.
2124
Gradually, this hurdle has been recognized and few research
groups have attempted to improve the feature interpretability.
One strong motion is to correlate radiomic features with known
biological markers such as human papillomavirus (17, 18) or
epidermal growth factor receptor (19–21). However, the
biological data is often only of limited availability. In contrast,
local radiomic features can be used to provide more spatial
information about given signatures. Local radiomics refers to the
extraction of radiomic features from small sub-regions (patches),
which cover the complete ROI. Compared to traditional global
radiomic features, the spatial location of these patches is known
and hence differences in radiomics signatures can be determined
on a smaller spatial scale. Bogowicz et al. for example showed
that local radiomics differed substantially between recurrent to
non-recurrent regions in head and neck cancer treated with
radiotherapy (22). Local radiomics may not only serve as a
detection tool, but the additional spatial information obtained
from the patches potentially allows to trace the regions which are
most revealing for a particular radiomics signature.

It is the aim of this exploratory study to create and analyze CT
radiomics signature activation maps using local radiomics. As a
case-study, we built tumoral and peritumoral radiomics models
using a multi-centric imaging dataset to predict NSCLC
histological subtypes. Local radiomic features were extracted
for the model features to create radiomics feature activation
maps. These maps were assessed to evaluate whether the tumoral
or peritumoral region is more informative for NSCLC histology
differentiation in pre-treatment CT.
MATERIALS AND METHODS

Patient and Imaging Characteristics
Patient and imaging characteristics were integrated from a previous
study (23). For the training cohort, pre-treatment CT scans were
collected from 73 stage IIIA/N2 NSCLC patients from a prospective
Swiss multi-centric randomized phase 3 trial (SAKK 16/00 (5),
neoadjuvant chemotherapy or radiochemotherapy prior to surgery).
For the validation cohort, CT scans of 32 stage IIIA/N2 or IIIB
NSCLC patients were included (induction radiochemotherapy or
chemotherapy only prior to surgery) which were treated at the
University Hospital Zurich (USZ). Patients with histological
subtypes ADC and SCC were selected for this study. Histology as
well as patient staging [6th edition of the tumor-node-metastasis
December 2020 | Volume 10 | Article 578895
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(TNM) classification] were defined according to the SAKK 16/00
protocol (5). Patients were similarly distributed between ADC and
SCC subtype in the training and validation cohort (61.6 and 56.3%
of ADC patients in training and validation, respectively)
(Supplement A, Table 1).

Patients received non-contrast enhanced, non-gated pre-
treatment CT scans reconstructed with filtered-back projection
(FBP) using standard convolution kernel. Due to the multi-
centric imaging set, we defined the standard kernel as follows: GE
—STANDARD, Siemens—B30f/B31f, Toshiba—FC18, and
Philips—B, similarly to the phantom study of Mackin and Ger
et al. (24, 25). CT spatial resolution varied between 0.98 and
1.37 mm in-plane and 0.6 to 5.0 mm slice thickness. Patients
from the validation cohort received a non-contrast enhanced
average CT and were imaged on CT scanner Discovery RX, STE,
690 and Biograph 128 Edge, 128, 40, 6 and SOMATOM
Definition AS, from GE MEDICAL SYSTEMS and SIEMENS.
Scans were reconstructed with FBP and a smooth kernel
(STANDARD, I30f, B31f). CT spatial resolution was 0.98, 1.17,
1.37 mm in-plane and 2 and 3.27 mm slice thickness.

Delineation
Five ROIs were defined for this study (Figure 1):

A. GTV: visual extent of the gross tumor volume (GTV)
B. lung_exterior: 0.8 cm expansion from the GTV into lung

tissue only
C. iso_exterior: 0.8 cm expansion from the GTV into lung and

soft tissue
D. gradient: 0.4 cm contraction and 0.8 cm expansion from

the GTV
E. GTV+Rim: union of GTV and 0.8 cm expansion from GTV

(iso_exterior)

The GTV ROI was manually delineated on the CT scans by an
experienced physician using MIM VISTA (Version 6.7.9., MIM
Software Inc., Cleveland, USA) with the lung window level and
the support of registered PET images. All ROIs except for the
GTV will be referred to as peritumoral ROIs. These peritumoral
Frontiers in Oncology | www.frontiersin.org 3125
ROIs were created using an in-house developed MIM workflow.
Anatomical structures which would strongly disturb the analysis,
e.g., consisting of large air cavities (bronchi) or dense structures
(bones) were manually excluded from all ROIs. Further, patients
were excluded from the gradient analysis if the gradient regions
comprised the entire GTV (Figure 1D).

Robustness Study
The creation of the peritumoral ROIs was based on the manual
delineation of the GTV, therefore a robustness study was
performed to study the impact of inter-observer delineation
variability on the radiomic features. A separate set of eleven
patients were used as described in the study of Pavic et al. (26).
Three independent observers from USZ manually delineated the
GTV. The same MIM workflow was used to create the
peritumoral ROIs with the GTV of the three observers as an
input. The intra-class correlation coefficient (ICC) was used as
stability measure as described in Pavic et al. (26). However, a
stricter acceptance level of 0.9 was chosen, i.e., radiomic features
with ICC > 0.9 were considered stable.

Radiomics
Pre-treatment CT scans were resampled to 3.75 mm cubic voxels,
the 75th percentile of slice thicknesses in the training dataset
using linear interpolation. Radiomic calculations were performed
using an in-house developed software implementation (Z-Rad)
based on Python programming language v 2.7.14 (for details on
the software and features, please consult: https://medical-
physics-usz.github.io). A Hounsfield unit (HU) range of −1,024
to 200 HU was chosen to exclude bone structures which could
not be accounted for manually. Since the expansion and
contraction parameters for the peritumoral ROIs were fixed,
no shape features were considered for the analysis. Further, due
to the small number of voxels in each direction, no wavelet
features were included. Hence, a total of 154 radiomic features
were calculated, i.e., intensity (n = 17) and texture (n = 137).
Feature definitions were standardized according to the image
biomarker standardization initiative (IBSI, version 11) (27). A
fixed bin size of 20 HU was used to discretize the grey level values
FIGURE 1 | Same axial slice of a patient in our cohort shown for tumoral and peritumoral region of interests (ROIs), i.e., visual extent of the primary tumor (A, GTV),
0.8 cm expansion into lung tissue region inside the lung (B, lung_exterior), 0.8 cm expansion into lung and soft tissue (C, iso_exterior), 0.4 cm contraction and 0.8
cm expansion from the GTV (D, gradient), and primary tumor including iso_exterior (E, GTV+Rim).
December 2020 | Volume 10 | Article 578895
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for texture analysis, resulting in approximately 60 bins, which
has been shown to reduce intrinsic noise in the images while
preserving essential texture (28).
Statistical Analysis for Global Radiomics
To reduce the number of features, principal component analysis
(PCA) was performed as a feature reduction method (29). The
retained principal components were defined based on the 95%
data variance. The feature which correlated the most with the
selected principal component was used as a surrogate (the largest
Pearson correlation coefficient). Univariate logistic regression
analysis was performed to determine individual prognostic
power of each features, separately. The significance level was
0.05, with no correction for multiple testing. Based on features
with highest prognostic power per principal component group, a
multivariate logistic regression model was built with backward
selection using Akaike information criterion (AIC) which
balances the goodness of fit of the model and its simplicity
(30). The discriminatory power of the models was quantified
using the area under the receiver operating characteristic curve
(AUC) along with its 95% confidence interval (CI). Model
performance was verified using 5-fold cross validation. Folds
were chosen randomly without repetition. The generalizability of
the models was verified in the validation cohort. Statistical
analysis, model building and validation were performed with R
[Version 3.5.1, packages: base, survival (31), survcomp (32), boot
(33), pROC (34), and glmnet (35)].
Frontiers in Oncology | www.frontiersin.org 4126
Creation of Activation Maps Based on
Local Radiomics
Local radiomic features were extracted from the GTV+Rim ROI
using non-overlapping patches of size 3x3x3 voxels. This size of the
patches allowed a meaningful calculation of the texture features
(minimum number of voxels in each direction) as well as a
meaningful overlap with the rim region (0.8 cm margin in each
direction and 3.75mm voxel size). The placement of the patches was
automatically optimized to cover the entire ROI with a minimum
number of patches. Patches with a low number of informative voxels
(<9voxels)of theROIwerediscarded.Theoverlapof thepatcheswith
the GTVwas assessed, i.e., 100% referred to patches comprising only
the GTV and 0% to patches comprising only normal tissue. This tool
is intended to determine whether the radiomics signature for the
prediction of histological subtypes originates from a certain
predefined region. The signatures of patches with mixed overlap
(10% to 90%) contain ambiguous information and were therefore
discarded toclearlydistinguishpatches spatiallyassignedrimorGTV.
Finally, patcheswith overlap lower than 10%or larger than 90%were
labeled as rimandGTV, respectively.Abinary feature activationmap
was created for each individual patient using the respectivemedian of
the global (standard) feature value in the training cohort, i.e., patches
with feature value larger than the median were considered activated.
The ratios of activated/non-activated patches for the normal tissue
and the GTV were compared in the validation cohort between the
histology types (Wilcoxon test), consideringonlypatientswithat least
27 patches and a minimum 3 patches per region (Figure 2, a more
detailed description can be found in Supplement D).
FIGURE 2 | Scheme of radiomics feature activation map creation. Patches were optimally placed and patches with few informative voxels (< 9) were discarded (1),
patches were labeled according to their overlap with the gross tumor volume (GTV) contour (2), and patches with mixed overlap were discarded (3). Patches were
labeled activated (red) if their feature value was larger than the global median and were labeled non-activated (blue) if their feature value was smaller than the global
median. The activation ratio was analyzed per region and histological subtype (5).
December 2020 | Volume 10 | Article 578895
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RESULTS

Modeling and Validation
Robust features were identified from the inter-observer variability
robustness studies. Overall, the number of stable features for each
ROIs were found to be moderate, i.e., GTV (49.7%), lung_exterior
(57.6%), iso_exterior (57.6%), gradient (55.8%), and GTV+Rim
(74.5%). The analysis can be found in the Supplement B. Results
of the univariate analysis of the robust features selected in the
feature selection step are shown in Table 1. Features marked with
an asterisk were the final features retained after backward
selection. Overall good univariate performances on the training
set were observed (AUC = 0.61 to 0.72).

Different methods of feature selection were tested. The PCA +
univariate logistic regression feature selection method led to simpler
models. For majority of the ROIs, the models using PCA +
univariate logistic regression performed best compared to other
feature selection methods (Supplement C).

For all regions, a logistic regression model could be built. The
five-fold cross validation performance was [mean AUC (range)]:
GTV [0.625 (0.23–1.00)], lung_exterior [0.72 (0.68–0.78)],
iso_exterior [0.67 (0.46–0.84)], gradient [0.70 (0.48–0.82)],
GTV+Rim [0.67 (0.48–0.84)]. The models based on the GTV
and lung_exterior ROI were the only models which could not be
validated on the validation cohort with 95% CI covering AUC =
0.5, i.e., a performance of a random predictor. Iso_exterior,
gradient and the GTV+Rim showed acceptable performances
in the range of 0.68–0.72 in the training and 0.73–0.74 in the
validation cohort (Figure 3).

Model Features
In Table 1, the coefficients of the final model features are listed. The
finalmodels consistedof oneor two features. Eachmodel consistedof
one texture features. These texture features can be associatedwith the
texture heterogeneity in the ROI. For example, the gray level
coocurrence matrix (GLCM) inverse variance in the GTV model is
small if there is higher variance (Figure 4). The median GLCM
inverse variancewas lower forADCcompared toSCC, i.e.,ADCwere
Frontiers in Oncology | www.frontiersin.org 5127
more likely to have heterogeneous and SCC more homogeneous
patterns (Figure 4). For all regions, iso_exterior, gradient and the
GTV+Rim, one texture feature (GLSZM_zone size non-uniformity
normalized) was present in all three models. This feature counts the
homogeneous zones of the same size over the different zone sizes and
is low in patterns where zone counts are equally distributed along
zone sizes, i.e., more heterogeneous patterns (Figure 4). In the
models, the higher texture value (more homogeneous pattern) was
associated more with SCC patients. Further, since this feature was
present in the all three models, this feature will most likely be
associated in the tumor adjacent region within the stable
performing GTV+Rim model. Using the activation maps we
further validate this assumption (see next section). Interestingly,
the iso_exterior the 90% percentile intensity feature was significant
more relevant in themodel compared to the texture features whereas
in the GTV+Rimmodel the opposite was observed (Figure 4).

Analysis of Radiomics Feature Activation
Maps
The activation map analysis of the full radiomics signature indicated
a greater importance of the rim region compared to the GTV
(p=0.0541 and p=0.302 for rim and GTV, respectively). A closer
analysis on the individual features showed that visually the texture
feature was more activated on the adjacent region of the tumor, the
intensity median more in the tumoral region. The median split
values from the training cohort was 0.526 for GLSZM_zone size
non-uniformity normalized and −158 HU for intensity_median.
There was a significant difference in the activation ratio in the rim
region when comparing ADC vs. SCC patients (p=0.048), however
the ratio was non-significant in the tumor region (p=0.461). No
significant difference in activated/non-activated ratio was observed
in both regions for intensity median (Figure 5).
DISCUSSION

Ideally, clinically useful prognostic models should be performing
reliably and be comprehensive. With the growing complexity of
TABLE 1 | Overview of univariate and multivariate analysis shown for all region of interests (ROIs) considered.

Univariate Multivariate

ROI Features AUC p-value Coefficient p-value

GTV GLRLM_run entropy 0.64 0.034
GLCM_inverse variance* 0.65 0.035 −10.83 0.035

lung_exterior GLSZM_zone percentage 0.63 0.046
GLCM_contrast 0.65 0.043
GLCM_homogeneity normalized* 0.72 0.004 52.51 0.004
NGLDM_low dependence emphasis 0.66 0.025

iso_exterior Intensity_median 0.65 0.028
GLCM_correlation 0.61 0.043
GLSZM_zone size non-uniformity normalized* 0.68 0.015 −12.84 0.112
Intensity_percentile_90* 0.68 0.025 −0.01 0.072

gradient GLSZM_zone size non-uniformity normalized* 0.68 0.046 −20.26 0.046
GTV+Rim Intensity_median* 0.63 0.026 0.002 0.144

GLSZM_zone size non-uniformity normalized* 0.69 0.010 −16.75 0.026
December
 2020 | Volume 10 | Article
Only features are listed which had a significant performance in the univariate analysis per principal component group. Features with an asterisk were retained in the final models after
backward selection and their coefficients and p-values in the multivariate analysis are listed.
578895

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Vuong et al. Radiomics Feature Activation Map
hand-crafted radiomic features, the feature interpretability becomes
more relevant for its successful incorporation into clinical settings.
Tools allowing feature interpretability may help in filtering false
positive results in signature validation or clinical use.

In this exploratory study, we used a new local radiomics
approach to create radiomics feature activation maps to locate
the regions responsible for signature activation. On a local scale
we were able to study whether the peritumoral or the tumoral
radiomics was more informative for NSCLC histology
differentiation in CT. To our knowledge, this is the first study
to correlate peritumoral radiomic features with NSCLC
histological subtypes. Multivariate logistic regression models
were built for each ROI using features robust against inter-
observer delineation variability. Iso_exterior, gradient as well as
the combination of GTV and iso_exterior (GTV+Rim) showed
acceptable performances in the range of AUC = 0.68–0.72 in the
training and AUC=0.73–0.74 in the validation cohort whereas
GTV and lung_exterior ROI models failed to validate. GTV+Rim
radiomics feature activation maps for each patient showed that
the rim region was more informative compared to tumoral
radiomics to differentiate ADC and SCC.

CT based tumoral radiomic models have shown to be able to
discriminate NSCLC histological subtypes, i.e., capturing that ADC
cells are more loosely organized while SCC is more densely
structured (36). Model performances however were not consistent
across different studies ranging frommoderate (37, 38) to good (36,
39–41). Possible explanation for worse performance of our GTV-
based model compared to others may lay in the different imaging
settings used. Reported models incorporated contrast-enhanced
(17), respiratory-gated (15) CT scans or more complex modeling
techniques such as Bayesian network (37). In our dataset, we
selected a subset of patients with similar reconstruction settings
resulting in small inter-scanner effects similar to previous studies
(24, 25) potentially influencing the performance of the model.
Further, scans were acquired in free-breathing which can
introduce blurring to the final image (42, 43). However, in
agreement with previous studies, ADC and SCC patients had a
different tissue structure, i.e., the median of the mean intensity was
Frontiers in Oncology | www.frontiersin.org 6128
significantly smaller for patients with ADC compared to SCC (p <
0.05). The final GTV model feature (GLCM_inverse variance) was
lower for ADC patients compared to SCC patients, reflecting the
more loosely structured tumor in ADC patients compared to more
densely structured tissue of SCC patients. Lower GLCM_inverse
variance feature can be associated with higher heterogeneity in the
tissue in agreement with other studies (41), i.e., higher entropy
values (associated with higher tumor heterogeneity) were observed
to be associated with ADC tumors (40).

We hypothesized that peritumoral radiomics can depict better
the known association between the anatomical tumor location and
histological subtypes, i.e., ADC occur in more peripheral regions
while SCC are often located centrally (1). This association is
assumed to be most evident in iso_exterior ROI where the
captured adjacent soft tissue structures can reflect the periphery
or centrality of the primary tumor location. Indeed, the median
90% percentile in ADCwas lower compared to SCC indicating less
dense structures in the ROI. Further, it has been shown that the
microscopic tumor extension in the peritumoral region differs
between ADC and SCC. As a result, it has been suggested to use
different margin sizes when treating ADC and SCC tumors to
cover 95% of the microscopic tumor extension (8 and 6 mm
margin for ADC and SCC, respectively) (44). With the chosen
8 mm margin for the iso_exterior region, this peritumoral model
may depict this difference in the cell distribution.

The presence of the GLSZM_zone size non-uniformity
normalized feature in the peritumoral ROI models indicated that
this feature varies stronger between different histologies in the rim
rather than in the GTV region in the GTV+Rim model. The
activation maps of the GTV+Rim model confirmed this
observation, i.e., the distribution of local texture feature of ADC
differed significantly from SCC for the rim (p=0.048) but not for the
GTV (p=0.461), irrespective that the feature threshold was based on
the global feature values and no feature scaling was applied.

To account for the inter-observer delineation variability, a
robustness study was performed for the primary tumor and
peritumoral ROIs. The peritumoral feature stability was
moderate, interestingly however, similar or even more stable
FIGURE 3 | Receiver operating characteristic curve (ROC) curves and corresponding mean AUC [95% confidence interval] of the analyzed ROIs shown for training
(blue) and validation cohort (red). The radiomic models based on GTV and lung_exterior could not be successfully validated in the validation cohort. Iso_exterior,
gradient and GTV+Rim models had good performances in both cohorts.
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than the primary tumor radiomics. A possible reason can be a
different amount of lung tissue in the primary tumor delineation,
which can result in higher sensitivity tomanual delineations of the
primary tumor compared to peritumoral regionswhere substantial
lung tissue was a priori present. Further, an increased stability for
larger ROI sizes can be observed. This observation is in agreement
withTunali et al.’s inter-observer variability study,where, however,
the initial primary tumor contours were delineated using three
semi-automatic segmentation methods (45). Arguably, the strict
Frontiers in Oncology | www.frontiersin.org 7129
acceptance level ICC > 0.9, could have discarded potential useful
features. However, due to the small cohort of 11 patients for the
robustness analysis, the strict acceptance level helps ensuring that
results were not affected by the small sample size. Recently, it has
been shown that discarding features based on their robustness will
lead to different models compared to modeling using a
standardized imaging allowing to include all features (23).

The localization of signature relevant regions in the context of
activation maps has been established in deep learning methods.
FIGURE 4 | Boxplots of each studied region of interest (ROI) stratified by histological subtype (adenocarcinoma, squamous cell carcinoma) and dataset (training,
validation) for the final model features.
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Activation maps are pre-dominantly used to identify areas of
interest used from the neural network to perform its class
prediction. Introduction of such activation maps into the field
of radiomics may provide an addition for clinical interpretability
of radiomic models. In the context of peritumoral radiomics for
example, where various peritumoral region definitions were
reported in different sites (46), no clear strategy was available
to determine the most promising region other than to model and
validate each region individually. Therefore the tool presented in
this study may guide the user to select the most relevant region in
a more efficient way. Further, the presented tool can be not only
applied on individual features but could be useful to interpret a
complete signature for example by combining the activation
maps of the model features. However, in our case, the texture
feature had a more important role for the modeling compared to
the intensity feature, therefore we did not include an analysis
combining both activation maps.

It is important to study the link between local and global
features. For intensity features, the global features do not
necessary have to reflect the spatial saliency on a local scale, as
they are not scale-invariant. For texture features, the distribution of
discretized intensities need to be preserved between the local and
global approach. For example, in our study, the same discretization
for local and global radiomics was used (fixed bin size of 20HUwith
bin 0 corresponding to minimum intensity in the entire ROI). For
Frontiers in Oncology | www.frontiersin.org 8130
majority of texture features the link between global and local can be
argued on the basis that they are calculated on the relationship of a
single voxel to its immediate neighbor (e.g., GLCM, NGTDM)
consistent with the definition of our patches (3x3x3 voxels). The
patch size should be adjusted in situations where larger distances are
used for the texture metrics calculation. In more complex metrics
(e.g., GLSZM, GLRLM), further analysis is required to study the
main driving factor of the feature values. However, in our study
both iso_exterior and the GTV+Rimmodel shared the same feature
(GLSZM_zone_size_non-uniformity_normalized) indicating a
close link of that feature to the rim region, further also observed
on the local scale. Similarly, another study showed that CT based
local radiomics was useful to identifying subregions of head and
neck tumors associated with different degrees of radiation curability,
i.e., local features differed significantly between recurrent region and
controlled (non-recurrent) region (22). In that study, heterogeneity
on both global and local scale was linked to worse prognosis.
Irrespectively, a closer investigation is needed to identify the
optimal activation threshold.

This study has its limitations. Higher complexity features
such as wavelet features were not included, since a minimum
number of voxels in each direction is needed to provide a
meaningful analysis. The published tumoral radiomic models
consisted of filter-based features such as law-features or wavelet
features. However, these features were also more sensitive to
FIGURE 5 | Axial slices of the feature activation maps overlaid with the corresponding CT scan of a squamous cell carcinoma patient (SCC) and an adenocarcioma
patient (ADC) from the validation cohort. Activated (red) patches had feature values larger than the median feature value from the training, whereas non-activated
(blue) patches had feature values smaller than the median. The texture feature was activated mostly in the rim region whereas the intensity_median was activated
mostly in the tumor region.
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delineation variability (45). Further, strict cut-off values were
chosen to differentiate patches originated from the GTV and rim
(10% and 90%). These results will likely change when using
different cut-off values. Out of the scope of this exploratory study
was the use of different margin sizes for the definition of
peritumoral ROI as well as the inclusion of clinical known
prognostic factors which might have improved the presented
model performances. A further limitation is our assumption that
the tumor spreads isotropically radial from the primary tumor
center of mass. However, we distinguished a tumor spread into
the lung-only regions with an isotropic spread. Lastly, the small
sample size could have impacted the results, further analysis
incorporating more imaging data would be desired.
CONCLUSION

In this exploratory study we have shown that feature activation
maps using local radiomics proved to be useful for tracing back the
spatial location of regions responsible for signature activation.
Radiomics feature activation map analysis indicated that the rim
region, which is anatomically the tumor invasion front, was more
relevant for histological subtype prediction than the GTV in
CT imaging.
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Background: This study was conducted with the intent to develop and validate a
radiomic model capable of predicting intrahepatic cholangiocarcinoma (ICC) in patients
with intrahepatic lithiasis (IHL) complicated by imagologically diagnosed mass (IM).

Methods: A radiomic model was developed in a training cohort of 96 patients with IHL-IM
from January 2005 to July 2019. Radiomic characteristics were obtained from arterial-
phase computed tomography (CT) scans. The radiomic score (rad-score), based on
radiomic features, was built by logistic regression after using the least absolute shrinkage
and selection operator (LASSO) method. The rad-score and other independent predictors
were incorporated into a novel comprehensive model. The performance of the Model was
determined by its discrimination, calibration, and clinical usefulness. This model was
externally validated in 35 consecutive patients.

Results: The rad-score was able to discriminate ICC from IHL in both the training group
(AUC 0.829, sensitivity 0.868, specificity 0.635, and accuracy 0.723) and the validation
group (AUC 0.879, sensitivity 0.824, specificity 0.778, and accuracy 0.800). Furthermore,
the comprehensive model that combined rad-score and clinical features was great in
predicting IHL-ICC (AUC 0.902, sensitivity 0.771, specificity 0.923, and accuracy 0.862).

Conclusions: The radiomic-based model holds promise as a novel and accurate tool for
predicting IHL-ICC, which can identify lesions in IHL timely for hepatectomy or avoid
unnecessary surgical resection.

Keywords: intrahepatic cholangiocarcinoma, intrahepatic lithiasis, radiomics, risk factors, nomogram
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INTRODUCTION

Intrahepatic cholangiocarcinoma (ICC) is the second most
prevalent liver malignancy following hepatocellular carcinoma,
and its global disease incidence is increasing (1, 2). The risk
factors for ICC are complex, but recently intrahepatic lithiasis
(IHL) has been confirmed as a strong risk factor. High Odds
ratios (ORs) have been found for developing ICC due to
hepatolithiasis, up to 50 in Korea (3), six in China (4), and
seven in Italy (5). Studies have reported that about 2.3 to
13.0% of patients with hepatolithiasis end up developing
cholangiocarcinoma (6–11), and 65–70% of patients in Taiwan
who underwent resection for cholangiocarcinoma suffer from
concomitant hepatolithiasis (12, 13).

It is very difficult for a clinical surgeon to identify ICC early in
patients with IHL because there are no specific symptoms and
radiological features. Although tissue biopsy can be used to confirm
a histological diagnosis, it is not routinely recommended in ICC
(14), especially in IHL-ICC where ‘negative’ biopsy results do not
exclude ICC given the significant potential for sampling error. The
preoperative diagnosis for IHL-ICC is mainly obtained from a
combination of imaging, serum carcinoembryonic antigen (CEA),
and cancer antigen 19-9 (CA 19-9). However, the current
diagnostic accuracy of IHL-ICC is low, generally ranging from 30
to 65% (7, 10, 11, 15, 16). Recently, we have increased the
diagnostic accuracy to 78.5% through developing a nomogram
for patients with IHL complicated by imagologically diagnosed
mass (17). Despite this improvement, the accuracy of preoperative
imaging diagnosis in the nomogram was still low because it was
performed by two radiologists based on their experience. In recent
years, radiomics has been introduced in clinic to identify liver
tumors (18); however, no studies have used the radiomic approach
for diagnosing IHL-ICC. Therefore, there is an urgent need to
develop a radiomic model capable of improving the diagnostic
accuracy of IHL-ICC.

In this study, we aimed to identify the radiomic features of
IHL-ICC, develop a predictive model that combined radiomic
Frontiers in Oncology | www.frontiersin.org 2134
score (rad-score) and clinical features for preoperative identification
of ICC among patients with IHL, and also to validate its predictive
capacity in an independent data sets.
PATIENTS AND METHODS

Patients Selection
All patients involved in this retrospective study that constituted
the training cohort were diagnosed with intrahepatic lithiasis
(IHL) complicated by imagologically diagnosed mass (IM) (IHL-
IM) and underwent hepatectomy at The First Affiliated Hospital of
Wenzhou Medical University (WMU) from January 2005 to July
2019. The database from our hospital was screened meticulously
to select the potentially eligible patients who were; (1) with
pathological diagnosis of ICC or IHL and (2) with available
high-quality contrast-enhanced computed tomography (CT)
before surgical resection. The clinical characteristics of these
qualified patients were recorded. This retrospective study was
reviewed and approved by the Institutional Review Board (IRB) of
the First Affiliated Hospital of WMU, and a waiver of written
informed consent was granted by the IRB due to the retrospective
nature of this study in which de-identified data were used
and analyzed.

The patients for the external validation cohort were selected
from the Second Affiliated Hospital of WMU, whose IRB
approved the validation study.

Details for the recruitment and selection criteria of the
patients included in this study were shown in Figure 1.

CT Image Acquirement, Tumor
Segmentation, and Radiomic Feature
Extraction
All patients were assessed with contrast-enhanced CT using the
LifeX software tools (19). Two radiologists (BX and SW) who
were blinded to the pathologic details, reviewed transverse CT
FIGURE 1 | Proceeding flow of enrollment.
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images to determine respectively the features of the mass location
and boundary.

The radiomic workflow is depicted in Figure 2. Image feature
extraction was performed on retrieved arterial phase CT images
(5 mm thickness). The pre-processing procedure [i.e., the
uniform of window width (200 Hu), window level (45 Hu),
and pixel size (512 × 512)] was undertaken before feature
extraction. Manual segmentation of tumor regions of interest
(ROI) was carried out by two different radiologists (BX and SW).
Each transverse slice consisted of cuts made along the primary
tumor contour. A total of fifty-two quantified texture features
were extracted, including features from histogram-based matrix
and shape-based matrix from the first order and features from
gray-level co-occurrence matrix (GLCM), gray-level zone length
matrix (GLZLM), neighborhood gray-level dependence matrix
(NGLDM), and gray-level run length matrix (GLRLM) from
second or higher order (20). A detailed description of all these
characteristics can be found in https://www.lifexsoft.org/index.
php/resources/19-texture/radiomic-features. All original data
about extracted features are displayed in the Supplementary
Material 1 and Supplementary Material 2.

Radiomic Feature Selection and Signature
Construction
We devised a two-step procedure for dimensionality reduction
and selection of robust features. Firstly, we calculated the
intraobserver and interobserver reliability for each ROI based
radiomic feature, extracted from 50 randomly chosen images. To
assess interobserver reliability, the ROI segmentation was
performed by two experts [one radiologist (reader 1, BX) and
one hepatobiliary surgeon (reader 2, QZ)] who were blinded to
both the clinical and pathologic details. To evaluate intraobserver
Frontiers in Oncology | www.frontiersin.org 3135
reliability, reader 1 repeated the ROI segmentation and feature
extraction procedure twice over a period of one month. The
reliability was calculated by using intraclass correlation coefficient.
Radiomic features with both intraobserver and interobserver
intraclass correlation coefficient values greater than 0.55
(demonstrating at least moderate stability) were selected for
subsequent investigation. Secondly, the least absolute shrinkage
and selection operator (LASSO) logistic regression algorithm was
applied to the training cohort in order to determine which ICC-
related features had non-zero coefficients while being cross-
validated 10 times by the penalty parameter. A radiomic
signature was generated via a linear combination of selected
features weighted by their respective coefficients (21).

Development, Performance, and Validation
of a Radiomic Nomogram
A radiomic model incorporating the radiomic signature, as well
as independent risk factors that were obtained in our previous
research for IHL-ICC (17), was constructed based on the results
of the multivariate logistic regression analysis performed on the
training cohort. A radiomic nomogram was then constructed in
order to provide clinicians with a visual tool through the use of
the selected covariates. Furthermore, a clinical model based on
multivariate logistic regression analysis of candidate predictors,
with the exception of radiomic signature, was developed. We
calculated the area under the curve (AUC) of the receiver
operating characteristic curve (ROC) to measure the discrimination
performance of established models, and through the use of the
DeLong algorithm (22), we compared the differences in AUC
estimates between the various models. Calibration curves were
graphed, through bootstrapping (resampled 1,000 times), to
evaluate the predictive accuracy of the radiomic nomogram,
A B D EC

FIGURE 2 | Workflow of required steps in this current study. (A) Manual segmentation on arterial phase CT scans; (B) Quantification of tumor intensity, shape, and
texture through radiomic features collected by LIFEx software from inside the defined tumor contours on CT images. (C) For feature selection, two successive steps
are the reliability assessment regarding the extracted features, followed by the LASSO method. A radiomic signature was obtained by combining the selected
features by their respective coefficients, linearly. (D) By measuring the area under a receiver operating characteristic (ROC) curve and the calibration curve, the
performance of the prediction model can be analyzed. (E) A radiomic nomogram was built in order to provide clinicians with a visual tool through the use of the
selected covariates, followed by decision curve.
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followed by a Hosmer–Lemeshow test (P > 0.05 indicating good fit)
(23). The performance of the radiomic model was then externally
tested through an independent validation cohort.

Clinical Utility of the Radiomic Nomogram
The net benefits at different threshold probabilities were
quantified by a decision curve analysis (DCA) (24), thereby
estimating the clinical utility of the established models in the
validation cohort.

Statistical Analysis
Numerical variables were compared by means of the t-test or
Mann–Whitney U test, and categorical variables were compared
using the c2 test or Fisher’s exact test, where appropriate.
Univariate and multivariate Cox regression analyses were
performed to determine predictors of IHL-ICC. All variables
with a p-value <0.05 in univariate analysis were selected for
multivariate analysis. Statistical analyses were performed with
the R software (version 3.4.4, http://www.R-project.org), the
EmpowerStats software (www.empowerstats.com, X&Y
solutions, Inc. Boston MA). The R package “glmnet” was used
to perform LASSO binary logistic regression analysis; the “rms”
package, to create the nomogram; and the “pROC” package, to
analyze ROC curves. A two-sided p-value <0.05 was considered
statistically significant.
RESULTS

Demographic and Clinicopathological
Characteristics
A total of 96 eligible patients were selected from the training cohort.
Thirty-six of them were diagnosed with IHL-ICC, and 60 patients
were diagnosed as IHL with intrahepatic biliary inflammation
(IHL-IBI). Furthermore, 35 patients (17 IHL-ICC and 18 IHL-
IBI) were included for validation. The detailed characteristics of the
patients were summarized in Table 1. There were no significant
differences regarding clinical and radiologic characteristics, in both
the training and validation cohorts.

Feature Selection and Radiomic Signature
Construction
Of 52 extracted radiomic features, four ICC-related features with
non-zero coefficients in the LASSO logistic regression model
were obtained from the training cohort. The radiomic score used
to calculate the novel radiomic signature was obtained by means
of the following formula: rad-score = 9.79113 + 0.06519
* G L C M _ C O N T R A S T _ V A R I A N C E +
5.97425*GLCM_CORRELATION-0.00151*GLRLM_SRHGE +
0.00098*GLZLM_ZLNU (Figure 3A).

Diagnostic Validation of Radiomic
Signature and Clinical Prediction Models
The radiomic signature model exhibited promising
discriminative ability for IHL-ICC and IHL-IBI in the training
cohort. The AUC of the radiomic signature model was 0.829
Frontiers in Oncology | www.frontiersin.org 4136
[95% confidence interval (CI): 0.744, 0.910] with sensitivity
0.868, specificity 0.635, and accuracy 0.723 in training cohort
(Figure 3C). Furthermore, by combining three independent
factors (fever, CEA, and CA 19-9) in the training cohort, a
clinical prediction model was constructed. The AUC of the
nomogram for the clinical prediction model was 0.838 (95%
CI, 0.747–0.928), with a sensitivity, specificity, and accuracy of
0.902, 0.647, 0.800 respectively (Figure 3C).

In the validation cohort, AUC of the radiomic signature
model was 0.824 (95% CI: 0.768, 0.989) with sensitivity 0.824,
specificity 0.778, and accuracy 0.800. The AUC of the nomogram
for the clinical prediction model was 0.824 (95% CI, 0.681–
0.966), with a sensitivity, specificity, and accuracy of 0.824, 0.722,
0.771 respectively (Figure 3D).

Development, Performance, and Validation
of Prediction Models
A comprehensive model incorporating two kinds of independent
predictors (radiomic signature and clinical features) was developed,
by using the following formula: comprehensive model = −0.87516 +
0.84946*rad-score −1.02770*1 (if with fever) + 1.11976*2 (if 5mg/
L≥CEA≥3.75mg/L) + 2.41799*(if CEA > 5mg/L) + 0.64579*(if 143.15
U/ml≥CA 19-9≥37 U/ml) + 1.56721*(if CA 19-9>143.15 U/ml),
and presented as a nomogram (Figure 3B). The model is capable of
indicating a good fit, as proved the Hosmer–Lemeshow test (p =
0.764), and the calibration of the nomogram was likewise well-
calibrated, as illustrated in Figure 2D. In the training cohort, the
comprehensive model displayed the highest discrimination between
IHL-ICC and IHL-IBI with an AUC of 0.908 (95% CI: 0.833, 0.970)
(sensitivity 0.771, specificity 0.923, and accuracy 0.862); the detected
AUC value was higher than that of the radiomic signature model
(AUC, 0.829; p < 0.05) and clinical prediction model and (AUC,
0.838; p < 0.05) (Figure 3C). In the validation cohort, the
comprehensive model presented the greatest AUC (0.879; 95%
CI: 0.768, 0.990) as well, which confirms that the comprehensive
model is capable of better predictive efficacy than either the
radiomic signature model (AUC, 0.824; p < 0.05) or clinical
prediction model alone (AUC, 0.755; p < 0.05) (Figure 3D).

Clinical Use
The DCA for the radiomic nomogram, the clinical prediction
model, and the comprehensive model are presented in Figure 4.
The comprehensive model is capable of providing a better net
benefit when predicting ICC in IHL patients, when compared
with the other two models (demonstrated by the threshold
probabilities of more than 10%), and particularly, in situations
where there is no alternative prediction model available.
DISCUSSION

The accurate diagnosis for IHL patients with ICC is extremely
important because it can facilitate the decision making with
regard to surgical treatment at an early stage. The present work is
the first attempt to propose a comprehensive model combined
with radiomic and clinical signatures that can improve the
January 2021 | Volume 10 | Article 598253
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current diagnostic accuracy standard of ICC in patients with IHL.
The prediction model was validated internally and externally.

In a recent study, we had developed a nomogram to predict ICC
for patients with IHL complicated by the presence of a
imagologically diagnosed mass (17). However, the imagological
diagnosis in the nomogram was made by radiologists. Even for
experienced radiologists, the accuracy of diagnosis is still lower than
70% (10, 11, 15, 17). Detection of ICC in IHL ismainly dependent on
imaging modalities because there are no specific symptoms in cases
of IHL-ICC other than the clinical manifestation of hepatolithiasis.

ICC can be according to three types of morphological
characteristics: mass-forming, periductal infiltrating, and
intraductal growth. Of these three, mass-forming is the most
common type and on CT scan, usually resembles a homogeneous
low-attenuation mass with irregular peripheral enhancement, often
accompanied by capsular retraction, peripheral intrahepatic duct
dilation, and satellite nodules. If the dysplastic bile duct presents
growth without mass formation, then it possesses the characteristics
of a periductal infiltrating cholangiocarcinoma. Diffuse periductal
Frontiers in Oncology | www.frontiersin.org 5137
thickening and increased enhancement can be observed in a dilated
or irregularly narrowed intrahepatic duct. For patients with IHL,
inflammatory pseudo-tumors or liver abscesses often occur at the site
of intrahepatic stones, thus making it difficult to distinguish from
mass-forming ICC, whereas proliferative cholangitis or inflammatory
stenosis are difficult to distinguish from periductal infiltrating ICC.
Furthermore, after long-term chronic inflammation, liver segments
often become scarred and undergo fibrotic change (11), making IHL
even more difficult to distinguish from ICC on imaging.

The radiomic technique can process high-throughput extraction
of quantitative features that result in the conversion of images into
mineable data and the subsequent analysis of these data for decision
support, which draws a contrast with the traditional treatment of
medical images as simple tools of visual interpretation. Radiomic
data contain first-, second-, and higher-order statistics. The radiomic
technique is very useful for IHL-ICC, which is highly heterogeneous
and short of traditional imaging features. We used the LIFEx (A
Freeware for Radiomic Feature Calculation) to implement these
functions of ROI segmentation and radiomic feature extraction in a
TABLE 1 | Demographic and clinical characteristics of the study population.

Training cohort Validation cohort

IHL-IBI IHL-ICC P value IHL-IBI IHL-ICC P value

Demographic or Characteristic (n = 60) (n = 36) (n = 18) (n = 17)
Age, mean (SD) 0.01 0.73
<60 y 29 (48.33%) 8 (22.22%) 8 (44.44%) 6 (35.29%)
≥60 y 31 (51.67%) 28 (77.78%) 10 (55.56%) 11 (64.71%)
Sex (F/M) 37/23 22/14 0.96 11/7 10/6 1
Smoking 7 (11.67%) 6 (11.67%) 1 2 (11.11%) 2 (11.76%) 1
Alcohol 8 (13.33%) 9 (25%) 0.15 3 (16.67%) 4 (23.53%) 1
Personal cancer history 2 (3.33%) 2 (5.56%) 1 1 (5.56%) 0 1
Family cancer history 1 (1.67%) 0 (0%) 1 1 (5.56%) 1 (5.88%) 1
Inflammatory attacks within half a year (≥2 times) 12 (20.00%) 9 (25.00%) 0.06 4 (22.22%) 4 (23.53%) 1
Lesion size (cm), mean (SD) 5.42 (1.88) 5.79 (1.63) 0.48 5.27 (2.45) 5.98 (1.66) 0.35
Location of hepatolithiasis
Left lobe 40 (66.67%) 26 (72.22%) 0.57 11 (61.11%) 13 (76.47%) 0.47
Right lobe 15 (25.00%) 8 (22.22%) 0.76 4 (22.22%) 3 (17.65%) 1
Left and right lobes 3 (5.00%) 2 (5.56%) 1 2 (11.11%) 1 (5.88%) 1
Lobus caudatus 2(3.33%) 0 1 1(5.56%) 0 1

Symptoms
Abdominal pain 53 (88.30%) 30 (83.33%) 0.7 14 (77.78%) 12 (70.59%) 0.71
Fever 31 (51.67%) 12 (33.3%) 0.08 4 (22.22%) 3 (17.65%) 1
Vomiting 20 (33.30%) 6 (16.67%) 0.08 6 (33.33%) 2 (11.76%) 0.22
Jaundice 8 (13.30%) 3 (8.30%) 0.68 2 (11.11%) 2 (11.76%) 1
Weight loss 1 (1.67%) 1 (2.78%) 0.61 0 1 (5.88%) 1

Laboratory
ALK (U/L), mean (SD) 218.70 (224.42) 226.94 (183.96) 0.17 166.52 (263.94) 192.84 (218.13) 0.38
g-GT (U/L), mean (SD) 218.80 (261.40) 221.56 (188.88) 0.31 269.71 (332.59) 177.41 (291.32) 0.30
ALT (U/L), mean (SD) 75.75 (80.52) 55.89 (76.81) 0.11 83.22 (141.27) 47.77 (52.48) 0.28
Albumin (g/dl), mean (SD) 35.37(5.65) 35.54 (4.63) 0.9 38.19 (4.26) 36.66 (5.33) 0.55
PT (second), mean (SD) 14.18 (1.65) 15.50 (10.53) 0.42 14.84 (1.37) 13.49 (0.77) 0.62

CA 19-9 (U/ml), median (IQR) 42.35 (11.18, 407.42) 902.8 (28.6, 2020.80) <0.01 16.26 (7.08, 130.80) 92.96 (4.2, 1200) <0.01
CEA (mg/L), median (IQR) 1.80 (1.20, 2.30) 5.50 (2.10, 35.10) <0.01 2.21 (1.2, 3.11) 5.15 (2.13, 31.88) <0.01
AFP (mg/L), median (IQR) 2.48 (1.70, 3.66) 3.25 (2.10, 4.21) 0.07 2.64 (1.68, 3.66) 2.55 (1.78, 3.42) 0.87
CA 125 (U/ml), mean (SD) 12.37 (0.99) 1399.36 (3440.36) 0.09 28.58 (139.99) 122.71 (165.13) 0.01
Complication
HBsAg+ 4 (6.67%) 4 (11.11%) 0.65 2 (11.11%) 1 (5.88%) 1
HBcAb+ 16 (26.67%) 8 (22.22%) 0.84 10 (55.56%) 10 (58.82%) 1
Diabetes 7 (11.67%) 2 (5.56%) 0.53 1 (5.56%) 0 1

Clinical Score, mean (SD) −1.31 (1.05) 0.94 (1.97) <0.01 −1.34 (1.02) 0.87 (1.97) <0.01
Radiomic Score, mean (SD) −1.32 (1.23) 0.54 (1.62) <0.01 −0.86 (1.18) 0.55 (1.82) <0.01
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one-stop manner. The LASSO logistic regression algorithm can
effectively solve the problem of multicollinearity among numerous
extracted features and find meaningful feature parameters for a well
constructed prediction model. In the present research, we got
the higher-order radiomic features of IHL-ICC including
Frontiers in Oncology | www.frontiersin.org 6138
GLCM_CONTRAST, GLCM_CORRELATION, GLRLM_SRHGE,
and GLZLM_ZLNU that were obviously different from IHL-IBI.
Finally, the radiomic model has improved the diagnostic accuracy
for IHL-ICC to 0.72 which is higher than in our previous research
(17) and others (10, 11, 15).
A B

FIGURE 4 | Decision curve analysis for every model in (A) the training and (B) validation dataset. The net benefit is measured by the y-axis, which is calculated by
summing the benefits (true-positive findings) and deducting the harms (false-positive findings), while weighting the harms associated to the relative damage of
undetected IHL-ICC when compared with the damage of being mistakenly diagnosed with HL-ICC.
A B

DC

FIGURE 3 | Radiomic nomogram designed with receiver operating characteristic curves. (A) The radiomic nomogram and (B) the comprehensive model was
developed in the training cohort for predicting IHL-ICC. Comparison of ROC among the radiomic nomogram, clinical model, and comprehensive model for the
prediction of IHL-ICC in the (C) training and (D) validation cohorts.
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Furthermore, a comprehensive model incorporating two kinds
of independent predictors (radiomic signature and clinical
features) was developed for further improving the diagnostic
accuracy for IHL-ICC. Based on our previous research, the
clinical risk factor for IHL-ICC included biliary tract surgical
history, fever, ascites, CA 19-9, and CEA. Here, we removed
indicators that need to be judged subjectively, such as vomiting,
and retained objective indicators including fever, CA 19-9, and
CEA. The comprehensive model further improves the diagnostic
accuracy to 86%, which is simpler andmore convenient. As a non-
invasive method, the comprehensive model for IHL-ICCwould be
a convenient application for clinicians.

There are several limitations to the present study. First, due to
retrospective design and small sample, the potential selection bias
cannot be excluded, which limits the accuracy and reliability of
results. Second, when highlighting the outline of ROI areas, the
variation between observed images should be deliberated. The
inclusion of a computer-aided software, as used in this study, may
help to reduce variation to some degree. Third, the texture features
mined in this study were based solely on arterial phase CT images.
Further investigation is needed to evaluate the performance of using
either portal venous- or delayed-phase imaging or in combination,
for predicting the malignant potential of IHL-IM. Furthermore,
there are many different types of texture features and imaging
processing software, so unifying the texture analysis would
undoubtedly add rigor to the results obtained while spreading the
application of this technology. Therefore, more investigation
attempts are necessary for better estimation, especially large-scale
prospective, and multicenter studies.
CONCLUSIONS

A prediction nomogram based on CT radiomics was created and
validated in this study. It was suitably utilized in order to simplify
Frontiers in Oncology | www.frontiersin.org 7139
the individualized prediction of malignancy in IHL-IM patients.
The radiomic-based model holds promise as a novel and accurate
tool for predicting IHL-ICC, which can identify lesions in IHL, in
a timely fashion, determining if there is a need for hepatectomy,
avoiding unnecessary surgical resection.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Materials. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institutional Review Board (IRB) of the First
Affiliated Hospital of WMU. The patients/participants provided
their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it
for publication.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2020.598253/
full#supplementary-material
REFERENCES
1. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma -

evolving concepts and therapeutic strategies. Nat Rev Clin Oncol (2018) 15
(2):95–111. doi: 10.1038/nrclinonc.2017.157

2. Wood R, Brewster DH, Fraser LA, Brown H, Hayes PC, Garden OJ. Do
increases in mortality from intrahepatic cholangiocarcinoma reflect a genuine
increase in risk? Insights from cancer registry data in Scotland. Eur J Cancer
(2003) 39(14):2087–92. doi: 10.1016/S0959-8049(03)00544-6

3. Lee TY, Lee SS, Jung SW, Jeon SH, Yun SC, Oh HC, et al. Hepatitis B virus
infection and intrahepatic cholangiocarcinoma in Korea: a case-control study.
Am J Gastroenterol (2008) 103(7):1716–20. doi: 10.1111/j.1572-0241.2008.
01796.x

4. Zhou YM, Yin ZF, Yang JM, Li B, Shao WY, Xu F, et al. Risk factors for
intrahepatic cholangiocarcinoma: a case-control study in China. World J
Gastroenterol (2008) 14(4):632–5. doi: 10.3748/wjg.14.632

5. Donato F, Gelatti U, Tagger A, Favret M, Ribero ML, Callea F, et al.
Intrahepatic cholangiocarcinoma and hepatitis C and B virus infection,
alcohol intake, and hepatolithiasis: a case-control study in Italy. Cancer
Causes Control (2001) 12(10):959–64. doi: 10.1023/A:1013747228572

6. Kim HJ, Kim JS, Suh SJ, Lee BJ, Park JJ, Lee HS, et al. Cholangiocarcinoma
Risk as Long-term Outcome After Hepatic Resection in the Hepatolithiasis
Patients.World J Surg (2015) 39(6):1537–42. doi: 10.1007/s00268-015-2965-0
7. Uenishi T, Hamba H, Takemura S, Oba K, Ogawa M, Yamamoto T, et al.
Outcomes of hepatic resection for hepatolithiasis. Am J Surg (2009) 198
(2):199–202. doi: 10.1016/j.amjsurg.2008.08.020

8. ChenMF, Jan YY, Wang CS, Jeng LB, Hwang TL, Chen SC. Intrahepatic stones
associated with cholangiocarcinoma. Am J Gastroenterol (1989) 84(4):391–5.

9. Suzuki Y, Mori T, Yokoyama M, Nakazato T, Abe N, Nakanuma Y, et al.
Hepatolithiasis: analysis of Japanese nationwide surveys over a period of 40
years. J Hepatobiliary Pancreat Sci (2014) 21(9):617–22. doi: 10.1002/jhbp.116

10. Su CH, Shyr YM, Lui WY, P’Eng FK. Hepatolithiasis associated with
cholangiocarcinoma. Br J Surg (1997) 84(7):969–73. doi: 10.1002/bjs.
1800840717

11. Kubo S, Kinoshita H, Hirohashi K, Hamba H. Hepatolithiasis associated with
cholangiocarcinoma. World J Surg (1995) 19(4):637–41. doi: 10.1007/
BF00294744

12. Chen MF. Peripheral cholangiocarcinoma (cholangiocellular carcinoma):
clinical features, diagnosis and treatment. J Gastroenterol Hepatol (1999) 14
(12):1144–9. doi: 10.1046/j.1440-1746.1999.01983.x

13. Chen MF, Jan YY, Jeng LB, Hwang TL, Wang CS, Chen SC, et al. Intrahepatic
cholangiocarcinoma in Taiwan. J Hepatobiliary Pancreat Surg (1999) 6
(2):136–41. doi: 10.1007/s005340050096

14. Weber SM, Ribero D, O’Reilly EM, Kokudo N, Miyazaki M, Pawlik TM.
Intrahepatic cholangiocarcinoma: expert consensus statement. HPB (Oxford)
(2015) 17(8):669–80. doi: 10.1111/hpb.12441
January 2021 | Volume 10 | Article 598253

https://www.frontiersin.org/articles/10.3389/fonc.2020.598253/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2020.598253/full#supplementary-material
https://doi.org/10.1038/nrclinonc.2017.157
https://doi.org/10.1016/S0959-8049(03)00544-6
https://doi.org/10.1111/j.1572-0241.2008.01796.x
https://doi.org/10.1111/j.1572-0241.2008.01796.x
https://doi.org/10.3748/wjg.14.632
https://doi.org/10.1023/A:1013747228572
https://doi.org/10.1007/s00268-015-2965-0
https://doi.org/10.1016/j.amjsurg.2008.08.020
https://doi.org/10.1002/jhbp.116
https://doi.org/10.1002/bjs.1800840717
https://doi.org/10.1002/bjs.1800840717
https://doi.org/10.1007/BF00294744
https://doi.org/10.1007/BF00294744
https://doi.org/10.1046/j.1440-1746.1999.01983.x
https://doi.org/10.1007/s005340050096
https://doi.org/10.1111/hpb.12441
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xue et al. Radiomic Model to Predict Cholangiocarcinoma
15. Guglielmi A, Ruzzenente A, Valdegamberi A, Bagante F, Conci S, Pinna AD,
et al. Hepatolithiasis-associated cholangiocarcinoma: results from a multi-
institutional national database on a case series of 23 patients. Eur J Surg Oncol
(2014) 40(5):567–75. doi: 10.1016/j.ejso.2013.12.006

16. Kim YT, Byun JS, Kim J, Jang YH, Lee WJ, Ryu JK, et al. Factors predicting
concurrent cholangiocarcinomas associated with hepatolithiasis.
Hepatogastroenterology (2003) 50(49):8–12.

17. Chen G, Yu H, Wang Y, Li C, Zhou M, Yu Z, et al. A novel nomogram for the
prediction of intrahepatic cholangiocarcinoma in patients with intrahepatic
lithiasis complicated by imagiologically diagnosed mass. Cancer Manag Res
(2018) 10:847–56. doi: 10.2147/CMAR.S157506

18. Lewis S, Peti S, Hectors SJ, King M, Rosen A, Kamath A, et al. Volumetric
quantitative histogram analysis using diffusion-weighted magnetic resonance
imaging to differentiate HCC from other primary liver cancers. Abdom Radiol
(NY) (2019) 44(3):912–22. doi: 10.1007/s00261-019-01906-7

19. Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, et al. LIFEx:
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Introduction: We aimed to investigate whether 18F-FDG PET metabolic heterogeneity
reflects the heterogeneity of estrogen receptor (ER) and progesterone receptor (PR)
expressions within luminal non-metastatic breast tumors and if it could help in identifying
patients with worst event-free survival (EFS).

Materials and methods: On 38 PET high-resolution breast bed positions, a single
physician drew volumes of interest encompassing the breast tumors to extract SUVmax,
histogram parameters and textural features. High-resolution immunochemistry (IHC)
scans were analyzed to extract Haralick parameters and descriptors of the distribution
shape. Correlation between IHC and PET parameters were explored using Spearman
tests. Variables of interest to predict the EFS status at 8 years (EFS-8y) were sought by
means of a random forest classification. EFS-8y analyses were then performed using
univariable Kaplan-Meier analyses and Cox regression analysis. When appropriate, Mann-
Whitney tests and Spearman correlations were used to explore the relationship between
clinical data and tumoral PET heterogeneity variables.

Results: For ER expression, correlations were mainly observed with 18F-FDG histogram
parameters, whereas for PR expression correlations were mainly observed with gray-level
co-occurrence matrix (GLCM) parameters. The strongest correlations were observed
between skewness_ER and uniformity_HISTO (r = −0.386, p = 0.017) and correlation_PR
and entropy_GLCM (r = 0.540, p = 0.001), respectively. The median follow-up was 6.5
years and the 8y-EFS was 71.0%. Random forest classification found age, clinical stage,
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SUVmax, skewness_ER, kurtosis_ER, entropy_HISTO, and uniformity_HISTO to be variables of
importance to predict the 8y-EFS. Univariable Kaplan-Meier survival analyses showed that
skewness_ER was a predictor of 8y-EFS (66.7 ± 27.2 versus 19.1 ± 15.2, p = 0.018 with a
cut-off value set to 0.163) whereas other IHC and PET parameters were not. On
multivariable analysis including age, clinical stage and skewness_ER, none of the
parameters were independent predictors. Indeed, skewness_ER was significantly higher
in youngest patients (r = −0.351, p = 0.031) and in clinical stage III tumors (p = 0.023).

Conclusion: A heterogeneous distribution of ER within the tumor in IHC appeared as an
EFS-8y prognosticator in luminal non-metastatic breast cancers. Interestingly, it appeared
to be correlated with PET histogram parameters which could therefore become potential
non-invasive prognosticator tools, provided these results are confirmed by further larger
and prospective studies.
Keywords: breast cancer, steroid receptors, image processing, computer-aided system, radiomics analysis;
18F-FDG PET imaging
INTRODUCTION

Breast cancer is the most frequently diagnosed cancer in women
(16% of all women’s cancers) in all world regions.1 Its incidence is
rising as a result of longer life expectancy and changes in risk factors.
Breast cancer treatment recommendations are based on histological
subtype (ER-positive, HER-2 positive, or triple negative tumors),
tumor grade, and stage of the disease. More recently, with the
development of DNA microarray gene expression analysis, a
molecular classification has been proposed and validated (1–3).
However, its clinical use is limited, since these techniques
are currently expensive as compared to conventional
immunohistochemistry (IHC). An attempt to replicate molecular
classification using conventional IHC characteristics of the tumor,
including ER, PR, HER-2, and Ki67 showed low concordance with
gene expressions profile (4, 5). When it comes to breast cancer
staging, 2-deoxy-2[18F]-fluoro-D-glucose (18F-FDG) PET/CT is a
well-established examination for the initial staging of locally
advanced breast cancer (6–9), as it displays excellent capabilities
for extra-axillary nodal and distance metastases detection. On the
contrary, for the local evaluation of primary breast lesion, 18F-FDG
PET/CT has so far been outperformed by echography and MRI
mainly because of its lack of sensitivity (10, 11). However, with the
newly growing development of metabolic heterogeneity features in
nuclear medicine, the PET community is regaining interest in the
value of 18F-FDG PET/CT for the non-invasive biological
omography; ER, Estrogen Receptor;
tandardized Uptake Value; IHC,
ree Survival; RF, Random Forest
o-occurrence Matrix; 18F-FDG,
pidermal Growth Factor Receptor-2;
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characterization of primary breast tumors. Until now, PET
radiomics have always been confronted with the expression of
ER, PR, HER2, and Ki67 (12–15) and PET radiomics certainly
seem to represent more than just a binary expression of receptors.
Meanwhile, improvement in high-resolution scanning of
pathological sections and digital imaging analysis is leading to the
rise of digital-IHC. Even though it demands further validation and
standardization, this technique can provide computation of texture
and distribution parameters for hormonal receptors intra-tumoral
heterogeneity (16, 17).

The objective of the present study was therefore to investigate (i)
if PET metabolic heterogeneity features reflect the heterogeneity of
ER and PR expression within luminal breast tumors and (ii) if PET
metabolic heterogeneity features could help in non-invasively
identifying patients with the worst event-free survival (EFS).
MATERIAL AND METHODS

Study Population
This study is an ancillary study to a previous monocentric and
prospective one conducted in our PET unit (18). FromApril 2009 to
June 2012, that study included newly diagnosed and histologically
proven breast cancer for which surgery was indicated in first place
without neo-adjuvant chemotherapy. It was approved by the Ethics
Committee (CPP Nord Ouest III, reference 2009-10) and all
patients gave informed and signed consent.

PET/CT Acquisitions
All 18F-FDG PET/CT acquisitions were performed on a Biograph
TrueV (Siemens Healthineers) before any treatment. Patients
were fasted during at least 6 h. A high-resolution (HR) breast-
dedicated bed position (6 min per bed position) was acquired
75 min after the radiopharmaceutical injection. Data were
reconstructed using an algorithm with point spread function
(PSF) modeling (HD; TrueX, Siemens Healthineers, 3 iterations,
January 2021 | Volume 10 | Article 599050
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and 21 subsets) with no post-filtering and a 5122 matrix size
leading to voxels of 1.3 × 1.3 × 1.9 mm (19).

PET-CT Analysis
Injected dose, time between injection and acquisition and capillary
glycaemia were recorded to seek EANM recommendations
fulfilment (20). A single observer delineated volumes of interest
(VOIs) that encompassed the entire breast tumor by using a
gradient-based method implemented in MIM software (MIM
software, version 5.6.5). When multiple lesions were depicted,
only the biggest lesion was considered. VOIs were then saved as
DICOM RT structures and loaded in LifeX v5.10 software (21)
(www.lifexsoft.org) to extract SUVmax, histogram parameters and
the following TFs:

- Inverse difference, angular second moment, variance,
correlation, entropy, dissimilarity from gray-level co-
occurrence matrix (GLCM) that considers the arrangements
of pairs of voxels

- coarseness, contrast and busyness from neighborhood gray-
level different matrix (NGLDM) that corresponds to the
difference of gray-level between one voxel and its 26
neighbors in 3 dimensions.

All textural features fulfilled the benchmark of the image
biomarkers standardization initiative (22). Absolute resampling
using 64 bins between 0 and 32 (corresponding to the maximum
SUV units recorded within PET data) was used for all TFs
leading to a size of bin 0.5 (23, 24).

Immunochemistry
Automated immunohistochemistry using a Ventana BenchMark
Ultra was performed on 4-mm-thick paraffin sections of tumor
resection with clone SP1 Ventana for ER (pre-diluted) and clone
1E2 Ventana for PR (pre-diluted). The slides were controlled by
an experienced pathologist.

Digital-Immunochemistry Computation
The ScanScope CS microscope slide scanner (Leica Biosystems)
was used to digitize whole slide images of histological sections at
20 × (0.5 µm/pixel) and record them as tiled tiff images.

For each image, regions of interest (ROIs) were drawn using
the ImageScope software (Leica Biosystems) in order to select
only tumor tissues and remove the artifacts. The images were
processed as reported in the previous study (25). Briefly, squares
of 2000 pixels size corresponding to 1 mm2 area were used in this
study. The squares were generated to fit the area of the ROI. A
ratio between the stained area (brown color) and the surface of
tissue was computed and assigned to each square based on their
coordinates. Local ratio computed for each square was ranked
according to the following ten intervals: level 0 (0–10%), level 1
(>10–20%), level 2 (>20–30%), level 3 (>30–40%), level 4 (>40–
50%), level 5 (>50–60%), level 6 (>60–70%), level 7 (>70–80%),
level 8 (>80–90%), and level 9 (>90–100%). The ranks then
formed the basis for the co-occurrence matrix used to compute
Haralick texture parameters. The classical Haralick parameters
Frontiers in Oncology | www.frontiersin.org 3143
(26) were computed from the normalized co-occurrence matrix:
contrast, homogeneity, dissimilarity, entropy, energy, and
correlation. The descriptors of the distribution shape were also
computed: skewness and kurtosis.

Statistical Analysis
Quantitative data are presented as mean (standard deviation).
Correlation between immunochemistry parameters and PET
parameters were explored using Spearman correlation tests and
matrixes. Variables of interest to predict the occurrence of an event
at 8 years (EFS-8y) were sought by means of a random forest
classification incorporating the following variables: age, histology,
clinical stage, Elston and Ellis grade, molecular subtype
classification (27), all immunochemistry parameters and all PET
parameters. This analysis implemented classification and
regression trees (CART, n = 100) as well as the bootstrapping
aggregating (bagging) method previously proposed by Breiman
(28–30). For the validation, i.e. the training accuracy, the internal
check in RF itself was used, based on the prediction error using the
Out-Of-Bag (OOB) estimates of classification error: the smaller
the OOB error rate, the better the model is able to classify patients
according to their EFS at 8 years (8y-EFS 0 and 8y-EFS 1). The
importance of variables in classification was assessed bymeasuring
the mean decrease accuracy (31) of class prediction. Variables of
importance were compared between 8y-EFS 0 and 8y-EFS 1
groups using non-parametric Mann-Whitney tests. Receiving
operating characteristics (ROC) analyses for 8y-EFS were then
undertaken on variables identified as significantly different
between groups to define optimal cut-off values based on the
Youden index. Eight-year EFS analyses were finally performed
using univariable Kaplan-Meier analyses, log-rank tests for
comparison of survival curves and finally multivariable Cox
regression analysis. The end-point used for survival analysis was
the time from diagnosis until relapse or progression, unplanned
retreatment, or death as a result of breast cancer. When
appropriate, non-parametric Mann-Whitney tests and Spearman
correlation tests were used to explore the relationship between
clinical data and tumoral heterogeneity variables. Graph and
statistical analysis were performed on XLSTAT Software
(XLSTAT: Data Analysis and Statistical Solutions for Microsoft
Excel. Addinsoft (2017)). For all statistical tests, we retained a two-
tailed p value of less than 0.05 as statistically significant. Statistical
process is summarized in Figure 1.
RESULTS

Patients and PET Characteristics
Sixty-three patients were referred for the staging of breast
carcinoma from April 2009 to June 2012. Twenty-five patients
were excluded from the analysis, leading to a final database of 38
patients. The causes of exclusion were as follows: PET-CT not
performed prior to surgery (n = 8), metastatic tumors on initial
staging (n = 4), missing data (n = 1), breast lesions not 18F-FDG
avid (n = 3), hormonal receptors (ER and PR) negative tumors
(n = 7), IHC slide unusable (n = 1), and volume of interest too
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small to be analyzed with LifeX software (n = 1). Patient
characteristics are displayed in Table 1. Thirty-four tumors were
ER+/PR+ and 4 tumors were ER+/PR−. All patients underwent an
adjuvant treatment: radiotherapy and hormonotherapy in 10
patients (26.3%) or chemotherapy, radiotherapy and
hormonotherapy +/− trastuzumab in case of HER2+ tumors in 28
patients (73.7%).Mean injected dose and uptake time was 4.10 (0.56)
MBq/kg and 81.6 (8.4) min, respectively.

Correlations Among Descriptors of the
Distribution Shape and Haralick Texture
Parameters of Estrogen and Progesterone
Receptors Expression
Apart from skewness_ER that fairly correlated with both
skewness_PR and kurtosis_PR with Spearman coefficients equal
to 0.396 and 0.361 (p = 0.015 and p = 0.026), respectively, none
of the ER and PR distribution descriptors or Haralick texture
parameters were correlated to each other (Figure 2A).
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Relation Between 18F-FDG Textural
Parameters and Intra-Tumoral Estrogen
Receptors Expression
Relationship between variables can be seen in Figure 2B.
Correlations were mainly observed with 18F-FDG histogram
parameters. Indeed, all PET histogram parameters were fairly
correlated to kurtosis_ER with Spearman coefficients ranging
from −0.338 to 0.410. Moreover, uniformity_HISTO was
significantly but fairly correlated to skewness_ER, contrast_ER,
quadratic entropy_ER and shannon entropy_ER (r = −0.386, p =
0.017; r = 0.329, p = 0.044; r = 0.361, p = 0.027, and r = 0.333,
p = 0.042, respectively). Finally, entropy_HISTO was also fairly
correlated to skewness_ER and quadratic entropy_ER (r = 0.369,
p = 0.023; r = −0.344, p = 0.035, respectively).

When considering GLCM PET parameters, we observed
correlations only between correlation_ER and both angular
second moment_GCLM and entropy_GLCM. Overall the PET
parameter displaying the more numerous statistically
significant correlations (n = 5) with intra-tumoral estrogen
receptors expression was uniformity_HISTO with the strongest
correlation being observed with skewness_ER: r = −0.386,
p = 0.017.

Relation Between 18F-FDG Textural
Parameters and Intra-Tumoral
Progesterone Receptors Expression
Relationship between variables can be seen in Figure 2C. None
of histogram PET parameters were correlated to intra-tumoral
progesterone receptors expression parameters. Correlation_PR
was the parameter displaying the maximal rate of statistically
significant correlations with PET parameters (n = 7). It was fairly
correlated to inverse difference_GLCM, angular second
moment_GLCM, variance_GLCM, entropy_GLCM, dissimilarity_GLCM,
contrast_NGLDM and busyness_NGLDM (r = −0.449, p = 0.005; r =
−0.525, p = 0.001; r = 0.469, p = 0.003; r = 0.540, p = 0.001;
r = 0.456, p = 0.004; r = 0.398, p = 0.014; r = −0.322, p = 0.049).

Angular second moment_GLCM and entropy_GLCM were the
PET parameters displaying the more numerous statistically
significant correlations with intra-tumoral progesterone receptors
expression. They both correlated to all IHC parameters, with the
exception of contrast_PR, homogeneity_PR, and dissimilarity_PR.
The strongest correlation was observed between entropy_GLCM
and correlation_PR: r = 0.540, p = 0.001.

Survival Data Analysis
The statistical process for this specific part is summarized in Figure
1. The median follow-up was 6.5 years (range: 2.5–9.1 years) and
with 11 recorded events, the 8y-EFS was 71.0% in the entire
population. Among the 11 recorded events, 8 were metastatic
recurrences, 2 were contralateral recurrences, and 1 was a local
recurrence. The median time to recurrence from the date of
diagnosis was 78 months ranging from 21 to 96 months. Of note,
4 deaths were recorded over the 8-year follow-up. Random forest
classification found age, clinical stage, SUVmax, skewness_ER,
kurtosis_ER, entropy_HISTO, and uniformity_HISTO to be variables
of importance to predict the 8y-EFS (Supplemental Figure 1).
FIGURE 1 | Statistical process summary.
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The OOB estimate was equal to 28.9%. Mean skewness_ER and
mean entropy_HISTO were significantly higher (p = 0.001 and p =
0.022, respectively), whereas mean uniformity_HISTO was
significantly lower (p = 0.022) in 8y-EFS_1 patients (Figure 3).
There were no significant difference in SUVmax and kurtosis_ER
values between 8y-EFS_0 and 8y-EFS_1 patients (p = 0.760 and p =
0.052, respectively). Representative images of PET and digital-
immunochemistry images are displayed in Figure 4. On ROC
analyses, optimal cut-off values for skewness_ER, entropy_HISTO
and uniformity_HISTO to predict 8y-EFS were equal to 0.163, 1.23,
and 0.066, respectively (Table 2). Univariable Kaplan-Meier
survival analyses found that skewness_ER was a predictor of 8y-
EFS whereas entropy_HISTO and uniformity_HISTO were not,
although statistical significance was almost reached (Figure 5).
On multivariable analysis including skewness_ER and other well-
known prognosticators [age, clinical stage (I–II versus III)], all the
statistics for the test of the null hypothesis are significant and we can
conclude that considering explanatory variables provides significant
additional information. There was no violation of the proportional
hazards assumption. However, regression coefficients showed that
none of the parameters were independent predictors of 8y-EFS
(Table 3). Indeed, we found a significant negative correlation
between skewness_ER and age (r = −0.351, p = 0.031) with
skewness_ER values higher in youngest patients (Figure 6A).
Moreover, skewness_ER was significantly higher in clinical stage
III tumors (p = 0.023, Figure 6B). Of note, ER expression was
scored + in 2 patients (5.3%), ++ in 6 patients (15.8%), and +++ in
30 patients (78.9%) by IHC analysis. Skewness_ER was not
significantly different between patients scored +, ++, or +++ (p =
0.508, Supplemental Figure 2). A quantification of ER expression
in percentage was also available for 35 patients with a mean value
equal to 88.5% (± 15.5). It was not significantly correlated with
skewness_ER (p = 0.207, r = 0.048).
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DISCUSSION

The first and interesting finding of the present study is the quasi-
absence of correlation between ER and PR descriptors of the
distribution shape and Haralick texture parameters. This seems to
indicate that their heterogeneity expressions are independent and
could have different meanings and clinical consequences. Here, we
decided to focus on EFS and it appeared that immunochemistry
histogram parameters of estrogen receptors, and especially skewness,
are predictors of 8y-EFS together with age and clinical stage, whereas
none of the progesterone receptors were. Moreover, correlations of
ER and PR parameters with PET histogram and textural parameters
were clearly different. The ER immunochemistry heterogeneity was
mainly correlated to PET histogram parameters, whereas PR
immunochemistry heterogeneity was mainly correlated to second-
order GLCM-derived PET textural features. Interestingly,
skewness_ER was a significant predictor of 8y-EFS but not an
independent one. Indeed, it was related to both the age of the
patient at diagnosis and the clinical stage of the disease: estrogen
receptors heterogeneity was higher in youngest patients and in
higher-staged diseases. We can hypothesize that ER heterogeneity
could be linked to more aggressive tumors. Returning to the PET
methodology, the use of a HR PET acquisition to compute 18F-FDG
heterogeneity parameters (PSF algorithm and 1.3 × 1.3 × 1.9 mm
voxels) is a strength. Indeed, it has been previously shown that the
type of reconstruction as well as the voxel size, are important
considerations when computing 18F-FDG heterogeneity (19)
especially in small lesions like those bearing breast cancer.
However, even though high-resoluted histograms of PET
parameters were significantly but fairly correlated to ER
immunochemistry ones (especially skewness_ER, kurtosis_ER,
entropy_HISTO and uniformity_HISTO), PET parameters appeared
to be less discriminant for 8y-EFS than immunochemistry ones.
Nevertheless, we can notice that log-rank tests for entropy_HISTO and
uniformity_HISTO almost reached statistical significance and that a
larger study could have displayed more discriminant results.

Previously in the study of Antunovic et al. (13), using PET
metabolic heterogeneity features, two clusters were obtained by
the unsupervised hierarchical clustering analyses with different
imaging signatures. Besides, these signatures were significantly
associated with different molecular subtypes. Ha et al. (14) also
performed an unsupervised tumor clustering using a radiomics
pattern which resulted in 3 tumor clusters. The expression of
histopathological factors between their clusters was different for
Ki67. Of note, one cluster displayed higher estrogen and
progesterone receptors (ER and PR) expression, but statistical
significance was not reached. Lemarignier et al. (15) found a
trend for lower local heterogeneity in hormone-positive breast
cancer even though statistical significance was no longer
observed after correction for multiple testing. Thus, all these
results together with ours are first-evidences of a complementary
role of imaging features, together with standard PET metrics for
a clinically relevant in vivo characterization of breast cancer that
could lead to a personalization of therapeutic management. The
perspectives would be (i) to assess the clinical impact of these
results, in particular by offering patients deemed to be at risk of
recurrence a closer post-therapeutic monitoring and (ii) to test
TABLE 1 | Patients characteristics.

Characteristics All patients (n = 38)

Age (years, mean [min–max]) 55 [32–80]
Histology (n, %)
Invasive ductal carcinoma 30 78.9
Invasive lobular carcinoma 2 5.3
Tubular carcinoma 1 2.6
Mixed carcinoma 5 13.2

Tumor stage (n, %)
1 10 26.3
2 20 52.6
3 8 21.1

Nodal stage (n, %)
0 11 28.9
1 17 44.7
2 5 13.2
3 5 13.2

Elston and Ellis grade (n, %)
I 4 10.5
II 22 57.9
III 12 31.6

Molecular subtype classification (n, %)
Luminal A 24 63.2
Luminal B/HER-2 negative 10 26.3
Luminal B/HER-2 positive 4 10.5
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A

B

C

FIGURE 2 | Correlations among distribution descriptors and Haralick texture parameters of estrogen and progesterone receptors expression. Results are presented
as Spearman correlations maps: (A) correlations between estrogen and progesterone receptors expression parameters, (B) correlations between 18F-FDG textural
parameters and estrogen receptors expression parameters, (C) correlations between 18F-FDG textural parameters and progesterone receptors expression
parameters. The blue color corresponds to a correlation close to −1 and the red color corresponds to a correlation close to 1. The green corresponds to a
correlation close to 0. * represents significant correlations (p < 0.05).
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TABLE 2 | ROC analyses for 8-year event free survival for skewness_ER, entropy_HISTO, and uniformity_HISTO.

Variable AUC Standard error Lower bound (95%) Upper bound (95%) P Cut-off value

Skewness_ER 0.828 0.083 0.666 0.991 <0.0001 >0.163
Entropy_HISTO 0.737 0.113 0.515 0.960 0.036 >1.230
Uniformity_HISTO 0.741 0.116 0.514 0.968 0.038 <0.066
Frontiers in Oncology | ww
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AUC, area under the curve.
FIGURE 3 | Comparison of immunochemistry and PET variables of importance identified by random forest analysis between 8y-EFS_0 and 8y-EFS_1 patients
(SUVmax, entropy_HISTO, uniformity_HISTO, skewness_ER, and kurtosis_ER). Data are shown as Tukey boxplots with (○) representing outliers.
A

B

FIGURE 4 | Representative images of PET and digital-immunochemistry images. Patient (A) was a 74-year-old women with a luminal ER+/PR+ tumor staged II
presenting homogeneous IHC and PET characteristics (skewness_ER = −1.06, entropy_HISTO = 0.66, uniformity_HISTO = 0.24) who experienced no event at 8 years
(8y-EFS_0). Patient (B) was a 34-year-old women with a luminal ER+/PR+ tumor staged III presenting heterogeneous IHC and PET characteristics (skewness_ER =
1.31, entropy_HISTO = 1.50, uniformity_HISTO = 0.04) who experienced an event at 8 years (8y-EFS_1).
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C

FIGURE 5 | Kaplan-Meyer analyses for skewness_ER (A), entropy_HISTO (B), and uniformity_HISTO (C).
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other innovative tracers such as 18F-Fluoroestradiol. Data from a
meta-analysis evaluating the ability of 18F-Fluoroestradiol for the
Frontiers in Oncology | www.frontiersin.org 9149
determination of tumor ER status (32) suggested acceptable
diagnostic performance of this radiopharmaceutical despite a
weakness in terms of sensitivity [pooled sensitivity = 82% (95%
CI: 74–88%), pooled specificity = 95% (95% CI: 86–99%)].
However, to date, there is no data clearly documenting the
clinical consequences of patient management following
diagnosis with 18F-Fluoroestradiol PET. Documenting the
intra-tumoral heterogeneity of estrogen receptors using this
tracer has not yet been investigated and could be of interest.

