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Editorial on the Research Topic

Cryptocurrency Transaction Analysis From a Network Perspective

The past 2 years have seen a surge of research articles themed on cryptocurrency analytics [1].We are
glad that our research topic, Cryptocurrency Transaction Analysis from a Network Perspective,
which consists of nine novel contributions, can join this exciting trend and has already drawn
attention from academia and industry.

There are two common data sources available for cryptocurrency analytics. The first is
blockchain data. Public blockchains, such as Bitcoin and Ethereum, store transactions
transparently in an open database. With a bit of effort unpacking the transactions from a
compact storage format, one can readily use network science methods and machine learning
tools to mine for knowledge, be it regulatory intelligence or market signal. The second is market
information. The quotation ticks and trading volumes of the 10,000 + cryptocurrencies and
tokens traded in many centralized and decentralized exchanges are curated by market
monitoring sites like coinmarketcap. These data enable insightful research of the
cryptocurrency market’s risk and potential market manipulation activities. Articles in our
research topic cover both lines of work with significant findings.

A fundamental property of cryptocurrency systems’ public-key-private-key design is that the
pseudonyms, i.e., blockchain addresses, recorded in the database cannot be associated with any
physical identity, such as an IP address or email address. However, various heuristic algorithms
have been proposed to “link” addresses together, that is, to associate multiple blockchain
addresses to the same holder. Fischer et al. integrated a spectrum of address-linking algorithms
and used a network-based clustering method to synthesize a new method that can reliably
associate the addresses.

Another fundamental property of blockchain data is traceability, i.e., one can trace the genuine
money flow through a chain of addresses. Naturally, crypto services that deliberately obfuscate such
traceability, also known as mixing services, have been created for laundering (often illicit) money. Liu
et al. proposed a conceptual modeling framework to analyze the different roles of blockchain
addresses in the bitcoin mixing services. Their model helped find and characterize the organizer,
soldiers, and communicators in a money laundering case study.

The cryptocurrency transactions can be viewed as a complex network in which the blockchain
addresses are the nodes, and the money flow in the transactions are the edges linking the nodes. As a
constantly expanding network, physicists are interested in the underlying mechanism of its growth.
Preferential attachment [2] is one of the most prominent governing growth mechanisms of many
natural andman-made complex networks, as well as bitcoin [3]. Collibus et al. showed that Ethereum
and its most market-capitalized ERC-20 token habitants Binance, USDT, and Chainlink also obey
such law, but with a super-linear variance.
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From a machine learning perspective, the network structure of
transaction data helps construct rich features for downstream
tasks, such as inferring the identities of blockchain addresses. Lin
et al. constructed a transaction network from Ethereum
transactions with temporal and weighted edges to capture the
network topology evolution. By applying graph embedding
algorithms on this dynamic network, they are able to
recognize labeled phishing addresses from others.

The article that attracted themost attention (more than 25 k online
views) as of February 2022 is Jiang and Liu’s analysis of the
CryptoKitties game’s transaction history. They characterized the
evolution of the transaction network and proposed several reasons
why the game gained sudden attention fromplayers but also collapsed
quickly, just within 1month. Their suggestions to blockchain game
designmay shed light on the current development of the non-fungible
token (NFT) industry.

Volatility is a rate that describes the price change of an asset over a
particular period. It is a fundamental indicator guiding cryptocurrency
investments. Can volatility be predicted from market signals? The
answer is positive and definite. Barjašić and Antulov-Fantulin found
that bitcoin-related tweets, bitcoin trade volume, and bid-ask spread
can be incorporated into generalized autoregressive conditional
heteroscedasticity (GARCH) models to predict volatility.

If two assets are affected by similar market factors, they may
experience a synchronized price trend or volatility level. The latter case
is also called volatility connectedness or volatility spillover. The
current global cryptocurrency market is still in its early

development. One crypto asset can be traded in multiple
exchanges, and each exchange may have different asset listings and
price momentum. The intertwined market is indeed highly
interconnected, volatility-wise. Chen and Dong’s analysis of six
bitcoin-fiat money pairs and Li et al. examination of seven major
cryptocurrencies all found volatility spillover effects. Liu and Liu
found that if two crypto projects share the same investors or similar
market embeddedness, as measured by the structural properties in a
co-investment network, they may also share similar market
performance, including volatility and others. The strong spillover
effects imply the ineffectiveness of the cryptocurrency market.

We believe that the research on cryptocurrencies will
continue to prosper in the coming years as the market
develops. We hope that the series of articles that we have
collected here can serve as a bedrock for the future
development of cryptocurrency analytics. Finally, we would
like to take this chance and thank all the authors and reviewers
for your contribution. We also refer the readers to some sister
issues in Frontiers in Blockchain: Blockchain Through the
Lens of Network Science and Non-Financial Applications of
Blockchains: Systematizing the Knowledge that address similar
research topics.
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Recently, graph embedding techniques have been widely used in the analysis of various

networks, but most of the existing embedding methods omit the network dynamics and

the multiplicity of edges, so it is difficult to accurately describe the detailed characteristics

of the transaction networks. Ethereum is a blockchain-based platform supporting

smart contracts. The open nature of blockchain makes the transaction data on

Ethereum completely public and also brings unprecedented opportunities for transaction

network analysis. By taking the realistic rules and features of transaction networks

into consideration, we first model the Ethereum transaction network as a Temporal

Weighted Multidigraph (TWMDG) where each node is a unique Ethereum account and

each edge represents a transaction weighted by amount and assigned a timestamp.

We then define the problem of Temporal Weighted Multidigraph Embedding (T-EDGE) by

incorporating both temporal and weighted information of the edges, the purpose being

to capture more comprehensive properties of dynamic transaction networks. To evaluate

the effectiveness of the proposed embedding method, we conduct experiments of

node classification on real-world transaction data collected from Ethereum. Experimental

results demonstrate that T-EDGE outperforms baseline embedding methods, indicating

that time-dependent walks and the multiplicity characteristic of edges are informative

and essential for time-sensitive transaction networks.

Keywords: network embedding, ethereum, machine learning, temporal network, transaction network

1. INTRODUCTION

The network is a kind of data form that is often used to describe the relationship between objects.
The past decade has witnessed an explosive growth in network data, which have been used to
present information in various areas, such as social networks, biological networks, computer
networks, and financial transaction networks [1]. Analysis of large-scale networks has attracted
increasing attention from both academia and industry. With the rapid development of machine
learning technology, the question of how to analyze the data effectively for large-scale complex
networks is becoming a hot topic in the field of artificial intelligence.

Financial transaction networks are widespread in the real world. However, there have been
relatively few analytical studies on financial transaction networks because the transaction data
are usually private for the sake of security and interest. Fortunately, the recent emergence of

6

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00204
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00204&domain=pdf&date_stamp=2020-06-30
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wujiajing@mail.sysu.edu.cn
https://doi.org/10.3389/fphy.2020.00204
https://www.frontiersin.org/articles/10.3389/fphy.2020.00204/full
http://loop.frontiersin.org/people/926222/overview
http://loop.frontiersin.org/people/926546/overview


Lin et al. Temporal Weighted Multidigraph Embedding

blockchain technology makes transaction data mining more
feasible and reliable. Blockchain is a new technology that is
described as an innovative application mode of distributed
data storage, peer-to-peer transmission, consensus mechanisms,
encryption algorithms, and other computer technologies in the
Internet era [2, 3]. Generally speaking, blockchain is a new
distributed ledger, and the transaction data is stored on the chain
in chronological order. Ethereum [4] is the largest blockchain
platform that supports smart contracts. The Ethereum system
introduces the concept of account and allocates storage space
for recording account balance, transaction time, codes, etc.
Compared with a traditional database, blockchain technology
naturally has the characteristics of traceability, anti-tampering,
and publicity. The openness of public blockchain provides
favorable conditions for transaction data mining [5].

In fact, cryptocurrency and blockchain are highly coupled,
since blockchain technology is born from Bitcoin. The study of
cryptocurrency transaction networks has very high application
value and there have already been some studies, including graph
analysis, price prediction, portfolio management, anti-market
manipulation, ponzi scheme detection, and so on [6–12]. In 2013,
Ron et al. [6] described Bitcoin schemes and investigated a large
number of statistical properties of the full Bitcoin transaction
network. By analyzing the subgraph of the largest transactions,
they revealed several characteristics in the Bitcoin transaction
graph: long chains, fork-merge patterns with self-loops, keeping
bitcoins in “savings accounts,” and binary tree-like distributions.
In 2017, Jiang and Liang [7] presented a deterministic deep
reinforcement learning method for cryptocurrency portfolio
management. The trading algorithm takes the historical prices
of a set of financial assets as input and outputs the portfolio
weights of the set. In 2018, Liang et al. [8] traced the properties
of three representative cryptocurrencies, Bitcoin, Ethereum,
and Namecoin, over time and characterized their dynamics by
constructing a monthly transaction network.

Since it is extremely time-consuming to process the whole
blockchain transaction network, it is necessary to find an
effective and efficient way to analyze Ethereum transaction
data. As we know, the performance of machine learning tasks
depends to a large extent on the selection of data features,
so a key problem is how to reasonably represent the feature
information in large-scale transaction networks. In addition,
using a machine learning-based algorithm often requires feature
information for samples, but the account profiles of the
transaction networks are often difficult to obtain. The implicit
characteristics of the accounts can be mined by means of graph
embedding algorithms.

Graph embedding is an effective method for representing
node features in a low-dimensional space for network analysis
and downstream machine learning tasks [13]. Graph embedding
algorithms can effectively reduce the data dimension of the
transaction network and transform the large-scale and sparse
high-dimensional one-hot node vectors into dense low-
dimensional node vectors. Previous graph embedding research
has been conducted in domains, such as social networks,
language networks, citation networks, collaboration networks,
webpage networks, biological networks, communication

networks, and traffic networks [13]. This implies that existing
graph embedding techniques may not be suitable for a
transaction network. Using the traditional network embedding
algorithm for transaction network analysis will present the
following challenges. New transactions are generated over time,
but existing methods ignore the multiplicity and dynamics
of transactions. Random walks in transaction networks are
meaningful and sequential, but existing methods based on social
networks, like DeepWalk and node2vec, do not incorporate
temporal information.

The random walk mechanism has been widely proved to
be an effective technique for measuring the local similarity
of networks for a variety of domains [14]. Among various
graph embedding methods, a series of random-walk based
approaches have been proposed for learning a mapping function
from an original graph to a low-dimensional vector space
by maximizing the likelihood of co-occurrence of neighbor
nodes. For the traditional graph embedding method, DeepWalk
[15], it was verified through experiments that nodes in the
random walk sequence and words in the document all follow
the power-law, so word2vec [16] was applied to learn node
representations. Similar to DeepWalk, node2vec [17] introduced
biased random walks, which smoothly search between breadth-
first sampling and depth-first sampling strategies. Recently, to
better extract temporal information from dynamic networks,
Nguyen et al. [18] proposed a general framework called
Continuous-Time Dynamic Network Embeddings (CTDNE) to
incorporate temporal dependencies into existing random walk-
based network embedding models. However, these previous
methods omit the network dynamics and the multiplicity of
edges, so it is difficult to accurately describe the detailed
characteristics of the transaction networks.

To this end, to capture more comprehensive properties of
dynamic transaction networks, we propose a novel framework
namedTemporalWEightedMultiDiGraph Embedding (T-EDGE)
for the Ethereum transaction network. Themain contributions of
our paper are as follows:

• To the best of our knowledge, this is the first work
to understand Ethereum transaction records via graph
embedding, aiming to capture the non-negligible temporal
properties and important money-transfer tendencies of time-
sensitive transaction networks.

• We propose a novel graph embedding method called
Temporal Weighted Multidigraph Embedding (T-EDGE),
which incorporates transaction information from both
time and amount domains, and experiments on realistic
Ethereum data demonstrate its superiority over existing
methods.

• To evaluate our proposed algorithm, we consider an
important and practical machine learning task, namely node
classification with transaction records of phishing and non-
phishing accounts collected from Ethereum. The dataset can
be accessed on XBlock (xblock.pro).

The remainder of this paper is organized as follows. First,
section 2 demonstrates our workflow for Ethereum transaction
network analysis. Then, section 3 describes how we model
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the transaction records as a temporal weighted multidigraph.
Then, we introduce our proposed network embedding algorithm,
T-EDGE, in section 4 and evaluate our algorithm by conducting
node classification in section 5. Finally, section 6 concludes
the paper.

2. FRAMEWORK

In this section, we describe the workflow of Ethereum
transaction network analysis presented in this work. As
Figure 1 shows, the four main steps of the proposed
framework for Ethereum transaction network analysis are
data acquisition, network construction, graph embedding, and
downstream tasks.

(a) Data acquisition. The data collection is the basis of
transaction network analysis. Thanks to the openness of
blockchain, researchers are able to autonomously access
Ethereum transaction records. Through the API of Etherscan
(etherscan.io), a block explorer and analytics platform for
Ethereum, we can easily obtain the historical transaction data
of the target account. As the size of the total transaction
records is extremely large, we adopt the K-order subgraph
sampling method [19], to obtain the local structure of the
target accounts.

(b) Network construction. This step abstracts the original
transaction record into a network structure for further
analysis. In most existing studies on blockchain transaction
networks, the transaction networks are constructed as
simple graphs, that is, multiple transactions between a
pair of accounts are merged into one edge, thus ignoring
the multiplicity and dynamics of transactions between
accounts. Differently from prior work, in this work, we
model the multiple interactions between accounts as a
Temporal Weighted Multidigraph [19] to facilitate a more
comprehensive analysis of transaction behaviors.

(c) Graph embedding. In the framework of Ethereum
transaction network analysis, the role of network
embedding is to mine the implicit features of accounts
in the transaction network and reduce the transaction
data dimension. In order to learn the meaningful
node representation vectors in the dynamic transaction
network, we propose an improved embedding algorithm
called Temporal Weighted Multidigraph Embedding
(T-EDGE) based on temporal random walk. T-EDGE
aims to capture the time and amount information
that cannot be ignored in the Ethereum transaction
network.

(d) Downstream tasks. We evaluate our model by conducting
experiments on a typical machine learning task, namely node
classification. Good performance of the downstream tasks
reflects the effectiveness of embedding methods. Besides,
analytical applications can be regarded as the ultimate
goal of the Ethereum transaction network embedding.
In this paper, we incorporate two current hot topics—
cryptocurrency transaction analysis and machine learning,
and use machine learning technology to help us make

more accurate predictions about the future of the Ethereum
transaction network.

3. ETHEREUM TRANSACTION NETWORK

Being the largest public blockchain-based platform that
supports smart contracts, Ethereum introduces the concept of
account to facilitate the implementation of smart contracts.
An Ethereum account is formally an address but adds storage
space for recording account balances, transactions, codes,
etc. Ethereum addresses are composed of the prefix “0x,”
a common identifier for hexadecimal, concatenated with
the rightmost 20 bytes of the public key. One example
is: “0x00b2ed34791c97206943314ee9cbd9530762a320.” The
corresponding cryptocurrency on Ethereum, known as Ether,
can be transferred between accounts and used to compensate
participant mining nodes.

The Ethereum blockchain consists of infinite linked blocks,
which can be viewed as data-packages, including a series
of transactions and some other information. In detail, the
transaction data packages obtained from the Etherscan website
are as followed: the TxHash field is a unique 66-character
identifier of a transaction, the Value field is the value being
transacted in Ether, and the Timestamp field is the time
at which a transaction is mined. Besides, the From and
To fields are the sending party and receiving party of a
transaction, respectively.

In this section, we abstract the original transaction record
as a Temporal Weighted Multidigraph (TWMDG). Figure 2
is a microcosm of transaction activities on Ethereum. In
prior work on blockchain transaction network analysis,
the transaction network was constructed as a simple
network, that is, multiple transactions between nodes
were accumulated as one edge. The multiplicity and
dynamics of transactions between accounts were ignored.
Therefore, we adopt Temporal Weighted Multidigraph
(TWMDG) to represent Ether transfer between accounts
more comprehensively.

Based on collected four-tuples (From, To, Value, Timestamp),
we can model the Ethereum transaction records as a Temporal
Weighted Multidigraph G = (V ,E), where each node represents
a unique account and each edge represents a unique Ether
transfer transaction. In such a graph, V is the set of nodes and
E is the set of edges. Each edge is unique and is represented as
e = (u, v,w, t), where u is the source node, v is the target node, w
is the weight value and t is the timestamp.

4. NETWORK EMBEDDING

In the analysis of the Ethereum transaction network, our goal is
to learn an embedding vector for each node, the purpose being
to mine the implicit characteristics of nodes in the transaction
network and incorporate the time and amount information of
the transaction network into the node vector. For the network
model TWMDGbuilt in the previous section, this paper proposes
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FIGURE 1 | The architecture of the proposed framework for network analysis of Ethereum.

FIGURE 2 | Schematic of the Ethereum transaction network. Each node represents an Ethereum account. Each edge represents a transaction, with a timestamp t

and amount value w (in Ether) attached to it and indexed in increasing order of t.

an improved network embedding algorithm based on a random
walk. We now define the specific problem as follows.

Temporal WEighted MultiDiGraph Embedding (T-EDGE):
Given a temporal weighted multidigraph G = (V ,E), let V be the
set of nodes and E be the set of edges. Each edge is unique and is
represented as e = (u, v, t,w), where u is the source node, v is the
target node, t is the timestamp, and w is the weight (Specifically,
w is the amount value of a transaction in Ethereum transaction
network). We define the following mapping functions: for ∀e ∈
E, Src(e) = u, Dst(e) = v. Function W(e) = w maps an
edge to its weight, and function T(e) = t maps an edge to
its timestamp. Our principal goal is to learn an embedding
function 8 :V → R

d (d ≪ |V|) that preserves the original
network information.

The learned representations aim to include node
similarity as well as temporal and weighting properties
specifically for financial transaction networks, thus enhancing
predictive performance on downstream machine learning
tasks. The proposed method, T-EDGE, learns more
appropriate and meaningful dynamic node representations
using a general embedding framework consisting of two
main parts:

• The first part is the temporal walk generator with temporal
restriction and walking strategies.

• The second part is the update process based on skip-gram,
and the parameters are updated by a Stochastic Gradient
Descent algorithm.
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4.1. Random Walk
For scalable network representation learning, the random walk
mechanism has been widely proven to be an effective technique
for capturing structural relationships between nodes [15]. We
employ a temporal walk for transaction networks by considering
temporal dependencies and multiplicity of edges. This kind of
random walk sequence contains the practical meaning of money
flow in transaction networks.

In a temporal weighted multidigraph, the temporal walk is
defined as the sequential incremental path from the beginning
node to the end node. Such a temporal walk is represented as
a sequence of l nodes walkn = {v1, v2, ..., vl} together with a
sequence of (l−1) edgeswalke = {e1, e2, ..., el−1}, where Src(ei) =
vi, Dst(ei) = vi+1 (1 ≤ i ≤ (l − 1)), and T(ei) ≤ T(ei+1)
(1 ≤ i ≤ (l − 2)). This temporal restriction is a novel idea
designed for the temporal walk.

Consider a temporal walk that just traversed edge ei−1 and
is now stopping at node vi at time t = T(ei−1). The next node
vi+1 of the random walk is decided by selecting a temporally
valid edge ei. We define the temporal edge neighborhood for a
node u as Nt(u) = {e | Src(e) = u,T(e) ≥ t}. Let η− :R →
Z
+ to be a function that maps the timestamps of edges to

a descending ranking, and let η+ :R → Z
+ be a function

that maps the timestamps of edges to an ascending ranking.
Here are our walking strategies used in Ethereum transaction
network embedding.

4.1.1. T-EDGE

In the temporal weighted multidigraphs discussed here, a
random walk generator of T-EDGE samples uniformly from the
neighbors. All candidate edges in Nt have the same probability
of being selected as the next edge of the random walk. The
expression of the probability is

P(e) =
1

|Nt(vi)|
. (1)

4.1.2. T-EDGE (TBS)

TBS refers to Temporal Biased Sampling. For financial
transaction networks, the similarity between accounts is time-
dependent and dynamic. Naturally, there is a strong transaction
relationship between accounts with frequent transactions. The
probability of selecting each edge e ∈ Nt(vi) can be given as:

P(e) = PTBS(e) =
η−(T(e))∑

e′∈Nt(vi)
η−(T(e′))

. (2)

4.1.3. T-EDGE (WBS)

WBS refers to Weighted Biased Sampling. The weight value
of each transaction indicates the significance of interactions
between the two accounts involved. The transaction amount can
reflect the importance of transactions between accounts and then
reflect the degree of correlation between accounts. In most cases,
there is a strong similarity between accounts with a large amount
of transactions. The probability of each edge e ∈ Nt(vi) being
selected is

TABLE 1 | Four types of T-EDGE variation for the Ethereum transaction network.

Algorithms
Time domain Amount domain

Unbiased Biased Unbiased Biased

T-EDGE
√ √

T-EDGE (TBS)
√ √

T-EDGE (WBS)
√ √

T-EDGE (TBS+WBS)
√ √

P(e) = PWBS(e) =
η+(W(e))∑

e′∈Nt(vi)
η+(W(e′))

. (3)

4.1.4. T-EDGE (TBS+WBS)

We combine the aforementioned sampling probabilities
considering information from both temporal and weighted
domains by

PTBS+WBS(e) = PTBS(e)
αPWBS(e)

(1−α), (0 ≤ α ≤ 1), (4)

P(e) =
PTBS+WBS(e)∑

e′∈Nt(vi)
PTBS+WBS(e′)

, (5)

for ∀e ∈ Nt(vi). Here, α = 0.5 is the default value for balancing
between TBS (time domain) and WBS (amount domain).

When ending up with a leaf node, we return the walk
immediately. This setting is just the same as in the methods used
for comparison, DeepWalk and node2vec.

Note that T-EDGE can be regarded as a specific version
of DeepWalk for temporal and directed multigraphs like
the transaction networks. As Table 1 shows, all candidate
edges (temporal edge neighborhood) are equally likely to be
selected by T-EDGE. T-EDGE (TBS) and T-EDGE (WBS)
denote adding sampling preference on the time domain and
the amount domain, respectively. T-EDGE (TBS+WBS) means
adding sampling preference on both the time domain and the
amount domain.

4.2. Learning Process
In the previous subsection, we described how to get the sampling
sequence of temporal walk related to time and weight. In this
part, we will formally describe the process of learning node
vectors using the skip-gram model [16, 20].

The essence of the skip-gram model is a three-layer neural
network model, including an input layer, hidden layer, and
output layer. First, we train a neural network model based on the
sampling walk sequences, but the purpose of training is not to use
the model to predict the test set but to use the parameters learned
from the model, namely the hidden layer parameters, as our node
vectors. Then, by making an analogy between a natural language
sentence and a truncated random walk sequence (as shown in
Table 2), node representations are learned by maximizing the
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TABLE 2 | Comparison between language model word2vec and graph model

Deepwalk.

Research domain Example Input Output

Natural language

processing

word2vec Sequence of word

(sentences)

Word

vectors

Graph representation

learning

deepwalk Sequence of nodes

(random walks)

Node

vectors

probability of observing the neighborhood of a node conditioned
on its embedding. This cost function is as follows:

min
8

−Pr({vi−k, ..., vi+k}\vi|8(vi)), (6)

where k is the window size. According to the conditional
independent assumption in the skip-gram model, we have:

Pr({vi−k, ..., vi+k}\vi|8(vi)) =
i+k∏

j=i−k,j6=i

Pr(vj|8(vi)). (7)

Similar to DeepWalk, we employ the “hierarchical softmax”
technique [15] to accelerate the computation of Pr(vj|8(vi)).
We first apportion |V| nodes to the leaf nodes of a Huffman
Tree and then transform the computation of Pr(vj|8(vi)) into
computing the probability of walking randomly from the root of
the Huffman Tree with inputting node vi and outputting node vj.
The probability is

Pr(vj|8(vi)) =
⌈log |V|⌉∏

t=1

Pr(bt|8(vi)), (8)

where bt is from {b0 = root, b1, ..., b⌈log |V|⌉ = vj}. We thenmodel
Pr(bt|8(vi) with a sigmoid function:

Pr(bt|8(vi) =
1

1+ exp(−8(vi) · 8(bt−1))
, (9)

where 8(bt−1) is the representation of bt ’s parent node in
the Huffman tree. The skip-gram model then uses a back-
propagation algorithm and Stochastic Gradient Descent to
update the weight.

Random walk-based graph embedding methods have been
proved to be scalable and effective for large graphs. The time
complexity of the temporal walk part and the skip-gram learning
procedure isO(r|V|L) andO(|V| log |V|), respectively, where |V|
is the number of nodes, r denotes walks per node, and L refers to
the length of random walk.

5. EXPERIMENTS AND RESULTS

Downstream tasks, such as node classification are commonly
considered for the verification of graph embedding methods. To
evaluate the performance of the proposed T-EDGE algorithms,

FIGURE 3 | Schematic illustration of a directed K-order subgraph for phishing

node-classification.

we conduct node classification experiments to classify the
labeled phishing accounts and unlabeled accounts (treated as
non-phishing accounts) on Ethereum. The better performance
of classification demonstrates that our T-EDGE algorithms
outperform baseline embedding methods, and at the same time,
node classification for detecting phishing accounts on Ethereum
is also of great value. A phishing scam is a new type of cybercrime
that arises along with the emergence of online business [21]. It is
reported to account for more than 50% of all cyber-crimes on
Ethereum since 2017 [22].

5.1. Data Acquisition
To train our node classification model using supervised learning,
we obtain 445 phishing nodes labeled by Etherscan and the
same number of randomly selected unlabeled nodes as our
objective nodes.

K-order sampling is an effective method for obtaining the
local information of objective accounts [19]. Centered by each
objective account, we obtain a directed K-order subgraph, where
K-in and K-out are two parameters for controlling the depth of
sampling inward and outward from the center, respectively. As
shown in Figure 3, we make an assumption that for a typical
Ether transfer flow centered on a phishing node, the previous
node of the phishing node may be a victim, and the next one
to three nodes may be bridge nodes with money-laundering
behaviors. Therefore, we collect subgraphs with K-in = 1, K-out
= 3 for each of the 890 objective nodes and then splice them into
a large-scale network with 86,623 nodes.

5.2. Setting
In the experiments, we compare the proposed T-EDGE
algorithms with two baseline random walk-based graph
embedding methods:

• DeepWalk is the pioneering work in employing randomwalks
to learn a latent space representation of social interactions.
Borrowing the idea of word2vec, the learned representation
encodes community structure so that it can be easily exploited
by standard classification methods [15].

Frontiers in Physics | www.frontiersin.org 6 June 2020 | Volume 8 | Article 20411

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Lin et al. Temporal Weighted Multidigraph Embedding

FIGURE 4 | Node classification performance with different training ratios.

• Node2vec further exploits a flexible neighborhood sampling
strategy, i.e., Breadth-First Sampling (BFS) and Depth-First
Sampling (DFS), with parameters p and q to capture both local
and global structure [17].

To ensure a fair comparison, we implement the directed versions
of DeepWalk and node2vec using OpenNE (an open-source
package for network embedding, github.com/thunlp/openne).
For these randomwalk-based embedding methods, we set several
hyperparameters: the node embedding dimension d = 128, the
size of window k = 4, the length of walk l = 10, and walks
per node r = 4. For node2vec, we grid search over p, q ∈
{0.50, 1.0, 1.5, 2.0} according to [17]. For DeepWalk, we set p =
q = 1.0, as it is a special case of node2vec. We implement the
skip-gram model by using a Python library named Gensim [23],
a framework for fast Vector Space Modeling.

5.3. Metrics
To make a comprehensive evaluation, we randomly select {50%,
60%, 70%, 80%} of the objective nodes as a training set and
the remaining objective nodes as the test set, respectively. We
train a classic binary classifier, namely, a Support VectorMachine
(SVM), with the training set to classify the samples of the test set.
Note that we use 5-fold cross-validation to train the classifier and
evaluate it on the test set.

For a binary classification task based on a supervised learning
framework, it can be divided into the following four cases
according to the actual labels of the samples and the prediction
results of the classifier.

• True Positive (TP): Samples whose labels are positive and are
also predicted to be positive.

• True Negative (TN): Samples whose labels are positive but are
predicted to be negative.

• False Positive (FP): Samples whose labels are negative but are
predicted to be positive.

• False Negative (FN): Samples whose labels are negative and are
also predicted to be positive.

In classification tasks, micro-F1 (Mi-F1) and macro-F1 (Ma-
F1) are generally used to evaluate classification accuracy. First,
we have

• precision: TP
TP+FP ,

• recall: TP
TP+FN .

F1-score is an indicator used to measure the accuracy of the
binary classification model. The calculation formula is

2×
precision× recall

precision+ recall
. (10)

Macro-F1 refers to calculating the total precision and recall of all
categories for F1-score, while Micro-F1 refers to the calculation
of F1-score after calculating the average of precision and recall for
each category.

5.4. Results
The results of micro-F1 (Mi-F1) and macro-F1 (Ma-F1) are
shown in Figure 4. According to Figure 4, we have the
following observations:

1. Our proposed methods T-EDGE, T-EDGE (TBS), T-
EDGE (WBS), and T-EDGE (TBS+WBS) overwhelmingly
outperform DeepWalk and node2vec;

2. Both T-EDGE (TBS) and T-EDGE (WBS) attain better
performance than T-EDGE, in which the random walk
generator has uniform probability;

3. Both T-EDGE (TBS) and T-EDGE (WBS) perform better
than T-EDGE (TBS+WBS), which considers both temporal
and amount information with parameter α = 0.5.

All in all, our proposed methods learn effective node
representations incorporating rich information, which does
help us get better performance in the classification task. The
result also indicates that time-dependent walks and edge
information are essential in transaction networks.

5.5. Parameter Analysis of α

Furthermore, the third observation mentioned above inspires
us to analyze the coupling parameter α. Larger α means more
time-domain information is considered in the random walk,
while smaller α means more amount domain information is
considered. Figure 5 compares the classification performance
on the parameter α with different training ratios in terms of
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FIGURE 5 | Classification performance on the parameter α with different training ratios.

precision, recall, and F1-score. We find that α = 0.8 is a poor
choice, but there is no single α that is a clear winner. Nevertheless,
we can observe that α ∈ [0.2, 0.3] and α = 1 are relatively better
choices. This result indicates that it is better to consider or favor
a single strategy than to consider both strategies equally at the
same time.

6. CONCLUSION

In this work, we proposed a novel framework for Ethereum
analysis via network embedding. Particularly, we constructed a
temporal weighted multidigraph to retain information as much
as possible and present a graph embedding method called T-
EDGE that incorporates temporal and weighted information
of financial transaction networks into node embeddings.
We implemented the proposed and two baseline embedding
methods on a realistic Ethereum network for a predictive
task with practical relevance, namely phishing/non-phishing
node classification. Experimental results demonstrated the
effectiveness of the proposed T-EDGE embedding method while
indicating that a temporal weighted multidigraph can more
comprehensively represent the temporal and financial properties
of dynamic transaction networks. Moreover, this work opens
up research on graph embedding in a new domain, financial
transaction networks. Traditional random walk-based methods
can be extended to a temporal version with temporal walks and
edge sampling strategies. For future work, we could use the
proposed embedding method to investigate more applications

of Ethereum or extend the current framework to analyze other
large-scale temporal or domain-dependent networks.
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This paper examines the risk connectedness across seven cryptocurrencies, Bitcoin,

Ethereum, Ripple, Litecoin, Stellar, Monero, and Dash, which have large capitalizations

in the cryptocurrency market. The data sample is from August 7, 2015, to February

15, 2020. We measure the return risks of the cryptocurrencies by using the CAViaR

model, showing that they have similar risk tendencies, with volatility clusterings from

the beginning of 2017 to the end of 2018. The net pairwise spillover index developed

by Diebold and Yilmaz [1] is used as the measure of the risk connectedness among

the cryptocurrencies. We find that the risk spillover directions are highly correlative with

the market capitalizations of the cryptocurrencies. Cryptocurrencies with small market

capitalization transmit risks to those with large market capitalization. When there is a

downward risk tendency, the risk spillover levels among the cryptocurrencies are stronger

than when there is an upward risk tendency, while the spillover directions remain the same

under both risk tendencies, except for the cryptocurrency Monero, the particularity of

which may be due to the difference in its trading volume compared to the others. We

use generalized forecast error variance decomposition for the spillover index and explore

the risk connectedness across the cryptocurrencies at different timescales, namely, the

short term (0–4 days), medium term (4–30 days) and long term (30–300 days). The

risk spillovers can be neglected at the short-term frequency, which implies a delayed

effect. The risk spillovers at medium-term frequency are mostly stronger than those at

long-term frequency. The dynamic connectedness results show that the means of risk

spillover at a long-term frequency are larger than those at medium-term frequency. An

inverse result holds for the ranges of risk spillover. The fluctuations of risk spillover at

long-term and medium-term frequencies admit the same comparison result with the

means of risk spillover in these two frequencies. The findings in this paper provide

some suggestions for regulators controlling market stability and cryptocurrency investors

generating investment strategies.

Keywords: DY spillover index, net pairwise spillover, risk tendency, time-frequency decomposition, cryptocurrency

1. INTRODUCTION

The cryptocurrency markets have recently seen a remarkable increase in prices, leading to some
suggestion that cryptocurrencies could be considered as a new kind of financial asset. The market
capitalization created by Bitcoin, the classical andmost well-known cryptocurrency, grew from 10.1
to 79.7 billion during the period from Oct 2016 to Oct 2017. The price jumped from 616 to 4,800
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US dollars. The high returns from the cryptocurrency markets
may respond rationally to their high volatilities [2, 3]. They
are characterized by a distributed payment system built
on cryptographical protocols. This takes advantage of the
anonymity, low cost, and fast speed of P2P transactions [4].
Cryptocurrencies are easy to generate speculative bubbles [5],
which may spread contagion in return, weakening financial
stability [6]. Hence, there has been a great number of papers
analyzing cryptocurrencies as financial assets and aiming to
identify the information transmission patterns among the
cryptocurrency markets and other asset categories like equities,
bonds, commodities, currencies, and so on [7–12].

A great deal of literature pays attention to relationships
among cryptocurrencies and financial variables due to their
roles as new asset classes [9] and important elements in
the global financial market [13]. Most of them focus on
Bitcoin. However, with the development of cryptocurrency
markets, some newly produced cryptocurrencies like Ethereum,
Ripple, Litecoin, Stellar, Monero, and Dash have gradually
been cutting into the dominant share of market value taken
by Bitcoin. This suggests that cryptocurrency investors are
taking a breather from Bitcoin and meanwhile looking at
other alternative cryptocurrencies. These new cryptocurrencies,
which have taken some of the conceptual and technological
advantages of Bitcoin (e.g., blockchain technology), are attracting
more and more attention as well as creating a mass of
opportunities for cryptocurrency investors. Actually, we have
to explain that this is not a surprising event, given the fact
that each alternative cryptocurrency outperformed Bitcoin in
2017, delivering astonishing returns, which ranged from 5,000%
(Litecoin) to 36,000% (Ripple) compared with the 1,300% price
appreciation of Bitcoin [14].

The growing interest in the new alternative cryptocurrency
markets for investment purposes is accompanied by a lack
of knowledge about the interaction between one leading
cryptocurrency and another. In fact, the rapid development of
cryptocurrency markets results in some relative heterogeneity
among mainstream cryptocurrencies. It is helpful to extend
the limited literature on connectedness among cryptocurrency
markets for use by cryptocurrency investors in devising
investment and trading strategies that may involve introducing
cryptocurrencies into the portfolio. On the other hand, it
is also helpful to construct connectedness networks for use
by policy-makers in formulating policies aimed at preserving
financial stability. Investors and risk managers can benefit
from establishing a connectedness network across many asset
classes to generate their investment and hedging decisions.
Generally, building connectedness networks is hardly new in
conventional assets. Prior works have uncovered connected
network structures among or within different assets/markets,
including equities [15, 16], bonds [17, 18], currencies [19,
20], commodities [21, 22], and interest rates [18]. However,
few works have constructed networks of connectedness in
the cryptocurrency market, which is becoming an appealing
investment ground for investors. Wei [23] examined the
liquidity for 456 kinds of cryptocurrencies. He showed that
return predictability weakens in cryptocurrencies with high

market liquidity and claimed that liquidity has a significant
impact on market efficiency and return predictability for
new cryptocurrencies. Yi et al. [24] focused on both static
and dynamic volatility connectedness among eight leading
cryptocurrencies, revealing their cyclic volatility connectedness,
with an evident rising trend at the end of 2016. They linked
52 cryptocurrencies by constructing a volatility connectedness
network making use of a variance decomposition framework
and found that the 52 cryptocurrencies are interconnected
tightly. The so-called “mega-cap” cryptocurrencies are more
likely to spread volatility shocks to others. Connectedness among
leading cryptocurrencies can also be investigated via return
and volatility spillovers, as in Ji et al. [14], where the results
achieved implied that the return of each cryptocurrency and
its volatility connectedness with others did not necessarily
depend heavily on its market size. Some authors have taken the
perspective of evolutionary dynamics; for example, ElBahrawy
et al. [25] took this approach to analyze the behavior of 1,469
cryptocurrencies and revealed some statistical properties for
cryptocurrency markets.

Motivated by the current works on connectedness among
the cryptocurrency markets, in this paper, we focus on
risk connectedness for the sake of portfolio diversification
and risk management. Risk connectedness and spillover have
been widely treated, for example, connectedness among stock
markets [26, 27], credit markets [28], financial institutions
[29], and sovereigns [30, 31] and connectedness between
stock and oil markets [32, 33], stock prices and exchange
rates [34], energy and carbon markets [35], and so forth.
Understanding the risk connectedness among cryptocurrency
markets provides valuable information regarding investment
and hedging decisions. Moreover, it also provides potential
information for systematic risk in the whole cryptocurrency
system, according to which the regulators can generate strategies
to control risk contagion. The current paper differs from
the existing literature in several ways. We use the daily
data of seven leading cryptocurrencies, Bitcoin, Ethereum,
Ripple, Litecoin, Stellar, Monero, and Dash, to compute their
risk levels and investigate the risk connectedness among
cryptocurrency markets by providing risk spillovers among these
leading cryptocurrencies, accounting for more than 75% of the
cryptocurrency market value. The most notable contribution of
our work is heterogeneity analysis of the risk connectedness
of cryptocurrencies. Two heterogeneities are considered in
this paper. The first heterogeneity is the asymmetric risk
spillovers at times of upward risk tendency and downward risk
tendency in the cryptocurrency markets. The connectedness
asymmetry under different risk tendencies is mainly determined
by investor expectation. The second heterogeneity is captured
by the differences in risk spillovers among the cryptocurrencies
at different timescales, namely, in the short term (0–4 days),
medium term (4–30 days), and long term (30–300 days). The
heterogeneity of risk spillovers at different timescales mainly
originates from the persistence of investor attention. Our findings
are highly informative for market participants, who can adjust
their hedging strategies according to different market tendencies
or time horizons.
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The paper is organized as follows. Section 2 details the risk
measurements for the selected cryptocurrencies. Section 3 shows
the static risk connectedness among the cryptocurrency markets.
The heterogeneity of risk spillovers under upward risk tendency
and downward risk tendency is analyzed. Section 4 explores
the risk connectedness at different timescales, which shows the
heterogeneity of risk spillovers among the cryptocurrencies in the
short term, medium term, and long term. Section 5 concludes
with some policy implications.

2. RISK MEASUREMENT FOR THE
CRYPTOCURRENCIES

It is well-known that the cryptocurrency returns are extremely
volatile, with clustering phenomena. Bollerslev [36] used
GARCH models to capture these characteristics well. GARCH
models have been widely popular as tools for measuring market
risk by the VaR method due to their relative simplicity and
various extensions. Unfortunately, their limitations, especially
the unrealistic parametric assumptions, such as normality or
i.i.d returns, which does not fit the case of cryptocurrencies,
are also evident. To overcome these problems, in this paper,
we apply the semi-parametric Conditional Autoregressive Value
at Risk (CAViaR) method developed by Engle and Manganelli
[37] to estimate VaR models for cryptocurrencies, avoiding any
extreme assumption invoked by the existing methodologies.
Unlike GARCH and GAS, which model the whole distribution,
CAViaR directly models the quantile of the return distribution,
extending the standard quantile regression approach introduced
by Koenker and Basset [38]. The CAViaR model uses an
autoregressive formulation straight to the quantile.

2.1. CAViaR Model
In short, the CAViaR method is particular in estimating VaRs
directly through an autoregressive specification for quantiles
rather than the usual approach of inverting a conditional
distribution of returns in a purely parametric framework [39].
This autoregressive dynamics for the quantile over time, as well as
some unknown parameters, is then determined by the regression
quantile framework [38]. Besides, the autoregressive nature of
CAViaR directly captures some stylized facts in the distribution
tails, like autocorrelation in daily returns arising from market
microstructure biases and partial price adjustment [40], volatility
clustering [36], and time-varying skewness and kurtosis [41].

In this paper, following Engle and Manganelli [37], we
consider a cryptocurrency return vector {yt}Tt=1. Let θ be the
probability associative to VaR, xt a observable variable vector,
and βθ a unknown parameter vector. Let ft(β) ≡ f (xt−1,βθ ) be
the θ-quantile of the cryptocurrency return distribution at time t,
formed at time t − 1. Then a general CAViaR model is specified
as follows:

ft(β) = γ0 +
q∑

i=1

γift−i(β)+
p∑

i=1

αil(xt−i,ϕ), (1)

where β ′ = (α′, γ ′,ϕ′) and l is the function of a finite value
depending on lagged values of observable variables. Engle and

Manganelli [37] introduced an autoregressive term γift−i(β),
i = 1, 2, · · · , q, allowing a smooth transition quantile. In
addition, they introduced the term l(xt−i,ϕ) in order to permit
a relationship between the θ-quantile ft(β) and the observable
variables. On the basis of general CAViaR formulation, Engle and
Manganelli [37] developed four alternative specifications for the
function l:

Adaptative : ft(β) = ft−1(β)+ β((1

+ exp(G(yt−1 − ft−1(β))))
−1 − θ), (2)

Symmetric Absolute Value : ft(β) = β1 + β2ft−1(β)+ β3|yt−1|, (3)

Asymmetric Slope : ft(β) = β1 + β2ft−1(β)+ β3(yt−1)
+

+ β4(yt−1)
−, (4)

Indirect GARCH(1, 1) : ft(β) = (β1 + β2f
2
t−1(β)+ β3y

3
t−1)

1/2.

