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Editorial on the Research Topic

Emerging Technologies and Techniques for Remote Sensing of Coastal

and Inland Waters

Coastal and inland waters are critical resources of immense economic and

environmental value (e.g., Ledoux and Turner, 2002; Revenga and Kura, 2003).

However, due to natural and anthropogenic factors, coastal and inland waters around

the globe are under increasing stress. The health and biophysical status of these

ecosystems need to be regularly monitored in order to ensure that they maintain their

ecological functionality and services. This includes estimating concentrations of organic

and inorganic constituents in water (Hernes and Benner 2003; Spencer et al., 2012),

monitoring the health and distribution of submerged aquatic vegetation (Maxwell et al.,

2017) and corals (Hedley et al., 2016a, and references therein), characterizing the

biodiversity of phytoplankton (Mouw et al., 2017), and tracking spatio-temporal

dynamics of complex biophysical and biogeochemical processes occurring in the

water and adjoining wetlands (Howarth et al., 2011).

Remote sensing has become an indispensable tool for monitoring coastal and inland

waters (Turpie et al., 2021, and references therein), and hyperspectral remote sensing has

gained increased use in the last decade (Dierssen et al., 2015). The optical complexity

typically encountered in coastal and inland waters necessitates hyperspectral sensors with

a fine spectral resolution. Hyperspectral capability enables species discrimination of

aquatic vegetation (Dierssen et al., 2015; Hedley J. et al., 2016) and detection of fine

reflectance features of biogenic and inorganic substances in water (Mouw et al., 2016) and

accessory pigments such as phycocyanin and phycoerythrin that occur in significant

amounts during bloom conditions (Kudela et al., 2015). In addition to hyperspectral

capability, a fine spatial resolution is needed to capture spatial heterogeneity of bio-optical
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features in waters where spatial variability may occur in scales as

fine as a few meters (Moses et al., 2016). Sensors with

hyperspectral capability and/or high spatial resolution are

being used for coastal and inland water applications from a

variety of platforms such as moorings, shipboard platforms,

unmanned aerial vehicles (UAVs); Figure 1, and airborne and

spaceborne systems.

Several spaceborne sensors, including CubeSats, with

high resolution in the spatial and/or spectral domains that

are suitable for coastal and inland water remote sensing have

been launched recently or are scheduled to be launched in the

near future (e.g., the Plankton, Aerosol, Cloud, ocean

Ecosystem (PACE) mission; HawkEye). Current

spaceborne assets have either the required spectral

resolution (e.g., Hyperion; the Italian mission PRISMA -

PRecursore IperSpettrale della Missione Applicativa) or

spatial resolution (e.g., WorldView-3, Planet SkySat) but

not both, thereby limiting their use for monitoring coastal

and inland waters. This limitation is addressed through a

number of software and hardware options. Advanced image

processing algorithms can combine data from coarse-spatial-

resolution hyperspectral data with fine-spatial-resolution

multispectral data (e.g., Yokoya et al., 2017). Advanced

algorithms based on radiative transfer modeling and

machine learning concepts are being developed to retrieve

multiple water quality parameters from airborne and

spaceborne multispectral and hyperspectral data (Pahlevan

et al., 2022). Hyperspectral sensors on UAVs are used to

collect data at fine spatial and spectral resolutions (Joyce

et al., 2018).

A special Research Topic has been dedicated to address

achievements and challenges in the research, development,

and application of innovative measurement technologies and

water quality parameter retrieval algorithms for remote

sensing of coastal and inland waters and wetlands. The

following is a summary of the articles published in this

Research Topic.

Submerged aquatic vegetation play a crucial ecological

role primary producers and food source for marine life.

Detecting their presence and estimating their biomass

abundance are crucial for monitoring global biodiversity.

McPherson et al. (2022) developed a rapid survey system

based on UAV and diver imagery to estimate kelp canopy

biomass. They successfully estimated canopy biomass in a

third of their survey sites but encountered challenges due to

differences in kelp patch-specific spatial characteristics

across the survey sites and limitations of the survey design.

They recommend optimal survey design strategies for

successful retrieval of kelp canopy biomass from a UAV

platform. Cavanaugh et al. (2021) developed an automated

method to map kelp canopy using data from a five-channel

multispectral sensor on a UAV. They reported 93% accuracy

and noted that canopy cover estimates are affected by tides

and currents. Wilson et al. (2020) used a combination of

spectral indices and supervised image classifiers to map the

presence of submerged seagrass and surface-canopy forming

seaweed habitats in various water types in Atlantic Canada

using data from the Multispectral Imager (MSI) onboard the

Sentinel-2 satellite. The benthic habitat map had an overall

accuracy of 79%.

FIGURE 1
Data acquisition using a UAV over the Choptank River, a tributary of the Chesapeake Bay, Maryland. The multispectral imagery acquired were
used to estimate water quality parameters such as the concentrations of chlorophyll-a and suspended particulate matter.
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Harmful algal blooms (HABs) in coastal and inland waters

are a major environmental and health concern (e.g., Carmichael,

1997). Detecting the presence of HABs and monitoring their

spread, especially in recreational areas and near drinking water

intakes are critically important. Myer et al. (2020) developed a

spatio-temporal model based on a hierarchical Bayesian

approach to forecast the occurrence of cyanobacterial HABs

in lakes across Florida. The model used data from the Ocean

and Land Colour Instrument (OLCI) onboard the satellite

Sentinel-3 and a number of environmental parameters. Sharp

et al. (2021) investigated spatial scales of variability of the

distribution of cyanobacteria in Clear Lake, California using

data collected through a range of modalities including field

spectrometers, autonomous underwater vehicles, UAVs, and

spaceborne sensors, and discovered that the critical scale of

variability is in the range of 75–175 m, consistent with

previous studies.

The National Aeronautics and Space Administration

(NASA) routinely conducts technology concept

demonstrations to test technologies for future spaceborne

missions. Guild et al. (2020) summarized results from a

number of NASA-sponsored airborne experiments

conducted over Monterey Bay, California and nearby

inland waters, involving radiometers, sun photometers,

and imaging spectrometers. The experiments demonstrated

the utility and enhanced benefit from the combined use of

various measurement modalities and provided valuable data

for calibrating and validating algorithms for retrieving water

quality parameters. Harringmeyer et al. (2021) used a partial

least squares regression approach involving reflectance in the

ultraviolet, blue, and near-infrared regions to detect the

presence of colored dissolved organic matter (CDOM) and

differentiate it from phytoplankton in water. The study was

carried out in Santa Monica Bay using data from the airborne

Portable Remote Imaging SpectroMeter (PRISM). The study

illustrated the value of reflectance in the ultraviolet region for

detecting CDOM.

Coastal wetlands are a critical part of the global ecosystem

and provide valuable environmental and ecological services

including storm surge protection, coastal erosion control,

carbon sequestration, and habitat for a number of

endangered species. Haskins et al. (2021) demonstrated the

use of UAV-based techniques for monitoring restoration of a

tidal marsh site in Elkhorn Slough, California by calculating

the volume of soil moved, tracking whether elevation targets

were achieved or not, quantifying and examining the patterns

of vegetation development, and monitoring topographic

change including subsidence, erosion, and creek

development. Elmahdy et al. (2020) used three machine

learning algorithms, namely, Random Forest, kernel logistic

regression, and Naïve Bayes algorithm, to map mangrove

forests in the eastern and western coastal areas of the

United Arab Emirates using Landsat data over the period

from 1990 to 2019. They found that the Random Forest

method performed the best, and noted that there was a

significant change in mangrove extent during the

2010–2019 decade compared to 1990–2000.

Ayad et al. (2020) used data from multiple spaceborne

sensors, namely RapidEye, MSI, and the Operational Land

Imager (OLI) onboard Landsat-8 to detect discharges of

stormwater and wastewater into the coastal ocean in

Southern California and differentiate between stormwater

and wastewater plumes based on optical characteristics.

Kravitz et al. (2021) developed a tool based on synthetic

data and machine learning techniques to retrieve multiple

water quality parameters from satellite data. The tool was used

to successfully retrieve concentrations of chlorophyll-a and

phycocyanin and absorption coefficient of phytoplankton

from MSI and OLI data acquired over Hartbeespoort Dam,

South Africa.

Windle et al. (2021) investigated methods to remove the

effects of surface-reflected radiance (including sun glint) on

UAV-measured data. They recommend a pixel-based

approach that uses absorption characteristics of water in the

near-infrared region to estimate and remove surface reflectance.

Dierssen et al. (2021) provide a comprehensive review and

commentary on the past, present, and future state of

hyperspectral aquatic remote sensing, addressing advances in

sensor design, modes of deployment, algorithm development,

image analysis techniques, and open-source software, which

make data and techniques available and easily accessible to

the public.

These articles demonstrate that aquatic remote sensing is a

fast-evolving field with rapid advances in sensor technologies,

measurement modalities, and innovative algorithms. These

advances enable us to address critical environmental and

ecological questions related to coastal and inland water

ecosystems.
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Mangrove forests are acting as a green lung for the coastal cities of the United Arab
Emirates, providing a habitat for wildlife, storing blue carbon in sediment and protecting
shoreline. Thus, the first step toward conservation and a better understanding of the
ecological setting of mangroves is mapping and monitoring mangrove extent over
multiple spatial scales. This study aims to develop a novel low-cost remote sensing
approach for spatiotemporal mapping and monitoring mangrove forest extent in the
northern part of the United Arab Emirates. The approach was developed based on
random forest (RF), Kernel logistic regression (KLR), and Naive Bayes Tree machine
learning algorithms which use multitemporal Landsat images. Our results of accuracy
metrics include accuracy, precision, and recall, F1 score revealed that RF outperformed
the KLR and NB with an F1 score of more than 0.90. Each pair of produced mangrove
maps (1990–2000, 2000–2010, 2010–2019, and 1990–2019) was used to image
difference algorithm to monitor mangrove extent by applying a threshold ranges from+1
to −1. Our results are of great importance to the ecological and research community.
The new maps presented in this study will be a good reference and a useful source for
the coastal management organization.

Keywords: NUAE, mangrove, FMNF, remote sensing, change detection, Landsat
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INTRODUCTION

Mangroves are woody plants that are extensively distributed in
intertidal and estuary zones and their forests cover thousands
of hectares along the shorelines (Sherrod and McMillan, 1985;
Field et al., 1998). Mangroves are able to store 1200 Mg of carbon
per hectare (Donato et al., 2011; Pham et al., 2019a,b). They
form an essential component of the coastal ecosystem consisting
of salt-tolerant plants with aerial breathing roots that supply a
microenvironment to several marine species (Snedaker, 1982;
Upadhyay and Mishra, 2008).

Mangroves provide a wide range of benefits to the economy
and the environment as they play a vital role in ecology. Some
ways they do this for example, are by supplying a safe breeding
ground and suitable environment for fish species and birds
nesting, as well as and stabilization and protection for shorelines
from hurricanes (Fry and Cormier, 2011; Giri et al., 2011; Inoue
et al., 2011; Barua et al., 2014).

Although mangroves have declined globally by 2% per annum,
the mangroves of the United Arab Emirates appear to have
rapidly increased. This is due to localized plantation activities
and increased public awareness and conservation efforts during
the last decade (Food and Agriculture Organization of the United
Nations, 2007; Loughland et al., 2007; Howari et al., 2009). The
most common mangrove species in the United Arab Emirates
is Avicennia marina or gray mangrove and its protection is
consequently an urgent conservation priority (Figure 1).

Our knowledge on the spatial variation, causes of degradation
of the mangroves are still poor due to; (i) the northern part of
the United Arab Emirates (NUAE) mangrove database suffering
from significant errors and it is sometimes unavailable and
has usage restricted, (ii) inaccessibility of the tidal fluctuation
mangrove forests in isolated islands, and (iii) the majority of
previous studies have been conducted based on field surveys and
measurements over a local scale with manual screen digitizing
(Moore et al., 2013; Alsumaiti, 2014). Understanding the
spatiotemporal changes of the NUAE mangrove over a regional
scale could provide valuable information for the ecologists and
natural resources specialists in the United Arab Emirates and this
requires a potential method.

Remote sensing data has proven to be a good tool for mapping
and monitoring mangrove changes over a regional scale as it has
low-cost and is not time-consuming (Boardman and Kruse, 1994;
Guild et al., 2004; Ghanavati et al., 2008; Mondal et al., 2018, 2019;
Elmahdy et al., 2019, 2020a,b; Spruce et al., 2020). The multi-
temporal Landsat images have been widely used for mapping
and monitoring mangrove changes due to their suitable of
spatial and temporal resolutions, as well as their easy availability
and accessibility (Birth and McVey, 1968; Edwards et al., 2007;
Klemas, 2009; Vo et al., 2013; Nguyen et al., 2013; Kanniah
et al., 2015; Chen et al., 2017; Elmahdy and Mohamed, 2018;
Buitre et al., 2019).

The most common method for mapping vegetation are the
vegetation indices such as the Simple Ratio Index (SRI) of Birth
and McVey (1968), Normalized Difference Vegetation Index
(NDVI) of Edwards and Richardson (2004), and the Normalized
Difference Moisture Index (NDMI) is the oldest and most well

known and most frequently used by several researchers (Fang
and Liang, 2003; Huete et al., 2010). These indices were designed
to enhance the sensitivity of the spectral reflectance contribution
of vegetation while minimizing the soil background reflectance
or atmospheric effects (Fang and Liang, 2008; Huete et al.,
2010) and widely used in the literature (Díaz and Blackburn,
2003; Ishil and Tateda, 2004; Jean-Baptiste and Jensen, 2006;
Kovacs et al., 2009; Rodríguez-Romero et al., 2011; Laongmanee
et al., 2013; Nascimento et al., 2013; Pereira et al., 2018; Otero
et al., 2019; Liu et al., 2020). These indices sometimes cannot
discriminate between mangrove and non-mangroves areas such
as grass and algae (Howari et al., 2009; Elmahdy and Mostafa
Mohamed, 2013a,b). Generally, the classification methods can be
divided into five types: (i) unsupervised learning; (ii) supervised;
(iii) advanced learning; (iv) object-based image analysis (OBIA);
and (v) sub-pixel. Recently, several machine learning algorithms
have been designed for mapping and classifying land use land
cover (LULC). Ensemble machine learning algorithms such
as Random forest (RF) is widely used in LULC classification
and mangrove mapping from Landsat images (Erftemeijer and
Hamerlynck, 2005; Pal, 2005; Sesnie et al., 2008; Mountrakis
et al., 2011), mangrove and sea grass mapping (Heumann, 2011;
Hossain et al., 2015; Buitre et al., 2019; Diniz et al., 2019;
Small and Sousa, 2019; Toosi et al., 2019), prediction in water
resources (Zhao et al., 2012; McGinnis and Kerans, 2013; Naghibi
et al., 2016; Naghibi and Dashtpagerdi, 2017), and prediction
of land subsidence (Elmahdy et al., 2020a). Further studies
combined image transformation and supervised classification to
map and classify mangrove forests (Yokoya and Iwasaki, 2010;
Ouerghemmi et al., 2018). Locally, only limited numbers of
studies have been carried out using remote sensing data (Embabi,
1993; Moore et al., 2013; Almahasheer, 2018). However, these
studies were based only on traditional techniques of traditional
classifiers and visual interpretation of Landsat and spot images,
sometimes coupled with manual digitization techniques for
mapping mangrove forests. These techniques introduced a level
of human bias and can be subjective and time-consuming owing
to the rapid changes in the United Arab Emirates mangroves
(Crouvi et al., 2006; Adam and Hutchings, 2010). Therefore, to
construct and maintain a flexible regional database for the NUAE
mangroves, it is urgent to modify an integrated powerful machine
learning classifier.

Integration of RF, Kernel logistic regression (KLR), Naive
Bayes Tree (NBT), and Image difference (ID) have shown the
ability to achieve classification over a regional scale and precise
monitoring extent of the mangrove (Colkesen and Kavzoglu,
2017). These techniques can reduce the variance and overfitting
of the classification maps and assess many variables separately
compared to traditional classifiers, such as maximum likelihood
(Ha et al., 2020). Thus, integration of RF and KLR and ID
was adopted to extract spatiotemporal information about the
NUAE mangrove forests. The use of machine learning algorithms
decreases the overfitting and variance in the classified maps
(Belgiu and Dăguţ, 2016; Feng et al., 2018; Mondal et al.,
2019; Elmahdy et al., 2020b; Ha et al., 2020). Thus, the main
goals of this study were to present a novel ensemble machine
learning approach which integrates RF with KLR and NBID
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FIGURE 1 | Photos of the NUAE mangrove forests showing their spatial patterns and environment.

algorithms and uses Landsat images for spatiotemporal mapping
of the NAEU mangroves, comparing the performance of these
algorithms, and implementing a novel image to image change
detection technique for monitoring mangrove changes over
multiple scales.

STUDY AREA

The study area is in the eastern and western coastal areas of
the United Arab Emirates. In particular, it extends between the
longitudes E 53◦56′ 23′′ and E 60◦15′ 22′′ and latitudes 24◦
21′ 2′′ and 26◦ 12′ 20′′ N (Figures 2, 3). The area consists

of two mangrove ecosystems; the Khor Fakkan mangrove is
located in the Gulf of Oman (5.5 km length) and the Dubai’s
Greek, Ajman’s Creek, Hammraih’s Creek, Umm Al Quwain
and Ras Al Khaimah (RAK) Estuaries (Figures 2, 3). They are
facing the Gulf of Oman in the east and the Arabian Gulf in
the west and dominated by gray mangroves (A. marina) and
locally referred to as Al Qurm, which is one of the most habitat-
tolerant mangroves (Boer and Aspinall, 2005; Howari et al., 2009;
Alsaaideh et al., 2013). The United Arab Emirates mangroves
are able to grow in saline soil that exceeds the seawater salinity
of the Arabian Gulf and Gulf of Oman (Alsumaiti, 2014). An
Assessment of A. marina Forest Structure and Aboveground
Biomass in Eastern Mangrove Lagoon National Park, Abu Dhabi
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FIGURE 2 | RGB 541 band combination of Landsat image of the UAE showing the spatial distribution of the UAE mangroves and in the study area (red polygons).

(Alsumaiti, 2014). The height of the United Arab Emirates
mangrove trees ranges from a few centimeters to 3–8 m (Moore
et al., 2013; Alsumaiti, 2014). The mangrove soil texture is
loamy clay and silt and characterized by high porosity and
low permeability, which allows keeping the seawater in the soil
porosity for a long time, especially during tidal times (Cintron
et al., 1978; Bashitialshaaer et al., 2011).

DATASETS AND METHODS

Datasets and Preprocessing
Two remotely sensed data were used in this study. The first
dataset was the Landsat Thematic Mapper (TM) acquired on
August 23, 1990, the Landsat Enhanced Thematic Mapper
(ETM+) acquired on August 23, 2000 and August 19, 2010
and the Operational Landsat Imager (OLI) Landsat 8 acquired
on August 15, 2019 (Path 160, rows 42 and 43).The data
were obtained via the USGS Earth Resources Observations
and Science (EROS) Center through the Global Visualization
Viewer1. The mangrove forests in Landsat images (coastal
areas) were then clipped into five subsets to reduce the
image processing time by avoiding unnecessary calculations

1www.glovis.usgs.gov

(Amarsaikhan et al., 2009; Diniz et al., 2019; Ma et al., 2019).
We used the Landsat images due to their suitability spectral
and spatiotemporal resolutions, free of charge, easy accessibility,
and time-series availability (Chander, 2009; Irons et al., 2012;
Elmahdy and Mohamed, 2018; Milani, 2018; Toosi et al., 2019).
Additionally, Landsat images are provided in orthorectification
format at a lower level of cloud cover (Darvishsefat, 1995).
The second dataset includes the QuickBird images with a
spatial resolution of 0.6 m acquired on August 22, 2019,
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), and Earth Observing-1 (EO-1) images
with a spatial resolution of 30 m acquired on August 13, 2019
and July 29, 2019, respectively.

The spectral coverage of ASTER sensor consists of four
visible and near-infrared bands (0.52–0.86 µm) with a spatial
resolution of 15 m, six shortwave infrared (SWIR) bands
(1.6–2.43 µm) with a spatial resolution of 30 m and five
thermal bands (8.125–1165 µm) with a spatial resolution
of 90 m. The EO-1 Advanced Land Imager (ALI) provides
Landsat type panchromatic and multispectral bands. These
bands have been designed to mimic six Landsat bands
with three additional bands covering 0.433–0.453, 0.845–0.890,
and 1.20–1.30 µm. The ALI also contains wide-angle optics
designed to provide a continuous 15◦ × 1.625◦ field of view
for a fully populated focal plane with a 30-m resolution
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FIGURE 3 | RGB 541 band combination of Landsat image of the NUAE and zooms of the mangrove locations distributed along the eastern and western coastal
areas in the NUAE.

FIGURE 4 | Flowchart of the methodology applied in this study.

for the multispectral pixels and 10-m resolution for the
panchromatic pixels.

These datasets were downloaded via the USGS EROS Center
through the Global Visualization Viewer (see footnote 1). We
used these various datasets to collect training datasets as input
to the classifiers and visual verification of the obtained mangrove

maps and compare the textural features (mangroves and non-
mangrove areas), mapped from Landsat images against those
mapped from the ASTER and EO-1 images using RF, KLR,
and NB algorithms.

After collecting the remote sensing data, the datasets were all
re-sampled to UTM WGS 84 projection, at a spatial resolution
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of 30 m with mean root square error values of less than 0.40
pixels. All the United Arab Emirates images were assigned to
a UTM zone 40 N and datum WGS 48 (Jensen, 1996; Foody,
2002) followed by an atmospheric correction. The atmospheric
correction was performed by Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) implemented in Envi
v. 4.6 software. Fast Line-of-sight Atmospheric Analysis of
Hypercubes process consists of radiometric calibration and
dark subtraction. In radiometric calibration, beta nought
calibration, all digital number (DN) values were converted into
Top Of Atmosphere (TOA), reflectance. Top Of Atmosphere
was performed using four parameters, namely, calibration
type (reflectance), output interleave (BSQ), output data
type (float), and scale factor value of 1. In dark objects
subtraction, TOA was converted into surface reflectance
(SR) using band minimum (Green et al., 1988; Foody, 2002;
Todd and Chris, 2010).

Training Data Collections
The training data collection is a very important step in producing
a higher quality of classification, especially when the classifiers
trained with training datasets with higher spatial resolutions
(Elmahdy and Mohamed, 2018). The training datasets were
collected from QuickBird images with a spatial resolution of
0.6 m using a straight random sampling or proportional method,
which reduces error and bias. This method divides the population
into homogenous groups and produces training sample sizes that
are directly related to the size of the classes. We used this method
due to its ability to reduce bias and errors (Van Niel et al., 2005;
Elmahdy and Mohamed, 2018).

Random sampling collection was performed using Envi v.
4.5 software. In total, 536 training datasets were collected and
divided into 375 (70%) for training and mangrove mapping and
161 (30%) for validation of this study. The collected training
datasets were checked using visual interpretation and knowledge
and background of the authors and where they live (Figure 4).

Machine Learning for Image
Classification
Random Forest
To classify and map mangrove forests in an accurate and low-cost
way, it is important to employ machine learning algorithms, then
learn these algorithms with training datasets with a higher spatial
resolution as well as algorithm optimal parameterization (Huang
et al., 2009; Elmahdy and Mohamed, 2018).

The RF algorithm can provide a higher quality of classification
than linear classifiers and has been employed previously to map
and classify mangroves in Iran based on Landsat images (Kamal
and Phinn, 2011; Kamal et al., 2015). The algorithm performs well
for mangroves mapping over a regional scale and its ability to
handle data with unclassified pixels (Prasad et al., 2006; Taalab
et al., 2018; Thomas et al., 2018). Random forest algorithm is
a non-parametric ensemble machine learning and one of the
most popular algorithms that provide high-quality of mangroves
classification and environmental modeling (Strobl et al., 2008;
Vyas et al., 2011; Bachmair and Weiler, 2012; Torres and Qiu,

FIGURE 5 | Flow chart of classification using machine learning algorithms.

2014; Fu et al., 2017). It is a combination of classification and
regression tree (CART).

A regression tree is a hierarchy and comprises of a root
node, node separator (decision rules) and end of a leaf
node (desired classes). The algorithm involves an ensemble
of tree- structure classifiers and each tree starts by choosing
a set of random model units selected separately. Then, it
creates a forest using the vote on all decision “tree” in the
“forest.” Then, two-thirds of the set was employed to make
the decision tree and the remaining data are then used to
estimate the model performance based on a bootstrapping
procedure (Breiman, 2001; Schapire, 2003). Finally, the best
model was chosen based on the majority vote approach (Yu
et al., 2011). The model is flexible and can be used to solve
problems related to classification and exploit the information
provided by several condition variables (Catani et al., 2013; Ha
et al., 2020). The model uses a random selection of predictor
variables to divide each node of the trees. After that, each
tree was developed in such a way as to reduce errors in the
classification process. However, this type of random selection
influences the results, hence creating a very unsuitable single-tree
classification (Figure 5).

The algorithm is widely employed in environmental modeling
(Strobl et al., 2008; Bachmair and Weiler, 2012), although only
rarely in land subsidence and sinkholes susceptibility mapping
(Vorpahl et al., 2012).

For b = 1 to B:
(b) Grow a random-forest tree Tb from the bootstrapped

data, by recursively repeating the following steps for each
terminal node of the tree, until the minimum node size
nmin is reached.

1. Select m variables at random from the p variables.
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FIGURE 6 | A comparison of the precision (A), recall (B), and F1 scores (C) for the Landsat image (August 15, 2019) using RF, KLR, and NB classifiers and total
area in ha mapped using RF, KLR, and NB (D) and feature extracted from the Landsat images (E), ASTER images (F), and EO-1 (G) for the year 2010.
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FIGURE 7 | Spatiotemporal variation of mangrove forests in Khor Kalba of the Emirate of Sharjah for the years 1990 (A), 2000 (B), 2010 (C), and 2019 (D).

2. Pick the best variable/split-point among the m variables.
3. Split the node into two daughter nodes.

Kernel Logistic Regression
Kernel logistic regression is a discriminative machine learning
classifier that differentiate the mangrove and non-mangrove
classes perfectly where probabilistic output are evaluated based
on minimizing the negative log-likelihood function using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization
(Yokoya and Iwasaki, 2010). It is described as the kernel
version of logistic regression capable of converting into a high-
dimensionality feature space of the original input feature space
kernel functions (Tanaka et al., 2011).

The kernel function can be defined as the basic function in
which φ is supposed to be unidentified:

K
(
x, x′

)
= ϕ (x)T

(
x′
)

(1)

where T is the inner product in the Z space.
Suppose a set of training dataset

{
xi, yi

}Ni=1 with xi ε Rn as
input parameters with n variables and N data samples. Here,
the input parameters are dense mangrove, dispersed mangrove
and non mangrove.

yk ε {1,0} is the related label that indicates mangrove and non-
mangrove classes. The KLR was applied to built a non-linear
decision boundary that may divide the two classes in the feature
space based on the following equation:

p (x) = ey(x)/
(

1+ ey(x)
)
=

NI=1∑
ᾱiK

(
xi, xj

)
+ b (2)

where y (x) is the logistic function with values in [0,1]; αi is a
vector of dual model parameters, whereas b is the intercept; K(xi,
xj) is the kernel function.

For our study, radial basis function (RBF), which is used
widely in the literature, was chosen due its flexibility and
reliability (Bui, 2015; Hong et al., 2015).

Naive Bayes Tree
Naive Bayes (NB) is a machine learning classifier that creates
a probability-based model. It works based on Bayes Theorem,
which is known as Naive Bayes. The NB uses a decision tree
(DT) for its structure and organizes the NB model on every
leaf node of the constructed DT. The NBT exhibits a significant
classification performance and accuracy (Liang et al., 2006;
Wang et al., 2015).

During the NB process, the impact of an attribute value on
a specific class is an independent value of another attribute
and known as class conditional independence. This conditional
independence of NB makes the datasets to train quicker and it
considers all the vectors as independent and applies the Bayes rule
(Farid et al., 2014).

The theorem of the Bayes can be explained as follows:

P (A|B) = P (B|A)P (A) /P (B)

where:
P(A|B) = conditional probability of A given B;
P(B|A) = conditional probability of A given B;
P(A) = probability of event A;
P(B) = probability of event B.
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FIGURE 8 | Spatiotemporal variation of mangrove forests on the coastal area of RAK for the years 1990 (A), 2000 (B), 2010 (C), and 2019 (D) and zooms of Mina Al
Arab (southwest), Dafan creek (middle), and Shamm (northeast). Red polygons and dark green highlight dense mangroves.

This classifier was chosen due to its: (i) quick training and
classification, (ii) powerful to irrelevant features, (iii) easy to use
and understand, and (v) ability to work with few numbers of
training datasets (Ho, 1998).

The model starts by estimating the probability of each class
in the model, calculating covariance and variance matrix, and
building the discrimination function for each class (Pham and
Yoshino, 2015; Wang et al., 2015).

For the KLR and NB, mapping and monitoring of mangroves
were performed using SATISTICA v. 7 (Fleiss et al., 2003; Hill and
Lewicki, 2006) and Salford system (Friedman, 2001; Friedman,
2002). These tools have a stochastic gradient boosting tree which
is used widely for regression problems related to predict and map
a continues dependent variables (Hill and Lewicki, 2006). After
that, the setting and optimizing of all parameters were performed.
These parameters namely; learning rate, the number of additive
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FIGURE 9 | Spatiotemporal variations of mangrove forests for the years in Ajman-Hammriah (A–D), and Ras Al Khor (E–H) natural reserves for the years 1990,
2000, 2010, and 2019. Red polygons and dark green highlight dense mangroves.

trees, the proportion of subsampling, and so forth. Here, the
optimal value for the learning rate was set as 0.1, additive trees
were 185 and the maximum size of the tree was 5. These values
may lead to precise result accuracy (Friedman, 2001).

To get the optimum RF parameter values, we tested several
RF parameter values. These parameters include the maximum
total of tree depth, the minimum numbers of samples per
node (sample), and maximum tree number (tree number). The
tested values of tree depth and minimum sample per node were
0,1,5, 10, 20, 50, 100, 500, and 1000, while the maximum tree
number values were 50, 100, 200,400,800, and 1000. After that,
the best band combination of RF parameters and the highest
overall accuracy was chosen and applied. RF was applied to each
Landsat image separately using 536 training data sets collected
from QuickBird images with a spatial resolution of 0.6 m.
The classification process was performed using the R package
(Catani et al., 2013).

Ensemble of RF, KLR and NB
Among several ensemble methods, the stacking algorithm was
employed to build the ensemble model with a threshold of 0.9
used to detect mangrove pixels. The algorithm builds a model on
of the RF, KLR, and NB machine learning algorithms based on
the selected training datasets R package via the “glmet”.

Evaluation of the Performance of the Classifiers
To evaluate the performance of the classifiers, maps of
mangroves were standardized and compared based on a pixel
by pixel producing numerical values for mangrove commission,
mangrove omission, total incorrect pixels, percentage of incorrect

pixels, precession, recall, and F1 score (Congalton et al.,
1983; Raschka, 2018; Raschka and Mirjalili, 2019). Once the
classification process was achieved, it is important to evaluate
classifiers’ performance. Confusion metrics include accuracy,
precision, recall, F1 score was found to the best technique and
used widely in this literature (Ha et al., 2020). The calculation
of accuracy, precision, recall, and F1 score is based on four
parameters namely; true positive (TP), true- negative (TN), false-
positive (FP), and false-negative (FN). Accuracy, precision, recall
and F1 score can be calculated via the following equations:

Accuracy = TP + (TN/TP)+ FP + FN + TN (3)

or

Accuracy
(
y, ypredi

)
= 1/nsamples

nsamples−1∑
i=0

1
(
ypredi = yi

)
where ypredi is the predicted value and y is the corresponding
true value

Kappa = po − pe/1− pe (4)

where po is the observed agreement ratio and pe is the expected
agreement

Precision = TP/TP + FP (5)

Recall = TP/TP + FN (6)

F1 = 2× precision× recall/precision+ recall (7)

where TP is the true positive; FP is the false positive; and FN is
the false negative.
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FIGURE 10 | Spatiotemporal variations of mangrove forests in Umm Al Quwain natural reserve for the years 1990 (A), 2000 (B), 2010 (C), and 2019 (D). Red
polygons highlight dense mangroves.

The performance of machine learning algorithms were
evaluated using the open source R 4.0.0 software.

Further evaluation of the performance of the RF, KLR, and
NS algorithms were performed by applying them on the ASTER
and EO-1 with a spatial resolution of 30 m and calculate the total
area of mangrove (Mondal et al., 2019) and the textural features
(mangroves and non-mangrove areas) evident from Landsat
images were compared against those from the ASTER and EO-
1 images with a spatial resolution of 30m using RF, KLR, and
NB algorithms. This method was applied to the Kalba mangrove
natural reserve on the eastern side of the study area. These
two methods can be considered as an alternative way of field
observation, especially when the mangrove forests are located in
remote and inaccessible areas (Elmahdy and Mostafa Mohamed,
2013a,b; Elmahdy and Mohamed, 2018; Estoque et al., 2018).

Change Detection
Among several change detection techniques, ID algorithm
was chosen to monitor mangrove changes. The ID algorithm
was chosen due to its ability to locate the changes in
mangroves within each class (dense and sparse) (Mishra
et al., 2017; Elmahdy and Mohamed, 2018). The ID algorithm
determines the difference in the DN values in each pair
of mangrove images (1990–2000, 2000–2010, 2010–2019, and
1990–2019). This can serve as an indicator of mangrove
change which has occurred over the NUAE. Monitoring
changes start with proper input parameters such as the
number of classes, threshold value and change detection type.
Threshold value locates the changes in mangroves within
each class, epending on the type of remote sensing data
(Singh, 1986).
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FIGURE 11 | The annual rate of the NUAE mangroves growth (A), and mangrove types for Khor Kalba (B), RAK (C), Ajman-Hammriah (D), Ras Al Khor (E), and
Umm Al Quwain (F).

The threshold values are evenly spaced between (−1)
and (+1) for simple difference (the initial state image is
subtracted from the final state image). The positive changes
(positive value) represent the first (n/2) classes, while the
negative changes represent the last (n/2) classes. The no-
change class [(n/2) + 1] represents the middle class (Figure 4),
and normalizing the images (raster maps) by subtracting
the image minimum. On the final change detection maps,
a positive change was identified when pixels took on a red
color code (final state image), while a negative change was
identified when pixels took on a blue color code (initial
state image). Monitoring the NUAE mangrove changes were
performed using a change detection tool implemented in the
Envi v.4.5 software.

RESULTS

Optimal Parameterization and Evaluation
of Machine Learning Performance
Figures 6A–C show different precision, recall, and F1 values
for RF, KLR, and NB. Random forest and KLR yielded the
highest values (0.95) for F1 score, while NB presented the lowest
value (0.75) for F1. Slight differences in F1 score between RF
and KLR algorithms were observed. This difference appears
to be due to the difference in precision and recall scores and
this difference to be due to the difference in overall incorrect
pixels between RF, KLR, and NB. Both RF and KLR showed
a strong ability in discriminating between dense mangrove
compared with NB. However, all models showed less ability
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FIGURE 12 | Mangrove pattern change between 1990 and 2000 (A), 2000 (B), 2010–2019 (C), and 1990–2019 (D) for Khor Kalba natural reserve. Red color
highlights changes in mangroves.

to distinguish dispersed mangroves as indicated from F1 score
(<0.8), and thus, lower ability to detect mangrove forests. This
lower accuracy due to lower ability in discriminating between
mangrove and non-mangrove areas and the lower ability in
discriminating owing to the lower reflects. Results of cross-
validation showed that the RF and KLR classifiers predicted
and classified mangrove from the EO1 ALI better than NB
classifier. The extent predicted mangrove areas by the RF and
KLR have a wider range compared to those predicted by
NB (Figure 6D).

Both RF and KLR predicted an area of 72.86 and 71.7 ha,
respectively. However, the mangrove extent predicted by the
NB has a lower range of mangroves from the Landsat, ASTER
and EO-1 images. Although these images have the same spatial
resolution, the ASTER and EO-1 miss the regular time span and
geographical coverage of the NUAE mangrove. Further validation
of the proposed approach was performed by comparing textural
features from Landsat images against those extracted from the
ASTER and EO-1 images using RF, KLR, and NB algorithms
(Figures 6E–G).

Mangrove Mapping and Classification
Maps of mangrove forests produced from the Landsat images
using RF classifier with a population minimum of 100 and 8
neighbors are shown in Figures 7–10. The figures comprise
of two color codes to facilitate visual interpretation. The first
color code is dark green corresponding to dense mangroves
(healthy mangroves). These dense mangroves are located
on the gentle slopes of tidal flats, easily discriminated and

concentrated in the middle parts of the mangrove patches.
The second color code is light green, corresponding to
disperse mangroves and are difficult to discriminate and
map and are clustered around the dense mangroves and
submerged in the water. The figures show that the mangrove
forests are mainly spatially distributed in creeks (Khors in
local language) of Kalba (Figures 7, 11B), Ras Al Khaimah
(Figures 8, 11C), Ajman-Hammria and Dubai (Figure 9),
and Umm Al Quwain (Figure 10), which represent about
35% of the total area of the United Arab Emirates mangrove
(Elmahdy and Mostafa Mohamed, 2013a,b).

In Khor Kalba (the Emirate of Sharjah), mangrove
areas are spatially distributed as linear and curvilinear
strips with a length of 5 km and a width of 300 m. Their
common trends were found to be in the NNW-SSE and
NNW-SSE directions (Figures 7, 11A). From 1990 to 2019,
sparse mangroves have slightly increased from 28.89 ha
(1.53%) in 1990 to 34.56 ha (2.037%) in 2019, while dense
mangroves increased from 49.95 ha (2.7%) in 1990 to 61.74 ha
(4.11%) in 2010 and 63.9 ha (4.80%) in 2019. Most of the
mangrove areas are mainly distributed in creeks and estuaries
(that now are natural reserves) along the coastal area of
the Arabian Gulf.

The highest spatial distribution of mangroves was observed to
be in the estuarine area of Umm Al Quwain, covering an area
ranging from 700 to 1200 ha, while the lowest spatial distribution
of mangrove was observed to be in Ras Al Khor of Dubai
covering an area ranging from 4 to 9 ha, where the saline tidal
flats distributed in an area is currently dominated by intensive
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FIGURE 13 | Mangrove pattern changes between 1990 and 2000 (A), 2000–2010 (B), 2010–2019 (C), and 1990–2019 (D) for the RAK natural reserves.

urbanization. Moving to the west, in Ras Al Khaima, mangroves
are mainly distributed in Mina Al Arab (south), Dafan Creek
(middle) and Shaam estuarine areas (north) (Figures 8, 11C).

In Ajman and Hammria Creeks, dispersed mangroves
occupied an area of 2.1 ha (0.0021%) in 1990, 28.42 ha (0.39%)
in 2000 and 36 ha (0.41%) in 2019. Between 1990 and 2000,
the mangroves were dispersed and occupied an area of 28.42 ha
(0.39%) (Figures 9A–D, 11D). In 2010, both types of mangroves
were clearly observed. Dense and dispersed mangroves occupied
an area of 29.88 (0.41%) and 60.39 ha (0.83%), respectively. Like
the Ajman-Hammria area, small patches of dispersed and dense
mangroves were observed in the 1990 map. Moving to Dubai,
mangrove forests were observed to be the smallest mangrove area
(Figures 9E–H).

The total area of dispersed mangroves in these three locations
was 468 ha (1.38%) in 1990, 149.22 ha (0.305%) in 2000
and 163.53 ha (0.33%) in 2019 (Figure 11D). Similarly, dense
mangrove occupied an area of 217.71 ha (0.44%) in 1990 to
187.65 ha (0.832%). These small patches of mangroves were

observed in the western edges of Ras Al Khor and occupied
an area of about 18.99 ha in 2010 and 40.95 ha in 2019,
respectively. Dense mangroves were observed to be clustered in
the southern edge of the Ras Al Khor and easily definable in
remote sensing data than the dispersed mangrove distributed
in the western edge of the Ras Al Khor. Since 1990, dense and
dispersed mangroves have gradually increased from 4.3 ha in
1990 to 94.23 ha in 2019 (Figure 11E) and spatially distributed
in the Ras Al Khor area. The dispersed mangroves were
observed to be distributed in the western part of the Ras Al
Khor, while dense mangroves were observed to be distributed
in the southwestern edge of Ras Al Khor (Figures 9, 11E).
They occupied an area of about 3.22 ha (0.51%) and 0.97 ha
(0.071%), respectively.

In Umm Al Quwain estuarine, dispersed mangrove occupied
an area of 590.22 ha (2.29%) in 1990, 453.24 ha (1.764%) in 2000
and 715.32 (2.784%) in 2019 (Figures 10, 11F). Similarly, the
dense mangrove occupied an area of 194.13 ha (0. 75%) increased
to 366.57 ha (0.42%) in 2000 and 518.58 ha (2%), then slightly
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FIGURE 14 | Mangrove pattern changes between 1990 and 2000 (A), 2000–2010 (B), 2010–2019 (C), and 1990–2019 (D) for Umm Al Quwain.

declined to 449.55 (1.74%) in 2019. In 2019, dispersed and dense
mangroves increased, occupying an area of 36 ha (0.46%) and
76.14 ha (0.91%), respectively.

Change Detection of the NUAE
Mangrove Forests
The results of monitoring mangrove changes in four periods:
1990–2000, 2000–2010, 2010–2019, and 1990–2019 with a time-
span of 10 years are shown in Figures 12–16 and their statistics
are shown in Figure 17. In Khor Kalba (Figure 12), the total
area of mangroves increased by about 10.35 ha from 1990 to
2000 and 7.47 ha (0.26%) between 2000 and 2010, and then
decreased slightly by about 0.36 ha between 2010 and 2019.
It can be noticed that although the Khor Kalba mangroves
expansion is small. The rate of growth of the Khor Kalba
mangrove remains relatively stable during the last 29 years
(Figures 12, 17).

In RAK areas, there is a negative change (mangrove loss) of
-414.27 and -334.53 ha during the periods from 1990 to 2000 and
from 1990 to 2019, respectively (Figures 13A–D). From 2000 to
2010, the mangrove increased slightly by 20.79 ha and more than
double (58.95 ha) during the period from 2010 to 2019.

In Umm Al Quwain estuarine, similar changes (mangrove
loss) were observed during the period from 2000 to 2010
(Figures 14E–H). The estimated lost area was about -
122.76 ha. Conversely, the mangrove forests increased sharply
by approximately 467.82 ha from 2010 to 2019. Between
1990 and 2019, the mangrove forests increased by about
380.52 ha (Figure 17).

Further south, the mangrove area in Ajman and Hammria
creeks increased by about 26.32 ha from 1990 to 2000, then
increased sharply by about 61.85 ha between 2000 and 2010
(Figures 15A–D). From 2010 to 2019, the mangroves increased
slightly by about 28.87 ha. Since 1990, the total area of the
mangroves increased by about 110.04 ha (1.88%).
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FIGURE 15 | Mangrove pattern changes between 1990 and 2000 (A), 2000–2010 (B), 2010–2019 (C), and 1990–2019 (D) for Ajman-Hammriah.

In Ras Al Khor of Dubai, the lowest positive changes were
observed to be during the periods from 1990 to 2000 (25.18 ha)
and from 2000 to 2010 (4.36 ha), respectively. The largest
changes were observed from 2010 to 2019 of about 60.39 ha
(Figures 16, 17). Since 1990, an increase (positive change) in the
mangrove area was reported. The estimated area of mangrove

was 89.93 ha which represents the third after Umm Al Quwain
and Ajman and Hammria Creeks. Generally, the mangrove areas
showed an increase in all locations except the RAK and Umm Al
Quwain areas. Comparing between the two mangrove ecosystems
there appears to be stability in the mangrove area faced to the Gulf
of Oman than those facing the Arabian Gulf.
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FIGURE 16 | Mangrove pattern changes between 1990 and 2000 (A), 2000–2010 (B), 2010–2019 (C), and 1990–2019 (D) Ras Al Khor, Dubai.

DISCUSSION

Evaluation of the Performance of the
Classifiers
The use and comparison of the performance of RF, KLR, NB,
and ID algorithms permitted precisely mapping, classifying,
and monitoring mangrove changes over 29 years in different
ecological systems. Among the machine learning, RF yielded
high precision, high recall and F1 score. This means that the RF
has a powerful ability to map the mangrove forests in different
ecosystems. These results also indicated that the RF and KLR
are able to detect patches of dense mangrove that represent the
majority of mangrove forests. On the other hand, NB yielded the

lowest value for the F1 score (<0.8), and thus, lower ability to
detect mangrove forests (Figure 6).

Random forest iterations predicted a slightly wider range
of mangrove forest extent compared to those by KLR with F1
scores of 0.93 and 0.90, respectively. These findings were in
good agreement with several studies that have indicated that
RF algorithm has higher accuracy compared to CART (Mondal
et al., 2019), support vector machine (SVM; Chen et al., 2020),
and maximum likelihood (Ha et al., 2020) who compared
machine learning methods against traditional classifiers and assist
potentiality of groundwater.

These findings are also in accordance with Toosi et al. (2019)
who compared different classifiers for monitoring mangrove
changes and concluded that the RF which uses freely available
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FIGURE 17 | The graphical representation of the NUAE mangrove forests extent from 1990 to 2019 (in hectare). The graph shows a significant decrease in RAK
Mangroves from 1990 to 2000 (in hectare) and a slight decrease in Umm Al Quwain Mangroves from 2000 to 2010.

Landsat images, had performed best. Feng et al. (2018)
implemented a novel change detection approach based on visual
saliency and RF from multi-temporal high-resolution remote-
sensing images. However, the opposite occurred for mapping
mangrove using traditional classifiers.

The use of freely available Landsat images offered the ability
to detect mangroves with overall accuracy comparable to the
machine learning classifiers that involved the commercially
remote sensing data such as LiDAR and WorldView-3 (Elmahdy
and Mohamed, 2018; Toosi et al., 2019). Although the LiDAR,
WorldView, and RapidEye images have high spatial resolution,
the overall accuracy of RF only reached 82% (Ha et al., 2020).
Other studies confirmed that the rotation forest (RoF) algorithm
had a higher accuracy than the canonical correlation forest (CCF)
in LULC classification, which has less sensitivity compared to the
RF algorithm (Colkesen and Kavzoglu, 2017; Ha et al., 2020).

The proposed approach represents a significant modification
in mangroves and LULC, as well as an enhancement of the
performance of linear and non-linear classifiers. The machine
learning algorithms, especially, when optimized, have their
robust and a higher efficiency and quality of classification
(Coppin and Bauer, 1996; Banfield et al., 2006; Wang et al., 2015;
Gong et al., 2019).

The wide availability and ease of implementation of machine
learning and free availability of Landsat images permitted an
exceptional simplicity in processing vast amounts of remote
sensing data promptly and at low costs (Elmahdy et al., 2019;
Mondal et al., 2019).

Mangrove Classification
The use of machine learning algorithms and Landsat images
provides up-to-date mangrove maps over multiple scales and
able to discriminate between mangrove and non-mangrove areas
and dense mangrove and dispersed mangrove patches than

currently available. Between 1990 and 2019, the largest increase
in mangrove forest extent occurred in the Umm Al Quwain
Estuarine (1200 ha), while the largest decrease occurred in Dubai
Natural Reserve (9 ha). Locally, these results are consistent with
Su et al. (2009), Martins et al. (2016), Elmahdy and Mohamed
(2018), and Gong et al. (2019) who optimized SVM, SAM, and
RF classifiers and much more precisely than those mapped by
Moore et al. (2013) using manual screen digitizing and field
observations. This result is not consistent with our results, which
indicated the mangrove of Khor Kalba was over 800 ha. The maps
produced by Moore et al. (2013) had a lot of errors and bias and
cannot be used as a reference. However, our results permitted
better understanding of the NUAE mangrove’s extent and can be
updated in any future study, as well as building a new framework
of the change detection. The proposed approach provides a better
accuracy by reducing the level of noise associated with remote
sensing data and helping in discriminating between mangrove
and non-mangrove areas.

Mangrove Change Detection
During change detection, we observed that the ID algorithm
using pair of bi-temporal mangrove classification of images
with a threshed value between -1 and +1, is better than other
algorithms such as an image to map and map to map (Elmahdy
and Mohamed, 2018; Ma et al., 2019). The ID minimizes the
errors created in one or two of the classification maps detecting
greater presence pixels (+) and absence pixels (-) than those
detected by image to map and map to map approaches. These
approaches suffer from error propagation and differences in
image calibration between Landsat sensors.

The rapid changes in mangrove forests during the period
from 2010 to 2019 are much more than those during the
period from 1990 to 2000. These changes are due to localized
plantation activities and increased public and the local authorities
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awareness and conservation efforts during the last decade (Food
and Agriculture Organization of the United Nations, 2007;
Loughland et al., 2007; Howari et al., 2009). Additionally, most
of the mangrove forests are natural reserve and inaccessible
areas. The mangrove forests play a vital role in ecosystems,
supporting biodiversity and protecting coastal areas from erosion
and storms. Mangrove forests have an incredible ability to store
blue carbon in soil and subsoil and removing carbon from
the atmosphere and the Arabian Gulf (Food and Agriculture
Organization of the United Nations, 2007; Loughland et al., 2007;
Howari et al., 2009). The soil of the United Arab Emirates stocks
about 25% quantile of other sites globally (Schile et al., 2017).

The results of mangroves change detection show a significant
change in mangrove forests facing the Arabian Gulf, while a slight
increase in mangrove forests facing the Gulf of Oman, possibly
due to lower human activities and urbanization, lower sea surface
temperature (SST), lower sea surface salinity (SSS; Freeman et al.,
2008; Elmahdy and Mohamed, 2018; Noori et al., 2019), and the
coarser soil texture (Ooi et al., 2011; Rodriguez et al., 2016). These
factors strongly influence the spatial distribution and density of
mangrove forests and thus the carbon pools (Schile et al., 2017).

A low-cost remote sensing approach that integrates machine
learning and ID algorithms have not been employed for
mapping and monitoring mangroves extent over different
ecological systems for the first time. The proposed approach is
of great benefit for monitoring mangrove changes in remote
and inaccessible areas where ecological and environmental
information are unavailable, and the need for shoreline
protection and fish breeding is critical. It performs very well
in coastal and inland areas as well as the dense and dispersed
mangroves. The main limitation of the proposed approach and
Landsat images is that it cannot identify mangrove species,
heights and small patches of mangroves in a submerged form.
In future research, it might be interesting to estimate mangrove
height using dual HH/VV SAR data and coastal survey using
Lidar data, and compare the results from that study with those
from the current study. Future studies will assess and investigate
the impact of the climate and environment on landscape change.

CONCLUSION

This study presented an integration approach based on learning
RF with training data with a higher spatial resolution, RF optimal
parameterization and applying a post-classification enhancement
to the produced mangrove maps. The best parameters were
7 for sample node, 0 for tree depth and 75 for a tree in
a forest. The results indicated that the integration approach,
which uses Landsat images, is able to discriminate mangrove
and non-mangrove areas and had an overall accuracy of more

than 90% with an increase of 6.7% compared with supervised
classifications. The results also demonstrated that the NUAE
mangroves increased in all locations over the last 29 years. The
majority of the NUAE mangroves are spatially distributed in the
western coastal area than those in the eastern coastal area and
the dense mangrove is much more than dispersed mangrove and
much easier to discriminate and map. The mangrove forests of
Khor Kalba facing the Gulf of Oman are more stable than those
facing the Arabian Gulf. The highest distribution of mangroves
was observed to be in the Umm Al Quwain estuarine, occupying
an area of 1200 ha, while the lowest distribution of mangrove
was reported to be in Ras Al Khor of Dubai covering an area
of about 9 ha. Although there is a rapid change in the built-
up area along with the eastern and western coastal areas of the
NUAE, the mangroves had increased in sites of the NUAE and
predicted to increase further over the next decade. The proposed
approach can be applied to any area in arid and semi-arid regions
and the results can be used as reference maps and updated
by future studies as well as to provide useful ecological and
environmental information.
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Due to the occurrence of more frequent and widespread toxic cyanobacteria events,

the ability to predict freshwater cyanobacteria harmful algal blooms (cyanoHAB) is

of critical importance for the management of drinking and recreational waters. Lake

system specific geographic variation of cyanoHABs has been reported, but regional and

state level variation is infrequently examined. A spatio-temporal modeling approach can

be applied, via the computationally efficient Integrated Nested Laplace Approximation

(INLA), to high-risk cyanoHAB exceedance rates to explore spatio-temporal variations

across statewide geographic scales. We explore the potential for using satellite-derived

data and environmental determinants to develop a short-term forecasting tool for

cyanobacteria presence at varying space-time domains for the state of Florida. Weekly

cyanobacteria abundance data were obtained using Sentinel-3 Ocean Land Color

Imagery (OLCI), for a period of May 2016–June 2019. Time and space varying

covariates include surface water temperature, ambient temperature, precipitation, and

lake geomorphology. The hierarchical Bayesian spatio-temporal modeling approach in

R-INLA represents a potential forecasting tool useful for water managers and associated

public health applications for predicting near future high-risk cyanoHAB occurrence given

the spatio-temporal characteristics of these events in the recent past. This method is

robust to missing data and unbalanced sampling between waterbodies, both common

issues in water quality datasets.

Keywords: harmful algal blooms, cyanobacteria, hierarchical Bayes, integrated nested Laplace approximation,

remote sensing, predictive modeling

INTRODUCTION

Harmful algal blooms are environmental events that occur when algal populations achieve
sufficiently high density resulting in possible adverse ecological and public health effects
(Smayda, 1997). Harmful cyanobacteria blooms (cyanoHABs) are made up of naturally
occurring photosynthetic prokaryotes found in various aquatic systems and can produce toxins
(cyanotoxins). Toxic cyanoHABs are common components of Florida’s surface waters and have
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been identified since the late 1980s (Carmichael, 1992; Chapman
and Schelske, 1997; Burns, 2008) in Florida’s freshwater and
brackish environments, including those used for recreation,
source waters used for drinking water supply, and finished
drinking waters (Williams et al., 2001, 2007; Florida Fish
Wildlife Conservation Commission, 2017). Florida freshwater
cyanoHABs have consisted primarily of the genera Microcystis,
Anabaena, and Cylindrospermopsis and their associated toxins:
microcystins, anatoxin-a, and cylindrospermopsin, respectively
(Burns et al., 2002; Phlips et al., 2002). Upon numerous sampling
occasions, microcystin levels in Florida’s recreational waters
have exceeded the existing World Health Organization (WHO)
(Chorus and Bartram, 1999; World Health Organization, 2003)
and EPA (US EPA, 2019) guidelines for cyanobacterial toxins,
underscoring the potential impact of cyanoHABs on public
health (Williams et al., 2007).

Several of Florida’s largest aquatic systems including Lake
Okeechobee (Havens et al., 1998; Havens and Steinman, 2015);
the Harris Chain of Lakes (Williams et al., 2001, 2007); and
the St. Johns, St. Lucie and Caloosahatchee (Glibert et al.,
2006; Boyer and FitzPatrick, 2016; United States Army Corps
of Engineers, 2016) rivers have experienced the increasing
adverse impacts of cyanoHABs. In 2005, the St. Johns County
Department of Health released Florida’s first official health
alert for a toxigenic harmful algal bloom. In response, the St.
Johns River Water Management District began routine daily
sampling and issued weekly releases informing the public of
high microcystin concentrations and risk (Williams et al., 2007).
In July 2016, concentrations (4.5mg L−1) of microcystin were
detected in the river-dominated Caloosahatchee and St. Lucie
estuaries following very heavy rainstorms in Florida (Oehrle et al.,
2017). Strong storms resulted in reservoir operators increasing
the outflow from Lake Okeechobee causing the incursion of a
toxic M. aeruginosa bloom into the St. Lucie Estuary (Boyer and
FitzPatrick, 2016; United States Army Corps of Engineers, 2016).

Identification and quantification of the environmental factors
that contribute to the proliferation of cyanoHABs in freshwater
systems continues to be a topic of scientific research. It is
generally understood that dense concentrations of cyanoHABs
result from a combination of excess total anthropogenic nutrient
loads, particularly phosphorus (Michalak et al., 2013). Other
factors that can be important drivers of cyanoHAB abundance are
positive associations with lake depth, water column stability, and
water temperature (Paerl and Huisman, 2008; Taranu et al., 2012;
Beaulieu et al., 2013) and a negative association with wind speed
(Millie et al., 2014). Landscape alterations such as urbanization
or agricultural practice can change sediment loading and further
alter nutrient availability in watersheds (Lunetta et al., 2015).

Modeling efforts to identify and predict harmful algal blooms
have used several approaches, including classical multivariate
analysis with LOWESS smoothing (Downing et al., 2001),
continuous artificial neural networks (Millie et al., 2014), linear,
non-linear, and mixed-effect models (Beaulieu et al., 2014), and
Bayesian modeling (Obenour et al., 2014).

These data-driven modeling efforts do not address spatial and
temporal correlation in bloom occurrence. Failure to account
for spatial and temporal autocorrelation violates the assumption

of independent and identically distributed data and may lead
to biased model estimates. Further, incorporating Bayesian
inference into predictive models allows inclusion of prior
knowledge, either through literature review and expert opinion
or by using mathematical techniques to generate informative
priors. We therefore aim to improve upon cyanoHAB models
by addressing spatio-temporal correlations using Bayesian
hierarchical models, leading to estimates of explanatory variable
effects that are more reliable for scientific inference.

The integrated nested Laplace approximations (INLA)
method (Rue et al., 2009) offers a simple way to compute
complicated hierarchical models that include spatial and
temporal structure. Large computational times remain a major
drawback of modeling spatial correlation. However, a recent
solution has been developed using stochastic partial differential
equations (SPDE) to provide a faster and computationally
cheaper solution to these modeling problems (Lindgren et al.,
2011). R-INLA is a modeling framework developed and
implemented for the statistical software R (R Core Team, 2015)
that allows complex Bayesian spatial modeling with far fewer
computational resources than previous approaches (Rue et al.,
2017). One benefit of R-INLA is that it is applicable at any
spatial and/or temporal scale. The SPDE approach allows the
user to model spatial correlation and constructs flexible fields
that are better able to handle complex spatial structures than
alternative spatial correlation models such as kriging (Cameletti
et al., 2013), making this approach appropriate for inland
waterbody modeling because we see both regional clustering of
blooms and vast areas of water and land with no cyanobacteria
observations. See Supplemental Material 2, Statistical Appendix
for definitions and discussion of these statistical terms.

In this study, we apply Bayesian spatio-temporal models using
R-INLA for the purposes of mapping and predicting exceedance
probabilities of World Health Organization (WHO) high-risk for
recreational exposure blooms (>100,000 cells/mL) in lakes across
Florida. Mapping state level cyanoHAB exceedance probabilities
identifies areas where estimates are higher or lower than the state
average and provides insight through visualization of patterns in
both space and time in addition to inferences drawn from the
effects of predictor variables.

METHODS

Study Area
This study was conducted for 103 lakes in the state of Florida,
United States. Lakes and waterbodies within three Water
Management Districts: St. Johns River, Southwest Florida, and
South Florida, were included in the analysis (Figure 1). Lake
water pixels were extracted using the USGS/EPA Hydrography
Dataset Plus (NHDPlus) version 2 (http://www.horizon-
systems.com/nhdplus/NHDplusV2_home.php). All NHDPlus
features classified as lakes and reservoirs were selected using
U.S. Environmental Protection Agency’s 2012 National Lakes
Assessment (NLA) site evaluation guidelines. Lakes in the
NHDPlus shapefile with a minimum of three 300m water
pixels remaining after a land adjacency QA flag was applied
were considered resolvable waterbodies. The number of pixels
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FIGURE 1 | Florida study area containing inland lakes and reservoirs.

included in each water body ranged from 3 to 14,499. The mean
andmedian number of pixels in each water body were 228 and 23,
respectively. The number of pixels in each water body considered
in the analysis are provided in Supplemental Material 2.
Waterbodies classified as intermittent, estuarine, rivers, streams,
or waterbodies with a surface area <27 hectares are considered
“unresolvable water” and thus QA flagged based on NLA criteria.
Waterbodies with missing data were excluded from statistical
analysis. The OLCI satellite scene extent for our study area
is located within the NLA Coastal Plain (CPL) ecoregion.
According to findings from the 2012 NLA report, 23% of lakes
within the CPL ecoregion pose a high risk to exposure of
cyanobacteria and cyanotoxins (US EPA, 2009).

Satellite-Derived Cyanobacteria Data
Acquisition and Preparation
Satellite-derived cyanobacteria abundance data was obtained
from Sentinel-3 imagery from May 2016 through May 2019
(n = 217 weeks). Standard OLCI Level-1B data were obtained

from the NASA Ocean Biology Processing Group (https://
oceandata.sci.gsfc.nasa.gov). Sentinel-3 OLCI Florida granules
were in the time window of 15:20–16:00 with a frame along
track coordinate of 2,520. The cyanobacteria index (CI) was
calculated using a spectral shape curvature method, as originally
described in Wynne et al. (2008), updated in Lunetta et al.
(2015), and algorithm progression fully detailed in Coffer et al.
(2020). The CI-Multi value is then converted to cyanobacteria
abundance (cells/mL) as described in Wynne et al. (2010). This
algorithm was previously validated across Florida watersheds
(Lunetta et al., 2015; Tomlinson et al., 2016). Composite
images of the maximum cyanobacteria abundance at each
resolvable satellite pixel were obtained from the individual scenes
within sequential 7-day (1 week) periods. Weekly maximum
cyanobacteria abundance was used to minimize the effect
of clouds or wind that might otherwise reduce detection
of the bloom. Many cyanoHAB genera such as Microcystis,
Aphanizomenon, and Dolichospermum have buoyancy control
and will typically float to the surface in the day in the absence

Frontiers in Environmental Science | www.frontiersin.org 3 November 2020 | Volume 8 | Article 58109134

https://oceandata.sci.gsfc.nasa.gov
https://oceandata.sci.gsfc.nasa.gov
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Myer et al. Harmful Algal Blooms in Lakes

of strong winds (Visser et al., 2015). Wind can mix the blooms
into the water column, diluting the surface concentration seen
by the satellite (Wynne et al., 2010). Mishra et al. (2005) found
satellite measures in the red region, similar to the CI-multi,
typically only penetrate to a depth of 2m or less. The OLCI
sensor was selected because of public availability of data, spectral
range to support deriving cyanobacteria concentrations, and 2–3
day repeat cycle (Urquhart and Schaeffer, 2020). For each water
body, the satellite-derived cyanobacterial counts were averaged
spatially each week to obtain one summary observation. This
1-week averaging and spatial aggregation was necessary due to
cloud cover and satellite repeat cycles, though it results in a
loss of information relative to using all available cyanobacterial
abundance measurements without averaging and may cause
short-term blooms to be missed.

Covariates
We limited covariates that were relevant to cyanobacterial growth
and were readily available at the state and U.S. national scale
on a weekly basis for operational forecasting. Land use and
nutrients are not readily available on a weekly time frame for the
continental US. In addition, nutrient transport and availability is
complex and system specific, with data lacking for most systems.
Wind speed and direction were not included as it was not
available for the entire OLCI time period during our analysis.

We retrieved and processed raster and GIS datasets into a set
of covariates for the state of Florida at 300m× 300m resolution.
These data were identified in our review of the cyanobacterial
modeling literature as environmental determinants likely to
be associated with cyanobacteria bloom occurrence including
ambient temperature, surface water temperature, precipitation,
and static geomorphic lake conditions (Table 1). All data
were obtained from public sources. We scaled all covariates
to the same resolution as our satellite imagery in order to
exclude measures along the land and water interface, because
we masked our lake imagery with a 300m buffer to exclude
mixed pixel contamination. Landsat surface water temperature
(WTEMP) was upscaled from 30 to 300m, while PRISM
precipitation (PRECIP) and ambient air temperature (ATEMP)
were downscaled from 4 km to 300m. Upscaling is a process
that transfers information from local scale to large scale.
Downscaling, conversely, transfers from large scale to local
scale. Processes that are heterogenous at small scales become

homogenous at larger scales. All covariate data were temporally
binned into weekly means by taking the arithmetic mean
of 7 days within the numerical week (1 through 53) that
bound each observation. Due to cloud cover and non-uniform
scene acquisition, the monthly climatology of the Landsat
Analysis Ready Data (ARD) surface water temperature product
(Cook et al., 2014; Schaeffer et al., 2018) was used when the
corresponding weekly data were not available. Spatial geographic
coordinates were represented in kilometers using the Albers
equal-area conic projection. Parameter-elevation Regressions
on Independent Slopes Model (PRISM) mean, maximum, and
minimum air temperatures and precipitation for North America
was downloaded from the Oregon State PRISM Climate Group
(PRISM Climate Group, 2004) through June 2019. Landsat
ARD surface temperature was downloaded through USGS Earth
Explorer through May 2019 in horizontal tiles 25, 26, and 27 and
vertical tiles 16, 17, and 18.

All variables were averaged over all resolvable pixels within
each water body each week, resulting in one summary
observation per week for each water body. To aid in
interpretation of relative variable influences on the response,
predictor variables were centered and scaled by subtracting the
mean and dividing by the standard deviation, transforming them
into Z-scores. On this scale, a value of zero represents the mean,
the units are standard deviations from the mean, and the value
of the variable’s coefficient in the model represents the effect in
log-odds of a one standard deviation increase.

To identify the set of predictor variables most appropriate
for modeling inland cyanobacterial bloom presence in
Florida, we used non-spatial generalized linear models
(Supplementary Formula 4), implemented in the R glmulti
package (Calcagno and de Mazancourt, 2010), confirming
the choice using stepwise-selection implemented in the R
stepAIC package (Ripley, 2002). In this way, we constructed
all possible non-redundant models with every combination
of covariates. The best model was determined using Akaike’s
information criterion (AIC, Supplementary Formula 6), which
is an estimator of out-of-sample prediction error and is used for
model comparison (Akaike, 1998). See Supplementary Material

for a discussion of the use of AIC. This step eliminated two
variables, Maximum Lake Depth and Estimated Lake Volume.
The best model, with the resulting fixed effect variables, was then
used in the Bayesian spatio-temporal model.

TABLE 1 | Summary information for environmental datasets used for covariate selection.

Source Variable name Abbreviation Units Resolution

PRISM (Daly et al., 1997) Air temperature ATEMP Degrees celsius (◦C) 4 km; daily

Precipitation PRECIP Millimeters rainfall (mm) 13.8 km; hourly

Landsat Analysis Ready Data

(ARD) (Cook et al., 2014)

Surface water temperature WTEMP Degrees celsius (◦C) 30m; 16 and 8-day

lakeMorpho R-package (Hollister

and Stachelek, 2017)

Surface area Area Square meters (m2 ) Static

Mean lake depth dMean Meters (m) Static
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Hierarchical Bayesian Model Specification
and Accuracy
We employed a hierarchical Bayesian spatio-temporal model
to estimate exceedance probability over the WHO high-
risk threshold with respect to environmental predictors. The
response variable was the presence or absence of a high-risk
cyanobacteria bloom, defined as a waterbody-wide average cell
count above 100,000 cells/mL. Bayesian parameter estimates
and prediction in the form of marginal posterior probability
distributions were obtained via the R-INLA approach. For
this study, weakly informative penalized-complexity priors
were generated for all regression coefficients (fixed-effect
parameters) and hyperparameters, allowing our large number of
observations (n = 11,096) to inform the posterior distributions
(Simpson et al., 2017). For the temporal component, we
used a first order temporal autoregressive process (AR1,
Supplementary Formula 5), which models the effect of time
on bloom probability in each location as a function of the
concentration in the previous week at that location plus an
error term (Potzelberger, 1990). Spatial covariance was addressed
using the INLA SPDE approach (Lindgren et al., 2011). The
spatial effect represents residual error that can be attributed to
location and may reflect the influence of an unmeasured or
unmeasurable predictor that varies in space. We used a binomial
logistic spatiotemporal model to predict harmful algal blooms
(Formula 1).

logit
(

yst
)

= β1X1 + . . . + βnXn + us + µt

Formula 1. Generalized model structure for a binomial logistic
model with spatial and temporal components.

yst is the odds in favor of harmful bloom exceedance at
location s and week t, β1, ..., βn are the n regression coefficients,
X1, ..., Xn are the n fixed independent variables, us is the value of
the spatial random effect at location s, and µt is the value of the
AR1 temporal random effect at time t. The logit is the logarithm
of the odds in favor of an event and is also referred to as log odds.
The βn coefficients are in the logit or log-odds scale, which can be
converted to probabilities as shown in Formula (2).

P (event) =
elog−odds

1+ elog−odds

Formula 2. Converting log-odds to probability.
The odds were converted to probabilities of harmful

algal bloom exceedance for model evaluation and predictive
performance evaluation. A comprehensive mathematical
overview of INLA SPDE can be found elsewhere (Rue et al., 2009;
Lindgren and Rue, 2015). More detailed technical explanations of
INLA SPDE applied to ecological and epidemiological modeling
are available (Cosandey-Godin et al., 2014; Khana et al., 2018;
Myer and Johnston, 2018). See Supplementary Material for a
general discussion and explanation of the statistical methods
used in this study along with definitions and further equations.

The utility of the spatial and temporal effects was assessed by
fitting the model with and without random effects. The models
were compared using the Deviance Information Criterion (DIC,

Supplementary Formula 7) to determine if the inclusion of
the spatial and temporal effects improved model fit. Model
performance was evaluated through holdout cross-validation in
which the dataset was divided into three compartments: 80% of
the data was randomly selected for training, 20% of the data was
held out for validation, and the most recent week of data available
at the time of the study was obtained for prediction. The model
was created based on the training data only, and then model
predictive power was assessed on the validation and prediction
datasets. Model predictive power was determined by calculating
the Area Under Curve (AUC), and by evaluating the sensitivity
(true positive rate, Supplementary Formula 8), and specificity
(true negative rate, Supplementary Formula 9) in predicting the
holdout validation and prediction datasets after optimizing the
logistic cutoff. Cutoff optimization, which chooses a value for the
logistic predictor above which we consider a bloom prediction
as positive, was performed by maximizing Youden’s index on the
validation dataset. Youden’s index, sometimes referred to as the
J-statistic, is defined in Formula (3).

J = sensitivity+ specificity− 1

Formula 3. Youden’s Index, or the J-statistic. Maximizing the
value of this statistic provides the maximum overall accuracy for
a binomial predictor.

Youden optimization attempts to find the cutoff at which
sensitivity and specificity are balanced and at a maximum. All
statistical analyses were conducted using R 3.3.4 on a compute
cluster with 128 nodes and 4,096 cores.

RESULTS

The likelihood of high-risk cyanoHAB presence was estimated
for 103 lakes and waterbodies in Florida. The number of high-
risk blooms in individual lakes across Florida ranged from
0 to 146 weeks from 2016 to 2019 (Figure 2). During the
study period, 22.5% of total bloom weeks were classified as
high risk (n = 3,149 bloom weeks). Average waterbody-wide
cyanobacterial concentration in lakes classified as high-risk was
376,504 cells/mL, more than three times the WHO “high”
threshold of 100,000 cells/mL.

Model Selection
The model fit of our four candidate models was evaluated using
the Deviance Information Criterion (DIC), with lower DIC
values indicating better fit (Table 2). All four models included
the same fixed effect predictors. The first model (M1), a non-
hierarchical baseline model that did not incorporate random
effects nor correlation features, exhibited a DIC of 14,195 and
a ∼7 s computation time. The addition of a temporal effect
(M2) improved the DIC value and only slightly increased
the computation time. The addition of a spatial component
(M3) dramatically improved the DIC value, but approximately
quadrupled computation time. The addition of the spatial
and temporal autocorrelation structure (M4) further improved
the DIC value but increased the computation time to ∼53 s.
We concluded that computational time was not an issue of
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FIGURE 2 | Choropleth map of the number of high-risk bloom weeks in Florida lakes from 2016 to 2019.

TABLE 2 | Models considered with corresponding performance information.

Model Model description DIC Computation

time (s)

M1 Non-hierarchical model 21,381 ∼7

M2 Temporal component only 21,294 ∼10

M3 Spatial component only 7,758 ∼45

M4 Spatial + temporal model 7,601 ∼53

concern with this model, due to the favorable computational
characteristics of the INLA SPDE method. Thus, the M4
hierarchical model with a full set of time varying, fixed effect
covariates and spatio-temporal correlation effects provided the
best model fit and was selected as the best model with subsequent
results presented as follows.

Fixed Effect Covariates
The mean posterior coefficients of the fixed effect covariates
are presented in log-odds and signify the estimated response
to a one standard deviation change in the predictor variable
when all other variables are held constant. For the purposes
of determining statistical importance, we utilized an alpha
level of 0.05 and considered a variable with a 95% credible

interval that did not encompass zero to have an important
effect on the response. Using stepwise-selection and the
resulting AIC values, ambient air temperature, surface water
temperature, precipitation, lake area, and mean lake depth
were selected as fixed effect predictors in the bloom estimation
models (Supplementary Table 1). Fixed effect coefficients and
95% Bayesian credible intervals for the covariates included
in the full spatio-temporal model (M4) are provided in
Table 3. Posterior distributions of these fixed effect variables
are presented as log-odds of the scaled covariate variables.
As expected, a significant positive association is observed
between surface water temperature (WTEMP) and high-risk
bloom presence in Florida. For a one standard deviation
increase in surface water temperature (6.23◦C), the expected
change in high-risk bloom log odds is 0.17 (or 1.18 times
greater odds). Further, mean lake depth (DMEAN) exhibited a
significant positive association with high-risk bloom presence,
with an increase in one standard deviation (0.75m) leading
to an expected increase in log odds of 2.70 (or 14.88 times
greater odds). Ambient air temperature (ATEMP) had a
significant and negative effect on the likelihood of high-risk
bloom presence in Florida, with a one standard deviation
increase in ambient air temperature (4.79◦C) resulting in
change in high-risk bloom log odds of −0.23 (or 0.79 times
lower odds).
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TABLE 3 | Posterior estimates (mean, St. Dev., quantiles) for fixed effects.

Variable Mean posterior St.

Dev.

0.025 0.5 0.975

ATEMP −0.23 0.07 −0.37 −0.23 −0.08

WTEMP 0.17 0.05 0.08 0.17 0.26

PRECIP −0.01 0.04 −0.09 −0.01 0.07

AREA −0.11 0.66 −1.40 −0.11 1.19

DMEAN 2.70 0.52 1.68 2.70 3.72

TABLE 4 | Posterior estimates (mean, St. Dev., quantiles) for random effects.

Parameter (random effect) Posterior mean St. Dev. 0.025 0.5 0.975

Temporal variance 0.19 0.09 0.05 0.15 0.62

Spatial variance 38.51 7.85 25.63 37.61 56.35

Spatial correlation range ρ 16.76 3.44 10.72 16.54 24.14

AR (1) parameter α 0.90 0.09 0.68 0.92 0.99

Random Effects and Hyperparameters
The temporal model component (Figure 3) shows how the
temporal effect on the odds of a high-risk bloom event vary
throughout the year. This effect represents residual error that
can be attributed to time and can be interpreted as the influence
in the model of an unmeasured or unmeasurable predictor that
varies in time. The log odds of high-risk bloom presence were
higher from spring (week 15, approximately April 6) to late
summer (week 35, approximately August 17) all other variables
held constant. The posterior mean of the AR (1) parameter
indicated an autocorrelation effect of 0.90 (95% CI = 0.68:0.99),
which indicates that the temporal effect depends strongly on
previous values and does not change quickly throughout the year
(Table 4).

The spatial random effect (Figure 4) indicates that there is a
significant amount of spatial variation in the mean concentration
of cyanoHABs in lakes across Florida. The spatial random effect
represents residual error that can be attributed to location and
may reflect the influence of an unmeasured or unmeasurable
predictor that varies in space. The posterior estimates (mean,
standard deviation, 95% CI) for the random hyperparameters are
collected in Table 4. The variance of the spatial effect showed
a wide posterior distribution (95% CI = 25:56), indicating that
the variability in bloom odds attributable to location is high.
The posterior mean of the spatial correlation range (the distance
at which spatial correlation declines to ∼0.1) was 16.8 km
with a standard deviation of 3.4 km. This range indicates the
approximate distance between lakes within which the odds of an
algal bloom can be considered correlated.