It is worth noticing that our findings, even if innovative, were
observed in a small cohort and have to be validated by a larger
clinical study. The lack of statistical significance might also be due
to the limited spatial resolution of an analogic system and it could
be wise to test innovative digital systems in future projects. Of
note, PET third-order textural features were not considered
in the present study because their computation was very far
from that used for immunochemistry parameters. Indeed,
immunochemistry parameters could only use histograms or co-
occurrence matrixes. Also, inter-observer variability for the
quantification of metabolic heterogeneity was not presently
assessed. However, we have taken care to choose one of the
most reproducible delineation methods, namely, a gradient-based
method (33), thus limiting the variability linked to the operator.
However, other sources of variability must be taken into account
regarding the clinical export of such results: software, PET
systems, reconstructions, etc. Therefore, we acknowledge that
harmonization strategies will be necessary anyway. Finally
concerning immunochemistry methodology, the age of the
samples jeopardized the achievement of Ki67 expression
heterogeneity exploration because of faint immunostaining, not
enabling the digital-immunochemistry computation. For HER2
status, international standards require that it be tested at the time
of diagnosis, therefore on biopsies. The recommendations say
that it is not necessary to repeat it systematically on the piece of
excision, because there is a good agreement between the HER2
status tested on the biopsy and remade on the piece, due to a
usually homogeneous distribution when expressed (34–36).

To conclude, a heterogeneous distribution of estrogen receptors
within the tumor in immunochemistry appeared as an event-free
prognosticator in luminal non-metastatic breast cancers.
TABLE 3 | Cox regression analysis.

Test of the null hypothesis

Statistic DF Chi-square P

Likelihood ratio test 3 10.60 0.014

Score test 3 10.86 0.012

Wald test 3 9.24 0.026

Regression coefficients

Variable Value Standard error Wald Chi-square P HR HR lower bound (95%) HR upper bound (95%)

Skewness_ER 0.860 0.834 1.063 0.303 2.363 0.461 12.119

Age −0.033 0.033 1.406 0.306 0.967 0.907 1.031

Clinical stage III 1.245 0.858 2.105 0.147 3.474 0.646 18.681
January 202
1 | Volume 10 | Article 59905
HR, Hazard ratio.
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FIGURE 6 | Spearman correlation between skewness_ER and the age at
diagnosis (A) and comparison of skewness_ER between clinical staged I–II
versus staged III patients. Data is shown as Tukey boxplots (B).
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Furthermore, estrogen receptors heterogeneity is higher in youngest
patients and the highest-graded tumors. Interestingly, this appeared
to be correlated with PET histogram parameters which could
therefore become potential tools to reflect the tumor estrogen
receptors heterogeneity, provided these results are confirmed by
further larger and prospective studies.
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Radiotherapy - Medical Physics, Gustave Roussy, Université ParisSaclay, Villejuif, France

Background: The development and clinical adoption of quantitative imaging biomarkers
(radiomics) has established the need for the identification of parameters altering radiomics
reproducibility. The aim of this study was to assess the impact of magnetic field strength on
magnetic resonance imaging (MRI) radiomics features in neuroradiology clinical practice.

Methods: T1 3D SPGR sequence was acquired on two phantoms and 10 healthy
volunteers with two clinical MR devices from the same manufacturer using two different
magnetic fields (1.5 and 3T). Phantoms varied in terms of gadolinium concentrations and
textural heterogeneity. 27 regions of interest were segmented (phantom: 21, volunteers: 6)
using the LIFEX software. 34 features were analyzed.

Results: In the phantom dataset, 10 (67%) out of 15 radiomics features were significantly
different when measured at 1.5T or 3T (student’s t-test, p < 0.05). Gray levels resampling,
and pixel size also influence part of texture features. These findings were validated in
healthy volunteers.

Conclusions: According to daily used protocols for clinical examinations, radiomic
features extracted on 1.5T should not be used interchangeably with 3T when
evaluating texture features. Such confounding factor should be adjusted when adapting
the results of a study to a different platform, or when designing a multicentric trial.

Keywords: tissue features, heterogeneous phantom, homogeneous phantom, magnetic fields, texture, magnetic
resonance imaging
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HIGHLIGHTS

1. - Radiomic features at 1.5T are not interchangeable with 3T
when evaluating tumor texture

2. - Field strength should be taken into account in the
interpretation of the texture indices

3. - Signal to noise ratio should be taken into account in the
interpretation of the texture indices
INTRODUCTION

Radiomics is a fast growing discipline, which is undergoing
growing interest in computational medical imaging (1). This
field of medical study aims at extracting a large amount
of quantitative features from medical images using data-
characterization algorithms. This research field is faced with
multiple challenges (2). Radiomics is used in oncology to analyze
features that are invisible to the naked eye and that may be
associated with gene expression, tumor histology, treatment
response and patient outcome (3).

MRI has several advantages and disadvantages for radiomics
analysis (4–7). Among imaging modalities, it offers the best soft
tissue contrast. Conversely, differences in MRI parameters (field
strength, gradient characteristics), image acquisition protocols
(8, 9), sequences, pixel size (10), and the signal-to-noise ratio
(SNR) (11, 12) might impact radiomics features that are sensitive
to image quality.

The impact of MRI acquisition and processing on radiomics
reproducibility is scarcely reported. As in nuclear medicine, the
validation of a biologically relevant and reproducible clinical
biomarker based on radiomics implies standardization of
protocols across several centers (13). For example, 3T
compared with 1.5T MRI not only provides higher SNR,
allows increased image resolution, and modifies relaxation
times T1 and T2 but also induces some artifacts. Thus, there is
a clear need to evaluate the influence of field strength and related
settings like image resolution (pixel size, field of view [FOV], and
matrix) on radiomic features.

Recent articles using radiomics as biomarkers consider that the
major challenge is that grayscale MRI intensities, contrary to X-ray
CT, are not standardized and are highly dependent onmanufacturer,
sequence type and acquisition parameters (14, 15).

To address this problem, authors focused on image pre-
processing techniques that effectively minimize MR intensity
inhomogeneity in a tissue region (16–18), spatial resampling
(17–20) and brain arch extraction prior to image intensity
normalisation (21, 22).

Although several studies have shown variability in texture
analysis as a function of MRI acquisition parameters and gray
Abbreviations: 3D SPGR, 3D rapid gradient echo sequence; EORTC, European
Organization for Research and Treatment of Cancer; TR, Repeat time; MTX, Image
matrix; CoMat, The co-occurrence matrix; GRLM, The gray-level run length matrix;
GZLM, The gray-level zone length matrix; SBW, Sampling bandwidth.
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level discretization steps, none of them have evaluated the
combined impact of magnetic field strength, matrix size, pixel
size, intensity normalization, and gray level discretization pre-
processing methods on MRI radiomic feature values (9, 10, 23).

This study was designed to evaluate the impact of the field
strength (1.5T vs. 3T) on radiomic features. Two clinical 1.5 and 3T
MR devices from the same manufacturer were used to image the
same phantoms, mimicking homogeneous and heterogeneous
tissues. We also imaged healthy volunteers with the same
sequences acquisition and image processing parameters.

It is believed that this step is crucial before proposing
recommendations to standardize brain MRI pre-processing
techniques, which is in turn essential for guaranteeing reliable
radiomics-based models with big data and artificial intelligence.
MATERIAL AND METHODS

This prospective study was approved by the local institution
review board.

Homogeneous Phantoms
Our homogeneous phantom was designed to mimic cerebrospinal
fluid and opacified blood vessels. It was defined with different
gadolinium concentrations: eight 30-ml tubes were filled with
demineralized water mixed with increasing gadolinium chelate
concentration (Gadoteric Acid; Dotarem®, Guerbet): 0.25, 0.5,
0.75, 1, 1.25, 1.5, 1.75, and 2 mmol/l (Figures 1A, B). Those eight
homogeneous tubes were designated C1 to C8.

Heterogeneous Phantoms
Our heterogeneous phantom, designed to mimic the brain white
matter, was composedof agarose gel coating polystyrenebeads. The
proton density of agarose has similar characteristics and relaxation
times to biological tissues (10).We defined six heterogeneous tubes
and two homogeneous tubes. The 30-ml tubes were filled with
polystyrene beads of different diameters (1, 2 and 3 mm) in an
agarose gel solution (2%), either pure or mixed with 0.25 mmol/l
Gadolinium chelate (Figures 1C, D) (9). The tubes were displayed
in the tube slots of the Eurospin phantom (A Eurospin II-(TO5)
phantom; Diagnostic Sonar) glass cylinder, filled with 1% copper
sulfate (24). The eight tubes were designated T1 to T8.

Healthy Volunteers
Clinical MRI sequences were performed in 10 healthy volunteers
aged 21–26 years (six men, four women). Two MRI acquisitions
were performed on each MRI device within a 40-min time interval.

MRI Devices and Protocols
The influence of field strength was tested on two different MRI
devices from the same manufacturer (General Electric): an
Optima MR450w 1.5T superconducting magnet MRI installed
in 2016 with a 70 cm tunnel, 32 channels, 50 cm FOV (Z axis),
and gradients 40 mT SR 200 mT/m/s, and a Discovery MR750w
3T superconducting magnet MRI installed in 2012, with a 70 cm
tunnel, 32 channels, 50 cm FOV (Z axis), and gradients 44 mT/m
SR 200 T/m/s.
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We used ‘head and neck’ coils with 32 channels with a 35 cm
diameter adapted to the frequency of each MRI.

Acquisition
MRI imaging acquired was based on a T1-weighted 3D rapid
gradient echo sequence (3D SPGR). This sequence is used in
clinical imaging for rapid volumetric imaging and can be
acquired before or after contrast agent injection. The same
sequences parameters (matrix, FOV, plane) were used for
both MRIs. Parameters were chosen as recommended by the
European Organization for Research and Treatment of Cancer
(EORTC) to explore brain tumors: repeat time (TR) 6.1 ms; echo
time (TE) inphase 1.2–2.1 ms; NEX1; thickness 1 mm in
contiguous sections and bandwidth at 31 with 165 slices; 2–5-
min acquisition depending on the FOV and matrices. The
temperature was maintained between 19 and 21°C in each
MRI during acquisition. For the healthy volunteers, the same
3DT1 SPGR sequence was used covering the whole encephalon.
Frontiers in Oncology | www.frontiersin.org 3154
Acquisition Parameters: Field of View and
Matrix Size
For the phantom study, five couples of matrices and FOV,
determining various pixel size, were applied on both machines
(Table 1). The couples were chosen to be suitable with clinical
acquisition. In healthy volunteers only one acquisition per device
was performed, the FOV was fixed at 24 cm with an image matrix
of 256 × 256 on both machines.

Texture Analysis
Segmentations and texture features calculations were performed
with the freely available LIFEX software package (http://www.
lifexsoft.org) (25). A 6 cm3 VOI was placed in each homogeneous
and heterogeneous phantom’s tube. VOI position along Z axis of
tubes was controlled according to the reference markers located
on the phantom surface. For healthy volunteers, VOI were
displayed in six bilateral areas: corpus callosum, central gray
nuclei, and white matter of the centrum semiovale.
FIGURE 1 | (A) Homogeneous phantoms: eight 30-ml tubes filled with demineralized water mixed with increasing gadolinium chelate concentration (Gadoteric Acid;
Dotarem®, Guerbet): 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 mmol/l and a central demineralized water tube. (B) T1 weighted MRI image of the homogeneous
phantom (256x256 matrix, 18 cm FOV). (C, D) T1 weighted MRI image of the heterogeneous phantom (256;256 matrix, 24 cm FOV): in the two central columns are
six 30-ml tubes filled with polystyrene beads of different diameters (1, 2 and 3 mm) in an agarose gel solution (2%), either pure or mixed with 0.25 mmol/l gadolinium
chelate, and two 30-ml tubes filled with agarose gel solution (2%) and two different concentration of gadolinium chelate.
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In each VOI, 38 texture features (indices) were extracted from
first order and second-order statistics, arising from the analysis
of the intensity histogram and the calculation of three texture
matrices: the co-occurrence matrix (CM), the gray-level run
length matrix (GRLM) and the gray-level zone length matrix
(GZLM) (26). The texture analysis software needs to resample
the 16-bit gray levels of MRI images in order to calculate these
features. Voxel intensities were resampled in three different ways,
using 256, 128 and 64 discrete values.

Calculation of Signal-to-Noise Ratio
Mean SNR values were calculated on both MRIs by measuring
the ratio between the mean signal intensity in each pure agarose
sample and the standard deviation (SD) of the background noise
selected in the frequency encoding direction. Calculation of SNR
in healthy volunteers was also performed by measuring the mean
signal intensity in each white substance and the SD of the
background noise selected in the frequency encoding direction.

Statistical Methods
Two-by-two correlation texture features were calculated. The
statistical significant differences between 1.5 and. 3T were
determined by the Student’s t-test using paired data. In the
event of a lack of normal distribution (N < 30), results were also
presented as boxplots to demonstrate the trend of texture values
on 1.5T vs. 3T. The association between acquisition protocols
(magnetic field, matrix, FOV), textural changes in the phantom
(homogeneous vs. heterogeneous and polystyrene size), and
imaging features, was calculated with Spearman’s rho correlation
coefficients with P-values corrected for multiple tests. Statistical
analyses were performed using SPSS v24.0. The datasets generated
and analyzed are available from the corresponding author.
RESULTS

Phantom Study
Influence of Software Resampling Step
The analysis software needs to resample the images gray scale by
sub-sampling the number gray levels, in order to be able to
calculate texture features. Thus, we firstly explored the influence
of this sub-sampling step before exploring the influence of
magnetic field strength. We did this through the two-by-two
coefficient correlation calculation between the texture features
(Figure 2). A colored (red/blue) hierarchical clustering is
presented, showing the importance of the correlation beteween
coefficients (Figure 2) for each level of resampling. A strong
Frontiers in Oncology | www.frontiersin.org 4155
correlation was observed for a large number of texture features at
the 256 gray level (only 9 features were totally independent with
a Spearman’s rho <0,70). The correlation value decreased with
the sub-sampling in gray levels resolution. The gray level sub-
sampling influence on texture features was not significant for
parameters extracted from the histogram. In contrast, the gray
levels sub-sampling had a significant impact on parameters
extracted from matrices.

Influence of Field Strength on Homogeneous
Phantom
The majority of texture features values were significantly
different between the two magnetic fields (1.5T vs. 3T). For
example the mean value is presented for comparison between the
two fields strenght (Figure 3). The entropy mean value was
higher on 3T versus 1.5T by a factor of four (Figure 3).

Influence of Field Strength on Heterogeneous
Phantoms
The majority of texture features were significantly different
between the two magnetic fields (1.5T vs. 3T) according to the
Student’s paired t-test (Table 2). Concerning features from
histogram analysis, only Kurtosis, Entropy, and Energy did not
significantly differ beteween 1.5 and 3T. For the matrix-based
texture features, only LZHGE shows no significant difference.

Influence of Pixel Size
The pixels size, dependant on both matrix size and FOV size,
altered the radiomics output in homogeneous phantom
according to three behaviors. First of all, pixel size altered the
values of the texture features on both the 1.5 and 3T magnetic
field, for 15 indices: stdvalue, skewness, Homogeneity, Contrast,
Correlation, Entropy, Dissimilarity, ZLNU, GLNU, RLNU,
Coarseness, SZE, LZE, GLNU_1, and ZP. Figure 4A illustrates
the “Correlation” named feature. Second, pixel size altered the
value of texture features only on 1.5T, but not on 3T: Kurtosis,
Entropy H, Energy H, Energy, LRE, RP. Figure 4B illustrates
“Energy” named feature. Note that in contrast “Contrast_1”
named feature value was isolatedly modified only on 3T.
Thirdly, pixel size did not significantly alter the value of
texture features for: minvalue, meanvalue, maxvalu, HGRE,
SRHGE, LRHGE, HGZE, SZHGE, and LZHE.

The impact of matrix size and FOV as well as pixel size, on the
radiomics output was also studied with the heterogeneous
phantoms. Also three behaviors were observed. First, pixel size
altered the values of the texture features on the two magnetic
fields for: RLNU, Coarseness, SZLGE, GLNU and ZLNU. Figure
5A shows the example of “GLNU” named feature. Second, pixel
size altered the value of texture features only on 1.5T, but not on
3T for: Correlation, LGRE, SRLGE, GLNU, and LGZE. Figure
5B shows an example with the “SRLGE” named feature. Third,
pixel size did not significantly alter the value of texture features
for the other 29 texture parameters.

Ability of texture features to identify a difference between
phantom tubes, in both field sthrengh separatly, regardless of
the pixel size, is observed through the absolute Spearman’s
rho correlation coefficient (Table 3). Eight imaging features
TABLE 1 | Matrices and FOVs studied at 1.5 and 3T with the corresponding
pixel size.

MTX (pixels) Field of view (cm) Pixel size (mm)

256 x 256 24 0.938
256 x 256 18 0.703
256 x 256 12 0.468
256 x 128 24 0.937 x 1.875
128 x 128 24 1.875
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A

B

C

FIGURE 2 | Graphs showing influence of software resampling step on phantom study. Each graph representes the two-by-two coefficient correlation calculation
between the texture parameters at one resampling level. The difference in resulting patterns shows the influence of the software resampling step on texture
parameters calculation, particularly on parameters extracted from co occurrence matrix. (A) 256 gray levels resampling. (B) 128 gray levels resampling. (C) 64 gray
levels resampling.
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identified the (visually obvious) difference between homogeneous
and heterogeneous phantoms, with an absolute Spearman’s rho
correlation coefficient above 0.5. The following texture features
identified the difference between the different heterogeous
phantoms (mainly different according to their polystyrene beads
size and spatial distribution) in both field sthrengh separatly:
Frontiers in Oncology | www.frontiersin.org 6157
dissimilarity, LZHGE, entropy, homogeneity, SRE, SZE, LRE,
GLNU, RLNU, ZLNU, KurtosisH, LZE, entropyH, coarseness,
SRLGE, SRLGE, SZLGE, and LGRE. Two texture features
(coarseness, RLNU) identified the difference between
homogeneous tubes (mainly different by their Gadolinium chelate
concentration). As long as the pixel size remains sufficiently tiny
FIGURE 3 | Difference of phantoms textures features values at 1.5 and 3T. Example of the mean value. Each colored dot groups shows the mean value calculated
from repeated phantom MRI acquisition (one dot per MRI acquisition) in different homogeneous tubes with different concentration of Gadolinium chelate (on color per
tube), respectively at 1.5 and 3T.
A

B

FIGURE 4 | In vitro parameters value according to magnetic field strengh and pixel size: For correlation (A) and energy (B). Texture features extracted to the
homogeneous phantoms. Each colored dot groups and related box plot shows the value of correlation (A) and energy (B) calculated from repeated phantom MRI
acquisition (one dot per MRI acquisition) with different pixel size (one color per matrix/FOV couple), respectively, at 1.5 and 3T.
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small (1 mm or less in our study), 26 features were sensitive to
texture alteration.

Effect of Field Strength on MRI Texture
Features Values in Healthy Volunteers
Among the 38 parameters, significant differences were observed
with 15 texture features measured in healthy volunteers between
1.5 and 3T MRIs for the same anatomical region (Figure 6).
With constant fields (1.5T vs. 1.5T and 3T vs. 3T), those 15
texture features values appeared identical when measured in
symmetrical anatomical structures (eg corpus calosum or
caudate nucleus).
Frontiers in Oncology | www.frontiersin.org 7158
DISCUSSION

Our study demonstrates that field strength (1.5T vs. 3T)
influences numerous texture features values for both phantom
and human exploration. Our study also demonstrated that gray-
level resampling and pixel size influence some texture features.
Those results are of importance for clinical study design and for
patient examination and follow-up. In addition to that, our study
identifies texture parameters that are able to differentiate
phantom textures in our setup. It is important to mention that
these relevant textures parameters are significantly influenced by
field strength.

An increasing number of radiomics or deep-learning studies
use imaging based on MRI acquisitions (24–28). Confounding
parameters that can alter radiomic output have been largely
addressed for CT scans but less for MRIs (27, 29–31). Our study
aims to complete knowledge in the field of radiomics applied to
neuroradiology MRI acquisitions.

The presented study identifies the importance to consider the
impact of magnetic field strength on radiomics features values in
clinical practice. SNR is well-known to increase when the field
strength increases. We hypothesize that our result may be
partially due to this difference in SNR between the two MRI
machines. Even given that field strength is a major factor
A

B

FIGURE 5 | In vitro parameters value according to magnetic field strengh and pixel size: for GLNU_1 (A) and SRLGE (B). Texture features extracted to the
heterogeneous phantoms. Each colored dot groups and related box plot shows the value of GLNU_1 (A) and SRLGE (B) calculated from repeated phantom MRI
acquisition (one dot per MRI acquisition) with different pixel size (one color per matrix/FOV couple), respectively, at 1.5 and 3T.
TABLE 2 | Texture features presenting significant or non-significant differences
at 1.5 and 3T based on the heterogeneous phantoms examination (student’s
paired t-test).

Significant difference in
texture features value at 1.5
and 3T (p-values < 10-5)

LGRE, Homogeneity, SZE, ZP, Contrast, LGZE,
Correlation, RLNU Entropy, SRLGE, LRHGE,
HGRE, mean value, SRHGE, LRE, GLNU, HGZE,
GLNU, SRE, SZHGE, SZLGE, LRLGE, max value,
Dissimilarity Contrast, RP, std value, LZE, ZLNU,
skewness, H min, value Coarseness, LZLGE

Non-significant difference in
texture features value at 1.5
and 3Tp-values > 0.005

Energy H, Entropy H, Kurtosis H, LZHGE, Energy H
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influencing signal intensity, further factors modifying signal have
to be considered, as discussed in a recent literature review.
Mayerhoefer et al. previously demonstrated that MRI texture
features are influenced by change in SNR (5, 9). The difference in
SNR could be explained by magnetic field strength, but SNR is
also linked to the entire signal acquisition system (coils,
electronic device etc.). The European research project COST
B11 (31, 32), aimed at developing quantitative methods for MRI
imaging features extraction (between 1998 and 2002),
demonstrated that signal and subsequently texture features
were dependent on parameters such as configuration of the
transmitting and/or receiving RF coil (antenna), and the
number of active segments in the coil due to change in tilt angle.

Our results showed that most texture features are also
sensitive to the variations in matrix and FOV and
consequently spatial resolution, even if the clinical ranges in
matrix size and FOV for a dedicated organ may be thinner than
those investigated in literature physics studies. Of note, we
acquired images at different pixel sizes whereas most studies
Frontiers in Oncology | www.frontiersin.org 8159
changed the pixel size during post-processing. Our study showed
that as long as the pixel size remains sufficiently small (1 mm in
our experience), 26 features are sensitive to texture alteration.
This is in accordance with Jirák study. which also compared MRI
features measured on phantoms with nodular patterns in a
multicenter settings and showed that texture classification was
influenced by low resolution causing large errors (10).

For a defined magnetic field strength, our study showed that
part of the texture features differentiated the heterogeneous
phantoms from the homogeneous phantoms on all sequences,
irrespective of the pixel size, and part of radiomics features
differentiated phantoms with large and small spherical objects
(polystyrene beads) scattered in agarose gel. These results are in
agreement with literature (8, 10, 28, 29, 33, 34).

In our study, gray level resampling has a significant impact on
radiomic parameters. This observation is in accordance with
literature. Collewet et al. resampled gray scale using four
methods: original gray levels, same maximum for all images,
same average for all images, and limited dynamics. Results also
TABLE 3 | Tabulation of textures features and their ability to dissociate the different phantom’s tubes at both field strengths separately, regardless to pixel size.

Heterogeneous vs. Homogeneous media Size of polystyrene Gadolinium concentration

RLNU 0.796 Contrast 0.801 Coarseness 0.577
Coarseness 0.795 Contrast_1 0.795 RLNU 0.513
minValue 0.683 Dissimilarity 0.794 minValue 0.482
GLNU 1 0.617 LZHGE 0.789 GLNU 0.414
SZLGE 0.552 stdValue 0.786 SZLGE 0.371
SRLGE 0.534 Entropy 0.783 SRLGE 0.354
Entropy 0.645 Homogeneity 0.773 GLNU 0.347
Homogeneity 0.622 ZP 0.77 EntropyH 0.33
ZLNU 0.491 SRE 0.768 meanValue 0.328
EntropyH 0.484 RP 0.762 LGZE 0.325
LGRE 0.481 Energy 0.756 LGRE 0.315
LGZE 0.477 SZE 0.756 EnergyH 0.308
GLNU 0.468 LRE 0.741 KurtosisH 0.302
Contrast 0.458 GLNU 0.738 SkewnessH 0.293
EnergyH 0.439 RLNU 0.732 Correlation 0.262
Contrast 0.429 minValue 0.727 maxValue 0.246
Dissimilarity 0.423 ZLNU 0.698 Contrast 0.246
stdValue 0.421 KurtosisH 0.677 ZLNU 0.237
Energy 0.418 LZE 0.646 LRLGE 0.228
meanValue 0.409 EntropyH 0.624 LRHGE 0.198
KurtosisH 0.405 Coarseness 0.617 Entropy 0.195
RP 0.378 SRLGE 0.583 Energy 0.182
SRE 0.373 EnergyH 0.554 Contrast 0.181
Correlation 0.363 SZLGE 0.554 Dissimilarity 0.18
SZE 0.346 LGRE 0.524 LZLGE 0.173
LRE 0.329 LGZE 0.46 Homogeneity 0.165
ZP 0.329 LRHGE 0.373 stdValue 0.155
LRHGE 0.316 LZLGE 0.321 HGZE 0.15
LRLGE 0.3 meanValue 0.275 HGRE 0.145
SkewnessH 0.229 SkewnessH 0.267 RP 0.141
maxValue 0.228 LRLGE 0.244 SZHGE 0.137
LZHGE 0.21 maxValue 0.112 SRE 0.132
HGZE 0.185 HGRE 0.101 SRHGE 0.132
HGRE 0.174 GLNU 0.092 SZE 0.132
SRHGE 0.14 HGZE 0.087 LRE 0.111
SZHGE 0.132 SRHGE 0.041 ZP 0.104
LZLGE 0.097 SZHGE 0.037 LZE 0.077
LZE 0.096 Correlation 0.017 LZHGE 0.01
Ja
nuary 2021 | Volume 10 | Artic
Given are the names of the feature variables and the absolute Spearman’s rho correlation coefficient between imaging features and the type of phantom tube. First column: ability to
dissociate homogeneous versus heterogeneous tubes. Second column: ability to dissociate heterogeneous tubes according to their polystyrene beads sizes and their spatial distribution.
Third column: ability to dissociate homogeneous tubes according to their Gadolinium chelate concentration.
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showed the influence of the normalization method on the texture
classification accuracy.

While our study focuses on field strength, pixel size and gray
level resampling, previous studies have identified further MRI
sequence parameters of interest, including repeat time (TR), echo
time (TE) and receiver bandwidth (BW). Mayerhoefer et al.
evaluated how texture features varied according to acquisition
parameters (e.g., TR, TE, sampling bandwidth [SBW], and
spatial resolution). Interestingly, variations in TR, TE and SBW
had little effect on pattern discrimination results, as long as a
high-spatial resolution was observed. In addition, both studies
(Mayerhoefer’s and ours) showed higher stability with the
texture features derived from the co-occurrence matrix over
first order texture features for characterizing patterns close to
the resolution limits in varying conditions of TR/TE or pixel size.

Our approach to evaluate measures of radiomic features on
standardized phantoms modeled to the organ under
investigation is in line with the study by Bianchini et al. who
explicitely designed and used an organ specific phantom for the
optimization of radiomic studies of the female pelvis (35).

The question of the stability of our phantoms during the delay
between the different acquisition/machine can be raised. Jirák
et al. evaluated the long-term stability of the agarose phantoms,
the optimal choice of texture parameters, and compared different
MRI magnetic fields (3T, 4T, and 7T) (8, 10). They demonstrated
that phantoms are stable over 12 months. In our study, all
sequences were acquired on the same day within the same
hour of examination, consequently we did not expect to incur
phantom stability issue in our setup.

Optimal methodological guidelines are currently being
defined to optimize data analysis strategies (4, 36–38) in the
field of radiomics. Our results are critical since they demonstrate
that standardization strategies for the use of radiomics in MRI
should focus on addressing the challenge of heterogeneity in
protocols since there is a dramatical difference between
Frontiers in Oncology | www.frontiersin.org 9160
radiomics features extracted from the same patient or the same
phantom at 1.5 or 3T.

Our study demonstrates that field strength had a strong
influence on texture feature values, also spatial resolution and
gray scale resampling. Quantification of the impact of the various
parameters of imaging features is of major interest. Our findings
are clinically relevant as image acquisition was performed
according to daily used protocols for clinical examinations.
Those confounding factors need to be adjusted when designing
a multicentric trial and when adapting the results of a study to
different platforms.
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Computed tomography (CT) has revolutionized external radiotherapy by making it
possible to visualize and segment the tumors and the organs at risk in a three-
dimensional way. However, if CT is a now a standard, it presents some limitations,
notably concerning tumor characterization and delineation. Its association with functional
and anatomical images, that are positron emission tomography (PET) and magnetic
resonance imaging (MRI), surpasses its limits. This association can be in the form of a
trimodality PET/CT/MRI. The objective of this mini-review is to describe the process of
performing this PET/CT/MRI trimodality for radiotherapy and its potential clinical
applications. Trimodality can be performed in two ways, either a PET/MRI fused to a
planning CT (possibly with a pseudo-CT generated from the MRI for the planning), or a
PET/CT fused to an MRI and then registered to a planning CT (possibly the CT of PET/CT
if calibrated for radiotherapy). These examinations should be performed in the treatment
position, and in the second case, a patient transfer system can be used between the PET/
CT and MRI to limit movement. If trimodality requires adapted equipment, notably
compatible MRI equipment with high-performance dedicated coils, it allows the
advantages of the three techniques to be combined with a synergistic effect while
limiting their disadvantages when carried out separately. Trimodality is already possible
in clinical routine and can have a high clinical impact and good inter-observer agreement,
notably for head and neck cancers, brain tumor, prostate cancer, cervical cancer.

Keywords: computed tomography, magnetic resonance imaging, positron emission tomography, radiotherapy,
hybrid imaging
INTRODUCTION

External radiotherapy consists of treating an internal lesion, superficial and/or external lesion with
an external source of radiation. In the nineties, computed tomography (CT) has revolutionized
external radiotherapy by making it possible to visualize the tumor(s), corresponding to the target
volume, and the organs at risk (OARs), which are normal tissues whose sensitivity to radiation can
significantly influence treatment planning and/or prescribed dose. Because the treatment beams can
be afterwards individually oriented on the tumor in a three-dimensional (3D) approach, this
marked the beginning of 3D conformal radiotherapy (1).
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https://www.frontiersin.org/articles/10.3389/fonc.2020.614008/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.614008/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:pierre.decazes@chb.unicancer.fr
https://doi.org/10.3389/fonc.2020.614008
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.614008
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.614008&domain=pdf&date_stamp=2021-02-04


Decazes et al. Trimodality PET/CT/MRI for Radiotherapy
A following improvement was the control of the intensity of
the treatment beams which opened in the new millennium the
era of the intensity-modulated radiotherapy (IMRT) whose aim
is to deliver a high dose to the target volume while sparing the
adjacent tissues, notably OARs (2). With this technique, a
homogeneous dose is prescribed to the planning target volume
(PTV) that considers uncertainty in treatment planning by
encompassing the gross tumor volume (GTV, corresponding to
the delineated macroscopic and radiologically measurable
tumor) and the clinical target volume (CTV, which adds a
margin to the GTV to cover nearby areas at risk of hosting
microscopic disease) (3). The accuracy of anatomical localization
is of particular importance for stereotactic radiotherapy (SRT),
corresponding to an external beam radiotherapy used to deliver a
high dose of radiation very precisely, as a single dose or a small
number of fraction (4).

However, if CT imaging is a now a standard for radiotherapy,
it presents some limitations, notably concerning tumor
delineation which can be difficult, especially for soft tissues (3)
or for the characterization of the lesions. Other 3D imaging
modalities have therefore emerged for radiotherapy, in
particular, positron emission tomography (PET) and magnetic
resonance imaging (IRM). PET and MRI can notably visualize
biological processes distinct and complementary to purely
anatomical imaging. This led to the concept of biological target
volume (BTV) focused on a metabolic function. For example, a
boost radiotherapy can be performed on hypoxic tumors more
resistant to radiation, identified by 18F-fluoromisonidazole
(FMISO) PET/CT (5). Finally, CT, PET, and MRI can be used
to follow the patient during the radiotherapy, at the end of the
treatment, or during the follow-up (6)

If these 3D imaging modalities (CT, PET, and MRI) can be
considered separately, they can also be associated to form a
hybrid imaging, two by two (PET/CT, CT/MRI, PET/MRI) but
also as a trimodality PET/CT/MRI. Multimodality is already
possible in clinical routine with a high clinical impact and good
inter-observer agreement (7).

The aim of this mini-review is to present the concept of PET/
CT/MRI trimodality, its rationale for radiotherapy, and its
potential interest in characterizing tumor, performing
treatment planning, and doing ART.
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TECHNICAL PARTS

CT, MRI, and PET
CT is the reference imaging used by radiation oncologists for
target volumes and organs at risk delineation for radiotherapy
treatment planning. It is a high spatial resolution imaging
modality that provides anatomical information with good
spatial accuracy which is unaffected by geometric distortions.
CT also provides a mapping of tissue electron density necessary
for dosimetric calculations in radiotherapy. However, CT is an
irradiating imaging modality with certain disadvantages such as
lack of contrast in soft tissue and artifacts due to the presence of
metal (8).

MRI is an anatomical and functional imaging modality that
provides very good soft tissue contrast with millimetric spatial
resolution. Although it has the advantage of being non-irradiating,
the acquisition process is time consuming and this technique
presents many contraindications (9). The possibility of using only
MRI for radiotherapy treatment planning is however limited by
the absence of information on tissue electronic density, a non-
constant intensity of the images, and the presence of geometric
distortions that deform images, including the volumes of interest.

CT and MRI are often associated with PET, a functional
imaging modality. It provides a very good tumor/node contrast
and the possibility to acquire large field of view. However, it is an
irradiating examination with poor spatial resolution. In addition,
the presence of partial volume artifacts creates blurred edges
making more difficult the segmentation of volumes of interest.

Therefore, trimodality appears to be a technique of choice in
the treatment of cancer in radiotherapy. It provides anatomical
and functional information of high spatial resolution and allows
improving the definition of target volumes in radiotherapy (10–
12). A summary of the advantages and disadvantages of CT,
MRI, and PET separately and combined in PET/CT/MRI is
presented in Table 1.

Trimodality PET/CT/MRI
As trimodality allows obtaining additional information on
disease and tumors; images of each modality must be
performed in radiotherapy treatment position (13). Each
machine is equipped with a rigid table that is positioned on
TABLE 1 | summary of the advantages and disadvantages of CT, MRI and PET separately and combined in PET/CT/MRI.

CT MRI PET Trimodality PET/CT/MRI

Advantages Anatomy
Spatial resolution (1 mm)
Fast acquisition

Anatomy and function
Spatial resolution (1 mm)
Contrast (soft tissue)
Non-irradiating

Function
Tumor/Background Contrast
Acquisition field

Anatomy and function
Spatial resolution
Tumor characterization
Assessment of disease spread
Dosimetry for RT

Limitations Irradiating
Contrast
Artefacts (metal, teeth, etc.)

Long acquisition
Compatible MRI equipment with
high-performance dedicated coils
Contraindications
Artefacts (Distortions, no
uniformity, etc.)

Irradiating
Spatial resolution (>3–4 mm)
Partial volume (blurred edges)

Irradiating
Long acquisition
Image registration
Compatible MRI equipment with
high-performance dedicated coils
Contraindications MRI
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the device table. Each of these rigid tables has markers and an
indexing system that allows fixing radiotherapy immobilization
solutions. In order to have exactly the same position for all
acquisitions, it is essential that the equipment used is compatible
with all the installations and in particular non-magnetic
equipment for MR. Patient repositioning on each device is
done using markers on the skin (i.e. the positioning referential)
made during the planning CT and external positioning lasers.

Currently, no medical device allows simultaneous acquisition
of all three imaging modalities. The solution is to use two
separate imaging devices, a bimodal hybrid machine and an
independent machine. Two trimodality systems are possible: a
PET/MRI coupled with a CT or a PET/CT coupled with an MRI
(14). For each of them, image registration will be indispensable to
delineate volumes of interest and to perform radiotherapy
treatment planning (15).

For the solution with PET/MR, precautions must be taken for
data acquisition and processing. The patient is positioned on the
device with MR coils compatible with radiotherapy
immobilization fixations (16). To perform attenuation correction
on the PET image, an attenuation mapping of MR coils must be
performed before (17). The PET/MR images and the planning CT
are then registered before volume delineation and dosimetric
planning. An alternative to this solution is to replace the
planning CT by a synthetic CT, commonly referred as pseudo-
CT (18, 19). With the emergence of artificial intelligence, new
robust algorithms such as GANs (Generative Adversial Networks)
(20, 21) allow the creation of attenuationmaps, synthetic CT, from
the different MR images. Treatment planning can then be
performed without proceeding to the image registration step.

The second PET/CT + MRI solution is performed following
the same process; the patient has these two examinations one
after the other in the radiotherapy treatment position. Two
techniques can be used for this PET/CT + MRI workflow. The
first is to use a transfer system compatible with both imaging
devices (22). This consists of an air cushion bed with low
attenuation and a non-magnetic stretcher that allows the bed
to be moved from one device to the other without moving the
patient. The air-cushioned bed is placed on the rigid tabletop of
Frontiers in Oncology | www.frontiersin.org 3165
the first imaging device, and the patient is positioned in a
position in agreement with the positioning referential realized
for planning CT. At the end of the acquisition, the patient on the
air-cushioned bed is moved to the stretcher with the help of a
suction system and is then transferred to the second imaging unit
from the stretcher to the examination table using the same
suction system. In the end, the system allows the realization of
multi-modal acquisitions while keeping the patient in the
same position.

For the second technique, the PET/CT and MRI images are
also performed in radiotherapy planning conditions, but the
patient stands up between the two acquisitions. The patient is
positioned on the first imager in radiotherapy treatment
conditions using markers determined during planning CT
acquisition and external lasers. He is then positioned in the
same conditions to the second device. A summary of the
methods of achieving PET/CT/MRI trimodality for radiotherapy
is presented in Figure 1.

Image registration is the last step in the trimodality process.
By placing the acquisitions in a common coordinate system,
image registration allows correlating the information of each
modality and thus improving clinical interpretation (see Figure
2). The image registration can be considered by two
complementary approaches. The first one is material-based
and consists in carrying out all the acquisitions under exactly
the same conditions. First of all, the patient keeps the same
position for each acquisition with the same radiotherapy
immobilization fixations (23). The acquisition parameters will
also allow obtaining the best possible alignment of the images by
keeping the table height and choosing the same slice thickness,
the same acquisition plane or 3D acquisitions with a large field of
view (24).

This first approach facilitates the second software-based
approach. The image registration is done manually by a
physician or with the help of an automatic registration
algorithm. In this second case, it is necessary to first evaluate the
accuracy of the algorithm used. Several studies have evaluated CT-
MRI or trimodality registration algorithms, either on phantom or
from patient data (25–28). The average errors obtained are
FIGURE 1 | Diagram of the process for performing the PET/CT/MRI trimodality in the radiotherapy treatment position.
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between 0.4 and 2 mm. Eventually, a dedicated trimodality image
fusion method can be used for better target delineation (29). A
visual validation remains essential before proceeding with the
planning of radiotherapy treatment, since humans are capable of
detecting transformations of at least 1 mm and 1° (30). Image
fusion is the last step in this process of trimodality; it allows
correlating the information of each modality and improving the
clinical interpretation (see Figure 2).

The registration can however be altered by the presence of
artifacts, notably dental artifacts for CT (31, 32). Concerning
MRI, the presence of geometric distortions, related to the system
or the patient (33), can alter the registration. Algorithms can be
used to correct distortions, but the presence of residual
distortions has been mentioned (34). These distortions will
affect the registration as well as the resulting treatment
planning, in particular the target volume coverage in the case
of stereotactic treatment (35, 36). In the context of multimodality
for radiotherapy, the optimization of acquisition parameters is a
crucial step to facilitate image registration.
CLINICAL APPLICATIONS

Characterization
Combining PET/CT/MRI could provide complementary
information at baseline to assess the disease spread but also to
guide biopsy and characterize the tumor to help decision making.

For glioma, many MRI sequences, notably perfusion and
multiparametric and PET radiotracers, notably radiolabeled
amino-acid like 18F-FDOPA (FDOPA) and 18F-FET (FET), are
available (37). By their combination, it has been found that
metabolic (FDOPA PET/CT) and anatomic (MRI) could aid in
choosing the target to be biopsied under stereotactic conditions
in tumors without MR enhancement (38). In glioblastoma,
another study including multiparametric imaging with FET
Frontiers in Oncology | www.frontiersin.org 4166
PET/CT and FDG PET/MRI (including diffusion and dynamic
contrast enhanced perfusion) has shown that combining
parameters in a multivariate model enabled patient-specific
maps of recurrence probability, where FET was the most
important parameter (39). Comparable results were observed
in a study showing that combination of apparent diffusion
coefficient (ADC) and FET was more accurate to detect glioma
infiltration than standard MRI in enhancing gliomas (38); such
an approach could allow risk-adapted radiotherapy planning
(39). Finally, for brain metastasis, FDG PET associated with MRI
could be interesting for lesion targeting of stereotactic radiation
therapy in case of a previously irradiated recurrent tumor (40);
place of FDOPA in this indication has yet to be evaluated.

For cervical cancer, low ADC value in MRI and high FDG
SUV of the primary tumor are also predictive factors for
identifying high-risk patients (41). More complex parameters
with a radiomics analysis combining PET and MRI parameters
have also been found interesting to improve the prognostic
determination in locally advanced cervical cancer treated with
chemoradiotherapy (42).

Finally, for lung cancers, combination of MRI and PET can
help to determine the prognostic with poor issues when low
ADC value in MRI and high FDG SUVmax in PET are associated
before stereotactic body radiotherapy (43) or when parameters
derived from DCE and FDG PET parameters are associated (44).

Planning
For Head and Neck Cancers, it has been known for a long time
that image fusion between FDG PET and MRI/CT is useful with
regard to the determination of GTV and CTV for 3D conformal
radiotherapy with preservation of normal tissues for the majority
of the cases (45), with an interest to do them in treatment
position, notably in case of intra-cranial tumor extension, heavy
metal dental work, or contraindication of contrast enhanced CT
(46). A special irradiation setup including thermoplastic mask,
FIGURE 2 | Trimodal acquisition of a cancer of the base of the tongue with in (A) the frontal maximum intensity projection PET image, in (B) the axial PET FDG
acquisition, in (C) the axial T2 MRI acquisition, in (D) the axial CT acquisition, in (E) the axial PET/CT fusion and in (F) the axial PET/MRI fusion.
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flat table, and head support can be used to allow a precise image
co-registration of trimodality PET/CT MRI (47). As, according
to pathological correlative series, no imaging modality
completely encompasses the tumor, it can be useful to create a
composite target volume derived from multi-modal imaging
(48–51), notably for dose painting, consisting of delivering a
heterogeneous irradiation within the tumor volume, as FDG PET
and multiparametric MRI, in particular DWI, contain correlated
but also independent information (47, 52–54). Concerning PET,
other radiotracers than FDG can be used, such as FDOPA for
skull base paraganglioma (55).

At the brain level, for gliomas treated with 3D conformal
radiotherapy, or even by stereotactic radiotherapy by gamma-
knife (9), the integration of both MRI and amino-acid PET/CT
may help to improve GTV coverage by avoiding larger
discrepancies between physical and biological imaging techniques
(56–60), notably for the area of suspected non-enhancing tumor
(61). Moreover for meningioma, 68Ga-DOTATOC PET, exploring
the expression of SST2 receptors, can be usefully associated with
CT and MRI for the treatment planning (62), notably to detect and
assess the extent of infracranial meningioma invasion (63) andwith
an impact on sparing normal tissues (64), although all locations do
not benefit from this trimodality (65).

For lung cancer, improvements in radiotherapy techniques
(IMRT) make it important to manage the definition of volume
and its mobility (66). The delineation of tumor lesions in lung
cancer patients based on PET/CT is advisable in radiotherapy
treatment planning and for locally advanced non-small cell lung
cancer treated with IMRT or SRT, PET/CT being regarded as an
indispensable staging procedure. Respiratory gating techniques
(4D PET/CT) optimize radiotherapy of lung cancer to reduce
toxicities especially the pulmonary and cardiac late toxicities (67,
68). The place of trimodality PET/CT/MRI has however to be
defined in this indication.

For cervical cancer, a study on a cohort of 134 patients has
shown that dose delivered to the primary cervical tumor by the
combination of MRI-guided high-dose-rate PET/CT-guided
IMRT brachytherapy was highly correlated with local tumor
control (69). However, the delineation stays difficult as tumor
volume discrepancies are observed between MRI and PET/CT
GTV (70) even if it could decrease inter-observer variability (71).
If FDG PET/CT appears superior as a functional imaging
modality when compared with DW MRI in tumor contouring
(72), a threshold around 30% of the FDG SUVmax appears to
provide the best segmentation for this cancer (73).

Concerning prostatic cancer, multimodality, in particular
multiparametric MRI and 68Ga-PSMA PET/CT, offers now
large possibilities whatever the risk of the disease. In low-risk
patients, selection of patients for active surveillance or treatment
is improved; for intermediate-risk patients, it can help to select
patients for supplemental brachytherapy; for high-risk patients it
can help to guarantee adapted tumor volume segmentation, and
finally, for recurrent or metastatic disease, it offers opportunities
for more accurate assessment of tumor burden and treatment
response (74). Therefore, it was found in a prospective study that
combination of PSMA PET and multiparametric MRI provided a
Frontiers in Oncology | www.frontiersin.org 5167
reliable TNM staging in patients with prostate cancer with a
change in the therapeutic management for almost one third of
the patients (75), PSMA PET being particularly interesting to
delineate lymph node metastases (76). Moreover, for focal dose
escalation to the dominant intraprostatic lesions, 68Ga-PSMA
PET/CT and multiparametric MRI provide concordant results
for delineation in nearly 50% of the lesions, with a PET GTV
significantly larger than MRI GTV and which could have a role
in treatment planning with intraprostatic dose escalation (77),
notably because dose distribution within dominant intraprostatic
lesions defined by multiparametric MRI and/or PSMA PET
imaging is an independent risk factor for biochemical failure
after primary external beam radiation therapy (78). If further
studies are needed to confirm the optimal imaging techniques
(79), it is already possible to combine multiparametric MRI and
PSMA PET with higher tumor control probability with minimal
to no increase of normal tissue complication probability
compared to dose escalation on GTV defined on only one
imaging modality (80, 81). Moreover trimodality with PSMA
PET/CT/MRI can be used to orient the therapy in case of
biochemical relapse after treatment (82).

For rectal cancer, trimodality PET/CT/MRI has been known
to be possible for a relatively long time, notably to allow dose
escalation on primary tumor (83). As a mobile organ, non-rigid
registration between PET/CT and MRI shows good results, but
this must be considered for the treatment planning (83). FDG
PET/CT adds therefore information to MRI, with potentially a
larger GTV in total when using the union of MRI and PET, and
new or differently evaluated lesions in as many as 15% of the
patients, potentially changing the treatment (84); further studies
are necessary to well define the place of FDG PET in this
indication (85, 86).

Adaptative Radiotherapy
Functional and anatomical data can be used not only prior to
treatment, but also during and after treatment to guide ART, by
improving the tumor targeting while better sparing the OARs, as
well as determine tumor response (87). If the ART approach has
been based first historically on per-treatment CT and/or CBCT
images, it is now possible with MRI-linear accelerator (MRI-
linac), combining an MRI and a linear accelerator, allowing an
MRI acquisition before each treatment delivery (88). PET-linac is
also emerging even if it remains less mature than MRI-linac (89).
While extremely promising, the utilization of functional
adaptation in radiation therapy is only beginning and needs
more prospective clinical validation (90).
PERSPECTIVES

If trimodality can already be used in some indications, its
usefulness remains to be confirmed. To this goal, several
clinical studies are in progress. Concerning prostate cancer,
our team is exploring in the ongoing DEMETER study
(NCT03734757), which will include 20 patients, the interest of
the association of PET/CT with 18F-choline and MRI compared
February 2021 | Volume 10 | Article 614008

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Decazes et al. Trimodality PET/CT/MRI for Radiotherapy
to standard initial staging (CT, MRI and bone scan) to determine
radio-therapeutic volumes. Another recently opened phase 2
study (NCT04402151), which aims to include 50 patients, will
explore the interest of combination of PSMA PET/MRI to
radiation delivery with a MRI-Linac. This study is based on
the principle that the combination of PET PSMA andMRI allows
for better delineation of intraprostatic nodules and greater
diagnostic accuracy for the detection of metastatic disease.
Moreover, MRI-Linac also allows adaptive radiotherapy in
addition to the planning. For cervical cancer, a prospective
observational study including 237 patients (NCT01992861) is
exploring the role of MRI, including DCE, DWI, and
spectrometry, and FDG PET performed before, during and
after radiotherapy and chemotherapy. These could help to
predict patient’s response to treatment and plan treatment.
Finally, for head and neck cancers, our team is performing a
prospective observational study with 60 inclusions planned
called TRIMODAL (NCT03897166). Many questions will be
explored in this study, including the comparison of the
volumes determined on FDG PET/CT and on FDG PET/CT/
MRI, the quality of image registration (in particular by using an
air-cushion transfer system) and the use of algorithms for
Frontiers in Oncology | www.frontiersin.org 6168
anthropometric measurements in MRI and CT scanners (with
Dual x-ray absorptiometry as reference standard).
CONCLUSION

We have shown in this brief review the ways of carrying out a
trimodality PET/CT/MRI for radiotherapy and potential clinical
applications. Trimodality PET/CT/MRI, combining the strengths of
the techniques and limiting the respective weaknesses, reinforces the
role of imaging in guiding radiation therapy. Although this
multimodality is recent, it is already possible in clinical routine
with a high clinical impact and good inter-observer agreement.
Clinical studies are still needed to confirm its role in clinical routine.
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Thyroid cancers (TC) have increasingly been detected following advances in diagnostic
methods. Risk stratification guided by refined information becomes a crucial step toward
the goal of personalized medicine. The diagnosis of TC mainly relies on imaging analysis,
but visual examination may not reveal much information and not enable comprehensive
analysis. Artificial intelligence (AI) is a technology used to extract and quantify key image
information by simulating complex human functions. This latent, precise information
contributes to stratify TC on the distinct risk and drives tailored management to transit
from the surface (population-based) to a point (individual-based). In this review, we started
with several challenges regarding personalized care in TC, for example, inconsistent rating
ability of ultrasound physicians, uncertainty in cytopathological diagnosis, difficulty in
discriminating follicular neoplasms, and inaccurate prognostication. We then analyzed and
summarized the advances of AI to extract and analyze morphological, textural, and
molecular features to reveal the ground truth of TC. Consequently, their combination with
AI technology will make individual medical strategies possible.

Keywords: artificial intelligence, thyroid cancer, biomarker, personalized medicine, histopathology, fine-needle
aspiration biopsy, ultrasound
INTRODUCTION

Thyroid cancers (TC) have emerged in popularity over the past decades, with indolent TC
accounting for the majority (1–3). For advanced TC (1, 2) and aggressive papillary thyroid
carcinomas (PTC) (4), the incidence and mortality rates are also steadily increasing, which
makes it imperative to adopt more effective strategies for managing such changes. In the era of
personalized medicine, precise and efficient risk stratification is important before, during, and after
treatment, to choose and adjust its type and intensity. The foremost step is to discover key
information that reveals the biological behavior of TC. There are abundant anatomical structures
(texture, internal architecture, and spatial distribution) and molecular components (gene variation,
protein expression, etc.) within TC. So far, TC’s diagnosis mainly relies on image analysis (e.g.,
ultrasound images, cell smears, and tissue sections), but information obtained only by our naked
eyes hardly enables a comprehensive analysis of the tumors (5). Given patients and their disease
features, primary human cell cultures both from surgical biopsies and from fine-needle aspiration
(FNA) samples foster the targeted therapies (6). However, many tough challenges still hinder a clear
February 2021 | Volume 10 | Article 6040511172
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break of personalized treatment such as inconsistent rating
ability of ultrasound (US) physicians (7), uncertainty in
cytopathological diagnosis (8), difficulty in discriminating
follicular neoplasms (9, 10), and inaccurate prognostication.

Artificial intelligence (AI) is a series of technologies combined
to mimic human interaction (Figure 1). In some tasks, it matches
Frontiers in Oncology | www.frontiersin.org 2173
or exceeds human perception (11, 12). AI deals with various sorts
of omics information in parallel, easily identifying and modeling a
complicated nonlinear relationship in the image (13, 14). Several
studies have demonstrated that AI classifier is comparable to
radiologists while qualitatively analyzing thyroid nodules (TN)
(15–18). Furthermore, AI can extract and quantify key image
information, whereby image diagnosis converts from a subjective
qualitative task to objective quantitative analysis. This more
detailed and precise information is conducive to special risk
stratification and propels tailored management to transit from
the surface (population-based) to a point (individual-based).

In this review, we aimed to summarize the use of AI for
extracting and analyzing morphological, textural, and molecular
features to reveal detailed information and personalize therapies
for TC patients (Figure 2).
APPLICATIONS OF AI IN THE US
DIAGNOSIS OF TN

TN with several typical ultrasound features implies an increased
risk of malignancy, such as solid composition, hypoechogenicity,
irregular margin, microcalcification, and taller-than-wide shape.
However, these properties can neither confirm nor exclude the
diagnosis of TC (19). The observer’s agreement among multiple
centers is poorly satisfactory in assessing these features (7).
Thyroid Imaging Reporting and Data Systems (TI-RADS) are
enormously valuable to PTC as risk stratification systems, while
relatively less to FTC, MTC, and other malignancies (20).
Interestingly, the AI model appears to be a promising tool to
facilitate a better knowledge of TN via quantitative analysis of
typical US features and introduction of texture features.
FIGURE 1 | Main AI technologies and their relationships. AI. Artificial
intelligence; ML, machine learning; NN, neural network; DL, deep learning;
LDA, linear discriminant analysis; ELM, extreme learning machine; RF, random
forest; SVM, support vector machine; k-NN, k-nearest neighbor.
FIGURE 2 | The connection between the focus reviewed. Thyroid ultrasound is the preferred imaging examination for patients with thyroid nodules. When
sonographers consider certain thyroid nodules as malignant, the patient could choose fine-needle aspiration biopsy or surgery for a confirmed diagnosis. Artificial
intelligence (AI) uses ultrasound images, cell smears, and tissue slices to extract morphological, textural, and molecular features. This information is fed back into the
AI classifier to improve its performance and thus optimize thyroid cancer diagnosis and treatment workflow. As expected, whether these morphological (Mor.),
textural (Text.), and molecular (Mol.) features are related to each other warrants further study.
February 2021 | Volume 10 | Article 604051
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Performance of Typical US Features
Wildman-Tobriner et al. (21) developed an AI TI-RADS based on
the American College of Radiology (ARC) TI-RADS. This
system optimized the evaluation task through reassigned values
for eight ultrasound features, highlighting the status of
hypoechogenicity or marked hypoechogenicity. The novel AI TI-
RADS had better accuracy than ARC TI-RADS when performed by
inexperienced radiologists (55% vs. 48%) and experts (65% vs.
47%). Similar to other studies, ARC TI-RADS-based classifiers had
higher sensitivity and slightly lower specificity (21–24). Wu et al.
(25) evaluated quantitative echoic indexes for detecting malignant
TN, which showed higher accuracy than typical ultrasound
hypoechogenicity (>60% vs. 54.01%). We summarized the
outcomes of the ultrasound features employed by AI for
classification in Table 1 and found the most widely used features
were shape, margin, echogenicity, calcification, composition, and
size. In other words, these discriminative features seem to be the
focus for the AI model to learn (31, 37). Particularly, Choi et al. (30)
demonstrated several new calcification features associated with TN
malignancy, including shorter calcification distance ratio, smaller
amounts of calcification, and dimmer calcification. Chen et al. (28)
quantified TNmalignant risk through the calcification index. These
new features boosted diagnostic accuracy by combining qualitative
and quantitative methods (30, 38). Current AI classifiers focus on
benign and malignant TN dichotomy, and certain of them like the
S-Detect series have already become commercially available (32,
34). Furthermore, they are expected to predict more tumor-
Frontiers in Oncology | www.frontiersin.org 3174
biological behaviors such as lymph node metastasis (39, 40) and
pathological subtypes (41).

Performance of Texture Features
A meta-analysis suggested that a taller-than-wide shape displays
TN’s variation in space and orientation growth, and it is defined as
the most suggestive feature for malignancy (42). Texture features
refer to the characterization of spatial distribution and surface
orientation with numerical features (43). Thus, texture analysis as
a powerful alternative will make it possible for radiologists to
comprehend the TN in depth and gain a correct diagnosis.
Raghavendra et al. (44) integrated spatial and fractal texture
features and screened two features with an excellent area under
the curve in diagnostic practice (94.45%). Prochazka et al. (45) used
AI to extract texture features from US images independent of the
direction of the US probe and achieved better accuracy (94.64%).
Yu et al. (46) performed a numerical transformation of two US
features, unregulated shape and long/short-axis ratio into the
perimeter2/area and the angle between the long axis and the
horizontal axis. These new features showed excellent sensitivity
and specificity (100% and 87.88%, respectively) combined with 65
texture features. Collectively, AI mode has a role in integrating
typical ultrasonic and texture features, and this fusionmight sharply
reduce the differences in judgments among US professionals.
Despite the mounting advantages of the AI model in optimizing
and even creating workflows, many remarkable factors hold its
ultimate practice back in the real world. The three main factors are
TABLE 1 | Summary of key studies on the outcome of ultrasound features in artificial intelligence classifier identifying benign and malignant thyroid nodules.

Study Patients Features Classifiers Accuracy, % Sensitivity, % Specificity, % AUC

Lim et al. (26) 96 Size, margin, cystic change, echogenicity, and
macrocalcification

ANN 93.78 NA NA 0.949

Savelonas et al. (27) 387 Boundary features SVM NA NA NA 0.95
Chen et al. (28) 256 Calcification index AmCAD-UT NA NA NA 0.746
Zhu et al. (29) 618 Not well-circumscribed, solid, hypoechogenicity,

microcalcification, taller than wide, absent peripheral
halo

ANN 83.10 83.80 81.80 0.828

Choi et al. (30) 85 Quantitative calcification NN 82.80 83.00 82.40 0.83
Wu et al. (25) 333 Quantitative echogenetic values AmCAD-UT 70.32 33.12 93.31 NA
Xia et al. (31) 187 Margin, shape, composition, echogenicity, and

calcification
ELM 87.72 78.89 94.55 0.867

Choi et al. (32) 89 Size, margins, shape, composition, echogenicity,
orientation, and spongiform

S-Detect 1
(SVM)

81.40 90.70 74.60 0.83

Ouyang et al. (33) 1036 Size, margins, shape, composition, echogenicity,
calcification, aspect ratio, capsule, hypoechoic halo,
vascularity, and cervical lymph node status

RF + k-SVM NA NA NA 0.954

Kim et al. (34) 106 Size, margins, shape, composition, echogenicity,
calcification, orientation, and spongiform

S-Detect 2
(CNN)

73.40 81.40 68.20 NA

Liu et al. (35) 4655 Shape, context, and margin CNN 94.90 97.20 89.10 NA
Wildman-Tobrineret
et al. (21)

1264 ACR TIRADS Genetic
Algorithm

65.00 93.30 64.70 0.93

Guan et al. (36)a 2235 Margin size Inception-v3 90.50 93.30 87.40 0.956
Zhao et al. (22) 822 Size + ACR TIRADS ML 82.10 90.90 78.10 0.917
Jin et al. (23) 695 ACR TIRADS CNN 80.35 80.64 80.13 0.87
Bai et al. (24) 13984b ACR TIRADS CNN 88.00 98.10 79.10 NA
Febru
ary 2021 | Volu
me 10 | Article 6
ANN, artificial neural network; SVM, support vector machine; AmCAD-UT, a software integrating AI technology and clinicians’ expertise; NN, neural network; ELM, extreme learning
machine; RF, random forest; k-SVM, kernel support vector machine; Inception-v3, a kind of Googlenet; CNN, convolutional neural network; ML, machine learning; NA, not available; ACR
TRIADS, American College of Radiology Thyroid Imaging Reporting and Data System, the features included in this system is composition, echogenicity, shape, margin, and echogenic foci.
aThis study focused on the classification between papillary thyroid carcinomas and benign nodules.
bNodules, not patients.
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as follows: (i) poor availability of large-high-quality datasets to
guarantee great robustness (17); (ii) lack of explainability for
conclusions from a black-box algorithm to solidify the trust
between physicians and patients (47, 48); (iii) financial burden
from specific equipment and research costs (48).
APPLICATIONS OF AI IN
CYTOPATHOLOGICAL EVALUATION
FROM FNA

FNA is a primary preoperative examination to evaluate TN. Its report
system, the Bethesda System for Reporting Thyroid Cytopathology
(TBSRTC), is a state-of-the-art and category-based method for
clinicians’ decision-making. While TBSRTC includes six diagnostic
categories on the estimated risk of malignancy (ROM) (Table 2),
15%–30% of TN continues to be classified as indeterminate TN
(ITN), most frequently TBSRTC categories III, IV, and V (8). Recent
studies showed excellent consistency between machine learning (ML)
models and cytologists in malignancy prediction (49–51), in which
the ROM of TBSRTC III determined by the ML model was
considerably lower than by manual classification (4.2% vs. 18.8%)
(51). It’s worth noting that morphological and genetic classifications
assisted by the AI model are fairly accurate at distinguishing
malignancy from benign TN (52–54) (Table 3).
Frontiers in Oncology | www.frontiersin.org 4175
Performance of Morphological Features
PTC, the most common TC (>80%), arises from abnormal
growth of thyroid epithelial cells (28, 38). In recent years, AI
models with quantitative morphological features have tried to
improve follicular lesions’ recognition capacity (55–57). Sanyal
et al. (55) obtained the nuclear morphology and papillary
structure of PTC under two magnifications (×10 and ×40).
CNN model selected PTC from colloid goiter, follicular
neoplasms, and lymphocytic thyroiditis by right of these
features. Guan et al. (56) developed a new AI cytological
classification based on nuclear size and staining information
(the contours, perimeter, area, and means of pixel intensity),
whose results showed high accuracy (97.66%) to differentiate
PTC from benign nodules. Another research group also
confirmed this performance (57). They first derived nuclear
pleomorphism and area information and then reported the
weight of 17 cytological and morphological features. Finally,
their model successfully discriminated follicular carcinoma (FC)
from follicular adenoma (FA) (57) (Table 3).

The major difference between FC and FA is the occurrence of
capsular or vascular invasion (67). Preoperative examinations of
both US and FNA have difficulty in making a reliable diagnosis.
A highly vascularized tumor protrusion on the US strongly
indicates FC, which is rather rare yet (68). Seo et al. (69) took
full advantage of this difference by collecting information about
the tumor edge in the US images. The overall accuracy was
89.51% for distinguishing FC and FA. Yang et al. (70) segmented
the whole lesions of follicular neoplasms; as a result, the
classification accuracy was significantly improved to 96%. This
clarified the importance of internal information and affirmed the
study’s reliability by Savala et al. (57). Similarly, the diagnosis of
MTC and ATC is histology dependent (71, 72), yet now no
studies to our knowledge have answered the hope of AI in their
ultrasound and cytopathological diagnosis.
Performance of Biomolecules
For patients with ITN, repeat FNA or lobectomy might be
performed because management guidelines are more flexible (8,
73). Fortunately, molecular tests provide a noninvasive and
accurate option to reduce clinical and healthy uncertainty (8,
67). Each genome contains as much information as 100,000
photographs (74). Next-generation sequencing (NGS) can
perform high-speed analysis of multiple genes parallelly in a
single operation, producing billions of molecular fragments (74,
75). It has always been a crucial component of big data due to its
large volume of data, the astonishing velocity of the sequencing
methods, and the result output’s veracity. Traditional information
systems are less competent to analyze large and complex datasets
(76, 77). AI as a big data algorithm can integrate multi-omic data
in a different learning task, and automatically realize high-level
features’ detection or classification (77). Some genetic classifiers
have played their strengths in TN such as the Afirma gene
expression classifier (GEC) (58), gene sequence classifier (GSC)
(59), gene mutation-based classifier (ThyroSeq) (60, 78), and
microRNA-based classifier (RosettaGX Reveal) (61, 79). The
GEC involved 167 genes that displayed high sensitivity (92%)
TABLE 2 | The 2017 TBSRTC categories and their own risk of malignancy.

Diagnostic category Risk of malignancy if
NIFTP≠ CA (%)

I. nondiagnostic or unsatisfactory
Cyst fluid only
Virtually acellular specimen
Other (obscuring blood, clotting artifact, etc.)

5–10

II. Benign
Consistent with a benign follicular nodule (includes
adenomatoid nodule, colloid nodule, etc.)
Consistent with lymphocytic (Hashimoto) thyroiditis in
the proper clinical context
Consistent with granulomatous (subacute) thyroiditis
Other

0–3

III. atypia of undetermined significance or
follicular lesion of undetermined significance

6–18

III. follicular neoplasm or suspicious for a
follicular neoplasm
Specify if Hürthle cell (oncocytic) type

10–40

IV. suspicious for malignancy
Suspicious for papillary carcinoma
Suspicious for medullary carcinoma
Suspicious for metastatic carcinoma
Suspicious for lymphoma Other

45–60

V. Malignant
Papillary thyroid carcinoma
Poorly differentiated carcinoma
Medullary thyroid carcinoma
Undifferentiated (anaplastic) carcinoma
Squamous-cell carcinoma
Carcinoma with mixed features (specify)
Metastatic carcinoma Non-Hodgkin lymphoma
Other

94–96
This is an integrated table from reference (8).
February 2021 | Volume 10 | Article 604051
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and positive predictive value (PPV: 93%) but limited by its
relatively low specificity (52%) and negative predictive value
(NPV: 47%) (58). GSC expanded the gene spectrum to 10,196
genes by RNA-enhanced NGS. Compared to GEC in the same
samples, it made progress in screening for benign nodules
(sensitivity: 91.1% and specificity: 68.3%) (59) (Table 3). These
two classifiers are the most broadly accepted methods to rule out
malignant nodules. In general, ThyroSeq and RosettaGX Reveal
are more like rule-in entities. Nikiforova et al. (60) achieved a
robust sensitivity of 98% and a hopeful specificity of 81.8% by
employing the latest version of ThyroSeq (ThyroSeq V3) to
recognize a few cancers from most benign tumors. Steward et al.
(78) drew similar conclusions in a prospective blinded multicenter
study and reported 94% sensitivity and 82% specificity. RosettaGX
Reveal showed 98% sensitivity and 78% specificity when validated
in independent cases with all three pathologists’ agreement on the
histopathological diagnosis (61) (Table 3). However, whether the
mentioned classifiers could consolidate and complement each
other remains so ambiguous that we need to further investigate
the precise application strategy.

The multi-gene analysis is able to enhance diagnostic
performance, but it may be limited due to key genes’ deletion or
their reduced expression. Of note, the number of thyroglobulins has
been considered as a predictor of postoperative disease progression
(67). Therefore, the key proteins might provide some added
information for personalized therapy. Recent research has
confirmed that proteins are more stable than RNA in clinical
Frontiers in Oncology | www.frontiersin.org 5176
tissues (80). Sun et al. (62) completed a 14 protein-based ANN
classifier for TN classification. This model realized the accuracy of
90.62% and 87.53% in multicenter retrospective and prospective
samples respectively (Table 3). Some molecular alterations such as
BRAFmutations (81) are diagnostic of cancer, but most of the other
alterations (82, 83) show overlap in both benign and malignant
lesions. Therefore, assessing the risk of malignancy by molecular
test ing should depend on knowledge of the prior
cytological appearance.
APPLICATIONS OF AI IN
HISTOPATHOLOGICAL ANALYSIS

Upon reliable evidence obtained by the US and FNA examination,
tumor information from the resected specimens is significant for
pathologists to diagnosis TC such as tumor size, pathologic
types, and degree of malignancy. Molecular patterns in the
tumor microenvironment like cytokines, chemokines, and
adipocytokines interconnect the units of immune-inflammatory
responses (e.g., macrophages, neutrophils, lymphocytes) and
tumor nest (e.g., epithelial cancer cells, fibroblasts, endothelial
cells) (84). The more detailed information the pathologists
provide, the more precise the treatment strategies physicians
take. The combination of AI, morphology, and molecular
markers is expected to provide more information for TC
management at a patient’s level.
TABLE 3 | The main performance of artificial intelligence using pathological information in different task.

Study Subject Test Feature Task Classifier Accuracy,
%

Cochand-Priollet et al.
(54)

157 FNA Nuclear size, shape, and texture Classification of malignant and benign TN FNN 89.00

Daskalakis et al. (53) 115 FNA Nuclear morphology and texture Classification of malignant and benign TN k-NN + PNN +
Bayesian

95.70

Tomei et al. (52) 93 FNA mRNA expression Classification of malignant and benign TN BNN 88.80
Sanyal et al. (55) 544 FNA Nuclear morphology and papillary

structure
Classification of PTC and non-PTC ANN 85.06

Guan et al. (56) 279 FNA Nuclear contour Classification of PTC and benign TN VGG-16 97.66
Savala et al. (57) 57 FNA Cellular and nuclear morphology Classification of FC and FA ANN 100.00
Alexander et al. (58) 249a FNA RNA expression Classification of malignant and benign ITN SVM 65.00
Patel et al. (59) 183a FNA RNA sequencing Classification of malignant and benign ITN SVM 74.00
Nikiforova et al. (60) 175ab FNA Genetic alterations Classification of malignant and benign ITN Torrent Suite

software
90.90

Lithwick-Yanai et al.
(61)

150ab FNA MicroRNA expression Classification of malignant and benign ITN LDA + k-NN 83.65

Sun et al. (62) 64a FNA Protein Classification of malignant and benign TN ANN 87.53
Wang et al. (63) 10 Histo. Nuclear size and chromatin

concentration
Classification of FC, FA, and normal thyroid SVM 100.00

Ozolek et al. (64) 94 Histo. Nuclear morphology Classification of five follicular lesions LDA +k-NN 100.00c

Zhao et al. (65) 800 Histo. Gene variant pathways TC risk stratification ANN 77.50/
86.00d

Ruiz et al. (66) 495 Histo. Gene signature Prediction of lymph-node metastasis and disease-
free survival

LDA 82.63
February 2
021 | Volume 10 | Ar
FNA, fine-needle aspiration biopsy; Histo., Histopathology; TN, thyroid nodules; FNN, feedforward neural network; PNN, probabilistic neural network; BNN, Bayesian neural network; PTC,
papillary thyroid carcinoma; FC, follicular carcinoma; FA, follicular adenoma; ANN, artificial neural network; SVM, support vector machine; LDA, linear discriminant analysis; k-NN, k-nearest
neighbor; NA, not available.
aOnly the validation cohort is included, which in the study by Lithwick-Yanai et al. was specifically the set agreed upon by the three pathologists.
bFNA smears, not patients.
cThe accuracy in the group of FA vs. FC, FA vs. NG, FC vs. NG, FA vs. FV-PTC, and FC vs. WIFC.
dThe accuracy of recognizing the different- risk cases was 77.50% (low-risk) and 86.00% (high-risk) respectively.
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Performance of Morphological Features
The morphological feature is the final station of biological
behavior and genetic variation of TN. The morphological
performance supported by AI might be beneficial for the
accurate diagnosis of TN. Wang et al. (63) successfully classified
FA, FC, and normal tissues according to nuclear size and
chromatin concentration. Ozolek et al. (64) achieved nearly
perfect accuracy based on nine nuclear morphological features
for discriminating five thyroid follicular lesions: FA, FC, follicular
variant of PTC, nodular goiter, and the widely invasive FC (Table
3). However, further validation of these models is required due to
tumor complicated heterogeneity, which was also turned out in a
recent study for classifying TC, normal tissues, nodular goiter, and
adenomas using a deep learning model (85).

Morphologically, FV-PTC is a mixed entity for typical PTC
nuclear features and entirely or almost entirely follicular growth
patterns. FV-PTC includes two major subtypes: encapsulated
(EFV-PTC) and non-encapsulated or infiltrative variants (IFV-
PTC) (86). The former generally have RAS mutations like
follicular tumors, the latter often presents extrathyroidal
extension (ETE), lymphatic metastasis, and BRAF mutations
like classical PTC (cPTC) (87). Likewise, EFV-PTC usually
appears invasive or non-invasive, and the noninvasive
encapsulate tumor was redefined from carcinoma to borderline
tumor, noninvasive follicular thyroid neoplasm with papillary-
like nuclear features (NIFTP) (86). Up to a point, the invasive
EFV-PTC behaves more aggressively like FC, whereas NIFTP is
with indolent clinical behaviors like FA (87). It is believed that
invasive EFV-PTCmight develop from NIFTP (88). Borrelli et al.
(89) revealed a significant difference in miRNA expression of FA,
NIFTP, and IFV-PTC. In particular, just two miRNA (miR-10a-
5p and miR-320e) enable us to differentiate NIFTP from IFV-
PTC. In another study by Selvaggi (90), none of the
multinucleated giant cells (MGCs) were observed in 20 NIFTP
cases, while the amount of MGCs varied from 1 to 4 in 88% of
the FVPTC cases (both IFV-PTC and invasive EFV-PTC). When
utilizing computer quantitative analysis to classify FV-PTC,
Chain et al. (91) demonstrated the NIFTP nuclear area (mean,
54.8 mm2) and elongation was smaller than PTC (mean, 77.2
mm2); Hsieh et al. (92) addressed PD-L1 expression in NIFTP
was lower than in invasive EFV-PTC. These quantitative
morphological characteristics and definite molecular alterations
contribute to FV-PTC classification.

As FV-PTC’s definition stated, the coexistence of papillary
and variable follicular structures is so common in cancer nests
that we hold a positive view about more transitional or
intermediate categories between the cPTC and FV-PTC.
Undoubtedly, the clearer the learning exemplars, the easier it is
to learn for the AI model because it receives fewer error messages
(13). For greater efficiency, it’s essential to accurately classify the
training set and refine the output target.
Performance of Genetic Parameters
The American Thyroid Association risk stratification system and
the American Joint Committee on Cancer TNM staging system
are used to guide postoperative treatment and predict post-
Frontiers in Oncology | www.frontiersin.org 6177
treatment outcomes, which incorporate several parameters
including age, ETE, anatomic location, number, and size of
metastatic lymph nodes, aggressive variants, vascular invasion,
and distant metastasis. Nonetheless, these systems fail to routinely
recommend a genetic determination to guide individual
management (67, 93). Zhao et al. (65) selected 10 gene variant
pathways that involved inflammatory and immune responses to
determine the TC patients’ risk level. Based on these pathways, the
patients were divided into the high-risk and low-risk groups whose
survival time was significantly better than the former. Ruiz et al.
(66) demonstrated a 25-gene panel related to molecular pathways,
cell structure, and function was an independent prognostic factor
for lymphatic metastasis and disease-free survival (Table 3).
Further evidence is still warranted to address the value of this
genetic information to TN’s triage and biological behaviors. As AI
and gene testing technology upgrade, the cooperation of
traditional clinic-pathological parameters and gene molecules
might yield more precise therapeutic implications.
CONCLUSION

The future development of personalized medicine in TC still faces
several challenges like inconsistent rating ability of US physicians,
uncertainty in cytopathological diagnosis, difficulty in discriminating
follicular lesions, and inaccurate prognostication. AI’s application
has improved the efficiency and accuracy of diagnosis and treatment
in other tumors (94–96). A growing amount of medical information
can be extracted and analyzed through AI technology. This review
has innovatively offered ideas for the ultrasonic and pathological
testing out of these dilemmas in terms of morphological, textural,
and molecular features. As more key parameters are explored from
the tumor and its microenvironment, the AI-aided combination of
morphological and molecular features will pave the way for TC’s
protocol at the individual level.
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48. Martıń Noguerol T, Paulano-Godino F, Martıń-Valdivia MT, Menias CO,
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Université Toulouse III Paul
Sabatier, France

Reviewed by:
Giovannella Palmieri,

Federico II University Hospital, Italy
Yuchuan Hu,

Tangdu Hospital, China
Alexandre Nguyen,

CHU Toulouse Rangueil, France

*Correspondence:
Junlin Zhou

lzuzjl601@163.com

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 20 November 2020
Accepted: 03 March 2021
Published: 25 March 2021

Citation:
Zhou Q, Ke X, Man J, Zhang B,

Wang F and Zhou J (2021) Predicting
Masaoka-Koga Clinical Stage

of Thymic Epithelial Tumors Using
Preoperative Spectral Computed

Tomography Imaging.
Front. Oncol. 11:631649.

doi: 10.3389/fonc.2021.631649

ORIGINAL RESEARCH
published: 25 March 2021

doi: 10.3389/fonc.2021.631649
Predicting Masaoka-Koga Clinical
Stage of Thymic Epithelial Tumors
Using Preoperative Spectral
Computed Tomography Imaging
Qing Zhou1,2,3, Xiaoai Ke1,3, Jiangwei Man1, Bin Zhang1,2,3, Furong Wang1

and Junlin Zhou1,3*

1 Lanzhou University Second Hospital, Lanzhou, China, 2 Second Clinical School, Lanzhou University, Lanzhou, China,
3 Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China

Objectives: To investigate the utility of spectral computed tomography (CT) parameters for
the prediction of the preoperative Masaoka-Koga stage of thymic epithelial tumors (TETs).