(5)

In the first specification, G is a positively finite value satisfying
that the last term converges to β1(I(yt−1 ≤ ft−1(β1) − θ)) as
G → ∞, where I(·) is an indicator function. As explained by
Engle and Manganelli [37], the Adaptative specification allows
that whenever one exceeds one’s VaR, one should directly increase
it. Otherwise, one should decrease it very slightly. The second
and fourth specifications both respond symmetrically to past
returns with mean reverting, as the coefficient of the lagged
VaR is unconstrained to equal to one. The third model is also
mean reverting but with less restrictions in the sense that it
permits asymmetric response to both positive and negative past
returns. The asymmetric CAViaR specification has become the
most popular one for practitioners due to its consideration of
the skewness and kurtosis properties of financial series [29, 39,
42]. In this paper, asymmetric CAViaR is also employed for
measurement of the risk of cryptocurrency returns, which is
verified through test statistics (see also [43] for a cryptocurrency
risk measurement study).

2.2. Data and Sample Analysis
We collected daily price data on seven cryptocurrencies, Bitcoin,
Ethereum, Ripple, Litecoin, Stellar, Monero, and Dash, so as to
obtain sufficient price data for the 10 largest cryptocurrencies by
market capitalization listed on the website https://coinmarketcap.
com. Indeed, they cover almost a two-and-a-half-year period,
allowing us to make the most of our empirical results and
analysis. The sample interval ranges from August 7, 2015,
to February 15, 2020 (1,654 daily observations) for this
paper. Each selected cryptocurrency possesses a market value
exceeding 5 billion USD. The total market value of these seven
cryptocurrencies represents 79.5% of the entire cryptocurrency
market. The empirical study is built on daily return, calculated by
the difference in the log of price.

Figure 1 shows the risk level tendencies of the seven
cryptocurrencies. On the whole, the cryptocurrencies show
similar risk tendencies. In particular, volatility clusterings happen
during the period from the beginning of 2017 to the end
of 2018, since the cryptocurrencies received substantial price
appreciations during this period. We can also identify some mild
peculiarities of Dash andMonero. With regard to Dash, volatility
clustering was common in the whole sample period, whereas
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FIGURE 1 | Risk level tendencies of the selected cryptocurrencies.

for Monero, it reached its peak earlier, in the middle of August
2016, than others, whose peaks arose during the period from the
beginning of 2017 to the end of 2018. Besides, they both have
wider volatility ranges.

The summary statistics for the risks of cryptocurrencies,
including risks under upward and downward tendencies, are
given in Table 1. In Panel A, the highest mean of risk is for
Stellar, followed by Ethereum and Monero together. Ripple

and Stellar have the highest standard deviation, followed by
Ethereum. Interestingly, as the most popular cryptocurrency
in the market, Bitcoin shows the lowest mean risk and a
relatively low standard deviation, only higher than Monero. In
fact, these are not surprising observations. In 2017, each of the
other six cryptocurrencies under study increased in value by at
least 5,000%, while Bitcoin increased by 1,300%. Excess levels
of kurtosis arise in all cryptocurrencies, especially Ripple. All
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TABLE 1 | Summary statistics for cryptocurrency risks.

Variable Mean Max Min Std. Dev Skewness Kurtosis Jarque-Bera

Panel A

Bitcoin 0.059 0.232 0.020 0.031 1.413 5.053 840.549∗∗∗
Ethereum 0.088 0.628 0.040 0.041 4.115 37.626 87242.330∗∗∗
Litecoin 0.070 0.235 0.019 0.034 1.019 4.248 393.467∗∗∗
Ripple 0.075 0.741 0.032 0.048 4.782 45.539 130932.800∗∗∗
Monero 0.088 0.200 0.048 0.025 1.083 4.283 436.434∗∗∗
Dash 0.076 0.264 0.029 0.033 1.587 6.299 1443.842∗∗∗
Stellar 0.091 0.437 0.038 0.048 2.630 12.615 8274.153∗∗∗

Panel B Upward

Bitcoin 0.082 0.194 0.031 0.041 1.203 3.732 12.656 ∗ ∗
Ethereum 0.098 0.186 0.050 0.032 0.824 3.196 5.507∗
Litecoin 0.085 0.209 0.047 0.027 2.351 10.852 167.525∗∗∗
Ripple 0.104 0.306 0.040 0.048 1.967 8.543 92.391∗∗∗
Monero 0.078 0.133 0.051 0.020 1.086 3.663 10.309 ∗ ∗
Dash 0.107 0.218 0.049 0.041 0.831 3.084 5.543∗
Stellar 0.080 0.177 0.047 0.025 1.824 6.866 56.507∗∗∗

Panel C Downward

Bitcoin 0.059 0.175 0.022 0.027 1.217 4.610 86.619∗∗∗
Ethereum 0.080 0.354 0.042 0.030 3.861 31.794 9035.059∗∗∗
Litecoin 0.074 0.201 0.021 0.030 1.206 5.071 102.727∗∗∗
Ripple 0.066 0.349 0.034 0.032 4.093 29.890 8032.833∗∗∗
Monero 0.082 0.143 0.051 0.021 0.903 3.224 33.690∗∗∗
Dash 0.069 0.188 0.031 0.025 1.498 6.302 202.136∗∗∗
Stellar 0.087 0.348 0.041 0.044 3.018 14.743 1772.576∗∗∗

*Denotes the significance at a 10% level. **Denotes the significance at a 1% level. ***Denotes the significance at a 0.1% level.

cryptocurrencies show positive skewness. When risks increased
(Panel B), Dash has the highest mean risk level and the second-
highest standard deviation. Meanwhile, Ripple has the highest
standard deviation and the second-highest mean risk. High levels
of kurtosis and positive skewness arise in all cryptocurrencies.
Litecoin occupies the highest levels in terms of both kurtosis
and skewness. Moving to the statistics of decreased risks (Panel
C), Stellar has the highest mean risk and standard deviation.

Excess levels of kurtosis and positive skewness arise in all
cryptocurrencies, where Ethereum and Ripple are dominant in
both these two statistics.

The risk correlation matrices for the selected seven
cryptocurrencies are shown in Table 2. Overall, weak to
moderately positive correlations happen among the risk levels

of the selected cryptocurrencies. In particular, the highest

correlation coefficient is for the pair Bitcoin and Litecoin, given
as 0.68, whereas the pair Ethereum and Stellar permits the
lowest correlation coefficient given as 0.07. Focusing on the risk
correlations at times of upward and downward tendencies, the

correlations under an upward tendency are generally stronger
than those under a downward tendency. Under an upward
risk tendency, the pair Bitcoin and Ethereum has the highest
correlation coefficient, 0.87, followed by the pair Ethereum and
Dash, 0.79, whereas the lowest correlations are for the pairs

Bitcoin and Stellar and Ethereum and Stellar, with coefficients

0.25 and 0.26, respectively. The pairs Bitcoin and Monero and
Ethereum and Monero are uncorrelated under an upward risk
tendency. Under a downward risk tendency, Bitcoin and Litecoin
are the most positively correlated, with a coefficient of 0.70,
followed by the pair Bitcoin and Dash, for which it is 0.67, while
Ethereum and Stellar are uncorrelated. Overall, the correlation
between Bitcoin and Litecoin is unsurprisingly much stronger
than for the other pairs in the results of all three tests.

3. STATIC RISK CONNECTEDNESS IN THE
CRYPTOCURRENCY MARKETS

We follow [1] for themethodological framework for constructing
connectedness measures. In this paper, static risk connectedness
networks under upward and downward tendencies, as well as
static and dynamic risk connectedness at different timescales,
are built.

3.1. Static Risk Connectedness
Measurement
Suppose a stationary covariance seven-variable VAR(p) given as

Rt =
p∑

i=1

8iRt−i + εt , (6)
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TABLE 2 | Correlations among the cryptocurrencies.

Bitcoin Ethereum Litecoin Ripple Monero Dash Stellar

Panel A

Bitcoin 1.00

Ethereum 0.40*** 1.00

Litecoin 0.68*** 0.23*** 1.00

Ripple 0.38*** 0.20*** 0.54*** 1.00

Monero 0.27*** 0.18*** 0.27*** 0.25*** 1.00

Dash 0.63*** 0.33*** 0.53*** 0.46*** 0.28*** 1.00

Stellar 0.30*** 0.07*** 0.56*** 0.54*** 0.38*** 0.28*** 1.00

Panel B Upward

Bitcoin 1.00

Ethereum 0.87*** 1.00

Litecoin 0.75*** 0.76*** 1.00

Ripple 0.48*** 0.58*** 0.52*** 1.00

Monero 0.22 0.22 0.37** 0.44*** 1.00

Dash 0.70*** 0.79*** 0.69*** 0.53*** 0.30* 1.00

Stellar 0.25* 0.26* 0.40*** 0.55*** 0.77*** 0.28* 1.00

Panel C Downward

Bitcoin 1.00

Ethereum 0.53*** 1.00

Litecoin 0.70*** 0.39*** 1.00

Ripple 0.44*** 0.32*** 0.60*** 1.00

Monero 0.51*** 0.38*** 0.55*** 0.41*** 1.00

Dash 0.67*** 0.43*** 0.64*** 0.48*** 0.44*** 1.00

Stellar 0.29*** 0.08 0.50*** 0.53*** 0.47*** 0.28*** 1.00

*Denotes the significance at a 10% level. **Denotes the significance at a 1% level. ***Denotes the significance at a 0.1% level.

where Rt is the 7 × 1 cryptocurrency risk vector, 8t are 7 × 7
autoregressive coefficient matrices, and εt is the error term vector
assumed to be serially uncorrelated. If the VAR model above is
a stationary covariance, then one can write a moving-average
representation as

Rt =
∞∑

j=0

Ajεt−j, (7)

where the 7×7 coefficient matrixAj obeys a recursion of the form

Aj = 81Aj−1 + 82Aj−2 + · · · + 8pAj−p, (8)

where A0 is the n × n identity matrix and Aj = 0 for j < 0. One
can measure pairwise connectedness, directional connectedness,
and total connectedness on the basis of a generalized forecast-
error variance decomposition (FEVD) approach by using the
moving-average framework. The advantage of FEVD is that
it eliminates any disturbance induced in the results by the
variable ordering.

Denote the H-step-ahead generalized forecast-error variance
decomposition [14] by

θij(H) =
σ
−1
jj

∑H−1
h=0 (e

′
iAh6ej)

2

∑H−1
h=0 (e

′
iAh6A′

h
ei)

, (9)

where θij(H) is the variance contribution of variable j to variable i,

σjj is the standard deviation of the error term in the j’th equation,
and 6 is the variance matrix of the error vector ε. ei is a selection
vector with a value of 1 for the i’th element. Otherwise, take

it as 0. The spillover index yields an n × n matrix θ(H) =
[θij(H)], where each entry gives the contribution of variable j to
the forecast-error variance of variable i. Own-variable and cross-
variable contributions are involved in the main diagonal and off-

diagonal elements, respectively, of the θ(H) matrix. Each entry in
the θ(H) matrix is normalized by the row sum

θ̃ij(H) =
θij(H)

∑N
j=1 θij(H)

, (10)

to ensure that the row sum is equal to 1. There are several

spillovers, such as total spillovers, directional spillovers, net
spillovers, and net pairwise spillovers [14, 24, 44, 45]. In this

paper, we construct the net pairwise spillovers to investigate

the information spillovers among the whole cryptocurrency
market system.

With respect to the net pairwise connectedness, according to

the definition of FEVD, in general, θ̃ij 6= θ̃ji. Consequently, the

difference between θ̃ij and θ̃ji, θ̃ij − θ̃ji, can be used to measure
the net pairwise connectedness as well as the net spillover effect
from variable j to variable i. A directional connectedness network
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TABLE 3 | Net pairwise risk spillover among the cryptocurrencies.

Bitcoin Ethereum Ripple Litecoin Stellar Monero

Ethereum −0.047

Ripple −0.035 −0.001

Litecoin 0.768 −0.034 1.187

Stellar 1.316 0.462 1.679 0.887

Monero 2.520 4.665 1.925 1.959 1.189

Dash 0.870 1.746 0.729 0.478 −0.490 −1.095

This table presents the net pairwise risk spillovers among the selected cryptocurrencies

over the period from August 7, 2015, to February 15, 2020. Net pairwise risk spillover

transmitted by one cryptocurrency to another, where positive (negative) values suggests

that the cryptocurrency in question is a net receiver (transmitter) of spillovers to another

cryptocurrency.

can then be built on the basis of net pairwise connectedness.
Each market is regarded as a node in the network. The condition
in which a directional edge from i to j exists in the network is
θ̃ij − θ̃ji > 0.

3.2. Static Risk Connectedness Over the
Full Sample
Table 3 presents the matrix depicting net pairwise risk spillovers
among the cryptocurrency markets, that is, net spillovers
between two cryptocurrencies, where positive (negative) values
mean that the cryptocurrencies in question are net receivers
(transmitters) of spillover effects. Accordingly, we claim that
the risk spillover is highly correlative with the capitalization
of the cryptocurrency market. Mostly, risk spills over from
cryptocurrencies with small capitalizations to those with large
capitalizations. In particular, Bitcoin transmits little risk to
Ethereum and Ripple, where the spillover indexes are given as
0.047 and 0.035%, respectively, whereas it receives more risk
from Stellar, Monero, and Dash, where the spillover indexes
are 1.316, 2.520, and 0.870%, respectively. Similar results are
seen with regard to Ethereum, which mainly receives risks
from other cryptocurrencies with small capitalizations (spillover
indexes from three cryptocurrencies, Stellar, Monero, and Dash,
to Ethereum are 0.462, 4.665, and 1.746%, respectively, but those
from Ethereum to Ripple and Litecoin are only 0.001 and 0.034%,
respectively). A similar analysis holds for Ripple and Litecoin.

Although the empirical results we get do not agree with
the return spillover directions in the existing literature, we
believe that there is some relation between the risk spillover and
return spillover in the cryptocurrency markets. Cryptocurrencies
with large capitalization dominate the market efficiency and
price fluctuation, leading the market development tendency.
The rapid growth of cryptocurrencies into new classes of
financial assets creates a major challenge for traditional financial
markets and even impacts the whole financial market. In general,
cryptocurrency investors focus on those cryptocurrencies with
large capitalizations. They may take these cryptocurrencies
as references when making investment strategies in the
cryptocurrency markets. This results in return spillovers
from cryptocurrencies with large capitalization to those with

small capitalization. The return spillovers will cause violent
fluctuations in cryptocurrency prices with small capitalization
and then vary their return risks. The investors who intend
to invest in cryptocurrencies with small capitalization still
rely on the price tendencies of cryptocurrencies with large
capitalization. Thus, investor attention influences the return risks
of cryptocurrency markets with large capitalization, and the
return risks spill over from markets with small capitalization
to those with large capitalization. Indeed, this also reflects the
dominant roles of cryptocurrencies with large capitalization in
the whole cryptocurrency market.

3.3. Static Risk Connectedness in Upward
and Downward Tendencies
Risk spillovers among the cryptocurrency markets under
downward risk tendency are more remarkable than spillovers
under upward risk tendency. Spillover indexes under downward
risk tendency are mostly higher than those under upward risk
tendency. In particular, the spillover index between Bitcoin and
Ripple is shown to be −0.920% under downward risk tendency,
whereas it is −0.513% under upward risk tendency. Besides,
Bitcoin transmits the risks to Stellar andDash, where the spillover
indexes under downward tendency are 2.607 and 2.231%,
respectively, whereas they are given correspondingly as 1.824
and 0.689% under upward tendency. Similar results are seen in
Ripple and Litecoin. In fact, the asymmetrical spillover under
different risk tendencies is due to the difference in the regulatory
mechanism in cryptocurrency markets. Under an upward risk
tendency, the cryptocurrencies not only reduce their own risks
but also withstand spillovers from others more effectively. The
investors generate investment strategies more prudently when
the market risks are increasing. More concentrated attention on
their target cryptocurrency markets results in weak spillovers
among the cryptocurrencies in periods of upward risk tendency.
On the contrary, markets with decreasing risks attract a large
number of investors, whose confidences enhance significantly.
This is again due to the regulatory mechanism of the markets
themselves. The investors still pay attention to cryptocurrencies
with large capitalization like Bitcoin and Ethereum, considering
their dominant roles when they are generating their investment
strategies. The investor attention expedites communications
among the markets and impacts the risk connectedness. In
summary, the cryptocurrencies spill more risks to others at times
of downward risk tendency than when there is upward risk
tendency. In addition, this asymmetric effect is prominent in
cryptocurrencies with large capitalization.

Attention should be paid to the different spillover directions
between Monero and other cryptocurrencies under upward
and downward risk tendencies. One can see from Table 4 that
among the twenty-one pairwise spillovers, six pairwise spillovers
change their spillover directions in different risk tendencies,
and four of them involve Monero. According to the signs of
net pairwise spillovers, Monero mainly accepts spillovers from
cryptocurrencies with large capitalization under upward risk
tendency, whereas it transmits risk to these cryptocurrencies
under downward risk tendency. This result agrees well with what
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TABLE 4 | Net pairwise risk spillover under upward and downward risk

tendencies.

Bitcoin Ethereum Ripple Litecoin Stellar Monero

Panel A Upward

Ethereum 2.174

Ripple −0.513 −2.443

Litecoin −0.320 −3.491 0.030

Stellar 1.824 0.385 4.145 2.684

Monero −1.218 −3.246 −0.415 0.094 0.603

Dash 0.689 −2.894 0.516 0.313 −2.011 1.662

Panel B Downward

Ethereum −0.325

Ripple −0.920 −0.505

Litecoin −0.183 0.087 0.370

Stellar 2.607 3.130 3.691 3.431

Monero 2.219 2.937 2.356 2.412 −1.996

Dash 2.231 2.889 3.017 2.841 −0.335 0.756

This table presents the net pairwise risk spillovers among the selected cryptocurrencies

under upward and downward risk tendencies over the period from August 7, 2015, to

February 15, 2020. The Panel A presents spillovers during upward risk tendency, while

Panel B presents spillovers during downward risk tendency.

is shown in Figure 1. In Figure 1, one can see that the risk
tendency of Monero differs from those of other cryptocurrencies
before the steep rise in prices of cryptocurrency markets at
the beginning of 2017. Monero reached its risk peak while the
other cryptocurrencies stayed in their risk troughs. However,
this phenomenon disappeared after 2017. This interesting result
is due to the trading volumes of cryptocurrencies. The trading
volume of Monero was different from those of the others before
2017. For instance, from August 2016 to October 2016, the
trading volume of Monero fluctuated strongly, whereas the
others were weakly fluctuating. After 2017, the trading volume of
Monero comoved with other cryptocurrencies but with a higher
amplitude of fluctuation. We can capture that the differences
in trading volumes between Monero and other cryptocurrencies
mostly happened under downward risk tendency. The increase
in cryptocurrency trading volumes drove Monero to transmit its
risk to other cryptocurrencies. Thus, Monero spilled over risk, as
a transmitter in the market, under a downward risk tendency. So
we have to acknowledge the specific role played byMonero in the
whole cryptocurrency market.

4. TIME-FREQUENCY CONNECTEDNESS
OF CRYPTOCURRENCY RISKS

In fact, the analysis in section 3 implies that risk connectedness
among the cryptocurrency markets might show heterogeneities
at different timescales, which will be verified in this section. In
this section, we explore the net pairwise spillovers among the
selected cryptocurrencies at different timescales, namely in the
short term (<4 days), medium term (more than 4 days but <30
days), and long term (more than 30 days but <300 days). The

methodology for time-frequency connectedness measurement
refers to [46].

4.1. Time-Frequency Connectedness
Measurements
In this paper, the spectral representation framework of
generalized forecast error variance decomposition (GFEVD) is
applied to the frequency decomposition. Define the generalized
causation spectrum over frequency ω ∈ (−π ,π) by

(f (ω))k,j =
6

−1
j,j |(R(e−iω)6)k,j|2

(R(e−iω)6R′(eiω))k,k
, (11)

where R(e−iω) =
∑

h e
−iωhRh, h = 1, 2, · · · ,H, is the

Fourier transform of R, with i =
√
−1. As noted by [46],

the forecast horizon H makes no difference, since the GFEVD
here is unconditional. To obtain the generalized variance
decompositions on frequency band d, d ∈ (a, b), a, b ∈ (−π ,π),
we weight (f (ω))k,j by the frequency shares of the jth volatility
variance. Thus, the weighting function can be defined as

Ŵk(ω) =
2(R(e−iω)6R′(eiω))k,k∫ π

−π
(R(e−iλ)6R′(eiλ))k,kdλ

. (12)

The generalized variance decompositions on frequency band d
are denoted by

(2d)k,j =
1

2

∫ ∞

d
Ŵk(ω)(f (ω))k,jdω. (13)

With the spectral representation of the generalized variance
decompositions, we can easily calculate the scaled generalized
variance decompositions as

(2̃d)k,j =
(2d)k,j∑
j(2∞)k,j

, (2∞)k,j =
1

2

∫ π

−π

Ŵk(ω)(f (ω))k,jdω.

(14)
Then, the net pairwise spillovers in different frequencies are
given as

Sk,j = ((2̃d)k,j − (2̃d)j,k) · 100. (15)

4.2. Static Risk Connectedness at Different
Timescales
Table 5 shows the static net pairwise risk spillovers among
the cryptocurrency markets at short-, medium-, and long-
term frequencies. It is evident that spillovers happen at
medium- and long-term frequencies. Spillovers between any
two cryptocurrencies are almost zero in the short term.
They show signs of recovery until 4 days later. This is due
to the investor attitude on the cryptocurrency markets and
information exchange among them. The risk spillovers among
the cryptocurrency markets result from the return spillovers
and information exchange among them. As analyzed in section
3, cryptocurrencies with large capitalization play key roles
in the overall market. Investment strategies are generated
according to the price fluctuations of cryptocurrencies with large
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TABLE 5 | Static net pairwise risk spillovers at different timescales.

Bitcoin Ethereum Ripple Litecoin Stellar Monero

Panel A Short term

Ethereum 6.50e-03

Ripple −3.2e-02 −3.9e-02

Litecoin 5.39e-02 2.11e-02 6.5e-02

Stellar 2.53e-03 1.64e-04 5.2e-02 6.93e-05

Monero 3.98e-03 3.56e-03 −8.5e-05 1.12e-03 6.40e-05

Dash −4.9e-03 −4.8e-02 2.08e-02 −5.9e-02 1.99e-03 5.20e-03

Panel B Medium term

Ethereum 0.019

Ripple −0.053 −0.075

Litecoin 0.231 0.101 0.245

Stellar 0.049 0.002 0.263 −0.001

Monero 0.033 0.031 −0.006 0.008 0.002

Dash −0.163 −0.093 0.065 −0.249 0.003 0.024

Panel C Long term

Ethereum 0.059

Ripple −0.015 −0.002

Litecoin 0.092 0.024 0.078

Stellar 0.027 0.002 0.009 −0.032

Monero 0.028 0.019 −0.006 0.015 0.003

Dash −0.032 0.047 0.008 −0.074 0.007 0.008

This table presents the static net pairwise risk spillovers among the selected cryptocurrencies at different timescales. Panel A presents the spillovers at short-term frequency (0–4 days).

Panel B presents the spillovers at medium-term frequency (4–30 days). Panel C presents the spillovers at long-term frequency (30–300 days).

capitalization. Thus, investments in cryptocurrencies with small
capitalization rely on the price fluctuations of cryptocurrencies
with large capitalization, and so the information exchange among
the cryptocurrency markets leads to risk spillovers among them.
Moreover, the spillovers are not immediate but are delayed,
which results from the investor attitudes and asymmetry of
information. Although the investment decisions rely on the
prices of cryptocurrencies with large capitalization, as emerging
financial assets, cryptocurrencies are easily influenced by major
events such that they show strong uncertainty. Thus, the
investors first off look at the markets. On the other hand,
information in the cryptocurrency markets shows asymmetry
between investors and speculators, which also results in a delay
in risk spillovers among the cryptocurrency markets.

Furthermore, comparing the net pairwise spillovers among
the selected cryptocurrencies in the medium and long term
in Table 5, one can catch that risk spillovers at medium-
term frequency are mostly stronger than those at long-term
frequency, while the spillover directions remain almost the
same. In particular, only five pairwise spillover indexes at long-
term frequency are larger than their corresponding indexes at
medium-term frequency. Meanwhile, there is only one pairwise
spillover index that changes its sign (Ethereum and Dash). The
results imply that risk spillovers among the cryptocurrencies
followed an upturned “U” with respect to time frequency.
One may question the origin for such a phenomenon, and
our reply is that it is due to dynamic investor attention on
the markets. When news involving a cryptocurrency market

issue or a major event enters circulation, most investors just
monitor the markets without making investments, which results
in slight risk spillovers among the cryptocurrencies. With
sensationalization from speculators or market properties, such
as trading volumes and prices varying distinctly, the investors
pay their maximum attention to the markets. Considering the
dominant roles of cryptocurrencies with large capitalization in
the whole market, risk spillovers among the cryptocurrency
markets also attain their peaks. As the market gradually
acclimatizes itself to the changing information or shocks on
prices caused by major events, the market efficiency of an
individual cryptocurrency may increase, which reduces the risk
spillovers to others. However, the increasing market efficiency of
an individual cryptocurrency cannot result in a change of status
in the whole market for the individual cryptocurrency. Thus,
at different timescales, the risk spillover directions remain the
same. Summing up, risk spillovers among the cryptocurrencies
are the most remarkable in the medium term, rather than
in the short term or long term. Moreover, these spillovers
show persistence.

4.3. Dynamic Risk Connectedness at
Different Timescales
Table 6 presents the statistics for dynamic risk connectedness
among the cryptocurrency markets at medium- and long-
term frequencies. The risk spillover means and ranges among
the cryptocurrencies are remarkably discrepant at different
timescales. In addition, several spillover directions change.

Frontiers in Physics | www.frontiersin.org 9 July 2020 | Volume 8 | Article 24323

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Li et al. Risk Connectedness Among Cryptocurrencies

TABLE 6 | Statistics for dynamic risk connectedness at medium- and long-term frequencies.

Medium term Long term

Mean Std. Dev Range Mean Std. Dev Range

Bit-Eth 0.077 0.411 8.870 0.181 0.429 5.356

Lit-Ste −0.039 0.454 7.808 −0.055 0.615 7.555

Lit-Mon 0.001 0.526 7.895 −0.112 0.688 5.949

Ste-Mon 0.018 0.646 12.844 −0.151 0.831 6.362

Ste-Das 0.021 0.519 9.260 0.139 0.477 5.847

Bit-Rip 0.002 0.481 7.231 0.118 0.289 4.638

Bit-Lit 0.172 0.522 4.214 0.007 0.457 3.760

Bit-Ste −0.039 0.501 12.483 −0.084 0.550 6.641

Bit-Mon 0.053 0.435 10.138 −0.022 0.586 6.327

Bit-Das −0.204 0.969 8.524 0.148 0.503 4.614

Eth-Rip −0.031 0.549 7.876 0.076 0.275 5.408

Eth-Lit −0.025 0.431 6.695 −0.164 0.528 5.784

Eth-Ste −0.167 0.829 10.486 −0.120 0.585 5.485

Eth-Mon −0.009 0.432 10.516 −0.148 0.548 6.390

Eth-Das −0.069 0.616 7.388 0.121 0.431 5.463

Rip-Lit 0.101 0.495 4.419 −0.171 0.383 5.389

Rip-Ste 0.165 0.768 7.275 −0.233 0.439 5.463

Rip-Mon −0.082 0.497 9.120 −0.205 0.410 4.854

Rip-Das −0.068 0.583 7.471 −0.065 0.304 5.540

Lit-Das −0.039 0.625 5.785 0.197 0.436 3.982

Mon-Das 0.131 0.588 9.120 0.285 0.749 7.241

Sum. No.of |ML| > |MM| 16 No. of |SDL| > |SDM| 8

No.of changed sign 9 No. of |RL| > |RM| 0

This table presents the statistics for dynamic net pairwise risk spillovers among the selected cryptocurrencies at medium- and long-term frequencies. ML, SDL, and RL stand for the

mean, standard deviation, and range, respectively at the long-term frequency.

For lack of space, we present the statistics rather than figures depicting the risk spillovers among the cryptocurrencies. Readers can ask for the figure from the authors.

The mean spillover at long-term frequency is larger than
that at medium-term frequency, whereas the spillover range
at medium-term frequency is wider than that at long-term
frequency. In Table 6, there are sixteen pairwise spillovers
whose spillover indexes at long-term frequency are larger than
at medium-term frequency. Since the mean depends heavily
on the length of the sample interval, we catch the dynamic
characteristics of risk spillovers among the cryptocurrencies
through spillover range and standard deviation. The spillover
range at long-term frequency is remarkably lower than
that at medium-term frequency. Similar to the analysis in
subsection 4.2, this results from the collection of risk spillovers
among the cryptocurrencies at medium-term frequency. The
delays of price transmissions among the cryptocurrencies
result in the collection of risk spillovers at medium-term
frequency. Meanwhile, attentional heterogeneity in different
market participants leads to wide-ranging fluctuation in risk
spillover levels among the cryptocurrencies. In particular,
speculators and arbitragers may get more returns due to
the convenience and timeliness with which they get market
information. Thus, these market participants may magnify
the risk spillovers among the markets. On the other hand,
speculators and arbitragers pursue medium-term profits
in general, while investors prefer long-term programs.

This also suggests the amplification of risk spillovers at
medium-term frequency.

Referring to subsection 4.2, we divide the net pairwise
spillovers into two groups. In group one, the risk spillovers at
long-term frequency are stronger than those at medium-term
frequency, while group two holds the inverse case. One can see
from Table 6 that the risk spillover between two cryptocurrencies
whose spillover at long-term frequency is stronger than that at
medium-term frequency shows a strong fluctuation at long-term
frequency. However, the risk spillover fluctuation at long-term
frequency between two cryptocurrencies whose spillover at long-
term frequency is weaker than that at medium-term frequency
is remarkably weaker than that at medium-term frequency.
This is due to the persistence of risk spillovers among the
cryptocurrencies. In terms of Bitcoin and Ethereum, the investors
will pay continuous attention to these two cryptocurrencies
when they are generating investment decisions, on account
of their high similarity. This leads to a longer persistence of
risk spillover between Bitcoin and Ethereum, which results
in the risk spillover fluctuation at long-term frequency being
stronger than that at medium-term frequency. In terms of
those cryptocurrencies with weak similarity, the dominant roles
of cryptocurrencies with large capitalization result in stronger
risk spillover fluctuations in the medium term. Summing up,
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we declare the heterogeneity in dynamic characteristics of risk
spillovers among the cryptocurrencies at different timescales.

5. CONCLUSIONS AND POLICY
IMPLICATIONS

In this paper, we study risk connectedness among the
cryptocurrency markets through net pairwise risk spillover
measurement. We select seven leading cryptocurrencies, Bitcoin,
Ethereum, Ripple, Litecoin, Stellar, Monero, and Dash, whose
capitalizations are among the top 20 in the cryptocurrency
market. The data sample interval ranges from August 7, 2015,
to February 15, 2020. The methodology measuring the risk
spillover used in this paper is the DY index. We first explore the
net pairwise risk spillovers among the selected cryptocurrencies
over the whole sample. We then discuss the asymmetric
spillovers at times of upward and downward risk tendency.
Finally, we identify risk spillover heterogeneity at different
timescales through the decomposed DY index on the basis of
time frequency. The conclusion of this paper is summarized
as follows.

First, the risk spillover directions are highly correlative with
the capitalizations of cryptocurrencies. The risks spill over from
the cryptocurrencies with small capitalization to those with large
capitalization. For instance, the spillover indexes from Bitcoin
to Ethereum and Ripple are 0.047 and 0.035%, respectively,
while Bitcoin accepts risks from Stellar, Monero, and Dash, with
spillover indexes of 1.316, 2.520, and 0.870%, respectively. Similar
results also hold for Ethereum, which accepts risks from Stellar,
Monero, and Dash, measured by the spillover indexes as 0.462,
4.665, and 1.746%, respectively.

Second, the risk spillovers among the cryptocurrencies
under a downward risk tendency are stronger than those
under an upward risk tendency. A difference in spillover
direction under upward and downward risk tendencies exists
in the Monero market. In particular, the risk spillover index
between Bitcoin and Ripple is −0.513% under upward risk
tendency while it is −0.920% under downward risk tendency.
Similarly, the risk spillover indexes from Bitcoin to Stellar and
Dash are 1.824 and 0.689%, respectively, under upward risk
tendency, while they are 2.607 and 2.231% under downward
risk tendency. Monero accepts risk transmissions from the other
cryptocurrencies with large capitalization under risk upward
tendency, while it transmits the risks to those cryptocurrencies
in downward risk tendency. The risk spillovers in other pairs
of cryptocurrencies mostly maintain the same directions under
upward and downward risk tendencies.

Third, the mean and range of risk spillover at different
timescales show heterogeneity. The static risk spillovers mainly
happen at medium- and long-term frequencies. The risk
spillovers at medium-term frequency are mostly stronger than
those at long-term frequency, while the spillover directions
mostly remain the same. Focusing on the dynamic characteristics
of risk spillovers among the cryptocurrencies, the means
of risk spillover at long-term frequency are relatively larger
than those at medium-term frequency, while the ranges of

risk spillovers at medium-term frequency are distinctly larger
than those at long-term frequency. In addition, the risk
spillover fluctuations at long-term frequency are stronger than
those at medium-term frequency if the corresponding risk
spillover levels maintain the same comparison at long-term
and short-term frequencies. However, for cryptocurrencies
whose risk spillover levels at long-term frequency are lower
than at medium-term frequency, the risk spillover fluctuations
at long-term frequency are distinctly weaker than those at
medium-term frequency.

The empirical results have some policy implications for
regulators. Regulators should establish amonitoring and warning
system for risk. The risk spillovers among the cryptocurrencies
show heterogeneity under different risk tendencies, whereas
the spillover directions almost remain the same. Thus, a
risk monitoring and warning system would be able to
identify market behavior well and transmit valuable market
information. In addition, some regulatory policies should aim
at risk spillovers within 4–30 days. The large risk spillover
fluctuations and ranges among the cryptocurrencies in the
medium term pose new challenges for market supervision. Thus,
the regulators should generate policies, such as determining
a trading threshold, to control the risk spillovers among
the cryptocurrencies, improving the market efficiency in the
medium term. For the investors, the delayed effect of risk
spillovers among the cryptocurrencies should be paid attention
to when generating investment strategies. Major events may
shock the cryptocurrency markets strongly. Study of the delayed
effects of the shocks helps investors generate investment
strategies unifying their own situations. The analysis of the
heterogeneity in risk spillovers among the cryptocurrencies
at different timescales can provide information with which
investors to identify the effects of event shocks. Furthermore, our
empirical results also provide some suggestions for government
supervision of the design of a new cryptocurrency. On the
one hand, we should monitor the risks of cryptocurrencies
with large capitalization and construct a warning system.
On the other hand, two restrictions on trading volumes
of cryptocurrencies should be considered. Firstly, we should
use different restrictions on trading volumes under different
conditions. Under downward risk tendency, we can set lower
thresholds for trading volume to prevent the large-dollar
investors from entering the markets, leading to a risk increase for
new cryptocurrencies, whereas under an upward risk tendency,
investors should be attracted into the markets by setting higher
thresholds for trading volume and stimulated to trade more
frequently, driving the market mechanism to reduce the risks.
Secondly, we should restrict trading volumes of medium-term
investors. In this way, the uncertainty of spillover among the
cryptocurrency markets can be reduced, and market stability can
be well-protected.
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Dynamic Network Connectedness of
Bitcoin Markets: Evidence from
Realized Volatility
Shuanglian Chen1 and Hao Dong2*

1Guangzhou International Institute of Finance and Guangzhou University, Guangzhou, China, 2School of Economics and
Statistics, Guangzhou University, Guangzhou, China

In this paper, we explore the volatility spillovers across different Bitcoin markets. We
decompose the realized volatility into common and idiosyncratic volatilities, as well as the
good and bad volatilities. Then the asymmetry in volatility spillovers between Bitcoin
markets is measured by the DY (Diebold and Yilmaz) index. In addition, we construct
statistics to test the asymmetry in volatility spillovers between different Bitcoin markets. The
results are achieved as follows. The spillovers of systematic and idiosyncratic volatilities
dominate the connectedness among different Bitcoin markets. In addition, the
idiosyncratic volatility spillovers are more easily influenced by policies. Good volatility
spillovers dominate the Bitcoin markets and change over time. The further results suggest
that there is significant asymmetry between systematic and idiosyncratic volatility spillovers
in the Bitcoin markets, while the asymmetries between good and bad volatility spillovers
are heterogeneous in different markets. The findings in this paper can provide some
suggestions for regulators controlling market stability and investors generating investment
strategies.

Keywords: asymmetric, connectedness, bitcoin, realized volatility, good and bad volatility, common and
idiosyncratic volatility

1 INTRODUCTION

Both the market value and amount of cryptocurrency have risen greatly since 2016. Meanwhile, the
increased price has been accompanied with strong volatility. For instance, the Bitcoin as the leading
cryptocurrency fell more than 40% to less than $12,000 within a month from more than $20,000 on
December 17, 2017. Some people attribute such a rapid rise to the block chain technology, believing
that Bitcoin can exceed $100,000, while some others deem that cryptocurrencies are speculation
products rather than exchange mediums (10; [17, 37]; and Bitcoin is prone to bubble [20, 31]. In
order to further recognize the price discovery function of Bitcoin in the financial market, meeting the
investors demand on cryptocurrencies, the U.S. financial corporations CME and CBOE have issued
Bitcoin futures, respectively. In addition, Bitcoin is an option for portfolio, asset allocation, and
hedging [28] as it is distinctly different in return, volatility, and correlation from other assets [11].
The Bitcoin, which is a leading cryptocurrency with a long history as well as the largest market
capitalization, has a total amount at the early design stage. The Bitcoin markets, whose pricing data
are available immediately and free of charge to anyone worldwide with internet access, usually
behave differently in prices across different markets. Price volatility as an important indicator
investigating market dynamics, reflects the market reaction to new information, and influences the
trading volume, whose fluctuation reflects different investor understanding on the new information.
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Indeed, connectedness among price volatilities across different
Bitcoin markets provides knowledge on the spread and
absorption of market information flows and extend to which
price reflects the market information. The volatility
connectedness has been explored in stock markets [16, 19, 48,
53], futures markets [36, 58], and commodity markets [3, 4, 21,
34].We believe that it is necessary to pay attention to the volatility
connectedness across Bitcoin markets. Reference [61] analyzed
the cross-correlations of the return-volume relationship across
the Bitcoin markets. Reference [52] identified the price
inconsistencies across the markets. In this paper, the volatility
connectedness across the Bitcoin markets is addressed.

Systematic and idiosyncratic decompositions for financial
variables have been considered important in main stream
finance literature [32]. Reference [50] used the quantile-on-
quantile Granger causality test to investigate extreme risk
spillover from the crude oil market to firm return in China.
They provided evidence of extreme risk spillovers from crude oil
price shocks to firm returns. Their results indicate that the
industrial characteristics of a firm matters. Reference [18]
investigated the relationship between crude oil and stock using
firm-level data and a bottom-up approach. Following the same
logic of Ref. [47]; they explicitly modeled systematic and
idiosyncratic risks using a capital asset pricing model in the
oil-stock relationship for each stock and then aggregated them
for the market-wide results. Reference [45] investigated the inter-
connectedness between WTI oil price returns and the returns of
listed firms in the U.S. energy sector. They focused on the issue of
whether firm-level idiosyncratic information matters. A
generalized dynamic factor model was used to separate
systematic components from idiosyncratic components in
these energy stocks. On the other hand, systematic and
idiosyncratic contagion are underlined in the existing
literature. In a financial system, systematic contagion is driven
by common factors that affect all the participants, while
idiosyncratic contagion is caused by factors that are specific to
the individuals [6]. This distinction contributes to making clear
the potential contagion drivers and the channels by which
contagion occurs. They are essential for regulators and
policymakers to monitor financial stability. Some works
distinguish the systematic and idiosyncratic contagion through
the traditional regression models [9, 25–27]. Reference [6]
applied principal component analysis and a generalized vector
autoregressive framework proposed by Ref. [22]) to differentiate
the systematic and idiosyncratic contagion. Ref. [38] proposed a
network-based framework to distinguish systematic and
idiosyncratic contagion and dealt with the situation that the
number of financial institutes involved in the contagion is
sufficiently large. Most existing literature on systematic and
idiosyncratic decomposition contribute to the oil-stock
relationship and financial crisis. To our knowledge, it has not
been applied in the cryptocurrency market. In this paper, we will
explore systematic and idiosyncratic volatility in the Bitcoin
markets. In addition, network connectedness of systematic and
idiosyncratic volatility in the Bitcoin markets is constructed.

Despite the popularity and versatility of the DY index, which
was developed by Ref. [22] to measure both total and directional

volatility spillovers, it cannot not distinguish potential asymmetry
in spillovers that originate due to both good and bad uncertainty.
A market volatility may be higher as institutes in that market
make it advantageous for firms to take risks that lead to greater
market growth [1, 24, 39]. Alternatively, a market volatility may
also be high because of the market-specific forces, such as political
risks, that impose risks on firms that they can not shed [8]. In the
former case, volatility is good as it results from positive shocks
that enable markets to be more productive. In contrast, the bad
volatility associated with the latter case can destabilize the market
and prevent its growth. As suggested by Ref. [54]; one can
decompose the aggregate volatility into “good” and “bad”
volatility components, which are associated with positive and
negative innovations to market returns. These two volatility
components have opposite impacts on asset prices and market
growth. Ref. [7] decomposed the realized daily volatility
calculated by intraday returns into good and bad volatility,
which separately captured the volatility component associated
with positive and negative movements in oil prices and the
exchange rate, permitting someone to determine whether good
volatility shocks propagate differently across currency and oil
markets compared to bad volatility shocks. Ref. [13] quantified
asymmetries in volatility spillovers that emerge due to bad and
good volatility by using data covering most liquid U.S. stocks in
seven sectors. They provided sample evidence for the asymmetric
connectedness of stocks at the disaggregate level, while they
provided evidence for asymmetric volatility connectedness on
forex markets by showing how bad and good volatility propagate
through forex markets [14]. Reference [15] analyzed total,
asymmetric, and frequency connectedness between the oil and
forex markets using high-frequent intraday data by employing
variance decompositions and spectral representation in
combination with realized semi-variances to account for
asymmetric and frequency connectedness. Reference [2] paid
attention to the potential asymmetries from good and bad
volatility in the causal linkages between the crude oil and
forex markets. Reference [55] examined asymmetric volatility
spillovers between crude and international stock markets. They
provided evidence that bad total volatility spillovers dominate the
system and change over time, suggesting that a pessimistic mood
and uninformed traders who tend to increase volatility dominate
in the markets. However, among the existing literature on
asymmetries from good and bad volatility, as well as their
volatility spillovers, we should note that sufficient attention
has not been paid in the cryptocurrency markets. In this
paper, we will construct a network connectedness of good
volatility and bad volatility among Bitcoin markets and
explore the asymmetric spillovers of good and bad volatility in
Bitcoin markets.