Model Performance
In order to test the performance of the final spatio-temporal
model (M4), we used holdout data to determine if M4 correctly
estimates the observed data in space and time. Twenty percent
(20%) of the data were randomly set aside as a holdout validation

TABLE 5 | Results of the statistical evaluation metrics obtained using a cutoff

point of 0.365.

Metric Validation dataset Prediction dataset

AUC 0.95 0.89

Sensitivity 0.88 0.82

Specificity 0.88 0.82

Accuracy 0.88 0.82

dataset (n = 2,775 observations). Instead of using an arbitrary
cutoff threshold to assign the predicted high-risk bloom value
as positive or negative, we calculated a Youden-optimized cutoff
point of 0.365. Traditional logistic model evaluation statistics
including Area Under Curve (AUC), sensitivity (true positive
rate), and specificity (true negative rate) provide insight into the
model performance for both holdout dataset scenarios (Table 5).
An AUC > 0.5 indicates that the model predicts better than
chance alone. The resulting AUC between observations and
predictions of the holdout validation dataset was 0.95, sensitivity
was 0.88, specificity was 0.88, and accuracy was 0.88.

Prediction
For practical application reasons, we were also interested in
assessing the model’s capability to predict or forecast future
bloom presence for a week in which the model was untrained.
Predictive power of M4 was tested by reserving response and
fixed effect data for the most recent week of available data at the
time of analysis (May 27th through June 2nd, 2019) as a holdout
prediction dataset (n = 103 observations). The resulting AUC
between observations and predictions of the holdout prediction
dataset is 0.89, sensitivity is 0.82, and specificity is 0.82 (Table 5).
Our prediction objective was to get a probability of high-
risk bloom exceedance, for a given week, using a threshold of
100,000 cyanobacteria cells/mL. As expected, higher exceedance
probabilities are detected in lakes with >100 bloom weeks such
as Lake Apopka located in central Florida (Figure 5).

DISCUSSION

Here we present a hierarchical Bayesian spatio-temporal
modeling approach in R-INLA to estimate the likelihood of high-
risk cyanoHABs in Florida inland waterbodies. Using DIC to
evaluatemodel performance, the full spatio-temporalmodel (M4,
Table 2) was selected as the best model and used to forecast
the likelihood of bloom occurrence across Florida lakes for a
week outside of the dataset, with AUC 0.93 (Table 5). The spatial
random effect (Figure 4) identified residual error attributed to
location that may reflect the influence of an unmeasured or
unmeasurable predictor that varies across the landscape. The
variance of the spatial effect also indicated the variability in
cyanoHAB bloom odds for each lake is high. The distance at
which spatial correlation declines below a meaningful threshold
(0.1) indicates ∼17 km as the inter-lake distance within which
the odds of cyanoHAB can be considered correlated. Because
our model did not include any measures of nutrient input or
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FIGURE 3 | Mean AR (1) temporal trend corresponding to week of year across all study years and lakes. The shaded area represents the 95% credible interval.

land use, we believe that it is likely the spatial component of
the model is related to land cover and its resultant effect on
eutrophication. This landscape effect varies at long spatial scales
and is known to have a significant effect on the likelihood of
cyanoHABs (Doubek et al., 2015; Marion et al., 2017). Another
related possibility is that the spatial correlation represents the
distance between watersheds experiencing similar environmental
stressors such as nutrient input, making the lakes fed by those
watersheds more similar in terms of cyanoHAB risk.

Water surface temperature had a positive effect on cyanoHAB
risk, an association that has been observed in many studies to
date (Paerl and Huisman, 2008; Wynne et al., 2010; Kosten
et al., 2012; Taranu et al., 2012; Beaulieu et al., 2013; Cha et al.,
2017). Several mechanisms operate concurrently to the advantage
of cyanobacteria at higher water temperatures. The optimal
temperature for cyanobacterial growth and photosynthesis is
above 20◦C, with some species experiencing optimal growth
at 30◦C or higher (Konopka and Brock, 1978; Lürling et al.,
2013; Giannuzzi et al., 2016; Melina Celeste et al., 2017). At
high temperatures cyanobacteria have a competitive advantage
over green algae, diatoms, and other phytoplankton which favors
cyanobacteria dominance. However, some common species of
cyanoHAB in the genus Microcystis have been found to produce
fewer toxins at high temperatures which may mitigate health
risks (Runnegar et al., 1983; Rapala et al., 1997; Melina Celeste
et al., 2017), although these findings are disputed (Lehman et al.,
2008; Davis et al., 2009). Bloom-forming cyanobacteria contain
many cylindrical gas vacuoles that impart buoyancy (Walsby,
1977). This buoyancy causes the cells to float to the surface

where they are exposed to more light and can outcompete
sinking phytoplankton, and there is evidence that increased water
temperature improves the ability of cyanobacteria to stay afloat
(Kromkamp et al., 1988; Huisman et al., 2004).

Contrary to our expectations, mean lake depth (DMEAN) was
a strongly positive correlate of cyanoHAB bloom odds. Our prior
belief was that a shallower lake would have a diminished capacity
to buffer changes in nutrient input, leading to a heightened risk
for HAB blooms. However, in our data this does not seem to be
the case. The lakes in our dataset, and Florida lakes in general,
are shallow. The average lake in our study had a mean lake depth
of only 0.75m, and the deepest lake had a mean depth of 3.68m.
To contextualize the large positive coefficient of the lake depth
effect, we note that an increase in mean depth of 0.75m, the unit
of increase in our model, represents a doubling in depth for the
average lake. Satellite penetration in the red spectrum is 2m or
less in oligotrophic waters (Mishra et al., 2005). Given the focus of
our model on cyanoHABs at the>100,000 cells/ml threshold, the
penetration depth is likely only a few centimeters. It is possible
that optically shallow water could cause bottom reflectance or
benthic cyanobacteria could cause artifacts. However, Coffer et al.
(2020) found the satellite derived phenology of cyanobacteria in
Florida followed well-accepted ecological trends and a few lakes
that had a peak of biomass in the winter were supported by
independent field observations.

Classic models of lake eutrophication posit a strong effect
of mixing between the epilimnion and hypolimnion (O’Melia,
1972; Imboden, 1974). Deep lakes are considered to have a
greater inertia with respect to changing nutrient conditions;
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FIGURE 4 | Mean of spatial random effect mapped across lakes in Florida. Lakes with relatively higher log-odds of a high-risk cyanobacteria bloom are indicated with

warm colors, while cool colors represent lakes with relatively lower log-odds of high-risk blooms.

FIGURE 5 | Map of mean (A) and standard deviation (B) of probability of exceedance of high-risk bloom event for the week of May 27, 2019 through June 2, 2019.

Imboden called this effect a “memory” and found that deep lakes
take longer to change from oligotrophy to eutrophy and vice-
versa. Shallow lakes do not form the distinctive temperature-
delineated layers of a stratified lake and are polymictic:
experiencing constant mixing by wind and temperature that

leaves the water at a generally homogenous state. This mixing
leads to resuspension of nutrients from sediment a higher
nutrient load in the water column (Taranu and Gregory-
Eaves, 2008; Liu et al., 2012). The lakes in our study are not
deep enough to stratify and should be considered polymictic.
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Because all of our lakes are shallow, nutrients cannot sequester
within the hypolimnion and sediment and the association
between depth and oligotrophy found in stratified lakes does
not apply.

In a study of cyanobacteria growth in shallow lakes (<6m),
Kosten et al. found similar results to our study, with water
temperature predicting a higher proportion of cyanobacteria
among the phytoplankton community (Kosten et al., 2012). A
study of the National Lake Assessment dataset, containing 1,147
lakes and spanning the continental U.S., found that when lakes
were divided into shallow (<6m) or deep, their models were
less able to predict cyanobacterial concentrations in the shallow
lakes (Beaulieu et al., 2013). Associations of HAB volume with
nitrogen content and water temperature were consistent across
all lakes, but there was a decrease of two-thirds in variation
explained when lakes were shallow. A national-scale study in the
United Kingdom that investigated both shallow and deep lakes
suggested that water residence time, a correlate of depth, was
a positive predictor of HAB biovolume, especially in lakes with
significant opacity (Carvalho et al., 2011). An in-depth study
of a shallow (mean depth 1.2m), warm, polymictic lake in the
Mediterranean that was substantially similar to the lakes in our
study found that water residence time was a strong predictor of
harmful algae concentration (Romo et al., 2013). We propose
that in our study, mean lake depth is acting as a correlate of
water residence time, explaining its positive association with
HAB blooms.

Air temperature had a negative effect on cyanoHAB risk, a
result that seems counterintuitive when considered alongside
the positive effect of water surface temperature. Our model
suggests that cyanoHAB risk is heightened when air temperature
is lower relative to surface water temperature, a condition that
can occur in shallow lakes during the transition from summer
to fall, or when lake temperature is artificially increased by
impervious surface runoff or industrial input (Sabouri et al.,
2013). In our dataset, the peak mean water temperature was
significantly higher than the peak mean air temperature observed
(36.5 and 30.3◦C, respectively). The higher specific heat of water
is responsible for this effect, with lakes serving as a heat sink that
can persist after air temperature has cooled.

The predictive accuracy of our model on a holdout dataset
was high, with ∼82% of held-out observations for the week
of May 27, 2019 predicted correctly. Accuracy was also good
in our validation dataset, with 88% of observations correctly
classified. The accuracy of our simple model is encouraging
but has a few caveats. This model is not expected to remain
accurate for more than 2 weeks into the future, because
wide spatial coverage meteorological estimates become less
reliable beyond that time scale. Additionally, the autocorrelation
parameter, or α, was 0.9, indicating that the change in
the temporal component of risk of a cyanoHAB is strongly
related to the past week’s bloom conditions. While this
temporal component was not as significant a contribution
to model fit as the spatial component that considered lake
location (Table 2), we caution that interpretation of our model’s
accuracy should consider that due to system inertia, a fairly
accurate prediction of near-future bloom conditions can be

made by simply extrapolating that current conditions will
continue unchanged.

Although we have developed a reliable model for forecasting
cyanoHAB odds for lakes in central Florida lakes for a week
of interest outside of the modeled dataset, there are several
limitations of this study. While remote sensing provides a
continuous cyanoHAB data source, the relatively coarse 300m
sensor resolution, presence of cloud cover, and occasional
missing data due to waterbody misclassification, limits our
predictive ability in smaller inland waterbodies. Additional
satellite limitations are reviewed in Coffer et al. (2020) and
Clark et al. (2017). Future work could assess the applicability of
higher resolution sensors such as the European Commission’s
Copernicus Sentinel-2. Our covariates were not all available
at the same spatial scale and had to be resampled to the
same 300m resolution as our lake imagery. As a result, lake
areas with highly irregular or elongated narrow reaches may be
underrepresented vs. lake areas with broader widths. It is possible
that CyanoHAB was present in a specific part of the lake, but
satellite data didn’t capture it because of land proximity. This
study incorporated several environmental covariates known to
be associated with cyanoHAB occurrence; however, our results
showed a strong spatially varying effect, the cause of which
is undetermined in the present analysis. Future studies could
explore additional environmental determinants such as nutrient
loadings. Nutrients certainly play a role related to cyanoHABs
and nutrient eutrophication is a “wicked” problem as defined
by Thornton et al. (2013), meaning that the issue is convoluted
and precludes a simple solution. However, modeling nutrient
transport and availability is complex and system specific, with
model validation data lacking for most systems. This complexity,
specificity and lack of data limits the ability to scale such models
across spatial and temporal scales as described in Soranno et al.
(2015). Therefore, we limited the model to data that would be
readily available and most relevant to cyanoHAB biomass.

In the present study we applied R-INLA for the purpose
of mapping/predicting exceedance probability of high-risk
cyanoHABs at the level of a whole lake. Future work will apply
the spatial-temporal modeling approach at the sub-lake level,
particularly in large systems with greater geographic bloom
variability such as Lake Okeechobee in South Florida.
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Branching Algorithm to Identify
Bottom Habitat in the Optically
Complex Coastal Waters of Atlantic
Canada Using Sentinel-2 Satellite
Imagery
Kristen L. Wilson* , Melisa C. Wong and Emmanuel Devred

Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada

Sentinel-2 satellite imagery has been successfully used to map submerged seagrasses
in clear waters, and surface-canopy forming seaweed habitats in a range of water
types. We examined the ability to use Sentinel-2 remote sensing reflectance to classify
fully submerged seagrass and seaweed habitats in optically complex, temperate waters
within a high priority management region in Atlantic Canada. To do so, we determined
the “best” Sentinel-2 image available between 2015 and 2019 based on tidal height,
absence of sun glint and clouds, and water transparency. Using the full Sentinel-2 tile,
we atmospherically corrected the image using ACOLITE’s dark spectrum fitting method.
Our classification goal was a two-class prediction of vegetation presence and absence.
Using information obtained from drop-camera surveys, the image was first partially
classified using simple band thresholds based on the normalized difference vegetation
index (NDVI), red/green ratio and the blue band. A random forest model was built to
classify the remaining areas to a maximum depth of 10 m, the maximum depth at which
field surveys were performed. The resulting habitat map had an overall accuracy of 79%
and ∼231 km2 of vegetated habitat were predicted to occur (total area 345.15 km2).
As expected, the classification performed best in regions dominated by bright sandy
bare substrate, and dense dark vegetated beds. The classification performed less well
in regions dominated by dark bare muddy substrate, whose spectra were similar to
vegetated habitat, in pixels where vegetation density was low and mixed with other
substrates, and in regions impacted by freshwater input. The maximum depth that
bottom habitat was detectable also varied across the image. Leveraging the full capacity
of the freely available Sentinel-2 satellite series with its high spatial resolution and
resampling frequency, provides a new opportunity to generate large scale vegetation
habitat maps, and examine how vegetation extent changes over time in Atlantic Canada,
providing essential data layers to inform monitoring and management of macrophyte
dominated habitats and the resulting ecosystem functions and services.

Keywords: habitat mapping, machine learning, rockweed, satellite remote sensing, seaweed, submerged aquatic
vegetation, kelp, seagrass
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INTRODUCTION

Seaweeds and seagrasses (marine macrophytes) are submerged
aquatic vegetation found in nearshore coastal environments. In
Atlantic Canada, seagrasses (primarily eelgrass, Zostera marina,
rarely widgeon grass, Ruppia maritima) occur within subtidal
soft-sedimentary habitats and seaweed canopies (dominated by
brown algae in the Fucaceae and Laminariaceae families) occur
along rocky habitats. In the rocky intertidal zone, Ascophyllum
nodosum (rockweed), is the dominant habitat forming species
in sheltered areas while Fucus spp. dominates along exposed
areas, with a transition to kelps (e.g., Laminaria digitata and
Saccharina latissima) in the subtidal whose canopy does not
reach the surface. Coastal ecosystems which are dominated
by seaweeds and seagrasses are some of the most productive
habitats globally and provide several important ecosystem
functions and services (Barbier et al., 2011). These include acting
as ecosystem engineers to provide biogenic habitat structure,
providing coastal protection against erosion, absorbing nutrient
runoff, providing carbon storage, supporting biodiversity and
fisheries, and generally acting as an indicator of overall ecosystem
health (Orth et al., 2006; Schmidt et al., 2011; Duarte et al.,
2013; Wong and Dowd, 2016; Teagle et al., 2017; Wong and Kay,
2019). In Atlantic Canada, and globally, seaweed and seagrass
habitat, and ecological services, are under threat from stressors
such as invasive species, climate change, coastal development,
and nutrient loading (Waycott et al., 2009; Filbee-Dexter and
Wernberg, 2018; Murphy et al., 2019). Tools for mapping and
monitoring marine macrophyte distribution are important to
understand and quantify habitat changes, particularly to inform
decision making related to conservation areas for seaweed and
eelgrass habitat, and resource management for commercially
important seaweeds.

Satellite remote sensing has been used to map and monitor
marine macrophyte distribution globally in optically shallow
waters (Duffy et al., 2019; Kutser et al., 2020). Satellites measure
the amount of sunlight reflected off of the seafloor at several
wavelengths (including water-column attenuation) in sufficiently
transparent waters, which can be classified using several
approaches including empirical, image-based classification
algorithms (e.g., O’Neill and Costa, 2013; Poursanidis et al.,
2019), object-based techniques (e.g., Roelfsema et al., 2014;
León-Pérez et al., 2019), or physics-based semi-analytical model
inversion (e.g., Lee et al., 1999; McKinna et al., 2015). As the
light travels from the sun, to the seafloor, and back to the
satellite, it interacts with the atmosphere, which amounts to
up to 90% of the top-of-atmosphere signal (Wang, 2010), sea
surface, and the water column, necessitating the requirements for
atmospheric (Vanhellemont and Ruddick, 2016; Vanhellemont,
2019), sun glint (Hedley et al., 2005; Kutser et al., 2009), and
water column corrections (Zoffoli et al., 2014). Empirical,
image-based classifications, which require in situ data to train
an algorithm, are widely used to quantify bottom habitat.
Historically the maximum likelihood classifier has been the
preferred classification algorithm (Richards, 1986), however,
machine learning algorithms such as support vector machines
(Vapnick, 1995) and random forests (Breiman, 2001) have been

recently demonstrated to perform better than the maximum
likelihood classification (Marcello et al., 2018; Ha et al., 2020).
Empirical methods are less sensitive to rigorous atmospheric
and water-column corrections, but are not readily applicable to
other regions (Islam et al., 2020). Object-based classifications
operate on similar principles as image-based classifications, with
the exception that the image is first segmented into many objects,
and the classification is performed at the level of the object,
opposed to the pixel (Roelfsema et al., 2014; Su and Huang,
2019). This is a hybrid approach, which can include non-spectral
data layers during classification. Physics-based semi-analytical
inversion models retrieve simultaneously the inherent optical
properties (IOPs) of the water column (i.e., absorption and
scattering coefficients), water depth and bottom reflectance
(e.g., Lee et al., 1999; McKinna et al., 2015). This approach
requires the development of spectral libraries for all optically
active components but regional in situ data are not required
for model training given the globality of the spectral libraries
(Kutser et al., 2020). Its application to any water body requires
highly accurate atmospheric correction to retrieve seafloor
reflectance and identify bottom habitat. Satellite remote sensing
of seagrass and coral habitat is widely used in tropical clear
waters, where bottom habitat is readily detectable to great depths
(<40 m) (Hossain et al., 2015; Kovacs et al., 2018; Wicaksono
et al., 2019). Satellite remote sensing is also widely used in a
range of water types for certain seaweed habitats, when the
vegetation canopy reaches the surface, as the measured signal
comes from the sea surface, opposed to the seafloor, and there is
negligible interaction of the water-leaving signal with the water
column (e.g., Schroeder et al., 2019; Bell et al., 2020; Mora-Soto
et al., 2020). A more complicated classification question arises
for submerged macrophytes in optically complex temperate
waters, where high CDOM, suspended particulate matter, and
phytoplankton concentration reduce the maximum depth at
which the seafloor is visible compared to tropical habitats (3–
10 m vs. <40 m). The use of satellite remote sensing in temperate
habitats is becoming more common (e.g., Casal et al., 2011;
O’Neill and Costa, 2013; Dierssen et al., 2019), and in the process,
new methods are being developed to leverage the many benefits
of satellite remote sensing to accurately quantify the distribution
of marine macrophytes in areas where water transparency still
permits bottom habitat mapping with passive sensors.

In the optically complex, temperate waters of Atlantic Canada
there has been considerable interest in using remote sensing
to classify marine macrophyte habitat using sonar, lidar, and
optical satellites. Intertidal rockweed habitat along the south
shore of Nova Scotia has been classified with lidar (Webster et al.,
2020) and multispectral satellite sensors including Worldview
and Quickbird imagery (Macdonald et al., 2012). Rockweed
habitat can be easily identified using vegetation indices given
its strong signal in the near-infrared (NIR) compared to its
environment. In the subtidal zone, completely submerged kelp
habitat has been quantified with Landsat along the Gaspé
Peninsula in Quebec (Simms and Dubois, 2001), with SPOT-
7 along the Mingan Archipelago also in Québec (St-Pierre and
Gagnon, 2020) and with lidar along the south shore of Nova
Scotia (Webster, 2018). Eelgrass habitat has been quantified
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with lidar (Webster et al., 2016), sonar (Vandermeulen, 2014;
Barrell et al., 2015), and a variety of multispectral sensors
including Worldview, Quickbird, and SPOT (Milton et al.,
2009; Barrell et al., 2015; Wilson et al., 2019) at various sites
along the exposed Atlantic coast of Nova Scotia and along the
Northumberland Straight. The above listed studies used either
an image-based classification generally based on the maximum
likelihood classifier (Wilson et al., 2019; St-Pierre and Gagnon,
2020; Webster et al., 2020), or object-based classification (Milton
et al., 2009; Barrell et al., 2015) to quantify marine macrophyte
habitat at bay-wide scales with commercial satellites.

In this study, we were interested in understanding to what
extent detailed marine macrophyte habitat could be classified
using the freely available Senintel-2 satellite data series and
an image-based classification procedure. Varying from previous
work in the region, we aimed to classify marine macrophyte
habitat at large spatial scales (hundreds of square kilometers),
and with the exception of the Landsat study, with a freely
available imaging platform, which allows for repeated surveys
over yearly to decadal time-scales without prior tasking. We
focused on a high-priority management region characterized by
complex bathymetry and a multispecies environment, including
fully submerged kelp and eelgrass beds, in an optically complex
coastal environment. We explored the impact of various
preprocessing steps such as water column corrections, and image-
based classification algorithms such as maximum likelihood
classification and machine learning classifiers. While our original
goal was to differentiate between eelgrass and seaweed (primarily
brown) habitat this was found not to be possible and maps
were produced denoting vegetation presence and absence. The
driver of this work was to develop a method framework
for using Sentinel-2 data in a systematic manner to classify
the large-scale distribution of marine macrophyte habitat, to
be able to provide data layers for marine spatial planning,
monitor marine macrophytes habitat extent, and consequently
inform management decisions in high-priority regions (e.g.,
conservation). To support this, the final map classification is
presented in both a binary presence-absence map, and probability
of vegetated habitat to define a level of certainty in the map. To
the best of our knowledge, our study is the first to use Sentinel-
2 data to quantify marine macrophyte habitats in Atlantic
Canada, which includes completely submerged kelp beds and
eelgrass meadows.

MATERIALS AND METHODS

Study Area
The Eastern Shore Islands (ESI) are an archipelago located along
the Atlantic coast of Nova Scotia, Canada (Figure 1). The ESI
archipelago is an important management area with most of
the land already protected, and the marine environment under
consideration for a marine protected area (DFO, 2019). The
high management priority is given due to the relative pristine
condition of the terrestrial and marine environments including
several healthy eelgrass meadows, and rockweed and kelp beds,
all important habitat forming species in the region, providing

three-dimensional structure and nursery habitat for many marine
species (Schmidt et al., 2011; Vercaemer et al., 2018). The ESI
archipelago is characterized by a complex coastline including
rocky shores, sandy beaches, and salt marshes, each at a varied
degree of exposure to the Atlantic Ocean. The numerous islands
result in a complex bathymetry with shallow depths (<10 m)
extending kilometers offshore. This results in an optically
complex environment for satellite remote sensing where bottom
substrate and water transparency are highly variable.

Field Surveys
Drop camera field surveys were conducted to characterize bottom
type as well as eelgrass and seaweed presence/absence from
September to October 2019. Stations (n = 128) were pre-identified
based on depth (0–10 m) and substrate type (5 classifications
ranging from soft mud to hard bottom) to allow stratified
sampling across conditions in which both vegetated habitat types
are found (hard versus soft substrate). At each station (Figure 1),
an underwater video system (consisting of a GoPro Hero 7
camera inside a waterproof housing with lasers attached for
scaling; Pro Squid, Spot X underwater Vision1) was deployed. The
system was connected to a topside console that allowed operators
to view video feed and record GPS position. The camera was
lowered into the water to approximately 1 m above the sea
bottom, and the boat was allowed to drift for 1–2 min while
the camera video recorded the bottom substrate. Substrate type
(i.e., bare, eelgrass, or seaweed) was visually determined from the
live feed and then validated from the video at a later date. For
image classification, all points were labeled as bare or vegetated
following the video validation, as exploratory analysis showed
it was not possible to separate eelgrass and seaweed habitat
(results not shown).

There was about a 1- to 3-year period between the field surveys
(2017–2019) and image acquisition (2016) depending on the
source of the in situ data. While it is not uncommon to have a
temporal gap between the field survey and image acquisition (e.g.,
O’Neill and Costa, 2013; Poursanidis et al., 2019), we assumed
that large-scale vegetation distribution patterns would have
minimally changed during the time period, particularly given
that both the image acquisition and field survey were obtained
in the same season. Yet, given that areas with patchy/mixed
habitat types might have undergone slight shifts in vegetation
density, particularly since the region was impacted by the passage
of Hurricane Dorian in early September 2019, days before the
field surveys were performed, an additional data quality control
step was performed. The video footage for each field survey
point was examined in relation to the true color composite of
the satellite imagery and the spectra, to identify areas of mixed
habitat types or very low density of vegetation coverage. These
stations (n = 32) were omitted from image classification resulting
in using 96 stations giving 218 data points. Each drift transect
consisted of 2–3 observations depending on the number of GPS
coordinates obtained. The quality control step was done both
to use pure endmembers for model training, and to account
for slight shifts in habitat, which are more likely to occur in

1https://www.spotx.com.au/
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FIGURE 1 | Atmospherically corrected true-color composite of the Sentinel-2 tile (T20NQ) of the Eastern Shore Islands in Nova Scotia, Canada acquired on
September 13, 2016. Dots indicate stations where field survey data were collected, triangles indicate visually identified points, colors show where vegetated habitat
is known and not known to occur. Numbers relate to image-stills of select habitat types occurring in the region.

fragmented areas. Percent cover was calculated for select video
frames per station, and in general average vegetated percent
cover was >75%, often higher, in stations that passed quality
control. Additionally, a visual assessment between a Worldview-
3 image acquired in August 2019 over a large portion of the
tile, and the best Sentinel-2 image acquired in 2016 (see section
“Satellite Data, Atmospheric Correction, and Land Masking”)
was performed to ensure that large-scale vegetation patterns were
fairly stable between 2016 and 2019.

In addition to the 2019 field survey (n = 218), additional
field data from 2017 to 2019 were also included (n = 15; Wong
et al. Unpublished data). Lastly some visually identified points
from the imagery were added to assist in model training for
habitat types missed in the field surveys for shallow bare substrate
(n = 294), shallow vegetation (n = 202), and bare sand at
moderate depths (n = 50; Figure 1). These visually identified
points were selected from areas that were easily interpretable,
were spaced evenly to cover the entire Sentinel-2 tile, and were
added in an iterative approach to provide a more accurate

vegetation map (Vahtmäe and Kutser, 2013). All field survey
data and visually identified points were labeled as vegetated or
non-vegetated for a two-class binary classification of vegetation
presence and absence for a total of 779 data points (Table 1).
Therefore, three separate data sources were used in model
building/evaluation to maximize the amount of information
available to the classification algorithm. The number of data
points used in the current study lies within the number of points
used for other coastal Sentinel-2 studies ranging from <150 (e.g.,
Fauzan et al., 2017; Poursanidis et al., 2019) to >1,000 (e.g.,
Traganos et al., 2018; Yucel-Gier et al., 2020).

Satellite Data, Atmospheric Correction,
and Land Masking
Sentinel-2 is a European observation system composed of
two identical satellites (A and B launched in 2015 and 2017,
respectively), that provide images every 5 days at the equator and
every 2–3 days at 45◦N (Drusch et al., 2012). Sentinel-2 has a
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TABLE 1 | Number of field survey and visually identified points by habitat type and water depth (m).

Water depth (m) Habitat type Total points (%) Total pixels (%) Total SA (km2)

Field survey points Visually identified points

Eelgrass Seaweed Sand Mud Vegetated Bare

0–1 17 0 0 0 100 221 43.39 14.67 50.63

1–2 8 0 0 16 57 60 18.10 12.07 41.68

2–3 14 0 4 17 30 12 9.88 13.41 46.29

3–4 11 22 7 12 6 2 7.70 7.67 26.46

4–5 0 12 0 4 7 5 3.59 9.13 31.53

5–6 0 10 0 5 2 2 2.44 11.12 38.39

6–7 0 18 3 0 0 8 3.72 7.75 26.76

7–8 0 11 0 8 0 7 3.34 7.08 24.43

8–9 0 0 0 12 0 7 2.44 7.40 25.55

9–10 0 12 4 6 0 20 5.39 9.69 33.44

Total 50 85 18 80 202 344 100.00 100.00 345.16

The sum of all points by depth class represented as a percentage (%) of all points (n = 779) that were available for model building and evaluation (Total Points). The
number of pixels in the Sentinel-2 tile by depth class represented as a percentage (%) of all pixels (n = 3,451,533) in the Sentinel-2 tile (Total Pixels). The total surface
area (SA; km2) of each depth class in the Sentinel-2 tile assuming an equal area of 100 m2 per pixel (Total SA). Only the field survey points which passed quality control
are included in this table. Depth was measured in situ for field survey points. Depth was obtained from the 30 m multibeam data for the visually identified points, and the
Sentinel-2 pixels. Note the difference in total SA with Table 3 is due to rounding.

swath width of 290 km and provides 13 bands at a radiometric
resolution of 12-bits and a spatial resolution from 10 to 60-m.
At the spatial resolution of 10-m, four bands are available with
centered wavelengths of ∼490 nm (band 2 blue), ∼560 nm (band
3 green), ∼665 nm (band 4 red), and ∼833 nm (band 8 NIR).
These were the only bands used in the study to take advantage
of the high spatial resolution. Level-1C products are geolocated
and radiometrically corrected to top-of-atmosphere reflectances
in local UTM coordinates and are available in 100 × 100 km tiles.
Images can be freely downloaded, pending a registration, from
Copernicus Open Access Hub2.

To determine the best image for classification, we assembled
a catalog of available Sentinel-2 imagery for our region of
interest between the launch of Sentinel-2 in 2015 to 2019
(see Supplementary Material 1). From the first day imagery
was available for our region of interest on September 12,
2015 to December 31, 2019, we identified 464 days where
the entire region, or a part of it, was imaged by Sentinel-
2. Of which, 320 days were immediately discarded due to
heavy cloud cover, leaving 144 days, which may be suitable
for image classification (Supplementary Figure 1.1). All 2015
images were cloud covered, but in general from 2016 to 2019
at least one cloud free image existed per month and year. The
tidal height at time of image acquisition varied between low
and high tides, and 57 days (out of the 144) were impacted
by different degrees of sunglint, both of which can impact
classification success. Additionally, it was noted that water
transparency varied highly across these cloud-free image dates
and bottom habitat was not always visible in the Sentinel-2
imagery. Lastly, due to the various satellite tracks, only 64 days
(out of the 144) imaged the entire region, the rest partially
imaged the region of interest. This resulted in about 14% of

2https://scihub.copernicus.eu

all available images that were potentially suitable for bottom-
habitat monitoring.

The best Sentinel-2 image from 2015 to 2019 for our region
of interest was selected based on tidal height, the absence of
clouds and sun glint, minimal wave action, and low turbidity.
This image was acquired on September 13, 2016 at 15:07 UTC,
within 10 min of a low tide (15:17 UTC at a tidal height3 of
0.58 m). The full Sentinel-2 tile (T20NQ) Level 1C image was
downloaded for analysis. This image was assumed to represent
the best-case scenario for image quality to understand what
information about marine macrophyte coverage can optimally
be extracted from Sentinel-2 for Atlantic Canada. A method
workflow is presented in Figure 2 and described in Sections
“Satellite Data, Atmospheric Correction, and Land Masking” and
“Image Classification.”

The full tile image was atmospherically corrected with
ACOLITE (Python v.20190326.0) using the dark spectrum fitting
approach (Vanhellemont and Ruddick, 2016; Vanhellemont,
2019). Previous work with Sentinel-2 in another region of
Atlantic Canada explored the use of ACOLITE to atmospherically
correct Sentinel-2 images for bottom habitat identification and
found the dark spectrum fitting method to be superior to
the exponential approach (Wilson and Devred, 2019). Dark
spectrum fitting is an entirely automated, image-based approach
to aerosol calculation which makes no prior assumptions on
which bands should be used to calculate atmospheric properties
(for instance the red or NIR signal being negligible). It assumes
that a tile contains pixels whose surface reflectance should be
approximately zero for at least one band. Using the dark targets,
and various aerosol models, a final model is chosen based on
the band which defines the lowest atmospheric path reflectance.
Rayleigh scattering is accounted for via lookup tables based on

3waterlevels.gc.ca/eng/station?sid=505
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FIGURE 2 | Methods workflow to classify the Sentinel-2 tile.

the 6SV radiative transfer model. All ACOLITE settings were left
at their default values except for masking. All l2w_mask settings
were disabled to allow for more fine-tuned masking.

Generating accurate land masks is an essential preprocessing
step when working with coastal near-shore environments, where
sharp transitions in the magnitude of surface reflectance occur.
ACOLITE default mask settings define land values where top-
of-atmosphere reflectance (ρt) in band 11 (SWIR; central
wavelength ∼1,610 nm; 20-m resolution) are greater than 0.0215.
Previous work in another region of Atlantic Canada found this
threshold inadequate to define near-shore environments, and
that an appropriate threshold was image dependent (Wilson and
Devred, 2019). Additionally, as the aim of our study was to
eventually use Sentinel-2 for repeated image classification over
multiple years, a standard land mask was desired that would not
be impacted by tidal height. Therefore, a high tide image of the
same tile (T20NQ) was used to generate a standard regional land
mask that could be used across multiple image dates (Roelfsema

et al., 2009). High-tide was chosen over low-tide to include the
entire range of habitat that marine macrophytes exist. This image
was acquired on August 24, 2016 at 15:08 UTC corresponding
to high tide (15:08 UTC at a tidal height of 1.62 m) and pixels
with ρt ≥ 0.07 for band 11 were defined as land based on visual
inspection and masked. While SWIR is strongly absorbed by
water and therefore provides better delimitation of land and
water surfaces than NIR, the different spatial resolution between
the 10-m bands used in image classification, and the 20-m band
used to generate a land mask should be accounted for. To do so,
mixed pixels (i.e., containing both land and water areas) at the
20-m resolution were masked with the Normalized Difference
Vegetation Index (NDVI) to identify any vegetated land pixels.
Floating algae index (FAI) was not explored as it requires
information from the 20-m SWIR bands. The August 24, 2016
image was atmospherically corrected with ACOLITE and surface
reflectances of band 4 and band 8 were used to calculate NDVI.
Pixels where NDVI ≥ 0.7 were identified as land vegetation based
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on visual examination and masked. This threshold was defined
as the lowest threshold which did not include rockweed beds,
which may float at the surface at high tide. As a final step, areas of
freshwater (e.g., lakes) were manually masked.

Our regional land mask was applied to the September 13, 2016
image for the 10-m bands (i.e., bands 2, 3, 4, and 8). Next, all
pixels in water depths ≥10 m were masked out to correspond
with the maximum depth of the field survey (see section “Field
Surveys”). The bathymetry was obtained from the Canadian
Hydrographic Services multibeam data (Greenlaw Unpublished
data) at a spatial resolution of 30-m and was resampled to a 10-
m resolution with bilinear interpolation using the raster package
(Hijmans, 2019) in R (R Core Team., 2019). As a last quality
control step, pixels with at least one negative remote sensing
reflectance in any of the four 10-m bands were discarded from
the study (25 pixels; <0.001% of total pixels).

No water-column correction was performed on the imagery.
While we explored the use of the commonly employed depth
invariant indices (Lyzenga, 1978; results not shown here), we
could not assume that water transparency was consistent across
our study area breaking a key assumption of the approach (Zoffoli
et al., 2014). Regardless, water column corrections based on depth
invariant indices and more analytical bio-optical modeling have
been shown to have mixed effects on image classification success
(e.g., Marcello et al., 2018; Poursanidis et al., 2018; Traganos
et al., 2018) and are commonly not applied (e.g., Hogrefe et al.,
2014; Wicaksono and Lazuardi, 2018). In addition, given that
we only used the four wavebands at 10-m resolution, resolving
depth, water column and bottom properties might appear as an
overoptimistic task.

Image Classification
Our original classification goal was to differentiate between
eelgrass and seaweed habitat but this was not found to
be possible (results not shown) as their spectral signatures
were very similar for the Sentinel-2 three visible bands (see
Figure 3 and section “Results”). We therefore adapted our
classification goal from species distribution mapping to detect
vegetated versus non-vegetated habitat (see Figure 2 for an
organization of data processing). Three common supervised
(i.e., requiring a priori knowledge of habitat type), and one
unsupervised image classification procedures were tried as a
preliminary data exploration (Supplementary Table 2.1). All
analyses were performed on remote sensing reflectance using R
version 3.6.0 (R Core Team., 2019) with the raster (Hijmans,
2019), caret (Kuhn, 2019), RSToolbox (Leutner et al., 2019),
irr (Gamer et al., 2019), and readxl packages (Wickham and
Bryan, 2019). The first approach was a supervised statistical
classification with maximum likelihood classification (Richards,
1986). Maximum likelihood is a simple approach, which assigns
a pixel to the class it has the highest probability of being
a member of. Maximum likelihood has been widely used in
remote sensing studies; however, it requires many training points
across all habitat (class) types, and that the remote sensing
reflectance within each class follows a normal distribution.
More recently, remote sensing studies have focused on machine
learning classifiers that do not make any assumptions on

data distributions and require fewer training points, notably
support vector machines (SVM) and random forests (e.g.,
Traganos and Reinartz, 2018b; Poursanidis et al., 2019). The
SVM approach differentiates classes based on defining the
optimal hyperplane between the classes and can separate non-
linearity by applying a kernel function. As such, we explored
the use of SVM with a radial basis function kernel (Vapnick,
1995). Random forests build a collection of decision trees, and
randomly sample these trees to create a final ensemble model,
which is a robust classifier to outliers and noisy training data
(Breiman, 2001). We lastly compared the supervised classifiers
to an unsupervised k-means analysis (MacQueen, 1967).
Following this preliminary data exploration (see Supplementary
Material 2), the random forest algorithm was found to be
the preferred classifier. As expected, the supervised classifiers
outperformed the k-means classification, even when the k-means
was performed on shallow depths (O’Neill and Costa, 2013),
and the machine learning classifiers outperformed the maximum
likelihood classification based on maximizing map accuracies
and kappa (Supplementary Tables 2.2, 2.3; Traganos and
Reinartz, 2018b; Ha et al., 2020). While SVM produced higher
overall map accuracies and kappa coefficient than random
forests (Supplementary Table 2.3), no threshold could be
identified to correctly classify all data points in the final map
(Supplementary Figure 2.1 and see following paragraphs).
Additionally, visual examination of the imagery demonstrated
that the random forests and SVM classifications were almost
identical (Supplementary Figure 2.2). Therefore, the random
forests approach was found to be the preferred classifier as it
required significantly less model tuning, both in time, number of
parameters, and dependency on kernel choice (Supplementary
Table 2.1). It produced comparable habitat maps to the SVM
classification with higher accuracy from the cross-validation
runs (Supplementary Figure 2.2), and a threshold could be
identified in the final map to correctly classify all data points
(Supplementary Figure 2.1).

The full Sentinel-2 tile was classified as follows (Figure 2).
First, intertidal, and very shallow subtidal pixels with canopy
near-surface vegetation were classified using NDVI. Here, very
shallow generally corresponded to depth ≤2 m, although we
did not compare canopy height relative to water depth which
would provide a more accurate threshold for vegetation detection
with NDVI. NDVI was calculated with band 4 and band 8, and
all pixels with a value greater or equal to 0.4 were assumed to
be vegetated (Barillé et al., 2010). Second, for all pixels with
NDVI < 0.4, band thresholds were used to classify some non-
vegetated habitats. A threshold for band 2 (blue) of ≥0.035
was assigned to mask out the remaining “bright” pixels, which
were assumed to be non-vegetated substrate such as uncovered
intertidal areas to very shallow (<2–3 m) sand/rocks, or breaking
waves on shore. Shallow to moderate depth bare sediment was
classified using the Red/Green ratio (Band 4 divided by Band
3). Pixels with a Red/Green ratio ≤ 0.3 were classified as bare
sand as in Dierssen et al. (2019), and pixels with a Red/Green
ratio ≥ 0.9 were classified as mud (i.e., dark sediment) or
contaminated by fresh tannic water runoff which is common
along beaches in the region.
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FIGURE 3 | Example spectra from representative field survey points across multiple depths for (A) eelgrass, (B) seaweed, (C) sand, (D) mud. Dashed lines indicate
pixels that would be classified using the NDVI or R/G band thresholds. Solid lines indicate pixels classified with the random forests model. Note that seaweed at
0–3 m, mud at 0–1 m, and sand at 1–2, 4–7, and 8–9 m of depth is based on visually identified points. No non-patchy eelgrass habitat was sampled at >4 m water
depths and visually identified points at these depths could not be labeled with certainty to be an eelgrass bed (instead of a seaweed dominated habitat).

All remaining pixels (i.e., NDVI < 0.4 and Blue < 0.035
and 0.3 < Red/Green < 0.9), were classified using the random
forests approach as described in Section “Image Classification”
(Figure 2). The three visible wavelengths were used in the
random forests model (bands 2, 3, 4; blue, green, red) for a
two-class binary prediction of vegetation presence from absence.
For differentiation of major macrophyte groups (e.g., eelgrass
from brown seaweed) in these temperate waters, the maximum
depth for image classification would need to be reduced from 10
to 2–3 m, significantly more field survey points at overlapping
depths for the various vegetation types would need to be
collected, and imagery with greater spectral (e.g., hyperspectral)

and/or spatial resolution would be required (Kutser et al., 2020;
Vahtmäe et al., 2020). In our study region, the three visible
bands at 10-m resolution did not provide enough information to
separate seagrass from seaweed dominated habitat.

Random forest model tuning with the “rf” method in R
requires defining the number of random predictors to select
at each branch of the tree. An initial model was developed
with repeated k-fold cross-validations with fivefolds repeated 10
times to determine the best number of predictors. With model
tuning complete, all training data were partitioned into fivefolds
repeated 10 times. A random forests model was built on each
partition’s training data, then predicted onto the full data set.
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For each partition’s test data, the withheld points were used
to generate a confusion matrix including overall map accuracy,
user accuracy, producer accuracy, and a Kappa coefficient with
z-tests for significance from zero (Foody, 2002). This cumulated
in 50 different models, habitat maps, and confusion matrices.
A final confusion matrix was calculated based on the average
accuracy metrics from the cross-validation runs. To generate
the final map classification, the probability that a pixel was
classified as vegetation was calculated by summing the number of
times a pixel was classified as vegetation, divided by 50 (number
of cross-validation runs) and converted to a percentage. Pixels
labeled as vegetated with NDVI were labeled as 100%, and pixels
labeled as bare habitat with the blue band or Red/Green ratio
were labeled as 0%. Delivering a final map classification as a
percentage demonstrates the level of confidence an end-user
should have when using the vegetation map. Yet, if a binary map
classification is required for presence from absence, we explored
what vegetation probability threshold choice would maximize
overall map accuracy and kappa using all data points in Table 1.
For instance, if the final map classification was thresholded at
50%, where pixels ≥50% probability were labeled as vegetated
and pixels with <50% were labeled as not-vegetated, we then
compared how overall map accuracy and kappa would change
relative to a 60% threshold.

RESULTS

We examined changes in the spectral signatures of remote
sensing reflectance for pixels extracted from the best Sentinel-
2 image over four known habitat types: sand, mud, eelgrass,
and seaweed (including rockweed and kelp habitat which are
structured by vertical zonation patterns; Figure 3). As expected,
sand had the highest reflectance values, with a clear decrease in
magnitude as the wavelength increases (Figure 3C). Reflectance
spectra from muddy substrate (Figure 3D) were dissimilar to
the ones from sandy substrate with lower absolute reflectance
values at comparable depths, and a weak spectral dependence at
all depths, compared to the sharp decrease in the red and NIR
for sand. For mud substrate, the red and NIR bands showed the
clearest decrease as a function of depth. Both eelgrass (Figure 3A)
and seaweed (Figure 3B) showed lower reflectance in the visible
part of the spectrum at comparable depths than the reflectance
for both sand and mud bare substrate habitats. Subtle differences
are visible between the two vegetation types, where eelgrass has
a higher Green/Blue ratio but a lower NIR/Red ratio. However,
differences in vegetation type could not be differentiated by
any image classifier and limited overlapping field points at
comparable depths made a true comparison of the ratios difficult
(Supplementary Figure 3.1 in Supplementary Material 3).

To classify the best image, the threshold for NDVI indicating
vegetated habitat and the thresholds for non-vegetated habitat
were set to perfectly classify (i.e., 100% classification success) the
training points located within those values (Table 2). A total of
12 data points occurred within NDVI ≥ 0.4, and this threshold
classified ∼6% of the pixels in the tile (Table 3). A total of
61 data points occurred within the non-vegetated thresholds
(Table 2) and classified ∼6% of the pixels in the tile (Table 3). The

remaining pixels (n = 3,031,740) were classified with a random
forests model. Following the repeated k-fold cross validation of
the random forests model, the final average overall map accuracy
was 79% with an average moderate kappa value of 0.57 based
on the withheld test data partitions (Table 2). Non-vegetated
habitat had ∼5% higher user and producer accuracy for non-
vegetated habitat, relative to the user and producer accuracy of
vegetated habitat, indicating the classification was slightly better
at predicting absence of vegetation.

The probability that a pixel was classified as vegetated with
the random forests model was determined by summing the
number of times a pixel was classified as vegetation, divided
by 50 (number of cross-validation runs) and converted to a
percentage (Figure 4A). In this classification map, 76% of the
pixels were always classified the same in all 50 cross-validation
runs where 16% (474,937) of the pixels were always classified as
bare (non-vegetated) habitat, and 60% (1,831,911) were always
classified as vegetated habitat by the random forests model
(Figure 4B). When the threshold based classified pixels were
included in the final classification map as either 0% (non-
vegetated thresholds) or 100% (NDVI ≥ 0.4; total n = 3,451,533),
we then explored the effect of thresholding the habitat probability
map between 1 and 100% on overall map accuracy (Figure 4C)
and kappa (Figure 4D) to determine an appropriate threshold for
a binary map classification. When a threshold of 21% was chosen,
meaning that any value ≥21% was labeled as vegetated habitat
and any value <21% was labeled as non-vegetated, all data points
were classified correctly resulting in an overall accuracy of 100%
and a kappa of 1. This trend persisted until a vegetated threshold
of ≥80%, where at vegetated thresholds >80% (i.e., 81% and
higher) overall map accuracy and kappa began to decrease again.

Our classification scheme applied to Sentinel-2 data
performed best at identifying bright sandy habitats, and
dense vegetated beds (Figure 5), which can be expected as
they represent the two most distanced endmembers. The blue
threshold (0.035) classified bright, bare sandy habitats to depths
of 2–3 m (Figure 3). The R/G threshold of 0.3 classified bare
sandy habitats from 2–3 m to roughly 7–8 m. The NDVI
threshold classified both intertidal/shallow seaweed beds and
shallow eelgrass beds as vegetated. The random forests classifier
was able to differentiate vegetated from non-vegetated habitat
to the edge of the 10 m deep water mask (Figure 5). However,
this maximum depth at which bottom habitat could be classified
was not consistent across the tile (Figure 6). For instance,
in areas affected by freshwater runoff, even bright sand was
misclassified at depths >5 m (Figure 6A), and in more estuarine
regions almost all bottom habitat is classified as vegetated habitat
(Figure 6B). While limited field survey data are available in
estuarine regions to confirm this, it appears that freshwater with
high concentrations of CDOM reduces the water depth at which
the sea floor is visible due to strong absorption. These areas (i.e.,
pixels) present reflectance spectra similar to the ones of optically
deep water even in regions of very shallow water depths. As the
distance from the river increased, water transparency increased,
and bottom habitat gradually became visible in seaward estuarine
regions (Figure 6).

Additionally, the classification performs poorly in bare
sediment habitats dominated by muddy substrate (Figure 7).
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TABLE 2 | Confusion matrix after each classification step has been added in. Overall map accuracy is bolded. Kappa significance indicated by asterisk (*).

Classification stage Map classification Field survey data Kappa

Not vegetated Vegetated User accuracy (%)

NDVI ≥ 0.4 Not vegetated 0 0 100.00 1.00

Vegetated 0 12 100.00

Producer accuracy (%) 100.00 100.00 100.00

B2 ≥ 0.035 OR R/G ≤ 0.3 OR R/G ≥ 0.9 Not vegetated 61 0 100.00 1.00

Vegetated 0 12 100.00

Producer accuracy (%) 100.00 100.00 100.00

Random forests Not vegetated 72.42 ± 3.64 17.16 ± 3.95 80.98 ± 3.57 0.57 ± 0.07*

Vegetated 15.98 ± 3.68 50.24 ± 3.99 76.04 ± 5.85

Producer accuracy (%) 81.93 ± 4.16 74.54 ± 5.85 78.72 ± 3.18

First classification stage includes only the vegetated pixels classified with NDVI. Second classification stage includes the vegetated pixels classified with NDVI, and the
non-vegetated pixels classified with the blue band or red/green ratio. Third classification stage includes the vegetated pixels classified with NDVI, the non-vegetated pixels
classified with the blue band or red/green ratio, and the random forests classified pixels. For the third matrix, the average (±standard deviation) confusion matrix based
on the test data partitions from the repeated k-fold cross validation (k = 50) is shown.

TABLE 3 | Number and percentage of pixels and surface area (SA) of habitat classified across various classification steps and water depth.

Max depth (m) Metric Tile total NDVI ≥ 0.4 NDVI < 0.4

B2 ≥ 0.035 OR
R/G ≤ 0.3 OR

R/G ≥ 0.9

B2 < 0.035 AND 0.3 < R/G < 0.9

RF average (±SD) RF 21% threshold RF 80% threshold

4 Total pixels (#) 1,650,543 211,472 144,101 801,630 ± 14,708 866,892 741,491

Total pixels (%) 100.00 12.81 8.73 48.57 ± 0.89 52.51 44.92

SA (km2) 165.05 21.15 14.41 80.16 ± 1.47 86.69 74.15

10 Total pixels (#) 3,451,533 216,806 202,987 2,208,412 ± 35,334 2,349,498 2,099,200

Total pixels (%) 100.00 6.28 5.88 63.98 ± 1.02 68.07 60.82

SA (km2) 345.15 21.68 20.30 222.08 ± 3.53 234.95 209.92

Tile total indicates the number of pixels across the full tile to be classified (total pixels; #), the percentage of the pixels relative to the total (total pixels;%), and the SA the
pixels cover assuming an equal area of 100 m2 per pixel (SA; km2). Pixels classified with the NDVI threshold as vegetated habitat (NDV ≥ 0.4). Pixels classified as bare
habitat with threshold the blue band (B2) or the red/green ratio (R/G). Pixels classified as bare habitat with the random forests (RF) classification based on the average
(±standard deviation, SD) from the k-fold cross-validation, and when the final map classification is thresholded at 21 and 80% probability.

The lower albedo of bare mud presents a spectral shape more
similar to vegetated habitat than bare sand at comparable depths
(Figure 7A). Consequently, around the 4–5 m depth (even
shallower in some areas) the classification became “salt-and-
peppered” suggesting that the binary classification has become
purely random. Lastly, the classification also performed less well
in areas of mixed habitat types. In areas of shallow waters with
patchy vegetation, the bright reflectance from nearby bare sand
overwhelmed the vegetation signal and the spectra of low-density
vegetation on sandy substrate has a spectrum comparable to
sand (Figure 8). This can be seen as a contamination due to
the adjacency effect as it occurs in coastal waters close to land,
where pixels in the vicinity of a brighter target are contaminated.
Increased satellite resolution might address this issue. Therefore,
the classification fails for low density or dense but isolated patches
of vegetated habitat.

With these limitations in mind, the total surface area coverage
of vegetated habitat was calculated (Table 3). At the maximum
depth of image classification (10 m), ∼231 km2 (67%) of

vegetated habitat were predicted to exist, 21.68 km2 were
calculated with NDVI and 209.92 km2 calculated from the
random forests calculation. Conversely, ∼114 km2 (33%) were
dominated by bare sediment habitat, 20.30 km2 were calculated
with thresholding the blue band and Red/Green ratio, and
93.25 km2 were calculated with the random forests classifier.
There are uncertainties around the random forests surface area
values depending on the average used for the cross-validation
maps, and if the final map was thresholded. If the image was
masked to 4 m, a depth where most of the image was well
classified based on visual examination, about 95 km2 (∼58% of
the total area) of the seafloor was vegetated.

DISCUSSION

We used the “best” Sentinel-2 image acquired between 2015
and 2019 for a high priority management region and examined
to what detail marine macrophyte habitat could be classified
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FIGURE 4 | Pre-threshold vegetation map demonstrating the probability that a pixel contains vegetated habitat with land (light gray) and deep water (≥10 m; white)
masked (A). Pixels classified as vegetated or non-vegetated with the threshold classification were labeled as 100 or 0%, respectively. All other pixels were classified
with the random forests classifier and probability was determined as the number of times a pixel was classified as vegetated divided by 50. Polygons with dashed
borders indicate the location of zoomed in boxes in the following figures. The number of pixels at each probability value (B). The effect of various threshold choices
for the map in (A) on overall map accuracy (C) and kappa value (D) using all data points (see Table 1).

in an optically complex costal environment based on empirical
image-based classification procedures. We found that simple
band thresholds were effective at classifying very shallow habitats,
and bright sandy bare substrate to moderate depths, although a
supervised image classifier was required to classify the remaining
areas. Vegetated habitat extent was classified at depths shallower
than 10 m, with an overall accuracy of 79%, although the

maximum depth that bottom habitat was visible varied spatially
across the tile (i.e., 4–10 m, due to shifts in water column content
and habitat type). While the random forest model developed for
our study area cannot be directly applied to other areas (Islam
et al., 2020), our method workflow can be readily applied to
other images provided that field survey data are available to
train the algorithm. In the following section, we discuss the
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FIGURE 5 | Finalized classification of the Sentinel-2 image from September 13, 2016 highlighting three example regions where the classification performed well
including the differences between the classification stages. Left column is the true color composite. Right column is the map classification for the same region. (A) A
predominantly sandy beach with distinct seaweed patches (F5A in Figure 4). (B) Mixed seaweed and eelgrass habitat interspersed with sandy habitat (F5B in
Figure 4). (C) Large dense eelgrass meadows and separate kelp forests surrounded by bare substrate (F5C in Figure 4). Knowledge of vegetation type was from
the field survey data only and not the map classification.

strengths and weaknesses of using Sentinel-2 to classify marine
macrophyte habitat in Atlantic Canada, keeping in mind that
our findings can be applied to other temperate coastal areas of
the world.

Suitability of Sentinel-2 for Benthic
Habitat Mapping in Atlantic Canada
Our stepwise approach to image classification is a unique hybrid
of other methods of image classification, which generally focus

on simple band ratios (e.g., Dierssen et al., 2019; Mora-Soto
et al., 2020) or a supervised classifier to quantify bottom habitat
(e.g., Traganos and Reinartz, 2018b; Poursanidis et al., 2019),
but not both. The ratio approach was applied first to all pixels,
and when the threshold was met, pixels were classified with no
assumptions made on the other pixels (i.e., the one that did
not meet the threshold criteria). These remaining pixels were
then classified with random forests. This two-step process is
performed in the classification stage, with no post-classification
manipulation of pixels and therefore does not require contextual
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FIGURE 6 | Finalized classification of the Sentinel-2 image from September 13, 2016 highlighting variance in maximum depth the classifier was successful. Left
column is the true color composite. Right column is the map classification for the same region thresholded at 80% probability of being vegetated. (A) A sandy beach
at the edge of an estuary influenced by freshwater input was successfully classified to ∼5 m, waters at depth from 5.5 to 10 m shown with transparent yellow overlay
(F6A in Figure 4). (B) An estuarine brackish environment by freshwater input was successfully classified to ∼2 m, waters at depth from 2.5 to 10 m shown with
transparent yellow overlay (“brown” in the figure; F6B in Figure 4).

editing as in Mumby et al. (1998). It leverages the simplicity
and high accuracy of band ratios in habitats that are relatively
straightforward to classify, such as bright sand, and shallow,
dense vegetation, with the power of machine learning classifiers
in more complex classification schemes. The random forests
classification was performed across all depths where the threshold
approach had failed.

The band ratios include vegetation indices based on red-edge
indices such as NDVI and the Red-Green ratio, which can be
effective tools for quantifying intertidal vegetation at low tide or
vegetation that floats at, or near, the surface (e.g., Barillé et al.,
2010; Dierssen et al., 2019; Mora-Soto et al., 2020). Following
Dierssen et al. (2019) we found that the Red-Green ratio could
successfully classify bare sand at shallow to moderate depths,
albeit at a slightly lower threshold value (<0.30 this study,
<0.35 Dierssen et al., 2019). While no upper threshold could be
determined to classify vegetated habitat, an upper threshold could
be defined to exclude shallow muddy substrate (>0.9). These
thresholds were conservatively set to not misclassify any field
survey points, which cover a large spatial area, even though the
inherent optical properties (IOPs) of the water would vary over
this scale. The thresholds could be fine-tuned at smaller spatial
scales, where water column properties remain fairly stable. In
our study we also found NDVI (Band 4 and 8) to be effective at
classifying intertidal to very shallow subtidal habitat (∼< 2 m).
This threshold can be more readily defined from the literature

instead of requiring field survey points as there is little impact
of the water column in regions where NDVI is effective. No
distinctions were made between major species groups, such as
rockweed from shallow eelgrass beds. This is in agreement with
the study of Mora-Soto et al. (2020) who found that NDVI and
FAI based on Sentinel-2 imagery could be used to map Giant
Kelp (Macrocystis pyrifera) forests, which float at the surface and
intertidal green algae, but could not discriminate between the two
vegetation types.

Our choice of a specific image classifier (random forests) was
based on an initial exploratory analysis (Supplementary Material
2), and previous studies which compared different machine
learning classifiers to the maximum likelihood classification and
found the machine learning classifiers to be the superior image
classifier (e.g., Ha et al., 2020). Therefore, our study provides
further support for the shift away from the continued use
of maximum likelihood. Both SVM and random forests have
routinely high overall map accuracies as found in our study and
other works (Traganos and Reinartz, 2018b; Poursanidis et al.,
2019; Wicaksono et al., 2019). However, we chose to use random
forests as it requires less model tuning than SVM. Furthermore,
for acoustic seabed classification, random forests was found
to be the preferred algorithm compared to k-nearest neighbor
and k-means as it produced the most reliable and repeatable
results (Zelada Leon et al., 2020). While the classification
choice does have an impact on map accuracy values, we found
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FIGURE 7 | Finalized classification of the Sentinel-2 image from September 13, 2016 highlighting how mud is misclassified at greater depths. (A) True color
composite and resulting map classification (thresholded at ≥80% probability of being vegetated) indicating location of field survey points of a muddy habitat at 1–2 m
(square), 2–3 m (circle), and 3–4 m (triangle). Waters at depth from 5 to 10 m shown with transparent yellow overlay (“brown” in the figure). (B) Spectra for the same
three survey points, compared to sand and vegetated dominated habitat at 2–3 m of water depth.

that it had no effect on species level discrimination during
exploratory analysis. For instance, all four classification types
explored in our initial analysis could map vegetated versus non-
vegetated habitat, to varying degrees of accuracy, but none could
differentiate between eelgrass versus (predominantly brown)
seaweed dominated habitat. We therefore had to modify our
classification goal from separating eelgrass from seaweed habitat,
to only classifying vegetated habitat presence and absence. This
is in line with another study based on Sentinel-2 imagery in
temperate waters that was also able to only classify vegetation
presence from absence (Fethers, 2018). Using SPOT-6/7 imagery,
with similar band placements to Sentinel-2 bands 2–4 (blue,
green, and red) but at a higher spatial resolution (1.5-m),
eelgrass was differentiated from seaweeds in only one of three
different images for a bay-wide mapping study in Atlantic
Canada (Wilson et al., 2019). Even in tropical clear waters,
supervised classifiers with Sentinel-2 have had varying success
to differentiate among submerged seagrass species (Kovacs
et al., 2018; Traganos and Reinartz, 2018b). Therefore, while
Sentinel-2 can produce large-scale coastal benthic habitat maps
in Atlantic Canada, it would only be to a level of vegetation
presence. If greater class separation is required, hyperspectral
imagery (5–10 nm resolution depending on the part of the
spectrum) can differentiate between different vegetation types,
even in optically complex waters, albeit to much shallower

depths (Vahtmäe et al., 2020). Our analysis found that the four
10-m spectral bands on Sentinel-2 were not enough to provide
differentiation between eelgrass and seaweeds.

Including appropriate water penetrating bands is essential
for developing accurate coastal benthic habitat maps. In the
submerged habitat classification using random forests, we
excluded the NIR band from the analysis. While the NIR provides
critical information along the red-edge, strong absorption by
water in this part of the spectrum introduces noise into the
classification in all but the shallowest of waters (<2 m; Kutser
et al., 2009). Exploratory analysis found that excluding the NIR
band (8) increased the maximum depth from ∼5 to ∼10 m at
which the classifier could successfully identify bottom habitat at
the expense of misclassifying vegetation in very shallow (∼<2 m)
waters (Wilson and Devred, 2019). Classifying intertidal/shallow
habitat with NDVI provided comparable results in very shallow
regions as including NIR in the random forests model, with
the benefit of reducing “noise” in the classification allowing
for classifying bottom habitat at greater depths. Consequently,
we found the best band combination to maximize spectral
information available to the classifier, while minimizing noise
introduction to the blue, green, and red bands (Bands 2–4).
The blue (band 2) and green (band 3) are commonly used in
image classification of seagrass habitat with Sentinel-2, generally
with a third band either being coastal blue (Traganos et al., 2018;
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FIGURE 8 | Finalized classification of the Sentinel-2 image from September 13, 2016 highlighting how low-density vegetation is misclassified. (A) True color
composite and resulting map classification (thresholded at ≥80% probability of being vegetated) indicating location of field survey points of a sandy habitat (black
triangle), low density eelgrass (red x), and a large, dense eelgrass bed (white square). (B) Spectra for the same three survey points which all are between 0 and 1 m
of water depth. Note the low-density eelgrass training point would not have been included in model training (see section “Field Surveys”).

Poursanidis et al., 2019) or red (Traganos and Reinartz, 2018b; Ha
et al., 2020). In our study, classification performance decreased
when the coastal blue band (band 1) was added due to its
low spatial resolution (60-m), which was inappropriate for
identification of highly heterogeneous habitat such as in our area
of interest. Furthermore, while in very clear waters the coastal
blue band provides valuable information on bottom habitat
across all depths, the presence of CDOM and particulate matter
in temperate optically complex waters limits the applicability
of the coastal blue band due to their high absorption across
these wavelengths (∼450 nm). Classification performance also
decreased when the red band was omitted, which is commonly
done in tropical studies (Traganos et al., 2018; Poursanidis et al.,
2019), indicating that valuable information was still provided at
this wavelengths even though it is strongly attenuated by water.
Therefore, the optimum bands in temperate, optically complex
waters vary compared to the typical band combination used in
tropical studies. Classification of seaweed habitat with Sentinel-
2 has focused on intertidal species (Kotta et al., 2018), or those
with floating canopies such as Giant kelp (Mora-Soto et al., 2020),
and can therefore use information about the red-edge for image
classification, including the NIR bands.

Effective masking of optically deep water is an important step
in image-based classification procedures as bottom reflectance is
no longer detected by the satellite. If a poor maximum depth for

image classification is chosen, then all habitat below this depth
will be classified as vegetated due to the relatively dark spectra
compared to optically shallow regions. Generally, the maximum
depth is either specified to coincide with the maximum depth
that field survey data were collected (Yucel-Gier et al., 2020), or
analytical modeling is used to determine the maximum depth
bottom reflectance that can be detected (O’Neill and Costa, 2013;
Poursanidis et al., 2019). In Nova Scotia, eelgrass beds have been
documented up to 12 m deep (DFO, 2009) and kelp beds to 20 m
deep (Johnson and Mann, 1988), yet we masked water deeper
than 10 m to coincide with the maximum depth at which field
survey points were collected during our study. While the external
bathymetry file was at a lower spatial resolution then the satellite
data (30 versus 10-m), which would cause errors if bathymetry
was required for every pixel particularly in shallower (<5 m)
waters, it is reasonable to derive a deep water mask based on the
10-m contour. Therefore, most eelgrass habitat was included in
our map product but there is an additional ∼333 km2 of total
surface area between 10 and 20 m of water depth where kelp
habitat may exist within the study area. While bottom type could
be visually distinguished at depths shallower than the 11–12 m
isobaths in regions with high albedo (sandy beach) and sharp
contrast (sand into dense vegetation patch), this maximum depth
was not consistent across the image. In some areas bottom habitat
was only detectable for depths shallower than 2 m. It is not
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surprising that there is a large range of maximum water depths
where bottom habitat can be classified. In the clear waters of
the Mediterranean Sea, the seagrass species Posidonia oceanica
has been consistently mapped with Sentinel-2 to water depths of
16–40 m (Traganos and Reinartz, 2018b; Traganos et al., 2018;
Poursanidis et al., 2019). While in optically complex temperate
environments, Sentinel-2 has been used to map eelgrass beds to
depths of 4–5 m (Fethers, 2018; Dierssen et al., 2019), and retrieve
bathymetry to 10-m deep in Ireland (Casal et al., 2020), both
studies observed that this maximum depth was highly dependent
on image quality, and depth limits were significantly shallower
under non-optimal conditions, which is consistent with our
results. Lastly, while Sentinel-2 has not previously been used to
detect submerged kelp beds, SPOT and Landsat have been used
to map vegetated bottom habitat (eelgrass and kelps) to depths
of 7–8 m in Atlantic Canada (Simms and Dubois, 2001; Wilson
et al., 2019; St-Pierre and Gagnon, 2020) and down to 10 m in
turbid waters in Spain (Casal et al., 2011).

It is not surprising that water transparency would vary over
a Sentinel-2 tile characterized by a complex coastline subject to
river inputs, sediment redistribution and resuspension, CDOM
runoff, and differing phytoplankton concentrations, which all
impact the optical characteristics of the water column and are
highly variable over even small spatial scales. Furthermore,
while the 10-m maximum depth at which bottom habitat can
be detected using Sentinel-2 provides a cost effective mean to
quantify large-scale distribution of marine macrophytes in Nova
Scotia, the variance in the maximum depth that bottom habitat is
visible should be further explored. On small scales (single seagrass
bed or inlet) a maximum depth should be readily detectable for
classifying vegetation coverage. But on large-scales (several inlets
to full Sentinel-2 tiles) another approach is required. The simplest
approach would be to use the minimum water depth that bottom
habitat could be consistently detected, although this would limit
the extent of habitat maps to the shallowest waters. Another,
albeit tedious, technique could involve manually digitizing a
deep-water mask accounting for the spatial heterogeneity of
water transparency. A more automated approach may involve
deriving water column properties with ACOLITE and the use
of detectability limits of different substrates (Vahtmäe et al.,
2020) to develop contours where water transparency may shift.
Furthermore, the high revisiting time of Sentinel-2 (every 2–
3 days in Atlantic Canada) allows for multi-scene compositing,
opposed to relying on only classifying the overall “best” image,
within a time frame for which vegetation extent is expected to
remain similar. This would minimize water transparency impacts
on image classification as this process has shown promising
results for satellite derived bathymetry studies in turbid waters
with Sentinel-2 (Caballero and Stumpf, 2020), and coastal habitat
classification with Landsat (Knudby et al., 2014). Regardless, our
image classifier performed well to a maximum water depth of
10 m, but some interpretation is required to understand where
water transparency is limiting the classification performance. As
we used a “best” image for classification, we can conclude that
marine macrophytes can be detected to the 10 m depth contour
in Atlantic Canada under optimal conditions, and in sub-optimal
conditions this value likely varies between the 4–8 m depth

contour, although further work would be required to define the
lower threshold.

The final map classification yielded an overall map accuracy
of 79% for the binary classification of vegetation presence and
absence. This is comparable to other Sentinel-2 coastal habitat
mapping studies for submerged seagrasses in optically complex
waters of Denmark (73%; Fethers, 2018) and in clear waters
in Turkey (75–78%; Yucel-Gier et al., 2020), Italy (82–88%;
Dattola et al., 2018), New Zealand (88%; Ha et al., 2020), and
Greece (58–96%; Traganos and Reinartz, 2018b; Traganos et al.,
2018; Poursanidis et al., 2019). The large range of accuracy
values for the study carried out in the coastal waters of Greece
reflects differences in their seascapes. The lowest accuracy values
(58%) occurred in a fragmented seascape with large amounts of
mixed habitat types (Poursanidis et al., 2019), the highest (96%)
occurred in a small (∼3 km2) study region with large seagrass
beds (Traganos and Reinartz, 2018b), and intermediate values
(72%) were obtained for a classification encompassing the entire
Aegean and Ionian Seas (Traganos et al., 2018). Elsewhere in
Atlantic Canada, submerged kelp and eelgrass habitat has been
classified using the high-resolution SPOT-6/7 imagery with an
overall map accuracy of ∼88% at bay-wide scales (Wilson et al.,
2019; St-Pierre and Gagnon, 2020). Consequently, our accuracy
metrics would likely improve if we focused on smaller spatial
scales where classification models can be fine-tuned to specific
habitat-types and water column properties. Still, good accuracy
metrics were achieved for the full tile classification, providing
accurate maps of vegetated areas for marine spatial planning.
While the previous Atlantic Canada studies were punctual in
space and time, and demonstrated feasibility of using satellite
remote sensing to map bottom habitat in Atlantic Canada, this
study represents a first step to routinely classify and monitor
bottom habitat in Atlantic Canada to inform habitat management
policies at effective cost.

This study only explored the limits of empirical, image-based
classification procedures to map marine macrophyte habitat with
Sentinel-2 in the optically complex waters of Atlantic Canada.
Further work includes comparing the results from the image-
based classification to a map derived from a semi-analytical
inversion models. Inversion methods solve simultaneously for
depth, bottom reflectance, and water IOPs but are highly
sensitive to atmospheric correction errors and were developed
for hyperspectral data (Lee et al., 1999). To date, they have
had limited applications for multispectral data due to the high
number of unknown parameters (absorption, scattering, depth,
and bottom reflectance) relative to the number of spectral
bands (Garcia et al., 2020). In the case of Sentinel-2, only three
water-penetrating spectral bands are available at a 10-m spatial
resolution, which is inadequate to characterize both the water
column, depth, and bottom reflectance (Dierssen et al., 2019).
To our knowledge, only one study has explored semi-analytical
inversion of Sentinel-2 data to map seagrass habitat and derive
water column properties in a tropical environment (Traganos
and Reinartz, 2018a). To do so, they first solved for water
depth with an empirical satellite-derived bathymetry approach
by regressing in situ measured depth against the coastal blue
and green ratio, and then solved for water column properties
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and bottom reflectance using the three 10-m bands (blue, green,
and red) with the downscaled 60-m coastal blue and 20-m
red-edge (740 nm) bands, and the derived depth layer with a
modified HOPE (Hyperspectral Optimization Process Exemplar)
model (Lee et al., 1999). The addition of the lower-resolution
spatial bands in our study region would complicate benthic
habitat mapping due to the complex coastline and high spatial
heterogeneity of both bottom habitat and water depth.

CONCLUSION

The freely available Sentinel-2 satellite imagery time series
provides a new opportunity to generate large scale vegetation
habitat maps, and examine how vegetation extent changes over
time, at a spatial resolution of about a tenth that of the Landsat
imagery series (i.e., 100 m2 for Sentinel-2 against 900 m2 for
Landsat-8). As such, Sentinel-2 has been used to map the extent
of marine macrophytes in single inlets and bays (Traganos and
Reinartz, 2018a; Dierssen et al., 2019), regionally (Traganos et al.,
2018), and globally (Mora-Soto et al., 2020). Such uses at both
small and large spatial scales show promise in Atlantic Canada,
provided that accurate water transparency masks are generated.
In regions where water transparency limits Sentinel-2 mapping
capabilities, gaps in coverage can be addressed with in situ
approaches such as sonar deployment (Vandermeulen, 2014).
Using Sentinel-2, we found that two complimentary approaches
provide a unique, robust and efficient classification of bottom
habitat. The simple band-ratio thresholds can classify vegetation
extent in shallow, sandy waters, and when the thresholds
method fails the random forests machine learning classifier
successfully denotes the location of vegetated habitat. From
the classified habitat maps, estimates of surface area coverage
of marine macrophyte habitat can be generated. Although
attempted, Sentinel-2 does not have the spectral resolution to
distinguish seagrass from seaweed dominated habitats in the
optically complex waters of our study region, this finding is in
contrast to other studies that took place in tropical waters (e.g.,
Kovacs et al., 2018). As such, the final vegetation maps can
be combined with other data layers including depth, substrate,
exposure, species distribution models and/or local ecological
knowledge to qualitatively differentiate eelgrass from seaweed

habitats (Lauer and Aswani, 2008; Wilson et al., 2019; Beca-
Carretero et al., 2020). Benthic habitat maps are an essential data
layer to inform the monitoring and management of macrophyte
dominated habitats, and Sentinel-2 provides a cost-effective tool
to quantify these habitats.
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Present-day ocean color satellite sensors, which principally provide reliable data on
chlorophyll, sediments, and colored dissolved organic material in the open ocean, are
not well suited for coastal and inland water studies for a variety of reasons, including
coarse spatial and spectral resolution plus challenges with atmospheric correction.
National Aeronautics and Space Administration (NASA) airborne mission concepts
tested in 2011, 2013, 2017, and 2018 over Monterey Bay, CA, and nearby inland
waters have demonstrated the feasibility of improving airborne monitoring and research
activities in case-1 and case-2 aquatic ecosystems through the combined use of
state-of-the-art above- and in-water measurement capabilities. These competencies
have evolved through time to produce a sensor-web approach: imaging spectrometer,
microradiometers, and a sun photometer (airborne) with their analogous algorithms,
and with corresponding in-water radiometers and ground-based sun photometry. The
NASA airborne instrument suite and mission concept demonstrations, leveraging high-
quality above- and in-water data, significantly improves the fidelity as well as the spatial
and spectral resolution of observations for studying and monitoring water quality in
oceanic, coastal, and inland water ecosystems. The goal of this series of projects was to
develop and fly a portable airborne sensor suite for NASA science missions focusing on
a gradient of water types from oligotrophic to turbid waters addressing the challenges of
an optically complex coastal ocean zone and inland waters. The airborne radiometry in
this range of aquatic conditions and sites has supported improved results of studies of
water quality and biogeochemistry and provides capabilities for research areas such
as ocean productivity and biogeochemistry; aquatic impacts of coastal landscape
alteration; coastal, estuarine, and inland waters ecosystem productivity; atmospheric
correction; and regional climate variability.
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INTRODUCTION

The lack of optimized remote sensing capabilities for coastal
and inland waters that can bridge limited spatial coverage and
high temporal resolution observations from in-water systems,
such as buoys, as well as limited spatial and temporal coverage
of ship-based validation with the coarse spatial, temporal, and
spectral resolution of satellite data for ocean color products is
a significant gap. In contrast to the open ocean, coastal and
inland waters are difficult regions to accurately retrieve ocean
color radiant flux (Dierssen et al., 2006; Dunagan et al., 2009;
Guild et al., 2011, 2019; Turpie et al., 2015, 2016). In coastal
areas, the magnitude of the radiance signal in the visible (VIS)
range (400–700 nm) is highly variable, ranging from very dark
values in clear, deep water, as well as in water dominated
by colored dissolved organic matter (CDOM) (e.g., Brezonik
et al., 2015; Palmer et al., 2015). For example, typical albedo
for deep ocean water is often assumed to be approximately 5%
(Moses et al., 2012), but productive and turbid inland waters
can easily exceed 25% or more (Kudela et al., 2019). Legacy
and presently operational ocean color satellite sensors such as
Sea-viewing Wide Field-of-View Sensor (SeaWiFS), Moderate
Resolution Imaging Spectrometer (MODIS), Medium Resolution
Imaging Spectrometer (MERIS), and the Visible Infrared Imaging
Radiometer Suite (VIIRS) are optimally designed for open-
ocean imagery. They are calibrated for low spectral water-leaving
radiances, LW(λ), and produce coarse spatial (km) and spectral
resolution. While more recent sensors, such as the Ocean Land
Color Instrument (OLCI), Operational Land Imager (OLI), and
Multispectral Instrument (MSI), provide improved spatial and
spectral resolution, they are not optimized for retrievals over
inland waters (Kudela et al., 2019).