Materials and Methods: Fifty-four patients with TETs, aged from 37 to 73 years old, an
average age of 55.56 ± 9.79 years, were included in the study.According to the Masaoka-
Koga staging method, there were 19 cases of stage I, 15 cases of stage II, 8 cases of
stage III, and 12 cases of stage IV disease. All patients underwent dual-phase enhanced
energy spectral CT scans. Regions of interest (ROIs) were defined in sections of the lesion
with homogeneous density, the thoracic aorta at the same level as the lesion, the outer fat
layer of the lesion, and the anterior chest wall fat layer. The single-energy CT value at 40-
140 keV, iodine concentration, and energy spectrum curve of all lesion and thoracic aorta
were obtained. The energy spectrum CT parameters of the lesions, extracapsular fat of
the lesions, and anterior chest wall fat in stage I and stage II were obtained. The energy
spectrum CT parameters of the lesions, enlarged lymph nodes and intravascular emboli in
the 3 groups were obtained. The slope of the energy spectrum curve and the normalized
iodine concentration were calculated.

Results: In stage I lesions, there was a statistically significant difference between the slope
of the energy spectrum curve for the lesion and those of the fat outside the lesion and the
anterior chest wall in the arteriovenous phase (P<0.001, P<0.001). The energy spectrum
curve of the tumor parenchyma was the opposite of that of the extracapsular fat. In stage II
lesions, there was a statistically significant difference between the slope of the energy
spectrum curve for the anterior chest wall and those of the lesion and the fat outside the
lesion in the arteriovenous phase(P<0.001, P<0.001). The energy spectrum curve of the
tumor parenchyma was consistent with that of the extracapsular fat. Distinction between
stage I and II tumors be evaluated by comparing the energy spectrum curves of the mass
and the extracapsular fat of the mass. The accuracy rate of is 79.4%. For stages III and IV,
there was no significant difference in the slope of the energy spectrum curve of the tumor
parenchyma, metastatic lymph node, and intravascular embolism (P>0.05). The energy
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spectrum curve of the tumor parenchyma was consistent with that of the enlarged lymph
nodes and intravascular emboli. The two radiologists have strong consistency in
evaluating TETs Masaoka-Koga staging, The Kappa coefficient is 0.873,(95%CI:0.768-
0.978).

Conclusion: Spectral CT parameters, especially the energy spectrum curve and slope,
are valuable for preoperative TET and can be used in preoperative staging prediction.
Keywords: thymic epithelial tumor, spectral CT, imaging, Masaoka-Koga clinical staging, predicts
INTRODUCTION

Thymic epithelial tumors (TETs), which include thymoma and
thymic cancer, originate from thymic epithelial cells and are
composed of different proportions of epithelial cells and
lymphocytes. TETs are the most common tumors in the
anterior mediastinum, accounting for 47% of tumors in this
location (1). However, their overall incidence is not high,
accounting for 1.3–2.2/106 cases (2, 3). TETs are common in
elderly people but rare in children and have been reported in
patients aged 10 to 80 years, with an average age of 50 to 60 years
among men and women (4). Although some patients present
with paraneoplastic autoimmune diseases, most patients have no
clinical symptoms. Among these diseases, myasthenia gravis is
the most common, affecting approximately one-third of patients.
Surgery remains the most common treatment for TETs.
Thoroughness of tumor resection is an important factor that
influences the prognosis of patients, as the prognosis is
significantly better after complete resection than after
incomplete resection (5). Tumor diameter, tumor resection
style, World Health Organization (WHO) classification,
Masaoka-Koga stage, and postoperative radiotherapy and
chemotherapy are independent factors that affect the prognosis
of patients with thymoma. As a result of the correlation between
the CT imaging characteristics of TETs and clinical stage (6, 7),
tumor stage is evaluated before surgery based on imaging
parameters and appropriate treatment strategies are applied.
Computed tomography (CT) is currently the preferred method
for identifying and characterizing thymic tumors and provides
higher sensitivity and specificity (8). The current CT-based
staging approach for TETs is based on the appearance of
tumor images, and they remain difficult to accurately stage;
magnetic resonance imaging (MRI) combined with diffusion-
weighted imaging and apparent diffusion coefficient values can
also be used in quantitative analyses (9). The staging of TETs
using MRI is more accurate than that when using CT; however,
MRI scanning requires higher, for example, longer inspection
time and restrictions on metal foreign bodies in the body. More
convenient, non-invasive, and quantifiable indicators are
necessary for preoperative staging.

There are many staging systems for TETs (10), and the most
commonly used is the Masaoka-Koga staging system. The
Masaoka-Koga staging system is based on the tumor invasion
range, surrounding structure invasion and implantation, and
distant metastasis, among other factors (8, 11, 12). The latest
2182
staging system is the eighth edition of the TNM staging system
(13). A recent study (14) collected 217 responses from 37
countries in four continents; 78% of scholars thought the TNM
classification was useful (N=169), and 87% of scholars still use
the Masaoka-Koga staging system (N=189). Staging is related to
the prognosis of TETs (9, 15), and the treatment of different
stages of disease are also different. Surgery is generally considered
an effective treatment method (16, 17); however, some
researchers have pointed out that for some patients with
thymoma, surgical treatment may not be the best treatment
method (18). It has been reported that for patients with stage I
thymoma according to the Masaoka-Koga staging, open surgical
resection carries the risk of potential surgical damage and other
complications, and CT-guided percutaneous radiofrequency
treatment of stage I thymoma is related to minor trauma,
fewer complications, and good treatment results (19). In
patients with Masaoka-Koga stage I and II thymoma, after
appropriate surgical resection, auxiliary radiation treatment has
no obvious effect on outcomes (20). Platinum-based
chemotherapy remains the standard first-line treatment for
patients with advanced or metastatic TETs (21).

Based on the correlation between stage and tumor treatment
decisions and prognosis, it is necessary to use non-invasive imaging
methods to predict the stage before surgery; CT is currently
the preferred method for identifying and characterizing thymic
tumors, providing higher sensitivity and specificity (8, 22).
Preoperative CT analysis and understanding of the tumor
margin, capsule, surrounding invasion levels, pleural implants,
lymph nodes, and distant metastases can predict the stage of
TETs and have a positive effect on patient treatment and
prognosis (23). However, conventional CT is subjective and is
based on characterization of the lesion, multiple spectral CT
variables can be used to quantify tumor indicators and more
accurate preoperative staging.
MATERIALS AND METHODS

This study was approved by the institutional review board, and
the requirement for written informed consent was waived due to
the retrospective nature of this study.

General Information
Sixty-two patients with surgically and pathologically confirmed
TETs treated in our hospital from October 1, 2014 to December
March 2021 | Volume 11 | Article 631649
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31, 2020 were enrolled; among these, eight patients with
insufficient image quality for regions of interest (ROIs) to be
drawn were excluded. Finally, 54 patients were included,
comprising 27 men and 27 women aged from 37 to 73 years
old, with an average age of 55.56 ± 9.79 years. According to the
Masaoka-Koga staging system, 19 patients had stage I, 15
patients had stage II, 8 patients had stage III, and 12 patients
had stage IV disease. The 54 patients were divided into three
groups: non-invasive group (stage I), surrounding fat group
(stage II), and surrounding structures and distant metastasis
group (stages III and IV). The most common clinical
manifestations were intermittent cough, chest tightness, chest
pain, and shortness of breath. Eight patients had myasthenia
gravis, which manifested as drooping eyelids, limb weakness, and
difficulty chewing. Seven of these patients were identified during
physical examination, and three patients had recurrence. All
patients were treated surgically, and the specimens were sent for
pathological examination postoperatively.

Instruments and Methods
All patients underwent plain and dual-phase-enhanced energy
spectrum CT (Discovery CT 750 HD; GE Healthcare, Waukesha,
WI, USA). Patients were supine during the scan, which was
conducted from the apex to the bottom of the lung. The scanning
parameters were as follows: flat scan tube at a voltage of 120 kV,
enhanced scan tube at a voltage of 80/140 kV with fast switching,
rack speed of 0.6 s/r, tube current of 325 mA, pitch of 0.983:1,
detector coverage of 40 mm, collimator width of 1.25 mm, and
reconstruction layer thickness and layer spacing of 1.25 mm. An
iodinated contrast agent (Ultravist 370, Bayer Schering Pharma,
Berlin, Germany) was used at a flow rate of 3–4 mL/s and a dose
of 1.0 mL/kg injected via the anterior cubital vein using a high-
pressure syringe (Ulrich Medical, Ulm, Germany). The trigger
threshold for thoracic aorta monitoring was 80 Hounsfield units.
The arterial phase scan was performed 8 s after the trigger, while
the venous phase scan was performed 30 s after the trigger.

CT Image Analysis
Two radiologists used the AW 4.6 workstation GSI Viewer software
to perform CT scans. ROIs 5×5 mm in size were delineated in
homogeneous lesions while avoiding necrotic cysts, calcification,
and vascular shadows. ROIs in the thoracic aorta, the fat layer
within 10 mm outside the lesion capsule, and the fat layer on the
anterior chest wall were delineated with 5×5-mm ROIs. Enlarged
lymph nodes and intravascular emboli were outlined by ROIs of the
same size. Each ROI was drawn three times to obtain an average
value. The single-energy CT value, energy spectrum curve, and
iodine concentration in the ROI was recorded. The standardized
iodine concentration (NIC) was determined using the IC lesion/IC
chest equation, where IC lesion is the iodine concentration in the lesion
and IC chest is the iodine concentration in the thoracic aorta. The
slope was calculated as (CT40−CT100)/(40−100), where CT40 is the
CT value at 40 keV and CT100 is the CT value at 100 keV.

Pathological Images
Pathological images were first observed under low and high
magnification by a pathologist with 3–5 years of work
Frontiers in Oncology | www.frontiersin.org 3183
experience. Diagnosis was based on the WHO histological
classification. Microscopic observation was performed to assess
whether the tumor had invaded the surrounding fat and
connective tissue, and whether it had invaded the mediastinal
pleura, pericardium, and lungs. It was also clarified whether an
intravascular embolus was a thrombus or a tumor, and whether
there was metastasis to the lymph nodes. The diagnosis was
confirmed by a pathologist with more than 10 years of
work experience.

Masaoka-Koga Stage
In combination with the postoperative pathology, tumor staging
was performed based on whether the tumor capsule was intact
during surgery, the surrounding fatty layer was clear, and the
mediastinal pleura, pericardium, lungs, and blood vessels were
adherent and extensively invaded (8, 11, 12). Stage I tumors were
defined as those where the capsule was intact and no extracapsular
invasion was observed under the microscope. Stage II tumors were
defined as those where macroscopic and microscopic invasion of
the mediastinal adipose tissue could be observed, with no invasion
of the mediastinal pleura or pericardium. Stage III tumors were
defined as those with visible invasion of adjacent structures (such
as the pericardium, large blood vessels, or lungs) were observed.
Stage IV-A tumors were defined as those with pleural
dissemination (pleural or pericardial metastasis) (was observed)
and stage IV-B tumors were defined as those with lymph or blood-
based metastasis to a location outside the thoracic region was
observed. Based on the extent of tumor invasion, the tumors were
divided into a non-invasive group (stage I), invasion of the
surrounding fat group (stage II), and invasion of surrounding
structures (pleura, pericardium, lung, blood vessels) and distant
metastasis group (stages III and IV).We performed TNM staging
based on all data and performed a consistency analysis with
Masaoka-Koga staging.

Statistical Methods
SPSS 23.0 software was used for analysis; t-test was used for
quantitative comparisons between two groups. Multiple sets of
quantitative data were analyzed by one-way analysis of variance,
and variances were analyzed using the Kruskal-Wallis test. Pairwise
comparisons between groups were performed using the Bonferroni
method. The Kappa value was used to evaluate the agreement
between two observers. Calculate the accuracy of the energy
spectrum CT parameters for TETs staging. P < 0.05 indicating
that the differences were statistically significant.
RESULTS

For all 54 cases, there was a strong consistency between TNM
staging and Masaoka-Koga staging (ICC=0.852). According to
TNM staging, there were more stage I cases than according to the
Masaoka-Koga staging. In the two staging methods, there was no
significant change in the data for stages III and IV. The two
radiologists have strong consistency in evaluating TETs
Masaoka-Koga staging, The Kappa coefficient is 0.873 (95% CI:
0.768-0.978).
March 2021 | Volume 11 | Article 631649

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. Spectral CT Imaging Predicts Staging
Energy Spectrum CT Results for Three
Groups of Lesions
The single-energy CT values at 40-140 keV, NIC, and slope of the
energy curve in the non-invasive group (stage I), surrounding fat
group (stage II), and surrounding structures (pleura,
pericardium, lung, blood vessels) and distant metastases group
(stages III and IV) were not significantly different (Table 1).

CT Results for Stage I and Stage II
Lesions, Lesion Extracapsular Fat, and
Anterior Chest Wall Fat
In stage I, the difference in the slope of the energy spectrum curve
of tumor parenchyma, tumor extracapsular fat, and anterior
chest wall fat was statistically significant (P < 0.001, P < 0.001)
(Table 2) (Figure 1). In stage II, the difference between the
tumor parenchyma, the fat outside the tumor, and the slope of
the spectrum curve of the anterior chest wall was statistically
significant (P < 0.001, P < 0.001) (Table 3) (Figure 2). According
to the slope of the energy spectrum curve of the outer fat layer of
the lesion, combined with the energy spectrum curve graph, the
accuracy of spectral CT for predicting the Masaoka-Koga stage I
and II lesions was 79.4%.

CT Results for Stage IV Lesions,
Intravascular Tumor Thrombi, and
Metastatic Lymph Nodes
There were no significant differences in the slopes of the energy
spectrum curves for stage IV lesions, metastatic lymph nodes,
and intravascular emboli (P > 0.05) (Table 4) (Figures 3 and
4).The slope of the energy spectrum curve combined with the
energy spectrum curve graph, the accuracy of assessing lymph
T
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node metastasis and embolic properties is 80.0%.
DISCUSSION

Three parameters were evaluated in this study, the single energy CT
value of the lesion, the NIC, and the slope of the energy spectrum
curve. The single-energy imaging mode of energy spectrum CT
simulates the image of an object in the presence of a
monochromatic X-ray source. The attenuation of different tissues
changes in accordance with changes in the X-ray beam energy. A
lower single-energy beam can increase the density resolution of the
image, which helps to show lesions. The slope of the energy
spectrum curve reflects the magnitude of the enhancement. The
larger the slope is, the greater the magnitude of the enhancement
will be, and the energy spectrum curve of the tissue changes greatly
at low energy. Therefore, low energy (40-100 keV) was selected to
determine the slope of the energy spectrum curve for each group.
The shape-like energy spectrum curve may reflect the homology of
the region of interest. The iodine (water) concentration of the lesion
was directly obtained from the material separation map for the
energy spectrum CT, which quantitatively reflects the iodine uptake
and distribution in the lesion. To eliminate individual differences,
the NIC was used to compare the iodine (water) base values. The
NICwas more reliable than the iodine concentration (24). NIC is an
indirect reflection of the iodine content of a lesion, that is, the degree
of strengthening.

The 54 patients evaluated in this study included 19 with stage
I, 15 with stage II, 8 with stage III lesions, and 12 with stage IV
lesions according to the Masaoka-Koga staging. The 54 patients
were divided into three groups: non-invasive group (stage I),
ABLE 1 | Spectral CT multi-parameter results of the three groups in stages (Arterial phase).

arameters Non-invasive group
(stage I)

Invasion of the surrounding fat group
(stage II)

Invasion of surrounding structures and distant metastasis
groups (stage III和IV)

F/H P

0 keV 179.51 ± 48.56 177.28 ± 43.52 169.24 ± 39.12 0.291 0.749
0 keV 130.22 ± 31.71 129.98 ± 28.93 123.04 ± 25.68 0.373 0.691
0 keV 98.86 ± 21.42 99.53 ± 21.25 92.15 ± 18.06 0.744 0.481
0 keV 79.87 ± 16.32 80.90 ± 15.92 74.10 ± 13.39 1.044 0.360
0 keV 68.60 ± 14.05 70.30 ± 12.96 64.67 ± 10.92 0.892 0.416
0 keV 61.11 ± 12.61 63.63 ± 11.55 58.23 ± 10.35 0.889 0.418
00 keV 55.56 ± 12.00 58.28 ± 10.84 53.06 ± 9.81 0.912 0.408
10 keV 51.65 ± 11.76 54.49 ± 10.44 49.38 ± 9.59 0.915 0.408
20 keV 48.89 ± 11.71 51.88 ± 10.23 46.80 ± 9.51 0.916 0.407
30 keV 46.77 ± 11.72 49.85 ± 10.15 44.81 ± 9.48 0.906 0.411
40 keV 45.13 ± 11.75 48.26 ± 10.07 43.27 ± 9.49 0.891 0.417
IC 0.15 ± 0.05 0.12 ± 0.04 0.13 ± 0.04 1.191 0.313
urve slope -2.06 ± 0.74 -1.98 ± 0.63 -1.93 ± 0.58 0.191 0.827
March 2021 | Volume 11 | A
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TABLE 2 | Slopes of energy spectrum curves, extracapsular fat and anterior chest wall fat of TETs stage I.

Slope of the energy spectrum
curve of the lesion

Slope of energy spectrum curve of
extracapsular fat in lesions

Slope of energy spectrum curve of
anterior chest wall fat

F/H P

Arterial phase -2.00 ± 0.76 1.94 ± 0.69* 2.32 ± 0.33 293.52 0.000
Venous phase -2.10 ± 0.51 1.72 ± 0.48* 2.08 ± 0.33 500.89 0.000
Compared with the slope of the lesion energy spectrum curve, *P < 0.05; Compared with the slope of the anterior chest wall energy spectrum curve, #P < 0.05.
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invasive surrounding fat group (stage II), and invasive
surrounding structures (pleura, pericardium, lung, blood
vessels) and distant metastasis group (stages III and IV). In the
qualitative diagnosis, irregular or lobed edges lesions on
Frontiers in Oncology | www.frontiersin.org 5185
conventional CT. It may indicate that the tumor capsule and
extracapsular fat have been invaded (25). In this study, ROIs
were delineated in stage I and stage II solid lesions, extracapsular
fat, and anterior chest wall fat. The energy spectrum curves for
FIGURE 1 | Stage I, (A) 70 keV single-energy CT value of the arterial phase is used to outline the ROI of the lesion; (B) spectrum of arterial lesions (green), spectrum
of fat outside the lesion (purple) and spectrum of anterior chest wall fat (yellow).
TABLE 3 | Slopes of energy spectrum curves of, extracapsular fat and anterior chest wall fat TETs stage II.

Slope of the energy spectrum curve of the lesion Slope of energy spectrum curve
of extracapsular fat in lesions

Slope of energy spectrum curve
of anterior chest wall fat

F/H P

Arterial phase -1.91 ± 0.66 -1.27 ± 0.57* 2.18 ± 0.27 223.54 0.000
Venous phase -2.27 ± 0.48 -1.46 ± 0.53*# 2.05 ± 0.28 409.71 0.000
March 2021 | Volume 11
 | Article 6
Compared with the slope of the lesion energy spectrum curve, *P < 0.05; Compared with the slope of the anterior chest wall energy spectrum curve, #P < 0.05.
FIGURE 2 | Stage II, (A) 70 keV single-energy CT value of the arterial phase is used to outline the ROI of the lesion; (B) arterial lesion spectrum (yellow), extra-focal
fat spectrum (red) and anterior chest wall fat spectrum (green).
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the lesion, extracapsular fat, and anterior chest wall fat were
obtained. In stage I lesions, the energy spectrum curve of the
tumor parenchyma and the energy spectrum curve of the
extracapsular fat have the opposite shape, and the energy
Frontiers in Oncology | www.frontiersin.org 6186
spectrum curve of the extracapsular fat and the front chest
wall fat have the same shape, indicating that the lesion did not
extend outside the capsule. The slope of the spectrum curve for
the anterior chest wall fat in stage II lesions showed statistically
TABLE 4 | Slope analysis of spectrum curves of lesions, metastatic lymph nodes, and intravascular emboli in group 3 (stages III and IV).

Slope of the energy spectrum curve of the lesion Slope of the energy spectrum curve
of metastatic lymph nodes

Slope of the energy spectrum curve
of intravascular emboli

F/H P

Arterial phase -1.83 ± 0.64 -1.53 ± 0.68 -1.45 ± 0.65 0.964 0.393
Venous
phase

-1.72 ± 0.59 -1.69 ± 0.57 -1.37 ± 0.77 2.482 0.101
March 2021 | Volume 11 |
 Article 6
FIGURE 3 | Stage IV, (A) 70 keV single-energy CT value of the arterial phase is used to outline the ROI of the lesion; (B) arterial lesion spectrum (red), lymph node
spectrum (green).
FIGURE 4 | Stage IV, (A) 70 keV single-energy CT value of the arterial phase is used to outline the ROI of the lesion; (B) Arterial lesion spectrum (red), intravascular
emboli spectrum (green).
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significant differences with those of the spectra for the lesion and
the lesion’s extracapsular fat, indicating that the lesion had
invaded the extracapsular fat. According to the spectrum
curve, the lesion and the fat in the outer capsule of the lesion
were homologous. In this study, ROIs were delineated in
pathologically confirmed mediastinal lymph node with
metastasis, intravascular tumor emboli, and solid lesions. The
spectral curves for the metastatic lymph nodes, intravascular
emboli, and lesions were consistent and the differences in the
slopes were not statistically significant, indicating that the lesions
were homologous to lymph nodes and intravascular emboli (26).
Among these parameters, the energy spectrum curve objectively
reflects whether the tumor parenchyma and extracapsular fat are
homologous, and whether the enlarged lymph nodes and emboli
are metastatic.

In conclusion, distinction between stage I and II tumors may
be evaluated by comparing the energy spectrum curves of the
mass and the extracapsular fat of the mass. Areas of interest
should be outlined in suspicious enlarged lymph nodes and
intravascular emboli before surgery to determine whether the
lymph nodes have metastasized and the nature of the emboli in
the vessel.

Limitations
The limitations of our study are as follows: This study was a
retrospective and single-center study, lacking multi-center data
verification and the sample size was small. The accuracy of
preoperative predicting staging needs further large sample size
research. Measurement of the ROI of fat outside the capsule stays
a difficult points, even though we used the average value of 3
ROIs of the same size drawn in the fat layer 10 mm outside the
capsule of the lesion to reflect as much as possible whether the
lesion has extracapsular fat invasion.
Frontiers in Oncology | www.frontiersin.org 7187
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Radiomics is the method of choice for investigating the association between cancer
imaging phenotype, cancer genotype and clinical outcome prediction in the era of
precision medicine. The fast dispersal of this new methodology has benefited from the
existing advances of the core technologies involved in radiomics workflow: image
acquisition, tumor segmentation, feature extraction and machine learning. However,
despite the rapidly increasing body of publications, there is no real clinical use of a
developed radiomics signature so far. Reasons are multifaceted. One of the major
challenges is the lack of reproducibility and generalizability of the reported radiomics
signatures (features and models). Sources of variation exist in each step of the workflow;
some are controllable or can be controlled to certain degrees, while others are
uncontrollable or even unknown. Insufficient transparency in reporting radiomics studies
further prevents translation of the developed radiomics signatures from the bench to the
bedside. This review article first addresses sources of variation, which is illustrated using
demonstrative examples. Then, it reviews a number of published studies and progresses
made to date in the investigation and improvement of feature reproducibility and model
performance. Lastly, it discusses potential strategies and practical considerations to
reduce feature variability and improve the quality of radiomics study. This review focuses
on CT image acquisition, tumor segmentation, quantitative feature extraction, and the
disease of lung cancer.

Keywords: radiomics, lung cancer, reproducibility, variability, CT acquisition, tumor segmentation, feature
extraction, quality control
INTRODUCTION

Radiomics refers to the determination of tumor imaging phenotypes by extracting and analyzing a
large number of quantitative image features, a.k.a. radiomics features (1–3). Unlike molecular- and
tissue-based analyses, radiomics strives to characterize differences in tumor phenotypes based on
non-invasive radiographic images that can be routinely obtained from clinical practice and clinical
trials. Radiomics can capture the heterogeneity of a whole tumor and tumor metastases in multiple
body sites and their surrounding tissues, and it can be used to monitor changes in tumor biology
(e.g., mutation status) over time. Thus, radiomics is promising to be capable of addressing key issues
across the continuum of cancer care.
March 2021 | Volume 11 | Article 6331761189

https://www.frontiersin.org/articles/10.3389/fonc.2021.633176/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.633176/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.633176/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:bz2166@cumc.columbia.edu
https://doi.org/10.3389/fonc.2021.633176
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.633176
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.633176&domain=pdf&date_stamp=2021-03-29


Zhao Reproducibility in Radiomics
The hypothesis underpinning radiomics is that disease
processes, which produce histopathological and genetic
alterations, also manifest in characteristic phenotypes that can
be captured by radiographic images. Qualitative visual
interpretation of CT features has been used by radiologists in
making routine diagnoses for decades, such as lung nodules with
spiculated edges indicating malignancy and an enlarged tumor
size (diameter) post-therapy indicating a worse prognosis for the
treatment. However, the big moment for cancer imaging
phenotype was the 2007 article on the reconstruction of global
gene expression profiles of hepatocellular carcinoma (HCC)
using predefined imaging traits assessed qualitatively by
radiologists on contrast-enhanced CT (CECT) (4). A new
radiogenomic venous invasion scoring system, derived from
three imaging traits (internal arteries, hypodense halos, and
tumor-liver difference) on CECT in HCC, was reported to
serve as a noninvasive imaging biomarker for histological
microvascular invasion, a tissue biomarker associated with
early disease recurrence and poor overall survival (5). While
human eyes have an incredible ability to recognize both local and
global patterns, visual interpretations can be subjective and
prone to variation especially when evaluating subtle
differences. Radiomics can objectively discern clinically
relevant information that human eyes cannot even perceive.
Indeed, a fast-growing literature shows the great promise of
radiomics signatures (radiomics features and models) as a
“virtual biopsy” to assist in cancer diagnosis and prognosis,
treatment plan, patient stratification, and assessment of tumor
response to therapy. The current status of CT-based radiomics in
Frontiers in Oncology | www.frontiersin.org 2190
lung cancer has been well summarized in a recent collection of
review articles [e.g., (6–17)].

Radiomics features are well defined, and some are even
intuitive (in line with expert radiologists’ visual interpretation).
Radiomics analysis is a favorable approach for studying tumor
imaging phenotypes because performing it requires a relatively
small number of patients to train models compared to
convolutional neural networks (CNNs), and sometimes it
yields explainable analysis results as well. However, multiple
sources of variation in every step of the radiomics workflow
create an intrinsic methodological weakness that has been
recognized since the earliest days of radiomics analysis (18, 19)
(Figure 1). For instance, radiomics features can be sensitive to
heterogeneous image acquisition settings (scanners, scanning
techniques, and reconstruction parameters). Unknown ground
truth of tumor boundaries can introduce uncertainty into
features derived from segmented tumors. Despite an explosive
increase in the radiomics literature, this research frequently fails
to adequately consider sources of variation and reports isolated
results not validated by replication in external data sets (20). The
resulting concerns about rigor and reproducibility slow the pace
of innovation in radiomics and limit its translational potential.

Recognizing the need to evaluate the scientific merit and
clinical utility of radiomics studies, a group of scientists proposed
a radiomics quality score (RQS) in 2017 (21) which evaluates a
set of essential components in the radiomics workflow, starting
with the quality of image protocol and ending with the
availability of open science and data. A maximum of 36
possible points is awarded by scoring each component’s
FIGURE 1 | Radiomics workflow, along with sources of variation and potential strategies to reduce feature variability.
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accordance to the suggested guidelines, with more important
aspects earning more points. While the RQS is not perfect, it does
establish a set of practices that can facilitate clinical translation of
radiomics research. It also highlights the weakness of the current
literature: the mean RQS scores of published radiomics studies
are low (<10 points) (22, 23), indicating inadequate
scientific quality.

The quality of radiomics studies has recently improved
thanks to community-wide efforts to explore and reduce
variability in medical imaging and to promote the translation
of quantitative imaging biomarkers into clinical practice and
clinical trials (24–27) (Figure 2). Figures 2A, B are drawn based
on a research team’s recent literature search for the CT-based
radiomics studies in lung cancer (6), which we supplemented
with studies published as of July, 2020 as well as information
about imaging parameters (slice thickness, reconstruction
kernel) and segmentation (inter-/intra-variability, software,
result supervised or not) (Table 1 in Supplementary
Material). Although previous imaging studies have shown the
effects of slice thickness and reconstruction kernel on computed
features, between ~5% and ~25% of radiomics studies prior to
2020 did not report their study imaging protocols (Figure 2A,
green color). Most of those who reported their imaging protocols
only included the slice thickness information (Figure 2A, blue
color). It is good to see that the trend of reporting both slice
thickness and reconstruction kernel increased from 10% in 2016
to 50% in 2020 (Figure 2A, pinkish-orange color). Nevertheless,
half of the radiomics studies still do not seem to have considered
the effects of reconstruction kernel on radiomics features,
especially texture features. The percentages of studies that
performed imaging test-retest and inter-/intra-segmentation
have been stable over the years, varying between ~20% - 40%
(Figure 2B, gray and yellow colors). All radiomics studies
published in 2019 and 2020 reported human supervision of
tumor segmentation (Figure 2B, green color), an important
Frontiers in Oncology | www.frontiersin.org 3191
step to ensure the accuracy of segmentation, while only ~40%
studies did so in 2016.

A valid quantitative imaging biomarker must be informative,
or sensitive to underlying biology, as well as reproducible and
reliable across various image acquisition settings and
quantitative methods. It is essential to understand and regulate
the sources of variation to ensure that consistent high quality
images can be meaningfully analyzed and biological information
can be reliably extracted by advanced quantitative methods. This
article starts with image acquisition, then considers tumor
segmentation and feature extraction. Readers who are
interested in machine learning for radiomics are referred to
(10, 16, 17). From the point of view of image analysis, in each of
the following sections, it first illustrates how radiomics features
can be affected by various factors using demonstrative examples,
then reviews a number of published studies exploring sources of
variation and offering increased reproducibility of radiomics
features and models. Lastly, it discusses potential strategies and
practical considerations to reduce feature variability and improve
the quality of radiomics studies.
IMAGE ACQUISITION

Radiomics signatures aim to characterize the phenotypes of
tumors and surrounding tissue using radiographic images.
They can be sensitive to image quality governed by image
acquisition settings, or the constellation of factors involved in
acquiring the images, which include (but is not limited to)
scanner equipment, acquisition techniques, reconstruction
parameters, and contrast administration.

Radiomics studies have mostly used retrospective analysis of
imaging data from historical studies and clinical trials that were
not designed for quantitative feature analysis of tumors. Many of
the images studied were acquired in clinical trials to make simple
A B

FIGURE 2 | (A) A trend of radiomics studies reporting image acquisition parameters of slice thickness, reconstruction kernels and both. (B) A trend of radiomics
studies reporting re-imaging, re-segmentation and supervised segmentation. Due to the small number of radiomics studies published in 2014 and 2015, those
studies are excluded from the graphs.
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measurements of tumor diameter on CT images, which did not
demand a high degree of standardization in image acquisition
parameters. Because these datasets are now being radiomically
analyzed retrospectively, and new data sets are being acquired
prospectively, the importance of the degree of variation in CT
acquisition needs to be determined.

Pioneering efforts revealed that imaging variables, such as
repeat CT scans (28), imaging reconstruction slice thicknesses
and kernels (29), and scanners (30), could affect the computed
values of radiomics features. These studies inspired intensive
investigations in feature variability and reproducibility, which
have confirmed the initial findings and extended them to broader
research areas. Investigations on the sources of variation in CT
image acquisition have mainly focused on one or combinations
of the following factors: test-retest (28, 31, 32), vendors’ scanner
(30, 33–36), tube voltage and current (37–41), pitch (36), field of
view/pixel spacing (42–44), reconstruction kernel and slice
thickness (we do not here distinguish between slice thickness
and slice interval, the real physical distance between any two
adjacent images) (29, 31, 38, 39, 45–47), contrast administration
(48–50), and 4D phases (51, 52). In the following subsections, a
number of studies exploring sources of variation in image
acquisition is reviewed, followed by a discussion on potential
strategies and practical considerations to reduce variability in
image acquisition.

In Vivo “Same-Day” Repeat CT Studies
Radiomics features derived from tumor images from two CT
scans performed on the same day or during a short time period
can be different due to factors such as the patient’s relocation,
breath holding, and organ movement, even though no biological
changes would be expected to be discernable during such a short
time period. The reproducibility of radiomics features on repeat
CT scans must be demonstrated in order to establish the
reliability of radiomics models built using these features.

Repeat CT in Lung Cancer
Early radiomics studies already took into account the effects of
repeat CT imaging and re-segmentation on features ’
reproducibility (3, 28, 53), thanks to the availability of The
Reference Image Database to Evaluate Therapy Response’s
Lung CT Collection (RIDER Lung) (54, 55). RIDER Lung is a
unique, publicly available same-day repeat CT image dataset that
allows exploration of the reproducibility of quantitative methods,
including segmentation and feature extraction, for lung cancer
studies. This dataset consists of 31 non-small cell lung cancer
(NSCLC) patients’ repeat CT scan images reconstructed using
1.25 mm slice thickness and the lung kernel. Unfortunately,
RIDER Lung is suboptimal as test-retest for radiomics studies
because CT images in the majority of clinical studies were not
reconstructed using 1.25 mm slice thickness and the lung kernel.

In order to explore reproducibility and variability in
radiomics features due to re-imaging at multiple acquisition
settings with same or different imaging parameters,
investigators published a pilot study on 89 commonly used
radiomics features using same-day repeat CT scan images
reconstructed at six imaging settings/series: a combination of
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three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two
reconstruction kernels (lung (L): a sharp kernel; standard (S): a
smooth kernel) (31). These settings cover the CT acquisition
parameters widely used in lung cancer oncology trials and
clinical practice. Figure 3A shows an example of a lung cancer
tumor captured on a CT scan that was reconstructed using six
different imaging settings. Given the same slice thickness, tumor
heterogeneity can be better seen on sharper images than on
smoother ones. The curves beneath the tumor images show the
values of two popular GLCM features, Contrast (Figure 3B, blue
color) and Correlation (Figure 3B, orange color), calculated
under each imaging setting. The bigger the value of Contrast,
the more heterogeneous the tumor. The greater the value of
Correlation, the more homogeneous the tumor. In this example,
the value differences were caused by different imaging
reconstruction parameters, not by the tumor’s underlying
biological effects. The study found that the radiomics features
were generally reproducible when calculated between two repeat
scans reconstructed using the same imaging setting. This is
indicated by quite uniformly bright red areas (high
concordance correlation coefficient (CCC) values) in Figure
4A(a). However, a substantial amount of variability was
observed within the same slice thickness when using standard
or lung reconstruction kernels, generating smooth and sharp
images respectively, as indicated by large dark areas (low CCC
values) mostly centered at the texture features [Figure 4A(b)].
The authors’ conclusion that smooth and sharp reconstructions
should not be treated as interchangeable for radiomics studies
has been confirmed by other independent studies (29, 36, 56).

Repeat CT in Rectal Cancer
RIDER Lung was a very well controlled clinical study in which
the two repeat non-contrast chest CT scans were performed
within 15 minutes using the same imaging protocol on the same
scanner. Other radiomics studies also reported good
reproducibility when testing their quantitative features using
RIDER Lung [e.g., (32, 36)]. However, it is possible that repeat
CT scan images of other organs may cause different magnitudes
of feature reproducibility. A study found much lower feature
reproducibility in rectal cancer than in lung cancer (32). The
investigators collected repeat CT scan images from 40 rectal
cancer patients in a clinical setting; the interval times between
two repeat scans ranged from 5 to 19 days. They reported that
only 9/542 features had CCC >0.85 in rectal cancer, whereas 446/
542 features had higher CCC values for the test-retest analysis of
the RIDER Lung dataset. However, this is not surprising because
the longer interval times between the two repeat scans in the
rectal cancer study, the possible use of different imaging settings
for two repeat scans, and presence of more noise in rectal images
could all contribute to the decreased reproducibility.

Four-Dimensional CT (4D CT)
The same-day repeat CT images in the RIDER Lung collection
were acquired with each patient holding their breath.
Radiotherapy scan images, however, are often acquired under
free breathing of the patients. Respiratory motion can cause
changes in tumor location, volume, shape and intensity (57)
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leading to more uncertainty of target tumors and enlarged
margins in the delineation of the treatment volumes. To
decrease the amount of radiation exposures to healthy tissues,
an emerging modality of gated or 4D CT imaging has been
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developed and used in radiation treatment planning (58). During
a thoracic 4D CT study, multiple CT images are acquired over a
period of at least one full respiratory cycle (8 or 10 phases) at
each table position. Moving the table and synchronizing the
A

B

FIGURE 3 | Effects of imaging parameters on radiomics features (A) A lung tumor captured on one CT scan reconstructed at 6 different imaging settings: 1.25 mm
slice thickness with the lung reconstruction algorithm (sharp image) (1.25L) (i) and the standard reconstruction algorithm (smooth image) (1.25S) (ii); 2.5 mm slice
thickness with lung reconstruction (2.5L) (iii) and standard reconstruction (2.5S) (iv); 5 mm slice thickness with lung reconstruction (5L) (v) and standard
reconstruction (5S) (vi) (31). (B) GLCM Contrast (blue color) and Correlation (orange color) features computed at the 6 corresponding imaging reconstruction settings.
The bigger the value of Contrast, the more heterogeneous the tumor. The greater the value of Correlation, the more homogeneous the tumor.
BA

FIGURE 4 | (A) CCC heat map of radiomics features. The CCC (0 to 1) of the studied 89 radiomics features were computed from same-day repeat CT images
reconstructed at (a) six identical imaging settings or (b) three different imaging settings. The brighter the red color, the higher the CCC values (i.e., the more
reproducible) of a feature computed for the repeat scans (31). (B) CCC heat map of 23 non-redundant radiomics feature groups (rows) under 15 inter-setting
comparisons (columns). Columns are arranged in descending order according to the average CCC of the inter-setting comparisons. Rows are arranged in
descending order according to average CCCs of non-redundant feature groups (45).
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scans according to the patient’s air-flow-volume curve, a spatial-
temporal 4D CT dataset can be acquired. After being sorted, the
motion-reduced 3D CT image series acquired at each respiratory
cycle can be generated.

A recent study investigated respiration-related 4D stability of
radiomics features across 8 individual respiratory phases for
NSCLC (59). Eight hundred forty-one features were extracted
from all individual phases of each patient. The relationship
between individual coefficients of variation (COVs) and tumor
motion magnitude was also inspected. The study found that
some features (e.g., skewness, many GLDM features) were
sensitive to respiration, whereas others (e.g., shape related
features, many GLCM features) were not. The study did not
observe a clear trend between the feature stability and the motion
magnitude due to respiration. In the second part of the study, the
value of utilizing 4D stability to preselect radiomics features to
build prognostic prediction models for overall survival in early-
stage NSCLC radiotherapy patients was explored. By comparing
the performance of the models built with and without 4D
stability feature preselection, the study showed an improved
prediction performance with the preselection. Other studies in
radiation oncology also suggested using phase images of already
acquired 4D CT data as an alternative way to determine and
remove unstable radiomics features prior to radiomics model
construction when test-retest images were not available (51,
52, 60).

Radiomics Phantoms
Due to concerns such as radiation dose to patients,
comprehensive investigations of image acquisition’s effects on
radiomics features have to rely on phantom studies. However,
there is a significant disparity between tumor phenotypes that are
seen in patient clinical CT images and traditional physical
phantoms (e.g., simple shape, homogeneous density) (61).

Credence Cartridge Radiomics (CCR) Phantom
A group of medical physicists designed the CCR phantom to
assist in exploring intra- and inter-scanner robustness and
reproducibility of radiomics features (30). The CCR phantom
embraces ten cartridges of an equal size of 10.1×10.1×3.2 cm3,
each filled with different materials in different patterns. The
phantoms were scanned on 17 scanners from the four major CT
vendors at multiple medical centers using their local thoracic
imaging protocols. Both histogram-based and texture features
were extracted using the open source radiomics software package
of IBEX (62). The study results showed that the phantom’s
dynamic density range covered that observed in the tumors
seen in 20 NSCLC patients. The authors noticed that inter-
scan variability of the features varied depending on the feature
itself and the cartridge material. One of the drawbacks of the
CCR phantom is its uniform cartridge shape, which cannot study
radiomics features that describe tumor shape and the
interrelation between tumors and surrounding tissue.

Other studies also used the CCR phantom to explore the
reproducibility and robustness of radiomics features across CT
scanners, scanning techniques, and reconstruction parameters.
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An example was to study the effect of CT tube current on
radiomics features. Using the ten cartridges in the CCR
phantom, one study showed no clear effect of tube current on
radiomics features (33). Another study, however, showed that
tube current affected features extracted from homogeneous
materials more than from tumor-like textured phantoms when
splitting 6 cartridges contained in the CCR phantom into two
groups, one filled with homogeneous materials and the other
filled with more tissue-like texture materials (40).

3D Printed Phantoms
Although the CCR phantom has been widely used to investigate
variability in radiomics features across scanners and scanning
parameters, it does not contain lesion shape information, and its
density textures/patterns are not anatomically informed.
Recently, advances in 3D printing technology have made it
possible to design and fabricate synthetic phantoms with
realistic lesion sizes, shapes, intensities and internal textures
while knowing the ground truth of their characteristics.

Using a subset of lung nodules taken from the database of
Lung Image Database Consortium (LIDC), a series of
corresponding virtual nodule models were created using the
investigators’ software and its built-in fitting and texture
modeling routines (63). A multi-material 3D printer then
distributed 2 base materials in the desired proportions
according to the dithered nodule model to achieve lesion sizes,
shapes, and internal density textures similar to those of the real
nodules. The heterogeneous nodule phantoms were imbedded in
an anthropomorphic thoracic phantom and scanned using
different acquisition parameters of dose level, slice thickness,
and reconstruction kernel. The study demonstrated that the
printed textured phantoms can be used to determine the
variability and accuracy of texture features extracted from CT
images acquired at varying imaging settings.

In order to determine robust shape features, researchers used
spherical harmonic functions to create mathematical tumor
models with increasing degrees of complexity/spiculatedness
and printed the models using a single material 3-D printer
(64). They studied the relationship of a set of commonly used
shape features (e.g., Volume, Surface area, Compactness,
Sphericity) with varying degrees of spiculatedness under
different conditions (slice thickness, resampling, and surface
and volume computing algorithms). As expected, they found
that surface-specific features, such as Surface area, were
positively correlated with tumor spiculatedness, whereas global
shape features, such as Compactness, were negatively correlated
with tumor spiculatedness. They also found that the shape
features are less affected by the aforementioned variables and
less dependent to tumor volume.

Efforts Made in Imaging Harmonization
Image acquisition settings can vary considerably in datasets
collected from retrospective or ongoing multi-center studies.
Radiomics signatures that are influenced by variations in the
source imaging settings may assign significance to differences
such as an imaging parameter used to reconstruct images, rather
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than the biologically significant differences in tumor images.
Establishing the consistency of image data is vitally important for
the discovery of robust imaging biomarkers which can be
validated and applied to multi-center clinical trials and clinical
practice. Harmonization of imaging protocols is an effective
approach to reduce imaging-induced variability in radiomics.

Identifying Comparable Imaging Parameters
Different imaging settings can be said to be comparable when
similar feature values can be computed from the images they
produce. An early effort to identify comparable imaging settings
was reported by the team who had contributed the RIDER Lung
dataset. As a subsequent analysis of the same-day repeat CT
study, the investigators used the six-setting CT image data to
assess the feature agreements across the 3 slice thicknesses and 2
reconstruction kernels (45). Three inter-setting comparisons, i.e.,
1.25S vs 2.5S, 1.25L vs 2.5L and 2.5S vs 5S, show high average
CCC values (> 0.8 for all feature groups; bottom row in Figure
4B), indicating that these imaging parameters can be used
interchangeably in radiomics studies. The study also found
that changing slice thickness alone can generate better
agreements, especially when the range of slice thickness is
limited to 1.25mm and 2.5mm. Furthermore, combining
thicker slices with sharper reconstruction algorithms can
have the same effects as combining thinner slices with
smoother reconstruction algorithms for the computation of
radiomics features.

Controlling Imaging Protocols
The team who developed the CCR phantom studied whether a
controlled imaging protocol could reduce variability in radiomics
features (35) by scanning an updated version of the CCR
phantom on 100 scanners using both local and study-specified
CT protocols for chest and head & neck (H&N). The local
imaging protocols were heterogeneous, e.g., the slice thickness
ranged from 1 mm to 5 mm, while the study-specified protocols
were controlled by using comparable imaging parameters across
scanners, e.g., the reconstruction used slice thicknesses of 2.5 mm
or 3 mm and smooth kernels. The size of cylindrical ROIs was
8.2 cm in diameter. The IBEX radiomics package was used to
calculate 49 features including Neighborhood Grey Tone
Difference Matrix (NGTDM) and Grey Level Co-Occurrence
Matrix (GLCM). A linear mixed effects model was used to
determine the overall variability contributed by the
manufacturer, scanner of a given manufacturer, cartridge
material, and residual to the variability in the measurements.
The authors found that, compared to the local chest and H&N
imaging protocols, the controlled protocols could reduce the
overall variability by 57% and 52%, respectively.

Optimal standardization of chest imaging protocol
parameters did not ensure the reproducibility of 27 texture
features from the NGTDM and GLCM families, which were
also computed using the IBEX radiomics package, across three
CT vendor scanners (34) in a study using an anthropomorphic
lung phantom with inserted lesions of different materials that
simulated the attenuation properties of a human tissue. The
imaging parameters were optimally chosen for lung cancer
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studies except the reconstruction slice thickness of 5 mm,
which was rather thick for the small phantom lesions that
ranged from 1 cm - 1.5 cm. One limitation of this study, as
discussed by the authors, was the small size of the lesion inserts.
The authors planned to conduct a follow up study to investigate
the impact of ROI size on feature reproducibility, as calculating
texture features such as GLCM from relatively small lesions on
thick slice thickness can be problematic.

It is hard to make a direct comparison between the findings of
these two phantom studies exploring benefits of the imaging
parameter harmonization across CT scanners due to the
differences of the phantoms, image preprocessing, etc.

Converting Imaging Settings to Desired Setting
Artificial intelligence (AI) offers the potential to automatically
harmonize images which were acquired and reconstructed at
different imaging settings. A recent study reported the use of a
CNN to improve the reproducibility of radiomics features
between different reconstruction kernels (soft and sharp) (65).
The investigators developed a CNN architecture using residual
learning and an end-to-end approach. To demonstrate the
effectiveness of this CNN model, a total of 702 radiomics
features were extracted from 104 pulmonary nodules or masses
(all >= 6 mm; 51 non-enhanced and 53 enhanced CTs) using
Pyradiomics (66), an open-source feature extraction package.
The CCCs of the total features extracted from images
reconstructed at the different kernels and the different kernels
after image conversion were 0.38 and 0.84, respectively. Among
the features, the CCCs of the wavelet features increased the most
after the image conversion of the reconstruction kernels. The
authors concluded that CNN-based CT image conversion can
reduce the effect of reconstruction kernels on radiomics features.
Another study showed that CNN-based super-resolution
methods can improve the reproducibility of radiomics features
extracted from CT images reconstructed at different slice
thicknesses (67).

Matching Image Appearance/Quality
Differences in image quality between special vendors’ CT systems
are unavoidable. In addition to the scanner equipment, tube
voltage and current, FOV, slice thickness, and reconstruction
kernels, there are many other acquisition-related “hidden”
factors that may affect image quality. It is impossible to study
all affecting factors, known or unknown, one by one.

An alternative way to reduce feature variability caused by
imaging is to identify the similarity of images acquired at
different settings. Phantom studies can help match image
appearance and thus identify comparable imaging settings
across different vendors’ scanners, scanning techniques and
parameters, etc. (68, 69). For example, by analyzing noise
power spectrum (NPS), a group of medical physicists
conducted a study using the ACR CT phantom to
quantitatively compare noise texture between two CT systems,
GE and Siemens (68). Under a consistent acquisition protocol
(120 kVp, 0.625⁄0.6 mm slice thickness, 250 mAs, and 22 cm field
of view), using filtered back projection and a wide selection of
available reconstruction kernels, a systematic kernel-by-kernel
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comparison was performed. The study found that the GE’s
“Soft,” “Standard,” “Chest,” and “Lung” kernels closely
matched the Siemens’ “B35f,” “B43f,” “B41f,” and “B80f”
kernels, respectively. More research in matching image quality
can be found in (69).

Identifying Images Acquired at Optimal
Phase Timing
Multi-phase CT scans after contrast administration are most
widely used for liver cancer diagnosis, prognosis, and response
assessment. Bolus tracking is used clinically during image
acquisition to control (arterial and portal venous) phase timing
to increase the likelihood of the phase timing being optimal.
However, bolus tracking does not consider individual patient’s
biological variation and thus cannot ensure that the optimal
timing was successfully reached in a given patient. In a pilot
study, investigators explored the effect of portal venous phase
(PVP) timing on the density measurement of liver metastases
(LM) from colorectal cancer (CRC) and found that LM-CRC
density was significantly decreased at non-optimal PVP timing
by 14.8%: 16.7% at early PVP and 12.6% at late PVP (49). The
same group then developed both semi-automated and AI-based
fully-automated programs to identify optimal from non-optimal
PVP timing as well as to differentiate five contrast-enhancement
phases (49, 70, 71). They applied the developed PVP optimal-
timing quality assurance (QA) method to their study developing
an on-treatment signature to detect metastatic CRC patients
sensitive to FOLFIRI+cetuximab using radiomics analysis of
tumor changes between baseline and 8-week CT images. The
radiomics signature showed higher performance on optimal
imaging (AUC=0.80; 95%CI:0.69, 0.94) than on non-optimal
imaging (AUC=0.72; 95%CI:0.59, 0.83) (72).

The effect of optimal timing on radiomics features is an
understudied area. Automated AI-based QA algorithms to
identify optimally acquired CT scan images for radiomics
analyses can help ensure image quality and consistency and
thus increase the chances to develop reproducible and reliable
radiomics signatures.

Influence of Imaging Harmonization and
Optimization on Radiomics Models
Imaging harmonization has shown potential for improving the
reproducibility of radiomics features. The following subsections
review and discuss how the performance of predictive models
built using radiomics features is affected by the harmonization
and optimization of image acquisition parameters.

Diagnosis of Solitary Pulmonary Nodule (SPN)
In a study using radiomics signatures to help the diagnosis of
SPN, investigators assessed the effects of contrast enhancement,
slice thickness, and reconstruction kernel on the diagnostic
performance of the model they developed (73). In total, 240
SPN patients (malignant:benign = 180:60) had both non-contrast
CT (NECT) and contrast-enhanced CT (CECT) scans, each
reconstructed using two different slice thicknesses of 1.25 mm
and 5 mm and two reconstruction kernels of lung (sharp kernel)
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and standard (smooth kernel). At each CT imaging setting, 150
radiomics features were extracted from each SPN and the
diagnostic performance of the resulting signature was assessed
based on its AUC. The validation results showed better
discrimination capability of the radiomics signature derived
from NECT than CECT (AUC: 0.750 vs. 0.735, p=0.014), from
thin-slice than thick-slice CT (AUC: 0.750 vs. 0.725, p = 0.025),
and from smooth kernel than sharp kernel (AUC: 0.725 vs.0.686,
p = 0.039). The authors thus concluded that the non-contrast,
thin-slice (1.25mm) and smooth reconstruction kernel-based CT
was more informative for SPN diagnosis compared to the other
imaging parameters studied.

Prediction of EGFR Mutation Status in Lung
Adenocarcinoma (LAC)
Investigators evaluated whether the optimal selection of CT
reconstruction settings improved the construction of a
radiomics model to predict EGFR mutation status in LAC
using standard of care CT images (74). In this study, CT scans
of 51 patients (EGFR : WT = 23:28) with LACs of clinical stage I/
II/IIIA were reconstructed at the following four image setting
groups: 1) Thin-Sharp, 2) Thin-Smooth, 3) Thick-Sharp, and 4)
Thick-Smooth (Thin: 1 mm; Thick: 5 mm; Sharp: B70f/B70s;
Smooth: B30f/B31f/B31s). In total, 1,160 radiomics features were
extracted and used to build machine learning prediction models
at each of the four settings and a mixture setting (cases randomly
selected from the groups 1-4). The study showed the best AUC
(95%CI) of 0.83 (0.68, 0.92) when using the Thin-Smooth setting
and the worst AUC (95%CI) of 0.75 (0.59, 0.86) when using the
mixture setting (P<10-3).

Prediction of Overall Survival (OS) in Head
and Neck Cancer
A recent radiomics study in head and neck cancer found that
models built with patients on a controlled imaging protocol did
not predict OS better than models built using varying imaging
protocols (75). In this study, investigators retrospectively
collected 726 patients’ CT images from one U.S. and two
European institutions, among which the largest subset of 511
patients’ CT images was acquired using a GE scanner with the
reconstruction parameters of a standard kernel and 1.25 mm
image thickness. The radiomics features were computed using
IBEX (62). Radiomics models to predict OS were built using the
full patient dataset (heterogeneous imaging protocols) and the
largest subset (controlled imaging protocol). This study did not
find increased performance of the outcome prediction model
when the imaging protocol was controlled (AUCs: full set vs.
subset = 0.72 vs. 0.55). Moreover, volume and HPV status were
selected as covariates in the OS prediction model built on the full
patient dataset. The authors further reported that volume alone
or volume and HPV status provided an AUC of 0.73, indicating
that adding radiomics features did not improve the model
performance. This again suggests that radiomics texture
features can be a surrogate for/correlated with tumor volume
and points to the need to remove redundant features prior to
model building (3, 76).
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Discussion: Potential Strategies and
Practical Considerations to Reduce
Variability in Image Acquisition
Image acquisition is the first essential step in the radiomics
workflow, directly determining the quality of images upon which
all subsequent analyses rely. Some strategies and considerations
to improve image consistency and reduce feature variability are
highlighted below.

Controlling Imaging Protocols To Increase Image Consistency.
CT scanners, scanning techniques, and reconstruction
parameters can affect radiomics features and models. The
degree of variation caused by these factors depends on the
tumor’s characteristics and the radiomics feature itself. Studies
should report imaging acquisition settings in detail so that they
can be reproduced by others. Ensuring high quality and
consistent images across scanner devices and imaging
protocols is the key for the successful development and
application of radiomics signatures.

Potential Optimal Imaging Parameters For Studying Lung
Cancer Phenotypes. Controlling CT imaging protocols and
complying with these protocols are essential to the acquisition
of high quality and consistent image data for radiomics studies.
Preliminary data suggest that the most suitable imaging
parameter setting for phenotype studies in lung cancer is thin
slice thicknesses (e.g., 1 mm, 1.25 mm) and smooth
reconstruction kernels (e.g., standard, B31f/B31s). Moreover,
same-day repeat CT studies found that the settings of 1.25S
and 2.5S generated the most reproducible features (Figures
4A, B). These independent findings support the use of thinner
slice thickness and smoother kernel for prospective lung cancer
phenotype studies. However, this approach warrants further
investigation, especially because of the conflicting findings in
the H&N study.

Test-Retest With Proper Imaging Parameters. The purpose of
test-retest is to identify radiomics features that are sensitive to re-
imaging and remove them from subsequent analyses. Because
image acquisition parameters can affect computed feature values,
the imaging parameters should be matched, or adequately
similar, between the test-retest data and the individual studies’
data so that the testing results are reliable. In addition, different
disease sites should have their own test-retest image data, which
can be acquired from either patients or (texture) phantoms.
Before re-shooting a phantom, make sure to relocate/re-orient
the phantom. When test-retest imaging is not available for the
phenotype of interest, image perturbation such as noise addition,
image translation and rotation, and volume growth or shrinkage
can be considered (77).

4D CT - An Alternative For Test-Retest. Scanning patients twice
during a short time period is impractical. However, 4D CT imaging
has been used in radiotherapy to reduce respiratorymotion-induced
changes in tumor location andmorphology. Such image datasets are
often available in radiation oncology departments. Due to its ability
to generate 3D CT image series at multiple respiratory phases, the
4D CT scan images can serve as a candidate of test-retest dataset to
investigate feature variability. Studies show that certain radiomics
features are sensitive to respiration and the preselection of 4D
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stability features can improve the performance of radiomics
prediction models. Moreover, the end of the exhale phase, which
is less affected by respiratory motion compared to the other phase
images, is recommended to reduce feature variability for
radiomics studies.

Radiomics Phantoms. Phantom studies play an essential role
in exploring different sources of variation and their magnitudes
across vendor scanners, scanning techniques and reconstruction
parameters. However, traditional physical phantoms are usually
constructed of materials that are radiologically equivalent to
tissues and contain simple geometric features such as cartridges,
cylinders, line-pair patterns, and ramps. Anthropomorphic
phantoms typically mimic the overall shape of a human being
but don’t include detailed intra-organ/lesion features and are
mostly used for dosimetry measurements. Thus, there is a
significant gap between the intricate anatomical details that are
seen in clinical CT images and the mostly uniform and simple
nature of traditional physical phantoms. Characterizing such
synthetic lesions using the cutting-edge 3D printing technology
would be instrumental toward assessing the variability of features
across different CT platforms and protocols.

Quantitative Metrics To Determine Image Quality and/or
Similarity. The wide range of vendors’ scanners, scanning
techniques, and reconstruction parameters used in clinical
practice and clinical trials makes it impossible to study the effects
of all possible variables on radiomics features and models.
Developing quantitative methods/metrics to determine image
quality and/or similarity can be an alternative way to identify
comparable images that can be used interchangeably or to decide
whether an image’s quality is adequate for computing radiomics
features. This should be done based on the acquired images such as
identifying optimal phase-timing, with no need to know the exact
acquisition parameters of the images.

Imaging Harmonization Through AI/CNN. Image processing
methods can reduce variability in images acquired with
heterogeneous image acquisition settings. Voxel size resampling
followed by Butterworth smoothing (an image processing method)
has been found to improve feature reproducibility (42). Traditional
image processing methods cannot be automatically adapted to
harmonize a multitude of imaging settings that could exist in an
image dataset. AI/CNN, however, shows great promise in
converting CT imaging settings to a desired setting and in
identifying whether images are acquired at the optimal phase
timing. There is no doubt that AI, especially generative
adversarial network (GAN)-based networks, will play a significant
role in image-to-image translation including CT imaging
conversion/harmonization (78).

Reproducible Features vs. Clinically Informative Features.
When investigators report the improved reproducibility of
radiomics features, a common method is to count the
increased number of the studied features that have increased
CCC values or CCC values greater than a predefined threshold
(e.g., CCC >0.85). It is true that when more features are
reproducible, there is a greater likelihood to identify robust
radiomics models which are built using these reproducible
features. However, the reproducibility of a feature does not
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necessarily mean that it is clinically informative. On the other
hand, it is likely that heterogeneous imaging settings may have
little effects on some coarse clinically informative radiomics
signatures such as ground glass opacity (GGO) portion and
necrosis component of a tumor. Nevertheless, successful
radiomics models must be built upon reproducible and
robust features.
LESION SEGMENTATION

Lesion segmentation is a prerequisite for feature extraction, a
critical step in radiomics workflow. Segmentation is an essential
part of computer vision and image processing and is still an
active research area today. Artificial intelligence (AI) promises
fully-automated detection and segmentation of lesions (79).

Segmentation Methods and Variability
Segmentation can be performed manually, semi-automatically,
or fully-automatically. Variability of the lesion segmentation may
come from diverse segmentation algorithms and human
supervised post-segmentation correction.

Manual Segmentation
Manual segmentation, a hand-drawing method using a computer
mouse, is used only when there is no access to reliable semi-
automated segmentation software because it is time consuming,
subjective, and prone to variability due to radiologists’ different
opinions on identifying lesion boundaries (inter-reader
variability) or a radiologist’s inconsistency in delineating lesion
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boundaries at different time points (intra-reader variability).
Manual segmentation was still used in about 40% of the lung
cancer radiomics studies in our literature search (Table 1 in
Supplemental Materials).

Semi-Automated Segmentation
Semi-automated segmentation requires an operator to use a
computer mouse to manually initiate a segmentation algorithm
that can be developed using different strategies such as clustering,
region-growing, active contours, and watershed transform.

Inter-Algorithm Variability
Different strategies employed in different segmentation
algorithms can yield different results (inter-algorithm
variability). In a “moist run” dataset (40 lung lesions and 12
lung phantom lesions) collected by the Quantitative Imaging
Network (QIN) for a lung segmentation challenge, large
variations were seen when three different segmentation
algorithms were applied to the same GGO lung lesion (Figure
5A) (80). Briefly, the algorithm Alg01 was based on the marker-
controlled watershed transform and required a region-of-interest
(ROI) manually drawn outside the lesion as the algorithm’s
initial input (Figure 5A, top-left). Alg02 and Alg03 used the
region-growing approach, with either one or multiple clicks to
determine seed points (Alg02) (Figure 5A, top-middle) or a seed
circle (Alg03) (Figure 5A, top-right) inside the lesion as the
initial input. For heterogeneous lesions, the region-growing
based algorithms can easily be trapped by a local homogeneous
region, creating a high risk of under-segmentation. In this
example, Alg02 segmented only the solid part of the lesion
(under-segmentation) when the seed point was placed in a
high-density area of the lesion.
A B

FIGURE 5 | (A). Inter-reader variability in segmentation. Top panel: manual initializations (seed point/ROIs) of three segmentation algorithms; bottom panel:
corresponding segmentation results. (B) Intra-reader variability in segmentation. Segmentation results are affected by seed points/ROIs. Reproduced with permission
from (80).
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Intra-Algorithm Variability
After manual initialization, each algorithm analyzes the density
distribution of the pixels provided by the initial ROI and then
automatically separates the lesion from its background using the
input information and its own segmentation strategy/objective
criteria. Therefore, initial ROIs can affect segmentation results.
Figure 5B shows variations (Dice Coefficient distribution) of the
segmentation results (lesion volumes) of each of the three
algorithms when initial ROIs are placed differently. This kind
of variation is called intra-algorithm variability. A good
segmentation algorithm should be insensitive to initial ROIs.
Studies reported that radiomics features extracted from
segmented lesions had higher reproducibility when using the
same algorithm with different initial inputs than when using
different segmentation algorithms (81, 82).

Fully-Automated Segmentation
Fully-automated segmentation is performed without any
human-machine interaction. The input of such algorithms is
the entire image series and the output is the image series
containing automatically segmented lesions. A fully-automated
segmentation method needs to perform lesion detection and
segmentation simultaneously. The challenge for automated
lesion detection is to avoid false negative and false positive
lesions. Unlike manual and semi-automated segmentations,
repeatedly running a fully-automated algorithm on one image
series won’t change the output result. However, the impact of
image acquisition settings on fully-automated segmentation
algorithms needs to be explored (83).

Human Supervised Post-Segmentation
Correction
Ideally, a lesion segmentation algorithm should be fully
automated, reproducible, and accurate. However, both lesions
and relationships between lesions and their surrounding tissues
can manifest in complex patterns on CT, making a satisfactory
segmentation for all lesions unrealistic. To avoid segmentation
errors, a radiologist needs to review and correct computer-
generated lesion contours. Over the past few years, awareness
of the need for human supervised post-segmentation correction
has increased (Figure 2B; green color). Supervised segmentation
is influenced by the radiologist’s subjective judgement. However,
only the modified parts of the lesion contours are affected by the
manual correction and the unmodified contour parts are still
determined by objective criteria. This explains why radiomics
features extracted from lesions segmented manually were less
reproducible than those extracted from lesions segmented
algorithmically with supervision by a radiologist (84, 85).

Segmentation of Multiple Disease Sites
Solid tumors, including primary and metastatic lesions, exist in
various organs. They can present various intra-tumoral patterns
and contrast levels to the surrounding tissues on CT images,
which challenges lesion segmentation to different degrees. For
instance, lung lesions are usually easy to be segmented due to
their high contrast to the surrounding lung parenchyma.
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However, when lung lesions attach to blood vessels or chest
walls possessing similar densities to those of the lesions,
segmentations can become difficult. Lymph nodes are well-
known for their low contrast to their surrounding
backgrounds. Segmentation of liver lesions can suffer from
their heterogeneity, low contrast against liver parenchyma
(contrast-enhancement dependent), and noisy abdominal
images. Various strategies have been developed to better
delineate tumors of different types.

In general, texture features are affected more than volume
feature by image acquisition parameters. Over-segmentation, i.e.,
inclusion of surrounding non-lesion tissues in the lesion
segmentation, can have a large effect on texture features when
there is a large density difference between the lesion and its
surrounding tissues (e.g., lung lesion and lung parenchyma). A
tight segmentation is thus more desired than a loose
segmentation in radiomics studies. Lesion segmentation can hit
lesion boundary-related features harder than others.

A study preliminarily analyzed the effect of inter-observer
variability between three manual contours on the stability of
1,404 radiomics features in head and neck squamous cell
carcinoma (HNSCC), malignant pleural mesothelioma (MPM),
and NSCLC (86). There were 11 lesions for each type. The
authors found that the inter-observer delineation variability was
the highest in MPM and the lowest in NSCLC, and the stability
rate of radiomics features negatively correlated with delineation
variability. Shape-related features showed the weakest stability
among the 3 tumor types.

Effect of Inter-Reader Variability on
Radiomics Prediction Model
The last example in this section shows a pilot study exploring the
effects of inter-reader variability on radiomics prediction models.
In the study, the investigators predicted EGFR mutational status
in early stage NSCLC patients treated with a targeted therapy
(Gefitinib) using the change in 89 radiomics features over 3
weeks (delta features) extracted from 1.25 mm and lung kernel
images (87). Lung lesions in 46 patients (EGFR:wildtype = 20:26)
were independently segmented by three radiologists using in-
house software that allowed manual post-segmentation
correction. Univariate analysis identified the most significant
delta features computed from each of the three radiologists’
segmentation results. The best EGFR prediction performance
expressed by AUC values differed for each radiologist's
segmentation: 0.79 (top feature: compact factor – a shape
feature), 0.85 (top feature: mean density) and 0.91 (top feature:
volume), respectively. Delta volume was the only feature that was
among the top 5 most significant features in all three radiologists’
results. The prediction performances using the delta volumes
obtained by the three radiologists were (AUC=) 0.77, 0.80 and
0.91, respectively. All outperformed the corresponding
unidimensional performances of 0.63, 0.53 and 0.66.
Unidimensional measurement (i.e., tumor in-plane diameter) is
used to assess tumor change by conventional Response
Evaluation Criteria in Solid Tumors (RECIST) (88). None of
the three radiologists’ results included the delta diameter in its
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top 5 most significant feature list. The results of this study
warrant validation on larger data.

Open Source Software for
Lesion Segmentation
3D Slicer and ITK-Snap are the most popular open source
platforms for interactive segmentation, registration, and
volume rendering/visualization of medical images. Built over
two decades through support from the National Institutes of
Health (NIH) and software engineers worldwide, 3D Slicer has
provided researchers with a set of free image processing tools
(89). ITK-SNAP is another open source tool that offers free semi-
automatic segmentation software (90). Both platforms provide
manual delineation functions. So far, about 25% of lung cancer
radiomics studies were conducted with the help of open source
segmentation tools (Table 1 in Supplemental Materials).

Discussion: Potential Strategies and
Practical Considerations to Reduce
Variability in Lesion Segmentation
Accurate, reproducible, and efficient segmentation tools that can
be widely distributed are essential to accelerating and advancing
cancer imaging research. Semi-automated segmentation tools
have commonly been used in radiology-oncology imaging
studies. An imaging platform providing lesion segmentation
software should also provide a manual editing/correction
function. Certainly, computer segmentation methods are more
efficient when they require fewer human-machine interactions.

Inter- and/or Intra-Reader Test. The Purpose of Inter-Reader
(or intra-reader) testing is to recognize radiomics features that
are sensitive to lesion segmentation so that they can be removed
from subsequent analyses. Features that are sensitive to
segmentation can be identified by asking multiple radiologists
to delineate the same lesions or an individual radiologist to
delineate a set of lesions at two or more sessions, with a sufficient
time interval between any two annotation sessions to avoid the
effects of the radiologist’s reading memory.

Radiologists’ Consensus on Lesion Contouring. Radiologists are
not specifically trained in identifying tumor boundaries; big
variations can happen especially when segmenting partial solid
tumors. The Tumor Segmentation step shown in Figure 1
(Radiomics workflow) offers an example of three radiologists’
manually delineated tumor contours; some tend to delineate
contours tightly surrounding a solid tumor component, while
others tend to delineate contours loosely including more GGO
areas. Although there may not be “gold standard” lesion boundaries,
obtaining radiologists’ consensus about lesion boundaries can help
reduce variability in segmentation and thus in computed
radiomics features.

Proper Use of Segmentation Software. Different semi-
automated algorithms use different strategies to obtain
information about lesions and/or their surrounding tissue from
initial ROIs, which can help the algorithms identify lesion pixels/
voxels. For instance, to properly start a region-growing based
algorithm, seed ROI points/circle should be placed in both hypo
and hyper density areas inside a heterogeneous lesion so that the
range of lesion densities can be fully captured and used to guide
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the region growing algorithm. Proper use of a segmentation
algorithm can improve the segmentation’s accuracy and
consistency. Again, to avoid unpredictable surrounding tissues
of possible high (or low) contrasts, tight segmentation results are
more preferred than loose segmentation results in
radiomics studies.

In radiation oncology, the standard treatment planning
process has generated a large amount of annotated tumors that
can be readily used in radiomics studies. However, it should be
noted that the quality of the segmentations might not be
sufficiently precise for radiomics. For instance, there is no need
to accurately delineate the speculated edges of a tumor for the
purposes of treatment planning while radiomics requires a very
precise delineation of the tumor. Therefore, segmentation results
taken from radiotherapy data may need to be refined prior to
feature extraction.

Effects of Imaging on Segmentation. Acquisition settings
determine image quality and can thus affect segmentation
algorithms [e.g., (91, 92)]. The ultimate goal of image pre-
processing is to reduce noise while maintaining image details.
Generally, pre-processing methods using smoothing filters (e.g.,
Gaussian filter) are applied for the region-growing based
algorithms, whereas sharpening filters (e.g., Laplacian filter) are
used by the edge-based segmentation algorithms. When
investigating volumetric imaging biomarkers, variables
affecting volumetry/tumor segmentation have been intensively
studied, particularly by the RSNA-organized Quantitative
Imaging Biomarkers Alliance (QIBA) (93–95), which is not
further discussed in this review.
FEATURE EXTRACTION

Radiomics features are also known as quantitative image
features. In the past decades, pattern recognition using
quantitative image features has been widely used for tasks such
as image segmentation, classification, and computer-aided
detection and diagnosis (96).
Radiomics Features
Radiomics features can be grouped into two categories: agnostic
and quantified semantic features (18). Agnostic features are derived
to quantify lesion morphology and density heterogeneity through
mathematical equations/descriptors, while quantified semantic
features are developed to characterize visual patterns of lesions
(ROIs) based on radiology lexicons. Agnostic features are usually
further divided into the following four categories based
on: 1) morphology (e.g., size, shape), 2) histogram-statistics (e.g.,
mean, standard deviation, skewness, kurtosis), 3) texture (e.g., Run-
Length, GLCM), and 4) transformation (e.g., Wavelet transform).
Histogram-based features, a.k.a. first-order statistics, describe tumor
density distribution without considering spatial information,
whereas texture features, a.k.a. second-order statistics, characterize
tumor heterogeneity by considering the spatial interrelations of
image pixel/voxel densities. Transformation-based features are
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computed from transformed images rather than original images. Of
note, there is another type of quantitative features that can provide
additional information, i.e., features that characterize density
transition between a lesion and its surrounding tissues/
parenchyma. An example is the feature class of Sigmoid Function;
the feature, Sigmoid-slope, can be used to quantify lesion edge
(density) sharpness.

Quantified semantic features are perceptive because they are
created based on a radiologist’s visual observations. For instance,
GGO volume percentage, a quantified visual feature, was found
to be significantly higher in tumors with exon 21 missense
mutation than that in tumors with other EGFR mutation
status (97). Some agnostic features can also be intuitively
interpreted. Skewness, an agnostic feature that measures the
asymmetry of a density distribution about its mean (e.g.,
density distribution of a solid tumor is left-skewed with a
negative skewness value), was found to be predictive for
disease-free-survival (DFS) associated with certain histologic
subgroups of lung adenocarcinoma; the lower the skewness
value is, the poorer the DFS will be (98). Another example is
the Laws’ Energy features. This feature class emphasizes texture
patterns of edge, spot, ripple and wave through the Laws filters.
Whether such tumor image patterns are clinically informative
needs to be investigated. However, meanings of many agnostic
features can be hard to be intuitively interpreted. Nevertheless, it
is believed that models built upon one or multiple radiomics
features can distinguish imaging phenotypes that can or cannot
be visually observed by human.

Sources of Variation in
Feature Computation
Traditional radiomics features are computed from predefined
mathematical equations/descriptors that can be found in
textbooks and/or published literature (99). Theoretically, these
radiomics features are clearly defined and thus fully controllable.
However, sometimes there are multiple choices to define a feature
with an identical name, select specific values for feature parameters,
and implement a feature calculation. In reality, values of radiomics
features computed using different feature extraction software can
vary considerably, which makes it hard to compare radiomics
studies especially if details of the feature definitions, parameter
settings, and implementations are not disclosed adequately.

Feature Definition
Variations in feature definition can happen when multiple
equations/descriptors are used to define a same feature. A simple
example is Compactness, a shape feature that is defined to quantify
how spherical a 3D object’s shape is. Although Compactness is a
function of an object’s surface area (S) and volume (V), there are
different equations to define it, e.g., V/(p ½

* S
3/2) and 36*p* V2/S3.

Even if these two equations are related, the computed values from
the two equations are different. This type of variance can be
controlled by making feature definitions transparent.

Feature Parameter Setting
Many features, especially texture features, have parameters in
their definitions so that they can be used to quantify image
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patterns at multiple scales and different orientations. The feature
parameter used most often is the number of gray-level (density)
bins, a.k.a. the bin level. Density discretization groups the entire
density range of images into bins of equal width. Reducing the
bin level or increasing the bin width can improve the
computational efficiency for certain features such as GLCM
features. Moreover, density discretization can lessen noise
interference. In general, bin width should not be lower than
random noise level. However, a large bin width may not be able
to capture the subtle differences in density (texture).