The contribution of the current paper can be summarized as
follows. First, we explore the time-varying characteristic of
leading roles played by systematic and idiosyncratic volatilities
in different Bitcoin markets. The time-varying dominance of
common volatility and characteristic volatility spillovers in the
Bitcoin markets helps to identify the influencing factors of Bitcoin
price changes, that is, whether the Bitcoin price changes are
caused by the evolution of Bitcoin itself or by changes in market
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policy attitudes and investor sentiment. The leading roles
between Bitcoin markets enable global investors to use Bitcoin
assets for the purposes of diversification and to reduce risks. The
leading roles also allow the possibility of forming portfolios to
increase returns, which can generate clear benefits for financial
market investors and risk management. Second, we continue to
explore the time-varying characteristic of leading roles played by
good and bad volatilities in different Bitcoin markets. In this way,
we complete the construction of network connectedness of
Bitcoin markets. This dominant time variability helps investors
identify the impact of policy news on Bitcoin price volatility.
Concretely, volatility is good in that it results from positive policy
news that enables Bitcoin price to be more productive. In
contrast, the bad volatility associated with negative policy
news can destabilize the market and prevent its growth. Third,
we examine the asymmetric spillovers of systematic and
idiosyncratic volatility in Bitcoin markets and lastly,
asymmetric spillovers of good and bad volatility are addressed
as well. This could shed light on whether spillovers are higher or
lower during a specific period. Asymmetric spillover in volatility
on Bitcoin markets indicates that past returns are highly
correlated with present volatility. As volatility is transferred
across markets by spillovers, it is reasonable to believe that
volatility spillovers exhibit asymmetries as well and that such
asymmetries might stem from qualitative differences due to
different information. Our evidence supports this prediction.
In this way, we construct the asymmetric network
connectedness of Bitcoin markets.

The paper is organized as follows. In Section 2, we present the
network connectedness of systematic and idiosyncratic volatility
in Bitcoin markets, involving the measurement of systematic and
idiosyncratic volatility, and static and dynamic analysis of the
network connectedness. Similar results for good and bad volatility
in Bitcoin markets are presented in Section 3. The asymmetric
network connectedness in Bitcoin markets is addressed in
Section 4. In Section 5, we conclude the paper with some
policy implications.

2 NETWORK CONNECTEDNESS OF
COMMON AND IDIOSYNCRATIC
VOLATILITY IN BITCOIN MARKETS
2.1 The Measurement of Realized Volatility
The realized volatility can better reflect the Bitcoin price volatility.
On the one hand, different from traditional financial assets, as it
does not admit price limit, together with the globalization and
convenience, the Bitcoin price can fluctuate strongly in a short
time. Accordingly, we measure the Bitcoin price volatility by
using highly frequent data. On the other hand, the price of
Bitcoin, which is one of speculative assets, can be influenced
by information acquisition and propagation rate. Considering the
instantaneity of information, highly frequent data may better
reflect the effects of information on the Bitcoin price volatility
[33, 57]. Accordingly, we use the realized volatility, proposed by
Ref. [5]; to measure the price volatilities in different Bitcoin
markets.

Denote by rit,j the return rate in the Bitcoin market i:

rit,j � 100 p (ln pit,j − ln pit,j−1).
where i � 1, 2, . . . , 6 represents different Bitcoinmarkets, which are
USD, EUR, JPY, PLN, IDR, and KRW. t represents the time while j
represents the time period. In this paper, we use the data with 5-min
frequency, which suggest that j � 1, 2, . . . , (1440/5) � 288. lnpit,j
and lnpit,j−1 represent the Logarithmic prices of Bitcoin market i at
time j and j-1 in trading day t.

Accordingly, for the market i and a specific business day t, the
realized volatility RVi

t can be calculated as the sum of the squared
intraday returns rit,j:

RVi
t � ∑

288

j�1
ri,2t,j , t � 1, 2, . . . ,T ,

where T is the sample period.
In this paper, we decompose the realized volatility into

systematic and idiosyncratic volatilities, to explore the
asymmetry between systematic and idiosyncratic volatility
spillovers. To identify the role of idiosyncratic information in
the spillover among the Bitcoin markets, this paper employs
generalized dynamic factor models (GDFM), proposed by Ref.
[12]; to decompose the realized volatility into both systematic and
idiosyncratic components. The method is also used by Ref. [30].
Consider a six-dimensional vector of realized volatility
{Yit} � (RV1

t ,RV
2
t , . . . ,RV

6
t )′, which can be decomposed into a

systematic volatility Xit and an idiosyncratic volatility Zit , such as:

Yit � Xit + Zit �: ∑
Q

k�1
bik(L)ukt + Zit .

where, {Xit} � (RVS1
t ,RVS2

t , . . . ,RVS6
t ) is systematic volatility,

{Zit} � (RVI1
t ,RVI2

t , . . . ,RVI6
t ). Q is the number of systematic

volatility factors, which is determined by the variance contribution
rate. Additionally, ukt stands for orthonormal white noise, L is the
lag operator and bik(L) are one-sided square-summable filters.

2.2 The Measurement of Network
Connectedness
In this paper, we measure the connectedness among different
Bitcoin markets by the DY spillover index. Most existing
literature measures connectedness by the DCC-GARCH model
[46, 56] and copula model (41; [35, 44]. On the one hand, these
models focus on the connectedness of two or three markets rather
than measuring the connectedness among many markets. On the
other hand, the delay effect of Bitcoin price volatility and the
interplay among the Bitcoin markets motivate us to investigate
the volatility spillovers. Recently the connectedness model, which
is based on a VAR model approach proposed by Ref. 23, has been
widely used to measure system spillover in the finance and
commodity market [40–43, 59, 60]. Using forecasting error
variance decomposition (FEVD) of the VAR model and a
rolling-windows approach, the method provides a simple yet
effective way for understanding the static and dynamic spillovers
among different Bitcoin markets.

Start from a p -th order, the VAR(p) model is as follows:
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RVt � ∑
p

i�1
ϕiRVt−i + εt . (1)

RVt � ∑
∞

i�1
Aiεt−i, (2)

where, RVt � (RV1
t ,RV

2
t , . . . ,RV

6
t ), i is the delay order, obtained

by the AIC or BIC criterion. εt is the vector of disturbances and are
assumed to be independently and identically distributed. Given the
assumption of stationarity of the VARmodel, Eq. 1 can be converted
into Eq. 2 in an infinite order vector moving average (VMA)
representation, where Ai is the 6 × 6 coefficient matrix, defined as

Ai � ϕ1Ai−1 + ϕ2Ai−2 +/ + ϕpAi−p.

Standard FEVD results tend to be sensitive to the ordering of variables
in VAR models. Reference 23 suggested to use the generalized FEVD
approach [51] to solve this problem. They define θij(H) as the
contribution from market i to market j, which is written as

θij(H) �
σ−1
ii ∑H

h�0
(e′iAhΣej)

2

∑H
h�0

(e′iAhΣA′hei)
2
,

where Σ is the variance-covariance matrix of the error term, σii is
the standard deviation of εt ; ej is a selection vector, which equals
one for the jth element and 0 otherwise. The contributions of
θij(H) can be normalized in the form of
~θij(H) � θij(H)/∑N

j�1θij(H), whereas it is easy to prove that
∑N

j�1~θij(H) � 1 and ∑N
i,j�1~θij(H) � N .

By excluding self-contributions in the system, the total
spillover index (TSI), denoted by S(H), can be written as:

S(H) � 100 × ∑N
i,j�1,i≠ j ~θij(H)
∑N

i,j�1 ~θij(H) � 100 ×∑N
i,j�1,i≠ j ~θij(H)

N
.

We calculate the from and to spillovers among different Bitcoin
markets by Formulas (3) and (4)

Toi(H) � 100 × ∑
N

j�1,i≠ j
~θji(H), (3)

Fromi(H) � 100 × ∑
N

j�1,i≠ j
~θij(H). (4)

Furthermore, we calculate the net spillover

Si,net(H) � Toi(H) − Fromi(H).
Similarly, the net pairwise measure can be written as

NPSij(H) � (~θji(H) − ~θij(H)) × 100.

2.3 Asymmetric Network Connectedness of
Common and Idiosyncratic Volatility
In this paper, we chose six Bitcoin markets according to their
trading volume, which were USD (BitStamp), EUR (Kraken), JPY
(Coincheck), PLN (BitBay), IDR (Infomax), and KRW (Korbit),
where the largest trading platforms in corresponding Bitcoin

markets are pointed out in the brackets. According to the
availability, the data range from March 6, 2016 to March 15,
2020. The measurement for spillover is through R-3.6.3, while the
network figure is through Gephi-0.9.2.

The empirical results show the static and dynamic spillovers of
systematic volatility and idiosyncratic volatility among different
Bitcoin markets. According to the AIC criterion, we applied the
VAR model with a delay order of three to measure the realized
volatility in Bitcoin markets while the VAR model with a lagged
value of four was applied to measure the systematic and
idiosyncratic volatility in Bitcoin markets. Accordingly, we
calculated the static volatility spillovers among Bitcoin
markets. With regard to dynamic spillovers, in this paper, we
set the roll-windows by 60 according to the duration of Bitcoin
volatility. We set the n. ahead describing dynamic spillovers of
systematic volatility among the Bitcoin markets by 20, while it
was set by 10 to describe dynamic spillovers of idiosyncratic
volatility among the Bitcoin markets. The numbers 20 and 10
reflect the periods when the volatility shocks in the Bitcoin
markets become stable. Table 1 shows the static volatility
spillovers among different Bitcoin markets.

The spillovers between systematic volatility and idiosyncratic
volatility dominate the connectedness across different Bitcoin
markets. The volatility spillovers among Bitcoin markets after
volatility decomposition are significantly stronger than that
before decomposition. We can see from the rows “Net” in
Table 1 that the most significantly enhanced volatility
spillover after volatility decomposition compared with the total
realized volatility spillover before volatility decomposition is

TABLE 1 | Static spillover in realized, common, and idiosyncratic volatility.

USD EUR JPY PLN IDR KRW From

Panel a: Realized volatility
USD 75.98 16.60 5.41 0.82 1.14 0.05 4.00
EUR 10.69 83.22 4.33 0.52 1.20 0.03 2.80
JPY 11.52 5.29 77.16 0.69 5.31 0.02 3.81
PLN 12.70 5.76 3.68 74.49 3.34 0.02 4.25
IDR 13.58 5.81 16.17 0.99 63.41 0.03 6.10
KRW 0.76 0.31 0.46 0.04 0.40 98.02 0.33
To 8.21 5.63 5.01 0.51 1.90 0.03 21.29
Net 4.21 2.83 1.2 –3.74 –4.2 –0.3 —

Panel B: Systematic volatility
USD 40.72 42.34 7.20 1.92 7.59 0.23 9.88
EUR 40.46 42.28 7.17 1.88 7.98 0.23 9.62
JPY 41.04 41.07 6.98 1.95 8.71 0.25 15.50
PLN 41.50 41.58 6.52 2.47 7.64 0.28 16.25
IDR 41.20 41.25 7.32 1.81 8.20 0.22 15.30
KRW 33.67 19.98 12.87 1.32 22.19 9.96 15.01
To 32.98 31.04 6.85 1.48 9.02 0.20 81.57
Net 23.1 21.42 –8.65 –14.77 –6.28 –14.81 —

Panel c: Idiosyncratic volatility
USD 16.75 3.52 32.82 30.84 10.07 6.00 13.87
EUR 9.47 10.66 32.95 31.85 10.18 4.90 14.89
JPY 6.71 5.30 32.92 32.29 6.61 16.17 11.18
PLN 7.00 5.66 30.95 37.81 6.71 11.87 10.37
IDR 8.14 8.29 37.07 32.73 11.41 2.36 14.76
KRW 6.12 6.73 17.27 42.36 4.93 22.59 12.90
To 6.24 4.92 25.18 28.35 6.42 6.88 77.98
Net –7.63 –9.97 14 17.98 –8.34 –6.02 —
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captured in the KRWmarket, which are given as 14.81/0.3 � 49
and 6.99/0.3 � 20. It is followed by the JPY market, which is
8.65/1.2 � 7 and 14/1.2 � 11. The most insignificantly enhanced
volatility spillover after volatility decomposition compared
with the total realized volatility spillover before volatility
decomposition is captured in the IDR market, which is 6.28/
4.2 � 1.5 and 8.34/4.2 � 2. With regard to spillover direction, the
systematic volatility spillover direction is almost consistent
with the overall volatility spillover direction, while the
idiosyncratic volatility spillover direction is significantly
different from that of overall volatility spillover. The
volatility spillovers change their directions in the USD, EUR,
JPY, and PLN markets, but they stayed the same in the IDR and
KRW markets, which can be seen by the signs of values in the
rows “Net” in Table 1.

The difference of Bitcoin market efficiency determines the
asymmetry between systematic volatility spillover and
idiosyncratic volatility spillover. On the one hand, the market
efficiency determines the level variation of volatility spillover. The
market efficiency determines market ability replying to shocks.
Considering the speculative nature of Bitcoin, the higher market
efficiency leads to stronger market ability replying to shocks, that
is a Bitcoin market can well eliminate spillover effects from other
Bitcoin markets. Hence, for those entities who have more
comprehensive financial markets like USD and EUR, their
cryptocurrency markets, like Bitcoin, are more likely to show a
stronger ability when replying to market shocks. Due to China’s
policies on the Bitcoin market, the barycenter of the Bitcoin
market has begun to shift to the KRW and JPY markets. Many
investors are attracted to invest on these markets, resulting in new
challenges for market efficiency. However, the market efficiency
cannot realize regulation and control, which results in a larger
variation of volatility spillovers in the KRW and JPY markets.
Besides, considering aims of speculators to pursue excess return,
the development of emerging Bitcoin markets affects the
investing decisions of speculators. Accordingly, spillovers from
markets like IDR vary weakly.

On the other hand, the market efficiency determines the
variation of spillover directions. The markets with higher
efficiency, like USD and EUR, play leading roles in the
development of Bitcoin. Hence, both USD and EUR show
positive spillover directions of systematic volatility, namely
that USD and EUR transmit volatilities to other markets. The
idiosyncratic volatility reflects the particular roles played by
different markets in the development of Bitcoin. The USD and
EURmarkets usually attract investor attention from other Bitcoin
markets, which may affect their price evolution. Thus, the
efficiency of Bitcoin markets determines their roles in the
price evolution of Bitcoin. This implies the importance of
systematic and idiosyncratic volatility spillovers among the
Bitcoin markets. We will further analyze the net pairwise
spillovers of systematic and idiosyncratic volatility among
different Bitcoin markets.

Figure 1 shows the net pairwise spillovers of systematic and
idiosyncratic volatility among different Bitcoin markets. The size
of the node represents the self-spillover of Bitcoin markets. The
lines between two nodes represent the net pairwise spillovers

between two Bitcoin markets, while the arrows represent the
spillover direction. We can see from Figure 1 that the spillover
direction of systematic volatility is significantly different from
that of idiosyncratic volatility. With regard to systematic
volatility, it mainly spills from markets with large
capitalization to those with small capitalization. More
precisely, the systematic volatilities spill significantly from the
USD, EUR, and JPYmarkets to the KRW, PLN, and IDRmarkets.
With regard to idiosyncratic volatility, it spills from markets with
small capitalization like KRW, PLN, and IDR to those with large
capitalization like USD, EUR, and JPY. These phenomena result
from the heterogeneity of different Bitcoin markets in leading the
price volatility characteristics of Bitcoin. The systematic volatility

FIGURE 1 | Net pairwise spillover in different Bitcoin markets. Note: I.
The lines between two nodes represent the net pairwise spillovers between
two Bitcoin markets, while the arrows represent the spillover direction. II. (A)
stands for net pairwise spillover for systematic volatility, while (B) stands
for idiosyncratic volatility.
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depicts the roles played by different markets in the price volatility
characteristics. Markets with small capitalization usually learn
from markets with large capitalization on Bitcoin price. More
investors are attracted to catch more information on price from
markets with large capitalization and generate investment
strategies in other Bitcoin markets. Thus the systematic
volatility spills from markets with large capitalization to those
with small capitalization. The idiosyncratic volatility mainly
embodies the heterogeneity of market efficiency. The Bitcoin
markets with small capitalization usually admit low market
efficiency, which result in a weak ability when replying to
price volatility. Markets with large capitalization have strong

ability when replying to price volatility. Therefore, as the
Bitcoin price fluctuates, the markets with small capitalization
show higher market risks due to their weak stability, while those
markets with large capitalization show stronger stability. At this
time, investors disperse their investment risks by investing across
different Bitcoin markets. Accordingly, the idiosyncratic volatility
spills from markets with small capitalization to those with large
capitalization.

The idiosyncratic volatility spillovers among different Bitcoin
markets are more easily influenced by policies. With regard to
systematic volatility spillover, the spillover directions almost stay
the same in the sample period. In addition, spillovers fluctuate

FIGURE 2 | Dynamic net spillover among different Bitcoin markets. (A) stands for the dynamic spillover for systematic volatility; (B) reports the dynamic spillover for
idiosyncratic volatility.
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moderately. We can see from Figure 2A that the net spillovers
between USD and other markets are almost positive, which is also
the case in the EUR market. However, it is not the case in the
KRW, PLN, IDR, and JPY markets. With regard to idiosyncratic
volatility, the spillover directions change more frequently and the
spillover fluctuates strongly. This implies the effects of major
events on the idiosyncratic volatility spillovers among different
Bitcoin markets. For instance, since September 2017, China has
forbidden the issue and trading of cryptocurrencies like Bitcoin.
The global Bitcoin market has shifted to the JPY and KRW
markets. At this moment, the systematic volatility spillovers
among Bitcoin markets fluctuate moderately, while the
idiosyncratic volatility spillovers in the JPY and KRW markets
fluctuate strongly. Besides, volatility spillovers from other
financial markets like stock markets to Bitcoin markets are
almost dominated by idiosyncratic volatility spillovers. At the
beginning of 2018, regular stock markets around the world were
in a state of stagnation. More and more investors began to pay
attention to Bitcoin, which resulted in the strong price volatility of
Bitcoin. Similarly, the systematic volatility spillovers fluctuated
moderately, while the idiosyncratic volatility spillovers among the
Bitcoin markets showed stronger fluctuations. As the attitudes to
Bitcoin positively grew in different countries, the idiosyncratic
volatility spillovers as well as the spillover fluctuations became
weaker.

3 NETWORK CONNECTEDNESS OF GOOD
AND BAD VOLATILITY IN BITCOIN
MARKETS
3.1 The Measurement of Good and Bad
Volatility
The transmission of good and bad information among different
Bitcoin markets also catches the attention of investors. In fact, the
bad volatilities of Bitcoin are related to negative information, such
as earnings, spending, and investor sentiment, while the good
volatilities are related to the positive information of these
variables. Accordingly, we further explored the spillovers
between good and bad volatilities in Bitcoin returns. Recently,
Ref. [7] decomposed the realized volatility into estimators of
realized semi-variance (RS) that captured the variance due to
negative or positive movements in bad and good volatility of
Bitcoin markets. The technique was quickly adopted in several
recent contributions (29; [49, 54]. This method can better
measure the evolution of good and bad volatilities in the
sample period. Concretely, the good volatility of Bitcoin is
measured by the positive return of Bitcoin, while the bad
volatility is measured by negative return. Accordingly, this
method can better reflect the good and bad volatilities of
Bitcoin. In addition, it can better capture the relationship
between the Bitcoin volatilities in the future and the Bitcoin
returns in the past. Thus, we used the realized semi-variance in a
similar manner. The negative and positive realized semi-
variances (RSi,+ and RSi,−) of the Bitcoin market are defined as
follows:

RSi,−t � ∑
M1i

j�1
I(rit,j < 0)ri,2t,j .

RSi,+t � ∑
M2i

j�1
I(rit,j ≥ 0)ri,2t,j .

where M1i represents the time period when the return is less
than 0 in the market i, M2i represents the time period when the
return is larger than 0 in the market i. In each Bitcoin market,
there holds M1i +M2i � 288. Thus, the relationship among
realized volatility, and good and bad volatilities can be
written as follows:

RVi
t � RS−t + RS+t

and can serve as a measure of downside and upside risk. For
instance, negative semi-variance corresponds to bad
information causing the return volatility of Bitcoin, and we
can use the measure as the empirical proxy for bad volatility
as in Ref. [54]. Similarly, positive semi-variance corresponds
to good information causing the return volatility of Bitcoin
and serves as a proxy for good volatility. In this section, we
substitute RVt � (RV1,+

t ,RV2,+
t , . . . ,RV6,+

t ) and RVt �
(RV1,−

t ,RV2,−
t , . . . ,RV6,−

t ) into (1) and analyze the static
and dynamic volatility spillovers among different Bitcoin
markets.

TABLE 2 | Static spillover in realized, good, and bad volatility.

USD EUR JPY PLN IDR KRW From

Panel a: Realized volatility

USD 75.98 16.60 5.41 0.82 1.14 0.05 4.00
EUR 10.69 83.22 4.33 0.52 1.20 0.03 2.80
JPY 11.52 5.29 77.16 0.69 5.31 0.02 3.81
PLN 12.70 5.76 3.68 74.49 3.34 0.02 4.25
IDR 13.58 5.81 16.17 0.99 63.41 0.03 6.10
KRW 0.76 0.31 0.46 0.04 0.40 98.02 0.33
To 8.21 5.63 5.01 0.51 1.90 0.03 21.29
Net 4.21 2.83 1.2 –3.74 –4.2 –0.3 —

Panel B: Good volatility

USD 74.83 13.63 8.38 0.30 2.83 0.03 4.19
EUR 15.22 76.09 5.96 0.15 2.56 0.01 3.98
JPY 19.03 7.21 64.06 0.36 9.32 0.01 5.99
PLN 16.37 7.59 3.34 67.46 5.21 0.02 5.42
IDR 19.12 9.12 10.87 0.45 60.43 0.01 6.59
KRW 1.16 0.64 0.66 0.03 0.64 96.88 0.52
To 11.82 6.37 4.87 0.21 3.43 0.01 26.71
Net 7.63 2.39 –1.12 –5.21 –3.16 -0.51 —

Panel c: Bad volatility

USD 71.55 24.46 2.77 0.72 0.45 0.05 4.74
EUR 4.84 91.93 2.28 0.43 0.48 0.04 1.35
JPY 6.20 5.31 85.64 0.63 2.19 0.03 2.39
PLN 5.46 9.23 1.68 81.85 1.75 0.02 3.03
IDR 7.28 2.90 20.92 1.26 67.61 0.03 5.40
KRW 0.34 0.10 0.31 0.03 0.22 98.99 0.17
To 4.02 7.00 4.66 0.51 0.85 0.03 17.07
Net –0.72 5.65 2.27 –2.52 –4.55 –0.14 —
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3.2 Static Analysis of Asymmetric Network
Connectedness
Considering the heterogeneity in investor reactions to good (bad)
information, we discuss the static asymmetry of good and bad
volatility spillovers among different Bitcoin markets. Table 2
shows the static spillovers of good and bad volatility. Figure 3
shows the net pairwise spillover of good and bad volatility.

The good volatility dominates the spillovers among different
Bitcoin markets. With regard to good volatility spillover, the self-
spillovers of individual markets are all weaker than that of the full
sample, which suggests that in the environment of good

information, the connectedness across different Bitcoin
markets is stronger than that in the full sample. On the
contrary, for bad volatility spillover, the self-spillovers of
individual markets are stronger than that of the full sample,
which suggests that in the environment of bad information, the
connectedness across different Bitcoin markets is weaker than
that in the full sample. This results from the heterogeneity of
investor expectation in good and bad volatility spillovers.
Therefore, we further analyze the asymmetry between good
volatility spillover and bad volatility spillover.

The asymmetry between good and bad volatility spillover
among the Bitcoin markets is captured by the self-spillovers of
individual markets and mutual spillovers among different
markets. The diagonal elements in Panel b and c of Table 2
depicts the self-spillovers of individual Bitcoin markets, while the
net spillover depicts the spillovers among the markets. With
regard to the self-spillover, except the U.S. market, other markets
show stronger bad volatility spillovers. With regard to mutual
spillovers among the markets, the spillover directions of both
good and bad volatility are almost the same, while the spillover
degrees are significantly different. More precisely, we can see
from the rows of “Net” that the spillover levels in the USD, PLN,
and KRWmarkets decrease, while they increase in the EUR, JPY,
and IDR markets compared with good volatility. This may result
from the heterogeneity of investor expectation in different
markets. Good information leads to positive investor
expectation on the Bitcoin price. Due to heterogeneous
conveniences catching information of investors, besides
assimilating good information in the autologous markets, the
Bitcoin investors usually obtain information from other markets
to generate their investment strategies. Thus, good volatility
spillovers among different Bitcoin markets are stronger. On
the contrary, bad information not only decreases the investor
expectations on Bitcoin, but also challenges the market system.
On the one hand, for those markets with more comprehensive
market systems like USD, considering the regulation complexity
caused by spillovers as well as protecting investors, they usually
reduce the spillovers to other markets, reaching a balance status.
On the other hand, the migration of primary Bitcoin markets
influences the development of the market system. With regard to
bad information, for those weakly stable markets like the PLN
and KRWmarkets, investors decide their investor expectation by
looking at the price trend of Bitcoin in other markets and then
generate their investment strategies. Besides, the markets reduce
spillovers from other markets by setting relevant admittance
criterion. Thus, relative to good volatility spillovers, the bad
volatility spillovers in the USD, PLN, and KRW markets are
significantly reduced. The digestive ability of the market itself also
determines the asymmetry of spillover. To reply to bad
information, the market implements the digestion of
information by enhancing autologous efficiency and perfecting
an autologous system. At this moment, the self-spillovers of the
Bitcoin markets are strong. However, for those markets where
investors are diversiform, like EUR, JPY, and IDR, increasing the
autologous spillovers cannot better digest bad information. They
have to strengthen the connectedness with other markets.
Accordingly, relative to good volatility spillovers, the bad

FIGURE 3 | Net pairwise spillover in good and volatility. Note: I. The lines
between two nodes represent the net pairwise spillovers between two Bitcoin
markets, while the arrows represent the spillover direction. II. (A) stands for net
pairwise spillover for good volatility, while (B) stands for bad volatility.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5828178

Chen and Dong Dynamic, Connectedness, Bitcoin, Relaized Volatility

35

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


volatility spillovers in the EUR, JPY, and IDR markets are
significantly enhanced.

The asymmetry of spillover direction between good volatility
and bad volatility is not evident.We can see from the arrows in (a)
and (b) of Figure 3 that except the USD, EUR, and KRWmarkets,
both the good volatility and bad volatility spill from markets with
large capitalization to markets with small capitalization. It also
deserves to be noted that good volatility spills from USD to EUR,
while the bad volatility spills from EUR to USD. Besides, KRW
receives both good and bad volatility spillovers.

As the markets with large capitalization play the leading roles
in the development of Bitcoin price, investors from markets with
small capitalization generate rational investment strategies to
earn more profits by looking at the price trend of Bitcoin. For
the USD and EUR markets, the similarity and superiority of the
market system determine the asymmetry of good and bad
volatility spillover directions between these two markets.
Meanwhile, the policy attitude on financial assets like Bitcoin
in the USD and EUR markets also determines the asymmetry of
spillover directions. In addition, the particularity of the KRW

FIGURE 4 |Dynamic net spillover between different Bitcoin markets. (A) stands for the dynamic spillover for good volatility; (B) reports the dynamic spillover for bad
volatility.
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market creates opportunities for Bitcoin investors to transfer
risks. Due to China’s policy attitude toward Bitcoin, the KRW and
JPY are gradually becoming primary Bitcoin markets, which
attract a great deal of investors. But as the JPY market follows
some superior design of the market system, it can better reply to
good and bad volatility spillovers of Bitcoin. The instability of the
KRW market creates opportunities for speculators to earn
excessive profits. Meanwhile, as the attitude of KRW on
Bitcoin and the advance of internet technology, the KRW
market has been an accepter of volatility spillover.

3.3 Dynamic Analysis of Asymmetric
Network Connectedness
Figure 4 shows the dynamic net spillovers of good and bad
volatility among different Bitcoin markets, where a) shows the
good volatility spillovers and b) shows the bad volatility
spillovers. The leading roles of good and bad volatility
spillovers are time-varying and heterogeneous in different
markets. The good and bad volatility spillover levels determine
their leading roles. We can see from the figure that good volatility
spillover played a leading role in the USDmarket before 2017 and
after 2018, while the bad volatility spillover played the leading role
in other time periods. The bad volatility spillovers played a
leading role in the EUR market before 2017, while both good
and bad volatility spillovers played the leading roles in the market
after then. For the JPY market, both good and bad volatility
spillovers played leading roles before 2018 while the bad volatility
spillover played the leading role after 2018. The good volatility
spillover played the leading role in the KRW market during the
whole period of the sample. For the IDR market, before 2017 the
bad volatility spillover played the leading role. The good volatility
spillover played the leading role during the periods of 2017II-
2018I and 2019II-2019III. Both good and bad volatility spillovers
played the leading roles the rest of the time. With regard to the
PLN market, the bad volatility spillover played the leading role
during the periods of 2017IV-2018I and 2019III-2020I, while
both the good and bad volatility spillovers played the leading roles
in other time periods.

The difference of market system determines the
heterogeneity in leading roles of good and bad volatility
spillovers among the Bitcoin markets. The policy attitude
from the USD market on new assets like cryptocurrencies
and the developing trend of Bitcoin in the USD market
provide a favorable environment for investors to generate
investment strategies. The good information from the USD
market enhances the investor expectations. Thus, the leading
role of good volatility in the USD market persists during the
whole sample period. However, the development of other
cryptocurrencies challenged Bitcoin during 2017 to 2018. At
this moment, the Bitcoin price volatility induced by bad
information had begun to contaminate different Bitcoin
markets, resulting in the joint leading roles played by good
and bad volatility spillovers in the USD market. Protecting
investors in the USD market enhances the market efficiency.
The increase of the Bitcoin market efficiency gradually digests
price volatility caused by bad information. Therefore, after 2018,

the good volatility spillover recovered the leading role in the
USD market.

The different perfection levels of the Bitcoin markets
determine the heterogeneity in leading roles of good and bad
volatility spillovers among different markets. This may result
from the effects of major events on the Bitcoin markets. Bitcoin
futures were born in December 2017 and were welcomed into the
USD and EUR markets. This provided an opportunity for the
EUR market. With a similar system to the USD market, EUR
attracts many investors into the market, changing the leading role
of EUR in volatility spillover. On the other hand, although JPY
followed the system from other markets, it cannot perfect the
market to adapt to the increase of investors. The JPY market
highlighted the legality of Bitcoin by issuing some relevant laws in
2018. However, as the investor heterogeneity, the issued laws
cannot well serve the market perfection. Thus, JPY mainly spilled
bad volatility after 2018. Due to the instability of the KRW
market, it has been the main receiver of both good and bad
volatility spillovers. Besides, as the newly developing Bitcoin
markets, IDR and PLN, the origins leading to market
imperfection and investor complexity are still unclear. The
investor expectations fluctuate strongly. Thus, the leading roles
of good and bad volatility spillovers in the IDR and PLN markets
do not show evident characteristics.

4 TEST ASYMMETRIC DYNAMIC
NETWORK CONNECTEDNESS IN BITCOIN
MARKETS
Using the results of dynamic spillovers in Sections 2 and 3, in this
section, we test the asymmetry between systematic (good)
volatility and idiosyncratic (bad) volatility. In the first
subsection, we construct statistical magnitudes to test the
asymmetry. In the second subsection, we test the asymmetry
between systematic and idiosyncratic volatility spillovers, while in
the third subsection, we test the asymmetry between good and
bad volatility spillovers.

4.1 Conducting Test Statistics of
Asymmetric Dynamic Network
We now describe how to test asymmetries in volatility spillovers.
This procedure is addressed by two steps. In the first step, we
propose a hypothesis, while in the second step, we construct
statistical magnitudes.

A comparison of the spillover values opens the following
possibilities. If the systematic (good) volatility spillovers equal
to the idiosyncratic (bad) volatility spillovers, the spillovers are
symmetric, and we expect the spillovers to be of the same
magnitude as spillovers from RV. The test for dynamic net
pairwise spillover among the markets also follows this
principle. These properties enable us to test the following
hypotheses:

H1
0 : S

1
net � S2net against HA : S1net ≠ S

2
net .

H2
0 : S

1
netpair � S2netpair against HA : S1netpair ≠ S2netpair.
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where S1net represents the dynamic systematic (good) volatility
spillovers, S2net represents the dynamic idiosyncratic (bad)
volatility spillovers. S1netpair represents the dynamic net pairwise
spillovers of systematic (good) volatilities, S2netpair represents the
dynamic net pairwise spillovers of idiosyncratic (bad) volatilities.

If the null hypothesis holds, it suggests that the spillover levels are
coincident in the time dimension among different Bitcoin markets.
Accordingly, we construct four statistical magnitudes as Eqs 5–8:

TAM1i � SSneti − SIneti. (5)

TAM1ij � SSNPSij − SINPSij, i≠ j. (6)

TAM2i � SGneti − SBneti (7)

TAM2ij � SGNPSij − SBNPSij, i≠ j. (8)

where Eqs 5 and 6 are statistical magnitudes testing the dynamic
spillovers and net pairwise spillovers of systematic and
idiosyncratic volatilities, while Eqs 7 and 8 are statistical
magnitudes testing the dynamic spillovers and net pairwise
spillovers of good and bad volatilities. i, j � 1, 2, . . . , 6
represent the number of Bitcoin markets. Accordingly, SSneti
represents the dynamic spillover of systematic volatility in the
market i, while SIneti represents the dynamic spillover of
idiosyncratic volatility in the market i. SSNPSij represents the net

pairwise spillover of systematic volatility between the market i
and market j, and SINPSij represents the net pairwise spillover of
idiosyncratic volatility between the market i and market j. SGneti,
SBneti, S

G
NPSij, and SBNPSij are similar statistical magnitudes for good

and bad volatilities.
According to the hypothesis and statistical magnitudes, the

hypotheses in this paper are as follows:

Test (1) : TAM1i(j) � 0. vs TAM1i(j) ≠ 0. (9)

Test (2) : TAM1i(j) < 0. vs TAM1i(j) > 0. (10)

Test (3) : TAM2i(j) � 0. vs TAM2i(j) ≠ 0. (11)

Test (4) : TAM2i(j) < 0. vs TAM2i(j) > 0. (12)

where (1) and (2) test the asymmetry of dynamic spillovers (net
pairwise spillovers) between systema-tic and idiosyncratic
volatilities, while (3) and (4) test the asymmetry of dynamic
spillovers (net pairwise spillovers) between good and bad
volatilities. In addition, i≠ j.

In this paper, we first address test (1) and test (3), namely that
the comparison of dynamic spillovers or net pairwise spillovers
between systematic (good) and idiosyncratic (bad) volatilities.
After rejecting the null hypothesis, we further test the spillover
levels, namely test 2) and test (4).

FIGURE 5 | Test results of net spillover between systematic and idiosyncratic volatilities (p < 0.05). Note: I: The boxplot show the dynamic net pairwise spillovers of
systematic and idiosyncratic volatilities among the Bitcoinmarkets. II: The t-value is the value of t-statistics. The p-value1 is the p-value of test (1). The p-value2 is the p-value of
test (2). If both the p-value1 and p-value2 are smaller than 0.05, then it is replaced by p-value. III: Test (1): TAM1i � 0. vs TAM1i ≠0. Test (2): TAM1i <0. vs. TAM1i > 0.
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Test the Asymmetric Connectedness of
Common and Idiosyncratic Volatility
In this section, we report the asymmetry of systematic and
idiosyncratic volatility dynamic spillovers among different
Bitcoin markets. On the basis of the static spillovers of
systematic and idiosyncratic volatilities in Section 3, Figure 5
shows the dynamic spillovers of systematic and idiosyncratic
volatilities among the Bitcoin markets. Table 3 discusses the
dynamic net pairwise spillover of systematic and idiosyncratic
volatilities among the Bitcoin markets.

The asymmetry between systematic and idiosyncratic volatility
spillovers is captured. In Figure 5, t-value is the value of t-statistics,
p-value1 represents the p-value of test (1), while p-value2 represents
the p-value of test (2). If the p-value1 and p-value2 are both smaller
than the confidence level 0.05, then it is replaced by the p-value. From
the p-value or p-value1, we can find the significant asymmetry
between the dynamic spillovers of systematic and idiosyncratic
volatilities. Furthermore, we test and compare the dynamic
spillover levels of systematic and idiosyncratic volatilities. We can
see that in the USD, EUR, and IDR markets, the p-value2 is smaller
than 0.05, while in the JPY, KRW, and PLNmarkets, p-value2 is larger
than 0.05. According to the null hypothesis and alternative hypothesis
of test (2), in the USD, EUR, and IDRmarkets, the dynamic spillovers
of systematic volatilities are significantly stronger than that of
idiosyncratic volatilities. Inverse results hold in the JPY, KRW, and
PLN markets.

On the one hand, the asymmetry between systematic and
idiosyncratic volatility spillovers is induced by the
heterogeneity of the influencing mechanism. The systematic
volatility is influenced by the autologous information and price
evolution of Bitcoin, while the idiosyncratic volatility is influenced
by the idiosyncratic information in different markets. From the
perspective as a financial asset, the effect of systematic information
on the Bitcoin price depends on the autologous security,
convenience, and particularity. Decentralization is the most
significant characteristic in the development of Bitcoin. The
blockchain is the primary technique support. This particularity
provides convenience for investors to generate investment

strategies, which attracts many investors to consider Bitcoin as
a financial asset. Meanwhile, due to the rapid development of the
internet, Bitcoin thefts happen all the time. Its security is another
problem that should be paid attention to. From the perspective of
markets, the effect of idiosyncratic information on the Bitcoin
price depends on the shocks of major events and policy attitudes.
The idiosyncratic policy attitude determines the legality and
security of Bitcoin transactions in the market as well as the
protection for investors, which can enhance the investment
expectation of Bitcoin investors. The development of financial
integration results in that one market may receive spillovers of
policy attitudes from other markets, which may make differences
to the investment expectations of investors. Accordingly, there
shows significant asymmetry between systematic and
idiosyncratic volatility spillovers among different Bitcoin markets.

On the other hand, the asymmetry between systematic and
idiosyncratic volatility spillovers among different Bitcoin markets
results from the heterogeneity of roles played by different markets
in deciding the price evolution of Bitcoin. The USD and EUR, as the
markets with large capitalization, focus more on the advantages
brought by the development of Bitcoin, especially the development
of blockchain technology. The attitude of IDR, who focuses more
on technology, toward Bitcoin determines the impact of the IDR
market on the Bitcoin price evolution. Due to China’s policy
attitude toward Bitcoin, the weight shifts to the JPY and KRW
markets, such that more speculators flood into their markets, which
results in the weakening of market stability. Meanwhile, that
supervision is supplemented sparingly is another reason for the
weakening of market stability. Even though one market focuses
more on technology, the idiosyncratic characteristics of individual
markets still impact the Bitcoin price evolution. These markets
reflect the roles of different markets in the Bitcoin price evolution.
More precisely, USD, EUR and IDR influence the Bitcoin price by
spreading public information, while JPY, KRW, and PLN spread
idiosyncratic information.

This shows asymmetry between systematic and idiosyncratic
volatility spillovers. Panel a in Table 3 reports the dynamic net
pairwise spillovers among different Bitcoin markets. On the basis
of asymmetry in panel a, in this paper, we further test the dynamic

TABLE 3 | Test results of net pairwise spillover between systematic and idiosyncratic volatility.

USD EUR JPY PLN IDR

Panel a Test (1)

EUR 1.53 (0.13) — — — —

JPY –61.85 (0.00) –80.60 (0.00) — — —

PLN –101.57 (0.00) –123.84 (0.00) –13.45 (3.32e-39) — —

IDR –52.46 (0.00) –72.76 (0.00) 47.08 (0.00) 69.71 (0.00) —

KRW –72.56 (0.00) –95.51 (0.00) 12.56 (5.88e-35) 57.07 (0.00) –35.69 (6.35e-227)

Panel b Test (2)

EUR — — — — —

JPY –61.85 (1.00) –80.60 (1.00) — — —

PLN –101.57 (1.00) –123.84 (1.00) –13.45 (1.00) — —

IDR –52.46 (1.00) –72.76 (1.00) 47.08 (0.00) 69.71 (0.00) —

KRW –72.56 (1.00) –95.51 (1.00) 12.56 (2.94e−35) 57.07 (0.00) –35.69 (1.00)

Note: I. This table shows t-value and p-value. The p-value was shown in parentheses. II: Test (1): TAM1ij � 0. vs TAM1ij ≠0. Test (2): TAM1ij < 0. vs TAM1ij > 0.
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net pairwise spillover levels of systema-tic and idiosyncratic
volatilities in different markets, see panel b in Table 3. From
panel a in Table 3, it can be seen that among the fifteen net
pairwise spillovers, only the pair USD-EUR accepts the null
hypothesis on the inexistence of asymmetry, which reflects the
almost asymmetry of dynamic net pairwise spillovers. Further
looking at panel b in Table 3, among the fourteen asymmetric net
pairwise spillovers, ten pairs show that the dynamic spillovers of
systematic volatility are weaker than that of idiosyncratic
volatility. Accordingly, from the net pairwise spillovers among
the markets, the idiosyncratic volatility spillover plays a leading
role among the Bitcoin markets.

The effect of idiosyncratic information on the Bitcoin price
evolution highlights the leading roles of idiosyncratic volatility
spillover among the Bitcoin markets. The development of
Bitcoin has driven the development of emerging technology
such as blockchain technology. The development of this
technology attracts much attention from different countries
and regions. However, the security of Bitcoin challenges the

design of financial systems and the supervision of financial risk
in the countries and regions. The difference between
cryptocurrency assets like Bitcoin and traditional assets leads
to different policy attitudes of markets on the Bitcoin. The
difference of policy attitudes gives rise to barriers for investors
and speculators to earn profits. Meanwhile, one market may be
infected by policy attitudes from other markets, leading to the
fluctuation of investor expectations and change of market
stability, resulting in the price volatility of Bitcoin in the
market. However, as with the similar market systems of
USD and EUR, there does not appear to be any asymmetric
net pairwise spillovers between systematic and idiosyncratic
volatilities in these two markets.