Radiance signals are also highly variable in space and time at
the land–sea interface due to the dynamic nature of this region.
Low signal-to-noise ratio (SNR) measurements of LW(λ) in the
blue spectral domain result in negative values using standard
re-processing, leading to poor discrimination of pigments from
CDOM and poor estimates in the ultraviolet (UV). Aerosol and
trace gas plumes from continental sources complicate the task of
atmospheric correction, as does cloud cover. Aerosols and water
vapor strongly scatter and absorb light in the same region of
the spectrum where some ocean color algorithms are derived
(e.g., chlorophyll), compounding the problems associated with
atmospheric correction and low SNR. Atmospheric correction
schemes are also problematic for productive coastal waters. Issues
include the use of non-zero near-infrared (NIR) radiances and
poor SNR values, complicating the use of short-wave infrared
(SWIR) observations to improve atmospheric correction (Siegel
et al., 2000; Shi and Wang, 2009; Werdell et al., 2010). The UV
is also potentially useful for discriminating red tides (Kahru and
Mitchell, 1998), identifying point sources for pollution (Hooker
et al., 2013), and improving atmospheric correction, particularly
in turbid coastal waters (Wang et al., 2007; Gao et al., 2009;
He et al., 2012). Frequent atmospheric correction failures occur
at moderate to high chlorophyll levels, leading to data loss
in these dynamic regions (Loisel et al., 2013; Houskeeper and
Kudela, 2019), while most existing instruments for calibration,

validation, and research (CVR) measurements, as well as spectral
radiometers, exhibit poor performance in the UV.

The limited legacy and presently operational ocean color
satellites (Groom et al., 2019) having both multiple mid-
range spectral bands (500–600 nm) and high spatial resolution
spaceborne sensors makes it difficult to detect high biomass
events and “red tides” (Dierssen et al., 2006), one of the main
targets for coastal and inland water remote sensing. While
this can be mitigated to some extent by switching to red or
infrared bands (Houskeeper and Kudela, 2019), there can be
both over- and under-estimates based on the specific band
configuration (Ryan et al., 2014). There is a demonstrable
need for high spatial, spectral, and temporal resolution data
to meet these challenges. For the foreseeable future, this can
be enhanced with airborne instrumentation well suited for
smaller water bodies and enabling higher spatial and spectral
resolution measurements (Davis et al., 2007; Gholizadeh et al.,
2016) and with agility in timing for event response and time of
day for science needs. To bridge the gap between open ocean,
coastal, and inland waters, innovation and selection of relevant
aquatic airborne instruments for CVR and flight planning to
support the science and instrument requirements is crucial
(Guild et al., 2011, 2019). Further, aligned sensor technology,
site coverage, and data collection contemporaneous with in-
water observations enable credible CVR in dynamic coastal and
inland aquatic environments. To meet these observational and
innovative technology needs, next-generation instrument suites,
processing, and data products have been tested in coastal and
inland waters during several recent airborne missions on the
Naval Postgraduate School’s (NPS) Twin Otter (TO): (a) 2011
NASA Coastal and Ocean Airborne Science Testbed (COAST);
(b) 2013 NASA Ocean Color Ecosystem Assessments using Novel
Instruments and Aircraft (OCEANIA); and (c) the 2017 and
2018 Coastal High Acquisition Rate Radiometers for Innovative
Environmental Research (C-HARRIER) campaigns (Table 1).
These airborne mission technology developments advanced
from establishing the flight observation requirements for the
instruments individually or as a sensor suite, to flight scenarios
that address the remote sensing needs of aquatic environments
in support of satellite observations (or high-altitude simulations
thereof), and including the processing of airborne data for
aquatic CVR for ocean, coastal, and inland targets.

NASA COAST initiated the first in a series of airborne CVR
concepts for coastal and inland waters and operated in coastal
California in 2011, focusing on the greater Monterey Bay region
(Figures 1, 2). The goal of the COAST project was to develop and
fly a portable airborne sensor suite for NASA science missions
addressing the challenges of an optically complex coastal ocean
zone in support of research areas such as water quality, ocean
productivity and biogeochemistry, coastal landscape alteration,
coastal, estuarine, and inland waters ecosystem productivity,
atmospheric correction, and regional climate variability (Guild
et al., 2011). The COAST instrument suite included a portable
Headwall Hyperspectral Imaging System (HIS), the new Coastal
Airborne In situ Radiometers (C-AIR) bio-optical radiometer
package, and the 14-Channel Ames Airborne Tracking Sun
(AATS-14) photometer enabling contemporaneous observations
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TABLE 1 | Summary of data collection and instrumentation.

Campaign Date Airborne sensors Above- and in-water sensors Ancillary remote sensing data

COAST 28 October 2011 HIS, AATS-14, C-AIR C-OPS, HyperPro II, MicroTOPS MERIS

OCEANIA 30–31 October 2013 C-AIR C-OPS, HyperPro II, MicroTOPS AVIRIS

OCEANIA 4, 5 November 2013 C-AIR C-OPS, HyperPro II, MicroTOPS MODIS

C-HARRIER 8, 13–14 September 2017 C-AERO C-OPS, HyperPro II MODIS, VHRS

C-HARRIER 26 October 2018 C-AERO C-OPS, HyperPro II MODIS, VIIRS

FIGURE 1 | Map of bathymetry and California study site locations of Monterey Bay including Santa Cruz Wharf and Elkhorn Slough, San Pablo Bay, Grizzly Bay, and
Lake Tahoe (inset map). The nearby Marina Airport is also identified where the NPS TO is located.

over the same water target for deriving LW(λ) and relevant
aerosol optical depth (AOD) to support atmospheric correction
schemes. The instrument integration design and flight planning
addressed competing instrument observation requirements and
solar geometry to optimize instrument measurements. The
COAST flight demonstrations advanced opportunities for aquatic
ecosystem research and coastal ocean color CVR capabilities
by providing a unique airborne payload optimized for remote
sensing in optically complex waters.

The 2013 NASA OCEANIA campaign extended the COAST
project to focus on apparent optical properties (AOPs) derived
from the in-water Compact-Optical Profiling System (C-OPS)
built with microradiometers by Biospherical Instruments Inc.
(BSI) and from C-AIR flown in COAST aboard the NPS
TO aircraft and also built with BSI microradiometers. The
OCEANIA project was designed to assess CVR capabilities
in support of high-altitude airborne simulation of satellite
observations. Flight planning at lowest safe altitude (LSA, e.g.,

Frontiers in Environmental Science | www.frontiersin.org 3 November 2020 | Volume 8 | Article 58552966

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-585529 November 16, 2020 Time: 15:11 # 4

Guild et al. Global Aquatic Airborne Radiometry

FIGURE 2 | Monterey Bay, CA was the primary target for the airborne missions. (A) The MERIS chl a image from 28 October 2011 (COAST), with the LSA AATS-14
lines (blue) and the “red tide” (CST17; solid circle) and M0 (CST18; solid square) stations. The rectangular box denotes the region depicted in (B), showing the HIS
data as an RGB composite, with red indicating high chlorophyll. (C) The spectra from the labels 1–7 in (B) from the HIS. The water depths for these seven sites
range from approximately 18 to 25 m.

30 m) used flight headings into and out of the principal solar
plane during optimal sun elevation to reduce glint, which were
coordinated with field measurements and timing of high-altitude
aircraft and satellite overpasses, as well as established flight
protocols supporting CVR for the radiometers. Both COAST and
OCEANIA utilized a sensor-web network approach to enable
simultaneous measurements in support of CVR exercises for
satellite coastal ocean color products.

The 2017 and 2018 C-HARRIER campaigns built on the
technological development and integration of multiple sensors
initiated in COAST and OCEANIA CVR activities. The
airborne radiometer suite was upgraded to the Compact-
Airborne Environmental Radiometers for Oceanography (C-
AERO), which was built with the latest generation of BSI
microradiometers (Hooker et al., 2018a). The in-water validation
data were obtained with a C-OPS instrument equipped with the
Compact-Propulsion Option for Profiling Systems (C-PrOPS)
accessory, which adds two small digital thrusters to the backplane
so it can be maneuvered independently (Hooker et al., 2018a).
The thrusters improve the planar and solar geometry of the light
apertures, as well as increasing surface loitering while decreasing
descent rate. The net effect of these improvements is a vertical
sampling resolution (VSR) that is frequently 1 mm or less
(Hooker et al., 2020), whereas C-OPS without C-PrOPS typically
has a VSR of 1 cm (Hooker et al., 2013).

The C-AERO instrument suite incorporated increased
spectral range to collect data at longer wavelengths, a shroud to

eliminate stray light, faster data sampling (from 15 Hz in the
2017 mission to 30 Hz in the 2018 mission) to better discretize
surface glint from oblique wave facets, and advanced instrument
characterization to improve data processing capabilities by
using a novel synthetic dark correction approach (c.f. Kudela
et al., 2019 and see section “Implementation of Synthetic Dark
Corrections for the C-HARRIER Mission”). The increased
data acquisition rate of C-AERO enables a rich collection
of CVR data within a single satellite pixel as well as more
validation data coverage of smaller water targets (e.g., lakes,
rivers, and deltas). C-HARRIER will ultimately include a novel
airborne sun photometer, also built with microradiometers,
called the Sky-Scanning Sun-Tracking Airborne Radiometer
(3STAR), thus completing the development of a sensor-web in
which radiometric observations can be conducted for airborne,
above-water, and in-water modalities using the same hardware
and software suite.

Here we document the evolution of the various sensor
suites used for COAST, OCEANIA, and C-HARRIER, including
mission planning, operational success, and challenges, and
the path toward a fully integrated sensor suite. We highlight
specific science applications using these data to underscore
how an airborne CVR observatory can be used to understand
coastal and inland water quality and provide recommendations
for airborne missions in support of aquatic remote sensing,
including calibration and validation of existing and future
satellite platforms.
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MATERIALS AND METHODS

The methodology development for this airborne CVR capability
was enabled through a NASA mission training activity,
subsequent innovation funds to advance focused instrument
investigation, and ultimately maturing airborne instrument
technology and flight demonstrations over varying water
types for science missions. These separate projects advanced
the airborne CVR methodology through the team members’
expertise in instrument development and ocean biology, ecology,
and optics to align science measurement objectives to instrument
specifications (Guild et al., 2011, 2019). Further, flight planning
on a relevant aircraft to meet science objectives and instrument
observation requirements was critical to the success of data
acquisition. The following outlines the methodology steps and
advances made through each project mission in development of
the airborne CVR capability.

First a review of the science requirements supported selection
of instruments, or an understanding of their deficiencies, and
included identification of relevant channels of the instrument
suite aligned to support legacy and next-generation ocean color
satellite capabilities. A Science Traceability Matrix (STM) was
used to link science objectives and measurements to instrument
requirements and performance and provides a conceptual model
of the technology threshold needed to meet the measurement
objectives. STM science objectives included measurements of
aquatic bio-optical properties over spatial extents from less
than 1 m to 10 s of meters over coastal waters to capture
dynamic coastal phenomena (e.g., blooms and riverine plumes).
Corresponding in-water measurements include both apparent
(water-leaving radiances) and inherent (absorption, scattering)
optical properties at relevant wavelengths (400–800 nm) aligned
with satellites used for ocean color (e.g., MERIS, MODIS). These
data products form the basis for science questions by deriving
relevant ecological and biogeochemical properties from the high-
quality water-leaving radiances. Instrument specifications and
performance requirements were established in the STM and
instruments were evaluated to meet instrument requirements.

For the COAST mission training project, the HIS aligned
with the instrument spectral range and was an available test
instrument provided by the NASA Ames Research Center
(ARC) Airborne Sensor Facility. Additionally, the AATS-
14 sun photometer exceeded instrument sensor requirements
and was selected for having demonstrated science and flight
heritage since 1997 for atmospheric chemistry (Livingston et al.,
2003; Redemann et al., 2005, 2009; Russell et al., 2007). The
microradiometer instruments (Morrow et al., 2010) provided the
instrument channel specifications to align with satellite ocean
color sensors and were the underlying foundation of a new
CVR radiometric package flying for the first time for COAST
and remained the consistent primary instrument suite as the
basis for the airborne CVR objective. The flight planning for
the AATS-14 sun photometer and HIS were well established;
however, the microradiometers were new to integration on an
aircraft and flight.

Airborne flight planning over optically dark water targets
provides unique challenges from the optically bright targets in

terrestrial environments (Mustard et al., 2001; Kudela et al.,
2019). Flight plans over water must take into consideration
the following: (a) sensor field of view (FOV), integration, and
data rate; (b) solar elevation and azimuth to optimize the
observational geometry and minimize sun glint; (c) weather
mitigation (less than 25% cloud cover); (d) calm wind conditions
to simplify water surface roughness modeling, reduce white-
cap effects, and facilitate in-water validation measurements; (e)
flights ± 30 min of satellite overpass to capture dynamic changes
in water features; (f) coordination with in situ validation teams
(boat and targets); and (g) for flights including an airborne sun
photometer, stacked flight transects at high and low altitudes for
full column and intervening layer AOD retrievals.

The TO, operated and maintained by the NPS, was used
for all flights. It is a non-pressurized turboprop, twin-engine
aircraft. The payload capacity of the TO is 680 kg. The platform
endurance is about 5 h in a fully loaded weight configuration.
The practical mission ceiling is 5,486 m, or 3,658 m without crew
requiring oxygen. Instruments may be installed in racks inside
the cabin where a well-characterized community inlet delivers
ambient air samples, or in pods either suspended by wing-
mounted pylons or mounted on a hard point on the cabin roof.
Optical ports and window options for integration are located in
certified portals, as well as in the fuselage underside and cabin
roof. The NPS has aircraft facility instruments providing position,
navigation, time, altitude, groundspeed, heading, pitch, roll, true
airspeed, total temperature, dew point, static pressure, dynamic
pressure, surface temperature, sky temperature, true wind speed,
and wind direction.

COAST Mission Overview
For this study, the COAST project serves as the prime
mission model with subsequent extension missions that advanced
technical capabilities and methodology in support of improved
data quality from airborne observations for aquatics research.
The COAST project integrated an instrument suite onboard
a platform flown over a location wherein the latter two were
trade-study-selected. Examining these trade spaces provided
key training opportunities for the team, reflecting typical
NASA science flight mission early-phase activities. Following
NASA’s procedural requirements for missions, the COAST
project passed systems engineering and process requirements
of Systems Requirements Review, Preliminary Design Review,
Critical Design Review, Airworthiness and Flight Readiness
Review, and Flight/Mission Readiness Review. This process
established the development and integration of the first airborne
end-to-end package for simultaneous measurements of ocean
color (modified imaging spectrometer), AOD and water vapor
column content (sun photometer), and aquatic bio-optical
measurements (fixed-wavelength radiometer package) with the
airborne components flight-capable on a variety of airborne
platforms. All instruments use inputs from an associated
precision navigation system during flight, or the onboard
cabin navigation data for post-processing after flight. This first
deliverable, therefore, provided a fully operational, integrated,
and portable airborne instrument suite optimized for coastal and
inland water airborne missions.
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Flight planning with instrument science and ocean color
scientist team members yielded flights that demonstrated CVR
protocols (Hooker et al., 2007) for coastal ocean and inland
water color through airborne campaigns of the HIS, AATS-
14 sun photometer, and C-AIR microradiometer package flown
in coordination with satellite and in situ observations from
ships. The flights produced high spatial resolution (5–10 m),
atmospherically corrected and geolocated ocean-color products
calibrated to at-sensor radiances and post-processed to derive
LW(λ). The primary CVR products from the C-AIR radiometers
are LW(λ) and the corresponding normalized forms, e.g., the
remote sensing reflectance (Rrs); there are numerous applications
for these data to produce biogeochemically meaningful products
for the coastal ocean as well as inland waters.

COAST Airborne Platform and Instrumentation
The 2011 COAST mission flew at altitudes between
approximately 30 and 1,829 m on the NPS TO platform on
28 October 2011 over northern Monterey Bay, California
(Figures 1, 2).

The complete COAST flight system included three main
instruments, a prototype portable Headwall HIS, AATS-14,
and C-AIR, with ancillary supporting instruments (Table 1).
Sea-truth instrumentation included a MicroTOPS II sun
photometer (Solar Light Inc.), C-OPS (BSI), a HyperPro II
hyperspectral profiling radiometer (Satlantic), and ancillary
supporting instruments including an inherent optical properties
(IOP) package consisting of an ac-s (WETLabs), HydroScat-6
(HOBI Labs), and a Conductivity, Temperature, Depth (CTD)
instrument (SeaBird Scientific). A detailed comparison of the in-
water instruments is provided in Bausell and Kudela (2019) and
is not further described here.

Hyperspectral Imaging System
The prototype HIS is a concentric push broom hyperspectral
imager of the Offner design optimized in the blue region of
the spectrum for marine and freshwater targets. The system
was further customized for ocean imaging with a cooled, blue-
enhanced charge-coupled device array with 600 × 800 elements
and was thermo-electrically cooled to −30◦C for increased
sensitivity and radiometric stability. The HIS is nadir pointing
and mounted on a plate integration design with attachment
structures to the seat rails over the nadir port. The HIS was flown
at 1,828 m to acquire data at approximately 4 m ground spatial
resolution (GSR) with a spectral range of 380–760 nm.

14-Channel Sun Photometer
The AATS-14 measures direct solar-beam transmission (T) at 14
discrete wavelengths from 354 to 2,139 nm, yielding AOD at 13
wavelengths and water vapor column content using T at 940 nm.
Azimuth and elevation motors controlled by differential sun
sensors rotate the tracking head, keeping the detectors normal
to the solar beam. AATS-14 is integrated in a zenith port and
on a seat rail mounted truss. AATS-14 has been used extensively
to test and improve AOD retrievals by MODIS, SeaWiFS,
Multi-angle Imaging SpectroRadiometer (MISR), and many
other satellite sensors (Hsu et al., 2002; Livingston et al., 2003;

Redemann et al., 2005, 2009; Russell et al., 2007), and to test water
vapor retrievals by the Atmospheric Infrared Sounder (AIRS) and
MODIS (Livingston et al., 2007). AATS-14-measured AODs have
successfully been used in atmospheric correction of satellite data
(Spanner et al., 1990; Wrigley et al., 1992).

Airborne Radiometers
Coastal Airborne In situ Radiometers was a new airborne
radiometer instrument package flown for the first time for the
COAST mission in 2011. Based on microradiometers (Morrow
et al., 2010), like C-OPS, C-AIR consists of three 19-channel
radiometers: one measuring global solar irradiance (Es) and fitted
with a cosine collector, plus two radiance instruments oriented
to measure the indirect sky radiance (Li) and the total surface
radiance (LT). The spectral range of each 19-channel radiometer
bundle includes selected 10 nm channels centered around 320,
340, 380, 412, 443, 490, 510, 532, 555, 589, 625, 670, 683, 710,
780, and 875 nm, seven of which match satellite ocean color
(MODIS) bands. The sampling data rate was 15 Hz. Application-
specific sensors are included such as UV-bands for CDOM
or atmospheric correction, bands targeting phycocyanin and
phycoerythrin pigments for flights over reservoirs and terrestrial
waters (blue-green algae detection), or bands targeting natural
fluorescence (for red tide, high sediment load, and primary
production applications). The microradiometer detectors have
10 decades of dynamic range and are sensitive enough to detect
moonlight in global irradiance. The physical FOV radiance
instrument is 2.5◦ full-angle and 0.7◦ slope angle. The Es and
Li radiometers are mounted within a fairing on top of the
aircraft and the Li radiometer is mounted 40◦ off zenith, normal
to the path of the aircraft. The LT radiometer is mounted at
40◦ off nadir, pointed normal to the path of the aircraft, and
located alongside the imaging spectrometer in a seat rail structure
in an underside nadir port. This configuration eliminated any
competing observation requirements between the HIS and
C-AIR during flight.

COAST Flight Plan
Flight planning considered the FOV of each instrument and
integration on the aircraft. To optimize observations from the
hyperspectral imager and radiometer, the aircraft was flown into
and out of the principal solar plane and 30–45◦ solar elevations
to avoid sun glint. For the Monterey Bay coastal region in
California, this enabled 2–3 h flight windows in the morning
and afternoon around solar noon in October. Flight lines were
flown in parallel at 1,829 m and spaced with 20% overlap for
the HIS. The C-AIR LT radiometer, pointing 40◦ from nadir, was
pointing at the next adjacent line flown or the previous line flown
depending on the heading. LSA flights supported the AATS-14
sun photometer and radiometers observations. Approximately
every 20 min, the aircraft spiraled down in concentric circles
to LSA and then flew a line under the high-altitude lines and
then spiraled up in concentric circles to continue the high-
altitude lines. These flight spirals, from high altitude lines down
to LSA and back to the high-altitude flight lines, sampled
the full atmospheric column and intervening layer for AOD
retrievals. Pilots controlled aircraft pitch to not exceed radiometer
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tolerance requirements which also optimized the hyperspectral
imager observations. Flights over Monterey Bay included flight
restrictions. The NPS TO was permitted to fly at 30 m altitude
outside one nautical mile (including National Marine Sanctuary)
from shore and 152 m over vessels.

OCEANIA Mission
The 2013 OCEANIA mission, extended the COAST project to
focus on AOPs from in-water (C-OPS) and from the TO airborne
platform (C-AIR) to evaluate CVR capabilities in support of high-
altitude airborne simulation of satellite observations. OCEANIA
did not include the HIS or AATS-14 sensors. C-OPS was
upgraded to include small digital thrusters (Hooker et al., 2018a)
that improve the VSR to 1 mm or less (Hooker et al., 2020).
Driving requirements for flight planning emphasized C-AIR
observations without competing requirements from another
sensor, as experienced with AATS-14 in COAST and C-AIR Es, Li,
and LT radiometer configuration and integration was unchanged.
Given successful data acquisition associated with flight planning
for COAST, C-AIR was flown at LSA over Monterey Bay at
approximately 30 m (150 m over vessels) as well as at 305 m
altitude on the NPS TO. Flight headings remained into and out
of the sun with 30–45◦ solar elevations. The low altitude flight
plans minimized effects of AOD on C-AIR LW(λ) derivations
consistent with the COAST mission. OCEANIA was flown on
30–31 October and 5 November 2013. The 31 October 2013
flight was coordinated with the Hyperspectral Infrared Imager
(HyspIRI) Airborne Preparatory Campaign, which provided
coincident imagery from the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor aboard the NASA ER2 platform at
approximately 19,810 m (c.f. Palacios et al., 2015).

C-HARRIER 2017 and 2018 Missions
The 2017 NASA C-HARRIER campaign collected measurements
in the San Francisco Bay Delta, northern Monterey Bay and
Pinto Lake on 8 September, Lake Tahoe on 13 September,
and northern Monterey Bay and Pinto Lake on 14 September
2017. The same instrument suite was used as for OCEANIA,
but the C-AIR system was upgraded to use C-AERO. As
described in Kudela et al. (2019), the principal differences
between the two embodiments are that the above-water C-AERO
instrument suite has wavelengths spanning 320–1,640 nm
(SWIR channels 1,020, 1,245, and 1,640 nm with 10, 15, and
30 nm bandwidths, respectively). This allows for atmospheric
correction studies that emphasize long wavelengths. C-AERO
includes a shroud to eliminate sun glint in SWIR channels. The
sampling frequency remained at 15 Hz. Data were collected
from the NPS TO at LSA (approximately 30 m above the
water surface). For the 2018 NASA C-HARRIER mission,
the C-AERO LT radiometer was upgraded to a 30 Hz data
sampling rate. This upgrade enables additional valid data points
following data filtering of sub-optimal airborne data collection
and rejection of glint-contaminated data. The resultant data
collection increases statistical robustness for 1% radiometry
requirements for vicarious calibration and enables a greater
number of observations of small water targets such as small lakes,
rivers, and estuaries.

Ancillary Imagery
For the scheduled mission flight date windows, available
satellite overpass timing options for MERIS (operational for
COAST only), MODIS, VIIRS, Landsat 8 OLI, and Sentinel-
2 MSI were identified for flight planning purposes. Based on
requirements of flights within 30 min of satellite overpass, data
from COAST, OCEANIA, and C-HARRIER were compared to
contemporaneous imagery from the MERIS sensor, MODIS, and
from AVIRIS flown as part of the NASA HyspIRI Airborne
Preparatory Campaign (Hochberg et al., 2015; Lee et al., 2015)
(Table 1). Data were accessed as Level-1A (L1A) radiances and
Level-2 (L2) atmospherically corrected water-leaving radiance
products from the NASA repositories. Details of the atmospheric
corrections applied are provided in Section “Data Processing.”

Field Sites and in situ Measurements
Our primary coastal field sites are the northern part of Monterey
Bay, CA (Figure 1) with secondary sites including Lake Tahoe
and San Pablo, Grizzly Bays located in the northern San Francisco
Bay. Based on past project experience and typical conditions, a
fall flight window maximized data collection days, minimized
cloud cover, and provided a range of scientifically interesting
features including tidal exchange with Elkhorn Slough (a tidally
driven coastal estuary along the Monterey Bay), red tides, fall
transition, upwelling versus oceanic conditions, and, potentially,
a “first flush” rain event. Actual observations focused on bloom
events as both time periods (2011 and 2013) corresponded with
seasonally low river flow with no observed salinity anomalies
indicative of river plumes at our field sites. Monterey Bay is
well characterized oceanographically, provides rich historical and
ongoing observations, and has been used in the past for CVR
airborne operations (e.g., Ryan et al., 2005a,b, 2008, 2009, 2010;
Dierssen et al., 2006; Davis et al., 2007; Chien et al., 2009)
including the October 2011 NASA COAST mission (Figure 2)
(Guild et al., 2011). In-water validation data were collected
aboard the R/V John Martin for COAST and OCEANIA,
and from the Santa Cruz Municipal Wharf for C-HARRIER.
Instrumentation (Table 1) included the C-OPS and HyperPro
II profiling radiometers, MicroTOPS II sun photometer, and
ancillary measurements of water quality parameters including
total chlorophyll a (TChl a; Van Heukelem and Thomas, 2001),
phytoplankton composition via microscopy (Lund et al., 1958),
CDOM (Hooker et al., 2020), IOP, and standard oceanographic
parameters (temperature, salinity) as described in Bausell and
Kudela (2019) and Hooker et al. (2020). Suspended Particulate
Material (SPM) was not collected, but a United States Geological
Survey (USGS) cruise in San Francisco Bay provided a range of
concentrations from the same time period of 14.6–126.3 mg L−1

(n = 6) for San Pablo and Suisun bays (Grizzly Bay is in northern
Suisun; Figure 1).

Data Processing
The radiometric and ancillary data were processed using the
Processing of Radiometric Observations of Seawater using
Information Technologies (PROSIT) software package (Hooker
et al., 2018b) to provide estimates of LW and Rrs from above- and
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in-water measurements (Hooker et al., 2018c). As described in
Kudela et al. (2019), a full atmospheric correction is not applied
given the low flight altitude for OCEANIA and C-HARRIER,
but skylight reflectance is removed as per standard NASA above-
water reflectance protocols. For COAST, the HIS data were
processed using both Tafkaa Tabular, hereafter referred to as
Tafkaa, and the vector version of the Second Simulation of
the Satellite Signal in the Solar Spectrum (6SV). The 6S code
generally is used for atmospheric correction to obtain top of
atmosphere (TOA) estimates of radiance and is not optimized
to retrieve target water reflectances. Our use of 6SV to perform
inverse modeling to obtain a target water reflectance has been
used for similar purposes in some aquatic remote sensing studies
(e.g., Bélanger et al., 2007; Allan et al., 2011). The aquatic
hyperspectral community uses both correction algorithms, e.g.,
Palacios et al. (2015) corrected high altitude airborne imagery
using Tafkaa, and Vanhellemont and Ruddick (2015) generated
lookup tables using 6SV. Tafkaa is an atmospheric correction
algorithm based on the Atmospheric Removal (ATREM, 4.0)
algorithm. In this study, Tafkaa ingests at-sensor radiance of
the entire image from the HIS and solves for a number of
water-leaving quantities. For the purpose of this study, we
used the remote sensing reflectance (Rrs) output. For complete
details of the algorithm, see Gao and Davis (1997), Gao et al.
(2000), and Montes et al. (2001, 2003). 6SV computes the
scattering and absorptive effects of the particles and gases in the
atmosphere in order to model the atmosphere from the target
reflectance to the sensor (forward modeling approach) or to
remove the atmospheric radiance from the at-sensor radiance
(inverse modeling approach) to obtain surface reflectance. For
the purposes of this study, 6SV was used in the inverse modeling
approach, with Rrs derived through division of the dimensionless
reflectance by pi following Eq. 3 in Allan et al. (2011). For
complete details related to computations used by 6SV, see

Vermote et al. (1997), Kotchenova et al. (2006), and Kotchenova
and Vermote (2007).

Satellite (MERIS) imagery were processed by the NASA Ocean
Biology Processing Group (OBPG) and were accessed as L1A
and L2 files. MODIS utilized L2 products with no modification
to the standard atmospheric correction. For comparison with
the COAST data, the MERIS imagery were reprocessed from
L1A data using SeaDAS (v7.3.2). Reprocessing included use of
directly measured atmospheric components by applying a fixed
AOD model with measured AOD and column water vapor from
the AATS-14 LSA dataset (Figures 3, 4). For the HIS data, a
sensitivity analysis was performed using both Tafkaa and 6SV.
For this analysis, the at-sensor radiance was atmospherically
corrected using three atmospheric models (Coastal, Coastal-
a, and Maritime) with AOD and column water vapor values
from the NASA OBPG processing, MicroTOPS, and AATS-14
(Figure 5). MODIS Aqua data were also examined for indications
of upwelling-induced suspended sediments (e.g., Ryan et al.,
2012) using the Particulate Inorganic Carbon (PIC) standard
product; there was no indication of elevated suspended sediment
concentration (SSC) at any of our sites.

Implementation of Synthetic Dark Corrections for the
C-HARRIER Mission
A difficulty with autonomous systems, like airborne instrument
suites, is the radiometer apertures are not accessible during flight.
Consequently, if environmental parameters change significantly
with respect to pre- or post-flight conditions when the apertures
are accessible, new more representative dark currents cannot
be measured. Because dark currents are an order-one term
in the calibration equation, accurate dark measurements are
a requirement for maintaining an uncertainty budget. The
traditional method for measuring dark currents (Hooker, 2014)
is to cover the apertures of the radiometers with opaque

FIGURE 3 | Remote sensing reflectance (Rrs, sr-1) is plotted for CST17 and CST18 stations, for the HIS (red line), C-OPS in-water profiler (open circles), and MERIS
with standard atmospheric correction (open diamonds) and with AATS-14-derived atmospheric correction (solid diamonds). Error bars on the C-OPS data indicate
one standard deviation from three consecutive casts.
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FIGURE 4 | Aerosol optical depth (AOD) derived from the average of all LSA
AATS-14 measurements (blue), the average MicroTops II values for two
stations, CST17 and CST18 (green), and the default MERIS AOD from
SeaDAS parameters (red). Error bars indicate standard deviations for the two
stations (green) and for the full MERIS image (red).

FIGURE 5 | A sensitivity analysis of the atmospheric correction for CST18
from the COAST 2011 mission was performed. The red line indicates the best
retrieval (compared to C-AIR and C-OPS) from HIS, while the gray lines
indicate retrievals using three atmospheric models in Tafkaa and 6SV with
measured AOD values. The best fit falls within the range of reasonable
spectra, but without direct measurement of in-water (C-OPS) or LSA data
(C-AIR), there is no basis for quantitatively selecting the best spectrum.

caps and then to collect dark current observations for each
microradiometer gain stage (nominally three). Typically, 1,024
data records are obtained at each gain stage, so quality assurance
statistics can be obtained.

A synthetic or predictive dark current (PDC) was
developed for each C-AERO radiometer based on a laboratory
characterization of the individual microradiometers in each

instrument. The laboratory characterization subjected each
instrument to an operational range of parameters inside an
environmental chamber while acquiring dark currents. The high
and low values for each parameter range were based on the
performance specifications of the instruments, e.g., temperature
ranged from −2 to 40◦C. The PDC was validated for the flight
certified C-AERO instrument suite using a combination of
airborne data and field trials, with the latter obtained with a
manual pointing system (Hooker, 2014).

Predictive dark current dark characterization can be applied
in three different configurations, based on the environmental
parameters for the time period involved, as follows: 1. Equivalent
pre- and post-flight caps dark files (called equivalent darks);
2. Along-track flight segment dark files at a temporal interval
define by the operator, e.g., 15, 30, 45, and 90 s (called segment
darks); and 3. Sample-by-sample corrections at instrument
sampling rates of 15 or 30 Hz (called sample darks). The three
configurations are evaluated using a combination of airborne
and field data partitioned in the spectral domain, as follows:
(a) 300–400 nm, UV; (b) 400–600 nm, BGr; (c) 600–700 nm,
Red; (d) 700–800 nm, NIR1, (e) 800–900 nm, NIR2, and (f)
900–1,700 nm, SWIR.

RESULTS

Data are presented sequentially from the COAST, OCEANIA,
and C-HARRIER airborne campaigns (refer to Table 1 for
airborne, field, and available high altitude and satellite
data). Presented results were chosen to highlight mission
accomplishments and the iterative improvements in the
sensor-web approach.

COAST 2011
Data were successfully collected on 28 October 2011 over
northern Monterey Bay (Figure 2A). The day of the overflight
had calm seas and low winds, with good atmospheric visibility.
At that time, there was a large “red tide” present in the bay
(Figure 2B), with surface TChl a samples ranging from 4.8 to
75.0 mg m−3. The bloom was dominated by the dinoflagellate
genera Akashiwo, Ceratium, and Prorocentrum with TChl a at
Stations 17 and 18 (Figure 2A) of 6.8 and 52.8 mg m−3 and
site location depths of 24 and 84 m, respectively. Figure 1
provides bathymetry for the entire region. The biomass was
distributed heterogeneously (Figure 2B), with substantial spatial
and temporal variability and corresponding variability in Rrs
(Figure 2C). Despite the heterogeneity, comparable matchups
between in-water and remotely sensed instrumentation were
achieved, with a MERIS overpass at 1855 (UTC), AATS-14 and
HIS data collected over the two stations at 2022 and 2024, and
in-water observations at 1852 and 2040, or within less than a 2 h
window (Figure 3). SPM samples were not collected but given the
lack of river plumes or upwelling-induced suspended sediments,
it was assumed that SPM was a minor contribution to the optical
signals. The elevated red (approximately 555 nm) peak observed
at several sites (Figures 3, 5, 6) was attributed to high algal
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biomass rather than SPM, which typically shifts further toward
600 nm with increasing concentration (Dierssen et al., 2006).

Direct comparisons of Rrs between the C-OPS, HIS,
and MERIS showed similar spectral shapes, but with large
discrepancies for several wavelengths (Figure 3). Specifically,
MERIS data obtained directly from NASA exhibited severe
underestimates (including negative reflectances) at Station 17 and
overestimates at Station 18, while HIS generally overestimated
Rrs compared to C-OPS with significant sensor noise and very
poor sensitivity and performance for blue and red spectral end
members. To assess whether the remotely sensed data could be
improved with a regionally tuned atmospheric correction, the
MERIS data were reanalyzed using a fixed aerosol model and
directly measured AOD and column water vapor from both a
MicroTOPS II handheld sun photometer deployed aboard the
ship and the average AOD and column water vapor values from
LSA flight lines using AATS-14 (Figure 2A and Table 2). While
the AOD values were similar between sensors (Figure 4), the
overestimation of AOD beyond 600 nm resulted in substantial
discrepancies in calculated Rrs (Figure 3), highlighting the utility
of coincident airborne AOD measurements.

For quantitative assessment of the data, the relative percent
difference (RPD) was calculated for Rrs at the MERIS wavelengths
for C-OPS (considered to be the most accurate; Kudela et al.,
2019) and MERIS. The average RPD for all MERIS wavelengths
was −87% for CST 17 and 18% for CST 18 with standard
processing. Using MicroTOPS data improved the RPD for CST
17 but not CST 18, with RPD of 35 and 36%, while the RPD for
AATS-14-corrected imagery was 29 and 0.9%, respectively.

For the HIS data, a sensitivity analysis was performed using
both Tafkaa and 6SV. For this analysis, the at-sensor radiance
was atmospherically corrected using three atmospheric models
(Coastal, Coastal-a, and Maritime) with AOD and column water
vapor values from the NASA OBPG processing, MicroTOPS,
and AATS-14 (Figure 5). While both models produce reasonable
values, the Rrs spectra span a considerable range (factor of two)
with no ability to a priori identify any particular combination as
the “best” solution.

Following the COAST mission, the prototype HIS was
removed from the instrument package because significant

engineering issues (poor calibration results, not blue-optimized,
significant noise, difficulty integrating the data stream) were
discovered. C-AIR flew successfully on the TO during COAST
but was not collecting adequate time series of data at LSA with
optimal headings due to the driving priority of the flight planning
for the AATS-14 and was therefore not used for demonstration of
the airborne CVR activity during COAST.

OCEANIA 2013
The OCEANIA mission focused on supporting airborne CVR
through the collection of coincident data from the TO at LSA
using C-AIR and from in-water observations using C-OPS
with small digital thrusters. Both instrument packages employ
single-channel microradiometers, allowing sensor calibration,
data collection, and post-processing to occur using the same
workflow and identical hardware components (Hooker et al.,
2018a,b,c). Data were again collected over northern Monterey
Bay on 5 November 2013 (Figure 6A showing MODIS Aqua Chl
a; see also Palacios et al., 2015; Bausell and Kudela, 2019) with
clear skies, good visibility, and low winds. TChl a was comparable
to COAST with a value of 8.3 mg m−3. Red tides were prominent
in September and October of that year (Palacios et al., 2015),
with the dinoflagellate genera Cochlodinium, Prorocentrum, and
Ceratium dominating at the OCEANIA station on 5 November
2013. AVIRIS data were acquired over the same location
immediately prior to OCEANIA on 31 October 2013, for which
the Pajaro River Mouth (PRM) station in Palacios et al. (2015)
was coincident with OCEANIA. As noted above, there was no
indication of significant concentrations of SPM from the river or
from upwelling at these sites.

In-water data were collected with the C-OPS profiler within
the red tide (Figure 6). C-OPS data were collected from 2025 to
2032 (UTC) while the closest matching C-AIR data collected at
LSA from the TO were collected at 1914, and a MODIS Aqua
image was captured at 2110, approximately a 2 h window for all
observations. A comparison of data products derived from above-
and in-water measurements is presented in Figure 6B, with
normalized forms obtained following published NASA Ocean
Optics protocols wherein bidirectionally corrected spectra were
derived and presented in normalized forms to account for the

FIGURE 6 | MODIS Aqua Chl a from 5 November 2013 (OCEANIA) is shown in (A), processed at 250 m resolution, with a comparison of C-OPS (in-water) and
C-AIR (airborne) within the red tide in (B), and the corresponding C-OPS versus MODIS data in (C) processed at 1 km resolution. Error bars in (C) represent the
standard deviation of three consecutive C-OPS profiles. Station location is indicated in Figure 2A (solid circle).

Frontiers in Environmental Science | www.frontiersin.org 10 November 2020 | Volume 8 | Article 58552973

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-585529 November 16, 2020 Time: 15:11 # 11

Guild et al. Global Aquatic Airborne Radiometry

TABLE 2 | Summary of atmospheric parameters used for correction of
the HIS imagery.

Column water
Platform Vapor (g cm−2) Humidity (%) AOD (520 nm)

MERIS 1.58 29% 0.121

MicroTOPS II 1.02 39% 0.128

AATS 1.3 63% 0.111

solar illumination and geometry (Hooker et al., 2002, 2004).
Products obtained by deploying C-OPS from a small ship are
shown in red and products obtained from the C-AIR instrument
on the NPS TO are shown in green. The data compare the nearest
in-water station to the nearest airborne observation. The plot
shows the in-water data were obtained more substantially inside
the red tide, because the highest amplitude peak in the green
domain is with the C-OPS data. Six spectral features spanning
the entire spectral domain (UV to NIR) demonstrate the good
agreement achieved between the two sensor systems: (a) the
UV and NIR spectral end members are in agreement; (b) the
expected UV shoulder for the type of coastal water sampled is
in both spectra, with the C-OPS data showing the anticipated
UV suppression from the more intense bloom conditions; (c)
the expected blue shoulder for higher productivity coastal water
in both spectra, with the in-water data showing greater blue
suppression from the more intense bloom conditions; (d) the
expected peak in the green domain is in both spectra with the
higher in-water peak establishing the C-OPS data were obtained
more substantially in the red tide; (e) the expected higher
elevation of the red domain for the in-water spectrum (which was
obtained in more intense bloom conditions); and (f) the expected
fluorescence peak is present in both spectra, with the in-water
peak being larger as expected.

Spectra from the MODIS image was comparable to C-AIR
and C-OPS (Figure 6C), although it should be noted that
the 488 nm band exhibited negative radiance, presumably due
to poor atmospheric correction. In contrast to the MODIS
data, AVIRIS data collected a week prior (31 October 2013)
were unable to produce accurate retrievals of ocean color due
to a combination of poor SNR and suboptimal atmospheric
correction (Palacios et al., 2015).

C-HARRIER 2017 and 2018
The C-HARRIER 2017 and 2018 missions focused primarily on
flight planning and highlight incremental improvements to the
C-AERO sensor including a shroud and expanded spectral range
from 320 to 1,640 nm. Specifically, sampling rates were increased
from 15 to 30 Hz for the 2018 mission for the downward-viewing
LT radiometer (total radiance from the surface). A new “synthetic
dark” method was developed to apply dark corrections to the
instruments during flight (rather than before and after flight).

In 2017, flight planning was enhanced to include additional
sites demonstrating data collection in varying water types and
feasibility of sorties to inland waters such as the San Francisco
Bay and Lake Tahoe. Grizzly Bay and San Pablo Bay represented

the turbid waters of San Francisco Bay. Lake Tahoe represented
oligotrophic (e.g., oceanic) conditions, a clear water type.

For 2018, the primary field target was northern Monterey Bay.
A short segment was collected near the Santa Cruz Municipal
Wharf, and after processing (including the use of synthetic darks)
the data were reduced from 30 to 15 Hz and the SNR was
calculated as per Kudela et al. (2019) (Figure 7). Absolute values
of SNR were comparable but use of the 30 Hz data increased SNR
approximately 1–9%, depending on wavelength, with greatest
improvement in the NIR and SWIR region (Figure 7). It is also
notable that increasing the sampling rate effectively decreases the
ground sampling distance (GSD) without adjusting other flight
characteristics. In this example, the GSD decreased from 3.4 to
1.7 m at 15 and 30 Hz, respectively, for an LSA of 30 m and a
speed over ground of 185 kph.

A PDC method described in Section “Implementation of
Synthetic Dark Corrections for the C-HARRIER Mission” was
used to apply dark corrections to the 2017 and 2018 data
collections (Figure 8). Processing existing airborne C-AERO data
with caps darks versus equivalent darks results in data products
that agree at all wavelengths to within 0.1%. For manually pointed
C-AERO data, the use of equivalent darks produces data products
that agree with an in-water C-OPS instrument suite as follows:
UV −4.2, BGr −2.9, Red −1.7, NIR1 −2.8, and NIR2 7.9%, which
is similar to the combined uncertainty for sensor calibration
(about 3%) plus temporal variance during station work (5% or
less, but without an estimate of spatial variance), except for
NIR2. Pearson’s statistical correlation coefficient, ρ, for the two
relevant match-up spectra in Figure 8 is shown for the SPB, GB,
MB, and LT sites. The overall average value is ρ = 0.991, which

FIGURE 7 | Effective signal-to-noise ratio (SNR) calculated at LSA for
C-AERO data over Monterey Bay, CA collected 26 October 2018
(C-HARRIER) with C-AERO at 15 and 30 Hz. The stippled region identifies an
optimal SNR of 40–100, while the dashed line provides the percent difference
in SNR for 15 versus 30 Hz otherwise processed using the same methods.
The percent improvement (as percent increase in SNR when collecting at 15
versus 30 Hz) is shown as the dashed line.
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FIGURE 8 | C-AERO was validated using in situ data obtained with a C-OPS
equipped with digital thrusters (C-PrOPS) except in Monterey Bay (30 Hz LT

data), wherein a case-1 model was used. The matchups between C-AERO
and C-OPS are based on minimizing the distance between the two sampling
sites. For the Monterey Bay comparison, the TChl a concentration obtained at
the Santa Cruz Wharf was used to derive the case-1 model results and
compared to the spatially nearest C-AERO observation. The correlations (ρ) in
spectral shape for each site are provided, demonstrating excellent retrieval of
spectral information from the airborne observations.

means more than 99% of the variance in the shape is explained.
These data span a large range of bio-optical complexity, from
very blue water (Lake Tahoe) to estuarine waters dominated by
both CDOM and non-algal particles (Grizzly Bay). The excellent
agreement in spectral shape for all sites translates directly into
reduced error for derived products such as chl a that rely on
band-ratios (i.e., spectral shape and magnitude). Estimation of
the absolute percent difference using the standard maximum
band ratio approach yields uncertainty of 5.9% in Tchl a for the
data in Figure 8, well within the range of acceptable uncertainty
for existing satellite sensors (Kudela et al., 2019).

Processing existing airborne C-AERO data with segment
darks results in no negative calibrated radiometric values,
whereas the use of caps darks (either pre- or post-flight) can
produce negative calibrated radiances over dim targets in the
middle of a long flight. For the airborne data used herein, the
amount of data that is lost due to negative calibrated radiances
if caps darks are used is less than 1.8% (no field data is lost
for caps darks, because the deployments are relatively short in
duration). A larger percentage of the SWIR data is improved
by using segment darks. Approximately 3.5% of the data are
sufficiently changed by the use of segment darks to influence data
products at the 1% level or more. None of the data obtained in
other wavelength domains are improved sufficiently to influence
data products at the 1% level or more, but this is likely a function
of the water bodies that were sampled.

Processing existing airborne C-AERO data with segment
darks versus sample darks results in data products that agree at all
wavelengths to within 0.2%; the agreement is to within 1% at all

wavelengths for field data. The reason for the excellent agreement
is due to the relative short time periods used to define a flight
segment. The longest flight segment is 90 s, so the opportunity for
environmental or performance changes during a flight segment
for an aircraft operating at near-constant LSA is small.

DISCUSSION

Aquatic remote sensing provides a cost-effective, synoptic
method for deriving information about the ecologically relevant
constituents of the coastal ocean (IOCCG, 2000), because ocean
color provides a depth integrated measurement of the biotic
and abiotic constituents that interact with light in the ocean.
What has historically been challenging is partitioning this signal
into relevant biogeochemical parameters (Dierssen et al., 2006;
Dunagan et al., 2009; Gregg and Casey, 2010; Guild et al.,
2011, 2019). The magnitude of LW is spectrally, spatially, and
temporally variable, ranging from very dark values in clear, deep
water to very bright values at water’s edge. The spatial (1 km)
and temporal (daily) resolution from legacy instruments is of
marginal use in coastal waters (Aurin et al., 2013; Dekker et al.,
2018). Further, low SNR measurements of LW in the blue spectral
domain contribute to poor discrimination of pigments from
CDOM and poor estimates in the UV (Kudela et al., 2019).
Continental sources of aerosols and trace gas plumes may not
be well represented by atmospheric models used in atmospheric
correction approaches. Also, for productive coastal waters, the
use of non-zero NIR radiances and poor SNR values complicate
atmospheric correction schemes based on SWIR wavelengths
(Siegel et al., 2000; Shi and Wang, 2009; Werdell et al., 2010).

NASA Ocean Optics Protocols require CVR uncertainties
as follows: calibration data to within 5%, validation data to
within 10% error, and research data to within 25% (Hooker
and McClain, 2000). A fundamental limitation using historical
airborne and satellite data is that sensors such as AVIRIS, the
primary instrument (for example) in the HyspIRI Preparatory
Airborne Campaign, has poor SNR and calibration issues
(Palacios et al., 2015; Thompson et al., 2015), with SNR at 400 nm
as low as 20:1, compared to a next-generation requirement
of 400:1 for the Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE) sensor. Second, in-water calibration data are needed,
limiting the improved correction to specific targets (Moses et al.,
2012). Next-generation satellite sensors are also required to
meet 3.5% absolute accuracy, with 1% absolute radiometry for
validation (Hooker et al., 2007), which is challenging at best for
existing airborne and satellite platforms (Kudela et al., 2019).
A fundamental goal of COAST, OCEANIA, C-HARRIER, and
related campaigns was to demonstrate the evolution of the
capability to meet these exacting requirements in coastal ocean
and inland waters while simultaneously moving away from the
traditional paradigm of relying on a limited number of fixed
locations for CVR data [e.g., AErosol RObotic NETwork Ocean
Color (AERONET-OC), Zibordi et al., 2009].

A primary obstacle for the remote sensing of coastal and
inland waters is atmospheric correction. The COAST campaign
demonstrated the utility of collecting high-quality atmospheric
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and oceanic data simultaneously from an airborne platform by
collocating a science-grade sun photometer and ocean color
radiometers. Traditional processing of MERIS satellite data
resulted in both over- and underestimation of Rrs and was greatly
improved with the addition of AOD collected either from a
fixed platform (MicroTOPS aboard the research vessel) or from
the TO. A clear advantage of the airborne approach is that
considerable additional spatial information is provided for AOD,
as well as an ability to collect columnar atmospheric data by
varying flight altitude. The improved horizontal and vertical
resolution provided by the airborne perspective is most useful for
heterogeneous air masses, which often correspond to inland (i.e.,
compared with marine) environments.

A sensitivity analysis of the HIS atmospheric correction
reinforces the requirement for highly accurate atmospheric
information for post-processing of imagery. For this analysis, we
focused primarily on calibration and validation and therefore
primarily analyzed the data from the two locations where
in-water measurements were available. The spatially explicit
AOD data, like that from the AATS-14 aboard the TO,
would enable future missions coupling a sun photometer with
imaging spectrometers to conduct a pixel-by-pixel atmospheric
correction, which would presumably greatly improve data
collection for any mission study airborne simulation programs
supporting PACE, the Surface Biology and Geology (SBG)
hyperspectral mission study (Schneider et al., 2019), and the past
HyspIRI precursor study (Hochberg et al., 2015), where AVIRIS
atmospheric correction issues varied dramatically across a space
of a few kilometers for Monterey Bay (Palacios et al., 2015).
While the HIS had significant engineering and data processing
issues, COAST also highlighted the desirability to capture the
two-dimensional structure of the surface ocean to put the more
limited shipboard data into spatial context (Figure 2B).

The OCEANIA campaign highlighted the usefulness of a
high SNR sensor with expanded spectral range (C-AIR) flown
at LSA, relevant to coastal remote sensing. For example, while
AATS-14 was not available for OCEANIA, there was also no
requirement for atmospheric correction of the C-AIR data at
LSA, as demonstrated by the very good agreement between the
C-OPS and C-AIR spectra over the red tide (Figure 6B). It was
recognized that next-generation sensors for missions such as
PACE and SBG would challenge existing CVR instrumentation
by requiring radiometric measurements extending into the UV
and NIR and shortwave infrared, where legacy instruments
are challenged by noise and sensitivity issues (e.g., Kudela
et al., 2019). The C-AERO instrument was, therefore, designed
around the same microradiometers used in C-AIR but with
extended spectral range (320–1,640 nm) and addition of a shroud
to reduce long wavelength scattering at the sensor aperture
(Hooker et al., 2018a). For C-HARRIER, the C-AERO sensor
was further upgraded between 2017 (Kudela et al., 2019) and
2018 by increasing the sampling frequency from 15 to 30 Hz.
This effectively decreases GSD while doubling the data volume,
allowing post-processing to exclude noisy features such as glint
and whitecaps that would be included in the data for instruments
sampling at slower rates.

Following OCEANIA, it was also recognized that inexpensive
and easy to deploy sun-tracking photometers were lacking,

given the high demand and frequent unavailability of systems
such as AATS-14. The same microradiometer systems were
therefore used to develop a portable fixed-platform system,
the Compact-Optical Sensors for Planetary Radiant Energy (C-
OSPREy) sun photometer mounted on a tracker with a quad
detector, supported by a solar reference (Es) with a shadow band,
documented in Hooker et al. (2018b), and initial development
of the microradiometer-based 3STAR sun-tracking photometer,
based on the same design and engineering as the C-AIR radiance
sensor. The C-OSPREy system was not deployed in Monterey
for C-HARRIER, because 3STAR was not flight certified, but is
considered to be at NASA technical readiness level (TRL) 9 after
successful deployments on multiple campaigns (Hooker et al.,
2018c). At this time, all engineering and flight-readiness tests
for 3STAR aboard the TO are completed, but 3STAR has not
conducted a science mission. Consequently, the capabilities of
3STAR are not evaluated within this manuscript.

With the completion of engineering tests for 3STAR in
2019, all the components for a fully operational coastal in-
water and airborne “sensor-web” approach were established.
All of the radiometer instruments (C-OPS, CAIR, C-AERO,
C-OSPREy, and 3STAR) are based on the same core set
of microradiometers (albeit using different generations of
microradiometers with C-AERO and C-OSPREy being the most
recent) with National Institute of Standards and Technology
traceable absolute calibration and 10 decades of dynamic
range. This approach is fundamentally different from traditional
calibration methods which typically rely on fixed location
and custom-built above- and in-water optical sensor packages
maintained in one location, e.g., the Marine Optical Buoy
(MOBy) and Bouée pour l’acquisition de Séries Optiques à Long
Terme (BOUSSOLE) projects (Clark et al., 2003; Antoine et al.,
2008, respectively) which cannot be opportunistically deployed
across different regions and are generally not optimized for
measurement of shallower and more complex inland water
bodies. The approach described here provides calibration-level
performance for ocean color from fixed platforms as well as
airborne observatories; when flown at LSA, the requirement
for complex atmospheric correction is removed, while the 10-
decade dynamic range allows the same sensors to operate equally
effectively in water ranging from extremely clear to highly turbid,
including red tides (Hooker et al., 2018a,b,c; Kudela et al., 2019),
and across an expanded spectral range that improves algorithm
performance for a global range of water bodies (Hooker et al.,
2020; Houskeeper et al., 2021). The 15 Hz version of C-AERO
already met or exceeded all recommendations for SNR from the
aquatic remote sensing community (Kudela et al., 2019), while
the recent upgrade to 30 Hz sampling for the downward-viewing
(LT) radiometer has substantially increased the realized SNR
for coastal waters. Implementation of the synthetic or predicted
darks correction (PDC) improved the radiometric accuracy at all
wavelengths, with the greatest improvements at the longer NIR
and SWIR wavebands most relevant to atmospheric correction.

A unique capability of this approach is that calibration and
validation targets are no longer limited to a handful of ground-
or ship-based sun photometer locations. For example, during
the C-HARRIER mission, calibration-quality data were collected
over a 300 km span covering Monterey Bay, San Francisco Bay,
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and Lake Tahoe, CA in a matter of days, with the primary
limitation being the availability of personnel and instrumentation
for the in-water measurements. We estimate that for a similar
payload, the TO used in these studies could extend this range
to 1,300 km with flight altitudes ranging from LSA to 3,048 m.
This capability opens up the possibility of collecting high-
quality CVR data nearly anywhere a suitable airborne platform
is available, thus providing data quickly and cost effectively
from oligotrophic case-1 waters to bright coastal, estuarine,
and inland water targets in the same mission, or multiple
revisits of the same location to support the calibration and
validation of geostationary sensors, e.g., the Geosynchronous
Littoral Imaging and Monitoring Radiometer (Geosynchronous
Littoral Imaging and Monitoring Radiometer [GLIMR], 2019)
instrument recently selected for development. This approach
opens the potential for rapidly acquiring calibration-quality data
in a variety of environments in consideration of maintaining sites
such as MOBy and greatly reducing the time required to generate
appropriate datasets that cover the required range of variability
(Bailey et al., 2008). Similarly as noted by Mouw et al. (2015), the
primary network used for calibration and validation of aquatic
atmospheric correction is AERONET-OC which consists of only
a handful of locations (Zibordi et al., 2009), has limited spectral
bands, and insufficient resolution in the red to NIR for coastal
and inland waters. Recent improvements have increased the
spectral resolution and range of above-water instrument suites
relevant to calibration (e.g., Vansteenwegen et al., 2019), but are
still limited by expanded (compared with C-AERO) integration
times and by the spatial limitations of a fixed-location approach.
Through the development of a microradiometer-based sensor
suite, CVR can be achieved for both the aquatic and atmospheric
components anywhere in the world that a suitable airborne
platform is available.

To summarize, optically complex coastal and inland waters
pose unique challenges for remote sensing. The optical
heterogeneity of coastal and inland waters is the result
of a diversity of influences such as river plumes, algal
blooms, benthic habitats, and resuspension of sediments over
shallow shelves—all of which can be further influenced by
climatic changes, e.g., drought and flooding. Inland waters
are predominantly smaller spatial targets and challenging
for satellite remote sensing. The overlying atmosphere is
also variable due to terrestrial inputs of aerosols (dust,
particulates, and smoke), water vapor, and trace gases, while
changes in elevation require modification of atmospheric
correction protocols. Improved sensor SNR, spectral range
and resolution, spatial coverage, and temporal resolution (to
capture water circulation dynamics of features) are needed to
support aquatic observations and correction of the atmospheric
influences on these observations to fill gaps in coastal and
inland waters research. While not a focus of this paper,
the same instrumentation used herein also meets or exceeds
criteria for case-1 open ocean waters. As demonstrated in
the evolving airborne microradiometer instruments used in
the COAST, OCEANIA, and C-HARRIER missions, such
airborne observatories can readily support local coverage of
coastal and inland waters and bridge the high-fidelity CVR

quality observations to relevant high altitude airborne and
satellite observations.
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Urban runoff represents the primary cause of marine pollution in the Southern California
coastal oceans. This study focuses on water quality issues originating from the Tijuana
River watershed, which spans the southwest border of the United States and Mexico.
Frequent discharge events into the coastal ocean at this boundary include stormwater
and wastewater. This study focuses on differences in spectral features, as assessed
by RapidEye, Sentinel-2 A/B, and Landsat-8 satellite data, along with physical and
biological in situ data, to characterize and classify plumes into four key categories:
stormwater, wastewater, open ocean/no plume, and mixed (when both types of
plumes are present). Key spectral differences in the visible to NIR bands showed that
stormwater had elevated reflectance (0.02 to 0.09), followed by mixed (0 to 0.08),
wastewater (0 to 0.05), and open ocean/no plume (0 to 0.03) events. We also examined
biophysical parameters and found that stormwater events had the highest values in
remote sensing based estimates of colored dissolved organic matter (CDOM) (0.98
to 2.1 m−1) and turbidity (12.4 to 45.7 FNU) and also had a large range for in situ
variables of enterococcus bacteria and flow rates. This study also finds that the use of
spectral features in a hierarchical cluster analysis can correctly classify stormwater from
wastewater plumes when there is a dominant type. These results of this study will enable
improved determination of the transport of both types of plumes and transboundary
monitoring of coastal water quality across the Southern California/Baja California region.

Keywords: satellite remote sensing, marine pollution, water quality, RapidEye, wastewater, runoff plumes

INTRODUCTION

The coastal regions of Southern California are susceptible to coastal pollution from urban drainage.
With respect to stormwater, a buildup of pollutants on land during the dry summer months are
transported to coastal oceans during wet season events (Bay et al., 2003; DiGiacomo et al., 2004;
Svejkovsky et al., 2010; Holt et al., 2017). Stormwater runoff from a large urban coastal environment
contains sediments as well as bacteria, oil, fuel, and tire particles from automobiles, anthropogenic
components from sewage, and fertilizer from agriculture (Reifel et al., 2009; Svejkovsky et al., 2010).
This represents a hazard for the ecosystem and for public health in this coastal region, particularly
during the rainy season (Ackerman and Weisberg, 2003). Often, during these events, bacteria levels
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of fecal indicator bacteria (FIB) and enterococcus (ENT) are as
high as 15,000 CFU/100 mL in the ocean which can lead to
significant health issues for beachgoers and surfers (Ackerman
and Weisberg, 2003). EPA guidelines recommend FIB and ENT
should not be greater than 100 CFU/100 mL1. Recreational water
activities should be avoided for at least 3 days after a rain event
(Ackerman and Weisberg, 2003) since studies have shown an
increase risk of gastrointestinal or other acute illness in surfers
within that time period (Schiff et al., 2016; Arnold et al., 2017).

Analysis of stormwater runoff and wastewater plumes, for
purposes of managing and minimizing health impacts to beach
communities, with observational datasets are generally limited
to in situ data collections and fixed stations. Remote sensing
based assessments of plumes in Southern California have used
various multispectral sensors with varying resolution including
SeaWiFS optical radiometer (Nezlin and DiGiacomo, 2005),
MODIS (1 km), Landsat-8 (15 to 30 m), and NOAA’s Advanced
Very High-Resolution Radiometer (AVHRR) (1 km) (Nezlin
et al., 2007; Warrick et al., 2007; Lahet and Stramski, 2010;
Svejkovsky et al., 2010), all of which have significant limitations
in terms of spatial, temporal and spectral resolution and cloud
cover. In Holt et al. (2017), both SAR (5 to 150 m) and MODIS
imagery were used to study stormwater runoff in the Southern
California Bight. In Devlin et al. (2015), MODIS was also used to
investigate the impact of stormwater plumes on coral reefs in the
Great Barrier Reef.

Publicly operated wastewater treatment facilities in Southern
California typically discharge treated wastewater offshore at
depth, with the effluent largely mixing at depth and remaining
below the thermocline. During limited occasions, maintenance
requirements to a facility’s discharge system required the
temporary diversion of treated wastewater closer to shore and at
shallower depths. During such diversions, significant collections
of both in situ and spaceborne remote sensing provided an
opportunity to improve understanding of wastewater plume
dynamics and impacts (Gierach et al., 2017; Trinh et al., 2017) as
well as the biological response to increased nutrient levels (Reifel
et al., 2009; Caron et al., 2017). The Tijuana River watershed is
about 1,750 square miles of area that spans across the California –
Mexico border (Figure 1). About 75 percent of the watershed
is in Mexico, while the remainder is on the California side
near Imperial Beach including the river mouth. Stormwater
runoff plumes have been observed after rain events at the
Tijuana River outlet. In addition, the frequent release of treated
and untreated wastewater into the Tijuana River watershed has
been documented to occur since the late 1990s. Both types of
coastal plumes have been shown to impact the San Diego, CA,
United States coastal region as well as the closely adjacent Mexico
region, causing health concerns for beachgoers and residents. The
two wastewater treatment plants of interest are the South Bay
International Wastewater Treatment Plant (SBIWTP) located in
San Diego, CA, United States and the San Antonio de los Buenos
Wastewater Treatment Plant located in Tijuana, Mexico shown
in Figure 1.

1https://www.epa.gov/sites/production/files/2015-10/documents/rwqc2012.pdf

Stormwater runoff is largely tied to rain events, often carrying
along multiple type of material and contaminants as mentioned
earlier, and is monitored by a flow gauge station. The Tijuana
River has raised particular attention due to the increasing
occurrence of untreated wastewater released up river closer to
the Tijuana population center that contains a high level of
FIB effluent into the coastal area2 as well as the reference of
human fecal markers. The transport of both type of plumes
is dependent on the nearshore circulation, with the San Diego
coastal population notably greater than on the Mexico coastal
side. For example, the San Diego Regional Water Quality
Control Board reported wastewater pollution in the Tijuana River
Watershed on February 6-23, 2017, where there was an incident
of an estimated 28 million gallons (MG) of untreated wastewater
released into the Tijuana River (see text footnote 2). This has
caused major water quality and health issues particularly when
transported northward into the large urban population in the San
Diego area that live near the coast. In another recent case, during
December 11–14, 2018, there was a wastewater spill of 7 million
gallons per day, totaling an estimated 28 million gallons (see text
footnote 2). More recently, from January 18–30, 2019, there were
610 million gallons that spilled in this region (see text footnote
1). In 2018, the San Diego Regional Water Quality Control Board
sent a letter of intent to sue the United States Section of the
International Boundary and Water Commission (USIBWC) for
violations of the Clean Water Act and seeking improvements to
the treatment of wastewater and reduction of accidental releases.
Both the United States and Mexico are working toward a solution
since the watershed is shared by both countries and continues to
be an ongoing transboundary water issue.

The studies on stormwater and wastewater focused on the
detection, extent, and impact of known separately occurring
events and resultanting plumes but did not differentiate between
plume types based on sensor responses. The only known studies
on the detection and possible classification of wastewater in a
coastal environment with remote sensing were in DiGiacomo
et al., 2004; Marmorino et al., 2010; Seegers et al., 2017;
Trinh et al., 2017; Gierach et al., 2017. In Gierach et al.
(2017), Moderate Resolution Imaging Spectrometer (MODIS)
and Satellite Aperture Radar (SAR) data were used to detect
wastewater plumes during two diversion events in Southern
California. The results showed that wastewater plumes could be
identified by a decrease in sea surface temperature (SST) from
MODIS and changes in the surface roughness from SAR. Another
study by Trinh et al. (2017) utilized Landsat 8 Operational
Land Imager (OLI) and MODIS imagery to derive SST and
chlorophyll-a to investigate wastewater impacts and transport
within Santa Monica Bay, California, after a third diversion
event. We know of no published study using remote sensing
that has successfully identified stormwater plumes from treated
wastewater or raw wastewater plumes.

The goal of this study is to determine if the wastewater
and stormwater plumes are optically distinct from each other,
by examining differences in spectral reflectance and derived

2http://www.waterboards.ca.gov/sandiego/water_issues/programs/tijuana_river_
valley_strategy/sewage_issue.html
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FIGURE 1 | The Tijuana River Watershed. The water quality sampling stations from The City of San Diego Public Utilities are denoted by red points and gray
triangles. Automatic water quality sampling stations from the NOAA National Estuarine Research Reserve System (NERRS) located in the estuary are symbolized as
a purple (Boca Rio Station) and light green star (Oneonta Slough Station). The Tijuana River mouth is symbolized as a yellow star and the flow gauge station is a
green star near the United States Mexico border. The precipitation station is the blue star located at the Brown Field Municipal Airport. The South Bay International
Wastewater Treatment Plant (SBIWTP) is located in San Diego, CA near the United States Mexico border. The San Antonio de los Buenos Wastewater Treatment
Plant is located in Tijuana, Mexico situated south of the watershed.

parameters, such as turbidity and colored dissolved organic
matter (CDOM), in combination with in situ data, such as
precipitation, enterococcus (ENT), and flow discharge rate. We
hypothesize that these two plume types will have distinct spectral
properties because stormwater plumes are likely to be dominated
by sediments (Corcoran et al., 2010) and that wastewater is likely
to be dominated by organic matter (DiGiacomo et al., 2004;
Nezlin et al., 2008; Marmorino et al., 2010). This hypothesis will
be evaluated within the context of a regional use case at the
southwest border of United States and Mexico, in the coastal
ocean downstream of the Tijuana River Watershed.

DATA AND METHODS

Identification and Selection of Plume
Events
A stormwater plume is identified by precipitation event(s)
that occurred at least 1–3 days prior to a remote sensing

observation with no reported concurrent wastewater events
occurring. Gauge data are used to identify high flow conditions
following precipitation events. A wastewater plume is identified
based on a reported wastewater spill from the San Diego Regional
Water Quality Control Board with no reported concurrent
precipitation events occurring within 3 days of precipitation prior
to the spill (dry event). Sewage reports indicate that these spills
are a combination of treated and untreated wastewater (see text
footnote 2). Mixed events are a combination of precipitation 1–
3 days prior and a reported wastewater spill. A no-plume event
is defined when there is no precipitation or wastewater spill for
the prior 2 weeks.

Optical Imagery and Surface Reflectance
Profiles
Data Sources
The primary remote sensing sensor used in this study is
RapidEye imagery available from Planet.com and complemented
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by European Space Agency Sentinel 2A/B and NASA/USGS
Landsat 8. While RapidEye has limited spectral information,
its revisit rate of 5 days and higher spatial resolution of 5 m
were critical to capturing plume events. This imagery has been
acquired over this region since 2009 through March 2020,
when sensor operations ended. RapidEye is made available by
Planet.com under the Education and Research Program for non-
commercial access to Planet and Rapid Eye imagery. Sentinel 2
A/B (high revisit rate) and PlanetScope (high spatial resolution)
sensors are key alternatives for future studies since RapidEye has
been discontinued. Revisit time, spatial resolution, swath width,
data source, and spectral characteristics of the sensors used in this
study are shown in Table 1.

The Copernicus Sentinel-2A and Sentinel-2B missions were
launched on June 23, 2015 and March 7, 2017, respectively,
and are operated by the European Space Agency (ESA). Each
instrument consists of 12 spectral bands and a swath width of
290 km, and a spatial resolution of 10 m. The Landsat 8 mission
carrying the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS) is operated by the USGS and was launched
on February 11, 2013. The OLI has 9 spectral bands and a swath
width of 185 km. The spatial resolution of Landsat 8 is 30 m for
the multispectral bands. Sentinel 2 A/B and Landsat 8 were used
to calculate CDOM since they have the required bands to apply
the Quasi-Analytical Algorithm (QAA) of Lee et al. (2002).

We utilize these sensors to examine and characterize the
optical properties of both types of coastal plumes with the intent
of separately classifying each type of plume. Since these plumes
disperse after a day or two, a sensor that has a high spatial and
temporal resolution is crucial (DiGiacomo et al., 2004).

A total of 40 RapidEye images were identified during
these periods and separated into four groups (10 stormwater,

10 wastewater, 10 mixed (a combination of both), and 10
open ocean/no plume) and were then analyzed for differences
in surface reflectance in five bands and other biochemical
parameters such as turbidity and CDOM. We also utilize
in situ data such as flow rate, precipitation, ENT, and plume
color to differentiate between these groups. Supplementary
Table 1 provides more detailed information on each RapidEye
image and its output. RapidEye was used for all the outputs
of spectral reflectance for consistency. Information on how
the spectral reflectances values were extracted are in section
“Spectral Profiles.”

Atmospheric Correction
For RapidEye, Sentinel-2, and Landsat-8 data, an atmospheric
correction scheme was applied using ACOLITE software. The
open-source program ACOLITE (Vanhellemont and Ruddick,
2018) was used to process these images with atmospheric
corrections (Eq. 1) and to generate output parameters including
remote sensing reflectance (Rrs), chlorophyll-a concentration
(chla), CDOM (a443), suspended matter concentration, and
turbidity (Vanhellemont, 2019a). ACOLITE can be downloaded
from the GitHub repository for RapidEye imagery3 and Sentinel-
2 and Landsat-8 imagery4. Atmospheric correction was calculated
for all imagery using the following:

REF (i) =
RAD (i) πd2

ESI(i) cos θs
(1)

where REF is the reflectance value for the top of atmosphere
(TOA) reflectance, RAD is the radiance value, i is the number

3https://github.com/acolite/acolite_mr/
4https://github.com/acolite/acolite

TABLE 1 | Optical satellite specifications for RapidEye, Sentinel-2 A/B, and Landsat 8.

RapidEye Sentinel 2 A/B Landsat 8

OLI and TIRS

Revisit time (days) 5 5 16

Spatial resolution (m/pixel) 5 10 30

Swath width (km) 77 290 290

Data access Planet Labs (https://planet.com) Copernicus
(https://sentinels.copernicus.eu/web/
sentinel/sentinel-data-access)

USGS (https://earthexplorer.usgs.gov)

Spectral band info (lists of Band 1: Blue (440–510 nm) Band 1: Coastal aerosol (443–452 nm) Band 1: Coastal aerosol (433–453 nm)

bands used in this study) Central wavelength: 475 nm Central wavelength: 443 nm Central wavelength: 440 nm

Band 2: Blue (458–523 nm) Band 2: Blue (450–515 nm)

Central wavelength: 490 nm Central wavelength: 480 nm

Band 2: Green (520–590 nm) Band 3: Green (543–578 nm) Band 3: Green (525–600 nm)

Central wavelength: 555 nm Central wavelength: 560 nm Central wavelength: 560 nm

Band 3: Red (630–685 nm) Band 4: Red (650–680 nm) Band 4: Red (630–680 nm)

Central wavelength: 658 nm Central wavelength: 665 nm Central wavelength: 655 nm

Band 4: Red Edge (690–730 nm)

Central wavelength: 710 nm

Band 5: Near-infrared (760–850 nm)

Central wavelength: 805 nm

Central wavelength corresponds to the peak wavelength for each band in nanometers.
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of the spectral band, d is the earth-sun distance at the day of
acquisition in astronomical units (AU), ESI is the extraterrestrial
solar irradiance, and θs is the solar zenith angle in degrees (90◦ –
sun elevation). More information on calculating TOA reflectance
and ESI values for each band can be found on the Planet Labs
website5. REF is corrected using the Dark Spectrum Fitting (DSF)
algorithm for the five RapidEye bands (Vanhellemont, 2019b).
The DSF algorithm is an aerosol correction algorithm and is used
to estimate surface reflectance (see text footnote 3). All imagery
was atmospherically corrected using the DSF algorithm.

Remote Sensing Based Analyses
Spectral Profiles
We utilize a region of interest polygon (circle) to define the area
of interest (AOI) for all RapidEye images with a size of 1.28 km2

(51,076 pixels) to maintain consistency when examining spectral
properties for different plume events. An example of the AOI is
symbolized as a white circle in Figure 2. The surface reflectance
values, after the atmospheric correction, were extracted from
the AOI and were spatially averaged to obtain the mean surface
reflectance value for each band in the AOI. The same process was
done for all 10 events for each of the four groups.

Derived Turbidity
Turbidity is the measure of water clarity in a body of water.
High turbidity is often due to high concentrations of suspended
particles from sediments, CDOM, or algae and has units
of Formazine Nephelometric Units (FNU) or Nephelometric
Turbidity Unit (NTU). The bands that can detect turbidity are
red, red-edge, or near-infrared (NIR) since turbidity has the
optical properties of scattering light in these bands (Dogliotti
et al., 2015; Hafeez et al., 2018). Turbidity is computed using the
following equation (Nechad et al., 2009):

T =
A ρw

1− ρw
C

(2)

where T is the algorithm derived turbidity, ρw is the surface
reflectance after atmospheric correction, and A and C are
constant coefficients associated with inherent optical properties.
Vanhellemont (2019b) shows excellent agreement from using
RapidEye’s red and red-edge bands after comparing seven sites
(sites in Northern California, North Sea, and the Irish Sea)
of in situ turbidity with derived turbidity. We decided to use
RapidEye’s red band for ρw since it gave the best results according
to the Vanhellemont (2019b) study. We used the default A and C
values, 247.10 and 0.1697, respectively, for the red band based on
recommendations from Nechad et al. (2009) and Vanhellemont
(2019b).