The GLCM feature class is an excellent example to explain
feature specific parameters (Figure 6) (100). A GLCM matrix is
created by counting how often pairs of pixels with specific gray-
level values occur in a specified distance and direction over the
ROI. The GLCM features are the computed statistics from
the matrix (101). There are 3 key parameters: the bin level of
the original images (i.e., the dimension of GLCM), the distance of
pixel pairs, and the direction of the line spanned by the pixel pair.
In Figure 6A, starting with an original image, the figures show
the feature computation process. Two example GLCM matrices
are generated with the bin levels of 4 [Figures 6A(b)–(d)] and 8
[Figures 6A(e)–(g)], both with the distance of 1 pixel and
direction of 0° (Figure 6B). For each GLCM matrix, two
common GLCM features, Contrast and Homogeneity, are
calculated and their values are different due to the different bin
levels, Figures 6A(d) and (g).

The influence of density discretization (bin levels) on
radiomics features was investigated using the CCR phantom
(33). The effect of the bin width (5 to 50 HU) on the stability of
114 studied texture features was found to be marginal compared
to the effect of scanners, slice thicknesses, and tube currents.
Although the study concludes that feature stability may not be
compromised during the optimization of gray-level
discretization when attempting to improve model performance,
evidence from clinical studies is needed.

Feature Implementation
Often, there are multiple choices to implement certain radiomics
features. For instance, a lesion surface area can be evaluated by a
mesh-based representation of the outer surface or by areas of
voxel faces toward the outside of the lesion. For features that are
derived from pre-processed images using a filtering technique
such as Gabor filter, filter length is a feature parameter, and the
method for handling the ROI edge when moving the filter over
the ROI is a hidden variable in the implementation of the Gabor
filter. Moreover, features can be computed in 2D, 2.5D (a
combination of 2D features), or 3D and extracted from the
original images as well as from pre-processed images using
different filtering techniques. In 2D image processing, for
instance, 4 or 8 connected pixels are usually considered as
neighboring pixels and 4 or 8 directions are chosen. All these
and more unspecified variances during feature computation/
implementation can add unknown variation to the computed
feature values. To date, no radiomics studies have provided
sufficient details about their feature definitions, parameter
settings and implementations so that others can reproduce this
aspect of their studies.
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Studies Exploring and Reducing Variability
in Feature Computation
Research has investigated sources of variation in feature
computation (81, 102–104). Two collaborative studies on this
topic are reviewed and discussed in the following subsections.

Preliminary Effort by the Quantitative Imaging
Network (QIN)
This study, conducted by ten teams from the PET/CT working
group of the QIN funded by the National Cancer Institute (NCI),
explored the agreement of 13 software packages on nine basic
radiomics features including volume, 2D and 3D diameters,
mean density, standard deviation, kurtosis, surface area,
sphericity, and GLCM entropy (103). The investigators applied
the feature extraction software used by the teams (about half
open source and half in-house) to both Digital Reference Objects
(DROs) and patient image data. The DROs consisted of three
objects with both texture and uniform densities and spherical
and spiculated shapes (105). The patient data contained images
from 10 patients taken from the LIDC database, a publicly
accessible database (106). One pre-annotated contour for each
DRO/lesion was used to extract radiomics features. Percentage
coefficient of variation (CV) was used to evaluate agreement of
the computed features. The results showed that for the DROs, six
out of the nine features, i.e., volume, 2D and 3D diameters, mean
density, standard deviation and kurtosis (after Fisher correction),
demonstrated excellent agreement (CV < 1%). The features of
surface and sphericity showed moderate agreement (CV: ~13%).
GLCM entropy had big variations (texture DRO: ~50%; uniform
DRO: CV > 600%). For the patient data, CV values of 2D and 3D
diameters, surface, and sphericity increased but were still
moderate. CV of the GLCM entropy decreased to ~36%. All
other features remained in excellent agreement.
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From the DROs to real lesions, ROI shapes became more
irregular and densities became less uniform. This was why the
software packages turned out to agree less with each other when
computing features that relied more on ROI boundaries/surfaces,
such as 2D and 3D diameters and surface and sphericity features.
It was not surprising that the GLCM entropy feature showed
such big variations between feature extraction software packages.
Harmonization of some key parameters (e.g., bin level, pixel
pair’s distance and direction) was found to reduce the average
CV value of GLCM entropy from ~36% to ~20%.

Comprehensive Study by the Image Biomarker
Standardization Initiative (IBSI)
Since 2016, the IBSI, an independent international collaboration,
has focused on standardizing definition and implementation of
quantitative image features and providing benchmark data sets
and consensus-based reference values (26). The IBSI reference
manual is written to provide consensus-based recommendations
and guidelines to improve reproducibility and transparency of
radiomics features and studies.

Recently, the IBSI published a large scale study that
standardized 169 commonly used radiomics features (104).
This multi-year, multi-phase study involved 25 research teams
using their own feature extraction and image processing software
and showed the investigators’ first-hand experience in the
calibration and certification of various feature extraction
software packages. The study utilized a consensus-based and
iterative approach. Phase I (25 participating teams) obtained the
reference values of radiomics features based on a 3D digital
phantom. Phase II (15 teams) defined a general image processing
scheme, implemented it at different configurations, and obtained
corresponding reference values of radiomics features using a
lung cancer CT image series. Initially, only weak consensus (<3
A

B

FIGURE 6 | (A) Computing the GLCM features of Contrast and Homogeneity using different bin levels. (a) Original image. (b) Normalized image using the bin level of
4. (c) GLCM matrix derived from (b). (d) Contrast and Homogeneity computed from GLCM in (c). (e) Normalized image using the bin level of 8. (f) GLCM matrix
derived from (e). (g) Contrast and Homogeneity computed from GLCM in (f). (B) Calculation of the GLCM features for a 9X9 2D image at four directions and a
neighborhood distance of 4 pixels. Reproduced with permission from (100).
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teams matched) existed for 76.8% features at phase I and 65.4%
features at phase II. At the final iteration, strong or better
consensus (6-9 team matches) was achieved to 95.1% and
90.6% at phase I and II, respectively. Phase III (9 teams)
prospectively assessed reproducibility of the 169 standardized
features against a public dataset of CT, PET, and MR images
from 51 sarcoma patients. More than 97% of the features studied
reached an excellent reproducibility (ICC > 0.9), showing the
value of feature standardization in reducing variability between
different feature extraction software.

The study identified several causes of deviation. For instance,
lesion volumes can be represented by simple voxel cubes or
polygonal models (or meshes). This affects the computation of
surface area and thus morphological features. Sometimes, there
are “holes”, which are dark regions inside segmented lesions. The
decision whether to fill such small holes prior to feature
computation can influence the computed value. Differences of
this kind are controllable and can be reduced or eliminated
through feature standardization.

Feature Distribution Harmonization –
Combat
Image acquisition-induced variations in radiomics features are
intensively discussed in the early section of Image acquisition,
where the suggested solutions to reduce such variability are
mainly focused on obtaining consistent and/or comparable
images through controlling image acquisition protocols and/or
post-processing of acquired images using both conventional and
AI-based methods.

Recently, a new data-driven method based on the empirical
Bayes frameworks, called ComBat harmonization, was introduced
into radiomics to reduce feature variability caused by scanners and
scanning parameters (107–109). This method was initially
developed for large-scale genomic data analysis (110). When
combining different datasets collected from microarray
experiments, a big challenge is to remove non-biological
variations caused by the systematic technical differences while
handling samples, i.e., to remove the so-called “batch effects”,
where the batches denote operators, array types, etc. In radiomics,
batches refer to scanners, imaging protocols, individual imaging
parameters, etc. Unlike the imaging harmonization, the ComBat
method operates directly on the computed feature values to remove
batch-induced bias. This eliminates/reduces, for example, the
demands for sharing and transferring medical images between
institutions that can be limited by specific regulations and
standardizing image acquisition settings that can be hard to be
implemented in routine clinical practice.

Figure 7 shows two examples of harmonization/realignment
of a feature, GLCM Homogeneity (108). The example shows two
distributions of the feature, computed from the images
reconstructed at two different reconstruction kernels, Lung vs.
Standard (example 1, Figure 7A), and at two different slice
thicknesses, 1.25 mm vs. 5 mm (example 2, Figure 7B). In each
example, feature distributions were better overlapped after
applying the ComBat harmonization function (https://github.
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com/Jfortin1/ComBatHarmonization). A follow-up study
independently verified the published results by applying the
ComBat method to harmonize a larger set of radiomics
features computed from a broader range of imaging protocols
in a larger cohort of patients. The investigators noticed that the
harmonization also increased the repeatability of texture features
(109). This promising technology warrants validation for its
clinical usefulness in radiomics.

Experience With Open Source Software
and Open Source Databases in Building
Radiomics Prediction Models
There are a number of free open source software packages to
compute radiomics features. Based on the literature searching
results, open source and in-house feature software were used
almost equally frequently in the lung cancer radiomics studies
published from 2014 to July 2020 (Supplemental Materials;
excluding ~9% “not specified” software). Pyradiomics (~15%)
(66) and Imaging Biomarker Explorer (IBEX) (~8%) (62)
are the two most popular open source software to
study radiomics.

Recently, a new radiomic feature calculator, called RaCaT,
became available (111). It calculates a large number of features
that are in compliance with the IBSI standard. Although the
calculator can be downloaded and used without requiring any
programming skills, it does not provide any Graphical User
Interface. Users need to call the calculator either from their own
programming environments or from the command line.

A research group recently reported its first-hand experience
in building a radiomics model to predict EGFR mutation status
in NSCLC patients using two open source databases, TCIA
(The Cancer Imaging Archive) (112) and TCGA (The Cancer
Genome Atlas) (113), and three feature extraction software
packages, the open source Pyradiomics (1319 features) and
IBEX (1563 features), and an in-house package (1160 features)
(114). Although they encountered some obstacles, they
reported a smooth experience overall with the public datasets
and open source feature extraction software. They were able to
collect both image data and clinical data for the majority of
patients satisfying the inclusion criteria of their study.
However, the TCGA-LUAD and the TCGA-LUSC datasets
contained image data and genomic data that were stored
separately on the TCIA and the TCGA, respectively, for the
majority of cases. In addition, the genomic data was often
incomplete, which reduced the number of useable cases. The
two open-source software packages had clear instructions that
made them amenable to beginners. Radiomics feature
definitions were well documented and were able to be
extracted from the majority of lesions. Some errors did occur
during the extraction in both open-source software packages
that could not solved. The study found that although the three
software packages selected different features to build their
prediction models, the models’ performances were similar.
The correlations found between those selected features by the
different software indicate that these features may describe
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similar tumor imaging phenotypes that are associated with
underlying biological characteristics.

Discussion: Potential Strategies and
Practical Considerations to Improve
Feature Extraction
Variations in feature computation are caused by possible
differences in feature definition, parameter setting, and
implementation. Variations also come from the previous steps
of image acquisition, lesion segmentation, and image
preprocessing, which exaggerate variability in radiomics
features and models built using these features (12, 115, 116).

Feature Definition Standardization. One way to reduce
feature variability, enhance collaboration, and accelerate the
development and validation of radiomics signatures is to
standardize feature definition, parameter setting, and
implementation. The IBSI’s effort in standardizing the feature
extraction process is a significant step toward increasing feature
transparency, reducing feature variation, and providing reference
images and reference feature values to help verify/calibrate
feature extraction software developed by researchers globally
(104). Customizable 3D DROs can be created to help
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standardize radiomics features and uncover coding errors
(105) . I t should be noted that promoting feature
standardization does not mean that investigators shouldn’t
develop and use their own feature definitions, parameter
settings, and implementation methods that are different than
those suggested by the IBSI.

Feature Parameter Setting. Normally, we only use about 100
or less fundamental radiomics features. However, with multiple
settings of feature-specific parameters, different implementation
methods, and various image pre-processing methods, the total
number of features that can be provided by a feature extraction
software package can easily reach multiple thousands. Currently,
the settings of many feature parameters are “randomly” chosen
or simply adopted from the literature where the image types and
contents can be very different than those of the investigators’
own clinical studies. As a result, the same features, same feature
parameter settings, and/or same image pre-processing methods
are often used to study different clinical questions for different
disease sites using different imaging modalities. This so called
one-size-fits-all scenario may delay or prevent the discovery of
radiomics signatures. In order to increase the opportunity to
identify biologically relevant features while studying lung cancer,
FIGURE 7 | Probability density distributions of Homogeneity before (without realignment) and after (with realignment) ComBat in patient data by using two CT
reconstruction kernels (A) and two slice thicknesses (B). Reproduced with permission from (108).
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for instance, understanding the density range of lung tumors and
image noise characteristics may help choose proper values of
feature parameters.

Feature Redundancy. On one hand, multiple parameter
values allow quantification of lesion textures at different scales,
contrasts, and directions, which can increase the chance to
identify biologically relevant features. On the other hand,
multiple parameters can drastically increase the total number
of features, many of which are correlated. The high
dimensionality of features can also lead to model overfitting.
Reducing feature dimension is necessary prior to building
prediction models using machine learning methods. Feature
reduction and identification of potential confounding variables
such as image acquisition parameters (e.g., slice thickness) and
clinically used prognosticators (e.g., tumor size) are beyond the
discussions of this review paper.

Feature Transparency. Inadequate descriptions of feature
extraction in the current literature is a big burden for
widespread adoption of the features and replication/validation
of the developed radiomics signatures. For researchers who are
capable of writing their own feature extraction algorithms, it is
important for them to track their changes of the codes using
version control software and describe the feature extraction
details as much as possible in publications. For the groups
offering open source feature extraction software, the software
version numbers along with the release dates and upgrades
should be clearly documented and provided for the purposes
of record tracking.

Image Pre-Processing. Image pre-processing includes, but is
not limited to, smoothing, sharpening, and/or resampling of
images prior to feature extraction. Generally speaking, image
smoothing can improve density-based feature reproducibility.
For instance, the LoG (Laplacian of Gaussian) texture features
computed from the same-day repeat CT scan images
reconstructed at different imaging settings is an example
(Figure 4A). LoG_s1 denotes no pre-processing and LoG_s4
indicates that a large Gaussian kernel is applied to strongly
smooth the original images before the feature calculation. The
reproducibility of LoG features calculated on the smoothed
images is drastically improved (CCC heat map colors changed
from dark to bright) even when the features are calculated from
images reconstructed using different kernels. However, over
smoothing can suppress image texture details, which may lose
clinically useful information related to low contrast textures.
There is a trade-off between reproducible features and
informative features.

Another image pre-processing operation is to resample CT
images to isotropic resolutions in x-, y-, and z-directions. Studies
show that isotropic resolutions can improve feature
reproducibility (42). It is worth mentioning that, in 3D image
segmentation, the isotropic resampling of images is often a
precondition for direct use of 3D image processing operators
that are employed by many 3D segmentation algorithms.

Reproducible and Reliable Features. Both re-imaging and re-
segmentation can introduce variation into radiomics features. To
assess the reproducibility due to re-imaging, features are
Frontiers in Oncology | www.frontiersin.org 17205
extracted from a set of lesions imaged and segmented from
two repeat scans acquired within a short time interval. To assess
reproducibility due to re-segmentation, features need to be
extracted from a set of lesions segmented by the same
radiologist in at least two different sessions (intra-reader
variability) and/or by at least two independent radiologists
(inter-reader variability). If repeat scan image data are
available, re-segmentation of lesions on repeat images can take
into the account the variability caused by both re-imaging and
re-segmentation simultaneously. The concordance correlation
coefficient (CCCs) is a widely accepted statistical method to
assess the reproducibility of radiomics features (117). Only
reproducible features will be retained for the subsequent
machine learning analysis. Once features are extracted,
checking outliers for each feature is a practical way to help
identify imaging artifacts, segmentation errors, etc.

ComBat Feature Harmonization. The ComBat is an easy-to-
use and fast feature harmonization method recently introduced
to remove batch effects in radiomics. Based on calculated feature
values, the ComBat method has the ability to adjust for the batch
effects at multiple layers, e.g., at institution, scanner, imaging
protocol and individual imaging parameter levels. With the
ComBat method, more features can become robust and be
analyzed, historical image data can be better reanalyzed and
multi-center data can be properly combined and/or compared.
Future research includes, for instance, incorporating clinical and
biological variables into the ComBat method to preserve
biological variation while maximally removing batch effects.
The ComBat feature harmonization opens a new and efficient
avenue to accelerate the development, validation and
dissemination of robust and generalized radiomics signatures
and their transfers to clinical practice.

CNN Features. Given sufficient data, features derived from a
CNN can be expected to overcome the limitations of pre-defined
traditional radiomics features because a CNN’s backward
propagation of errors for training purposes enables the
network to self-learn novel features which are most useful for a
specific application. The automated learning and iterative image
filtering performed by a CNN may also make the CNN models
less likely to be confounded by heterogeneous image acquisition
settings. The CNN also eliminates the step of lesion
segmentation, a major source of variation in radiomics.
Nevertheless, radiomics can build tumor imaging phenotype
models using small datasets, a necessity for many medical
studies. Radiomics signatures can often be intuitively
interpreted, which also makes radiomics favorable over the
“black box” approach of using a CNN. In the foreseeable
future, there is no doubt that both radiomics and AI/CNN will
be mainstream approaches to study quantitative imaging
biomarkers in precision medicine.
SUMMARY

Radiomics has shown promise for a variety of clinical
applications in lung and other cancers, and in particular for
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diagnosis, prognosis, and response assessment. Radiomics
derives strength from hypothesis neutral techniques that can
identify subtle details or changes in patterns/features of medical
images that are associated with biological activities and clinical
outcomes. This, however, also creates a potential weakness: the
values of computed radiomics features and the performance of
radiomics models incorporating them can be sensitive to many
variables intrinsic to the radiomics workflow. Given
heterogeneous image acquisition settings, varied quantification
software packages, different diseases’ characteristics, and small
and mixed patient populations, the development of reproducible
and generalizable radiomics signatures is not as straightforward
as it initially appeared. Indeed, radiomics is a multidisciplinary
research field. Its success relies on close collaborations among
physicians, medical imaging physicists, biomedical engineers,
statisticians, and computer scientists. Over the past years, great
community efforts have been made to better understand sources
of variation, improving reproducibility and reliability of
radiomics features and models through imaging and feature
harmonization and increasing transparency and quality of
radiomics studies. Ever-growing open source imaging and
genomic databases as well as open source software packages
help accelerate the development and external validation of
radiomics signatures.
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Purpose: PLND (pelvic lymph node dissection)-validated nomograms are widely
accepted clinical tools to determine the necessity of PLND by predicting the metastasis
of lymph nodes (LNMs) in pelvic region. However, these nomograms are in lacking of a
threshold to predict the metastasis of extrareolar lymph nodes beyond pelvic region,
which is not suitable for PLND. The aim of this study is to evaluate a threshold can be set
for current clinical PLND-validated nomograms to predict extrareolar LN metastases
beyond pelvic region in high-risk prostate cancer patients, by using 68Ga-PSMA PET/CT
as a reference to determine LN metastases (LNMs).

Experimental Design: We performed a retrospective analysis of 57 high-risk treatment-
naïve PC patients in a large tertiary care hospital in China who underwent 68Ga-PSMA-
617 PET/CT imaging. LNMs was detected by 68Ga-PSMA-617 PET/CT and further
determined by imaging follow-up after anti-androgen therapy. The pattern of LN
metastatic spread of PC patients were evaluated and analyzed. The impact of 68Ga-
PSMA PET/CT on clinical decisions based on three clinical PLND-validated nomograms
(Briganti, Memorial Sloan Kettering Cancer Center, Winter) were evaluated by a
multidisciplinary prostate cancer therapy team. The diagnostic performance and the
threshold of these nomograms in predicting extrareolar LNMs metastasis were evaluated
via receiver operating characteristic (ROC) curve analysis.
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Results: LNMs were observed in 49.1% of the patients by 68Ga-PSMA PET/CT, among
which 65.5% of LNMs were pelvic-regional and 34.5% of LNMs were observed in
extrareolar sites (52.1% of these were located above the diaphragm). The Briganti,
MSKCC and Winter nomograms showed that 70.2%-71.9% of the patients in this
study need to receive ePLND according to the EAU and NCCN guidelines. The LN
staging information obtained from 68Ga-PSMA PET/CT would have led to changes of
planned management in 70.2% of these patients, including therapy modality changes in
21.1% of the patients, which were mainly due to newly detected non-regional LNMs. The
thresholds of nomograms to predict non-regional LNMs were between 64% and 75%.
The PC patients with a score >64% in Briganti nomogram, a score >75% in MSKCC
nomogram and a score >67% in Winter nomogram were more likely to have non-regional
LNMs. The AUCs (Area under curves) of the clinical nomograms (Briganti, MSKCC and
Winter) in predicting non-regional LNMs were 0.816, 0.830 and 0.793, respectively.

Conclusions: By using 68Ga-PSMA PET/CT as reference of LNM, the PLND-validated
clinical nomograms can not only predict regional LNMs, but also predict non-regional
LNMs. The additional information from 68Ga-PSMA PET/CT may provide added benefit to
nomograms-based clinical decision-making in more than two-thirds of patients for
reducing unnecessary PLND. We focused on that a threshold can be set for current
clinical PLND-validated nomograms to predict extrareolar LN metastases with an AUC
accuracy of about 80% after optimizing the simple nomograms which may help to
improve the efficiency for PC therapy significantly in clinical practice.
Keywords: prostate cancer, PET/CT, distant, lymph node metastases, PSMA, impact, nomogram
HIGHLIGHTS
68Ga-PSMA PET/CT demonstrated that nearly one-third of
LNMs in high-risk treatment-naïve PC patients were non-
regional and the new information obtained from whole-body
68Ga-PSMA PET/CT has the potential to benefit the
nomograms-based clinical decision-making in more than two-
thirds of the patients, leading to more personalized treatment.
68Ga-PSMA PET/CT can be used to exclude patients with non-
regional lymph node metastases (LNMs) before pelvic lymph
node dissection (PLND) in order to improve the efficiency of
prostate cancer therapy in clinical practice. With a higher cutoff
value, the clinical nomograms have the potential to predict non-
regional LNMs as well.
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INTRODUCTION

Prostate cancer (PC) is the most commonly diagnosed malignant
tumor and the second leading cause of cancer associated death in
men worldwide (1). The most common route of metastasis is
lymphogenous spread (2), and regional lymph node metastases
(LNMs) can be observed in high-risk PC patients at 19.4% (3).
The situation of LNMs can greatly influence clinical decision
making in PC patients. Currently, the conventional imaging
techniques such as computed tomography (CT) and
multiparametric magnetic resonance imaging (mpMRI) had
limited utility because of their relatively low sensitivities of
approximately 40.0% for detection of LNMs (4). To better
predict the risk of regional LNMs in PC patients, multiple
pelvic lymph node dissection (PLND) validated nomograms,
such as the Briganti, Memorial Sloan Kettering Cancer Center
(MSKCC) and Winter nomograms were created to identify
optimal candidates for PLND in treatment-naïve PC patients,
according to EAU (European Association of Urology) and
NCCN (National Comprehensive Cancer Network) guidelines
(5–7). PLND should be performed in the patients with LNMs
risk higher than 2% in MSKCC nomogram, 5% in Briganti
nomogram or 7% in Winter nomogram (5–7).

The incidence rate of non-regional LNMs leading to
unnecessary PLND in treatment-naïve PC patients were as
high as 36.0% (8). However, according to the EAU–ESTRO–
SIOG and NCCN guidelines, there is no specific examination for
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detecting non-regional LNMs in guidelines and only a cross-
sectional abdominopelvic imaging (CT/MRI) and a bone scan
are routinely recommended for staging purposes (7, 9).
Therefore, many PC patients may receive unnecessary PLND
because they already have non-regional LNMs. There were no
thresholds in PLND-validated clinical nomograms (MSKCC,
Briganti and Winter) to exclude the PC patients with non-
regional LNMs. If there were thresholds to identify the PC
patients with non-regional LNMs in PLND-validated clinical
nomograms, the nomograms can be better used in selection of
PLND candidates.

However, the detection of non-regional LNMs and
development of nomograms to predict non-regional LNMs
were limited by the imaging techniques to detect non-regional
LNMs. In clinical practice, there was no routine imaging
examination for non-regional LNMs and the nodal staging
largely depended on preoperative pelvic CT/MRI or
histopathological results from PLND. The whole-body MRI
and biopsies for non-regional LNMs were hard to performed
routinely. With high accuracy, 68Ga-PSMA PET/CT can be an
effective imaging modality to detect non-regional LNMs.
Prostate-specific membrane antigen (PSMA), a type II
transmembrane protein, was overexpressed in 98.0% of PC
associated LNMs (10). 68Ga-labeled prostate-specific
membrane antigen PET/CT (68Ga-PSMA PET/CT) is a novel
molecular imaging technique with promise compared to
conventional imaging techniques for detection of LNMs for
primary staging of PC patients (4, 11, 12). The use of 68Ga-
PSMA PET in probing regional LNMs of PC was validated in a
series of prior studies (13–16). The specificity of 68Ga-PSMA
PET for detecting regional LNMs ranged from 80.0% to 100.0%
(13) and confirmed high specificity of over 95.0% in large cohorts
(17, 18). In hence, 68Ga-PSMA PET is now an established
imaging technique to improve the detection of non-regional
LNMs in prostate cancer (19).

The disease with regional LNMs can be considered as
locoregional progressive disease between localized disease and
the oligometastatic disease or systemic metastatic disease with
distant LNMs (20, 21). Therefore, the aim of the present study
was to investigate whether clinical nomograms (Briganti,
MSKCC and Winter) can predict non-regional LNMs and to
generate cutoff values to predict distant LNMs. Further, we
analyzed the potential added benefit of visualizing newly
detected distant LNMs by 68Ga-PSMA PET/CT to existing
nomograms-based clinical decision-making. The non-regional
LNMs observed by 68Ga-PSMA PET/CT were detected and
monitored by multiple imaging techniques in follow-ups of the
patients. In addition, we depicted metastatic pattern of LNMs in
high-risk treatment-naïve PC patients.
PATIENTS AND METHODS

Patients and Study Design
We retrospectively reviewed a database from a large tertiary care
hospital in China for patients with pathologically confirmed PC
Frontiers in Oncology | www.frontiersin.org 3212
who underwent 68Ga-PSMA PET/CT from April 2017 to
October 2019. Patients were included in the study if they met
the following inclusion criteria: (1) transrectal ultrasound
(TRUS)-guided 12-core biopsy to pathologically confirm PC;
(2) Gleason score (GS); (3) clinical tumor stage; (4) pretreatment
total prostate specific antigen (tPSA). Patients were excluded if
they received any treatment before 68Ga-PSMA PET/CT, such as
androgen deprivation treatment (ADT), radical prostatectomy
(RP), radiotherapy (RT), or chemotherapy. Other exclusion
criteria included patients with negative PSMA expression on
primary PC tumor validated by immunohistochemistry (IHC),
and patients who had an interval between tPSA data and 68Ga-
PSMA PET/CT that was more than 30 days. All patients had a
bone scan and an mpMRI as well as 68Ga-PSMA PET/CT.
Ultimately, a total of 57 patients with sufficient clinical data
were eligible for analysis. Mean patient age was 69.4 ± 8.2 years
(Median 68.5, range 40-84) and the mean serum PSA at imaging
was 283.9 ng/ml (median 28.91, range 0.09-8447). All patients
had high risk PC, according to the D’Amico standard (22).

This study was performed in the Urology Department and
Nuclear Medicine Department of the Fourth Military Medical
University Affiliated Hospital (Xijing Hospital, Xi’an, Shaanxi,
China). The study was approved by the Ethics Committee of
Fourth Military Medical University, and all participating patients
provided written informed consent. The research was conducted
in accordance with the Declaration of Helsinki and national
regulations. Deidentified data were collected in a central database
at Fourth Military Medical University.

Histological Examination
A TRUS-guided 12-core prostate biopsy with necessary
additional target biopsy was performed for each patient’s
biopsy. All resected tissue of primary PC tumors and lymph
nodes from surgeries were formalin-fixed and routinely
processed for hematoxylin-eosin (HE) staining and
immunohistochemistry (IHC) analysis. The Gleason score
(ISUP grade) was considered as the highest score on the biopsy
specimen. The histopathological results served as a reference and
were stratified in accordance with the 7th edition of the American
Joint Committee on Cancer (AJCC) staging system for PC (23).
The pathological results were confirmed by the consensus of two
board-certified specialists in genitourinary pathology, as
previously reported (24). The pathologists were blinded to both
the 68Ga-PSMA PET/CT results and the clinical evaluation of the
tissues from the surgeons.

Immunohistochemistry Staining
The tissue samples were formalin-fixed and routinely processed
for IHC staining to evaluate PSMA expression with anti-PSMA
antibody (1:100, MAB-0575, MXB Biotechnologies), as
previously reported (25). Further methods related to IHC are
included in the Supplementary Materials and Methods.

Immunofluorescence Staining
The slides were processed for IF staining of PSMA (1:50, MAB-
0575, MXB Biotechnologies) and p504s (a biomarker of PC, 1:50,
RMA-0546, MXB Biotechnologies), a technique that was
April 2021 | Volume 11 | Article 658669

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jiao et al. Lymph Nodes Detected by PSMA PET/CT
previously reported (26). Details regarding IF procedures are
included in the Supplementary Materials and Methods.
Imaging Evaluation of mpMRI
and Bone Scan
All mpMRI evaluations were performed on a 3.0-T MR scanner
(Achieva 3.0 T TX, Philips Medical Systems, The Netherlands)
by using a 16-channel phased-array coil, as we previously
described (27). LNs were rated as malignant if they have a
short-axis diameter > 10 mm and if they showed restricted
diffusion on the DWI and ADC map or increased contrast
enhancement (28). Bone scan was performed on Symbia T2
(Siemens Medical Solutions, Erlangen, Germany) with at 3-5
hours after injection of 20-25mCi 99Tcm-MDP. The evaluation of
mpMRI or bone scan were reviewed by two radiologists or two
board-certified nuclear medicine specialists
Imaging Protocol and Evaluation
of 68Ga-PSMA PET/CT
All 68Ga-PSMA PET/CT evaluations were performed at a single
center (Fourth Military Medical University, Xijing Hospital,
Xi’an, Shaanxi, China). Patients underwent 68Ga-PSMA PET
imaging on a Biograph 40 system (Siemens Medical Solutions,
Erlangen, Germany). The 68Ga/68Ge generator system was
produced by ITG GmbH (Munich, Germany), and the DOTA
ligand was acquired from ABX GmbH (Radeberg, Germany).
The 68Ga-PSMA-617 was synthesized as we previously reported
(24), and the patients were intravenously injected with 1.8-2.2
MBq/kg body weight 68Ga-PSMA-617. Mean injection activity of
68Ga-PSMA PET was 141.7 ± 21.9 MBq. Low-dose CT (pitch 0.8,
50 mA, 120KV[peak]) scans for PET attenuation were obtained
(automatic mA, 120keV, 512x512 matrix, 5-mm slice thickness,
1.0-s rotation time, and 0.8 pitch), followed by a PET scan with 5
bed positions (3 min/bed, from head to the proximal thighs)
performed about 60 minutes after tracer injection. The PET/CT
images were then transferred to a multimodal workstation for
data analysis (Syngo Truepoint Siemens Medical Solutions).

The scans of 68Ga-PSMA PET/CT were reviewed by two
board-certified nuclear medicine specialists (Z.Q. and F.K.) with
more than ten years’ experience in reading PET imaging and one
board-certified radiation oncologist (J.W.). According to prior
studies, lymph nodes with a SUVmax of 2.0 or more and a
diameter of 5 mm or more were considered PSMA-positive on
68Ga-PSMA PET (29, 30). Scans were evaluated using a Siemens
MIWP workstation (Syngo MIWP; Siemens Medical Solutions,
Erlangen, Germany), according to the Joint EANM and SNMMI
procedure guidelines (version 1.0) (31, 32).
Statistical Analysis
Descriptive statistics were calculated and presented as the
frequency (percentage) for categorical variables, the mean
(standard deviation) for continuous variables of normal
distribution and the median (quartile) for continuous variables
of skewness distribution. All data were analyzed by IBM SPSS
statistics software, version 23.0 (IBM, Inc., Chicago, IL, USA).
Frontiers in Oncology | www.frontiersin.org 4213
RESULTS

Patient Characteristics and Pattern
of Metastatic Spread
The characteristics of the 57 patients included in the study are
summarized in Table 1. To better understand the pattern of
metastatic spread of LNMs, we depicted non-regional LNMs
from all PC patients (Figure 1). 68Ga-PSMA PET/CT visual
analysis found 206 PSMA-positive LNMs from 49.1% (28/57) of
the patients (mean 7.4 nodes per patient; range: 1-30 positive
nodes per patient). A representative PC patient with non-
regional oligometastatic lymph nodes is shown in Figure 2 and
a PC patient without LNMs is shown in Figure S1. Figure S2
shows a representative PC patient with LNMs had negative
results in mpMRI but positive results in 68Ga-PSMA PET/CT.
If staining confirmed co-expression of PSMA and P504s, a
biomarker of PC cells, on resected LNMs (Figure S4).

The Detection and Distribution of Non-
Regional LNMs by 68Ga-PSMA PET/CT
Toclarify thenon-regional LNMsdetectedby 68Ga-PSMAPET/CT
and its distribution, we depicted non-regional LNMs from all PC
patients (Figure 1). For 57 patients, 34.5% (71/206) of the LNMs
were non-regional and 65.5% (135/206) of the LNMswere regional.

As shown in Table 2, non-regional LNMs were observed in
57.1% (16/28) of the PC patients with LNMs. Nearly half of all
TABLE 1 | Characteristics of patients and tumors at diagnosis.

Characteristic value

Age (ages)
　 Mean ± SD 68.5 ± 8.2
　 Median (range) 69.0 (40-84)
tPSA at PSMA PET/CT (ng/mL)
　 Median (P25-P75) 30.7 (8.8-149.5)
SUVmax

　 Mean ± SD 21.3 ± 19.2
　 Median (P25-P75) 16.0 (7.9-25.1)
Injection dose (MBq)
　 Mean ± SD 141.9 ± 21.5
　 Median (range) 142.1(67.0-181.3)
Uptake time (minutes)
　 Mean ± SD 66.617 ± 14.5
　 Median (range) 62(40-98)
T-stage, n (%)
　 T2a 5 (8.8%)
　 T2b 5 (8.8%)
　 T2c 38 (66.7%)
　 T3a 2 (3.5%)
　 T3b 4 (7.0%)
　 T4 3 (5.3%)
Gleason score, n (%)
　 6 3 (5.3%)
　 3+4 = 7 2 (3.5%)
　 4+3 = 7 8 (14.0%)
　 8 22 (38.6%)
　 9 17(29.8%)
　 10 5(8.8%)
Risk-group according to D’Amico, n (%)
　 High 57(100.0%)
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LNMs occurred in retroperitoneal lymph nodes (n=34, 16.5%),
while the remaining LNMs (n=37, 18.0%) were observed in other
areas above the diaphragm. The most commonly observed LNMs
above the diaphragm were seen in the mediastinal area (n=6,
2.9%). PSMA-avid LNMs in the left infraclavicular lymph nodes,
the left hilar lymph nodes, and the right hilar lymph nodes were
equally observed (n=4, 1.9%). PSMA-positive LNMs were also
observed in the left supraclavicular lymph nodes (Virchow
nodes, n=3, 4.2%) and the right infraclavicular lymph nodes
(n=3, 4.2%). A patient with Virchow nodes is shown in Figures
3A, B, and a patient with bilateral supraclavicular LNMs is
shown in Figures 3C, D. In addition, LNMs were observed in the
left/right cervical lymph nodes, the right supraclavicular lymph
nodes, the left/right axillary lymph nodes, the left/right hilar
lymph nodes, the paraesophageal lymph nodes, and the left/right
paradiaphragmatic lymph nodes. One mesenteric lymph node
and one metastatic node of the left lung were also observed. In
total, more than one-third of all LNMs were non-regional LNMs,
which were beyond the range of PLND (Figure 1, Table 2).

Thus, more than one-third of all LNMs shown in the 68Ga-
PSMA PET/CT were non-regional LNMs, which were beyond
the range of PLND. Totally, 28.1% (16/57) of all patients have
Frontiers in Oncology | www.frontiersin.org 5214
both regional and non-regional LNMs, and no skip metastases
was observed in each patient.

The Evaluation of Regional LNMs Risks
According to Three Clinical Nomograms
To compare the scores of having regional LNMs, we calculated
the risks of having LNMs for the patients in the study according
to the three PLND-based nomograms (5, 6, 33).

As shown in Figure 4, the PC patients with nonregional
LNMs have higher scores than those without LNMs. The risks of
LNMs according to the Briganti, MSKCC and Winter
nomograms were 48.0% (median; range 1.0-95.0%), 63.0%
(median; range 9.0-99.0%), and 70.0% (median; range 10.0-
89.0%), respectively (Table 3). For the Briganti nomogram, the
risks varied from low (<10.0%) for 13 men (22.8%) to very high
(>50.0%) for 25 men (43.9%) in our cohort. For the MSKCC
nomogram, the risks varied from low (<10.0%) for 10 men
(17.5%) to very high (>50.0%) for 35 men (61.4%) in our
cohort. For the Winter nomogram, the risks varied from low
(<10.0%) for 2 men (3.5%) to very high (>50.0%) for 35 men
(61.4%). Due to high tPSA values or GS, the risk of LNMs in 18
patients was more than 90.0% from the MSKCC nomogram.
FIGURE 1 | Anatomical distribution of PSMA-avid lymph node metastases in the whole body. (blue square, the scope of ePLND; yellow square, the scope of limited
PLND; red square, the selective resected lymph nodes if radioactive in sentinel PLND). Anatomical distribution of non-regional PSMA-avid lymph node metastases.
All non-regional lymph node metastases (n=71, 34.5%) are beyond pelvic mpMRI, the currently recommended imaging by the guidelines (7, 9). Background picture
(Lymph Vessels and Nodes of Posterior Abdominal Wall) was used under the permission of © Elsevier Inc.
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Thus, clinical nomograms indicated that most of the patients
in this study need to receive ePLND to deal with regional LNMs
Frontiers in Oncology | www.frontiersin.org 6215
or potential regional LNMs. The PC patients with distant LNMs
has higher scores than those with regional LNMs. Then, we tried
to clarify the non-regional LNMs by 68Ga-PSMA PET/CT.

The Tangible Benefit of 68Ga-PSMA
PET/CT in Nomogram-Based Therapy
Choices of High-Risk Prostate Cancer
Patients With Non-Regional Lymph Node
Metastases
Next, we analyzed whether an additional 68Ga-PSMA PET/CT
have potential benefit on nomogram-based therapy choices of
high-risk PC patients, including sparing unnecessary ePLND in
PC patients with non-regional LNMs. Four examples were used
to show the potential benefit on clinical decision-making,
especially in those with non-regional LNMs.

Therapy modality changes were made in the PC patients with
non-regional oligometastatic lymph nodes. As shown in
Figure 2, a 40-year-old patient (T3a stage) with tPSA 48.0
ng/ml and GS 4 + 4 = 8 with pelvic LNMs on pelvic mpMRI
and no BMs on bone scan. The LNMs risks were 94.0%, 93.0%,
and 89.0% according to the Briganti, MSKCC and Winter
FIGURE 2 | Representative PC patient with non-regional oligometastatic lymph nodes. (A–C, F, G) 68Ga-PSMA PET/CT results of a 40 y/o PC patient with LNMs
(cT3a, GS 4 + 4 = 8, tPSA 47.99 ng/ml). (B, C) Typical para-iliac LNMs (white arrow, right para-iliac LNMs; red arrow, typical left para-iliac LNMs, SUVmax 13.2).
(D) HE staining and (E) PSMA staining of the resected left para-iliac LNMs. (F, G) non-regional oligometastatic LNMs in paraaortic area (yellow arrow, SUVmax 10.9).
The LNMs risks were 94.0%, 93.0%, and 89.0% according to the Briganti, MSKCC and Winter nomograms, respectively. The LNMs risk (>65%) indicated that the
PC patients may have non-regional LNMs. After 68Ga-PSMA PET/CT, radiotherapy was also performed on the oligometastatic paraaortic LNM after RP with ePLND.
TABLE 2 | Overview of distant lymph nodes metastases.

Location ∑

Total 71 (100.0%)
left supraclavicular lymph nodes 3(4.2%)
right supraclavicular lymph nodes 2(2.8%)
left infraclavicular lymph nodes 4(5.6%)
right infraclavicular lymph nodes 3(4.2%)
left cervical lymph nodes 1(1.4%)
right cervical lymph nodes 1(1.4%)
paraesophageal lymph nodes 2(2.8%)
left axillary lymph nodes 1(1.4%)
right axillary lymph nodes 1(1.4%)
left hilar lymph nodes 4(5.6%)
right hilar lymph nodes 4(5.6%)
left lung 1(1.4%)
mediastinal lymph nodes 6(8.5%)
left paradiaphragmatic lymph nodes 1(1.4%)
right paradiaphragmatic lymph nodes 2(2.8%)
mesenteric lymph nodes 1(1.4%)
Retroperitoneal lymph nodes 34(47.9%)
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nomograms, respectively. As a result, the patient underwent RP
and extended PLND (ePLND) according to standard guidelines
(7, 9). However, 68Ga-PSMA PET/CT revealed that non-regional
oligometastatic lymph nodes existed in the paraaortic area.
Frontiers in Oncology | www.frontiersin.org 7216
Therefore, after surgery, radiotherapy (RT) should be
performed on the paraaortic LNMs.

As another example, changes in therapeutic modality may
also occur in PC patients based on the detection of non-regional
LNMs. As shown in Figure 3A, a 76-year-old patient (T2c stage)
with tPSA 150.9 ng/ml and GS 4 + 4 = 8 with regional LNMs on
pelvic mpMRI and no BMs on bone scan. The LNMs risks were
81.0%, 99.0%, and 70.0% according to the Briganti, MSKCC and
Winter nomograms, respectively. As a result, the patient received
RP and ePLND according to standard guidelines (7, 9). However,
68Ga-PSMA PET/CT revealed non-regional LNMs in the
Virchow nodes, mediastinal lymph nodes, and retroperitoneal
lymph nodes. Hence, RP and ePLND should be replaced by
image-guided radiotherapy (IGRT). 68Ga-PSMA PET/CT has
the potential to reduce unnecessary ePLND in this kind of
PC patients.

In addition, changes in RT scope may be recommended for
PC patients with many non-regional LNMs. As shown in Figure
3B, a 73-year-old patient (T4 stage) with tPSA 747.9 ng/ml and
GS 4 + 5 = 9 with regional LNMs on pelvic mpMRI and BMs on
bone scan. However, all non-regional LNMs, such as Virchow
nodes, were missed by pelvic mpMRI. With 68Ga-PSMA PET/
CT, non-regional LNMs were clearly shown for accurate
modification of the radiation area of IGRT.

Furthermore, 68Ga-PSMA PET/CT has the potential to
reduce unnecessary ePLND in PC patients without LNMs. As
shown in Figure S1, a 71-year-old patient (T2a stage) with tPSA
FIGURE 3 | Two example PC patients with Virchow nodes. (A, B) 68Ga-PSMA PET/CT results of a 76 y/o patient (T2cN1M1a, GS 4 + 4 = 8, tPSA 150.9 ng/ml).
Virchow nodes (red arrow, SUVmax 8.42). After

68Ga-PSMA PET/CT, LNMs were shown in the Virchow nodes, mediastinal lymph nodes, and retroperitoneal
lymph nodes so RP with ePLND could be replaced by RT. (C, D) 68Ga-PSMA PET/CT of a 73 y/o patient (pT4N1M1b; GS 5 + 4 = 9; tPSA 747.9 ng/ml). right
supraclavicular LNMs (yellow arrow, SUVmax 7.89) and Virchow nodes (red arrow, SUVmax 2.98). In the first patient, the LNMs risks were 81.0%, 99.0%, and 70.0%
according to the Briganti, MSKCC and Winter nomograms, respectively. The LNMs risk (>65%) indicated that the PC patients may have non-regional LNMs. After
68Ga-PSMA PET/CT, the radiation scope of radiotherapy could be modified for more accurate location.
FIGURE 4 | Comparison of risks from the three nomograms between the
patients with no LNMs (1), the patients with regional LNMs (2) and the
patients with distant LNMs (3). Vertical borders of box represent 25th and
75th percentiles and middle bar represents median while “+” represents
mean. Mann-Whitney U tests showed significant difference between the
patients with LNMs and without LNMs (**P<0.001) and the PC patients with
non-regional LNMs have higher scores than those with regional LNMs. The
LNMs risks were calculated from Briganti, MSKCC and Winter nomograms.
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of 9.3ng/ml and GS 4 + 4 = 8 with no pelvic LNMs on pelvic
mpMRI and no BMs on bone scan. The LNMs risks were 11.0%,
21.0%, and 39.0% according to the Briganti, MSKCC and Winter
nomograms, respectively. Therefore, the patient underwent RP
and ePLND to treat the potential LNMs according to the
guidelines (7, 9). However, no LNMs were observed on 68Ga-
PSMA PET/CT. After ePLND, the pathological results from
resected lymph nodes confirmed that no LNMs existed, which
were in agreement with the PSMA PET/CT findings.

In general, the new information of 68Ga-PSMA PET/CT can
lead to changes of therapy choices in 70.2% (40/57) of the PC
patients when using the Briganti nomogram in clinical decision-
making (Figure 5A). Therapy modality changes could be made
in 21.1% of the patients and other changes include details of RT
scope (17.5%) or type and extent of surgery (31.6%). Changes in
therapeutic treatment modality were due to newly detected non-
regional LNMs in 12.3% of the patients and newly detected BMs
in 8.7% of the patients. 68Ga-PSMA PET/CT has the potential to
reduce unnecessary ePLND in 12.3% of the patients because of
newly detected non-regional LNMs. Newly detected non-
regional LNMs can also lead to modification of RT in 17.5% of
the patients. Similarly, 75.4% (43/57) of the patients would have
had different clinical decision-making as compared to the
MSKCC nomogram (Figure 5B) and 73.7% (42/57) of the
patients would have had different clinical decision-making as
compared to the Winter nomogram (Figure 5C) after 68Ga-
PSMA PET/CT. Therefore, 68Ga-PSMA PET/CT can provide
added benefit to the three standard nomograms and affect
clinical decision-making, especially for patients with non-
regional LNMs.

The Establishment of New Thresholds for
PLND-Validated Clinical Nomograms to
Predict Non-Regional Lymph Node
Metastases
According to the guidelines, the PC patients with LNMs risk
higher than 5% in Briganti nomogram, 2% in MSKCC
nomogram or 7% in Winter nomogram need receive ePLND
Frontiers in Oncology | www.frontiersin.org 8217
to deal with potential regional LNMs (5–7). However, whether
the PLND-validated clinical nomograms have the potential to
evaluate the risk of non-regional LNMs remains unclear. The PC
patients with LNMs risk higher than the above mentioned cutoff
values, such as 5%, may also have non-regional LNMs and these
patients with non-regional LNMs should not receive ePLND.
Next, we analyzed whether the clinical nomograms have the
potential to predict non-regional LNMs.

To determine whether the clinical scores of nomograms can
predict PSMA PET positive non-regional LNMs by setting a
higher cutoff value, we plotted the ROC curves of the three
nomograms to compare the accuracy of nomograms in
predicting PSMA PET positive non-regional LNMs; for each
nomogram, a cutoff value corresponding to highest level
accuracy was utilized. The AUC of the clinical scores to predict
PSMA PET positive non-regional LNMs is shown in Figure 6.
We found that the PC patients with a score >64% in Briganti
nomogram, a score >75% in MSKCC nomogram and a score
>67% in Winter nomogram were more likely to have non-
regional LNMs. We found the AUC of MSKCC and Briganti
nomograms was slightly higher than those of Winter nomogram.
The AUC of clinical nomograms was shown in Table 4. Using
the above higher cutoff values, 10.5% (6/57) high-risk PC
patients with non-regional LNMs can be excluded by Briganti
and Winter nomograms, and 8.7% (5/57) high-risk PC patients
with non-regional LNMs can be excluded by MSKCC
nomograms (Figure 7).

Conclusively, the ePLND-based clinical nomograms have the
potential to predict non-regional LNMs as well. The surgeons
should pay close attention to the PC patients with LNMs risk
higher than approximately 65% for potential non-
regional LNMs.
DISCUSSION

This study depicted the pattern of metastatic spread by 68Ga-
PSMA PET/CT and demonstrated the potential benefit of this
imaging modality on clinical decision-making for high-risk PC
patients, especially in patients with non-regional LNMs. 68Ga-
PSMA PET/CT can provide pattern of metastatic spread of
LNMs with a higher sensitivity and specificity compared with
conventional morphological imaging (34). One previous study
indicated that, compared with mpMRI, more LNMs can be
observed by 68Ga-PSMA PET/CT in 27.8% of PC patients (35).
In this study, 96.7% of the patients with LNMs who received
68Ga-PSMA PET/CT had detectable LNMs, while pelvic mpMRI
could only detect regional LNMs in 60.7% of patients. Therefore,
pelvic mpMRI alone has limited sensitivity for detection of
regional LNMs and cannot include non-regional LNMs.

In our study, 34.5% of the LNMs were detected in non-
regional sites. This finding was comparable to prior work,
including a study of 280 treatment-naïve PC patients that
reported the use of 68Ga-PSMA PET/CT detected 36.0% of
LNMs as non-regional and 15.5% of LNMs above the
diaphragm (8). The most commonly observed non-regional
TABLE 3 | Risk of lymph nodes metastases according to three clinical
nomograms.

Briganti
nomogram

MSKCC
nomogram

Winter
nomogram

Patient number 57 57 57
Median (range) [%] 48.0 (1.0-95.0) 63.0 (0.0-99.0) 70.0 (10.0-89.0)
Subgroups 　 　 　

≤10.0% 13(22.8%) 10(17.5%) 2(3.5%)
10.1-20.0% 7(12.3%) 4(7.0%) 1(1.8%)
20.1-30.0% 3(5.3%) 5(8.8%) 10(17.5%)
30.1-40.0% 1(1.8%) 1(1.8%) 8(14.0%)
40.1-50.0% 8(14.0%) 2(3.5%) 1(1.8%)
50.1-60.0% 4(7.0%) 6(10.5%) 1(1.8%)
60.1-70.0% 6(10.5%) 4(7.0%) 30(52.6%)
70.1-80.0% 3(5.3%) 2(3.5%) 1(1.8%)
80.1-90.0% 10(17.5%) 5(8.8%) 3(5.3%)
>90.0% 2(3.5%) 18(31.6%) 0 (0.0%)
Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%)
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A

B

C

FIGURE 5 | Impact of 68Ga-PSMA PET/CT on clinical decision-making in high-risk treatment-naïve prostate cancer patients. (A) According to the Briganti
nomogram, 68Ga-PSMA PET/CT would have led changes of planned therapy in 70.2% of these patients and avoided unnecessary ePLND in 12.3% of the patients
who have previously undetected non-regional LNMs. (B) According to the MSKCC nomogram, 68Ga-PSMA PET/CT would have led changes of planned therapy in
75.4% of the patients; (C) According to the Winter nomogram, 68Ga-PSMA PET/CT would have led changes of planned therapy in 73.7% of the patients. As the
basic treatment for nearly all high-risk PC patients, ADT or systemic therapy was not included. (Modality: changes of therapy modality; surgery details: changes in
surgery details; RT details: change in RT field; RP: radical prostatectomy; RT: radiotherapy; ePLND: extend PLND; sPLND: sentinel PLND).
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LNMs were the paraaortic lymph nodes (12.8%), while the most
commonly encountered non-regional LNMs above the
diaphragm were the mediastinal lymph nodes (6.2%) (8). Our
results were consistent with the prior study because 97.8% of the
patients in this work were intermediate- to high-risk PC patients
(8). In another study, 68Ga-PSMA PET/CT revealed that 16.0%
of the treatment-naïve PC patients had LNMs and 6.0% of these
patients had non-regional LNMs (36). Meanwhile, Nurhan et al.
reported that 9.0% of the treatment-naïve PC patients had non-
regional LNMs (37). For the intermediate- to high-risk
treatment-naïve PC patients, one study indicated that 23.3% of
the patients had regional LNMs and 9.5% of them had non-
regional LNMs (38). One previous study showed that
retroperitoneal LNMs were encountered in 12.8% of the high-
risk PC patients by 68Ga-PSMA I&T PET/CT (39). In our study,
the retroperitoneal LNMs were the most commonly visualized
non-regional LNMs. We identified 57.1% compared to 47.7% (in
Frontiers in Oncology | www.frontiersin.org 10219
BJU study) non-regional LNMs of the PC patients with LNMs
(40). Compared with previous studies, more non-regional LNMs
were observed in our study because more high-risk PC patients
with higher grade of PC were included in our cohort.
Furthermore, we focused on that a threshold can be set for
current clinical PLND-validated nomograms to predict
extrareolar LN metastases with an AUC accuracy of about 80%
after optimizing the simple nomograms which may help to
improve the efficiency for PC therapy significantly in clinical
practice. PSMA expression, which could be reflected by
Maximum Standardized Uptake Values (SUVmax) of the
primary tumor in 68Ga-PSMA PET/CT, was closely correlated
with higher grades of PC (41). As shown in Figure S3, a
significantly higher SUVmax was found in the patients with
LNMs versus those without LNMs (P<0.01, Mann-Whitney-U-
test). The Virchow nodes were observed in our study (Figure 3).
One previous study also reported that 3.2% of the treatment-
naïve patients have LNMs in the Virchow nodes (8). The study
showed that the Virchow nodes were significantly more frequent
with a GS ≥8 as compared to a GS ≤7b primary PC tumor (8, 42).
In our study, all PC patients with Virchow nodes had a GS ≥8.

The new information obtained via 68Ga-PSMA PET/CT can
benefit clinical decision-making and provide additive benefit to
existing PLND-validated nomograms, particularly for individuals
with non-regional LNMs. For treatment-naïve PC patients, the
most frequent new findings were LNMs (17.2%) and 68Ga-PSMA
PET/CT can impact therapeutic decision making in 27.6% of
patients (38). In our study, based on the 68Ga-PSMA PET/CT
findings, the new information could have resulted in a change in
clinical management in more than two-thirds of patients. In our
study, the newly detected non-regional LNMs by 68Ga-PSMAPET/
CTcan lead to therapymodality change in12.3%of the patients and
modification of RT in 17.5% of the patients. In previous work,
treatment-naïve PC patients and recurrent PC patients were not
studied separately and most prior studies focused on RT
management exclusively. Florian et al. reported 27.5% of the PC
patients had non-regional LNMs, and the new information from
68Ga-PSMAPET/CT led to radiotherapeuticmanagement in 50.8%
of the cases (43). In this study including 26.0% treatment-naïve
patients, the new information of 68Ga-PSMA PET/CT led to
changes of planned RT in 26.4% of the patients (43). In another
study including 48.1% treatment-naïve patients, 68Ga-PSMA PET/
CT changed RT in 46.3% of the cases, and changed hormone
therapy in 33.3% of the patients, with an overall change in decision-
making in 53.7% of the patients (44). In an Australian prospective
multi-center study, 68Ga-PSMA PET/CT led to changes of
management intent in 21.3% of the treatment-naïve patients
while 61.5% of the patients with biochemical recurrence had
changes in planned therapy (45). More metastatic lesions were
discovered in high-risk PC patients to facilitate RT planning by
mapping PSMA-avid lesions (46). One study indicated that 68Ga-
PSMAPET/CT changed TNM stage and RT in 26.0% and 44.0% of
the 50 treatment-naïve PC patients, respectively (36). In our study,
68Ga-PSMA PET/CT also revealed the potential to reduce ePLND
in31.6%of thepatients. Similarly, oneprevious studydemonstrated
that 68Ga-PSMAPET imaging had the potential to facilitate patient
FIGURE 6 | Receiver operating characteristic (ROC) curves of the Briganti,
MSKCC and Winter nomograms for predicting non-regional PSMA PET positive
LNMs in high-risk PC patients. The AUCs of the clinical nomograms (Briganti,
MSKCC and Winter) in predicting non-regional LNMs were 0.816, 0.830 and
0.793, respectively. The PC patients with a score >64% in Briganti nomogram,
a score >75% in MSKCC nomogram and a score >67% in Winter nomogram
were more likely to have non-regional LNMs. The above cutoff values can be
used to predict non-regional LNMs in high-risk PC patients.
TABLE 4 | Distant PSMAPETpositive LNMsof ROCanalyses by three clinical nomograms.

Stage (number) Characteristics AUC SE 95% CI

T1-T3 (n=57) MSKCC nomogram 0.830 0.051 0.710-0.914
Briganti nomogram 0.816 0.054 0.695-0.904
Winter nomogram 0.793 0.05 0.668-0.886
April 2021 | Volume 11 | Article 658669

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jiao et al. Lymph Nodes Detected by PSMA PET/CT
selection for ePLND in intermediate- to high-risk PC patients, and
these authors createdanovelPLND-validatednomogramincluding
tPSA, GS, and PSMA positive volume (PSMAtotal) of

68Ga-PSMA
PET/CT (47). The therapy modality changes and therapy detail
changes were modified from one previous study (38).
Frontiers in Oncology | www.frontiersin.org 11220
In the current study, our study demonstrated that the PLND-
validated clinical nomograms (Briganti, MSKCC, Winter) have
the potential to predict non-regional LNMs with a higher cutoff
value of scores, although the three clinical nomograms are widely
used to predict the risks of regional LNMs in previous studies
A

B

C

FIGURE 7 | Impact of new thresholds for PLND-validated clinical nomograms on clinical decision-making in high-risk treatment-naïve prostate cancer patients (A:
Briganti nomogram; B: MSKCC nomogram; C: Winter nomogram). The new thresholds in Briganti (A) and Winter (C) nomograms excluded 93.75% (15/16) of the
PC patients with non-regional LNMs and 87.5% (14/16) of the patients for MSKCC (B) nomogram. (Modality, changes of therapy modality; RP, radical
prostatectomy; RT, radiotherapy; ePLND, extend PLND; sPLND, sentinel PLND).
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(5–7). The PC patients with LNMs risk higher than 65% need to
receive PSMA PET/CT to exclude non-regional LNMs to reduce
unnecessary ePLND.

Our study had some limitations. The first limitation in this
study is that 68Ga-PSMA PET/CT may have limitation on
detecting LNMs in the prostate cancer patients with negative
PSMA expression (like neuroendocrine prostate cancer),
although expression of PSMA has been recognized in
approximately 95% of prostate cancer, both primary and
metastatic (10, 41). Another limitation included small sample
size of patients because we focused on the high-risk prostate
cancer patients who had non-regional LNMs in this project,
which will be helpful for clinical decision making.

In conclusion, our study demonstrated that the clinical
nomograms have the potential to predict non-regional LNMs.
Our findings also demonstrate the proportion of non-regional
metastases in the initial staging by 68Ga-PSMA PET/CT and
demonstrate how this information may impact clinical decision-
making in high-risk treatment-naïve PC patients, especially in
those with non-regional LNMs. In comparison to the current
standards for PLND, our study revealed that non-regional LNMs
can be observed in more than one-third of patients, and 68Ga-
PSMA PET/CT has the potential to add additional information
to existing nomograms-based clinical decision-making in more
than two-thirds of the high-risk PC patients. We focused on that
a threshold can be set for current clinical PLND-validated
nomograms to predict extrareolar LN metastases with an AUC
accuracy of about 80% after optimizing the simple nomograms
which may help to improve the efficiency for PC therapy
significantly in clinical practice. If validated in a larger
prospective study, 68Ga-PSMA PET/CT, as well as clinical
nomograms, can be used to exclude patients with non-regional
LNMs before PLND with the potential to more accurately
identify the appropriate treatment modality for patients.
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Background: Our goal was to establish and verify a radiomics risk grading model

for gastrointestinal stromal tumors (GISTs) and to identify the optimal algorithm for

risk stratification.

Methods: We conducted a retrospective analysis of 324 patients with GISTs, the

presence of which was confirmed by surgical pathology. Patients were treated at three

different hospitals. A training cohort of 180 patients was collected from the largest center,

while an external validation cohort of 144 patients was collected from the other two

centers. To extract radiomics features, regions of interest (ROIs) were outlined layer

by layer along the edge of the tumor contour on CT images of the arterial and portal

venous phases. The dimensionality of radiomic features was reduced, and the top 10

features with importance value above 5 were selected before modeling. The training

cohort used three classifiers [logistic regression, support vector machine (SVM), and

random forest] to establish three GIST risk stratification prediction models. The receiver

operating characteristic curve (ROC) was used to compare model performance, which

was validated by external data.

Results: In the training cohort, the average area under the curve (AUC) was 0.84 ± 0.07

of the logistic regression, 0.88± 0.06 of the random forest, and 0.81± 0.08 of the SVM.

In the external validation cohort, the AUC was 0.85 of the logistic regression, 0.90 of the

random forest, and 0.80 of the SVM. The random forest model performed the best in

both the training and the external validation cohorts and could be generalized.

Conclusion: Based on CT radiomics, there are multiple machine-learning models that

can predict the risk of GISTs. Among them, the random forest algorithm had the highest

prediction efficiency and could be readily generalizable. Through external validation data,

we assume that the random forest model may be used as an effective tool to guide

preoperative clinical decision-making.
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INTRODUCTION

Gastrointestinal stromal tumors (GISTs) are the most common
mesenchymal tumors of the digestive system, which occur in the
stomach and small intestine. GISTs have a variety of biological
characteristics and cannot be simply categorized as benign or
malignant (1). For example, some small GISTs can progress
rapidly and metastasize to the liver, while some large GISTs,
even those not receiving the post-operative adjuvant treatment,
present no long-term risk of recurrence or metastasis (2).
Therefore, the preoperative evaluation of the malignant potential
of GISTs is crucial for treatment decision-making.

Risk stratification is commonly applied to evaluate the
biological behaviors and overall clinical outcome of GISTs.
Currently, the most recognized criterion is the improved
National Institutes of Health risk stratification standard
introduced by Joensuu in 2008 (3), which is based on tumor
maximum diameter and mitotic count and introduces two
parameters: tumor site and tumor rupture. The risk of relapse
is thereby divided into four categories: very low risk, low risk,
intermediate risk, and high risk. Higher risk generally indicates
a worse prognosis. Also, the introduction of imatinib mesylate
has greatly changed the outcomes in high-risk GIST patients
(4). The need for reliable preoperative risk stratification is of
great significance for the development of treatment methods and
prognostic evaluation. Most surgeries can completely remove
the GISTs without first conducting a preoperative biopsy (5),
which may cause tumor ulceration and bleeding, increasing
the risk of tumor spread. Therefore, it is of great clinical
value to explore non-invasive, reliable, and simple biomarkers
for predicting the recurrence and metastasis risk of GISTs
before surgery.

Previous GIST risk stratification research is largely based
on analysis of computed tomography (CT) images (4, 6–
9), which is likely influenced by the observer’s subjective
assessment. Therefore, an objective and quantitative technique
is urgently needed for the accurate risk stratification of GISTs.
Radiomics converts medical images into high-dimensional
data that can be mined, which holds great potential for
application in disease diagnosis, identification, and prognosis
predictions (10–13).There are studies have examined the utility
of radiomics in GIST risk stratification (14–16) and have
achieved favorable results. However, most of these studies
are single-center trials, whose prediction models have not
been externally verified. Therefore, the generalizability of these
models remains unclear. In addition, previous studies used a
single classifier for modeling, due to the obvious differences
in classifier algorithms (17), and such studies are unable
to determine the classifier with the best performance in
risk prediction.

In response to these shortcomings, we conducted a
multiclassifier and multicenter GISTs radiomics study, applying
the three most commonly used machine-learning classifiers in
radiomics to the same cohort of data to evaluate and compare the
performance of the classifiers. Also, the model was tested with
independent external data to further evaluate its generalizability
to provide a reference for clinical treatment decisions.

TABLE 1 | The protocols of the CT scan for the patients with GISTs.

Manufacture Philips SIEMENS Philips

CT scanner Brilliance 64 Dual source CT Brilliance 256

Tube voltage (kV) 120 120 120

Tube current (mA) 250 200 250

Rotation time (s) 0.4 0.5 0.5

Detector collimation (mm) 64 × 0.625 128 × 0.6 64 × 0.625

Pitch 0.891 0.6 0.914

Slice thickness (mm) 5 5 5

Slice spacing (mm) 5 5 5

Matrix 512 × 512 512 × 512 512 × 512

FOV (mm) 350 300 350

Algorithm (B) Standard Standard Standard

MATERIALS AND METHODS

Patients
Data from a total of 324 patients with GISTs presenting from
January 1, 2016 to July 1, 2019 were collected retrospectively
from three hospitals. Among them, 180 cases were analyzed
from the First Affiliated Hospital of Zhejiang University School
of Medicine, which was used as the training cohort, while 144
cases from another two hospitals (Zhejiang Cancer Hospital and
the First Affiliated Hospital of Wannan Medical College) were
used as the external validation cohort. The inclusion criteria
were as follows: (1) surgical resection, negative margin, and a
pathological diagnosis of GISTs, (2) abdominal enhancement
CT examination within 15 days prior to surgery, and (3)
pathological results with a clear risk assessment. Exclusion
criteria were as follows: (1) patients receiving imatinib or other
neoadjuvant therapy before surgery, and (2) those with poor CT
image quality.

Clinical data, including age, gender, and tumor site,
were derived from medical records. The National Institutes
of Health’s modified criteria were used to stratify the
malignant potential of GISTs on the basis of the clinical
and post-operative histological index. All patients were
divided into two groups: high malignant potential group
with intermediate risk and high risk; and low malignant
potential group with very low risk and low risk. This
study was a retrospective study, and the patient’s informed
consent was thereby waived, as approved by the hospital
ethics committee.

CT Image Acquisition
All subjects received a default abdominal CT scan using one
of the three multidetector CT (MDCT) systems with the
scanning and reconstruction parameters used in daily clinical
practice. See Table 1 for the detailed information of the CT
protocol. Three-phase scans were unenhanced phase, arterial
phase (25–30 s after injection), and portal vein phase (55–
60 s after injection). The dose of iodine contrast agent was
based on the patient’s weight (1 mL/kg), and the flow rate
was 2.5–3.5 mL/s.
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Three-Dimensional Segmentation of Tumor
Images and Radiomics Feature Extraction
Both tumor segmentation and radiomics feature extraction were
performed using Matlab’s IBEX software package (18). Two
radiologists with a depth of experience delineated the regions of
interest (ROIs) layer by layer along the edge of the tumor contour
on the CT images of the arterial and portal venous phases.

All images were preprocessed with image resampling (voxel
size of 1 × 1 × 1 mm3) and gray value homogenization
(normalized to 1–256, fixed bin numbermethod, 256 bins) before
radiomics feature extraction. The radiological feature parameters
involved six major categories: histogram parameters (n = 48),
2.5D and 3D gray level co-occurence matrix (n = 594, the 2.5D
feature is computed from a single matrix after merging all 2D
directional matrices, the 3D feature is computed from a single
matrix after merging all 3D directional), gray level adjacent
difference (n = 10), gray level run length matrix (n = 34), shape
and size (n= 18). In each stage, we retrieved 704 parameters, and
a total of 1,408 parameters were collected in the two stages.

During the early stage of the study, we randomly selected
images from 40 patients, and two radiologists with more
than 10 years of work experience performed ROI delineation
independently. The blindness method was used to analyze the
reliability and repeatability between observers. The consistency
was evaluated using the intra-class correlation coefficient (ICC).
There is a good agreement when the ICC is > 0.75. ROI
extraction of the remaining images was performed by one of
the radiologists.

Feature Selection and Radiomics Model
Building
Redundancy and overcorrelation in the characteristics of
radiomics often lead to overfitting of the prediction model. In
this study, we dimensionally reduced the radiomics features in
two steps. First, multicollinearity of the features were analyzed by
spearman correlation, and the correlation coefficient threshold
was 0.8. Then, we used the boruta algorithm to iteratively
assess the importance of features, and we removed the irrelevant
features. Boruta algorithm can filter out all the characteristics
related to the dependent variable and generate a ranking of
importance. To achieve statistical significance, the top 10 features
in importance ranking were selected for final modeling.

After dimensionality reduction of the radiomics features, the
three most popular classifiers [logistic regression, support vector
machine (SVM), and random forest] were applied to establish
three risk stratification models for radiological prediction. We
conducted holdout cross-validation for 30 times for each model
in the training cohort (training: internal validation ratio is 4:1).
Because each iteration is a resampling of the training cohort, each
model yielded 30 different values of area under the curve (AUC),
specificity, sensitivity, and accuracy, among which we used AUC
as the standard to evaluate the effectiveness of the three models
in the training cohort.

Subsequently, the three models were applied to the external
validation cohort, and the effectiveness of the models were also
evaluated through AUC, specificity, sensitivity, and accuracy.

Statistical Analysis
All statistical analysis was performed using R software (version
3.4.1; http://www.Rproject.org). We performed descriptive
statistical analysis for the training and external validation
cohorts, and quantitative data was described as mean± standard
deviation (SD) and qualitative data was described by frequency
(percent). Qualitative variables were compared using the
chi-square test. Continuous variable data was evaluated using
a two-sample t-test or Wilcoxon test. AUC was used as the
evaluation standard for the comparison of the three classification
algorithms in the training cohort. The Fridman test was used for
the comparison among the three algorithms, and the Nemenyi
test was used in post-hoc analysis. Two tailed p < 0.05 was
considered statistically significant.

RESULTS

Clinical Characteristics
In total, 324 GIST patients were included in this study, of which
150 patients had low malignant potential and 174 patients had
high malignant potential. Ninety-three men and 87 women were
included in the training cohort, and 64 men and 80 women were
included in the external validation cohort. Table 2 shows the
baseline clinical data. Single factor analysis showed that there
was no statistically significant difference between the low and
the high malignant potential groups in terms of age, gender, and
tumor site.

After dimension reduction by spearman correlation, we
obtained 107 features, which through the dimension reduction
by boruta algorithm, 25 parameters remained, from which
we extracted the top 10 features, according to the built-in
importance-ranking system. In the subset, parameters from the
portal venous phase accounted for 80%. Morphology ranks the
most important, although only one parameter was selected. See
Table 3 for a list of specific parameters and their importance.

Radiomics Model Performance
The specific performance of the three classifier prediction models
is shown in Table 4 and Figures 1, 2. The Friedman test indicated
that the AUC value of the three models in the training cohort
was significantly different (p < 0.001). The Nemenyi test results
show that the AUC of random forest was significantly higher
than logistic regression (p = 0.001), significantly higher than
SVM (p= 0.0103), and there was no significant statistics between
logisitic regression and SVM (p= 0.09). The Friedman-Nemenyi
test indicated that the AUC value of the random forest model
was significantly higher than that of the other two prediction
models. The random forest model achieved the most satisfactory
results; the performance and generalizability were favorable. The
performance of the SVM and logistic regression models were
satisfactory, and the generalizability was acceptable, but the
overall efficiency was not outstanding.

DISCUSSION

In this study, we built three prediction models based
on CT radiomics for GIST risk stratification. After
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TABLE 2 | Patient characteristics in the training and external validation cohorts.

Patient

characteristics

Training cohort External validation cohort

Low-malignant

potential GISTs

(n = 82)

High-malignant

potential GISTs

(n = 98)

p-value Low-malignant

potential GISTs

(n = 68)

High-malignant

potential GISTs

n = 76)

p-value

Age (mean ± SD,

years)

54.13 ± 8.31 56.71 ± 10.52 0.74 55.13 ± 8.31 57.12 ± 11.45 0.63

Gender (%) 0.15 0.77

Male 37 (45.12%) 56 (57.14%) 31 (45.59%) 33 (43.42%)

Female 45 (54.88%) 42 (42.86%) 37 (54.41%) 43 (56.58%)

Primary site (%) 0.65 0.19

Gastric 48 (58.53%) 53 (54.08%) 45 (66.18%) 42 (55.26%)

Intestinal 34 (41.47%) 45 (45.92%) 23 (33.82%) 34 (44.74%)

TABLE 3 | Texture features selection for radiomics models.

Parameters category Parameters Phase Importance

Morphology Volume Portal venous phase 21.11

Gray level co-occurrence matrix Variance Portal venous phase 9.26

Gray level co-occurrence matrix Inverse variance Arterial phase 8.04

Gray level co-occurrence matrix Cluster shade Portal venous phase 7.78

Gray level adjacent difference Contrast Portal venous phase 7.59

Gray level co-occurrence matrix Max probability Arterial phase 6.17

Gray level adjacent difference Busyness Portal venous phase 5.39

Gray level co-occurrence matrix Sum average Portal venous phase 5.23

Gray level adjacent difference Texture strength Portal venous phase 5.15

Gray level adjacent difference Complexity Portal venous phase 5.14

comparing the three most commonly used machine-
learning models in radiomics, we found the random forest
model showed the best performance in discriminating
GISTs malignant potentials, and its generalizability
is outstanding.

GISTs often exhibit complex and unpredictable biological
behaviors. With the development of molecular pathology
research, imatinib has emerged as a first-line molecular targeted
drug, which has changed the treatment of GISTs and has
become a successful model for the targeted diagnosis and
treatment of solid tumors. The stratification of patients based
on the risk of recurrence is a key issue in managing primary
GISTs. The National Comprehensive Cancer Network guidelines
recommend more than 3 years of post-operative imatinib
be used as an adjuvant therapy for patients with a high
recurrence risk (high-risk and intermediate-risk) (19, 20),
while patients with a low recurrence risk (low-risk and very
low-risk) that can be cured via surgical resection of the
tumor should not receive adjuvant therapy with imatinib (21–
23). Therefore, in this study, GIST patients were classified
into low and high malignant potential groups according to
the risk stratification. Because the clinical characteristics of
GISTs lack specificity, the preoperative diagnosis and risk
stratification of GISTs mainly rely on imaging examinations.

Traditional imaging evaluates the risk of GISTs by observing
the size, shape, presence or absence of necrosis, ulcers,
and enhancement of GISTs, and the results depend much
on the professional ability and subjective experience of
radiologists (4, 6–9).

The rise in the use of radiomics in recent years has resulted
in imaging studies to predict GISTs recurrence risks using
objective and quantitative measures. Currently, most GISTs
radiomics studies focus on risk prediction, and the AUC is
relatively high at ∼0.81–0.94 (15, 19, 24–27), demonstrating the
superiority of radiomics over traditional methods in terms of
prediction effectiveness. It also lays foundation for the future
application of radiomics for GIST risk stratification. However,
only one study has also conducted external data validation of
the model (24). Its model efficiency was 0.87 in the training
cohort and 0.85 in the external validation cohort. Although
the performance of the model was not optimal, this study
has published the most standardized and reliable results to
date. There is no external validation for the other studies;
the same data were used for the training and validation
cohort, making the results less convincing (28). Studies have
confirmed that equipment from different manufacturers results
in differences in scanning parameter settings and post-processing
reconstruction algorithms, resulting in significant differences
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TABLE 4 | A performance summary of the radiomics models in the training and external validation cohorts.

Accuracy Sensitivity Specificity AUC

Logistic regression

Training cohort 0.77 ± 0.08 0.61 ± 0.11 0.86 ± 0.10 0.84 ± 0.07

External validation cohort 0.75 0.65 0.84 0.85

Random forest

Training cohort 0.82 ± 0.07 0.84 ± 0.10 0.73 ± 0.10 0.88 ± 0.06

External validation cohort 0.84 0.93 0.76 0.90

Support vector machine

Training cohort 0.75 ± 0.07 0.52 ± 0.12 0.91 ± 0.08 0.81 ± 0.08

External validation cohort 0.71 0.74 0.68 0.80

Values of accuracy, sensitivity, specificity, and AUC of the three models in the training cohort are the average values after 30 holdout cross-validation, which were described as mean ±

standard deviation (SD). AUC, areas under the curve.

FIGURE 1 | AUC of the three classifier prediction models performance in the training cohort. The random forest model achieved the best satisfactory results. The

AUC is the average AUC obtained after 30 holdout cross-validation. The horizontal line of each diagram corresponds to the average AUC. AUC, the area under the

curve; SVM, support vector machine.

in the radiomics parameters (29–31). Therefore, single-center
research has its limitations (32). Multicenter research can provide
diverse imaging data to better interpret tumor heterogeneity,
which is also in line with the development of precision medicine
(33). The highlight of this research lies in its multicenter design,
which uses the largest amount of data among the three hospitals
as the training cohort, while the data from the other two hospitals
are fused into an independent external validation cohort. We
found that the AUC of the random forest model in the training
cohort was 0.88 ± 0.06, which was very good in both the
training cohort and the validation cohort, indicating that the
generalizability of the model is excellent. Our study confirms the
potential of radiomics in GISTs diagnosis and prognosis, and it

proposes that the predicted models must undergo multicenter
testing before providing a reliable reference for clinical
decision-making (34).