4.2 Test the Asymmetric Connectedness of
Good and Bad Volatility
In this section, we report the asymmetry between good and bad
volatility dynamic spillovers among different Bitcoin markets. On
the basis of the dynamic net spillovers of good and bad volatilities

FIGURE 6 | Test results of net spillovers between good and bad volatilities (p < 0.05). Note: I. The boxplot show the dynamic net spillovers of good and bad
volatilities among different Bitcoin markets. II. The t-value is the value of t-statistics. The p-value1 is the p-value of test (3). The p-value2 is the p-value of test (4). If the
p-value1 is larger than 0.05, it is replaced by p-value. III: Test (3): TAM2i � 0. vs TAM2i ≠ 0. Test (4): TAM2i <0. vs.TAM2i >0.
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in Section 4, Figure 6 shows the dynamic net spillovers of good
and bad volatilities among different Bitcoin markets. Table 4
shows the dynamic net pairwise spillovers of good and bad
volatilities among different Bitcoin markets.

The asymmetry of good and bad volatility spillovers is
heterogeneous in different markets. In Figure 6, the t-value is the
value of statistics t. The p-value1 is the p-value of test (3). The
p-value2 is the p-value of test (4). If the p-value1 is larger than 0.05,
then it is replaced by p-value. From the p-value or p-value1 in
Figure 6, we can see the significant heterogeneity of asymmetry
between good and bad volatility dynamic spillovers in different
markets. More precisely, the p-value suggests accepting the null
hypothesis on the inexistence of asymmetry in the EUR and IDR
markets. The p-value2 is less than 0.05 in theUSDandKRWmarkets,
while it is more than 0.05 in the JPY and PLNmarkets. According to
the null hypothesis and alternative hypothesis of test (4), we can see
that the good volatility dynamic spillovers are significantly stronger
than the bad volatility dynamic spillovers in the USD and KRW
markets, while the inverse case holds in the JPY and PLN markets.

The market information brought into the public determines the
heterogeneity of asymmetric spillovers between good and bad
volatilities among different markets. If more market information is
brought to the public, the investors can better grasp the Bitcoin price
and generate correct investment strategies, which may strengthen the
market stability. Thus, the Bitcoin price admits positive returns. On the
contrary, if less market information is brought into the markets, the
uncertainty of investor expectations may be higher and the market
stability is lower, resulting in stronger volatility. At this moment, the
Bitcoin price admits negative returns. For the USD andKRWmarkets,
influenced by the necessity to protect investor interests and construct
financial market systems, the good volatility spillovers are significantly
stronger than the bad volatility spillovers. From the perspective of
protecting investor interests, the investor can better grasp the Bitcoin
price by themarket information brought into the public.Moreover, the
marketmay release advantageous information to prevent the instability
of other markets from influencing the price in the autologous markets.
At this moment, the investors may show good expectations and
generate rational investment strategies. In addition, the insecurity of
Bitcoin markets, such as events like hacker attacking and Bitcoin theft,

requires the markets to enhance the perfection of autologous market
systems. This enhancement shows positive effects on the Bitcoin price.
Therefore, the good volatility contributesmore to theBitcoin price than
the bad volatility in theUSDandKRWmarkets. The inverse case arises
in the JPY and PLN markets. Influenced by the shift of key Bitcoin
markets, there is a high proportion of speculators in the JPY and PLN
markets. At this moment, themarket stability is lower and the investor
expectations are unstable. This causes some issues for investors when
generating investment strategies. Thus, the bad information produces a
negative effect on the Bitcoin price. In the EUR and IDR markets, the
good and bad information shows almost equivalent effects on the
Bitcoin price volatility. Furthermore, we analyze the spillover effects of
price volatility across different Bitcoin markets.

The bad volatility spillovers play leading roles in the Bitcoin
markets with large capitalization. Panel a in Table 4 reports the
asymmetry of dynamic net pairwise spillovers among the Bitcoin
markets. On the basis of asymmetry existing in themarkets in panel a,
we further test the levels of dynamic net pairwise spillovers of good
and bad volatilities in different markets, see panel b in Table 4. From
panel a in Table 4, among the fifteen pairs of net pairwise spillovers,
only the pairs EUR-PLN and EUR-IDR accept the null hypothesis on
the inexistence of asymmetry. Therefore, the dynamic net pairwise
spillovers among different Bitcoin markets are almost all asymmetric.
By looking at panel b in Table 4, among the thirteen asymmetric net
pairwise spillovers, there are six pairs showing that good volatility
spillovers are weaker than bad volatility spillovers, where five of them
are relevant to the USD market. Accordingly, the results of net
pairwise spillovers suggest the heterogeneity in dynamic spillovers
of good and bad volatilities among different Bitcoin markets.

The Bitcoin market system design leads to the heterogeneity in
asymmetric spillovers of good and bad volatilities. The efficiency and
perfection of theUSDmarket are both higher than othermarkets. This
market superiority can well protect the profits of investors. The
investor expectations are also higher. At this moment, the investors
and policy makers aim to decrease the market volatility, through
releasing advantageous information. Therefore, the good volatility
spillover plays a leading role from the USD market to other markets.
The difference between virtual assets like Bitcoin and traditional
financial assets means that the Bitcoin can be shocked greatly by

TABLE 4 | Test results of net pairwise spillover between good and bad volatilities

USD EUR JPY PLN IDR

Panel a Test (3)

EUR –3.11 (0.002) — — — —

JPY –10.40 (6.89e−25) –5.16 (2.51e−07) — — —

PLN –8.12 (6.76e−16) –0.88 (0.37) 5.81 (7.03e−09) — —

IDR –4.59 (4.43e−06) –0.31 (0.75) 4.57 (5.02e−06) 2.62 (0.008) —

KRW –4.69 (2.80e−06) 1.82 (0.06) 4.28 (1.85e−05) 2.69 (0.007) 3.91 (9.35e−07)

Panel b Test (4)

EUR –3.11 (0.99) — — — —

JPY –10.40 (1.00) –5.16 (0.99) — — —

PLN –8.12 (1.00) — 5.81 (3.51e−09) — —

IDR –4.59 (0.99) — 4.57 (2.51e−06) 2.62 (0.004) —

KRW –4.69 (0.99) 1.82 (0.034) 4.28 (9.27e−06) 2.69 (0.003) 3.91 (4.67e−05)
Note: This table shows t-value and p-value. The p-value was shown in parentheses. Test (3): TAM2ij � 0. vs TAM2ij ≠ 0. Test (4): TAM2ij <0. vs TAM2ij > 0.
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major events, which challenges the design of Bitcoin market systems.
At present, most markets are in the stage of exploring Bitcoin. There
shows higher uncertainty of investor expectations in themarkets. This
uncertainty enhances the instability of markets and then the Bitcoin
price volatility. Thus, the bad volatility spillovers play leading roles in
the connectedness of other Bitcoin markets.

5 CONCLUSIONS AND POLICY
IMPLICATIONS

Information transmission is an important link of Bitcoin price
volatility spillovers. In this paper, the sample data were from six
Bitcoin markets whose capitalizations are within the top ten. The
sample period was from March 6, 2016 to March 15, 2020. First, we
measured the realized volatilities of Bitcoin in each market with the
data frequency of 5min. Second, we decomposed the realized volatility
into systematic and idiosyncratic volatilities (good and bad volatilities),
and then analyzed the static and dynamic spillovers. Finally, we tested
the asymmetry between systematic and idiosyncratic volatility
spillovers (good and bad volatility spillovers) by constructing
statistics. The conclusions are summarized as follows:

The spillovers between systematic and idiosyncratic volatilities
in different Bitcoin markets play leading roles. In addition, the
idiosyncratic volatility spillovers are more easily influenced by
policies. The most enhancement on volatility spillover after
decomposition of the realized volatility was found in the KRW
market, which was given as 14.81/0.3 � 49 and 6.99/0.3 � 20,
which was followed by the JPY market, given as 8.65/1.2 � 1 and
14/1.2 � 11. The least enhancement on volatility spillover after
decomposition of the realized volatility was found in the IDR
market, which was given as 6.28/4.2 � 1.5 and 8.34/4.2 � 2. The
spillover directions changed after decomposition in the USD,
EUR, JPY, and PLN markets, while they did not change in the
IDR and KRW markets. Besides, the systematic volatility
spillovers almost did not change their signs during the sample
period. The signs of the idiosyncratic volatility spillovers among
different markets showed strong relationship to policies.

Good volatility spillovers dominated the Bitcoin markets and
changed over time. More precisely, comparing the good and bad
volatility spillovers, the spillover levels decreased in the USD, PLN,
and KRW markets, while they increased in the EUR, JPY, and IDR
markets. Good volatility spillovers played leading roles in the USD
market before 2017 and after 2018, while bad volatility spillovers
played leading roles in other time periods. Bad volatility spillovers
played leading roles in the EUR market before 2017, while both the
good and bad volatility spillovers played leading roles after 2017. Both
the good and bad volatility spillovers played leading roles in the JPY
market before 2018, while the bad volatility spillovers played the
leading roles after 2018. Good volatility spillovers played leading roles
in the sample period. In the IDR market, bad volatility spillovers
played the leading roles before 2017. The good volatility spillovers
played leading roles during the periods from 2017II to 2018I and
2019II to 2019III. Both the good and bad volatility spillovers played
the leading roles in other time periods. In the PLN market, the bad
volatility spillovers played the leading roles during the periods from

2017IV to 2018I and 2019III to 2020I. Both the good and bad
volatility spillovers played the leading roles in other time periods.

There was significant asymmetry between systematic and
idiosyncratic volatility spillovers among different Bitcoin
markets. The asymmetries between good and bad volatility
spillovers were heterogeneous in different markets. More
precisely, the dynamic spillovers of systematic volatility were
significantly stronger than that of idiosyncratic volatility in the
USD, EUR, and IDR markets. With regard to good and bad
volatility spillovers, there was no asymmetry in the EUR and IDR
markets. The dynamic spillovers of good volatility in the USD and
KRW markets were significantly stronger than that of bad
volatility. The inverse results hold in the JPY and PLN markets.

Indeed, the empirical results in this paper can provide some policy
suggestions for regulators and investors. For the regulators, on the
one hand, it should strengthen the establishment of market systems
and information public degrees. The Bitcoin price volatility results
from the difficulties for investors to obtain information, the strong
hysteresis, and the imperfection of market systems. We should be
familiar with the Bitcoin price evolution and its internal logic by
strengthening the establishment of market systems, which is
important to take the advantages of Bitcoin and protect the legal
interests of investors. On the other hand, it should prevent
information shocks from other markets. The regulators should
guide the investors to invest rationally. Markets should learn form
those markets with higher perfection like USD and EUR to prevent
idiosyncratic information from other markets from causing strong
volatility of the Bitcoin price. For the investors, the heterogeneity of
information volatilities among cryptocurrencies should be paid
attention to for the generation of investment strategies.
Information and major events have large impacts on the Bitcoin
price volatility. The investors should grasp the information of Bitcoin
price by various ways and invest rationally. The investors should well
filter the information and generate investment strategies. The analysis
on the asymmetry of volatility spillovers among different Bitcoin
markets provides some help for investors to estimate event shocks.
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CryptoKitties Transaction Network
Analysis: The Rise and Fall of the First
Blockchain Game Mania
Xin-Jian Jiang1 and Xiao Fan Liu2*

1School of Computer Science and Engineering, Southeast University, Nanjing, China, 2Web Mining Laboratory, Department of
Media and Communication, City University of Hong Kong, Hong Kong, China

CryptoKitties was the first widely recognized blockchain game. Players could own, breed,
and trade kitties, which are the only prop in the game. The game gained explosive growth
upon its release but quickly collapsed in a short time. This study analyzes its entire player
activity history for the first time in literature and tries to find the reasons for the rise and fall of
this first blockchain game mania. First, we extracted the five million transaction records
among 100 thousand addresses involved in CryptoKitties in the past three years. Based on
the numbers of addresses involved in the game each day, we divide the game progress
into four stages: the primer, the rise, the fall, and the serenity. We construct a temporal kitty
ownership transfer network and analyze the varying network parameters in the four stages.
We find that a large number of players poured in during the 10th and 18th days since the
game release and quickly exited in the following month. Since then, a few big players have
gradually dominated the game, concentrating the game resources. Through further
analysis, we find that the main reason for the rapid increase in the game popularity
was the increase of public attention by media outlets, while the reasons for the rapid
decline in the game popularity include the oversupply of kitties, the decreasing of player
income, a widening gap between the rich and poor players, and the limitations of
blockchain systems. Based on these observations, we advise on the further
blockchain game design: (1) to finely control the production of props and avoid an
oversupply, (2) to balance the gaming cost and revenue and protect the enjoyment of
players, (3) to narrow down the gap between rich and poor and create an equal gaming
community, (4) to consider the limitations of blockchain systems in their game designs.

Keywords: cryptokitties, blockchain game, ethereum, transaction network, game design

1 INTRODUCTION

Blockchain, emerged as the underlying supporting technology for Bitcoin [1], is a distributed ledger
system providing non-tampering and traceability functionalities. Ethereum [2], also known as the
blockchain 2.0 platform, further adds supports for smart contracts, which are programs that can be
stored and executed on the blockchain system [3]. Developers can use smart contracts to create
various decentralized applications, especially games.

Blockchain games are considered to have unique advantages over traditional online games in that
their gaming data and logic are transparently stored and executed on blockchains [4]. These
advantages particularly suit games with in-game payment and chance mechanisms, e.g., gambling,
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which often suffered from trust issues in traditional online
environment. As a result, current designs of blockchain games
mainly revolve around the generation, ownership, and trading of
virtual assets [5].

Cryptokitties is a blockchain game released on Ethereum in
late November 2017. Players can own, trade, and create virtual
kitties, represented by non-fungible tokens meeting the ERC-721
token standard in the game. The attributes and transactions of
kitties are recorded in the Ethereum blockchain. Once released,
CryptoKitties soon gained massive popularity that its
transactions accounted for more than 10% of the entire
Ethereum traffic in early December 2017 [6].

Nonetheless, Min et al. [4] claimed that most of the current
blockchain games lack playability. Possible reasons include that
current blockchain platforms restrict developers from
implementing complex game functions, current developers are
paying insufficient attention to the players’ gaming experience,
and lack a competitive market in the blockchain game industry.
Not surprisingly, the popularity of CryptoKitties only lasted for a
short period, too.

In this study, we aim to fully unveil the collective user
behaviors in the game and the reasons leading to the game’s
rapid rise and fall by analyzing blockchain transaction records.
Specifically, we first construct a kitty ownership transfer network
and investigate the network structural changes over time. Then,
we conjecture and verify the possible reasons for the rapid
changes in gaming popularity from four perspectives: the
supply and demand of kitties, the profitability in the game, the
inequality of players’ wealth, and the limitations of blockchain
systems. Based on our observations, we pinpoint the deficiencies
in the design of CryptoKitties and provide suggestions for further
development of blockchain games.

Network analysis methods have been applied to
cryptocurrency transaction records in many previous works.
Chen et al. [7] constructed three graphs with ether transfer,
contract creation, and contract invocation, found a power-law
degree distribution, and revealed anomalies in these graphs.
Somin et al. [8] also found a power-law degree distribution in
the ERC20 token transfer network. Guo et al. [9] further revealed a
bow-tie structure in the Ethereum transaction network. Except for
the Ethereum blockchain, similar methods have also been used to
analyze transactions on other blockchains, such as EOSIO [10].

The rest of this paper is organized as follows. CryptoKitties’
gaming rules are introduced in Section 2. In Section 3, we
construct the kitty ownership transfer network and define
network structural properties. In Section 4, we divide the
progress of the game into four stages and examine the changes
of network parameters in different stages. We will discuss the
reasons for the rapid change in the popularity of CryptoKitties in
Section 5. Section 6 concludes the study and provides
suggestions for the further development of blockchain games.

2 GAMING RULES

As shown in Table 1, the CryptoKitties game has five smart
contracts: the Core contract, GeneScience contract, Offers

contract, SalesAuction contract, and SiringAuction contract.
The names of these contracts could be found on Etherscan
[11]. Based on these contracts, players can trade or transfer
kitties with other players and breed new kitties.

There are three ways to trade or transfer a kitty. (1) Using
the SalesAuction contract. The seller lists a kitty for sale with
an initial price, a final price, and a price change period to the
SalesAuction contract. The initial price is usually higher than
the final price. After the auction begins, the kitty price will
change linearly from the initial price to the final price at a
constant rate during the price change period. The price will
not change after this period. Unless bid by a buyer or canceled
by the seller, the kitty will remain in the SalesAuction
contract. Upon receiving a bid, the SalesAuction contract
will send the kitty to the buyer and transfer the payment to
the seller. The game publisher also sells 0-generation kitties to
players in this way. (2) Using the Core contract. A player can
either call the transfer function to transfer his kitty to another
player or the approve function to allow other players to
transfer his kitty. Authorized players can call transfer from
function to transfer other players’ kitties. Transferring a kitty
in this way does not necessarily mean that the player is trading
the kitty but can also be sending a kitty as a gift to a friend. (3)
Using the Offers contract. In this way, the buyer initiates a
request to the seller and sends the purchase fee to the Offers
contract. If the seller accepts the request, the Offers contract
will transfer the kitty to the buyer’s address and send the
purchase fee to the seller.

When trading kitties through the SalesAuction, the game
publisher charges the sellers for 3.75% of the dealing price as
a handling fee. Same rate of dealing price will be charged to the
buyers using the Offers contracts. When calling any function in
each contract, the players also need to pay gas fees to Ethereum
miners through their Ethereum wallet. The gas fee is usually
between 0.0001eth and 0.01eth.

There are two ways to breed a new kitty. (1) A player selects
two of his own kitties as parameters and call the breed With Auto
function in the Core contract with a breeding fee. After this
operation, the mother kitties (can be arbitrarily chosen between
the two) will become pregnant for a period. After this period, a
player, also called the midwife, will call the give birth function in
the Core contract to give birth to the new kitty. The newborn kitty
will be transferred to the owner of the mother kitty. The breeding
fee will be compensated to the midwife for their Ethereum gas fees
paid. (2) A player breeds with one of his own kitties and another
rented from the Siring Auction contract, which lists a number of
kitties owned by the lenders. A midwife is also needed in this case.

TABLE 1 | CryptoKitties’s smart contracts.

Contract name Main functions

Core Record all kitties’ attributes and owner information
SalesAuction As an intermediary to help player trade kitties
Offers As an intermediary to help player trade kitties
SiringAuction As an intermediary to help player rent kitties
GeneScience Calculate the genes of newborn kitties
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When a kitty is rented out through the Siring Auction contract,
the game publisher will charge the lender 3.75% of the rent as a
handling fee.

The breeding fee varied over time (see Figure 1). It was set to
0.002eth at the game’s release. However, due to the congestion of
the Ethereum network resulting from the gaming transactions,
the gas fee was raised. The game publisher increased the breeding
fee to 0.015eth and later adjusted it to 0.008eth. Such adjustment
happened several times afterward, but despite that, the breeding
fee has been stable at 0.008eth.

3 DATA AND METHODS

3.1 Blockchain Transactions
We synchronized an Ethereum parity client in full mode and used
the eth_getLogs method to extract the transactions in
CryptoKitties. The transactions span from November 23, 2017,
to May 19, 2020. The data involved 1,923,901 kitties, 104,517
addresses, and 5,173,521 transfer records. There are nine types of
transactions (see Table 2) related to the movements of kitties,
including the trading, transferring, and the new birth of kitties.
Consider participation rate as the ratio of the number of
addresses that take part in a specific activity to the number of
all addresses in CryptoKitties, buying kitties through the
SalesAuction contract has the highest participation rate
(84.6%), indicating that most players would buy at least one
kitty from the official marketplace. Participation rates are also
high for breeding kitty (64.9%) and selling kitty through the
SalesAuction contract (51.8%). Players showed low interest in
lending (38.1%) and renting kitties (26.6%). Only a very small
number of players (less than 1%) traded kitties through the Offers
contract.

3.2 Constructing Ownership Transfer
Network of Kitties
The actual ownership of the kitties only changes when (1) the
sales auction on the SalesAuction contract is fulfilled, (2) the
trading through the Offers contract is fulfilled, and (3) kitties are
transferred directly using functions in the Core contract.

Therefore, We construct the kitty ownership transfer network
G � (V , E), where V is the set of addresses belong to kitty owners,
including the game publisher and players, who have the actual
ownership of kitties, and E is the set of directed edges representing
the actual ownership changes. The directed edges e � (u, v, t) are
temporal, where u represents the address of kitty’s previous
owner, v represents the address of kitty’s new owner, and t
represents the time when the ownership change occurred. The
network contains 104,514 nodes and 1,304,525 edges. We further
use three days as the window size and construct a series of
temporal networks G � (G1,G2, . . .), where Gt is the network
in time window t.

3.3 Network Structural Properties
We use the average degree, non-zero in-/out-degree ratio, Gini
coefficient of in-, out-, and total degrees, average clustering
coefficient, density, reciprocity, and assortativity to describe
the structural properties of the network.

The average degree k � 2M/N represents the average number
of kitties transferred in and out of the addresses, where M is the
number of edges and N is the number of nodes in the temporal
network.

The non-zero in-/out-degree ratio α � Nout> 0/Nin> 0 is defined
as the ratio of the number of nodes with an out-degree greater
than zero (Nout> 0) to those with an in-degree greater than zero

FIGURE 1 | Changes of the breeding fee.

TABLE 2 | Nine types of transactions related to the movements of kitties.

Transaction type From To Amount

Kitty birth 0x Owner 1,923,901
Listing on the SalesAuction contract Seller SalesAuction 1,126,964
Cancel listing on the SalesAuction
contract

SalesAuction Seller 241,614

Buying from the SalesAuction
contract

SalesAuction Buyer 668,981

Transferring through the core
contract

Sender Reviver 633,208

Trading through the offers contract Seller Buyer 2,336
Listing on the SiringAuction contract Lender SiringAuction 326,553
Cancel listing on the SiringAuction
contract

SiringAuction Lender 92,507

Rental finished SiringAuction Lender 157,457
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(Nin> 0) in the temporal network. It can also be considered as the
ratio of the number of sellers to buyers in the game.

The Gini coefficient Gk of the total degree k of all nodes in the
temporal network reflects the gap between the players’ activeness
in the number of kitties transferred in and out of the address, i.e.,

Gk � 1
N
(N + 1 − 2∑ N

i�1(N + 1 − i)ki
∑ N

i�1ki
),

where ki is the degree of node i indexed in non-decreasing order
(ki ≤ ki+1) and N is the number of nodes in the network. The Gini
coefficients for the in-degrees Gkin and out-degrees Gkout of all
nodes can be defined likewise.

The average clustering coefficient c is used to measure the
clustering degree of the network, which is defined as

c � 1
N

∑
v ∈ V

Tv

kv(kv − 1) − 2krv
,

where Tv is the number of directed triangles passing through the
node v, kv is the degree of node v, and krv is the number of
bidirectional edges of node v. Multiple edges between u and v are
considered as one even with the same t in this case. High average
clustering coefficient means that players interact closely with
other players.

Network density d � M/(N(N − 1)) describes the portion of
the potential connections in the network that are actual
connections. Again, multiple edges between u and v are
considered as one even with the same t in this case.

The reciprocity ρ � 2Mu/M describes the ratio of the number
of edges pointing in both directions to the total number of edges
in the network, where Mu is the number of undirected edges in
the network. High reciprocity means that the relationship
between addresses is relatively strong, and the owners of
these addresses are likely to know each other. Multiple edges
between u and v are considered as one even with the same t in
this case.

The degree assortativity coefficient rmeasures the similarity of
connections in the network with respect to the node degree:

r � ∑ij(Aij − kikj/2M)kikj
∑ij(kiδij − kikj/2M)kikj,

where Aij is an element in the adjacency matrix, ki and kj are the
degrees of node i and j, and δij is the Kronecker function. The
direction of edge is ignored and multiple edges are considered in
the calculation.

4 COLLECTIVE BEHAVIORS OF
CRYPTOKITTIES PLAYERS

4.1 The Four Stages of Game Progress
Using the numbers of daily addresses related to CryptoKitties
transactions, the game can be divided into four stages: the primer,
the rise, the fall, and the serenity, as shown in Figure 2.

1. The primer: The game was released on November 23, 2017.
There were not many players before December 2, 2017.

2. The rise: A large number of players entered the game since
December 2, 2017. The game popularity rapidly increased
before reaching a peak on December 10.

3. The fall: Since then, the popularity has dropped sharply. At the
beginning of 2018, the game’s popularity is less than 10% of
its peak.

4. The serenity: After January 15, 2018, the popularity stabilized
into a long-term slow downward trend. Figure 3 shows four
snapshots of the network in each of the stages. The network
size shrinks apparently over time.

4.2 Evolution of the Network Structure
The evolution of network structural properties in the four stages
are shown in Figure 4. In the first stage, the Gini coefficient of
out-degrees decreased suddenly. This is because almost all 0-
generation kitties were transferred from the game publisher’s
addresses to the players in the first few days. Soon after that,
players began to breed new kitties and sell them to each other. The
decreases in average degree, network density, and average
clustering coefficient result from early players entering the
game and expanding the network. Meanwhile, the assortativity
coefficient stayed negative because low-degree players tended to
trade with high-degree players, who are the game publisher.

In the second stage, the network density stayed low due to the
large number of players entering the game. The degree

FIGURE 2 | Four stages of the game. The three dotted lines correspond to December 1, 2017, December 10, 2017, and January 15, 2018, respectively.
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assortativity coefficient increased to zero, meaning that low-
activity players tended to transfer kitties among themselves
rather than trading with high-activity players.

In the third stage, the non-zero in-/out-degree ratio
maintained an upward trend, indicating that the ratio of
sellers to buyers was increasing, and market competition was
intensifying. The Gini coefficient of out-degrees decreased gently,
indicating that even the seller/buyer ratio increased, the gap
between sales volume among sellers was narrowing. However,
in-degrees’ Gini coefficient went up suddenly. The anomalous
data point around December 23, 2017, was caused by an
exceptionally large number of transactions made by a handful
of addresses.

In the fourth stage, the increasing average degree and
reciprocity indicate that the players left in the games were
actively trading with each other. The Gini coefficients all
maintained an upward trend, indicating a large gap forming in
these players: some big players were gradually dominating
the game.

Note that the average degree, Gini coefficients, and reciprocity
suddenly increased in June 2019. We found that they were caused
by the launch of Wrapped Cryptokitties (WCK), which is an
ERC-20 token contract, enabling players to exchange unwanted

ERC-721 kitties forWCK and useWCK to exchange other kitties.
The replacement of a large number of ERC-721 kitties with WCK
resulted in a sudden fluctuation in the network structure.

4.3 Changes in the Kitty Ownership
Transferring Methods
There are three ways to transfer the ownership of kitties: through
the SalesAuction, Offers, or Core contracts. The changes in the
proportions of the three methods over time are shown in
Figure 5. In the early days of the game, the ownership
transfer of kitties was mainly realized through the
SalesAuction contract. Later, the proportion of transferring
kitties with the method in Core contract gradually increased.
After April 2019, this method had become the main way of
transferring kitty ownerships. The number of kitties transferred
through the Offers contract was always small.

Cost was the main reason for this change. Players tend to
transfer kitties at a lower cost. When buying and selling kitties
through the SalesAuction and Offers contracts, players need to
pay a transaction fee to the game publisher, usually 3.75% of the
transaction amount. Using the transfer method in the Core
contract, in contrast, only requires a gas fee payment.

FIGURE 3 | Visualizations of typical networks in every stage. Nodes in the network are filtered by out-degree. (A) There aren’t many early players in stage 1. (B) The
network contains a large number of nodes in stage 2. (C) The network shrinks in stage 3. (D) Only long-term players are left in stage 4.
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Therefore, some third-party trading platforms emerged to help
players trade kitties, charging fewer transaction fees. For example,
the transaction fee charged by the OpenSea trading platform is
only 2.5%.

5 REASONS FOR THE RISE AND FALL OF
CRYPTOKITTIES

5.1 Reasons for the Explosive Growth of
Game Popularity
On December 2, 2017, the kitty with ID 1 was sold for 247eth,
i.e., more than US $100,000 [12]. This message spread quickly on

the Internet, generating a large amount of attentions. Figure 6
shows the Google trend index of CryptoKitties and number of
daily addresses related to CryptoKitties transactions. Kitties
traded at extremely high prices will undoubtedly attract media
attention and bring many new players to the game. The increased
attention from Internet users eventually led to the explosive
growth of the game’s popularity. We cannot rule out the
possibility that the game publisher deliberately made the news
that a special kitty has being sold at an extremely high price. In
fact, almost all transactions with an amount greater than 100eth
occurred in early December 2017, which corresponds precisely to
the rise stage of the game. Nonetheless, despite of the cause, media
exposure had indeed increased the game popularity significantly.

G

A

B

C

D

E

F

FIGURE 4 | Evolution of the network structural properties over time. (A) The average degree, (B) the non-zero in-/out-degree ratio, (C) the Gini coefficients of in-,
out-, and total degrees, (D) the average clustering coefficient, (E) network density, (F) reciprocity, and (G) assortativity. Dotted lines separates the four stages. The labels
on the x-axis represent the middle date of time windows. The x-axis are re-scaled to better illustrate the parameter dynamics in stages 1, 2 and 3.
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Cryptocurrencies, such as Bitcoin, show a positive correlation
between their prices and the sizes of the user groups [13–15]. The
kitties in the game are ERC-721 token, and therefore, the same
rule applies. On the one hand, the expansion of the player
community has increased the demand for kitty tokens and
promoted the rise of kitty price. On the other hand, the
increase in kitty price attracted more players to join the
community. Eventually, the entry of a large number of players

into the game has led to a surge in demand for kitties, hence the
kitty price (see Figure 7). The mean price of kitties in each day is
significantly higher than the median price because a small
number of kitties were sold at significantly higher prices than
average.

5.2 Reasons for the Rapid Fading of Game
Popularity
The rapid growth of game popularity only lasted less than ten
days. Since then, the number of players has dropped sharply. Lee
et al. [16] noted that users’ playing behaviors in CryptoKitties are
affected by speculative and enjoyable factors. Here, we propose
four specific reasons that could account for the rapid decline in
game popularity: the out-of-balance of the supply and demand of
kitties; the loss of profit in kitty trading; the increasing gap
between the rich and poor players, and the limitations of
blockchain systems.

5.2.1 The out of Supply and Demand Balance
The large number of players poured in during the explosive
growth stage bred a large number of kitties in a very short time.
Since December 4, 2017, the number of new kitty listings has
significantly exceeded the number of kitties sold every day,
resulting in a rapid increase in the number of kitties left on
sale, i.e., stock inventory (see Figure 8A). The kitty market has
become a buyer’s market, and the competition has intensified.
The ratio of a successful sale for kitties listed on each day also
decreased (see Figure 8B), and the turnover time, i.e., the average
time interval between kitty listing and trade closing becomes
longer (see Figure 8C).

5.2.2 The Loss of Profit in Kitty Trading
Buchholz et al. [17] pointed out that the value of
cryptocurrencies has no benchmark but purely depend on
the supply and demand in the market. As the supply of
kitties significantly overwhelmed the demand, the price of
kitties dropped significantly. Profit is an important
motivation to encourage the players to stay in the game. If
their revenue from selling kitties becomes lower than the costs,
the players’ enthusiasm will decline or even disappear.

FIGURE 5 | The change in proportion of three methods to transfer the kitties.

FIGURE 6 | Google Trends of CryptoKitties and the numbers of daily
active addresses.

FIGURE 7 | Mean and median prices of the kitties sold in each day.
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Teoretically, suppose a player uses two of his own kitties to
breed a new kitty and sell it at the median kitty price (excluding
the 0-generation kitties) through the SalesAuction contract on the
same day. The average cost of breeding and selling a kitty in one
day can be written as

c � fbreed + gbreed + gsell,

where fbreed is the average breeding fee, gbreed is the average gas fee
for kitty breeding, and gsell is the average gas fee to sell a kitty
through SalesAuction contract on a particular day. The profit of a
kitty sale on the same day can be written as

p � 0.9625 × vmedian − c,

where vmedian is the median price of kitties (excluding 0-
generation kitties) sold on that day. The seller can only receive
96.25% of the dealing price after deducting the 3.75% handling fee
received by the game publisher.

Figure 9A shows that the cost break-down for breeding and
selling increased sharply in stage 2. Among all the costs, the
breeding fee is the highest, followed by the miner’s fee for the
selling operation, and the miner’s fee for the breeding operation is
the lowest. Figure 9B shows that starting from December 13,
2017, the average profit for a player to breed and sell a kitty

FIGURE 8 | The supply and demand of kitties in the market. (A) The numbers of new kitty listings, kitties sold, and kitties on sale in the market every day. (B) The
ratio of successful sale for kitties listed on each day. (C) Turnover time, i.e., the average time interval between kitty listing and trade closing for kitties listed on each day.
Dotted lines separates the stage 1, 2 and 3.
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became negative, indicating that the player may lose money when
playing the game.

The actual in-game breeding and sale may not happen on the
same day. For every kitty sold, the seller’s actual profit can be
evaluated by the difference between the breeding or acquisition
cost and selling revenue. Here, we also estimate the actual profit of
kitties sold each day. For the kitty sold for the first time, the
seller’s profit can be written as

p1 � 0.9625 × v − fbreed − gbreed − gsell − r − grent,

where v is the price at which the kitty is sold, fbreed is the breeding
fee, gbreed is the gas fee for kitty breeding, and gsell is the gas fee to
sell the kitty. If the player rents another player’s kitty, he has to
pay the rent r and gas fee grent. The seller can only receive 96.25%
of the dealing price after deducting the 3.75% handling fee for the
game publisher. For the kitties that are bought from others and
resold, the seller’s profit can be written as

p2 � 0.9625 × vsold − vpurchase − gpurchase − glisting,

where vsold is the sold price, vpurchase is the purchase price, gpurchase
and glisting are the gas fees paid in purchasing and selling the kitty.
The seller can only receive 96.25% of the dealing price after
deducting the 3.75% handling fee for the game publisher.

Figure 10 shows the probability of generating a positive profit
by selling kitties each day. After December 6, 2017, this
probability for kitty resales became less than 50%. After
December 13, 2017, this probability for selling self-bred kitties
became less than 50%.Whether the player sells kitties bred by self
or previously purchased, there is a great chance of losing money.

5.2.3 The Increasing Gap Between the Rich and Poor
Players receive revenue from selling and lending kitties. In the
first stage of the game, the Gini coefficient of daily revenue from
selling and leasing increased significantly (see Figure 11A), and
that of the cumulative revenue for all the addresses also
increased significantly (see Figure 11B). After entering the
third stage, although the Gini coefficient of the revenue
earned by players from selling and renting fluctuated, they all
remained at a relatively high level (greater than 0.6). The Gini
coefficient of accumulated revenue stayed at a high level (greater
than 0.8). Since 0-generation kitties were mainly sold by game
publisher, these sales were not considered when counting the
revenue of players. Our results show that the gap between the
rich and poor in the game expanded. A few players earned most
of the money from the game, while most can only get very little
income, if any. The increasing gap in the revenue has caused
most players’ gaming experience to deteriorate, and they
gradually withdrew from the game.

Not only the revenues, kitty ownerships were also gradually
concentrated to a few players. The Gini coefficient of the number of
kitties owned by all addresses at each stage is shown in Figure 12.
When counting the number of kitties belong to an address, unsold
kitties in the SalesAuction contract belong to the seller, and
unrented kitties in the SiringAuction contract belong to the
lender. In the first and second stages, many new players entered
the game, all making purchasing, and the Gini coefficient gradually
decreased. However, as the number of new players decreased and
existing players quit, the Gini coefficient rose in the third stage and
kept rising in the fourth stage. As of April 2020, the Gini coefficient
of kitties with addresses has exceeded 0.8. At this time, the
resources in CryptoKitties became highly concentrated.

5.2.4 Limitations of Blockchain Systems
The cost of performing operations on a public blockchain
system is highly volatile due to the unstable price of

FIGURE 9 | The loss of profit in kitty sales. (A) The average breeding fee, gas fee for breeding, and gas fee for selling a kitty through SalesAuction contract on each
day. (B) The revenue (median price of kitties), cost, and profit for breeding and selling a kitty on each day. Dotted lines separates the stage 1, 2 and 3.

FIGURE 10 | The probability of generating positive profit in selling a kitty
each day. Dotted lines separates the stage 1, 2 and 3.
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cryptocurrencies, resulting in it difficult to control the cost of
the applications deployed on the blockchain. As CryptoKitties
was deployed on Ethereum, the cost of playing the game
(including the costs of buying, breeding, and renting
kitties, as well as the fees paid to Ethereum miners) has
risen significantly due to the rapid rise of Ether price in
the third stage. Ether price increased from US $451 on

December 10, 2017, to US $1,322 on January 10, 2018 (see
Figure 13), resulting in a significant increase in the cost of
playing the game, raising the bars for new players entering
the game.

In addition to the cryptocurrency price, other potential
limitations of blockchain systems include the unnecessary gas
cost by poorly designed smart contracts and the low system
throughput (measured in transaction per second, TPS).
Under-optimized smart contracts will consume more gas
than necessary [18], making it more expensive for users to
play games. Chen et al. [19, 20] studied the gas cost
mechanism of Ethereum and proposed a way to optimize
smart contracts through analyzing bytecodes, potentially
reducing the gaming costs. The low throughput of
Ethereum [21] has rendered that concurrent operations by
many users are not feasible. Once too many players have
joined the game, the time needed to validate operations in the
game takes too long, therefore sabotaging the players' gaming
experiences.

6 CONCLUSION

This paper is the first to fully unveil the user activities in the
once most popular blockchain game CryptoKitties and

A B

FIGURE 11 | Gini coefficients of (A) daily selling and lending revenue and (B) the accumulate revenue from kitty sale and renting for all the addresses. Dotted lines
separates the stage 1, 2 and 3.

FIGURE 12 | The Gini coefficient of kitties owned by all addresses. Dotted lines separates the four stages. The x-axis are re-scaled to better illustrate the parameter
dynamics in stages 1, 2 and 3.

FIGURE 13 | The Ether price. Dotted lines separates the stage 1, 2
and 3.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 63166510

Jiang and Liu CryptoKitties Transaction Network Analysis

54

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


identify the reasons for its rise and fall. Based on the number
of addresses associated with the game every day, we divide the
process of CryptoKitties into four stages: the primer, the rise,
the fall, and the serenity. We extracted all the five million
kitty transactions from the Ethereum blockchain and
constructed the kitty ownership transfer network for
characterizing the user behaviors. We found that a large
number of players flooded in the game in the early days
but quickly withdrew later, and a few big players gradually
took control of the game.

We found that the public attention drew by the message that a
special kitty was sold at an extremely high price eventually led to
the explosive growth of game popularity. For the rapid decline of
the popularity, reasons including 1) the oversupply of game
props, i.e., the kitties, 2) the loss of profit in the game prop
trading, 3) the increasing gap between the wealth distribution
among the players, and 4) the limitations of blockchain are
accounted for.

Drawing from these observations, we advise on the designing
of future blockchain games as follows.

1. Design a reasonable prop output mechanism to keep a balance
between supply and demand.

2. Provide a mechanism for adjusting player income to prevent
players losing money in prop trading with a high
probability.

3. Design a mechanism to narrow down the gap between the rich
and poor and prevent the revenue from being gained by only a
few players.

4. To fully consider the limitations of blockchain systems in the
game design.
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Co-Investment Network of ERC-20
Tokens: Network Structure Versus
Market Performance
Si-Hao Liu1 and Xiao Fan Liu2*

1Department of Computer Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing,
China, 2Web Mining Laboratory, Department of Media and Communication, City University of Hong Kong, Hong Kong, China

Cryptocurrencies have attracted extensive attention from individual and institutional
investors in recent years. In this emerging and inefficient capital market, the roles that
institutional investors play can have a remarkable impact on the market. This paper
investigates the ERC-20 token investment market from a network perspective. Using a
dataset containing 317 ERC-20 tokens and their institutional investors at the end of June
2020, we construct a co-investment network of tokens connected by the sharing of
institutional investors. Specifically, we examine whether the tokens’ market
embeddedness, measured by their network structural properties, can influence their
market performance, as well as whether the tokens’ structural similarity in the co-
investment network can influence similarity of their market performance. Our results
indicate that strength centrality, closeness centrality, betweenness centrality, and
clustering coefficient have a significant impact on trading volume and liquidity of the
market. And there is a significantly positive correlation between the Jaccard similarity index
and tokens’ market performance similarity. This work demonstrates the non-negligible
influence of the institutional investors and the diffusion of such influence through co-
investment relationships in the cryptocurrency market. We expect the analysis could
further enhance the understanding of the inefficiency and vulnerability of this emerging
market.

Keywords: Cryptocurrency, Ethereum, ERC-20, co-investment, complex networks, institutional investors

1 INTRODUCTION

As the end of 2020, there are more than 7,000 cryptocurrencies in circulation worldwide. The total
cryptocurrency market value has exceeded 300 billion US dollars, with a daily trading volume
topping 200 billion [1]. However, only a few hundred of these cryptocurrencies run on their own
blockchains, while others reside on Ethereum-like blockchain platforms, which support users to issue
smart contract-based cryptocurrencies, also known as tokens, following token standards such as
ERC-20, ERC-721, and ERC-777. The number of smart contract-based tokens on Ethereum is more
than 300,000 as of 2020 [2], though not all are publicly traded in cryptocurrency exchanges.

Despite the soaring capitalization, the emerging cryptocurrency market also exhibits extremely
high volatility. Hence, finding the driving forces of the market is crucial to the understanding of the
formation and development of cryptocurrencies’ prices. All the evidence points out that this market
is highly inefficient. Buchholz et al. [3] claimed that the supply and demand in the market are among
the main drivers of the bitcoin price. Wijk [4] emphasized the role of global macroeconomic

Edited by:
Hui-Jia Li,

Beijing University of Posts and
Telecommunications (BUPT), China

Reviewed by:
Jianhong Lin,

University of Zurich, Switzerland
Xiao-Pu Han,

Hangzhou Normal University, China

*Correspondence:
Xiao Fan Liu

xf.liu@cityu.edu.hk

Specialty section:
This article was submitted to

Social Physics,
a section of the journal

Frontiers in Physics

Received: 20 November 2020
Accepted: 20 January 2021
Published: 16 March 2021

Citation:
Liu S-H and Liu XF (2021) Co-
Investment Network of ERC-20

Tokens: Network Structure Versus
Market Performance.