Derived Colored Dissolved Organic Matter
Colored dissolved organic matter is a yellow substance, gelbstoff,
from the mixing of organic matter such as remains of plants
and animals. High concentrations of CDOM arise from the
breakdown of dead organisms and organic matter. The color of

5https://www.planet.com/products/satellite-imagery/files/160625-RapidEye%
20Image-Product-Specifications.pdf

CDOM can range from yellow to brown in nearshore waters
(Aurin et al., 2018). To calculate CDOM, we implement the
Quasi-Analytical Algorithm (QAA) from Lee et al. (2002). Bands
that are needed to calculate CDOM (a443) have a wavelength
of 443, 490, 560, and 665 nm. Sentinel-2 A/B and Landsat
8 were used since they have all the required bands to derive
CDOM. RapidEye has only one band from 410 to 510 nm
(blue band) and may not give an estimate for CDOM. From
the multistep process (shown in Supplementary Table 4), we
obtain absorption outputs: a443, a490, a560, and a665. CDOM
absorption can also be observed in the blue band since it
absorbs in the UV and visible (blue light) spectrum range.
The most recent updates to the QAA algorithm are in both
version 5 (Lee et al., 2009) and version 6 (Lee et al., 2014)
which incorporate Rrs (670 nm) (remote sensing reflectance in
band 670 nm) since most sensors (MODIS, Sentinel-2, Landsat
8) have a band near this wavelength. ACOLITE applies either
version 5 or version 6 depending on if Rrs (670nm) is less
than 0.0015. Supplementary Table 4 displays the equations to
calculate a443 (CDOM). CDOM is calculated for 5 stormwater,
5 wastewater, 5 mixed, and 5 open ocean/no plume events
from the AOI using Landsat 8 and Sentinel 2 A/B imagery
(Supplementary Table 3).

Water Quality in situ Data
The NOAA National Estuarine Research Reserve System
(NERRS)6, a long-term monitoring program to protect estuarine
ecosystems, has 28 stations across the United States collecting
water quality, meteorological, nutrient, and pigment data. Each
station is located near an estuary with an automatic sampler
that collects data every 15 min (every 30 min prior to 2007).
Two NOAA stations are used in this study, with one located
at the mouth of the Tijuana River (Boca Rio: purple star in
Figure 1) and the other inside the estuary (Oneonta Slough:
light green star in Figure 1). Water quality parameters of interest
are turbidity (FNU/NTU) and chlorophyll fluorescence (ug/L).
The visual observations are also reported at each shore station
including water color, water clarity, and human or animal activity
(Supplementary Table 2). We used these visual observations to
validate the plume color and water clarity observed from the true
color imagery.

Wastewater spill data is from the City of San Diego (see
text footnote 2) under Spill Reports, which provides the amount
of wastewater spills and when the spills occurred. We also
incorporate enterococcus (ENT) (CFU/100 mL) from The City
of San Diego Public Utilities7 to check the bacteria levels during
a wastewater or stormwater event. Bacteria levels of ENT that go
above 100 CFU/100mL are deemed harmful by the EPA standards
(see text footnote 1). ENT is commonly used as an indicator of
harmful bacteria and viruses that can cause illnesses in swimmers
and surfers (Schiff et al., 2016). These data are used to characterize
and compare the impact of wastewater and stormwater plumes
with respect to turbidity and ENT.

6http://cdmo.baruch.sc.edu
7https://www.sandiego.gov/public-utilities/sustainability/ocean-monitoring/
data/south-bay
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FIGURE 2 | Surface Reflectances for (A) Wastewater, (B) Stormwater, (C) Mixed, and (D) No event/No Plume. Images are the true color imagery from RapidEye
with AOI circled. Box plots are the surface reflectance values for each plume type (10 events per type). A yellow star denotes the Tijuana River mouth.
(A) Wastewater Plume Events: on 1/24/19 (left image): 610 million gallons (MG) of raw wastewater (occurred on 1/18 and ended on 1/30). 12/11/18 (right image):
147.7 MG of raw wastewater (occurred on 12/11 and ended on 12/24). (B) Stormwater Plume Events: 12/7/18 (left image): precipitation amount was 1.07 inches
(2.7 cm) on 12/6/18 and flow rate hourly mean was 158.3 cms. 1/28/10 (right image): precipitation amount was 0.07 inches (0.18 cm) on 1/26/10 and no data
available for flow rate. (C) Mixed Plume Events: 2/9/17 (left image): 143 MG of raw wastewater (occurred on 2/6/17 and ended on 2/23/2017), precipitation amount
on 2/7 was 0.19 inches (0.48 cm), and flow rate hourly mean was 2.4 cms. 1/24/16 (right image): 23.7 MG of raw wastewater (occurred on 1/16/16 and ended on
1/24/16), precipitation amount on 1/23/16 was 0.4 inches (1 cm), and flow rate hourly mean was 0.2 cms. (D) No Plume Events: 3/23/17 (top image) and 12/16/15
(bottom image): no wastewater or precipitation events for at least a month. The AOI is extracted offshore due to natural sedimentation near the coast, which may
influence surface reflectance values. For each box plot, the median is shown by the red mark, the whiskers correspond to the maximum and minimum values, the
red plus signs show the outliers outside of the 25–75 percentile range shown by the box.

Precipitation and Flow Gauge Data
Precipitation data are acquired from NOAA8 from 2010 to 2019,
which is collected at the precipitation station at the Brown
Field Municipal Airport marked as the blue star in Figure 1.
Precipitation values for all stormwater events were plotted using

8https://www.ncdc.noaa.gov/orders/qclcd/

MATLAB and are shown in Supplementary Figure 2. The units
for the daily precipitation amount are in inches. Flow gauge
data is from the International Boundary & Water Commission
(IBWC)9, whose station is marked as the green star in Figure 1.
The units for flow rate are in cubic meters per second (cms) and
the flow rate is the hourly mean of 12 h prior to the satellite

9https://www.ibwc.gov/Water_Data/Index.html
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acquisition time. We use the hourly mean for the 12-h window
since the flow gauge station is located upstream on the river
approximately 6.4 km from the river mouth.

Analyses and Comparison of Plumes
Plume Comparison Using Spectral Data and in situ
Data
To compare spectral reflectance information for each plume
type, we created a box plot for each band using all 10 events
shown in Figure 2. Figure 2A is an example of two wastewater
plumes coming out of the Tijuana River Mouth on January 24,
2019 (147 million gallons of wastewater) and December 7, 2019
(610 million gallons of wastewater). Figure 2B is an example of
two stormwater plumes on December 7, 2018 (1.07 inches of
precipitation) and January 28, 2010 (0.07 inches of precipitation).
Figure 2C is an example of two mixed plumes on February 9,
2017 (0.19 inches of precipitation and 143 million gallons of
wastewater) and January 24, 2016 (0.4 inches of precipitation and
23.7 million gallons of wastewater). Figure 2D is an example
of no plume events on March 23, 2017 and December 16,
2015. For both events, there is no wastewater or precipitation
amounts. We compared the ranges of the reflectance values
for each band to observe spectral differences across all bands.
A line graph of these surface reflectance values was plotted
with ±1 standard deviation from the average spectral value
for each plume type shown in Figure 3. Box plots of mean
derived CDOM and turbidity from the AOI, and the in situ mean
hourly flow rate and ENT (Supplementary Table 2) values were
generated for each plume group. We implemented a one-way
analysis of variance (ANOVA) test to determine if the means are
different for each group.

Hierarchical Cluster Analysis and Principal
Component Analyses
Two approaches were utilized to investigate how spectral data
can be used to assess coastal plume classes. First, we applied a
principal component analysis (PCA) (Jolliffe and Cadima, 2016)
to our dataset of surface reflectance and derived turbidity values
from the defined AOI. This was done directly on raw data (with
the exception of averaging over an area of interest) to preserve
variability in the dataset and account for interrelatedness of
surface reflectance values between bands and because turbidity is
derived from spectral information. PCA has been conducted on
numerous studies of the natural and built environment in various
capacities (Gašparović and Jogun, 2018; Judice et al., 2020) and is
especially used for simplifying high dimensionality datasets and
for classification applications. The principal components (PC1
and PC2) were then plotted to see whether groups of coastal
plume classes were clearly clustered or not.

The second methodology applied here was the hierarchical
cluster analysis (HCA) in a complete-linkage clustering approach
(Revelle, 1979). The purpose of utilizing an alternate approach
was to see if both modes of analysis would reinforce the observed
spectrally dependent differentiation of coastal plume types. HCA
performed in this study uses an agglomerative scheme that
considers each sample as its own individual cluster. Clusters
that are considered more similar (i.e., shortest distance) are then

used to generate larger clusters. Previous work has demonstrated
the utility of HCA on water quality classifications and aquatic
properties (Brezonik et al., 2005; Kamble and Vijay, 2011;
Reynolds and Stramski, 2019).

Both HCA and PCA utilized input data from 30 separate
coastal plume events – 10 were considered “no plume” or
open ocean, 10 were considered sewage spill plumes, and 10
were considered stormwater plumes. Pixels for the AOI were
averaged for each of these events, the events are summarized in
Supplementary Table 1.

RESULTS

Plume Comparison Using Spectra Data
of AOI (Surface Reflectance, Turbidity,
and CDOM)
Figure 2A shows wastewater plume reflectance values ranged
from low-medium reflectance in the blue to green bands and
low reflectance in the red-NIR bands. Stormwater plumes had
medium reflectance in the blue band, medium-high reflectance
in the green to red-edge bands, and low-medium reflectance
in the NIR shown in Figure 2B. The results show that the
stormwater plumes have the highest reflectance in the green-red
region (500–700 nm) which could potentially be due to increased
sediment loading. Figure 2C shows there is considerable overlap
of mixed plumes in the green and red bands, especially with both
the stormwater and wastewater plumes only, indicating varying
concentrations and extent of both wastewater and sediments
shown. Wastewater and mixed plumes reflect mostly in the
green band (500–600 nm) which may be due to CDOM or
chlorophyll. Open ocean/no plume has the lowest reflectance
across all wavelengths considered as shown in Figure 2D.
Wastewater plumes are clearly separated from stormwater
plumes in all five bands.

The line graph in Figure 3 shows the surface reflectances of
10 stormwater plumes, 10 wastewater plumes, 10 mixed plumes,
and 10 open ocean/no plume events. Each plot represents the
average reflectance value and the bounding bars indicate ±1
standard deviation. These surface reflectance values are shown in
Supplementary Figure 1.

We conducted an HCA and a PCA on 30 independent
plume images, where 10 images were associated with stormwater,
10 for wastewater, and 10 for open ocean/no plume events.
Mixed plumes were excluded from this analysis because their
spectral signature overlapped with wastewater plumes. As seen
in Figure 4A, there are three primary branches that correspond
with each of the coastal plume classes evaluated in this analysis: O
(Open Ocean/No Plume – in red); WW (Wastewater – in green);
and SW (Stormwater – in blue). Three of the open ocean samples
(O8, O9, and O10) were clustered into the wastewater plumes
branch, indicating that 27 out of 30 events were classified into
their matching plume class (90% correct classification).

In the PCA analysis, (Figure 4B) we see two distinct groups
[(1) Open Ocean/Wastewater and (2) Stormwater], differentiated
across PC1, the component that accounts for the majority of the

Frontiers in Environmental Science | www.frontiersin.org 7 December 2020 | Volume 8 | Article 59903087

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-599030 December 3, 2020 Time: 12:10 # 8

Ayad et al. Remote Sensing of Stormwater and Wastewater Runoff

FIGURE 3 | Line graph of surface reflectances for 10 stormwater plumes, 10
wastewater plumes, 10 mixed plumes, and 10 open ocean events. The y-axis
indicates the surface reflectance values and the x-axis is the wavelength. The
bounding bars are the ±1 standard deviation from the average spectral value.

variance (89.1%) and less clear distinction across the y-axis/PC2
for open ocean and wastewater, with PC2 explaining about 6.8%
of the variance. While O9 and O10 are in closest proximity to the
WW samples, O3 a slightly closer than O8 is, which is a slight
difference between HCA and PCA evaluations. PC1 and PC2 are
plotted here to help evaluate the similarities and distributions in
sample types relative to their classes.

We utilize the a443 parameter (Lee et al., 2002) from
ACOLITE that derives CDOM to compare the CDOM
concentrations between plume types. Figure 5A is the derived
CDOM (a443) parameter from 5 stormwater, 5 wastewater, 5
mixed, and 5 open ocean/no plume events (Supplementary
Table 3). Since CDOM can only be calculated using Landsat 8
and Sentinel 2 imageries, we were only able to acquire a limited
number of these events for comparison. From Figure 5A, the
mean CDOM values for our AOI ranged from 0.06 to 0.32 m−1

(low CDOM) for open ocean/no plume, 0.3 to 0.59 m−1

(low-medium CDOM) for wastewater, 0.39 to 0.96 m−1

(medium-high CDOM) for mixed, and 0.98 to 2.1 m−1 (high
CDOM) for stormwater. The P-value from ANOVA test is 8.96e-
6 for CDOM. CDOM has the 2nd highest variance compared
to turbidity, ENT, and flow rate. Overall, we observed that the
wastewater plumes have less CDOM compared to the stormwater
plumes (Supplementary Table 3).

Figure 5B shows derived turbidity (mean of AOI) from Eq. 2
for all four groups. The turbidity mean values ranges from 0.5
to 3.1 FNU (low turbidity) for open ocean/no plume, 1.83 to
8 FNU (low-medium turbidity) for wastewater, 3.5 to 17.1 FNU
(medium-high turbidity) for mixed, and 12.38 to 45.65 FNU
(high turbidity) for stormwater. In Figure 5B, we observed that
turbidity existed for all 3 types of plume events. The P-value from
ANOVA test is 3.24e-10 for turbidity. Turbidity has the highest
variance compared to CDOM, ENT, and flow rate.

Plume Comparison Using in situ Data
(Plume Color, Flow Rate, and ENT)
In situ water quality data was acquired from the water quality
station monitoring reports for 7 stormwater, 6 mixed, 5
wastewater, and 2 open ocean/no plume events that match with
our RapidEye imagery. There are several sampling locations for
each event (Figure 1: offshore and shore stations). We extracted
the station data that are within each plume or closest to the river
mouth (more information: Supplementary Table 2). Figure 5C
shows that the average ENT for the open ocean/no plume
events is low (3.2 CFU/100 mL), wastewater average ENT is
medium (890 CFU/100 mL), mixed average ENT is relatively
high (1314.1 CFU/100 mL), and stormwater average ENT is
high (3440.5 CFU/100 mL). The P-value from ANOVA test is
1.45e-4 for ENT.

We also see differences in plume color for wastewater
and stormwater plumes. Wastewater plumes are green while
stormwater plumes are brown based on the true color imagery
(Supplementary Table 1). Mixed plumes are a combination
of greenish-brown and open ocean/no plumes are dark blue
in the imagery. Such color difference was also captured by
the visual observations in the water quality station monitoring
reports (offshore and shore stations in Figure 1) for the
events in Supplementary Table 2. Wastewater events reported
that the water color was green and included: sewage like
odor, turbid water, and debris. Stormwater events reported
that the water color was brown and included: turbid water,
sewage like odor, debris, and detergent-like odor. Mixed
events reported that the water color was green or brown
and included: sewage like odor, water turbid, and foam
present. Open ocean/no plume events reported that the
water color was greenish-blue and no comments included in
visual observations.

Figure 5D shows the hourly mean flow rate from the
flow gauge station (green star) in Figure 1. Stormwater flow
rates from events 1–4 (Supplementary Table 1) are missing
since there are no data available during those dates. Flow
rate includes all 10 events for wastewater, mixed, and open
ocean/no plume events. Figure 5D shows that the flow rate
values for open ocean/no plume range from 0.1 to 1.3 cms
(low flow), 0 to 2.7 cms for wastewater (low flow), 0 to
16 cms for mixed (medium flow), and 2.2 to 158.3 cms
for stormwater (high flow). The stormwater events typically
exhibit relatively higher flow rates, which is consistent with
being associated with precipitation events. The P-value from
ANOVA test is 1.3e-4 for flow rate. ENT and flow rate have
similar variances since these values are closer to the mean
compared to turbidity and CDOM. Since all p-values from the
ANOVA test for all parameters are less than the significance
level of 0.05, we reject the null hypothesis that four groups
have equal means.

Evaluation of Satellite-Derived Turbidity
Satellite-derived turbidity values for RapidEye were compared
with those collected from in situ stations in the Tijuana River
to assure the accuracy of the satellite measurements. It should
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FIGURE 4 | HCA and PCA Analysis. (A) A dendrogram tree from the HCA. (B) PCA result of PC1 on the x-axis, and PC2 on the y-axis. The arrows indicate the
relative influence of the parameters used in the underlying data (surface reflectance and derived turbidity).

be noted that in situ data for CDOM and spectral data were
not available for evaluation. The in situ water quality stations
are from the NOAA NERRS and are located at the mouth
of the Tijuana River (Boca Rio: purple star in Figure 1)
and inside the estuary (Oneonta Slough: light green star
in Figure 1).

We compared the turbidity from water quality station at
Oneonta Slough (Figure 6A) to the algorithm derived turbidity
from 40 images listed in the Supplementary Table 1, including
10 wastewater events, 10 stormwater events, 10 mixed events,
and 10 open ocean/no plume. We extracted a 3 × 3 pixel
area surrounding the Oneonta Slough Station to compute

the average derived turbidity. This average derived turbidity
is compared with the in situ hourly average turbidity (4 of
the 15-min turbidity values are averaged). The same methods
were applied to the Boca Rio station (Figure 6B). The high
peaks of turbidity from Figures 6A,B are from stormwater
(SW) events, moderate values of turbidity are from wastewater
(WW), and mixed (M) events, and low turbidity values are
from open ocean/no plume events (O). Oneonta Slough has an
R2 of 0.94, and the Boca Rio station has an R2 of 0.71 with
a sample size of 40 for each station. Figures 6C,D are the
regression line plots for the Oneonta Slough Station and Boca Rio
Station, respectively.
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FIGURE 5 | Box plots of CDOM and turbidity derived from remote sensing data, and ENT and flow rate from in situ measurements. (A) Mean derived CDOM from
AOI (Lee et al., 2002) for 5 stormwater, 5 mixed, 5 wastewater, and 5 no plume events using Landsat 8 and Sentinel 2 A/B data (more information: Supplementary
Table 3). (B) Mean derived turbidity from AOI (Nechad et al., 2009) for 10 stormwater, 10 wastewater, 10 mixed, and 10 no plume events using RapidEye data.
(C) Enterococcus (ENT) counts for 7 stormwater, 6 mixed, 4 wastewater, and 2 no plume events (more information: Supplementary Table 2). (D) Mean flow rate
from gauge station (Figure 1: green star) in cubic meters per second (cms) from 12 h prior to the satellite revisit time for 6 stormwater events and 10 wastewater, 10
mixed, and 10 no plume events). For each box plot, the median is shown by the red mark, the whiskers correspond to the maximum and minimum values, the red
plus signs show the outliers outside of the 25–75 percentile range shown by the box.

DISCUSSION AND CONCLUSION

Previous remote sensing studies focused on tracking, dispersal,
detection, and impacts of stormwater plumes (Warrick et al.,
2007; Lahet and Stramski, 2010; Svejkovsky et al., 2010; Brando
et al., 2015; Holt et al., 2017). There are limited studies
on remote sensing of wastewater plumes (DiGiacomo et al.,
2004; Marmorino et al., 2010; Gierach et al., 2017; Trinh
et al., 2017). However, no known studies have performed the
classification of these plume types. Our study differentiated
the wastewater and stormwater events based on the different
characteristics presented in the plumes. These parameters include
spectral profile, CDOM, turbidity, flow rate, plume color, and
bacteria level (ENT).

Stormwater plumes reflectance values are consistent with
other studies where we see highest reflectance values in the blue to
red ranges (Hafeez et al., 2018; Wang et al., 2019). The wastewater
plumes reflect most strongly in the green wavelength which
shows similar reflectance signatures as CDOM and chlorophyll.
Mixed events show a wide range of reflectance, which depends

on a case by case basis on having “more stormwater” or “more
wastewater” in the mixed plumes. Through conducting HCA
and PCA of surface reflectance values, we were able to classify
stormwater, wastewater, and open ocean/no plume in nearly all
cases (90% success rate). HCA and PCA managed to cluster
these events into 3 groups by finding similar surface reflectance
values for each group. However, HCA misclassified three ocean
samples to wastewater and PCA misclassified two wastewater
samples to open ocean/no plume and one open ocean/no plume
to wastewater. The majority of the samples show that wastewater
and ocean (low-moderate reflectance in the visible) are more
related to each other as compared to stormwater (high reflectance
in the visible). This might be due to some open ocean/no plume
events also having small concentrations of CDOM or chlorophyll,
which reflects in the blue-green band ranges. Another issue may
be the amount of wastewater and its varying concentration and
properties that could influence the surface reflectance values.
For example, the wastewater amounts range from 172,000
gallons to 610 million gallons. These wastewater events are
also comprised of treated wastewater, untreated wastewater, or
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FIGURE 6 | Turbidity validation at the (A) Oneonta Slough Station and (B) Boca Rio Station. (C,D) The regression plots for both stations. Both stations have 40
points each: 10 stormwater, 10 wastewater, 10 mixed, and 10 no plume events.
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a combination of both (see text footnote 1). The plumes that
were misclassified were WW4 and WW8 and we included the
end times of each spill in Supplementary Table 1. There may
have been less wastewater for WW4 since the reported spill
ended 4 h prior to the satellite acquisition time. WW8 might
have been less wastewater as well since it was in the middle
date of a spill that lasted 17 days. The wastewater amount
was significant (143 MG) but occurred throughout these days.
Overall, the majority of the highest reflectances values were
those with the highest reported wastewater amounts. There were
higher amounts of CDOM in stormwater (0.98 to 2.1 m−1) and
lower CDOM values for wastewater (0.3 to 0.59 m−1) (shown
in Figure 5A). Mixed plumes are in-between ranging from
0.39 to 0.96 m−1. Studies have shown variable concentrations
of CDOM in wastewater plumes, which may be due to the
dilution and transport of these plumes (Marmorino et al., 2010;
Gierach et al., 2017).

Validation was only implemented for turbidity since no in situ
data was available for reflectance or CDOM. Turbidity validation
showed high correlations for both the Oneonta Slough (R2 = 0.94)
and Boca Rio (R2 = 0.71) stations. The Oneonta Slough station
obtained the best results due to the station being in quieter waters
with low wave energy (in the estuary) compared to the Boca
Rio station located at the river mouth. At the Boca Rio station
there may be high energy waves which can fluctuate the turbidity
values. In Vanhellemont (2019b), the turbidity deriving algorithm
(Nechad et al., 2009) was validated for RapidEye in several sample
sites with 84 smart Buoys and 129 USGS sites that matched with
RapidEye imagery. The algorithm was able to achieve R2 of 0.78
and 0.81 in the validation of these sites using the red band. Both
Vanhellemont (2019b) and this study have shown that RapidEye
imagery can be used to derive meaningful and accurate turbidity
results based on the Nechad et al. (2009) algorithm.

Turbidity existed in our 3 water groups: stormwater,
wastewater, and mixed (Figure 5B). Stormwater showed the
highest turbidity (ranging from 12.38 to 45.65 FNU) out of
all the groups due to the high amount of sediments in these
plumes. Since mixed plumes are a combination of wastewater and
stormwater, the average turbidity ranges from 3.5 to 17.1 FNU.
Wastewater turbidity values are on the lower end ranging
from 1.83 to 8 FNU. Open ocean/no plume has almost no
turbidity ranging from 0.5 to 3.1 FNU. Flow rate (Figure 5D)
showed a similar pattern as turbidity: high flow rate values for
stormwater, low-medium flow rate for mixed, low flow rate for
wastewater, and almost no flow rate for open ocean/no plume.
High flow amounts are most common when there is runoff
from precipitation which is why there are higher flow rates
for stormwater events. Other studies have reported high flow
rates (Corcoran et al., 2010; Holt et al., 2017) and turbidity
(Washburn et al., 2003) for stormwater plumes due to increases in
sediments, dirt, oil, and other pollutants. For wastewater, results
found that the flow rate is low which may be due to the gauge
not being able to accurately estimate the flow. A report from
IBWC10 found that the flow gauge accuracy is ± 5% and is not
able to detect low flow rates. It is unclear why the wastewater

10https://www.ibwc.gov/Files/Report_Trans_Bypass_Flows_Tijuana_033117.pdf

flow rate is almost undetected since some spills report millions
of gallons of wastewater discharged into the Tijuana River.
The IBWC report mentions that this is due to silt and solid
sediments in the river.

Plume color differences are seen in the true-color imagery:
wastewater plume is green while the stormwater plume is brown.
Mixed plumes are a combination of both (greenish-brown) and
open ocean/no plume is dark blue. The water quality station
monitoring reports observed that wastewater plumes are green,
stormwater plumes are brown, mixed plumes are green or brown,
and no plume waters are greenish-blue. Depending on whether a
wastewater spill is treated (less ENT), stormwater plumes often
result in high ENT since this is an unregulated non-point source.
This is shown in Figure 5C with stormwater showing high
ENT (average: 3440.5 CFU/100 mL) for reported events while
wastewater showed lower ENT (average: 890 CFU/100 mL). The
average ENT for mixed was 1314.1 CFU/100 mL and for open
ocean/no plume was 3.2 CFU/100 mL.

We depend primarily on spectral data from RapidEye, which
is highly limited in terms of spectral information but still useful
enough to help classify between plumes at a reasonably good rate
(90% correct). The uncertainties with utilizing remote sensing
to study these optically complex waters come from variations
in CDOM, chlorophyll-a, sun glint, bottom reflectance, and
suspended sediments (Trinh, et al. 2017). Several studies (Kahru
et al., 2012; Dogliotti et al., 2015; Ruddick et al., 2016; Trinh
et al., 2017; Zheng and DiGiacomo, 2017; Vanhellemont, 2019a)
have shown challenges in determining accurate chlorophyll-a
concentrations in these optically complex waters. This is due to
increases in CDOM and sediments near the coast. In this study,
CDOM in stormwater plumes may be overestimated due to an
increase in suspended sediment particles. However, without a
more complete in situ data archive, we are unable to validate
these parameters, such as CDOM and surface reflectance. Some
of the limitations can be addressed by looking at more detailed
spectral profiles, such as what might be offered by Landsat 8
and Sentinel-2 which we were only able to use in a limited way
in this study. There are also opportunities to do data fusion or
downscale by combining Landsat 8 and Sentinel-2 with RapidEye
and PlanetScope, which might provide us more opportunity
to address tradeoffs between spectral, temporal, and spatial
resolutions. Another essential aspect to consider is understanding
the hydrodynamics of wastewater plumes once they enter the
ocean since there is little known on the residence time and
dilution rates of wastewater.

It is also crucial to understand where these point and non-
point sources are originating from. An example of a point source
is a wastewater spill since it can be traced back to the wastewater
treatment effluent. Stormwater plumes are a non-point source
since this runoff can come from a variety of sources. A report
from the City of San Diego11 found that there are several potential
non-point sources in this region such as agricultural operations,
erosion due to unimproved roadways, homeless encampments,
and natural sources of sediment. Moreover, since this watershed

11https://www.sandiego.gov/sites/default/files/legacy/stormwater/pdf/TJR_
WaterQualityImprovementPlan_021715.pdf
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is both on the U.S-Mexico border, there are also pollutants
from Mexico that contribute to this runoff. It is important to
understand the origin of these sources and classify them in order
to regulate harmful pollutants entering our waterways. In situ
sampling in combination with remote sensing is necessary to
tackle these complex problems and protect public health and
the marine environment. Wastewater spills are becoming more
common due to an increasing amount of people living in the
Tijuana area; our techniques can be applied in order to help
coastal managers detect and classify plume types in areas where
there is less extensive monitoring of water quality.
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Satellite and aerial imagery have been used extensively for mapping the abundance and
distribution of giant kelp (Macrocystis pyrifera) in southern California. There is now great
potential for using unoccupied aerial vehicles (UAVs) to map kelp canopy at very high
resolutions. However, tides and currents have been shown to affect the amount of floating
kelp canopy on the water surface, and the impacts of these processes on remotely sensed
kelp estimates in this region have not been fully quantified. UAVs were used to map fine-
scale changes in canopy area due to tidal height and current speed at kelp forests off the
coast of Palos Verdes, CA and Santa Barbara, CA. An automated method for detecting
kelp canopy was developed that was 67% accurate using red-green-blue (RGB) UAV
imagery and 93% accurate using multispectral UAV imagery across a range of weather,
ocean, and illumination conditions. Increases in tidal height of 1 m reduced the amount of
floating kelp canopy by 15% in Santa Barbara and by over 30% in Palos Verdes. The effect
of current speed on visible kelp canopy was inconclusive, but there was a trend towards
lower canopy area with increased current speed. Therefore, while tidal height and current
speed can introduce significant variability to estimates of kelp abundance, the magnitude
of this variability is site specific. Still, UAVs are a valuable tool for mapping of kelp canopy
and can provide greater spatial resolution and temporal coverage than is possible from
many satellite sensors. This data can provide insight into the patterns and drivers of high
frequency fluctuations in kelp abundance.

Keywords: drones, kelp classification, kelp mapping, spatial variability, tidal height, current speed, ecological
succession

INTRODUCTION

Giant kelp (Macrocystis pyrifera) serves as the structural and nutritional foundation for globally
distributed and highly productive nearshore ecosystems (Dugan et al., 2003; Graham et al., 2007;
Miller et al., 2018). Giant kelp forests offer great societal and economic value through the support of
fisheries, recreation, and a wide range of products including cosmetics, food, fertilizer, and biofuels
(Gentry et al., 2017, Gentry et al., 2019). Accordingly, monitoring the abundance and distribution of
this valuable resource is particularly important in the face of global climate change, as marine
ecosystems are especially susceptible to the effects of climatic disturbances (Harley et al., 2006).

Fixed to subtidal, rocky reefs with a holdfast, giant kelp fronds extend vertically towards the sea
surface to form dense, floating canopies, which are visible from above. Satellite imagery has shown
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great potential for monitoring kelp populations, as floating kelp
canopies are visible with multispectral spaceborne sensors
(Cavanaugh et al., 2011; Bell et al., 2015a, Bell et al., 2020;
Mora-Soto et al., 2020). Repeated global measurements
provide a comprehensive view of changes in kelp canopy area
through time, enabling the roles of seasonal (e.g., wave
disturbance and nutrient availability) to decadal scale (e.g., the
El Niño-Southern Oscillation (ENSO) and the North Pacific Gyre
Oscillation (NPGO)) drivers to be evaluated across a wide range
of spatial scales. Satellites with moderate spatial resolution
(10–30 m) can be used to accurately estimate the area and
biomass of continuous kelp canopies on the order of hundreds
of sq. meters in size (Cavanaugh et al., 2011), yet are unable to
detect sparse stands of kelp that cover less than 15% of a pixel
(i.e., 135 m2 for a 900 m2 Landsat pixel; Hamilton et al., 2020).
Additionally, shallow kelp forests can be difficult to differentiate
from land, especially when pixels contain a mixture of land,
water, and kelp (Schroeder et al., 2019a; Bell et al., 2020; Hamilton
et al., 2020). These issues limit the suitability of moderate
resolution satellite imagery for monitoring giant kelp habitat
in regions where kelp beds are small, sparse and/or found
close to the shoreline (e.g., British Columbia; Nijland et al., 2019).

Tidal height and surface currents introduce additional
complexity into aerial estimates of kelp canopy area (Britton-
Simmons et al., 2008). The amount of kelp exposed on the water
surface periodically fluctuates with incoming and outgoing tides.
Portions of the canopy submerge and reemerge as tidal height
increases and decreases, and at high tide, deeply submerged
individuals become undetectable with aerial and satellite-based
sensors. Similarly, strong currents can temporarily immerse
floating canopies, changing the shape and coverage of the
forest when viewed from above.

In southern California, satellite and aerial imagery have been
used extensively for monitoring the drivers of giant kelp biomass
dynamics, kelp physiological condition, and synchrony and
metapopulation dynamics (Jensen et al., 1980; Deysher 1993;
Stekoll et al., 2006; Cavanaugh et al., 2011; Cavanaugh et al., 2013;
Cavanaugh et al., 2014; Cavanaugh et al.,2019; Bell et al., 2015a;
Bell et al., 2015b; Bell et al., 2020; Castorani et al., 2015; Castorani
et al., 2017). Despite this widespread use, it is unclear how tidal
height and surface currents impact apparent bed size in this
region. Britton-Simmons et al. (2008) demonstrated a significant
impact of tides and currents on bull kelp (Nereocystis luetkeana)
canopy using oblique-angle, shore-based photography, however
these impacts have not been quantified for giant kelp, which has a
different morphology from bull kelp. In addition, there are
limitations with estimating area from oblique-angle imagery,
and the sensitivity of this imagery to tides and currents may
be different than that of nadir imagery.

Unoccupied aerial vehicles (UAVs) present a low-cost,
versatile solution to the challenges and limitations associated
with using satellite imagery to study small or sparse kelp beds.
Offering spatial resolutions on the order of centimeters, UAVs
not only provide the fine resolution necessary to monitor
environmental processes on fine spatial scales, but they also
present the flexibility in timing of image capture (Whitehead
and Hugenholtz 2014; Whitehead et al., 2014). Additionally,

sensor systems with varying spectral capabilities have been
developed for UAV platforms, ranging from digital color
cameras, containing red, green, and blue channels (RGB) to
hyperspectral (Whitehead and Hugenholtz 2014). While
emergent giant kelp canopy prominently reflects in the near
infrared (NIR), seawater has a high absorption (Jensen et al.,
1980; Schroeder et al., 2019a), and so NIR imagery is useful for
detecting surface canopy (Cavanaugh et al., 2010) but has limited
ability to detect subsurface kelp.

UAV imagery has been successfully implemented in the
detection and mapping of both floating and submerged
seaweed communities, yet sun glint, crashing waves, shadows,
and spectral noise have made automated classification schemes
problematic, necessitating manual image classifications (Kellaris
et al., 2019; Taddia and Russo 2019; Thomsen et al., 2019). Here,
we present a novel automated canopy detection algorithm that
can be applied consistently to UAV imagery collected across
varying conditions. We then quantify the influence of tides and
currents on estimates of floating giant kelp canopy area in
southern California using these methods. Using this
automated detection method, we introduce field collection
methods used to create a time series of kelp canopy area from
multispectral UAV imagery. This dataset allows for the local scale
assessment of giant kelp canopy area at 10 cm resolution every
two weeks for one year while controlling for tides. The time series
provides insight to patterns and drivers of high-frequency
variability in giant kelp abundance in southern California.

MATERIALS AND METHODS

Field Data Collection
The study area included two kelp forests located on the southern
California coast: Arroyo Quemado (34°28.127′N, 120° 07.285′W)
west of Santa Barbara, and Honeymoon Cove (33°45.906′N, 118°
25.392′W) at Palos Verdes (Figure 1). Both kelp forests
experience tidal fluctuations ranging from∼−0.55 m to 2.2 m.

Flights were conducted throughout the tidal range (hereafter
referred to as tidal surveys) on January 2, 2018 at Arroyo
Quemado (−0.52 m–2.15 m) and on July 9, 2018
(0.64 m–1.96 m) and July 18, 2018 (0.25 m–1.56 m) at
Honeymoon Cove to capture the tidal responses of kelp beds
with different structural properties (Supplementary Table S1).
The Arroyo Quemado kelp forest is located offshore of an open
coast, and one discrete stand was sampled within the
forest∼400 m from the shoreline. The Honeymoon Cove kelp
forest extends throughout a sheltered cove, with thicker stands of
kelp fringing the coastline and sparser stands of kelp covering the
rest of the cove. Flights were only conducted within the cove, but
the kelp forest continuously extended past the section that was
surveyed. The flight duration for each site was approximately
20–30 min. For each tidal survey, hourly flights were performed
across the tidal amplitude (approximately 6 h). Wind speeds were
less than 8 km/h during all tidal survey flights.

A separate series of UAV flights were conducted at Arroyo
Quemado in order to isolate the effects of currents. These
consisted of one flight per day at the same tidal stage (bottom of
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low tide) across a 5 day span (June 26, 2019 to June 30, 2019) with
varying wind and current speeds (Supplementary Table S1).

A MicaSense RedEdge sensor mounted on a DJI Matrice 100
quadcopter was used to survey the kelp bed at Honeymoon
Cove. The RedEdge simultaneously captures data in five spectral
channels, the blue (475 nm center, 20 nm bandwidth), green
(560 nm center, 20 nm bandwidth), red (668 nm center, 10 nm
bandwidth), red-edge (717 nm center, 10 nm bandwidth), and
NIR (840 nm center, 40 nm bandwidth). Sun angle and
illumination conditions varied temporally across each survey,
and while the RedEdge was equipped with a downwelling light
sensor (DLS), DLS data were omitted in image processing as
sensor measurements during flight vary with the pitch and roll
of the UAV (Hakala et al., 2018). To calibrate reflectance for
each flight, a spectral calibration panel with known reflectance
was imaged before and after each flight. The along-track overlap
between consecutive images was set to 80%, and the side-track
overlap between consecutive flight lines was set to a minimum
of 75%. Sun glint distorted the reflectance of pixels in the
middle and edges of images taken when the sun was at or
close to zenith. To increase pixel coverage unaffected by sun
glint, the side-track overlap was increased to 85% during these
flights. Due to UAV and sensor availability between
collaborators, a MicaSense Altum sensor mounted on a DJI
Matrice 200 quadcopter was used to survey the kelp bed at
Arroyo Quemado. The Altum simultaneously captures data in
five channels similar to the RedEdge, the blue (475 nm center,
32 nm bandwidth), green (560 nm center, 27 nm bandwidth),
red (668 nm center, 14 nm bandwidth), red-edge (717 nm
center, 13 nm bandwidth), and NIR (840 nm center, 57 nm
bandwidth). All other settings remained consistent to those
used with the RedEdge sensor.

A moored CTD and Acoustic Doppler Current Profiler
(ADCP) from the Santa Barbara Coastal Long Term Ecological
Research (SBC LTER) program (http://sbc.lternet.edu) were

located within the Arroyo Quemado kelp forest, allowing for
simultaneous in situ depth and current measurement
comparisons with each Arroyo Quemado flight. These data
included north velocity, east velocity, and water depth, which
were provided in 20 min intervals. Velocity data were collected at
16 different heights in the water column, from 2.5 m to 17.5 m
from the bottom. Measurements from 12.5 m readings were used
for this study, as measurements taken above 12.5 m from the
bottom often yielded no data values at low tide. Both depth and
current measurements were linearly interpolated to one min
intervals to match both the tidal height and current speed at
the midpoint (from UAV launch to landing) of the time each
kelp forest was imaged. NOAA/NOS/CO-OPS one min tidal
measurements (https://tidesandcurrents.noaa.gov/1mindata.
html) were used from Station 9410660 for simultaneous in situ
depth measurement comparisons with each Honeymoon Cove
flight.

UAV Image Data Processing
Before analyzing the UAV images, raw pixel values were
converted from digital numbers (DN) to reflectance using the
recommended MicaSense processing steps (https://github.com/
micasense/imageprocessing). A dark pixel correction was applied
to reduce sensor noise, an imager specific radiometric calibration
function was calculated to account for radiometric inaccuracies,
vignette effects were removed from image corners, and each pixel
was divided by image gain, exposure time, and a sensor-specific
calibration coefficient (all imager and sensor specific calibrations
were provided byMicaSense). For each band, the pixels within the
inner 75% of reflectance panel images captured before and after
each flight were extracted and averaged to account for any
illumination changes from launch to landing. The provided
Lambertian panel for the RedEdge and Altum have a known
reflectance for each band, which were used to convert DN to
reflectance.

FIGURE 1 | Santa Barbara, California study site: Arroyo Quemado (A)with associated SBC-LTER ADCP and Palos Verdes, California study site: Honeymoon Cove
(B) with associated NOAA station 9410660.
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Pixels altered by sun glint and crashing waves introduce
distortion into individual images, as these pixels are
inconsistent across space and time, making image mosaicking
difficult. To reduce distortion, these pixels were masked from
each band of pre-mosaicked reflectance images using gray-level
co-occurrence matrices (GLCM), which have been successful in a
variety of remote sensing-based classifications (Changhui et al.,
2013; Huang et al., 2014; Zheng et al., 2018). GLCMs yield
textural features from images by calculating the spatial
distribution of the gray-level variations of individual band
values (Haralick et al., 1973). The function graycomatrix in
MATLAB (2018) creates a GLCM by describing pixel spatial
dependency, or the frequency at which a pixel with value i occurs
adjacent to a pixel with value j (MATLAB, 2018).

In the blue portion of the visible spectrum, dense kelp has a
relatively low reflectance, while water has a relatively high
reflectance (Supplementary Figure S1; Schroeder et al.,
2019b). As a result, graycomatrix was applied to the blue band
of each image to help isolate glint pixels and to reduce the
potential for misclassification between glint and kelp. The
brightest pixel grouping within each matrix was used to
identify glint and wave pixels within all images containing
100% water. If masks were applied to images with land, this
process may accidentally mask land and coastal pixels as well. A
5-pixel buffer was placed around any pixels classified as glint, and
the resulting masks were exported for each individual UAV image
(Figure 2).

Reflectance images were mosaicked into orthomosaics using
the structure from motion photogrammetric software Agisoft
Metashape Pro (formerly Agisoft Photoscan Pro; Agisoft
Photoscan Pro version 1.4.5 through Metashape Pro version
1.6.2 were used for processing; Agisoft, St. Petersburg, Russia).
Metashape Pro allows users to directly import binary masks that
are associated with raw UAV image files (i.e., Metashape will
correspond images with their respective masks if the files share

FIGURE 2 | Unprocessed, grayscale UAV image (left) and corresponding sun glint mask (right). All reflectance pixels found within the sun glint mask were
removed during photogrammetric processing to improve mosaicking success.

FIGURE 3 | Example of a UAV-based orthomosaic export from Agisoft
Metashape Pro without the glint correction applied (A) and with the glint
correction applied (B). Land areas that were erroneously removed with the
glint correction are apparent–masks containing coastline can be
excluded to reduce this effect.
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the same file name), and the software will exclude masked areas
when finding tie points for photogrammetric stitching. As a
result, only the pixels unaffected by glint will be incorporated
into the final orthomosaic (Figure 3). To account for error in
measurements of the UAV’s onboard GPS, each orthomosaic
GeoTiff was manually georeferenced. An arbitrary UAV image
from Honeymoon Cove and Arroyo Quemado were selected as
the base image, and ten coordinates located along the shoreline of
each site were located. All subsequent images were georeferenced
to these ten points to ensure that our images were referenced to
one another through time. Once images were georeferenced, they
were resampled to 10 cm × 10 cm, and all land and coastal pixels
within 10 m of the low-tide line were removed.

UAV-Based Kelp Area Detection
Twenty vegetation indices were compared to determine which
was best at separating kelp from water in UAV imagery. These
included both previously published indices as well as simple
additive and multiplicative band combinations. Ten indices
were restricted to RGB wavelengths, and ten indices included
either the red-edge or NIR band (Table 1). To compare the
performance of various vegetation indices in detecting kelp
canopy, kelp and water pixels were manually identified and
digitized using ESRI ArcMap 10.7 software across 10 dates
from the Honeymoon Cove time series with varying sun
angles, wind speeds, wave conditions, water clarity, and kelp
health to cover a wide range of conditions experienced in the field.
For this manual classification and all further discussion in this
paper, submerged fronds were classified as “water”. The number
of identified kelp and water pixels varied from image to image,
and to keep samples consistent, 500 pixels were randomly
selected from each class within each image for a total of 5,000

pixels per class. Two parametric separability measures, the
transformed divergence (TD) separability measure and the
Jeffries-Matusita distance (JM), were used to assess the ability
of each index to differentiate kelp from water. JM and TD are
both statistical mechanisms for testing the ability to distinguish
two classes. TD (Eq. 2) relies on the divergence (D) equation (Eq.
1), while JM (Eq. 4) relies on the Bhattacharyya distance (BD)
equation (Eq. 3). Each is bound between 0 and 2, with 0 being no
separability between classes and 2 being complete class
separability as:

D � 1
2
tr[(C1 − C2)(C−1

1 − C−1
2 )] + 1

2
tr[(C−1

1 − C−1
2 )

× (μ1−μ2)(μ1− μ2)T], (1)

TD � 2[1 − exp(−D
8
)], (2)

BD � 1
8
(μ2−μ1)T[C1 + C2

2
]− 1(μ2−μ1) + 1

2
ln

∣∣∣∣C1+C2
2

∣∣∣∣|C1||C2|
√ , (3)

JM �

2[1 − exp(−BD)]√

. (4)

where C1 and C2 are the covariance matrices of class 1 and class 2,
μ1 and μ2 are the mean vectors of class 1 and class 2, tr is the
matrix trace function, and T is the matrix transpose function. JM
and TD are the transformed divergence and Jeffries-Matusita
distances between class 1 and class 2, respectively (Jensen 1996;
Huang et al., 2016).

Because JM and TD are only indicative of separability in
cases of normality, the Shapiro-Wilk Normality test was used to
determine whether the kelp and water pixel samples were
normally distributed after each index was applied. The
Shapiro-Wilk Normality test is most reliable with small

TABLE 1 | Blue (B), green (G), red (R), red-edge (Re), and near infrared (NIR) band combinations for each of the vegetation indices tested for the separability analysis of kelp
and water pixels.

Description Equation References

Red-Blue R − B
Normalized Difference of Red and Blue (NDRB) R−B

R+B
Modified Green Red Vegetation Index (MGVI) G2−R2

G2+R2 Bendig et al. (2015)

Modified Photochemical Reflectance Index (MPRI) G−R
G+R Yang et al. (2008)

Red Green Blue Vegetation Index (RGBVI) G−BpR
G2+BpR Bendig et al. (2015)

Green Leaf Index (GLI) 2G−R−B
2G+R+B Louhaichi et al. (2001)

Greenness Index (GI) G
R Smith et al., 2005

Blue/Red B
R

Excess of Green (ExG) 2G − R − B Woebbecke et al. (1995)
Visible Atmospherically Resistant Index (VARI) G−R

G+R−B Gitelson et al. (2002)

Triangular Vegetation Index (TVI) 120(Re−G)−200(R−G)
2 Broge and Leblanc (2001)

Normalized Difference Vegetation Index (NDVI) NIR−R
NIR+R Tucker (1979)

Green Normalized Difference Vegetation Index (Green NDVI) NIR−G
NIR+G Gitelson et al. (1996)

Normalized Difference Blue Index (Blue NDVI) NIR−B
NIR+B Zerbe and Liew (2004)

Renormalized Difference Vegetation Index (RDVI) NIR−R
NIR+R√ Roujean and Breon (1995)

Normalized Difference Red-edge Blue (NDREB) Re−B
Re+B

Enhanced Vegetation Index (EVI) 2.5[ NIR−R
NIR+6pR−7.5pB+1] Huete et al. (2002)

Green Chlorophyll Index (CIG) NIR
G − 1 Gitelson et al. (2005)

Blue/Red-edge B
Re

Blue/NIR B
NIR
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sample sizes, and accordingly, ten iterations of the Shapiro-Wilk
Normality test were computed, each extracting 100 random
samples from the 500 kelp samples and 500 water samples from
each image acquisition and spectral index (Huang et al., 2016).

In order to identify kelp using a vegetation index, a threshold
was identified, and pixels above this threshold were considered
kelp canopy. Ideally, a single threshold would have been used for
all images, but differing sensors, illumination conditions, and
kelp condition necessitated a more dynamic approach. For each
image, histograms were calculated from vegetation index values
(Figure 4). For images containing both kelp and water,
histograms displayed a bimodal signature, with one peak
characterizing kelp pixels and the other characterizing water.
The locations of the “kelp” peak and the “water” peak were
identified using the function findpeaks in MATLAB (2018). The
value of the vegetation index at the midpoint between these two
peaks was calculated, and this vegetation index value was used as the
unique, image-based classification threshold (Figure 4). If only one
peak was identified (i.e., the image was dominated by either kelp or
water pixels), the function gradient was applied in MATLAB (2018)
to identify potential shoulders within the histogram. In these images,
the vegetation index value at the midpoint between the shoulder and
the peakwas used as the unique, image-based classification threshold
(Supplementary Figure S2).

Using the separability measures, the best performing RGB-
based index (Red-Blue, see results) and the best performing red-
edge or NIR-based index (Normalized Difference Red-edge Blue
(NDREB), see Results) were identified. An accuracy assessment
was performed to compare the automated classifications from
these two indices. Using the same 10 images used within the TD
and JD separability analysis, 50 random points within each image
were sampled for a total of 500 random points (211 kelp points,
289 water points). The points were manually determined to be
either a kelp or water pixel, the number of pixels each index
accurately classified was calculated.

NDREB yielded the highest accuracy, and the NDREB
histogram-based automated classification was applied to each
image in Honeymoon Cove tidal surveys, Arroyo Quemado
tidal surveys, Arroyo Quemado current surveys, and
Honeymoon Cove time series (Supplementary Figures
S3–S6). The number of kelp pixels in each classified image
was multiplied by the area of each pixel (10 cm × 10 cm) to
calculate kelp canopy area for each image. For the tidal analysis,
the identified kelp canopy area from Arroyo Quemado was
compared to ADCP tidal measurements from the SBC LTER
project, and the identified kelp area from Honeymoon Cove was
compared to NOAA/NOS/CO-OPS 1 min tidal measurements.
The station-measured tidal height at the midpoint of each flight

FIGURE 4 |Methodology used in the detection of the presence or absence of kelp in each pixel. For each image, we applied the vegetation index (Red-Blue and
NDREB) and calculated histograms to find unique thresholds for image classifications.
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was used for comparison. For the current analysis, the identified
kelp area from Arroyo Quemado was compared to ADCP
current measurements from the SBC LTER project taken
within the kelp forest at 12.5 m (from the bottom). The
ADCP-measured current speed at the midpoint of each flight
was used for comparison.

Seasonal Variability in Kelp Abundance
Biweekly imagery at Honeymoon Cove was collected from
June 2018 to August 2019 for a total of 25 images. All flights
were conducted at mid-tide (∼1 m) to reduce the impact of tides
on surface canopy measurements. Flights were not restricted
due to time of day or cloud coverage, however, flights were
canceled if wind speeds exceeded 16 km/h or if there was any
precipitation.

For qualitative comparisons between seasonal variations in
kelp canopy area and environmental variables, SST
measurements were collected from the NOAA National Data
Buoy Center Station 9410660 and the measurements were
aggregated to daily means. Additionally, maximum wave
height data were collected from the Coastal Data Information
Program’s (CDIP) nowcast alongshore wave-propagation
model (O’Reilly et al., 2016). The model uses various
parameters from sites located at 100 m intervals along the
backbeach to calculate hourly estimates of maximum wave
height at a depth of 10 m along the California coastline. Five
sites that incorporated calculations from the backbeach within
Honeymoon Cove (sites L0389–L0394) were selected and
averaged by date and time. The daily maximum wave height
was calculated for analysis.

Statistical Analyses
Tidal height and current speed can be strongly correlated, and as
a result, several statistical analyses were performed to detect and
separate the effects of tides and currents on variations in kelp

canopy area (Britton-Simmons et al., 2008). For each tidal survey
(both Honeymoon Cove surveys and the Arroyo Quemado
survey), a simple linear regression was applied to determine
whether tidal height (independent variable) was significantly
correlated with kelp canopy area (dependent variable). To test
for potential differences between the Honeymoon Cove tidal
surveys due to current speed, a one-way analysis of covariance
(ANCOVA) was used to determine whether the Honeymoon Cove
simple linear regression slopes from the two tidal survey dates were
equal. To test for potential differences in the relationship between
tidal height and kelp canopy area at Honeymoon Cove and Arroyo
Quemado, an ANCOVAwas used to determine if the simple linear
regression slopes between the two sites were significantly different
from each other.

For the Arroyo Quemado tidal and current surveys, multiple
linear regression was used to determine whether tidal height and
current speed (independent variables) were significantly
correlated with kelp area (dependent variable; Britton-
Simmons et al., 2008). Additionally, partial correlation
coefficients were calculated to partition the variance in
canopy area explained by tidal height or current speed
(Britton-Simmons et al., 2008). Partial correlation coefficients
measure the correlation between two variables while holding a
specified covariate constant (i.e., correlation between tidal
height and kelp canopy area while holding current speed
constant, and the correlation between current speed and kelp
canopy area while holding tidal height constant; Sokal and
Rohlf, 1981). These additional analyses were performed to
help distinguish the effect of tides and currents on kelp
canopy area during the tidal and current surveys. Current
data were only available at the Arroyo Quemado kelp forest
(current data were not available during the Honeymoon Cove
tidal surveys), and as a result, the multiple linear regression
analysis and partial correlation coefficients were only calculated
at this site.

FIGURE 5 |Mean and standard deviation for the manually classified and
digitized kelp and water pixels for from the blue, green, red, red-edge, and NIR
bands. These values were used as inputs to the vegetation indices used in the
parametric separability analysis.

FIGURE 6 | JM and TD values for the 10 RGB vegetation indices, with 0
being no separability between classes and 2 being complete separability.
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RESULTS

Kelp and Water Separability Analysis
The twenty vegetation indices yielded variable performances in
the parametric separability analysis of kelp and water pixel
samples (Figure 5). p-values from the Shapiro-Wilk Normality
test, which indicate whether the data come from a normally
distributed population, varied within and between the ten
iterations performed on each vegetation index. All of the
data were not considered to be normally distributed (with
p-values ranging from <0.001 to 0.35 for kelp and from <0.001
to 0.46 for water), which may introduce bias into the JM and
TD tests. However, these results were only used to help inform
the optimal vegetation index for analysis. For the RGB-based
vegetation indices, Red-Blue exhibited the highest cumulative
JM and TD values (1.29 and 1.47, respectively), while Blue/Red
exhibited the next highest cumulative values (1.29 and 1.42,
respectively; Figure 6). None of the RGB-based vegetation
indices yielded completely separable results. For vegetation
indices that included either the red-edge or NIR band, each
index exceeded separability scores of 1.5 or greater for both JM
and TD. NDREB exhibited the highest cumulative JM and TD
values (1.99 and 1.99, respectively), while Blue/Red-edge
exhibited the next highest cumulative values (1.96 and 1.99,
respectively; Figure 7).

Automated Classification Accuracy
Assessment
The Red-Blue and NDREB performances in separating kelp and
water pixel samples led to further analysis of these vegetation
indices for use in the histogram-based automated classification.
Red-Blue exhibited an overall accuracy of 67% in identification of
the randomly selected 500 pixels, with an accuracy of 76.3% for

kelp and 60.2% for water. The index NDREB exhibited an overall
accuracy of 93%, with an accuracy of 88.6% for kelp and 96.2% for
water. Red-Blue consistently classified submerged fronds as
floating canopy, as exemplified by the lower classification
accuracy for water. Additionally, Red-Blue often classified
visible substrate (i.e., on a day with high water clarity) as
floating kelp canopy.

Both indices were sensitive to water surface features (ripples
and waves), remnant glint artifacts, shadows (i.e., from steeply
sloped shoreline), often mis-classifying these features as kelp.
Darkly shaded kelp fronds and remnant glint on kelp fronds were
often mis-classified as water. Overall, NDREB was more robust
and was able to accurately classify kelp and water pixels across a
wide variety of environmental conditions and was used to
distinguish kelp from water in all further analyses.

Tidal Analyses
A simple linear regression showed tidal height was significantly
correlated with kelp canopy area in both Honeymoon Cove tidal
surveys (F (1,5) � 213.19, p < 0.001 and F (1,4) � 10.39, p � 0.03,
respectively) and in the Arroyo Quemado tidal survey (F (1,5) �
134.69, p < 0.001; Figure 8). Tides had a large impact on the
amount of kelp canopy exposed in southern California aerial
imagery, as a 1 m increase in tidal height resulted in a 30.26% and
32.30% decrease in kelp canopy area during the first and second
Honeymoon Cove tidal surveys, respectively, and a 15.67%
decrease in kelp canopy area at the Arroyo Quemado kelp
forest (Figure 8).

The reduction in canopy area with increasing tidal height was
similar between the two Honeymoon Cove tidal surveys, as the
slopes of the Honeymoon Cove regression lines (one for each
tidal survey date) were not significantly different (F (1,9) � 0.02,
p � 0.90). The reduction in canopy area with increasing tidal
height was greater in both Honeymoon Cove surveys than it was
at Arroyo Quemado (F (1,10) � 60.18, p < 0.001 and F (1,9) �
6.83, p � 0.02, respectively).

Current Analyses
Analysis of Currents During Tidal Surveys at Arroyo
Quemado
During the Arroyo Quemado tidal survey, current speeds generally
increased as tidal heights reached their minimum (Figure 9).
During this survey, tidal height was significantly correlated with
current speed (F (1,5) � 23.6, p � 0.005). However, the relationship
between tidal height and current speed was variable at the Santa
Barbara site, and over the course of the two weeks following the
tidal height survey, tides and currents were not correlated (R2 �
0.0009). The multiple regression analysis from the Arroyo
Quemado tidal survey showed a significant negative relationship
between tidal height and kelp area (p � 0.01; Table 2). The
relationship between current speed and kelp area was positive
but insignificant (p� 0.65;Table 2). The partial correlation analysis
showed that when the effects of current speed were controlled, tidal
height explained 86.90% of the observed variation in and kelp
canopy area. By contrast, contribution of current velocity explained
only 5.7% of the observed variation in canopy area, and this result
was not significant (p � 0.65; Table 2).

FIGURE 7 | JM and TD values for the 10 red-edge or NIR-based
vegetation indices, with 0 being no separability between classes and 2 being
complete separability.
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Analysis of Currents During Multi-Day UAV Surveys at
Arroyo Quemado
Current speeds ranged from 0.02 to 0.13 m/s across the five
dates, which was representative of average conditions in the
Arroyo Quemado kelp forest during 2019 as a whole

(Figure 10; annual average of 0.085 ± 0.066 m/s). Current
speed exhibited a negative linear relationship with kelp canopy
area, with canopy area declining by 31.99% for a 0.1 m/s
increase in current velocity (F (1,5) � 6.05, p � 0.09;
Figure 11). While this relationship was not highly

FIGURE 8 |Regression analysis between kelp canopy area and tidal height for each tidal survey completed at Honeymoon Cove (n � 7, n � 6) and Arroyo Quemado
(n � 7).

FIGURE 9 | Temporal variations in tidal height and current speed during each flight of the single-day Arroyo Quemado tidal survey.
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significant, the magnitude of the current effect was relatively
large.

During these five dates, there was no consistent relationship
between tidal height and current speed (Figure 10) and the two
were not significantly correlated (F (1,5) � 1.92, p � 0.23). The
multiple regression analysis from the Arroyo Quemado current
survey showed neither a significant effect of current speed on kelp
area, nor a significant effect of tidal height (F (2,5) � 2.01, p �
0.33). The partial correlation analysis showed that variability in
current speed accounted for a large amount of variability in kelp
area during the current survey, this relationship was not
statistically significant (p � 0.26), likely due to the limited
number of data points (n � 5).

Honeymoon Cove Time Series
The mean kelp canopy area in Honeymoon Cove from June
2018 to August 2019 was 6,763.2 m2, but there was a high
amount of variability about this mean. With a standard
deviation of 7,104.6 m2, the coefficient of variation across
the 25 surveys was 105%. Changes in kelp canopy area
occurred over a seasonal cycle with kelp area maximums in
mid-summer and minimums in winter (Figure 12). There was
also pronounced seasonal variability, as patch level declines

and increases in kelp canopy each progressed for about four
months (from late summer to fall and from spring to early
summer, respectively) before reaching maximum or
minimum values (Figure 12). These gradual changes
coincided with SST patterns, with kelp area declining to
3.14% of the overall time series mean area in mid-
September after mean SST increased during the summer
months (20.34 ± 1.20°C). Kelp canopy recovered to
104.48% of the mean kelp canopy area in June after mean
SST decreases in the winter (15.64 ± 0.61°C; Figure 12)
persisted through May. Rapid changes also occurred within
seasonal time spans, as evidenced by kelp recovery from late
October to late November (212.15 m2–8,990.92 m2) once the
mean SST began to cool during the fall months (19.24 ±
0.36°C), followed by a rapid decline in kelp area to
169.87 m2 that corresponded to large wave events that
began in late November (maximum wave height of 2.87 m).
Kelp canopy area persisted below 10% of the mean kelp
canopy area until April, when wave events began to subside
and SST remained low (Figure 12).

DISCUSSION

UAV Data Collection, Processing, and
Classification
Our results demonstrate strong potential for usingUAVs for repeat
monitoring of floating kelp canopy on local scales. Flights were
conducted for our area of interest using one battery set (20–30min
flights), allowing for relatively quick data collection. Additionally,
mostly automated processing workflows (reflectance corrections,
photogrammetry workflow, and classifications) allowed for dataset
manageability, as processing took about 5 h from start to finish
(about 4.5 h were automated). This time would decrease with more
computing power and/or GPU processing.

TABLE 2 | Multiple regression and partial correlation analysis results from the
Arroyo Quemado tidal survey.

Multiple regression analysis Partial correlation analysis

Coefficients Tide effect Current
effect

Intercept Tide Current R2 r R2 r R2

14,441.5* −1913.3* 6,912.3 0.98 −0.932* 0.869 0.238 0.057

*Indicates statistical significance.

FIGURE 10 | Temporal variations in tidal height and current speed during each flight of the multi-day Arroyo Quemado current surveys.
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Our automated method for detecting kelp canopy can be
applied to both multispectral and RGB UAV imagery and is
accurate across a range of weather, ocean, and illumination
conditions. This robustness is important as there are a number
of challenges associated with UAV-based remote sensing in
coastal zones (Hodgson et al., 2013; Bevan et al., 2016; Schaub
et al., 2018). Weather conditions, including precipitation and

high wind, are common limiting factors in UAV deployment.
Sun can also be a limiting factor for marine applications, as
glint features on the water surface are challenging for
photogrammetric software packages to manage. During
stitching, the software may use glint artifacts as tie points
to stitch two non-neighboring images in error, or it may be
unable to find tie points altogether due to the lack of viable
pixels. Additionally, any remaining glint in orthomosaics can
introduce spectral noise and bias classification efforts. Sun
glint can be reduced or avoided by collecting data on overcast
days or by flying when the sun is at lower angles in the sky, but
this is not always possible as flights may need to be conducted
at a certain tidal stage. By introducing sun glint masks into our
image processing workflow, photogrammetry alignment
success increased in almost every flight and the presence of
sun glint greatly decreased in final orthomosaics.

Another challenge of using UAV imagery for analysis in
marine ecosystems includes changing illumination conditions
within flights (i.e., on a partly cloudy day when the sun
continuously emerges and disappears behind clouds) and
between flights (i.e., flying on an overcast day and flying on
a sunny day). Despite spectral corrections with reflectance
panels, these variations impact output reflectance values and
cause spectral inconsistencies. As a result, using supervised
classification schemes to distinguish kelp from water is
difficult, as the training data often do not adequately cover
the spectral ranges observed through each flight (Taddia and
Russo 2019). Additionally, while vegetation indices help to
distinguish kelp from water, the threshold for separation

FIGURE 12 | Honeymoon Cove UAV-derived time series of kelp canopy area from June 2018 to August 2019.

FIGURE 11 |Regression analysis between kelp canopy area and current
speed during the Arroyo Quemado current surveys.
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strongly depends on image-specific spectral values, in turn
necessitating image-specific thresholds (Taddia and Russo
2019). Our dynamic thresholding procedure removed the
subjectivity and visual bias involved with manual threshold
selection and produced a classification that was highly accurate
in classifying both kelp and water.

Our highest accuracies were achieved using multispectral
imagery, and a number of other studies have demonstrated the
utility of multispectral imagery in detecting kelp canopy
(Jensen et al., 1980; Cavanaugh et al., 2010). While many
traditional floating algae indices depend on the NIR band
(Tucker 1979; Hu 2009; Cavanaugh et al., 2010; Xing and
Hu 2016), the NDREB index, our highest preforming index,
takes advantage of the high red-edge and low blue reflectance
of kelp, as compared to the higher blue and lower red-edge
reflectance of water, resulting in a stronger separation
potential than traditional NDVI. Giant kelp is a brown alga,
and spectrally differs from both green vegetation and green
algae, as it lacks the chlorophyll b pigment. There is high
reflectance between the absorption peaks of chlorophyll a and
chlorophyll c (the orange-edge; Bell et al., 2015b; Schroeder
et al., 2019b). Combined with the high reflectance of seawater
in the blue portion of the visible spectrum, there is a larger
difference between the blue and red-edge/NIR than there is
between the red and red-edge/NIR.

Additionally, accuracies of >60% could be achieved using RGB
imagery using a simple subtraction between the red and the blue
band. This indicates potential for kelp mapping using accessible
low-cost UAV platforms that come with digital cameras.
However, users should be aware that RGB imagery is more
sensitive to the misclassification of submerged kelp fronds and
visible substrate (i.e., on a day with high water clarity).

Floating kelp canopy appears similar to submerged canopy
in the visible range of the spectrum, yet the magnitude of NIR
reflectance is much greater for floating canopy than for
submerged canopy (Schroeder et al., 2019a, Schroeder et al.,
2019b). As a result, RGB-based indices may have a hard time
distinguishing between floating and submerged canopy when
submerged canopy is visible. However, this could be a benefit
for certain applications, as it indicates potential for mapping of
submerged fronds using RGB imagery. While we lose
submerged canopy data in the NIR, the variability in water
clarity, environmental conditions, and the amount of floating
canopy result in an inconsistent ability to detect submerged
canopy–even when the NIR is excluded during detection
efforts. Using the NIR reduces the error associated with this
variability and allows us to isolate floating canopy.

While both indices misclassified surface features (ripples and
waves), remnant glint artifacts, and shadows (i.e., from steeply
sloped shoreline) as kelp, Red-Blue was much more prone to
these errors. The difference in magnitude between kelp pixels and
water pixels in the red-edge and the blue band is much larger than
the difference in magnitude between kelp pixels and water pixels
in the red and blue band (Figure 5). As a result, using the
histogram approach, problematic features are more easily
distinguishable from kelp with red-edge or NIR-based indices,

as the signature of kelp is very strong in these histograms despite
the added noise. With RGB-based indices, the kelp signal in Red-
Blue is often small and can be masked by the noise.

Effects of Tidal Height and Current Speed
on Exposed Canopy
The amount of kelp canopy mapped on the water surface at both
Honeymoon Cove and Arroyo Quemado declined significantly
with tidal height, suggesting that tides can bias aerial-derived
metrics of kelp canopy. The effect of tide was not consistent
between the two sites and was almost twice as strong at
Honeymoon Cove, which may be the result of differing bed
structures between the two sites. The Arroyo Quemado kelp
forest is comprised of large discrete, offshore stands, while the
Honeymoon Cove kelp forest is comprised of both large, dense
kelp stands as well as small, sparse stands. At Arroyo Quemado,
the depth linearly slopes downward from the shoreline (from
about −1.5 m to −16.5 m), but the extensive rocky reef along the
gradient allows for a continuous, dense canopy. Increases in tidal
height submerged the edges of the canopy but did not submerge
any central canopy features. At Honeymoon Cove, the depth
slopes downward from the outer edges of the cove to the center
(from about 0 m to −8 m). There is extensive and continuous
rocky reef along the shallow edges of the cove, but the reef in the
center is much more fragmented. As a result, dense aggregates of
kelp grow along edges, and these behave similarly to the beds at
Arroyo Quemado as tidal height increases. However, the patchy,
fragmented aggregates in the center of the cove often only consist
of a few individuals, and these become fully submerged as the tide
increases (Figure 1). Kelp forest demographics might also
influence the impacts of tides by controlling the fraction of
canopy vs. subsurface fronds.

A region’s tidal range will clearly influence the degree to which
UAV estimates of canopy area are affected by tides. Southern
California has a generally low tidal range (∼2 m) compared to
some other global regions (i.e., Southeast Alaska, ∼9 m). Yet, even
this small range impacted kelp canopy coverage by over 15% at
Arroyo Quemado and over 30% at Honeymoon Cove. This result
disagrees with previous work that estimated the weak tidal
fluctuations in Santa Barbara had no effect on kelp canopy
coverage estimates from Landsat satellite imagery (Cavanaugh
et al., 2010, 2011). However, the higher resolution of the UAV
imagery and experimental design aimed at isolating the effects of
tides likely enabled us to more clearly detect the tidal effect. Bell
et al. (2020) also used Landsat imagery for kelp canopy detection
and found inconsistencies in kelp biomass estimates between
Landsat TM and ETM + sensors, which was attributed to the
8 day repeat difference between the satellites imaging at different
points in the tidal cycle. Aggregating Landsat biomass estimates
(30 m resolution) to a seasonal scale (3 months) was sufficient for
correcting for tidal effects (Bell et al., 2020).

Tidal height explained 87% of the variation in kelp canopy
area during the Arroyo Quemado tidal survey, which is consistent
with findings from other regions with similar tidal signals, such as
San Juan Island, WA (Britton-Simmons et al., 2008). Kelp beds
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adjacent to San Juan Island experience tidal ranges of 2–3 m and
are mainly comprised of bull kelp (Nereocystis luetkeana).
Britton-Simmons et al. (2008) found that tidal height
explained between 67% and 95% of observed variability in
kelp area across six different sites near San Juan Island, which
included differing kelp densities, bathymetry, coastline
shapes, and current strength. While both giant kelp and
bull kelp form floating canopies, they exhibit unique
morphological features. Each giant kelp blade is attached to
a pneumatocyst that buoys it to the surface (Graham et al.,
2007), while bull kelp blades for one individual grow from a
single, large (15 cm diameter) pneumatocyst (Amsler and
Neushul, 1989; Schroeder et al., 2019a). As a result, giant
kelp canopies consist of stipes, pneumatocysts, and blades,
while bull kelp canopies mainly consist of stipes and
pneumatocysts; bull kelp fronds often remain submerged
(Schroeder et al., 2019a). While these morphological
differences responded similarly to tidal fluctuations in
southern California and San Juan Island, they may exhibit
different effects in regions with more extreme tidal
fluctuations. Additionally, currents and tides are often
related, and these factors have the ability to interact and
impact the amount of canopy visible to the sensor.
Currents and tides were significantly correlated during the
Arroyo Quemado tidal survey, and while multiple regression
and partial correlation coefficients show that variations in
kelp canopy were likely due to tidal fluctuations, it remains
difficult to concretely separate the effect of either tides or
currents on floating canopy area.

Canopy area was not significantly correlated (at the p � 0.05
level) with current speed during the tidal surveys or in the surveys
conducted across multiple days at similar tidal stages. However,
the relationship may have been significant if more samples were
included in the study. While the p-value for this relationship was
above 0.05 (p � 0.09), the effect size was large, as a 0.1 m/s increase
in current speed reduced the amount of floating canopy by over
31%. More data is needed to determine whether there is in fact a
relationship between these relatively low current speeds and
visible canopy area. In their study of bull kelp along San Juan
Island, Britton-Simmons et al. (2008) found that for a bed where
current speeds never exceeded 0.4 m/s, there was no significant
relationship between current speed and the amount of visible kelp
on the water surface (Britton-Simmons et al., 2008). In contrast,
the effects of current speed on the canopy areas of the other five
kelp beds from Britton-Simmons et al., 2008 were found to be
highly significant, but current speeds ranged much higher at these
sites (>1 m/s). While low current speeds may impact giant kelp
and bull kelp similarly, the relationship may change as current
speed increases. Bull kelp blades begin to stream laterally with
moderate amounts of current, resulting in larger floating canopies.
As a result, the relationship between the percentage of bull kelp
bed visible and current speed is often non-linear and difficult to
quantify, as it varies with geographic shading, coastline shape, and
bathymetry (Britton-Simmons et al., 2008). The spatial variation
in current dynamics around kelp beds is extremely dynamic, and
necessitates site-specific corrections–especially in places with high
current ranges (Britton-Simmons et al., 2008).

UAV Kelp Canopy Time Series
Our UAV time series dataset represents a high-resolution
assessment of high-frequency variability in kelp canopy area.
Previous studies have demonstrated the effectiveness of deriving
time series of kelp canopy biomass or area from aerial and satellite
imagery, but many of these analyze data on quarterly or annual
time scales, which limits the potential for characterizing seasonal
dynamics (Jensen et al., 1980; Deysher 1993; Berry et al., 2005;
Stekoll et al., 2007; Cavanaugh et al., 2010; Cavanaugh et al., 2011;
Cavanaugh et al., 2019; Bell et al., 2015b; Bell et al., 2020; Pfister
et al., 2018; Rogers-Bsennett and Catton 2019; Schroeder et al.,
2019a). This UAV dataset provides a novel view into the
feasibility for collecting long-term datasets at high spatial and
temporal resolution, and the potential for understanding the
rapid, sub-seasonal variations in canopy dynamics.

The Honeymoon Cove time series displayed a high degree of
intra-annual variability in giant kelp abundance. Previous studies in
southern and central California have found that kelp canopies and
standing crop in wave exposed locations typically exhibit a seasonal
cycle with maximums in the late summer to early fall and
minimums in late winter to early spring (Graham et al., 1997;
Reed et al., 2008; Cavanaugh et al., 2011). This pattern has been
attributed to wave disturbance in the winter followed by recovery
during the spring and summer. However, nutrient availability can
be low in southern California during summer months, which can
lead to reduced growth rates and canopy dieback (Clendenning and
Sargent, 1971; Zimmerman and Kremer, 1986). Our time series of
canopy showed evidence of both of these processes superimposed
on one another. Increased temperature and decreased nutrients in
the late summer were associated with gradual declines in kelp
coverage. However, water temperatures decreased in the fall before
the onset of major wave disturbance, and this was associated with a
short-lived increase in kelp cover (Figure 12). This increase may
have been linked to increased nutrient levels, however, a number of
other factors may have been involved, including increased light
availability and an increase in unoccupied substrate following the
late fall kelp decline. The first large wave event of the winter yielded
immediate kelp declines, and abundance remained low until wave
events began to subside in the spring. As temperature and nutrient
conditions became more favorable, kelp abundance continued to
increase until reaching a peak in late summer.

One of the benefits of UAV-based monitoring is the flexibility in
timing of data collection. For example, repeated UAV surveys
provide one way for characterizing variability in the phenology
of giant kelp abundance across sites and years. The timing of kelp
growth and dieback is likely to be important as it might influence
cycles of reproduction and growth of species that depend on kelp for
food, e.g., sea urchins. UAV surveys can also be used to document
the effect of discrete disturbances such as large wave events or
marine heatwaves. Logistically, UAVs allow the operator tomitigate
the impacts of environmental conditions such as clouds, tides, and
wind on data quality. Cloud cover limits satellite acquisitions while
UAVs can be flown below clouds or surveys can be planned for clear
days. Here we have shown the potential impacts of tides on canopy
area estimates and the difficulty of applying a universal correction
factor across different sites. UAV surveys can be planned around
tidal cycles to reduce the need to correct for tides.
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CONCLUSION

The spatial and temporal capabilities of UAV imagery make these
platforms useful for local mapping of giant kelp canopies at high
spatial resolution, but the potential effects of tides and current
should be considered when planning UAV surveys. Collecting
repeated measurements of kelp canopy area at a relatively small
spatial scale (e.g., less than a few m2) is challenging, as diving
efforts require extensive data collection, and estimates from most
satellite platforms do not provide suitable resolutions (Britton-
Simmons et al., 2008; Reed et al., 2008, Reed et al., 2009;
Schroeder et al., 2019a). UAVs provide the ability to collect
data over larger areas than would be possible with other in
situ methods and provide much higher resolution than most
satellite datasets. In addition, they are typically much more cost
effective than occupied aerial surveys. Therefore, UAVs can be
used to map kelp in small, sparse beds close to the coast, to create
high spatial resolution time series, and to examine the impacts of
discrete events such as large wave events. This high spatial
resolution comes at the expense of the broad spatial coverage
of satellites, and neither method can fully replace the other.
Ultimately, the choice of which method to use is highly
dependent on the ecological questions being asked.
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Potential for High Fidelity Global
Mapping of Common Inland Water
Quality Products at High Spatial and
Temporal Resolutions Based on a
Synthetic Data and Machine Learning
Approach
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There is currently a scarcity of paired in-situ aquatic optical and biogeophysical data for
productive inland waters, which critically hinders our capacity to develop and validate
robust retrieval models for Earth Observation applications. This study aims to address this
limitation through the development of a novel synthetic dataset of top-of-atmosphere and
bottom-of-atmosphere reflectances, which is the first to encompass the immense natural
optical variability present in inland waters. Novel aspects of the synthetic dataset include: 1)
physics-based, two-layered, size- and type-specific phytoplankton inherent optical
properties (IOPs) for mixed eukaryotic/cyanobacteria assemblages; 2) calculations of
mixed assemblage chlorophyll-a (chl-a) fluorescence; 3) modeled phycocyanin
concentration derived from assemblage-based phycocyanin absorption; 4) and paired
sensor-specific top-of-atmosphere reflectances, including optically extreme cases and the
contribution of green vegetation adjacency. The synthetic bottom-of-atmosphere
reflectance spectra were compiled into 13 distinct optical water types similar to those
discovered using in-situ data. Inspection showed similar relationships of concentrations
and IOPs to those of natural waters. This dataset was used to calculate typical surviving
water-leaving signal at top-of-atmosphere, and used to train and test four state-of-the-art
machine learning architectures for multi-parameter retrieval and cross-sensor capability.
Initial results provide reliable estimates of water quality parameters and IOPs over a highly
dynamic range of water types, at various spectral and spatial sensor resolutions. The
results of this work represent a significant leap forward in our capacity for routine, global
monitoring of inland water quality.