Different machine-learning algorithms have their own
advantages and disadvantages. The performance of an algorithm
in a specific machine-learning task cannot be predicted before
research.Most previous radiomics studies used a single algorithm
for modeling, and no specific reason was stated for choosing
the model. Currently, the most common GIST risk stratification
models are logistic regression, SVM, and random forest. Logistic
regression is the most commonly used classification algorithm
in the medical field (35) and in GISTs imaging histology. Wang
et al. (26). collected 333 GISTs cases, and the AUC of the training
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FIGURE 2 | ROC diagram of multiple models in the external validation cohort. Red is logistic regression, green is random forest, and blue is support vector machine.

cohort was 0.88. Ren et al. (27) also used logistic regression
with 440 cases, and the final AUC of the training cohort was
0.93. SVM has many advantages in processing small samples
and non-linear and high-dimensional data. Chen et al. chose
SVM to build a prediction model, and the AUC was 0.86 in
the training cohort and 0.85 in the external validation cohort.
Random forest is a type of integrated machine learning, which
is based on the decision tree method and can improve the
prediction accuracy without significantly increasing the amount
of calculation (36). Zhang et al. (19) used a random forest
algorithm to predict GIST risk stratification, and achieved an
AUC of 0.94 of the training cohort, which is the best performance
among similar studies. These studies have their own advantages,
but due to the heterogeneity between the data cohorts, the
differences of the classifiers cannot be clarified. Hence, it is
impossible to determine which classifier is the most suitable
for stratifying the GIST risk. In this study, we conducted a
multiclassification algorithm study on the same data and task
and found that logistic regression and SVM performed stably,
but the overall efficiency was not outstanding. Random forest
performed the best in both the training and external validation
cohorts, with the highest AUC and excellent generalizability,
which indicated that this method is worthy of in-depth study
and verification with a larger sample set and data from a
multicenter study.

However, our study has the following limitations: (1) Our
sample size was relatively small, and limited to Chinese people.
As genetic mutations are the driving factors in the occurrence of

GISTs, and the morbidity and mortality of GISTs varies among
different races, it is necessary to conduct further in-depth studies
on large samples of multinational and multiethnic populations,
ideally in multicenter trials. (2) Because most of the previous
articles suggested clinical parameters were not significant, this
study used pure radiomic modeling and did not integrate
clinical parameters for further analysis and comparison. (3) This
study was a retrospective study, and the sample selection was
biased, which requires further verification in prospective studies.
(4) As the CT imaging protocols varies in different hospitals,
radiomics features are affected by CT scanner parameters, such
as reconstruction kernel or section thickness, thus obscuring
underlying biologically important radiomics parameters. We did
not process the data frommulticenter with harmonization. Some
features of IBEX are not compatible with IBSI (Image Biomarker
Standardisation Initiative), which will affect the reproducibility
of the results. (5) The algorithm of feature selection also affects
the model performance. We did not compare the algorithms of
dimensionality reduction; therefore, the final feature selection
may not be the optimal.

In conclusion, this study predicts the risks of GISTs based
on different machine-learning models of CT radiomics.
After comparing the three most commonly used machine-
learning algorithms in radiomics, a radiomics model of
the random forest algorithm presents the most satisfactory
prediction. The efficacy, optimal discrimination, strong
generalizability, and confirmation in external validation
data can be used as a more objective and non-invasive
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technique, which has the potential to become an effective
tool for clinicians to predict the risk stratification of GISTs
before surgery.
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de Paris, Paris, France, 2 Cancer Research and Personalized Medicine-Integrated Cancer Research Center (SIRIC), Georges
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Purpose: Lung cancer represents the first cause of cancer-related death in the world.
Radiomics studies arise rapidly in this late decade. The aim of this review is to identify
important recent publications to be synthesized into a comprehensive review of the
current status of radiomics in lung cancer at each step of the patients’ care.

Methods: A literature review was conducted using PubMed/Medline for search of
relevant peer-reviewed publications from January 2012 to June 2020

Results: We identified several studies at each point of patient’s care: detection and
classification of lung nodules (n=16), determination of histology and genomic (n=10) and
finally treatment outcomes predictions (=23). We reported the methodology of those
studies and their results and discuss the limitations and the progress to be made for
clinical routine applications.

Conclusion: Promising perspectives arise from machine learning applications and
radiomics based models in lung cancers, yet further data are necessary for their
implementation in daily care. Multicentric collaboration and attention to quality and
reproductivity of radiomics studies should be further consider.

Keywords: radiomics, lung cancer, machine learning, oncology, lung cancer screening, treatment outcome
and efficiency
Abbreviations: 18F-FDG, 18F-fluorodeoxyglucose; ALK, anaplastic lymphoma kinase; ANN, artificial neural network; AUC,
area under the curve; BRAF, v-raf murine sarcoma viral oncogene homolog B1; CAD, computer aided diagnosis; CNN,
convolutional neural networks; CBCT, cone beam computed tomography; CT, computed tomography; EGFR, epidermal
growth factor receptor; FNR, false negative rate; FPR, false positive rate; IBSI, Image Biomarker Standardisation Initiative; ICC,
intraclass correlation coefficient; KRAS, Kirsten rat sarcoma viral oncogene homolog; LASSO, Least Absolute Shrinkage and
Selection Operator; ML, machine learning; MRMR, minimum redundancy maximum relevance; NILST, National Lung
Screening Trial; NSCLC, non-small-cell lung carcinoma; OS, overall survival; PCA, principal component analysis; pCR,
pathologic complete response; PET, positron emission tomography; PML, pixel/voxel-based machine learning; PSO, particle
swarm optimization; QDA, quadratic discriminant analysis; RFC, random forest classifier; ROI: region of interest; RP,
radiation pneumonitis; RILI, radiation induced lung injury; RSF, random survival forests; SBRT, stereotactic body radiation
therapy; SVM, support vector machine.
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INTRODUCTION

Death from lung cancer is estimated to be 1.7 millions each year
worldwide, essentially due to late diagnoses (1), making it the
first cause of cancer-related death in the world (2) despite recent
discoveries in the field of tumor biology and new treatment
strategies. The emergence of new targeted treatment focusing on
specific biomolecular alterations such as EGFR (3) and ALK
mutations has led to a new paradigm of cancer care, so-called
“personalized” medicine, conversely to the historic “one-size-
fits-all”medicine. In that regard, radiomics could also play a role
in patient-specific treatment adaptations.

Common imaging interpretation, for instance with positron
emission tomography (PET), Magnetic resonance imaging
(MRI) or computed tomography (CT), relies on the visual
analysis in terms of size, shape, signal intensity or contrast
enhancement of various structures within the image.

« Radiomics », with reference to genomics, has been
introduced in 2012 by Lambin et al. (4). Its aim is to extract a
large number of quantitative variables from medical imaging,
followed by a selection of the most informative ones in order to
derive a scientific hypothesis.

Radiomics is based on the innovative approach that
computerized algorithms are able to process imaging exams
into more complex quantitative data. They can be applied to
different imaging modalities (ultrasound, CT, PET, conventional
radiology) by analyzing in a selected region of interest (ROI) the
distribution of signal intensities.

Different ROI segmentation methods can be used. Manual
delineation is close to daily practice, but requires a considerable
Frontiers in Oncology | www.frontiersin.org 2233
amount of human time, limiting the creation of large databases,
and is subject to high inter- and intra-observer variability (5–7).
Automatic segmentation is thus largely preferable for
reproducibility purposes, but is only applicable when there is a
strong signal difference between the lesion and the adjacent
tissues. This is why semi-automatic approaches are most often
necessary: a software program defines a delineation which is then
adjusted by the observer (8).

The extracted variables are divided into three categories
(Figure 1): shape variables, first-order variables and second-
order variables. The shape variables describe, independently of
grey levels, the shape, surface area and dimensions of the ROI
(example: surface area in square millimeters, sphericity,…). The
first-order variables study the distribution of voxel gray level
intensity values without consideration of spatial relationships. As
for the second-order variables, they describe the spatial
relationships between the voxels generally from matrices
(example: grayscale co-occurrence matrix, size of homogeneous
grayscale areas, neighborhood grayscale difference, length of
grayscale ranges, grayscale dependence).

Like other high-throughput techniques, labeled “-omics” (9),
radiomics aims to develop new imaging biomarkers to better
understand the microbiology of cancer (10). The use of
radiomics could provide additional data about the biological
constitution of a tissue, predict treatment response or even offer
new prognostic markers.

Radiomics thus offer several advantages due to their non-
invasive character, the possibility to account for intra-tumor
heterogeneity (11) by a complete analysis of the tumor, and inter-
lesional heterogeneity (12) by sampling all the tumors within the
FIGURE 1 | Flowchart of radiomics feature based analysis.
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same patient as well as the tumor microenvironment. They also
allow monitoring temporal heterogeneity (13).

The last few decades have been paved by the advent of clinical,
biological, radiological and genomic diagnostic advances offering
access to a multitude of new data available for each patient as
well as by the development of new therapeutics that are more
targeted and personalized to each patient. Given the large
amount of information generated, the major challenge in
enabling personalized treatment in oncology lies in the ability
to exploit this wealth of information to accurately predict the
behavior and response of a tumor. Machine learning seems to be
able to process and manage this huge amount of information.

In machine learning, a classification model is trained from a
data set in order to “learn” (training set) the distribution of the
different classes in a multidimensional variable space. In machine
learning, there are several methods, each with their advantages
and disadvantages (14). They are grouped into two types of
classification: supervised and unsupervised.

In the supervised classification methods, individuals are
labelled (e.g., benign vs. malignant) and the algorithm tries to
predict this explicit variable, called the output variable, from a
large number of input variables (radiomics, genomics,
clinical,…).

Unsupervised methods do not use predefined output
variables. The goal is to find a model that groups the most
similar data together and separates the most different data,
known as clustering. For example, K-means clustering
Frontiers in Oncology | www.frontiersin.org 3234
generates K clusters by comparing the degree of similarity of
observations, so that two individuals that are similar will have a
reduced distance of dissimilarity.

One of the most used ML subset is Artificial Neural Network
(ANN) (Figure 2). It is considered as a supervised classification
model. Its variant, Deep Learning (DL), is associated with the
feature extraction, directly from raw imaging data, through a
series of nonlinear processing units comprising multiple layers,
which tries to establish a relationship between stimuli and
associated neural responses present in the brain.

The expansion of medical imaging data (14) in lung cancer
offers an opportunity to explore the value of radiomics for every
step of the patient’s care: screening, diagnosis, staging, treatment
planning, and response evaluation. The objective of this article is
to benchmark radiomics applications in lung cancer at each of
these steps.
MATERIALS AND METHODS

The authors conducted a literature review using PubMed/
Medline in order to identify important recent publications to
be synthesized into a comprehensive review of the current
status of radiomics in lung cancer at each step of the patients’
care. A comprehensive list of MeSH terms and keywords was
included in the search: “lung cancer,” “radiomics,” “signature,”
“machine learning,” as well as other associated technical ML
FIGURE 2 | Schematic representation of an artificial neural network. The input variables (A) are presented at the first neural layer (blue). The information is then
passed to a succession of layers (“hidden layers,” in green) and finally an output neural layer predicting the variable to be estimated. Each layer (i) consists of Ni
neurons, taking their inputs from the Ni-1 neurons of the previous layer. A neuron (B) adds each of its inputs (xn) and multiplies them by a weight (wn). An activation
function (f) allows according to a threshold the activation of the neuron and the transmission of information (z) to the next layer. An optimizer adjusts the weights and
biases (b) of each neuron in order to make the neural network converge toward its state allowing it to make the best prediction.
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keywords. Selected articles were published between January 2012
and June 2020, and based on relevance to the subject. The search
strategy also included screening of reference lists of relevant
publications. The search query returned 133 articles that were
screened. We removed review articles and selected 49 studies in
the final analysis.
RESULTS

Characterization of Lung Abnormalities
One of the first application of radiomics in lung cancer was
tumor detection. Lung abnormality discoveries are frequent;
thus, the challenge is to be able to distinguish benign lesions
from malignant ones. Qualitative features such as measurements
of diameter or volume of pulmonary nodules provide important
information to differentiate benign from malign nodules.
Notwithstanding the encouraging results of low-dose
computed tomography (CT) versus (vs.) chest X-ray in lung
cancer-specific mortality reduction (15), the application of low-
dose CT in selected population screening remains contested (16)
on account of its cost-efficiency, the high false positive rate (FPR)
and the optimal schedule (1). In that setting, overdiagnosis
remains a challenging issue (17). In addition, due to the lack of
validated software, the volumetric assessment of the lesion is not
the current standard of practice (18). 18F-fluorodeoxyglucose
positron emission tomography (18F-FDG PET)/CT is a
performant tool to help clinicians in the characterization of
Frontiers in Oncology | www.frontiersin.org 4235
lung nodules (19) but still holds a low detection rate of small
lesions (20) and delivers high radiation doses.

Recent promising strategies based on radiomics or circulating
biomarkers (21) could be interesting and less invasive (22).
Computer aided diagnosis (CAD) systems can help to improve
radiologists’ performances (23) on tumor detection and could be
even further improved by radiomics.

Radiomics features could be used in traditional statistic model
as linear classifier with high accuracy in predicting lung nodule
malignancy (24).

Integrating radiomics, the optimal ML model to apply
remains unknown. Random forest classifiers showed good
performance in anticipating nodules that would become
cancerous one and two years later, with accuracies of 80% (25),
better than a Support Vector Machine (SVM) classifier or the
recently developed McWilliams (26) and Lung-RADS (27) risk
scores. Schematically, SVM models, through a kernel function,
depict individuals in a 3rd dimensional space in order to find
a hyperplane that classifies individuals into two groups
(Figure 3).

Different supervised ML models can also be used together.
After a feature selection by a Random Forest classifier (RFC),
Wang et al. (28) found 15 radiomics features able to single out
benign frommalignant nodules with an accuracy of 86% through
a SVM algorithm.

Some studies tried to benchmark the added value of clinical
features to these radiomics features. As a matter of fact, they can
improve the performance of ML methods to distinguish focal
FIGURE 3 | Schematic representation of a SVM algorithm. The dots represent individuals according to two variables (A), no linear classification function seems
obvious. The kernel function allows a representation of the individuals in a 3rd dimension allowing the highlighting of a hyperplane which classifies the individuals in
two groups (B). The individuals are then projected into the initial dimensional space (C) with a non-linear separator (purple circle).
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pneumonia from adenocarcinoma (29) or non-small-cell lung
cancer (30). Clinical features addition could also produce no
improvement of the model performance (24), highlighting the
importance of the radiomics features.

Interestingly, some studies (31) indicate a trend toward
increased performance when the surrounding parenchyma is
included, revealing the importance of microenvironment.

Most studies use radiomics approaches needing 2D or 3D
quantitative images features. Another category of computational
strategy is Deep learning and particularly convolutional neural
networks (CNN). CNN could perform prediction without
needing nodule segmentation, taking directly as an input the
raw imaging data. Deep learning showed good performance for
differentiating lung nodule from other thoracic structures
(vessels, bone, …) (32–37). Particularly in a study, Causey
et al. (38) processed 1065 nodules with different malignancy
scores. The model was developed with a deep CNN architecture,
capable of performing classification or producing a feature vector
that could then be used as input to a secondary classifier such as a
RFC. The CNN classification highly performed (AUC 0.97) and
was improved (AUC 0.99) when combined to handcrafted
radiomics features (38) through a RFC. The main studies
relating to lung nodule classification are summarized in Table 1.

Major hope is that characterization of lung abnormalities could
potentially allow for an early diagnosis of lung cancer, even for very
small nodules, aiming to considerably improve patients’ prognosis.

Histology and Radio-Genomics
When a suspicious lung abnormality is detected on imaging,
obtaining histological evidence of cancer is necessary. It often
requires an invasive procedure, sometimes leading to technical
difficulties or complications. Thus, some patients, due to their
state of health, are unable to undergo a biopsy.

Radiomics provide a promising alternative in this regard. From
CT exam, radiomics features could be extracted to characterize
Frontiers in Oncology | www.frontiersin.org 5236
tumor histology. From two independent cohorts, a Naïve Baye’s
classifier achieved a highAUC(0.72;p-value = 2.3 × 10−7)with only
five features (40).

Using ANN, similar performances for the prediction of
histopathology were also obtained. Raniery Ferreira et al. (41)
constructed different machine learning models for histopathological
pattern recognition. From a dataset of 68malignant lung tumors with
confirmed histology, they extracted radiomics features by a semi-
automatically segmentation. The radial basis function-based (RBF)
ANN obtained an AUC of 0.71 on histopathological pattern
recognition with radiomics features. In this study, adding clinical to
radiomics features provided different behaviors on the models’
performances on the testing and validation sets, and did not
improve the results.

This last decade, targeted treatments played a leading role in
lung cancer management (42). For most of those treatments, the
identification of a specific mutation requires an invasive biopsy
of the tumor, not always performable thus potentially depriving
these patients of highly beneficial treatment. A more recent
alternative could be liquid biopsy, consisting of the search of
mutations on circulating tumor cells or DNA by a blood sample.
Liquid biopsy has recently demonstrated its clinical usefulness in
advanced NSCLC but keeps very poor sensitivity in early stage
lung tumors (43, 44). The most common gene mutations seen in
non-small-cell lung carcinoma (NSCLC) are V-Ki-ras2, Kirsten
rat sarcoma viral oncogene homolog (KRAS), epidermal growth
factor receptor (EGFR), v-raf murine sarcoma viral oncogene
homolog B1 (BRAF), and anaplastic lymphoma kinase (ALK); of
these, KRAS and EGFRmutations are the most commonly detected.

Regarding the specific mutation identification, the association
of clinical features with radiomics ones seems to provide added
value. Zhang et al. (45) conducted a multivariate analysis using
seven handcrafted radiomics and three clinical features of 180
cases. They predicted EGFR mutation with an AUC of 0.87.
Another study (46) explored a multicentric CT dataset of 381
TABLE 1 | Mains studies regarding lung nodule prediction of malignancy.

Reference Number of
cases

Imaging
modality

Algorithm Segmentation Feature
types

No of
features

Validation Results

Hawkins et al. (25) 598 CT RFC Semi-automatically segmented Shape ++,
1st order

23 Cross-
validation

AUC 0.83 at 1
year

Balagurunathan
et al. (24)

479
(244 for
Training)

CT Linear
classifier

Semi-automatically segmented Shape,
1st order,
2nd order

4 Split sample AUC 0.83

Wang et al. (28) 593
(400 for
Training)

CT SVM Semi-automatically segmented Shape,
1st order,
2nd order

15 Split sample Accuracy 86%

Chen et al. (39) 72 CT SVM Manually segmented Shape,
1st order,
2nd order

4 Cross-
validation

Accuracy
84%

Dilger et al. (31) 50 CT ANN Manually segmented + surrounding lung
parenchyma

Shape,
1st order,
2nd order

5 Cross-
validation

AUC 0.938

Causey et al. (38) 1065 CT CNN +
RFC

Semi-Automatic + manually segmented
radiomics

Deep
features

NE Split sample AUC 0.99
May 2021
 | Volume 11 |
ANN, artificial neural network; AUC, area under the curve; CNN, convolutional neural network; CT, computed tomography; NE, not evaluable; PSO, particle swarm optimization;
RFC, random forest classifier; SVM, support vector machine.
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patients who underwent surgical resection. The 20 remaining
radiomics features using a RFC outperformed good prediction in
discriminating between EGFR+ and EGFR- tumors (AUC 0.69).
A clinical model of EGFR status (AUC 0.70) was combined to
significantly improve prediction accuracy (AUC 0.75). The
highest performing signature was capable of distinguishing
between EGFR+ and KRAS+ cases (AUC 0.80) and, when
combined with a clinical model (AUC 0.81), substantially
improved its performance (AUC 0.86). One study by Zhao
et al. (47) aimed at predicting EGFR mutation status and
subtypes, in particular the two most common ones (exon 19
deletion and exon 21 L858R mutations). A radiomics score (R-
score) based on 11 radiomics features was calculated for each
lesion. Using a radiomics-based model and a combined
radiomics and clinical model, the respective AUC values in the
validation cohort were 0.73 and 0.76.

Deep learning methods have also been explored in prediction
of genomic alterations. Using a CNN-based approach, Wang
et al. (48), by training a network on 14926 CT images from 603
patients, achieved encouraging predictive performance on a
validation cohort of 241 patients (AUC 0.81). For applying the
deep learning model, a cubic region of interest (ROI) containing
the entire tumor was manually selected. The first 20
convolutional layers were trained using transfer learning by
1.28 million natural images from the ImageNet dataset
avoiding as much as possible an overfitting and the last four
convolutional layers were trained using CT images from lung
adenocarcinoma tumors in the independent test cohort. Authors
used a method to visualize tumor region that was most related to
EGFR mutation status.

While these studies focused on CT-based radiomics, another
imaging modality commonly used in oncology is PET-CT. In
PET-based radiomics, radiomics features could detect EGFR
mutation status with good performance. Zhang et al. (49)
developed a radiomics signature made of 10 features (PET and
CT radiomics features) trained on 175 patients. The model
showed a significant ability to discriminate between EGFR
mutation and EGFR wild type in the validation set (AUC
0.85), which was improved when combined with clinical
variables (AUC 0.87).

Yamamoto et al. (50) aimed instead at predicting the ALK
status using visual qualitative CT features combined with clinical
parameters. Their predictive model had a good performance in
both the training and the validation set. Another study including
clinical and radiomics variables extracted from PET and CT (51)
from 539 patients with confirmed lung adenocarcinomas
investigated the potential of differentiating the ALK/ROS1/RET
fusion-positive and fusion-negative adenocarcinomas, building a
model that resulted in 73% sensitivity and 70% specificity with
seven features.

The main studies dealing with histologic and radio-genomics
prediction are summarized in Table 2.

Treatment Outcome
Radiomics could play a role in predicting the prognosis and the
treatment response, in order to adapt treatment strategies
Frontiers in Oncology | www.frontiersin.org 6237
individually with view of personalized medicine. The main
studies relating to this subject are summarized in Table 3.

Radiotherapy
In locally advanced lung cancer, radiotherapy, often associated
with systemic therapies, is the standard option. A specific
radiation option of lung cancer treatment is stereotactic body
radiation therapy (SBRT), in inoperable patients presenting with
a small local lesion (66). Radiosensitivity varies to a great extent
across tumor types and also between patients bearing the same
type of tumor. Biomarkers predicting the clinical outcome after
radiotherapy are already available, but their levels of evidence are
heterogeneous (67).

Radiomics features could be leveraged to predict different
outcomes that conventional imaging metrics cannot predict in
SBRT patients (68).

Several studies tried to predict different clinical endpoints
such as local control and/or disease free survival and/or overall
survival (52–58, 61) with good accuracy. Some others attempted
to predict radiation induced toxicity (69), in particular to
differentiate local failure from radiation induced lung injury
(RILI) (59, 70).

Many of those studies outperformed different models
concomitantly. Those studies revealed that a same feature
selection technique and/or a same classifier model could
considerably perform differently in distinct cohorts, suggesting
a dependency not on the endpoint but on the study population.

The number of selected features is also notably heterogeneous
between the studies from two (52) to fifteen radiomics features
(53). After different feature selection methods, the texture
features (i.e. second-order radiomics features) seemed to be the
more correlated to clinical endpoints (53, 55, 71). Aiming to
reduce the number of radiomics features, Diassaux et al. (52)
found, in a multicentric study including 87 patients with an
independent test set, a radiomics signature combining one PET
feature and one CT feature predicting local control with an
accuracy of 98%. They used ComBat harmonization method (72)
on radiomics features to handle the differences of imaging
acquisition. This method was initially used in gene expression
microarray data to deal with the “batch effect,” i.e., the source of
variations in measurements caused by handling of samples by
different laboratories, tools and technicians. The advantage of
this technique is that it allows a correction to be applied directly
to the extracted radiomic variables as opposed to the images
before extraction, making it easier to analyze retrospective and
multicentric data.

In radiation oncology, total dose and space dose distribution
are carefully evaluated for each patient during treatment
planning. In that way, a study (62) queried the lung CT-
derived feature space to identify radiation sensitivity
parameters that can predict treatment failure and hence guide
the individualization of radiotherapy dose. The authors input
pre-therapy lung CT images into Deep Profiler, a multitask deep
neural network that has radiomics incorporated into the training
process. Then, they combined these data with clinical variables to
derive iGray, an individualized radiation dose that results in an
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estimation of failure probability below 5% at 24 months. Thus, it
would seem that a reduction in the irradiation dose could have
been proposed in 23.3% of patients.

Integration of reported dosimetric features from the dose
distribution in the irradiated lung calculated in the planning CT,
showed to be predictive of radiation pneumonitis (73). Liang
et al. (60) used the “dosiomics” method, which attempts to
extract the spatial features from dose distribution, for the
occurrence of grade 2 or more RP prediction.

To assist the physician during treatment planning,
visualization of high-risk tumor spot of treatment failure could
be very convenient. In a study (74), the authors visualized which
regions in the patient images predicted low survival probability.
From such observations, the heat map visualization has the
potential to identify regions at high risk for tumor progression
or recurrence that could be utilized for the purpose of assisting
patient-tailored treatment planning in the future.

During radiation therapy treatment and follow-up, patients are
subject to several imaging procedures. Like blood circulating
biomarker changes during treatment could be predictive of the
effectiveness of some treatments (75), the question of radiomics
features modification has been studies, called “delta radiomics.” It
aims to analyze radiomics features’ evolution through time and
treatments based of evaluations obtained from longitudinal scans.
Frontiers in Oncology | www.frontiersin.org 7238
Some studies demonstrated that delta radiomics seem to be more
robust than radiomics features with the potential of using delta
features for early assessment of treatment response and developing
tailored therapies (76). A study focusing on 107 patients with stage
III NSCLC (77) tried to evaluate the impact of radiomics features
changes due to radiation therapy and their values at the end of
treatment on tumor response.All of the radiomics features changed
significantly during radiation therapy. For local recurrence,
pretreatment imaging features were not prognostic, while texture-
strength measured at the end of treatment significantly stratified
high- and low-risk patients.

Another study focused on Cone Beam CT (CBCT), commonly
used in radiotherapy for patient’s precise setup, In this study, delta
radiomics revealed to be predictive of overall survival in locally
advanced lung cancer in a preliminary study with 23 patients (78).

In a study (79) including 268 patients with stage III NSCLC
and using different CT at different timepoints of the treatment
(pre-treatment, at 1, 3, and 6 months of follow-up), a deep
learning networks was built to predict clinical outcomes of
patients. Model performance was enhanced with each
additional follow-up scan into the CNN model (2-year overall
survival: AUC 0.74, p< 0.05).

In terms of toxicity prediction, Moran et al. (71) in a study
with 14 patients who underwent SBRT tried to demonstrate the
TABLE 2 | Mains studies regarding histology and radio-genomic characterization.

Reference Application Number of
cases

Imaging
modality

Algorithm Segmentation Feature
types

No of
features

Validation Results

Histology subtypes
Wu et al. (40) Prediction of histology

subtype
350 (198 for
Training)

CT Naïve Baye’s
classifier

Manually
segmented

Shape,
1st order,
2nd order

5 Independent AUC 0,72

Raniery Ferreira
et al. (41)

Prediction of histology
subtype

68 (52 for
Training)

CT RBF-based
ANN

Semi-Automatically
segmented

Shape,
1st order,
2nd order

100 Sample split AUC 0,71

Genomic alterations
Zhang et al.
(45)

Prediction of EGFR
mutation

180 (140 for
Training)

CT multivariate
analysis

Manually
segmented

Clinical,
Shape,
1st order,
2nd order

7 Sample split AUC 0,87

Velazquez et al.
(46)

Prediction of EGFR and
KRAS mutation

381 (190 for
Training)

CT RFC Manually
segmented

Clinical,
Shape,
1st order,
2nd order

25 Independent AUC 0,86

Zhao et al. (47) Prediction of EGFR
subtype

637 (322 for
Training)

CT multivariate
analysis

Manually
segmented

Clinical,
Shape,
1st order,
2nd order

11 Sample split AUC 0,76

Wang et al. (48) Prediction of EGFR
mutation

843 (603 for
Training)

CT CNN Manual
segmentation

Deep
features

NE Independent AUC 0,81

Zhang et al.
(49)

Prediction of EGFR
mutation

248 (175 for
Training)

PET, CT Logistic
regression

Semi-Automatically
segmented

Clinical,
Shape,
1st order,
2nd order

13 Sample split AUC 0,87

Yoon et al. (51) Prediction of ALK status 539 PET, CT Logistic
regression

Semi-Automatically
segmented

Clinical,
Shape,
1st order,
2nd order

7 Cross
validation

sensitivity and
specificity, 0.73 and
0.70, respectively
May
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ALK, anaplastic lymphoma kinase; ANN, artificial neural network; AUC, area under the curve; CNN, convolutional neural network; CT, computed tomography; EGFR, epidermal growth
factor receptor, KRAS, Kirsten rat sarcoma viral oncogene homolog, NE, not evaluable; PET, positron emission tomography; RBF, radial basis function; SVM, support vector machine.
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potential of CT-based radiomics on 3, 6 and 9 month post-SBRT
CT to distinguish moderate/severe lung injury from none/mild
lung injury. Texture features outperformed the first-order
features in differentiating lung injury severity levels.

After Systemic Treatments
While early-stage lung cancer patients with large tumors
(stage IB-IIA) who have undergone surgery are likely
to receive adjuvant chemotherapy (68), inoperable patients
Frontiers in Oncology | www.frontiersin.org 8239
or patients presenting locally advanced lung cancer often
have co-morbidities that limit their tolerance to systemic
treatment. Consequently, systemic treatments cannot be a
generalizable recommendation for all patients. The advent of
immunotherapy and targeted therapies over the last decade in
the management of metastatic lung cancer has led to important
clinical results with a very acceptable safety profile (80, 81). It is
therefore more than necessary to be able to determine in advance
which patients are at risk of not responding to therapy and thus
TABLE 3 | Main studies evaluating radiomics in prediction of treatment outcomes in lung cancer.

Reference Application Number
of cases

Imaging
modality

Feature
selection
method

Model
algorithm

Segmentation Feature
type

No. of
features

Validation Results

Radiotherapy
Dissaux
et al. (52)

Local control after
SBRT

87 (64
for
Training)

CT – PET/
CT

Univariate
analysis

Multivariate
regression

Semi-
automatically +
manually

1st order,
2nd order

2 (PET) Independent
set

Accuracy 0.91

Huynh
et al. (53)

Outcomes after
SBRT

113 CT PCA Concordance
index

Manually Clinical 15 Cross-
validation

C-index of 0.33 for
OS(q = 0.0016)

Zhang
et al. (54)

Outcomes after
SBRT

112 CT PCA RFC Manually 1st order,
2nd order

NA NA OS: AUC 0,77

Yu et al.
(55)

Outcome of stage I
NSCLC

442 (147
for
Training)

CT Random
Survival
Forest

Multivariate
regression

Manually 1st order,
2nd order

2 Independent
set

OS: log-rank
p=0.0173;
HR 1.02, p= 0.0438

Hawkins
et al. (56)

Outcome of
NSCLC

81 CT Relief-f Decision tree Manually Shape,
1st order,
2nd order

5 Cross-
validation

Accuracy 0.78

Aerts et al.
(57)

OS of NSCLC and
H&N cancer

1019
(474 for
Training)

CT Univariate
analysis

Multivariate
regression

Manually Shape,
1st order,
2nd order

4 Independent
set

C-index 0.65

Hosny
et al. (58)

OS outcome of
stage I and II
NSCLC

1194
(786 for
Training)

CT NE CNN Manually Deep
features

NE Independent
set

AUC 0.71 and 0.70
for radiotherapy and
surgery sets

Mattonen
et al. (59)

Differentiate early
recurrence from
RILI post SBRT

45 CT at 3
months
post
SBRT

LOOCV SVM Semi-
automatically

1st order,
2nd order

5 Cross-
validation

AUC 0.85

Liang et al.
(60)

Prediction of
radiation
pneumonitis

70 CT with
dose
distribution

Multivariate
regression

Multivariate
regression

Automatically 2nd order 2 None AUC 0,78

Coroller
et al. (61)

Predict pathological
response after
chemoradiation

127 CT PCA Multivariate
regression

Manually Clinical,
Shape,
1st order,
2nd order

10 Cross-
validation

AUC 0.68

Lou et al.
(62)

Local control after
SBRT

944 (849
for
Training)

CT NE CNN Manually Deep
features,
clinical
(dose)

NE Independent
set

C-index 0.77

Systemic treatment
Khorrami
et al. (63)

Response to 1st

line chemotherapy
125 (53
for
Training)

CT LASSO QDA Manually Shape,
2nd order

7 Split sample AUC 0.77

Kim et al.
(64)

Response to 1st

line EGFR TKI
48 CT Univariate

analysis
Multivariate
regression

Manually Clinical,
Shape,
1st order,
2nd order

5 None C-index 0.77

Sun et al.
(65)

Outcome anti-PD-1
and anti-PD-L1
treatment

272 (135
for
Training)

CT Elastic-net
regularized
regression

Elastic-net
regularized
regression

Semi-
automatically

Location,
technical,
Shape,
1st order,
2nd order

8 Independent
set

OS : HR 0.52;
p=0.0022
May
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AUC, area under the curve; CNN, convolutional neural network; CT, computed tomography; LASSO, least absolute shrinkage and selection operator; LOOCV, leave-one-out cross
validation; NE, not evaluable; OS, overall survival; PCA, Principle Component Analysis; PET, positron emission tomography; QDA, Quadratic discriminant analysis; RFC, Random Forest
Classifier; SVM, support vector machine.
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allow either an intensification of the therapeutic strategy or of the
therapeutic sequence or, conversely, avoid harmful therapies
without benefit to the patient.

Radiomics showed good hope to be able to respond to this issue.
In a study (63) including patients who were treated with front-line
platinum-based chemotherapy, the combination of the top seven
discriminating features outperformed an accuracy of 0.77 in
prediction of tumor response. A significant correlation with both
time to progression and overall survival for patients with NSCLC
was also found.

Radiomics models could identify responders to EGFR tyrosine
kinase inhibitor (TKIs) suchasGefitinib fromthechange in features
between the pre-treatment and 3 weeks post-treatment CT. In a
study conductedbyAerts et al. (82) including 47patients, one delta-
radiomics feature was significantly predictive (AUC 0.74) of
Gefitinib response.

Pretreatment contrast-enhanced CT and first follow-up CT
after initiation of EGFR TKIs were retrospectively analyzed in 48
NSCLC patients (64).

A recent promising treatment is immune checkpoint blocker
(i.e. immunotherapy). The choice of patients who would benefit
most from this treatment remains unclear and it is necessary to
identify the good responders. Radiomics should have a role to
play in this purpose (83).

Similarly, PET and PET/CT have been used for the prediction of
treatment response. Radiomics signature was successfully validated
to discriminate immune phenotype and predict survival and
response to anti-PD-1 or PD-L1 immunotherapy (65, 84, 85).

Regarding the treatment sides effects, radiomics has been
proven to be able to predict pneumonitis following
immunotherapy (86), allowing closer surveillance for at-risk
patients or even impacting the therapeutic choice.
DISCUSSION

This last decade, studies about radiomics drastically increased in
different domains of oncology (87) with significant
improvements. The new paradigm of precision medicine
supports the research of new biomarkers and thus a lot of
studies tried to explore radiomics in various applications with
promising results which could have a huge impact on clinical
routine. Machine and deep learning algorithms provide
powerful modeling tools to explore the big amount of image
data available, especially in oncology, to bring to light
underlying complex biological mechanisms, and make
personalized precision cancer diagnosis and treatment
planning possible.

We could imagine a CAD, based on imaging, that directly
establishes the nature of a lung lesion, its genomic alterations and
provide guidance to physicians to choose the best therapeutic
options that fit the most for each patient. Thus, the time between
diagnosis and treatment initiation could be considerably reduced
as well as the invasiveness of the procedures in patients who are,
in most cases, very fragile. Patients could be offered therapeutics
that are as effective as low in toxicity. For instance, SBRT, which
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is a first-choice treatment option for patients with stage I lung
cancer who have surgical contraindications (88), could be
proposed more broadly on the condition that the patients who
can benefit from it could be accurately identified.

Then, in analogy to genomic signatures in breast cancer (89),
therapeutic de-escalation may be possible when treatment would
be identified as bringing no over gain.

Traditionally, the radiomics features being extracted are
hand-crafted. Feature-based methods require a segmentation of
the region of interest through a manual, semiautomated, or
automatic methods. Then, hundreds or even thousands of
radiomics features are extracted. Thus, feature selection and
extraction are crucial steps that aim at obtaining the optimal
feature representation that correlates most with the endpoint and
correlates least between each other. Hand-crafted features suffer
from the tedious designing process and may not faithfully
capture the underlying imaging information. Semiautomatic
segmentation could improve the stability of radiomics features
(8) and fully automatic segmentation tools could be as accurate
as manual segmentation by medical experts (90). With the
development of deep learning based on multilayer neural
networks, particularly CNN, the extraction of machine learnt
features is becoming widely applicable. In deep learning, the
processes of data representation and prediction are performed
jointly (91). Pixel/voxel-based ML (PML) emerged in medical
image analysis (92), which use pixel/voxel values in images
directly instead of features calculated from segmented objects
as input information; thus, feature calculation or segmentation is
not required. Because the PML can avoid errors caused by
inaccurate feature calculation and segmentation, the
performance of the PML can potentially be higher than
common classifiers. Moreover, the data representation removes
the feature selection portion eliminating associated statistical
bias in the process. The peritumoral space around the tumor may
also provide valuable information over the visible tumor features
for patient risk stratification due to cancer metastasis as
demonstrated in a study carried by Dou et al. on 200 patients
(93). A SVM classifier predicted distant failure with an accuracy
of 0.83 thanks to analysis of the peritumoral space radiomics
features from PET images of 48 NSCLC patients and 52 cervical
cancer patients (94), arguing the fact that information around
the tumor could provide better accuracy. PML are generally
taking into account the peritumoral space. In a study evaluating a
CNN based model (58), the visual mapping demonstrated that
tissue within and beyond the tumor were both crucial for
characterization and eventual prediction. CAD could be so able
to highlight specific spot to overtreat.

It is clear that to this day, daily clinical radiomics applications
remains very limited (95). At the present time, no clinical
application of radiomics is available. Many factors could explain
this situation (96).

First, the overall scientific quality and reporting of radiomics
studies is insufficient. Scientific improvements need to be made
to feature reproducibility, analysis of clinical utility, and open
science categories. The Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or Diagnosis
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(TRIPOD) checklist (97) was adapted to radiomics studies by
Park et al. (98) after finding very poor results of his analysis of
multiple studies in term of radiomics quality scores and
adherence to the TRIPOD checklist. It intends to improve the
transparency of a prediction model study’s reporting regardless
of the study methods. It is a checklist of 22 items considered
important for good reporting of studies developing or
validating multivariable prediction models. The items relate to
the title and abstract, background and objectives, methods,
results, discussion, and other information. The TRIPOD
Statement covers studies that report solely development,
both development and external validation, and solely
external validation (with or without model updating) of a
diagnostic or prognostic prediction model. Recently, a
Checklist for Artificial Intelligence in Medical Imaging was
proposed (99). In the batch of radiomics studies, few ones
are able to provide clear details of the models and the
selected predictors.

Moreover, reproducibility of radiomics features should be
carefully explored. For instance, differences on imaging
acquisition modalities could greatly influence radiomics
features (100). Thus, harmonizing acquisition parameters
between studies is a crucial step for future texture analysis
(101). There is a real need for the harmonization of features to
allow consistent findings in radiomics multicenter studies. Two
main approaches could be considered to address this issue:
harmonizing images and harmonizing radiomic features. The
first one focuses on the harmonization issue in imaging and
usually looks upon standardization of acquisition protocols and
reconstruction settings, such as guidelines already available for
PET/CT imaging (102). This approach should not be enough.
Recently, techniques based on generative adversarial networks
(103) have also been developed. Heterogeneous images are
translated to match the statistical properties of a standard
dataset, such as a template reference image. The second
approach focuses on the issue in the feature area by either
using prior feature selection based on their robustness, keeping
only features insensitive to multicenter variability, or by keeping
all features and harmonizing their statistical properties so they
can be pooled during the modeling step. In this regard, different
methods could be considered, such as normalization or batch-
effect correction using the ComBat method.

One of the other challenges of imaging research is enhancing
global collaboration and sharing trial data (104). Big and
standardized clinical data will make radiomics clinically
applicable (105). Access to big data is needed, as medical
images are dispersed in different hospitals or data centers. Data
sharing among institutes and hospitals is important for
radiomics, although it presents complex logistical problems.
The Cancer Imaging Archive (TCIA) provides a good example
of data sharing with a large portion of clinical information (106).

To perform generalizable models, it will be mandatory to
develop them by involving multiple centers and to improve
national and international collaboration (107).

Patient medical records are a great source of data. Some
studies have shown the added value of clinical features
combined with clinical ones. We can also hypothesize that the
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adjunction of genomic data and radiomics features from different
imaging modalities could permit to get closer to a more
personalized medicine.

The field is certainly high on promise and relatively low on
data and proof, with the need of prospective validation (108). For
clinical application, higher evidence levels are important.
Prospective, multicenter, randomized controlled trials studies
are needed.

One critical aspect of the radiomics workflow that remains
relatively unexamined is the implementation of the software
platforms used to calculate radiomics features. Some studies
have demonstrated features variability from different software
platforms (109, 110). The Image Biomarker Standardisation
Initiative (IBSI), an international collaboration, was developed
to help standardize radiomics feature calculation and has
provided a framework to deliver practical solutions (111). The
IBSI has made recommendations concerning feature calculation,
standardized feature definition and nomenclature. A study (112)
demonstrated the benefits of standardizing feature calculation
platforms according to the IBSI with greater statistical reliability,
but only when calculation settings were also harmonized.

Another point which should carefully assessed is the integration
of radiomics software in the job process. Optimization,
effectiveness and utility should be evaluated. As digital assistants
(113), software programs designed to interact with people in a
conversational manner, radiomics based software impact on
clinical routine need assessment. By the same way, human
factors (114) should be more consider as human factor
interventions are known to have great potential to contribute to
efficient Healthcare Information Technology design. Human
factors and human-centered design play a critical role in
ensuring that health IT is well designed and fits with clinical and
patient workflows. The gaps between stakeholders, particularly
vendors, researchers, clinicians, healthcare organization
administrations, and purchasers, need also to be reduced.
CONCLUSION

Radiomics in this last decade shows good ability to be considered
as a potential new biomarker at different steps of the patient’s
care in lung cancer. More multicentric prospective studies are
still needed to evaluate the application of radiomics in daily
practice. Deep learned radiomics should replace the traditional
handcrafted radiomics for more efficiency on large datasets and
more reproducibility.
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Immune checkpoint inhibitors (ICI) have constituted a paradigm shift in the management of
patients with cancer. Their administration is associated with a new spectrum of immune-
related toxicities that can affect any organ. In patients treated with ICI, cardiovascular
toxicities, particularly myocarditis, occur with a low incidence (<1%) but with a high fatality
rate (30−50%). ICI-related myocarditis has been attributed to an immune infiltration,
comprising of T-cells that are positive for CD3+, CD4+, CD8+, and macrophages that are
positive for CD68. The diagnosis remains challenging and is made based on clinical
syndrome, an electrocardiogram (ECG), biomarker data, and imaging criteria. In most
clinical scenarios, endomyocardial biopsy plays a pivotal role in diagnosis, while cardiac
magnetic resonance imaging (cMRI) has limitations that should be acknowledged. In this
review, we discuss the role of medical imaging in optimizing the management of ICI related
myocarditis, including diagnosis, prognostication, and treatment decisions.
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INTRODUCTION

Immune checkpoint inhibitors (ICIs) have modified the management of patients with cancer and
have improved their prognosis and survival for many tumor types including melanoma, lymphoma,
kidney, and lung malignancies (1). From a mechanistic point of view, ICIs are monoclonal
antibodies that antagonize the pathways for programmed cell death receptor 1 (PD‐1),
programmed cell death ligand 1 (PD‐L1), cytotoxic T‐lymphocyte–associated protein 4 (CTLA‐4)
and could activate the immune system against cancer cells (2–4).
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ICI administration can lead to immune-related adverse events
(irAE) that can potentially affect all organs (5, 6). Among them,
ICI related myocarditis is a rare adverse event that has an
estimated incidence between 0.09 to 1.14% (7, 8). The
incidence of myocarditis is higher in patients treated with ICI
administered in combinations (e.g., anti-PD-1 and anti-CTLA-4)
(0.27%) than in monotherapy with ICI (0.09%) (5). An early
onset characterizes ICI related myocarditis, generally occurring
within the first three injections (9).

ICI-related myocarditis is associated with poor outcomes,
since the fatality rate has been reported to range between 30 to
50% (3, 9). Hence, early diagnosis and management is crucial.
ICI-related myocarditis is frequently associated with other irAE,
such as myositis (in 25.4%), myasthenia-like syndromes (ptosis,
diplopia, respiratory failure; in 10.7%), and hepatitis (in 10.7%)
(9). There is a growing body of evidence indicating that ICI-
related myocarditis should be considered as a new entity and
etiology of acute myocarditis, that differs from other etiologies by
several aspects, including clinical presentation, ECG, and cardiac
magnetic resonance imaging (cMRI) features (10). In this review,
we discuss medical imaging’s role in optimizing the management
of ICI related myocarditis, including diagnosis, prognostication,
treatment decision, and follow-up.
DIAGNOSTIC CRITERIA FOR ICI-RELATED
MYOCARDITIS

According to the ESC 2013 position statement, the diagnosis of
acute myocarditis relies on a combination of a suggestive clinical
presentation, first-line tests such as ECG, biomarkers including
inflammatory markers, viral antibodies, serum cardiac
antibodies, and cardiac biomarkers (Troponin I or T, BNP, or
NT pro BNP), transthoracic echocardiography (TTE), and cMRI.
It also includes second-line tests, represented by coronary
angiography (CA), to exclude coronary artery disease and
endomyocardial biopsy (EMB) (11). This diagnostic workup
could be applied to document ICI-related myocarditis, but it
should also be adapted to the specific context of cancer patients
treated with ICI, as specified in a recent statement (10).
CLINICAL PRESENTATION

The clinical presentation in a patient admitted for acute
myocarditis (AM) includes a wide range of symptoms. On one
hand, some patients are pauci symptomatic on presentation with
chest pain and/or palpitations. On the other hand, there are more
severe scenarios with cardiogenic shock (11). Discussing out of
the context of cancer patients treated with ICI, five possible
clinical scenarios could be identified in acute myocarditis
patients. They include acute coronary like syndrome, new
onset or worsening heart failure, chronic heart failure, and life-
threatening conditions including arrhythmia, sudden cardiac
arrest, and cardiogenic shock with impaired left ventricular
systolic dysfunction (11).
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In cancer patients treated with ICI, the clinical presentation of
ICI-related myocarditis has recently been described by Pradhan
et al. in a review gathering data from 88 published cases. They
found that the most commonly reported symptoms in ICI-
related myocarditis were dyspnea (49%), weakness (25%), chest
pain (17%), syncope (9%), fever (6%), and cough (4%) (12).
Multiple recent publications show that ICI-related myocarditis
could have several other presentations. There is a growing body
of evidence suggesting that patients presenting with an irAE
could have a final diagnosis of AM without any evidence of
clinical cardiac manifestations and that some patients could have
isolated troponin rise and/or ECG modifications (13).
ECG FINDINGS

ECG is generally abnormal, but it should be noticed that ECG
features are neither specific nor sensitive enough for the diagnosis
of AM. Main ECG findings that could be encountered in patients
with acute myocarditis are the following: 1st, 2nd, and 3rd degree
atrioventricular block, bundle branch block, ST/T wave
modifications, ST elevation (generally concave and non-mirror),
non-ST elevation, T wave inversion, sinus arrest, ventricular
tachycardia or fibrillation, asystole, atrial fibrillation,
intraventricular conduction delay, abnormal Q waves,
premature beats, and SVT (14). However, a normal ECG does
not rule out the diagnosis of acute myocarditis. In a study of 77
patients with acute myocarditis, ECGs were normal in 32% of the
patients, ST elevation was found in 57%, inverted T wave in 9%,
and left bundle branch block in 3% (15). In a similar fashion, for a
study of 65 patients with biopsy-proven myocarditis, ST-
abnormalities were detected in 69% of the patients, bundle-
branch-block in 26%, Q-waves in 8%, atrial fibrillation was
present in 6%, and AV-Block in 3% of the patients (16).

In cancer patients with ICI-related myocarditis, Pradhan
showed that 91% of ECGs were found to be abnormal and that
there was a broad spectrum of abnormal findings. ST-elevation
was reported in 32% and ST-depression in 4% cases. Various
degrees of heart block were found in 51%, with complete AV
block involving 66% of them. Ventricular tachycardia or
fibrillation were noted in 35% (12).
TRANSTHORACIC ECHOCARDIOGRAPHY

Transthoracic echocardiography (TTE) represents the first line
of imaging when AM is clinically suspected. It has the advantage
of being non-invasive, non-ionizing, versatile, and available at
bedside. TTE provides information on cardiac geometry,
morphology, and function. TTE findings suggestive of acute
myocarditis encompass segmental wall motion abnormalities,
increased LV wall thickness, global hypokinesia, particularly in
fulminant myocarditis, and pericardial effusion. The current role
of speckle tracking imaging is not clearly established in this
context. A normal TTE does not rule out the diagnosis of acute
myocarditis (17).
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Out of the context of immunotherapy, in a case series of 41
patients with histologically proven myocarditis, left ventricular
dysfunction was noticed in 69%, right ventricular dysfunction in
23%, wall motion abnormality in 64%, left ventricular “pseudo
hypertrophy” in 20%, and ventricular thrombi in 15% (15).
Felker described the TTE features in the vast majority of
patients admitted for fulminant myocarditis, as showing an
increased septal thickness and normal LV dimension. In
contrast, those with non-fulminant myocarditis had an
increased diastolic dimension with a normal septal
thickness (18).

In cancer patients with ICI-related myocarditis, there are
scarce data on TTE findings. In a recent review of the literature
describing TTE findings in 53 myocarditis cases, 23% of TTE
were classified as normal, and 32.5% of TTE examinations
reported a normal LVEF (12).
CARDIAC MAGNETIC RESONANCE AND
ICI-RELATED MYOCARDITIS

cMRI as TTE allows to define cardiac geometry, morphology,
function and add important information by allowing myocardial
tissue characterization, particularly in the context of inflammation
related to myocarditis. The combination of markers of edema and
inflammation increases the probability of AM. According to the
updated 2018 Lake Louise criteria, at least one T2 based criterion (a
regional or global increase of myocardial T2 relaxation time or
increased signal intensity in T2-weighted CMR images) with at least
one T1 based criterion (increase myocardial T1, extracellular
volume, or late gadolinium enhancement) should be analyzed and
combined to improve the diagnostic accuracy of cMRI for the
diagnosis of AM (19, 20).

In cancer patients with ICI-related myocarditis, the most
extensive description of cMRI findings was made by Zhang (21).
LGE was found in 48% of all the cases, was predominantly
distributed at the anteroseptal, inferoseptal, inferior, and
inferolateral segments. Myocardial edema, as assessed with T2
weighted STIR was found in only 28% of cases. Forty-three
patients had neither elevated T2 nor LGE. The predominant LGE
pattern was subendocardial/transmural in 6.1%, subepicardial in
26.5%, mid-myocardial in 49%, and diffuse in 18.4%. Native T1
value was comparable (18). However, it should be noticed that a
normal cMRI with a normal T2, T1 values and no LGE does not
rule out ICI myocarditis proven with BEM (21, 22).
ENDOMYOCARDIAL BIOPSY AND ACUTE
MYOCARDITIS

Acute myocarditis, according to the 2013 ESC position statement,
is defined as an inflammatory disease of the myocardium
diagnosed by histological evidence of inflammatory infiltrates
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defined as ≥14 leucocytes/mm², including up to 4 monocytes/
mm² with the presence of CD 3 positive T-lymphocyte ≥7 cells/
mm², within the myocardium associated with myocyte
degeneration and necrosis of non-ischemic origin (11).

Endomyocardial biopsy is necessary to achieve a diagnosis of
certainty and identify its cause. Causes of myocarditis include
infectious myocarditis (bacterial, spirochetal, viral), immune-
mediated myocarditis (allergens, alloantigens, autoantigens),
and toxic myocarditis (drugs, heavy metals, hormones, physical
agents, miscellaneous) (11). It is also essential to bear in mind
that cancer patients developing myocarditis could have other
possible etiologies, including radiotherapy, anthracycline, or
other viral infections. (23).

In cancer patients with ICI-related myocarditis, postmortem
histopathological analysis of heart and skeletal biopsies in two
patients treated with combination therapy (ipilimumab and
nivolumab) revealed the myocardium as necrotized and
associated with an intense, patchy, lymphocytic infiltrate. The
infiltrate comprised T-cells positive for CD3+, CD4+, and CD8+,
and macrophages positive for CD68. PD-L1 was expressed on
myocytes’membranous surface, on infiltrating CD8+ T-cells, but
was not expressed on skeletal muscle or tumor (7).

Of note, in expert centers, the complication rate of EMB is
low and is influenced by operator experience, the volume of
procedures and a learning curve. Incidence of peri-procedural
complications (perforation, tamponade, embolization) after left
ventricular EMB and right ventricular was low and comparable
(0.33% for left ventricular EMB and 0.45% for right ventricular
EMB) with no death occurring following EMB (24).
IMAGING AND PROGNOSIS IN
ICI-RELATED MYOCARDITIS

There is scarce data in the context of ICI-related myocarditis on
prognostic markers. Transthoracic echocardiography, mainly left
ventricular ejection fraction (LVEF), global longitudinal strain
(GLS), and abnormal findings on CMR were evaluated as
potential prognostic markers in patients with ICI-related
myocarditis (25).

In cancer patients with ICI-related myocarditis, Pradhan et al.
in a review of 88 cases, published that LVEF was not a predictor
of poor outcomes (12). Awadalla et al. showed that MACE’s risk
was higher with a lower GLS among patients with either a
reduced or preserved left ventricular ejection fraction. After
adjustment for ejection fraction, each percent reduction in GLS
was associated with a 1.5-fold increase in MACE among patients
with a reduced left ventricular ejection fraction (HR 1.5, 95% CI
1.2−1.8) and a 4.4-fold increase with a preserved left ventricular
ejection fraction (HR 4.4, 95% CI 2.4−7.8) (25). Regarding CMR
parameters, the presence of LGE, LGE pattern, and elevated T2-
weighted short TI inversion recovery were not associated with
MACE (21).
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TOWARDS A PRAGMATIC APPROACH ON
HOW TO DIAGNOSE ICI-RELATED
MYOCARDITIS

The diagnosis of ICI-related myocarditis relies on combining a
clinical syndrome, ECG, troponin measurement, and imaging
criteria. Most recent ESMO and ASCO guidelines dealing with
the management of ICI-related myocarditis do not describe any
diagnostic workup (26, 27). However, recent position statements
from the European heart failure association suggest, despite clear
evidences, to obtain references values before ICI initiation based
on an echocardiogram, an electrocardiogram, and biomarkers
measurement (troponin and a natriuretic peptide) (28, 29).

In symptomatic patients, Bonaca intended to describe
particularly in the context of immunotherapy, the diagnostic
criteria that should be used both in everyday clinical practice and
in clinical trials (10).

Figure 1 depicts a diagnostic workup adapted from Bonaca
et al. and proposes that when the diagnosis of ICI-related
myocarditis is suspected, patients should be evaluated with at
least one ECG and a troponin measurement and should be
Frontiers in Oncology | www.frontiersin.org 4249
rapidly referred to a cardio-oncology unit that can confirm or
exclude the diagnosis of ICI-associated myocarditis (10).
CONCLUSIONS

The incidence of ICI-associated myocarditis is low (below 1%) but
could be underestimated since it is not systematically screened. It is
critical to diagnose this irAE at an early stage since it is associated
with a fatality rate between 30 to 50%. Current strategies usually rely
on a suspicion by the patient’s oncologist and a confirmation by a
cardiologist or cardio-oncologist based on CMR or endomyocardial
biopsies. The diagnosis of ICI-related myocarditis remains
challenging and the main objective is to make an early diagnosis
since no predictive markers are currently available to identify
patients prone to develop ICI related myocarditis.
AUTHOR CONTRIBUTIONS
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FIGURE 1 | CMR, cardiac magnetic resonance; ECG, electrocardiogram; EMB, endomyocardial biopsy; ICI, immune checkpoint inhibitor; Tn, troponin; TTE,
transthoracic echocardiography.
May 2021 | Volume 11 | Article 640985

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ederhy et al. Cardiac Imaging and ICI Myocarditis
REFERENCES

1. Champiat S, Lambotte O, Barreau E, Belkhir R, Berdelou A, Carbonnel F, et al.
Management of Immune Checkpoint Blockade Dysimmune Toxicities: A
Collaborative Position Paper. Ann Oncol (2016) 27:559–74. doi: 10.1093/
annonc/mdv623

2. Geraud A, Gougis P, Vozy A, Anquetil C, Allenbach Y, Romano E, et al.
Clinical Pharmacology and Interplay of Immune Checkpoint Agents: A Yin-
Yang Balance. Annu Rev Pharmacol Toxicol (2020). doi: 10.1146/annurev-
pharmtox-022820-093805. doi: 10.1146/annurev-pharmtox-022820-093805

3. Varricchi G, Galdiero MR, Tocchetti CG. Cardiac Toxicity of Immune
Checkpoint Inhibitors: Cardio-Oncology Meets Immunology. Circulation
(2017) 136(21):1989–92. doi: 10.1161/CIRCULATIONAHA.117.029626

4. Hu JR, Florido R, Lipson EJ, Naidoo J, Ardehali R, Tocchetti CG, et al.
Cardiovascular Toxicities Associated With Immune Checkpoint Inhibitors.
Cardiovasc Res (2019) 115:854–68. doi: 10.1093/cvr/cvz026

5. Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal Toxic
Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review
and Meta-Analysis. JAMA Oncol (2018) 4:1721–8. doi: 10.1001/
jamaoncol.2018.3923

6. Michot JM, Lappara A, Le Pavec J, Simonaggio A, Collins M, De Martin E,
et al. The 2016-2019 ImmunoTOX Assessment Board Report of Collaborative
Management of Immune-Related Adverse Events, an Observational Clinical
Study. Eur J Cancer (2020) 130:39–50. doi: 10.1016/j.ejca.2020.02.010

7. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al.
Fulminant Myocarditis With Combination Immune Checkpoint Blockade.
N Engl J Med (2016) 375:1749–55. doi: 10.1056/NEJMoa1609214

8. Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling
LM, et al. Myocarditis in Patients Treated With Immune Checkpoint
Inhibitors. J Am Coll Cardiol (2018) 71:1755–64. doi: 10.1016/S0735-1097
(18)31240-3

9. Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente
A, et al. Cardiovascular Toxicities Associated With Immune Checkpoint
Inhibitors: An Observational, Retrospective, Pharmacovigilance Study. Lancet
Oncol (2018) 19:1579–89. doi: 10.1016/S1470-2045(18)30608-9

10. Bonaca MP, Olenchock BA, Salem JE, Wiviott SD, Ederhy S, Cohen A, et al.
Myocarditis in the Setting of Cancer Therapeutics: Proposed Case Definitions
for Emerging Clinical Syndromes in Cardio-Oncology. Circulation (2019)
140:80–91. doi: 10.1161/CIRCULATIONAHA.118.034497

11. Caforio ALP, Adler Y, Agostini C, Allanore Y, Anastasakis A, Arad M, et al.
Diagnosis and Management of Myocardial Involvement in Systemic Immune-
Mediated Diseases: A Position Statement of the European Society of
Cardiology Working Group on Myocardial and Pericardial Disease. Eur
Heart J (2017) 38(35):2649–62. doi: 10.1093/eurheartj/ehx321

12. Pradhan R, Nautiyal A, Singh S. Diagnosis of Immune Checkpoint Inhibitor-
Associated Myocarditis: A Systematic Review. Int J Cardiol (2019) 296:113–
21. doi: 10.1016/j.ijcard.2019.07.025

13. Lyon AR, Yousaf N, Battisti NML, Moslehi J, Larkin J. Immune Checkpoint
Inhibitors and Cardiovascular Toxicity. Lancet Oncol (2018) 19(9):e447–58.
doi: 10.1016/S1470-2045(18)30457-1

14. Di Bella G, Florian A, Oreto L, Napolitano C, Todaro MC, Donato R, et al.
Electrocardiographic Findings and Myocardial Damage in Acute Myocarditis
Detected by Cardiac Magnetic Resonance. Clin Res Cardiol (2012) 101
(8):617–24. doi: 10.1007/s00392-012-0433-5

15. Lee Chuy K, Oikonomou EK, Postow MA, Callahan MK, Chapman PB,
Shoushtari AN, et al. Myocarditis Surveillance in Patients With Advanced
Melanoma on Combination Immune Checkpoint Inhibitor Therapy: The
Memorial Sloan Kettering Cancer Center Experience. Oncologist (2019) 24:
e196–7. doi: 10.1634/theoncologist.2019-0040

16. Deluigi CC, Ong P, Hill S, Wagner A, Kispert E, Klingel K, et al. ECG Findings
in Comparison to Cardiovascular MR Imaging in Viral Myocarditis. Int J
Cardiol (2013) 165(1):100–6. doi: 10.1016/j.ijcard.2011.07.090

17. Pinamonti B, Alberti E, Cigalotto A, Dreas L, Salvi A, Silvestri F, et al.
Echocardiographic Findings in Myocarditis. Am J Cardiol (1988) 62(4):285–
91. doi: 10.1016/0002-9149(88)90226-3

18. Felker GM, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK,
Baughman KL, et al. Echocardiographic Findings in Fulminant and Acute
Frontiers in Oncology | www.frontiersin.org 5250
Myocarditis. J Am Coll Cardiol (2000) 36(1):227–32. doi: 10.1016/S0735-1097
(00)00690-2

19. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper
LT, et al. International Consensus Group on Cardiovascular Magnetic
Resonance in Myocarditis. Cardiovascular Magnetic Resonance in
Myocarditis: A Jacc White Paper. J Am Coll Cardiol (2009) 53(17):1475–87.
doi: 10.1016/j.jacc.2009.02.007

20. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I,
Sechtem U, et al. Cardiovascular Magnetic Resonance in Nonischemic
Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol
(2018) 72(24):3158–76. doi: 10.1016/j.jacc.2018.09.072

21. Zhang L, Awadalla M, Mahmood SS, Nohria A, Hassan MZO, Thuny F, et al.
Cardiovascular Magnetic Resonance in Immune Checkpoint Inhibitor-
Associated Myocarditis. Eur Heart J (2020) 41:1733–43. doi: 10.1093/
eurheartj/ehaa051

22. Ederhy S, Fenioux C, Cholet C, Rouvier P, Redheuil A, Cohen A, et al.
Immune Checkpoint Inhibitor Myocarditis With Normal Cardiac Magnetic
Resonance Imaging: Importance of Cardiac Biopsy and Early Diagnosis.
Can J Cardiol (2020) S0828-282X(20):31189–2. doi: 10.1016/j.cjca.
2020.12.022

23. Mirabel M. Late-Onset Giant Cell Myocarditis Due to Enterovirus During
Treatment With Immune Checkpoint Inhibitors, Jacc. CardioOncology (2020)
2(3):511–4. doi: 10.1016/j.jaccao.2020.05.022

24. Chimenti C, Frustaci A. Contribution and Risks of Left Ventricular
Endomyocardial Biopsy in Patients With Cardiomyopathies: A
Retrospective Study Over a 28-Year Period. Circulation (2013) 128
(14):1531–41. doi: 10.1161/CIRCULATIONAHA.13.001414

25. Awadalla M, Mahmood SS, Groarke JD, Hassan MZO, Nohria A, Rokicki A,
et al. Global Longitudinal Strain and Cardiac Events in Patients With Immune
Checkpoint Inhibitor-Related Myocarditis. J Am Coll Cardiol (2020) 75:467–
78. doi: 10.1016/j.jacc.2019.11.049

26. Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, et al.
Management of Cardiac Disease in Cancer Patients Throughout Oncological
Treatment: ESMO Consensus Recommendations. Ann Oncol (2020) 31:171–
90. doi: 10.1016/j.annonc.2019.10.023

27. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM,
et al. Management of Immune-Related Adverse Events in Patients Treated
With Immune Checkpoint Inhibitor Therapy: American Society of Clinical
Oncology Clinical Practice Guideline. J Clin Oncol (2018) 36:1714–68. doi:
10.1200/JCO.2017.77.6385

28. Lyon AR, Dent S, Stanway S, Earl H, Brezden-Masley C, Cohen-Solal A, et al.
Baseline Cardiovascular Risk Assessment in Cancer Patients Scheduled to
Receive Cardiotoxic Cancer Therapies: A Position Statement and New Risk
Assessment Tools From the Cardio-Oncology Study Group of the Heart
Failure Association of the European Society of Cardiology in Collaboration
With the Internationalcardio-Oncologysociety. Eur J Heart Fail (2020) 22
(11):1945–60. doi: 10.1002/ejhf.1920
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Uncontrolled Confounders May Lead
to False or Overvalued Radiomics
Signature: A Proof of Concept Using
Survival Analysis in a Multicenter
Cohort of Kidney Cancer
Lin Lu1†, Firas S. Ahmed1*†, Oguz Akin2, Lyndon Luk1, Xiaotao Guo1, Hao Yang1,
Jin Yoon1, A. Aari Hakimi3, Lawrence H. Schwartz1 and Binsheng Zhao1

1 Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States, 2 Department of
Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States, 3 Department of Surgery, Memorial Sloan
Kettering Cancer Center, New York, NY, United States

Purpose: We aimed to explore potential confounders of prognostic radiomics signature
predicting survival outcomes in clear cell renal cell carcinoma (ccRCC) patients and
demonstrate how to control for them.

Materials and Methods: Preoperative contrast enhanced abdominal CT scan of ccRCC
patients along with pathological grade/stage, gene mutation status, and survival
outcomes were retrieved from The Cancer Imaging Archive (TCIA)/The Cancer Genome
Atlas—Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) database, a publicly available
dataset. A semi-automatic segmentation method was applied to segment ccRCC tumors,
and 1,160 radiomics features were extracted from each segmented tumor on the CT
images. Non-parametric principal component decomposition (PCD) and unsupervised
hierarchical clustering were applied to build the radiomics signature models. The factors
confounding the radiomics signature were investigated and controlled sequentially.
Kaplan–Meier curves and Cox regression analyses were performed to test the
association between radiomics signatures and survival outcomes.

Results: 183 patients of TCGA-KIRC cohort with available imaging, pathological, and
clinical outcomes were included in this study. All 1,160 radiomics features were included in
the first radiomics signature. Three additional radiomics signatures were then modelled in
successive steps removing redundant radiomics features first, removing radiomics
features biased by CT slice thickness second, and removing radiomics features
dependent on tumor size third. The final radiomics signature model was the most
parsimonious, unbiased by CT slice thickness, and independent of tumor size. This final
radiomics signature stratified the cohort into radiomics phenotypes that are different by
cancer-specific and recurrence-free survival; HR (95% CI) = 3.0 (1.5–5.7), p <0.05 and HR
(95% CI) = 6.6 (3.1–14.1), p <0.05, respectively.
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Conclusion: Radiomics signature can be confounded by multiple factors, including
feature redundancy, image acquisition parameters like slice thickness, and tumor size.
Attention to and proper control for these potential confounders are necessary for a
reliable and clinically valuable radiomics signature.
Keywords: radiomics, quality control, machine learning, TCGA, The Cancer Imaging Archive (TCIA), clear cell renal
cell cancer
INTRODUCTION

Tumor radiomics is a rapidly evolving field aiming to link tumor
imaging phenotypes to pathological and clinical outcomes in a
quantitative and non-invasive way (1). Radiomics generally
converts medical image data into a large-scale and mineable
set of imaging features, termed radiomics features, that
characterize tumor imaging phenotypes (2). Radiomics
signatures, essentially constellations of radiomics features, have
shown to be helpful in plenty of medical tasks (3), including
predicting malignancy in lung nodules at lung cancer screening
CT scans (4), predicting genomic alteration on lung cancer
imaging (5), predicting tumor recurrence and patients’ survival
(6), and assessing response to treatment (7, 8).

Radiomics signature models have been developed by cancer
researchers but their usefulness is usually difficult to replicate at
other institutions or cohorts. This is mostly due to challenges
encountered in the construction of a radiomics signature models
attributed to radiomics feature redundancy and image quality
differences (resulting from differences in image acquisition/
technical parameters or from scanner vender differences).
Another challenge facing useful radiomics signature is the need
to provide new information independent of already known and
established prognosticators, especially tumor size which is
retrieved from routine clinical imaging without the need to run
radiomics image analysis (9). Feature redundancy is a challenge
to replicate and consolidate radiomics signatures. Two research
teams, Lu et al. (10) and Berenguer et al. (11), independently
pointed out that radiomics feature sets, which usually contain
several hundreds to a thousand radiomics features, could actually
be summarized into dozens of representative features. The
variations in image acquisition parameters, e.g. thin/thick slice
thickness and sharp/smooth reconstruction kernels, etc., could
produce images of different qualities (12), which might impede
generalization of radiomics signatures. For instance, the
performance of radiomics signature developed using CT
images of thin slice thickness decreased when applied on CT
images with thicker in the predicting the risk of malignancy of
lung nodule (13) and cancer-related genomic mutation status
(14). Finally, including tumor size measurement (unidimensional,
bidimensional and three dimensional) within radiomics features
creates confusion about the usefulness of the texture based
radiomics; it raises the question whether the prognostic or
predictive radiomics signature effect is mainly driven by tumor
size which is readily available through routine medical imaging
without the need for radiomic analysis. Association between
radiomics signature and well-established clinical factors (e.g., tumor
2252
size or patient’s age), may lead to overvalued radiomics signatures;
this is because the predictive value of radiomics signature may
be exaggerated by radiomics’ association with these important
clinical factors (15).

Several approaches were proposed for establishing
reproduceable and generalizable radiomics studies including
radiomics reporting guidelines, such as Radiomics Quality
Score (RQS) (9), The Image Biomarker Standardization
Initiative (IBSI) (16, 17), and recently harmonization
algorithms (18), such as Combat. Although these studies have
demonstrated that radiomics signature could be impacted by
multiple clinical and technical factors, there is still suboptimal
awareness of this confounding potential and lack of consensus on
how to control for such confounding. For example, within the
RQS, although imaging protocol was suggested to be reported, it
does not provide a reliable statistical method to control the
confounding effect from imaging protocol and does not alarm
that confounding effect of imaging protocol could lead to fake
result. In IBSI, its main focus is on standardizing implementation
parameters for radiomics feature extraction instead of
controlling confounding effect. For those harmonization
algorithms, like Combat, although they showed promising
potential on removing confounding effect, however, there is
limitation on application on new data. For example, when new
data were added, the new data have to be combined with original
data and the harmonization has to be re-established on the entire
combined database (19).

Therefore, in this study, we designed multiple radiomics
signature models to show the effect of uncontrolled
confounders which may lead to false/overvalued radiomics
signature among patients with clear cell renal cell carcinoma
(ccRCC). The reason for using radiomics analysis on ccRCC as
an example is that, ccRCC is the predominant pathological
subtype (85%) in renal adenocarcinomas which account for
90% of kidney cancers because of its variable course (20, 21).
The prediction of survival outcomes for ccRCC patients still
remain challenging (22–25), due to the variation in ccRCC’s
growth pattern, with some tumor showing an indolent growth
pattern while others exhibiting aggressive behaviors including
local recurrence after resection and distant metastases (26, 27).
METHOD

We aimed to conduct this study in The Cancer Genome Atlas—
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) cohort data
(28) which is a publicly available dataset from multiple medical
May 2021 | Volume 11 | Article 638185
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institutions in the US. The TCGA-KIRC project house the
pathological, clinical, and imaging data for patients with clear
cell renal cell carcinoma (ccRCC).

Compared to single-center data, the TCGA-KIRC was a
multicenter data therefore was more heterogenous in terms of
tumor’s pathological stage and grade as well as the image
acquisition parameters. The Cancer Imaging Archive (TCIA)
(29) represent a repository of clinical imaging for patients/
tumors included in the TCGA cohort housing de-identified
clinical imaging and provide a great resource for researchers to
conduct and validate their imaging related studies.

The overview of our study design is presented in Figure 1.
Our study design followed the basic radiomics phases, which
included data collection, feature extraction, modeling, and
outcome analysis (9, 17). The highlights of the study are the
following. First, all the used data are publicly available in the
TCIA, so that other researchers can easily and reliably replicate
our results. Second, multiple factors that might affect radiomics
analysis (9) were investigated, including feature redundancy (e.g.
correlation among features), image acquisition parameters (slice
thickness was the main CT parameter impacting radiomic
signature), and signature’s dependency to tumor size (a
previously validated prognostic factor). Four radiomics
signatures were successively built throughout our study that
included: 1) entire radiomics feature set, 2) radiomics feature
Frontiers in Oncology | www.frontiersin.org 3253
set after dimension reduction (i.e. excluding redundant features),
3) radiomics feature set after further exclusion of radiomics
features affected by CT scan slice thickness, and 4) radiomics
feature set after further exclusion of tumor size related features.
Third, to address the over-fitting problem, non-parametric
principal component decomposition (PCD) for dimension
reduction and unsupervised hierarchical clustering for pattern
discovery were used. Fourth, the radiomics signatures
associations with clinical outcomes (OS, PFS, and RFS) were
tested using Kaplan–Meier’s analysis. Finally, supplementary
analyses were conducted to illustrate how impacting factors
can affect the radiomics signatures.

Patient Data Collection
The data we used were downloaded from the TCGA-KIRC
project, which is publicly available in the TCIA dataset
(https://wiki.cancerimagingarchive.net/display/Public/TCGA-
KIRC, accessed in August 2016). It contained 267 ccRCC
patients collected from multiple medical centers nationwide.
The downloaded content contained both presurgical contrast-
enhanced abdominal CT scans and clinical information such as
pathological stage, grade, gene mutation status, and patient’s
survival outcomes. For the survival outcome, patients were
censored at their last follow-up date if: they were alive (overall
survival-OS), alive or dead from non-ccRCC related illness
FIGURE 1 | Overview of the study design. The study mainly consisted of four key parts: 1) patient data collection, 2) feature extraction and controlling, 3) Modeling,
and 4) Outcome analysis. Specially, four experiments were designed to evaluate the effects on radiomics signatures built by radiomics feature sets under four
different controlling levels. In addition, supplementary experiments were performed to explore the association between outcomes and the confounding factors, such
as CT slice thickness and tumor size.
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(cancer-specific survival-CSS), alive without tumor recurrence
(recurrence-free survival-RFS). Somatic gene mutation status of
our patients was retrieved from TCGA official website and
adjudicated at Memorial Sloan Kettering Cancer Center
(MSKCC) based on collaborative clinical TCGA (cTCGA)
consortium data (30). Genetic information included gene
mutation status of VHL, PBRM1, SETD2, BAP1, and KDM5C
genes. All patients’ informed consents and institutional review
boards’ approvals were obtained as part of the TCGA/TCIA
efforts, and all demographic and imaging data were de-identified
to comply with the Health Insurance Portability and
Accountability Act (HIPAA).

In our study, 183 out of 267 patients were included in the final
segmentation and analysis (as shown in Figure 1) based solely on
the availability of pre-surgical contrast-enhanced abdominal CT
scans where ccRCC was depicted and segmented to generate
radiomics features.

Tumor Segmentation and
Feature Extraction
A fellowship trained abdominal radiologist performed ccRCC
segmentations. The radiologist was blinded to the various study
endpoints (pathology at surgery and patient outcomes). For
image analysis we used a MatLab (MathWorks, Natick,
Massachusetts) based dedicated software application to
visualize and segment the tumor from each patient’s CT scan.
This semi-automated algorithm, combining the region-based
active contours and a level set approach, was used in a slice-
by-slice fashion (i.e. the entire ccRCC tumor was segmented)
(31). The initial step for tumor segmentation required the
radiologist to manually select a region-of-interest (ROI) that
roughly enclosed the tumor region on a single CT slice. Rough
boundary localization of the tumor was then automatically
generated by the software algorithm and propagated to
consecutive slices, serving as an initial ROI for subsequent
segmentations on the neighboring images. The final tumor
segmentation boundaries were then verified and fine-tuned by
the radiologist (32). The total volume of the tumor (created by
adding all segmentations from all slices) was then utilized to
generate the radiomics features of each individual tumor.

A total of 1,160 radiomics features, i.e., quantitative imaging
features, were extracted from each segmented tumor via the
Columbia Image Feature Extractor (CIFE) (33) which has been
successfully applied in many radiomics studies (34–36). More
details of the CIFE, as well as its comparison with two other
open-source feature extractors, the IBEX (37) and Pyradiomics
(38), can be founder at (33). Three preprocesses were performed
before the feature extraction, 1) a modified soft tissue CT
window was adopted with level of 50 HU and width of 175
HU, 2) voxel resolution was resampled to 0.5 × 0.5 × 0.5 mm³
and 3) image was discretized into 64 bins.