Front. Phys. 9:631659.
doi: 10.3389/fphy.2021.631659

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6316591

ORIGINAL RESEARCH
published: 16 March 2021

doi: 10.3389/fphy.2021.631659

57

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.631659&domain=pdf&date_stamp=2021-03-16
https://www.frontiersin.org/articles/10.3389/fphy.2021.631659/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.631659/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.631659/full
http://creativecommons.org/licenses/by/4.0/
mailto:xf.liu@cityu.edu.hk
https://doi.org/10.3389/fphy.2021.631659
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.631659


indicators, e.g., stock indices, exchange rates, and oil prices, in
determining Bitcoin’s price. He found that the Dow Jones Index,
the euro-dollar exchange rate, and the WTI oil price have a long-
term and significant effect on Bitcoin’s value. Kristoufek [5]
found that the price of Bitcoin was significantly and positively
correlated with public interests measured by Google Trends and
Wikipedia queries, as well as technical indexes, such as hash rates
and mining difficulty, in the long run. Moreover, the
cryptocurrency market’ performance has also been found to be
related to media exposure [6, 7], policies and regulations [8, 9],
and other financial assets [10, 11], all revealing the inefficiency of
the market.

An inefficient market is easily manipulated, especially by large
investors. Compared to individual investors, institutional
investors can rely on their capital, talent, and information
advantages to profit [12], and they also have a stronger ability
to capture and conceal bad news in the market [13]. In the case of
ERC-20 tokens, institutional investors play a crucial role in both
the primary and secondary markets. In a typical ERC-20 token
initial offering (ICO) process, i.e., the primary market, the
institutional investors would first purchase a large chunk of
tokens from the issuer and redistribute a proportion to
individual investors before public listing while retaining some
tokens for market-making in the secondary market. Institutional
investors commonly invest in more than one token to disperse
their risks among multiple projects. As a result, they act as
intermediaries between different tokens, therefore transmitting
market influences from one token to another. To the best of our
knowledge, there is still a lack of research on the relationship
between institutional investors’ investment preference and the
performance of the cryptocurrency market.

This paper investigates the impact of institutional investors’
dispersed investments on the cryptocurrency market, i.e., how the
individual ERC-20 tokens’ market performances, e.g., price,
volatility, and trading volume, are affected by their sharing of
institutional investors. We construct a co-investment network
that uses ERC-20 tokens as nodes and the pairwise sharing of
institutional investors as edges. From the macroscopic
perspective, such a co-investment network offers a panorama
of the institutional investors’ influence distribution. While from
the microscopic perspective, we can closely examine the
intertwining influence of multiple institutional investors on the
individual ERC-20 tokens.

Specifically, we try to answer two research questions. First,
how the market “embeddedness” of individual ERC-20 tokens, in
analogy to Granottever’s market embeddedness of social-
economical actors [14] and measured by the corresponding
nodes’ network structural properties, affects the tokens’ market
performance. Second, whether tokens with similar
“embeddedness”, measured by the similarity of their network
structure, and therefore experiencing similar market impacts, also
have converged market performance.

The rest of the paper is organized as follows. Section 2
describes the data and their sources. Section 3 describes the
research methods, including the selection and calculation of six
indicators quantifying market performance, as well as the
construction and calculation of the co-investment network.

Section 4 presents the empirical results of the research
hypothesis in detail and makes an in-depth analysis of the
results. Section 5 summarizes the whole paper and discusses
the direction of future work.

2 DATA

The institutional investors’ investments into ERC-20 tokens can
be obtained from Block123.com [15]. As of June 2020, the website
listed 556 cryptocurrency projects, of which 317 are ERC-20
tokens, and their institutional investors. At the time of data
acquisition, all 317 ERC-20 tokens were actively trading in the
cryptocurrency market. To the best of the authors’ knowledge,
block123.com provides the largest and most complete token-
investor relationship dataset that is publicly available. A detailed
description of the dataset is given in Supplementary Section 1.

Market data, including the daily closing price, trading volume,
and market capitalization (all in USD), of the 317 tokens are
obtained from CoinMarketCap.com. Since cryptocurrencies are
traded 7/24, we take the last reported price in one day as the daily
closing price. The market data range from 1 to 31 July 2020,
spanning one month after the acquisition of the token-investor
dataset. And 85% of the 317 tokens are valued in the top 20% of
the market.

Moreover, we consider three previously claimed drivers of
token prices by Liu et al. [16] as extra factors influencing market
performance. First, the numbers of tokens’ transactions on the
blockchains are used as a proxy for adopters’ activity. The data
are obtained from Etherscan [2]. Second, the indicators of
tokens’ attention on social platforms, including Twitter
followers, Telegram channel subscribers, Reddit board
activities, and website rankings are used to represent public
interests to the tokens. The data are obtained through the
CoinGecko API [17]. Third, the technical indicators of the
cryptocurrency projects, such as the Github popularity, are
used to indicate the blockchain projects’ technical
development. The data are also obtained from CoinGecko.
These control variables are summarized in Table 1. Note that
reddit_discussions and tech_score are combined values of
similar factors. Details of the combination methods are
described in Supplementary Section 2.

3 METHODS

3.1 ERC-20 Tokens’ Market Performance
and Similarity
We use six indicators to quantify the market performance of
ERC-20 tokens. Daily price pt , trading volume vt , and market
capitalization mt are as provided in the data, while daily return,
volatility, and (il)liquidity are defined as follows.

The daily return rt is defined as

rt � pt − pt−1
pt−1

.

The volatility ] in a W-day window is defined as
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where rln,t � ln pt − ln pt−1 is the daily logarithm return and rln �
1/W∑W

t�1rln,t is the average return in the W-day window. ILLIQ
[18] is the most commonly used indicator to measure market
liquidity. For a W-day window,

ILLIQ � 1
W

∑
W

t�1

|rt |
vt/106.

ILLIQ is a direct reflection of how sensitive the prices is to
volume. The larger its value is, the higher the level of price change
per unit trading volume is. Since the average trading volume is in
millions of dollars, we divide the unit of volume by 1,000,000.

The monthly (July 2020) price (n � 317, min � 0.0000126, max �
482, mean � 27.3, skewness � 17.40), market capitalization (n � 290,
min � 13,810.12, max � 2638,362,922.00, mean � 40,925,401.09,
skewness � 10.78), volume (n � 317, min � 0.06, max �
737,208,083.20, mean � 8,808,034.45, skewness � 11.42), return
(n � 317, min � −0.04, max � 0.26, mean � 0.01, skewness �
4.61), volatility (n � 317, min � 0.00289, max � 0.581, mean � 0.0866,
skewness � 3.11), and illiquidity (n � 316, min � −0.000011, max �
1,390,000.00, mean � 804, skewness � 14.40) of the tokens show a
highly inequality in the cryptocurrencymarket.We calculate monthly
illiquidity and volatility based on a 30-days window, and mean values
of all daily data for monthly price, market capitalization, trading
volume and return. All the indicators’ standard deviations are greater
than their mean, meaning that the market quotations of different
tokens varies greatly, and therefore, are highly heterogeneous.

Bitcoin and Ether, the original cryptocurrency of Ethereum,
are the leaders in the cryptocurrency market. To capture the
similarity between the market performance of two tokens, we use
partial correlation coefficient of their market indicator time
series, eliminating the same influence brought by the market
leaders. For example, the partial correlation between two daily
return series ri and rj is

ρri ,rj(rEther) �
ρri ,rj − ρri ,rEtherρrj ,rEther��������
1 − ρ2ri ,rEther

√ ��������
1 − ρ2rj ,rEther

√ ,

where ρri ,rj is the Pearson correlation coefficient

ρi,j �
Cov(ri, rj)

σriσrj

,

and rEther is the daily return of Ether to eliminate. Time series of
liquidity and volatility are composed of results calculated based
on a 3-days window, and the other four indicators’ series are daily
values. Refer to Supplementary Section 3 for a detailed analysis.

3.2 Construction of the Co-investment
Network
We define the co-investment network G � (V , E), where V is a
set of nodes representing the ERC-20 tokens and E is a set of
edges connecting the nodes and representing the sharing of
institutional investors between the two tokens. The edges are
weighted by the numbers of shared investors between tokens.
Figure 1 shows a visualization of the ERC-20 token co-
investment network.

3.3 Market Embeddedness Measures
The market embeddedness of ERC-20 tokens can be measured by
various network structural properties, each reflecting a unique
aspect of their market status.

Strength centrality of a node v is defined as

Cs(v) � ∑w(u, v), (u, v) ∈ E,

where w(u, v) is the weight of the edge connecting nodes u and v,
i.e., the numbers of shared institutional investors between these
two tokens. A higher strength centrality infers that the current
token has more shared institutional investors with other tokens,
and hence, the more commonly selected by institutional investors
in their portfolios. When the edge weights w(u, v) are not
considered, the strength centrality is equivalent to degree
centrality.

Closeness centrality is the reciprocal of the average distance of
the node to other vertices. i.e.,

Cc(v) � N − 1
∑u≠vdu,v

.

du,v is the shortest path length from node u to v. For the
unweighted centrality, all edge lengths are considered to be
equal. When calculating the weighted centrality, the reciprocal

TABLE 1 | Descriptions of the control variables.

Name Symbol Description

Adoptor activity transfers Number of a token’s transactions
Public interests twitter_followers Number of followers on a token’s twitter account

tg_subscribers Number of subscribers to a token’s telegram channel
reddit_subscribers Number of subscribers to a token’s reddit board
reddit_discussions Average user activity per hour on reddit within 48 h
reddit_active_users Average active users per hour on reddit within 48 h
web_rank Global ranking of visits to a token’s official website (alexa ranking)

Technical development tech_score A token’s technical attention on github
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of the edge weight is used as the edge’s length. The higher the
closeness centrality of a node is, the more central it is in the
network. Tokens near the center of the network can be affected by
other tokens in the whole network faster and more directly than
peripheral ones, and therefore receive a more direct influence
from market factors.

Betweenness centrality of a node v is the sum of the fraction of
all-pairs of shortest paths that pass through v.

Cb(v) � ∑
s≠v≠t∈V

gs,t(v)
gs,t

,

where gs,t is the number of shortest paths from node s to t, and
gs,t(v) is the number of those paths passing through node v. For
the unweighted centrality, all edge lengths are considered to be
equal. When calculating the weighted centrality, the reciprocal
of the edge weight is used as the edge’s length. Betweenness
centrality describes the degree to which a node acts as a

connection mediator between other nodes. A token with high
betweenness centrality plays a key role in the investment
network, as it passes the market influence between different
sectors.

Local clustering coefficient c(v) of node v is the fraction of
possible triangles through that node, i.e.,

c(v) � 2T(v)
k(v)(k(v) − 1),

where T(v) is the number of triangles through node v and k(v) is
the degree of v. From the perspective of structural hole theory
[19], the lower the local clustering coefficient of a node is, the
more structural holes are around it. The existence of structural
holes makes the node dominating the spread of influence among
its neighbors. So the lower the clustering coefficient a token has,
the greater influence it passes on to other tokens through shared
institutional investors.

FIGURE 1 | Co-investment network of ERC-20 Tokens. The sizes of the nodes are scaled by their degrees.
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3.4 Structural Similarity Measure
The Jaccard index defines the structural similarity between
different nodes based on common neighbors, i.e.,

J(u, v) � |Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|,

where Γ(v) is the set of neighbor nodes of node v. Regarding two
directly connected nodes as a portfolio, the higher the Jaccard
index, the higher degree of overlap between the investment
portfolios of the two tokens. Therefore, they may be affected
by similar market factors through institutional investors.

4 RESULTS

4.1 Structure Properties of the
Co-investment Network
Structural properties, i.e., the number of nodes N, number of
edges M, average degree k, network diameter D, average path
length L, average clustering coefficient c, and the density ρ, of
the ERC-20 co-investment network as of June 2020 are shown
in Table 2. For comparative analysis, we also construct 1,000
randomized networks with the same degree distribution as
the token network based on the edge rewiring algorithm. We
find that the average clustering coefficient c in the co-
investment network is significantly higher than that in the
randomized networks, indicating that the co-investment
network is a typical small-world network like many real
networks [20]. Figure 2 shows the cumulative degree
distribution of the co-investment network on a semilog
coordinate. CDF(k) is the proportion of nodes with degree
greater than k in the whole network. The distribution follows
an exponential function CDF(k) ∼ e−k/36.49, based on non-
linear least squares fitting. The Kolmogorov-Smirnov test
statistics for the goodness of fit is 0.06 with a
corresponding p-value of 0.69.

4.2 Market Embeddedness Versus Market
Performance
In light of the high skewness of market indicators, we pre-process
them before further analysis. The price, market capitalization,
and trading volume are taken logarithm transformations; the
illiquidity is taken a negative logarithm transformation.
Furthermore, all variables are standardized as xi � xi − x/σ,
where x is the mean value, σ is the standard deviation.

Figure 3 shows the correlations between the market indicators
and the market embeddedness and control variables. The logged
price, market capitalization, volume, and liquidity have medium
correlations (±0.2 ∼ 0.3) with most market embeddedness
measures and control variables. However, the return and
volatility do not show strong correlations with any of the
independent variables.

We adopt ordinary least squares (OLS) linear regression
models to analyze the relationship between market
performance and various market embeddedness measures of
the tokens in the co-investment network. For each market
indicator, e.g., price p, we first develop a baseline multiple
linear regression (MLR) model

p � α0 + α1 p Vcontrol, (1)

where Vcontrol is the vector of control variables. Then, for each of
the market embeddedness measures ei, we construct another
MLR model

p � α0 + α1pei + α2pVcontrol. (2)

We are interested in examining the statistical significance of ei
in model 2 and the difference ΔR2 in the predictability, i.e., the
R2s, in the two models.

Table 3 shows the regression results for model 1 on all six
market indicators. The R2s range from 0.05 to 0.43. p-values
indicate that we cannot reject the hypotheses that the number of
blockchain transfers and public interests (Alexa ranking) both has

TABLE 2 | Comparison of network properties between the co-investment network and randomized networks.

N M k D L c ρ

Co-investment network 317 5,654 35.67 5.0 2.09 0.72 0.11
Randomized network – – – 4.2 2.02 0.44 –

Percentile of the empirical value in random values 79.7 100 100

FIGURE 2 | Cumulative degree distribution of the co-investment
network.
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FIGURE 3 | Correlation heat map between the market indicators and the market embeddedness and control variables.

TABLE 3 | Regressions between the market indicators and the control variables (model 1).

Price Market cap Volume Liquidity Return r Volatility ν

log(p) log(m) log(v) − log(ILLIQ)

transfers 0.19* 0.14** 0.18* 0.25* 0.00 −0.01
twitter_followers 0.11 0.17 0.22 0.33 0.00 −0.02
tg_subscribers −0.13 0.07 0.26** 0.33** 0.00 0.00
reddit_subscribers 0.00 0.04 0.09 0.13 0.00 0.00
reddit_discussions 0.10 0.11* 0.04 0.01 0.00 0.00
reddit_active_users 0.08 0.10 0.16 0.18 0.00 0.00
web_rank −0.35*** −0.23*** −0.33*** −0.30** 0.00 0.00
tech_score 0.06 0.06 0.11 0.10 0.00 0.00
F-value 6.71 16.47 10.79 10.27 1.13 1.93
R2 0.22 0.43 0.31 0.30 0.05 0.07

pp< 0.05, ppp< 0.01, pppp< 0.001.

TABLE 4 | Regressions between the market indicators and the tokens’ market embeddedness (model 2).

Price Market cap Volume Liquidity Return r Volatility ν

log(p) log(m) log(v) − log(ILLIQ)

Strength centrality Cs Coef −0.06 0.08 0.36*** 0.40*** 0.00 −0.01
F-value 6.00 15.06 12.24 11.28 1.01 1.89
ΔR2 0.00 0.01 0.06 0.05 0.00 0.01

Closeness centrality (+) Cc Coef −0.05 0.10* 0.40*** 0.44*** 0.00 −0.01
F-value 5.99 15.32 12.96 11.86 1.02 1.91
ΔR2 0.00 0.01 0.07 0.06 0.00 0.01

Betweenness centrality Cb Coef 0.04 0.08 0.26** 0.27* 0.00 0.00
F-value 5.97 15.14 11.06 10.15 1.07 1.71
ΔR2 0.00 0.01 0.03 0.02 0.00 0.00

Clustering coefficient c Coef −0.12 −0.19*** −0.44*** −0.54*** 0.00 0.01*
F-value 6.24 17.29 13.81 13.53 1.09 2.43
ΔR2 0.01 0.04 0.08 0.09 0.00 0.03

pp< 0.05, ppp< 0.01, pppp< 0.001, (+)weighted.
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impacts on the price, market capitalization, volume, and liquidity
of tokens. Meanwhile, the number of Telegram subscribers has a
significant impact on the volume and liquidity; while the Reddit
user activities can have an impact on the tokens’ market
capitalization. However, none of the control variables are
significantly correlated with market return and volatility.
Moreover, the effect sizes of public interest and social network
user activities are larger than blockchain activities. It means that
people may prefer to treat tokens as an investment tool instead of
using them for actual transactions or consumption.

Table 4 shows the regression results of model 2. Specifically,
strength centrality, at a significance level of 0.1%, improves the
R2s of trading volume and liquidity by 0.06 and 0.05, respectively.
It means that the more favored by institutional investors, the
larger a token’s market trading volume and liquidity will be.
Closeness centrality is significant at the level of 0.1% for the
trading volume and liquidity of tokens, and significant at the level
of 5% for the market value, with positive estimated coefficients of
0.40, 0.44, and 0.10, respectively. It suggests that the more direct
market impact the tokens receive through institutional investors,
the higher their market trading activity will be. Betweenness
centrality is significant at the level of 1% for the trading volume
with a positive estimated coefficient of 0.26, 5% for the liquidity
with a positive estimated coefficient of 0.27. It shows that the
stronger the mediation power a token has in themarket, the larger
liquidity. Clustering coefficient is significantly negatively
correlated with the market capitalization, trading volume, and
liquidity of tokens at a level of 0.1%, and significantly positively
correlated with tokens’ volatility. This evidence indicates that
tokens with less local influence have a low market capitalization
and trading volume, poor liquidity, and high volatility. Also, we
can infer that the tokens with greater local influence have better
market liquidity and lower volatility. For market embeddedness
measures with both weighted and unweighted definitions, only
those with better regression results are reported here. Other
results can be found in Supplementary Section 4.

4.3 Structural Similarity Versus Market
Performance Similarity
Again, we use OLS regression models to test our hypothesis that
token nodes with similar network structures in the co-investment
network, hypothetically impacted by similar market factors, will
lead to convergence in their market performance.

The linear regression model between the structure similarity
and the partial correlation coefficient of the tokens’ market
indicators is defined as

ρi,j(Ether) � β0 + β1pJ(i, j), (3)

where Ji,j represents the Jaccard similarity between node i and
node j, and ρi,j(Ether) represents the partial correlation coefficient.

Table 5 shows the regression results of model 3. We can find
that the Jaccard similarity index is significantly positively
correlated with all the market indicators’ partial correlations,
confirming our hypothesis. That is to say, the more common
neighbors the two token nodes have in the co-investment
network, i.e., the more overlapped their portfolios are, the
more similar their market performance, including price,
market capitalization, trading volume, liquidity, return, and
volatility, will be.

5 CONCLUSION AND DISCUSSION

This paper studies the role institutional investors play in the ERC-
20 token market and how they affect the market performance of
tokens, e.g., price, trading volume, market capitalization,
liquidity, return, and volatility. We construct a co-investment
network with ERC-20 tokens as nodes and the pairwise sharing of
institutional investors as edges. As such, the intertwined
influences of institutional investors on different tokens are
embedded in the network.

The significant correlations between the strength centrality,
closeness centrality, betweenness centrality, clustering
coefficient of tokens, and their market performance reveal
institutional investors’ positive impact on promoting market
liquidity and reducing market volatility. Moreover, token
nodes’ structural similarity measured by the Jaccard index is
significantly positively correlated with their market indicator
similarity, suggesting that the sharing of investment
institutions between tokens may result in converged market
performance.

Our work demonstrates the inefficiency and vulnerability of
this emerging market and the non-negligible influence of the
institutional investors and the diffusion of such influence through
co-investment relationships in the cryptocurrency market.
Furthermore, we also remind individual investors to pay extra
attention in this highly speculative market, for that institutional
investors may deliberately manipulative the market, creating
bubbles and crushes for profit.

Note that our dataset contains only the institutional
investors’ investments in 317 tokens out of approximately
7,000 tokens in circulation as of 2020. Nonetheless, as the
tokens are mostly highly valued ones, we believe that the co-
investment network of these tokens is a representative sample
of the core of the cryptocurrency market, hence our
conclusions being able to be generalized to other parts of
the cryptocurrency market.

TABLE 5 | Regressions between the partial correlations of market indicators and
the Jaccard similarity between nodes (model 3).

Price Market cap Volume Liquidity Return Volatility

Coef 0.34*** 0.48*** 0.05*** 0.08*** 0.14*** 0.04**
F-value 247.03 345.30 13.94 72.30 196.62 7.78
R2 0.01 0.01 0.00 0.00 0.00 0.00

*p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6316597

Liu and Liu Co-Investment Network of ERC-20 Tokens

63

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/SuperLSH/-dataset_co-
investment.git.

AUTHOR CONTRIBUTIONS

Both authors designed the study and wrote the paper. S-HL
conducted data analysis.

FUNDING

This work is supported by CityU Start-up Grant for New Faculty
(no. 7200649) and CityU Strategic Research Grant (no. 11503620).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2021.631659/
full#supplementary-material.

REFERENCES

1. Coinmarketcap (2020). Available from: https://coinmarketcap.com/. (Accessed
August 5, 2020).

2. Etherscan (2020). Available from: https://etherscan.io/. (Accessed July 31, 2020).
3. Buchholz M, Delaney J, Warren J, Parker J. Bits and bets, information, price

volatility, and demand for bitcoin. Portland, OR:Reed College (2012). Available
from: https://www.reed.edu/economics/parker/s12/312/finalproj/Bitcoin.pdf
(Accessed October 19, 2020).

4. van Wijk D. What can be expected from the bitcoin?:.[Financial Economics
thesis]. Rotterdam (Netherlands): Erasmus School of Economics (2013).

5. Kristoufek L. What are the main drivers of the bitcoin price? evidence from wavelet
coherence analysis. PLoS One (2015) 10:e0123923. doi:10.1371/journal.pone.0123923

6. Kristoufek L. Bitcoin meets google trends and wikipedia: quantifying the
relationship between phenomena of the internet era. Sci Rep (2013) 3:3415.
doi:10.1038/srep03415

7. Rognone L, Hyde S, Zhang SS. News sentiment in the cryptocurrency market: an
empirical comparison with forex. Int Rev Financial Anal (2020) 69. doi:10.1016/
j.irfa.2020.101462

8. Shanaev S, Sharma S, Ghimire B, Shuraeva A. Taming the blockchain beast?
regulatory implications for the cryptocurrency market. Res Int Business Finance
(2020) 51. doi:10.1016/j.ribaf.2019.101080

9. Aysan AF, Demir E, Gozgor G, Lau CKM. Effects of the geopolitical risks on
bitcoin returns and volatility. Res Int Business Finance (2018) 47.

10. Corbet S, Meegan A, Larkin C, Lucey B, Yarovaya L. Exploring the dynamic
relationships between cryptocurrencies and other financial assets. Econ Lett
(2018) 165:28–34. doi:10.1016/j.econlet.2018.01.004

11. Charfeddine L, Benlagha N, Maouchi Y. Investigating the dynamic
relationship between cryptocurrencies and conventional assets: implications
for financial investors. EconModel (2020) 85:198–217. doi:10.1016/j.econmod.
2019.05.016

12. Bushee BJ, Goodman TH. Which institutional investors trade based on private
information about earnings and returns? J Account Res (2007) 45:323–31.
doi:10.1111/j.1475-679x.2007.00234.x

13. Griffin JM, Harris JH, Shu T, Topaloglu S. Who drove and burst the tech
bubble? J Finance (2011) 66:1251–90. doi:10.1111/j.1540-6261.2011.
01663.x

14. Granovetter M. Economic action and social structure: the problem of
embeddedness. Am J Sociol (1985) 91:481–510. doi:10.1086/228311

15. Block123 (2020). Available from: https://www.block123.com/en/. (Accessed
June 21, 2020).

16. Liu XF, Lin ZX, Han XP. Homogeneity and heterogeneity of cryptocurrencies.
Available from: https://arxiv.org/abs/1910.01330 (2019). (Accessed June 10,
2020).

17. Coingecko (2020). Available from: https://www.coingecko.com/en/. (Accessed
July 31, 2020).

18. Amihud Y. Illiquidity and stock returns: cross-section and time-series effects.
J Financial Markets (2002). 5(1):31–56. doi:10.1016/S1386-4181(01)00024-6

19. Lazega E, Burt RS. Structural holes: the social structure of competition. Revue
Française de Sociologie 36, 779 (1995). doi:10.2307/3322456

20. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature
(1998) 393:440–2. doi:10.1038/30918

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Liu and Liu. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6316598

Liu and Liu Co-Investment Network of ERC-20 Tokens

64

https://github.com/SuperLSH/-dataset_co-investment.git
https://github.com/SuperLSH/-dataset_co-investment.git
https://www.frontiersin.org/articles/10.3389/fphy.2021.631659/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2021.631659/full#supplementary-material
https://coinmarketcap.com/
https://etherscan.io/
https://www.reed.edu/economics/parker/s12/312/finalproj/Bitcoin.pdf
https://doi.org/10.1371/journal.pone.0123923
https://doi.org/10.1038/srep03415
https://doi.org/10.1016/j.irfa.2020.101462
https://doi.org/10.1016/j.irfa.2020.101462
https://doi.org/10.1016/j.ribaf.2019.101080
https://doi.org/10.1016/j.econlet.2018.01.004
https://doi.org/10.1016/j.econmod.2019.05.016
https://doi.org/10.1016/j.econmod.2019.05.016
https://doi.org/10.1111/j.1475-679x.2007.00234.x
https://doi.org/10.1111/j.1540-6261.2011.01663.x
https://doi.org/10.1111/j.1540-6261.2011.01663.x
https://doi.org/10.1086/228311
https://www.block123.com/en/
https://arxiv.org/abs/1910.01330
https://www.coingecko.com/en/
https://doi.org/10.1016/S1386-4181(01)00024-6
https://doi.org/10.2307/3322456
https://doi.org/10.1038/30918
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Time-Varying Volatility in Bitcoin
Market and Information Flow at
Minute-Level Frequency
Irena Barjašić 1 and Nino Antulov-Fantulin2*

1Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia, 2Computational Social Science, ETH Zürich,
Zürich, Switzerland

In this article, we analyze the time series of minute price returns on the Bitcoin market
through the statistical models of the generalized autoregressive conditional
heteroscedasticity (GARCH) family. We combine an approach that uses historical
values of returns and their volatilities—GARCH family of models, with a so-called
Mixture of Distribution Hypothesis, which states that the dynamics of price returns are
governed by the information flow about the market. Using time series of Bitcoin-related
tweets, the Bitcoin trade volume, and the Bitcoin bid–ask spread, as external information
signals, we test for improvement in volatility prediction of several GARCHmodel variants on
a minute-level Bitcoin price time series. Statistical tests show that GARCH(1,1) and
cGARCH(1,1) react the best to the addition of external signals to model the volatility
process on out-of-sample data.

Keywords: bitcoin, volatility, econometrics, generalized autoregressive conditional heteroscedasticity, social media

1 INTRODUCTION

The first mathematical description of the evolution of price changes in a market dates back to
Bachelier [1] (later rediscovered as Brownian motion, or randomwalk model), Mandelbrot [2] (price
increments are Lévy stable distribution), and truncated Lévy processes [3]. An opposing hypothesis
(later named “Mixture of Distribution Hypothesis”) was introduced by Clark [4], where the non-
normality of price returns distribution is assigned to the varying rate of price series evolution during
different time intervals. The process that is driving the rate of price evolution is proposed to be the
information flow available to the traders. Due to the governing of the information flow, the number
of summed price changes per observed time interval varies substantially, and the central limit
theorem cannot be applied to obtain the distribution of price changes. Nevertheless, a generalization
of the theorem provides a Gaussian limit distribution conditional on the random variable directing
the number of changes [4]. In a different approach, the autoregressive conditional heteroscedasticity
(ARCH) [5] model, originally introduced by Engle, describes the heteroscedastic behavior (time-
varying volatility) of logarithmic price returns relying only on the information of previous price
movements. In addition to the previous values of price returns, its generalized variant GARCH [6]
introduces previous conditional variances as well when calculating the present conditional variance.
GARCH is thus able to account for volatility clustering and for the leptokurtic distribution of price
returns, both the stylized statistical properties of returns. An alternative view comes from the
GARCH-Jump model [7], which assumes that the news process can be represented as ϵt � ϵ1,t + ϵ2,t ,
a superposition of a normal component ϵ1,t � σtzt and a jump-like Poisson component with intensity
λ. The constant intensity was generalized to autoregressive conditional jump intensity λt �
f (λt−1) in [8].
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Contrary to other studies about news jump dynamics and
impact on daily returns [8, 9], we will model the volatility and
external signals on a minute-level granularity. On this timescale,
our external signals are not modeled with Poisson-like dynamics,
but added directly as an exogenous observable variable It−1 to
form GARCHX model.

In this article, we compare price volatility predictions of
GARCH(1,1) with those of GARCHX (1,1) to explore how
information is absorbed into the emerging cryptocurrency
market of Bitcoin. The Bitcoin [10] is a cryptocurrency system
operated through the peer-to-peer network nodes, with a publicly
distributed ledger called blockchain [11]. Similar to the foreign
exchange markets, Bitcoin markets [12, 13] allow the exchange to
fiat currencies and back. Different studies on Bitcoin quantify the
price formation [14, 15], bubbles [16, 17], volatility [18, 19],
systems dynamics [20–22], and economic value [23–25]. Various
studies [26–29] have used social signals from social media,
WWW, search queries, sentiment, comments, and replies on
forums, and [30] added information from the blockchain as an
external signal to the GARCH model. Several models from the
GARCH family have been used for modeling and forecasting of
multiple cryptocurrencies [31, 32] on a daily level and IGARCH
was shown to be superior to other models. Twitter data have been
exploited to give successful daily [33] predictions on Bitcoin
volume and volatility using only Twitter volume, and successful
hourly predictions on returns and volatility with the added
Twitter sentiment [34]. We focus this study on understanding
Bitcoin volatility process and the statistical quantification of the
predictive power of the class of GARCH models with exogenous
signals from social media tweets, trading volume, and order book
on a minute level timescale.

2 DATA

We used two types of price definitions, the mid-quote price and
the volume-weighted price, both calculated at a minute level.
Mid-quote price was constructed as the average between the
maximum bid and the minimum ask price on the last tick per
minute, and the volume-weighted average price (VWAP) as the
volume-weighted average of transaction prices per minute.

Sampling prices at such a high frequency brings up the issue of
microstructure effects, such as bid–ask bounce, that introduces
the autocorrelation between consecutive prices. Because of that,
in addition to volume weighted prices, we use mid-quote prices
that have a significantly smaller first order of autocorrelation, as
explained in [35], to strengthen the robustness of the results. An
autocorrelation plot for both types of price returns is shown in the
Appendix.

The Bitcoin prices were obtained from the Bitfinex exchange,
and logarithmic returns were calculated as a natural logarithm of
two consecutive prices. The period we observed spans from April
18th, 2019, to May 30th, 2019, with 58,000 observations in total,
50,000 observations as in-sample, and 8,000 as out-of-sample,
and is shown on Figure 1A. In the table in Figure 1B, we can see
the descriptive statistics of both kinds of logarithmic returns; the
mean values of the returns are very close to zero (8 · 10− 6), with
standard deviations of 9.41 · 10− 4 and 9.94 · 10− 4, both
distributions are negatively skewed and leptokurtic.

Three different datasets for external signals were available as
the external information proxy—a time series of the number of
tweets mentioning cryptocurrency-related news [36], a time
series of Bitcoin trade volumes from Bitfinex market, and a
time series of Bitcoin bid–ask spread, created as a time series
of absolute differences between the maximum bid and the
minimum ask price at every recorded instant, also from
Bitfinex market. The data are collected on a second level and
shown in Figures 2A–C, with the descriptive statistics in
Figure 2D. All three time series were aggregated to the
minute level. The data were not normalized.

3 MIXTURE OF DISTRIBUTION
HYPOTHESIS

The “Mixture of Distribution Hypothesis” models the non-
normality of price returns distribution with the varying rate of
price series evolution due to the different information flow
during different time intervals. Practically, Clark [4]
hypothesizes that this can be observed as a linear
relationship between the proxy for the information flow It
and the price change variance r2t , and suggests trading volume

FIGURE 1 | Volume-weighted and mid-quote logarithmic returns for the Bitcoin market. (A) Time series. (B) Descriptive statistics.
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vt as the proxy. Tauchen and Pitts [37] state a bivariate normal
mixture model which conditions the price returns and trading
volume on the information flow as:

rt � ∑
It

i�1
rt,i, rt,i ∈ N (0, σ1). (1)

vt � ∑
It

i�1
vt,i, vt,i ∈ N (μ2, σ2). (2)

Both, the price return and trading volume are mixture of
independent normal distributions with the same mixing

variable It , which represents the number of new pieces of
information arriving to market. Conditioned on It , price
changes are distributed as N (0, Itσ1) and the trading volume
is distributed asN (Itμ2, Itσ2), and the model can be rewritten as:

rt � σ1

��
It

√
z1t , z1t ∈ N(0, 1). (3)

vt � μ2It + σ2
��
It

√
z2t , z2t ∈ N(0, 1). (4)

The relationship between price variance and trading volume
immediately follows:

Cov(r2t , vt) � σ1μ2Var(It), (5)

FIGURE 2 | (A) Time series external signal of cryptocurrency-related tweets. (B) Time series of trading volume on Bitfinex market for BTC-USD pair. (C) Time series
of bid–ask spread on Bitfinex market for BTC-USD pair. (D) Descriptive statistics of external signals for Bitcoin market.

FIGURE 3 | (A) Squared volume-weighted price returns–volume correlation. All values of correlation are statistically significant (p-value ≤ 0.001). Permutation
significance check indicates no statistically significant correlation between time-permuted squared price returns and volume series. (B) Squared volume-weighted price
returns–bid–ask spread correlation. All values of correlation are statistically significant (p-value ≤ 0.001). Permutation significance check indicates no statistically
significant correlation between time-permuted squared price returns and volume series.
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and the stochastic term in Eq. 4 shows that the above-proposed
linear relationship is only an approximation.

To start our analysis, we calculated correlation plots for the
relationship between the external signals and the squared VWAP
price returns. The correlation between squared price returns and
volume was calculated for different time lags of the volume time
series, as shown in Figure 3A. Both have a peak when the external
series leads the squared price returns by 1 min. The significant
correlation, that is, normalized covariance between squared price
returns and trading volume indicates an approximately linear
relationship between the volatility and the two proxies for
information flow (see Eq. 3). The result we got using the
bid–ask spread as an external signal can be seen (Figure 3B)
to be analogous to the one obtained for volume.

In Appendix, we plot the same correlation calculation for
cryptocurrency-related tweets (see Figure A2A). We do not
observe a similar correlation (covariance) pattern as for
volume and bid–ask spread signals. Multiple reasons could be
behind this: 1) a large noise in the Twitter signal might be
covering the information flow w.r.t. trading volume signal, 2)
linear dependence might not be enough to capture the
relationship, or 3) Twitter signal might not contain a sufficient
information flow to influence price volatility. If noise is i.i.d., then
“integrated external signal” ~I(t) � ∫t

t−δ Itdt should filter the noise
component. We observe that the stronger correlation pattern is
present after the Twitter series is integrated with δ � 30 min (see
Appendix Figure A2B), which indicates that strong noise is
present in Twitter series.

4 TRANSFER ENTROPY BETWEEN
INFORMATION FLOW AND VOLATILITY
PROXY
To proceed, we move from the linear dependence that is captured
with correlation ρ(r2t , vt) to check the nonlinear dependence
argument between the squared returns and external
information flow It signals (volume, bid–ask spread, and
Twitter) in causal setting r2t � f (It−1, rt−1). In particular, for
the squared price return process {r2t } and external information
proxy process {It}, we calculate transfer entropy (TE) [38].

TEI→ r2 :� H(r2t+1
∣∣∣∣r2t ) − H(r2t+1

∣∣∣∣r2t , It), (6)

where H(X|Y) :� −∑i,jp(xi, yj)log[p(xi
∣∣∣∣∣yj)] denotes the

conditional Shannon entropy. Transfer entropy is an
information-theoretic measure that is both nonlinear and
nonsymmetric, and it does not require a Gaussian assumption
for the time series [39]. The nonsymmetry allows us to
distinguish the direction of information exchange between
time series, It and r2t . In Figure 4, we present the results for
transfer entropy from external variables to squared returns time
series and conversely. The stationarity of the series was checked
using the ADF test and the hypothesis of the unit root was
rejected at a 1% significance. Results of the transfer entropy
analysis show that values are significant, with the largest one
being the transfer entropy from squared returns to trading

volume. The statistical significance (p-value) of transfer
entropy was estimated by a bootstrap method of the
underlying Markov process [40]. To account for the finite
sample size, we use the effective transfer entropy (ETE) measure:

ETEI→ r2 � TI→ r2 − 1
M

∑
M

m�1
TI(m) → r2, (7)

where I(m) is the mth shuffled series of I [41]. We observe a
stronger information transfer from the volume signal and the
bid–ask spread to squared returns than from the Twitter signal to
squared returns. At this point, we conclude that all external
signals show significant dependence toward the proxy for
volatility signal, that is, squared returns.

5 GENERALIZED AUTOREGRESSIVE
CONDITIONAL HETEROSCEDASTICITY
WITH EXTERNAL INFORMATION FLOW
Using the transfer entropy analysis, we have found statistically
significant dependence between historical information proxy and
volatility proxy, but not the actual functional dependence.
Therefore, we now turn to the class of generalized
autoregressive conditional heteroscedasticity models [6] that
will describe the price return process and augment it with the
external information flow proxy signal.

The GARCH(1,1) model conditions the volatility on its
previous value and the previous value of price returns:

rt � μt + εt , εt � σtzt , zt ∈ N(0, 1). (8)

σ2
t � ω + αε2t−1 + βσ2t−1. (9)

Large α coefficient indicates that the volatility reacts intensely to
market movements, while large β shows that the impact of large
volatilities slowly dies out. The volatilities defined by the model
display volatility clustering and the respective distribution of
price returns are leptokurtic, which agrees with the
observations in the real data.

Motivated by MDH and TE analysis, we formed a GARCHX
model by adding the proxy for the information flow It−1 directly
to the GARCH volatility equation:

σ2
t � ω + αε2t−1 + βσ2

t−1 + cIt−1. (10)

We will compare price volatility predictions of GARCH(1,1) with
those of GARCHX (1, 1) to explore how information is absorbed
into the emerging cryptocurrency market of Bitcoin.

5.1 Volatility GARCHX Process analysis
We turn our attention to the statistical quantification of the
GARCH volatility processes. For fitting the data to a GARCH
process and making out-of-sample estimates, we use the rugarch
library [42] in R, available from CRAN (https://cran.r-project.
org/). Apart from expanding GARCH(1,1) to GARCHX(1,1), we
add the exogenous variable to models eGARCH(1,1),
cGARCH(1,1), and TGARCH(1,1) as well, to check for
improvement in volatility predictions. The conditional
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Barjašić and Antulov-Fantulin Time-Varying Volatility in Bitcoin

68

https://cran.r-project.org/
https://cran.r-project.org/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


variance equations corresponding to these models (see Table 1)
are extensions of Eq. 5. eGARCH [43] and TGARCH [44] capture
the asymmetry between positive and negative shocks, giving a
greater weight to the later ones, with the difference between them
being the multiplicative and the additive contribution of
historical values, and cGARCH [45] separates long- and short-
run volatility components.

To get the intuition on how good the GARCH volatility
models are at explaining the volatility, we regress a · σ2t + b
on squared returns r2t [46], where σ2t is the squared GARCH
volatility estimate (out-of-sample). Then, we measure the
coefficient of determination R2, that is, the proportion of
the variance in the dependent variable that is predictable
from the independent variable. We determine the statistical
significance of with the F-test. Additionally, we measure the

Pearson correlation coefficient (PCC) of estimated σ2t and
squared returns r2t , along with its statistical significance,
Figure 5.

However, for a more precise statistical quantification of
the difference between models and their GARCHX
variants, more advanced statistical tests are needed. For
that purpose, we employ predictive negative log-likelihood
(NLLH) [47].

~L � −ln(L(μ1, . . . , μn, σ1, . . . , σn))

� −∑
n

i�1
(1
2
ln(σ i) + 1

2
ln(2π) − (ri − μi)2

2σ2i
). (11)

We evaluated predictive negative log-likelihood (NLLH) on the
out-of-sample period. Values of {μi}ni�1 and {σ i}ni�1 are predictions

FIGURE 4 | Transfer entropy (TE) and effective transfer entropy (ETE) between external signals (Twitter, volume, and bid–ask spread) and squared returns (VWAP
and mid-quote price returns). All transfer entropy results are statistically significant (p-value smaller than 0.001), additionally the presence of unit-roots was checked with
augmented Dickey–Fuller test (α � 0.01).

TABLE 1 | GARCH family.

eGARCH

ln(σ2t ) � ω + α[
∣∣∣∣∣∣∣εt−1σt−1

∣∣∣∣∣∣∣ − E
∣∣∣∣∣∣∣εt−1σ t−1

∣∣∣∣∣∣∣] + δ εt−1
σ t−1 + β ln(σ2t−1)

cGARCH

σ2t � qt + α(ε2t−1 − qt−1) + β(σ2t−1 − qt−1)
qt � ω + ρqt−1 + θ(ε2t−1 − σ2t−1)

TGARCH

σt � ω + αεt−1 + βσt−1 + ϕεt−11[εt−1 < 0]
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of the model, and {ri}ni�1 is the observed price returns. To show
whether the improvements can be considered significant, we
employed the likelihood ratio test. It takes the natural
logarithm of the ratio of two log-likelihoods as the statistic:

LR � −2ln(L(θ0)L(θ)). (12)

Since its asymptotic distribution is χ2-distribution, a p-value is
obtained using Pearson’s chi-squared test. In Figure 6, we see
from the p-values that the exogenous variables improve the
NLLH significantly for all the models except for eGARCH, for
logarithmic returns are created from VWAP. When mid-quote
prices are used, a significant improvement is observed only for
GARCH and cGARCH.

Note, that for twomodels with fixed parameters, the likelihood
ratio test is the most powerful test at given significance level α, by
Neyman–Pearson lemma.

In order to further test the robustness of the conclusions on
different samples, we perform the bootstrapping. We restrict the
lengths of in-sample and out-of-sample to T � 1000 points each
and sample N � 100 such blocks with replacement from the
original time series. Then, for each block, we fit a model on its in-

sample data segment and calculate predictive out-of-sample
NLLH {~Li}Ni�1.