Keywords: eutrophication, Earth observation, water quality, inland waters, machine learning, radiative transfer
modeling, cyanobacteria, optics
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INTRODUCTION

Widespread increase of lake phytoplankton blooms is causing
global eutrophication to intensify (Ho et al., 2019). The
substantial increase in eutrophication will potentially increase
methane emissions from these systems by 30–90% over the next
century, substantially contributing to global warming (Beaulieu
et al., 2019). Recent advancements in sensor technology and
algorithm development have allowed for improved
measurements of coastal and inland waters (Hu, 2009;
Matthews et al., 2012; Palmer et al., 2015b; Smith et al., 2018;
Pahlevan et al., 2020). Given the increased attention placed on
retrieving eutrophication metrics for inland water bodies,
numerous studies have attempted radiometric retrieval of
chlorophyll-a (chl-a) or phycocyanin (PC), the diagnostic
pigment within cyanobacteria, with varying degrees of success
(see reviews by Ogashawara, 2020; Odermatt et al., 2012;
Blondeau-Patissier et al., 2014; Matthews, 2011; Gholizadeh
et al., 2016). Retrieval of chl-a concentration has been
significantly developed, and is generally more robust for
trophic delineation; however, PC is highly specific to
cyanobacteria and is thus a better indicator of potential water
toxicity (Stumpf et al., 2016). Given the fine-scale horizontal and
vertical heterogeneity of productive waters (Kutser, 2004; Kutser
et al., 2008; Kravitz et al., 2020) and lack of standardization of
field methods, laboratory procedures, and analysis for mixed
freshwater phytoplankton assemblages, it is difficult to conduct
high impact optical sensitivity studies. Consequently, trustworthy
in-situ data for productive coastal and inland waters is limited
compared to combined global datasets for ocean calibration and
validation, which critically hinders our capacity to execute global
baseline studies, as well as to identify global trends using archival
imagery. It is therefore imperative that we develop suitable
algorithms for optical constituent retrieval for current and
planned missions, with a full understanding of the associated
uncertainties and limitations.

Machine learning (ML) and deep learning (DL) approaches
are quickly becoming recognized as state-of-the-art for
classification and regression type problems, and remote
sensing is ideally suited to such approaches (Ma et al., 2019,
and references therein). The majority of ML and DL development
and application have been within the terrestrial remote sensing
community (Ball et al., 2017; Li et al., 2018; Maxwell et al., 2018;
Ghorbanzadeh et al., 2019), although recent research reveals the
benefit of ML and DL approaches for aquatic purposes (Pahlevan
et al., 2020; Balasubramanian et al., 2020; Watanabe et al., 2020;
Sagan et al., 2020; Peterson et al., 2020; Hafeez et al., 2019;
Ruescas et al., 2018). While these studies generally found better
performance of ML and DL approaches over traditional empirical
or semi-analytical methods, most note that the advanced models
were trained on too few datapoints, and would greatly benefit
from expanded datasets. DL architectures in particular
substantially benefit from greater volumes of high-quality
training data. Vastly more coincident reflectance—biophysical
parameter pairs, PC in particular, are required to train new and
improved multi-parameter inversions for synoptic image analysis
at global scales.

Radiative transfer modeling (RTM) has proven instrumental
to furthering our understanding of coastal aquatic optical
relationships in the form of numerous parameterized case
studies (Dall’Olmo and Gitelson, 2005; Dall’Olmo and
Gitelson, 2006; Gilerson et al., 2007; Gilerson et al., 2008; Lain
et al., 2014; Lain et al., 2016; Evers-King et al., 2014). Few,
however, have expanded these analyses to cyanobacteria
dominated inland waters (Kutser, 2004; Metsamma et al.,
2006; Matthews and Bernard, 2013; Kutser et al., 2006). RTM
has proved advantageous for the development of large synthetic
datasets to address the scarcity of valid in-situ data available to
train neural network (NN) retrieval models (Doerffer and
Schiller, 2008; Arabi et al., 2016; Brockmann et al., 2016; Fan
et al., 2017; Hieronymi et al., 2017). While a few of these
algorithms such as the Case 2 Extreme OLCI Neural Network
Swarm (ONNS, Hieronymi et al., 2017) and Case 2 Regional
Coast Color (C2RCC, Brockmann et al., 2016) include samples
for extremely absorbing and scattering cases due to global
instances of elevated colored dissolved organic matter
(CDOM) and non-algal particles (NAP), the phytoplankton
component of these models is not optimized for adequate
pigment retrieval in optically complex eutrophic inland water
(Palmer et al., 2015a; Kutser et al., 2018; Kravitz et al., 2020).

The fundamental building blocks of aquatic RTM rely on
accurate parameterization of the inherent optical properties
(IOPs; i.e., absorption and scattering properties) of all light
altering constituents in a volume of water. Fan et al. (2017)
and C2RCC utilize chlorophyll-specific phytoplankton
absorption (a*phy) measurements directly from the NASA bio-
Optical Marine Algorithm Dataset (NOMAD), while ONNS uses
five a*phy shapes derived from cluster and derivative analysis of
various phytoplankton cultures (Xi et al., 2015). These studies rely
heavily on phytoplankton absorption characteristics as the main
driver for resulting functional type and biomass related
differences in modeled reflectances. Such an assumption is
generally adequate for oligotrophic to mesotrophic water
conditions, whereas the absence of a wavelength dependent,
phytoplankton-specific backscattering term, or the use of
backscattering relating only to gross particulate, is too
simplistic for eutrophic conditions and generally
underperforms in more productive waters (Lain et al., 2014;
Lain et al., 2016). The scattering phase function, critical for
fully realizing the underwater light field, is generally
approximated as a simple functional form for mathematical
simplicity (Mobley et al., 2002) or derived from Mie theory,
which over-generalizes phytoplankton particles as spherical
homogenous structures. Indeed, some studies that
characterized the backscattering properties of various
monospecific cultures have found a prominent deviation from
the homogenous sphere model, which yields a poor simplification
of the complex cellular structures found in bloom-forming
phytoplankton (Quirantes and Bernard, 2004; Vaillancourt
et al., 2004; Whitmire et al., 2007; Zhou et al., 2012; Matthews
and Bernard, 2013). This is particularly important for productive
inland waters where blooms of potentially toxic cyanobacteria are
becoming more prevalent. Cyanobacteria,Mycrocystis aeruginosa
especially, appear to be extremely efficient backscatterers (Zhou

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 5876602

Kravitz et al. Inland Water Quality Mapping

112

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


et al., 2012), which has been attributed to their internal gas
vacuoles (Matthews and Bernard, 2013). Due to strong effects
of gas vacuoles on attenuation, rather than absorption, drastic
differences in water-leaving reflectance occur in mixed
cyanobacteria assemblages. Thus, vacuolate induced spectral
scattering (Ganf et al., 1989; Walsby et al., 1995) cannot be
overlooked when parameterizing RTMs for inland water
application. To address these over-simplifications, the
Equivalent Algal Populations (EAP) model provides an
alternative assemblage-based particle modeling approach,
simulating phytoplankton IOPs derived from differences in
cell and assemblage size distributions, dominant pigmentation,
cell composition, and ultrastructure (Bernard et al., 2009; Lain
et al., 2014).

While Pahlevan et al. (2020) and Balasubramanian et al.
(2020) present highly convincing results for the transition to
ML based models for aquatic particle retrievals using multi-
spectral sensors, the authors note that adequate atmospheric
correction (AC) of top of atmosphere (TOA) radiances to
bottom of atmosphere (BOA) reflectances remains one of the
largest hurdles to robust, operational space-based water quality
retrievals. Baseline type algorithms, which have proven to be
robust estimators of trophic status, and relatively insensitive to
poor AC, have been utilized on partially corrected bottom-of-
Rayleigh reflectance (BRR) in an attempt to bypass the
requirement for a full AC (Binding et al., 2011; Matthews
et al., 2012; Palmer et al., 2015c). This approach is indeed
helpful for smaller water bodies where AC-induced
uncertainty remains very high (Kravitz et al., 2020). Thus, it
follows that ML type models should also perform adequately
when utilized on TOA data for inland water pixels. However,
relatively few studies have quantified the actual fraction of the
isolated water-leaving signal that reaches the satellite sensor over
productive inland water bodies. Utilizing TOA data is
theoretically more feasible for turbid waters due to the
elevated water signal from increased particulate backscattering
compared to “darker” oligotrophic waters, which are dominated
by water absorption. It is quite often cited that of the total
radiance signal reaching a satellite over water, roughly 10% is
due to the upwelling water-leaving radiance (Lw), with
atmospheric aerosols and molecular (Rayleigh) scattering
contributing the majority of the signal. However, in a localized
modeling study, Martins et al. (2017) found that Lw had the
potential to reach ∼43% of the total signal for red-edge bands of
Sentinel-2 MSI over turbid lakes in the Amazon. It is important to
understand the extent of the water signal at TOA and its
sensitivity to certain water and atmospheric parameters in
order to more thoroughly evaluate models that use TOA data.

Here, we aim to explore the potential for developing quick,
robust multi-parameter aquatic retrieval models for both multi-
spectral and hyper-spectral sensor specifications using a
combined synthetic data and ML approach for productive
inland waters. Our goal is to begin to simulate the immense
natural optical variability of inland waters and to address the
issues described above. Novel aspects of the synthetic dataset
presented here include: 1) physics-based, two-layered, size and
type specific phytoplankton IOPs for mixed eukaryotic/

cyanobacteria assemblages, 2) calculations of mixed
assemblage chl-a fluorescence, 3) modeled PC concentration,
4) and paired sensor-specific TOA reflectances, which include
optically extreme cases and contribution of green vegetation
adjacency. Below, we first describe the parameterization of
RTM, followed by an examination of typical survived Lw
signal at TOA, a description and assessment of state-of-the-art
ML retrieval models, and application to multi-spectral imagery
with a semi-quantitative validation against in-situ data.

PARAMETERIZATION OF RADIATIVE
TRANSFER MODEL

Aquatic RTM
For consistency with natural optical relationships, the IOPs of
four datasets were compiled based on the domination of a
particular optical constituent. The EcoLight RTM was then
used to derive water-leaving reflectances from the IOP builds.
The first dataset is modeled as typical Case 1 waters where water
and phytoplankton provide the bulk of the optical signal and
represent oligotrophic conditions. The bio-optical model in this
dataset closely follows that of Lee (2003), wherein other optical
constituents co-vary with phytoplankton biomass. The other
three datasets resemble cyanobacteria dominated inland
waters, CDOM dominated waters, and inorganic sediment
dominated waters where more complex optical relationships
persist and optical constituents do not tend to co-vary (Brewin
et al., 2017). A four-component bio-optical model was used to
generate the IOPs of these hypothetical inland water cases to be
used in the EcoLight RTM (Lee, 2006; Gilerson et al., 2007):

a(λ) � aw(λ) + ag(λ) + aphy(λ) + anap(λ) (1)

where aw(λ), ag(λ), aphy(λ), and anap(λ) represent the spectral
absorptions of water, a combined CDOM/detritus term,
phytoplankton, and non-algal particles (NAP), respectively
(refer to Supplementary Appendix A, Table A1, for a full list
of definitions of symbols and units used throughout this
manuscript). Except for the Case 1 dataset, which is defined
solely on chlorophyll-a concentration (Cchl) and relationships
governing the co-variation of other constituents with Cchl, the
three other datasets are defined by independent values of Cchl, the
concentration of nonalgal particles (Cnap), and the absorption of
CDOM at 440 nm (ag(440)). Great care was taken to ensure that
constituent ranges were appropriate and based on natural
populations from the LIMNADES in-situ inland water dataset
(Spyrakos et al., 2018). A table of mode values and standard
deviations used for the lognormal distributions within each
dataset can be found in Supplementary Appendix A, Table
A3. To generate synthetic datasets representative of natural
waters, values of all constituents were randomly selected from
the described lognormal distributions. Derivation and equations
used in modeling components other than phytoplankton are
common to studies that have parameterized models for Case 2
waters (Bukata, 1995; Twardowski et al., 2001; Gilerson et al.,
2007) and can also be found in Supplementary Appendix A,
Table A2.
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Phytoplankton Component
The total spectral phytoplankton component in Eq. 1 is modeled
as a product of Cchl and the specific chlorophyll absorption
spectrum.

aphy(λ) � Cchlp a
p
chl(λ) (2)

where apchl(λ) is the spectral specific chlorophyll absorption
spectrum in m2/mg. Phytoplankton specific IOPs (SIOPs) for
this work are based on the physics-based two-layered spherical
Equivalent Algal Population (EAP) model, where population-
specific refractive indices are used to derive IOPs (Bernard et al.,
2009; Lain and Bernard, 2018). The two-layered spherical
geometry consists of a core sphere, acting as the cytoplasm,
and a shell sphere acting as the chloroplast. The EAP model
calculates, from first principles, biophysically-linked
phytoplankton absorption and scattering characteristics from
particle refractive indices reflecting the primary light-
harvesting pigments of various phytoplankton groups (Lain
et al., 2014; Lain and Bernard, 2018). IOPs are calculated at
5 nm spectral resolution between 200 and 900 nm and integrated
over an entire equivalent size distribution represented by effective
diameters (Deff) between 1 and 50 μm (Bernard et al., 2007; Lain
et al., 2016). For a hypothetical eukaryotic population, refractive
indices are derived from blooms in the Benguela upwelling off
southern Africa, which is typically dominated by chlorophyll-a
(chl-a) and the carotenoid pigments, fucoxanthin and peridinin,
which are the main light harvesting pigments in diatoms and
dinoflagellates, respectively. Because there are minimal
differences within carotenoid pigment refractive indices and
absorption, these two groups were combined into a
generalized set of chl-a—carotenoid IOPs (Bernard et al., 2009;
Organelli et al., 2017). The EAP model has been consistently
validated and is considered an accurate phytoplankton model for
coastal and inland waters (Evers-King et al., 2014; Mathews and
Bernard, 2013; Lain et al., 2016; Smith et al., 2018).

The EAP two-layered sphere model has also been used to
derive IOPs for the optically complex cyanobacteria M.
aeruginosa (Matthews and Bernard, 2013). In this instance, the
core layer is assigned to a highly scattering vacuole, while the shell
layer acts as the chromatoplasm.M. aeruginosa is modeled with a
Deff of 5 μm for consistency with natural populations. For
derivation of the complex refractive indices, influence of gas
vacuolation, and tuning of the two-layered model for
cyanobacteria, see Matthews and Bernard (2013). IOPs for the
cyanobacteria Aphanizomenon, Anabaena cirinalis and non-
vacuolate Nodularia spumigena, which were measured in the
laboratory, are also included in the dataset (Kutser et al., 2006).
The final phytoplankton SIOPs used in the RTM can be found in
Supplementary Appendix A, Figure A1.

To account for optical variation due to mixed populations, the
apchl(λ) term in Eq. 2 is modeled as an admixture of eukaryotic
and cyanobacteria SIOPs based on a series of weighting factors.
Total apchl(λ) is therefore calculated as the sum of the
cyanobacteria and eukaryotic populations:

apchl(λ) � Sf (apcy(λ)) + (1 − Sf ) (apeuk(λ)) (3)

where Sf � [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0], a*cy is the
chlorophyll-specific absorption of the cyanobacteria population
and a*euk is the chlorophyll-specific absorption for the carotenoid
containing eukaryotic population. Total scattering and
backscattering coefficients of the phytoplankton component
(bphy(λ) and bbphy(λ), respectively) are calculated in a similar
manner using EAP derived spectral chlorophyll-specific
scattering and backscattering terms (Supplementary
Appendix A).

The admixture weighting factor and input Deff for the
eukaryotic population were also randomly varied for the RTM,
albeit with some constraints. Several studies have shown that for
natural populations of oligotrophic to mesotrophic waters, a*euk
tends to decrease with increasing Cchl (Bricaud et al., 1995; Babin
et al., 1996). This rule is not as strict in more complex inland and
coastal waters, but rough relationships have been observed
(Matthews and Bernard, 2013). Due to the nature of the EAP
model, the magnitudes of the resulting SIOPs are highly
dependent on the particle size. To generalize this natural
relationship in our RTM, input phytoplankton SIOPs of the
carotenoid containing population were constrained by Deff as:
5 < Deff < 20 μm for 0 < Cchl < 20 mg/m3, 15 < Deff < 35 μm for
20 < Cchl < 50 mg/m3, and 30 <Deff < 45 μm for Cchl > 50 mg/m3.

Ranges for appropriate cyanobacteria admixture weighting
must also be comparable to natural variations as a function of
phytoplankton biomass. Randomization of weighting factors was
constrained based on in-situ phytoplankton abundance and
biomass collected from South African inland waters between
2016 and 2018 (Kravitz et al., 2020). For a comparison of the
fraction of cyanobacteria abundance as a function of chl-a
concentration for both field data and ranges used in the RTM,
see Supplementary Figure S1. Given the field data, it was
assumed that if cyanobacteria are part of the phytoplankton
population, they will tend to dominate at higher biomass
(i.e., it is rare to find low fractions of cyanobacteria as Cchl

rises to extremely hypertrophic levels, if cyanobacteria are
present). M. aeruginosa is known to produce extremely high
biomass blooms, with the potential to form floating scum mats
that can reach Cchl upwards of 20,000 mg/m3 (Matthews and
Bernard, 2013). Extremely hypertrophic cases are reflected in the
RTM. For Cchl greater than 500 mg/m3, only M. aeruginosa is
included as there are no data showing blooms of such an extent
for other species.

Chl-a Fluorescence
Chl-a fluorescence is potentially an important source of
information regarding phytoplankton physiology, size, and/or
identification (Greene et al., 1992; Behrenfeld et al., 2009),
although to what extent remains uncertain. While an integral
component of phytoplankton physiology, fluorescence is often
omitted from RTMs [as in the case of Hieronymi et al. (2017) and
Fan et al. (2017)] or is modeled as a simplistic Gaussian term
centered at 685 nm with a full width half max (FWHM) of 25 nm
(Gilerson et al., 2007; Huot et al., 2007). The magnitude of the
depth-integrated radiance contribution by chl-a fluorescence at
685 nm has traditionally been calculated as in Eq. 4 (Huot et al.,
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2005; Huot et al., 2007; refer to Supplementary Appendix A for
definitions of symbols and units).

Lf (685) � 0.54L−
f (685)

� 0.54
1∅f

4πCf
Qp

a[Chl]∫700

400

apchl(λ)E−
o(λ)

K(λ) + KLu(685) dλ (4)

This modeling approach is an oversimplification for natural
coastal and cyanobacteria dominated waters. The approach above
assumes a purely eukaryotic, photosynthetic carotenoid-
containing phytoplankton assemblage. In other words, it
assumes that the modeled population contains all intracellular
chl-a in the fluorescing photosystem II (PSII). Emission spectra of
chl-a are a response to photosynthetic pigments that harvest light
in PSII. However, cyanobacteria generally contain only 10–20%
of their total cellular chl-a in PSII, with no accessory chlorophylls
or carotenoids, and with the remaining cellular chl-a located in
non-fluorescing photosystem I (PSI) (Johnsen and Sakshaug,
2007; Simis et al., 2012). A second oversimplification pertains
to the shape of the modeled Gaussian fluorescence emission. In
reality, while chl-a fluorescence does indeed have a major
fluorescence emission around 685 nm, it also has an adjacent
vibrational satellite emission centered around 730–740 nm
(Govindjee, 2004 and references therein; Lu et al., 2016).
Although generally smaller in amplitude due to increased
absorption from water farther into the near-infrared (NIR),
this 730–740 nm fluorescence emission can potentially
contribute to the water leaving radiance. Supplementary
Appendix B.1 details an updated mathematical derivation for
the shape and magnitude of the chl-a fluorescence signal
associated with mixed algal populations, which takes into
account differences in PSII physiology for cyanobacteria and
eukaryotic populations. Equations B1, B2, and B3 were applied
to every synthetic spectra to calculate, and add, the modeled chl-a
fluorescence spectrum.

Phycocyanin Concentration
While the EcoLight radiative transfer code allows Cchl to be
defined as an input to the model, Cpc must be modeled
independently. The calculation of Cpc can be accomplished as
follows (Simis et al., 2005):

Cpc � apc(620)/appc(620) (5)

where apc(620) is the total absorption due to PC at 620 nm and
appc(620) is the specific absorption coefficient of PC at 620 nm.
The apc(620) term must be corrected for the absorption of all
other optical constituents and pigments at 620 nm. Most existing
methods only correct for absorption at 620 nm due to chl-a and
not due other accessory pigments; thus, studies suggest that at low
PC concentrations (<50 mg/m3), estimated apc(620) is not fully
corrected for other pigment or constituent absorptions, resulting
in overestimated Cpc (Simis et al., 2007; Yacobi et al., 2015). The
mathematical logic for removal of the absorption due to chl-a and
its accessory pigments, chl-b and chl-c, is further detailed in
Supplementary Appendix B.2.

While the source of variability of appc(620) in nature is still not
entirely clear, we can assume that first order variation can result
from variable algal/cyanobacteria composition and biomass
effects. Thus, varying appc(620) based on cyanobacteria
dominance according to the admixture for each sample is a
reasonable approach. Previous studies have generally relied on
a fixed appc(620) value for PC estimation models. Considering that
appc(620) has the potential to vary by a factor of 60 in nature (see
Table 4 in Yacobi et al., 2015), holding it constant is a major
oversimplification, especially for lower Cpc or for cases when
cyanobacteria is not the dominant species. In particular, using an
invariant appc(620) can result in a dramatic increase in error of PC
retrieval when PC:chl-a < 0.5 (Simis et al., 2005; Randolph et al.,
2008; Hunter et al., 2010; Li et al., 2015; Yacobi et al., 2015) or
when Cpc < 50 mg/m3 (Simis et al., 2005; Ruiz-Verdu et al., 2008;
Yacobi et al., 2015). By employing a model that allows appc(620) to
vary based on cyanobacteria dominance, more appropriate values
of appc(620) can be applied to situations of lower PC concentration.
Given the consensus that a PC:chl-a ratio ≥0.5 (mg/m3) implies a
cyanobacteria dominant water target (Simis et al., 2005; Hunter
et al., 2010; Yacobi et al., 2015), our admixture of 0–1 was scaled
to a PC:chl-a between 0 and 4, where an admixture of 0.6 (60%
dominance by cyanobacteria in population) is equal to a PC:chl-a
of 0.5. A strong non-linear relationship was found between PC:
chla-a and appc(620) using in-situ data (Figures 1A,B), and is used
in conjunction with each sample’s scaled admixture parameter to
define a sample specific appc(620) as:

appc(620) � 0.0093(Sad)− 0.717 (6)

where Sad is the scaled admixture parameter. Once both apc(620)
and appc(620) are known, Eq. 5 can be used to calculate a final PC
concentration.

Modeled values for appc(620) using this methodology resulted
in a mean and median appc(620) of 0.013 ± 0.017 and 0.0041,
respectively. Simis et al. (2005) used an average value of 0.0095 m2

(mg PC)−1 calculated from their in-situ data while Matthews and
Bernard (2013) found the mean appc(620) of various inland water
bodies to range between 0.0072 and 0.0122. Yacobi et al. (2015)
found that with Cpc > 10 mg/m3, appc(620) tended to converge on
0.007 m2 (mg PC)−1, but noted that this value is potentially too
high. Other studies suggest appc(620) values between 0.004 and
0.005 m2 (mg PC)−1 (Li et al., 2015; Mishra et al., 2013; Simis and
Kauko, 2012; Jupp et al., 1994). These values are more similar to
our modeled absorption ranges, indicating that our calculated
appc(620) are reasonable (Figure 1). At modeled PC
concentrations >50 mg/m3, mean and median appc(620)
stabilized at 0.0042 ± 0.002 and 0.0034, respectively. The
majority of variability in modeled appc(620) occurred at a PC:
chl-a < 0.5 or a Cpc < 50 mg/m3, consistent with previous findings
(Mishra et al., 2013; Yacobi et al., 2015). The resulting PC:chl-a of
the modeled synthetic data ranged between 0 and 4 mg/m3.

Atmospheric RTM Parameterization
The MODTRAN 5.0 radiative transfer software was used to
propagate both Lw and Rrs from the aquatic modeling to OLCI
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at-sensor radiances. The radiance received by an optical sensor
can be defined in simple terms following Bulgarelli et al. (2014) as:

Ltot � Lpath + LBG + tLu (7)

where Ltot is the total radiance received by the sensor, Lpath is the
path radiance, which defines the photons scattered into the
instantaneous field of view (FOV) by the atmosphere alone,
LBG is the background radiance from neighboring pixels,
which are diffusely scattered into the sensor FOV, Lu is the
combined sky reflected and water leaving radiance at the sensor,
and t is the diffuse transmittance. LBG is considered as the
radiance introduced due to the adjacency effect (AE), which
can lead to large errors in derived products if inter-pixel non-
uniformity is very large as in the case for neighboring vegetation,
sand, or snow (Bulgarelli et al., 2017). Optical properties for a
hypothetical atmospheric column for defining the RTM were
compiled from level-2 (L2) derived products from the global
Aerosol Robotic Network (AERONET) database (https://aeronet.
gsfc.nasa.gov/). The parameters that were directly varied for the
RTM included aerosol optical thickness at 550 nm (AOT550), the
angstrom extinction coefficient (Ext), single scattering albedo
(SSA), the altitude of the hypothetical water target (Alt), water
vapor (H2O), and percent adjacency of green grass vegetation
(Adj). A tropospheric canned model was used to define the initial

Mie-generated phase functions and asymmetry parameter, while
Ext, SSA, and AOT550 were used to tweak the model based on
randomly selected values from the L2 AERONET database. The
ranges for these parameters are evident in Supplementary Figure
S3. For each aquatic Rrs measurement, two random atmospheres
were modeled, and for each atmosphere, a second identical run
was performed with a random contribution of green grass
adjacency between 0.5 and 50%, totaling four atmospheric
radiative transfer runs per Rrs measurement. Spectral radiance
reaching the satellite sensor was calculated as follows:

1. The weighted mean of mixed spectral albedo curves was
computed based on the Adj parameter.

2. The atmosphericmodel was compiled inMODTRANby tweaking
the standard tropospheric canned model using randomly selected
parameters (AOT550, SSA, H2O, Ext, Alt, Adj).

3. Lu and Lw from Ecolight output were multiplied by atmospheric
path transmittance (t) from MODTRAN output to obtain Lu
and Lw at TOA (LuTOA and LwTOA, respectively).

4. Total radiance at TOA (LtotTOA) was calculated by adding
LuTOA to the MODTRAN derived atmospheric Lpath, which is
the radiance contribution from a scattering atmosphere.

5. All computations up to this point were performed at full
MODTRAN 5 spectral resolution. The sensor specific

FIGURE 1 | (A) appc (620) plotted as a function of PC:chl-a from Matthews and Bernard (2013) and Simis et al. (2005), denoted as M13 and S05, with best fit line in
black, (B) Visual of admixture scaling, where an admixture of 0.6 (60% dominance by cyanobacteria in population) is equal to a PC:chl-a of 0.5, (C) appc (620) for four
cyanobacteria groups plotted as a function of PC:chl-a for modeled synthetic data, (D) appc (620) plotted as a function of PC concentration, (E) PC plotted as function of
chl-a concentration.
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spectral response functions (SRFs) were then applied to
compute channel radiances.

6. Fraction of surviving Lw reaching the satellite sensor was
calculated as LwTOA/LtotTOA.

Radiance at TOA was converted to reflectance using an
analytical derivation as in Hu et al. (2004):

ρt � πLp
t /(F0cosθ0) (8)

where ρt is sensor reflectance at TOA, Lpt is the calibrated at-
sensor radiance after adjustment for ozone and gaseous
absorption, F0 is the extraterrestrial solar irradiance, and θ0 is
the solar zenith angle. Adjustment for ozone and molecular
species profiles are inherent to the MODTRAN RTM based on
the specified atmospheric model used (Tropical, Mid-Latitude
Summer, or Mid-Latitude Winter).

DATA PREPARATION AND TRAINING

Data Smoothing and Clustering
Roughly 70,000 Rrs spectra were modeled with coincident Cchl,
Cpc, Cnap, and associated IOPs. A clustering procedure was
undertaken to identify distinct optical clusters with respect to
reflectance within the dataset. Clustering of water types on the
basis of optical properties has been commonly employed since the
1970s as a method to direct the application of Earth observation
(EO) for aquatic purposes (Moore et al., 2001; Moore et al., 2009;
Moore et al., 2014; Vantrepotte et al., 2012; Spyrakos et al., 2018).
Clustering of optical data has historically been beneficial for
demonstrating underlying bio-optical relationships and
variability, and guiding the development and application of
retrieval models. For consistency with previous clustering
applications in coastal and inland waters, the functional data
analysis (FDA) approach of Spyrakos et al. (2018) was closely
followed, although only briefly discussed here. A full analysis of
historical clustering techniques is beyond the scope of this paper,
and readers are directed to Spyrakos et al. (2018 and references
therein) for a more comprehensive overview of clustering
approaches. A comprehensive guide to FDA can also be found
in Ramsay and Silverman (2006).

Prior to clustering, all Rrs spectra were normalized by their
respective integrals, as a way to standardize amplitude variation
attributed to concentrations of optically active constituents. Each
spectrum was deconvolved into 26 cubic basis functions, of which
a linear combination results in a smoothed Rrs spectra
(Supplementary Figure S4). The same B-spline representation
was used here as in Spyrakos et al. (2018), with the inclusion of
one extra knot in the 800–900 nm region. The actual clustering by
k-means was then performed on the 26 basis coefficients from the
cubic functions. This acts as a method of dimensional reduction
that removes excessive local variability, keeps independence
among variables, and allows for a customizable smoothing
approach through number and placement of knots. k-means
was used to cluster the dataset of basis coefficients into 13
distinct clusters. Information on how the number of clusters
was chosen can be found in Supplementary Material. Median

curves were defined by band depth, a metric determining the
centrality of each curve to the cluster, and are presented in
Figure 2 along with ranges of Cchl, Cpc, anap (440), ag (440),
and PC:chl-a. We note that the aim of this paper was not
necessarily to determine the most optimal set of optical water
types (OWTs) for inland waters. Rather, the clustering analysis
was used to demonstrate that RTM can be used to produce OWTs
representative of those observed in nature.

The 13 clusters were then condensed into seven manually
defined OWTs with ecological relevance. Median Rrs spectra of
the seven OWTs are shown in Figure 3, where “Mild” represents
low to medium biomass mixed blooms (C2, C5, C11), “NAP”
represents waters with relatively high non-algal particle loads
(C1, C12), “CDOM” represents waters with relatively high
CDOM absorption (C8, C13), “Euk” represents eukaryotic
algal blooms (C7), “Cy” represents cyanobacteria blooms (C6,
C9), “Scum” represents Microcystis floating scum conditions
(C3), and “Oligo” represents oligotrophic to slightly
mesotrophic waters (C4, C10). The resulting median Rrs

spectra from each manually defined OWT are shown in
Figure 4 and match exceptionally well with in-situ water types
in Kravitz et al. (2020; their Figure 4) for productive South
African waters.

Machine Learning Models
K-Nearest Neighbors
The K-nearest neighbor (KNN) algorithm (Altman, 1992) is a
non-parametric, lazy learning model, that can be used for
regression (KNR) and classification (KNC). The model is
“lazy” in that all training data are used in the testing phase.
This allows for faster training times, but slower and costlier
testing and prediction. The core of the KNN model is based
on identifying similarity between datapoints, which is done by
calculating distance or proximity of all points to each other, and
assuming similar datapoints are close to each other. The model is
tuned by choosing the optimal number for K, which defines the
number of training samples closest in distance to the new point,
followed by a value prediction. How distance between points is
calculated can also be defined. KNN has become popular for its
simplicity and fast training with minimal tuning; however,
predictions take much longer with increasing training data or
number of features.

Random Forest
The random forest (RF) algorithm (Ho, 1998; Breiman, 2001) is
an extension of the decision tree model, which, in simple terms,
constructs a series of yes/no questions about the data until an
answer is reached and can be used for classification (RFC) or
regression (RFR). RF is an ensemble method that builds tens to
thousands of decision trees based on random sampling of training
subsets and features, and averages (or majority voting for
classification) all the results for a final product. There are a
number of tunable hyperparameters that generally differ in
how the questions are formed and define the depth of the
trees. Training can be computationally expensive with
extremely large datasets; however, prediction is much faster
than can be achieved using KNN.
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XGBoost
The extreme gradient boosting (XGBoost) framework (Chen and
Guestrin, 2016) advances the RF model by including gradient
boosted decision trees. This ensemble method builds new, weak
models sequentially by minimizing errors from previous models
and increasing the influence of higher performing models

(boosting), until no further model improvements can be made.
Gradient boosting then uses the gradient descent algorithm to
minimize the loss when adding new models. XGBoost runs
exceptionally well on tabulated data for classification or
regression purposes and has dominated data science
competitions in recent years due to its efficiency and power.

FIGURE 2 | Ranges of Cchl, Cpc, anap (440), ag (440), and PC:chl-a for each defined synthetic cluster along with median Rrs spectra. Additional IOP ranges can be
found in Supplementary Material.

FIGURE 3 |Median Rrs spectra of the sevenmanually definedOWTs derived from the set of 13 clusters. The inset shows the same spectra on a standardized scale,
achieved by removing the mean and scaling to unit variance in order to better show shape variation.
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Multi-Layer Perceptron
The multi-layer perceptron (MLP) is a type of classical artificial
neural network (ANN) that is capable of learning any non-linear
mapping function and can be thought of as a universal
approximation algorithm. The fundamental units of MLPs are
artificial neurons, each with their own weighting and activation
functions. The activation function maps the summed weighted
inputs to the output of the neuron. Individual neurons can be
merged into networks of neurons, generally in the form of a
visible input layer and subsequent hidden layers, including the
output layer. The activation function of the output layer
constrains the model for the specific type of problem
(i.e., regression or classification). With increasing
computational resources, deep multi-layer networks composed
of multiple layers of hundreds of neurons can now be constructed
for highly complex problems.

Cross Validation
Model Inputs and Outputs
The primary input to each ML algorithm is the visible and near
infrared channel TOA reflectances or Rrs of the specific sensor and
band configuration. The modeled synthetic data were resolved to

six multispectral and hyperspectral sensor specifications: Sentinel 3
Ocean and Land Colour Imager (S3-OLCI), Sentinel 2 multi-
spectral imager (S2-MSI) at the sensor’s 60, 20, and 10m band
configurations, Landsat 8 operational land imager (L8-OLI),
the moderate resolution imaging spectroradiometer (MODIS),
and a hypothetical hyperspectral configuration based on the
hyperspectral imager for the coastal ocean (HICO). As a means
of dimensionality reduction, the seventh configuration consisted of
the scores from the first ten EOF modes from a singular value
decomposition (SVD) of the entire dataset for HICO bands. In this
instance, the ten scores were used as input to the ML model,
replacing the channel reflectances. SeeTable 1 for a list of all sensor
band configurations.

Inputs to each model consist of three sets of features: 1) the
visible and near infrared (NIR) bands of the specific sensor
configuration, 2) the Sun and sensor geometry if the model is
applied to TOA reflectance, and 3) a selection of feature
interactions, which include band ratios and spectral derivative
type indices (Table 1). Feature tuning and extraction can have
dramatic effects on resulting model errors or accuracies.
Generally, interactions among variables can supplement the
individual predictor variables to enhance the feature space to

FIGURE 4 | A technical flowchart showing the summarized data development and training stages of ML algorithms to retrieve water quality products (“WQ
Products”). Sx indicates one of the seven band configurations used in data preparation. K represents the specific iteration of k-fold cross validation.
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improve the predictive capability of the models. This has been
confirmed for aquatic cases (Ruescas et al., 2018; Hafeez et al.,
2019) where including band interactions such as band ratios or
line height models has improved model performance. Model
outputs are concentrations of chl-a, PC, and NAP in mg/m3, as
well as aphy in m−1, and the OWT.

The Rrs dataset contains roughly 70,000 samples, while the
TOA reflectance dataset contains roughly 260,000 samples. For
each dataset, models were evaluated using k-fold cross validation
where the data were split into 80% for training and 20% for
testing for five folds in order to avoid sampling bias (Figure 4).
Performance metrics used in the evaluation consist of both linear
and log-transformed root mean squared error (RMSE and
RMSELE, respectively), relative RMSE (rRMSE), bias, and
median absolute percent error (MAPE).

Hyper-Parameter Tuning
To obtain results of the highest fidelity possible, ML models
require optimization of their respective hyper-parameters
before training of the actual ML model for product retrieval.
The hyper-parameters govern the training process itself and
define the model architecture. These parameters are not
updated during the learning process and are used to
configure the model in various ways. In this study, hyper-
parameter tuning was accomplished using a grid search,
which builds a model for each possible combination of all
hyper-parameters provided, evaluates each model, and selects
the architecture with the lowest mean squared error (MSE) for
regression models, or accuracy for classification models. The
best performing combination of hyper-parameters is then
applied to train the ML model using the entire dataset.
Computational requirements for extensive hyper-parameter
tuning can be very high, especially when dealing with more
complex or deep models. The models used here were trained
with minimal hyper-parameter tuning, as conducting an
exhaustive grid search exercise for every trained model
explored in this study would be very computationally
expensive. However, a brief hyper-parameter tuning exercise
was performed to optimize each of the models’ most sensitive
hyperparameters. Final model hyper-parameters are listed in

the Supplementary Material. A technical roadmap of the data
development and training stages is shown in Figure 4. All the
analyses were performed using a personal laptop equipped with
16 GB of RAM.

RESULTS

Surviving Lw at TOA
The average percent contributions of the surviving water signal at
Ltot for the seven manually defined OWTs derived above for
specific visible and NIR bands are shown in Figure 5. The high
inter- and intra-variability of the percent contribution of the Lw
signal is evident. Relatively low contribution from the 443 nm
band is common amongst OWTs. This region encompasses high
amounts of absorption amongst the different aquatic optical
constituents as well as significant interference from
atmospheric molecular Rayleigh scattering. Consequently, this
band only reaches above 20% contribution in extremely scattering
conditions containing relatively low amounts of blue absorption
due to decreased phytoplankton and CDOM. There is a general
increase in surviving aquatic signal with increased inorganic
sediment, as well as with a more dominant phytoplankton
component. The fraction of Lw at TOA is also relatively
elevated in OWTs comprising greater concentrations of PC,
particularly the red edge band. When cyanobacteria dominate,
Lw at TOA fractions have the potential to reach 40% for red/NIR
bands with chl-a concentrations as low as 10 mg/m3, while
maxing out at an average of roughly 60% for the 709 nm band
just above 100 mg/m3 (data not shown). When eukaryotic algae
dominate, average surviving Lw at TOA fraction only exceeds 20%
for the NIR bands and at highly elevated chl-a concentrations.
This relationship is also apparent when comparing subdued Lw at
TOA fractions of the eukaryotic bloom OWT (“Euk”), which
represents high biomass eukaryotic algae blooms, vs. the “Cy”
OWT dominated by cyanobacteria and containing much higher
PC:chl-a ratios (Figure 6). OWTs consisting of relatively high
mineral concentrations (“NAP” OWT) yield broadly elevated
surviving Lw at TOA, with fractions ranging from 20 to 60% for
the green to NIR bands.

TABLE 1 | Inputs for ML models. Inputs are the same for the four ML models used in this study, except for Sun and sensor geometries, which were only used on TOA
models. References from 1 to 13 (Gower et al., 2008; Hu, 2009; Dall’Olmo and Gitelson, 2005; Mishra andMishra, 2012; Gower et al., 1999; Moses et al., 2009; Qi et al.,
2014; Matthews et al., 2012; Hunter et al., 2010; Mishra et al., 2013; Liu et al., 2017; Dekker, 1993; Shi et al., 2015):

Sensor Bands Geometries Feature interactions

L8-OLI B1, B2, B3, B4, B5 OZA, OAA,
SZA, SAA

B4/B3, B4/B2, B4/B1, B3/B2, B3/B1, B2/B1
S2-
MSI 10 m

B2, B3, B4, B8 B4/B3, B4/B2, B3/B2

S2-
MSI 20 m

B2, B3, B4, B5, B6, B7, B8, B8A B5/B4, B5/B3, B5/B2, B4/B3, B4/B2, B3/B2, MCI1, FAI2,
D3b3, NDCI4

S2-
MSI 60 m

B1, B2, B3, B4, B5, B6, B7, B8, B8A B5/B4, B5/B3, B5/B2, B4/B3, B4/B2, B3/B2, MCI, FAI, D3b,
NDCI

S3-OLCI Oa1, Oa2, Oa3, Oa4, Oa5, Oa6, Oa7, Oa8, Oa9, Oa10, Oa11, Oa12,
Oa16, Oa17, Oa18

FLH5, MCI, FAI, M2b6, D3B, NDCI, PCI7, SIPF8, H103b9,
M133b10, L4b11, D9312

MODIS B1, B2, B3, B4, B8, B9, B10, B11, B12, B13, B14, B15, B16 FLH, SIPF, FAI, Shi1513

HICO All bands 400–900 nm None
HICO-SVD EOF modes 1–10 None
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Model Performance Against Synthetic
Dataset
Evaluation of overall model performance applied to TOA
reflectance or Rrs spectral data, per sensor, can be found in
Supplementary Appendix C for retrieval of chl-a, PC, and
NAP concentrations, and aphy(440). The MLP overwhelmingly
outperforms the other MLmodels in almost every case in terms of
MAPE and RMSELE when evaluated against the entire dataset
using Rrs data. A lower MAPE/RMSELE would signify better
performance (Supplementary Appendix Figure C1). When
applied to TOA reflectance, MLP still generally performs the
best, although with exceptions in specific cases. The KNR model
generally performs the worst for retrievals when applied to both
Rrs and TOA reflectance. Considering the variability of these
products within the synthetic dataset, the MLP shows promising
predictive capabilities for all trophic states.

Figure 6 shows the MAPE of the MLP algorithm retrievals by
OWT for each sensor using both Rrs and TOA reflectance data.
Significant differences can be observed in the capability of the
MLP algorithm for chl-a, PC, and NAP concentration retrievals,
as well as retrievals for absorption at 440 nm by phytoplankton
and CDOM, due to the different band configurations. The OWT
can also significantly affect retrieval performance differently
among sensors. When using Rrs data, product retrievals by
sensor do not show much intra-variability within OWTs, and
on average, yield errors ranging from 20 to 40% amongst OWTs.
Exceptions to this include errors >50% for Cnap retrieval, and
<20% for chl-a and PC in OWTs dominated by cyanobacteria
(Scum and Cy). Phytoplankton absorption at 440 nm is also
retrievable with <20% error at Rrs amongst the different band
configurations. S3-OLCI shows considerably better retrieval
performance of PC than other multi-spectral sensors, in-line
with HICO retrieval performance.

Examining product retrieval errors using TOA reflectance by
sensor shows more intra-variability within OWTs as compared to
Rrs. OWTs that result in lower proportions of surviving Lw signal

at TOA, such as the Oligo or Euk water types, experience the
greatest difference in product retrieval error when comparing
retrievals at Rrs or TOA. When comparing sensor configurations,
L8-OLI generally observes the largest discrepancies between
product retrievals at Rrs and TOA, most significantly for
pigment retrievals and aphy (440). That said, L8 produces
smaller errors at TOA in oligotrophic to mesotrophic waters
(Oligo OWT) when compared to the S2-MSI 10 m and 20 m band
configurations. Other than for the Oligo OWT, the difference in
error between ag(440) retrievals at Rrs and TOA are relatively
consistent between sensor configurations.

Case Study Application
Hartbeespoort Dam, South Africa
To assess the spatial integrity of retrieval products as well as test
cross-sensor consistency, a semi-quantitative examination of
productive freshwater scenes was undertaken. Figure 7 shows
the results of MLP products retrievals using S2-MSI in the 10 m
band configuration and L8 TOA reflectances (refer to Table 1
for band configurations). The scene focuses on Hartbeespoort
Dam, South Africa, on October 27, 2016. Hartbeespoort Dam is
a small, optically complex reservoir that experiences frequent
cyanobacteria and floating aquatic macrophyte blooms. The
dam is traditionally a very difficult remote sensing target due
to its small size and the optically complex nature of the water.
While both sensor configurations have similar, limited spectral
resolution, L8-OLI provides the advantage of an additional
coastal/aerosol band at 440 nm, while S2-MSI at 10 m
provides the advantage of a band situated at the red edge of
705 nm. Values of same-day in-situ matchup points for chl-a
are overlayed on the product as a qualitative validation.
Information regarding sample collection can be found in
Kravitz et al. (2020).

Unfortunately, only in-situ chl-a could be quantified; however,
other products are also show to illustrate product relationships
(Figure 7). Strong consistency between the two sensor retrievals

FIGURE 5 | Fraction of surviving Lw at Ltot for specific wavelengths for each derived OWT.
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is apparent. L8 slightly underestimates chl-a outside of the intense
bloom in the western part of the dam relative to the S2 retrieval.
The PC and aphy(440) retrievals, although not validated with in-
situ data, depict realistic relationships and ranges associated with
the chl-a product. Strong consistency between the two sensors is
also evident. Inter-comparison of products also depicts the de-
coupling of PC and chl-a estimation, as evidenced by strong
spatial consistency between chl-a and aphy(440), while PC is more
drastically concentrated in the Western basin, and substantially
lower in the Eastern basin. The scene demonstrates the capability
for extremely dynamic ranges of water quality product retreivals.
Water type classification using the two configurations is also
remarkably consistent. Depicting a gradient of scum conditions,

to cyanobacteria dominated conditions, to milder sub-surface
blooms in the Eastern basin. This can also be visualized in the
RGB as fading of the intensity of the green color, where the
absorption of the water becomes stronger due to less
phytoplankton biomass. S2 appears to differentiate scum and
high cyanobacteria concentrations more effectively than L8. This
is potentially the result of a combination between the inclusion of
the red-edge band utilized for S2, as well as smaller pixel size. AC
over intense bloom waters such as these are error prone and can
lead to large uncertainties in retrieval products (Kravitz et al.,
2020). As the AC and product retrieval are essentially performed
together in the inversion, the strong water-leaving signal at TOA
allows for very reasonable product retrieval estimates.

FIGURE 6 | Median absolute percent error (MAPE) for MLP derived products (from top-to-bottom: chl-a, PC, and NAP concentrations, absorption of
phytoplankton, and ag at 440 nm). Retrieval errors using Rrs are in solid bright colors, while retrieval errors using TOA reflectance are stacked in corresponding opaque
colors. Lower MAPE corresponds to better performance. Error bars represent the standard deviation for the five-fold cross validation.
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Figure 8 displays another instance of same-day chl-a retrievals
at Hartbeespoort Dam onMarch 29, 2017. A large water hyacinth
bloom had begun spreading from the North-Eastern basin which

can be visualized in the RGB image and is consequently flagged
out in product retrievals. This poses a very difficult scenario for
medium resolution sensors, with potential for strong signal

FIGURE 7 | MLP product retrievals over Hartbeespoort Dam on October 27, 2016. The left column shows retrievals using S2 10 m configuration while the right
column is the L8 retrievals. All products are derived from TOA reflectance. On the chl-a panels, in-situ sampling points (red dots) are labeled with the station name
followed by themeasured quantity of chl-a, in units of mg/m3 (e.g., H1--44 indicates station H1 with a measured in-situ chl-a concentration of 44 mg/m3). In-situ data are
from Kravitz et al. (2020).
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contamination for less productive water pixels from adjacent
bright vegetation pixels. Chl-a product retrieval estimates
correlate very well with in-situ measurements, even adjacent to
the water hyacinth. Product estimations of Cnap, although not
validated with in-situ data, show a realistic de-coupling of organic
and inorganic material, with high NAP concentrations displayed
in the sediment-laden South Eastern arm of the dam.

Lake Erie, United States
A separate semi-quantitative validation ofMLP retrieval products
was conducted for the western basin of Lake Erie, USA. Figures
9,10 show product retrievals during a mild cyanobacteria bloom
on August 13, 2018 using S2 TOA reflectances in the 60 m and
10 m band configurations, respectively. Retrieval products are
qualitatively validated with in-situ measurements of chl-a, PC,
Cnap, and ag(440) collected and distributed by the National
Oceanographic and Atmospheric Administration (NOAA)
Great Lakes Environmental Research Laboratory (GERL) and
National Centers for Environmental Information (NCEI)
(https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/habsMon.
html). Comparison of the two figures demonstrates the capability

of multi-parameter inversion using only four bands in the 10 m
configuration (Figure 10), while the 60 m configuration uses nine
bands in the vis/NIR (Figure 9). Despite the five spectral band
difference, product consistency is very strong and respectably
correlated with in-situ measurements. The higher spatial
resolution in the 10 m configuration also demonstrates the de-
coupling of water quality products for a slick of disturbed water
emanating from the lower western basin. The high spatial
resolution captures the elevated dissolved organic and non-
algal content in the disturbed water.

A short time-series analysis was conducted at station WE4 of
Lake Erie during the bloom period of 2018 between June and
October. In-situ field data are plotted along with product
retrievals for S3, S2 in both 10 m and 60 m configurations,
and L8, all using TOA reflectance data (Figure 11). All non-
cloudy images available for each sensor during the time period
were downloaded from either the United States Geological Survey
(USGS) Earth Explorer (https://earthexplorer.usgs.gov/), or the
European Space Agency (ESA) Copernicus Open Access Hub
(https://scihub.copernicus.eu/). Considering the highly dynamic
nature of bloom and water dynamics in the western basin, the
multi-spectral sensors were able to adequately track the progress
of two subsequent cyanobacteria blooms during the time period.
Other than some outlying instances of apparent model failure
using S3, which would inquire further inspection, Figure 11
demonstrates the capability of a multi-sensor approach to fill
temporal gaps due to clouds and revisit times.

Figure 12 displays the results of MLP product retrievals using
L8-OLI and S2-MSI plotted against same-day in-situ field data for
three images of South African waters, which only include chl-a
validation, and two images of Lake Erie, which also include PC,
ag(440), and Cnap, for a total of 72 chl-a matchups and 46
matchups for each of PC, ag(440), and Cnap, totaling 216 total
point matchups. Although it is not conventional to aggregate
multiple sensors and their associated products, the figure
provides an estimation of total error, as calculated using the
MAPE, for the three sensor configurations on a limited number of
validation points. A combinedMAPE of 52%was achieved for the
four products at three multi-spectral sensor configurations using
TOA reflectance. The error adequately corresponds to results
achieved using synthetic data in Figure 6 for these water types, as
well as results from other studies using ML trained on in-situ data
(Balasubramanian et al., 2020; Pahlevan et al., 2020).

DISCUSSION

Machine Learning Models
Four out-of-the-boxMLmodels were trained using synthetic data
and applied to EO data using the Python programming language.
We note that the aim of this study was not to produce an optimal,
finalized retrieval model for operational use, but rather to explore
the capacity of a range of well documented ML models to make
adequate predictions of water quality variables, trained from
synthetic optical and radiometric data. ML has proven an
extremely powerful tool that is now more accessible and easier
to implement than ever before. This study confirms other reports

FIGURE 8 | MLP product retrievals over Hartbeespoort Dam on March
29, 2017 using L8 TOA reflectance data. For the chl-a panel, in-situ sampling
points (red dots) are labeled with the station name followed by the measured
quantity of chl-a, in units of mg/m3. In-situ data are from Kravitz et al.
(2020).
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of ANNs outperforming other “shallow” ML models such as
decision trees or support vector machines (SVM) (Peterson et al.,
2018; Hafeez et al., 2019). Other ML techniques utilized in recent
aquatic work such as feature fusion (Peterson et al., 2019) were
also implemented to a degree in this study. Multiple “feature
interactions” in the form of band ratios or line height indices were
included in model training along with sensor visible and NIR

bands. Ruescas et al. (2018) found increasing model performance
by including more feature interactions for a ML model for
CDOM retrieval. Although the results are not shown here, we
trained a subset of ML models with and without the inclusion of
feature interactions; the significant increase in performance when
feature interactions were included led us to include them for all
models.

FIGURE 9 | MLP product retrievals over the western basin of Lake Erie on August 13, 2018 using S2 60 m band configuration TOA reflectance data. In-situ
sampling points (red dots) are labeled with the station name followed by the measured quantity of that particular variable, in units shown on the y-axis. In-situ data are
from NOAA GERL and NCEI.

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 58766015

Kravitz et al. Inland Water Quality Mapping

125

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Pahlevan et al. (2020) and Balasubramanian et al. (2020) found
that a mixture density network (MDN), which is essentially an
ANN with the final layer mapped to a mixture of distributions,
produced extremely robust results for chl-a and suspended solid
material. MDNs would theoretically be the optimal choice for
aquatic parameter retrievals, as one can design a highly efficient
deep neural network (DNN) while also addressing the signal

ambiguity problem of optical remote sensing through the
addition of a mixture of parameterized Gaussians. Such an
approach was attempted here; however, it took considerably
longer for training and cross validation, and produced roughly
similar results to the MLPmodel, such that it was discarded. Future
work, with access to higher computational resources, should include
training of deeper NNs and the inclusion of mixture distributions.

FIGURE 10 | MLP product retrievals over the western basin of Lake Erie on August 13, 2018 using S2 10 m band configuration TOA reflectance data. In-situ
sampling points (red dots) are labeled with the station name followed by the measured quantity of that particular variable, in units shown on the y-axis. In-situ data are
from NOAA GERL and NCEI.
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Shallow ML models such as Random Forest and XGBoost
require far less parameterization and computational resources
but still provide relatively robust results. We note that all
models were both trained and validated using mainly the
synthetic database with only the MLP model validated against a
limited in-situ dataset. Future work will entail validating products
against available in-situ data. It is speculated that performance will
decline somewhat when validated against field data due to spatial
inconsistencies and uncertainty introduced by field methods.

Product Consistency
Pahlevan et al. (2020) note AC to still be one of the major
challenges for operational inland and coastal remote sensing.
The present study explores the capability of product retrievals
from TOA reflectances. We find that water types for turbid or
productive inland waters have substantially higher percentages of
surviving water-leaving radiances reaching the satellite sensor than
oligotrophic waters or waters dominated by eukaryotic algae
(Figure 5). The separation of MLP performance by OWT
confirms that water types with stronger bulk scattering signals
have smaller discrepancy between product retrievals from TOA
reflectance and Rrs (Figure 6). AnOWT based framework could be
used to run AC only on oligotrophic pixels where AC processors

are more ideally suited, with product retrievals made from TOA in
more productive or scattering water types. Due to uncertainties
inherent to current AC processors, especially for smaller water
bodies, the product maps shown here (e.g., Figures 7–10) were
made using TOA reflectance data. Nevertheless, promising AC
processors have been developed using a combined synthetic data/
NN approach (Fan et al., 2017), and the dataset developed here
could be used in future to train an appropriate AC.

The water bodies shown in this manuscript have the potential
to experience high spatial and temporally dynamic blooms.
Sensor requirements for operational monitoring of such waters
are recommended to be <60 m spatial resolution with daily to tri-
weekly revisit times (Hestir et al., 2015; Mouw et al., 2015; Muller-
Karger et al., 2018). The case studies presented in Case Study
Application Section demonstrate the fine-scale spatial
distributions of cyanobacteria blooms. MLP products at
different spatial resolutions demonstrate how spatial
smoothing from just 10–60 m can cause significant differences
in product retrievals. Reasonable comparisons of in-situ data
against highly consistent product maps between S2 10 m and
60 m configurations provide a promising justification of the
capability of ML to exploit information from just a few sensor
bands. Extreme temporal dynamics can additionally be visualized

FIGURE 11 | Time-series of station WE4 from western Lake Erie. Product retrievals are derived from MLP from S3, S2, and L8 using TOA reflectance data (colors)
plotted with in-situ data (black) from NOAA GERL and NCEI.

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 58766017

Kravitz et al. Inland Water Quality Mapping

127

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


in the short time-series shown in Figure 11, where a multi-sensor
approach was adequately able to trace fine temporal dynamics of
cyanobacteria blooms in Lake Erie.

Product Integrity
The magnitude and fraction of the water-leaving radiance
surviving to TOA can also have a significant impact on the
resulting sensor signal-to-noise ratio (SNR). There is a trade-
off in sensor design concerning spatial and spectral resolution
and resulting sensor radiometric quality. For example, sensor
configurations such as S2-MSI or L8-OLI sacrifice SNR for the
sake of higher spatial resolution. Narrower band widths can also
compromise SNR. Numerous investigations have concluded that
errors in both AC and geophysical retrievals only become
acceptable (<100%) at SNRs of 300 – 500 at visible
wavelengths and >100 at NIR wavelengths for water quality
applications (Moses et al., 2015; Wang and Gordon, 2018; Qi
et al., 2017; Jorge et al., 2017). Some studies suggest SNR for NIR
bands to be >600 if used in AC schemes (Wang and Gordon,
2018; Qi et al., 2017). A brief examination of typical SNR values
for S2-MSI for the OWTs defined here is presented in Figure 13.
The SNR in this instance applies solely to the water-leaving
radiance reaching TOA (Lw) rather than to the total radiance
signal at TOA, which includes the atmosphere (Ltot), that the
aforementioned studies primarily use. Using SNR for Lw provides
an SNR more relevant to the investigator as it pertains directly to
the signal of interest (Kudela et al., 2019). Kudela et al. (2019)
proposed a set of theoretical SNR thresholds described as a
theoretical research limit (SNR � 2), a theoretical validation
limit (SNR � 8), and a theoretical calibration limit (SNR �
50). The SNR ranges depicted in Figure 13 follow similar

patterns and relationships as in Figure 5 for that of surviving
Lw at TOA. Only water types with a strong bulk scattering signal
such as cyanobacteria- or NAP dominated waters appear to reach
a theoretical validation limit of 8, on average (Figure 13). Waters
types with more subdued signal strength have difficulty reaching
even a theoretical research limit of SNR of 2 in visible bands.
Thus, unless dealing with extremely scattering waters, MSI SNRs
are considerably lower than the recommended radiometric
requirements for aquatic application, which can lead to large
uncertainties in product retrieval. The synthetic dataset approach
could be used in future to perform robust sensor and algorithm
specific uncertainty analysis per OWT.

The adjacency effect (AE), whereby strong spatial heterogeneity
from surrounding terrestrial sources contaminates the water signal,
has the potential to induce considerable errors in retrieved
products (Bulgarelli et al., 2017). Contamination by green
terrestrial vegetation at TOA was incorporated into the
synthetic modeling in an attempt to mitigate this issue.
Figure 14 shows an S2 scene over a small dam in South Africa
that was found to be affected by considerable adjacency by Kravitz
et al. (2020). The predicted contribution of adjacency to water
pixels based on a simple RF model trained using the synthetic
dataset is illustrated. The plot shows realistic gradation of
increasing adjacency contribution towards the edges of the dam
in the darker waters, as well as in instances near bright surface
cyanobacteria blooms. Areas of intense algal surface bloom would
be less affected by green vegetation adjacency since they exhibit
similar reflectance patterns in the red and NIR, and would
themselves be potentially contaminating nearby “less bright”
water pixels. While more quantitative validation is required, the
fact that the model demonstrates reasonable patterns of the AE
gives confidence that other retrieval products would be inherently
corrected for this effect. Future work should incorporate more
sources of adjacency and could also include other sources of signal
contamination such as Sun glint.

Outlook
While this study is more proof-of-concept than finalized product,
the results suggest the potential for using a synthetic dataset and
ML approach to develop operational global freshwater
monitoring products. Expansion of the synthetic dataset by
incorporating more diverse phytoplankton IOPs and other
sources of signal contamination is the logical next step. While
the amount of synthetic data generated here (∼260,000 TOA
spectra) is quite small with respect to current advances in Big
Data analytics, the development of extremely large synthetic
datasets containing tens and hundreds of millions of
datapoints from which advanced deep learning networks can
be trained, would be feasible with access to high powered
computing resources. Validation of models using global in-situ
datasets would then be the final step to compare product outputs
trained from synthetic data to outputs trained on field data as in
Pahlevan et al. (2020) and Balasubramanian et al. (2020). That
said, it is very promising that the model performance described
here relates so well to the results detailed in the aforementioned
studies. Further research should also include parameterized
sensitivity studies identifying the most optimal spectral and

FIGURE 12 |Measured vs. estimated products; chl-a (N � 72), PC (N �
46), ag(440) (N � 46), and Cnap (N � 46) for same day matchups from L8
and S2.
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radiometric resolutions that ML can exploit. Having a large, high
quality synthetic dataset would also be an asset for sensitivity
studies pertaining to upcoming satellite missions such as NASA’s
Surface, Biology, and Geology (SBG) mission.

This study suggests that both L8 and S2 at its various sensor
configurations contain enough spectral information at TOA, to
produce reasonable estimates of various aquatic products for
productive water bodies. Highly consistent product outputs were
found for S2 at 60 m and 10 m resolutions, which is significant
considering the five additional NIR spectral bands in the 60 m
configuration. This observation has potential implications for
future sensor design as it suggests that more resources could be
invested in increasing SNR or spatial resolutions of sensors while
spectral resolution remains fairly low, at least for the water types
investigated here. Finally, our findings suggest that relevant bands
for assessing wide ranging trophic levels should at least include a
short wavelength blue band around 440 nm as in L8 for more

oligotrophic instances and highly absorbing scenarios, a band
around 620 nm to aid in cyanobacteria detection and
quantification, and a band in the red edge around 710 nm to
capture the phytoplankton scattering peak.

CONCLUSION

A state-of-the-art synthetic dataset of Rrs and at-sensor reflectances
for various sensor configurations with coincident measurements of
associated IOPs and optical constituent concentrations was
developed using novel techniques suited to high biomass, complex
optical systems and cyanobacteria dominated waters. The
parameterization of the RTM describing the synthetic dataset
utilizes our most current understanding of optical properties and
relationships related to eutrophic and cyanobacteria dominated
waters and includes four prominent novel aspects: 1) two-layered,

FIGURE 13 | SNR for water-leaving radiance (Lw) for S2-MSI developed using the ESA Sentinel 2 radiometric uncertainty tool (Gorroño et al., 2017; 2018) for the
OWTs defined in this study. The black, red, and blue dashed lines represent the theoretical research, validation, and calibration limits described in Kudela et al. (2019).

FIGURE 14 | Percent adjacency contribution derived using RF regression over Roodeplaat Dam, South Africa, using TOA reflectance data.
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size and type-specific phytoplankton IOPs; 2)mixed assemblage chl-a
fluorescence; 3) assemblage basedmodeled PC concentrations; and 4)
paired sensor-specific TOA reflectances, which includes green
vegetation adjacency. Rrs spectra modeled through the RTM were
compiled into 13 distinct clusters using a functional data analysis and
k-means clustering approach, and the 13 clusters were then
condensed into seven manually defined OWTs. The water types
are similar to those discovered using in-situ data by Spyrakos et al.
(2018) and Kravitz et al. (2020). Manual inspection of synthetic
OWTs showed relationships and ranges in the concentrations of
water constituents and IOPs that were similar to in-situ derived
OWTs. Four types of current ML architectures were tested and
trained using the synthetic dataset. Major points of interest resulting
from the training and application of machine learning models in this
study can be summarized as follows:

1. Surviving Lw fraction at TOA is significantly increased by
increased bulk scattering such as in NAP or cyanobacteria
dominated waters.

2. An artificial neural network produced the most promising
results among all sensors and retrieval products when
compared to other machine learning methods.

3. The 620 nm band of OLCI, which aligns with the maximum
absorption peak of PC, appears to provide a significant
advantage over other multispectral sensors for the
quantification of cyanobacteria.

4. The 443 nm band present in L8-OLI, but not in the S2-MSI
10 m and 20 m configurations, appears to aid significantly in
pigment retrieval in oligotrophic waters.

5. The red-edge band, present inMSI and OLCI, aids significantly
in pigment retrieval in bloom waters.

6. Water types containing higher fractions of surviving Lw at
TOA experience significantly smaller differences in product
retrieval errors when comparing retrieval results from TOA
reflectance and Rrs.

7. Application to EO imagery provides realistic concentration
gradients of chl-a, PC, NAP, and absorption due to CDOM at
440 nm for wide ranging trophic scenarios for small inland
water bodies using TOA reflectance data, corroborated by in-
situ field data.

8. Product retrievals from low spectral resolution configurations
such as L8-OLI and S2-MSI at 10 m resolution produce as
consistent results as product retrievals from higher spectral
resolution configurations such as S2-MSI at 60 m, OLCI, and
MODIS.

With a combination of current and past sensor spatial
resolutions ranging from 10m to 4 km scales, a synergistic
evaluation of water constituents, with known uncertainties by
OWT, may assist in improving global-scale capability for
monitoring fine scale ecological dynamics of coastal and inland
waters. The synthetic dataset produced and interrogated here
represents the first step towards this goal. It is by no means an
exhaustive compilation of all possible natural values and
relationships found in inland waters; however, it works as a
proof-of-concept to show the capability of these techniques for
creating accurate simulations of real-world aquatic environments.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JK: Conceptualization, Methodology, Software, Formal Analysis,
Investigation, Data Curation, Writing - Original Draft, Writing -
Review and Editing, Visualization, Project Administration, MM:
Resources, Writing - Review and Editing, Supervision, Funding
acquisition, SB: Resources, Supervision, Funding Acquisition, LL:
Software, Writing- Review and Editing, Supervision, SF:
Supervision, Funding Acquisition.

FUNDING

Financial support for this project was provided through the South
Africa Water Research Commission Grant K5/2518 and Grant
K5/2458, NRF SANAP Grant 105539 and 110735, UCT Vice
Chancellor’s Future Leaders 2030 Award, and Royal Society/
African Academy of Sciences Future Leaders-Africa
Independent Researcher Fellowship.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenvs.2021.587660/
full#supplementary-material.

REFERENCES

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric
regression. Am. Stat. 46 (3), 175–185. doi:10.1080/00031305.1992.10475879

Arabi, B., Salama, M., Wernand, M., and Verhoef, W. (2016). MOD2SEA: a
coupled atmosphere-hydro-optical model for the retrieval of chlorophyll-a
from remote sensing observations in complex turbid waters. Remote Sensing 8
(9), 722. doi:10.3390/rs8090722

Babin, M., Morel, A., and Gentili, B. (1996). Remote sensing of sea surface sun-
induced chlorophyll fluorescence: consequences of natural variations in the
optical characteristics of phytoplankton and the quantum yield of chlorophyll a

fluorescence. Int. J. ;Remote Sensing 17 (12), 2417–2448. doi:10.1080/
01431169608948781

Balasubramanian, S. V., Pahlevan, N., Smith, B., Binding, C., Schalles, J., Loisel, H.,
et al. (2020). Robust algorithm for estimating total suspended solids (TSS) in
inland and nearshore coastal waters, Remote Sensing Environ., 246, 111768.
doi:10.1016/j.rse.2020.111768

Ball, J. E., Anderson, D. T., and Chan, C. S. (2017). Comprehensive survey of deep
learning in remote sensing: theories, tools, and challenges for the community.
J. Appl. Remote Sensing 11 (4), 042609. doi:10.1117/1.jrs.11.042609

Beaulieu, J. J., DelSontro, T., and Downing, J. A. (2019). Eutrophication will
increase methane emissions from lakes and impoundments during the 21st
century. Nat. Commun. 10 (1), 1–5. doi:10.1038/s41467-019-09100-5

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 58766020

Kravitz et al. Inland Water Quality Mapping

130

https://www.frontiersin.org/articles/10.3389/fenvs.2021.587660/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2021.587660/full#supplementary-material
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.3390/rs8090722
https://doi.org/10.1080/01431169608948781
https://doi.org/10.1080/01431169608948781
https://doi.org/10.1016/j.rse.2020.111768
https://doi.org/10.1117/1.jrs.11.042609
https://doi.org/10.1038/s41467-019-09100-5
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Behrenfeld, M. J., Westberry, T. K., Boss, E. S., O’Malley, R. T., Siegel, D. A.,
Wiggert, J. D., et al. (2009). Satellite-detected fluorescence reveals global
physiology of ocean phytoplankton. Biogeosciences 6 (5), 779. doi:10.5194/
bg-6-779-2009

Bernard, S., Probyn, T. A., and Quirantes, A. (2009). Simulating the optical
properties of phytoplankton cells using a two-layered spherical geometry.
Biogeosci. Discuss. 6 (1).

Bernard, S., Shillington, F. A., and Probyn, T. A. (2007). The use of equivalent size
distributions of natural phytoplankton assemblages for optical modeling. Opt.
Exp. 15 (5), 1995–2007.

Bidigare, R. R., Ondrusek, M. E., Morrow, J. H., and Kiefer, D. A. (1990). In-vivo
absorption properties of algal pigments. Int. Soc. Opt. Photon. 1302, 290–302.

Binding, C. E., Greenberg, T. A., and Bukata, R. P. (2011). Time series analysis of
algal blooms in Lake of the Woods using the MERIS maximum chlorophyll
index. J. Plankton Res. 33 (12), 1847–1852. doi:10.1093/plankt/fbr079

Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., and Brando, V.
E. (2014). A review of ocean color remote sensing methods and statistical
techniques for the detection, mapping and analysis of phytoplankton blooms in
coastal and open oceans. Prog. Oceanogr. 123, 123–144. doi:10.1016/j.pocean.
2013.12.008

Breiman, L. (2001). Random forests. Machine Learn. 45 (1), 5–32. doi:10.1023/a:
1010933404324

Brewin, R. J. W., Tilstone, G. H., Jackson, T., Cain, T., Miller, P. I., Lange, P. K., et al.
(2017). Modelling size-fractionated primary production in the Atlantic Ocean from
remote sensing. Prog. Oceanogr. 158, 130–149. doi:10.1016/j.pocean.2017.02.002

Bricaud, A., Roesler, C., and Zaneveld, J. R. V. (1995). In situ methods for
measuring the inherent optical properties of ocean waters. Limnol.
Oceanogr. 40 (2), 393–410. doi:10.4319/lo.1995.40.2.0393

Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher, S., and Ruescas, A.
(2016). Evolution of the C2RCC neural network for Sentinel 2 and 3 for the
retrieval of ocean colour products in normal and extreme optically complex
waters. Living Planet. Symp. 740 (54), 393.

Bukata, R. P. (1995). The effects of chlorophyll, suspended mineral, and dissolved
organic carbon on volume reflectance. Opt. Prop. Remote Sensing 64, 135–166.

Bulgarelli, B., Kiselev, V., and Zibordi, G. (2017). Adjacency effects in satellite
radiometric products from coastal waters: a theoretical analysis for the northern
Adriatic Sea. Appl. Opt. 56 (4), 854–869. doi:10.1364/ao.56.000854

Bulgarelli, B., Kiselev, V., and Zibordi, G. (2014). Simulation and analysis of
adjacency effects in coastal waters: a case study. Appl. Opt. 53 (8), 1523–1545.
doi:10.1364/ao.53.001523

Carlson, R. E., and Simpson, J. (1996). A coordinator’s guide to volunteer lake
monitoring methods, North Am. Lake Manag. Soc. 96. 305.

Chen, T., and Guestrin, C. (2016). Xgboost: a scalable tree boosting system, in
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 785–794.

Dall’Olmo, G., and Gitelson, A. A. (2006). Effect of bio-optical parameter
variability and uncertainties in reflectance measurements on the remote
estimation of chlorophyll-a concentration in turbid productive waters:
modeling results. Appl. Opt. 45 (15), 3577–3592. doi:10.1364/ao.45.003577

Dall’Olmo, G., and Gitelson, A. A. (2005). Effect of bio-optical parameter
variability on the remote estimation of chlorophyll-a concentration in turbid
productive waters: experimental results. Appl. Opt. 44 (3), 412–422.

Dekker, A. G. (1993). Detection of optical water quality parameters for eutrophic
waters by high resolution remote sensing.

Doerffer, R., and Schiller, H. (2008). MERIS lake water algorithm for
BEAM—MERIS algorithm theoretical basis document. V1.0, 10 June 2008.
Geesthacht, Germany: GKSS Research Center.

D. R.Mishra, I. Ogashawara, and A. A. Gitelson (2017). in Bio-optical modeling and
remote sensing of inland waters (New York, NY: Elsevier).

Evers-King, H., Bernard, S., Lain, L. R., and Probyn, T. A. (2014). Sensitivity in
reflectance attributed to phytoplankton cell size: forward and inverse modelling
approaches. Opt. Expr. 22 (10), 11536–11551. doi:10.1364/oe.22.011536

Fan, Y., Li, W., Gatebe, C. K., Jamet, C., Zibordi, G., Schroeder, T., et al. (2017).
Atmospheric correction over coastal waters using multilayer neural networks.
Rem. Sensing Environ. 199, 218–240. doi:10.1016/j.rse.2017.07.016

Fischer, J., and Kronfeld, U. (1990). Sun-stimulated chlorophyll fluorescence 1:
influence of oceanic properties. Int. J. Remote Sensing 11 (12), 2125–2147.
doi:10.1080/01431169008955166

Ganf, G., Oliver, R., andWalsby, A. (1989). Optical properties of gas-vacuolate cells
and colonies of Microcystis in relation to light attenuation in a turbid, stratified
reservoir (Mount Bold Reservoir, South Australia). Mar. Freshw. Res. 40 (6),
595–611. doi:10.1071/mf9890595

Gholizadeh, M., Melesse, A., and Reddi, L. (2016). A comprehensive review on
water quality parameters estimation using remote sensing techniques. Sensors
16 (8), 1298. doi:10.3390/s16081298

Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S., Tiede, D., and Aryal, J.
(2019). Evaluation of different machine learning methods and deep-learning
convolutional neural networks for landslide detection. Remote Sensing 11 (2),
196. doi:10.3390/rs11020196

Gilerson, A., Zhou, J., Hlaing, S., Ioannou, I., Amin, R., Gross, B., et al. (2007).
Fluorescence contribution to reflectance spectra for a variety of coastal waters.
Coast. Ocean Rem. Sensing 6680, 66800C.

Gilerson, A., Zhou, J., Hlaing, S., Ioannou, I., Gross, B., Moshary, F., et al. (2008).
Fluorescence component in the reflectance spectra from coastal waters. II.
Performance of retrieval algorithms. Opt. Express 16 (4), 2446–2460. doi:10.
1364/oe.16.002446

Gorroño, J., Fomferra, N., Peters, M., Gascon, F., Underwood, C., Fox, N., et al.
(2017). A radiometric uncertainty tool for the Sentinel 2 mission. Rem. Sensing
9 (2), 178. doi:10.3390/rs9020178

Gorroño, J., Hunt, S., Scanlon, T., Banks, A., Fox, N., Woolliams, E., et al. (2018).
Providing uncertainty estimates of the Sentinel-2 top-of-atmosphere
measurements for radiometric validation activities. Eur. J. Remote Sensing
51 (1), 650–666. doi:10.1080/22797254.2018.1471739

Govindjee, G. (2004). Chlorophyll a fluorescence: a bit of basics and history.
Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht:
Springer, 1–42.