Principal Component Decomposition (PCD)
In this study, we introduced an unsupervised method, PCD (39),
for feature dimension reduction. On contrary to its supervised
counterpart, an unsupervised method focuses more on the
Frontiers in Oncology | www.frontiersin.org 4254
intrinsic characteristics of features and is not easily affected by
the overfitting problem. PCD belongs to a type of non-
parametric transformation that is able to convert a set of
possibly correlated features into a set of linearly uncorrelated
variables. Such uncorrelated variables are called principal
components and are ranked by their corresponding variance,
which is their contribution to feature variability in the data.
Hence, in the set of resulting principal components, the first
principal component has the largest variance, and each
succeeding component in turn has a smaller variance. We
hypothesized that if a principal component had a larger
variance, it would contain more information, so that the
dimension reduction could be fulfilled by selecting a compact
set of principal components that had the large variance while
excluding a large number of principal components with small
variances (i.e. excluding those with the least input to the data). In
this study, Matlab version 9.5 was used. Principal components
that summed up to 99% contribution to the total variance were
selected as the new representative features.

Exclusion of Slice Thickness
Related Features
The main CT scan parameter in this cohort that affected (was
associated with) radiomics features values was the CT scan slice
thickness (among other parameters including CT scan voltage
(kVp), vender and reconstruction algorithm). Because this is a
multi-institutional cohort with different imaging protocols, we
aimed to remove the potentially confounding effect of slice
thickness from the radiomics signature to be built. The
identification of radiomics features dependent on slice
thickness involved three steps: First, the patients were distributed
into two groups: one with thin CT slices (i.e. ≤3 mm) and one with
thick slices (i.e. >3 mm) (The selection of 3 mm as an cutoff is based
on clinical practice (40)). Second, C-index (41) was calculated for
each feature based on the slice thickness group labels. The C-index,
in this model, provided a measure of how good a radiomics feature
could fit a binary outcome (groups of slice thickness ≤3 mm and
>3 mm). In other words, we attempted to measure how much of
the radiomics feature was explained by the CT slice thickness.
Generally, for C-index, values below 0.5 indicate poor fitting, values
over 0.7 indicate good fitting, values over 0.8 indicate strong fitting,
and a value of 1 means perfect fitting. In radiomics signature model
#3, we excluded all radiomics features whose C-index was >0.8 in
order to remove the radiomics features that are heavily influenced/
biased by CT slice thickness.

Exclusion of Tumor Size Related Features
In this project, we aimed to build a radiomics signature that
deliver new prognostic information, independent of tumor size
which has long been known as an important prognosticator. The
correlation between tumor size and the radiomics features were
measured by Pearson’s linear correlation coefficients (also called
Pearson’s R). In our study, tumor size was obtained by measuring
the longest diameter across the tumor’s cross-sectional region, as
shown in Figure 1. The features that have strong positive or
negative correlation with tumor size (Pearson’s R >0.7 or <−0.7,
May 2021 | Volume 11 | Article 638185
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p < 0.05) were excluded from radiomics signature model #4 as
tumor size dependent features.

Unsupervised Clustering
Unsupervised hierarchical clustering was used to identify the
clusters of ccRCC tumors based on input radiomics features. We
identified two major clusters of ccRCC tumors in this study.
During the clustering, the distance between two clusters in the
feature space was measured by ‘cosine’ distance. The
unsupervised clustering method was intrinsically an iteration
process based on the similarity among radiomics features. At
each iteration of the clustering, two of the most similar clusters
were combined into one cluster and then acted as one cluster for
the next iteration. A cluster node in the clustering tree could be
one individual radiomics features or several radiomics features.
A detailed description of unsupervised hierarchical clustering
can be found in our previous publication (10).

Association Between Confounding
Factors and Survival Outcomes
In this study, a direct association between confounding factors and
survival outcomes was also studied. The two confounding factors
were CT slice thickness and tumor size. The information of CT slice
thickness was retrieved from DICOM attributes tagged as
(0018,0050). Patients were assigned to two subgroups with slice
thickness ≤3 mm (74 patients) and >3 mm (109 patients). With
respect to tumor size, patients were assigned to two subgroups with
tumor size less than or equal to the median size value (60 patients)
and greater than the median value (123 patients).

Statistical Analysis
Unsupervised clustering and principle component analyses were
used to stratify the cohort into two groups/phenotypes. The
association of this radiomics clustering/phenotypic binary
classification was tested primarily with survival outcomes (OS,
CSS and RFS) using Kaplan–Meier curves and Cox-regression
models. Secondarily, the radiomics cluster’s association with other
patient’s and tumor’s characteristics (including demographic
characteristics (age, gender and race), pathological characteristics
(tumor grade), American Joint Committee on Cancer tumor, node,
metastasis staging (AJCC TNM staging), and genetic characteristics
(VHL, PBRM1, SETD2, BAP1, and KDM5C) using Chi-Square and
T-test when appropriate. P-values smaller than 0.05 indicated
statistical significance. All statistical analyses were performed
using Matlab 2020a.
RESULTS

Patient Characteristics and CT Examination
A total of 183 patients were included in our study according
to the inclusion and the exclusion criteria. The patient
characteristics are presented in Table 1. Patients’ average age
was 60 years (± standard deviation (std) of 12). Majority of
patients were men (66%) and white (96%). The mean ± std
of tumor size was 6.4 ± 3.2 cm. The minimum and maximum of
tumor size were 1.5 and 15.5 cm, respectively. The cohort was
Frontiers in Oncology | www.frontiersin.org 5255
close to be evenly split between early stage (52% had stage I) and
advanced stage (48% has stages II–IV). The CT scan
characteristics are presented in Table 2. Most of the patients
were scanned by the same vender CT scanner (GE Medical
System, 85%) but with different slice thicknesses; 60% had thin
CT slices scans while 40% had thick CT slices scans. A more
detailed CT characteristics were provided in Supplement S2.

Ablation Analysis Based on
Survival Outcome
As shown in Figure 1, radiomics-based analysis consisted of four
experiments. The results of the four corresponding experiments
are presented in Table 3.

In experiment #1, all the features were used to create a radiomics
signature without any exclusion. In this situation, the radiomics
signature was not associated with any of the survival outcomes (OS,
CSS and RFS, p-value >0.05). In experiment #2, the redundant
radiomics features were excluded leaving in only the redundancy-
TABLE 1 | Patient characteristics.

Patient characteristics Total patients (n = 183)

Age, year 59.9 ( ± 11.7)
Gender
Female 62 (34%)
Male 121 (66%)

Race
White 176 (96%)
Others 7 (4%)

Tumor grade
G1 1 (1%)
G2 72 (39%)
G3 79 (43%)
G4 31 (17%)

AJCC TNM staging
Stage I 96 (52%)
Stage II 14 (8%)
Stage III 48 (26%)
Stage IV 25 (14%)

Distant Metastasis
M0 160 (87%)
M1 23 (13%)

VHL mutation
Positive 100 (55%)
Negative 71 (38%)
Not available 12 (7%)

PBRM1 mutation
Positive 52 (28%)
Negative 119 (65%)
Not available 12 (7%)

SETD2 mutation
Positive 14 (8%)
Negative 157 (86%)
Not available 12 (7%)

BAP1 mutation
Positive 16 (9%)
Negative 155 (85%)
Not available 12 (7%)

KDM5C mutation
Positive 8 (4%)
Negative 163 (89%)
Not available 12 (7%)
May 2021 | Vo
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controlled radiomics set yielding a radiomics signature that was
significantly associated with OS (HR (95% CI) = 1.8 (1.0–3.3),
p-value <0.05), CSS (HR (95% CI) = 2.0 (1.0–4.1), p-value <0.05),
and RFS (HR (95% CI) = 2.6 (1.1–6.2), p-value <0.05). The
radiomics signature in experiment #2 included striking fewer
radiomics features (89/1160 = 7.6%). However, a correlation
analysis showed that the second radiomics signature had a high
correlation with CT scan slice thickness (p-value <0.001) which is
an image acquisition parameter that should not be associated with
clinical outcomes. This may be attributed to selection bias inherent
in retrospective multi-institutional cohort studies when technical
parameters are different between institutions, along with inter-
institutional differences in tumor stage, grade, or aggressiveness
tumors. Thus, in experiment #3, we used a radiomics feature set
used in experiment #2 but after further exclusion of CT slice
thickness dependent radiomics features. The third radiomics
signature continued to be significantly associated with OS, CSS,
and RFS (all p-value <0.05) with even higher magnitude of
association; HR (95% CI) increasing to 2.6 (1.5–4.4), 13.7 (7.1–
26.5), and 8.0 (3.8–17.0), respectively. The high HRs on predicting
patients’ outcomes indicated that the third radiomics signature was
a powerful prognostic signature, especially on predicting CSS.
However, experiment #3 radiomics signature continued to be
associated with tumor size which is an information readily
available through routine clinical imaging without the need for
complex radiomics analysis. In order to render this radiomics
signature independent of ccRCC tumor size, in experiment #4 we
further excluded radiomics features (from the set used in
experiment#3 model) that are highly correlating with tumor size
(C-Index = 0.877) to yield a tumor-size independent radiomics
signature. Final results showed that the well-controlled radiomics
signature from experiment #4 was significantly associated with
CSS (HR (95% CI) = 3.0 (1.5–5.7), p-value <0.05) and RFS
(HR (95% CI) = 6.6 (3.1–14.1), p-value <0.05) for ccRCC
patients, but was not significantly associated with OS (p = 0.06).

In addition, the associations between confounding factors
with survival outcomes were also studied. As shown in
Frontiers in Oncology | www.frontiersin.org 6256
Supplement S1 Figure 1, there was a significant association
between CT slice thickness and patient’s OS (HR (95% CI) = 2.0
(1.2–3.5), p-value <0.01), CSS (HR (95% CI) = 2.0 (1.0–4.0), p-
value <0.01) and RFS (HR (95% CI) = 3.6 (1.6–8.0),
p-value <0.01), respectively. In Supplement S1 Figure 2, there
was expected significant association between tumor size and
patient’s OS (HR (95% CI) = 2.9 (1.2–5.6), p-value <0.01), CSS
(HR (95% CI) = 6.0 (3.0–12.2), p-value <0.01) and RFS (HR
(95% CI) = 5.0 (2.3–11.4), p-value <0.01). These two association
studies revealed that the patient data in the TCGA-KIRC project
were indeed factor-biased data within which real imaging
phenotypical signals were suppressed.

Radiomics Phenotypes
The radiomics feature set used in experiment #4 was our final set
to be implemented in constructing final most parasomnias,
scanning parameter-independent, and tumor size-independent
radiomics signature model classifying the study cohort into two
major phenotypes; referred hereafter as radiomics phenotype I
(RAD1) and radiomics phenotype II (RAD2). Demographics,
pathological characteristics, clinical parameters, and gene
mutation status are presented in Table 4. There was no
statistically significant difference between RAD1 and RAD2
clusters, except in regard the AJCC staging; almost three
quarters of patients with RAD1 radiomic signature had stage I
tumor while less than half of patients in RAD2 cluster had stage I
disease (72% vs 40%, p-value <0.01). No significant difference
between the two radiomics phenotypes in terms of gene
mutation status as can be seen in Table 4.

RAD1 radiomics phenotype included 71 patients and RAD2
phenotype included 112 patients. RAD1 cluster was reflective of the
less aggressive ccRCC, in comparison to RAD2 cluster, consistently
associated with lower AJCC cancer stage and with better cancer-
specific and recurrence-free survival as reflected in Figure 2. In
terms of overall survival, RAD1 tended to have better survival also
but the association was not statistically significant. Themost striking
divergence of survival is noticed in the recurrence-free survival;
Cox-regression hazard ratio of RAD2 vs. RAD1 was HR (95% CI) =
6.6 (3.1–14.1), p-value <0.05.
DISCUSSION

In this study, we demonstrated a proof of concept to remove
redundant, CT slice thickness-dependent (biased), and tumor-
size dependent radiomics features towards building a concise
radiomics signature in patients with ccRCC. Furthermore, we
demonstrated that the final most parsimonious radiomics
signature model stratified this multi-institutional cohort into
two major radiomics phenotypes that are significantly different
by AJCC staging, CSS, and RFS. However, the radiomics
signature model was not associated with genetic mutation
status nor with any other available patient or tumor
characteristic. In this study we have demonstrated how
radiomics models can be negatively impacted by confounders
TABLE 2 | CT scan characteristics.

CT scan characteristics Total patients (n = 183)

Scanner manufacturer
GE Medical System 156 (85%)
SIEMENS 24 (13%)
Philips 3 (2%)

CT slice thickness
thin section (≤3 mm) 109 (60%)
thick section (>3 mm) 74 (40%)
overall 3.63 ± 1.51, 1.25, 7.5

Current-time product (mAs) 324 ± 124, 101, 686
Pixel spacing (mm) 0.81 ± 0.10, 0.59, 0.97
Voltage (kVp)

120 172 (94%)
130 or 140 11 (6%)
Values are presented as frequency (%) for categorical variables and mean ± std, minimum
and maximum for continuous variables.
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(like CT slice thickness) and tumor size (a previously proven
prognosticator) leading to false/overvalued signatures. As shown
in Figure 1, the addition of the controlling procedure after the
feature extraction is a supplement to the existing standard
radiomics guideline (9), and should be helpful for medical
image analysis whose data were usually relatively small and
with high heterogeneity of imaging protocol.

Our analysis framework followed an ablation study paradigm,
i.e., investigating factors sequentially, from feature redundancy to
imaging parameters (CT slice thickness) to tumor size in order to
evaluate the effect of each factor to the final radiomics signature. For
the feature redundancy, we have shown that there was a large
redundancy existing within the radiomics feature set. A raw feature
set containing 1,160 features could be efficiently represented by only
89 dimensions of principal components, which represent 7.6% of
the original radiomics features. The reason for the existence of
redundancy is because feature extractors, including other widely
used extractors (20) (e.g., PyRadiomics (38) and IBEX (37)), were
based on a number of basic feature extraction algorithms (e.g.,
Wavelet features (42), Gray-Level Co-occurrence Matrix (GLCM)
features (43), etc.), which contained multiple tunable parameters
aiming to extract the features in multi-scales for the sake of not
missing any valuable image patterns (33). Thus, it is highly
recommended that the removal of feature redundancy be the first
step when initializing a radiomics analysis. It’s also notable that
unsupervised machine-learning methods, such as non-parametric
principal component decomposition (39) and unsupervised
hierarchical clustering (10), were recommended for redundancy
removal and radiomics signature building. Compared to the
supervised methods, the unsupervised machine-learning methods
generally have a lower risk on overfitting the problem, because little
or no prior knowledge is needed for the learning parameters.

For image acquisition parameters, our study showed that
ccRCC patients imaged with different slice thicknesses were
associated with significantly different survival outcomes, which
is not biologically plausible and certainly is attributed to inherent
Frontiers in Oncology | www.frontiersin.org 7257
bias in retrospective studies. The patients with thicker CT scan
slices thickness were of more aggressive tumors when compared
to patients with thinner CT scan slices (See Supplement S1
Figure 1(A), thick vs. thin slice thickness group was of HR of
recurrence (95% CI) = 3.6 (1.6–8.0), p <0.01). We believe this
apparent association is because institutions that contributed
ccRCC to the TCGA and TCIA with thicker CT slices
happened to be contributing ccRCC tumors with more
aggressive behavior (i.e. larger tumors with higher stage of
disease). If the effect of slice thickness on radiomics features is
not attended to and controlled for, we would have committed an
error by producing a radiomics signature that is dependent on
the slice thickness of the CT scan and therefore completely false.

ccRCC tumor size has long been identified as an important
prognosticator and it is easily measured on routine abdominal
imaging without the need for advanced processing or radiomics.
Our study demonstrated that tumor size-dependent radiomics
features may exaggerate the clinical utility of radiomics and may
mask the real/tumor size-independent radiomics clinical utility.
Size independent radiomics features are reflective of tumor
textural heterogeneity will ultimately provide additional
prognostic information separate from tumor size measurement
which is routinely implemented clinically (e.g., clinical staging
for kidney cancer (44), RECIST 1.1 (45)). In this study, we
introduced a method to remove the effect of tumor size from the
radiomics signature models built to yield a size-independent
radiomics signature with more valuable input into the tumor
internal environment.

In summary, there were two main findings in our work: in
retrospective multi-institutional imaging data with heterogenous
techniques, image acquisition parameters could lead to false
radiomics signatures while size-dependent radiomics may yield
overvalued clinical utility of radiomics signature. Unfortunately,
there is still suboptimal awareness of these two pitfalls in
radiomics literature, although some researchers have tried to
establish quality assurance criteria for radiomics study (46).
TABLE 3 | Results of the four designed experiments.

Experiment Feature Exclusion and Dimension Reduction Survival Outcome Supplementary Experiment

# Purpose CT Slice
Thickness

Tumor
Size

Principal
Component
Analysis

Num of
Feature

Dimensions

OS CSS RFS Correlation to CT
Slice Thickness (Chi-

square)

Correlation
to Tumor

Size
(C-Statistic)

(HR (95%CI)
and log-rank

test)

(HR (95%CI)
and log-rank

test)

(HR (95%CI)
and log-rank

test)

1 Study All
Features

1,160 1.02 (0.59–
1.75)

1.04 (0.53–
2.01)

1.17 (0.55–
2.51)

<0.001 0.628

0.929 0.905 0.674
2 Study

Redundancy
Effect

× 89 1.79 (0.98–
3.29)

1.95 (0.93–
4.08)

2.63 (1.11–
6.21)

<0.001 0.605

0.033 0.043 0.009
3 Study

Scanning
Parameter
Effect

× × 86 2.58 (1.51–
4.42)

13.72 (7.12–
26.5)

7.98 (3.76–
16.9)

0.872 0.877

0.002 <0.001 <0.001

4 Study Tumor
Size Effect

× × × 81 1.74 (1.01–
2.99)

2.95 (1.52–
5.72)

6.59 (3.09–
14.1)

0.188 0.667

0.0582 0.007 1<0.00
M
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The bold values represent p <0.05 indicates significance. C-index >0.8 indicates high correlation.
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For image acquisition parameters, most of previous studies on
the effect of image acquisition parameters focused on studying
feature reproducibility and model generalization. Such studies
could only result in conclusions that the heterogeneity in image
acquisition parameters decreased the reproducibility and
performance of radiomics signatures. Our study, for the first
time, showed that the effect of image acquisition parameters
could be severe enough to lead to false biologically unplausible
association. Attention to and control for imaging acquisition
parameters that are influential of radiomics is of crucial
importance in retrospective studies, especially multi-
institutional ones.

For tumor size, the risk of overvalued radiomics signature
induced by tumor-size-effect was mainly caused by a large
portion of radiomics features that were basically ‘mixture’
features, which characterized tumor size and intratumor
imaging pattern simultaneously, such as Gray-Level Run
Frontiers in Oncology | www.frontiersin.org 8258
Length Matrix (GLRLM) (47) and Gray-Level Size Zone
Matrix (GLSZM) (48). The contribution weights between
tumor size and image patterns to the final feature value were
variable depending on the specific tumor phenotypes.
Unfortunately, in most of radiomics feature extraction
packages, such as PyRadiomics, IBEX, etc., the effect of size on
‘mixture’ features was not well studied (33). Thus, the size effect
in ‘mixture’ feature may be easily overlooked and may lead to an
over-valued size-dependent radiomics signature. The prognostic
information from such a signature will overlap with the
prognostic information already retrieved by measuring tumor
size. For example, Mattea et al. (15) tested a radiomics signature
previously shown to have predictive values on survival outcome
among head and neck cancer patients, but eventually, this
radiomic signature was found to be a surrogate for tumor size.

The limitations of our work include the following points.
First, the number of patients in the TCGA-KIRC project was
TABLE 4 | Demographic, clinical, pathological, and genetic characteristics of the final radiomics phenotypes.

Patient characteristics Radiomics Phenotype I (Low-risk, n = 71) Radiomics Phenotype II (High-risk, n = 112) p

Age, year 62 (± 12) 59 (± 11) 0.148
Gender 0.886

Female 24 (34%) 38 (34%)
Male 47 (66%) 74 (66%)

Race 0.330
White 68 (96%) 108 (96%)
Others 3 (4%) 4

Tumor grade 0.227
G1 1 (1%) 0 (0%)
G2 31 (44%) 41 (37%)
G3 31 (44%) 48 (43%)
G4 8 (11%) 23 (21%)

AJCC TNM staging <0.01**
Stage I 51 (72%) 45 (40%)
Stage II 1 (1%) 13 (12%)
Stage III 13 (18%) 35 (31%)
Stage IV 6 (8%) 19 (17%)

Distant Metastasis 0.267
M0 65 (92%) 95 (85%)
M1 6 (8%) 17 (15%)

VHL mutation 0.068*
Positive 43 (68%) 57 (53%)
Negative 20 (32%) 51 (47%)
Not available 8 (−) 4 (−)

PBRM1 mutation 0.207
Positive 15 (24%) 37 (34%)
Negative 48 (76%) 71 (66%)
Not available 8 (−) 4 (−)

SETD2 mutation 0.843
Positive 6 (10%) 8 (7%)
Negative 57 (90%) 100 (93%)
Not available 8 (−) 4 (−)

BAP1 mutation 0.746
Positive 8 (13%) 8
Negative 55 (87%) 100
Not available 8 (−) 4 (−)

KDM5C mutation
Positive 6 (10%) 2 (2%) 0.055*
Negative 57 (90%) 106 (98%)
Not available 8 (−) 4 (−)
May 2021 | Volume 11 | Article
Values are presented as n (%) for categorical variables and mean (± std) for continuous variables. **indicates high significance with p<0.05, and *indicates weak significance with a p-value
between 0.05 and 0.10.
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relatively small and there were no further external data to
validate our final radiomics signature. Second, except for slice
thickness, other image acquisition parameters, such as scanning
mode and reconstruction kernel, were not studied because most
of the CT scanning (85%, see Table 1) were performed on
scanners manufactured by the same vender with similar
smooth reconstruction kernels. Fortunately, since the TCIA is
a rapidly developing open research community supported by
National Cancer Institute, it is promising that more and more
projects such as the TCGA-KIRC will be created/improved and
available in near future. Third, using PCD for dimension
reduction could lead to losing of features’ original physical
quantification and make the modeling a black box which is
difficult for interpret. Finally, in this study, we only used single-
modal imaging and unsupervised machine learning algorithms
for modeling, however, as the data increase in future, we could
investigate multimodal imaging and supervised machine
learning algorithms which have shown promising results in
recent years (49–53).
CONCLUSION

In this paper, we demonstrated that a radiomics signature could
be negatively impacted by multiple factors, including radiomics
redundancy from large-scale feature extraction, biases from
image acquisition parameters, and underlying dependency to
established clinical prognosticator (tumor size). Proper attention
to and control for these pitfalls are needed to guarantee a reliable,
reproducible, and clinically relevant radiomics signature. Our
work used the prediction of survival outcomes in ccRCC patients
as an example. In our study, the final most concise, slice
thickness independent, and tumor size-independent radiomics
signature stratified multi-institutional retrospective cohort of
ccRCC into two distinct phenotypes that are significantly
different in tumor stage, CSS and RFS.
Frontiers in Oncology | www.frontiersin.org 9259
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Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland, 3 Department of Nuclear Medicine,
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Purpose: Radiomics has already been proposed as a prognostic biomarker in head and
neck cancer (HNSCC). However, its predictive power in radiotherapy has not yet been
studied. Here, we investigated a local radiomics approach to distinguish between tumor
sub-volumes with different levels of radiosensitivity as a possible target for radiation
dose intensification.

Materials and Methods: Of 40 patients (n=28 training and n=12 validation) with biopsy
confirmed locally recurrent HNSCC, pretreatment contrast-enhanced CT images were
registered with follow-up PET/CT imaging allowing identification of controlled (GTVcontrol)
vs non-controlled (GTVrec) tumor sub-volumes on pretreatment imaging. A bi-regional
model was built using radiomic features extracted from pretreatment CT in the GTVrec
and GTVcontrol to differentiate between those regions. Additionally, concept of local
radiomics was implemented to perform detection task. The original tumor volume was
divided into sub-volumes with no prior information on the location of recurrence. Radiomic
features from those sub-volumes were then used to detect recurrent sub-volumes using
multivariable logistic regression.

Results: Radiomic features extracted from non-controlled regions differed significantly
from those in controlled regions (training AUC = 0.79 CI 95% 0.66 - 0.91 and validation
AUC = 0.88 CI 95% 0.72 – 1.00). Local radiomics analysis allowed efficient detection of
non-controlled sub-volumes both in the training AUC = 0.66 (CI 95% 0.56 – 0.75) and
validation cohort 0.70 (CI 95% 0.53 – 0.86), however performance of this model was
inferior to bi-regional model. Both models indicated that sub-volumes characterized by
higher heterogeneity were linked to tumor recurrence.
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Conclusion: Local radiomics is able to detect sub-volumes with decreased radiosensitivity,
associated with location of tumor recurrence in HNSCC in the pre-treatment CT imaging. This
proof of concept study, indicates that local CT radiomics can be used as predictive biomarker
in radiotherapy and potential target for dose intensification.
Keywords: local radiomics, radioresistance, head and neck cancer, predictive biomarker, contrast-enhanced CT,
tumor recurrence
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) accounts for
approximately 4% of all malignancies across Europe and the USA
(1, 2). For locally advanced HNSCC, the standard of care is
definitive radiotherapy, whenever possible combined with
concurrent chemotherapy. Despite advances in treatment using
modern radiotherapy delivery techniques, local recurrences still
occur in up to 50% of patients and pose the predominant pattern of
failure in HNSCC (3). Therapeutic options for recurrent HNSCC
are mainly palliative and comprise salvage surgery, re-irradiation
and systemic therapy – however, outcome is poor, and treatment
often is associated with significant morbidity (4). Therefore,
improvement of primary radiochemotherapy is essential.

Several early clinical trials have studied the role of radiationdose
intensification to the primary tumor andmetastatic lymphnodes in
order to improve local control forHNSCC(5–7).However, concern
still exists about excessive acute and late toxicities of this approach
and therefore no large randomized trial has been conducted so far.
In addition, intensification of radiotherapy by using altered
fractionation schemes only lead to very modest improvement of
outcome (8). Thus, a dose of 70 Gy delivered over 7 weeks to the
entire tumor iswidely considered a standard in patients undergoing
chemoradation for HNSCC (9). Heterogeneity within a tumor has
been recognized as a characteristic of head and neck cancer (10),
with some sub-regions beingmore resistant to radiochemotherapy.
Consequently, the strategyof treatment intensification to these sub-
volumes could lead to better outcomes in terms of local control and
subsequently overall survival, without a significant increase in
treatment-related toxicities. Recent advancement in radiation
technology in principle allows such an escalation of radiation
dose to tumor sub-volumes. However, identification of these sub-
volumes is a crucial step within this therapeutic concept.

In contrast to selective biopsy specimens obtained from a small
areaof the tumor, theuseof imagingasbiomarkerhas the advantage
to analyze the entire three dimensional tumor volume. The
feasibility of delivering a dose boost, so-called dose painting, to
tumor sub-volumes has been previously demonstrated, mostly
based on functional, metabolism-related (fluorodeoxyglucose)
or hypoxia-related (fluoromisonidazole) positron emission
tomography (PET) imaging (11–13). In recent years, high-
throughput, multidimensional and quantitative images analysis
(radiomics) revealed that relevant biological information can be
extracted also from routinely acquired, easy to perform
morphological imaging, such as regular computed tomography
(CT) (14–16). Many investigations have studied the potential of
radiomics to predict the risk formetastatic spread, progression-free
in.org 2263
survival, overall survival or biological phenotypes (17–19) showing
encouraging results. In the context of radiotherapy, several studies
indicated an association betweenCTheterogeneity and local tumor
control (20–24).However, there is so far scarce data on radiomics as
a method to individually tailor dose distribution to specific sub-
volumes within a tumor (25–27).

Here, we investigated CT radiomics for identification of
radioresistant sub-volumes of the primary tumor leading to
persistence or recurrence after curative radiochemotherapy.
Reliable detection of these resistant sub-volumes may allow for
a tailored treatment by increasing radiation dose to these parts.
METHODS

Study Population
We retrospectively analyzed patients with primary locally
advanced HNSCC (cT3/4 or cN+) treated at our institution
between June 2004 and October 2015, who experienced a local
in-field tumor recurrence. Local in-field tumor recurrence was
defined as a recurrence occurring within the high-dose target
volume (excluding lymph nodes), and had to be confirmed by
biopsy. Only patients that received a definitive high dose
radiation treatment with an equivalent total dose of 68 - 70 Gy
in 2-2.11 Gy fractions and a concomitant systemic therapy with
either cisplatin and/or cetuximab during the course of
radiotherapy were included. A further requirement was a
contrast-enhanced CT (CE-CT) imaging before treatment and
a FDG-PET/CT at the time of local recurrence. Contrast protocol
was not standardized, however patients with contrast visible only
in thyroid were not included. Follow up of patients was done
according to the institutional routine. The first FDG-PET/CT for
treatment response was usually done three months after
completion of treatment. A subset of patients included in this
study and now reviewed retrospectively has been treated within a
prospective trial back then (28).

Data analysis was approved by the Swissethics and was
carried out in accordance with Swissethics guidelines and
regulations. Patients gave informed general consent.

We identified in total 66 patients fulfilling the above mentioned
inclusion criteria. However, twenty-one cases had to be excluded,
as a reliable image registration between follow-up 18F-
fluorodeoxyglucose (18F-FDG) PET and CE pretreatment planning
CTwasnotpossible. Five additional patientswere excludeddue to the
small size of recurrence (volume < 27 voxels), which precludes a
reasonable radiomics analysis. Thus, in total 40 patients were
available and were split into a training cohort, consisting of
May 2021 | Volume 11 | Article 664304
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retrospectively collected data (n = 28), and a validation cohort,
comprising patients from a prospective phase II clinical study
(n = 12) (28). In the majority of cases, the primary tumor was
located in the oropharynx, for further details see Table 1.

Contrast-Enhanced Planning CT
Image Acquisition
Iodine contrastwas injected intravenouslyprior toCT imaging.The
contrast protocol varied over the years of data acquisition. Images
were acquired on five different scanners (Siemens Somatom
Definition AS n = 20, Siemens Volume Zoom n = 13, Siemens
Somatom Plus n = 5, GE Healthcare, Discovery STE n = 1 and GE
Healthcare,Discovery LSn= 1)with 120or 140 kV tube voltage, 2 –
3.27mm slice thickness and <1mm in-plane voxel size. The tube
current varied between 120-450 mAs, and angular exposure
adaption was applied in 7 scans (17%). Images were
reconstructed using filtered back projection and soft kernel (B30).

Definition of Primary Tumor and
Recurrence Volume
The primary tumor was contoured based on the CE planning CT
assisted by the co-registered pretreatment diagnostic FDG-PET/
CT and MRI scans if available. However, in contrary to the FDG-
PET, which was available in all the patients, a pretreatment MRI
was only present in 5 cases. The recurrence region was contoured
as high FDG uptake in the follow-up FDG-PET/CT at the time of
the detection of the recurrence (Supplementary Figure S1).
High FDG uptake region was considered as 40% SUVmax
threshold-based sub-volume in the recurrence PET-CT. Details
of the PET scanning protocol can be found in the supplement
(Supplementary Table S1). The contours were then transferred
Frontiers in Oncology | www.frontiersin.org 3264
to the initial planning CT by rigid registration with focus on the
tumor region (Eclipse v.15, Varian Medical Systems, USA). Two
structures were created for further analysis: the overlap of tumor
recurrence and primary tumor (GTVrec) and the primary tumor
contour minus the recurrence (GTVcontrol). Prior to radiomics
analysis both GTVrec and GTVcontrol were postprocessed, by
removal of contours on slices affected by metal artifacts.

Radiomics Analysis for Differentiation
of Controlled to Non-Controlled Tumor
Sub-Volumes and Detection of
Radioresistant Volumes
Radiomics analysis was performed using Z-Rad software
implementation (Python v 2.7). This implementation was
benchmarked in the Image Biomarker Standardization Initiative (29,
30). Images were resampled to cubic voxels (3.3 mm, largest voxel
dimension in the dataset) using trilinear interpolation.Hounsfield unit
rangeof -20 to180HUwas set to limit the analysis to soft tissue.Due to
the small size of analyzed volumes, the feature set was limited to
intensity (n=25) and texture features (n=136).The full list of analyzed
features is presented in the Supplementary Table S2. Volumes with
less than 27 voxels were excluded from analysis.

In total, three different radiomics models were built (Figure 1):
The “bi-regional radiomics” analysis aims to differentiate tumor
regions, which stay controlled after treatment (GTVcontrol) and the
non-controlled region,which resulted in a recurrence detectedon the
FDG-PET CT (GTVrec). For detection of radioresistant volumes
within the primary tumor without prior knowledge on their location
and prior to any treatment two “local radiomics models” were built.
Here, the predefined region of interest (ROI), corresponding to the
primary GTV and from now on namedGTV, is divided into smaller
sub-regions,whichare later used as amask for feature extraction.As a
consequence, instead of one vector of features describing the GTV,
local radiomics returns a set of radiomics-based parametric maps.
These maps visualize for example changes in heterogeneity or
contrast across the GTV. The local features are calculated based
only on the voxels within the GTV, whereas the neighboring voxels
(e.g. healthy tissue, manually excluded artifacts) are set to ‘not a
number’ (discarded). We have implemented two approaches for the
definition of sub-regions (Figure 1):

• Division of the GTV into a fixed number of sub-regions with
the center of the grid attached to the center of the GTV (in
this study 8 sub-regions, the number was chosen to provide
sufficient information in 3D and to ensure large enough
neighborhood to define texture). The same number of sub-
regions was analyzed per patient and their volume depended
on the GTV size.

• Division of the GTV into sub-regions with fixed size. In the
second approach, the placement of the grid is optimized to
cover a GTV volume as large as possible. The full coverage is
rarely feasible, because in order to avoid meaningless features
calculated only on a few voxels, we have set a threshold T = 25
of minimum number of ROI voxels (voxels with value
different than ‘not a number’) in the sub-region. In this
study, we decided for 5x5x5 voxels grid with 5 voxel shift.
There was no overlap between sub-regions to ensure
TABLE 1 | Patient characteristics of all included patients.

Training Cohort
(n=28)

Validation Cohort
(n=12)

Tumor location
Oropharynx 19 (68%) 6 (50%)
Hypopharynx 5 (18%) 4 (33%)
Larynx 3 (11%) 0 (0%)
Oral Cavity 1 (3%) 2 (17%)

Time to recurrence (median
[range] months)

7 [2 - 59] 8 [4 -24]

T stage
1 1 (3%) 0 (0%)
2 5 (18%) 0 (0%)
3 7 (25%) 3 (25%)
4 15 (54%) 9 (75%)

N stage
0 5 (18%) 2 (17%)
1 4 (14%) 1 (8%)
2a 0 (0%) 1 (8%)
2b 7 (25%) 2 (17%)
2c 12 (43%) 6 (50%)
3 0 (0%) 0 (0%)

HPV status
Positive 3 (11%) 3 (25%)
Negative 12 (43%) 8 (67%)
Unknown 13 (46%) 1 (8%)
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independent description of the sub-regions. The 5 voxels grid
size was a trade-off between ensuring a large enough
neighborhood to define texture and a high spatial resolution
of the model. Other sizes of the grid were not tested. In
contrary to the first approach different numbers of sub-
regions were analyzed per patient but their size was constant.
Statistical Analysis
The classification and detection tasks were performed using
logistic regression. In the bi-regional model, the two labels
were assigned to GTVcontrol and GTVrec volumes. For local
radiomics models, the recurrent label was assigned to regions
with more than 50% of voxels overlapping with GTVrec. The 50%
threshold was chosen arbitrarily, other thresholds were not
tested. The remaining sub-regions were labeled as control.

The following feature reduction and binary classification
procedure was used. Features with high and moderate correlation
to number of voxels in the local region were excluded (r > 0.5).
Principal component analysis combined with univariate logistic
regressionwas used for dimensionality reduction (20). The number
of retained principal components was computed using the Horn
method. Radiomic features were grouped based on their Spearman
correlation to principal components. Per group, only the feature
with the largest area under operator receiver characteristic curve
(AUC) was chosen, given that p-value < 0.05. The final model was
built in themultivariable logistic regressionwith backward selection
of variables based on the Akaike Information Criterion. The final
model was tested in the separate set as described in the sections
below.The confidence intervalswere computedwith 2000 stratified
bootstrap replicates.
Frontiers in Oncology | www.frontiersin.org 4265
For the bi-regional radiomicsmodel and thefirst local radiomics
model based on 8 sub-volumes, training was performed on the
training cohort and the results validated in the validation cohort as
previously specified in the `study population` section. The 75th
percentile threshold of predictions in the training cohort was set as
classification threshold to optimize the sensitivity and specificity of
the model.

The second local radiomics model with a fixed 5x5x5 grid
size, was trained and tested in leave-one-out cross-validation
(LOOCV) on the patient level. The full split into training and
validation cohort was not feasible due to the presence of metal
artifacts in some images. These artifacts, especially when present
in the middle of the GTV, strongly influence optimal placement
of the grid and thus for this experiment only patients with no
visible artifacts in the GTV were selected. Data from 23 patients
with no visible CT artifacts were analyzed. The final model was
trained on 12 patients (= 48%), who had both classes of sub-
volumes (at least one sub-region with 50% contribution of
recurrent voxels), which was a requirement of LOOCV.

RESULTS

Differentiation of Controlled to
Non-Controlled Tumor Regions
On average, the volume of GTVrec was 20% (range: 2%-71%) of
the initial primary tumor volume. A logistic regression model
with backward selection of variables showed a good
discrimination between GTVrec and GTVcontrol, in both the
training and the validation cohort, see Figure 2A (training
AUC = 0.79 (95%CI: 0.66 – 0.91); validation AUC = 0.88 (95%
A

B

FIGURE 1 | Scheme of the analysis giving an overview on all three radiomics models. The recurrence region was identified on PET/CT imaging and rigidly
transferred to the contrast-enhanced planning CT. Different models were trained using different methods and aiming at different purposes. (A) In the bi-regional
radiomics, features were extracted from GTVrec and GTVcontrol and only a differentiation between recurrent and controlled sub-volumes was performed; (B) in two
local radiomics models, a detection task was performed and thus sub-volumes were defined without any prior information on the location of recurrence. In the
classification task, a sub-volume was classified as recurrence (X) if more than 50% of the voxels belonged to the original contour of the recurrence (red).
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CI: 0.72 – 1.00). This bi-regional radiomics model consisted of
two features: “GLRLM gray level non-uniformity” and “merged
GLCM sum entropy” - indicating that sub-volumes showing
higher density heterogeneity have a higher propensity of
recurrence. In the validation cohort, the model achieved high
sensitivity (= 0.75) and specificity (= 0.83).

Detection of Radioresistant Sub-
Volumes – Local Radiomics Model
The first model with division of the GTV into 8 equi-volume
regions comprised three features: “GLCM cluster shade”,
“GLDZM gray level variance” and “histogram median”. This
local radiomics model showed slightly inferior performance
(AUC = 0.70; 95%CI: 0.53–0.86) in the validation cohort
compared to the bi-regional radiomics model (Figure 2B). In
the validation cohort, in all patients in whom recurrence sub-
volumes were detected, at least one of the sub-volumes was
correctly identified. The median size of detected recurrence was
43% of the entire recurrence volume. This result is linked to the
threshold for recurrence sub-volume definition (50%) and thus
can be further improved in the future studies.

For the second definition with division of the GTV into sub-
volumes of an equal size (5x5x5 voxels) the rigid grid placement
was chosen on an individual patient basis in order to maximize
the coverage of studied tumor. 12 patients (= 48%) had both
classes of sub-volumes (recurrence and tumor control, based on
a 50% criterion). The average AUC in leave-one-out cross-
validation was 0.68. In three cases the AUC was below 0.5,
indicating worse than random prediction. This was tracked back
to a small number of analyzed sub-volumes (e.g. only two sub-
volumes) or a high recurrence involvement (more than 25%) in
most of the sub-volumes, meaning that in this tumor no true
controls with no contribution of radioresistant clones were
present. Similar features were selected in different cross
Frontiers in Oncology | www.frontiersin.org 5266
validation folds: GLSZM zone size entropy (n=12), GLCM
joint maximum (n=9) and histogram range (n=8).

Detailed summary of the all models together with numbers of
sub-volumes used for model training and validation is presented in
Table 2. Number of sub-volumes in the local radiomics analysis per
patient is summarized in the Supplementary Figures S2 and S3.
DISCUSSION

HNSCCs, exhibiting a high heterogeneity in CT images, were
previously shown to respond worse to radiochemotherapy (20–
24). Several prognostic radiomic signatures have been proposed
recently, but studies on predictive signatures with potential impact
on treatment optimization are scarce (31). In this study, we were
able to differentiate intratumoral levels of radiosensitivity bymeans
of CT radiomics. Further, we proposed an algorithm for
pretreatment detection of radioresistant regions.

Identification of treatment resistant tumor sub-volumes by
means of medical imaging has been previously investigated,
mainly by detection on hypoxic imaging but also different
imaging modalities. Tumor hypoxia is a known adverse
prognostic factor for local control after radiotherapy of HNSCC
(32). However, only two studies tried to correlate spatial location of
tumor recurrence and initial hypoxic region, and only one of them
showedoverlap of those regions (33, 34). A correlation of high FDG
uptake parts of a tumor to regions of more resistant tumor sub-
volumes leading to recurrences has been shown (35, 36).
Accordingly, FDG-based dose escalation strategies have already
been exploited and proven to be feasible (37). However, also other
imaging modalities like diffusion-weighted MRI or dynamic
contrast-enhanced MRI, were shown to be able to identify risk
factors for worse outcomes in head and neck cancer (38).
Comparison studies have shown that the volumes defined by
A B

FIGURE 2 | Receiver operating characteristic for (A) differentiation between recurrent and controlled sub-volumes in bi-regional radiomics model showing a good
discrimination between the radioresistance levels, in both the training and the validation cohort (B) detection of recurrent sub-volumes with local radiomics showing a
good performance of the model with ability to detect radioresistant sub-volumes of the tumor on pretreatment CT images.
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FDG-PET versus DWI – MRI do not overlap completely and
identify distinct volumes within the primary tumor (39, 40).

Recently, Beaumont et al. (25) correlated location of tumor
recurrence to pretreatment local texture features in FDG PET
imaging in a small cohort of 15 patients. The performance of
their model was comparable to ours (median AUC of 0.71).
However, in contrast to our study, their results were only tested
in leave-one-out cross-validation, owing to a small number of
patients. In addition, the study did not clearly define if CT
information was used together with PET information for
definition of the primary tumor contour. Delineation based solely
onPET imagesmay lead to neglecting tumor regions with lowFDG
uptake (41). Our local radiomics results indicate that sub-volumes
with higher CT heterogeneity are more radioresistant, which is in
agreement with previous studies showing that higher tumor-wide
CT heterogeneity is linked with reduced local control rate (20–24).
Local radiomics inPET/CThas also been investigated in the context
of outcome prediction in nasopharyngeal cancer, showing a higher
prognostic value than with models based on entire tumor volume
analysis (26). However, this study did not use local radiomics for
sub-regional detection of treatment resistance sub-volumes.

With the introduction of intensity modulated radiation therapy
(IMRT) the concept of delivery higher doses to head and neck
tumors has regained interest. IMRT allows not only for better
sparing of OARs, but also enables delivery of simultaneously
higher doses to selected areas (42), so called dose painting. The
identification of radioresistant tumor sub-volumes that require
higher radiation doses, is an unmet clinical need. The ESCALOX
study currently investigates a dose escalation up to 80.5 Gy using a
simultaneous integrated boost (SIB) to the whole primary tumor
and large involved lymph nodes (43), whereas another group
performed a planning study with dose escalation only to hypoxic
areas within the tumor as defined by 18F-Fluoroazomycin
arabinosid (FAZA) PET/CT and found it to be feasible while
respecting the maximum OAR constraints (44). Resistance of
head and neck cancer cells to radiotherapy is not conditioned by
one single biological feature but rather driven by several different
Frontiers in Oncology | www.frontiersin.org 6267
mechanisms (39). Consequently, a method capturing all these
distinct features is desirable. The underlying biology for the
distinct radiomics signature is not simple nor exactly known for
the individual case. But, a correlation of radiomic signature with
underlying genomic alterations and biological phenotype has been
shown (45). In our study, the selection of the radioresistant sub-
volumes is meant to be done by radiomics analysis, which does not
account for any particular biological background/histopathological
difference. However, a strong relationship between medical
images, or more precisely, the extracted, quantitative imaging
features, and the underlying tumor phenotype and biology
was shown previously (46, 47). Thus, in contrast to the above
mentioned study, which selected the radioresistant parts solely
based on hypoxic regions, our radiomics approach covers a broader
spectrum of underlying biological phenotypes/alterations. Still, the
histopathological factors behind the selected sub-volumes in our
study are unknown, and thus definition of an adequate dose boost
is not straightforward and should be a subject of further research.

This study was performed on relatively small patient cohort.
However, for two out of three proposed models (bi-regional and
local radiomics with fixed number of sub-volumes), a successful
model validation in a priori defined cohort was performed.
Remarkably, the performance of the models was higher in the
validation cohort, in comparison with the training cohort. The
validation cohort is a prospective cohort with standardized imaging
and treatment protocol – in comparison to the training cohort,
which was retrospectively collected. Therefore, higher model
performance in the validation might be a result of premature
training or better data quality. In the head and neck region, HPV
status is known to influence CT values distribution within primary
tumor (48). Unfortunately, HPV status was unknown for a large
proportion of patients (35%). Consequently, an analysis on HPV
status as an effector is not possible due to the high number of
missing values in the individual patient cohorts. The analyzed
cohort is also heterogeneous in terms of tumor subsites, and
theirs impact on the performance of the model should be further
investigated. The presence of artifacts did not allow for a full
TABLE 2 | Details of the final radiomics models.

Model Model endpoint AUC training AUC
validation

Selected features Model
coefficients

No of analyzed sub-volumes/
No of recurrent sub-volumes

training validation

Bi-regional
radiomics

Sub-volumes
differentiation

0.79
(0.66-0.91)

0.88
(0.72 –

1.00)

GLRLM gray level non-uniformity
merged
GLCM sum entropy
intercept

141.43
4.56
-32.64

56/28 24/12

Local radiomics:
fixed number of
sub-volumes

Recurrence detection 0.66 (0.56 –

0.75)
0.70

(0.53 –

0.86)

GLCM cluster shade
GLDZM gray level variance
histogram median
intercept

0.0015
0.019
-0.11
-0.24

222/48 91/11

Local radiomics:
fixed size of
sub-volumes

Recurrence detection — 0.68
(AUC < 0.5

in n=3
cases)

GLSZM zone size entropy*,
GLCM joint maximum* histogram
range*

—

—

—

114 (105
-122)#/

41 (33 - 42) #

10 (2 - 19)#/2 (1-10)#
May
 2021 | Volume
Area under receiver operating characteristic curve (AUC) and 95% confidence intervals. The second local radiomics model was tested in the leave-one-out cross-validation, thus no results
for the training cohort are shown and the validation AUC is the average over the folds. *Most frequently chosen features over different folds. #Median and range of the number of sub-
volumes analyzed over different folds.
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validationof thefixedgrid size localmodel.With the introductionof
iterative metal artifact reduction reconstruction algorithms in CT
few years ago, this limitation of the model is addressed for future
studies (49). Availability of larger data collections may also permit
for testing different settings in the local radiomics analysis, such as
variable size of the grid or smaller value of the translation vector,
allowing for an overlap between sub-volumes. Today, it is not clear
which methodology provides optimal results. In our study, we
assumed that all of the analyzed tumor sub-volumes are
independent and thus, no overlap was allowed. Additionally,
classification was performed using logistic regression. In the
future, segmentation algorithms may be tested to improve the
predictive power of local radiomics.

Additional validation of the proposed approachmay be derived
from surgical cohorts, where pretreatment local radiomics maps
may be correlated with full-mount tumor histopathology.
Alternatively, if contrast-enhanced CT is present at the time of
recurrence similarity of the radiomics features in the corresponding
areas in the two, sequential investigations could be measured to
evaluate if the signature remains stable over time.

This study has an inherent selection bias, since only patients
with observed recurrences were analyzed. In the real pretreatment
classification, a standard radiomics analysis can be used prior to
local radiomics to preselect patients with high risk of tumor
recurrence, as shown by other studies (20–24).

In conclusion, this is the first study indicating that tumor
radioresistance can be localized on pretreatment CT images with
validation of the radiomics model in an independent cohort. This
is a proof of concept study, indicating that local CT radiomics
can be used as predictive biomarker in radiotherapy and
potential target for dose intensification.
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Chimeric antigen receptor (CAR) T-cells are a novel immunotherapy available for patients
with refractory/relapsed non-Hodgkin lymphoma. In this indication, clinical trials have
demonstrated that CAR T-cells achieve high rates of response, complete response, and
long-term response (up to 80%, 60%, and 40%, respectively). Nonetheless, the majority
of patients ultimately relapsed. This review provides an overview about the current and
future role of medical imaging in guiding the management of non-Hodgkin lymphoma
patients treated with CAR T-cells. It discusses the value of predictive and prognostic
biomarkers to better stratify the risk of relapse, and provide a patient-tailored therapeutic
strategy. At baseline, high tumor volume (assessed on CT-scan or on [18F]-FDG PET/CT)
is a prognostic factor associated with treatment failure. Response assessment has not
been studied extensively yet. Available data suggests that current response assessment
developed on CT-scan or on [18F]-FDG PET/CT for cytotoxic systemic therapies remains
relevant to estimate lymphoma response to CAR T-cell therapy. Nonetheless, atypical
patterns of response and progression have been observed and should be further
analyzed. The potential advantages as well as limitations of artificial intelligence and
radiomics as tools providing high throughput quantitative imaging features is described.

Keywords: lymphoma, CAR T-cell, immunotherapy, FDG PET/CT, CT scan, prognostic biomarker
INTRODUCTION

In 2017, reprogramming T lymphocytes to carry chimeric antigen receptor (CAR) targeting CD19
antigen became a novel immunotherapy commercially available for patients with refractory/
relapsed B cell malignancies. Despite the unprecedented therapeutic responses achieved by
CD19-CAR T-cells, the number of patients experiencing relapse stresses the need for reliable
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biomarkers to closely monitor clinical response and implement
early consolidation strategies. Medical imaging such as [18F]-
FDG PET/CT is already used for diagnosis and evaluation of
hematologic malignancies and the clinical significance of several
PET parameters such as Total Metabolic Tumor Volume,
standardized uptake value and Total Lesion Glycolysis
consumption has been extensively demonstrated. Hence, this is
an area of ongoing investigation in the context of CAR T-cell
therapy. This review aims to summarize recent clinical data and
to emphasize the importance of further investigation of medical
imaging biomarkers for CAR T-cells to optimize and personalize
medical care: risk stratification, prediction of response, response
assessment, and early detection of relapse.
CAR T-CELL MANUFACTURING AND
TREATMENT

CAR T-cell manufacturing begins with T-cell collection from
patients or donors by aphaeresis. These cells are then genetically
reprogrammed (e.g., using viral vectors) to express receptors for
specific tumor antigens. CD19 CAR T-cell therapy uses a single
chain variable fragment (scFv) derived from the variable heavy
and variable light chains of an antibody against epitopes of the
CD19 antigen. In second generation CARs, the scFv is connected
through a transmembrane domain to a costimulatory domain
(such as CD28 or 4-1BB) further linked to the CD3z intracellular
signaling domain of the T-cell receptor (1, 2). Before CAR T-cell
infusion, patients are often given a bridging therapy to control
their disease during the CAR T-cell production which may take
two to six weeks. Patients then receive a lymphodepleting
treatment several days before infusion to create a favorable
environment for CAR T-cells by removing unmodified T-cells
and immunosuppressive regulatory T-cell and increase
homeostatic cytokine levels (3). Finally, cells are expanded and
infused back into patients to achieve tumor cell recognition and
killing. The antitumor response driven by CAR T-cells is HLA
independent and relies on antigen-receptor binding and on the
co-stimulatory signals that enhance T-cell proliferation and/or
persistence. After antigen recognition, CAR T-cells eliminate
cancer cells through death receptors-, cytokines- or granzyme/
perforin-induced killing.
CURRENT CLINICAL TRIAL LANDSCAPE

As CAR-T-cells are still entering routine clinical practice, most of
the current knowledge about imaging and outcomes has been
gained from review of clinical trials. The most common cancer
subtypes studied are acute lymphoblastic leukemia and non-
Hodgkin lymphoma and the majority of studies used an
autologous cell source (4). While the treatment of relapsed/
refractory leukemia and lymphoma is increasing in clinical
practice, and the first CAR T product for multiple myeloma
was just recently FDA-approved (5, 6), the applications of this
therapy in solid cancers remain at a nascent stage and need
Frontiers in Oncology | www.frontiersin.org 2272
further investigations (7). Of note, medical imaging guides the
management of lymphoma patients while it has a more limited
impact for leukemia. Therefore, the focus of this review is on the
contribution of medical imaging in lymphoma patients treated
with CAR T-cells.
RESPONSE RATES

CD19 CAR T-cell therapy has a high overall response rate with
complete responses in up to 90% in adult and pediatric acute
lymphoblastic leukemia motivating the initiation of hundreds of
CAR T-cell clinical trials worldwide and the search for more
efficient designs and new antigens (8, 9).

In clinical trials of aggressive lymphoma patients, complete
response rates ranged from 40% to 59% (10). In indolent
lymphoma, complete response rates were even higher (11, 12).
Several factors, however, can limit long-term efficacy of CAR T-
cells and lead to disease relapse (13). First, the delay to start CAR
T-cell therapy may allow disease progression, with tumor volume
increase, which stresses the importance of rapid and reliable
manufacturing and bridging therapy. CAR T-cell function may
also be decreased by the poor quality and low number of cells
obtained from certain patients. In addition, treatment efficacy
depends on the expression of the targeted antigen by the tumor
cells. Therefore, tumor heterogeneity, mutations, down-
regulation or loss of tumor antigen can decrease the
recognition of tumors by CAR T-cells and subsequent
therapeutic response. Moreover, CAR T-cells’ viability and
efficacy can be impaired by suboptimal stimulation leading to
T cells exhaustion and relapse (14).

In addition to poor effector to target ratio in presence of a
high tumor burden (15), antigen positive relapse can also occur
as a result of tumor cells resistance to CAR T-cells (14) or
immunosuppressive tumor microenvironment (16) inducing
CAR T-cell dysfunction.
BASELINE BIOMARKERS PREDICTING
RESPONSE AND OUTCOME

Biomarkers that predict short survival are critical for close
monitoring during bridging therapy given that the
manufacturing time may allow disease progression. Biomarkers
that predict durable response at baseline may help identify
patients more likely to benefit from this strategy. Biomarkers
that indicate treatment failure at the 1-month milestone will
identify patients who might benefit from early intervention such
as therapies that reinvigorate CAR T-cells or a second infusion of
CAR T-cells.

Prognostic Value of Response Under
Bridging Chemotherapy
In 72 patients with relapsed/refractory diffuse large B-cell
lymphoma who received CAR T-cells, Tordo et al. measured
the kinetics of tumor bulk during bridging therapy determined
May 2021 | Volume 11 | Article 664688
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by the evolution of Total Metabolic Tumor Volume, Total Lesion
Glycolysis or SUVmax. They demonstrated that biomarkers
derived from the analysis of the kinetics of theses parameters
during bridging therapy before lymphodepletion are better
predictors of progression-free survival than baseline
biomarkers (17). Thus, patients with satisfactory disease
control before lymphodepletion had an overall longer
progression-free survival.

Tumor Volume on CT-Scan
On CT-scan, tumor volume is typically estimated using the sum
of the product of perpendicular diameters of measurable target
tumor lesions. In the first series reporting the efficacy of CAR T-
cell in lymphoma, there was only a non-significant trend for the
predictive and prognostic impact of tumor bulk assessed by
morphological imaging. Schuster et al. found that the median
sum of the product of perpendicular diameters was 20 cm2
(range 3-100) in responding patients and 30 cm2 (range 3-157)
in non-responding patients (18). A recently published report on
the TRANSCEND NHL01 trial also found a trend towards worse
outcomes in patients with greater sum of the product of
perpendicular diameters, with an objective response rate of
76.8% in patients with the sum of the product of perpendicular
diameters <50 cm2 and 61.4% in patients with ≥50 cm2 (19).
Likewise, Neelapu et al. found that patients with bulky disease
(>10 cm) had an objective response rate of 71% (95CI: 0.44-0.90)
compared with 85% (95CI: 0.75-0.91) for patients without bulky
disease (20). More recently, an analysis in the same cohort found
an association between tumor burden evaluated by the sum of
the products of diameters of target lesions and durable response,
however this parameter had limited sensitivity and specificity,
which may be due to the fact that it does not take into account
total tumor burden (15). Expansion of CAR T-cells in the blood
was also predictive of response, along with markers of
inflammation such as IL-6 and CRP. Interestingly, in this
study the best predictor of durable response was the peak CAR
T-cell levels in the blood normalized to pretreatment tumor
burden. Durable responders had a higher peak CAR T-cell to
tumor burden ratio than non-responders or responding patients
relapsing within one year.

Tumor Volume on [18F]-FDG PET-Scan
[18F]-FDG PET is a routine, standard of care imaging study that
estimates tumor glucose consumption. [18F]-FDG PET is
preferred for the staging and restaging of FDG-avid
lymphomas because it outperforms CT scans in these diseases
(21). Additionally, the overall metabolic tumor volume or Total
Metabolic Tumor Volume (i.e, metabolically active tumor
volume with significantly increased glucose metabolism)
assessed on [18F]-FDG PET has good prognostic value. For
instance, higher tumor volume in aggressive lymphomas before
initiating first-line chemotherapy predicts shorter progression-
free and overall survival. Therefore, tumor volume along with
other parameters such as International Prognostic Index, Eastern
Cooperative Oncology Group performance status and cell of
origin could improve patient risk stratification (22, 23). Several
Frontiers in Oncology | www.frontiersin.org 3273
groups have explored the predictive/prognostic value of
metabolic tumor volume in patients undergoing CAR T-cell
therapy and preliminary results suggest that Total Metabolic
Tumor Volume is a relevant imaging biomarker.

In a study done on a small cohort (n=19) of patients with
non-Hodgkin lymphomas, with a best overall response rate of
79%, the median Total Metabolic Tumor Volume was 72 cm3.
Lower tumor volume was observed in responding (58.1 cm3)
than in non-responding patients (110.8 cm3), though this did not
reach statistical significance (24). Likewise, overall survival was
not significantly different in patients above and below the median
(8.6 months vs 11.5 months). The absence of prognostic value
might be due to the small size of this cohort. Nonetheless, the
authors found that patients with more severe cytokine release
syndrome (grade 3-4), had significantly higher Total Metabolic
Tumor Volume than patients with no or mild cytokine
release syndrome.

Dean et al. observed a stronger correlation between Total
Metabolic Tumor Volume and outcome in a larger cohort of 96
patients with diffuse large B-cell lymphoma (25). In a sub-group
of 48 patients the median Total Metabolic Tumor Volume
(determined by a manual method) was 147 mL. Lower tumor
volume was associated with prolonged overall and progression-
free survival. This was validated in a second sub-group (n=48),
where median Total Metabolic Tumor Volume was lower (72.8
mL), and in the entire study population. Lower tumor volume
was also associated with higher overall and complete response
rates. In a subgroup of 72 patients with “true baseline” PET (no
bridging therapy, or PET performed after bridging
chemotherapy) the same results were observed. In addition,
high tumor volume was associated with more grade 3-4
cytokine release syndrome but not with neurotoxicity.

In another study (n=116 patients with aggressive non-
Hodgkin lymphoma), extension of lymphoma measured by
more than two involved extranodal sites both at times of
enrollment (decision of CAR T-cells and before bridging
therapy if applicable) and treatment, and high Total Metabolic
Tumor Volume (superior to 80 mL) at the time of treatment were
predictive of progression-free survival, overall survival, and early
progression (occurring during the first month) after CAR T-cell
treatment in patients with R/R diffuse large B-cell lymphoma. Of
note, elevated CRP at time of CAR T-cell infusion was also
associated with a worse outcome (but with a low odds ratio).
Combining the number of extranodal sites>2 and high tumor
volume (>80 mL) allowed to establish 3 prognostic groups with
0, 1 or 2 adverse parameters, more distinctly than the revised
International Prognostic Index (26).
ON-TREATMENT IMAGING BIOMARKERS:
MEASURING RESPONSE

Learning Curve
Since CAR-T-cell therapy is relatively novel, there is a critical
need to evaluate the reproducibility in assessing response since
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even expert radiologists will have to familiarize with the patterns
of response to CAR T-cells. The optimal time point for follow-up
and therapeutic evaluation is not known and on initial studies
was determined empirically. Second, pseudoprogression may
occur, as observed in other immunotherapies, but there are no
definitive criteria to define it. Finally, immune response could
generate atypical uptake linked to an inflammatory process, such
as observed with immunotherapy (colitis, thyroiditis…) (27–29).

Typical Patterns of Response and
Progression on CT-Scan
In 101 patients with relapsed/refractory aggressive B-cell non-
Hodgkin lymphoma enrolled in the ZUMA-1 study,
axicabtagene ciloleucel (axi-cel) had an overall response rate of
83% and complete response rate of 58%. The median duration of
response was 11 months. Ongoing long-term responses were
seen in 39% of patients after a median follow up of 27.1 months
(30). In a recent update, the three-year overall survival was 47%
(31). Eleven out of 33 patients with partial responses at 1 month,
and 11 of 24 patients with stable disease at 1 month,
subsequently attained a complete response without any
additional therapy (30). In these cases of responses improving
over time, complete resolution of FDG-avid lesions after CAR T-
cell therapy may take up to 9-12 months and anecdotally even
longer. Additionally, a complete response and partial response at
the 3-month milestone were associated with similar progression-
free survival, further highlighting the complexity in using early
imaging findings for prognostic purposes.

Real-world evidence using commercial CAR T-cells, including
patients with comorbidities found similar results with overall
response rate of 82% and complete response rate of 64%, with
estimated 12-months PFS of 47% and OS of 68% (32). Among the
patients with a partial response at 1 month 32% achieved complete
response at 3 months and only 1 out of 14 patients with stable
disease achieved a complete response at 3 months.

Typical Patterns of Response and
Progression on [18F]-FDG PET
Shah et al. reported a case series of 7 patients with aggressive and
indolent non-Hodgkin lymphoma treated with CAR T-cells,
evaluated with [18F]-FDG PET (33). Three of these patients
(all with follicular lymphoma) had a complete metabolic
response at 1 month and remained disease-free at 2 years. Two
patients with a partial metabolic response experienced later
progression, at 3- and 6-months post-infusion respectively, and
two patients had progressive disease as soon as 1 month post
infusion. At this time-point, no Cytokine Release Syndrome-
related metabolic activity impaired FDG PET interpretation.

A recent retrospective report on 10 patients with aggressive
lymphoma, underlined the importance of early evaluation of
therapeutic efficacy, with all patients with a partial or metabolic
response at 3 months having shown metabolic response at 1
month, and only one patient with unfavorable outcome
experiencing early metabolic response (34).

Examples of therapeutic response assessment with FDG PET
are presented in Figures 1 and 2.
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Atypical Patterns of Response and
Progression
Wang et al. reported 3 cases of pseudoprogression that may cause
local complications, due to compression of adjacent organs for
example . Compared wi th other immunotherapies ,
pseudoprogression was very early, occurring as soon as 4 to 5
days after CAR T-cell infusion (24). More studies will be needed
to better understand and describe the different patterns of
response after CAR T-cell therapy.
TOXICITY

CAR T-cell is associated with a wide range of toxicities. Across
studies, all patients experience at least one adverse event. On the
most serious side of the spectrum are high grades Cytokine
Release Syndrome (CRS) and Immune effector cell-associated
Neurotoxicities Syndrome (ICANS). CRS is a systemic
inflammatory response characterized among others by fever,
hypotension, hypoxia and potential multiple organ failure
whereas ICANS is characterized by various neurologic
symptoms ranging from confusion and tremor to aphasia,
dysgraphia, seizures or coma. These generally occur in the first
weeks after CAR T-cell infusion as a results of high levels of
cytokines not only produced by CAR T-cells but also by their
activation of myeloid cells (3, 35). Pyrexia, fatigue, cytopenias
and infections are also frequent after CAR T-cell therapy.

In the ZUMA-1 study, axi-cel infusion was associated with
11% incidence of grade 3 or higher CRS and 32% of ICANS grade
3 or more, with similar results in the real-world data described by
Nastoupil et al. (30, 32, 36). In the JULIET study, CRS occurred
in 58% patients, with grade 3 or higher CRS in 22%, while
neurologic events were observed in 21% of patients, and grade 3
or higher in 12% (37). As mentioned above, several analyses
showed that higher baseline tumor burden was associated with
severe CRS (24, 25).

For neurotoxic i ty , a long with abnormal i t ies on
electroencephalogram and transcranial Doppler ultrasound,
dedicated brain FDG PET can contribute to diagnosis (the
main observed abnormalities being cortical hypometabolism)
and follow-up (38). Structural abnormalities are usually absent,
but CT and MRI may identify concomitant events such as
ischemic stroke or subarachnoid hemorrhage (38). However,
there is a lack of prospectively collected data on the subject.
Additionally, a recent study suggested that a higher FDG avidity
of lymphoma, evaluated by SUVmax, was associated with more
neurotoxicity (34). If confirmed in larger studies, this could also
be of importance for patient management after CAR T-cell
infusion. The mainstay of treatment of these toxicities is
steroids, vasopressors and tocilizumab treatments.
CHALLENGES AND PERSPECTIVES

There are several challenges to improve implementation of CAR-
T-cells in routine clinical practice and the outcome of patients
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receiving this innovative treatment. These challenges include
technical challenges (CAR-T-cell development, manufacturing),
standardization of clinical trial results to facilitate the
comparison (protocols, pre-conditioning of patients, CAR-T-
cell formulation, quality and persistence), and identifying robust
tools to optimize treatment decision (4, 7). Among these tools,
imaging techniques may play a critical role. The role and use of
medical imaging techniques remain to be defined but results
presented above suggest that imaging will be a pivotal tool to
guide treatment decisions.

Beyond Total Metabolic Tumor Volume, recent data suggest
that lesion dissemination assessed on PET/CT by means of the
largest distance between two lesions (normalized with the body
surface area), contributes to assess the spread of the disease, and
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has a prognostic value, independently of Total Metabolic Tumor
Volume in a cohort of first-line chemotherapy diffuse large B-cell
lymphoma (39). Radiomics could further contribute to extract
clinically meaningful data from medical images. Recent findings
from a wide range of solid tumor types suggest that a signature
combining a limited subset of pretreatment (40) or on-treatment
(41, 42) imaging biomarkers are able to help to identify patients
who might benefit from early intervention. Among these
quantitative imaging biomarkers, several have been shown to
predict responses to immunotherapies with immune checkpoint
blockers such as increased tumor volume, increased tumor
glucose metabolism, tumor organotropism in visceral tissues,
and lower skeletal muscle index. These are all associated with
unfavorable outcomes (43–47).
FIGURE 1 | Response to CAR T-cell therapy. 66 year-old patient with past medical history of follicular lymphoma. The patient relapsed with DLBCL, treated with
two lines of prior chemotherapy. Baseline imaging showed a low tumor volume (TMTV was 47 mm3) which is typically associated with favorable outcome and
response to CAR T-cell therapy. Inguinal lymphadenopathies are indicated with black (on Maximum Intensity Projection) and white arrows (on axial fusion image).
Follow-up imaging showed a partial response on CT-scan with residual disease. [18F]-FDG PET reclassified this patient as a complete metabolic response which
persisted at month-6.
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Hence, it is very likely that similar technologies will be
applicable to CAR T-cells and that computational models will
be applied to data from CT or PET/CT scans to predict outcome,
while accounting for technical variability between machines and
centers. These tools eliminate the bias of investigator assessment
and multicenter variability, allowing their implementation in
large multisite trials. Artificial intelligence could be used to
combine previously cited biomarkers to build robust
prognostic/predictive models. One challenge is that building
robust models using artificial intelligence requires creating
large datasets, hence the need to aggregate data from multiple
institutions to avoid overfitting (48, 49). Eventually, deep
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learning could contribute to determine radiomics signature
correlated with survival.
CONCLUSION

The role of medical imaging, and PET/CT in particular, in
lymphoma patients treated with CAR T-cells is twofold. First,
the pre-infusion Total Metabolic Tumor Volume seems
promising for its prognostic value, and should probably be
associated with biological parameters, such as CRP at time of
lymphodepletion (26, 50). Some data also suggest that high
FIGURE 2 | Progression in a patient treated with CAR T-cell therapy. 68 year-old patient with past medical history of DLBCL diagnosed one year prior to treatment
initiation. Patient had Stage IV disease, with rearrangement of the MYC and BCL6 genes, and treated with two prior lines of chemotherapy. Black (on Maximum
Intensity Projection) and white arrows (on axial fusion images) show infradiaphragmatic lymphadenopathies, with muscular infiltration. Baseline imaging showed high
tumor volume which is typically associated with unfavorable outcome and lower response rate to CAR T-cell therapy. Follow-up imaging showed a progression on
CT-scan as well as on [18F]-FDG PET. At month-1, there were new lesions as well as an increase in tumor volume. The prognosis was poor; hence salvage
treatment and later best supportive care were initiated. Patient died at month-2.
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tumor volume could be correlated with more severe cytokine
release syndrome, with possible direct impact on patient
management and monitoring. Second, the evaluation of
response with CAR T-cell is an ongoing challenge, with more
data needed, especially on the possibility of pseudoprogression,
slow or late responses as well as the timing of relapses. Beyond
FDG, a better knowledge and understanding of imaging data
could contribute to detect and treat toxicities timely (51) and
further tailor the therapeutic strategy, with the use of next-
generation CAR T-cells, combination therapeutics especially in
patients with high tumor burden and potentially rapid
implementation of salvage therapies in case of relapse such as
Frontiers in Oncology | www.frontiersin.org 7277
new CAR T-cell infusion (targeting the same or other antigens),
immunomodulatory agents or radiation therapy (52).
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In late 2019 and early 2020, the world witnessed the outbreak of the SARS-CoV-2 (also
referred as COVID-19) in Wuhan, China. Its rapid expansion worldwide and its
contagiousness rate have forced the activation of several measures to contain the
pandemic, mostly through confinement and identification of infected patients and
potential contacts by testing.

Keywords: COVID-19, PCR, CT-scan, oncology, cancer
INTRODUCTION

It is well established that patients with cancer are more susceptible to infections since they tend to be
older, have multiple comorbidities, and because of the immunosuppressive state caused by
anticancer treatments (1), so they could be potentially at particular risk from COVID-19
infection (2).

In a Chinese analysis (3) Professor He and colleagues found that patients with cancer presented
an important risk of secondary events due to COVID-19 if we compare it with a population without
cancer: 39% in the oncologic population versus 8%, hazard ratio of 3.56. Zhang and colleagues in a
retrospective analysis identified 28 patients positive for COVID and with a cancer among 1,276
patients admitted in hospital. This prevalence (2.2%) is 1.7 (95% confidence interval, 1.2, 2.4) times
higher than the Chinese population of the same age (4). The probability of dying for COVID with a
cancer was of 28.6% (5). Zhang found that the administration of anticancer therapies was an
independent predictor of death. They also described the high proportion of patients who acquired
the infection in hospital, when they came for cancer treatment.

Although these data included a very small and heterogeneous sample of patients with cancer,
reports from Italy confirm the potential higher risk of COVID-19 infection in patients with cancer,
indicating that the 20% of patients dead for COVID-19 infection also had a concomitant diagnosis
of cancer (6). More recently, clinical data on COVID-19 cases from two hospitals in New York City
(7) observed that 23 out of the 393 (5.9%) reported cases were patients with cancer, and 10 of them
required invasive mechanical ventilation (representing 7.7% of the total of patients requiring
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invasive mechanical ventilation). In another institution from
New York City, 28% of COVID-19 + cancer patients died
from COVID-19 with a case fatality rate of 37% for
hematologic malignancies and 25% for solid malignancies. This
study reported that in this population, older age, multiple
comorbidities, need for ICU support, and elevated levels of D-
dimers, LDH, and lactate predicted poorer outcome (7).

Therefore, healthcare professionals were rapidly faced with
the challenge of profoundly re-organizing healthcare systems at
unprecedented pace during the COVID-19 crisis to balance the
competing risks of death from cancer vs. death or serious
complications from infection.

The Chinese series suggested that postponing adjuvant
chemotherapy or elective surgery for less aggressive cancers
should be considered. Furthermore, more intensive care should
be done for the patients with cancer who are infected (3). These
measures have been later taken by healthcare organizations like
ASCO and ESMO who have deepened these recommendations
extending it to postponing clinics or balancing the cost/benefit
ratio according to outcome, with prioritization of adjuvant
therapies (8). Similarly, the benefits and risks of palliative
therapies and the options of temporary stopping the therapy and
switch to oral drugs, if available, during the pandemic needed to be
considered. Recommendations for management of cancer patients
in clinical trials have also been made available by different
regulatory agencies (9). However, as this outbreak prolongs in
time and with the unknown risk-benefit balance between
undertreating patients with cancer (with resultant increase in
cancer-related morbidity and mortality) and preventing the
expected higher morbidity and mortality from COVID-19,
initiation of systemic cancer therapy seems unavoidable.

The scarce of systematic information on prevalence and
incidence in overall population toughen the possibility of real
comparisons with patients with cancer although contagiousness
rates seem rather high. For example, estimates on infection rates
vary from 0.76% for residents of Iceland to 36% for residents of
Boston. This likely overstates the overall population mean, which
some observers have suggested is around 40% (10).

Systematic reports about the prevalence of cancer in patients
with COVID-19 and the real incidence of COVID-19 infection
among cancer patients are starting to be made public. A review
and meta-analysis reported by Desai et al. (11) found 11 studies
of patients with COVID-19 with the data of cancer prevalence:
2% (95% CI 2.0 to 3.0%: I2 = 83.2%) in patients treated for
COVID-19. A similar meta-analysis by Emami et al. (12)
reported a prevalence of malignancy of 0.92% (95% CI, 0.56–
1.34%). In a recent dedicated session to cancer patients and
COVID-19 infection during the last AACR annual symposium,
several cancer institutions and hospitals across the world
presented updates on their management and outcome of
cancer patients with COVID-19 infection. These series
reported variability within different countries in terms of
incidence and prevalence. For example, in our own series, of
Gustave Roussy Hospital, including more than 1,300 tested
cancer patients, COVID-19 positivity was observed in around
12%, whereas retrospective series including 1,524 cancer patients
Frontiers in Oncology | www.frontiersin.org 2280
from Wuhan reported a COVID-19 positivity rate of only
0.79% (13).

The standard method to diagnose infection by COVID-19 is
through identification by RT-PCR SARS-CoV-2 testing. Since
SARS-CoV-2 is usually transmitted by the upper respiratory
tract, mostly swab samples are taken from the nasopharynx. It
has also been accepted to perform the swabs directly to the
oropharynx, although some studies suggest that the nasopharynx
would be somewhat more sensitive than the oropharynx (14).
Positivity from nasopharynx swabs is variable and ranges from
53.6 to 73.3% depending on the series (15). There are several
factors that might affect the performance (sensitivity and
specificity) of the test like the quality of the sample, the
sampling technique, transportation process, or limited gene
detection. In fact, it has been shown that high viral loads soon
after symptom onset, which then gradually decreased towards
the detection limit at about day 21, with no obvious difference in
viral loads across sex, age groups, and disease severity (16). In
fact, similar viral loads have been documented in the upper
respiratory tract of both symptomatic and asymptomatic cases
(17) and in the pre-symptomatic phase (18).

Several strategies are available in order to increase sensitivity
and specificity of this testing. In a report of 67 patients with
confirmed COVID-19 infection, the duration of positive test in
nasopharyngeal swabs has a median of 12 days (range, 3–38), in
sputum of 19 days (range, 5–37), and in stools of 18 days (range,
7–26). SARS-CoV-2 RNA was detectable for a duration of 30
days (19). After a negative test of nasopharyngeal swabs among
46 patients, 28 (60.9%) and 14 (30.4%) patients were still positive
in sputum and stools.