In Eq. 11, Mi represents a model from the GARCH family
{GARCH, cGARCH, eGARCH, and TGARCH} and Mi,j denotes
its corresponding GARCHX extension, where external signal j ∈
{Volume, Twitter, Bid–ask spread}. ModelsMi andMi,j will have
empirical distribution functions ψMi

(~L) and ψMi,j
(~L),

respectively (see boxplots estimates in Figure 7). We calculate
the Kolmogorov–Smirnov (KS) statistics between corresponding
empirical predictive out-of-sample NLLH distributions:

KSi,j � sup
~L

∣∣∣∣∣ψMi
(~L) − ψMi,j

(~L)
∣∣∣∣∣, (13)

and obtain its statistical significance. In Figures 7, 8, we can see
that both GARCH and cGARCH models show significant
improvements with all the external variables and both price
definitions, under the bootstrapping KS-NLLH robustness
check. That is not surprising, as the nonparametric KS test is
not very powerful [48]. However, significant differences for the
GARCH and cGARCH models allow us to confirm that its
predictive power is robust under temporal bootstrapping
conditions. Finally, we take the GARCH volatility process as a

FIGURE 5 | Out-of-sample measures for the GARCH volatility process. In-sample consists of 50,000 points and out-of-sample consists of 8000 points. All PCC
values are statistically significant. R2 statistical significance was checked using F-statistic, and satisfied for all the values.

FIGURE 6 |Results of out-of-sample likelihood ratio test. In-sample consists of 50,000 points and out-of-sample consists of 8,000 points. *Blue palette represents
the p-value smaller than 0.001. NaN—some algorithms had convergence problems.
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representative and perform additional bootstrapping KS–NLLH
robustness checks on two additional segments (March–April
2019 and November–December 2019) and we see similar
results (See Appendix Figure A3).

6 DISCUSSION

Although the theoretical foundations of the effects of information
on markets have been proposed a long time ago [1, 2], they were
further developed in 1970, as “weak”, “semi-strong”, and “strong”
forms of efficient market hypothesis [49]. The mathematical
models of information effects continued to advance in the 70s
as well, by the proposition of the Mixture of Distribution
Hypothesis [4], which states that the dynamics of price returns
are governed by the information flow available to the traders.
Following the growth of computerized systems and the
availability of empirical data in the 80s, more elaborate
statistical models were proposed, such as generalized
autoregressive conditional heteroscedasticity models (GARCH)
[6] and news Poisson-jump processes [7] with constant intensity.
Furthermore, studies from the 2000s generalized the news
Poisson-jump processes by introducing time-varying jump
effects, supporting it with the statistical evidence of time
variation in the jump size distribution [8, 9].

In this article, we have analyzed the effects of information flow
on the cryptocurrency Bitcoin exchange market that appeared
with the introduction of blockchain technology in 2008 [11].
Although the trading volume in the largest cryptocurrency
markets has grown exponentially in the last 10 years, still the
research on their (in)efficiency quantification is ongoing [50, 51].
We have focused on the Bitcoin, the largest cryptocurrency w.r.t.
market capitalization, and used the reliable data of price returns
and traded volume and bid–ask spread from Bitfinex exchange
market [52] on a minute-level granularity. The price returns were
calculated using two different definitions, VWAP and mid-quote,
to account for possible market-microstructure noise. Another
reason, why we have concentrated on the Bitcoin, was the
availability of Twitter-related data [36]. We have used the
social media signals from Twitter, trading volume and bid–ask
spread from the Bitcoin market as a proxy for information flow
together with the GARCH family of [53] processes to quantify the
prediction power for the price volatility.

We started the analysis by employing recently developed
nonparametric information-theoretic transfer entropy measures
[38, 40, 41], to confirm the nonlinear relationship between the
exogenous proxy for information (trading volume, bid–ask spread,
and cryptocurrency related tweets) and squared price returns
(proxy for volatility). Further on, we have made extensive
experiments on the following models: GARCH, eGARCH,

FIGURE 7 | Bootstrap robustness check over N � 100 splitting points with T � 1,000 training points and T � 1,000 test size for GARCH and GARCHX models. The
price is defined as volume-weighted. The nonparametric Kolmogorov–Smirnov test of the equality of the NLLH out-of-sample distributions between the GARCH and
GARCHX models is done. (A) KS test implies a significant difference for both external signals for the GARCH model. (B) KS test implies no significant difference for
external signals for the eGARCH model. (C) KS test implies no significant difference for both external signals for the cGARCH model. (D) KS test implies no
significant difference for external signals for the TGARCH model.
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cGARCH, and TGARCH on the minute-level data of price
returns, Twitter volume, exchange volume data, and bid–ask
spread. Our testing procedure consisted of multi-stage
statistical checks: 1) out-of-sample R2 and Pearson
correlation measurements, 2) out-of-sample predictive
likelihood measurements with the likelihood ratio test on
8,000 points, and 3) bootstrapped predictive likelihood
measurements with the nonparametric Kolmogorov–
Smirnov test. From the predictive perspective of the
nonlinear parametric GARCH model, we have found that
exogenous proxy for information flow significantly improves
out-of-sample minute volatility predictions for the GARCH
and cGARCH [54] models. It is not surprising that the basic
GARCH model is outperforming more advanced models [46,
55] such as eGARCH [43] and TGARCH [44] on out-of-
sample data. Also, a previous study [18] found that the
cGARCH model on the Bitcoin market was performing
the best on in-sample daily returns.

Finally, we have taken the GARCH model and applied the
bootstrapping on two additional segments (March–April 2019
with 38,000 points and November–December 2019 with 52,000
points) and we observe that our observations still hold (see
Appendix Figure A3). For future work, we leave focusing on
other cryptocurrencies and analyzing the cross-market volatility
spillovers, in which different market behavior modes could be
studied separately.
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APPENDIX

FIGURE A1 | Autocorrelation of price returns. The first-order autocorrelation of mid-quote price returns is significantly smaller than that of volume-weighted price
returns, indicating a smaller level of microstructure noise in mid-quote price returns. Confidence interval.

FIGURE A2 | (A) Correlation between squared price returns and Twitter volume. Permutation significance check indicates no statistically significant correlation
between time-permuted squared price returns and Twitter time series. (B) Correlation between squared price returns and integrated Twitter volume (over a 30-min
moving window). This test is only used to check whether the integrating operator is filtering noise. Correlation between squared price returns and Twitter time series. All
values of correlation are statistically significant (p-value ≤ 0.001).

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 64410211
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FIGURE A3 | Bootstrap robustness check over N � 100 splitting points with T � 1000 training points and T � 1000 points in test size for GARCH and GARCHX
models. The nonparametric Kolmogorov–Smirnov test of the equality of the NLLH out-of-sample distributions between GARCH and GARCHX models is done. (A) KS
test implies a significant difference for all external signals for the GARCHmodel in the period fromNovember 3rd, 2019 to December 9th, 2019 with 52,000 observations.
(B) KS test implies a significant difference for all external signals for the GARCH model in the period from March 18th, 2019, to April 9th, 2019, with 38,000
observations.
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The Complex Community Structure of
the Bitcoin Address Correspondence
Network
Jan Alexander Fischer1†, Andres Palechor1†, Daniele Dell’Aglio2,3*, Abraham Bernstein3 and
Claudio J. Tessone4

1Faculty of Business, Economics and Informatics, Universität Zürich, Zürich, Switzerland, 2Department of Computer Science,
Aalborg University, Aalborg, Denmark, 3Department of Informatics, Universität Zürich, Zürich, Switzerland, 4UZH Blockchain
Center and URPP Social Networks, Universität Zürich, Zürich, Switzerland

Bitcoin is built on a blockchain, an immutable decentralized ledger that allows entities
(users) to exchange Bitcoins in a pseudonymous manner. Bitcoins are associated with
alpha-numeric addresses and are transferred via transactions. Each transaction is
composed of a set of input addresses (associated with unspent outputs received from
previous transactions) and a set of output addresses (to which Bitcoins are transferred).
Despite Bitcoin was designed with anonymity in mind, different heuristic approaches exist
to detect which addresses in a specific transaction belong to the same entity. By applying
these heuristics, we build an Address Correspondence Network: in this representation,
addresses are nodes are connected with edges if at least one heuristic detects them as
belonging to the same entity. In this paper, we analyze for the first time the Address
Correspondence Network and show it is characterized by a complex topology, signaled by
a broad, skewed degree distribution and a power-law component size distribution. Using a
large-scale dataset of addresses for which the controlling entities are known, we show that
a combination of external data coupled with standard community detection algorithms can
reliably identify entities. The complex nature of the Address Correspondence Network
reveals that usage patterns of individual entities create statistical regularities; and that these
regularities can be leveraged to more accurately identify entities and gain a deeper
understanding of the Bitcoin economy as a whole.

Keywords: blockchain technology, bitcoin (BTC), label propagarion algorithm, network science, deanonymization

1 INTRODUCTION

Cryptocurrencies are rapidly growing in interest, becoming a popular mechanism to perform
pseudonymous exchanges between users (entities). They also allow payments in a decentralized
manner without needing a trusted third party. The first and most popular cryptocurrency is Bitcoin,
which uses an immutable and publicly available ledger to facilitate transactions between entities.
Moreover, given its pseudo-anonymity, Bitcoin has also been used to perform activities in illegal
markets. For example, Foley et al. [1] estimate that one-quarter of entities in the Bitcoin network are
associated with illegal activity. Consequently, several governing challenges have arisen, and law
enforcement agents are particularly interested in techniques that allow tracing the origin of funds.
Specifically, in Bitcoin, given the ledger’s public nature, tracing the funds can be achieved by
inspecting the history of transactions in the system. However, identifying the entities is a complex
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task because they can use different pseudonyms (addresses) in the
system. By the Bitcoin protocol, it is impossible to completely de-
anonymize the entities; however, not all entities prioritize
anonymity [2], and it is possible to find recoverable traces of
their activity in the transaction history.

The structure of the transactions allows, in some cases,
tracing back address pseudonyms that potentially belong to
the same entity. For example, Meiklejohn et al. [3] apply
heuristics and then cluster together pseudonyms based on
evidence of shared spending authority. In this paper, we
study the application of several heuristics that leads to
creating a sequence of Address Correspondence Networks.
Each of these networks includes weighted links between
addresses that potentially belong to the same entity, thus
approaching entity identification from a network science
perspective. Even though other approaches use networks to
model some parts of the Bitcoin economic dynamics (e.g. [4–7]),
to the best of our knowledge, network science approaches have
not addressed the problem of analyzing the Address
Correspondence Network to date. In this study, we show that
the Address Correspondence Networks have a strong
community structure and general-purpose clustering
approaches are suitable for analyzing them. Furthermore, our
experiments suggest that having a set of identified entities
generates large gains in cluster quality—however, this gain
quickly declines, and a small number of known entities is
enough to produce significant increase in the quality of the
detection.

The rest of this paper is organized as follows: Section 2
explains the basics of the Bitcoin blockchain, heuristics, entity
identification and related work. Section 3 presents our methods
for constructing Address Correspondence Networks, the
clustering technique and its quality metrics. In Section 4, we
discuss our findings, and finally, in Section 5, we discuss
conclusion and future work.

2 BACKGROUND AND RELATED WORK

This section introduces the main concepts related to Bitcoin.
Next, it discusses the task of identifying addresses controlled by
the same entity, followed by a reviews of the main studies in
the area.

2.1 The Bitcoin Blockchain
Bitcoin was introduced in [8] as a decentralized payment network
and digital currency which would be independent of central bank
authorities. It is built on a blockchain, an immutable
decentralized ledger that allows users, i.e. entities, to exchange
the units of account (Bitcoins) in a pseudonymous manner.
Entities transacting in the Bitcoin network control
addresses—unique identifiers which have the right to transfer
specific amounts of Bitcoins.

There are different types of addresses, which determine how
the associated Bitcoins are accessed. For example, to spend
Bitcoins associated with an address of type Pay to Public Key
Hash (P2PKH), the entity needs to present a valid signature based

on their private key, and a public key that hashes to the P2PKH
value. Another example is the Pay to Script Hash (P2SH) address
type: it defines a script for custom validation, which may include
several signatures, passwords and other user-defined
requirements. We denote with a an address and with A the
set of {a1, . . . , an} addresses appearing in the Bitcoin blockchain.
Furthermore, we denote an entity as e, with E representing the set
{e1, . . . , ek} of entities that own Bitcoin addresses.

To spend or receive Bitcoins, entities create transactions. A
transaction t is composed of a set of input addresses, a set of
output addresses, and information specifying the amount of
Bitcoins to be allocated to each output address. Formally, let
T be the set of transactions stored in the Bitcoin blockchain, and
P(A) be the power set of A. We model with i : T →P(A) and
o : T →P(A) the mappings between a transaction and its input
and output address sets. The sum of Bitcoins associated with the
input addresses equals the sum of Bitcoins associated with the
output addresses plus transaction fees. Therefore, if an entity
wishes to spend only a partial amount of Bitcoins associated with
the input addresses, the remainder is typically sent to an existing
or newly created change address controlled by the initiating
entity. Transaction outputs that have not yet been used as
inputs to other transactions are referred to as UTXOs
(unspent transaction outputs).

The transaction history is replicated on multiple nodes in the
Bitcoin network. Entities broadcast new transactions to other
nodes in the network. As part of Bitcoin’s decentralized
consensus protocol, specialized miner nodes are incentivized
to solve proof-of-work puzzles that validate new transactions
and group them into blocks. Blocks are sequentially appended to
the blockchain; the number of blocks preceding a particular block
is known as its block height. Furthermore, entities may specify a
transaction’s locktime. This is the minimum block height the
blockchain must reach before miners should consider validating
the transaction, i.e. a transaction with locktime j is added to block
j + 1 or later.

A peculiar property of the Bitcoin network is the
pseudonymity: entities conceal their identity through the use
of nameless addresses (pseudonyms), linking an address to a real-
world entity exposes their entire activity on the Bitcoin network,
since the transaction history is publicly available. Entities are
therefore advised to generate a new address for every transaction,
so that each address is used once as a transaction output and once
as a transaction input.

2.2 Address Clustering
The objective of address clustering is to find sets of addresses
Ai4A that are controlled by the same entity ei. Formally, the
objective is to find a map e : A→ E such thatAi � {aj|e(aj) � ei}.
There exist multiple heuristics for identifying address pairs
controlled by the same entity. We consider seven heuristics
implemented by Kalodner et al. [9], the majority of which
seek to identify change addresses in the outputs of a
transaction (linking these with the transaction inputs).

1) Multi-input: All input addresses of a transaction are assumed
to be controlled by the same entity.
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2) Change address type: If all input addresses of a transaction are
of one address type (e.g. P2PKH or P2SH), the potential
change addresses are of the same type.

3) Change address behavior: Since entities are advised to
generate a new address for receiving change, an output
address receiving Bitcoins for the first time may be a
change address.

4) Change locktime: If a transaction’s locktime is specified,
outputs spent in different transactions on the same block
as the specified locktime may be change addresses. Intuitively,
this is because the entity initiating the transaction also knows
its locktime.

5) Optimal change: If an output is smaller than any of the
transaction inputs, it is likely a change address.

6) Peeling chain: In a peeling chain, a single address with a
relatively large amount of Bitcoins begins by transferring a
small amount of Bitcoins to an output address, with the rest
being allocated to a one-time change address. This process
repeats several times until the larger amount is reduced,
meaning that addresses continuing the chain are potential
change addresses Meiklejohn et al. [3].

7) Power of 10: This heuristic assumes that the sum of
deliberately transferred Bitcoins in a transaction is a power
of 10. If such an output is present, the other outputs may be
change addresses.

2.3 Related Work
Address clustering in Bitcoin has been the subject of numerous
studies. Initial studies focused on the multi-input heuristic. For
example, Nick [10] identify more than 69% vulnerable addresses
using only this heuristic. Also Harrigan and Fretter [11] consider
themulti-input heuristic and attribute its effectiveness to frequent
address reuse, as well as the presence of large address clusters
having high centrality measures with respect to transactions
between clusters. Furthermore, they suggest that incremental
cluster growth and the avoidable merging of large clusters
makes the multi-input heuristic suitable for real-time analysis.
Fleder et al. [12] construct directed transaction graphs for periods
of 24 h and 7 months. In such graphs, the nodes are addresses and
each edge represents a transaction from an input address to an
output address. They obtain address entity labels by scraping
public forums and social networks. By applying the multi-input
heuristic, they identify transactions where labeled addresses have
interacted with a large number of known entities such as
SatoshiDICE and Wikileaks.

Meiklejohn et al. [3] combines the multi-input heuristic with a
second one, similar to the change address behavior heuristic.
They identify major entities and interactions between them, and
note that the change address heuristic tends to collapse address
groups into large super-clusters. Zhang et al. [13] consider
another variation of the change address behavior heuristic,
and show that it improves clustering quality when address
reduction is used as a performance measure. In this study, we
focus on the heuristics introduced in Section 2.2 by Kalodner
et al. [9].

Patel [14] proposes novel approaches to Bitcoin address
clustering. He considers clustering an undirected, weighted

heuristic graph, where the nodes are addresses, and each edge
indicates the presence of at least one of eight heuristics (a superset
of those introduced in Section 2.2) linking those addresses to the
same entity. Each heuristic is assigned a positive weight, such that
their sum is equal to one. The edge weight is the sum of the
heuristic weights for which the corresponding heuristic is present
between two addresses. The author applies a variety of generic
graph clustering algorithms (e.g. k-means, spectral, DBSCAN) as
well as graph sparsification and coarsening techniques to the
constructed heuristic graph. In this study, we propose the address
correspondence network, which is similar to the network built by
Patel [14] However, in our correspondence network, an edge
between two addresses represents the number of times the
heuristics identify the pair as controlled by the same entity.
We use a label propagation algorithm to build the clusters,
using ground truth information to drive the algorithm.

There exist other approaches and extensions to address
clustering. Ermilov et al. [15] show that higher cluster
homogeneity can be achieved when transaction data is
augmented with off-chain information from the internet.
Biryukov and Tikhomirov [16] propose incorporating lower-
level network information to enhance deanonymization.
Furthermore, Harlev et al. [17] extend address clustering by
using supervised machine learning to predict the type of entity
controlling addresses in an unlabeled cluster. In our study, in
addition to using a ground truth to guide the clustering
construction, we introduce a temporal component in the
analysis. We build address correspondence networks for
various time intervals. In this way, we can analyze the
evolution of the network over time.

3 METHODOLOGY

We expand upon the work of Patel [14] by performing address
clustering on so-called Address Correspondence Networks,
denoted G[o,c], where [o, c] is a time interval. Nodes are
Bitcoin addresses that are involved in transactions between a
time instant o and a time instant c. G[o,c] contains an undirected
link (ai, aj) between two addresses when at least one of the
heuristics introduced in Section 2.2 detects ai and aj as belonging
to the same entity. We posit that the topology of G[o,c] encodes
further insights on the identity of the entities and, ultimately, on
the e(aj) map.

For some addresses aj, the controlling entity is known. Using
the block explorer tool provided by Janda [18], we obtain entity
labels for 28 million addresses involved in transactions before
2017. We refer to this data set as the ground truth. The mapping
information contained in the ground truth is denoted with e+,
such thatA+ � {aj|∃e+(aj)}4A is the set of addresses for which
the entity label is known. We use the ground truth to 1) sample
from T and 2) to evaluate the quality of address clustering
methods.

The remainder of this section is organized as follows. Section
3.1 describes the method for sampling from T . This sample is
divided further into cumulative and partial subsets, which are
described in Section 3.2. Section 3.3 details the construction of the
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Address Correspondence Networks. We explain our approach to
clustering these networks in Section 3.4, while the metrics used to
evaluate clustering quality are introduced in Section 3.5.

3.1 Transaction Sampling
For computational feasibility, we restrict our analysis to a sample of T ,
as depicted inFigure 1. First, we randomly select a subsetAS

0 4A+ of
the addresses in the ground truth. Next, we select all transactions
involving an address a ∈ AS

0 as an input or output,
i.e., T S

0 � {t | ∃a ∈ AS
0 : a ∈ i(t) ∪ o(t)}. We then build the set

AS
1 of addresses that appear in transactions of T 0 but not in AS

0,
i.e. AS

1 � {a | a ∉ AS
0 ∧∃t ∈ T S

0 : a ∈ i(t) ∪ o(t)}. The
aforementioned process is then repeated in a similar manner. This
involves finding the set T S

1 of transactions which include at least two
addresses in AS

1, i.e., T S
1 � {t | t ∉ T S

0 ∧∃a1, a2 ∈ AS
1 : a1 ∈ i(t) ∪

o(t)∧ a2 ∈ i(t) ∪ o(t)∧ a1 ≠ a2}. We set the condition on two
addresses per transaction to reduce the size of the subsequently
constructed Address Correspondence Networks. Finally, we build
AS

2 as the addresses appearing in transactions of T S
1 and not

already in AS
0 or AS

1, i.e. AS
2 � {a | a ∉ AS

0 ∪AS
1 ∧∃t ∈ T S

1 :
a ∈ i(t) ∪ o(t)}.

As a result, this process constructs a set of sampled
transactions T S � TS

0 ∪T
S
1 having addresses AS � AS

0∪AS
1∪AS

2 .
An advantage of this sampling method is that the constructed
Address Correspondence Networks are centered around ground
truth seed addresses, thereby exploiting the previous knowledge
of controlling entities.

3.2 Partial and Cumulative Transaction Sets
To study the evolution of the Bitcoin Address Correspondence
Network over time, we create temporal subsets of the transactions

in T S. Each subset includes only the transactions in T S that were
generated in a specific time interval. We create time intervals
using two different strategies, which we name cumulative and
partial, summarized in Figure 2.

The cumulative strategy creates eight time intervals of progressively
increasingwidth,1 {[01.07.11,30.06.y],[01.07.11,31.12.y] |y ∈ [12,15]},
while the partial strategy creates eight time intervals of fixed width,
{[01.01.y,30.06.y],[01.07.y,31.12.y] |y ∈ [12,15]}. It follows that
cumulative time intervals overlap, while partial time intervals are
disjoint.

Cumulative transaction sets are denoted with T S
[11s2,yss],

which refers to all transactions in T S that were generated
between the second semester of 2011 and the sth semester of
y, e.g., T S

[11s2,14s1] includes transactions generated in the interval
[01.07.11, 30.06.14]. Partial transaction sets are denoted with
T S

[yss,yss] ≡ T S
[yss], e.g., T S

[14s1] refers to transactions generated
in the interval [01.01.14, 30.06.14]. It is worth noting that
while partial transaction sets do not share transactions, they
may still share addresses which are used in multiple
transactions.

3.3 Address Correspondence Network
Construction
Let w : A ×A→N be a function that counts how often an
address pair, (a1, a2), is detected by any of the seven heuristics
introduced in Section 2.2 as being controlled by the same entity

FIGURE 1 | The transaction sampling process.

1We represent dates in the use the DD.MM.YY format.
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(considering only transactions in T S
[o,c]). It is worth noting that w

is symmetric (or undirected), i.e. w(a1, a2) � w(a2, a1).
The information captured by applying w to each pair of

addresses in AS
[o,c] is collected in Address Correspondence

Networks, defined as undirected weighted graphs
G[o,c] � (AS

[o,c],L[o,c],w). The construction process is depicted
in Figure 2. The addresses in AS

[o,c] are the vertices of the
graph, and w is the weight function. L[o,c]4AS

[o,c] ×AS
[o,c] is

the set of edges connecting address in two ways:

1) Pairs (ai, ao) such that it exists a transaction t ∈ T S
[o,c] having

respectively ai and ao in its input and output address sets i(t)
and o(t), and having w(ai, ao)> 0.

2) Pairs (ai1, ai2) such that it exists a transaction t ∈ T S
[o,c]

having both ai1 and ai2 in its input set i(t), and having
w(ai1, ai2)> 0.

Note that in a transaction, different heuristics can concur by
identifying the same address as a change address, increasing the
weights of the edges related to such an address. Figure 3 shows
the degree distribution of the Address Correspondence Networks
G[11s2,12s1] and G[11s2]. The two distributions show a similar shape,
but note that the left plot is a cumulative graph and the right plot
is a partial graph; this indicates that the correspondence networks
appear to preserve common properties across time. Table 1
provides descriptive statistics of the 16 Address
Correspondence Networks we constructed from the eight
partial and cumulative transaction sets. While the degree
distributions cannot be assimilated to a single statistical
distribution, they are skewed and fat-tailed, features that are

recognized in complex networks of different contexts like
biological, technological or social interactions [19].

Figure 4 shows the distribution of ground truth entities in the
Address Correspondence Networks. In each plot, we compare a
cumulative network and the partial network from its last six
months, e.g. G[11s2,13s1] with G[13s1]. The number of known entities
in the networks from 2012 is small, G[12s1] and G[12s2] do not show
any relation with their pairs. However, from 2013, the similarity
between distributions of known entities of partial and cumulative
networks is notorious.

3.4 Address Correspondence Network
Clustering
Let G[o,c] � (AS

[o,c],L[o,c],w) be the Address Correspondence
Network for the time interval [o, c]. We approach the entity
identification problem by applying a community detection
algorithm to L[o,c] (therefore assuming that communities are
sets of addresses belonging to the same entity). In G[o,c], highly
interconnected vertices are clusters (communities) of addresses
linked by one or several heuristics. Community detection
algorithms find clusters of vertices highly interconnected but
with sparse links between clusters. Specifically, the Label
Propagation Algorithm (LPA) by Raghavan et al. [20] finds
communities and has linear complexity on the number of
edges O(L[o,c]). The comparative study by Yang et al. [21]
shows that the scalability of LPA outperforms other fast
clustering algorithms, including Leading Eigenvector by
Newman [22], Walktrap by Pons and Latapy [23], and
Multilevel by Blondel et al. [24]. In LPA, each node is

FIGURE 2 | Cumulative and partial transaction sets, and construction of the Address Correspondence Networks.
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FIGURE 3 | Degree distribution for cumulative G[11s2,13s1] and partial G[15s1].

TABLE 1 | Number of nodes, edges and ground truth addresses of the partial and cumulative Address Correspondence Networks for each semester from 2012 to 2015.

y s Partial: G[yss] Cumulative: G[11s2,yss]∣∣∣∣∣AS
[yss]

∣∣∣∣∣
∣∣∣∣L[yss]

∣∣∣∣
∣∣∣∣∣A+

[yss]
∣∣∣∣∣

∣∣∣∣∣AS
[11s2,yss]

∣∣∣∣∣
∣∣∣∣L[11s2,yss]

∣∣∣∣
∣∣∣∣∣A+

[11s2,yss]
∣∣∣∣∣

2012 1 12 46 10 3,750 164,408 1,553
2 5,054 1,239,850 5,029 8,804 1,404,258 6,582

2013 1 131,252 3,183,594 39,161 139,918 4,587,813 45,613
2 191,453 45,965,678 155,449 329,240 50,552,843 199,614

2014 1 360,002 81,891,103 268,228 607,098 131,854,323 396,548
2 505,748 31,121,336 233,609 1,092,560 162,948,611 621,919

2015 1 232,781 16,836,377 120,191 1,270,261 179,725,740 734,185
2 990,117 52,732,659 211,174 2,184,445 232,416,368 935,599

FIGURE 4 | Distribution of ground truth entity sizes,
∣∣∣∣∣E+

[o,c]
∣∣∣∣∣.
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initialized with a unique label, denoting the cluster it is part of
(the controlling entity of an address). In the basic case, all the
nodes are initially assigned a random label. Afterward, each node
is randomly visited and assigned a label according to the majority
voting of its neighbors. The process repeats until every node in the
network gets a label to which most of its neighbors belong.
Figure 5 shows a clustering for the partial network G[12s2].

To initialize parts of the nodes, we use the information from
the ground truth e+. Let A+

[o,c] denote the set of ground truth
addresses in G[o,c], i.e., A+

[o,c] � AS
[o,c] ∩ A+, and let E+

[o,c] be the
set of ground truth entities in G[o,c], i.e.
E+
[o,c] � {e+(a)

∣∣∣∣∣∃a ∈ A+
[o,c]}. We assign to a subset of nodes

AI
[o,c] 4A+

[o,c] the label from the ground truth, i.e. e+(a). It
holds that AI

[o,c]4A+
[o,c]4AS

[o,c] and, concomitantly,∣∣∣∣∣AI
[o,c]

∣∣∣∣∣ ≤
∣∣∣∣∣A+

[o,c]
∣∣∣∣∣ ≤

∣∣∣∣∣AS
[o,c]

∣∣∣∣∣.
In this paper, we are interested in exploring the ability of

community detection algorithms to provide additional
information about the true identities of users. We hypothesize
that the Address Correspondence Network encodes additional
information about the entities that control specific addresses. We
argue that successive applications of heuristics may lead to
connections between addresses controlled by the same entity
that are denser and higher weighted than connections between
addresses of different entities. Following this argument, we apply
LPA to obtain a disjoint set of clusters C[o,c] � {C(1)[o,c], . . . , C(k)[o,c]},
such that ∪k

i�1C(i)[o,c] � AS
[o,c]. Because of the additional information

provided by the ground truth, we modified LPA to avoid that the
addresses inAI

[o,c] can change label, as they are associated with the
actual entity according to the ground truth information.

In the experiments, we vary the proportion p of initialized
nodes, that is defined as:

p �
∣∣∣∣∣AI

[o,c]
∣∣∣∣∣/
∣∣∣∣∣AS

[o,c]
∣∣∣∣∣.

Since
∣∣∣∣∣A+

[o,c]
∣∣∣∣∣/
∣∣∣∣∣AS

[o,c]
∣∣∣∣∣ varies across networks and is an upper

bound on the proportion of initialized nodes, the domains of the
approximated functions also vary.

3.5 Cluster Quality Analysis
Finally, we quantify the clustering quality as a function of cluster
size and entity size. Given an Address Correspondence Network
G [o,c] and set of clusters C [o,c] � {C(1)[o,c], . . . , C(k)[o,c]} produced by
LPA, we analyze the quality of C [o,c] by defining a set of discrete
random variables to describe characteristics of the network, and
by five metrics: modularity to give information about the intrinsic
quality of the clusters (and inherent topological structure of the
network), homogeneity, entropy, Adjusted Mutual Information
(AMI) and Adjusted Rand Index (ARI) to compare the clusters
with the ground truth labels. Furthermore, all metrics are
measured as functions of the proportion of initialized nodes p.

3.5.1 Random Variables
To study the characteristics of the network, we define the
following discrete random variables associated with the
distributions of entities, addresses, and known addresses in the
address correspondence network.

The first random variable, E, assumes a value from the set of
entities according to their frequency in the correspondence network.
More specifically, E can assume the value e ∈ E+

[o,c] with probability
equal to the numbers of addresses in A+

[o,c] mapped to e, divided by
the total number of addresses in A+

[o,c], i.e.:

P(e) �
∣∣∣∣∣{a ∈ A+

[o,c]
∣∣∣∣∣e � e+(a)}

∣∣∣∣∣∣∣∣∣∣A+
[o,c]

∣∣∣∣∣
.

In addition to E, we also define variables that assume values in
the entity set according to their frequency in specific clusters. Let

FIGURE 5 | The Address Correspondence Network G[12s2]. Clusters are identified by color.
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Ei be the variable associated to the ith cluster, i.e. i ∈ [1, ∣∣∣∣C[o,c]
∣∣∣∣].

For each i, we build a histogram of the frequency of entities in
C(i)[o,c], by counting for each entity e the number of addresses
associated to e through the ground truth data in C(i)[o,c]. Such a
histogram is used to approximate the distribution of entities over
C(i)[o,c] and serves to describe Ei. Formally letA(i)

[o,c] � A+
[o,c] ∩ C(i)[o,c]

be the set of addresses in C(i)[o,c] which are part of the ground truth.
Ei can assume a value e in E(i)

[o,c] � {e+(a)
∣∣∣∣∣a ∈ A(i)

[o,c]} with
probability:

P(e) �
∣∣∣∣{a ∈ A(i)

[o,c]
∣∣∣∣e � e+(a)}∣∣∣∣∣∣∣∣A(i)
[o,c]

∣∣∣∣ .

The variable C assumes a cluster identifier according to its
frequency over the addresses in the ground truth. C can assume a
value C(i)[o,c] ∈ C[o,c] with probability defined by the number of
addresses in A+

[o,c] and C(i)[o,c] (i.e. A(i)
[o,c]) divided by the total

number of addresses in A+
[o,c], i.e.:

P(C(i)
[o,c]) �

∣∣∣∣A(i)
[o,c]

∣∣∣∣∣∣∣∣∣A+
[o,c]

∣∣∣∣∣
.

Finally, we define variables complementary to Ei to describe
the frequency of clusters among each entity. We indicate with Cj

the variable associated to the jth entity ej, with j ∈ [1,
∣∣∣∣∣E+

[o,c]
∣∣∣∣∣].

Given the entity ej, we build the histogram of the appearance of ej
in each cluster of C[o,c]. As for the Ei variables, we approximate the
real distribution using the ground truth data, and considering
only the addresses from A+ to build the bins. Formally, Cj can
assume values in C[o,c] with probability:

P(C(i)
[o,c]) �

∣∣∣∣{a ∈ C(i)
[o,c]

∣∣∣∣ej � e+(a)}∣∣∣∣∣∣∣∣∣{a ∈ A+
[o,c]

∣∣∣∣∣ej � e+(a)}
∣∣∣∣∣
.

3.5.2 Metrics
Modularity, initially proposed by Newman and Girvan [25],
compares the clusters with a random baseline. This is done by
computing the difference between the number of edges inside the
clusters with the expected value of edges using the same clusters
but with random connections between the nodes. Let

∣∣∣∣C[o,c]
∣∣∣∣ be

the number of clusters in the Address Correspondence Network
G[o,c], qij the ratio of edges connecting addresses between cluster
C(i)[o,c] and cluster C(j)[o,c], and ri � ∑

j
qij the ratio of edges with at least

one end in C(i)[o,c]. The modularity is defined as:

Q � ∑
|C[o,c]|
i�1

(qii − r2i ).

A value close to 0 indicates that the community structure is
akin to a random network, while values close to 1 indicate strong
community structures, meaning dense connections inside the
communities and sparse connections between them.

Information Theory Metrics: Entropy, introduced in an
information theory context by Shannon [26], quantifies the
expected amount of information or uncertainty contained in a
random variable. Let X be a discrete random variable, which can

assume values {x1, x2, . . . , xk} with probability
{P(x1), P(x2), . . . , P(xk)}. The entropy of X is defined as:

H(X) � − ∑
k

x ∈ 1

P(x)log2P(x),

while the normalized Shannon entropy is:

Ĥ(X) � H(X)
Hmax(X) �

H(X)
log2(k)

.

We use the normalized entropy of Ei and Cj to study the
clusters by the perspective of the entities and the one of the cluster
themselves.

Entropy also gives important information of the interrelation
between random variables. Let us consider two variables X and Y,
and let P(X,Y) be the joint probability distribution. The
conditional entropy H(Y |X) is defined as:

H(Y |X) � − ∑
x∈X,y∈Y

P(x, y) log2P(x, y)
P(x)

The conditional entropy indicates how much extra
information is needed to describe Y given that X is known.
Additionally, the amount of information needed on average to
specify the value of two random variables isH(X,Y) � H(X|Y) +
H(Y).

We use conditional entropy to measure the quality of the
clusters. We do it by comparing them with the distribution of
the entities in the Address Correspondence Network,
exploiting the variables E and C. Such a measure is named
homogeneity and is initially introduced by Rosenberg and
Hirschberg [27]. Ideally, a cluster should only contain
addresses that are controlled by the same entity. In such a
case, clusters are homogeneous and it holds H(E|C) � 0. The
homogeneity score h ∈ [0, 1] is defined by:

h � { 1 if H(E,C) � 0
1 −H(E|C)/H(E) otherwise

.

The fundamental Mutual Information (MI) [28] quantifies the
agreement between partitions. In addition to C[o,c], let K[o,c] �
{K(1)

[o,c], . . . ,K(k)
[o,c]} be an alternative set of clusters. We introduce

the variable K to describe the distribution of the addresses in
K[o,c], similarly to how we defined C for C[o,c] in Section 3.5.1. The
MI of C and K is defined as:

MI(C,K) � H(K) − H(K|C),
and quantifies the reduction of the uncertainty of C[o,c] due to the
knowledge of K[o,c]. The average MI value between C[o,c] and
K[o,c] tends to increase as the number of clusters increases, even if
there is no difference in the clustering methodology, e.g. if the
partitions are assigned clusters randomly. The Adjusted Mutual
Information defined by Vinh et al. [29] takes into account the
randomness using the expected value of MI E[MI] and
normalizes its value:

AMI(C,K) � MI(C,K) − E[MI(C,K)]
〈H(C,K)〉 − E[MI(C,K)].
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AMI gets values in the [0, 1] interval, and when two partitions
perfectly match, AMI � 1.

Finally, we consider the Rand Index (RI), initially proposed by
Rand [30], which compares two set of clusters while ignoring
permutations. Let C[o,c] and K[o,c] be two sets of clusters. Let
x(C[o,c],K[o,c]) be the number of pairs of addresses from the
ground truth A+

[o,c] which are in the same cluster in C[o,c] and in
the same cluster in K[o,c], i.e.:

x(C[o,c],K[o,c]) � |{(a1, a2)|a1, a2 ∈ A+
[o,c], a1 ≠ a2

∧ ∃C(i)
[o,c] ∈ C[o,c] : a1, a2 ∈ C(i)

[o,c]

∧ ∃K(j)
[o,c] ∈ K[o,c] : a1, a2 ∈ K(j)

[o,c]}

and let y(C[o,c],K[o,c]) be the number of address pairs from the
ground truth A+

[o,c] which are in different clusters of C[o,c] and in
different clusters of K[o,c], i.e.:

y(C[o,c],K[o,c]) � |{(a1, a2)|a1, a2 ∈ A+
[o,c], a1 ≠ a2

∧ ∃C(i)
[o,c], C(j)[o,c] ∈ C[o,c] : a1 ∈ C(i)

[o,c], a2 ∈ C(j)[o,c], i≠ j

∧ ∃K(k)
[o,c],K(l)

[o,c] ∈ K[o,c] : a1 ∈ K(k)
[o,c], a2 ∈ K(l)

[o,c], k≠ l}
The Rand Index is defined as:

RI(C[o,c],K[o,c]) � x(C[o,c],K[o,c]) + y(C[o,c],K[o,c])∣∣∣∣∣A+
[o,c]

∣∣∣∣∣ × (
∣∣∣∣∣A+

[o,c]
∣∣∣∣∣ − 1) ,

where the denominator is the number of address pairs in A+
[o,c].

As with MI/AMI, we consider an adjusted version of RI, the
Adjusted Rand Index (ARI) as proposed by Hubert and Arabie
[31], which accounts for chance:

ARI(C[o,c],K[o,c]) � RI(C[o,c],K[o,c]) − E[RI(C[o,c],K[o,c])]
max〈RI(C[o,c],K[o,c])〉 − E[RI(C[o,c],K[o,c])],

where E[RI(C[o,c],K[o,c])] denotes the expected value of
RI(C[o,c],K[o,c]). As for AMI, an ARI value of 1 indicates perfectly
matching partitions, while a value of 0 indicates independent partitions.
Warrens [32] shows that ARI is equivalent to Cohen’s Kappa Cohen
[33], which is well suited for the evaluation of community detection
methods, as discussed by Liu et al. [34].

4 RESULTS

We first analyze the size of the clusters identified by LPA for the
Address Correspondence Networks described in Section 3, whose
statistics are shown in Table 1. Figure 6 shows the cluster size
distribution of G[11s2,13s1] and G[15s1], for initialization proportions
p � 0 and p � 0.1. Note that the density of the small clusters, in
both cases, shifts to reach larger cluster sizes when p � 0.1, as well
as the maximum cluster size of G[11s2,13s1]. This indicates that even
a small proportion of initialized nodes, such as p � 0.1,
considerably modifies the cluster distribution in the networks.

We also fit a power-law distribution to the cluster size
distribution, shown by the dotted red lines with the
corresponding alpha values in Figure 6. Furthermore, the

power-law distribution fits the data significantly better than an
exponential distribution, resulting in p-values of less than 0.1%
using likelihood ratio tests [35]. The exponents are larger for p �
0p � 0 than for p � 0.1p � 0.1, in agreement with the observation
related to the range of values in the cluster size. In general, the
distributions are very heterogeneous. Additionally, the cluster
size distribution suggests that, from a Correspondence Network
perspective, there is a preferential attachment dynamic in the
address generation where entities that control many addresses are
likely to generate more addresses than others.

Next, we study the behavior of the intra-cluster total degree
(number of edges connecting nodes that belong to the same
cluster) and the inter-cluster degree (number of edges between
nodes that belong to different clusters) as functions of the cluster
size. For the total intra-cluster degree, there are two extreme
behaviors that can be expected. On the one hand, a linear
dependency on cluster size would signal that address reuse is
negligible (therefore that privacy-preserving usage are
commonplace), and the topology of the correspondence
network encodes no additional information about the identity
of the users that control the addresses. On the other hand, a
quadratic relationship (close to the theoretical maximum
∝ c(c − 1)/2) would signal that the clusters are very densely
interconnected, and the actual address reuse is high. Therefore, it
would be possible to infer actual information about the users by
directly inspecting the correspondence network through network
science methods. In Figure 7, the extreme values of the intra-
cluster degree of G11s2,13s1 and G15s1 are above a linear function
(red dotted line) and below a quadratic function (yellow dashed
line) of the cluster size. The same lines are depicted in the inter-
cluster degree distributions showing that the intra-cluster degree
grows faster. By applying an Ordinary Least Squares regression
(OLS), the slope of a fitting line is in both networks bigger in the
intra-cluster case. Furthermore, bigger entities preserve this
behavior, showing that the correspondence network has an
inherent community structure. Thus, this result is not valid
only for entities that control a small number of addresses, and
it follows that it is a general property of the network.

Figure 8 shows the number of clusters returned by LPA,∣∣∣∣C[o,c]
∣∣∣∣, as a function of p. The dashed lines indicate the number of

entities
∣∣∣∣∣E+

[o,c]
∣∣∣∣∣ for each Address Correspondence Network.