Gower, J. F. R., Doerffer, R., and Borstad, G. A. (1999). Interpretation of the 685nm
peak in water-leaving radiance spectra in terms of fluorescence, absorption and
scattering, and its observation by MERIS. Int. J. Remote Sensing 20 (9),
1771–1786. doi:10.1080/014311699212470

Gower, J., King, S., and Goncalves, P. (2008). Global monitoring of plankton
blooms using MERIS MCI. Int. J. Remote Sensing 29 (21), 6209–6216. doi:10.
1080/01431160802178110

Greene, R. M., Geider, R. J., Kolber, Z., and Falkowski, P. G. (1992). Iron-induced
changes in light harvesting and photochemical energy conversion processes in
eukaryotic marine algae. Plant Physiol. 100 (2), 565–575. doi:10.1104/pp.100.
2.565

Hafeez, S., Wong, M., Ho, H., Nazeer, M., Nichol, J., Abbas, S., et al. (2019).
Comparison of machine learning algorithms for retrieval of water quality
indicators in case-II waters: a case study of Hong Kong. Remote Sensing 11
(6), 617. doi:10.3390/rs11060617

Hestir, E. L., Brando, V. E., Bresciani, M., Giardino, C., Matta, E., Villa, P., et al.
(2015). Measuring freshwater aquatic ecosystems: the need for a hyperspectral
global mapping satellite mission. Rem. Sensing Environ. 167, 181–195. doi:10.
1016/j.rse.2015.05.023

Hieronymi, M., Müller, D., and Doerffer, R. (2017). The OLCI Neural Network
Swarm (ONNS): a bio-geo-optical algorithm for open ocean and coastal waters.
Front. Mar. Sci. 4, 140. doi:10.3389/fmars.2017.00140

Ho, J. C., Michalak, A. M., and Pahlevan, N. (2019). Widespread global increase in
intense lake phytoplankton blooms since the 1980s. Nature, 574, 667. doi:10.
1038/s41586-019-1648-7

Ho, T. K. (1998). The random subspace method for constructing decision forests.
IEEE Trans. Pattern Anal. Mach. Intell. 20 (8), 832–844.

Hu, C. (2009). A novel ocean color index to detect floating algae in the global oceans.
Rem. Sensing Environ. 113 (10), 2118–2129. doi:10.1016/j.rse.2009.05.012

Hu, C., Chen, Z., Clayton, T. D., Swarzenski, P., Brock, J. C., and Muller–Karger, F.
E. (2004). Assessment of estuarine water-quality indicators using MODIS
medium-resolution bands: initial results from Tampa Bay, FL. Rem. Sensing
Environ. 93 (3), 423–441. doi:10.1016/j.rse.2004.08.007

Hunter, P. D., Tyler, A. N., Carvalho, L., Codd, G. A., and Maberly, S. C. (2010).
Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell
populations and toxins in eutrophic lakes. Rem. Sensing Environ. 114 (11),
2705–2718. doi:10.1016/j.rse.2010.06.006

Huot, Y., Brown, C. A., and Cullen, J. J. (2005). New algorithms for MODIS sun-
induced chlorophyll fluorescence and a comparison with present data products.
Limnol. Oceanogr. Methods 3 (2), 108–130. doi:10.4319/lom.2005.3.108

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 58766021

Kravitz et al. Inland Water Quality Mapping

131

https://doi.org/10.5194/bg-6-779-2009
https://doi.org/10.5194/bg-6-779-2009
https://doi.org/10.1093/plankt/fbr079
https://doi.org/10.1016/j.pocean.2013.12.008
https://doi.org/10.1016/j.pocean.2013.12.008
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1016/j.pocean.2017.02.002
https://doi.org/10.4319/lo.1995.40.2.0393
https://doi.org/10.1364/ao.56.000854
https://doi.org/10.1364/ao.53.001523
https://doi.org/10.1364/ao.45.003577
https://doi.org/10.1364/oe.22.011536
https://doi.org/10.1016/j.rse.2017.07.016
https://doi.org/10.1080/01431169008955166
https://doi.org/10.1071/mf9890595
https://doi.org/10.3390/s16081298
https://doi.org/10.3390/rs11020196
https://doi.org/10.1364/oe.16.002446
https://doi.org/10.1364/oe.16.002446
https://doi.org/10.3390/rs9020178
https://doi.org/10.1080/22797254.2018.1471739
https://doi.org/10.1080/014311699212470
https://doi.org/10.1080/01431160802178110
https://doi.org/10.1080/01431160802178110
https://doi.org/10.1104/pp.100.2.565
https://doi.org/10.1104/pp.100.2.565
https://doi.org/10.3390/rs11060617
https://doi.org/10.1016/j.rse.2015.05.023
https://doi.org/10.1016/j.rse.2015.05.023
https://doi.org/10.3389/fmars.2017.00140
https://doi.org/10.1038/s41586-019-1648-7
https://doi.org/10.1038/s41586-019-1648-7
https://doi.org/10.1016/j.rse.2009.05.012
https://doi.org/10.1016/j.rse.2004.08.007
https://doi.org/10.1016/j.rse.2010.06.006
https://doi.org/10.4319/lom.2005.3.108
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Huot, Y., Brown, C. A., and Cullen, J. J. (2007). Retrieval of phytoplankton biomass
from simultaneous inversion of reflectance, the diffuse attenuation coefficient,
and Sun-induced fluorescence in coastal waters. J. Geophys. Res. Oceans 112
(C6), 94. doi:10.1029/2006jc003794

Johnsen, G., and Sakshaug, E. (2007). Biooptical characteristics of PSII and PSI in
33 species (13 pigment groups) of marine phytoplankton, and the relevance for
pulse-amplitude-modulated and fast-repetition-rate fluorometry 1. J. Phycol. 43
(6), 1236–1251. doi:10.1111/j.1529-8817.2007.00422.x

Jorge, D. S., Barbosa, C. C., De Carvalho, L. A., Affonso, A. G., Lobo, F. D. L., and
Novo, E. M. D. M. (2017). Snr (signal-to-noise ratio) impact on water
constituent retrieval from simulated images of optically complex amazon
lakes. Remote Sens. 9 (7), 644.

Jupp, D., Kirk, J., and Harris, G. (1994). Detection, identification and mapping
of cyanobacteria—using remote sensing to measure the optical quality of
turbid inland waters. Mar. Freshw. Res. 45 (5), 801–828. doi:10.1071/
mf9940801

Kravitz, J., Matthews, M., Bernard, S., and Griffith, D. (2020). Application of
Sentinel 3 OLCI for chl-a retrieval over small inland water targets: successes and
challenges. Remote Sensing Environ. 237, 111562. doi:10.1016/j.rse.2019.111562

Kudela, R. M., Hooker, S. B., Houskeeper, H. F., and McPherson, M. (2019). The
influence of signal to noise ratio of legacy airborne and satellite sensors for
simulating next-generation coastal and inland water products. Remote Sensing
11 (18), 2071. doi:10.3390/rs11182071

Kutser, T., Metsamaa, L., and Dekker, A. G. (2008). Influence of the vertical
distribution of cyanobacteria in the water column on the remote sensing signal.
Coast. Shelf Sci. 78 (4), 649–654. doi:10.1016/j.ecss.2008.02.024

Kutser, T., Metsamaa, L., Strömbeck, N., and Vahtmäe, E. (2006). Monitoring
cyanobacterial blooms by satellite remote sensing. Estuarine Coast. Shelf Sci. 67
(1-2), 303–312.

Kutser, T. (2004). Quantitative detection of chlorophyll in cyanobacterial blooms
by satellite remote sensing. Limnol. Oceanogr. 49 (6), 2179–2189. doi:10.4319/
lo.2004.49.6.2179

Kutser, T., Soomets, T., Toming, K., Uiboupin, R., Arikas, A., Vahter, K., et al.
(2018). Assessing the Baltic sea water quality with Sentinel-3 OLCI imagery, in
2018 IEEE/OES Baltic International Symposium (BALTIC), IEEE, 1–6.

Lain, L., and Bernard, S. (2018). The fundamental contribution of phytoplankton spectral
scattering to ocean colour: implications for satellite detection of phytoplankton
community structure. Appl. Sci. 8 (12), 2681. doi:10.3390/app8122681

Lain, L. R., Bernard, S., and Evers-King, H. (2014). Biophysical modelling of
phytoplankton communities from first principles using two-layered spheres:
equivalent Algal Populations (EAP) model. Opt. express 22 (14), 16745–16758.

Lain, L. R., Bernard, S., and Matthews, M. W. (2016). Biophysical modelling of
phytoplankton communities from first principles using two-layered spheres:
equivalent Algal Populations (EAP) model: erratum. Opt. Express 24 (24),
27423–27424. doi:10.1364/oe.24.027423

Lee, Z. P. (2003). Models, parameters, and approaches that used to generate wide
range of absorption and backscattering spectra. Ocean Color Algorithm
Working Group IOCCG. doi:10.1920/wp.cem.2003.1303

Lee, Z. (2006). Remote sensing of inherent optical properties: fundamentals, tests of
algorithms, and applications.

Li, L., Li, L., and Song, K. (2015). Remote sensing of freshwater cyanobacteria: an
extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning
absorption coefficient and estimating phycocyanin. Remote Sensing Environ.
157, 9–23. doi:10.1016/j.rse.2014.06.009

Li, Y., Zhang, H., Xue, X., Jiang, Y., and Shen, Q. (2018). Deep learning for remote
sensing image classification: a survey. WIREs Data Min. Knowl. Discov. 8 (6),
e1264. doi:10.1002/widm.1264

Liu, G., Simis, S. G., Li, L., Wang, Q., Li, Y., Song, K., et al. (2017). A four-band
semi- analytical model for estimating phycocyanin in inland waters from
simulated MERIS and OLCI data. IEEE Trans. Geosci. Remote Sensing 56
(3), 1374–1385.

Lu, Y., Li, L., Hu, C., Li, L., Zhang, M., Sun, S., et al. (2016). Sunlight induced
chlorophyll fluorescence in the near-infrared spectral region in natural waters:
interpretation of the narrow reflectance peak around 761 nm. J. Geophys. Res.
Oceans 121 (7), 5017–5029. doi:10.1002/2016jc011797

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., and Johnson, B. A. (2019). Deep learning
in remote sensing applications: a meta-analysis and review. ISPRS J. Photogram.
Rem. sensing 152, 166–177. doi:10.1016/j.isprsjprs.2019.04.015

Martins, V., Barbosa, C., de Carvalho, L., Jorge, D., Lobo, F., and Novo, E. (2017).
Assessment of atmospheric correction methods for Sentinel-2 MSI images
applied to Amazon floodplain lakes. Rem. Sensing 9 (4), 322. doi:10.3390/
rs9040322

Matthews, M., and Bernard, S. (2013). Characterizing the absorption properties for
remote sensing of three small optically-diverse South African reservoirs. Rem.
Sensing 5 (9), 4370–4404. doi:10.3390/rs5094370

Matthews, M. W. (2011). A current review of empirical procedures of remote
sensing in inland and near-coastal transitional waters. Int. J. Rem. Sensing 32
(21), 6855–6899. doi:10.1080/01431161.2010.512947

Matthews, M.W., Bernard, S., and Robertson, L. (2012). An algorithm for detecting
trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and
floating vegetation in inland and coastal waters. Rem. Sensing Environ. 124,
637–652. doi:10.1016/j.rse.2012.05.032

Maxwell, A. E., Warner, T. A., and Fang, F. (2018). Implementation of machine-
learning classification in remote sensing: an applied review. Int. J. Remote
Sensing 39 (9), 2784–2817. doi:10.1080/01431161.2018.1433343

Metsamma, L., Kutser, T., and Strömbeck, N. (2006). Recognising cyanobacterial
blooms based on their optical signature: a modelling study. Boreal Environ. Res.
11 (6), 493–506.

Mishra, S., Mishra, D. R., Lee, Z., and Tucker, C. S. (2013). Quantifying
cyanobacterial phycocyanin concentration in turbid productive waters: a
quasi-analytical approach. Rem. Sensing Environ. 133, 141–151. doi:10.1016/
j.rse.2013.02.004

Mishra, S., and Mishra, D. R. (2012). Normalized difference chlorophyll index: a
novel model for remote estimation of chlorophyll-a concentration in turbid
productive waters. Rem. Sensing Environ. 117, 394–406. doi:10.1016/j.rse.2011.
10.016

Mobley, C. D., Sundman, L. K., and Boss, E. (2002). Phase function effects on
oceanic light fields. Appl. Opt. 41 (6), 1035–1050. doi:10.1364/ao.41.001035

Moore, T. S., Campbell, J. W., and Dowell, M. D. (2009). A class-based approach to
characterizing and mapping the uncertainty of the MODIS ocean chlorophyll
product. Rem. Sensing Environ. 113 (11), 2424–2430. doi:10.1016/j.rse.2009.
07.016

Moore, T. S., Campbell, J. W., and Hui Feng, H. (2001). A fuzzy logic classification
scheme for selecting and blending satellite ocean color algorithms. IEEE Trans.
Geosci. Rem. Sensing 39 (8), 1764–1776. doi:10.1109/36.942555

Moore, T. S., Dowell, M. D., Bradt, S., and Ruiz Verdu, A. (2014). An optical water
type framework for selecting and blending retrievals from bio-optical
algorithms in lakes and coastal waters. Rem. Sensing Environ. 143, 97–111.
doi:10.1016/j.rse.2013.11.021

Moses, S. A., Janaki, L., Joseph, S., and Joseph, J. (2015). Water quality prediction
capabilities of WASP model for a tropical lake system. Lakes Reserv. Res.
Manag. 20 (4), 285–299. doi:10.1111/lre.12110

Moses, W. J., Gitelson, A. A., Berdnikov, S., and Povazhnyy, V. (2009). Estimation
of chlorophyll-a concentration in case II waters using MODIS and MERIS
data—successes and challenges. Environ. Res. Lett. 4 (4), 045005. doi:10.1088/
1748-9326/4/4/045005

Mouw, C. B., Greb, S., Aurin, D., DiGiacomo, P. M., Lee, Z., Twardowski, M., et al.
(2015). Aquatic color radiometry remote sensing of coastal and inland waters:
challenges and recommendations for future satellite missions. Remote Sensing
Environ. 160, 15–30. doi:10.1016/j.rse.2015.02.001

Muller-Karger, F. E., Hestir, E., Ade, C., Turpie, K., Roberts, D. A., Siegel, D., et al.
(2018). Satellite sensor requirements for monitoring essential biodiversity
variables of coastal ecosystems. Ecol. Appl. 28 (3), 749–760. doi:10.1002/eap.
1682

Odermatt, D., Gitelson, A., Brando, V. E., and Schaepman, M. (2012). Review of
constituent retrieval in optically deep and complex waters from satellite
imagery. Rem. Sensing Environ. 118, 116–126. doi:10.1016/j.rse.2011.11.013

Ogashawara, I. (2020). Determination of phycocyanin from space—a Bibliometric
analysis. Rem. Sensing 12 (3), 567. doi:10.3390/rs12030567

Organelli, E., Claustre, H., Bricaud, A., Barbieux, M., Uitz, J., D’Ortenzio, F., et al.
(2017). Bio-optical anomalies in the world’s oceans: an investigation on the
diffuse attenuation coefficients for downward irradiance derived from
Biogeochemical Argo float measurements. J. Geophys. Res. Oceans 122 (5),
3543–3564. doi:10.1002/2016jc012629

Pahlevan, N., Smith, B., Schalles, J., Binding, C., Cao, Z., Ma, R., et al. (2020).
Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 58766022

Kravitz et al. Inland Water Quality Mapping

132

https://doi.org/10.1029/2006jc003794
https://doi.org/10.1111/j.1529-8817.2007.00422.x
https://doi.org/10.1071/mf9940801
https://doi.org/10.1071/mf9940801
https://doi.org/10.1016/j.rse.2019.111562
https://doi.org/10.3390/rs11182071
https://doi.org/10.1016/j.ecss.2008.02.024
https://doi.org/10.4319/lo.2004.49.6.2179
https://doi.org/10.4319/lo.2004.49.6.2179
https://doi.org/10.3390/app8122681
https://doi.org/10.1364/oe.24.027423
https://doi.org/10.1920/wp.cem.2003.1303
https://doi.org/10.1016/j.rse.2014.06.009
https://doi.org/10.1002/widm.1264
https://doi.org/10.1002/2016jc011797
https://doi.org/10.1016/j.isprsjprs.2019.04.015
https://doi.org/10.3390/rs9040322
https://doi.org/10.3390/rs9040322
https://doi.org/10.3390/rs5094370
https://doi.org/10.1080/01431161.2010.512947
https://doi.org/10.1016/j.rse.2012.05.032
https://doi.org/10.1080/01431161.2018.1433343
https://doi.org/10.1016/j.rse.2013.02.004
https://doi.org/10.1016/j.rse.2013.02.004
https://doi.org/10.1016/j.rse.2011.10.016
https://doi.org/10.1016/j.rse.2011.10.016
https://doi.org/10.1364/ao.41.001035
https://doi.org/10.1016/j.rse.2009.07.016
https://doi.org/10.1016/j.rse.2009.07.016
https://doi.org/10.1109/36.942555
https://doi.org/10.1016/j.rse.2013.11.021
https://doi.org/10.1111/lre.12110
https://doi.org/10.1088/1748-9326/4/4/045005
https://doi.org/10.1088/1748-9326/4/4/045005
https://doi.org/10.1016/j.rse.2015.02.001
https://doi.org/10.1002/eap.1682
https://doi.org/10.1002/eap.1682
https://doi.org/10.1016/j.rse.2011.11.013
https://doi.org/10.3390/rs12030567
https://doi.org/10.1002/2016jc012629
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


(OLCI) in inland and coastal waters: a machine-learning approach, Rem.
Sensing Environ. 240, 111604. doi:10.1016/j.rse.2019.111604

Palmer, S. C. J., Hunter, P. D., Lankester, T., Hubbard, S., Spyrakos, E., Tyler, A. N.,
et al. (2015a). Validation of Envisat MERIS algorithms for chlorophyll retrieval
in a large, turbid and optically-complex shallow lake. Rem. Sensing Environ.
157, 158–169. doi:10.1016/j.rse.2014.07.024

Palmer, S. C. J., Odermatt, D., Hunter, P. D., Brockmann, C., Présing, M., Balzter,
H., et al. (2015c). Satellite remote sensing of phytoplankton phenology in Lake
Balaton using 10 years of MERIS observations. Rem. Sensing Environ. 158,
441–452. doi:10.1016/j.rse.2014.11.021

Palmer, S. C., Kutser, T., and Hunter, P. D. (2015b). Remote sensing of inland
waters: Challenges, progress and future directions.

Peterson, K., Sagan, V., Sidike, P., Cox, A., and Martinez, M. (2018). Suspended
sediment concentration estimation from Landsat Imagery along the Lower
Missouri and Middle Mississippi Rivers using an extreme learning machine.
Rem. Sensing 10 (10), 1503. doi:10.3390/rs10101503

Peterson, K. T., Sagan, V., Sidike, P., Hasenmueller, E. A., Sloan, J. J., and Knouft, J. H.
(2019). Machine learning-based ensemble prediction of water-quality variables
using feature-level and decision-level fusion with proximal remote sensing.
Photogram. Eng. Rem. Sensing 85 (4), 269–280. doi:10.14358/pers.85.4.269

Peterson, K. T., Sagan, V., and Sloan, J. J. (2020). Deep learning-based water quality
estimation and anomaly detection using Landsat-8/Sentinel-2 virtual
constellation and cloud computing. GIScience Rem. Sensing 57 (4), 510–525.
doi:10.1080/15481603.2020.1738061

Qi, L., Hu, C., Duan, H., Cannizzaro, J., and Ma, R. (2014). A novel MERIS
algorithm to derive cyanobacterial phycocyanin pigment concentrations in a
eutrophic lake: theoretical basis and practical considerations. Rem. Sensing
Environ. 154, 298–317. doi:10.1016/j.rse.2014.08.026

Qi, L., Lee, Z., Hu, C., and Wang, M. (2017). Requirement of minimal signal-to-
noise ratios of ocean color sensors and uncertainties of ocean color products.
J. Geophys. Res. Oceans 122 (3), 2595–2611. doi:10.1002/2016jc012558

Quirantes, A., and Bernard, S. (2004). Light scattering by marine algae: two-layer
spherical and nonspherical models. J. Quant. Spectrosc. Radiat. Transf. 89 (1),
311–321. doi:10.1016/j.jqsrt.2004.05.031

Ramsay, J. O., and Silverman, B. (2006). Functional data analysis. Hoboken.
Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., and Soyeux, E. (2008).

Hyperspectral remote sensing of cyanobacteria in turbid productive water using
optically active pigments, chlorophyll a and phycocyanin. Rem. Sensing
Environ. 112 (11), 4009–4019. doi:10.1016/j.rse.2008.06.002

Roesler, C. S., and Perry, M. J. (1995). In situ phytoplankton absorption, fluorescence
emission, and particulate backscattering spectra determined from reflectance.
J. Geophys. Res. 100 (C7), 13279–13294. doi:10.1029/95jc00455

Ruescas, A., Hieronymi, M., Mateo-Garcia, G., Koponen, S., Kallio, K., and Camps-
Valls, G. (2018). Machine learning regression approaches for colored dissolved
organic matter (CDOM) retrieval with S2-MSI and S3-OLCI simulated data.
Rem. Sensing 10 (5), 786. doi:10.3390/rs10050786

Ruiz-Verdu, R., Koponen, S., Heege, T., Doerffer, R., Brockmann, C., Kallio, K.,
et al. (2008). Development of MERIS lake water algorithms: validation results
from Europe.

Sagan, V., Peterson, K. T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B. A.,
et al. (2020). Monitoring inland water quality using remote sensing: potential
and limitations of spectral indices, bio-optical simulations, machine learning,
and cloud computing. Earth-Science Rev. 10, 3187.

Shi, K., Zhang, Y., Zhu, G., Liu, X., Zhou, Y., Xu, H., et al. (2015). Long-term remote
monitoring of total suspended matter concentration in Lake Taihu using 250 m
MODIS-Aqua data. Rem. Sensing Environ. 164, 43–56. doi:10.1016/j.rse.2015.02.029

Simis, S. G. H., Huot, Y., Babin, M., Seppälä, J., and Metsamaa, L. (2012). Optimization
of variable fluorescence measurements of phytoplankton communities with
cyanobacteria. Photosynth. Res. 112 (1), 13–30. doi:10.1007/s11120-012-9729-6

Simis, S. G. H., and Kauko, H. M. (2012). In vivo mass-specific absorption spectra
of phycobilipigments through selective bleaching. Limnol. Oceanogr. Methods
10 (4), 214–226. doi:10.4319/lom.2012.10.214

Simis, S. G. H., Peters, S. W. M., and Gons, H. J. (2005). Remote sensing of the
cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr.
50 (1), 237–245. doi:10.4319/lo.2005.50.1.0237

Simis, S. G. H., Ruiz-Verdú, A., Domínguez-Gómez, J. A., Peña-Martinez, R.,
Peters, S. W. M., and Gons, H. J. (2007). Influence of phytoplankton pigment
composition on remote sensing of cyanobacterial biomass. Rem. Sensing
Environ. 106 (4), 414–427. doi:10.1016/j.rse.2006.09.008

Smith, M. E., Lain, L. R., and Bernard, S. (2018). An optimized Chlorophyll a
switching algorithm for MERIS and OLCI in phytoplankton-dominated waters.
Rem. Sensing Environ. 215, 217–227. doi:10.1016/j.rse.2018.06.002

Spyrakos, E., O’Donnell, R., Hunter, P. D., Miller, C., Scott, M., Simis, S. G., et al.
(2018). Optical types of inland and coastal waters. Limnol. Oceanogr. 63 (2),
846–870. doi:10.1002/lno.10674

Stumpf, R. P., Davis, T. W., Wynne, T. T., Graham, J. L., Loftin, K. A., Johengen, T.
H., et al. (2016). Challenges for mapping cyanotoxin patterns from remote
sensing of cyanobacteria. Harmful Algae 54, 160–173. doi:10.1016/j.hal.2016.
01.005

Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S., Barnard, A. H., and
Zaneveld, J. R. V. (2001). A model for estimating bulk refractive index from the
optical backscattering ratio and the implications for understanding particle
composition in case I and case II waters. J. Geophys. Res. 106 (C7),
14129–14142. doi:10.1029/2000jc000404

Vaillancourt, R. D., Brown, C. W., Guillard, R. R., and Balch, W. M. (2004). Light
backscattering properties of marine phytoplankton: relationships to cell size,
chemical composition and taxonomy. J. Plankt. Res. 26 (2), 191–212. doi:10.
1093/plankt/fbh012

Vantrepotte, V., Loisel, H., Dessailly, D., and Mériaux, X. (2012). Optical
classification of contrasted coastal waters. Rem. Sensing Environ. 123,
306–323. doi:10.1016/j.rse.2012.03.004

Walsby, A. E., Hayes, P. K., and Boje, R. (1995). The gas vesicles, buoyancy and
vertical distribution of cyanobacteria in the Baltic Sea. Eur. J. Phycol. 30 (2),
87–94. doi:10.1080/09670269500650851

Wang, M., and Gordon, H. R. (2018). Sensor performance requirements for
atmospheric correction of satellite ocean color remote sensing. Opt. Expr. 26
(6), 7390–7403. doi:10.1364/oe.26.007390

Watanabe, F. S., Miyoshi, G. T., Rodrigues, T. W., Bernardo, N. M., Rotta, L. H.,
Alcântara, E., et al. (2020). Inland water’s trophic status classification based on
machine learning and remote sensing data. Rem. Sens. Appl. 54, 100326.

Whitmire, A. L., Boss, E., Cowles, T. J., and Pegau, W. S. (2007). Spectral variability
of the particulate backscattering ratio. Opt. Expr. 15 (11), 7019–7031. doi:10.
1364/oe.15.007019

Xi, H., Hieronymi, M., Röttgers, R., Krasemann, H., and Qiu, Z. (2015).
Hyperspectral differentiation of phytoplankton taxonomic groups: a
comparison between using remote sensing reflectance and absorption
spectra. Rem. Sensing 7 (11), 14781–14805. doi:10.3390/rs71114781

Yacobi, Y. Z., Köhler, J., Leunert, F., and Gitelson, A. (2015). Phycocyanin-
specific absorption coefficient: eliminating the effect of chlorophylls
absorption. Limnol. Oceanogr. Methods 13 (4), 157–168. doi:10.1002/lom3.
10015

Zhou, W., Wang, G., Sun, Z., Cao, W., Xu, Z., Hu, S., et al. (2012). Variations in the
optical scattering properties of phytoplankton cultures. Opt. Expr. 20 (10),
11189–11206. doi:10.1364/oe.20.011189

Conflict of Interest: Author MM was employed by the company CyanoLakes
(Pty) Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Kravitz, Matthews, Lain, Fawcett and Bernard. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 58766023

Kravitz et al. Inland Water Quality Mapping

133

https://doi.org/10.1016/j.rse.2019.111604
https://doi.org/10.1016/j.rse.2014.07.024
https://doi.org/10.1016/j.rse.2014.11.021
https://doi.org/10.3390/rs10101503
https://doi.org/10.14358/pers.85.4.269
https://doi.org/10.1080/15481603.2020.1738061
https://doi.org/10.1016/j.rse.2014.08.026
https://doi.org/10.1002/2016jc012558
https://doi.org/10.1016/j.jqsrt.2004.05.031
https://doi.org/10.1016/j.rse.2008.06.002
https://doi.org/10.1029/95jc00455
https://doi.org/10.3390/rs10050786
https://doi.org/10.1016/j.rse.2015.02.029
https://doi.org/10.1007/s11120-012-9729-6
https://doi.org/10.4319/lom.2012.10.214
https://doi.org/10.4319/lo.2005.50.1.0237
https://doi.org/10.1016/j.rse.2006.09.008
https://doi.org/10.1016/j.rse.2018.06.002
https://doi.org/10.1002/lno.10674
https://doi.org/10.1016/j.hal.2016.01.005
https://doi.org/10.1016/j.hal.2016.01.005
https://doi.org/10.1029/2000jc000404
https://doi.org/10.1093/plankt/fbh012
https://doi.org/10.1093/plankt/fbh012
https://doi.org/10.1016/j.rse.2012.03.004
https://doi.org/10.1080/09670269500650851
https://doi.org/10.1364/oe.26.007390
https://doi.org/10.1364/oe.15.007019
https://doi.org/10.1364/oe.15.007019
https://doi.org/10.3390/rs71114781
https://doi.org/10.1002/lom3.10015
https://doi.org/10.1002/lom3.10015
https://doi.org/10.1364/oe.20.011189
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-09-642906 March 27, 2021 Time: 18:23 # 1

ORIGINAL RESEARCH
published: 01 April 2021

doi: 10.3389/fenvs.2021.642906

Edited by:
Wesley Moses,

United States Naval Research
Laboratory, United States

Reviewed by:
Kristin B. Byrd,

United States Geological Survey
(USGS), United States

Tom William Bell,
University of California,

Santa Barbara, United States

*Correspondence:
Alexandra S. Thomsen

thomsen.alexandra@gmail.com

Specialty section:
This article was submitted to

Environmental Informatics
and Remote Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 17 December 2020
Accepted: 02 March 2021

Published: 01 April 2021

Citation:
Haskins J, Endris C, Thomsen AS,

Gerbl F, Fountain MC and Wasson K
(2021) UAV to Inform Restoration:

A Case Study From a California Tidal
Marsh. Front. Environ. Sci. 9:642906.

doi: 10.3389/fenvs.2021.642906

UAV to Inform Restoration: A Case
Study From a California Tidal Marsh
John Haskins1, Charlie Endris2, Alexandra S. Thomsen1,3* , Fuller Gerbl1,2,
Monique C. Fountain1 and Kerstin Wasson1,4

1 Elkhorn Slough National Estuarine Research Reserve, Watsonville, CA, United States, 2 Moss Landing Marine Laboratories,
Moss Landing, CA, United States, 3 Department of Applied Environmental Science, California State University, Monterey Bay,
Seaside, CA, United States, 4 Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA,
United States

Monitoring of environmental restoration is essential to communicate progress and
improve outcomes of current and future projects, but is typically done in a very limited
capacity due to budget and personnel constraints. Unoccupied aerial vehicles (UAVs)
have been used in a variety of natural and human-influenced environments and have
been found to be time- and cost-efficient, but have not yet been widely applied to
restoration contexts. In this study, we evaluated the utility of UAVs as an innovative
tool for monitoring tidal marsh restoration. We first optimized methods for creating high-
resolution orthomosaics and Structure from Motion digital elevation models from UAV
imagery by conducting experiments to determine an optimal density of ground control
points (GCPs) and flight altitude for UAV monitoring of topography and new vegetation.
We used elevation models and raw and classified orthomosaics before, during, and after
construction of the restoration site to communicate with various audiences and inform
adaptive management. We found that we could achieve 1.1 cm vertical accuracy in
our elevation models using 2.1 GCPs per hectare at a flight altitude of 50 m. A lower
flight altitude of 30 m was more ideal for capturing patchy early plant cover while still
being efficient enough to cover the entire 25-hectare site. UAV products were valuable
for several monitoring applications, including calculating the volume of soil moved
during construction, tracking whether elevation targets were achieved, quantifying and
examining the patterns of vegetation development, and monitoring topographic change
including subsidence, erosion, and creek development. We found UAV monitoring
advantageous for the ability to survey areas difficult to access on foot, capture spatial
variation, tailor timing of data collection to research needs, and collect a large amount of
accurate data rapidly at relatively low cost, though with some compromise in detail
compared with field monitoring. In summary, we found that UAV data informed the
planning, implementation and monitoring phases of a major landscape restoration
project and could be valuable for restoration in many habitats.

Keywords: remote sensing, tidal marsh, restoration, topography, digital elevation model, image classification,
unmanned aerial vehicle, unoccupied aerial systems
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INTRODUCTION

Human activities including land conversion, resource
exploitation, pollution, species introductions, and hydrologic
alteration have changed ecosystems globally (Halpern et al., 2008;
Gedan et al., 2009). Loss of foundation species is particularly
concerning because these species provide habitat and modulate
ecosystem processes (Dayton, 1972; Ellison, 2019). In response
to negative anthropogenic effects on landscapes, land managers
are increasingly undertaking restoration projects to support
recovery of ecosystems and the valuable services they provide
(Gedan et al., 2009; Palmer et al., 2016). A key element of
environmental restoration is recovery of foundation species due
to their influential ecological roles (Pastorok et al., 1997). When
foundation species distributions are limited by environmental
gradients such as moisture or salinity, restoration managers must
design sites with appropriate landscape characteristics so that the
desired species can successfully establish (Pastorok et al., 1997;
Yando et al., 2019).

Monitoring is a critical component of any type of restoration
(Pastorok et al., 1997). Restoration projects are often required
by funders or permitters to set quantitative targets and monitor
progress toward those goals (McDonald et al., 2016). Using
monitoring data, restoration managers and scientists can
conduct adaptive management and better understand the
ecological processes driving restoration success (McDonald
et al., 2016). Managers can also leverage monitoring data
to engage community audiences by sharing information
about local projects. In the past, monitoring tools consisted
primarily of traditional field survey techniques, which are
often time-consuming (Chabot and Bird, 2013), or remote
sensing products available from airplanes or satellites,
which are often only available at low spatial and temporal
resolution (Roegner et al., 2008; Anderson and Gaston, 2013;
Johnston, 2019). Despite its importance, monitoring of many
restoration projects is fairly limited. Managers may only
be able to conduct the minimum amount of monitoring
that satisfies permit requirements (Zedler, 2000b) due to
staffing limitations or funding restrictions that limit the
amount or percentage of funds available. Unoccupied aerial
vehicles (UAVs) offer a less expensive alternative to traditional
methods, and UAV methods are beginning to be explored
in restoration projects (Knoth et al., 2013; Marteau et al.,
2017; Buters et al., 2019a; Padró et al., 2019a; Reis et al., 2019;
Pérez et al., 2020).

Restoration monitoring across a variety of habitat types
often includes both physical and biological elements (Pastorok
et al., 1997; Roegner et al., 2008). Elevation is a major physical
monitoring component in restoration (Roegner et al., 2008)
given its key role in structuring ecological communities (Watson,
1835). Microtopography (variability on the scale of ∼1 cm
to 1 m) and drainage patterns are also critical in restoration
planning and monitoring. These factors influence hydrologic
conditions (Jarzemsky et al., 2013), soil moisture and temperature
(Diefenderfer et al., 2018), with implications for survival of
plantings and natural colonization in restoration (Barry et al.,
1996). Foundation species are a key biological monitoring target

because in providing habitat for other species, they have a strong
impact on the outcome of restoration (Pastorok et al., 1997).

Tidal marshes are a major habitat type targeted for restoration
due to extensive losses globally (Gedan et al., 2009). Halophytic
plants are important foundation species in marshes, with
most only flourishing in a very narrow range of elevation,
between mean high water and mean higher high water (Larson,
2001). Human activities that cause the landscape elevation
to decrease, including diking and draining and groundwater
overdraft, are common drivers of tidal marsh loss (Kennish,
2001; Kirwan and Megonigal, 2013). Accelerated sea level
rise and restrictions to sediment supply also lead to loss
of elevation relative to water levels (Kirwan and Megonigal,
2013; Weston, 2014; Watson et al., 2017). Therefore, a major
component of marsh restoration is establishing appropriate
elevation of the marsh landscape relative to sea level (Cahoon
et al., 2019). Post-restoration monitoring informs success by
tracking whether that elevation is met and maintained (Roegner
et al., 2008). Sediment or soil addition is the main mechanism
for restoring “elevation capital,” the accumulated material that
establishes wetland height in the tidal frame (Cahoon et al.,
2019), enhancing marsh resilience to relative sea level rise.
The amount of added material may vary depending on the
initial condition of the degraded marsh, continued human
impacts, and project goals (Raposa et al., 2020). In soil addition
projects, elevation monitoring informs how much vertical gain
is needed to create a resilient restoration site. Dense creek
networks are another key consideration in marsh restoration
to avoid waterlogging of plants while allowing for sufficient
inundation (Zedler et al., 1999). Tidal creek size and distribution
in marshes affect plant species distributions (Zedler et al., 1999;
Sanderson et al., 2001), height and density (Wu et al., 2020).
Monitoring the tidal creek network is therefore important to
understand drainage and vegetation patterns (Roegner et al.,
2008; Jarzemsky et al., 2013). In addition to the physical factors
influencing it, vegetation itself is also a key monitoring metric
often used to evaluate restoration success (Roegner et al., 2008;
McDonald et al., 2016).

Our goal was to develop and test techniques for using UAVs
as a monitoring tool for tidal marsh restoration, using a major
tidal marsh restoration project in California, United States as
a model system. While studies in mature marshes (Kalacska
et al., 2017), restored drylands (Pérez et al., 2020), and simulated
restoration contexts (Buters et al., 2019b) have provided some
proof-of-concept for fine-scale restoration monitoring, we know
of no published studies that have implemented UAV monitoring
of topography or early colonization at marsh restoration sites,
and therefore generated appropriate protocols ourselves. Because
elevation and topography are major components of marsh
restoration, the underlying backbone of our UAV monitoring
was establishing calibration procedures that enable accurate
detection of topography changes. This involved establishing
an appropriate network of ground control points (GCPs) to
tie UAV imagery to known locations, an essential step in
creating accurate elevation products (Harwin and Lucieer, 2012;
Marteau et al., 2017; Sturdivant et al., 2017). We also needed
to ensure that newly colonized plants were detectable in UAV
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imagery, which involved testing different flight altitudes (a
major determinant of image resolution; Cruzan et al., 2016). In
addition to piloting technical approaches to UAV monitoring,
we developed imagery and analysis products designed to inform
restoration stakeholders. We conducted UAV monitoring before,
during, and after construction to inform restoration work
and track success. Our specific objectives were to monitor
construction progress, estimate the amount of soil used during
construction, detect topography changes in tidal creeks and on
the marsh plain following construction, and track development
of vegetation cover. We compared various inputs and attributes
of UAV monitoring with field methods — terrestrial laser scanner
(TLS) and surface elevation tables (SET) — and with airborne
light detection and ranging (LIDAR) to evaluate the relative
benefits of different topography monitoring methods. Overall, we
developed, tested and implemented novel monitoring protocols
for application of UAV to tidal marsh restoration monitoring and
used UAV products to communicate about the restoration with a
wide range of stakeholders, including project managers, funders,
scientists and the public.

MATERIALS AND METHODS

Study System
We conducted this study at a tidal marsh restoration site in
Elkhorn Slough, an estuary in Monterey Bay, Central California,
United States (Figure 1). Because wetland area on California’s
coast is relatively limited, Elkhorn Slough’s marsh area is
particularly significant for providing benefits including habitat
for hundreds of species and water quality improvement (Caffrey
et al., 2002). Unfortunately, over half of Elkhorn Slough’s intact
marsh area has been lost over the past 150 years, primarily due
to diking and draining (Van Dyke and Wasson, 2005). Much
of Elkhorn Slough’s remaining marsh area sits low in the tidal
frame and is therefore highly vulnerable to inundation-related
loss under projected sea level rise scenarios (Wasson et al., 2012).

In 2004, the Elkhorn Slough National Estuarine Research
Reserve (ESNERR) initiated the Tidal Wetland Program, an
ecosystem-based management initiative, to address rapid changes
in the estuary. The result of the decision-making process, which
involved input from numerous stakeholders, was prioritization
of marsh restoration (Wasson et al., 2015). ESNERR completed
construction on a 25-hectare restoration project at Hester Marsh
on the southern side of Elkhorn Slough in 2018 (Figure 1).
Tidal exchange was cut off during the construction period
of restoration and resumed when construction ended on
August 8, 2018. Construction activities involved approximately
250,000 cubic yards of soil addition on a degraded and subsided
marsh, which had converted mostly to unvegetated mudflat
following human impacts such as diking and draining. Most
of the soil used to elevate the marsh plain originated from an
adjacent hillside that was formerly used for agriculture, was
scraped during construction to provide soil, and is being restored
to native grassland. The largest tidal creeks were left intact and
secondary and tertiary creeks were excavated to resemble the
historical creek network following soil addition.

Objectives for the restoration project addressed elements
including marsh plain elevation, tidal creeks, and the marsh
community. The construction target for initial elevation was
1.95 m NAVD88, near the upper limit of marsh plant
distributions in Elkhorn Slough, and the marsh plain was
expected to settle over time to a long-term target elevation
of 1.89 m NAVD88. While some natural changes and minor
developments to the tidal creek network were expected, main
objectives for creeks were to mimic natural drainage patterns
and limit bank erosion. High vegetation cover was another
key objective, representing development of a healthy marsh
community (Fountain et al., 2020). The Hester Marsh restoration
project provided an opportunity for pilot testing of UAV methods
for monitoring to evaluate progress toward these goals.

UAV Equipment
In October 2015, Tombolo Mapping Lab & Center for Habitat
Studies at Moss Landing Marine Labs used a fixed-wing UAV
(E384; Event 38 Unmanned Systems, Inc., Richfield, OH,
United States) with a Canon SX260 HS 12-megapixel camera
(Canon Inc., Tokyo, Japan) to collect aerial imagery at the
study site. For all flights during and after site construction, we
collected imagery with a DJI Phantom 4 Pro quadcopter (SZ
DJI Technology Co., Ltd., Shenzhen, China) equipped with a
20-megapixel camera that collects visible spectrum (RGB) data.
The quadcopter also carries a near infrared (NIR) and red-
edge sensor (Double 4k sensor, Sentera Inc., Minneapolis, MN,
United States), but use of these data was limited to testing of
vegetation monitoring methods, where inclusion of NIR data was
evaluated for one flight.

Establishing Methods for Topography
Monitoring
We created digital elevation models (DEMs) to monitor
topography using UAV-collected photos and field-surveyed
GCPs. The DEMs we used throughout our monitoring were
digital surface models (DSMs), which by nature represent the
elevation of the surface and thus, where there is dense vegetation
or other features, the top of those features (Cruzan et al., 2016).
We did not expect the use of DSMs to be an issue for our
topography monitoring, as vegetation was absent or minimal in
most of our imagery.

In order to determine the optimal flight altitude coupled with
the minimum number of GCPs that maximized the accuracy of
the results, we conducted a GCP density experiment involving
a series of flights over an area of roughly 6.25 hectares within
the restoration site. We compared vertical accuracy of DEMs
created with varying densities of GCPs (0 – 6.4 GCPs/ha) and
collected imagery at four flight altitudes (50 m, 75 m, 100 m,
and 116 m; Table 1), resulting in a total of 34 DEMs that were
assessed for accuracy. We encountered processing issues for the
75 m imagery georeferenced with 0 GCPs and 2 GCPs per hectare,
so excluded these from our analysis. We sought to determine
the threshold above which increased GCP density did not lead
to notable decrease in root mean squared error in the vertical
direction (RMSE; Coveney and Roberts, 2017).
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FIGURE 1 | Map of the Hester Marsh restoration site in Elkhorn Slough, an estuary in Central California, United States. A grid of ground control points (GCPs) was
established for linking UAV imagery to known locations on the ground. Elevations were surveyed at GCPs and referenced to survey benchmarks to create digital
elevation models.

TABLE 1 | General information for UAV flights conducted at six different altitudes for the GCP density and vegetation-flight altitude experiments.

Altitude (m) Flight time
(min/ha)

Orthomosaic
resolution (cm)

Images per ha
(#)

Total file size of all
images (MB)

Total file size of
orthomosaic (MB)

10 18.8 0.74 742 8850 1800

30 5.6 0.76 119 (95*) 1410 (170*) 1780

50 0.9 1.5 83 2012 790

75 0.4 1.9 12 1190 125

100 0.3 2.5 5.6 570 81

116 0.2 2.9 4.2 430 84

One flight altitude used in the vegetation-flight altitude experiment is omitted (60 m) because of similarity with the 50 m flight.Values for the 10 m and 30 m flights are
scaled from flights covering 1.6 ha; for the remaining flights, values are scaled from flights originally covering 13.8 hectares. Values assume an overlap of 75% frontal
and 70% side overlap. Flight time will vary based on geometry of the area surveyed and flight path of the UAV. Image size and orthomosaic resolution will vary based on
camera resolution. *Additional images and file size for near infrared data in parentheses.

The test site was a portion of the restoration site that
had recently been filled with upland soils, creating a mostly
level and unvegetated patch of ground. Using ArcGIS (v. 10.3;
Esri, Redlands, CA, United States), we established a “fishnet”
grid of 40 points spaced approximately 35 – 50 m apart. We
created forty GCPs using numbered, 12” round white and
black five-gallon bucket lids, and deployed them in the field
using a handheld Trimble GPS. We used a Trimble VX TLS
(Trimble Navigation, Sunnyvale, CA, United States) to survey
the horizontal and vertical position of each GCP, as well as 66
randomly spaced check points. Elevation was referenced to a local
tidal benchmark (NAVD88). Vertical accuracy of the TLS survey
data was approximately ± 1 cm, slightly better than expected

from a traditional RTK survey which would also require use of
a base station, rover, and radio antenna.

Imagery was collected with 75% frontal and 65% side overlap,
the default in our flight planning software (DroneDeploy,
San Francisco, CA, United States). We used Agisoft Metashape
software (v. 1.6.3 10732; Agisoft LLC, St. Petersburg, Russia)
to create orthomosaics and digital elevation models (DEMs)
using Structure from Motion (SfM) principles. We used Agisoft’s
batch processing function to build orthomosaics and DEMs
from the images collected during each UAV flight (details in
Supplementary Table 1). All images (58 – 274 per flight) were
georeferenced with coordinate system WGS84 / UTM zone
10N. Photos were manually georeferenced with GCPs in Agisoft
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Metashape. We used these basic processing steps to produce
all DEMs and orthomosaics described throughout this study
(except for the vegetation-flight altitude experiment), using the
GCP density identified through this experiment for all flights
beginning in August 2018. To evaluate vertical accuracy, check
point elevations collected in the field were used to extract
elevations from the DEMs using ArcMap Spatial Analyst. We
calculated the difference between the field-surveyed check point
elevations and DEM elevations and computed the accuracy
(measured as RMSE) for the 34 resulting DEMs. We also
evaluated horizontal accuracy (RMSE) for select images by
creating points representing the center locations of the GCPs
visible in orthoimagery and used the Point Distance tool to
calculate the horizontal offset from the TLS-derived positions.
We calculated additional error metrics for the highest-resolution
(50 m altitude) imagery.

Comparison of UAV and Other
Topography Monitoring Methods
We compared three variations of UAV topography data collection
with traditional field methods – TLS and SETs – and with
airborne LIDAR to evaluate relative benefits of different
approaches. The three UAV methods we evaluated used different
georeferencing techniques: 1) UAV with onboard uncorrected
global navigation satellite systems (GNSS), referred to as UAV–
GNSS; 2) UAV with GCPs, surveyed using real-time kinematic
(RTK) positioning and evaluated using independent check
points, referred to as UAV–GCP; and 3) UAV with post-processed
kinematic (PPK) dual-frequency differential GNSS corrected
using either a base station in the study area or a nearby CORS
station (Continuously Operating Reference Station), referred to
as UAV–PPK. We compared these methods based on spatial
coverage, vertical (RMSEz) and horizontal (RMSEr) accuracy,
initial cost investment, training requirements, time and personnel
required for one survey, and temporal and spatial resolution.
Training requirements are categorized as “Low” (no prior
experience or certification needed), “Moderate” (some experience
with the equipment and specific licensing), or “High” (extensive
field experience with the equipment and specific licensing).

We report horizontal and vertical error values for the
UAV–GNSS and UAV–GCP methods from our GCP density
experiment. The values for the UAV–GCP method are based
on the GCP density and flight altitude we selected as optimal
through this experiment. For the UAV–GNSS method, we used
horizontal and vertical error values from imagery collected at
that same flight altitude, not georeferenced using any GCPs. The
horizontal error value for the UAV–PPK method is from a study
comparing UAV georeferencing techniques (Padró et al., 2019b).
The authors report horizontal accuracy as error in the radial
direction, which includes both X and Y error. Suggested spatial
resolution is the DEM cell size we believe to be appropriate based
on horizontal error values.

To estimate costs of the different UAV approaches, we
considered the aircraft and key accessories, software, and ground
control points and equipment to survey them (for details see
Supplementary Table 2). Although one-time rental fees may

greatly reduce the investment costs of UAV equipment, the need
for repeat surveys for long-term monitoring makes purchasing
equipment less costly. To estimate time requirements for the
UAV methods, we considered mission preparation (Haskins,
2020), the flight itself, GCP layout and surveying, and post-
processing (details in Supplementary Table 3). Passive computer
processing time to create the orthomosaics and DEMs is not
included in the table since it will vary considerably depending on
computer hardware, processing software and specific processing
parameters. All UAV flight times assume a 65 m flight altitude
covering a 42 ha area with the Phantom 4 Pro quadcopter.
Spatial coverage will vary significantly based on the UAV type,
total available battery life, flight altitude, and ability to maintain
line of sight. The value we report is based on our experience
with the Phantom 4 Pro quadcopter, flying at an altitude of
65 m with three batteries available and is intended to give the
reader a reference.

To determine TLS error values for comparison with other
methods, we identified horizontal and vertical errors during
repetitive Trimble VX Spatial Station setups that measured
coordinates of established control points. Suggested spatial
resolution is based on accuracy of digital surface models created
from surveyed point clouds, which is directly related to point
spacing. Initial investment cost is based on a 2020 estimate of
purchasing the survey equipment new and includes the spatial
station, survey controller, batteries, tripods, target reflectors,
survey rod, and carrying cases. Daily rental costs, alternatively,
may range between $300 and $600. Spatial coverage assumes a
survey area measuring 80 m × 80 m with two or more station
setups and a point cloud spacing of approximately 10 cm. Time
and personnel requirements include a minimum of one survey
technician for a daily survey of an area this size and for post-
processing.

Accuracy values for SET monitoring are based on the fact
that SET pins measure the exact same location on the marsh
surface during each successive survey. Unlike the other survey
methods that produce dense point clouds and DSMs, SETs are
generally limited to a few locations in a marsh and are not
intended to be used for broad spatial analyses. Therefore, both
spatial resolution and spatial coverage represent the approximate
total area covered by a single SET. Initial investment cost includes
the cost of one deep rod SET table, fiberglass pins, stainless
steel receiver, and approximately 12 meters of stainless steel rods
used to establish the SET monument. Time required for a survey
includes reading the SET pins and recording measurements, and
does not include initial setup time of the SET, which may take
several additional hours.

Reported LIDAR accuracy can vary widely based on different
instrumentation and landscape variations. We include vertical
accuracy values (RMSEz) for an airborne LIDAR-derived DEM in
a marsh setting, reported by Hladik and Alber (2012). Horizontal
accuracy is based on horizontal point spacing for airborne LIDAR
reported by Beland et al. (2019), and spatial resolution is based on
this point spacing and general convention. Initial investment cost
is an estimated value for acquisition and processing of airborne
LIDAR data by a professional LIDAR contractor, and covering an
area up to 1000 ha in size (Beland et al., 2019). While airborne
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LIDAR can cover a larger area, this will result in increased cost.
Temporal resolution will vary according to location, and is an
approximation based on local (Central California coast) LIDAR
surveys. We assumed that LIDAR data would be collected by
an external party and downloaded in a ready-to-use format by
the user, so we did not include time or personnel requirements
for this method.

Establishing Methods for Vegetation
Monitoring
We conducted a second experiment to determine the optimal
flight altitude for fine-scale vegetation monitoring. For this
vegetation-flight altitude experiment, we examined the accuracy
of vegetation cover classification, and the visibility of plants of
different sizes, from orthomosaics collected at 10 m, 30 m, and
60 m flight altitudes covering a one-hectare area (Table 1). One
orthomosaic at each altitude included visible spectrum (RGB)
data only, while an additional orthomosaic at 30 m altitude also
included near-infrared (NIR) data. All imagery was collected on
May 29, 2019. We used red 12” round five-gallon bucket lids
to mark plants for visibility assessment, mark plots for percent
cover analysis, and georeference orthomosaics. Orthomosaics
were stitched by and downloaded from DroneDeploy and
georeferenced in ArcGIS (v. 10.7).

To determine the visibility of different sizes of plants in
imagery collected at different flight altitudes, we marked 60 plants
by placing bucket lids next to them and measured each plant
in the field. We marked 20 plants in each of three size classes
based on their longest diameter (<10 cm, 10 – 20 cm, and
20 – 50 cm). Half of all plants in each size class were Salicornia
pacifica (pickleweed, the dominant marsh plant) and half were
Spergularia marina (a common early marsh plain colonist). We
viewed each marked location in true color RGB imagery for each
flight altitude in ArcGIS and considered a plant “visible” if it
could be distinguished from the background and identified as
a plant. We did not evaluate NIR imagery in this portion of
the vegetation-flight altitude experiment due to lower resolution
of the NIR camera.

To evaluate the accuracy of vegetation cover estimates from
classified UAV imagery, we measured percent cover at 24 plots
in the field, classified each of the four orthomosaics (10 m RGB,
30 m RGB, 30 m RGBNIR, 60 m RGB) into vegetated and
unvegetated areas, and compared the classified vegetation cover
to field-measured cover in those plots. Each plot covered one
square meter, grouped into six larger 2 m × 2 m plots. We
chose plot locations that represented a range of vegetation cover
values and included both of the main vegetation species present,
Salicornia and Spergularia. We surveyed cover in the field by
placing a one-square-meter gridded quadrat over each plot. We
assessed ground cover at intercepts within the grid by recording
all vegetation species, or bare ground, touched by a metal rod
when dropped at each intercept. To calculate percent cover, we
totaled the number of intercept “hits” for each species or bare
ground within the plot, divided by total intercepts surveyed in
the plot and multiplied by 100. There were no intercepts where
both plant species were encountered, so overall vegetation cover

in a plot was the sum of Salicornia and Spergularia cover. Number
of intercepts surveyed per plot varied between 16 and 25 because
we collected data along the edges of some quadrats. We weighted
our analysis to account for these unequal intercept numbers.

We classified imagery in ArcGIS Pro (v. 2.3) in order
to calculate UAV-based estimates of vegetation cover.
We experimented with both pixel-based and object-based
classification methods, but present results using pixel-based
classification with a maximum likelihood classifier, which we
found to be the most consistent method for our imagery.
We updated training polygons as needed to optimize each
classification, until making additional changes to the set of
training samples only resulted in minor changes in the final
classified image. We used a total of nine classes in each
classification, representing the two vegetation species, varying
shades of mud, and the red bucket lids used for marking.
However, because none of our classifications were able to
distinguish between vegetation species accurately, we evaluated
accuracy of overall vegetation cover only.

We used a weighted Nash-Sutcliffe Efficiency (NSE) coefficient
to measure how close classified vegetation cover was to field-
measured vegetation cover in each plot. To calculate classified
vegetation cover, we tabulated the area of each class in each of
the 24 plots using ArcGIS tools, summed the area covered by
Salicornia and Spergularia, divided the sum by the total quadrat
area, and multiplied by 100. The weighted NSE equation is as
follows:

NSE = 1−
∑n

i = 1 Wi (Ei −Mi)
2∑n

i = 1 Wi
(
Mi −M

)2

where n is the number of sampled plots, E is estimated cover from
classified imagery, M is measured cover from the field survey, and
W is the number of intercept sampling points (weight). NSE is a
normalized coefficient that determines how well the relationship
between estimated and measured data fits the 1:1 line (Nash
and Sutcliffe, 1970; Trescott and Park, 2013). We computed a
weighted NSE to account for the different numbers of sampling
points in each plot.

Imagery Products
We collected UAV imagery during multiple stages of the
restoration process. During construction, we collected and
reviewed UAV imagery to monitor progress and coordinate
with contractors. Flights were conducted approximately monthly,
typically at an altitude of 60 m and sometimes up to 100 m.
Following construction, we used UAV imagery to monitor
revegetation. We conducted image classification to estimate
vegetation cover across the entire site and investigated the
patterns of vegetation development by examining classified
vegetation cover in relation to elevation, a key factor structuring
marsh vegetation communities (Zedler et al., 1999).

Our main analysis of new vegetation relied on UAV imagery
collected in October 2019, using the flight altitude we determined
to be optimal in our vegetation-flight altitude experiment. We
classified the imagery into vegetated and unvegetated areas
using a pixel-based maximum likelihood approach in ArcGIS
Pro (v. 2.3). We evaluated accuracy of the classification by
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creating a confusion matrix in ArcGIS to compare how well the
classification matched a visual assessment of the high-resolution
orthomosaic at 99 points (56 vegetated and 43 unvegetated
points). We computed the true skill statistic (TSS), a metric based
on the true positive and true negative rates for each class taken
from the confusion matrix, to represent classification accuracy
(Allouche et al., 2006). We examined classified vegetation cover
in relation to elevation data collected with UAV to determine
whether there was an elevation range that was particularly
favorable for new colonization. We only examined classified
vegetation cover at elevations < 2.0 m to exclude most
upland vegetation.

Elevation Products
We used UAV-generated DEMs to monitor changes in
topography over various time periods during restoration
(Table 2). To determine whether UAV data are appropriate
for calculating earthwork volume (the volume of soil moved
during construction), we calculated the change in soil volume
using UAV-derived DEMs collected before (October 2015) and
after (June 2018) construction, and compared this value to the
earthwork volume determined by professional surveyors.

Because the pre-construction DEM (DSM) included areas
with tall weeds, we corrected for vegetation-related errors by
calculating the difference in elevation measurements between the
2015 DEM and a 2014 TLS field survey. The TLS survey was
conducted using a Trimble VX Spatial Station at 302 points, with
elevations referenced to local NOAA tidal benchmarks (vertical
accuracy approximately ± 1 cm). We multiplied the mean
elevation difference by the size of the hillside area to estimate the
total vegetation-related error in the DEM. Vegetation error was
not an issue in the post-restoration imagery because the area was
bare following soil scraping. We subtracted the 2018 DEM from
the 2015 DEM to create a DEM of Difference (DoD; a process
known as DEM differencing) using ArcGIS raster calculator. We
summed the difference values in each cell of the scraped area, and
multiplied this sum by the cell size to calculate the uncorrected
volume change. Subtracting the vegetation error from this value
resulted in the actual soil volume change. We compared our value
for earthwork volume with a value determined by professional
surveyors, who conducted RTK field surveys at over 200 points
on the hillside area before and after construction and calculated
volume change in AutoCAD software.

After construction, we established a network of GCPs based
on results of our GCP density experiment and continued to track
topography changes using UAV DEMs and DoDs (Table 2). We
also created a baseline DEM representing Day 0 that assumes a
consistent elevation value of 1.95 m for all pixels, prior to the first
post-construction UAV survey. We corroborated this assumption
using the surveyors’ post-construction RTK survey at 310 points
on the marsh plain. We examined topographic changes on the
marsh plain and in tidal creeks using DEM differencing. We also
used UAV data to evaluate the effectiveness of a bank stabilization
method to minimize erosion. During construction, bay mud was
dug up from the old marsh plain using a long reach excavator
and compacted on the west bank of the main channel at the
Hester restoration site to create a firm channel edge to reduce

bank erosion. We examined DoDs and extracted vertical profiles
from UAV DEMs to compare changes on the stabilized bank with
the non-stabilized bank on the other side of the main channel.

RESULTS

Establishing Methods for Topography
Monitoring
Our GCP density experiment revealed that both GCP density
and flight altitude had an effect on DEM accuracy, though GCP
density drove most variation in accuracy. Accuracy was lowest
(RMSE highest) at the lowest GCP density we tested for all flight
altitudes (0 GCPs per hectare; Figure 2). Accuracy increased
sharply with initial increases in GCP density, but changed very
little once GCP density increased beyond 2.1 GCPs per hectare
for all flight altitudes (accuracy metrics for 50 m flight in Table 3).
We selected a density of 1.9 GCPs per hectare (50 total GCPs
for our site) for our repeated monitoring to maximize accuracy
while minimizing the time required for repeated GCP surveys.
We initially used a flight altitude of 60 m, which required a
relatively short flight time (45 min to cover 42 ha), but later
adjusted flight altitude to 30 m based on our vegetation-flight
altitude experiment.

Comparison of UAV and Other
Topography Monitoring Methods
We found substantial variation in accuracy and time
requirements within the suite of UAV methods we compared,
as well as variation in many parameters among UAV and the
other topography monitoring methods (TLS, SET, and airborne
LIDAR; Table 4). Coverage varied from under one hectare with
both field-based methods to up to 1000 hectares with LIDAR,
with all UAV methods covering a maximum of 42 hectares based
on our selected flight altitude (65 m) and battery constraints
(three batteries). We did not compare fixed-wing drones here,
which typically offer better flight efficiency and maximum
coverage (Johnston, 2019).

Horizontal error (RMSEr) was 10 cm or less for all methods
except UAV–GNSS and LIDAR, indicating that those two
methods should only be used for coarser analyses. While SET
horizontal error is minimal (1 mm), having only one or a few
SETs results in low spatial resolution and coverage. Although TLS
offsets may also be very low (<1 cm vertical and horizontal),
DEMs created from surveyed point clouds will produce larger
errors (5 – 10 cm vertical and horizontal) that are directly
related to the point spacing. For this reason, we suggest a spatial
resolution of a minimum of 10 cm for most TLS-derived DEMs.
Vertical error values (RMSEz) suggest that neither UAV–GNSS
(1.4 m RMSE) nor LIDAR (0.16 m RMSE) would be sufficiently
accurate for detecting the fine-scale changes valuable for marsh
restoration monitoring. UAV–GCP, UAV–PPK, and SET are the
most appropriate methods for this type of monitoring based
on vertical error.

TLS was by far the most expensive method, whereas all other
methods required an initial investment cost of approximately
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TABLE 2 | Dates and basic methods for UAV-derived elevation products.

UAV model Georeferencing method Dates (month/year) Elevation products Relevant monitoring examples

E384 RTK-surveyed GCPs (n = 16) 10/2015 DEM, DoD Calculating hillside volume change

Phantom 4 Pro TLS-surveyed GCPs (n = 26) 06/2018 DEM, DoD Calculating hillside volume change

Phantom 4 Pro RTK-surveyed GCPs (n = 50) 08/2018, 05/2019,
08/2019, 10/2020

DEM, DoD Monitoring post-construction changes in marsh elevation

FIGURE 2 | Relationship between vertical DEM error (measured as RMSE)
and GCP density, plotted for data collected at four different flight altitudes.

$13,000 or less. TLS involved the greatest time requirement,
despite covering only a relatively small area. All UAV methods
required less time to cover a much larger area, though time
for UAV–GCP and UAV–PPK methods will vary depending on
whether GCPs are permanently deployed or require removal after
placement on the day of flight. While nearly all methods can
collect data on a user-defined schedule, LIDAR may only be
available every 5 – 10 years.

Establishing Methods for Vegetation
Monitoring
Our vegetation-flight altitude experiment revealed an expected
decrease in image resolution (increase in pixel size) with
increasing flight altitude (Table 1). While individual plants were
very well-defined in imagery collected at 10 m altitude, plants
appeared blurrier and harder to identify in imagery collected at
60 m altitude (Figure 3). Plant visibility increased with decreasing
flight altitude for all size classes (Table 5). However, we were not

able to detect most small plants in UAV imagery regardless of
flight altitude. Plant detection was particularly difficult in areas
where the substrate was more heterogeneous (dark cracks in mud,
or pockets of darker mud).

Accuracy of vegetation cover estimates based on image
classification decreased with increasing flight altitude for the RGB
imagery (Figure 3). While all four classified images represented
the vegetated and unvegetated areas fairly well, the higher-
altitude (60 m) flight performed the poorest in accuracy tests
(NSE = 0.63) and classification of this imagery failed to capture
many small plants (Figure 3). Classification of the imagery that
included RGB and NIR data was best (NSE = 0.74) despite being
collected at intermediate flight altitude (30 m), followed by 10 m
RGB imagery (NSE = 0.71) and 30 m RGB imagery (NSE = 0.69).
Based on these results, we mapped vegetation across the entire
site with a 30 m altitude flight in October 2019 because we
deemed the improvements in plant visibility and vegetation cover
accuracy over the 60 m imagery to be worth the extra flight
time and battery requirements. The time required to fly at 10 m
altitude made this altitude infeasible for surveying the whole
site (Table 1).

Imagery Products
We used UAV imagery throughout the course of the restoration
project to communicate with various audiences, track
construction progress, and assess restoration success. Imagery
from before construction showed the degraded marsh, which
was mostly unvegetated mudflat covered in algal wrack with
a relatively small amount of healthy marsh vegetation on the
edges (Figure 4A). Immediately after construction, imagery
showed a bare marsh plain free of algal wrack (Figure 4B).
During construction, managers used UAV imagery to view the
entire site and evaluate whether progress matched intended
plans (Figure 5).

Classification of imagery collected in October 2019, roughly a
year after construction ended, revealed a total of 6.8% vegetation
cover on the marsh plain and patchy patterns of new colonization
that we explored in relation to microtopography (Figure 6A).
Graphing classified vegetation cover and topography data from
UAV DEMs revealed greatest vegetation cover at the highest
elevations that we examined (1.95 – 2.00 m NAVD88; king tide
line is around 2.15 m NAVD88), moderate cover at low elevations
(1.75 – 1.80 m), and lowest vegetation cover at mid-elevations
(1.85 – 1.90 m; Figure 6B).

Elevation Products
In addition to imagery, UAV-derived DEMs were also used for
communications and outreach. A 2015 DEM clearly showed how
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TABLE 3 | DEM vertical error for imagery collected at 50 m altitude over a 6.25-hectare area. All error values are in meters.

Total GCPs 0 2 3 5 7 11 13 19 40

GCPs per hectare 0 0.32 0.48 0.80 1.12 1.76 2.08 3.04 6.40

Max positive error 3.175 2.140 0.629 0.029 0.028 0.043 0.024 0.022 0.025

Max negative error −0.167 −1.443 −0.217 −0.057 −0.080 −0.025 −0.021 −0.025 −0.013

Mean error 1.068 0.290 0.104 −0.003 −0.007 0.003 0.001 0.001 0.002

SD 0.846 0.927 0.204 0.019 0.022 0.014 0.011 0.011 0.008

95% CI 0.208 0.228 0.050 0.005 0.005 0.003 0.003 0.003 0.002

RMSE 1.358 0.964 0.227 0.019 0.023 0.014 0.011 0.011 0.008

TABLE 4 | Comparison of different topography data collection methods, including UAV with onboard uncorrected GNSS (UAV–GNSS), UAV georeferenced using 50
surveyed GCPs (UAV–GCP), UAV equipped with PPK (UAV–PPK), terrestrial laser scanning (TLS), surface elevation table (SET), and airborne LIDAR.

UAV–GNSS UAV–GCP UAV–PPK TLS SET LIDAR

RMSEr (m) 0.79 0.013 0.036* 0.03 – 0.10 0.001 0.2 – 2+

RMSEz (m) 1.36 0.011 0.036* 0.03 – 0.10 0.001 0.16∧

Approx. initial investment cost ($) $2,700 $3,200 $13,100 $48,000 $2,000 $10,000+

Time required (hrs) 1 – 1.5 7 – 8 2 – 3 ≥ 12 ≥1 -

Personnel required ≥ 1 ≥2 ≥ 2* ≥1 ≥ 1 -

Training required Moderate High High High Low -

In situ ground support No Yes Yes* Yes Yes No

Temporal resolution (yrs) User-defined User-defined User-defined User-defined User-defined 5 – 10

Suggested spatial resolution (m) ≥ 1 ≥0.02 ≥ 0.05* ≥0.10 1 ≥ 1

Spatial Coverage (ha) < 42 <42 < 42 <0.65 0.0001 < 1000+

RMSE values are from derived DEMs for all methods except for SET. *Padró et al., 2019b; +Beland et al., 2019; ∧Hladik and Alber, 2012.

subsided the pre-restoration marsh plain was in comparison to
healthy nearby marsh (Figure 4C). Most of the area was between
mean tide level (MTL) and mean high water (MHW; 1.50 m
NAVD88 according to Van Dyke, 2012), an elevation range that
is inundated too frequently to support the dominant marsh
vegetation, Salicornia (Larson, 2001). In contrast, the 2018 DEM
collected after construction ended showed how high the new
marsh plain was in comparison to the former subsided marsh
plain and the nearby healthy marsh, with the entire restored
marsh plain above mean higher high water (MHHW; 1.72 m
NAVD88 in Van Dyke, 2012; Figure 4D).

DEM differencing to measure earthwork volume clearly
highlighted the upland area of negative elevation change where
soil was removed during construction (Figure 7). Our UAV-
derived estimate of earthwork volume based on the DEM of
Difference (DoD) corrected for vegetation-related error was
165,312 m3, which was very similar to the surveyors’ estimate of
166,673 m3. Before correcting for vegetation, DEM differencing
indicated a volume change of 178,604 m3. The 2014 TLS survey
used to correct for vegetation recorded similar elevations to the
2015 DEM in areas lacking ground vegetation (68 of 302 survey
points had a difference of < 3 cm between TLS and DEM data).
However, the mean difference between TLS and DEM elevations
was 14 cm, with greater elevations in the DEM in areas of
dense vegetation. We estimated the error due to vegetation to be
13,292 m3.

Post-construction topography monitoring of the marsh plain
with UAV revealed that the marsh plain elevation target was met
and maintained, with the expected relatively slight subsidence.

The RTK field survey corroborated the assumption of a consistent
1.95 m elevation for the Day 0 DEM, showing a mean elevation
of 1.951 m at 310 points. The first post-construction UAV DEM
collected at the Hester Marsh restoration site (21 days after
construction ended) indicated a mean elevation of 1.915 m on
the marsh plain, which was between the initial target elevation of
1.95 m and the long-term target elevation of 1.89 m.

DEM differencing revealed that there was < 0.05 m of
elevation change across most of the marsh plain, with some
spatial variation including greater subsidence in some areas and
elevation gains in others (Figures 8A,B). Greater magnitude and
area of negative elevation change in the first DoD (0 – 21 days
following the end of construction and return of tidal exchange;
Figure 8A) indicates that most subsidence occurred over the first
3 weeks compared with the following 9 months (21 – 285 days;
Figure 8B). This temporal trajectory of subsidence and spatial
variation is also shown in the values extracted from DoDs at the
field survey points. These data show a drop in mean elevation
of about 3 cm over the first 21 days and little change thereafter
(Figure 8D). Some areas show greater drops in elevation over that
initial period, around 12 cm, while others show slighter and more
gradual loss in elevation (Figure 8D).

Post-construction monitoring of creeks using UAV showed
that the tidal creek network was developing, with limited bank
erosion. A DoD representing vertical change that occurred
between the first month following construction (August 2018)
and the following year (October 2019) indicated deepening of
smaller tidal creeks over time, particularly where they connect
with larger creeks (Supplementary Figure 1). The DoD also
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FIGURE 3 | UAV imagery, classified vegetation, and percent cover accuracy assessments for three different flight altitudes (10, 30, and 60 m). Visible spectrum
(RGB) imagery is shown in true color, while the imagery including visible and near-infrared bands (RGBNIR) is shown in false color. Accuracy was assessed by
comparing percent cover of classified vegetation with field-measured cover in 24 plots and calculating the Nash-Sutcliffe Efficiency (NSE) coefficient, which measures
closeness to the 1:1 (dashed) line.

TABLE 5 | Visibility of plants in imagery collected at different flight altitudes. Plants
were grouped into size classes based on their longest diameter.

Percent of plants visible

Size class 10 m imagery 30 m imagery 60 m imagery

Small (<10 cm) 45% 25% 5%

Mid-size (10–20 cm) 85% 50% 35%

Large (20–50 cm) 95% 90% 70%

shows development of new small creeks, with some limited
erosion on the banks of the larger creeks. Some minor areas
of positive elevation change in the DoD correspond to dense,
large plants that colonized over the first year and are visible in
October 2019 imagery.

Examining a DoD and elevation profiles of the main channel
banks at different time points revealed differences in bank erosion

between the stabilized and non-stabilized banks (Figures 9A–
C). While the transects across the stabilized (west) bank edge
showed similar or even slightly higher elevation profiles one
year after construction (October 2019) compared with the
initial profiles (August 2018), the transects across the non-
stabilized (east) bank showed elevation loss on the non-stabilized
bank edge. Orthomosaics and field observations suggest that
the elevation increases may reflect vegetation colonization and
growth (Figure 9A).

DISCUSSION

We successfully developed and implemented methods for
UAV monitoring of marsh restoration, and for creating
products useful to restoration stakeholders. Below, we
share methodological recommendations and illustrate
the diversity of applications of UAV data in restoration
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FIGURE 4 | UAV-collected orthomosaics of Hester Marsh showing (A) the degraded marsh prior to construction in 2015, and (B) the initially bare marsh after
construction was completed in 2018. UAV DEMs showing the change between (C) pre-construction elevation in 2015, and (D) post-construction elevation in 2018.

monitoring. While we focus on our case study of a California
tidal marsh restoration project, the general lessons learned
can inform UAV-based restoration monitoring in a variety
of other habitats.

Recommendations for Topography and
Vegetation Monitoring Methods
Overall, the methods we developed were effective for monitoring
elevation and vegetation at the scale and spatiotemporal
resolution needed for our project, where detecting small changes
in elevation over time, and evaluating colonization by small
new plants was essential for monitoring restoration success. Our
experiments evaluating different UAV methodologies resulted

in several recommendations for monitoring topography and
vegetation using UAV.

Our first recommendation is to explicitly plan for UAV
monitoring before, during, and after restoration monitoring
(Figure 10). While we developed our topography and vegetation
monitoring methods during and after construction, others may
find it optimal to determine these methods prior to construction.
Surveying at reference sites may be an appropriate way to
determine a specific protocol for monitoring ground cover and
topography at the restoration site. An important benefit of
determining how to make accurate DEMs early on, particularly
in soil addition marsh restoration projects, is enabling creation
of accurate pre-restoration topography maps. At our site, we
conducted an earthmoving volume assessment that relied on a
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FIGURE 5 | Maps collected during construction (June 2018) and at the end of construction (August 2018) showing a narrow peninsula that was constructed
following old creek network designs, and then changed to reflect updated designs. We primarily used orthomosaics to monitor construction, but present DEMs here
to make the change more easily visible. Note lower DEM resolution in the June 2018 imagery due to different processing technique with no GCPs.

FIGURE 6 | (A) Map of classified vegetation on top of an August 2018 DEM showing elevation in 5 cm increments. (B) Percent of total area (histogram) and percent
vegetated area (line) in each elevation bin. Percent vegetated area is the area of classified vegetation in an elevation bin out of the total area in that bin.

non-bare-earth DEM collected prior to restoration (Figure 7),
and an accurate calculation of soil volume change required
correcting for vegetation using a field survey. Carrying out pre-
restoration flights for method development could also be valuable
for determining limitations of using UAV in a given system, such

as whether species of interest can be distinguished from each
other and from the background substrate, and for identifying
potential risks and hazards (Haskins, 2020).