Another approach consists in the realization of chest CT
scans in patients suspected or tested for COVID-19 in addition
to RT-PCR for nasal or oropharynx swabs. Consistently between
patients’ series, the main symptoms associated to SARS-CoV-2
infection in addition to fever is the presence of pulmonary
symptoms ranging from dry cough to pneumonia up to acute
distress respiratory syndrome leading to death (3). Therefore
initially it was suggested that lung cancer patients or patients
who had suffered previous lung surgery would be at higher risk of
lung complications from SARS-CoV-2 so more intensive follow-
up and chest CT scrutiny should be required for these patients.
Initial data fromWuhan series (20) indeed reported a higher risk
of COVID-19 infection among their cancer patients (7 out of 28;
25%). A recent international series compilation of 200 patients
with thoracic tumors affected with COVID-19 (21) reported an
extremely high death rate of 34.6%, mostly due to acute
respiratory distress syndrome and multi-organ failure. These
findings have not been replicated by other series like Wuhan
reports (22) where mortality was not affected by type of cancer
(any cancer vs. lung cancer; HR = 0.727; p = 0.589). What it has
been noteworthy is that chest CT demonstrates typical
radiographic features in almost all COVID-19 patients
irrespective of presence of cancer or type of cancer. These
include ground-glass opacities, multifocal patchy consolidation,
and/or interstitial changes with a peripheral distribution (23).
Those typical pulmonary abnormalities were also observed in
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patients with negative RT-PCR results but clinical symptoms in
small-scale studies (24).

A report of the correlation of chest CT and RT-PCR testing in
1,014 cases from China found a RT-PCR positivity in 59% (n =
601) of the patients and a chest CT positivity of 88% (n = 888).
The negative RT-PCR results is correlated to a 75% (n = 308)
with positive chest CT findings. The combination of RT-PCR
and chest CT gave respectively a sensitivity, specificity, and
accuracy of 97% (n = 580), 25% (n = 105), and 68% (n = 685),
a positive predictive value of 65% (n = 580), and a negative
predictive value of 83% (n = 105) (25). Another work analyzed
1,099 hospitalized patients with a positive test for COVID-19:
86% (n = 840) of patients had CT imaging with finding of
ground-glass opacity, local patchy shadowing, or interstitial
pneumopathies; 17.9% (n = 157) of patients has no
radiographic abnormality (26).

Despite the standardized use of CT scans in addition to (or
instead of) RT-PCR for the diagnoses of a suspected COVID-19
infection might still be controversial (27). First, the findings on
chest imaging in COVID-19 are indeed not specific, and overlap
with other infections, including influenza, H1N1, SARS, and
MERS. Second, there are issues related to cleaning imaging
equipment to control the spread of infection in health care
facilities where CT scans are frequently used. For instance,
portable radiography units are less expensive, can be cleaned
easier, and could be an alternative. Chest CT scan might provide
prognostic information as, some published data reported that the
presence of a patchy consolidation by lung CT scan at patient
admission was associated to possibility of a severe event in a
multivariate analysis in COVID-19+ patients (HR = 5.438; CI
1.498–19.748; p = 0.010). In addition, it might prove useful for
the management of patients with COVID-19 infection, especially
in highly symptomatic cases. Indeed, as additional knowledge of
this infection becomes available, several reports have shown that
COVID-19 infection might be associated to an inflammatory
syndrome evidenced by high levels of inflammatory markers and
increased risk of thromboembolism associated to this infection
(28). This might be important in patients with cancer with
already increased phenomena of coagulopathy and thrombosis.
Hence, the interest of associating chest imaging in cancer
patients to identify underlying pulmonary embolism, which
might contribute to worsen respiratory symptoms and require
specific additional treatment (29). Beyond the role of CT scan
without intravenous contrast agent injection for the diagnostic
workup, prognostic evaluation, and follow-up of COVID-19
infection, selected patients may benefit from contrast enhanced
CT pulmonary angiography to diagnose potentially life-
threatening pulmonary embolism and start appropriate
therapies. A study reported a high frequency of either
pulmonary embolism in critically ill ICU patients with
COVID-19 complications [7.1, 20.6 (30), and 49% (31)].

Rogado et al. detected 45/1,069 COVID-19 diagnoses in
cancer patients vs 42,450/6,662,000 in total population
(p < 0.00001) in a Spanish hospital. Mortality rate: 19/45
cancer patients vs 5,586/42,450 (p = 0.0001). Mortality was
associated with older median age, adjusted by staging, and
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histology (74 vs 63.5 years old, OR 1.06, p = 0.03). Patients
who combined hydroxychloroquine and azithromycin
presented 3/18 deaths, regardless of age, staging, histology,
cancer treatment, and comorbidities (OR 0.02, p = 0.03) (32).

In a Spanish series Mestre-Gomez et al. retrospectively
reviewed 452 electronic medical records of patients admitted to
Internal Medicine Department of a secondary hospital in Madrid
during COVID-19 pandemic outbreak. Ninety-one patients had
a Computed Tomography pulmonary angiography (CTPA). The
cumulative incidence of PE was assessed with a clinical,
analytical, and radiological characterization compared in
patients with and without PE. The incidence of PE was 6.4%.
They evaluated the D-dimer peak and they found a significant
elevation in PE vs non-PE patients (14,480 vs 7,230 mcg/dl,
p = 0.03). In multivariate analysis that plasma D-dimer peak was
confirmed as an independent predictor of PE with a best cut off
point of >5,000 µg/dl (33).

In a hematologic series at the University Hospital Freiburg,
Shoumariyeh et al. analyzed a retrospective cohort of 39 patients
with hematological and solid cancers hospitalized for COVID-
19. With univariate and multivariate Cox analysis they found
that the presence of a malignancy was not significantly associated
with survival or severe events. Instead the high IL-6 levels at
COVID-19 diagnosis (HR = 6.95, P = .0121) and age ≥65 years
(HR = 6.22, P = .0156) were related to mortality. Another find of
Shoumariyeh et al. was about patients with a hematological
malignancy that showed a longer duration of clinical
improvement and longer hospitalization compared to patients
with a solid cancer (34).

In our institution, we have therefore taken the decision to
perform RT-PCR SARS-CoV-2 testing by nasopharyngeal swab in
a specifically dedicated area to our patients at day −2 or −1 before
administration of chemotherapy or immunotherapy treatment, if
feasible. The reason is to discover the disease in its pre-
symptomatic phase to prevent initiation of a potentially
immunosuppressive treatment to diminish chances of major
complications and to be able to intensively follow up these
patients. In addition, identifying those pre-symptomatic and
asymptomatic patients will help rapidly isolate these COVID-19+
patients to prevent further spreading of the disease to health
personnel and to other patients. For those patients with
respiratory symptoms a chest CT scan is also performed to
increase sensitivity to the diagnoses of the disease. In addition, CT
pulmonary angiogram is performed for those cases with acute
inflammatory syndrome to rule out pulmonary embolism and to
initiate intensive anticoagulation therapy. For patients confirmed
COVID-19+, systemic treatments are delayed and patient is
surveyed or treated accordingly. All COVID-19+ cases will be re-
tested at around 15 days from the initial testing. For those patients
asymptomatic throughout the infection with a negative test at 15
days, systemic treatment can be initiated. In case of a symptomatic
course of the infection, systemic anticancer treatment can be started
around 15 days after the end of symptoms. If the second PCR
test still is positive, patients need to be rested at 7–15 days and
systemic treatment must be delayed if possible. For those cases still
COVID-19+ after at least 15 days from the diagnostic PCR,
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chemotherapy can be initiated if the patient has no symptoms for at
least 7 days for those cases where benefit/risk is in favor for cancer
therapy. Soon, as validated RT-PCR SARS-CoV-2 testing becomes
available in local laboratories, testing will be performed at the same
time as the standard pre-chemotherapy blood samples before every
cycle of treatment, with results being directly reported to
our institution.

In the near future, the availability of laboratory IgM or IgG
validated testing to evaluate the previous SARS-CoV-2 exposure
will be helpful in order to fully picture the real incidence of this
disease in overall population and more particularly in cancer
patients. This will become crucial if further studies observe the
Frontiers in Oncology | www.frontiersin.org 4282
acquisition of an adaptive immunity capable of preventing re-
infection to SARS-CoV-2 infection, or at least to severe forms to
allow treating cancer patients without additional risk from
COVID-19.
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Pérez M, et al. COVID-19 Transmission, Outcome and Associated Risk
Factors in Cancer Patients at the First Month of the Pandemic in a Spanish
May 2021 | Volume 11 | Article 560585

https://doi.org/10.1016/S1470-2045(09)70069-5
https://doi.org/10.1016/j.jaut.2017.07.010
https://doi.org/10.1016/j.jaut.2017.07.010
https://doi.org/10.1016/S1470-2045(20)30096-6
https://doi.org/10.1002/ijc.33232
https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.1001/jama.2020.4683
https://doi.org/10.1158/2159-8290.CD-20-0516
https://doi.org/10.1158/2159-8290.CD-20-0516
https://doi.org/10.1038/s41571-020-0362-6
https://doi.org/10.1038/s41571-020-0362-6
https://doi.org/10.1016/S1470-2045(20)30226-6
https://doi.org/10.7326/M20-3012
https://doi.org/10.1200/GO.20.00097
https://doi.org/10.1016/j.ajem.2020.10.022
https://doi.org/10.1016/j.ajem.2020.10.022
https://doi.org/10.1001/jamaoncol.2020.0980
https://doi.org/10.1056/NEJMc2001737
https://doi.org/10.1101/2020.02.11.20021493
https://doi.org/10.1101/2020.02.11.20021493
https://doi.org/10.1038/s41591-020-0869-5
https://doi.org/10.1038/s41591-020-0869-5
https://doi.org/10.1056/NEJMc2001899
https://doi.org/10.1002/bjs.11646
https://doi.org/10.1200/JCO.2020.38.18_suppl.LBA111
https://doi.org/10.1016/j.annonc.2020.03.296
https://doi.org/10.1016/j.annonc.2020.03.296
https://doi.org/10.1200/JCO.2020.38.29_suppl.103
https://doi.org/10.1148/radiol.2020200343
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1148/radiol.2020200330
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1056/NEJMoa2002032
https://doi.org/10.1016/S0140-6736(20)30728-5
https://doi.org/10.1016/j.thromres.2020.04.013
https://doi.org/10.1056/NEJMc2007575
https://doi.org/10.1161/CIRCULATIONAHA.120.047430
https://doi.org/10.1161/CIRCULATIONAHA.120.047430
https://doi.org/10.1016/j.thromres.2020.04.041
https://doi.org/10.1016/j.thromres.2020.04.041
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Viansone et al. COVID-19: PCR and CT Role
Hospital in Madrid. Clin Trans Oncol (2020) 22:2364–8. doi: 10.1007/s12094-
020-02381-z
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Background: For individuals with cervical cancer, large tumor volume, lymph node
metastasis, distant metastasis, and parauterine infiltration are usually associated with a
poor prognosis. Individuals with stage 1B1 and 1B2 cervical cancer usually do not have
these unfavorable prognostic factors. Once the disease progresses, the prognosis
becomes extremely poor. Therefore, investigating the prognostic markers of these
cervical cancer patients is necessary for treatment.

Methods: This retrospective study included 95 cervical cancer patients treated with
surgery. The patients were divided into progressor and non-progressor groups according
to postoperative follow-up results. T-test (or Mann−Whitney U test), chi-squared test (or
Fisher’s exact test) and receiver operating characteristic (ROC) curves were used to
evaluate imaging, hematology, and clinicopathological index differences between the two
groups. Cox analysis was performed to select the independent markers of progression-
free survival (PFS) when developing the nomogram. Validation of the nomogram was
performed with 1000 bootstrapped samples. The performance of the nomogram was
validated with ROC curves, generated calibration curves, and Kaplan-Meier and decision
curve analysis (DCA).

Results: Cervical stromal invasion depth, lymphovascular space invasion (LVSI), human
papilloma virus (HPV-16), Glut1, D-dimer, SUVmax and SUVpeak showed significant
differences between the two groups. Multivariate Cox proportional hazard model showed
SUVpeak (p = 0.012), and HPV-16 (p = 0.007) were independent risk factors and were
used to develop the nomogram for predicting PFS. The ROC curves, Kaplan-Meier
method, calibration curves and DCA indicated satisfactory accuracy, agreement, and
clinical usefulness, respectively.

Conclusions: SUVpeak level (≥7.63 g/cm3) and HPV-16 negative status before surgery
were associated with worse PFS for patients with cervical cancer. Based on this result, we
constructed the nomogram and showed satisfactory performance. Clinically,
individualized clinical decision-making can be performed on patients based on this result.

Keywords: cervical cancer, positron-emission tomography, computed tomography, human papilloma
virus, prognosis
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INTRODUCTION

Cervical cancer has the second highest incidence of female
malignant tumors (1). The International Federation of
Gynecology and Obstetrics (FIGO) cancer staging system is
used in the formulation of treatment and prognosis plans for
patients with cervical cancer. In the recently updated 2018 FIGO
staging, it is noteworthy that, assessment of the abdominopelvic
retroperitoneal lymph nodes was included in the FIGO system
(2–4). Regardless of parametrial infiltration and tumor size, the
presence of nodal metastases now indicates stage IIIC. Radical
hysterectomy with lymphadenectomy will be effective for those
cervical cancer patients (stage 1B1, 1B2) with the following
characteristics: invasive carcinoma confined to the uterine
cervix, no more than 5 mm invasion, tumor size < 4 cm in its
greatest dimension and no lymph node metastasis. Fortunately,
these patients often do not need postoperative adjuvant
radiotherapy, since, of course, radiotherapy has serious side
effects (5). However, although the prognosis of cervical cancer
patients with these features is excellent, if they relapse, then
their prognosis is very poor (6). Therefore, identifying those
cervical cancer patients who are prone to recurrence after surgery
is of great significance, since they will require postoperative
adjuvant treatment such as radiotherapy and chemotherapy, as
well as closer follow-up, to reduce the chance of recurrence
and death.

The following three methods were used in predicting the
prognosis of cervical cancer: 1) evaluation of pathological
characteristics obtained from postoperative pathological specimens,
including aberrant molecular signaling pathway proteins;
2) preoperative imaging; and 3) hematological examination.

It is well known that pathological features such as age, tumor
stage and grade, cervical stromal invasion depth, lymphovascular
space invasion (LVSI); and preoperative high-risk human
papillomavirus (HR-HPV) statue were important factors in the
prognosis of cervical cancer. Different molecular factors
involving loss of tumor suppressor genes and aberrant
molecular signaling pathways, such as TP53-induced glycolysis
and apoptosis regulator (TIGAR), cytokine involved primarily in
angiogenesis (Vegf-A), mammalian facilitative glucose
transporter family (Glut-1), epithelial mesenchymal transition
related protein (E-cadherin), immune-linked factor by triggering
pro-inflammatory immune-associated reactions (Cox-2), the
extracellular matrix molecule (Tenascin-C), have recently been
identified in the pathogenesis of cervical cancer (7–11). The
impact of these proteins on cervical cancer prognosis needs
further investigation.

18F-FDG PET/CT, a functional imaging technique, provides
quantified metabolic information (the mean and maximum
standardized uptake values (SUVmean and SUVmax), metabolic
tumor volume (MTV) and total lesion glycolysis (TLG))and has
a well-established role in the management of patients with
cervical cancer (12–14). Many studies have shown that
hematological parameters such as hemoglobin (Hb),
coagulation indexes [D-dimer, fibrinogen (Fg)], tumor marker
for squamous cell carcinoma [squamous cell carcinoma antigen
Frontiers in Oncology | www.frontiersin.org 2285
(SCCA)], and novel systemic inflammation response index
(SIRI) are potential prognostic marker of malignant tumors
(15–19).

In this article, our aim was to find independent prediction
parameters from these parameters and establish and validate a
nomogram to predict the progression-free survival (PFS) of
patients with cervical cancer.
MATERIALS AND METHODS

Population Characteristics
Patients deemed to have a high suspicion of cervical cancer with
strong evidence from PET/CT (PET/CT examinations were
performed within one week before treatment) were
retrospectively enrolled from January 1st, 2013, to December
31th, 2015 with the following criteria: (1) The patient underwent
surgery (open surgery) and was confirmed as cervical squamous
cell carcinoma by postoperative pathological results; (2)
According to FIGO2018 pathological staging, the patient was
confirmed to be stage IB1 or IB2; (3) Patients who had not
undergone other treatments without surgery, and (4) Patients
with complete follow-up records.

The Institutional Review Boards at the local institutions
endorsed the study. We implemented it in accordance with the
ethical standards of the 1964 Helsinki Declaration and
subsequent amendments, and gave up informed consent of
all participants.

Surgical Protocol
Numerous studies have compared the effect of the Minimally
Invasive and Abdominal Radical Hysterectomy for cervical
cancer (20–22). The conclusion shows that for early cervical
cancer the minimally invasive surgery (laparoscopic or robot-
assisted radical hysterectomy) has a higher recurrence rate than
open surgery. In recent years, patients of our hospital have also
accepted open abdominal surgery as the main surgical method.
Therefore, the patients included all received the open abdominal
Type-C radical hysterectomy. The incision was located on the
lower abdomen. The resection scope included the uterus,
parauterine, upper vagina, and partial tissues around the
vagina and pelvic lymph nodes. A sufficient length of adjacent
connective tissues, including the front vesicocervix ligament
(anterior and posterior lobes), the lateral main ligament, the
posterior uterosacral ligament and rectovaginal ligament, also
should be removed. The ovary was selectively removed according
to the patient’s clinical conditions and willingness. The resection
of lymph nodes involved the obturator lymph nodes and
the internal, common, and external iliac vessel lymph nodes.
Para-aortic nodes should be removed only in the following
cases: (1) The preoperative PET/CT showed that there were
suspicious metastatic lymph nodes in the para-aortic area
[SUVmax of lymph nodes is higher than the background
metabolism level (23, 24)]; and (2) the possibility of metastasis
in the pelvic or para-aortic lymph nodes was suspected
intra-operatively.
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Tumor Recurrence Prediction and
Patient Follow-Up
PFS was defined as the time interval between the date of surgery
and the date at which the first recurrence of disease was
confirmed. Starting from the completion of the surgery, follow-
up examinations (chest CT, abdominal CT and pelvic MR) were
performed approximately every 3 months for the first 2 years,
and then every 6 months or 1 year for the next 3 years. Recurrent
disease was defined as local recurrence, metastasis of pelvic or
para-aortic lymph nodes, and metastases in distant organs
following surgery. For patients with abnormal follow-up
examinations results, PET/CT or biopsy was recommended,
and the results used as the standard for recurrence. The end of
the follow-up time is December 31th, 2020.

Pathologic Diagnosis
A pathologist with more than 10 years of experience evaluated
sections using HE staining and immunohistochemistry (IHC) of
CD31 and D2-40. The following results based on postoperative
pathology report were obtained: tumor differentiation grade,
stage, lymph node metastasis, LVSI, cervical stromal invasion
depth and histologic tumor type.

Tumor sections were obtained from our hospital pathology
department and we purchased antibodies from Abcam
(Shanghai, China). In addition, Cox-2, E-cadherin, Tenascin-C,
Glut-1, Tigar, and Vegf-A protein expression were studied based
on IHC, which was performed using the Leica BOND-MAX
system (Leica Biosystems, Shanghai, China). Thorough mixing
was done with the following polyclonal antibodies: Cox-2 at
1:100 dilution; E-cad at 1:700 dilution; Tenascin-C at 1:100
dilution; Glut-1 at 1:500 dilution; Tigar at 1:300 dilution; and
Vegf-A at 1:50 dilution. Then the tissue section was sealed after
the Imaging Mass Cytometry (IMC) was finished, the section was
placed under the lens of a scanner (Pannoramic MIDI, 3D
Histech), and moved gradually, imaging while moving and
then scanning and imaging all the tissue information on the
tissue section to form a file. After image scanning was completed,
the DensitoQuant software application in the QuantCenter
(QuantCenter is a piece of analysis software for Pannoramic
viewer) automatically recognized and set all dark browns on the
tissue section as strongly positive, brown-yellow as moderately
positive, light yellow as weakly positive, and blue cell nuclei as
negative. Furthermore, for each tissue, strongly positive,
moderately positive, weakly positive and negative areas, and
the percentage of positive areas, were identified. A negative
expression was defined by a < 10% positive expression.

HPV Examination
For HPV detection we used an AB I2Prism7000 PCR detector, a
Hybrid-Max medical nucleic acid molecular hybridizer (AB, USA),
and a PCR kit (Qiagen, USA). HPV detection used an AB
I2Prism7000 PCR detector, a Hybrid-Max medical nucleic acid
molecular hybridizer (AB, USA), and a PCR kit (Qiagen, USA).
Fifteen types of the HR-HPV types (HPV16, 18, 31, 33, 34, 39, 45,
51, 52, 53, 56, 58, 59, 66, and 68) were detected and diagnosed by a
pathologist with more than 10 years of diagnostic experience.
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Hematology Diagnostic Criteria
Included in the novel systemic inflammation index were the
following: NLR, defined as neutrophil-to-lymphocyte ratio;
LMR, defined as mononuclear cell-to-lymphocyte ratio; and SII,
defined as ratio of product of platelets and neutrophils to
lymphocytes (25, 26). Evaluation was undertaken of the
relationship between the novel systemic inflammation index
and prognosis based on the ROC curve and calculation of the
optimal cut-off value for meaningful indexes. Anemia was defined
as a hemoglobin count below 11.0 g/dL. The optimal D-dimer, Fg
and SCCA cut-off range for assessing prognosis was 0-0.5 mg/L,
2-4 g/L, and 0-2.5 ng/ml. These cut-off ranges were selected as
they have been recognized as standard pathological definitions.

PET/CT Scanning and Image Acquisition
All patients were fasted for more than 6 hours before the 18F-
FDG PET/CT examination, blood glucose levels were controlled
below 7 mmol/L, and 18F-FDG was injected with the patient in a
quiet state from 3.70 to 5.55 MBq/kg. After 45–60 minutes, 18F-
FDG PET/CT was performed. The patient was placed in a GE
Discovery Elite scanner (GE Healthcare, USA) with the scan
ranging from the skull top to the middle of the thigh (120s/bed).
The thickness of the CT scan layer was 3.75 mm, the tube voltage
was 120–140 keV, and the tube current was 80mA. PET images
were reconstructed using an Iterative adaptive algorithm.

Image Analysis
Transmitting all 18F-FDG PET/CT images to GE AW4.6
workstation (GE Healthcare, USA), 2 radiologists with more
than 5 years of radiodiagnostic experience used PET volume
computer-assisted reading (PET VCAR) software to perform
imaging analysis. After outline of a lesion region of interest (ROI)
at the cross-sectional level of the largest area of the tumor, the
fused-PET software automatically calculated SUVmean, SUVmax,
MTV and TLG of the entire tumor. MTV was calculated by a
40% SUVmax threshold (27, 28).

Statistical Analysis
The patients were divided into a positive and a negative group
according to prognosis. Differences in patient characteristics
between the groups were compared with the t-test (Mann-
Whitney U test, if not normal distribution) or chi-squared
(Fisher’s exact test, if not the number of assumptions necessary).
For quantitative variables, receiver operating characteristic (ROC)
curves were generated to assess the area under the ROC curve
(AUC) for differentiating prognosis. We used the cut-off threshold
values for differentiating these meaningful quantitative variables.
The Kaplan-Meier method was used to build survival functions and
the log-rank test was used to compare survivals for all variables.
Prognostic variables were evaluated by univariate and multivariate
Cox proportional hazard model (variables with p<0.1 in the
univariate Cox proportional hazard model were used in the
multivariate analysis). In multiple testing, a correction was
performed, based on the Benjamini-Hochberg procedure. Finally,
these final prognostic variables were incorporated to construct the
June 2021 | Volume 11 | Article 659313
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nomogram. The nomogram adopted the 1-, 2-, and 5-year PFS as
primary endpoints. Validation of the nomogram was performed
with 1000 bootstrapped samples, that is, we adopted the method of
bootstrapped samples to set up a control group, randomly selected
1000 times from the existing samples, arbitrarily once, and then a
final time to get the original sample number (95). The predictive
capability was evaluated by ROC analysis. Generated calibration
curves were used to visualize the difference between the predicted
and actual 1-, 2-, and 5-year PFS. Decision curve analysis (DCA)
was introduced to evaluate clinical utility of the nomogram (29).
Based on the median of the total scores, a risk stratification system
was developed, and the cervical cancer patients were divided into
two risk subgroups, including high-risk and low-risk groups, and
the Kaplan-Meier method and log rank test were used to compare
the differences between the two subgroups. The statistical analysis
was conducted by MedCalc (version 15.2.2), SPSS (version 22.0), R
(version 3.5.3), and p<0.05 indicated a significant statistical
difference (if not specified).
RESULTS

Survival and Disease Control
The median follow-up was 62.8 months (range, 2-96). A total of
95 patients were enrolled: 24 (25.3%) patients manifested
progressive disease and 71 (74.7%) patients presented no
evidence of disease (Figure 1).
Frontiers in Oncology | www.frontiersin.org 4287
The Relationship Between Disease
Progression and Clinicopathological
Characteristics in Patients
The clinicopathological characteristics of the patients are
summarized in Table 1A. Cervical stromal invasion depth
(chi-squared test, p=0.046; log-rank test, p=0.032), LVSI (chi-
squared test, p=0.032; log-rank test, p=0.008) and HPV-16 (chi-
squared test, p=0.001; log-rank test, p<0.001) showed differences
between patients with and without disease progression. The
remaining indicators had no significant correlation.

The Relationship Between Disease
Progression and Protein Expression in
Cancer Tissue
Chi-squared test and Kaplan-Meier method showed that patients
with Glut1-negative had a statistically significant better clinical
outcome than patients with Glut-1-positive (chi-squared test,
p=0.039; log-rank test, p=0.039) (Table 1B). The remaining
protein indicators were not statistically significant.

The Relationship Between Disease
Progression and Hematology-Related
Parameters in Patients
Chi-squared test and Kaplan-Meier method showed only D-
dimer was related to disease progression and PFS (Table 1C).
The ROC curve showed that no novel systemic inflammation
index was statistically significant for disease progression.
FIGURE 1 | Patient selection.
June 2021 | Volume 11 | Article 659313
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The Relationship Between Disease
Progression and PET/CT Parameters
in Patients
SUVmax (U test, p=0.014) and SUVpeak (U test, p=0.002) showed
significant between-group differences (Table 2). ROC analysis
showed that SUVmax (AUC 0.668, p=0.006), SUVpeak (AUC
0.716, p<0.001) had a positive effect on predicting disease
progression (Figure 2). The optimal cut-off threshold values for
SUVmax, SUVpeak were 9.12 g/cm3 (sensitivity 91.67, specificity
39.44) and 7.63 g/cm3 (sensitivity 91.67, specificity 47.89),
respectively. Kaplan-Meier method showed the DFS rates of
patients exhibiting high SUVmax and SUVpeak of the primary
tumor were significantly lower than those of patients exhibiting
low SUVmax and SUVpeak of the primary tumor (p=0.006 and
p=0.001, respectively) (Figure 2).

Univariate and Multivariate Cox
Proportional Hazard Model
Univariate Cox proportional hazard model showed that cervical
stromal invasion depth (p=0.041), LVSI (p=0.018), HPV-16
(p=0.001), Glut1 (p=0.048), D-dimer (p=0.040), SUVmax (p=0.016)
and SUVpeak (p=0.005) were associated with PFS. Multivariate Cox
proportional hazard model showed that SUVpeak (p=0.012), and
HPV-16 (p=0.007) were independent risk factors for PFS (Table 3).

Nomogram Development and Validation
SUVpeak and HPV-16 were incorporated to develop the nomogram
for predicting 1-, 2-, and 5-year PFS. The nomogram showed that
SUVpeak made the largest contribution to the prognosis, followed by
Frontiers in Oncology | www.frontiersin.org 5288
HPV-16 which showed a certain amount of impact on the PFS
(Figure 3). ROC analysis showed the AUCs at 1-, 2-, and 5-year PFS
reached 0.828, 0.808 and 0.814 in the original model, and 0.814,
0.835 and 0.841 in the validation model, respectively (Figures 4B,
D). Whether in the original model or in the validation model, the
calibration curves demonstrated considerable agreement between the
nomogram and predicted survival (Figures 4A, C). Clinical utility of
the nomogram was evaluated by DCA. The nomogram showed
enormous positive net benefits across wide ranges of mortality risk in
both models, demonstrating its predominant clinical utility in
predicting PFS (Figure 5). In particular, it has the greatest clinical
utility for 5-year PFS in both models. In addition, we calculated the
total scores for the original model to build a risk stratification system
based on our nomogram, and then distinguished the patients
according to the median quantile of total scores into high-risk
subgroups and low-risk subgroups. The PFS in the two subgroups
was exactly separated by this system (Figures 6A, B).
DISCUSSION

A poor prognosis for patients with cervical cancer is usually
associated with a large tumor volume, lymph node metastasis,
distant metastasis, and parauterine infiltration. In this study, we
explored the prognostic indicators of patients with stage 1B1 and 1B2
cervical cancer without these factors, and established a prognostic
nomogram and risk stratification system. Our study showed SUVmax,
SUVpeak, Glut1, HPV-16, cervical stromal invasion depth, LVSI and
D-dimer were associated with PFS. SUVpeak and HPV-16 were
identified as factors independently impacting disease progression.
TABLE 1A | Patients’ clinicopathological characteristics.

Feature Total Nun-progressor Progressor Value - p

chi-squared log-rank t-test/U-test

No. of patients 95 71 24
Mean age (years) 49.40 ± 9.26 49.06 ± 9.14 50.42 ± 9.73 / / 0.968
FIGO stage (2018):
Ib1 11 (11.6%) 9 2 0.565 0.531 /
Ib2 84 (88.4%) 62 22
Differentiation grade:
Well-moderately differentiated 86 (90.5%) 64 22 0.825 0.748 /
Poorly differentiated 9 (9.5%) 7 2
Cervical stromal invasion depth:
< ½ 36 (37.9%) 31 5 0.046 0.032 /
≥ ½ 59 (62.1%) 40 19
LVSI
Negative 71 (74.7%) 57 14 0.032 0.008 /
Positive 24 (25.3%) 14 10
HR-HPV:
Negative 19 (20%) 7 12 0.194 0.176 /
Positive 76 (80%) 17 59
HPV-16
Negative 43 (45.3%) 25 18 0.001 <0.001 /
Positive 52 (54.7%) 46 6
HPV-18
Negative 88(45.3%) 67 21 0.266 0.226 /
Positive 7(45.3%) 4 3
June 202
1 | Volume 11 |
FIGO stage (2018): Postoperative pathological staging; LVSI, lymphovascular space invasion; HR-HPV, high-risk human papillomavirus; Normal distribution data, means ± standard
deviations; t-test. Non-normal distribution data, medians and interquartile ranges; U-test. /, No statistics.
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TABLE 1B | Patients’ protein expression.

Feature Total Nun-progressor Progressor Value - p

chi-squared log-rank t-test/U-test

No. of patients 95 71 24
Vegf-A:
Negative 49 (51.6%) 37 12 0.858 0.837 /
Positive 46 (48.4%) 34 12
Glut1:
Negative 41 (43.2%) 35 6 0.039 0.039 /
Positive 54 (56.8%) 36 18
E-cadherin:
Negative 52 (54.7%) 40 12 0.590 0.487 /
Positive 43 (45.3%) 31 12
Cox-2
Negative 66 (69.5%) 48 18 0.496 0.547 /
Positive 29 (30.5%) 23 6
Tenascin-C:
Negative 50 (52.6%) 35 15 0.264 0.332 /
Positive 45 (47.4%) 36 9
Tigar:
Negative 30 (31.6%) 22 8 0.831 0.848 /
Positive 65 (68.4%) 49 16
Frontiers in Oncology | ww
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TABLE 1C | Patients’ hematology-related parameters.

Feature Total Nun-progressor Progressor Value - p

chi-squared log-rank t-test/U-test

No. of patients 95 71 24
Hb:
≥ 110 g/dL 51 (53.7%) 41 10 0.172 0.180 /
<110 g/dL 44 (46.3%) 30 14
D-Dimer:
Negative 45 (47.4%) 38 7 0.039 0.033 /
Positive 50 (52.6%) 33 17
Fg:
Negative 57 (60.0%) 42 15 0.772 0.691 /
Positive 38 (40.0%) 29 9
SCCA:
Negative 58 (61.1%) 45 13 0.424 0.416 /
Positive 37 (38.9%) 26 11
NLR: 1.92 (1.32, 3.00) 2.09 (1.38, 3.14) 1.54 (1.25, 2.46) / / 0.084
LMR: 0.20 (0.16, 0.27) 0.20 (0.17, 0.29) 0.18 (0.14, 0.27) / / 0.271
SII: 411.06 (298.67, 710.35) 416.20 (312.26, 710.35) 375.32 (293.99, 579.40) / / 0.333
Hb, Hemoglobin; Fg, fibrinogen, SCCA, squamous cell carcinoma antigen; NLR, neutrophil-to-lymphocyte ratio; LMR, mononuclear cell-to-lymphocyte ratio; SII, systemic immunity-
inflammation index. Normal distribution data: means ± standard deviations; t-test. Non-normal distribution data: medians and interquartile ranges; U-test. /, No statistics.
TABLE 2 | Patients’ PET/CT parameters.

Nun-progressor Progressor Value - p

No. of patients 71 24
SUVmax (g/cm

3) 10.87 (7.58, 13.66) 13.29 (10.57, 20.80) 0.014
SUVmean (g/cm

3) 6.23 (4.17, 8.31) 7.78 (5.57, 10.15) 0.149
SUVpeak (g/cm

3) 8.27 (5.29, 11.47) 10.12 (8.84, 18.69) 0.002
MTV (cm3) 10.20 ± 6.28 10.31 ± 6.50 0.876
TLG (g) 47.70 (32.72, 87.22) 54.10(38.30, 153.19) 0.014
Artic
Normal distribution data: means ± standard deviations; t-test.
Non-normal distribution data: medians and interquartile ranges; U-test.
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The basis of PET imaging is the “Warburg effect”, that is, tumor
cells mainly produce ATP through a higher rate of glycolysis
compared with normal cells. SUVmax, a type of PET parameter,
reflects the metabolism of the most active part of the lesion. SUVpeak,
another type of SUV, refers to the average SUV within a spherical
VOI positioned around the most active metabolism point (30). The
glucose uptake of cells is mediated by Glut, and Glut-1 is an
important isomer of glucose transporter. Univariate cox analysis
Frontiers in Oncology | www.frontiersin.org 7290
shows that SUVmax, SUVpeak and Glut1 have a certain correlation
with PFS, but multivariate analysis shows that only SUVpeak is
considered to be an independent factor, among these three
parameters. SUVmax is the most commonly used PET parameter in
the clinic, but it is a single element measurement value and is
susceptible to image resolution and noise. Compared with SUVmax,
the value of SUVpeak is more stable and accurate because it is not easy
affected by tracking bed position, scanning time and the size of the
FIGURE 2 | ROC analysis shows that SUVmax(AUC 0.668, 95% confidence interval (CI) 0.564-0.761, p=0.006) and SUVpeak (AUC 0.716, 95% CI 0.615-0.804,
p<0.001) had a positive effect on disease progression. The optimal cut-off threshold values for SUVmax and SUVpeak were 9.12 g/cm3 (sensitivity 91.67, specificity
39.44), 7.63 g/cm3 (sensitivity 91.67, specificity 47.89), respectively. Kaplan-Meier survival graph shows significantly different PFS between the groups categorized by
SUVmax and SUVpeak above and below cut-off value (p<0.05, log-rank test).
TABLE 3 | Prognostic factors for DFS selected by Cox analysis.

Univariate Cox proportional hazard model: enter variable <0.1
Method: Forward: LR
Variable Reference Characteristic P HR 95% CI

Cervical stromal invasion depth <½ ≥½ 0.041 2.801 1.045-7.507
LVSI negative positive 0.018 2.661 1.181-5.998
HPV-16 positive negative 0.001 4.651 1.844-11.736
Glut1 negative positive 0.048 2.544 1.010-6.411
D-dimer negative positive 0.040 2.511 1.041- 6.056
SUVmax <9.12 g/cm3 ≥9.12 g/cm3 0.016 5.901 1.387-25.103
SUVpeak <7.63 g/cm3 ≥7.63 g/cm3 0.005 8.022 1.885-34.135
Multivariate Cox proportional hazard model:
Benjamini-Hochberg procedure was applied to the final analyses; enter variable <0.05
Method: Forward: LR
Variable Reference Characteristic P HR 95% CI
SUVpeak <7.63 g/cm3 ≥7.63 g/cm3 0.012 8.342 1.956-35.574
HPV-16 positive negative 0.007 4.834 1.909-12.239
June 20
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LVSI, lymphovascular space invasion; HPV, human papillomavirus.
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FIGURE 3 | Nomogram for predicting 1-, 2-, and 5-year PFS of cervical cancer.
A B

DC

FIGURE 4 | Calibration plots and ROC curves for predicting PFS at 1-, 2-, and 5- year points. (A) The calibration plots for predicting PFS in the original model.
(B) ROC curves of the nomogram for predicting PFS in the original model. (C) The calibration plots for predicting PFS in the validation model. (D) ROC curves of the
nomogram for predicting PFS in the validation model.
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lesion (31, 32). A study on the survival analysis of patients with
cervical cancer showed that among the five classic PET parameters:
SUVmax, SUVmean, SUVpeak, MTV, TLG and six texture features,
SUVpeak is the most accurate parameter in predicting the disease
progression (33). Zhang Le et al. showed that SUVpeak had the highest
correlation with the clinicopathological features of cervical cancer
(34). These all support our results. Compared with other glucose
metabolism parameters, SUVpeak is more closely related to the
prognosis of patients undergoing surgery. It is worth noting that
Frontiers in Oncology | www.frontiersin.org 9292
MTV, TLG and PFS are not related in our study. Yoo et al. conducted
a prognostic study of cervical cancer at stage I–IV and showed that
MTV and TLG are important PET parameters for predicting disease
progression (35). The study of Maura et al. and Sangwon et al. had
similar findings (36, 37). This may be because the largest diameter of
the cancerous lesions in our study subjects was less than 4cm.
However, MTV and TLG reflect the overall metabolic burden of
the tumor. Therefore, the parameters MTV and TLG related to the
tumor volume did not play a major role in our research.
A B

D E F

C

FIGURE 5 | Decision curve analysis of the nomogram for predicting PFS at 1-,(A) 2-,(B) and 5-year (C) points in the original model and PFS at 1-(D), 2-(E) and
5-year (F) points in the validation model. The percentage of threshold probability was represented by the x-axis, whereas the net benefit was represented by the
y-axis, calculated by adding the true positives and subtracting the false positives.
A

B

FIGURE 6 | Kaplan-Meier analysis of PFS for patients stratified by the risk stratification system in the original model (A) and validation model (B).
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HPV is a genus of papilloma vacuole virus A, belonging to the
papovaviridae family. It is a spherical DNA virus that can cause
the proliferation of squamous epithelium of human skin and
mucosa. High-risk HPV can be detected in most cervical cancer
specimens. HPV16 is a common high-risk type of HPV that is
most prone to persistent infection and can be detected in about
40% to 60% of patients with cervical cancer (38). However, a
study showed that HPV-negative status is associated with a poor
prognosis in patients with cervical cancer, which may be related
to WNT/b-catenin signaling and non-synonymous somatic
mutations (39). Another Meta-Analysis showed the presence of
HPV-16 positivity appears to have no significant association with
prognosis cervical cancer in PFS. But, eliminating a study with a
strong impact on the outcome from the analysis would lead to a
conclusion of a worse prognosis of HPV-16 negative in cervical
cancer (40). In addition, one study showed that cervical cancer
patients infected with HPV16 had a better prognosis than those
with any other HPV type (41). These results are roughly
consistent with our study, in which HPV16 negativity was
associated with worse PFS for those patients with cervical cancer.

Cervical stromal invasion depth is an essential index in the
standard pathological report, and represents the invasion status of
tumor cells. Lymphovascular space invasion (LVSI) is a common
clinical pathological phenomenon of malignant tumors. For tumors
to form distant metastases and spread, tumor cells must first enter
the circulatory system and spread through blood or lymphatic
vessels. Therefore, LVSI is associated with distant metastasis, from
a histological perspective (42). D-dimer is a degradation product
produced following fibrinolysis, which participates in the
coagulation process. Its plasma level can be used as an evaluation
index for blood hypercoagulability and as a measure of whether
secondary fibrinolytic hyperfunction occurs (43). Our research
showed that the above three indicators were related to prognosis,
but they were not independent prognostic factors.

Our combined nomogram developed could effectively identify
the patients with progressive disease. It is observed that SUVpeak is
of the most value to prognosis, followed by HPV-16. We
established a control model using 1000 bootstrapped samples at
the same time. The nomogram of the original group and the
control group both showed excellent performance, as was indicated
by the ROC curves, generate calibration curves, DCA and Kaplan-
Meier method. The ROC curves and Kaplan-Meier method
showed that the model had good prediction accuracy, and the
calibration curves demonstrated consistency. However, even if the
model has high accuracy, patients may not necessarily benefit
clinically, and there may be false positives and false negatives.
Sometimes it is more beneficial to avoid false positives, and at other
times more desirable to avoid false negatives. Since neither
situation can be avoided, a method with the greatest net benefit
is needed. This is what DCA does. The DCA of our model showed
great clinical performance, especially for patients with 5 year-PFS.
The capability of the combined nomogram for prediction of
progressive disease may facilitate personalized treatment decisions.

This study has a number of limitations. On one hand, this is a
retrospective study based on the latest FIGO2018 staging. Because
the early follow-up was not optimal, the sample size of our study
was not sufficiently large, especially for positive cases, thus further
Frontiers in Oncology | www.frontiersin.org 10293
future confirmation of the results is needed. Furthermore, there is a
lack of data about several important factors, including some
functional sequences of magnetic resonance, proteomics and
genomics data, and pathway proteins related to prognosis, such
as Hive, Caix, etc. Finally, in our original data, compared with
patients with squamous cell carcinoma, the proportion of patients
with adenocarcinoma is particularly small. In order to prevent
extreme value bias, we only selected patients with squamous cell
carcinoma as the research object. In the future, additional types of
pathology will be included in our research.
CONCLUSION

In conclusion, SUVpeak level (≥7.63 g/cm
3) and HPV16 negative

were identified as independent factors and could be associated
with poor prognosis for patients with cervical cancer (Stage IB1,
IB2). Based on this result, we established a nomogram and risk
stratification system, and achieved satisfactory performance and
clinical utility. These findings could contribute to test-
individualized neoadjuvant treatment. It is worth emphasizing
that the stage of cervical cancer of patients selected was only
Stage IB1 and IB2. That is, patients with cervical cancer of other
stages were not within the scope of this study. At the same time,
cervical stromal invasion depth, LVSI, and D-dimer were related
to prognosis, but they were not associated with poor DFS in the
multivariate analysis. Cautions would be needed when clinical
decision-making was made for patients with these risk factors.
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Objectives: To differentiate Glioblastomas (GBM) and Brain Metastases (BM) using a
radiomic features-based Machine Learning (ML) classifier trained from post-contrast
three-dimensional T1-weighted (post-contrast 3DT1) MR imaging, and compare its
performance in medical diagnosis versus human experts, on a testing cohort.

Methods: We enrolled 143 patients (71 GBM and 72 BM) in a retrospective bicentric
study from January 2010 to May 2019 to train the classifier. Post-contrast 3DT1 MR
images were performed on a 3-Tesla MR unit and 100 radiomic features were extracted.
Selection and optimization of the Machine Learning (ML) classifier was performed using a
nested cross-validation. Sensitivity, specificity, balanced accuracy, and area under the
receiver operating characteristic curve (AUC) were calculated as performance metrics.
The model final performance was cross-validated, then evaluated on a test set of 37
patients, and compared to human blind reading using a McNemar’s test.

Results: The ML classifier had a mean [95% confidence interval] sensitivity of 85% [77;
94], a specificity of 87% [78; 97], a balanced accuracy of 86% [80; 92], and an AUC of
92% [87; 97] with cross-validation. Sensitivity, specificity, balanced accuracy and AUC
were equal to 75, 86, 80 and 85% on the test set. Sphericity 3D radiomic index highlighted
the highest coefficient in the logistic regression model. There were no statistical significant
July 2021 | Volume 11 | Article 6382621296
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differences observed between the performance of the classifier and the experts’ blinded
examination.

Conclusions: The proposed diagnostic support system based on radiomic features
extracted from post-contrast 3DT1 MR images helps in differentiating solitary BM from
GBM with high diagnosis performance and generalizability.
Keywords: radiomics, machine learning, glioblastoma, brain metastasis, diagnostic decision support system
INTRODUCTION

Brain Metastases (BM) and Glioblastomas (GBM) are the two
most frequent intra-cranial brain tumors in adults (1–3).
Currently, Magnetic Resonance Imaging (MRI) is the modality
of choice for brain tumor characterization. Usually, BM present
an encapsulated contrast enhancement, with regular and well-
defined boundaries, whereas GBM have heterogeneous contrast
enhancement with very irregular and fuzzy boundaries (4–6).
Nonetheless, their morphological characteristics remain very
similar on MRI as both are lesions with annular contrast
enhancement, having a necrotic center and a peritumoral zone
in T2-weighted and Fluid-Attenuated Inversion Recovery
(FLAIR) sequences. Advanced neuroimaging techniques such
as perfusion MRI and Magnetic Resonance Spectroscopy (MRS)
provide additional information to distinguish between the two
tumor types, based on differences in the peritumoral area (7–10).
Although in the past decades, various studies (11–13) have
evaluated the diagnostic performance of perfusion imaging and
MRS, they have shown heterogeneous results in distinguishing
these two tumor types, resulting in sensitivities and specificities
ranging from 64 to 100% and 60 to 100% respectively. This
high heterogeneity reflects the difficulty experienced in daily
practice to differentiate the two brain tumors, even using
advanced neuroimaging techniques, particularly in the case of
differentiating a GBM from a solitary BM revealing an unknown
primary cancer [5 to 12% of BM (14, 15)]. Even though the final
diagnostic will be given by a histopathological examination and a
biomolecular analysis of the tumor tissue relying on the 2016WHO
classification (16), the presurgical distinction between these two
types of tumors is crucial for adapting treatment strategies: for
metastases less than 3–4 cm, a bloc resection or stereotactic
radiosurgery will be planned depending on the lesion location
(17), while GBM (18) should be treated with maximal safe
resection, and concurrent chemoradiotherapy. Radiomics (19–22)
is a recent area of research based on the simple observation that the
human eyes have limitations, even those trained for medical image
interpretation. Radiomics consists of extracting large numbers of
predefined quantitative features from medical images with the
ultimate goal of identifying subgroups of biomarkers able to guide
patient’s care and has shown promise in brain cancer detection,
diagnosis, molecular mutation characterization, prognosis and
outcome prediction (23–29). In our study, we hypothesized that
themorphological differences observed on post-contrast 3DT1MR
images would lead to differences in radiomic features between the
two tumor types. The aim of this study was to therefore develop a
2297
radiomic features-based Machine Learning (ML) classifier, to
evaluate its diagnostic performance on an unseen test set of
patients, and to compare it to the diagnosis performance of
neuroradiologists. A strong emphasis was placed on favoring
explainable classifiers to ease translation into clinic.
MATERIALS AND METHODS

The steps of our study are summarized in Figure 1.

Patients
This retrospective bicentric study was approved by the local
institutional review board (n° IRB00011687 College de
neurochirurgie IRB #1: 2020/29). The two Radiology
Departments that participated in the study had the same 3 Tesla
MRI scanners (MR 750, Discovery; General Electric Healthcare),
with the same imaging parameters implemented. Medical records
of patients who had histologically proven BM or GBM between
January 2010 and May 2019 were screened in the two centers to
constitute the training set. Inclusion criteria for the training set
were: 1) patients more than 18 years of age, 2) with histologically-
confirmed diagnosis of BMorGBM, and 3) andwith pre-operative
MRI. Exclusion criteria for the training set were: 1) lesions less than
2 cm, 2) extra-axial locations, 3)history of treatment before theMRI
examination, 4) absence of 3D T1-weighted Fast SPoiled Gradient
Recalled sequence, 5) image acquisition performed on a different
machine to the 3 Tesla GE Discovery MR scanner, and 6) 3D T1-
weighted sequence acquired with non-conventional parameters or
inadequate quality (see sectionMRIdata). Theminimal size of 2 cm
was chosenasGBMareusually >2cmat the diagnosis.We therefore
wanted to exclude small BMfromthe analysis, to avoid a bias of size.
For BM, we included patients with one or more brain lesions.
However in casesofmultiple lesions, only the largestwas segmented
for radiomic feature extraction.

Secondly, a test set was constituted after completion of the
model development process in order to evaluate the final
performance of the radiomic classifier on unseen lesions. As
well, the test set included patients from both centers. Inclusion
criteria for the test set were the same as for the training set. All
patients included in the test set were required to have solitary
lesions so that neuroradiologists were not influenced in their
final diagnosis. Exclusion criteria of the study were therefore the
same as those of the training set plus patients having multifocal
or infra-tentorial lesions. All inclusion and exclusion criteria are
summarized in the flow chart (Figure 2).
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MRI Data
MR acquisitions were performed on the same 3 Tesla MR
scanner, even if at two clinical sites. MRI data included at least
a post-contrast (gadoterate meglumine [Dotarem; Guerbet
Frontiers in Oncology | www.frontiersin.org 3298
Laboratory]) three-dimensional T1-weighed Fast SPoiled
Gradient Recalled (FSPGR) acquisition (post-contrast 3DT1),
with the following parameters: repetition time: 10.2 ms; echo
time: 3.4 ms; field of view: 22 cm; voxel size: 0.8 mm × 0.8 mm ×
FIGURE 2 | Flow chart of patient inclusion.
FIGURE 1 | Different steps of the study.
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1.2 mm. Patients were excluded from this study if other imaging
protocols were followed. Post-contrast 3DT1 MR images were
only used as inputs of the radiomic classifier. To compare the
performance between the classifier and neuroradiologists,
clinical conditions were mimicked, and all available sequences
of the imaging exam were thus analyzed by the neuroradiologists,
as routinely conducted in a clinical setting.

Image Analysis
Pre-Processing
MR image preprocessing included bias field correction using the
N4ITK algorithm (30) from the Advanced Normalization Tools
(ANTs) library (31), skull-stripping with the Brain Extraction
Tool (BET) of the FSL software (FMRIB’s Software Library) (32)
and Z-score normalization with a scaling factor of 100. No spatial
resampling was performed due to data homogeneity. As well, no
noise filtering was applied.

Tumor Segmentation
A segmentation of the volume of interest, including the contrast-
enhanced and necrotic regions, was performed semi-
automatically using Olea Sphere© (Olea Medical, La Ciotat,
France). These two sub-regions corresponded to Labels 4 and 1
of the BraTS 2012–2016 challenge (33). Within a region of
interest defined by a trained radiologist (AdC, 5 years of
experience), threshold-based gray level contouring and manual
correction were used for the segmentation so that the volume of
interest was carefully drawn along the tumor enhancement.

Feature Extraction
One hundred radiomic features were extracted from the 3D MR
images using the Python library PyRadiomics 2.1.2 (34) in which
the feature definitions are consistent with the Image Biomarker
Standardization Initiative (IBSI) (35). The only exception is that
PyRadiomics and IBSI use different definitions of the Kurtosis first-
order feature, where Kurtosis is calculated using −3 and +3 in the
IBSI and PyRadiomics referentials respectively. For first order
features, an intensity shifting of 300 (equal to three standard
deviations) was applied to ensure that the majority of the voxel
intensities were positive before feature extraction. An absolute
discretization with a fixed bin size equal to 37 was chosen (36,
37). This leads to a bin number of 32 considering the mean of the
intensity intervals computed for all volumes of interest of patients of
the training set (min intensity: 575, max intensity: 2069, mean
intensity range: 1190). Six feature classes were considered: 18 first-
order statistics, 14 shape-based features, 22 Gray Level Co-
occurrence Matrix features (GLCM), 16 Gray Level Run Length
Matrix features (GLRLM), 16 Gray Level Size Zone Matrix features
(GLSZM), and 14 Gray Level DependenceMatrix features (GLDM).

Model Building
The establishment of the classification model was based on the
scikit-learn library version 0.23.2 (38) and included two steps
applied to the training set: (1) selection of the ML classifier and
feature scaling method and 2) optimization of the hyper-
parameters. In step 1), a nested cross-validation was used given
the moderately-sized dataset and 144 ML models combining
Frontiers in Oncology | www.frontiersin.org 4299
nine feature scaling methods (No Scaler, MaxAbsScaler,
MinMaxScaler, Normalizer, PowerTransformer-Yeo–Johnson,
QuantileTransformer-normal, QuantileTransformer-uniform,
RobustScaler, StandardScaler) and 16 classifiers (AdaBoostClassifier,
BaggingClassifier, BernoulliNB, DecisionTreeClassifier, Extra
TreeClassifier, ExtraTreesClassifier, GaussianNB, Gradient
BoostingClassifier, KNeighborsClassifier, LinearSVC, Logistic
Regression, MLPClassifier, QuadraticDiscriminantAnalysis,
RandomForestClassifier, RidgeClassifier, SGDClassifier) were
compared. The nested cross-validation considered a stratified
5-fold cross-validation in the inner loop for hyper-parameter
tuning (grid search strategy) and a stratified 5-fold cross-
validation in the outer loop for the evaluation of the
performance of the model. In step 2), the model showing the
lowest generalization error, as assessed by the balanced accuracy,
was kept and a ten-repeated 5-fold cross-validation was
performed. In this second step, a grid search method was
implemented to optimize the final set of hyper-parameters.
Mean sensitivity, specificity, balanced accuracy, and area under
the receiver operating characteristic curve (AUC) and their
associated variances and 95% confidence intervals were
calculated as performance metrics. Research spaces for hyper-
parameter tuning with grid search during nested cross-validation
and cross-validation are described in Table S1.

Evaluation on the Test Set and
Comparison to Human Performance
The final model was fitted using the entire training set and its
performance evaluated on the test set including 37 patients (21
GBM and 16 BM). Images of the test set were then blindly
analyzed by five neuroradiologists (R1, R2, R3, R4, and R5). Two
were neuroradiologists with more than 10 years of experience
and three were radiology residents with about 6 months of
training and practice in neuroradiology. The neuroradiologists
had access to all MR sequences acquired in a routine MR imaging
protocol, including 3D FLAIR, 2D T2, perfusion imaging, and
pre- and post-contrast 3DT1 sequences.

Statistics
Sensitivity, specificity, balanced accuracy and AUC were used to
assess the diagnosis performance of the radiomic model. We
applied a McNemar’s test and evaluated its p-value to assess if
the differences were significant between the diagnostic
performance of the radiomic classifier and the diagnostic
performance of the readers. The threshold was set at 0.05.
RESULTS

Patients
267 GBM and 271 BM were pre-selected for the training set, and
71 GBM and 72 BM met the inclusion criteria respectively
(Figure 2). Median [minimum value–maximum value] 2D
maximal diameter was equal to 53.39 mm [24.11–88.12 mm]
for GBM and 41.40 mm [20.77–77.92 mm] for BM. The test set
included 37 patients (21 GBM and 16 BM). In this set, the
July 2021 | Volume 11 | Article 638262
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median 2D maximal diameter was equal to 54.93 mm [32.61–
102.53 mm] and 33.85 mm [22.41–63.63 mm] for GBM and BM
respectively. Patient characteristics and their repartition between
Centers 1 and 2 are summarized in Table 1.

Selected Machine Learning Classifier
Table S2 summarizes the mean balanced accuracies and their
associated standard deviations obtained for all tested
combinations (scaling method + classifier). Combinations are
ranked considering the lowest generalization error. The ML
classifier providing the better performance using the nested
cross-validation was the logistic regression combined to the
power transform Yeo–Johnson scaling feature method which
corresponds to a zero-mean, unit-variance normalization with a
power transform applied feature wise to make distribution of
each radiomic feature Gaussian-like. To limit overfitting, the
classifier encompassed a ridge regression for regularization (l2
penalty assignment) with a C value equal to 0.7. The final logistic
regression-based established signature was a combination of the
100 input radiomics features, in which the feature with the
highest coefficient in the decision function was sphericity, with
a coefficient of 1.48. All other features had absolute coefficient
less than 0.96. The 20 predominant features had absolute
coefficients superior to 0.38. Among these features, five were
shape features, two were first-order metrics, and 13 were based
on texture matrices, with 6 extracted from the GLCM
matrix (Figure 3).

Diagnosis Performance of the Classifier
With a Ten-Repeated 5-Fold
Cross-Validation
The model differentiated BM from GBM on the validation sets
with a mean sensitivity of 85% [95% CI = (77%; 94%)], a
specificity of 87% [95% CI = (78%; 97%)], a balanced accuracy
of 86% [95% CI = (80%; 92%)], and an AUC of 92% [95% CI =
(87%; 97%)] (Figure 4).
Frontiers in Oncology | www.frontiersin.org 5300
Diagnosis Performance of the Radiomic
Classifier on the Test Set
The classifier correctly identified 12/16 BM and 18/21 GBM.
Corresponding sensitivity, specificity, balanced accuracy and
AUC were respectively equal to 75, 86, 80, and 85% (Figures 4
and 5).

Performance of the Radiologists
The performances of the neuroradiologists are described in
Table 2. Even though differences in diagnostic performance
were not statistically significant, we can highlight the fact that
two radiology residents (R3 and R4) had lower scores than the
classifier (respective balanced accuracies of 72 and 72%) whereas
the two neuroradiologists with 10 years of experience (R1 and
R2) and one radiology resident (R5) had better scores than the
classifier (respective balanced accuracies of 87, 94 and 88% versus
balanced accuracy of 80% for the classifier).
DISCUSSION

We have developed a radiomic classifier to differentiate solitary
BM and GBM based on post-contrast 3DT1 MR images with
high diagnostic performances on the validation and test sets.
There was no statistically significant difference between classifier
predictions and human reading by five trained neuroradiologists
(two neuroradiologists with 10 years of experience, and three
radiology residents with about 6 months of training exclusively
in neuroradiology in an expert center).

The radiomic classifier, a logistic regression combined to the
power transform Yeo–Johnson scaling feature method, was
chosen because of its high performance, simplicity, and
because it allowed an interpretation of the underlying model.
Indeed, the fact that the radiomic feature with the most
important coefficient value in the classifier was a shape feature,
i.e. sphericity, partly allows an explainability of our radiomic
TABLE 1 | Demographics and clinical characteristics at diagnosis of the patients included in the training set and in the test set.

Patients characteristics Training set Test set

BM (n = 72) GBM (n = 71) BM (n = 16) GBM (n = 21)

Mean patient age—years 59.29 58.25 59.00 58.19
(standard deviation) (13.29) (14.59) (10.9) (14.5)

Proportion of female gender (%) 53 38 50 52
Proportion of male gender (%) 47 62 50 48
Largest diameter in mm 41.40 53.39 33.85 54.93
median [range] [20.77–77.92] [24.11–88.12] [22.41–63.63] [32.61–102.53]

Patients from Center 1 56 (77.8%) 69 (97.2%) 5 (31.2%) 18 (85.7%)
Patients from Center 2 16 (22.2%) 2 (2.8%) 5 (31.2%) 3 (14.3%)
Primary lung cancer n (%) 29 (40.3) – 8 (50) –

Primary breast cancer n (%) 13 (18.0) – 3 (18) –

Melanoma n (%) 9 (12.5) – 2 (12.5) –

Primary colo-rectal cancer n (%) 5 (6.9) – 0 (0) –

Primary Clair cell carcinoma n (%) 4 (5.6) – 1 (6.3) –

Other primary cancer * n (%) 12 (16.7) – 2 (12.5) –
July 2021 | Volume 11 |
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features-based classifier in contrast with the concept of the “black
box” in some ML models, where even its designers cannot
explain why the artificial intelligence reaches a decision (39). It
introduces the notion of analyzing a tumor with its
representation in 3D to differentiate solitary BM and GBM,
which is usually not available during conventional reading of
sectional imaging. Indeed, sphericity is a 3D shape feature
Frontiers in Oncology | www.frontiersin.org 6301
representing a measure of roundness of the tumor, with a
value ranging from 0 to 1, where 1 indicates a perfect sphere. The
classifier showed that GBM have lower sphericity than BM
(Figure 6), which was expected given the morphological
characteristics of BM and GBM on histopathological slides. The
more spherical the lesion is, themore likely it is tobeaBM.Thus, the
radiomic features-based classifier is consistent with current
A B

FIGURE 4 | Areas under the receiver operating characteristics curve of the radiomic classifier after ten-repeated 5-fold cross-validation (A) and on the test set (B).
FIGURE 3 | Coefficient of each radiomic feature in the decision function for the proposed logistic regression model.
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A B

FIGURE 5 | Confusion Matrix of the radiomic model on the test set (A) and distribution of probabilities as predicted by the logistic regression model compared to
ground truth (B).
FIGURE 6 | Examples of 3D representation of a brain metastasis (A) for which the sphericity was equal to 0.76 and a glioblastoma (B) for which the sphericity was
equal to 0.45. GBM, Glioblastoma; BM, Brain Metastasis.
TABLE 2 | Sensitivities, specificities, balanced accuracies, positive predictive values, negative predictive values of the radiomic classifier and of the neuroradiologists
(R1, R2, R3, R4, R5) on the test set.

Reader Se* Sp* Balanced Accuracy PPV* PNV* Se p-value* Sp p-value*

Radiomic classifier 0.75 0.86 0.8 0.8 0.82 – –

R1 0.88 0.86 0.87 0.82 0.9 0.41 1
R2 0.94 0.95 0.94 0.94 0.95 0.08 0.16
R3 0.69 0.76 0.72 0.76 0.69 0.65 0.41
R4 0.63 0.81 0.72 0.71 0.74 0.48 0.65
R5 0.81 0.95 0.88 0.93 0.87 0.65 0.16
Frontiers in Oncology | www.
frontiersin.org
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*Se, Sensitivity; Sp, Specificity; PPV, Positive Predictive Value; PNV, Positive Negative Value; Se p-value, p-value (calculated with McNemar’s test) of the difference between the sensibility
of the radiomic classifier and the sensibility of the reader; Sp p-value, p-value (calculated with McNemar’s test) of the difference between the specificity of the radiomic classifier and the
specificity of the reader.
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morphological characteristics between BM and GBM, also adding
further information regarding tumor heterogeneity imperceptible
to the human eye, as the radiomic classifier is also based on other
texture and intensity features. This result is in linewith a pioneering
paper (40) that described in 2012 2D circularity as one of the best
morphological features to differentiate BM fromGBM on the basis
of a cohort of 50 patients.

In our study, we trained the ML classifier using a nested cross-
validation and a ten-repeated 5-fold cross-validation on the
training set in order to minimize overfitting. In addition to
limit the extraction to 100 features (shape, first order and second
order features) that we thought to be the most meaningful and
interpretable, we selected a classifier model which could embed
feature selection. For this model, L1 and L2 regularization
methods were tested as hyperparameters. The L2 method
provided the best performance in the cross-validation (CV)
process, validating the usefulness of the 100 features. The
selected classifier was then applied on a test set of data, which
demonstrates that the high performances obtained were not
random but generalizable. In the test set, 12/16 BM were
correctly classified leading to a sensitivity of 75%. Among the
four BM incorrectly classified, two had leptomeningeal
enhancement, one had ventriculitis adjacent to the lesion and
the fourth one had a multilocular lesion (Figure 7). The first
Frontiers in Oncology | www.frontiersin.org 8303
three elements were absent from BM of the training set, which
might have misled the classifier, suggesting the need for a larger
training set which extensively reproduces all clinical situations
encountered in clinic.

The results of our study are consistent with the results of
three previous studies which also used radiomic features-based
classifiers on post-contrast 3D T1 MR images to differentiate
BM from GBM. Among these studies, Chen et al. (41)
achieved diagnostic performance slightly lower than our on
134 patients, however without applying image pre-processing
(42–44) nor evaluation on a test set. Artzi et al. (45) built
a radiomics-based classifier on 358 patients and evaluated its
performance on a test set of 88 patients. Excellent performances
were achieved on the test set. However, the radiomic analysis
was carried out on three central slices only to simplify the
segmentation process, which did not allow 3D shape features
such as sphericity, to be taken into account. Moreover, there was
no comparison to human performance. In 2019, Qian et al. (46)
used a cohort of 227 patients to train a ML classifier using cross-
validation and evaluated it on an independent test set of 185
patients. Despite high diagnostic performances, there were
biases in the study considering several radiomic features-
based classifiers were evaluated on the test set. Finally, in 2020,
Bae et al. (47) developed a Deep Neural Network (DNN)
classifier based on post-contrast 3D T1-weighted and T2-
weighted MR images, which outperformed the best-performing
traditional machine learning model. Results showed excellent
performance on an independent test set (AUC of 0.956 on
the test set) and outperformed scores of two trained neuro
radiologists. However, comparing the literature is not a trivial
task due to the use of different data sets, each with varying
degrees of complexity, suggesting the need for publicly available
data sets.

Our study had a few limitations. First, we chose to build the
radiomic features-based classifier on imaging data acquired on
the same model of MR scanner with acquisitions performed with
the same parameters in order to minimize inter-acquisition
variability. This choice limited the number of patients included
in the study. Several methods are available today to compensate
for differences in image quality between scanners (36, 48), which
should allow the applicability of our signature in other centers. In
addition, no spatial resampling was applied to the MR images
prior to feature extraction. Although this step is mandatory to
obtain rotationally invariant features, no bias was introduced in
the machine learning pipeline, as the entire cohort had exactly
the same imaging parameters. The developed signature can
finally be generalized to new patients with MR images of
different voxel sizes by integrating an additional resampling
step [resampling at a voxel size of (0.8 mm × 0.8 mm ×
1.2 mm)]. Third, a semi-automatic method was used for tumor
delineation and a single radiologist specialized in neurology
performed the contouring of the lesions. Perturbation of the
contours would have been an alternative to multiple
segmentations to evaluate the robustness of the model
developed to segmentation (49). However, the semi-automatic
contouring process has been shown to be reliable between raters
FIGURE 7 | Four incorrectly classified BM of the test set. Two of them presented
tumoral leptomeningitis (arrows, A, B), one a metastatic ventriculitis (C) and the
forth one a multilocular lesion (D). Leptomeningitis and ventriculitis may have
interfered with spatial delineation of tumor boundaries.
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for brain tumors (50). An integrated diagnostic support system
should include an automatic segmentation of the volumes of
interest to be considered for radiomics analysis. The automation
of this step is now possible with high performance as
demonstrated by the recent results of the BRATS challenge
(51). Then, the radiomic only features-based classifier takes
into account imaging data. The addition of the patient’s age,
gender, and medical history elements would lead to holistic
models enabling to analyze the correlations between radiomic/
non-radiomic features, and to better assess the added value of
such a signature compared to more readily available clinical
features (49). As well, only post-contrast 3DT1 MR images were
considered. A more complex classifier combining data from
other sequences such as FLAIR, T2 (47) or perfusion MR
sequences may improve classification performance. Finally, a
larger cohort of lesions studied would enable its generalizability.

In conclusion, we developed a radiomic features-based
classifier based on post-contrast 3DT1 MR images that helps
in differentiating GBM and solitary metastatic brain tumors with
high diagnosis performance. The performance of the radiomic
classifier equals that of neuroradiologists however needs to be
improved in further studies including feature extraction applied
on FLAIR and perfusion sequences. An interesting point is that
the radiomic feature with the highest coefficient value in the
classifier, namely sphericity, allows an explainability of the
developed model. Future studies using this model on larger
sets of patients may clarify its role and its benefit in
differentiating these two lesions, particularly by a prospective
study registered in a trial database.
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Grégoire Boulouis, MD-MSc, Emmanuèle Lechapt-Zalcman,
MD-PhD and Jean-François Meder, MD-PhD; for their
precious help and advice in this study. Figure 1 has been
designed using resources from Flaticon.com.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2021.638262/
full#supplementary-material
REFERENCES
1. Lemke DM. Epidemiology, Diagnosis, and Treatment of Patients With

Metastatic Cancer and High-Grade Gliomas of the Central Nervous
System. J Infus Nurs: Off Publ Infus Nurs Soc (2004) 27:263–9. doi: 10.1097/
00129804-200407000-00012

2. Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, et al.
Brain Metastases. Nat Rev Dis Primers (2019) 5:5. doi: 10.1038/s41572-018-
0055-y

3. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al.
CBTRUS Statistical Report: Primary Brain and Central Nervous System
Tumors Diagnosed in the United States in 2006-2010. Neuro-Oncology
(2013) 15 Suppl 2:ii1–56. doi: 10.1093/neuonc/not151

4. Server A, Josefsen R, Kulle B, Maehlen J, Schellhorn T, Gadmar Ø, et al. Proton
Magnetic Resonance Spectroscopy in the Distinction of High-Grade Cerebral
Gliomas From Single Metastatic Brain Tumors. Acta Radiol (Stockholm Sweden:
1987) (2010) 51:316–25. doi: 10.3109/02841850903482901

5. Benzakoun J, Robert C, Legrand L, Pallud J, Meder JF, Oppenheim C, et al.
Anatomical and Functional MR Imaging to Define Tumoral Boundaries and
Characterize Lesions in Neuro-Oncology. Cancer Radiother: J la Soc Fr
Radiother Oncol (2020) 24:453–62. doi: 10.1016/j.canrad.2020.03.005

6. Daumas-Duport C, Meder JF, Monsaingeon V, Missir O, Aubin ML, Szikla G.
Cerebral Gliomas: Malignancy, Limits and Spatial Configuration. Comparative
Data From Serial Stereotaxic Biopsies and Computed Tomography (a Preliminary
Study Based on 50 Cases). J Neuroradiol = J Neuroradiol (1983) 10:51–80.

7. Petrella JR, Provenzale JM. MR Perfusion Imaging of the Brain: Techniques
and Applications. AJR Am J Roentgenol (2000) 175:207–19. doi: 10.2214/
ajr.175.1.1750207

8. Lin L, Xue Y, Duan Q, Sun B, Lin H, Huang X, et al. The Role of Cerebral
Blood Flow Gradient in Peritumoral Edema for Differentiation of
July 2021 | Volume 11 | Article 638262

mailto:ch.robert@gustaveroussy.fr
http://Flaticon.com
https://www.frontiersin.org/articles/10.3389/fonc.2021.638262/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.638262/full#supplementary-material
https://doi.org/10.1097/00129804-200407000-00012
https://doi.org/10.1097/00129804-200407000-00012
https://doi.org/10.1038/s41572-018-0055-y
https://doi.org/10.1038/s41572-018-0055-y
https://doi.org/10.1093/neuonc/not151
https://doi.org/10.3109/02841850903482901
https://doi.org/10.1016/j.canrad.2020.03.005
https://doi.org/10.2214/ajr.175.1.1750207
https://doi.org/10.2214/ajr.175.1.1750207
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


de Causans et al. Radiomic Classifier of Brain Tumors
Glioblastomas From Solitary Metastatic Lesions. Oncotarget (2016) 7:69051–
9. doi: 10.18632/oncotarget.12053

9. Blasel S, Jurcoane A, Franz K, Morawe G, Pellikan S, Hattingen E. Elevated
Peritumoural rCBV Values as a Mean to Differentiate Metastases From High-
Grade Gliomas. Acta Neurochirurg (2010) 152:1893–9. doi: 10.1007/s00701-
010-0774-7

10. Galanaud D, Nicoli F, Figarella-Branger D, Roche P, Confort-Gouny S. Le Fur
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Purpose:Medical imaging plays a central and decisive role in guiding the management of
patients with pancreatic neuroendocrine tumors (PNETs). Our aim was to synthesize all
recent literature of PNETs, enabling a comparison of all imaging practices.

Methods: based on a systematic review and meta-analysis approach, we collected;
using MEDLINE, EMBASE, and Cochrane Library databases; all recent imaging-based
studies, published from December 2014 to December 2019. Study quality assessment
was performed by QUADAS-2 and MINORS tools.

Results: 161 studies consisting of 19852 patients were included. There were 63
‘imaging’ studies evaluating the accuracy of medical imaging, and 98 ‘clinical’ studies
using medical imaging as a tool for response assessment. A wide heterogeneity of
practices was demonstrated: imaging modalities were: CT (57.1%, n=92), MR (42.9%,
n=69), PET/CT (13.3%, n=31), and SPECT/CT (9.3%, n=15). International imaging
guidelines were mentioned in 2.5% (n=4/161) of studies. In clinical studies, imaging
protocol was not mentioned in 30.6% (n=30/98) of cases and only mentioned
imaging modality without further information in 63.3% (n=62/98), as compared to
imaging studies (1.6% (n=1/63) of (p<0.001)). QUADAS-2 and MINORS tools
deciphered existing biases in the current literature.

Conclusion: We provide an overview of the updated current trends in use of medical
imaging for diagnosis and response assessment in PNETs. The most commonly used
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imaging modalities are anatomical (CT and MRI), followed by PET/CT and SPECT/CT.
Therefore, standardization and homogenization of PNETs imaging practices is needed to
aggregate data and leverage a big data approach for Artificial Intelligence purposes.
Keywords: pancreatic neuroendocrine tumors (pNETs), imaging practices, meta-analysis, systematic review,
computed tomogaphy, MRI, PET - positron emission tomography
INTRODUCTION

Pancreatic neuroendocrine tumors (PNETs) are relatively
uncommon tumors, with an increasing incidence due to
widespread use of cross-sectional imaging (1, 2). PNETs
represent a heterogeneous entity, characterized by a wide
variation in clinical presentation and prognosis due to tumor
functional status, possible genetic context, and variable
aggressiveness, making the management of PNETs highly
challenging (3–6).

Medical imaging plays a critical role in guiding PNETs
patients management (7, 8). Computed tomography (CT) is
often the initial modality used to evaluate pancreatic lesions,
mostly because of its high spatial and temporal resolution (9),
and correlation with histological prognostic factors (10).
Magnetic resonance imaging (MRI) also plays a major
role in pancreatic tumor characterization (11, 12) and
demonstrates imaging features that can be correlated with
tumor aggressiveness and grade (13, 14). A wide range of
molecular imaging techniques are also used in PNET patients,
as Somatostatin receptor (SSTR) imaging with single photon
emission tomography/CT (SPECT/CT) and positron emission
tomography/CT (PET/CT) (15), 18F-DOPA (16) and 18F-FDG
with PET/CT (17). Molecular imaging techniques have shown a
high association with tumor grade and are critical for theranostic
approaches (18–21). Increasingly, a multimodal imaging
strategy, combining anatomical and molecular techniques, are
leveraged for imaging-guided approaches to personalize and
optimize patient management (22, 23).

PNETs present four characteristics that make imaging
evaluation challenging. First, PNETs are hypervascular slow-
growing tumors and therefore, limiting thus the value of using
Response-Evaluation-Criteria-in-Solid-Tumors (RECIST)
because tumor burden remains stable rather than decreased in
patients with the best survival (24, 25). Second, tumor size
measurements may vary with contrast medium injection
protocols on either CT or MRI (26). Third, new targeted
cytostatic agents are used in PNETs treatment and alternative
imaging criteria are needed, as tumor density change on
perfusion CT (25). Fourth, immune-checkpoint modulators
(ICMs) are currently being evaluated in several PNETs clinical
trials (27, 28). Because of their mechanisms of action, radiologists
should be aware of new patterns of response and progression to
immune therapies, as well as immune Related Adverse Events
(iRAE) (29–34). In addition, treatment beyond progression is
allowed and immune RECIST (iRECIST) criteria should be used
(35). This new era of immunotherapy makes tumor response
assessment in PNETs even more difficult.
2308
One of the key concepts unique to medical imaging is that the
relevance and clinical utility of information derived from
imaging depends on technical imaging parameters and
acquisition. Therefore, using poor quality imaging techniques
in clinical routine or in scientific studies may lead to inaccurate
and biased results. Imaging examinations need to be technically
adequate, uniform and homogeneous, which is even more salient
in imaging PNETs since a majority of PNETs are hypervascular
and up to 20% of PNETs measure 2 cm or less. Therefore, CT or
MRI scans without an arterial phase acquisition or thin slices
drastically reduces the sensitivity of the examination (36).
Molecular imaging is also sensitive to technical parameters,
with optimal patient preparation, administered radiotracer
activity, and acquisition time as essential elements for high-
quality molecular examinations (37, 38). Thus, imaging
standardization is critically important in both clinical practice
and in medical research, which encompasses clinical therapeutic
trials and imaging research studies (i.e. diagnostic accuracy
studies, comparison of imaging techniques, etc.). With respect
to clinical trials, survival assessment, therapeutic response or
prognostic value of a therapeutic effect are mostly dependent on
the tumor imaging response mostly based on tumor size
variations assessed by medical imaging. In an effort to
harmonize and standardize clinical practice, the European
Neuroendocrine Tumor Society (ENETS) published consensus
guidelines for the standards of care in 2009 (38), which was
updated in 2017 (37) and emphasized the importance of PNETs
diagnostic procedures and technical quality of imaging methods.