∣∣∣∣∣E+
[o,c]

∣∣∣∣∣
is a lower bound of the true number of entities, since each
network also contains addresses not in the ground truth. This
is supported by

∣∣∣∣∣C[o,c]
∣∣∣∣∣≥

∣∣∣∣∣E+
[o,c]

∣∣∣∣∣ holding for each test point. In
general,

∣∣∣∣C[o,c]
∣∣∣∣ decreases sharply at small p, after which the rate of

decrease slows and stabilises.
∣∣∣∣C[o,c]

∣∣∣∣ tends to be lower for partial
networks than for cumulative networks, and can be explained by
partial networks having a lower

∣∣∣∣∣E+
[o,c]

∣∣∣∣∣.
The complexity and structure of the Address Correspondence

Network are stable over time: Figures 9–11 show AMI, ARI and
homogeneity as functions of p. Since these metrics require ground
truth labels, they are computed only for addresses in A+

[o,c]. We
observe that AMI and ARI lead to similar results: they rapidly
increase before converging to the maximum value as p increases.
In contrast, homogeneity exhibits no such initial rapid increase,
and instead increases linearly with p. The mean levels of AMI,
ARI and homogeneity do not consistently increase or decrease
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with increasing half-year. Furthermore, the meanmetric levels for
the partial networks appear to be comparable to those for the
cumulative networks. This suggests that the complexity and
structure of the Address Correspondence Network
communities remain stable over time.

The effect of the node initialization: If the cost of labeling a
Bitcoin address is assumed to be constant, the marginal gain in
clustering quality per unit cost from increasing p quickly declines.
Considering that homogeneity remains constant across all p, it
appears that increasing p is cost-effective until around p � 0.1. At
this point, AI

[o,c] contains most of the information required to
describe the community structure. The observed saturations in∣∣∣∣C[o,c]

∣∣∣∣, AMI and ARI suggest that increasing p beyond 0.1 adds
only idiosyncratic community information, yielding little
improvement in clustering quality. This is further confirmed
by studying clustering modularity as a function of p in
Figure 11. Modularity appears mostly constant except for a
sharp initial change, showing a robust community topology
that is consistently detected after initializing a small
proportion of nodes.

To assert the significance of the results presented in Figures
8–12, we repeated the experiments for 100 randomized versions

of the G[11s2,13s1] and G[15s1] Address Correspondence Networks.
The ii−th randomized network was obtained by performing 4i ·∣∣∣∣L[o,c]

∣∣∣∣ edge swaps on the original network, according to the
algorithm proposed by Maslov [36], which preserves the
network’s degree distribution. With the exception of∣∣∣∣C[11s2,13s1]

∣∣∣∣ for G[11s2,13s1], the randomized results show little
variation. However, all randomized results appear significantly
different to those for the original networks. This suggests that the
(non-randomized) results shown in Figures 8–12 are a
consequence of more complex network properties rather than
solely the degree distribution.

Furthermore, the effect of node initialization order was studied
by repeating the experiments for the G[11s2,13s1] and G[15s1]
networks using 100 random orderings. The node initialization
order does not seem to affect the general level and shape of the
curves. Small perturbations observed in Figures 8–12 appear to
be idiosyncrasies of the chosen ordering, and may be larger for
smaller networks (since the curves for G[11s2,13s1] vary more than
the ones for G[15s1]).

The effect of cluster and entity sizes: Figure 13 shows Ĥ(Ei)
and Ĥ(Cj) for the G[14s1], G[11s2,14s1], G[15s2] and G[11s2,15s2]
networks. Ĥ(Ei) and Ĥ(Cj) are expressed as functions of the

FIGURE 6 | Cluster size distribution of G[11s2,13s1] and G[15s1] for p � 0.0p � 0.0 and p � 0.1p � 0.1. The alpha values of the power-law distribution fits are
also shown.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 68179810

Fischer et al. Communities in Bitcoin Correspondence Network

86

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 7 | Comparison of the total intra-cluster and inter-cluster degrees for G[11s2,13s1] and G[15s1]. We also show the lines y � x (red, dotted) and y � x(x − 1)/2
(yellow, dashed).

FIGURE 8 | Number of clusters as a function of p.
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relative cluster and entity sizes, i.e. normalized to
∣∣∣∣∣A+

[o,c]
∣∣∣∣∣,

respectively. We run experiments with p � 0 and p � 0.1. We
note that Ĥ(Ei) correlates negatively with the relative cluster size,
and Ĥ(Cj) correlates negatively with relative entity size. For small
clusters and entities, there are strips of points located at the
minimum andmaximum values of Ĥ(Ei) and Ĥ(Cj). This is to be
expected: if we consider a cluster with only two addresses, both
associated with the same entity, Ĥ(Ei) is minimum. If two
addresses are mapped to different entities, we obtain a

uniform entity label distribution, and Ĥ(Ei) is maximum.
Such extreme fluctuations become less likely as cluster size
increases. Large clusters, therefore, tend to be purer than
smaller clusters, corresponding to a higher clustering quality.
Similarly, entities represented by more addresses are distributed
more asymmetrically across clusters, again corresponding to a
higher clustering quality. This is in agreement with the results in
Figure 7, where the community structure is shown to become
more apparent for larger clusters.

FIGURE 9 | AMI as a function of p.

FIGURE 10 | ARI as a function of p.
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Furthermore, the mean levels of Ĥ(Ei) and Ĥ(Cj) for the
partial networks are always less than or equal to the ones of the
corresponding cumulative networks (comparing row 1–3 and
row 2–4 in Figure 13). This suggests that partial networks allow a
higher quality of interpretation regarding the community
structure. A possible explanation for this is that Bitcoin
entities have less time to obfuscate their activity: the longer
the considered transaction history, the more the obfuscation

attempts accumulate and the more difficult it becomes to
detect the true community structure.

Interestingly, the average Ĥ(Ei) and Ĥ(Cj) increase after
initialising 10% of nodes. The increase in Ĥ(Ei) can be
explained by the loss of small, homogeneous clusters with
low Ĥ(Ei). For Ĥ(Cj), the increase is likely due to the
decrease in the number of clusters, which in turn causes
Hmax(Ei) to decrease.

FIGURE 11 | Homogeneity as a function of p.

FIGURE 12 | Modularity as a function of p.
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5 CONCLUSION AND FUTURE WORK

In this paper, we consider the application of a general-
purpose community detection algorithm, LPA, to detect
address clusters that are controlled by the same entity in
the Bitcoin transaction history. Specifically, we apply LPA to
Address Correspondence Networks, which incorporate
information from a variety of simple address linking
heuristics. We detect a strong community structure within
these networks by inspecting their intra- and inter-cluster
degrees. We find that the inter-cluster degree grows faster
than the inter-cluster degree for cluster size increments.
Address correspondence networks are therefore suitable
for the application of general community detection
methods from the broader field of network science—this

creates an entry point for future researchers to move far
beyond the application of primitive heuristics.

Since LPA is able to exploit ground truth information, we find
that clustering quality improves as the number of labeled
addresses in the Address Correspondence Networks increases.
However, under the assumption that the cost of labeling a Bitcoin
address is constant, we find that the marginal gain in clustering
quality per unit cost quickly declines. Under this assumption,
we propose that address labeling is cost-effective until around
p � 0.1 p � 0.1, i.e. until 10% of all addresses in the Address
Correspondence Network are identified. Furthermore, we find
that choosing which addresses to label does not have a significant
effect on clustering quality. Finally, we find that the structure of
communities in the Address Correspondence Network remains
stable over time. Partial Address Correspondence Networks are,

FIGURE 13 | Normalized entropy as a function of relative cluster size and relative entity size.
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therefore, reasonable proxies for their cumulative counterparts
(and far less demanding from a computational point of view).

For future work, we plan to conduct experiments to test the
robustness of the heuristics and specific combinations between
them. For example, analyzing their likelihood and studying their
contribution to the links between addresses. From a network
reconstruction perspective, link prediction is an interesting
approach to improve the correspondence network by validating
current links and predicting missing ones. Additionally, different
machine learning approaches can be implemented to graph
analysis; supervised methods are suitable if more ground truth
information is available in the future.
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1. Foley S, Karlsen JR, and Putniņš TJ. Sex, Drugs, and Bitcoin: HowMuch Illegal
Activity Is Financed through Cryptocurrencies? Rev Financial Stud (2019) 32:
1798–853. doi:10.1093/rfs/hhz015

2. Gaihre A, Luo Y, and Liu H. Do Bitcoin Users Really Care about Anonymity?
an Analysis of the Bitcoin Transaction Graph. In: 2018 IEEE International
Conference on Big Data (Big Data) (2018). p. 1198–207. doi:10.1109/
BigData.2018.8622442

3. Meiklejohn S, Pomarole M, Jordan G, Levchenko K, McCoy D, Voelker GM,
et al. A Fistful of Bitcoins. Commun ACM (2016) 59:86–93. doi:10.1145/
2896384

4. Kondor D, Pósfai M, Csabai I, and Vattay G. Do the Rich Get Richer? an
Empirical Analysis of the Bitcoin Transaction Network. PLoS ONE (2014) 9:
e86197. doi:10.1371/journal.pone.0086197

5. Javarone MA, and Wright CS. From Bitcoin to Bitcoin Cash. Proc 1st
Workshop Cryptocurrencies Blockchains Distributed Syst (2018):77–81.
doi:10.1145/3211933.3211947

6. Vallarano N, Tessone CJ, and Squartini T. Bitcoin Transaction Networks: An
Overview of Recent Results. Front Phys (2020) 8:286. doi:10.3389/
fphy.2020.00286

7. Bovet A, Campajola C, Mottes F, Restocchi V, Vallarano N, Squartini T, et al.
The Evolving Liaisons between the Transaction Networks of Bitcoin and its
price Dynamics. arXiv:1907.03577 [physics, q-fin] ArXiv (2019) 1907:03577.

8. Nakamoto S. Bitcoin: A Peer-To-Peer Electronic Cash System (2008). Available
at SSRN: https://ssrn.com/abstract�3440802

9. Kalodner H, Goldfeder S, Chator A, Möser M, and Narayanan A. BlockSci:
Design and Applications of a Blockchain Analysis Platform. arXiv:1709.02489
[cs] ArXiv (2017) 1709:02489.

10. Nick JD. Data-Driven De-anonymization in Bitcoin. Tech. Rep. Zurich: ETH
Zurich (2015).

11. Harrigan M, and Fretter C. “The Unreasonable Effectiveness of Address
Clustering”. In 2016 Intl IEEE Conferences on Ubiquitous Intelligence &
Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld)
(2016), 368–373. doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-
SmartWorld.2016.0071

12. Fleder M, Kester MS, and Pillai S. Bitcoin Transaction Graph Analysis. arXiv:
1502.01657 [cs] ArXiv (2015) 1502:01657.

13. Zhang Y, Wang J, and Luo J. Heuristic-Based Address Clustering in Bitcoin.
IEEE Access (2020) 8:210582–91. doi:10.1109/ACCESS.2020.3039570

14. Patel Y. Deanonymizing Bitcoin Transactions an Investigative Study on Large-Scale
Graph Clustering. Princeton University Senior Theses, Princeton University (2018).

15. Ermilov D, Panov M, and Yanovich Y. Automatic Bitcoin Address Clustering. In:
2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA). Mexico: Cancun IEEE (2017). p. 461–6. doi:10.1109/ICMLA.2017.0-118

16. Biryukov A, and Tikhomirov S. Deanonymization and Linkability of
Cryptocurrency Transactions Based on Network Analysis. In: 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). Stockholm,
Sweden: IEEE (2019). p. 172–84. doi:10.1109/EuroSP.2019.00022

17. Harlev MA, Sun Yin H, Langenheldt KC, Mukkamala RR, and Vatrapu
R. Breaking Bad: De-anonymising Entity Types on the Bitcoin
Blockchain Using Supervised Machine Learning. In: Proceedings of
the 51st Hawaii International Conference on System Sciences 2018.
United States: Hawaii International Conference on System Sciences
(HICSS) (2018). p. 3497–506. Proceedings of the Annual Hawaii
International Conference on System Sciences.

18. [Dataset] Janda A. WalletExplorer.com: Smart Bitcoin Block Explorer (2017).
19. Barabási A-L, and Bonabeau E. Scale-Free Networks. Sci Am (2003) 288:60–9.

doi:10.1038/scientificamerican0503-60
20. Raghavan UN, Albert R, and Kumara S. Near Linear Time Algorithm to Detect

Community Structures in Large-Scale Networks. Phys Rev E (2007) 76:036106.
doi:10.1103/PhysRevE.76.036106

21. Yang Z, Algesheimer R, and Tessone CJ. A Comparative Analysis of
Community Detection Algorithms on Artificial Networks. Sci Rep (2016) 6:
30750. doi:10.1038/srep30750

22. Newman MEJ. Finding Community Structure in Networks Using the
Eigenvectors of Matrices. Phys Rev E (2006) 74:036104. doi:10.1103/
PhysRevE.74.036104

23. Pons P, and Latapy M. Computing Communities in Large Networks Using
Random Walks. Jgaa (2006) 10:191–218. doi:10.7155/jgaa.00124

24. Blondel VD, Guillaume J-L, Lambiotte R, and Lefebvre E. Fast Unfolding of
Communities in Large Networks. J Stat Mech (2008) 2008:P10008.
doi:10.1088/1742-5468/2008/10/p10008

25. Newman MEJ, and Girvan M. Finding and Evaluating Community Structure
in Networks. Phys Rev E (2004) 69. doi:10.1103/physreve.69.026113

26. Shannon CE. A Mathematical Theory of Communication. Bell Syst Tech J
(1948) 27:379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

27. Rosenberg A, and Hirschberg J. V-measure: A Conditional Entropy-
Based External Cluster Evaluation Measure. In: Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL).
Prague, Czech Republic: Association for Computational Linguistics
(2007). p. 410–20.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 68179815

Fischer et al. Communities in Bitcoin Correspondence Network

91

https://bitcoin.org/en/download
https://www.walletexplorer.com/
https://www.walletexplorer.com/
https://doi.org/10.1093/rfs/hhz015
https://doi.org/10.1109/BigData.2018.8622442
https://doi.org/10.1109/BigData.2018.8622442
https://doi.org/10.1145/2896384
https://doi.org/10.1145/2896384
https://doi.org/10.1371/journal.pone.0086197
https://doi.org/10.1145/3211933.3211947
https://doi.org/10.3389/fphy.2020.00286
https://doi.org/10.3389/fphy.2020.00286
https://ssrn.com/abstract=3440802
https://ssrn.com/abstract=3440802
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0071
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0071
https://doi.org/10.1109/ACCESS.2020.3039570
https://doi.org/10.1109/ICMLA.2017.0-118
https://doi.org/10.1109/EuroSP.2019.00022
https://doi.org/10.1038/scientificamerican0503-60
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1038/srep30750
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.7155/jgaa.00124
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1103/physreve.69.026113
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


28. Cover TM, and Thomas JA. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). USA: Wiley-Interscience (2006).

29. Vinh NX, Epps J, and Bailey J. Information Theoretic Measures for Clusterings
Comparison: Variants, Properties, Normalization and Correction for Chance.
J Machine Learn Res (2010) 11:2837–54.

30. Rand WM. Objective Criteria for the Evaluation of Clustering Methods. J Am
Stat Assoc (1971) 66:846–50. doi:10.1080/01621459.1971.10482356

31. Hubert L, and Arabie P. Comparing Partitions. J Classification (1985) 2:
193–218. doi:10.1007/BF01908075

32. Warrens MJ. On the Equivalence of Cohen’s Kappa and the Hubert-Arabie
Adjusted Rand Index. J Classif (2008) 25:177–83. doi:10.1007/s00357-008-9023-7

33. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas
(1960) 20:37–46. doi:10.1177/001316446002000104

34. Liu X, Cheng H-M, and Zhang Z-Y. Evaluation of Community Detection
Methods. IEEE Trans Knowl Data Eng (2019) 32:1. doi:10.1109/
TKDE.2019.2911943

35. Clauset A, Shalizi CR, and Newman MEJ. Power-Law Distributions in
Empirical Data. SIAM Rev (2009) 51:661–703. doi:10.1137/070710111

36. Maslov S. Specificity and Stability in Topology of Protein Networks. Science
(2002) 296:910–3. doi:10.1126/science.1065103

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Fischer, Palechor, Dell’Aglio, Bernstein and Tessone. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 68179816

Fischer et al. Communities in Bitcoin Correspondence Network

92

https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/s00357-008-9023-7
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1109/TKDE.2019.2911943
https://doi.org/10.1109/TKDE.2019.2911943
https://doi.org/10.1137/070710111
https://doi.org/10.1126/science.1065103
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Detecting Roles of Money Laundering
in Bitcoin Mixing Transactions: A Goal
Modeling and Mining Framework
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Cryptocurrency has become a new venue for money laundering. Bitcoin mixing services
deliberately obfuscate the relationship between senders and recipients, making it difficult
to trace suspicious money flow. We believe that the key to demystifying the bitcoin mixing
services is to discover agents’ roles in the money laundering process. We propose a goal-
oriented approach to modeling, discovering, and analyzing different types of roles in the
agent-based business process of the bitcoin mixing scenario using historical bitcoin
transaction data. It adopts the agents’ goal perspective to study the roles in the
bitcoin money laundering process. Moreover, it provides a foundation to discover real-
world agents’ roles in bitcoin money laundering scenarios.

Keywords: goal modeling, money laundering, bitcoin mixing transactions, data analysis, agents’ roles

INTRODUCTION

Financial crimes not only directly disturb the national financial order and affect social stability
but also occur with other crimes to provide financial support for various types of organized
crimes. Money laundering is a financial criminal activity, which mainly refers to the processing
of illegal income by various means to cover up and conceal its source and nature. It not only
damages the security of the financial system and the reputation of financial institutions but also
destroys the normal economic order and social stability of the country. Since money
laundering is such a harmful activity, anti-money laundering is, therefore, a worthwhile
endeavor.

Money laundering is a complex activity involving many entities and relationships. With the
development of the Internet, money launderers utilize advanced technology andmultiple channels to
cover up their criminal behaviors through numerous transactions. Cryptocurrency has become a new
venue for money laundering. The simplest form of bitcoin money laundering is that the bitcoin
transactions are made under pseudonyms. Criminals use pseudonymous bitcoin addresses to hide
the illegal source of funds. However, as studies have revealed that the pseudonyms of bitcoin
addresses can be broken by aggregating addresses into clusters with identified users [1], more and
more third-party bitcoin mixing services emerged to provide additional anonymity [2]. It is reported
[3] that at least 4,836 bitcoins stolen by hacking Binance were laundered through the crypto mixing
service.

The emergence of bitcoin mixing services makes it difficult to trace suspicious money flow as they
deliberately obfuscate the relationship between senders and recipients [4]. However, there are limited
existing studies investigating the bitcoin mixing services. The difficulties lie in detecting different
roles of bitcoin addresses as there are an enormous number of bitcoin addresses involved. One of the
earliest studies [5] on mixing services revealed that they bundle a large number of small transactions
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into a small number of large transactions to create all outgoing
transactions, hiding the connections between input addresses and
output addresses.

In this article, we propose that the key to demystifying bitcoin
mixing services is to discover agents’ roles in the money laundering
process. As money laundering is usually committed by collusive
money launders,multiple agents are involved in the process. Different
agents have different roles that perform different tasks in the bitcoin
mixing process to achieve the ultimate goal of money laundering.
Identifying the agents’ roles in the bitcoin mixing process will be
helpful to understand the context of bitcoinmoney laundering. In this
paper, we propose a goal-oriented approach tomodeling, discovering,
and analyzing different types of roles in the agent-based business
process of the money laundering scenario using historical transaction
data from bitcoin mixing services. To the best of our knowledge, this
paper is the first to apply goal-oriented modeling to represent the
agents in bitcoin mixing transactions. It provides a foundation to
understand the role and task assignment at cryptocurrency
transactions in money laundering scenarios.

The rest of this paper is organized as follows. Related Work
reviews related works. Goal Modeling and Mining in Money
Laundering formalizes the problem and presents the framework.
Case Study provides a case study and presents algorithms for goal
mining in the money laundering processes. This article concludes
with contributions and future research plans in Conclusion.

RELATED WORK

Cryptocurrency Transaction Analysis
A cryptocurrency transaction is a basic unit describing
cryptocurrency flow from input to output addresses. Every
input address in a cryptocurrency transaction is a reference to
an unspent transaction output (UTXO), which is an output
address in a previous transaction that has not been referenced
in other transactions. In the bitcoin system, addresses are the
basic identities that hold virtual values, which can be generated
offline to a public key using the bitcoin’s customized hash
function. Figure 1 presents a basic example of UTXOs. It is
composed of three transactions. In Transaction 1, address A is the

input with 10 BTC and B, C, and D are the output addresses. All
outputs in Transaction 1 are UTXOs before they are referenced
by Transactions 2 and 3.

As the complete transaction history is publicly available, the
transparency of cryptocurrency transactions enables statistical
analysis and graphical visualization techniques. Some scholars
produced an organized review of major works in cryptocurrency
transaction analysis. For example, Chen et al. [6] reviewed the status,
trends, and challenges in blockchain data analysis and summarized
seven typical research issues of cryptocurrency transaction analysis
into entity recognition, privacy identification, network risk parsing,
network visualization and portrait, analysis of cryptocurrencymarket,
etc. Liu et al. [7] surveyed knowledge discovery in cryptocurrency
transactions and summarized the existing research that uses data
mining techniques into three aspects, including transaction tracing
and blockchain address linking, the analysis of collective user
behaviors, and the study of individual user behaviors.

Both reviews have identified many studies on transaction
tracing, showing that the mechanism of the pseudonymity of
cryptocurrency addresses used in transactions can be broken
by entity recognition (or blockchain address linking) and
privacy identification techniques. For example, to identify
money laundering in bitcoin transactions, Hu et al. [8]
proposed four types of classifiers based on the graph
features that appeared on the transaction graph, including
immediate neighbors, deep walk embedding, node2vc
embedding, and decision tree-based. Once addresses are
identified, money flows can be immediately revealed,
leading to no anonymity in the bitcoin system.

Because the original design of bitcoin transactions is easy to trace,
several solutions have been proposed to improve its anonymity. One
typical solution is a mixing service, which is widely used in
underground markets like the Silk Road to facilitate money
laundering. Mixing services aim to solve cryptocurrencies’
traceability issues by merging irrelevant transactions with methods
including swapping and conjoining. Only a few previous works have
been carried out to demystify mixing services. For instance, in one of
the earliest studies onmixing services [5], a simple graph analysis was
carried out based on data collected from experiments of selected
mixing services, and alternative anti-money laundering strategies
were sketched to account for imperfect knowledge of true
identities. Although an essential anti-money laundering strategy is
not provided, Seo et al. [2] mentioned that money laundering
conducted in the underground market can be detected using a
bitcoin mixing service. These explorations revealed the importance
of understanding bitcoin mixing services.

Data Mining in Money Laundering
Money laundering is a complex, dynamic, and distributed
process, which is often linked to terrorism, drug and arms
trafficking, and exploitation of human beings. Detecting
money laundering is notoriously difficult, and one promising
method is data mining [9]. Rohit and Patel [10] reviewed
detection of suspicious transactions in anti-money laundering
using a data mining framework and classified the literature into
the rule-based approach, clustering-based approach,
classification-based approach, and model-based approach.

FIGURE 1 | UTXO-based transaction model.
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Generally, data mining in money laundering consists of the
rule-based classification and machine learning approaches. In a
rule-based approach, ontologies or other forms of rules are
adopted to classify suspicious transactions. For instance,
Rajput et al. [11] proposed an ontology-based expert system
for suspicious transaction detection. The ontology consists of
domain knowledge and a set of Semantic Web rules, and the
native reasoning support in the ontology was used to deduce new
knowledge from the predefined rules about suspicious
transactions. A Secure Intelligent Framework for Anti-Money
Laundering was presented to make use of an intelligent formalism
by using ontologies and rule-based planning [12]. Bayesian
approaches were adopted to assign a risk score to money
laundering–related behavior [13]. It was designed based on
rules suggested by the State Bank of Pakistan in its 2008
regulations to declare a transaction as suspicious.

Machine learning algorithms were also applied to group or
classify the data, so as to predict suspicious money laundering
transactions. Chen et al. [14] provided a comprehensive survey of
machine learning algorithms and methods applied to detect
suspicious transactions, including typologies, link analysis,
behavioral modeling, risk scoring, anomaly detection, and
geographic capability. A support vector machine–based
classification system was developed to handle large amounts of
data and take the place of traditional predefined-rule suspicious

transaction data–filtering systems [15]. However, the limitation
of the machine learning approach lies in its data dependence, with
sometimes limited adaptability and scalability. As stated in [6],
the model requirement of historical data makes it difficult to
identify illicit operations performed by newcomers.

GOAL MODELING AND MINING IN MONEY
LAUNDERING

In this section, we propose to model agents’ roles in the money
laundering process with goal-oriented modeling techniques. We
adopt the goal modeling and mining approach [16] and assume
that different agents have different roles, which perform different
tasks in the process to achieve the ultimate goal ofmoney laundering.
As shown in Figure 2, the goal modeling and mining framework
consists of three phases. In the data collection phase, we will collect
not only cryptocurrency transaction data but also the domain data
about the address entity information. The model discovery phase
consists of the address miner, role miner, and process miner. The
address miner will collect all related address information. The role
miner will detect the goals of the agent who owns the addresses. The
process miner will present the money laundering process.

In the blockchain analysis phase, we first analyze the goal
of money laundering, which can be decomposed into three

FIGURE 2 | Goal modeling and mining framework.
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sub-objectives, namely, placement, layering, and integration.
Placement aims to cut off the connections between illegal funds
and upstream crimes of money laundering. It can be realized by the
task of introducing illegal funds into the financial system. This task
can be decomposed into sub-tasks like depositing money or
remitting cash. Placement always involves breaking down the
original large amount of funds into a lot of small ones. So, many
soldiers will be employed to execute the tasks to introduce multiple
illegal funds into the financial system without suspicion.

Layering is transferring the funds among different accounts or
institutions so that the initial source of funds will be difficult to
track. Layering can be realized by the task of obscuring the
sources of the money. This can be decomposed into sub-tasks
like transferring money or purchasing insurance from different
institutions. Layering means that funds have entered the financial
system for circulation. Soldiers may continue to do a lot of basic
tasks, while communicators’ main role is to transfer the funds.

Integration means to integrate the funds into the legitimate
economy. Integration can be realized by the task of legalizing illegal
funds. This task can be decomposed into sub-tasks like transferring
money or purchasing insurance fromdifferent institutions, transferring
overseas, withdrawing cash, or investing. Finally, the legalized funds
will be possessed by themoney laundering organizers. Communicators
and organizers will work together to complete the task.

In the money laundering process, three roles are involved, as
follows:

1) Organizer: Organizers are the core of the organization. As
described in Figure 3, the organizer’s goal is to organize
money laundering, which can be decomposed to allocate
resources and organizing paths. The goal of allocate resources
can be decomposed into allocate funds and allocate people, which
can be realized by the tasks of assign funds to agents. The goal of
organizing paths can be realized by the task of assign funds to
agents. The goal of organizing paths can be decomposed into
communicate with customers and plan links.

Organizers organize the money laundering process
collaborating with communicators and soldiers. Particularly, as
shown in Figure 4, the organizer depends on communicators to
communicate with customers while depending on soldiers to
assign funds to agents. Communicators execute tasks from the
organizer and employ soldiers to introduce illegal assets into the
financial system.

2) Communicator: Communicators are at the middle level of the
organization. The communicator’s goal is to transmit
information in the money laundering activity. The goal of
transmitting information can be realized by the task of
communicate with customers, which can be decomposed to
inputs and outputs for customers.

3) Soldier: The soldier’s goal is to become agents with chips. In
Figure 5, soldiers are employed by the organizer to deal with
some basic tasks. They are not related to the core organization,
while they are the key to facilitate the flow of illegal funds into
the financial system. The goal of agents with chips can be
realized by the task of split funds and assign chips.

CASE STUDY

In this section, we present a case study to demonstrate the
proposed framework. We investigated a popular mixing
service. In this bitcoin mixing service, the smallest unit of
deposit is 0.001 BTC. As shown in Figure 5, the deposit is
divided into different chips, which are 2k×0.001 BTC. Users
can send these chips to one or more different withdrawal
addresses, as shown in Figure 5. In our experiment, we sent
all five chips of 0.031 BTC to one withdrawal address.

We tracked withdrawal transactions through the btc.com website.
In Figure 6, the box represents the address and the oval box
represents the transaction (the text is the transaction time). The
value on the line between the address and the transaction represents

FIGURE 3 | Goal modeling of the organizer.
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the bitcoin value that the address entered or output in this
transaction. The address in green is our export address. We
noticed that there are five exit addresses in the money laundering

network, which are consistent with the chip division. These five
addresses seem to correspond to five address pools of different
amounts. We selected three other addresses in the address pool

FIGURE 4 | Relationship between roles.

FIGURE 5 | 0.031 BTC is divided into five chips in a bitcoin mixing service.

FIGURE 6 | Withdrawal transactions.
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with a bitcoin amount of 0.002 and found that these transactionswere
also combined to produce output from different address pools.

Deposit transactions are shown in Figure 7. In the figure,
purple denotes the source address of the experiment and
yellow–green is the entry address provided by the bitcoin
mixing service. It can be seen that the money laundering entry
address in this experiment is directly used to generate an address
pool of 0.008 BTC.

As shown in Figure 8, we find that there are three categories
of addresses: entry addresses (communicator), exit addresses
(communicator), and kernel addresses (soldier). When a
laundering request is issued, it will generate an entry address to
receive the bitcoin from a user. After a while, some entry addresses
and kernel addresses are combined as the inputs of one mixing
transaction to generate some exit addresses. An important feature of
the exit addresses is that their amount is 2k×0.001 BTC. When it
decides to send Y×0.001 BTC to one laundering output address,
some exit addresses are selected according to Y. For example, if
Y � 0.031�(16 + 8+4 + 2+1)×0.001 BTC, then five addresses holding
0.016, 0.008, 0.004, 0.002, and 0.001 BTC are selected from its pools.
These exit addresses are treated as inputs for a withdrawal transaction
to send to the output address specified by the user.

Definitions for Identifying the Mixing
Transactions
The transaction T with m input addresses (a1

I, . . . ,am
I ) and n

output addresses (a1
O, . . . ,an

O) is described as follows:

(aI1, cI1), . . . , (aIm, cIm)→ (aO1 , cO1 ), . . . , (aIn, cOn ), (1)

where ci
I and cj

O (1 ≤ i ≤ m, 1 ≤ j ≤ n) are the amount of input
address ai

I and output address aj
O, respectively. Obviously,

∑m
i�1

cIi ≥ ∑n
j�1

cOi . And the fee of T is ∑m
i�1

cIi − ∑n
j�1

cOi .

For a transaction T, the set of input addresses is defined as
AI(T) � {a1

I, . . . ,am
I } and the set of output addresses is defined as

AO(T) � {a1
O, . . . ,an

O}.
Actually, we find two types of mixing transactions to generate

the exit addresses, defined as follows:
[Definition 1] A transaction T with n outputs is type I

transaction, if cj
O � 2k×0.001 BTC (1 ≤ j ≤ n) and n>1.

[Definition 2] A transaction T with n outputs is type II
transaction, if cj

O � 2k×0.001 BTC (1 ≤ j ≤ n-1), cn
O≠2l × 0.001

BTC, and n>2.
The withdrawal transactions are based on the exit addresses,

described as follows:
[Definition 3] A transaction T withm inputs and one output is

a withdrawal transaction, if

1. ci
I≠cjI, i≠j, 1 ≤ i,j ≤ m;

2. ci
I � 2k×0.001 BTC, 1 ≤ i ≤ m or m-1.

We design Algorithm 1 to find the mixing transactions. There
are three stages in the algorithm. The first stage (step 1) is to find all
type I or II transactions T1. In stage 2 (steps 2–10), we try to find
the withdrawal transactions T2 based on T1. In the last stage, the
transactions in T1 are selected as the mixing ones according to T2.

FIGURE 7 | Deposit transactions.

FIGURE 8 | Different tasks in the bitcoin mixing service.
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Kernel addresses appear in different mixing transactions as the
inputs. We use Algorithm 2 to find them.

In the 2020 BTC transactions, we find 4,689 type I transactions and
3,124 type II transactions. With Algorithm 1, we determine that
2,687 are mixing transactions with 47,433 associated withdrawal

transactions. The number of mixing transactions in each month of
2020 is shown in Figure 9.

WithAlgorithm 2, we find 2,451 kernel addresses, of which 2,143
(87%) are in one wallet [0005190b7a] according to walletexplorer.
com. This proves that these addresses we discovered belong to an
organization that has not been revealed before and can prove to be
controlled by the mixing service provider.

We tracked money laundering transactions and discovered the
transaction structure. From historical bitcoin transactions, we found
a large number ofmixing transactions with significant characteristics
and kernel addresses related to the bitcoin mixing service. We can
estimate the scale of money laundering based on such role analysis.

CONCLUSION

In this paper, we propose that the key to demystifying bitcoin
mixing services is to discover agents’ roles in the money laundering
process and present a goal-oriented modeling framework to model
different roles in the money laundering process. The framework
consists of data collection, model discovery, and blockchain
analysis. With this framework, the three roles of the organizer,
soldier, and communicator are analyzed in the money laundering
process of placement, layering, and integration.

We then apply the proposed framework to investigate a popular
bitcoin mixing service. Specifically, we identify two types of mixing
transactions to generate the exit addresses. We propose two
algorithms to analyze the roles of the soldier and communicator
in the money laundering process. With the identified roles, we can

FIGURE 9 | The number of mixing transactions in each month of 2020.
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estimate the scale of money laundering in the bitcoin mixing
service.
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Heterogeneous Preferential
Attachment in Key Ethereum-Based
Cryptoassets
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Rey Juan Carlos University, Madrid, Spain, 3Rudjer Boskovic Institute, Zagreb, Croatia, 4UZH Blockchain Center, Universität
Zürich, Zürich, Switzerland

In this study, we analyse the aggregated transaction networks of Ether (the native
cryptocurrency in Ethereum) and the three most market-capitalised ERC-20 tokens in
this platform at the time of writing: Binance, USDT, and Chainlink. We analyse a
comprehensive dataset from 2015 to 2020 (encompassing 87,780,546 nodes and
856,207,725 transactions) to understand the mechanism that drives their growth. In a
seminal analysis, Kondor et al. (PLoS ONE, 2014, 9: e86197) showed that during its first
year, the aggregated Bitcoin transaction network grew following linear preferential
attachment. For the Ethereum-based cryptoassets, we find that they present in
general super-linear preferential attachment, i.e., the probability for a node to receive a
new incoming link is proportional to kα, where k is the node’s degree. Specifically, we find
an exponent α � 1.2 for Binance and Chainlink, for Ether α � 1.1, and for USDT α � 1.05.
These results reveal that few nodes become hubs rapidly. We then analyse wealth and
degree correlation between tokens since many nodes are active simultaneously in different
networks. We conclude that, similarly to what happens in Bitcoin, “the rich indeed get
richer” in Ethereum and related tokens as well, with wealth much more concentrated than
in-degree and out-degree.

Keywords: preferential attachment, wealth, complex networks, Ethereum, Bitcoin, token, cryptocurrencies

1 INTRODUCTION

Bitcoin and Ethereum are the two pioneering blockchain-based platforms. Nakamoto [1] created
Bitcoin: the first andmost popular cryptocurrency system since its launch in January 2009 and, so far,
the one with the highest market capitalisation according to coinmarketcap [2]. Launched in 2015,
Ethereum [3] is the second most popular public permissionless blockchain platform and the second
most capitalised according to coinmarketcap [2]. Ethereum is considered “the world’s distributed
computer”: the first platform to implement smart contracts, i.e., Turing-complete programs. This is
pivotal for many new decentralised applications such as decentralised finance (DeFi).

At the intersection among economics, technology, and social sciences, Popper [4] states that
blockchains constitute an inspiring and emerging research field since the original inception of
Bitcoin by Nakamoto [1]. The use of blockchain-based distributed ledgers in our society grows
steadily. On one side, Bitcoin is one of the fastest-growing assets in history, withmarket capitalisation
records broken successively in the past. On the other side, blockchain is being successfully introduced
in a wide array of use cases, ranging from secure voting to supply chain tracking. The vast majority of
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currently available crypto-currencies uses a public distributed
ledger based on a blockchain to transact and exchange value [5,6].
All transactions are registered in a readable distributed ledger, in
such a way that anyone connected to the peer-to-peer network
can verify independently the validity of the executed transactions.

Blockchains offer a new research opportunity to better analyse
and understand complex social and economic systems. Access to
transactions occurring in traditional payment systems is usually
restricted: traditional exchanges remain confidential, protected by
privacy laws, or trade secrets. Digital payments with credit cards
and wire transfers carry a similar limitation, while payments with
physical cash are de facto impossible to track on a massive scale.
In contrast, transactions in a public blockchain are visible by
definition, only limited by the pseudo-anonymity of the users as
described by Reid and Harrigan [7]. The additional research
boundary is the considerable amount of data that blockchain
implementations produce when they are massively adopted.
Extant research by [8–11] shows that market value growth has
accelerated in parallel to the number of users and transactions.
While in some cases, like in Bitcoin, the rate of data production
is currently bounded by the limits imposed by design choices
(block size, inter-block time), and in other systems, transaction
data increase massively throughout time (like in Ethereum). The
use of networks to describe interactions is a powerful resource:
in our case, we represent Ethereum transaction data using a
network of nodes (public addresses) interconnected by edges
(transactions).

Network science refers to an interdisciplinary approach that
helps to characterise complex systems composed of many
interacting constituents. This approach permitted to unveil
large-scale emergent properties in the most varied disciplines,
ranging from biology to social sciences, and specifically socio-
technical and economic and financial systems [12–17].

Growth in a wide range of networked systems presents a
network version of the “rich-get-richer” effect. In terms of degree,
this mechanism implies that nodes with a higher degree accrue
links at a higher rate than lower-degree nodes. Price [18] calls this
effect as “cumulative advantage”; Barabási and Albert [19]; Albert
and Barabási [20]; Barabási and Pósfai [12] refer to it as
“preferential attachment” (PA). This effect usually creates
power-law degree distributions, facilitating the mathematical
characterisation of a growth pattern in complex networks [21].
In practice, preferential attachment refers to the specific case in
which the probability of receiving a new link is directly
proportional to the node’s degree k, producing a scale-free
network characterised by a power-law degree distribution pk ∼
k−cwith exponent 2 ≤ c ≤ 3, as in Barabási and Pósfai [12]; Alstott
et al. [22]. However, extensions of the model such as Krapivsky
et al. [23] show that the emergent topology changes when the
probability of a node to receive new links is a nonlinear function
of the node’s degree: while highly connected nodes in networks
with sublinear PA do not play such a decisive role in network
growth, in the case of networks showing super-linear PA, few
nodes act like hubs and tend to connect to most network nodes
(i.e., the network topology concentrates around superhubs).

Public blockchains are current examples of complex systems
which are increasingly researched through complex network

approaches Vallarano et al. [11]. By analysing a complete and
unique dataset encompassing the first 5 years of Ethereum
platform, i.e., 856,207,725 transactions and 87,780,546
addresses, we show that the native cryptocurrency of the
Ethereum platform, Ether, and the most active tokens on it
show a form of preferential attachment, with signs of super-
linear PA.

This study is structured as follows. In Section 2, we review
related literature on complex network approaches to understand
cryptocurrencies and blockchain-based systems. Section 3
presents the analysed dataset. In Section 4, we introduce the
methodology while in Section 5, we display the results of
empirical distributions of wealth and in- and out-degrees. We
share the results for the nonlinear preferential attachment
analysis in Section 6. Finally, in Section 7, we present the
conclusions of this analysis.

2 RELATED LITERATURE

In [24,25], the authors analyse aggregated representations of
the Bitcoin transaction network. They observe that highly
connected nodes increase their connectivity with new edges
either by receiving new transactions (in-degree) or starting
new transactions (out-degree). Using a statistical approach
based on rank, they conclude that the growth of the degree
distribution in the Bitcoin transaction network displays linear
preferential attachment (PA). They also identify that addresses
with high balance increase their wealth more than addresses
with low balance displaying a sublinear preferential
attachment. In addition, they find that the in-degree of a
node, i.e., the number of transactions received by an

FIGURE 1 | PDF of wealth wS for wS > 0 in various tokens: ETH, BNB,
USDT, and LNK. The dashed line (w−1) is just added for visual reference.
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address, is positively correlated with the Bitcoin balance of that
address. Wealth distribution per address is highly
heterogeneous, but this distribution is stable at different

points of time. Instead of a power-law distribution, Kondor
et al. [24] find for the majority of the samples a better
approximation in the stretched exponential distribution.

FIGURE 2 |Weplot basic statistics of the data analysed. In the (A),we show, as a function of time the closing daily market price of ETH, BNB, USDT, and LNK in US
Dollars. For the tokens, the time series begins with the deployment of the smart contract into the blockchain. In the (B,C), we show the number of new nodes (resp.,
edges) every day for the aggregate network introduced in this study.
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With a focus on wealth, the Gini coefficient is computed over
time, and they find that G ≈ 0.9.

Bovet et al. [9] analyse more properties of the Bitcoin
transaction network. The study includes more than 283M
transactions between 304M addresses which can be reduced to
around 16M users. The technical process to analyse data of this
size is explained in Sommer [26]. They observe that when many
users behave similarly by creating the same connectivity pattern
(i.e., they display a sharper degree distribution with an increase in
both number of links and number of nodes), then there are price
surges. Once the price peak of a bubble is passed, the
heterogeneity of the degree distribution of different
participants widens. In their introduction, Bovet et al. [9]
present four graphs that show features of the Bitcoin network:
number of nodes, number of links, density, and price along a
temporal axis. We follow a similar approach to introduce the four
Ethereum-based transactions networks that we study in Figure 2
and Figure 3.

A basic although crucial lesson learned from the literature
review on Ethereum network analysis is indeed the very fast pace
of change in this platform. Liang et al. [27] present a dynamic
network analysis of three representative blockchain-based crypto-
currencies: Bitcoin, Ethereum, and Namecoin. The authors
construct separate networks on a monthly basis, and they
trace changes of typical network characteristics over time,
including degree distribution, degree assortativity, clustering
coefficient, and the largest connected component. They
compare the three networks and conclude that the degree
distribution of these monthly transaction networks cannot be
fitted well by a power-law distribution. In addition, they find that
both Bitcoin and Ether (ETH) networks are heavy-tailed with
disassortative mixing; however, only the former can be treated as
a “small world”, i.e., most vertices can be reached from the others
through a small number of edges. These network properties
reflect the evolutionary characteristics and competitive power
of these three cryptocurrencies. The dataset comprises of
approximately 80M transactions from 2015 to late 2017. They
identify a continuously increasing average degree except for a
decrease in October 2016, when the network showed instability
caused by several denial-of-service (DoS) attacks. They study the
transaction volume and state that most of the users have limited
incoming transactions while a small population receives a large
amount of ETH. Liang et al. [27] identify that these
cryptocurrency networks do not obey the densification law,
and they argue that a plausible explanation is the minimal
reuse of addresses (which is a standard practice in UTXO-
based systems). They find that almost all degree distributions
cannot be accepted as a power-law but still as a clear heavy-tailed
distribution, which means that the majority of addresses have low
degrees, while a small but not negligible number of addresses have
relatively high degrees. Guo et al. [28] use a more reduced ETH
datasets, one containing 100,000 blocks from 2015, and ca.
680,000 transactions and another containing 610,000
transactions from 2017. They find that the typical distance
between any pair of anonymous users is extremely small, and
the Ether paid by one node may return at a relatively high speed.
As a result, they claim that ETH enjoys a good level of liquidity.