Secondly, we recommend that sites with similar fine-scale
topography monitoring goals use a similar GCP density to the
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FIGURE 7 | Maps showing elevation change on the western side of the restoration site, where soil was scraped from the hillside to elevate the marsh plain. A DEM
of Difference (right) represents topographic change between pre-construction (2015 DEM, left) and post-construction (2018 DEM, middle) and was used to calculate
the volume of soil moved from the hillside during construction.

one we determined to be optimal in our experimentation. Our
methods for topography monitoring generated highly accurate
DEMs (1.1 cm RMSE) and can likely be applied to other sites
of a similar size. We found that a GCP density of about 2 GCPs
per hectare was ideal, and that increasing GCP density above
that level would not result in substantially greater accuracy but
would increase field survey time. Flight altitude did not have
as strong an influence on DEM accuracy, so we initially flew
at an altitude of 60 m, which enabled rapid data acquisition.
We later reduced the flight altitude to 30 m in order to better
capture recently colonized vegetation. Where vegetation became
larger and denser, we noticed errors in the DEM because, as a

DSM, it represented the top of the vegetation canopy in these
areas rather than the ground (Supplementary Figure 1). One
way to correct this is by incorporating additional processing
steps to filter out vegetation from the DSM (for example, see
Cunliffe et al., 2016). The methods we utilized to create DEMs
could be valuable for other types of restoration, particularly
when microtopographic variation is important to capture. While
other studies may choose to use a similar approach to ours in
terms of flight altitude and GCP density, researchers at sites
of different sizes, or with different accuracy needs, may find it
helpful to conduct an experiment similar to ours to determine
their optimal methods.
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FIGURE 8 | Spatial and temporal patterns of elevation change at Hester Marsh. (A) DoD showing elevation change in the first 21 days following construction,
assuming a consistent Day 0 elevation of 1.95 m. Black points show locations of the RTK survey completed at the end of construction in 2018. (B) DoD showing
elevation change between Day 21 and Day 285. (C) UAV orthomosaic captured in May 2018 showing an area where excess water was contained during
construction (blue oval) and where soil was compacted early on as part of a construction vehicle route (fuchsia oval). (D) Mean difference in original RTK-surveyed
elevations and elevation values extracted from four post-construction DEMs at those surveyed positions. The black line represents elevation change at all
RTK-surveyed positions, blue line represents the subset of locations within the blue oval in all maps, and fuchsia line represents the subset of locations within the
fuchsia oval in all maps.

Our third recommendation is to use UAV imagery to track
revegetation of the restoration site, using the approach we
successfully piloted for data collection, modified as needed for
different habitats or sites of different size. At our site, a flight
altitude of 30 m enabled sufficiently accurate calculation of
vegetation cover compared with field measurements (NSE = 0.69
using RGB imagery), and subsequent exploration of the
relationship between new vegetation cover and elevation. While

we decided the longer flight time to collect imagery at 30 m
altitude was worthwhile for detecting more individual plants
and therefore minimizing the need for ground-truthing in the
field, a 60 m flight altitude may be sufficient when most plants
are larger and less sparse. Other studies comparing UAV flight
altitude/image resolution for detecting and classifying small
plants have also reported that accuracy increases with greater
image resolution, collected at lower flight altitude, but this
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FIGURE 9 | A portion of the Hester Marsh main channel shown in (A) an October 2019 orthomosaic, and (B) a DoD between August 2018 and October 2019. The
west bank of the channel was reinforced with mud excavated from the former wetland; the east bank had no reinforcement. (C) Vertical profiles extracted from UAV
DEMs were used to evaluate erosion of the main channel banks between August 2018 and October 2019.

increase is sometimes marginal (Torres-Sánchez et al., 2014;
Buters et al., 2019b). Others have also found that detection
of small plants is easier on more homogenous substrates

(Buters et al., 2019b), a conclusion that our findings support.
We recommend collecting NIR data in addition to RGB data,
which improved vegetation cover estimates in 30 m imagery
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FIGURE 10 | Recommendations for timing of UAV monitoring, generally applicable to all restoration (regular text) and specific to sediment/soil addition projects (italic
text).

(NSE = 0.74), but we had issues with either sensor capture
or file management that prevented us from using NIR data in
our classification of October 2019 imagery covering the entire
restoration site. In projects that compare imagery between sites or
dates, researchers should collect calibration images that capture
a reflectance target before, during, and/or after each flight to
calibrate imagery (Assmann et al., 2018).

To elaborate on the third recommendation above, we
used image classification to estimate vegetation cover and
examine spatial variation from UAV imagery, and suggest that
others optimize the specific classification method based on
their software and imagery. While the pixel-based maximum
likelihood classification we used for UAV-based vegetation
cover estimates was adequate for our purposes, many other
classification options exist and could improve the accuracy of
percent cover estimates. For example, object-based classification
methods can incorporate additional factors such as shape
and texture of distinct objects, which may be beneficial for
distinguishing plants from mud (Dronova, 2015). While we
were unable to distinguish between species in our classifications,
this type of distinction might be possible with modifications to
the data collection and/or classification method. For example,
imagery can be collected during times of year when the
species appear more different due to flowering or other
phenological changes (Gilmore et al., 2008). Some studies also
incorporate elevation data into image classification, which can
help distinguish between similar-looking vegetation classes when
they occupy different vertical zones (Sturdivant et al., 2017; Padró
et al., 2019a). Our methods for UAV monitoring of new plants
using image classification will work well on initially bare sites
when vegetation is easily distinguished from the background, and
separating different species or vegetation types is not critical.
Given many site-specific factors in vegetation monitoring, the
accuracy values we achieved in classifying vegetation cover may
not translate to other systems and conducting test flights should
be considered essential.

Tradeoffs Between UAV and Traditional
Methods for Restoration Monitoring
Determining an appropriate monitoring method is vital for
ensuring that lessons are learned from restoration without

exceeding limited budgets (Roegner et al., 2008). Our comparison
of UAV with TLS, SET, and airborne LIDAR methods
for topography monitoring, and our firsthand experience
monitoring vegetation and topography at this site using both field
and UAV methods, revealed some key benefits of UAV over field
monitoring as well as a few drawbacks.

A clear benefit of UAV monitoring includes its capacity
to generate high spatial resolution data across an entire site
including hard-to-access areas. Our construction monitoring
benefitted from the ease of monitoring areas with UAV that
were not easily accessible on foot. For example, midway
through the construction period, we detected a narrow, erosion-
prone peninsula in the interior of the site that had been
constructed according to an old creek network design (Figure 5).
Rapid detection of this issue in UAV imagery enabled us to
update construction in this area to shorten the peninsula.
The comprehensive spatial coverage of UAV data was also
valuable for detecting and analyzing spatial patterns, which field
sampling could miss if not distributed well across the whole
site. For example, field surveys of subsidence would provide an
incomplete or misleading picture if coverage was too limited or
certain key areas were missed (Figures 8A–D).

Customization of temporal resolution of data is another
valuable attribute of UAV monitoring, enabling data collection
to be easily tailored to monitoring needs and research questions
(Easterday et al., 2019). Temporal resolution is least customizable
for aerial or satellite data (e.g., LIDAR), and is customizable for
field data but with spatial coverage limitations (Table 4). At our
site, the ability to collect frequent topographic data with UAV
enabled us to determine that most subsidence occurred in the first
few weeks of tidal exchange (Figure 8D).

There are notable differences among UAV methods in cost
and time efficiency as well as accuracy of products (Table 4).
While two of three UAV methods were comparable in cost to SET
monitoring (the cheapest topography monitoring method in our
comparison), UAV–PPK involved greater initial investment cost.
However, this industry has been evolving rapidly over the past
decade, and costs for all UAV methods may continue to decline.
Compared with UAV–GCP (the most accurate UAV method),
UAV–PPK required less time for one survey and accuracy of
this method was only slightly reduced. The most rapid and
inexpensive UAV method (UAV–GNSS) was not accurate enough
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for our monitoring purposes. While UAV monitoring was more
efficient than the field methods we use to regularly survey both
topography and vegetation at our site, one notable drawback
in comparison to many field methods is the lower level of
detail captured in UAV data. Field survey time to collect both
vegetation and topography data at our site required a minimum
of 2.5 person-hours to fly the UAV (at 30 m altitude, covering the
25 ha site and adjacent areas) compared with 22 person-hours for
field data collection (10 h for vegetation cover, 12 for elevation
at 100 quadrats). Reduced detail was evident in our inability to
distinguish between species, upland vs. marsh plants, or native vs.
non-native plants in classification of UAV imagery. For elevation,
we found our UAV DEMs to be highly accurate, but note that
using SETs is more accurate by an order of magnitude (Table 4).

Another drawback of UAV as well as TLS monitoring is
the moderate to high training required (Table 4). While SET
monitoring can be accomplished with low training, all UAV
methods require at least moderate training (some experience
operating the equipment as well as a FAA 107 drone operator
license) and the most accurate UAV methods have high training
requirements. Because of the many different considerations when
choosing a monitoring methodology, and the lack of a clear
winner across all categories, monitoring decisions should be
made based on anticipated applications of the data.

Applications of Imagery and Elevation
Products
Tracking and communicating about restoration progress is
critical for generating public support for restoration, meeting
permitting and funding requirements, maintaining institutional
support, making management changes to improve outcomes,
and informing decisions for future projects (McDonald et al.,
2016). Aerial imagery is one powerful tool to accomplish these
goals and maximize the benefits of restoration projects. Other
restoration studies in a variety of habitats are beginning to use
UAV, primarily for post-restoration vegetation cover monitoring
(Knoth et al., 2013; Buters et al., 2019a; Padró et al., 2019a; Reis
et al., 2019; Pérez et al., 2020). For restoration in more densely
vegetated habitats, UAV-derived elevation data has also been
used to monitor canopy structure (Zahawi et al., 2015). Other
than vegetation monitoring, UAVs have also been found to be
useful for monitoring geomorphic change and spatial patterns
of erosion and aggradation in restoration of intermittent streams
(Marteau et al., 2017). However, few prior studies using UAV at
restoration sites focus on the early stages of restoration, which
involves collecting data of sufficiently high spatial resolution to
capture small, sparse plants and subtle variations in elevation.

We frequently relied on imagery collected using UAV to
communicate with the broader community about the restoration
project, including the public, funders, and other stakeholders
(Figures 4A–D). Estuarine habitats are hard to access, so imagery
helps to share progress of projects with the public, builds
excitement for successes like seeing plants return, and helps
generate support for marsh conservation and restoration. We
used UAV imagery in many presentations about the restoration
project, as well as in teacher training workshops illustrating

how marsh restoration can enhance resilience to sea level
rise by building new habitat at a high elevation in the tidal
frame (Figure 4D). UAV products were also valuable for
communicating with specific audiences like funders, to whom we
reported whether goals were met on metrics including elevation,
hydrology, and vegetation.

Monitoring was also valuable for informing adaptive
management and planning for future restoration projects.
During construction, rapid detection of the erosion-prone
peninsula in UAV imagery enabled contractors to make changes
while equipment was onsite, preventing potentially large future
costs (Figure 5). Our UAV-based assessment of the volume
of soil moved from the hillside onto the marsh plain during
construction was used to verify the surveyor’s assessment
and was a critical corroboration because earthwork volume
is an important determinant of restoration construction costs
(Figure 7). Accuracy of this UAV volume assessment method
indicates that it can be used to estimate construction costs during
planning of future projects, serve as an alternative to the more
traditional field methods used by surveyors, or corroborate
surveyors’ assessments.

Repeated topography monitoring following construction
revealed some areas of subsidence (Figures 8A,B), where water
was pooling and plants were not readily colonizing, some
of which we were able to target for filling by contractors.
Future analyses can take advantage of UAV-collected imagery
and topography data to examine whether the spatial variation
in subsidence is tied to previous land use or construction
methods, such as areas that were used for containing excess water
during construction (Figure 8C). Understanding how much
subsidence occurred, and spatial patterns, enables managers
to adjust the initial elevation and construction methods of
future soil addition projects. The observed topography changes
on a stabilized and non-stabilized bank suggested that bank
stabilization not only successfully reduced erosion but also
potentially promoted vegetation growth (Figures 9A–C). These
findings led to implementation of bank stabilization on a
larger scale in a new, adjacent marsh restoration area under
construction in 2020.

Ultimately, tidal marsh restoration aims to create favorable
conditions for redevelopment of the biotic community, including
vegetation (Zedler, 2000a; Roegner et al., 2008). Monitoring
revegetation using classified UAV imagery helped us understand
factors that influence vegetation cover, such as microtopography
(Figure 6), with the goal of preventing conditions that inhibit
colonization at future sites. The applications we have described
could be implemented in many different types of habitat
restoration, supporting the critical communication of restoration
progress with key stakeholders and ensuring knowledge is gained
from restoration projects to inform both adaptive management
and future planning (McDonald et al., 2016).
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Quantifying Scales of Spatial
Variability of Cyanobacteria in a Large,
Eutrophic Lake Using Multiplatform
Remote Sensing Tools
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Alicia Cortés1,2 and S. Geoffrey Schladow1,2
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Harmful algal blooms of cyanobacteria are increasing in magnitude and frequency globally,
degrading inland and coastal aquatic ecosystems and adversely affecting public health.
Efforts to understand the structure and natural variability of these blooms range from point
sampling methods to a wide array of remote sensing tools. This study aims to provide a
comprehensive view of cyanobacterial blooms in Clear Lake, California — a shallow,
polymictic, naturally eutrophic lake with a long record of episodic cyanobacteria blooms.
To understand the spatial heterogeneity and temporal dynamics of cyanobacterial blooms,
we evaluated a satellite remote sensing tool for estimating coarse cyanobacteria
distribution with coincident, in situ measurements at varying scales and resolutions.
The Cyanobacteria Index (CI) remote sensing algorithm was used to estimate
cyanobacterial abundance in the top portion of the water column from data acquired
from the Ocean and Land Color Instrument (OLCI) sensor on the Sentinel-3a satellite. We
collected hyperspectral data from a handheld spectroradiometer; discrete 1 m integrated
surface samples for chlorophyll-a and phycocyanin; multispectral imagery from small
Unmanned Aerial System (sUAS) flights (∼12 cm resolution); Autonomous Underwater
Vehicle (AUV) measurements of chlorophyll-a, turbidity, and colored dissolved organic
matter (∼10 cm horizontal spacing, 1 m below the water surface); and meteorological
forcing and lake temperature data to provide context to our cyanobacteria measurements.
A semivariogram analysis of the high resolution AUV and sUAS data found the Critical
Scale of Variability for cyanobacterial blooms to range from 70 to 175 m, which is finer than
what is resolvable by the satellite data. We thus observed high spatial variability within each
300 m satellite pixel. Finally, we used the field spectroscopy data to evaluate the accuracy
of both the original and revised CI algorithm. We found the revised CI algorithm was not
effective in estimating cyanobacterial abundance for our study site. Satellite-based remote
sensing tools are vital to researchers and water managers as they provide consistent, high-
coverage data at a low cost and sampling effort. The findings of this research support
continued development and refinement of remote sensing tools, which are essential for
satellite monitoring of harmful algal blooms in lakes and reservoirs.

Keywords: cyanobacteria, harmful algal blooms (HABs), remote sensing, Clear Lake, critical scales of variability
(CSV), autonomous underwater vehicles (AUV), small unmanned aerial systems (sUAS), inland waters
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INTRODUCTION

Harmful algal blooms of toxin-producing cyanobacteria
(cyanoHABs) are increasing in magnitude and frequency
globally, both degrading aquatic ecosystems and posing a
risk to public health (Havens, 2008; Cheung et al., 2013;
Taranu et al., 2015; Huisman et al., 2018; Ho et al., 2019).
Monitoring these cyanoHABs is necessary to track their
development and mitigate their effects in the context of a
changing climate (Paerl et al., 2016; Visser et al., 2016).
Monitoring cyanoHABs is challenging because they exhibit
substantial spatial and temporal variability (Kutser, 2009;
Carey et al., 2014) making it difficult to link complex bloom
dynamics with the underlying drivers for these systems (Paerl
et al., 2011; Ho and Michalak, 2015).

CyanoHABs demonstrate high spatial variability, which
complicates bloom measurement (Kutser, 2009). Drivers of
this spatial patchiness include winds and currents, with higher
concentrations of cyanobacteria typically observed at
downwind sites (Carey et al., 2014; Liu et al., 2019a).
Additionally, some cyanobacterial species have gas vacuoles,
which allow cells to control their buoyancy and rise and fall in
the water column creating spatial variability with depth
(Oliver et al., 2012). Even though spatial variability of
cyanoHABs is a known issue with regards to remote sensing
of blooms as measurements can vary substantially within a
satellite pixel (Kutser, 2009), satellite remote sensing tools
remain one of the key tools for monitoring cyanoHABs
because of their global coverage.

Remote sensing methods have the benefit of offering high
spatial and temporal coverage across large scales. Remote sensing
of cyanobacteria is possible due to the differences in spectral
signatures for cyanobacteria and other types of phytoplankton.
Phytoplankton contains chlorophyll-a as the main
photosynthetic pigment. This pigment demonstrates
absorption features in its spectral profile at 440 and 675 nm
(Ruiz-Verdú et al., 2008; Stumpf et al., 2016). Cyanobacteria
contain the secondary photosynthetic pigment phycocyanin in
addition to chlorophyll-a (Bryant, 1982; Matthews, 2011). Due to
its unique spectral signature (including an absorption peak
∼620 nm and a reflectance peak ∼650 nm) and limitation to
cyanobacteria and rhodophytes, phycocyanin concentrations
are often used to distinguish cyanobacteria from freshwater
phytoplankton (Kutser, 2009).

Many satellite remote sensing tools for monitoring harmful
algal blooms have been developed (see reviews by Kutser, 2009;
Matthews, 2011; and Gholizadeh et al., 2016). In this study we use
the Cyanobacterial Index (CI) remote sensing tool, which is a
spectral shape algorithm based on the tendency of Microcystis (a
common genus of cyanobacteria) to demonstrate weak
chlorophyll-a fluorescence compared to other phytoplankton
(Wynne et al., 2008; Wynne et al., 2010; Stumpf et al., 2016).
This results in an observed reflectance sag in the satellite data at
wavelengths of 681 nm. The CI algorithm uses the multispectral
MERIS sensor mounted on the Envisat satellite and the Ocean
and Land Color Instrument (OLCI) sensor on Sentinel-3 because
they have the correct spectral resolution to differentiate

cyanobacteria from other phytoplankton. While satellite
remote sensing allows for repeated sub-weekly observation of
the conditions at the same location, the spatial resolution is
usually coarse, ranging from 30 to 1,000 m (Kutser, 2009;
Hunter et al., 2017), with most cyanobacteria-specific
algorithms utilizing the MERIS and OLCI sensors, which have
a resolution of 300 m. This issue is further exacerbated by pixel
contamination close to the shoreline. Additionally, cloud
coverage is problematic, creating instances where no useful
data are obtainable from a satellite pixel. Finally, coarse
resolution satellites are not well suited to detect spatial
variability of cyanobacteria as the bloom density can vary by
up to two orders of magnitude within one satellite pixel (Kutser,
2009).

Given the coarse spatial resolution of satellite tools aimed at
detecting cyanobacteria, other high spatial resolution sampling
methods are more apt at measuring the spatial variability of
cyanoHABs. Many field deployable platforms such as
Autonomous Underwater Vehicles and small Unmanned
Aerial Systems, can collect data at high spatial resolution.
AUVs equipped with fluorescence sensors and/or on-board
samplers have been used to measure algal and cyanobacterial
blooms, (e.g. Robbins et al., 2006; Blackwell et al., 2008). sUAS
carrying Red-Green-Blue, multispectral, and sometimes
hyperspectral cameras have also been used for detecting
blooms (see review paper by Kislik et al., 2018). These
sampling methods have clear benefit due to their high spatial
resolution, but do not offer the repeat high temporal
measurements offered by satellite platforms.

When satellite tools are combined with other high resolution
monitoring tools, they augment the observer’s ability to both
monitor and study blooms (Vander Woude et al., 2019).
Additionally, the high spatial resolution methods, (e.g. AUV
and sUAS) may be used to quantify the spatial heterogeneity
of cyanoHABs, specifically to determine their Critical Scale of
Variability (CSV). CSVs (as defined by Blackwell et al., 2008) are
the length scales necessary to resolve the spatial variability of a
bloom. The CSV of a cyanobacterial bloom defines the distance
required between samples to observe the spatial “patchiness” or
changes in bloom concentration across space. The CSV also helps
define the spatial extent at which biological and physical
processes may occur (Fraschetti et al., 2006). The CSV is
important for designing sampling plans by selecting the
sampling resolution necessary to adequately characterize a
bloom (Vander Woude et al., 2019).

In this study, we measure cyanobacterial bloom density using
several methods at varying spatial scales and spatial resolutions to
understand how bloom density changes across scales. We collected
discrete water samples; hyperspectral measurements from a
handheld spectroradiometer; coarse spatial resolution
multispectral reflectance data from the OLCI sensor on the
Sentinel-3a satellite; high spatial resolution multispectral
reflectance data collected using a sUAS; and high spatial
resolution scattering and fluorescence data from an AUV. This
multiplatform approach provides a synoptic view of cyanobacterial
density across multiple spatial scales. The collected data were used to
1) understand the spatial and temporal trends at our study site; 2)
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quantify the CSV for cyanobacteria blooms; and 3) evaluate the
accuracy of the CI algorithm. Key recommendations stemming from
this work are consideration of the CSV of cyanobacteria blooms
when designing sampling plans and future satellite remote sensing
sensors, and continued refinement of the CI algorithm for improved
detection of low concentration blooms.

METHODS

Study Site
This study was conducted at Clear Lake, California, a large
(approximately 160 km2 in surface area) and shallow lake
(average depth 8 m, maximum depth 15 m). Clear Lake is
comprised of three basins–the Upper Arm, Oaks Arm, and
Lower Arm (Figure 1). All three basins are deep enough to be
thermally stratified but shallow enough to vertically mix fully
several times a year and partially mix almost daily, (i.e.
polymictic) (Rueda and Schladow, 2003). Clear Lake is
naturally eutrophic and supports large fish and waterfowl
populations. Algal blooms have been documented to occur
primarily in the late spring, summer, and fall (Winder et al.,

2010). Past research has identified the phytoplankton
community to be cyanobacteria dominated for most of the
year (Horne, 1975). CyanoHABs have increased in frequency
at Clear Lake since the mid-1900s to create nuisance scums and
odors, which cause public and environmental health concerns
(Richerson et al., 1994).

Data Collection and Data Processing
Data were collected in Clear Lake using several methods (Table 1;
Figure 1). The in situ data collection methods include collection
of discrete samples, hyperspectral data measurements using a
handheld spectroradiometer, multispectral imaging from a sUAS,
and fluorescence and scattering meter measurements from an
AUV. Additionally, cyanobacteria index (CI) was calculated from
Level 3 OLCI sensor data from the Sentinel-3a satellite. Finally,
meteorological and lake temperature data were obtained to
provide context to our cyanobacteria measurements.

Discrete Samples
Discrete water samples were collected across 32 sampling sites on
Clear Lake (Table 1; Figure 1), generally located near existing

FIGURE 1 | Sample site locations in Clear Lake (A) is an overview map of Clear Lake (B) shows the sampling locations in the Oaks Arm (C) shows the sampling
locations in the Lower Arm. The 300 × 300 m outlines of the Sentinel-3a pixels are also shown.
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sampling sites in routine water quality monitoring programs.
These existing sampling sites were selected to allow for future
comparison between the data collected in this study with data
collected in routine water quality monitoring programs; those
comparisons were not included with this research. To enable
comparisons between discrete samples and satellite CI values, the
sample sites are located within 19 separate Sentinel-3a pixels near
the centers of each Clear Lake basin to avoid shoreline
contamination of the satellite pixels. The samples were
planned such that three sample sites would be located within
one corresponding Sentinel-3a pixel, (e.g. CL03a, CL03b, and
CL03c were planned within the same Sentinel-3a pixel and are all
located nearby the routine CL03 water quality monitoring site).
However, due to an unknown projection issue associated with the
Sentinel-3a CI product obtained from the San Francisco Estuary
Institute (SFEI) and the National Oceanic and Atmospheric
Administration (NOAA) HAB Tool (see https://fhab.sfei.org/;
Stumpf et al., 2015) at the time of planning, the sampling sites did
not all necessarily occur in the same pixel and more pixels were
sampled than originally planned (19 pixels sampled vs. 10 pixels
planned). This projection issue was corrected in data processing
and analysis.

Discrete water samples were collected during four sampling
events in July, August, and October 2019 (Table 1). The sampling
dates were chosen to correspond with Sentinel-3a satellite
overpasses and with expected summer and fall algal blooms in
Clear Lake. The first sampling event in July 2019 included grab
sampling from 0.1 m depth. The sampling method was later
refined for the remaining sampling events in August and
October 2019 to include collection of an integrated depth
sample of the top 1 m of the water column. No correction was
made to the data despite the differences in sampling method
depth. Surface scums were not present at our study sites during
sampling so errors arising from the difference in sampling
method depth are believed to be minimal. Discrete samples
were filtered through pre-combusted (500°C for 2 h) Whatman
GF/F filters (0.7 μm nominal pore size). The filters from all four
sampling events were analyzed for chlorophyll-a by sample
processing by extraction in 90% acetone at −20°C for 24 h
following a modified EPA method 445.0 (Arar and Collins,
1997) and sample analysis on a Turner Designs 10 AU
fluorometer. The filters from three sampling events (July 12,

2019, August 16, 2019, and October 08, 2019) were analyzed for
phycocyanin following modified methods developed by Kasinak
et al. (2015); Konopko (2007); Siegelman and Kycia (1978) with
sample processing by extraction in 10 mM phosphate buffer (pH
6.8) with three freeze-thaw cycles and then sample analysis using
a Turner Designs TD700 fluorometer. The sampling event on
August 07, 2019 did not include analysis for phycocyanin because
this sample was collected with a different sampling program that
does not include sampling and analysis for phycocyanin.

Due to unforeseen complications, only one set of sample filters
from the July 12, 2019 and August 16, 2019 sampling events was
available for laboratory analysis. These filters were cut in half to
analyze both chlorophyll-a and phycocyanin from a single filter.
Prior to analysis of the Clear Lake samples, a test was run on split
filters vs. whole filter analysis with five replicate samples from
another site (surface samples collected from Pinto Lake, CA on
October 24, 2019). Three sets of filters were prepared from each
sample, with one set of filters analyzed for chlorophyll-a, one set
of filters analyzed for phycocyanin, and one set of filters cut in
half, with one half analyzed for chlorophyll-a and one half
analyzed for phycocyanin. A paired-sample t-test on the whole
and half filter data resulted in p-values of 0.42 and 0.77 for the
chlorophyll-a and phycocyanin data, respectively. Additionally,
the means of the replicates were found to be within a standard
deviation of one another. Given the statistically insignificant
difference between whole and half-filters, the half-filter
method was decided to be not ideal but acceptable in the
absence of other measurements.

Spectroscopy Data
High resolution spectral measurements were collected at eight
sampling sites on Clear Lake during three sampling events in
August and October 2019 (Table 1; Figure 1). Spectral
measurements were not made during the July 2019 sampling
event because the sampling equipment was not available on that
date. The sampling locations were selected such that one
sampling site out of every cluster of three discrete sample sites
had spectroscopy measurements completed. We could not collect
spectral measurements at every discrete sample site due to time
constraints. We used a Malvern Panalytical FieldSpec Handheld
two Pro spectroradiometer with a 7.5° fore optic angular field of
view. The spectroradiometer has a spectral resolution of <3 nm

TABLE 1 | Summary of data collection. Sampling sites CL03 (a, b, c, d, e, f), LA03 (a, b, c, d, e, f), P1 (S1, S2, S3), P2 (S1, S2, S3), and P3 (S1, S2, S3) are in the Lower Arm of
Clear Lake, OA04 (a, b, c, d, f) is in the Oaks Arm, and UA06 (a, b, c) and UA07 (a, b, c) are in the Upper Arm.

Sampling method

Date Sampling sites Chl-a PC Rad AUV sUAS

12-Jul-2019 CL03 (a, b, c), LA03 (a, b, c), OA04 (a, b, c), X X
UA06 (a, b, c), UA07 (a, b, c)

07-Aug-2019 P1 (S1, S2, S3), P2 (S1, S2, S3), P3 (S1, S2, S3) X X
16-Aug-2019 OA04 (a, b, c), OA04 (d, f) X X X X

LA03 (a, b, c), LA03 (d, e, f) X X X X
CL03 (a, b, c), CL03 (d, e, f) X X X X X

08-Oct-2019 CL03 (a, b, c), LA03 (a, b, c), OA04 (a, b, c), X X X
UA06 (a, b, c), UA07 (a, b, c)

Chl-a: discrete sample for chlorophyll-a; PC: discrete sample for phycocyanin; Rad: spectroradiometer.
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across a range of wavelengths from 375 to 1,075 nm, with a total
of 575 spectral bands (discrete wavelengths). At each site, three to
four measurements were taken following standard methods
(Tomlinson et al., 2016). Measurements over a 10% calibrated
spectralon reflectance plate and at the sky were also collected to
convert the radiance measurements to dimensionless reflectance
during post-processing (Mobley, 1999; Tomlinson et al., 2016).

Sentinel-3a Data
Satellite-derived cyanobacteria index (CI) was calculated from
Level 3 data obtained from NOAA for the multispectral OLCI
sensor on the Sentinel-3a satellite. Level 3 data products
include ρs, which is a dimensionless reflectance product
generated from Level 2 data (calibrated and georeferenced)
with additional correction for scattering and absorption
through the atmosphere (Wynne et al., 2018). CI is
calculated from ρs (herein referred to as “reflectance”) using
the CI algorithm (Eqs 1, 2) (Wynne et al., 2008; Wynne et al.,
2010). The CI algorithm is a spectral shape algorithm for
multispectral data from the MERIS sensor mounted on the
Envisat satellite and OLCI sensor on Sentinel-3a. The CI
algorithm was developed based on the spectral shape (SS) at
wavelength 681 nm (SS{681}) observed in the satellite data as
follows (Wynne et al., 2010):

CI � −SS{681}, (1)

SS{λ} � ρs{λ} − ρs{λ−} − (ρs{λ+} − ρs{λ−}) × λ − λ−

λ+ − λ−
(2)

where, λ � 681 nm, λ+ � 709 nm, and λ− � 665 nm. This
algorithm was later refined to incorporate an exclusionary
criterion for the spectral shape at 665 nm (SS{665}), where,
λ � 665 nm, λ+ � 681 nm, and λ− � 620 nm (Matthews et al.,
2012; Lunetta et al., 2015; Coffer et al., 2020). The SS{665}
exclusionary criterion targets the 620 nm band, which is a
phycocyanin absorption feature (Lunetta et al., 2015). This
exclusionary criterion categorizes CI as containing
cyanobacteria when SS{665} > 0 and as not containing
cyanobacteria when SS{665} < 0 (Lunetta et al., 2015).
This research used both the original CI equation and the
revised CI equation with the addition of the SS{665}
exclusionary criterion. The CI algorithm (both original
and revised) was also applied to the spectroradiometer
reflectance data.

Using the approach in Tomlinson et al. (2016), a locally
tuned equation comparing chlorophyll-a and phycocyanin to
CI was determined for our study site. Previous proposed
equations relating CI to chlorophyll-a are shown below (Eq.
3 from Tomlinson et al., 2016 and Eq. 4 from Stumpf et al.,
2015).

chla (μg/L) � 4050 (± 271) × CI + 20 (± 3), (3)

chla (μg/L) � 4000 × CI + 10. (4)

A least-squares linear regression approach was used to model
the relationship between CI and both chlorophyll-a and
phycocyanin specific to Clear Lake.

Small Unmanned Aerial System Data
Very high spatial resolution multispectral imagery was collected
from the two Lower Arm sites (CL03 and LA03) on August 16,
2019 (Table 1; Figure 1). The sampling date was chosen as a
larger effort sampling event when coincident discrete samples,
satellite measurements, sUAS, and AUV data could be collected.
The sUAS and AUV tools were only available on this sampling
date due to resource limitations. The intention was to collect
measurements at three locations (two in the Lower Arm and one
in the Oaks Arm). These basins were selected for sampling by the
sUAS and AUV because at the time of mission planning, they
demonstrated the most cyanobacterial activity. However, due to
vehicle piloting difficulties only the two Lower Arm sites could be
sampled by the sUAS.

We used a MicaSense RedEdge multispectral camera mounted
on a Matrice 100 sUAS and operated using DJI GS Pro software
using standard methods (Liu et al., 2019b). The MicaSense
RedEdge camera, like other commercial multispectral cameras,
has individual lenses for each band with discrete exposure times
that optimize the radiometric range depending on the target (Kim
et al., 2020). Aerial flights were conducted with this sUAS at an
average height of 120 m above ground level, resulting in images at
a resolution of 8.2 cm/pixel. The flight lines had front and side
overlaps of 60%. Before and after each sUAS flight, standard
reflectance panel images were captured by the MicaSense camera
for later calibration of the data. Individual images were
georectified and stitched into a single orthomosaic of
multispectral reflectance (true geometrically correct and
mosaicked image) using Pix4Dfields software. The planned
sUAS flights were intended to cover an area aligned with and
equivalent two Sentinel-3a pixels (300 m × 300 m each).
However, as previously mentioned, due to an unknown
projection issue with the data used in planning, the sUAS
flights overlapped with several Sentinel-3a pixels, but none of
them were fully covered.

The MicaSense multispectral camera captures reflectance data
at five bands: blue (center λ � 475 nm with 20 nm bandwidth Full
Width at Half Maximum or FWHM), green (center λ � 560 nm
with 20 nm bandwidth FWHM), red (center λ � 668 nm with
10 nm bandwidth FWHM), near infrared (center λ � 840 nmwith
40 nm bandwidth FWHM), and red edge (center λ � 717 nm with
10 nm bandwidth FWHM). Chlorophyll-a was derived from the
reflectance data using the approach in Ha et al. (2017). Ha et al.
(2017) found an exponential equation using a green-red band
ratio yielded the best results for their study site (Eq. 5, where B3 �
green band and B4 � red band).

chla (μg/L) � 0.80 × exp(0.35 × B3/B4). (5)

We attempted to determine a locally tuned band ratio
equation computing chlorophyll-a for our study site by using
the coincident discrete sample results (n � 6); however, a clear
relationship was not found and the published equation (Eq. 5)
was used instead. The chlorophyll-a concentrations determined
from Eq. 5 were scaled to the discrete sample chlorophyll-a
measurements, where the scaling factor was equal to the ratio of
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the average of the discrete sample chlorophyll-a results to the
average of the sUAS-derived chlorophyll-a values. See
Supplementary Section S1 for more information on sUAS
data processing.

Autonomous Underwater Vehicle Data
High resolution data were collected using an Autonomous
Underwater Vehicle from one Lower Arm site (CL03) and one
Oaks Arm site (OA04) on August 16, 2019 (Table 1; Figure 1).
The sampling date and sampling locations are discussed in the
sUAS data section above. Additionally, the AUV sample locations
intended to include two Lower Arm sites and one Oaks Arm site.
However, due to vehicle deployment difficulties and time
constraints, only one Lower Arm site and the Oaks Arm site
could be sampled.

The AUV used is a small Gavia-class AUV. The instruments
mounted on the AUV include a Seabird Electronics SBE-49 CTD
(Conductivity, Temperature, Depth) sensor and a WETLabs
ECO Triplet BBFL2 combination scattering meter and
fluorometer. The BBFL2 determines turbidity through
measurement of red light scattering at 700 nm; colored
dissolved organic matter (CDOM) through fluorescence with
excitation at 370 nm and response measurement at 460 nm; and
chlorophyll-a through fluorescence with excitation at 470 nm
and response measurement at 695 nm. The detection ranges for
the BBFL2 sensors are 0–50 μg/L for chlorophyll-a, 0–375 ppb
for CDOM, and 0–5 m−1 for the scattering meter. The AUV is
also equipped with a navigation system including a combined
Teledyne RD Instruments workforce navigator Doppler velocity
log (DVL) and a Kearfott inertial navigation system (INS). The
AUV was deployed at a cruising speed of 1.5–2 m/s. The AUV
mission was designed to have the vehicle run at a constant depth
of 0.5 m below the lake surface. A tolerance of three standard
deviations from the mean depth was allowed for each mission
and all data outside this set tolerance was disregarded during
post-processing (Yu et al., 2002; Blackwell et al., 2008; Forrest
et al., 2008). The CTD sampled at 16 Hz, the combination
scattering meter and fluorometer sampled at approximately
0.9 Hz, and the navigation system records data at 1 Hz. The
three datasets were merged with data points interpolated using a
linear approach and the fastest sampling rate. The data were then
bin averaged to a bin size greater than the slowest sampled
dataset. The recorded scattering and fluorescence measurements
were converted to turbidity (NTU), CDOM (ppb), and
chlorophyll-a (μg/L) using the factory determined dark count
offsets (false positives read by the sensor in absolute zero light)
and scaling factors. The [back] scattering meter was not
calibrated in turbidity (NTU) units using a turbidity solution.
An approximate conversion from the sensor single-angle
scattering scale factor (m−1 sr−1) to a turbidity value (NTU)
was used to report the turbidity measurements. The
chlorophyll-a data were further scaled to the results of the
adjacent discrete samples to account for differences in the
field fluorometry measurements and the laboratory
chlorophyll-a extraction measurements. Although scaling the
AUV chlorophyll-a measurements by the discrete samples
does not ensure accuracy of the AUV results, it allows for

easier comparison of the two datasets. As the main purpose of
this study is to evaluate the variability of cyanobacteria blooms
rather than the magnitude, we feel this approach is acceptable.
See Supplementary Section S1 for more information on AUV
data processing.

Meteorology and Lake Temperature Data
Meteorological forcing and lake temperature data were acquired
for Clear Lake for our sampling dates at multiple locations across
the lake’s basins (Cortés and Schladow, 2020). To measure
meteorological conditions, a network of seven Davis
Instruments Wireless Vantage Pro2 Plus stations installed at
the shoreline around the perimeter of Clear Lake measured air
temperature, relative humidity, and wind speed and direction
every 15 min (see station map in UC Davis Tahoe Environmental
Research Center, 2020). Lake surface temperature was
determined from a network of Onset Water Temp Pro loggers
installed along the near-shore and adjacent to all but one of the
meteorological stations (∼0.5 m below lake water level) and also
installed on three permanent offshore navigation markers (within
the top 2 m of the water column). The thermistors sample every
10 min with 0.2°C accuracy and 0.02°C resolution. Lake water
clarity was characterized at each sampling site (Table 1; Figure 1)
using a Secchi disk.

Data Analysis
Critical Scales of Variability
CSVs of cyanobacteria were determined for this study using a
semivariogram analysis of the AUV and sUAS data using the
GeoR Package in R following similar methods as Blackwell et al.
(2008) and as described in Diggle and Ribeiro (2007). The CSV is
considered the “apparent range” (Blackwell et al., 2008) or the
“practical range” (Diggle and Ribeiro, 2007) at which the
semivariance levels off, forming the “sill” of the
semivariogram. This value was determined by visual
examination of the log-log plot of the semivariogram at the
point where there is a noticeable change in the slope of the line
(see Figure 2 of Moses et al., 2016), which corresponds to the point
of leveling off in the semivariogram. The semivariograms were
computed for the AUV-acquired chlorophyll-ameasurements and
the sUAS-derived chlorophyll-a measurements. Two
semivariograms were produced for the AUV missions in the
Lower Arm and in the Oaks arm. Initially semivariograms were
examined for every 500th pixel row and column, (i.e. lines) of sUAS
data subsampled from the mosaic of pixel values. A subset of data
(every 100th pixel row of the lines 2,500–4,500) were further
examined to determine the CSV from the sUAS data. The pixel
column data did not produce meaningful results to determine the
CSV, likely because the columns are shorter that the rows for our
data set. See Supplementary Section S1 for more information on
the data processing for the CSV data analysis.

Coefficients of Variation
We calculated the coefficients of variation of the datasets as an
additional metric to quantify the variability of the bloom. The
coefficient of variation is equal to the ratio of the standard
deviation to the mean.
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RESULTS

We measured cyanobacteria over four sampling dates in the
Summer and Fall 2019 at different sampling locations in Clear
Lake, CA (Table 1; Figure 1). The central aim of this work was to
characterize the CSV of cyanobacteria. We used five methods to
quantify cyanobacteria in the water: 1) laboratory analysis of
discrete samples for chlorophyll-a and phycocyanin; 2)
hyperspectral radiance measurements from a handheld
spectroradiometer; 3) coarse spatial resolution multispectral
reflectance data from the OLCI sensor on Sentinel-3a; 4) high
spatial resolution multispectral reflectance data collected using a
sUAS; and, 5) high spatial resolution scattering and fluorescence
data of turbidity, CDOM, and chlorophyll-a collected using
an AUV.

Discrete Sampling
The average chlorophyll-a concentration of all the samples was
approximately four times larger than the average phycocyanin
value, with mean ± standard deviation of 18.7 ± 12.0 μg/L and
4.60 ± 4.55 μg/L for chlorophyll-a and phycocyanin, respectively.
For individual samples, maximum values of phycocyanin
(25.6 μg/L) were about half the maximum chlorophyll-a
concentrations (46.1 μg/L). The mean of the ratio of
phycocyanin to chlorophyll-a was 0.57 ± 1.04. The correlation
coefficients for the relationship between chlorophyll-a and
phycocyanin are 0.54, 0.36, and 0.87 for the July 12, 2019,
August 16, 2019, and October 08, 2019 sampling dates,
respectively.

As time progressed over the three sampling dates, we observed
increasing chlorophyll-a concentrations relative to the
concentration of phycocyanin (Figure 2). Chlorophyll-a
concentrations were highest on October 08, 2019 (31.5 ±
6.16 μg/L), while the July 12, 2019 and August 16, 2019

concentrations were similar, 11.6 ± 11.6 μg/L and 13.8 ±
5.93 μg/L, respectively. The August 16, 2019 and October 08,
2019 sampling events had comparable phycocyanin
concentrations of 1.89 ± 1.14 μg/L and 3.37 ± 1.95 μg/L,
respectively. The largest phycocyanin concentrations were
obtained on July 12, 2019 (8.88 ± 5.70 μg/L). As a result, the
July 12, 2019 sampling event observed a higher average
phycocyanin to chlorophyll-a ratio of 1.48 compared to
average ratios of 0.19 and 0.10 for the August 16, 2019 and
October 08, 2019 events, respectively. Only chlorophyll-a was
measured on August 07, 2019 and the mean ± standard deviation
was 23.0 ± 6.54 μg/L (n � 9). The coefficients of variation for
chlorophyll-a are 100.0, 28.4, 42.9, and 19.5% for July 12, 2019,
August 07, 2019, August 16, 2019, and October 08, 2019,
respectively. The coefficient of variation for chlorophyll-a for
just the CL03 sites in the Lower Arm on August 16, 2019, where
coincident AUV and sUAS were taken, is 33%. The coefficients of
variation for phycocyanin are 64.2, 60.4, and 57.9% for July 12,
2019, August 16, 2019, and October 08, 2019, respectively. In
addition to the chlorophyll-a and phycocyanin measurements on
August 16, 2019 and October 08, 2019, we also identified the
dominant genera of cyanobacteria as Dolichospermum,
Gleotrichia, and Microcystis. The authors would like to note
that the results from the July 12, 2019 and August 16, 2019
sampling dates are believed to be underestimated. This is because
the sample filters from those dates arrived at room temperature
after transfer from lab to another.

To provide context to our measurements of cyanobacteria, we
measured meteorological forcing and lake surface temperature
data. Meteorological variables and lakes surface temperatures
were variable between the different basins (Table 2). Generally,
the Lower and Oaks arms were windier than the Upper Arm.
During our sampling dates, wind direction was generally from the
Northwest direction. The air and lake surface temperature results

FIGURE 2 | Phycocyanin and chlorophyll-a concentrations in discrete samples collected on July 12, 2019, August 16, 2019, and October 08, 2019. The July 12,
2019 sampling event observed a higher average phycocyanin to chlorophyll-a ratio compared to the other sampling dates. The averages for each sampling date are
shown as the solid symbols with the vertical error bars representing the standard error of the chlorophyll-ameasurements and the horizontal error bars representing the
standard error of the phycocyanin measurements. There is an outlier (phycocyanin � 25.6 μg/L and chlorophyll-a � 27.2 μg/L) from July 12, 2019 that is not shown
in this plot for visualization purposes.
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are varied but there appears to be some tendency of the Lower and
Oaks Arms to have warmer air temperature than the Upper Arm.
The relative humidity results also do not show a clear trend.
Finally, each basin has similar Secchi depths, but the Oaks Arm
consistently had the lowest clarity.

In Situ and Satellite-Based Spectra and
Cyanobacteria Index Values
We calculated hyperspectral reflectance data from
spectroradiometer measurements at several locations on August
07, 2019, August 16, 2019, and October 08, 2019 along with
concurrent multispectral satellite reflectance data for all
sampling locations and times. Paired hyperspectral/multispectral
reflectance data from the spectroradiometer measurements and
corresponding Sentinel-3a pixels on August 07, 2019, August 16,
2019 and October 08, 2019 were examined across the spectrum
600–750 nm, where most of the spectral features for phycocyanin
and chlorophyll-a occur (Figure 3). The in situ measurements
yield a much smoother curve with 150 bands of spectroradiometer
data across the range of wavelengths (600–750 nm). Sentinel-3a
captured reflectance across 21 bands, and thus, yielded coarser
curves. The spectra are presented across the full visible spectrum
(400–750 nm) in Supplementary Figure S1.

The hyperspectral measurements demonstrate spectral
signatures expected from algal and cyanobacteria-laden waters
including strong chlorophyll-a absorption of red light at ∼675 nm
(Figures 3A,C,E). A slight phycocyanin absorption feature
(characterized by reflectance trough) is observed at
615–630 nm as well as the reflectance peak at ∼650 nm. The
absorption feature at 615–630 nm is more prominently observed
in the data for the two August sampling dates.

The coarser reflectance plots (Figures 3B,D,F) of the
multispectral satellite data do not show the absorption and
reflectance features specific to phycocyanin and chlorophyll-a
as strongly as the hyperspectral reflectance plots. The
absorption feature by chlorophyll-a of red light (674 nm) is
present, while the phycocyanin spectral features at 620 and
650 nm are absent. The reflectance values from the satellite
data are higher than the reflectance values from the
spectroradiometer data particularly for the August 07, 2019
sampling date, which has the highest satellite reflectance values
of any of the sampling dates.

The CI calculated from the spectroradiometer measurements
(Field CI) were compared to the corresponding CI from satellite
measurements (Satellite CI) (Figure 4). CI was calculated both
using the original equation defined by Wynne et al. (2008 and
2010) and the revised equation which includes an exclusionary
criterion for the spectral shape around wavelength 665 nm
defined by Matthews et al. (2012) and validated for lakes in
the eastern US by Lunetta et al. (2015). CI without the
exclusionary criterion shows some seasonal trend with the
highest CI observed on August 07, 2019 with decreasing CI
until the lowest values on October 08, 2019 (Figure 4A). This
trend is consistent between the Field CI and the Satellite CI. We
obtained the highest CI values using satellite measurements, which
were four-fold larger than the overall mean Satellite CI, and only
two-fold larger when using field measurements. The Field CI are
generally higher than the Satellite CI for August 07, 2019 whereas
the reverse is true for October 08, 2019. The standard deviation was
1.04 × 10−3 for all the calculated CI values. All field reflectance data
failed to exceed the SS{665} exclusionary criterion threshold,
resulting in Field CI values of zero (Figure 4B). The same is true
for the October 08, 2019 satellite data.

TABLE 2 |Meteorological forcing and lake surface temperature data results. Data provided (columns from left to right) include sampling date, basin sampled, air temperature,
relative humidity, wind speed, wind direction, Secchi depth, and lake surface temperature. Generally, the Lower and Oaks arms were windier and have warmer air
temperature than the Upper Arm during our sampling events. The Oaks Arm consistently has the lowest clarity based on the Secchi depths.

Date Basin Air temp (°C) RH (%) Wind v (ms−1) Wind dir Secchi za (m) Lake
surface temp (°C)

Daily average
12-Jul-2019 UA 22.8 57 0.1 N – 25

LA 26.2 48 1.8 NW – 24
OA 25.6 47 2.2 NW – 24.4

07-Aug-2019 LA 21.8 49 1.8 WSW – 26.9
16-Aug-2019 LA 28.2 38 0.9 WSW – 26.2

OA 27.7 43 1.3 NW – 26.8
08-Oct-2019 UA 16.9 44 4.0 SW – 18.7

LA 18.6 51 2.2 WNW – 19
OA 18.6 50 2.2 WNW – 18.7

Value at 12:00 PDT
12-Jul-2019 UA 24.2 69 0.1 N 2.9 24.8

LA 29.6 52 0.1 NE 2.6 24.2
OA 27.5 51 2.2 W 2.0 24.8

07-Aug-2019 LA 27.8 41 2.7 NW 2.5 27.1
16-Aug-2019 LA 29.7 45 1.8 NW 2.6 26.7

OA 31.1 40 0.1 WSW 1.2 27.5
08-Oct-2019 UA 22.7 39 0.1 W 1.2 20.6

LA 21.5 42 1.8 W 1.1 20.2
OA 21.5 42 1.8 W 1.0 20.4

aSecchi depths are single values measured at time of sampling. 12-Jul-2019 Secchi depth measured on 13-Jul-2019; 08-Oct-2019 Secchi depth measured on 11-Oct-2019.
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Relationship Between Cyanobacteria Index,
Chlorophyll-a, and Phycocyanin
The relationship between Field CI and chlorophyll-a was significant
(p < 0.05) on only one sampling day (August 07, 2019). For Satellite

CI and chlorophyll-a, the relationship was significant for three
sampling days, and there was a significantly positive relationship
across all sampling days (Figures 5A,B). The October 08, 2019 did
not fit the same trend as the other dates for Field CI vs. chlorophyll-a.

FIGURE 3 | Spectra from in situ spectroradiometer (A, C, E) and Sentinel-3 pixel data (B, D, F) for different sampling dates (A–B) August 07, 2019 (C–D) August
16, 2019, and (E–F) October 08, 2019. The field spectra demonstrate spectral features for phycocyanin and chlorophyll-a which are less discernable in the coarser
satellite data. Each colored line represented the results from a different discrete sample site (n � 61 total over three sampling dates) for the spectroradiometer data and a
different pixel (n � 42 total over three sampling dates) for satellite data. The vertical gray lines represent the spectral band centers of Sentinel-3a. Note the difference
in the y-axis range between the reflectance plots. Reflectance is dimensionless.
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For this date, we observe the highest chlorophyll-a concentrations
but also the lowest Field CI (Figure 5A). The Satellite CI to
chlorophyll-a does not show this same trend with the October
08, 2019 Satellite CI values similar to the other sampling dates
(Figure 5B). The CI to phycocyanin relationship is less clear,
although there is a positive linear trend evident in the July 12,
2019 data (only Satellite CI is available for this date) (Figures 5C,D).

We found significant relationships (corrected p-value< 0.05, where
p-value is corrected using Benjamini and Hochberg False Discovery
Rate procedure) for only six out of sixteen evaluated linear models
between Field and Satellite CI to chlorophyll-a and phycocyanin for all
the available data as well as each individual sampling date. Of those
significant relationships, we found moderately low to moderate
correlation (r2 values between 0.08–0.39) for most of the linear
models (Table 3). The linear model between Field CI and
chlorophyll-a for August 07, 2019 and Satellite CI and chlorophyll-
a for July 12, 2019 both demonstrated moderately high correlation
with r2 values of 0.68 and 0.65, respectively (Table 3).

Small Unmanned Aerial System
Measurements
Conditions on the day of sUAS deployment were clear and
calm, with sunny skies and low to no cloud cover. The sUAS-

derived chlorophyll-a ranged from 0 to 39.7 μg/L. For image
presentation of the data the upper and lower bounds were set
to the 99.7 percentile (3σ � 18.2 μg/L) and 0.3 percentile (−3σ �
11.7 μg/L), respectively (Figure 6). The chlorophyll-a
concentrations are variable throughout the site with higher
concentrations observed near the northern portions and
through an area in the eastern portion of the site. The
average calculated chlorophyll-a value was 15.3 mg/L ±
0.90 μg/L. The coefficient of variation for the sUAS-derived
chlorophyll-a is 5.92%.

Autonomous Underwater Vehicle
Measurements
Concurrent with the sUAS flights, an AUV was deployed on
August 16, 2019 in the Lower and Oaks Arms of Clear Lake.
Sensors mounted on the AUV collected continuous
measurements of turbidity, chlorophyll-a, and CDOM during
deployment at an average depth below the free water surface of
∼0.6 m in the Lower Arm and ∼0.9 m in the Oaks Arm
(Figure 7). Conditions were mild on the day of deployment
with low winds (<5 kph) and low wave heights (<10 cm). Lake
clarity was low, similar to other observations made for our

FIGURE 4 | (A) CI without the SS{665} exclusionary criterion for field spectroradiometer measurements (y-axis) and the Sentinel-3 measurements (x-axis) for the
same sampling dates (B) CI with the SS{665} exclusionary criterion for field spectroradiometer measurements (y-axis) and the Sentinel-3 measurements (x-axis) for the
same sampling dates. The CI calculated without the SS{665} exclusionary criteria demonstrates good correlation between the field CI and satellite CI. The CI calculated
with the exclusionary criteria for the field measurements resulted in CI equal to zero in all cases. The CI calculated with the exclusionary criteria for the satellite
measurements resulted in CI equal to zero for all of October 08, 2019 data.
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FIGURE 5 |Relationship of (A)CI from field spectroradiometer data to chlorophyll-a concentration (B)CI from satellite data to chlorophyll-a concentration (C, D) as
(A, B) except for to phycocyanin concentration. Note the difference in axes ranges between each plot. Linear models are shown for those relationships that are significant
(corrected p-value < 0.05, where p-value is corrected using Benjamini and Hochberg False Discovery Rate procedure). Few of the modeled relationships are significant.

TABLE 3 | Linear model parameters as well as the model performances of results of least-squares linear regression analysis relating the calculated CI to observed
chlorophyll-a and phycocyanin concentrations. Only the linear models Field CI vs Chlorophyll-a (07-Aug-2019), Satellite CI vs Chlorophyll-a (All Data, 12-Jul-2019, and
16-Aug-2019), and Phycocyanin vs Satellite CI (12-Jul-2019 and 8-Oct-2019) are significant (corrected p-value < 0.05, where p-value is corrected using Benjamini and
Hochberg False Discovery Rate procedure). The significant models have positive linear slopes. The significant models have moderately low to moderately high correlation.

Field CI vs Chlorophyll-a Satellite CI vs Chlorophyll-a

Date Linear model r2 Linear model r2

All data chla(μg/L) � −1991 × CI + 26.2 0.05 chla (μg/L) � 3040 × CI + 16.7 0.08
12-Jul-2019 NA NA chla (μg/L) � 4733 × CI + 8.3 0.65
07-Aug-2019 chla (μg/L) � 7539 × CI + 7.5 0.68 chla (μg/L) � 3438 × CI + 17.4 0.19
16-Aug-2019 chla (μg/L) � 6297 × CI + 5.2 0.21 chla (μg/L) � 8336 × CI − 0.8 0.21
08-Oct-2019 chla (μg/L) � 6858 × CI + 31.6 0.14 chla (μg/L) � 7342 × CI + 24.2 0.15

Field CI vs Phycocyanin Satellite CI vs Phycocyanin

Date Linear model r2 Linear model r2

All data chla (μg/L) � −457 × CI + 3.1 0.06 chla (μg/L) � 452 × CI + 3.3 0.01
12-Jul-2019 NA NA chla (μg/L) � 1813 × CI + 7.6 0.39
16-Aug-2019 chla (μg/L) � −353 × CI + 2.8 0.01 chla (μg/L) � 466 × CI + 1.1 0.01
08-Oct-2019 chla (μg/L) � 1276 × CI + 2.9 0.04 chla (μg/L) � 3468 × CI − 0.4 0.32
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other sampling events. Due to technical difficulties during
operations, data were only obtained from the Lower Arm
site CL03 and the Oaks Arm site OA04. Additionally, AUV
and sensor hardware issues during deployment may have
resulted in strings of zero values, which were subsequently
removed from the dataset (Figure 7).

The turbidity, chlorophyll-a, and CDOM results from the
AUV mission showed spatial variability varied among the basins.
Turbidity was higher in the Oaks Arm than in the Lower Arm,
with averages of 1.58 ± 1.13 NTU and 0.57 ± 0.72 NTU,
respectively, and maximum values approximately double in
the Oaks Arm (Figures 7A,B). The coefficients of variation for
turbidity are 127% in the Lower Arm and 71.4% in the Oaks Arm.
The chlorophyll-a results had higher maxima in the Lower Arm
than in the Oaks Arm (58.6 μg/L and 23.8 μg/L, respectively), but
higher average chlorophyll-a concentrations in the Oaks Arm
compared to the Lower Arm (18.7 μg/L and 9.26 μg/L,
respectively) (Figures 7C,D). The coefficients of variation for
chlorophyll-a are 119% in the Lower Arm and 15.2% in the Oaks
Arm. The CDOM concentrations in the Lower Arm were below
detection. This occurs because the factory determined offset and
scaling factor can result in some CDOM values calculated from
the fluorescence counts to be below the detection limit, which we
interpret as zero values. The CDOM concentrations ranged from
0 to 9.12 ppb in the Oaks Arm and averaged of 2.78 ± 1.55 ppb
(Figures 7E,F). The coefficient of variation for CDOM in the
Oaks Arm is 56.0%.

Co-Located and Coincident Measurements
We used the concurrent and co-located measurements to obtain a
more complete characterization of a cyanobacteria bloom in the
Lower Arm of Clear Lake on August 16, 2019 (Figure 8). There is
observed variability in the measurements between the different
sensors and platforms employed at the site. As seen in the
southwest corner of the site, the lowest discrete sample result

is observed (8.21 μg/L chlorophyll-a), whereas the adjacent AUV
fluorometry results indicate chlorophyll-a levels with
concentrations as high as 54.3 μg/L. The range of average ±
standard deviation of chlorophyll-a values for this site on this
sampling date were 15.3 ± 5.02 μg/L for the discrete samples,
9.26 ± 11.1 μg/L for the AUV fluorometer results, and 15.3 ±
0.90 μg/L for the sUAS-derived chlorophyll-a results. In
addition to variance between platforms, high spatial
heterogeneity is also observed inside each satellite pixel. At
sampling site (CL03) on August 16, 2019, the discrete sample
chlorophyll-a results range from 8.21 to 22.6 μg/L; the AUV
chlorophyll-a results range from 1.06 to 58.6 μg/L; and the sUAS-
derived chlorophyll-a results range from 0 to 39.7 μg/L.

Critical Scales of Variability
Chlorophyll-a concentrations are spatially autocorrelated in the
AUV and sUAS data. The semivariograms have a mostly
asymptotic shape with the value of semivariance increasing
with distance and then leveling off (Figure 9). The spatial
autocorrelation is stronger in the AUV data than the sUAS,
and especially in the AUV mission in the Lower Arm where the
variation overall is very low between measurements. From the
semivariograms of the AUV-acquired chlorophyll-a
measurements (Figures 9A,B) and also considering their log-
log plots, we find the CSV occurs at distances of 70–100 m. From
the semivariograms and the log-log plots of the sUAS-derived
chlorophyll-a measurements, we find the CSV occurs at roughly
175 m on average with the CSV ranging from 70 to 300 m for the
21 lines evaluated (Figures 9C,D).

A semivariogram analysis was also completed on the AUV
turbidity and CDOM data. The semivariogram analysis on the
CDOM data did not yield any meaningful results for the Lower
Arm and the Oaks Arm mostly demonstrated a leveling off
pattern (see Supplementary Figure S2). The CSV for the
CDOM is estimated to be ∼100 m based on the semivariogram

FIGURE 6 | sUAS-derived chlorophyll-a (μg/L) image from August 16, 2019. Spatial variability is observed in the sUAS-derived chlorophyll-a image with higher
concentrations observed near the northern portions and through an area in the eastern portion of the site.
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for the Oaks Arm data. The semivariogram for the turbidity data
were similar to those for chlorophyll-a (see Supplementary Figure
S3). The CSV for Turbidity is estimated to be between 90 and 100m.

DISCUSSION

While satellite tools have clear advantages with early detection of
cyanoHABs, which has quantifiable socioeconomic benefits (Stroming
et al., 2020), they do not adequately characterize bloom spatial
variability (Kutser, 2009). This study used a multiplatform sampling
approach to measure cyanoHABs to characterize spatial variability of
the blooms. Each sampling method provides a perspective of a
cyanobacteria bloom from a different vantage point. Satellite
imagery provides high coverage and temporal resolution of the
bloom. sUAS-acquired imagery provides good coverage and high
spatial resolution of the surface of the bloom. Measurements from

the AUV provides high spatial resolutionmeasurements of the blooms
underwater. Finally, the discrete samples and spectroradiometer
measurements provide context and validation of the other methods
as well as an understanding of the surface forcing conditions.

Synoptic View of Cyanobacterial Blooms
Each of cyanobacteria sampling methods employed was a
compromise of the sampling scale and spatial, temporal, and,
in some cases, spectral resolution. While previous studies have
used AUV, (e.g. Robbins et al., 2006; Blackwell et al., 2008) and
sUAS platforms, (e.g. Kislik et al., 2018), a more complete picture
of cyanobacterial blooms is obtained if these high resolution
platforms are deployed concurrently, which, to our knowledge,
has not been done to date. When comparing the measurements
from the discrete samples, AUV, and sUAS, we find the discrete
samples fail to capture the spatial variability in chlorophyll-a
concentrations (Figure 8). Based on their coefficients of

FIGURE 7 | AUV data results for (A, B) turbidity (NTU) (C, D) chlorophyll-a (μg/L), and (E, F) CDOM (ppb) for (A, C, E) the Lower Arm and (B, D, F) the Oaks Arm.
Running averages (5 consecutive results) are shown for each plot in black. Turbidity is higher in the Oaks Arm than the Lower Arm. The maximum chlorophyll-a
concentrations are higher in the Lower Arm while the average concentrations are roughly twice as high in the Oaks Arm. CDOM values were zero in the Lower Arm and
averaged 2.7 ppb in the Oaks Arm.
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variation, the discrete samples only capture 28% of the
variability measured by the AUV. The discrete samples are
limited to six disparate locations and only represent the
chlorophyll-a concentration for each discrete point. However,
these sample results can be scaled up to the higher spatial
resolution provided by the AUV and sUAS measurements by
providing accurate measurements to scale the AUV results to
(Figures 7C,D) and by informing models relating the sUAS
measurements to chlorophyll-a concentrations (Figure 6).
These higher resolution measurements demonstrate the
inherent spatial variability of these blooms and how discrete
sampling under resolves bloom dynamics.

The high spatial variability is also observed within each satellite
pixel. The intra-pixel variability is reflected in the standard
deviation of the AUV chlorophyll-a measurements within each
pixel, which was on average 5.37 μg/L (n � 10, only pixels with a
minimum of 20 AUV points were included). Using this average
standard deviation, we find at least 28 discrete samples are needed
to estimate the chlorophyll-a concentrations of a bloom (95%
confidence interval with 2 μg/L margin of error) within a 300 ×
300 m pixel (Israel, 1992). Collecting this many samples is
impractical for many research and monitoring programs, which
highlights the need for calibrated multi-platform measurement
programs to more precisely measure and track bloom densities.

The inter-basin variability is observed with respect to the
meteorological data. Generally, and although the observed
differences are slight, the meteorological and lake surface
temperature data (Table 2) near the time of sampling (values at
12:00 local time) show the air and lake water surface temperatures
were warmer and the wind speeds were calmer (thus lower mixing)

for the basins that demonstrated the highest ratio of phycocyanin to
chlorophyll-a for that sampling date, which indicates dominance by
cyanobacteria over phytoplankton. These include the Upper Arm
for July 12, 2019, OaksArm forAugust 16, 2019, and theUpper Arm
for October 08, 2019. These observations are consistent with the
understanding that cyanobacteria favor warm temperatures and
calm, stratified lake conditions, and in such conditions will
outcompete phytoplankton (Paerl and Huisman, 2008). Our
results support the concern that cyanobacteria blooms are
expected to increase with increasing global temperatures
associated with climate change (Paerl and Huisman, 2009).

Critical Scales of Variability of
Cyanobacterial Blooms
CSVs of cyanobacterial blooms are the length scales necessary
for detecting the spatial variability or “patchiness” observed in
blooms. Previous phytoplankton and cyanobacteria bloom
CSVs have been less than the spatial resolution for Sentinel-
3a (300 m). Wrigley and Horne (1974) visually identified
length scales on the orders of meters for detecting the
microstructure variation of cyanoHABs in Clear Lake. They
further identified complex patterns of cyanoHABs as not being
detectable by conventional boat-based sampling techniques.
Blackwell et al. (2008) computed the CSV for fluorescence
measurements from an AUV-platform at sub-kilometer scales
ranging from 23 to 170 m in coastal systems. While the work of
Blackwell et al. (2008) was not in a freshwater system, they
used a similar vehicle and instrumentation as in this study.
Moses et al. (2016) evaluated scales of variability of ocean color

FIGURE 8 | Concurrent measurements of cyanobacteria bloom in the Lower Arm of Clear Lake (site CL03) on August 16, 2019. Variability is observed in the
chlorophyll-ameasurements between the different sampling platforms. Also, there is high intra-pixel variability of the chlorophyll-ameasurements. Image includes grab
sample chlorophyll-a observations (large circles), AUV chlorophyll-a measurements (small circles), and sUAS-derived chlorophyll-a as background image. Sentinel-3a
satellite pixels shown as dark grey outlines.
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parameters (including phytoplankton) in coastal systems by
determining the distance at a critical change in slope for the
plot of distance vs. coefficient of variance using ship-based,
airborne, and satellite data. They found scales of variability
between 75 and 600 m, with an average distance of 200 m.
Finally, Vander Woude et al. (2019) identified scales of
variability for cyanoHABs in the Great Lakes from
hyperspectral data using decorrelation scales. They found
scales of variability ranged from 8 to 335 m.

The CSV is necessary to improve sampling plans by selecting
the sampling resolution necessary to adequately characterize a
bloom (Vander Woude et al., 2019). We find the AUV
fluorometer results correspond to a CSV of 70–100 m and the
sUAS-derived chlorophyll-a concentrations correspond to a CSV
of approximately 175 m. These length scales of variability are less

than the 300 m pixel size of the OLCI-derived CI. The CSV found
by this and other studies (e.g. Blackwell et al., 2008; Moses et al.,
2016; Vander Woude et al., 2019) should be used to inform how
distant to sample for cyanobacteria to ensure the bloom is
adequately resolved. Additionally, the CSV may inform sensor
specifications for future satellite development to have spatial
resolutions equal to or finer than this CSV while maintaining
similar temporal and spectral scales to Sentinel-3 to adequately
monitor cyanobacterial blooms (such as those found by Moses
et al., 2016 for sensor design over coastal targets).

Challenges of Multimodal Platform
Sampling
Despite being able to characterize cyanobacteria blooms, there are
significant challenges associated with each method detailed in this

FIGURE 9 | Semivariograms of chlorophyll-ameasurements from (A) AUVMissions in Lower Arm (B) AUVMission in Oaks Arm; and (C) lines extracted from sUAS
data in Lower Arm. Panel (D) shows the log-log scale of the sUAS semivariograms shown in panel (C), which is used for determining the CSV. Semivariograms
demonstrate spatial autocorrelation with close data points having less variation. The semivariograms level off at the CSV at roughly 70–100 m for the AUV data and at
175 m on average for the sUAS data, with values ranging from 70 to 300 m for the 21 lines evaluated.
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work. Firstly, as shown in the CSV analysis, one of the biggest
disadvantages of using satellite imagery is that the CSV for
cyanobacteria blooms are finer than the Sentinel-3a pixel size of
300m. Secondly, the results of this research also indicate poor
performance of the revised CI algorithm for Clear Lake. Despite
these challenges, this and other satellite-based remote sensing tools are
invaluable for water managers and researchers because of their repeat
measurements at high temporal frequency and spatial coverage, which
provides data on cyanoHABs where monitoring programs are
currently lacking (Matthews, 2011). Furthermore, even without
calibration and validation, we speculate the CI algorithm still
provides valuable information on development and trends of
cyanoHABs.

As shown in Figure 4A, the CI algorithmwithout the exclusionary
criterion demonstrates good performance as the results of the CI
follow a 1:1 line on the plot. In contrast, the revised CI algorithmusing
the exclusionary criterion, as suggested for best practice (Stumpf et al.,
2015; Wynne et al., 2018), produces false negatives. The CI with the
exclusionary criterion calculated from the spectroradiometer
measurements results in all CI values equal to zero (Figure 4B).
Additionally, the CI with the exclusionary criterion calculated from
the satellite measurements from October 08, 2019 results in all CI
values equal to zero. Visual observations in the field and microscopy
confirmed that cyanobacteria were present on the sampling dates, in
contradiction to the CI results equal to zero.

The exclusionary criteria of SS{665} is less sensitive than the
original SS{681} CI algorithm of spectral shape around 681 nm, and
thus does not adequately capture low-level cyanobacteria blooms
(Urquhart et al., 2017). The spectral shape around 665 nm (SS{665})
is influenced by increased absorption of the 620 nm band by
phycocyanin compared to chlorophyll-a (Lunetta et al., 2015).
Our results show an absorption feature at 615–630 nm (Figures
3A,C,E), however, the depression is not significant enough to change
SS{665} from negative to positive in order for the revised CI
algorithm with the exclusionary criterion to identify
cyanobacteria. Although the cyanobacteria blooms during our
sampling dates were not as large as has been observed on Clear
Lake in other years, there were still cyanobacteria present despite not
being detected using the CI algorithm with the exclusionary
criterion. The SS{665} exclusionary criteria is designed to reduce
the rate of false-positives (Lunetta et al., 2015), however, as seen in
our results, it also increases the rate of false-negatives by failing to
detect low-concentration blooms. These low detections of
cyanobacteria are still valuable (Matthews et al., 2012) as they
allow water managers to observe and prepare for the onset of
blooms. We recommend continued data collection and research
to tune the exclusionary criterion for improved performance at Clear
Lake, and likely other lakes and reservoirs. The exclusionary criterion
could be tuned by adjusting the zero threshold so that low level
blooms would result in a SS{665} greater than the revised threshold.
This adjustment could improve the algorithm results for detection of
low level cyanobacteria blooms.

In addition to evaluating the performance of the CI algorithm,
we evaluated the relationship of CI to chlorophyll-a and
phycocyanin. Previous research has shown mixed success
when comparing CI to chlorophyll-a and to phycocyanin.
Poor correlations between CI and phycocyanin and

chlorophyll-a have been reported by Kudela et al. (2015) and
Xu et al. (2019), respectively. However, there has been better
success by others (Tomlinson et al., 2016 found an r2 � 0.95 for
the relationship of CI to chlorophyll-a). Additionally, on a
continental scale, the CI has shown good correlation to
cyanobacterial abundance (cells/mL) (Lunetta et al., 2015;
Clark et al., 2017). We feel the mixed success of establishing a
relationship of CI to chlorophyll-a and phycocyanin in this study
may be due to limitations, both in scope and robustness, of our
dataset. Our dataset does not validate nor disprove the CI
algorithm, rather our work shows that more research is needed.

Inland waters are optically complex (Ortiz et al., 2019)
meaning the application of remote sensing tools is challenging.
Use of spectral decomposition methods aimed at identifying the
specific components of a bloom may prove more useful for some
inland waters, where spectral shape algorithms such as the CI are
unsuccessful. This is shown by Avouris and Ortiz (2019) with
their use of varimax-rotated principal component analysis to
partition the spectral components of a bloom, although they also
acknowledge that further research is needed. The confounding
factors for use of remote sensing methods in optically complex
waters and our findings in the variation in the CI to chlorophyll-a
and phycocyanin relationship emphasize the need to better
understand how CI performs on specific waterbodies of
interest when making decisions based on CI values.

On a finer scale, one of the main challenges associated with using a
fluorometer sensor on an AUV is the effect of non-photochemical
quenching (NPQ) on chlorophyll-ameasurements. NPQ is the process
by which plants and algae dissipate excess light energy than is needed
for photosynthesis (Müller et al., 2001). NPQ is also known to occur in
cyanobacteria and reduces chlorophyll-a fluorescence (Humbert and
Törökné, 2017). Therefore, ground truthing data using fluorometry
for comparison to satellite remote sensing productsmust account for
the of decrease in daytime chlorophyll-a fluorescence due to NPQ
(Carberry et al., 2019). In situ data collected for comparison to
satellite products is ideally collected near the surface of the water and
close to the time of daytime satellite overpass, which in the case of
Sentinel-3a forClear Lake is approximately 12:00 pm (local time). This
directly conflicts with collection of chlorophyll-a data using
fluorometry to avoid the impacts of NPQ, which occur closer to
thewater surface and follow the diurnal parabolic pattern of shortwave
radiation (see the results of Austin, 2019). Further research into
alleviating and/or accounting for the impacts of NPQ on
fluorescence measurements for satellite validation is needed.
However, even without this NPQ correction applied to
fluorescence datasets, we find AUV-acquired fluorescence data are
useful for determining the CSV of the blooms even if the relative
magnitude of chlorophyll-a concentrations remains poorly quantified.

In addition to the challenges associated with fluorometry
measurements on the AUV, we found difficulties with the other
remote sensing methods employed in this research. Although aerial
imaging with sUAS flights provides a larger coverage and higher
spatial resolution view of a cyanobacterial bloom, there are challenges
associated with the sUAS multispectral imaging method. One
challenge is that there may be uncertainty in the sUAS
measurements due to a potentially lower signal to noise ratio of
the MicaSense camera over a water body, due to the lower radiance
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level than typical terrestrial targets (Kim et al., 2020). Additionally, the
coarser spectral resolution of the typical multiband multispectral
camera limits the ability to capture the fine and narrower
absorption features observed for phycocyanin and chlorophyll-a in
the hyperspectral spectroradiometer data (Figure 3). The MicaSense
camera used for our study has very few bands at limited wavelengths,
and this did not allow for calculation of the CI from the sUAS data,
although it did allow for calculation of chlorophyll-a from a known
band ratio relationship (Ha et al., 2017). A locally tuned chlorophyll-a
band ratio equation could not be determined for Clear Lake because
there were not enough coincident measurements (n � 6). There are
consequences of using a published equation tuned to another study
site (Lake Ba Be in Vietnam in the case of Ha et al., 2017). We
speculate that a locally tuned relationship would yield more accurate
results. In the case of this study, the unscaled sUAS-derived
chlorophyll-a measurements using the published equation were
much lower than the discrete sample chlorophyll-a results. For this
reason, we scaled the sUAS-derived chlorophyll-a results so that the
average equals the average of the adjacent discrete samples. This
allowed for easier comparison of the datasets. Additionally, the main
purpose of this study is to evaluate the variability of cyanobacteria
blooms and not necessarily themagnitude of the chlorophyll-a results.
Thus, we acknowledge that the sUAS-derived chlorophyll-a results
without a locally tuned equation, although scaled to the discrete
sample results, should not be used to directly consider the magnitude
of the concentrations individually. Further research with additional
discrete sampling coincident to sUAS flights is needed to develop a
locally tuned equation relating chlorophyll-a to a reflectance band
ratio for this site in order for themagnitudes of the sUAS chlorophyll-
a results to be meaningful. Finally, we encountered challenges with
photomosaicing the sUAS images over water because there are
limited static reference points for image matchups and further
challenges due to wave action. Due to these challenges, we were
not successful in photomosaicing the images from the second
sUAS site (LA03) and that data is not presented in this paper.

CONCLUSION

This research used a multiplatform sampling approach to evaluate
the spatial variability including the CSV of cyanobacteria blooms.
We find the CSV for cyanobacteria blooms is on the order of
70–175 m, which should be considered when planning sampling
efforts. A multiplatform approach provides a more holistic view of
a cyanobacteria bloom as each sampling method is completed at
different sampling scales and resolutions. We found high intra-
pixel variability and also variability between methods at discrete
sampling locations. Based on intra-pixel variability of our
measurements, we determined a sample size of 28 discrete
samples per 300 × 300 m pixel is necessary to adequately
characterize the variability of a bloom. Finally, we find low
sensitivity of the revised CI algorithm with exclusionary criteria,
which failed to detect cyanobacteria at Clear Lake during our
sampling events. As such, the exclusionary criterion should be
tuned for Clear Lake and potentially for all lakes across California,
with the zero threshold adjusted to improve the algorithm results
for low level cyanobacteria blooms.