In order to unravel the potential “imaging databases” that
exist at the international level, we have conducted an updated
review on the current imaging trends in clinical practice and
research, based on a systematic review and meta-analysis
approach, evaluating standardization of medical imaging in
international PNETs studies during the last five years. The aim
of this study was to evaluate the methodology and level of
standardization of imaging in the recent literature of PNETs.
We have focused this review on recent literature in order to
reflect updated and current practices in imaging of PNETs,
especially given the growth of literature in newer imaging
techniques and theranostics.
MATERIALS AND METHODS

A preliminary step was conducted before stating this study, in
which we have reviewed all available literature using different
international guidelines in this area. This search is summarized
in Supplementary Table 1.
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Literature Search Strategy
and Study Selection
The study protocol was developed and previously registered in
PROSPERO (study number: CRD42020168542).

In order to review the entire recent published literature on
PNETs during the last five years, a systematic search of major
reference databases MEDLINE (PubMed), CENTRAL
(Cochrane Central Register of Controlled Trials) and EMBASE
was undertaken in December 2019, according to the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines (39). PRISMA checklist is shown in
Supplementary Table 2.

Key search terms included “pancreatic neuroendocrine tumor/
tumor/neoplasm/carcinoma”, and “islet cell adenoma/tumor”.
Study selection focused on recent literature, from December 1,
2014 to December 1, 2019. Details of search terms used for each
database is reported on Supplementary Table 3.

After removal of duplicate studies and publications including
only an abstract, non-English and non-human studies were
automatically excluded from the study selection, as were case
reports, systematic or non-systematic reviews and meta-analysis.
The bibliographic management commercial software used was
EndNote X9.3.1.

Inclusion and Exclusion Criteria
Titles and abstracts of studies were initially screened to select
eligible publications, by removing studies dealing with the
following topics: (1) Publications with other NETs than PNETs
or non-neuroendocrine neoplasms/Not exclusively about PNETs;
(2) Inherited syndromes and mutated population (MEN-1, VHL,
NF-1); (3) Studies investigating the diagnostic value of
Ultrasound (US), endoscopic-US (EUS), EUS-guided fine
needle aspiration (EUS-FNA); (4) Basic science.

Then, full-text studies of eligible publications were reviewed to
select all of imaging-based publications, separated into 2 subgroups:
1) imaging diagnostic accuracy studies and related studies:
comparison of two imaging techniques, evaluation of prognosis
value of a subtype of imaging technique; 2) clinical studies,
including observational and cohort studies, experimental studies
and clinical trials, for therapeutic or prognostic purposes, whose
results are themselves based on therapeutic responses and survival
endpoints (Progression-Free Survival PFS, Disease-Free Survival
DFS, Disease Control Rate DCR, Recurrence-Free Survival RFS,
Objective Response Rate ORR), fully dependent on imaging.

All studies identified by the search were screened for
eligibility by two independent authors (E.P and F.Z.M),
blinded to each other’s decisions. In case of disagreement, a
consensus was reached after review with a third reviewer (L.D).

Data Extraction
The two reviewers (E.P and F.Z.M) who performed the initial
literature search independently extracted relevant data for each
selected imaging-based publication, using a standardized form.
This includes (a) General publication data (title, authors, journal
and year of publication, country of origin); (b) Study design
characteristics; (c) Demographic, clinical and pathological
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variables; (d) Type of imaging-based survival endpoint assessed
(PFS, RFS, DFS, DCR, ORR) (e) Any imaging available data
(imaging modality used, response evaluation criteria used); (f)
Technical characteristics and acquisition parameters of each
imaging modality; (g) Reference or mentioning of an imaging
technical guideline from international NET societies. Table 1
summarizes all extracted data. Two investigators (E.P, F.Z.M)
working in duplicate independently assessed all studies.
Discordances were discussed with a third reviewer (L.D) and
resolved by consensus.

Methodological Quality: Risk of Bias and
Quality of Evidence
We assessed the risk of bias for all included studies. First, the
Quality Assessment of Diagnostic Accuracy Studies 2
(QUADAS-2) tool was used without modification as provided
by the QUADAS-2 group (40). This tool aims to evaluate the
methodological quality applied to four “risk of bias” domains
and three “concerns regarding applicability” domains (a total of
7 items to assess). Then, we also used the Methodological Index
for Non-Randomized Studies (MINORS) grading score for
clinical studies (41). MINORS score is a validated tool which
uses eight graded questions for non-comparative studies. We
judged each domain as presenting low, high, or unclear risk of
bias by using a numeric score: each item can be scored as 0 (not
reported), 1 (reported but inadequate) and 2 (reported and adequate).
Ideal global score varies from 16 for non-comparative studies and 24
for comparative ones.

Statistical Analysis
Analyses were conducted using Microsoft Excel (v2019,
Microsoft, USA, 2019) and open-source R software (version
3.6.2; R Foundation for Statistical Computing, Vienna,
Austria). A p-value less than 0.05 was considered to indicate
statistical significance (a=0.05).
RESULTS

Identification and Selection of Studies
The literature search yielded 9982 studies. Following the removal
of duplicates, 6509 studies remained. Among them, 4189 records
including only an abstract (n=149), non-English (n=293) and
non-human studies (n=2115) were automatically excluded from
the study selection, as were case reports (n=1058), systematic or
non-systematic reviews and meta-analysis (n=574). Afterwards,
2320 studies were screened on the basis of title and abstract.
Among them, 1846 were excluded: studies not exclusively
dealing with PNETs (n=951), inherited syndromes (n=133),
studies evaluating ultrasound (US) (n=250), basic science
studies (n=317), and unrelated studies (n=195).

474 publications were included and fully reviewed, of which
161 were identified as imaging-based studies and included in the
final analysis: 63 imaging studies on diagnostic accuracy studies
and related studies and 98 clinical studies based on therapeutic
responses and survival endpoints, fully dependent on imaging.
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TABLE 1 | Extracted relevant data.

General publication data Title
Authors
Journal and year of publication
Geographical origin

Study design and characteristics Diagnostic accuracy study
Cohort study
Clinical trial (with phase)
Case-control study
Data collection
method

Prospective
Retrospective

Comparative
Randomized
Institutional design Monocentric

National multicentric
International multicentric

Duration of study Time interval Data collection start date
Data collection end date
Duration of time interval

Demographic and clinical variables Number of patients
Mean age
Gender Male

Female

Inherited syndrome
Metastatic disease

Tumor functional status Functional Insulinoma
Gastrinoma
Glucagonoma
VIPoma
Other

Nonfunctional

Pathologic features ENETS/WHO grading G1
G2
G3

TNM/UICC staging Stage 1
Stage 2
Stage 3
Stage 4

Imaging modality CT
MRI
SPECT/CT
PET/CT
Available technical acquisition parameters
Number of equipment

Anatomical imaging practices Detailed acquisition protocol
Contrast agent administration
Use of bolus tracking
Slice thickness

Nuclear medicine imaging practices Time before acquisition
Time acquisition
Molecular radiotracer 68Ga-DOTA

18F-FDG
18F-DOPA
GLP-1R

(Continued)
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The PRISMA flow chart of literature search and study selection
process is shown in Figure 1.

Study Characteristics
Between December 2014 and December 2019, the average [range]
annual number of publications was 12.6 [2;22] for imaging studies
and 19.6 [1;24] for clinical studies (Figure 2A). Sixty-three
imaging studies (diagnostic accuracy studies and related studies)
and ninety-eight clinical studies have been identified. Eighty-nine
percent (56/63) of the imaging studies, and eighty-five percent (83/
98) of clinical ones, were retrospective (Table 2, Figure 2B). The
most common study design was retrospective cohorts (n=84,
85.7%). Only 3.2% (n=2) of imaging publications and 4.1%
(n=4) of clinical publications were randomized. Similarly, a
minority of the studies was comparative: 14.3% (n=9) of
imaging publications and 15.3% (n=15) of clinical publications.

A majority of imaging studies (n=60, 95.2%) were performed
only in a single institution while 4.8% (n=3) were multi-
institutional studies from a single country. Strikingly, no
studies were international collaborations. Range of multi-
institutional from a single country studies upon clinical studies
was higher (27.6% (n=27)), and 11.2% (n=11) were international
Frontiers in Oncology | www.frontiersin.org 5311
studies (p=<0.001) (Figure 2C). In addition, 92.9% (n=91) of
clinical studies were non-blinded, against only 4.8% (n=3) for
imaging studies (p=<0.001) (Table 2).

The mean duration of retrospective studies (time interval
chosen in the database used) was 5.7 years [0;27] (Figure 2D).
Moreover, 71.4% (n=70/98) of clinical studies started before
2005, while 53.9% (n=34/63) of imaging studies used data
collected after 2005 (p=0.007).

Finally, the geographical origin per continent of the
populations studied is firstly represented by Asia (n=72,
41.1%), followed by Europe (n=64, 36.3%), and North America
(n=36, 20.6%) (Figure 2E).

Demographic, Clinical and
Pathological Variables
In this study, 19852 patients were included, with 15728 patients
in “clinical studies” and 4124 patients in “imaging studies. The
mean [SD] number of patients was lower in imaging studies than
clinical studies: 65.5 [52.7] and 160.5 [345.3] respectively
(p=0.032). For imaging studies, 51.8% of included patients
were female, with a mean (SD) age of 49.4 (15.9). In clinical
studies, 49.1% were female with a mean (SD) age of 53.4 (13.0).
TABLE 1 | Continued

Radiotracer dose
Place of imaging in clinical studies Type of imaging-based survival endpoint

Imaging response evaluation criteria
Mention imaging technical guidelines
FIGURE 1 | PRISMA flow chart of literature search and study selection process.
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All pathological variables, especially the tumor functional status,
type of PNET if functional, rate of mutated population and
metastatic disease, ENETS/WHO grading and TNM/UICC
staging are summarized in Table 3.

Recent Trends in PNET Imaging
The two imaging modalities most frequently used in the recent
PNET literature are CT and MRI representing 57.1% (n=92/161)
and 42.9% (n=69/161) of studies, respectively. Nuclear medicine
imaging was less frequently used with 19.3% (n=31/161) of studies
utilizing PET/CT and 9.3% (n=15/161) utilizing planar scintigraphy
and/or SPECT/CT. No significant difference was observed between
Frontiers in Oncology | www.frontiersin.org 6312
imaging and clinical studies. Detailed repartition of imaging
modalities per subgroup is illustrated in Figure 2F.

Standardization of Practice: Reporting of
Imaging Technical Parameters
In imaging studies, available information on imaging methods,
examination protocol and technical details for each imaging
modality were collected and summarized in Table 4. With
respect to CT, most studies reported a detailed imaging
acquisition protocol (93.8%), with almost all studies using
multiphase contrast-enhanced acquisition, except one reporting
single phase acquisition. CT slice thickness parameters were
TABLE 2 | Study characteristics per subgroup.

Studies characteristics Imaging studies (n=63) Clinical studies (n=98) P value

Data collection Prospective (%) 7/63 (11.1%) 15/98 (15.3%) 0.602
Retrospective (%) 56/63 (88.9%) 83/98 (84.7%)

Design Diagnostic accuracy studies (%) 63/63 (100%) – N.A
Cohort (%) – 84/98 (85.7%) N.A
Clinical trial (%) – 13/98 (13.3%) N.A

Method Randomization (%) 2/63 (3.2%) 4/98 (4.1%) 1
Comparative (%) 9/63 (14.3%) 15/98 (15.3%) 1

Institutional design Monocentric (%) 60/63 (95.2%) 60/98 (61.2%) <0.001
National multicentric (%) 3/63 (4.8%) 27/98 (27.6%)
International multicentric (%) – 11/98 (11.2%)

Blinding Non-blinded (%) 3/63 (4.8%) 91/98 (92.9%) <0.001
Simple blinded (%) 60/63 (95.2%) 5/98 (5.1%)
Double blinded (%) – 2/98 (2.0%)
July 2021 | Volume 11 | Article
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FIGURE 2 | Overview of trends in imaging practices for PNETs.
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available in 75.0% of studies, with a mean slice thickness of
2.6 mm. Contrast administration details were reported in most
studies (81.3%), with 56.3% using contrast bolus tracking.
Majority of CT studies were performed on 2 or more different
types of CT-equipments (68.8%).

For MRI, most studies reported an imaging acquisition
protocol (95.2%, n=20/21), with almost all studies acquiring
multiphase contrast-enhanced images (80%, n=16/20), T1- and
T2-weighted images (90.5%), and majority of studies obtaining
DWI images (76.2%). MRI slice thickness parameters were
available in 81.0% of studies, with a mean slice thickness of
3.1 mm. Details of contrast administration were reported in
66.7% of studies. Among studies in which MRI scanner details
were reported (n =20/21), half of them were performed on one
single MRI scanner, while other half were performed on 2 or
more different scanners. For magnet field strength, 33.3% were
performed on a 1.5 T system, 28.6% on a 3.0 T system, and 33.3%
used both 1.5 and 3.0 T systems.

For PET/CT imaging, the most common radiotracer studied
in PNETs is 68Ga-DOTA (31.3%), followed by the GLP-1R
agonist (25%), 18F-DOPA (25%), and 18F-FDG (18.6%). Most
studies were performed on one scanner (68.8%, n=11/16), while
the rest were performed on 2 or more scanners (25%, n=4/16),
with 1 study not reporting scanner details. For SPECT/CT, 57.1%
of studies evaluated SSTR radiotracers, while 42.9% studied GLP-
1R. Most studies reported scanner details (71.4%, n=5/7), with all
of them performing it on a single scanner.
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There was significant heterogeneity regarding the reporting of
imaging modalities and imaging acquisition protocols
(Figure 2G). For example, 30.6% (n=30/98) of clinical studies
did not describe which imaging modalities were used, in contrast
to imaging studies, which specified the imaging modality in
100% of cases (n=63/63) (p<0.001). Additionally, 63.3% of
clinical studies (n=62/98) reported the imaging modalities
used, however, no details on the imaging protocol were
reported, while only one imaging study did not report the
specific imaging protocol used (1.6%, p<0.001). In only 11.2%
(n=11) of clinical studies, injection phase was specified, and in
4.1% (n=4), the multiphase injection phase was clearly specified.

Studies rarely mentioned international guidelines with no
clinical study and only four (6.3%) imaging studies referring to
guidelines, all of them exclusively referencing ENETS 2009
guidelines (n=4) (16, 42–44) with no studies referencing the
most updated 2017 ENETS technical guidelines (37).

Methodological Quality: Risk of
Bias Assessment
Imaging Studies
For imaging studies (QUADAS-2: Figure 2H), no study was
considered to be at low risk of bias for all domains. In 6.3% of
included studies, a high risk of bias for patient selection was due
to non-consecutive or random enrollment. Regarding the patient
flow and timing, 20.6% of imaging studies used a combination of
histopathologic findings and clinical follow-up in reference
TABLE 3 | Demographic, clinical and pathological variables per subgroup.

Imaging studies (n=63) Clinical studies (n=98) P value

Number of patients 65.5 (52.7) 160.5 (345.3) 0.032
Age 49.4 (15.9) 53.4 (13.0) 0.077
Gender*
Male 29.8 (27.3); 48.2% 79.7 (179.0); 50.9% 0.03
Female 32.1 (28.8); 51.8% 76.9 (166.7); 49.1% 0.036

Tumor functional status
Functional 9.9 (18.4) 20.4 (52.3) 0.129
Insulinoma 6.3 (13.0) 7.9 (27.5) 0.657
Gastrinoma 1.3 (5.8) 3.2 (15.8) 0.359
Glucagonoma 0.4 (0.8) 1.3 (6.8) 0.269
VIPoma 0.1 (0.2) 0.8 (3.0) 0.062
Other functional PNET 0.2 (1.0) 0.6 (1.9) 0.12
Nonfunctional 22.9 (43.3) 100.1 (295.7) 0.042
Not available 1.4 (11.3) 0.9 (4.8) 0.712

Inherited syndrome 2.6 (8.3) 4.2 (11.2) 0.326
Metastatic disease 9.4 (17.3) 43.3 (124.5) 0.034
Pathologic features
ENETS/WHO grading

G1 33.1 (36.8) 54.1 (89.1) 0.077
G2 18.0 (17.9) 38.8 (50.1) 0.003
G3 3.9 (5.6) 8.0 (11.7) 0.009
Not available 0.5 (1.7) 34.0 (278.9) 0.342

TNM/UICC staging
Stage 1 6.1 (14.9) 26.5 (148.4) 0.28
Stage 2 4.1 (13.4) 15.6 (64.6) 0.166
Stage 3 1.7 (4.6) 6.6 (18.8) 0.047
Stage 4 2.3 (6.1) 19.1 (121.6) 0.275
Not available 0.1 (0.5) 0.6 (3.0) 0.128
July 2021 | Volume 11 | Article
Data are expressed as: mean (SD). *data are expressed as: mean (SD); percentage.
The bold values represent significant values. SD Standard deviation, ENETS European Neuroendocrine Tumor Society, WHO World Health Organization, TNM Tumour Node Metastasis,
UICC Union for International Cancer Control.
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standard, introducing a high risk of bias. Lastly, in 4.8% of
studies, a high risk of bias was recorded due to a non-blinded
nature of reference standard assessment of imaging test results.

Clinical Studies
Using MINORS index for clinical studies (Figure 2I) allowed
highlighting the fact that the main bias was introduced by the
lack of prospective collection of data in 56.1% of the time. The
second major bias was the lack of information on the consecutive
nature of the inclusion of patients (16.3%). Of note, only a small
proportion of the clinical studies was comparative (13.3%, n=15/98),
which precluded the possibility to evaluate the four additional
criteria (adequate control group, contemporary groups, baseline
equivalence of groups, adequate statistical analyses).
Frontiers in Oncology | www.frontiersin.org 8314
DISCUSSION

Medical imaging plays a decisive role in PNETs management, a
highly challenging disease (22), and is represented by a large panel
of imaging tools available to physicians. With a purpose of
standardizing practices, ENETS 2017 guidelines emphases on the
need for technical quality of imaging methods (37, 38, 45). To
optimize treatment strategies, it is often necessary to combine data
from several centers in clinical therapeutic trials. In the new era of
big data and artificial intelligence, harmonization of imaging
practices is especially important to find relevant imaging
biomarkers. This also explains the importance of assessing
practice heterogeneity, in order to unravel the potential “imaging
databases” that exist in this field. Based on this unmet need, the first
TABLE 4 | Imaging methods, examination protocols and technical details for each imaging modality.

A. Anatomical imaging
Modality CT MRI

Number of studies per modality (%) 32/63 (50.8%) 21/63 (33.3%)
Detailed acquisition protocol (%) 30/32 (93.8%) 20/21 (95.2%)
Multiphase contrast-enhanced acquisition (%) 29/30 (96.7%) 16/20 (80.0%)
Single-phase acquisition (%) 1/30 (3.3%) 3/20 (15.0%)
T1-weighted imaging – 19/21 (90.5%)
T2-weighted imaging – 19/21 (90.5%)
Diffusion-weighted imaging – 16/21 (76.2%)

CT-slice thickness available information (%) 24/32 (75%) 17/21 (81.0%)
CT-slice thickness (mm) (mean ± SD) 2.6 ( ± 2.0) 3.1 ( ± 1.0)
Details of the contrast agent administration (%) 26/32 (81.3%) 14/21 (66.7%)
Bolus tracking (%) 18/32 (56.3%) –

Available technical acquisition parameters (%) 21/32 (65.6%) 17/21 (81.0%)
Number of CT/MR-system used
One equipment (%) 4/32 (12.5%) 10/21 (47.6%)
Two or more equipments (%) 22/32 (68.8%) 10/21 (47.6%)
Not available (%) 6/32 (18.8%) 1/21 (4.8%)

Magnetic Field Strength (Tesla)
1.5 T-system (%) – 7/21 (33.3%)
3.0 T-system (%) – 6/21 (28.6%)
1.5 and 3.0 T-system (%) – 7/21 (33.3%)
Not available (%) – 1/21 (4.8%)

B. Molecular imaging
Modality SPECT PET
Number of studies per modality (%) 7/63 (11.1%) 16/63 (25.4%)
Molecular radiotracer

68Ga-DOTA (%) 4/7 (57.1%) 5/16 (31.3%)
GLP-1R (%) 3/7 (42.9%) 4/16 (25%)
18F-FDG (%) – 3/16 (18.6%)
18F-DOPA (%) – 4/16 (25%)

Radiotracer dose
68Ga-DOTA (MBq) (mean ± SD) 227.1 ( ± 100.3) 145.2 ( ± 33.1)
GLP-1R (MBq) (mean ± SD) 299.8 ( ± 381.2) 88.8 ( ± 11.4)
18F-FDG (MBq) (mean ± SD) – 328.1 ( ± 106.3)
18F-DOPA (MBq) (mean ± SD) – 263.8 ( ± 18.9)

Time before acquisition (min) (mean ± SD) 1181 ( ± 972.8) 57.5 ( ± 42.6)
Time acquisition
Not available (%) 6/7 (85.7%) –

Available (%) 1/7 (14.3%) –

Number of systems used
One equipment (%) 5/7 (71.4%) 11/16 (68.8%)
Two or more equipments (%) – 4/16 (25%)
Not available (%) 2/7 (28.6%) 1/16 (6.3%)
July 2021 | Volume 11
A: imaging methods, examination protocol and technical details for each imaging modality: anatomical imaging. CT Computed Tomography, MRI Magnetic Resonance Imaging.
B: imaging methods, examination protocol and technical details for each imaging modality: molecular imaging, SPECT Single-Photon Emission Computed Tomography,
PET Positron Emission Tomography, SSTR Somatostatin Receptor, 18F-FDG Fluorodeoxyglucose, 18F-DOPA Fluorodeoxyphenylalanine, GLP-1R Glucagonlike Peptide-1 Receptor,
SD Standard Deviation.
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objective of this systematic review was to assess the level of
standardization of imaging practices in the recent PNETs literature.

In this study, we demonstrated the existence of a significant
lack of standardization and homogenization of methodological
imaging practices in the recent PNETs literature. Study selection
resulted in 161 imaging-based manuscripts and allowed the
creation of two different sub-groups of publications in the final
analysis: 63 imaging studies and 98 clinical studies.

The choice of studying each sub-group separately can be
explained by our assumptions about the differences in conduction
of each type of studies. In imaging studies subgroup, we expected
to have all the necessary details because the purpose of these
studies is to evaluate diagnostic accuracy. We wanted to assess
the degree of homogeneity and compare this information with the
international guidelines. For clinical studies in which the
therapeutic evaluation is obtained by radiological assessment, we
have hypothesized a very small amount of technical details since
clinical outcomes were the primary endpoints.

Our study is the first to evaluate imaging standardization in
PNETs. Beyond the overall lack of methodological standardization
and homogenization, six key concepts were identified in this study.

First, overall methodology quality remains suboptimal.
Indeed, the vast majority of the studies was retrospective
(n=139/161; 86.3%) and non-randomized (n=155/161; 96.3%).
However, there was a significant difference between the two
subgroups in terms of institutional design, with multicentric
nature in 38.8% of clinical studies, versus less than 5% of imaging
studies (p=<0.001). This point may indicate that clinical studies
are generally more qualitative, in a methodological point of view.
At the opposite, clinical studies were mostly non-blinded, against
only 4.8% of imaging studies (p=<0.001), making thus imaging
diagnostic accuracy studies’ evaluation methodologically valid.
While clinical studies are prospective and multicentric, there is
limited reporting of and lack of standardization of the imaging
acquisition in these studies, which may lead to heterogeneous
image quality. Imaging studies have more homogeneous and
better described imaging techniques, but the level of evidence is
limited by the fact that studies are monocentric and retrospective.

Second, there is a mismatch between types of data used for
clinical or imaging studies. While 71.4% of clinical studies started
collecting data before 2005 (n=70/98), 53.9% (n=34/63) of
imaging studies used data collected after 2005. This point
highlights the possible difference between results obtained with
clinical studies as compared to imaging ones. Indeed, molecular
imaging in the field of NET has been extensively developed this
last decade, vastly improving the performance of imaging
techniques through more accurate methods, such as Ga-68
DOTATATE PET/CT imaging (46, 47). The two most
common imaging modalities reported in the recent PNETs
literature are CT and MRI, despite significant progress in
nuclear medicine imaging, with the advent of newer high-
performance PET radiotracers and its increased availability.
Therefore, we predict there will be a future rebalancing in the
partition of different PNETs imaging modalities.

Third, geographical distribution of populations in the current
literature shows a lack of representation of patients from South
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America, Africa and Oceania, although the prevalence of PNETs
in these parts of the world is not different (48). In other terms,
international societies need to encourage research in these
countries in order to obtain worldwide results, and better
homogenize PNET patients’ management, both in clinical
routine and for research purposes.

Fourth, imaging procedures are described more frequently
and in better detail in imaging studies than in clinical studies,
even in large multicentric international clinical studies. Moreover,
the radiological assessment is also of better quality in imaging
studies, with a significantly higher rate of blinded assessors. In
90.8% of clinical studies, imaging assessment was not clearly stated.
Paradoxically, in this study, multicentric international studies,
which are supposed to be methodologically better, presented
lower quality in terms of radiological methodology. This can be
explained by a lack of standardization between each center. For
instance, RADIANT-3, a large prospective, randomized, phase 3
clinical trial, published in 2011, demonstrated improvement of
everolimus in progression-free survival (PFS) compared with
placebo for patients with advanced PNETs (49). Contrasting with
the vast majority of the recent clinical studies analyzed, imaging
technical details were fully described in their supplementary
materials. Since progression-free survival is in part an imaging-
based clinical endpoint, this fact confirms that this study is
methodologically correct in terms of technical quality and
imaging protocol and has a high evidence-based value.

Fifth, adherence to international guidelines is very low in the
included studies, as shown by low rates of reference to
international imaging technical guidelines (2.5% (n=4/161) of
all selected studies). In these 4 cases (published between 2015 and
2018), ENETS 2009 technical guidelines were mentioned. We
noticed that ENETS 2017 technical guidelines were never
mentioned in the 102 selected articles published since 2017,
although it was the most recent and detailed guidelines.

Last, there was a lack of imaging quality assessment tools.
Indeed, many tools and indexes are available for methodological
quality evaluation of studies and assessment of risks of bias. We
have chosen to use MINOR and QUADAS-2 because of their
simplicity and their reliability, as demonstrated by the rigorous
and evidence-based process to develop these tools. However,
neither of these tools were specifically designed to assess how
standardized imaging procedures are performed, which can be
essential in some areas. Therefore, it seems important that future
work focuses on a methodological quality assessment tool that
incorporates the evaluation of how imaging techniques
are performed.

Based on a systematic review and meta-analysis approach,
using strict inclusion criteria, we applied state-of-the-art
methodology in this research. We have chosen to restrict our
search strategy to the last five years. Indeed, we focused on
imaging technical parameters, a field of medicine and technology
that is constantly evolving and changing. For example, thin CT
sections were not routinely systematic before 2009 ENETS
technical guidelines.

These results showed the difficulty of pooling all data for a big
data approach. Qualitative assessment of potential “imaging
July 2021 | Volume 11 | Article 628408
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databases”, theoretically accessible to Datamining using AI in
recent PNETs literature shows an excessive data heterogeneity.
This is exacerbated by the use of many different machines and
equipment, which increases input data variability. Initiatives like
the EARL FDG PET/CT accreditation program provide a way to
limit the data heterogeneity and facilitate multicenter research
projects with accurate and reproducible imaging data.

Results expressed in this study might have major implications
for clinicians, researchers, and guideline committees. Clinical
decisions should be based on the best available imaging
technique, using rigorously the recommended technical
properties for each technique. A non-optimal imaging
acquisition or reconstruction should be repeated before taking
any clinical decision.

Similarly, precision should be requested in imaging-based
studies. In addition, as a quality guarantee, affirmation of the use
of imaging examinations in accordance with reference guidelines
should be at least mentioned before envisioning any future
publication. Another approach to improve practices would be
to modify prospective databases from which a majority of studies
collect their information. Technical imaging data, radiological
protocols and acquisition methods should be mentioned, and
only patients who have benefited from appropriate imaging
examinations in accordance with international guidelines
should be included. A proposal to expand these databases to
include imaging technical information would also allow better
selection of patients with technically correct imaging.

Herein, this systematic review of the recent literature on
PNETs, with a special emphasis on imaging, demonstrates the
lack of rigorous reporting and standardization of imaging
techniques in clinical practice and research. Indeed, a clear gap
in imaging information in clinical studies was demonstrated,
particularly for types of modalities used, radiological protocol
applied, and imaging assessment. This lack of information seems
more intriguing, when it comes to clinical studies whose results
are mainly based on radiological evaluation. Even when technical
details were available in imaging studies, there is a significant
heterogeneity of practices and a lack of references to established
Frontiers in Oncology | www.frontiersin.org 10316
international guidelines. This non-uniformity makes it difficult
to envision a pooled use of data for AI datamining and big data
purposes since AI needs absolute homogeneity and
standardization of clinical practices, that will perhaps allow
identifying new biomarkers for treatment effectiveness, and
thus a higher optimization of PNETs patients’ management.
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CNN Based Denoising on FDG PET
Radiomics
Cyril Jaudet1*, Kathleen Weyts2, Alexis Lechervy3, Alain Batalla1, Stéphane Bardet2

and Aurélien Corroyer-Dulmont1,4*

1 Medical Physics Department, CLCC François Baclesse, Caen, France, 2 Nuclear Medicine Department, CLCC François
Baclesse, Caen, France, 3 UMR GREYC, Normandie Univ, UNICAEN, ENSICAEN, CNRS, Caen, France, 4 Normandie Univ,
UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France

Background:With a constantly increasing number of diagnostic images performed each
year, Artificial Intelligence (AI) denoising methods offer an opportunity to respond to the
growing demand. However, it may affect information in the image in an unknown manner.
This study quantifies the effect of AI-based denoising on FDG PET textural information in
comparison to a convolution with a standard gaussian postfilter (EARL1).

Methods: The study was carried out on 113 patients who underwent a digital FDG PET/
CT (VEREOS, Philips Healthcare). 101 FDG avid lesions were segmented semi-
automatically by a nuclear medicine physician. VOIs in the liver and lung as reference
organs were contoured. PET textural features were extracted with pyradiomics. Texture
features from AI denoised and EARL1 versus original PET images were compared with a
Concordance Correlation Coefficient (CCC). Features with CCC values ≥ 0.85 threshold
were considered concordant. Scatter plots of variable pairs with R2 coefficients of the
more relevant features were computed. A Wilcoxon signed rank test to compare the
absolute values between AI denoised and original images was performed.

Results: The ratio of concordant features was 90/104 (86.5%) in AI denoised versus 46/104
(44.2%) with EARL1 denoising. In the reference organs, the concordant ratio for AI and
EARL1 denoised images was low, respectively 12/104 (11.5%) and 7/104 (6.7%) in the liver,
26/104 (25%) and 24/104 (23.1%) in the lung. SUVpeak was stable after the application of
both algorithms in comparison to SUVmax. Scatter plots of variable pairs showed that AI
filtering affected more lower versus high intensity regions unlike EARL1 gaussian post filters,
affecting both in a similar way. In lesions, the majority of texture features 79/100 (79%) were
significantly (p<0.05) different between AI denoised and original PET images.

Conclusions: Applying an AI-based denoising on FDG PET images maintains most of the
lesion’s texture information in contrast to EARL1-compatible Gaussian filter. Predictive
features of a trained model could be thus the same, however with an adapted threshold.
Artificial intelligence based denoising in PET is a very promising approach as it adapts the
denoising in function of the tissue type, preserving information where it should.

Keywords: denoising, AI, PET, radiomics, medical imaging, convolutional neural network, VEREOS
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INTRODUCTION

Imaging modalities are nowadays an essential diagnostic tool in
medicine. From 2009 to 2019 the number of exams in the USA
has increased by about 18%, 42% and 105% for CT, MRI and
PET respectively (1). This increasing demand has exceeded the
actual offer leading to unreasonable delay, weeks or even months
for MRI and PET scans in France/Europe (2). An appropriate
image denoising may help to reduce scanning time or even
reduce injected dose for PET. It may allow to increase the
number of examinations without impacting too much working
hours or requiring the installation of new medical imaging
devices. Deep learning as a subdivision of artificial intelligence
(AI) allows to build promising denoising models.

We focused on PET imaging as it will benefit of denoising
because of its long scanning time. Although many studies are
actually investigating the clinical performance of this method, it
may also impact other emerging fields such as imaging based
predictive models, radiomics and other AI applications (3).

Medical images are basically a visual representation of
different grey levels based on their density (CT), magnetic
properties (MRI) or functional information (PET/SPECT). The
distribution of the grey values characterizes the heterogeneity of
the information. A fast-evolving field called radiomics provide a
methodology to extract different features based on intensity,
shape, texture from images in order to build predictive models
(4). This approach holds great promises as being able to predict
patient outcomes. They might allow personalized treatment. As
an example, an overall survival predictive model including
radiomics features was computed in lung cancer (5) This field
is increasing with an annual growth rate of published papers of
177.82% between 2013 and 2018 (6). The models are very
promising but there are still some efforts to be made to
translate and implement them in a routine clinical setting (7).

Artificial intelligence is in the early phase of application in
medical imaging. In this article, we used deep learning and more
specifically convolutional neural network approaches which
represent a subdivision of AI techniques. Today deep learning
has a key role in image reconstruction, processing (denoising,
segmentation), analysis and predictive modelling. These
applications will develop even more in the future (8). In most
of these tasks, they often outperformed a more traditional
approach (9). A comparison of this type of AI based denoising
algorithm on a PET/MR with clinical data show an increase of
the contrast over noise ratio by 46.80 ± 25.23% compared to
18.16 ± 10.02% for a Gaussian filter only (10)]. Other methods
studied in (10) like guided nonlocal means, block matching 4D
or deep decoder improve the CNR oby24.35 ± 16.30%,
38.31 ± 20.26% and 41.67 ± 22.28% respectively. Denoising may
also be performed during reconstruction, however this cannot be
implemented on an existing machine. The most important
limitation is the lack of FDA or CE certification of all those
approaches. We focus our study on Subtle PET™ (Subtle
Medical, Stanford, USA provided by Incepto, France). It is a post-
processing FDAandCEapproveddenoising software for FDGPET
(11), based on convolutional neural networks (CNN), the most
common deep learning architecture for image processing.
Frontiers in Oncology | www.frontiersin.org 2320
AI denoising and radiomics are two very promising fields in
medical imaging. However, we are the first, to the best of our
knowledge, to try to combine these two approaches for PET
Imaging. We question whether a radiomics model using PET
[18F] FDG trained on classical data is still valid after an AI
denoising method. This study measured the stability of basic and
radiomics PET features in lesions and normal reference organs
when applying an AI denoising solution. We also wanted to
provide an intuitive understanding on how images are affected by
AI compared to a reference gaussian post filter routinely used in
our center to generate EARL1 compatible PET series.
MATERIALS AND METHODS

This retrospective study was approved by the local institution
review board. 113 patients referred to our oncological institution
for an initial or follow-up [18F] FDG PET/CT exam between
January and March 2020 were retrospectively included. We
obtained an informed consent (non-opposition) from all patients.
This observational studywas in linewithMR004, a national French
institution (INDS) defininghealth research conduct guidelines. The
study population characteristics are shown in Table 1.

Our PET center is accredited by EANM research limited
(EARL) (12) and EANM imaging guidelines (13) were respected.
The patients were injected with 4MBq/kg of [18F] FDG IV. PET
images from skull base to mid-thighs were acquired on a digital
TABLE 1 | Description of the patient cohort.

Patients (N) 133 Number

Sex 68% female%

Age(Y) 61.5±13.5 mean±SD

[24-89] [range]

Weight (kg) 74±16 mean±SD

[35-110] [range]

BMI(kg/m2) 27±6 mean±SD

[15-42] [range]

Indication

Oncologic 95 (84%)

Number (%)

Breast 36 (32%)

Lung 17 (15%)

Gynaecologic (except breast) 14 (12%)

other malignancies (lymphoma, anal,
colorectal, bladder, thyroid, head and
neck, melanoma, myeloma) or mixed

28 (25%)

Diagnostic
benign versus
malignant

14 (12%)

Miscellaneous 5 (4%)
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PET/CT (VEREOS 2018, Philips Healthcare) during 1min/bed
position. Once acquired, PET images were reconstructed with an
3D OSEM algorithm, 4 iterations, 4 subsets with point spread
function (PSF) correction. Scatter and attenuation correction was
applied. The spacing and matrix size were respectively of
2x2x2 mm3 and 288x288 pixels. An EARL1 reconstruction was
also generated with the same parameters but convolved with a
gaussian post filter of 7.2mm. CT scan parameters were 100-140
kV (BMI adaptive), with variable mAs according to an index
dose right of 14 and an iterative reconstruction I dose 4;
64x0.625mm slice collimation, pitch of 0.83, rotation time 0.5 s,
3Dmodulation, matrix 512x512 and voxel size 0.97x0.97x 3 mm3.
The PET mean dose was 5.32 mSv for a patient of 70 Kg. CT had
a CTDI median value of 4.8 mGy and a DLP of 431.5 mGy.cm.

The originally reconstructed PET images (with PSF
modelling) were denoised with a convolutional neural network
(CNN) approach by a commercially available software, Subtle
PET® by Subtle Medical. SubtlePET™ uses a multi-slice 2.5D
(5 slices) encoder-decoder U-Net DCNN to perform denoising.
The software takes a low count PET image as the input and
generates a high-quality PET image (close to full dose image) as
the output. Accreditation from FDA and CE required robustness.
The denoising model was trained on PET images from different
centers and vendors. It employs a CNN-based method in a pixel’s
neighborhood to reduce noise and increase image quality. Using
a residual learning approach and optimized for quantitative (L1
norm) as well as structural similarity (SSIM), the software learns
to separate and suppress the noise components while preserving
and enhancing non-noise components. The images were directly
sent from the PET console to a specific local server. Once
transferred they were anonymized, denoised, deanonymized
and pushed back to a clinical viewer. The mean treatment time
was 45 s on a NVIDIA 1080 GPU processor.

All contours were performed in 3D slicer version 4.10 (14) on
original PSF PET images and copied on AI denoised and EARL1
PET series. Spherical volumes of interest (VOI) were drawn in the
reference organs: liver (3 cm radius, avoiding upper parts, tissue
boundaries andmajor vessels) and lung (1.5 cmradius, drawn in the
upperparts).Up tofiveFDGavid lesionsperpatient (includingonly
the most intense ones), in total 101 lesions, were segmented by an
experienced nuclear medicine physician. Segmented lesions
consisted only of authentic malignant primary and metastatic
lesions in solid tumors or lymphoma. A semi-automatic tool was
employed to segment lesions. A VOI was created by clicking on the
original PET image. This 3DSlicer module (PETTumors
Segmentation) is based on a highly automated optimal surface
segmentation approach, which is a variant of the layered optimal
graph image segmentation of multiple objects and surfaces
segmentation (15). The VOI was than inspected and manually
adjusted with a brush if needed. An automatic donut of 2 voxels
diameters was grown around the lesion to calculate the lesion over
background ratio. The mean analyzed metabolic volume was 20
(1-162) ml. The same VOI were used for original, AI denoised and
EARL1like images.

The extraction of radiomics features was automatically
carried out with the pyradiomics package (16) thus mostly
Frontiers in Oncology | www.frontiersin.org 3321
complying with the Image Biomarker Standardisation Initiative
(17). Images had a native isotropic spacing of 2x2x2 mm3 so an
interpolation step was not necessary. As there is no consensus
about the intensity discretization, a fixed bin number of 64 was
used (18). A python code using simpleITK (19) was developed to
extract all the radiomics features and is accessible in the
supplementary information. Eight groups of radiomics features
were computed. The intensity class contains first-order data,
describing the distribution of voxel intensities within the image
region defined by the VOI. They are commonly used and basic
images metrics. The shape class is constituted of the 3D size and
shape of the VOI. These shape features were excluded as the VOI
was the same in all the images. A Grey Level Co-occurrence
Matrix (GLCM) class describes the second-order joint
probability function of an image region. Grey Level Size Zone
Matrix (GLSZM) features quantify grey level zones in an image.
A grey level zone is defined as the number of connected voxels
that share the same grey level intensity (3D). The Grey Level Run
LengthMatrix (GLRLM) class testifies of grey level runs, which are
defined as the length in number of pixels, of consecutive pixels that
have the same grey level value (1D). Neighboring Grey Tone
Difference Matrix (NGTDM) is a descriptor of the difference
between a grey value and the average grey value of neighbors. A
Grey Level DependenceMatrix (GLDM) characterizes the number
of connected voxels within a distance from the center voxel in
function of their grey level. Most features used in this study are in
compliance with Imaging Biomarker Standardization Initiative
(IBSI) (IBSI reference manual).IQ wavelets class contains two
features, a local analyzing just the VOI and a global of the whole
image.Thesemetrics characterize imagequality as the ratio between
high and low wavelet frequencies.

The Concordance Correlation Coefficients (CCC) (20) were
evaluated comparing the post processing IA denoised and EARL1
images to the original PET. CCC values of +/-1 describe a perfect
positive/negative correlation and 0 no correlation. Features with a
minimum CCC of 0.85 were considered as statistically reproducible
and concordant (21). Scatter plots of variable pairs with R2 value was
displayed for the coefficient of variation (CV) andmean SUV values
to understand the difference of CCC’s in lesions and in liver when an
AI denoising or EARL1filter are used on original images.Mean SUV
in lesions is presented using boxplots withminimum,maximum, 1st
quartile and 3rd quartile to highlight the difference between the 3
series. A paired Wilcoxon signed rank test was used to compare
features in original andAI denoised, andoriginal andEARL1 images.
P-values <0.05 were considered statistically significant. All the
statistical analyzes were performed using python (22) and
scipy.stats library. All the data and the python code of the analysis
are available on https://github.com/AurelienCD/RadiomicsIA_
PET_Depository_Manuscript-ID-692973.
RESULTS

A visual comparison of AI denoised (B) versus original images
(A) shows that the AI approach seems to decrease noise in
healthy tissues while preserving the intensity distribution in the
August 2021 | Volume 11 | Article 692973
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lesion in Figure 1. In the EARL1-PET image (C) background
noise is reduced, but also in the lesion the uptake intensity and
distribution are affected. Similar observations can be deduced
from the second patient’s images (Figures 1D–F).

The concordance correlation coefficient (CCC) testifying of the
stability of the features comparing denoised to original images is
presented in Figure 2. In lesions, 90/104 (86.5%)with AI and 46/104
(44%) with EARL1 denoising stayed stable. All stable features in the
EARL1 images were also stable in AI images. For the basic intensity
class parameters, SUVpeak, SUVmean and SUVmedian kept a
CCC≥0.85 in the two denoising approaches. SUVmax and
SUVmin CCC values stayed stable for the AI denoised images in
the lesions, but fell below the significant threshold for EARL1 images.
The NGTDM features were less affected by both denoisingmethods.
In the reference organs, for AI and EARL1 respectively, 12/104
(11.5%) and 7/104 (6.7%) in liver and 26/104 (25%) and 24/104
(23.1%) in lung had a CCC value at least of 0.85. The majority of the
features in reference organs are less stable then in lesions for the two
denoising methods. For the basic intensity parameters, SUV mean
wasoverall stable forbothdenoisingmethodswhileSUVpeak inboth
liver and lung for AI denoising, versus only in the lung for EARL1.

Concerning AI denoising, CV values in lesions before and after
processing were very similar. In the lesions the values were slightly
below and parallel to the identity line with R2 = 0.992. EARL1
Frontiers in Oncology | www.frontiersin.org 4322
showed a lower correlation and greater distance from the identity
line(Figure 3A). In healthy liver (Figure 3B), the behavior was
different. CV was reduced by a magnitude order of 2 for both
denoising methods. With IA denoising, the points were also more
scattered for liver (R2 = 0.884) than for lesions (R2 = 0.992). EARL1
denoising showed less differences (R2 = 0.851 vs 0.893). The SUV
mean value displayed in Figures 3C, D showed high correlation in
lesions as well as in the healthy tissue. In Figure 3D SUV mean in
liver is notmodified by a EARL1 gaussian postfilter (R2 = 1). Scatter
plots of variable pairs for all the features are accessible in the
supplementary materials.

Figure 4 testifies of the difference of SUV mean in lesions
between AI and EARL1 denoising compared to the original
images. AI denoising not significantly modified the SUV mean
values with a p=0.06. EARL1 post filter led to a significantly
lower mean SUV in lesions (p<0.001).

The results of the paired Wilcoxon signed rank test between
original andAIdenoised images are presented inTable2.Almost all
the features 79/100 (79%) were significantly different. Wavelets
features were not studied. In the intensity class only 4/27 were not
significantly different. SUV mean and median values were not
significantly different between the AI denoised image and the
original one. Table 2 shows in blue the 18 features that had a
CCC>0.85 and were not significantly different.
A B C

D E F

FIGURE 1 | Representative PET imaging of two lesions in different patients with a SUV windowing of (0–5). (A, D) [red], (B, E) [green], (C, F) [yellow] for original, AI
and EARL images respectively. A Zoom is added on each image with SUV windowing between (0–25) and (0–30) for the first and second patient.
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DISCUSSION

We evaluated the impact of AI denoising on the stability of
radiomics features computed in FDG PET images, the standard
being the clinical images. We also concurrently evaluated the
effect of EARL1 gaussian filtering. To the best of our knowledge,
it is the first clinical study on the impact of artificial intelligence
denoising on PET radiomics.

Texture features used in radiomics models describe the pattern
distribution of voxels and quantify intra-tumor heterogeneity in all
Frontiers in Oncology | www.frontiersin.org 5323
3 dimensions (4). 86.5% showed a stable behavior for intensity and
radiomics classes. The stability criteriumwas based on a CCC≥0.85
(20). In lesions, values were significantly different in 71.1% of the
features after AI denoising. An AI denoising approach like CNN
seems to change the absolute values ofmost of the features but keep
the correlation between them.

Advanced applications aim at the correlation of image features,
like radiomics, with clinical endpoints (4, 23). Radiomics models
derived fromCTcorrelatedwith a prognostic value, overall survival
in lung cancer patient (5). In baseline PETof locally advanced rectal
FIGURE 2 | CCC of all the features from AI and EARL versus original images. A threshold is display by a line with a CCC = 0.85. Blue bar indicates a CCC≥0.85, red bar CCC < 0.85.
August 2021 | Volume 11 | Article 692973
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cancer 18F-FDG PET/CT texture features provide strong
independent predictors of survival in patients (24). These models
are very promising however there are several pitfalls to overcome
(25) such as study design, data acquisition, segmentation, features
calculation andmodeling by the radiomics community. This study
allows a better understanding of the behavior of predictive models
when an AI denoising method is employed. A predictive model
basedon this typeof informationcanbebuilt fromMRI, PET,CTor
a combination of image modalities.

Deep learningAI techniqueshavebeenused toperformdenoising
on PET images for example by generating a full-dose PET images
Frontiers in Oncology | www.frontiersin.org 6324
from low-dose images (26) or to directly filter reconstructed PET
images (27). We used an AI denoising approach based on DCNN
(11). This approach seems to be able to reduce the acquisition time
activity product by a factor of 2 to 4.Weused it directly on the studied
PET image without activity or time reduction because we want to
characterize the effect of AI denoising while not compensating for
count losses.

Denoising will be more and more used but may also generate
pitfalls to build a radiomics predictive model as the 3d texture
informationmaybemodified. Studying the stability offeatureswith
a test-retest approachhas beenperformed inPET (28). The number
A B

C D

FIGURE 3 | Coefficient of correlation plot with R2 value in lesions (A, C) and healthy liver (B, D). (A–D) show respectively coefficient of variation (CV) and mean SUV
calculated from AI and EARL1-like image in function of original images. Dotted line represents the identity line.
FIGURE 4 | Box plot of the mean SUV value in lesion in Original, AI and EARL1-like images. The distribution difference between the original images and AI is not
significant (p=0.06) while it is significant (p<0.001 ***) between original and EARL1-like images.
August 2021 | Volume 11 | Article 692973

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jaudet et al. Artificial Intelligence Denoising PET Radiomics
of features selected based on their stability was 71% (CCC>0.8) in
PET NSCLC patients. In this study the stability of FDG PET
radiomics features in lesions was 86.5% (CCC≥0.85) between AI
denoised and original images. These values are at least of the same
order of magnitude highlighting the performance of AI for
denoising in PET imaging. As a consequence, a predictive model
built on standard PET images could be transposed on AI denoised
images, especially concerning the features we have shown as stable
Frontiers in Oncology | www.frontiersin.org 7325
in this study. However, the threshold values will have to be
recomputed. On the other hand, in healthy tissues as liver and
lung most of the features were unstable. Stable features were even
less frequent in the liver (11.5%) than in the lung (25%).The effect of
denoising on these tissues seems more drastic than on lesions. We
hypothesize that the AI algorithm recognizes similar healthy
features and changes their intensity value and distributions. As a
consequence, the ratio of the lesion over liver uptake should be
TABLE 2 | Result of Wilcoxon signed rank test of all the features between AI denoised and original images in lesions.
*p < 0.05, **p < 0.01 and ***p < 0.001. Yellow filling means that the features are not significantly different p>0.05 and have a CCC>0.85.
August 2021 | Volume 11 | Article 692973

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jaudet et al. Artificial Intelligence Denoising PET Radiomics
transposed with care in clinical PET evaluation, as this ratio is
altered for AI denoised versus original PET images.

The difference of behaviors in lesions and healthy tissue is one
of the main advantages of AI based methods compared to an
EARL1 gaussian post filter method. AI denoising maintains in
the lesion the textural information and FDG uptake more stable
while modifying healthy tissue. CV measures noise but also grey
levels and is correlated to NECR/image quality in PET (29). As
shown in Figures 3A, B, AI denoising had almost no effect on
CV in lesions but reduced it in liver. On the contrary, EARL1
Gaussian postfilter reduced CV similarly in lesions and liver.
Gaussian post filter will apply denoising accounting for neighbor
all over the images whereas AI may be more selective in
amplitude of denoising depending on noise vs non-noise
components. The distribution of SUV mean in lesions has a
different behavior between AI (paired t-test p=0.06) and EARL1
post filter (paired t-test p<0.001) compared to original images.

Interestingly EARL1 gaussian postfilter led to no modification
of SUV mean values in liver (Figure 3D). It is mainly due to the
increase of point spread function caused by the application of a
gaussian postfilter. In a large homogenous area SUVmean was not
modified while the noise (CV) was reduced. In smaller, more
heterogeneous areas it will melt the grey levels of the different
neighbors, lesions and healthy voxels (30). The modification of all
the tissues in the image by the gaussian postfilter also appeared in
Figure 2. Even in lesions only 44% of the features remained stable
in EARL1 compatible versus original PET images.

In this analysis we tried to minimize the bias inherent of a
radiomics workflow. We use pyradiomics which is mostly
compatible with IBSI initiative. Each AI and EARL1 denoised
images were extracted from the same images. The same VOI were
used on all the series. One could however point out the use of the
same contours for lesions in the 3 images as a possible study
drawback. Re-segmentation of lesions on each image could have
led to different contours and feature values. There is no gold
standard for a segmentation method in PET radiomics. It remains
also unclear to which extent this can affect radiomics values and
predictivemodels (31).We chose a resampling of 64 bins instead of
a fixed bin width (32) even if it showed a better reproducibility. As
we directly compared images before and after denoising (minimum
andmaximumvaluesof the image changed) resamplingwithafixed
bin width could lead to a different number of bins just due to noise
reduction andnot to texture based information. In a futureworkwe
would apply the same methodology with bin width resampling to
strengthen our outcome. We didn’ t split the data into training,
validation and test cohorts in this study due to the relatively small
number of patients and lesions (33). A test-retest radiomics study
onpatient inCTshowed that 446/542 featureshad ahigherCCC for
patientswith lung cancer than for thosewith rectal cancer (34).Our
study was based on 113 patients, which is a small number. Pooling
howeverdifferent primarymalignancies and lesions’nature and size
might have helped to reduce overfitting. The main next
challenge will be to validate our findings on different and
heterogenous patient cohorts and other PET protocols and
systems. It might be very risky to apply the same selection of
features on other PET or even MRI or CT systems (25). Also, the
Frontiers in Oncology | www.frontiersin.org 8326
mechanism of AI denoising recognizing successfully non noise
versus noise components has to be further investigated on other
camera types and PET protocols.

Numerical PET/CT’s have a better spatial and temporal
resolution leading to a more contrasted activity distribution in
lesions than analog systems (35). As this study was carried out on a
digitalPET/CTwe can expect that itwill havebeenmore sensitive to
variations in texture compared to one on an analog system.

CONCLUSION

Applying an AI, CNN denoising on FDG PET images maintains
most of the lesion’s texture information in contrast to a EARL1-
compatible Gaussian postfilter. The predictive texture features of
a trained model could be transposed, however with an adapted
threshold. Artificial intelligence in PET is a very promising
approach as it adapts the denoising for noise versus non-noise
components preserving information where it should.
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Accurate Tumor Delineation vs.
Rough Volume of Interest Analysis
for 18F-FDG PET/CT Radiomics-
Based Prognostic Modeling in
Non-Small Cell Lung Cancer
Shima Sepehri1, Olena Tankyevych1,2, Andrei Iantsen1, Dimitris Visvikis1, Mathieu Hatt1*†

and Catherine Cheze Le Rest1,2†

1 LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France, 2 University Hospital Poitiers, Nuclear Medicine Department,
Poitiers, France

Background: The aim of this work was to investigate the ability of building prognostic
models in non-small cell lung cancer (NSCLC) using radiomic features from positron
emission tomography and computed tomography with 2-deoxy-2-[fluorine-18]fluoro-D-
glucose (18F-FDG PET/CT) images based on a “rough” volume of interest (VOI) containing
the tumor instead of its accurate delineation, which is a significant time-consuming
bottleneck of radiomics analyses.

Methods: A cohort of 138 patients with stage II–III NSCLC treated with radiochemotherapy
recruited retrospectively (n = 87) and prospectively (n = 51) was used. Two approaches
were compared: firstly, the radiomic features were extracted from the delineated primary
tumor volumes in both PET (using the automated fuzzy locally adaptive Bayesian, FLAB) and
CT (using a semi-automated approach with 3D Slicer™) components. Both delineations
were carried out within previously manually defined “rough” VOIs containing the tumor and
the surrounding tissues, which were exploited for the second approach: the same features
were extracted from this alternative VOI. Both sets for features were then combined with the
clinical variables and processed through the samemachine learning (ML) pipelines using the
retrospectively recruited patients as the training set and the prospectively recruited patients
as the testing set. Logistic regression (LR), random forest (RF), and support vector machine
(SVM), as well as their consensus through averaging the output probabilities, were
considered for feature selection and modeling for overall survival (OS) prediction as a
binary classification (either median OS or 6 months OS). The resulting models were
compared in terms of balanced accuracy, sensitivity, and specificity.

Results: Overall, better performance was achieved using the features from delineated
tumor volumes. This was observed consistently across ML algorithms and for the two
clinical endpoints. However, the loss of performance was not significant, especially when a
consensus of the three ML algorithms was considered (0.89 vs. 0.88 and 0.78 vs. 0.77).
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Conclusion: Our findings suggest that it is feasible to achieve similar levels of prognostic
accuracy in radiomics-based modeling by relying on a faster and easier VOI definition,
skipping a time-consuming tumor delineation step, thus facilitating automation of the
whole radiomics workflow. The associated cost is a loss of performance in the resulting
models, although this loss can be greatly mitigated when a consensus of several models is
relied upon.
Keywords: segmentation, radiomics, non-small cell lung cancer, machine learning, prognosis
1 INTRODUCTION

Non-small cell lung cancer (NSCLC) benefited from several
improvements in diagnosis, staging, and treatment, but
remains a deadly disease as the first cause of cancer death for
men and the second for women (1). On the one hand, significant
differences in the outcomes of patients have been observed
depending on the clinical stage; hence, physicians rely on that
factor to select a therapeutic strategy (i.e., concomitant or
sequential combination of surgery, chemotherapy, and
radiotherapy) (2). On the other hand, among patients with a
similar stage, especially for stages II and III, highly variable
outcomes (i.e., response to therapy and survival) have
been reported.

Several studies showed the usefulness and the value of
positron emission tomography/computed tomography (PET/
CT) image modality using 2-deoxy-2-[18F]fluoro-D-glucose
(18F-FDG) radiotracer for NSCLC staging, treatment planning,
and monitoring (3). The clinical relevance of some of the new
response metrics, such as the metabolically active tumor volume
(MATV) and total lesion glycolysis (TLG), are under
investigation. Commonly, the response to treatment is
predominantly measured using the maximum standardized
uptake value (SUVmax) obtained within a tumor. However, it
has many shortcomings: firstly, SUVmax is not capable of
characterizing all types of uptake changes and associated
responses. It can only precisely measure those responses that
occur when there is a global change in the tracer uptake, i.e.,
when the uptake changes in the tumor are spatially
homogeneous. Since SUVmax only involves a single voxel, it
cannot capture changes in the shape of the tumor or in its spatial
uptake distribution properties.

In recent years, various handcrafted quantitative features,
known today as radiomics, have been introduced and
investigated for their potential to quantify the intensity, shape,
and heterogeneity of tracer uptake within the tumor volume on
PET/CT images (4, 5).

Because radiomic features are typically extracted from a
previously delineated tumor volume, the impact of the
segmentation step on the resulting intrinsic value of radiomics
has been examined in several studies. The robustness of a subset
of textural features used to quantify 18F-FDG PET uptake,
depending on the segmentation technique was first investigated
in esophageal cancer treated with radiochemotherapy (6). A later
study (7) investigated the test–retest variability of radiomic
2329
features in a dataset of 11 NSCLC patients with repeated scans
and the inter-observer delineation variability in a set of 23
patients. Later, the impact of reconstruction and delineation
was studied using 11 NSCLC full-body 18F-FDG PET/CT scans
in order to investigate the repeatability and the effects of the
reconstruction methods and delineation (8). The repeatability of
the radiomic features to explore sensitivity to image
reconstruction, noise, and the delineation method was further
considered by the same team (9). The impact of tumor
segmentation on the robustness of the features (10), on the
reproducibility and non-redundancy of the features (11), or on
the resulting prognostic value (12) were also investigated
recently. On the one hand, all these studies showed that the
choice of segmentation techniques can lead to substantial
variations for some radiomic features, but all investigated the
impact within the context of using the most accurate tumor
volume to extract features. On the other hand, several studies
recently compared the use of features extracted from delineated
tumors versus these extracted from specifically different (larger
or smaller) volumes of interest (VOIs), i.e., not necessarily
containing the entire tumor or limited to the tumor extent.

A first study in the context of cervical cancer and FDG PET
imaging investigated the predictive value of features (volume and
total lesion glycolysis) extracted from VOIs of varying sizes by
considering various thresholds from 30% to 70% of the SUVmax,
determining a variability of performance in the resulting models
(13). A second work compared different segmentation volumes
in differentiating uterine sarcoma from leiomyoma with
preoperative imaging (14). The study compared three volumes:
the tumor only, the tumor and the surrounding tissues, and the
entire uterus. The best models were obtained by relying on
features from the entire uterus [area under the receiver
operating characteristic curve (AUC) = 0.876)] compared to
the two other smaller VOIs (0.830 and 0.853 for tumor only and
for tumor and the surrounding tissues, respectively). A third
study investigated the impact of segmentation margin on
machine learning (ML)-based high-dimensional quantitative
CT texture analysis in the context of differentiating between
low- and high-grade renal cancer (15). Two VOIs were
compared: contour-focused vs. margin shrinkage of 2 mm.
Features from the VOI with margin shrinkage were more
reproducible than those from contour-focused VOI (93.2% vs.
86.2%); however, models combining contour-focused-derived
features had better performance (AUC = 0.865–0.984 vs.
0.745–0.887).
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One advantage of using larger VOIs containing the tumor
could be to alleviate the need for accuracy in defining the VOI,
hence facilitating and accelerating the whole radiomics
analysis. Indeed, the accurate delineation of the tumor is often
considered a significant time-consuming bottleneck step of the
radiomics workflow.

The aim of this work was thus to investigate the ability of
building prognostic models in NSCLC using radiomic features
from 18F-FDG PET/CT images based on a “rough” VOI
containing the tumor volume instead of the accurately
delineated tumor. We hypothesized that a combination of
features extracted from this larger VOI may capture the
relevant information in a different manner than those
calculated in the delineated tumor volume and still enable
prediction of the outcome, sparing the cost of the delineation
step. In that context, it is expected that shape features might
become less informative in the rough VOIs compared to those
calculated on the delineated tumor and that additional and/or
alternative intensity or textural features will be selected in the
models instead.
2 MATERIALS AND METHODS

2.1 Patient Cohort
Since stage 1 patients have a very different (and more favorable)
prognosis compared to those with stage II or III disease, mostly
driven by treatment [(surgery vs. (chemo)radiotherapy], we
focused here on patients with stage 2 and 3 tumors, where the
potential impact of radiomics is likely to be the most
important (16).

The inclusion criteria were confirmed NSCLC, stage 2 or 3;
curative (chemo)radiotherapy treatment, and pretreatment FDG
PET/CT imaging. Data from 138 NSCLC patients treated at the
University Hospital of Poitiers, France, were collected (Table 1).
The data of the first 87 patients were collected retrospectively,
whereas the next 51 patients were recruited prospectively within
the PRINCE project (INCa, PRTK-2015, registered trial
NCT03199599). The study was conducted according to the
guidelines of the Declaration of Helsinki. Ethical review and
approval were waived for this study because the data were
Frontiers in Oncology | www.frontiersin.org 3330
already collected for routine patient management before
analysis, in which patients provided informed consent. No
additional data were specifically collected for the present study.
The exact same cohort of patients was recently analyzed in
another study focusing on the comparison and fusion of ML
algorithms, so the present results are directly comparable with
that previous work (17).

2.2 PET/CT Imaging
All patients underwent a combined 18F-FDG PET/CT acquisition
as part of the diagnosis and staging before treatment. A Biograph
mCT 40 ToF with axial field of view of 21.6 cm (Siemens,
Erlangen, Germany) was used, relying on the routine clinical
protocol. PET/CT acquisition began after 6 h of fasting and 60 ±
5 min after injection of 2.5 MBq/kg of 18F-FDG (421 ± 98 MBq,
range = 220–695 MBq). Non-contrast-enhanced, non-respiratory-
gated (free breathing) CT images were acquired (120 kVp; Care
Dose® current modulation system) with an in-plane resolution of
0.853 × 0.853 mm2 and a 5-mm slice thickness. PET data were
acquired using 3.5 min per bed position, and images were
reconstructed using a CT-based attenuation correction and the
standard routine clinical protocol, as we recently showed no
improvement in the prognostic value of radiomic features when
using different settings (either smaller voxels or smaller full width
at half maximum of the Gaussian post-filtering) (18): OSEM-
TrueX-TOF algorithm, with time-of-flight and spatial resolution
modeling (three iterations and 21 subsets, 5-mm 3D Gaussian
post-filtering; voxel size, 4 × 4 × 4 mm3).

2.3 Radiomics Analysis
2.3.1 Preprocessing
As the PET images were reconstructed on a matrix with isotropic
voxels, no further image interpolation was performed. CT images
were interpolated to isotropic 1 × 1 × 1 mm3 voxels using
linear interpolation.

PET images were converted into SUV using patient weight.
Low-dose CT images were processed in Hounsfield unit (HU).

2.3.2. VOI Definition and Segmentation
Only the primary tumors were considered. PET and CT images
were segmented independently by a single expert. The first step
consisted of manually defining a “rough” VOI containing the
TABLE 1 | Patient characteristics.

Characteristics No. of patients (N = 138) Training/validation set (N = 87) Test set (N = 51)

Gender Male 106 62 44
Female 32 25 7

Age (years) Range 46–94 46–94 46–89
Mean ± SD 71.43 ± 9.44 71.35 ± 9.37 71.55 ± 10.00

Treatment Radiotherapy only 68 30 28
Chemoradiotherapy 70 57 23

Histology Adenocarcinoma 82 51 29
Squamous cell carcinoma 56 36 22

Clinical stage I 0 0 0
II 43 26 17
III 95 61 34
IV 0 0 0
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tumor and its surroundings in both modalities. This is the usual
first step in facilitating the automated or semi-automated tumor
delineation by excluding the surrounding physiological uptakes
or normal structures that should not be included in the tumor-
only analysis. The tumor metabolic volume was then obtained in
PET by applying the FLAB algorithm (19, 20) (MIRAS v1.0,
LaTIM INSERM UMR 1101, Brest, France) in the manually
defined “rough” VOI. The anatomical volume was obtained from
the low-dose CT rough VOI semi-automatically by relying on the
Growcut effect function of 3D Slicer™ (21). All delineations were
checked and validated by an expert physician (C. Cheze Le Rest).
Figure 1 illustrates this process.

For the rest of the radiomics workflow, two different volumes
for both PET and CT images were thus considered: the
delineated tumor volume and the rough VOI.

2.3.3 Radiomic Feature Extraction
Seventy-three radiomic features (14 shape, 10 intensity, and 49
textural) (see Supplemental Table 1) compliant with the most
up-to-date imaging biomarker standardization initiative (IBSI)
benchmark (22) were extracted using homemade software
(MIRAS v1.0, LaTIM INSERM UMR 1101, Brest, France).
Three different grey-level discretization methods [fixed bin
number (FBN) with 64 bins, fixed bin width (FBW) with 0.5
SUV or 10 HU, and histogram equalization with 64 bins] were
considered for second- and higher-order textural features. Note
that the FBN and FBW discretization schemes are IBSI-
compliant, but the histogram equalization, although mentioned
by the IBSI, is not yet a standard. Texture matrices were
implemented in 3D following the merging strategy (i.e.,
Frontiers in Oncology | www.frontiersin.org 4331
considering all 13 directions simultaneously). More details on
the entire radiomics workflow are provided in Supplemental
Table 2. A total of 147 features (10 + 14 + 49 × 3) were thus
extracted from each tumor volume in both PET and CT, leading
to 294 image-derived variables for each patient. These 294
features were extracted from both the tumor delineated
volumes and the rough VOI.

2.3.4 Modeling
All available clinical variables (age, gender, stage, treatment,
and histology) and the PET and CT radiomic features were
grouped into a single set to be processed by each of the ML
pipelines. The two different sets corresponding to the two
approaches (delineated tumor vs. rough VOI) were processed
independently using the exact same data split and ML pipeline
for a fair comparison.

Data were split into a training/validation set (n = 87
retrospectively recruited patients, 63%) and a test set (n = 51
prospectively recruited patients, 37%) (Table 1).

The classification task was set as a binary identification of
patients with overall survival (OS) below 6 months (unbalanced,
n = 15 in the training set and n = 9 in the test set) or below the
median OS (balanced). In the case of the 6-month prediction, the
synthetic minority oversampling technique (SMOTE) was
implemented to facilitate the training of models.

The ML pipelines consisted of three algorithms with embedded
feature selection and a consensus: support vector machine (SVM)
with recursive feature elimination (RFE), random forest (RF) with
embedded wrapper (EW), and logistic regression (LR) with
features selected using least absolute shrinkage and selection
FIGURE 1 | Both PET and low-dose CT images of the primary tumor are processed in the same manner: a volume of interest (VOI) containing the tumor is first
manually determined. Radiomic features are extracted from this VOI (denoted “VOI features”). Then, segmentation of the tumor volume is carried out within the VOI
with a (semi)automated algorithm. Radiomic features are then extracted from the delineated volume (this is the usual workflow).
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operator (LASSO). Hyperparameters of the algorithms (e.g., the
number of trees in RF) were optimized through five-fold cross-
validation in the training/validation set. To generate a consensus
model, the output probabilities of each of the three algorithms
were averaged and binarized (> or ≤0.5), as this approach provided
better results than did majority voting in our previous work (17).

The performance of the models in the training/validation set
was assessed using accuracy, balanced accuracy (BAcc) in the case
of the 6-month OS prediction, and the combination of sensitivity
(Se) and specificity (Sp), favoring models with higher Sp and with
a smaller number of features (lower complexity and higher
potential for generalizability) for similar levels of BAcc. For
models with similar overall accuracy values, a higher specificity
is more clinically relevant, as patients who would be falsely
identified as having poor prognosis might be offered palliative
(or intensified) treatment when the standard treatment would
actually benefit them. Importantly, none of the data from the test
set were used in the training and optimization step of any of the
models under comparison (either each of the models or the
ensemble through averaging). All models were first finalized and
optimized in the training set before final evaluation without any
further modifications in the test set.

The best models obtained through each ML algorithm in
training/validation set were then applied to the test set for final
evaluation and to allow for relevant comparisons (i.e., models
trained using input features from the accurately delineated
tumor vs. those from the “rough” VOI). In order to provide
some reference comparison, we also determined the accuracy
reached by using only the clinical features as input to the ML
pipelines or by relying only on clinical staging (stage 2 vs. 3), as
previously reported (17).

Finally, although the present work focuses on the question of
the input VOI for the performance of the models rather than
the actual development of a prognostic model, we nonetheless
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auto-evaluated our study using the radiomics quality score
(RQS) (23).
3 RESULTS

Our study scored moderately on the RQS (see Supplemental
Table 3) at 16 (19 when the data will be made available) out of
36, which is nonetheless higher than that of the average of studies
reported recently (23–25).

The average follow-up was 41 months, with a minimum of 1.1
months and a maximum of 95 months. Median OS was 14.4
months, ranging between 1.1 and 50 months.

All results from the different models and the two outcome
prediction tasks are presented for the training and test sets
in Table 2.

Models trained using only the clinical variables as input did
not significantly improve the performance over clinical stage
alone (BAcc <0.60 for all ML pipelines and both endpoints in the
training set and <0.55 in the test set).

Overall, the level of accuracy achieved by the models relying
on radiomic features was superior to that of clinical stage alone
(BAcc values of 0.58 and 0.53 using stage 2 vs. stage 3
classification, respectively, as previously reported) (17), and the
models were better at predicting very poor prognosis (6-month
OS endpoint) than median OS. Some of the radiomics models
included one or two clinical variables (staging and/or treatment),
but mostly relied on the histogram, shape (except for the models
trained using rough VOI features), and textural features. The
drop of performance between the training/validation and test
sets also suggests some overfitting.

Regarding the question addressed in this work, it was
observed that the radiomic features extracted from the
delineated primary tumor volume were slightly more
TABLE 2 | Performance comparison of the ML techniques using either features from the delineated tumor (D) or from the rough VOI (V), in addition to the available
clinical factors.

ML Task VOIa Training set No. of features Test set

Se Sp BAcc Se Sp BAcc

LR Median OS D 0.67 0.77 0.72 37 0.54 0.75 0.63
V 0.58 0.68 0.63 24 0.59 0.57 0.58

6-month OS D 0.81 0.87 0.84 45 0.8 0.76 0.78
V 0.74 0.78 0.76 32 0.61 0.65 0.63

RF Median OS D 0.87 0.91 0.89 25 0.60 0.75 0.67
V 0.75 0.86 0.87 23 0,53 0.59 0.56

6-month OS D 1 1 1 47 0.74 0.86 0.80
V 0.83 0.89 0.86 58 0.73 0.75 0.74

SVM Median OS D 1 1 1 27 0.53 0.73 0.64
V 0.82 0.82 0.82 20 0.56 0.60 0.58

6-month OS D 0.88 0.96 0.92 38 0.76 0.74 0.75
V 0.84 0.90 0.87 43 0.75 0.77 0.76

Fusion (average of output probabilities) Median OS D 1 1 1 - 0.76 0.80 0.78
V 0.93 0.89 0.90 - 0.76 0.78 0.77

6-month OS D 1 1 1 - 0.91 0.87 0.89
V 0.88 0.94 0.91 - 0.98 0.78 0.88
October 2021
 | Volume 1
1 | Article 7
ML, machine learning; VOI, volume of interest; Se, sensitivity; Sp, specificity; BAcc, balanced accuracy; LR, logistic regression; RF, random forest; SVM, support vector machine.
aD stands for the accurately delineated tumor and V for the “rough” VOI.
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informative than those extracted from a rough VOI. Indeed,
models built with the three ML pipelines combining rough VOI
features obtained a slightly lower performance (BAcc values of
0.57 ± 0.01 and 0.71 ± 0.07 for median OS and 6-month OS,
respectively) than those exploiting delineated tumor features
(BAcc values of 0.65 ± 0.02 and 0.78 ± 0.03). In both cases, the
differences were not significant at the p < 0.01 or 0.05 levels
(p = 0.059 for median OS and p = 0.286 for 6-month OS).

These models, however, relied on a similar number of
features, i.e., models using rough VOI features did not need a
larger number of features. Notably, shape features were not
included in the models based on the rough VOI, contrary to
those relying on the delineated tumor.

These observations were consistent for both endpoints
(median OS and 6-month OS).

However, when looking at the consensus models (fusion of the
output probabilities of each of the three pipelines, as the average
of the outputs), the advantage of relying on the delineated tumor
rather than on the rough VOI was greatly reduced, the two
showing almost the same performances, with improved predictive
ability compared to each independent ML algorithm, as
previously reported (17): 0.89 vs. 0.88 for the 6-month OS
endpoint and 0.78 vs. 0.77 for median OS, respectively.
4 DISCUSSION

The main finding of our work is that, although radiomic features
extracted from delineated tumor seemed more informative than
those extracted from a simple rough VOI containing the tumor,
almost as good results can be achieved without the need for the
tedious and time-consuming (semi)automated delineation in the
radiomics workflow, especially in the context of relying on a
consensus of several ML techniques (in that case, the performance
was almost equal). This could imply consequences regarding the
way radiomics analyses are carried out since avoiding the need for
actual tumor delineation before feature extraction could simplify
and facilitate the whole process, at a very small cost in the resulting
performance of the built models.

As expected, no shape features were used by the models to
predict outcomes when features were extracted from the rough
VOI, contrary to when then are extracted from the delineated
tumor. Although there is an obvious correlation between the size
and shape of the VOI and that of the tumor (larger, more
complex tumors require larger and more complex VOIs to
encompass them), there are most likely fewer differences
between the various VOIs shapes to allow for patient
differentiation. These features were replaced by alternative
intensity and/or textural metrics in the VOI models. Although
some of the models retained clinical variables (only clinical
staging and treatment being selected), relying only on clinical
factors provided the models with only limited accuracy (<0.60 in
training and <0.55 in testing), and only models incorporating
radiomic features had good performance in the test set.

Our work has several limitations. Firstly, the cohort used was
collected from a single center. It allowed us to focus on the
Frontiers in Oncology | www.frontiersin.org 6333
question at hand without having to deal with harmonization
issues (26, 27) since all patients had their PET/CT acquisition in
the exact same PET/CT system, with no variability in the
acquisition protocol or reconstruction settings. However, this
means that our findings will need to be validated in external
datasets, for which we will implement harmonization
techniques for handling the multicenter nature of the data
(28). Although our cohort included both retrospectively (for
training) and prospectively (for testing) recruited patients, the
size of the test set was small as we could not include all available
patients because a minimum follow-up duration was not
reached and the prospective recruitment is still ongoing. This
limited the statistical power for comparing the different results
obtained with or without tumor delineation. However, the
observed trends were systematic across all ML techniques and
their consensus, strengthening our confidence in the potential
generalizability of our results. The VOI determination and the
tumor delineations were carried out by a single expert using a
single method, which prevented us to compare the scale of inter-
observer (or inter-segmentation method) variability with the
differences between the delineated tumor and VOI features. The
sensitivity of the results with respect to (moderate and
reasonable) changes in the size or shape of the rough VOI was
also not explored in the present work. It is expected to be
obviously lower than the differences observed between the
results obtained when exploiting features either from the
rough VOI or from the accurately delineated tumor, which are
already small. Finally, in order to fully automate the process for
facilitating the radiomics workflow, the “rough” VOIs, which
were manually created in the present work, should be
reproduced by training a deep convolutional neural network
(CNN) such as the U-Net, in a similar fashion, as we have
recently demonstrated the feasibility regarding accurate tumor
delineation (29). This way, the “rough” VOI could be obtained
in a fully automated manner from the input PET/CT images
without the need for a user intervention.

Several expansions of this work will be considered, such as a
thorough comparison with deep learning-based feature
extraction (“deep features”) and a validation of our findings in
our extended prospective cohort: about 150 patients
prospectively recruited in the PRINCE project should be
available for this analysis once the follow-up duration of at
least 1 year will be reached for all patients. Further validation
of these findings will also be carried out in external datasets.
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