Somin et al. [29] provide the first analysis of the network
properties of ERC-20 protocol-compliant tokens trading data.
They analyse the properties of the transaction network by
considering all trading wallets (i.e., addresses) as network
nodes and constructing its edges using buy–sell trades. They
examine several time periods and several data aggregation
variants to demonstrate that the transaction network displays
strong power-law properties. Both outgoing and incoming
degrees present a power-law distribution. This means that
most tokens are traded by an extremely small number of
users. Only a few popular tokens are traded by a very large
group of users during the examined time span. These results
coincide with current network theory expectations. Somin et al.
[29] provide the first scientific complex network validation for the
ERC-20 trading data. The data they examine are composed of
over 30 million ERC-20 tokens trades, performed by over 6.8
million unique wallets, encompassing a 2-year period between
February 2016 and February 2018. Even studies that use a very
limited ETH datasets such as Ferretti and D’Angelo [30], which in
some cases used just a 1-h slot to study transactions, i.e., only
around 240 blocks, conclude that the degree distribution is heavy-
tailed suggesting that those degrees follow a power-law function.
Somin et al. [31] analyse the dynamic properties of trading data
from ERC-20 protocol compliant tokens using network theory.
They examine the dynamics of ERC-20-based networks over time
by analysing a meta-parameter of the network, i.e., the power of
its degree distribution and their analysis demonstrates that this
parameter can be modelled as an under-damped harmonic
oscillator over time, enabling a year forward of network
parameters predictions. Lin et al. [32] model the ETH
transaction records as a complex network by incorporating
time and amount features of the transactions and then design
several flexible temporal walk strategies for random-walk-based
graph representation of this large-scale network. Their
experiments of temporal link prediction on real ETH data
demonstrate that temporal information and multiplicity
characteristic of edges are indispensable for accurate modelling
and understanding of ETH transaction networks.

TABLE 1 | Summary of the different datasets analysed by different authors.

References Token Transactions (M)

Bovet et al. [9] BTC 283
Liang et al. [27] ETH 80
Guo et al. [28] ETH 1.29
Kondor et al. [24] BTC 17
This study ETH 856

TABLE 2 | Summary of the datasets analysed in this study.

Token Nonzero Txs Addresses ETH blocks

ETH 414 M 87 M 0–11 M
BNB 934 K 481 K 0–11 M
USDT 60 M 9 M 0–11 M
LNK 5 M 784 K 0–11 M
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3 DATA DESCRIPTION

A blockchain is a time-ordered sequence of blocks, each of them
composed by a set of verified transactions. Transactions can
change permanently the state of the Ethereum blockchain by
transferring value through the native token (Ether) or by creating
and executing smart contracts. Tokens built on top of Ethereum
consist of a smart contract, i.e., a program run by the Ethereum
Virtual Machine (EVM). The EVM is the distributed run-time
environment of the Ethereum blockchain. Transactions are
inserted in blocks, which are then mined, i.e., verified, using a
proof of work-based consensus. For an overview of the different
approaches, see Tasca and Tessone [5].

In our study, we analyse the Ethereum blockchain since its
launch in 2015 until October 6, 2020 (block 11,000,000). In total,
it contains 87,780,546 addresses and 856,207,725 transactions.

The data required to build the networks were extracted from
the Ethereum blockhain using ethereum-etl tool from Medvedev
[33]. Ethereum-etl performs ETL operations (Extract, Transform
and Load) on raw Ethereum data. It enables the extraction of
transactions, mined blocks, and token transfers in csv format
from a fully synced Ethereum client with archive mode. Other
data pipeline options are available as well. For this analysis, we use
transactions with a nonzero value to reconstruct the Ether
network. Transactions with zero value are usually smart
contract calls. We use block extraction to assign timestamps to
both native Ether and token transactions. We then aggregate
transfers per token to conduct the analysis. There are thousands
of tokens, but only few of them have a worth-analysing number of
transactions. The vast majority of tokens have very few or no
transactions at all. For this analysis, we selected three tokens, the
most successful in market capitalisation at the time of writing.
The other tokens were extracted but not used for this specific
analysis. For further details, see the data availability statement
section (Section 7). For market capitalisation data, we use
quotations publicly available on coinmarketcap [2].

Table 1 compares the size of the datasets analysed by some of
the authors mentioned in the literature review with our dataset, to
underline the comprehensive scale of our analysis.

We study the dynamics of the aggregated transaction network
in Ether (ETH), the native token of Ethereum, and in three key
ERC-20 tokens built on top of Ethereum: Binance (BNB), Tether
(USDT), and Chainlink (LNK). In our representation, the
transaction network is composed of addresses (nodes) and
directed edges representing transactions. A directed edge
between two nodes means that there is at least one transaction

from the sender address to the destination address. We create the
networks and perform network calculations using the entire
timeline mentioned in this section. In our analysis, repeated
edges are disregarded. We additionally consider the timestamp
of the transactions to analyse the time-based evolution of the
network. We analyse as well balances of addresses at a certain
point in time to study wealth distribution. The summary of the
datasets used in this study is in Table 2.

As of this writing, according to coinmarketcap [2], ETH is the
second most capitalised cryptocurrency (over USD 170 B) behind
Bitcoin. We also analyse three ERC-20 tokens with the highest
market capitalisation according to etherscan.io [34] in early
March 2021: Binance (over USD 36 B), Tether (over USD
35 B), and Chainlink (over USD 11B).

ERC-20 Tokens: According to its specification [35], ERC-20 is the
Ethereum standard for fungible tokens, where fungible means that
every token of the same type behaves exactly the same and is
completely interchangeable (in contrast to non-fungible tokens
(NFT) where every token can be unique). ERC-20 is the interface
that a smart contract (i.e., a program deployed on the Ethereum
blockchain) can implement to exchange this kind of tokens. The
interface provides functionalities such as token transfer from one
account to another, current token balance of an account, total
supply of the token available on the network, or approval for a
specific token amount from an account to be spent by a third
party account. An ERC-20 token contract is a smart contract that
implements this interface. ERC-20 offers a viable and very successful
standard to interact with non-native tokens. Non-native means not
devised as part of the original protocol but implemented on top of it.

Ether (ETH): It is Ethereum’s native token. In its foundational
whitepaper Buterin [3], it is stated that Ethereum’s mission is “to
create an alternative protocol to build decentralised applications”.
Ethereum introduces a public blockchain with a built-in Turing-
complete scripting language. Anyone can write smart contracts and
decentralised applications to create their own arbitrary rules for
ownership and value transaction. Ethereum, launched in 2015,
constitutes an evolution from the pioneer Bitcoin blockchain.
Bitcoin is based on unspent transaction outputs while Ethereum
uses balance-based accounts, Turing-complete scripting, and smart
contracts with their own address. Ether (ETH) is the native token
that fuels the Ethereum network. With Ether, users buy “gas” that
enable transactions and smart contracts calls to run. Gas is used as
well to reward miners for incorporating transactions into the
blocks, in addition to the usual mining block reward.

Binance Coin (BNB): The currency unit issued by Binance
and—at the time of writing—the ERC-20 token based on

TABLE 3 | Basic Network properties for the different tokens. N is the number of nodes, 〈kin〉 is the average in-degree, 〈kout〉 is the average out-degree, GC is the Global
Clustering Coefficient while s.d. GC is the standard deviation for the Global Clustering coefficient. ND is the network diameter, LSCC Size is the Largest Strongly
Connected Component Size expressed in nodes while LSCC D is the Largest Strongly Connected Component Diameter.

Token N 〈kin〉 〈kout〉 GC s.d. GC ND LSCC size LSCC D

ETH 84 ,227 988 2.1884 2.1884 1.1726 (−5) 6.4207 (−6) 10,004 52,093,628 10,004
BNB 4,81,138 1.4959 1.4959 4.0532 (−5) 4.4729 (−5) 37 171,291 37
USDT 9,3,02,425 3.0675 3.0675 3.3747 (−5) 1.0019 (−5) 52 8,290,551 52
LNK 784373 1.7724 1.7724 6.4256 (−5) 4.9740 (−5) 21 504,595 19
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Ethereum with the highest market capitalisation according to
etherscan. io [34]. Binance was founded in 2017 and is at the time
of writing the largest cryptocurrency exchange by trading volume.
“Binance” stems from “Binary Finance”, as a portmanteau word
of a whole new paradigm in finance. To sustain this vision,
Binance launched in 2017 the Binance Coin (BNB), an initial
coin offering (ICO) to fund the exchange activities, described in
Binance [36]. BNB can be used to pay any fees on the exchange
platform. Two important events affect BNB: First, the Binance
team destroys BNB coins (a coin burn) on a quarterly basis to
avoid coin value loss. Second, in April 2019, ERC-20 BNB coins
were swapped with BNB coins based on the Binance Chain
mainnet (BEP-2 BNB) to avoid ETH fees. BNB is currently no
longer solely hosted on Ethereum but as well on its proprietary
blockchain Binance Chain.

Tether (USDT): Originally proposed in 2012 as a “colored
coin” inside Bitcoin and effectively launched in that network
between 2014 and 2015, USDT since 2017 is traded as well as
an ERC-20 token inside Ethereum. More recently, USDT has
been made available even on further blockchains such as
EOS, Algorand, or Tron. The philosophy and the vision
behind this token are described in Tether [37]. It ranks
second in market capitalisation for tokens based—among
others—on Ethereum [34]. Tether is a stablecoin and can be
described as a digital version of the USD, originally designed
to be worth exactly $1.00, allegedly maintaining for this
purpose the exact amount of reserves as USDT that are in
circulation. This claim proved controversial in April 2019
when an official investigation was carried out. However, its
current capitalisation indicates that markets still accept its
role as digital USD, to whom it is “tethered” (hence its name
“Tether”).

Chainlink (LNK): It is the third most capitalised ERC-20
Ethereum-based token according to coinmarketcap.com [39] as
of the time of writing. It has a high potential given its bridging
nature between APIs, off-chain events, and smart contracts. Since
2020, as in coinmarketcap.com [38], LNK lists as the most
capitalised decentralised finance (DeFi) token. The whitepaper
by Ellis et al. [39] assigns to Chainlink the mission of building
a decentralised oracle network connecting smart contracts with
real-world data. Chainlink held an ICO in September 2017, raising
32million USD, with a total supply of one billion LNK tokens. The
ChainLink network utilises the LNK token to pay ChainLink node
operators for the retrieval of data from off-chain data feeds
(oracles), the formatting of data into blockchain readable
formats, the off-chain computations, and the uptime guarantee
they provide as operators. In order for a smart contract to use a
ChainLink node, it needs to pay the chosen ChainLink node
operator using LNK tokens, with prices usually being set by the
node operator based on the demand for the off-chain resource their
ChainLink node provides and the availability of other similar
resources. The LNK token is an ERC-20 token, with the
additional ERC-223 “transfer and call” functionality, allowing
tokens to be received and processed by contracts within a single
transaction.

4 METHODOLOGY

4.1 The Ethereum Network
As explained in Section 1, the core of our study is the
characterisation of the network growth in the four transaction
networks that we analyse: Ether (ETH), Binance (BNB), Tether
(USDT), and Chainlink (LNK).

In the Ethereum network, we distinguish two kinds of
accounts: externally owned accounts (EOA) and smart
contracts. The former ones are controlled through their
public/private key pairs and the latter ones via the logic of the
code stored together with their account. We consider EOAs as
human-controlled accounts while smart contracts are programs
executed inside the blockchain. Smart contracts publish functions
that can be invoked by EOAs or by other contracts. Smart
contracts are created by EOAs by sending a contract creation
transaction to the special 0x0 address.

EOAs have one or more private/public key pairs that allow
them to control (receive, send, etc.) the native cryptocurrency or
tokens by signing transactions with their private key. Smart
contracts do not initiate transactions: they are executed when
they are invoked. In their execution, smart contracts can call
other contracts (they often need to for complex cases). There is
always a transaction initiated by an EOA at the beginning of an
smart contract execution chain.

Addresses (accounts) are the way agents are uniquely
identified inside the blockchain. EOAs obtain their address
from their public key. Smart contracts obtain their address as
a function of the public key of their creator EOA and their specific
“nonce”. For further details about the functioning of Ethereum,
see Antonopoulos and Wood [40].

All the interactions we see in the Ethereum blockchain occur
between addresses (accounts): in our specific area of interest,
tokens and cryptocurrencies are exchanged from one address to
another. Both EOAs and smart contracts have addresses and
balances: regardless of whether or not the account stores code, the
two types are treated equally inside the Ethereum network;
therefore, we do not distinguish between them in our network
analysis. Native ETH tokens can be exchanged directly inside
transactions. As ERC-20 tokens are built as smart contracts, any
exchange of value has to pass by the smart contract address by
invoking the dedicated ERC-20 transfer function.

In this study, we construct an aggregated transaction network
GS(t) � (VS(t), ES(t)) for symbol S ∈ ETH,BNB,USDT, LNK{ }
at time t. In this network, the vertices VS(t) are the set of
addresses that have been used at least once since the first
transaction of symbol S and time t. Conversely, the set of
unweighted, directed edges ES(t) consists of all the pairs of
vertices among which there has been at least one transaction.
In the directed edge (j1, j2), node j1 is the sender of a transaction
and j2 is the recipient. We denote the in-degree kSin,j(t), of address
j in symbol S the number of incoming edges received by the node
before time t. Similarly, the out-degree denoted by kSout,j(t)
represents the number of edges outgoing from the node
representing the address in token S.
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We also define the wealth wS
j(t) of address j at time t as the

total amount of S directly controlled by this address at time t,
which is obtained by issuing the getBalance and balanceOf
functions for the specific token, i.e., its smart contract address
in a given time and block. The output of these functions provides
the unit of account for a token held by a certain address. This unit
of account is defined per token, and it is arbitrarily assigned at the
token definition. Preferential attachment is the network growth
mechanism that happens when the probability of forming a new
link is proportional to the degree of the target node, as in Barabási
and Albert [19]. Preferential attachment can be linear or
nonlinear, as in Dorogovtsev and Mendes [41]. In
mathematical terms, we describe the probability π of forming
a new link to an existing node j with in-degree kin,j as a

π(kin,j) � (kin,j)α
∑
j′
(kin,j′ )α (1)

where α > 0. If α � 1, then it is said that preferential attachment is
linear. If α < 1 (α > 1), then it is sublinear (resp., super-linear).
Preferential attachment is linked to the growth mechanism of the
network. We focus on the evolution of the network (and degree
accruing process) where any existing network node can create
links to others (regardless of their arrival or not).

When the probability of forming the new link is linear, i.e., α �
1, then preferential attachment leads to a scale-free network. A
scale-free network is a network whose degree distribution follows
a power-law function p(kin) ∼ (kin)−c.

In a sublinear preferential attachment, the effect of nodes
connecting with high-degree nodes is less patent. The degree
distribution is a stretched exponential and not a power-law:
fβ(t) � e−tβ or, using the same nomenclature as in Eq. 1, πβ(t) �
e−πβ with a stretching exponent β ∈ [0, 1]. In the case of super-
linear attachment, very few nodes (hubs) tend to connect to all
nodes of the network, a situation termed “the winner takes it all”.
This is the reason why networks showing super-linear attachment
are more vulnerable to attacks targeted at the hubs. Kunegis et al.
[42] identify nonlinear preferential attachment in temporal
networks with different values of α transcending the
traditional linear relationship in the classical (linear)
preferential attachment model studied by Barabási and
Albert [19].

4.2 Identification of the Preferential
Attachment Type
When a new, directed edge is added to the network (from an
unspecified node), we assume that the destination node j is
selected with a probability which is a function (solely) of its in-
degree k*in, i.e., π(k*in). For the rest of our proposal, we assume
that Eq. (1) holds. We further denote Π(kin) the probability
that a new link is created to any node with in-degree k*.
Trivially,

Π(k*, t) � π(k*) · ∑
N(t)

j�1
δ k*, kin,j(t)( ) � π(k*) · nin(k*, t) (2)

where δ(·, ·) represents the Kronecker delta, and—therefore—its
sum yields the total number of nodes with in-degree k at time t,
denoted by nin (k, t). Given that Π(k*, t) is a time-dependent
function, following Kondor et al. [24], we use the rank function
R(α; k*in, t), computed for each link addition to a node with in-
degree k* at each time t. Specifically,

R(α; k*, t) �
∑N(t)

j�1 Θ(k* − kin,j + 1)(kin,j)α

∑N(t)
j�1 (kin,j)α

(3)

� ∑k*−1
k�0 nin(k, t) kα
∑
k

nin(k, t) kα (4)

In the first expression, the function Θ (·) is the Heaviside
function, equal to one if the argument is positive, and zero
otherwise. Thus, the sum in the denominator runs for all
nodes whose degree is lower than k*in. The sum in the
numerator runs over all degrees where nin (k, t) > 0. When a
new edge is created, if the target node is drawn with a probability
following Eq. (3) for a given αo, then we can replace Eq. (2) into
Eq. (4)

R(αo; k
*, t) � ∑

k*−1

k�0
Π(k*, t)

Thus, if αo is the exponent of the non-preferential attachment,
adding new edges is equivalent to a process of inverse transform
sampling Devroye [43] on R (αo; k*, t).

To obtain the value of αo, we measure the corresponding K-S
(Kolmogorov-Smirnoff) goodness of fit, i.e., the difference
between the empirical distribution function (ECDF) calculated
with different exponents α and the theoretical linear CDF
distribution. The value αo that minimises the distance to the
uniform distribution is the best fit for the exponent. That specific
value will be informative of the type of PA present in each of the
transaction networks that we study.

As explained in Section 3, the size of the analysed data renders
this task computationally demanding. To make the calculation
more scalable, we only analyse each edge with a probability p(R)≪
1. We repeat the process multiple times to confirm results. The
exact parameters used are detailed in chapter 6.

5 EMERGENT DISTRIBUTIONS

5.1 Wealth Distribution
We start by analysing wealth distribution across addresses for the
four tokens considered. We compare native tokens (ETH) with
second-level tokens built on top of the Ethereum network (BNB,
USDT, LNK). For all the nodes that appear once in the evolution
of the network, we extract their final wealth, i.e., their balance at
block 11 M (October 6, 2020) and show the distribution in
Figure 1.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7207087

De Collibus et al. Preferential Attachment in Ethereum Cryptoassets

107

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


We do this programmatically by extracting wealth data for
all the nodes involved in the transaction network. This way
we obtain the basic unit of account: for the Ether Network,
the output of getBalance is the unit of account known as “wei”
(equivalent to 10–18 Ether), while for BNB, USDT and
LNK are the unit returned from the ERC-20 method
balanceOf, which is custom-defined for every token. To
obtain the well-known and traded token value we are
commonly referring to, we have to divide the output of
balanceOf method by the value specified in the Decimal
field of the ERC-20 Contract. This value is 1018 for LNK
and BNB (the same as ETH) and 106 for USDT (see Figure 1).
All four tokens seem to follow a power-law distribution.
Ether (ETH), BNB, and LNK display a similar behaviour
while Tether (USDT) exhibits a cutoff at a lower value. The
very broad distributions with power-law compatible
behaviour (spanning 14 orders of magnitude) are by itself
quite remarkable, independent of the nature of the token
considered.

While in this study, we do not dig into the mechanism that
generates this emergence, it reflects a similar behaviour to the
wealth distribution in real-world economies as shown in Levy
and Solomon [44] and Brzezinski [45]. However, in this case,
the distribution is much broader. This implies the existence of
systemic agents in the system. When computing the Gini
indices at the end of the period analyses Bovet et al. [9], we
find out that the values for all distributions are often above
0.99. The reason for this excessive inequality is the underlying
wealth distribution. The results of model selection—as in
Clauset et al. [46]—for wealth distribution are pretty similar
for all of the tokens, with strong evidence in support of power-
law against exponential (p-values of 10–15, 10–4, 10–3, and 10–9

for ETH, BNB, USDT, and LINK tokens, respectively), and not

enough conclusive evidence against lognormal and truncated
power-law (p-values larger than 0.3 with very weak support for
lognormal and truncated power-law). The exponents cw of power-
law are 1.81, 1.70, 2.14, and 1.97 for ETH, BNB, USDT, and LINK,
respectively. Due to the high computational costs of fitting the
distributions and performing model selection, only a random
sample of around 1% of ETH and 8% of USDT nonzero
balance addresses was used in analysis for these tokens.

5.2 Evolution of Basic Statistics
As an introduction to the analysis of the four tokens that we
study, i.e., ETH, BNB, USDT, and LNK, in Figure 2 we display a
set of basic statistics: the market price of the tokens analysed,
number of new daily nodes, and number of new daily edges as a
function of time. We also list basic network properties fow the
four tokens in Table 3. In the upper panel of Figure 2, we show
the market price (in US Dollars), which is—arguably—a
reasonable proxy measure to show the success of these tokens.
Due to its stablecoin design, the daily market price for USDT
fluctuates only minimally (around 1 USD) in comparison with
other “traditional” cryptoassets, which show a high volatility.

We observe that the daily number of active nodes (i.e., the
number of addresses) and the daily number of active edges
(i.e., the number of transactions) in ETH have been steadily
growing until the end of the bullish market in 2018 (Figures
2B,C). We identify a peak in both nodes and edges coinciding
with the end of the 2018 bullish market for cryptocurrencies. A
similar gradually growing scenario, although not covered by our
graphs, has taken place during the first months of 2021. At the
end of our data collection period, i.e., October 6, 2020, there were
87,780,546 Ethereum addresses and 856,207,725 transactions, of
which 414,743,169 with a nonzero “value” field, i.e., with current
transfers of native Ether. The remaining transactions with a zero

FIGURE 3 |On the (A),we show the time evolution of network density, while on the (B),we have the density as a function of the network size. Both figures show the
results for all the cryptoassets considered.
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“ETH value” transfer value are smart contract transactions, which
could transfer ERC-20 tokens (when calling the right smart
contracts) but not directly native ETH. Regarding BNB, we
observe how the move of their servers out of China in March
2018 triggered a temporary traffic peak, and the launch of the
Binance Mainnet in April 2019 was decisive to bring the number
of BNB nodes and edges on top of ETH to a very low number,
almost constant as displayed in Figures 2B,C.

With regard to USDT and LNK, we observe as well an increase
in activity since early 2019, in spite of the investigation by New
York’s Attorney General in 2019. Considering Figure 2A, USDT
seems to have reached the status of a worth-investing stablecoin.
For LNK, its growth in activity corresponds to the fast growth of
DeFi in late 2020. On a qualitative basis, it is worth mentioning
that price and new daily nodes/edges seem to follow a correlated
dynamics (as apparent by the profile of local extremes).

We then compute the link density d � L/N(N − 1) where L is
the number of edges and N is the number of nodes. We compute

link density figures using the number of active nodes and edges
within daily timeframes.

Figure 3 shows the results for the network density in our data.
The left panel shows the evolution of network density as a
function of time. The overall trend is a steady decrease in
density during the initial phase of ETH until 2018. Since then,
its density has remained constant at very low values. BNB and
LNK, starting from their launch in 2017, show a similar behaviour
in Figure 3 but with a steeper fall. USDT density decreases rapidly
in early 2018 since its start as ERC-20 token on top of Ethereum
and, later on, in mid 2019, but this time at a slower pace,
coinciding seemingly with an external event: the investigation
in 2019 by New York’s Attorney General (NY Attorney General
Press Release [47]).

Figure 3A shows a parametric plot of the network density as a
function of network size. Here, a common scaling d ∝ N−1 is
apparent, showing that the number of edges grows linearly with
network size which shows that each new node produces a limited

FIGURE 4 | PDF and CCDF for in-degree and out-degree in ETH, BNB, USDT, and LNK at the end of the observation period.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7207089

De Collibus et al. Preferential Attachment in Ethereum Cryptoassets

109

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


amount of new connections in the aggregate network. Given that
the transactions keep growing, this implies—from the aggregated
network representation we consider—that transactions take place
mostly across already existing links. This result is important for
the modelling approach we consider: in preferential attachment
models, the network density shows the same scaling as the one we
observe in our data.

5.3 Degree Distributions
The simplest measure to characterise complex networks is its
first-order node statistics, i.e., its degree distribution. The results
are shown in Figure 4. First, in the left panels, we show the PDF
and the CCDF of the in-degree of the network nodes, which is the
focus of our extensive analysis in the next section. We observe
that the distributions for in-degree and out-degree of the network
nodes are heavy-tailedmeaning that the network contains nodes
with degrees spanning several orders of magnitude, the largest of

which is commonly referred to as hubs. Specifically, for the largest
networks ETH and USDT, the results are largely compatible with
a power-law distribution. This result is remarkable, considering
the long evolution of the networks (for a period of six and 3 years,
respectively) and the changing environment for its evolution
(price, number of users, usage, etc.). In these plots, we see that
LNK departs the most from this behaviour. In the right panels, it
is possible to observe that the out-degree distribution exhibits a
similar pattern. Common to all distributions is the existence of
deviations from the power-law behaviour for very large values of
in- and out-degrees kin and kin, and this means that nodes with
large in- and out-degree are more common than those found in
networks with scale-free degree distribution. This is characteristic
of networks that have super-linear preferential attachment which
leads to the formation of super-hubs.

The model selection process, as in Clauset et al. [46], shows
that in ETH, both for in-degree and out-degree, the power-law is

FIGURE 5 | Plot of mean for ETH, BNB, USDT, and LNK. 〈kin〉 (in-degree), 〈kout〉 (out-degree), 〈wS〉 (wealth of the specific token).
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the best fit against exponential, lognormal, lognormal positive,
stretched exponential. Only with truncated power-law, the
advantage slightly diminishes (model selection: both for in-
degree and out-degree < 10–4, but with p-values (0.99 for in-
degree and 0.98 for out-degree)) so high that the results do not
bear significance. The fitted power-law exponents for ETH are cin
� 2.4 for the in-degree (xmin � 15) and cout � 2.29 for the out-
degree (xmin � 16). Value xmin designates a minimum degree
where the scaling relationship of the power-law begins, and it is
determined automatically by repeatedly performing a power-law
fit on all unique degrees in the data and then choosing the one
with the minimum Kolmogorov-Smirnov distance between the
data and the fit (Clauset et al. [46]; Alstott et al. [22]).

The same pattern for in-degree and out-degree applies as well
for USDT, where a similar pattern for truncated power-law applies.
Additionally, USDT seems to have a better fit for lognormal (1.74,

but with a p-value that is hardly meaningful 0.28). The fitted
power-law exponents for USDT are cin � 2.485 for the in-degree
(xmin � 11.0) and cout � 2.242 for the out-degree (xmin � 28.0).

Similar behaviour applies to BNB in-degree and out-degree.
Power-law seems to fit better than truncated power-law, but with
high p-values. Lognormal seems to fit better for in-degree, but
with an inconclusive p-value (0.278), while for out-degree, the
lognormal fit better (1.604) with a 0.102 p-value, almost
significant, but still a bit too high. The fitted power-law
exponents for BNB are cin � 1.927 for the in-degree (xmin �
8.0) and cout � 2.028 for the out-degree (xmin � 142.0).

LNK token in-degree behaves very similarly to ETH, with the
same inconclusive behaviour for truncated power-law. Given the fact
that all the better fits were inconclusive for too high p-values, we took
as reference for in-degree and out-degree always power-law fits. The

FIGURE 6 | ETH. Rank function for different α. KS distance. α value minimising error.

TABLE 4 | Spearman correlation between kin (in-degree), kout (out-degree), w
S

(wealth) for each cryptoasset. All p-values are lower that 10–10, implying that
we can reject the null hypothesis that the variables are not correlated.

Spearman correlation

Token Property kin kout wS

ETH kin 1 0.574 −0.157
— kout 0.574 1 −0.508
— wS −0.157 −0.508 1

BNB kin 1 0.195 −0.085
— kout 0.195 1 0.169
— wS −0.085 0.169 1

USDT kin 1 0.397 0.099
— kout 0.397 1 0.364
— wS 0.099 0.364 1

LNK kin 1 0.107 0.229
— kout 0.107 1 0.428
— wS 0.229 0.428 1

TABLE 5 | Spearman ρ correlation measures between cryptoassets for the
measures of kin (in-degree), kout (out-degree), and wS (wealth). All p-values are
lower that 10–10, implying that we can reject the null hypothesis that the variables
are not correlated.

Spearman correlation

Property token ETH BNB USDT LNK

ETH wS 1 0.3288 0.2656 0.3187
BNB — 0.3288 1 0.1637 0.1289
USDT — 0.2656 0.1637 1 0.3065
LNK — 0.1289 0.1637 0.3065 1

ETH kin 1 0.1634 0.2891 0.4330
BNB — 0.1634 1 0.1634 0.2120
USDT — 0.2891 0.1634 1 0.2489
LNK — 0.4330 0.2120 0.2489 1

ETH kout 1 0.1956 0.1612 0.2193
BNB — 0.1956 1 0.3790 0.3398
USDT — 0.1612 0.3790 1 0.5060
LNK — 0.2193 0.3398 0.5060 1
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fitted power-law exponents for LNK are cin � 2.955 for the in-degree
(xmin � 6.0) and cout � 3.352 for the out-degree (xmin � 6.0).

Kondor et al. [24] find that the in-degree of a node, i.e., the
number of transactions received by an address is positively
correlated with the BTC balance of that address. In our
analysis, for the largest Ethereum-based cryptoassets, we
obtain wealth in-degree and wealth out-degree correlation
plots with wealth. The results are depicted in Figure 5. In the
panels, we have first binned (logarithmically) the wealth and then
computed the mean value of the in- and out-degree of the nodes
within each range of wealth.

Overall, the trend is that for increasing wealth, the in- and out-
degrees of the nodes are also larger. The sole exception seems to be
ETH, but the reason for this is the largemultitude of addresses with a

nonzero value of wealth, but nominally small in Wei (because of
leftovers of transactions execution). The bump in the relationship (at
around 10–3 ETH) is explained by the actual usage of ETH as a
medium of exchange, with the upwards, monotonic trend.We argue
that very small values of w in the plot correspond to automated
usage. A similar pattern is observed on all cryptoassets analysed.

Table 4 shows the comparison of the Spearman correlation
measures between kin (in-degree), kout (out-degree), and wS

(wealth) for each asset. The results show always a positive and
significant correlation in the wealth of all cryptoassets.

Also, Table 5 shows the correlation between cryptoassets for
each measurement considered so far. All tokens built on
Ethereum are smart contracts, differently from the Ether token
which is natively built inside the Ethereum network. Tokens built

FIGURE 7 | BNB. Rank function for different α. KS distance. α value minimising error.

FIGURE 8 | USDT. Rank function for different α. KS distance. α value minimising error.
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on top of Ethereum do not require nonzero-valued Ether
transactions, i.e., Ethereum transactions moving Ether tokens.
This means that addresses holding tokens built on Ethereum
(such as BNB, USDT and LNK) are not always present in Ether
network transactions (i.e., nonzero values transactions exchanged
in Ethereum for Ether token), even though they eventually need
some Ether to pay transaction fees. They might participate in just
zero-valued transactions (i.e., smart contract calls).
Consequently, the networks might overlap, but they do not
coincide, so we can calculate the correlation between two
studied tokens only based on the intersection subset of
addresses, which appears on both token networks.
Interestingly, as shown in Table 5, we find that in- and out-
degree and wealth across cryptoassets are always positively
correlated.

6 PREFERENTIAL ATTACHMENT

In this section, we complement our previous analysis on the in-
degree distributions with an estimation of the exponent α in Eq.
(1). We calculate value of α that brings the K-S distance (or error)
between the empirical distribution function and the theoretical
one, in this case, a pure power-law function, to the minimum
possible. If that error is minimum when α � 1, then we can
confirm that the preferential attachment we observe in the
corresponding blockchain transaction network is linear. If α >
1, then we identify to super-linear attachment, i.e., very few nodes
in the network (superhubs) tend to connect to most nodes of the
network. We perform a similar calculation for ETH, BNB, USDT,
and LNK.

For ETH, we sample the network by running various iterations
at p(R) � 10–3 or p(R) � 10–4, a value influenced by the network size,
to decrease the computational demand, and we repeated the

process at least 10 times to confirm the consistency of the results.
For all the other tokens except USDT, we considered the complete
dataset.

In Figure 6 we plot the rank function presented in
Section 4.2, and then, we calculate the value of α that
minimises the error between the fit and the empirical
function. The error to fit this function of probability is
minimum with the exponent α � 1.1. This means that we
identify a slightly super-linear preferential attachment for
ETH, which implies that very few nodes tend to connect to all
nodes of the network.

We perform an identical exercise with the entire BNB
transaction set, and without sampling, we took the whole
dataset, since the smaller size made the required
computations manageable. We reach a similar conclusion:
preferential attachment in BNB is super-linear as well, but
now with a larger value of α � 1.2 which minimises the error
in the rank function. As an additional methodological
verification, we repeated the calculation with a reduced
sample (pR � 0.05) and obtained the same results, as in
Figure 7. When we analyse the network dynamics for
LNK, we also obtain a super-linear as with a value
between 1.15 ≤ α ≤ 1.2 (because both minimise the error
in the rank function in the compatible manner). These results
are similar to those obtained for BNB. For LNK as well the full
network dynamic was used to compute the rank function. The
results are presented in Figure 8. Interestingly, when we
analyse the stablecoin Tether/USDT, the results of the
analysis change. Because of the size of the data, we sample
the USDT network by taking a pR � 0.1. We confirm a
preferential attachment, in this case closer to linear
preferential attachment than in any other studied case.
The value of α that minimises the error in the rank
function is α � 1.05. The results are shown in Figure 9.

FIGURE 9 | LNK. Rank function for different α. KS distance. α value minimising error.
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In all these cases, the relatively large values of the KS statistic
may be due to non-stationary nature of the preferential
attachment process.

We finally show the evolution over time of the best fit for α for
each token up to block 11 M. Figure 10 displays how α changes
throughout time. The top graph is a cumulative value up to the
last block for each time unit. We confirm a greater PA super-
linearity in the first months of BNB. This coincides with the early
stages of the BNB token and with its launch on the ETH
blockchain before its “commercial” release. Both Liang et al.
[27] and Kondor et al. [24] refer to an early or initial phase
for the tokens they study, in which network properties are
different from their next longer phase, i.e., the trading phase.
Changes in α throughout time for ETH, USDT, and LNK are,
however, as the top graph of Figure 10 displays, much less
pronounced, although ETH’s early phase shows a higher
super-linearity around α � 1.15 and only a phase of
sublinearity during early 2018. In the bottom part of
Figure 10, we take the best fit for α individually and not
merged with the full history of best fit, to best display the
variation in each individual timeframe.

A typical trait of preferential attachment is the fact that, if the
preferential attachment is nonlinear, the maximum degree of the
node in the network grows linearly with network size, while when
preferential attachment is linear, the maximum degree of the
node grows as a square root of the network size, as in Barabási and
Pósfai [12]. In Figure 11 we plot the evolution of max in-degree
and out-degree maxik

S
in,i maxik

S
out,i during the evolution of

network size N.
We compute the Gini Index G for in-degree and out-degree

distribution as the network size N grows. Both are computed for
monthly snapshots in each network. As displayed in Figure 12,
the relation between network size and Gini Index G for in-degree
does not appear always conclusive for all the tokens. It is clear
enough for USDT, but more ambiguous and difficult to read for
the other tokens.

From the graph, it is easy to recognize a relationship between
network size and maximum in- and out-degree. This relationship
could be expressed with the following formulas:

ln(maxik
S
in,i) � βin0 + βin1 ln(N)

ln(maxik
S
out,i) � βout0 + βout1 ln(N)

We run a linear regression to compute the coefficients, and the
results of the slopes βin1 and βout1 are reported in Table 6. The
slopes remark indeed a strong relationship, which was already
evident from the plotted graphs.

As we see in Table 6, the exponents βin1 and βout1 are
significantly larger than 1/2. This is a remarkable indication
that some sort of nonlinear preferential attachment is taking
place, as in the case of linear attachment (nonlinear preferential
attachment), it should be βin1 and βout1 , (resp. 1). The non-
stationarity of the process may be the reason to find
intermediate values.

7 CONCLUSION

Blockchain-based systems are disrupting an increasing number of
areas, in many cases under the claim of an increasing
decentralisation in different facets. In this study, we focus on
Ethereum—a public blockchain created in 2015 with the second-
largest market capitalisation (as of this writing) after Bitcoin. It
offers the capability to write smart contracts that enable the
creation of arbitrary assets beyond the native cryptocurrency,
Ether (ETH). The tokens with the largest market capitalisation
are at the time of writing Binance (BNB), the currency token
linked to the largest cryptoexchange in the world since 2018;
Tether (USDT), the most capitalised USD-pegged stablecoin; and
Link (LNK), the most used token to pay for oracle services (off-
chain data providers) in the increasingly relevant decentralised
finance (DeFi) environment.

For these cryptoassets (which are of different nature), we
consolidate a large-scale dataset consisting of all the

FIGURE 10 | (A): evolution of best fit α (cumulative) for preferential attachment throughout time. (B): evolution of best fit α for preferential attachment computed
individually and in isolation for every time windows.
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transactions since system creation to late 2020. Then, we build
one directed aggregated network for each cryptoasset - Figure 13
shows an example visualization for BNB network. This
representation is useful to characterise the space of all
transactions that ever took place in these economies. They
allow us to further characterise and understand the economic
processes (e.g. value exchange and wealth concentration) that
take place in these systems.

We first analyse the distribution of wealth in the different
crypto. We find that all of them are well described by a power-law

distribution with an exponent close to or exceeding cw � 2 for
each of the tokens. This is interesting as the model of creation,
usage, or underlying concept they represent largely varies across
the assets analysed. However, the degree distributions of the
aggregate networks are different for each assets. All these two
results hint at the fact that the economic processes are (at least)
not entirely coupled to the network evolution. Further analyses
show that the in- and out-degrees of nodes are only lightly
correlated between network nodes present in the different
tokens. This serves as a justification to — in this first study —

FIGURE 11 | We plot the maximum in-degree maxi k
S
in,i (A) and maximum out-degree maxi k

S
out,i (B) as a function of the network size N. The measurements are

performed on a monthly basis.

FIGURE 12 |We plot the network size as a number of nodes N against the Gini indexG for the in-degree distribution and out-degree. We take monthly snapshots.
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analyse the network evolution of each token separately and
without including economic aspects on it. However, more
detailed approaches will require a multiplex network approach.

Our study hints that growth and concentration measures can
be characterised by complex network topology calculations. First,
we identify that the addition of new links to these networks
increases linearly with network size (as in other preferential
attachment growth processes) and that the degree distributions
are characterised by heavy-tailed distributions with over-
representation of hubs. In contrast to the previous analyses on
Bitcoin by Kondor et al. [24], we find that preferential attachment
(PA) in these public blockchain networks is slightly super-linear
in ETHwith an α � 1.1 and super-linear in BNB and LNKwith an
α � 1.2, and very close to linear in USDT with an α � 1.05. A
super-linear PA indicates a high degree of concentration of
transactions in a few hub nodes induced by the way the
network grows.

Kunegis et al. [42] measured preferential attachment
coefficients in many online networks and argue that online
interaction networks—those that consist of people interacting
directly or indirectly between each other, commonly exhibit
super-linear degree distributions. This includes online
networks where interaction is direct, for example, in an online
social network such as Twitter, as well as indirect where
interaction happens through an intermediary content, for
example in online forums. In such interaction networks, the
users or content with which users interacted in the past tends
to attract more interaction in the future in a super-linear fashion.
Considering that blockchain transaction networks are also a form

of an interaction network where users perform transactions
between addresses associated with them, it is not surprising
that they also exhibit a super-linear preferential attachment
where a small number of nodes asymptotically collect most of
the connections.

Given the hybrid nature of a socio-technical-economical
system such as the cryptocurrency market, where speculative
investments, software agents, and smart contracts play such a
defining role, the characterisation of its transaction network as an
interaction network leaves the door open for many interesting
considerations.

Surprisingly, different aspects of the evolution of these
economies show large-scale regularities that are unaffected by
the heterogeneous nature of the agents involved, considering that
data are composed of users, exchange markets, organisations,
automated accounts, etc.

We suggest continuing this study by expanding its realm in
two dimensions. First, by analysing all tokens in the Ethereum
ecosystem in order to identify common regularities across them,
we suggest to perform a similar study with other tokens and
blockchains to make an attempt to generalise conditions under
which PA turns super-linear in public blockchains and,
additionally, to endeavour the identification of any other token
with a different PA type than the underlying blockchain on top of
which it runs. Second, by extending the analyses to include the
more recent development because this period coincides with a
strong bullish crypto-market with high record-breaking trading
volumes and market prices. It is of interest to see whether the
identified PA features remain roughly the same over time or
whether they change fundamentally. Third, additional directions
for future work include the inference of statistical properties of
the entire history data and investigating the temporal properties
of the entire transaction network as proposed by Guo et al. [28].

The seed of this study was the comparison of “nested” tokens,
i.e., BNB, USDT, and LNK run on ETH. These tokens seem to
exhibit a slightly different behaviour depending on their design and
not on the infrastructure they share. We suggest to further research
on how the design of every token affects their network dynamics
and whether a more comprehensive taxonomy and clusterisation
of the token network according to their network dynamic is
possible. We propose as well to study the overlap of networks,
accounts, and addresses and how they influence each other across
tokens, a research direction that we hinted in this study.

Finally, we also suggest studying coupling patterns between
these interconnected networks and comparing them with the

FIGURE 13 | Visualization of the largest strongly connected component
in the BNB network, to help visualize the structure of the studied networks.

TABLE 6 | Gini Coefficients for wealth (wS), in-degree (kin), and out-degree (kout).
First,wS filters out nonzero value (since the graph is cumulative, old addresses
appearing in the network are accounted but might no longer hold tokens). For
comparison, the second wealth includes instead all the addresses in the network.

Token Gini wS > 0 Gini wS Gini kin Gini kout βin1 βout1

ETH 0.9975 0.9986 0.5177 0.7124 0.8168 0.7647
BNB 0.9976 0.9985 0.3200 0.9038 1.4803 0.6857
USDT 0.9861 0.9969 0.6216 0.7290 0.8004 0.8401
LNK 0.9908 0.9971 0.4118 0.5971 0.5839 0.5546
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study by Dong et al. [48] on the optimal resilience of modular
interacting networks.
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The data is available in the ETH blockchain (which is a public
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