With many lakes across the globe experiencing an increase in the
frequency and severity of harmful algal blooms of cyanobacteria
(Taranu et al., 2015; Ho et al., 2019), there is a need to develop of
tools for water managers to understand and predict their inception.
Satellite-based remote sensing tools have emerged as a solution for
water managers to monitor the onset and development of harmful
algal blooms (Coffer et al., 2020). This research provides data for
ground-truthing and algorithm validation, which is essential before
widespread use and data interpretation of these satellite products can
take place. However, this higher resolution data from autonomous
platforms also demonstrates that satellite measurements under-
resolve the spatial variability of cyanoHABs. Therefore, strategies
will need to be used to scale data between these different platforms.
Validation of remote sensing tools will also allow for high temporal
resolution cyanobacteria data to be easily accessible by water
managers which will aid as a decision support tool. This data will
reveal daily, seasonal, and interannual trends, which will be useful to
researchers with understanding the drivers of cyanobacteria blooms
and determining appropriate engineering solutions to manage large
scale harmful algal blooms.
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Evaluation of Unoccupied Aircraft
System (UAS) Remote Sensing
Reflectance Retrievals for Water
Quality Monitoring in Coastal Waters
Anna E. Windle* and Greg M. Silsbe

Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States

Unoccupied aircraft systems (UAS, or drones) equipped with off-the-shelf multispectral
sensors originally designed for terrestrial applications can also be used to derive water
quality properties in coastal waters. The at-sensor total radiance a UAS measured
constitutes the sum of water-leaving radiance (LW) and incident radiance reflected off
the sea surface into the detector’s field of view (LSR). LW is radiance that emanates from the
water and contains a spectral shape and magnitude governed by optically active water
constituents interacting with downwelling irradiance while LSR is independent of water
constituents and is instead governed by a given sea-state surface reflecting light; a familiar
example is sun glint. Failure to accurately account for LSR can significantly influence Rrs,
resulting in inaccurate water quality estimates once algorithms are applied. The objective of
this paper is to evaluate the efficacy of methods that remove LSR from total UAS radiance
measurements in order to derive more accurate remotely sensed retrievals of scientifically
valuable in-water constituents. UAS derived radiometric measurements are evaluated
against in situ hyperspectral Rrs measurements to determine the best performing method
of estimating and removing surface reflected light and derived water quality estimates. It is
recommended to use a pixel-based approach that exploits the high absorption of water at
NIR wavelengths to estimate and remove LSR. Multiple linear regressions applied to UAS
derived Rrs measurements and in situ chlorophyll a and total suspended solid
concentrations resulted in 37 and 9% relative error, respectively, which is comparable
to coastal water quality algorithms found in the literature. Future research could account for
the high resolution and multi-angular aspect of LSR by using a combination of
photogrammetry and radiometry techniques. Management implications from this
research include improved water quality monitoring of coastal and inland water bodies
in order to effectively track trends, identify and mitigate pollution sources, and discern
potential human health risks.

Keywords: multispectral, water quality, chlorophyll a, total suspended solids, unoccupied aircraft system, drones,
coastal
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INTRODUCTION

Unoccupied aircraft systems (UAS, drones) provide on-demand
remote sensing capabilities at ultra-high resolution (<5 cm)
without the challenges of cloud cover, land adjacency, and
atmospheric effects associated with satellite and airborne
remote sensing (Anderson and Gaston, 2013). UAS are
becoming an integral tool in studying and managing coastal
ecosystems (Johnston, 2019), with applications ranging from
thermal remote sensing (Lee et al., 2016; Dugdale et al., 2019)
and pollutant tracking (Arango and Nairn, 2019; Morgan et al.,
2020), to habitat and population assessments (Gray et al., 2018;
Windle et al., 2019). The increased spatial and temporal
resolution provided by UAS remote sensing can enhance
ecological and biogeochemical research of aquatic ecosystems.
UAS have the potential to characterize the degree of
eutrophication, identify the extent and movement of harmful
algal blooms, and resolve fine-scale coupled biophysical processes
in coastal and inland water bodies.

A number of recent studies have derived optical water quality
parameters using UAS imagery and are listed in Table 1. In these
studies, UAS are equipped with a variety of either multispectral or
hyperspectral imagers that measure light at discrete wavebands in
the visible and near-infrared (NIR) spectrum. Following the large
body of research borne from earth observing satellites (Werdell
and McClain, 2019), many of these studies use a combination of
UAS optical payloads, calibrations, and numerical methods to
determine remote sensing reflectance (Rrs) defined as:

Rrs(θ, Φ, λ) � LW(θ, Φ, λ)
Ed(λ) (1)

where LW (W m−2 nm−1 sr−1) is water-leaving radiance, Ed (W
m−2 nm−1) is downwelling irradiance, θ represents the sensor
viewing angle between the sun and the vertical (zenith), ɸ
represents the angular direction relative to the sun (azimuth),
and λ represents wavelength.

Like all above-water optical measurements, UAS do not
measure Rrs directly as the at-sensor total radiance (LT, W
m−2 nm−1 sr−1) constitutes the sum of LW and incident
radiance reflected off the sea surface into the detector’s field of
view, herein referred to as surface-reflected radiance (LSR). LW is
radiance that emanates from the water and contains a spectral
shape and magnitude governed by optically active water
constituents interacting with downwelling irradiance, while LSR
is independent of water constituents and is instead governed by a
given sea-state surface reflecting light; a familiar example is sun
glint. Here we define UAS total reflectance (RUAS) as:

RUAS(θ, Φ, λ) � LT(θ, Φ, λ)
Ed(λ) (2)

where

LT(θ, Φ, λ) � LW(θ, Φ, λ) + LSR(θ, Φ, λ) (3)

As UAS measurements are typically performed close to the
surface (e.g. United States Federal Aviation Administration’s
maximum allowable altitude of 122m), atmospheric
measurement effects are routinely assumed to be negligible and
ignored (Zeng et al., 2017; Schneider-Zapp et al., 2019). Indeed, this
is a key advantage of UAS imagery as atmospheric effects over
coastal environments can introduce significant uncertainty in
satellite-based measurements (Gordon and Clark, 1980).
However, failure to accurately account for LSR can significantly
influence Rrs, resulting in inaccurate water quality estimates once
algorithms are applied (Su, 2017; Zeng et al., 2017).

The objective of this paper is to evaluate the efficacy of
methods that remove LSR from total UAS radiance
measurements in order to derive more accurate remotely
sensed retrievals of scientifically valuable in-water constituents.
UAS derived radiometric measurements are evaluated against in
situ hyperspectral Rrs measurements to determine the best
performing method of estimating and removing surface
reflected light and derived water quality estimates.

TABLE 1 | Summary of existing UAS aquatic remote sensing literature including the UAS sensor(s) used, radiometric quantity studied (where Rrs represents UAS derived
remote sensing reflectance and RUAS represents UAS derived total reflectance), whether the study accounted for surface reflected radiance (LSR), and the water quality
parameter(s) derived.

Reference UAS sensor(s) Radiometric
quantity

Removal
of LSR?

WQ parameter(s)

Zeng et al. (2017) Ocean optics STS-VIS spectrometers (hyperspectral) RUAS No Chl a, CDOM, turbidity
Shang Z. et al. (2017) AvaSpec-dual spectroradiometers (hyperspectral) Rrs Yes Chl a
Su, (2017) Canon powershot S110 RGB and NIR sensors RUAS Yes Chl a, secchi disk depth, turbidity
Choo et al. (2018) MicaSense RedEdge and DLS (multispectral) RUAS No Chl a
Baek et al. (2019) MicaSense RedEdge and DLS (multispectral) Rrs Yes Chl a
Becker et al. (2019) Ocean optics STS-VIS spectrometers (hyperspectral) RUAS No Cyanobacteria index, chl a TSS
Arango and Nairn.
(2019)

MicaSense RedEdge and DLS (multispectral) RUAS No Secchi disk depth, chl a, TSS,
TN, TP

Olivetti et al. (2020) Parrot sequoia (multispectral) RUAS No TSS
McEliece et al. (2020) Sentera multispectral sensor (4 visible bands) RUAS No Chl a, turbidity
Kim et al. (2020) MicaSense RedEdge-M and DLS (multispectral) Rrs Yes Chl a (but not focus of paper)
Castro et al. (2020) MicaSense RedEdge and DLS (multispectral) Rrs No Chl a
O’Shea et al. (2020) Resonon Pika L spectrometer (hyperspectral) *deployed on a

tower, not UAS
Rrs Yes Chl a
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Background/Theory
If a water surface was perfectly flat, incident light would reflect
specularly and could be measured with known viewing geometries.
This specular reflection of a level surface is known as the Fresnel
reflection; however, most water bodies are not flat as winds and
currents create tilting surface wave facets. Due to differing orientation
of wave facets reflecting radiance from different parts of the sky, LSR
can vary widely within a single image. A common approach to model
LSR is to express it as the product of sky radiance (Lsky, W m−2 nm−1

sr−1) and ⍴, the effective sea-surface reflectance of the wave facet
(Mobley, 1999 ; Lee et al., 2010):

LSR(θ, Φ, λ) � ρ(θ, Φ, λ) p Lsky(θ, Φ, λ) (4)

Rearranging Eqs. 3 Eqs. 4, ⍴ can be derived by:

ρ(θ, Φ, λ) � LT(θ, Φ, λ) − Lw(θ, Φ, λ)
Lsky(θ, Φ, λ) (5)

Given measurements of Lsky, an accurate determination of ⍴ is
critical to derive Rrs by:

Rrs(θ, Φ, λ) � RUAS(θ, Φ, λ) − Lsky(θ, Φ, λ) p ρ(θ, Φ, λ)
Ed(λ) (6)

Methods using the statistics of the sea surface, for a given wind
vector, can be used to predict ⍴; tabulated values have been derived
from numerical simulations with modelled sea surfaces, Cox and
Munk wave states (wind), and viewing geometries (Cox and Munk,
1954; Mobley, 1999; Mobley, 2015). Mobley (1999) provides the
recommendation of collecting radiance measurements at viewing
directions of θ � 40° from nadir and ɸ � 135° from the sun to
minimize the effects of sun glint and nonuniform sky radiance with a
⍴ value of 0.028. The suggested viewing geometries and ⍴ value from
Mobley (1999) have been used to estimate and remove LSR in UAS
remote sensing studies (Ruddick et al., 2006; Shang S. et al., 2017; Baek
et al., 2019; Kim et al., 2020). However, more recent studies have
shown that ⍴ can be spectrally dependent due to the degree of sky
polarization and the ratio of diffuse to direct light; assuming a spectally
constant ⍴ in a roughened sea surface with multi-angular wave facets
can lead to erroneous estimates of LSR (Lee et al., 2010;Mobley, 2015).
Lee et al. (2010) proposed a spectral optimization approach using
spectral inherent optical properties to model Rrs, which has been
applied in UAS remote sensing studies (O’Shea et al., 2020).

An alternative method to remove LSR relies on the so-called dark
pixel assumption that assumes LW in the NIR is negligible due to
strong absorption of water. Where this assumption holds, at-sensor
radiance measured in the NIR is solely LSR (Gordon and Wang,
1994; Siegel et al., 2000) and allows⍴ to be calculated if Lsky is known.
Studies have used this assumption to estimate and remove LSR;
however, the assumption tends to fail in more turbid waters where
high concentrations of particles enhance backscattering and LW in
theNIR (Siegel et al., 2000; Lavender et al., 2005). Other novel image-
processing techniques such as nonlocal mean filtering and a
matching pixel by pixel algorithm have been proposed to reduce
the effects of LSR variation from UAS imagery; however, these
region-specific methods exhibit some limitations for applications
in other water bodies (Su, 2017; Totsuka et al., 2019).

METHODS

Study Area
This study was conducted in the Choptank River, a major tributary
of the Chesapeake Bay (United States). The 1,756 km2 coastal plain
watershed is dominated by agriculture and forest with a relatively
low population density, transitions from non-tidal, freshwater
reaches to a brackish, tidal mouth, and is eutrophic (Fisher et al.,
2021). Data from eight stations located downriver and extending
from the mouth of the Choptank River were collected on September
16, 2020 with a relatively clear sky, data from eight stations located
up river were collected on October 1, 2020 with varying cloud cover,
and data from thirteen stations located in between the downriver
and upriver stations were collected on October 22, 2020 with a clear
sky (Figure 1).

In situ Rrs
At each station, a set of hyperspectral radiometers (TriOS
RAMSES; Rastede DE) deployed on a float provided in situ Rrs

measurements at every station. The float held a downwelling
irradiance sensor (Ed) and an inverted radiance sensor (Lw)
positioned above the surface water and with a small black
plastic cone that extended just below the surface to block LSR
(i.e. light blocking technique, Ahn et al., 1999; Lee et al., 2019).
The TriOS radiometers collect 256 wavelength bands at 3.3 nm
intervals within the 320–950 nm range. All in situ hyperspectral
measurements were interpolated at 1 nm intervals. In order to
compare these measurements to the UAS, spectral response
functions (SRFs) of the five MicaSense wavebands were
applied to the in situ hyperspectral Rrs data (Figure 2).

In situ Water Quality Data
At each station, surfacewater grab samples were collected tomeasure
chlorophyll a and total suspended solids (TSS) concentrations.
Chlorophyll a concentration was measured in duplicate following
EPAmethod 445.0 (Arar and Collins, 1997). Briefly, 100ml of water
from each station was filtered on 47mm GF/F filters, immersed in
20ml of 90% acetone and placed in a dark freezer for 24 h.
Chlorophyll a fluorescence was measured on 5ml of extract
using a fluorometer (Turner 10 AU Fluorometer, San Jose CA)
calibrated against chlorophyll a pigment standards (DHI, Horsholm
DK) before and after acidification with 0.1 ml of 6 N hydrochloric
acid. TSS was measured using a gravimetric analysis (American
Public Health Association (APHA), 1995). 350ml of water from
each station was filtered using pre-weighed and combusted (450°C)
GF/F filters and placed into a 105°C drying oven for at least 2 h.
Filters were reweighed and the concentration was calculated by TSS
(mg/L) � Wpost(g) - Wcombust(g) x 1,000/V(L).

Multispectral Sensor: MicaSense
RedEdge-MX Sensor
The MicaSense RedEdge-MX sensor (MicaSense, Seattle,
Washington, United States) is a 8.7 × 5.9 × 4.5 cm
multispectral camera capable of capturing five simultaneous
bands on the electromagnetic spectrum in 12 bit radiometric
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resolution: blue (475 nm center, 32 nm bandwidth), green
(560 nm center, 27 nm bandwidth), red (668 nm center, 14 nm
bandwidth), red edge (717 nm center, 12 nm bandwidth), and
NIR (842 nm center, 57 nm bandwidth). The sensor has up to one
capture per second, a 47.2° field of view with a spatial resolution of
8 cm per pixel at 120 m altitude. The sensor was mounted on a

DJI Phantom four Pro UAS using a 10° 3D-printed mount which
resulted in a direct nadir viewing angle while in flight (Figure 2).
The sensor also includes a downwelling light sensor (DLS) which
measures Ed in the same spectral wavebands during in-flight
image captures. The DLS measures light incident on a diffuser,
providing a downwelling hemispherical irradiance measurement

FIGURE 1 | Location of Choptank River (38.63N, −76.33W) in Chesapeake Bay, Maryland, United States and locations of stations where data was collected.

FIGURE 2 | (A) MicaSense RedEdge-MX multispectral sensor and downwelling light sensor (DLS) collects total radiance (LT) (sum of water-leaving radiance, Lw
and surface reflected radiance, LSR) and downwelling irradiance (Ed) measurements while in a low altitude flight. Sky radiance (Lsky) is collected by positioning the sensor
at 40° angle from zenith away from sun. (B) MicaSense RedEdge-MX multispectral sensor and DLS collects LT and Ed in five wavebands: red, green, blue, red-edge,
near-infrared. (C) Approximate spectral response functions of MicaSense RedEdge-MX sensor.
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(Mamaghani and Salvaggio, 2019). The DLS was mounted above
the UAS to eliminate shading and collected incident light at a 0°

zenith angle. Images were collected at an average flight altitude of
70 m which resulted in 0.02 m pixel resolution (923 × 1219).

At each station, measurements of LT, Lsky, and Ed were
collected by the MicaSense RedEdge-MX multispectral sensor
and DLS. First, measurements of Lsky were collected by
positioning the camera 40° from zenith with an approximate
azimuthal viewing direction of 135° and taking several image
captures (Figure 2). Lsky at each waveband was computed as the
grand mean of all station-specific measurements. Next, the UAS
was manually flown and images were automatically captured
every 2 s. TheMicaSense multispectral sensor has a built-in global
positioning system (GPS) and inertial measurement unit (IMU)
which recorded the positioning (latitude, longitude, altitude) and
orientation (yaw, pitch, roll) of each image capture. Thirty image
captures taken at the highest altitude from each station were used
in subsequent analyses. This information along with solar
elevation, image size, and coordinated universal time (UTC)
time, were recorded in the metadata of each image capture.

Pre-Processing
Data collected by the multispectral sensor were radiometrically
calibrated using a Python workflow provided by MicaSense1. The
process of converting raw pixel values (digital number, DN) into
total spectral radiance (LT) values with units of W/m/sr/nm is
given in Eq 7:

LT � V(x, y) p a1
g

p
DN − DNBL

te + a2y − a3tey
(7)

The radiometric calibration compensates for dark pixel
subtraction (DNBL), sensor gain (g), exposure settings (te), and
lens vignette effects (V(x,y)). Coefficients a1, a2, and a3 are
radiometric calibration coefficients and x,y is the pixel column
and row number, respectively. Lens distortion effects, such as
band-to-band image alignment, were removed from image
captures by an unwarping procedure and wavebands were
aligned to form a stacked TIFF for each image set.

A filtering procedure was applied to all images to remove
specular sun glint and instances of the boat when it was present in
the image. Studies have suggested filtering out high total radiance
values, or instances of specular sun glint, before removing LSR
from LT (Hooker et al., 2002). Specular sun glint arises when
direct sunlight reflects off of a wave facet or surface at the viewing
angle of the sensor. Sun glint pixels were masked using an
empirical upper limit of RUAS measurements in the NIR, and
this mask was then propagated to pixels at all other wavebands.
Specifically, in situ measurements and values from radiative
transfer model simulations (see methods below) were used in
Eq. 8 to solve for an upper limit of RUAS(NIR) and pixels with
values greater than this upper limit were masked in each
waveband.

RUAS(NIR) � Rrs(NIR) + ρ(NIR) p Lsky
Ed

(8)

Where Rrs(NIR) � 0.005 is based on in situmeasurements in this
study and consistent with other turbid waters (Tzortziou et al.,
2006), ⍴(NIR) varied depending on station, and Lsky/Ed � 0.39 is
derived from radiative transfer model simulations (HydroLight
v6.0, Numerical Optics Ltd., United Kingdom). A lower limit of
RUAS(green) � 0.007 was used to mask out the dark canopy of the
boat when present in images.

Removal of Surface Reflected Light (LSR)
At each station, LSR was estimated using one of four different
methods to ultimately derive Rrs following Eq. 6. These methods
are provided below, and herein referred to as “⍴LUT,” “NIR � 0,”
“NIR > 0” and “Deglinting.” Resultant UAS Rrs estimates were then
compared to paired in situ Rrs data across stations and wavebands.
Statistical evaluations to assess the relationship included root mean
square error (RMSE), relative root mean squared error (RRMSE),
coefficient of determination (R2), and p-values.

⍴LUT. The ⍴LUT method follows from Mobley (1999) and
involved developing a look-up table (LUT) of ⍴ values using
HydroLight simulations. HydroLight is a numerical model that
solves the radiative transfer equation to compute the radiance
distribution within and at the surface of a water body. Inputs
include absorbing and scattering properties of a water body, the
nature of the wind-blown sea surface (Cox-Munk sea surface
slopes), and the sun and sky radiance incident on the sea surface
(Mobley, 1999). Outputs include the full radiance distribution,

FIGURE 3 | Visualization of the three-dimensional ⍴ look-up table
derived from HydroLight simulations with varying solar zenith angles, wind
speed (m/s), and cloud cover (%) corresponding to a nadir viewing angle.

1MicaSense RedEdge Image Processing Tutorials. Retrieved online at https://
github.com/micasense/imageprocessing.
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including an effective ⍴ value for a range of geometries and
wavelengths. Batch HydroLight runs incorporating varying solar
zenith angles (0, 10, 20, 30, 40, 50, 60°), wind speeds (0, 2, 4, 6,
8 m/s), and fractional cloud cover (0, 0.2, 0.4, 0.6, 0.8, 1%) were
used to develop a multidimensional look-up table of ⍴ values that
correspond to a nadir viewing angle (Figure 3). HydroLight
returned spectrally explicit ⍴(θ, ɸ, λ) values and MicaSense
SRFs were applied to ⍴(θ, ɸ, λ) for each waveband. ⍴(θ, ɸ, λ)
values were obtained for each station according to the solar zenith
angles obtained from MicaSense metadata, wind speed was
collected from the Global Forecast System2, and cloud cover
was determined by the Lsky images. Data in this study were
collected at solar zenith angles ranging from 36.5 to 58.6°, wind
speeds ranged from 1.1 to 3.1 m/s and cloud cover ranged from 0
to 60%.

NIR � 0. LSR was also estimated using a pixel based dark pixel
assumption to derive ⍴. Assuming Rrs(NIR) equals 0, Eq. 6 can be
rearranged to solve for ⍴ (Eqs. 9 and 10). This ⍴ value is used to
calculate Rrs across all wavebands (Eq. 11).

0 � LT(NIR) − Lsky(NIR) p ρ (9)

ρ � LT(NIR)/Lsky(NIR) (10)

Rrs(θ, Φ, λ) � RUAS(θ, Φ, λ)

− Lsky(θ, Φ, λ) p (LT(NIR)/Lsky(NIR))
Ed(λ) (11)

NIR > 0. Since the dark pixel assumption is invalid in turbid
waters including the Chesapeake Bay (Siegel et al., 2000) an
alternative pixel based approach was developed to instead
estimate a baseline Rrs(NIR). Specifically, Rrs(NIR) was estimated
empirically by a nonlinear regression using in situ Rrs(NIR) and
RUAS data (Figure 4). The ratio of RUAS(blue)/RUAS(rededge) led to
the most robust predictions of Rrs(NIR) using Eq 12:

Rrs(θ, Φ, λ) � 0.025e−5.469pRUAS(blue)/RUAS(red edge) + 0.00013 (12)

Conceptually, this relationship makes sense because with
increasing particle concentrations, water becomes less blue and
Rrs(NIR) increases.

“Deglinting.” LSR was also estimated following the “deglinting”
methods of Hochberg et al. (2003) and Hedley et al. (2005). For
each station, a minimum NIR value was determined by finding
the lowest 10% of RUAS(NIR) across all images. For each band, a
linear regression was made between all RUAS(NIR) and
RUAS(visible) values and the slope (bi) was determined. Each
pixel was corrected by subtracting the product of bi and the NIR
brightness of the pixel (Hedley et al., 2005):

Rrs(i) � RUAS(i) − bi(RUAS(NIR) −min(RUAS(NIR))) (13)

Water Quality Retrievals
Rrs values from each LSR removal method were compared against in
situ chlorophyll a and TSS data (n � 28) using multiple linear
regressions. The best performing model (highest R2 and lowest
RMSE, RRMSE, p-values) was used in a stepwise model selection by
Akaike information criterion (AIC, “stepAIC” in R). The AIC
stepwise regression iteratively added and removed wavelengths in
order to determine the combination of data that resulted in the best
performing model with low prediction error, while taking into
account model simplicity. Rrs values were used as input into
optical algorithms derived from the best performing multiple
linear regressions and mean chlorophyll a and TSS concentration
at each station was obtained by averaging values across all images.
The resulting arrays were georeferenced using the Python libraries
“CameraTransform” (Gerum et al., 2019) and “Rasterio” using
archived metadata including latitude, longitude, image width,
image height to position the images accurately in a known
coordinate system (WGS84). Georeferenced arrays were exported
as individual TIFFs and mapped using ArcGIS Pro (ESRI Inc.
Redlands, CA, United States).

RESULTS

In situ Data
Chlorophyll a concentration ranged from 5.19 to 53.30 ug/L with
an average of 17.13 ± 10.96 ug/L. TSS concentration ranged from
19.94 mg/L to 39.69 mg/L with an average of 28.25 ± 5.21 mg/L.
In general, in situ Rrs spectra were representative of a eutrophic
system (Figure 5, Gitelson et al., 2007; Spyrakos et al., 2018). Due
to absorption of chromophoric dissolved organic matter
(CDOM) and chlorophyll a in lower wavelengths, Rrs is low in
the blue region with a distinct peak in the green region

FIGURE 4 | Nonlinear relationship between a blue (475 nm) to red edge
(717 nm) ratio of total UAS reflectance to in situ Rrs in the NIR band (842 nm).
An exponential model was used to estimate UAS derived Rrs(NIR) baseline in
order to estimate LSR.

2Wind speed data was retrieved from https://earth.nullschool.net/about.html.
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(∼550 nm). A secondary peak in the red region (∼700 nm)
corresponds to chlorophyll fluorescence emission (Spyrakos
et al., 2018). Overall, spectra collected from upriver stations on
10/01/20 were larger in magnitude and contained a tertiary peak
in the NIR region (∼800 nm).

Removal of Surface Reflected Light (LSR)
UAS measurements of Lsky were approximately proportional to
the fourth power of the wavelength (Lsky ≈ λ−4, Figure 5) and
were used with estimations of ⍴ to calculate and remove LSR from
RUAS measurements at each station. Figure 6 illustrates the initial
masking and methods to remove LSR using an individual UAS

image taken in the green band. When LSR was estimated using the
⍴ look-up table (⍴LUT), Rrs values did not change much from
RUAS values; however, Rrs values using the pixel-based dark pixel
assumptions (NIR � 0, NIR>0) and “deglinting” approach
declined and became more homogenous across pixels (Figure 6).

UAS derived reflectance measurements from each LSR
removal method were plotted as spectra (Figure 7) and
compared against in situ Rrs values (Figure 8). UAS
reflectance spectra are similar in shape to in situ Rrs spectra
and display a distinct peak in the green band (560 nm) and
often a secondary peak in the red band (668 nm)
corresponding to chlorophyll a reflectance and fluorescence,

FIGURE 5 | (A) In situ remote sensing reflectance (Rrs) spectra collected with hyperspectral TriOS radiometers and (B) Sky radiance (Lsky) spectra collected with
MicaSense RedEdge-MX multispectral camera at stations along the Choptank River on 9/16/20 (blue), 10/01/20 (brown), and 10/22/20 (green).

FIGURE 6 | Example of an individual UAS image (green band) with different radiometric values: (A) RUAS, (B) RUAS with initial sun glint masking and (C–F) remote
sensing reflectance (Rrs) using various methods to remove surface reflected light: (C) ⍴ look-up table (LUT) from HydroLight simulations, (D) Dark pixel assumption with
NIR � 0, (E) Dark pixel assumption with NIR >0, (F) Deglingting methods following Hochberg et al. (2003).
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respectively (Figure 7). Spectra collected on the second
sampling day (upriver sites) shift to longer wavelengths
likely due to scattering of inorganic particles (Figure 7).
RUAS spectra are higher in magnitude and are overestimated
when compared to in situ Rrs due to the inclusion of LSR (R2 �
0.55, RMSE � 0.004, p < 0.05). When LSR is estimated using the
⍴LUT, spectra are similar in shape to in situ spectra, but are
higher in magnitude and overestimated compared to in situ
measurements (R2 � 0.85, RMSE � 0.003, p < 0.05). When LSR
is estimated with the dark pixel assumption (NIR � 0), Rrs

spectra are lowest in magnitude, had the poorest fit to in situ
data (R2 � 0.18, RMSE � 0.004, p < 0.05), and produced
negative Rrs values in the lower wavelengths. This is not
surprising given that the in situ measurements in the NIR
(Figure 5A) are not negligible which leads to an
overestimation in LSR. When LSR is estimated using a
basline NIR value (NIR>0), Rrs spectra are higher in
magnitude with a lower error but still indicate negative
values in the lower wavelengths, indicating LSR was still
slightly overestimated (R2 � 0.50, RMSE � 0.002, p < 0.05).
Rrs spectra with the “Deglinting” approach are similar in shape
to in situ spectra but are slightly higher in magnitude
(Figure 7). This approach contained the second highest
correlation and lowest RMSE (R2 � 0.65, RMSE � 0.002,
p < 0.05), but still tended to overestimate Rrs values (Figure 8).

Water Quality Retrieval Algorithms
Rrs measurements with LSR estimated using a baseline NIR value
(NIR>0) performed best when compared to in situ chlorophyll a data
(R2 � 0.37, RMSE � 5.89, RRMSE � 37%, p < 0.05). A stepwise model
selection by AIC demonstrated that the green, red edge, and NIR
bands weremost important in estimating chlorophyll a concentration
(Figure 9, R2 � 0.42, RMSE � 5.90, RRMSE � 37%, p < 0.05) and a
remotely sensed chlorophyll a algorithm was determined as:

Chlorophyll a (ug/L) � 24.02 + Rrs(560)
* − 4337.88 + Rrs(717) * 9639.75 + Rrs(842)

* − 2922.80

Rrs measurements with the “deglinting” technique performed
best when compared to in situ TSS data (R2 � 0.72, RMSE � 2.53,
RRMSE � 9%, p < 0.05). A stepwise model selection by AIC
demonstrated that the blue, red, red edge, and NIR bands were
most important in estimating TSS concentration (Figure 9, R2 �
0.73, RMSE � 2.53, RRMSE � 9%, p < 0.05) and a remotely sensed
TSS algorithm was determined as:

TSS (mg/L) � 30.57 + Rrs(475) * 1364.86 + Rrs(668) *−5255.88 + Rrs(717) * 2548.08 + Rrs(842) * 4579.36
Algorithms were applied to respective UAS derived Rrs values

and average chlorophyll a and TSS concentrations were
mapped, along with mosaiced georeferenced TIFFs of

FIGURE 7 | Total UAS reflectance (RUAS) (A) and remote sensing reflectance (Rrs) spectra using various methods to remove surface reflected light: (B) ⍴ look-up
table from HydroLight simulations, (C) Dark pixel assumption with NIR � 0, (D) Dark pixel assumption with NIR >0, (E) Deglinting methods following Hochberg et al.
(2003), and (F) In situ Rrs spectra from TriOS sensors with MicaSense SRFs applied. Negative values are not shown in plots.
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FIGURE 8 | Comparison of UAS radiometry and in situ Rrs in all bands at each station (n � 28) using different methods to remove surface reflected light after initial
sun glint masking. (A) Total UAS derived reflectance (RUAS), (B) ⍴ look-up table from HydroLight simulations, (C) Dark pixel assumption with NIR � 0, (D) Dark pixel
assumption with NIR >0, (E) Deglinting methods following Hochberg et al. (2003). Negative values are not shown in plots.

FIGURE 9 | Comparison between in situ and modelled (A) chlorophyll a concentration and (B) TSS concentration from multiple linear regressions.
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individual image captures (Figure 10). Average chlorophyll a
concentration tended to increase at upriver sites while average
TSS concentrations were higher at downriver sites (Figure 10).
This trend was also seen in the in situ data. Within the mosaic of
individual TIFFs, slight variations in chlorophyll a and TSS
concentration are visible (Figure 10).

DISCUSSION

This study is one of the first to compare methods to remove
surface reflected light from high resolution UAS multispectral
measurements. An initial filtering procedure and four methods
to remove LSR were evaluated against in situ Rrs measurements.
Water quality algorithm performance is compared to those
found in the literature. Results have broad implications for
improving UAS derived water quality measurements in
coastal waters, but several aspects and caveats of this study
merit additional discussion.

Performance of Methods to Remove
Surface Reflected Light (LSR)
Removing surface reflected light from the total radiance
measured by a UAS ensures only water-leaving information is
used as input into water quality retrievals. Initial filtering

techniques successfully masked instances of specular sun glint
and non-water objects (i.e. boat) in the UAS imagery using
empirical upper and lower Rrs limits. This primary step
ultimately improved final Rrs measurements and derived water
quality products. While the magnitude of Lsky can impact LSR, the
spectral dependence (∼λ−4) is constrained and can be measured;
therefore, the effective sea-surface reflectance of a wave facet (⍴)
needs to be accounted for. Nonetheless, it is important to consider
the impact of the varying absolute magnitude of Lsky and future
work should analyze the effect of Lsky variability on UAS Rrs

measurements.
The ⍴LUT method utilized a ⍴ lookup table approach developed

from HydroLight simulations where ⍴ values were obtained
depending on the solar zenith angle, wind speed, and cloud cover
at the time of UAS data collection. Mobley (1999) HydroLight
simulations led to recommendations of specific sensor viewing
angles with a corresponding constant ⍴ value to reduce effects of
LSR; however, most consumer gradeUAS sensors andmounts do not
have the ability to change viewing angles and are fixed at a nadir
viewing angle. Therefore, the ⍴ values in the look-up table
correspond to nadir viewing angles. This method resulted in
UAS Rrs values that were generally greater than in situ Rrs values,
indicating LSRwas underestimated. This canmost likely be attributed
to a constant ⍴ value that was used to estimate LSR across all pixels in
each image, which averaged out the multifaceted characteristic of a
water surface.

FIGURE 10 | (A) Average chlorophyll a concentration across image captures (n � 30) at each station. (B) Example of mosaiced georeferenced TIFFs collected at
one station with chlorophyll a algorithm applied. (C) Average TSS concentration across image captures (n � 30) at each station. (D) Example of mosaiced georeferenced
TIFFs (n � 30) collected at one station with TSS algorithm applied.
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The NIR � 0 and NIR >0 methods took advantage of the NIR
waveband on the multispectral sensor and incorporated aspects
of the dark pixel assumption which allowed LSR to be removed
from visible wavelengths by assuming that 1) a NIR signal is
composed of LSR and/or a spatially homogeneous NIR
component in the water and 2) the amount of LSR in the NIR
band is linearly related to the amount of LSR in the visible bands
(Mobley, 1999; Siegel et al., 2000). Unlike the ⍴LUT method that
applies a single value to an entire image, the dark pixel
assumption approaches estimate LSR on a per pixel basis
which decreases resultant Rrs variability (Figures 6, 8). When
NIR was assumed to be entirely negligible, calculated Rrs values
were generally lower compared to in situ Rrs which can be
attributed to an enhancement of NIR due to the presence of
scattering inorganic particles in turbid waters. Thus, when a
baseline NIR value was estimated, the method performed
better (higher R2, lower RMSE and RRMSE); however,
negative Rrs values in the lower wavelengths indicated LSR was
still likely overestimated at some stations.

The “deglinting” method, modelled off a glint removal algorithm
introduced by Hochberg et al. (2003), and later Hedley et al. (2005),
calculated a constant ‘ambient’ NIR brightness level which was
removed from all pixels in all wavelengths. This approach resulted
in UAS Rrs measurements slightly overestimated compared to in situ
values but produced the highest R2 and lowest RMSE of all methods.
This method was applied by averaging pixel values across all thirty
images collected at each station and is likely to perform better when
applied on individual images.

The ⍴LUT method uses ⍴ values that are based on probability
distributions of sea surface slopes which are related to the scale of
satellite pixel resolution (100–1000 m) (Cox and Munk, 1954).
For images with much higher pixel resolution ( >1–10 m),
statistical assumptions about the surface of water composed of
many reflecting facets are less likely to hold (Kay et al., 2009).
Therefore, to collect accurate water-leaving reflectance
measurements from high resolution UAS imagery, it is
recommended to use a pixel-based approach exploiting the
high absorption of water at NIR wavelengths to estimate and
remove LSR. If a baseline NIR measurement can be retrieved, the
dark pixel assumption should be used to remove LSR. Otherwise,
the ‘deglinting’ methods following Hochberg et al. (2003) and
Hedley et al. (2005) are recommended. In open ocean waters
without a strong influence of optically active properties, a pixel-
based approach assuming NIR is negligible is expected to
perform well.

It is important to note a potential caveat to the LSR method
evaluation. In this study, in situ Rrs measurements were provided
by hyperspectral radiometers with a skylight blocking approach
(Ahn et al., 1999; Lee et al., 2019). This approach consists of
attaching an open-ended apparatus, or tube, to the front of a
downward looking radiance radiometer and lowering it a few
centimeters into the water, blocking surface-reflected light and
allowing for a direct measurement of LW. It is important to note
that measurements from this technique are subject to instrument
self-shading, which is a function of the water’s optical properties,
sun elevation, and the size of the skylight-blocking cone (Zhang
et al., 2017; Lee et al., 2019). Zhang et al. (2017) estimated that

self-shading accounts for approximately 1–20% error under most
water properties and solar positions. Methods to correct for this
self-shading have been derived (Zhang et al., 2017; Yu et al., 2021)
and if applied, have the potential to improve relationships with
UAS Rrs measurements.

Performance of Water Quality Algorithms
Performance of the multiple linear regressions developed in this
study were compared to existing chlorophyll a and TSS
algorithms designed for coastal waters to determine if UAS
measurements can produce accuracy within the range of other
water quality algorithms. Performance of the UAS derived
chlorophyll a multiple linear regression (R2 � 0.43, RRMSE �
37%) is comparable to other chlorophyll a algorithms found in
the literature (Ruddick et al., 2001; Gons et al., 2002; Gitelson
et al., 2007). A three-band chlorophyll algorithm calibrated using
a variety of coastal waters, including the Choptank River, resulted
in a RRMSE of 51.9% (Gitelson et al., 2007), a two-band
algorithm (red/NIR) with adaptive optimization in the second
band calibrated with measurements from the North Sea and Lake
Ijless, Netherlands resulted in a RRMSE of 37% (Ruddick et al.,
2001), and a two-band algorithm (red/NIR) designed for the
Medium Resolution Imaging Spectrometer (MERIS) satellite
sensor and calibrated using a variety of coastal and inland
waters including Lake IJssel (Netherlands), the Chinese Lake
Tau Hu, and the Hudson/Raritan Estuary (New York/New
Jersey) resulted in a standard error of 9.2 ug/L (Gons et al.,
2002). Performance of the UAS derived TSS multiple linear
regression (R2 � 0.73, RMSE � 2.53, RRMSE � 9%) is also
comparable to existing TSS algorithms found in the literature
(Nechad et al., 2010; Novoa et al., 2017). Algorithms including a
single-band (NIR) second-order polynomial and single-band
(red/green) linear models calibrated with measurements from
the Gironde Estuary, France resulted in RRMSE values ranging
from of 9.11–16.41% (Novoa et al., 2017) and a non-linear
regression calibrated with measurements from the Southern
North Sea resulted in RRMSE values less than 30% (Nechad
et al., 2010). Future work will include improving water quality
algorithms.

UAS Sensor Considerations
The innovative use of UAS technology for environmental
research is a relatively new field and researchers are only
beginning to understand and alleviate the various
methodological and sensor performance challenges. Sensors
degrade over time from use and environmental conditions
which can impact the accuracy of the data being collected.
The most recent MicaSense model, the MicaSense RedEdge-
MX, is integrated with low-cost, image-frame complementary
metal-oxide semiconductor (CMOS) sensors, which compared to
typical charged-coupled device (CCD) sensors, tend to generate
more noise and have lower sensitivity levels (Mamaghani and
Savaggio, 2019). In the present study, raw values were
radiometrically calibrated using a workflow1 provided by
Micasense which implements default metadata parameters that
remain the same unless a new factory calibration is performed.
Due to sensor degradation, these values are likely to gradually
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decline over time, lessening the accuracy of the radiometric
calibration processing (Mamaghani and Savaggio, 2019).
Studies have improved sensor performance by performing
vicarious radiometric calibration using ground targets and
panels with known radiometric accuracy, calibrating sensors
using National Institute of Standards (NIST)-traceable
equipment in a laboratory, and developing look-up tables for
correction factors to update calibration parameters (Del Pozo
et al., 2014; Mamaghani and Salvaggio, 2019; Cao et al., 2020).
Baek et al. (2020) conducted an assessment on radiometric
accuracy for the MicaSense RedEdge-MX sensor by comparing
data to hyperspectral sensors with NIST-traceable calibration
(TriOS RAMSES) and showed that MicaSense RedEdge-MX
radiance is approximately 5–16% lower, and irradiance is
approximately 1–20% lower, depending on wavelength (Baek
et al., 2020). The radiometric accuracy of a new or recently/
vicariously calibrated UAS sensor should meet the required
radiometric accuracy of 5% that is expected with ocean color
satellites (McClain et al., 1992).

Precise registration of multispectral bands within a UAS image
capture is also important to derive accurate spectral radiometric
values across pixels. Sources of misregistration include a
difference in the lens location for each band, image acquisition
times, and exposure times which can all influence Rrs and
resulting water quality variables (Kim et al., 2020). In the
present study, images collected in each band were registered
using MicaSense’s default alignment function1. This three step
process unwarps images using built-in lens calibration,
determines a transformation to align each band to a common
band, and crops pixels which do not overlap in all bands.
Although this method seemed to perform well in this study; it
is acknowledged that this type of band registration can perform
poorly with images of locational errors, such as moving water,
and can produce noise even after removing surface reflected light
(Kim et al., 2020). Kim et al. (2020) developed a novel
morphological band registration technique designed for high
resolution water quality analysis which effectively removes
misregistration noise and improves the accuracy of Rrs. Future
aquatic UAS remote sensing work should consider adapting this
technique to improve UAS remotely sensed retrievals over water.

Caveats and Considerations
Many UAS aquatic remote sensing studies use Structure-from-
Motion (SfM) photogrammetric techniques to stitch individual
UAS images into ortho- and georectified mosaics (Arango and
Nairn, 2019; Castro et al., 2020; McEliece et al., 2020; Olivetti
et al., 2020). This approach applies matching key points from
overlapping UAS imagery in camera pose estimation algorithms
to resolve 3D camera location and scene geometry (Westoby
et al., 2012; Arango et al., 2020). Commonly used software (e.g.
Pix4D) provide workflows that radiometrically calibrate,
georeference, and stitch individual UAS images using a
weighted average approach to create at-sensor reflectance 2D
orthomosaics (Olivetti et al., 2020). LSR removal methods and
water quality algorithms can be directly applied to reflectance
orthomosaics to effectively derive water quality products of an
entire water body. However, current photogrammetry techniques

are not capable of stitching UAS images captured over large
bodies of water due to a lack of key points in images of
homogenous water surfaces (Arango et al., 2020).
Orthomosaics of smaller water bodies or rivers can be created
if UAS images contain enough surrounding land features
containing keypoints that the photogrammetry software can
use to successfully stitch the images containing water. This can
be accomplished by increasing flight altitude, with the trade-off of
lower spatial resolution. Alternative methods include a statistical
interpolation method; however interpolated reflectance values
can be imprecise when compared to true reflectance values
(Arango et al., 2020).

Management Implications and Future
Research
Water quality monitoring is important for tracking water quality
trends, identifying and mitigating pollution sources, and discerning
potential human health risks. Traditional in situ based methods of
sampling at discrete stations can be expensive due to high costs for
boat time and analysis and can also potentially omit important water
quality phenomena. Traditional satellite remote sensing can capture
variability throughout time and space; however, limitations
including the presence of clouds, atmospheric effects, land
adjacency effects, and spatial resolution can hinder periodic
monitoring (Shi and Wang, 2009; Becker et al., 2019). UAS fill
an operational gap between in situ and satellite remote sensing
methods.While the current available commercial multispectral UAS
sensor technology is geared toward terrestrial applications, mostly
precision agriculture, the spectral bands have been useful in
retrieving water quality parameters in aquatic water bodies (Choo
et al., 2018; Arango and Nairn, 2019; Baek et al., 2019; Castro et al.,
2020; Olivetti et al., 2020). A UAS sensor package designed for
aquatic environments would undoubtedly improve remotely sensed
retrievals and water quality measurements.

Since UAS are deployed at a low altitude, atmospheric
corrections and remedies to the land adjacency effect are
eliminated. UAS are rapidly deployable and can provide the
spatial and temporal variability required for useful water
quality monitoring in a dynamic and rapidly evolving
environment. UAS can enhance fine-scale physical oceanography
research by resolving small-scale phenomena and physical processes
such as patchy algal blooms, frontal structures, and turbulence
characteristics (Figure 11, Shang Z. et al., 2017; Osadchiev et al.,
2020). UAS remotely sensed water quality retrievals will also likely
improve with the development of lightweight, off-the-shelf
hyperspectral sensors, allowing for higher spatial and spectral
resolution to better distinguish optical properties of the water
(Shang S. et al., 2017; O’Shea et al., 2020).

Future research in turbid coastal waters may benefit from sensor
packages that use longer wavelengths (e.g. shortwave infrared,
SWIR). SWIR wavelengths have shown to be more effective in
satellite atmospheric correction techniques in turbid waters due to
the stronger water absorption relative to NIR (Shi andWang, 2009).
This will be advantageous for removing LSR and will improve Rrs
retrievals in coastal, turbid waters. Future research could also
consider combining UAS radiometry with photogrammetry
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computer vision to estimate LSR. Schneider-Zapp et al. (2019)
developed a method to estimate a hemispherical-directional
reflectance factor (HDRF) from multi-angular UAS
measurements. From a combination of photogrammetry and
radiometry, a precise estimation of the downwelling light sensor
position and orientation can be used to derive a multi-angular
reflectance factor, which has the potential to significantly improve
estimates of the multifaceted aspect of LSR. An alternative approach
to reduce LSR is installing additional hardware to a UAS sensor.
O’Shea et al. (2020) tested a hardware-based vertical polarizer on a
hyperspectral spectrometer which effectively blocked horizontally
polarized reflected skylight. This relatively simple approach could be
an attractive solution to researchers andmanagers who are interested
in applying a single algorithm to Rrs values to derive water quality
parameters and should be further investigated.

CONCLUSION

UAS-based applications of multispectral or hyperspectral remote
sensing in aquatic remote sensing have the potential to effectively
fill current observation gaps in aquatic remote sensing and
provide critical information needed for water quality
forecasting, ecosystem monitoring, and ultimately climate
change research. While atmospheric effects can usually be
ignored in low altitude UAS flights, the effect of sun glint and
surface reflected light should be accounted for in order to obtain
the highest accuracy of water quality data. The inclusion of
surface reflected light can lead to an overestimation of Rrs and

remotely sensed water quality retrievals. This study presents a
comparison of four approaches to remove sun glint and surface
reflected light that can be applied to UAS remote sensing to derive
water quality parameters such as chlorophyll a and TSS
concentration. Overall, the performance of the MicaSense
RedEdge-MX multispectral sensor appears sufficient for
providing high resolution water quality estimates of coastal
water bodies when surface reflected light is removed. Of the
four approaches examined, a pixel-based deglinting procedure
utilizing the brightness of the NIR band performed best when
compared to in situ Rrs measurements. This method also led to
the best estimates of TSS while a pixel-based approach utilizing an
ambient NIR signal to estimate and remove surface reflected light
led to the best estimates of chlorophyll a concentration. Future
work will include improving algorithms for water quality
parameters. Future research should also consider the effects of
sensor calibration and the residual misregistration between bands
of a UAS multispectral camera.
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Intensifying pressure on global aquatic resources and services due to population growth and
climate change is inspiring new surveying technologies to provide science-based information in
support of management and policy strategies. One area of rapid development is hyperspectral
remote sensing: imaging across the full spectrum of visible and infrared light. Hyperspectral
imagery contains more environmentally meaningful information than panchromatic or
multispectral imagery and is poised to provide new applications relevant to society, including
assessments of aquatic biodiversity, habitats, water quality, and natural and anthropogenic
hazards. To aid in these advances, we provide resources relevant to hyperspectral remote
sensing in terms of providing the latest reviews, databases, and software available for
practitioners in the field. We highlight recent advances in sensor design, modes of
deployment, and image analysis techniques that are becoming more widely available to
environmental researchers and resource managers alike. Systems recently deployed on
space- and airborne platforms are presented, as well as future missions and advances in
unoccupied aerial systems (UAS) and autonomous in-water surveymethods. These systemswill
greatly enhance the ability to collect interdisciplinary observations on-demand and in previously
inaccessible environments. Looking forward, advances in sensor miniaturization are discussed
alongside the incorporation of citizen science, moving toward open and FAIR (findable,
accessible, interoperable, and reusable) data. Advances in machine learning and cloud
computing allow for exploitation of the full electromagnetic spectrum, and better bridging
across the larger scientific community that also includes biogeochemical modelers and climate
scientists. These advances will place sophisticated remote sensing capabilities into the hands of
individual users and provide on-demand imagery tailored to research and management
requirements, as well as provide critical input to marine and climate forecasting systems.
The next decade of hyperspectral aquatic remote sensing is on the cusp of revolutionizing the
way we assess and monitor aquatic environments and detect changes relevant to global
communities.

Keywords: imaging spectroscopy, aquatic optics, surface biology and geology (SBG), plankton aerosol cloud and
ocean ecosystem (PACE), Unoccupied Aerial Vehicles (UAV)
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INTRODUCTION

In response to mounting ecological stressors, natural resource
managers look to remote sensing as a means of providing timely
and spatially coherent environmental information that can
inform decision making. However, current products provided
by the ocean color community do not satisfy the needs required
for management of aquatic ecosystems spanning the open ocean
to inland waters. As water surfaces are much darker than
terrestrial surfaces, the signal emerging from the water is
obscured by the atmosphere, when viewed from high altitude
or space, and dedicated sensors with large dynamic ranges and
longer integration times are often required to achieve the
measurement sensitivity needed (Mouroulis et al., 2008). For
many applications, the spatial footprint of space-based ocean
color sensors can be too large (typically 0.5–1 km) and the revisit
time of land-imaging sensors, which have the capability to resolve
coasts and inland waters, is often too infrequent (weekly to
monthly). Further, increases in spatial resolution typically go
hand-in-hand with decreases in spectral resolution, and the
products afforded by limited spectral imagery are high in
uncertainty and low in specificity (Dekker and et al., 2018).
The tradeoffs between spectral, spatial, and temporal sampling
oftenmean that no single sensor or platform can provide all of the
needs for any single user community or application (Muller-
Karger et al., 2018). As a result, current capabilities for
monitoring water quality and biodiversity across diverse
habitats, from lakes and wetlands to coastal pelagic and
benthic communities, have only been demonstrated on limited
scales and have yet to achieve routine operational use by
environmental managers.

Traditional ocean color remote sensing involves multi-
spectral sensors that have a small number of broad
discontiguous spectral bands measuring portions of the
visible and infrared electromagnetic spectrum. These bands
were placed at key wavelength regions mainly designed to
detect the concentration of the primary pigment in
phytoplankton, chlorophyll a (Gordon and Morel, 1983).
Airborne and spaceborne sensor technology has advanced
rapidly in the last few decades to include imaging
spectrometers with continuous spectral coverage throughout
the visible and near-infrared spectrum (VNIR), typically
between 400 and 1,000 nm, and sometimes extending to the
shortwave infrared regions as well (up to 2,500 nm). To
differentiate from multi-spectral sensors with discrete, often
broad wavebands, such imaging spectrometers are commonly
referred to as “hyperspectral” imaging systems. The terms
“hyperspectral imaging” and “imaging spectrometry” are
interoperable. No standard definitions have been adopted as
to the number of bands and associated bandwidths required
for a sensor to be considered “hyperspectral.” Still, generally,
hyperspectral sensors for coastal applications have bandwidths
less than 15 nm and >20 bands in visible wavelengths.
However, sensitivity studies spanning a range of diverse
aquatic water bodies recommend hyperspectral sensors
bandwidths of 5 nm (Wolanin et al., 2016; Vandermeulen
et al., 2017; Dekker et al., 2018). Consequently, the majority

of the present and future hyperspectral sensors have at least 60
bands within the VNIR spectral range (Figure 1).

The field of aquatic hyperspectral remote sensing is advancing
rapidly, and new products are informing water quality
monitoring, as well as the biodiversity of organisms swimming
and floating in pelagic habitats and dwelling on and near the
bottom in benthic habitats (reviewed in Tyler et al., 2016;
Giardino et al., 2019; Kutser et al., 2020). The continuous
spectrum can always be sub-sampled to yield any multispectral
band combination to take advantage of legacy algorithms or to
amplify the signal to noise ratio. However, hyperspectral data
provides potential new applications that are not limited by gaps in
the spectrum based on historic notions of utility in open ocean
ecosystems. Indeed, several multispectral ocean color sensors are
programmable spectrometers resampled onboard to specific
wavebands (e.g., Sentinel-3 OLCI). Utilizing the full spectrum,
even simple approaches that characterize the spectral
dimensionality and variability can be used to identify and
track subtle differences between water masses and over time
that could not be tracked by bulk chlorophyll a estimates
(Vandermeulen et al., 2020). Full-spectrum estimates of the
diffuse attenuation coefficient (Kd) may lead to new insights
about aquatic ecosystems and biodiversity processes like
spectral niche partitioning and complementarity (Striebel
et al., 2009), or behavior and evolutionary traits of aquatic
invertebrates and vertebrates (Russell and Dierssen, 2015;
Cummings and Endler, 2018). Thus, imaging spectrometry can
inspire and support new algorithm concepts that require
continuous and dense spectral sampling. The benefits of
merging hyperspectral imagery with other types of remote
sensing imagery and environmental parameters through
modeling (IOCCG, 2020) will also be an avenue for the future

FIGURE 1 | Architecture of various international missions showing the
tradeoff between number of spectral bands, revisit frequency (X and Y axes,
respectively) and the spatial footprint (approximated as the size of circle). Gray
represent multi-spectral missions and colors represent the hyperspectral
missions. Modified from Hestir et al. (2015a).
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TABLE 1 | Recent reviews including hyperspectral aquatic remote sensing.

Primary
author (# Coauthors)

Title Publisher Year Subjects covered (relevant
to hyperspectral)

Gege and Dekker
(2020) (1)

Spectral and radiometric measurement requirements
for inland, coastal and reef waters

Rem. Sens. 2020 Sensitivity study of measurement needs for inland
and coastal water

Kutser, et al. (2020) (4) Remote sensing of shallow waters–A 50 years
retrospective and future directions

Rem. Sens. Environ. 2020 History, sensors, algorithms, satellite systems, future
directions

Dierssen et al. (2020) (4) Data needs for hyperspectral detection of algal diversity
across the globe

Oceanography 2020 Data recommendations, phytoplankton composition,
future needs

Banks et al. (2020) (10) Fiducial reference measurements for satellite ocean
color

Rem. Sens. 2020 Framework, standards, and protocols for validation
efforts

Jeziorska (2019) (0) UAS for wetland mapping and hydrological modeling Rem. Sens. 2019 Hardware, software, regulations, applications, data
collection and processing

Wu et al. (2019) (3) A review of drone-based harmful algae blooms
monitoring

Environ. Monit.
Assess.

2019 UAVs, sensors, work-flow, algorithms, challenges
and opportunities

Giardino et al. (2019) (12) Imaging spectrometry of inland and coastal waters:
State of the art, achievements and perspectives

Surv. Geophys. 2019 Theory, algorithms, uncertainties, applications, future
directions, in situ observations

IOCCG (2019) (23) Synergy between ocean color and biogeochemical/
ecosystem models

IOCCG Report 19 2019 Assimilation, forecast, and hindcast modeling
relevant to ocean color imagery

CEOS, Dekker et al.
(2018) (15)

Feasibility study for an aquatic ecosystem earth
observing system

Comm. on Earth obs.
Sat. (CEOS)

2018 Spectral, spatial and temporal requirements for
coastal and inland aquatic applications

Lodhi et al. (2018) (2) Hyperspectral imaging of earth observation: Platforms
and instruments

J. Indian Inst. Sci 2018 Sensors, platforms, applications (above water, in-
water, underwater)

IOCCG, Greb et al.
(2018) (23)

Earth observations in support of global water quality
monitoring

IOCCG Report 17 2018 Theory, sensors, approaches and limitations to water
quality

Manfreda et al.
(2018) (22)

On the use of unmanned erial systems for
environmental monitoring

Rem. Sens. 2018 Number of articles per year, sensors, software,
mission planning, inland waters

Khan et al. (2018). (4) Modern trends in hyperspectral image analysis: A
review

IEEE access 2018 HIS analysis approach including deep learning and
artifical intellagence

Muller-Karger et al.
(2018) (52)

Satellite sensor requirements for monitoring essential
biodiversity variables of coastal ecosystems

Ecol. Appl 2018 Societal needs, remote sensing approaches, HIS,
recommendations

Thamaga and Dube
(2018) (1)

Remote sensing of invasive water hyacinth (Eichhornia
crassipes): A review on applications and challenges

Rem. Sens. Appl.
Soc. Environ

2018 History, pubs/year, satellite systems, future directions

Werdell et al. (2018) (14) An overview of approaches and challenges for
retrieving marine inherent optical properties from ocean
color remote sensing

Prog. Oceanogr 2018 Theory, algorithms, uncertainties, future directions

Mishra et al. (2017) (24) Bio-optical modeling and remote sensing of inland
waters

Elsevier 2017 Book with 9 Chapters covering applications of bio-
optics to inland aquatic environments

Gege (2017) (0) Radiative transfer theory for inland waters Elsevier 2017 Radiometry, inherent and apparent optical
properties, bio-optical models

Szabo et al. (2018) (5) Zoomin on aerial surveys Springer 2017 Basic system elements, mapping procedures,
sensors, platforms

Pu et al. (2017) (3) Applications of imaging spectrometry in inland water
quality monitoring - a review of recent developments

Water Air Soil Pollut. 2017 Review of airborne and satellite systems, theory,
algorithms, in situ spectrometers for ground truth,
future outlook

Bracher et al. 2017a (21) Obtaining phytoplankton diversity from ocean color: A
scientific roadmap for future development

Front. Mar. Sci. 2017 State of science, user needs, data gaps and future
directions

Gholizdeh et al. (2016) (2) A comprehensive review on water quality parameters
estimation using remote sensing techniques

Sensors 2016 Hyperspectral systems, airborne and satellite
systems, history, theory, algorithms, etc

Hedley et al. (2016a) (12) Remote sensing of coral reefs for monitoring and
management: A review

Rem. Sens. 2016 Satellite and airborne hyperspectral systems,
applications, products, societal value

Johnsen et al. (2013) (3) The use of hyperspectral imaging deployed on
remotely operated vehicles -- methods and
applications

Woodhead Publ. 2016 Underwater deep imaging with light sources,
corrections for platform dynamics, methods to
ground-truth images

Tyler et al. (2016) (5) Development in earth observation for the assessment
and monitoring of inland, terrestrial, coastal and shelf-
sea waters

Sci. Total Environ. 2016 Satellite sensors, theory, algorithmic approaches,
examples

Hestir et al. (2015) (6) Measuring freshwater aquatic ecosystems: The need
for a hyperspectral global mapping satellite system

Rem. Sens. Environ. 2015 Application and product case studies, sensor
resolution needs, publications/year since 2000

Mouw et al. (2015) (11) Aquatic color radiometry remote sensing of coastal and
inland waters: Challenges and recommendations for
future satellite systems

Rem. Sens. Environ. 2015 Theory, algorithms, satellite systems, in situ
measurements, future recommendations

Palmer et al. (2015) (2) Remote sensing of inland waters: Challenges,
progress, and future directions

Rem. Sens. Environ. 2015 Hyperspectral systems, historical review, future
outlook

(Continued on following page)
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to address a wide range in societal problems including the
response of coastal ocean ecosystems to population growth
and climate change (Muller-Karger et al., 2018).

The motivation for this review emerged from a recent
workshop focused on the advances and challenges of
hyperspectral remote sensing technology applied to coastal
aquatic environments. The workshop, conducted at the
University of Hawai’i at M�anoa on 15 and 16 May 2018, was
convened by the Alliance for Coastal Technologies (ACT) and
sponsored by the National Oceanic and Atmospheric
Administration (NOAA)/U.S. Integrated Observing System
(US.IOOS) (workshop report available at http://www.act-us.
info/workshops.php). The overarching goal of this article is to
present advances and resources relevant to hyperspectral remote
sensing in aquatic ecosystems for those newly diving into the
field, as well as for those already deeply submerged within remote
sensing and aquatic optics. With the advent of new sensor
capabilities across all platforms from orbiting in space, to
flying autonomously over reefs (Joyce et al., 2019), to cruising
along the dark, cold ocean floor (Johnsen et al., 2013),
hyperspectral remote sensing is rapidly growing its user base.
Many resources are already available for algorithm developers,
and users of the data depending on the specific user need. Here,
we have compiled lists of reviews, software, and databases
relevant to developing and implementing aquatic hyperspectral
remote sensing approaches. Finally, we discuss how remote
sensing of coastal aquatic systems might advance in the
coming decade.

A BLAST FROM THE PAST: A BRIEF
HISTORY OF HYPERSPECTRAL IMAGING

Many excellent reviews have been written in the last five years
alone about the history and requirements for aquatic remote
sensing that relate to hyperspectral imaging spectroscopy
(Table 1). Some reviews focus on specific habitats from
open ocean to coastal and inland waters; some review
techniques relevant for data collection or modeling; and,
others focus on applications including water quality
assessment, phytoplankton composition, bathymetry and
benthic cover in optically shallow waters. Here, we build on
those studies to provide a summary of advances made
specifically in imaging spectroscopy for aquatic applications.
This overview is meant to show the breadth of the field and
theoretical studies from the vast oligotrophic ocean to coral
reefs to lakes and rivers.

The origins of the discipline are challenging to pinpoint, as it
arose from a merging of technology and research coming from
limnology and oceanography, as well as building from advances
made in terrestrial, atmospheric, and cryospheric remote sensing.
Wernand (2011) provides a comprehensive overview of the
scientists, their hypothesis and experiments in the historical
development of hydrologic optics since the seventeenth
century that culminated in the theoretical foundations
provided by Raman (Raman, 1922) and Shoulejkin
(Shoulejkin, 1923). Field experiments were also conducted at
that time, such as those done by the limnologist Edison Pettit who
conducted spectroscopic investigations into the volume scattering
and absorption processes underlying the color of Crater Lake,
OR, USA (Pettit, 1936). Modern optical oceanography is
considered to have originated around the 1950s, with the
pioneering research by the Danish oceanographer Nils Jerlov
who established a continuum of optical water types from the clear
pelagic ocean to the turbid coast (Jerlov, 1951, 1963). However, as
noted below, aquatic remote sensing really began in earnest in the
late 1960s and 1970s with theoretical and experimental research
spanning inland, coastal and open ocean environments (reviewed
in Acker, 2015; Kutser et al., 2020).

In the late 1960s, Clarke et al. (1970) detail an airborne
spectroradiometer flown in North Atlantic waters that
demonstrated how increasing amounts of chlorophyll were
found to be associated with a relative decrease in the blue
portion of the spectra and an increase in the green in
backscattered light (Clarke et al., 1970). Concomitantly in
1970, international collaboration on the development of
spectrometers culminated in a sea trial as part of Scientific
Committee on Oceanographic Research (SCOR) Working
Group 15 that included optical measurements in combination
with phytoplankton species composition and sizes, primary
productivity, chlorophyll and nutrients with researchers from
Australia, Denmark, France, Japan, Norway, Russia, Scotland,
and the United States (Tyler, 1970). Collectively, such
international partnerships provided proof-of-concept evidence
for satellite-based ocean color remote sensing. This underpinning
work led to the first ocean color mission, the Coastal Zone Color
Scanner (CZCS), and continues today with the International
Ocean Color Coordinating Group (IOCCG).

In addition to these oceanic studies, many other parallel lines
of research were occurring in the 1970s in the broader field of
experimental and theoretical aquatic optics. Investigations were
beginning in shallow water optics with the mapping of the Great
Barrier Reef using Landsat data (Smith et al., 1975) and the
seminal work of Polcyn et al. (1970) and Lyzenga (1978), which

TABLE 1 | (Continued) Recent reviews including hyperspectral aquatic remote sensing.

Primary
author (# Coauthors)

Title Publisher Year Subjects covered (relevant
to hyperspectral)

Blondeau-Patissier et al.
(2014) (4)

A review of ocean color remote sensing methods and
statistical techniques for the detection, mapping and
analysis of phytoplankton blooms in coastal and open
oceans

Prog. Oceanogr. 2014 Ocean color algorithms, References to hyperspectral
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provided methods to retrieve bathymetry and benthic
composition of sand, mud and vegetation from passive remote
sensing imagery (Polcyn et al., 1970; Lyzenga, 1978). Some of the
first laboratory reflectance measurements of phytoplankton
cultures were summarized in a 1977 report entitled
“Assessment of Aquatic Environments by Remote Sensing”
demonstrating that blue-green algae, green algae and diatoms
could be differentiated from “laboratory reflectance fingerprints”
(Adams et al., 1977). Multi-spectral and thermal airborne remote
sensing of algal blooms was initiated in the Great Lakes (Strong,
1974). Goldman et al. (1974) used color and multispectral aerial
photography to delineate sediment plumes into Lake Tahoe,
California and correlate them with suspended sediment,
inorganic carbon, light penetration and primary productivity
(Goldman et al., 1974). Concurrently, radiative transfer
simulations studies helped to provide a qualitative and
quantitative interpretation of the water leaving signal (Gordon
et al., 1975; Gordon and McCluney, 1975). Further theoretical
and mathematical developments were established when
Preisendorfer culminated his research on radiative transfer
theory in 1976 with a six-volume treatize entitled Hydrologic
Optics (Preisendorfer, 1976). Preisendorfer’s method for radiative
transfer solution is implemented in the Hydrolight software, that
became the community standard for the simulation of scalar
aquatic spectral reflectance (Mobley, 1994). This decade of
independent and parallel research provided the foundations
for many of the techniques and applications for the broader
field of aquatic hyperspectral remote sensing today.

Over the past three decades, the emergence of imaging
spectroscopy with the ability to produce a spectrally resolved
image of a scene has advanced rapidly in sensor technology,
calibration, deployment modes, and applications as briefly
outlined below. With the limited availability of satellite data,
the period between the early 1980s and 1999 ushered in the age of
operational aircraft-based hyperspectral from AVIRIS to CASI
(reviewed in Giardino et al., 2019). Other relevant airborne
hyperspectral sensors were the Operational Modular Imaging
Spectrometer (OMIS) and the Pushbroom Hyperspectral
Imaging (PHI) developed in China (Tong et al., 2001). These
airborne imagers were designed primarily for terrestrial
applications but were nonetheless successfully used to identify
brighter aquatic targets such as identifying sediment plumes (e.g.
Moore et al. (1999) that became the basis for the MERIS bright
pixel atmospheric correction) and bathymetry and benthic
composition in shallow water. Collins and Pattiaratchi (1984)
used the Daedalus Airborne Thematic Mapper, which was
operated alongside CASI by the Natural Environment
Research Council Airborne Research Facility for its thermal
capabilities, noting that both relative and absolute increases in
suspended sediment produced a shift toward longer (red)
wavelengths.

However, these initial aquatic applications had limited success
due to the airborne sensors having a relatively low signal-to-noise
ratio (SNR) and a limited dynamic range (reviewed in Kutser
2020). The operators needed to set the appropriate integration
time for the low aquatic signal and develop robust procedures for
instrument calibration. Therefore, data from these sensors were

often aggregated spectrally and spatially to obtain higher signal or
smoothed considerably in post-processing to reduce spectral
noise (Carder et al., 1993) and provided only multispectral
data over aquatic targets (Mumby et al., 1997; Sathyendranath
et al., 1997). As a result, little was gained from the hyperspectral
signal.

The 2000s were a time for targeting new sensors and programs
designed to facilitate aquatic applications. Even though the
potential for imaging spectrometry was recognized early on
(Dekker and Donze, 1994), inland and coastal waters provide
critical challenges to spectrometer system design including
reflectance of targets varying from <1% for dark water to over
90% for bright sand. The Ocean Portable Hyperspectral Imager
for Low-Light Spectroscopy (PHILLS) was a pushbroom-
scanning instrument designed specifically for aquatic
applications (Davis et al., 2002). Early deployments of Ocean
PHILLS include those as part of the Coastal Benthic Optical
Properties (CoBOP) program at Lee Stocking Island, Bahamas
(May/June 1999 and May 2000), the Hyperspectral Coupled
Ocean Dynamics Experiments (HyCODE) program on the
West Florida Shelf (2000 and 2001) and at the LEO-15 site in
New Jersey (July 2000 and July 2001). The field and airborne
efforts from those projects provided some of the foundational
hyperspectral algorithms for evaluating optically important
constituents, estimating vertical structure in the near-surface
ocean, developing benthic cover and bathymetry algorithms,
and refining treatment of optical properties in coupled ocean-
atmosphere models (Davis, 2001; Mazel, 2002; Chang et al., 2004;
Wang, 2004).

More technological advances were also brought about by the
National Aeronautics and Space Administration (NASA) Jet
Propulsion Laboratory (JPL) Portable Hyperspectral Imaging
SpectroMeter (PRISM) developed in 2008 designed to handle
the dynamic range of aquatic surfaces, with an improved spectral
resolution, polarization sensitivity, response uniformity, and
minimal spectrometer distortions (Mouroulis et al., 2008).
First flight results over calibration sites in Elkhorn Slough,
California, demonstrated good agreement between in situ and
remotely sensed data (Heupel et al., 2013; Mouroulis et al., 2014)
and the sensor has found modern use in applications from
differentiating floating vegetation, water contaminants,
chlorophyll fluorescence, and coral reef assessments (Dierssen
et al., 2015; Fichot et al., 2016; Garcia et al., 2018; Erickson et al.,
2019). Similar high-quality imagery is now available in sensors
like Airborne Prism Experiment (APEX) and from commercial
vendors (reviewed in Giardino et al., 2019).

Moving from suborbital to orbital platforms, the first decade of
the 21st Century also involved the launch of several hyperspectral
imagers with applications to aquatic ecosystems including:
Hyperion launched aboard the EO-1 spacecraft in 2000
(Dekker et al., 2001), the Compact High Resolution Imaging
Spectrometer (CHRIS) launched on PROBA-1 in 2001 (Cutter
et al., 2004), the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY) launched on
ENVISAT in 2002 (Bracher et al., 2009) and the Hyperspectral
Imager for the Coastal Ocean (HICO) installed on the
International Space Station in 2009 (Ryan et al., 2014). Except
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for SCIAMCHY, these sensors had smaller footprints optimized
for coastal applications (20–90 m) and were targeted mappers
acquiring data over particular areas based on data acquisition
requests with limited collections per day (Figure 1). Similar to the
early airborne instruments, the data exhibited low signals over
many aquatic targets and were often binned spatially and
spectrally for aquatic applications (Hestir et al., 2015).
SCIAMACHY provided global mapping capabilities at much
finer spectral resolution (<0.5 nm bands), but at much larger
spatial resolutions of 30 km pixels. Such applications
demonstrated that hyperspectral signals could move beyond
typical remote sensing methods and be used to assess
bathymetry, benthic cover, and phytoplankton composition.
These applications are summarized in many different reviews
of hyperspectral and aquatic remote sensing provided in Table 1.

LAUNCHING THE FUTURE OF
HYPERSPECTRAL IMAGING

Here we discuss both the orbital and suborbital systems proposed
for hyperspectral imaging of aquatic ecosystems including
advances in sensor miniaturization and autonomous sampling
platforms.

Satellite Systems
Building on these past successes, we now find ourselves on the
verge of significant global advances in hyperspectral remote
sensing with the recent and pending launch of an array of
hyperspectral satellites poised to sense the Earth from different
platforms and orbits (Figure 1). Most recently, several targeted
mappers have been launched, of which we highlight a few
missions with publicly available imagery such as Deutsches
Zentrum fur Luft–und Raumfahrt German Aerospace Center
(DLR) Earth Sensing Imaging Spectrometer (DESIS) (Müller
et al., 2016) installed on the International Space Station and
the launch of China’s Advanced Hyperspectral Imager (AHSI)
onboard the GaoFeng-5 satelite (Liu et al., 2019) in 2018,
followed by the launch of the PRecursore IperSpettrale della
Missione Applicativa (PRISMA) sensor by the Italian Space
Agency in 2019 (Giardino et al., 2020) and HyperScout
instruments launched on nanosatellites (Esposito and
Zuccaro Marchi (2019). On the future horizon are low-
Earth orbiting global mapping hyperspectral missions
including NASA’s Plankton Erosol Cloud and ocean
Ecosystem (PACE) and Surface Biology and Geology (SBG)
missions, and the European Space Agency’s Copernicus
Hyperspectral Imaging Mission for the Environment
(CHIME), as well as geostationary missions like NASA’s
Geosynchronous Littoral Imaging and Monitoring
Radiometer (GLIMR). Recognizing that no single mission
can satisfy all applications, concepts have started to
formulate among space agencies, researchers, resource
managers, and policy experts for combining multiple
instruments into a virtual constellation that meets many
observation needs, as well as combining hyperspectral
imagery with other sources of remote, in situ, and modeled

data to better assess ecosystem health and biodiversity (Duffy
et al., 2013; Greb et al., 2018; Muller-Karger et al., 2018).

Suborbital Systems
It is exciting that sensor design has also moved toward smaller,
solid state systems requiring less power for deployment on small
satellites (Doubleday et al., 2015; Bender et al., 2018), aircraft,
autonomous unoccupied aerial systems (UAS) (Wu et al., 2019),
or small watercraft dedicated to specific problems (Klemas, 2015;
Ackleson et al., 2017). This represents an emerging dimension to
how modern remote sensing data are acquired. Traditional
sources of coverage by orbiting sensors are inherently limited
by cloud cover and orbital dynamics, and engineering trades
made in sensor design between spatial, spectral and radiometric
resolution. Portable sensors flown on aircraft or drones provide a
critical sampling niche distinct from satellite-borne sensors that
are particularly well suited for coastal and inland water
applications Such sensors can sample at fine spatial scales, can
operate under clouds and with nearly unlimited repeat coverage,
and are effective platforms for high resolution active sensors (e.g.,
lidar). Aircraft overflights are also subject to limitations of
transporting gear, aircraft and personnel to the study area, as
well as being subject to local weather conditions and flight
restrictions. Autonomous systems are more portable and
completely controlled by the individual research team,
permitting imaging schedule and geometry, e.g., relative to the
Sun location, to be adjusted in real time.

Unoccupied Aerial Systems
Perhaps some of the greatest future advances will come with the
rapid advances in UAS technology. The term UAS is used to
include both the unoccupied aerial vehicle (UAV) or drone, as
well as the ground-based control system. UAS for civilian
applications started in the early 1980s using remote controlled
aircraft equipped with aerial mapping cameras (Wester-
Ebbinghaus, 1980). Since that time, both sensor and drone
technology have advanced significantly (Colomina and Molina,
2014; Aasen et al., 2018) with decreasing expense and mission
planning, and navigation software requiring less experience from
the remote operator. Users can readily create custom UAS
systems or purchase complete systems, including sensors,
aircraft, and mission planning and data analysis software,
tailored to applications. A recent review of UAS remote
sensing systems in environmental biology found that
publication rates from studies using this technology increased
10 fold between 2000 and 2018 with most of the increase
occurring since 2011 (Nowak et al., 2018).

Compact hyperspectral imaging sensors appropriate for small
UAV operations are a fairly recent development, starting in the
2010 time frame based on published reports. Advances in
gimbaling systems have allowed for better image quality to
minimize artifacts from pitch and roll of the drone and
vibrations (Wu et al., 2019). UAV flight lines and scanning
geometries can also be oriented to optimize retrievals (e.g.,
avoid Sun glint) and their range can be greatly expanded by
launching from ships. Because of cloud cover and orbital
constraints, the temporal resolution from satellites is often not
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sufficient to track episodic events like harmful algal blooms
(HABs) compared to a drone that can be deployed in a rapid
response during an outbreak. Imagery from UAS can provide
details at the centimeter scale and temporal frequencies at the
hourly scale with relatively low costs. Moreover, the technology
can be closely synchronized with water sampling in order to
characterize phytoplankton types and quantify the
concentrations of cells and toxins (Wu et al., 2019).

Much of the excellent work undertaken in the early 2000s with
autonomous field spectrometers can now be expanded using
spectrometers from UAS. Where early work focused on
spectral characteristics of marine and aquatic features at very
high temporal scales at a single point scale from moorings
(Dickey and Chang, 2002) it is possible to now include similar
spectrometers on a UAS payload, rapidly capturing thousands of
point-based spectroscopic measurements traversing large areas at
very low cost from small off the shelf platforms (Cornet and
Joyce, in review). For more advanced solutions, imaging
technology over broader scales allows researchers to explore
spatial and temporal dynamics in even greater detail. UAS
have become a popular tool for monitoring the emergence and
extent of intense phytoplankton blooms, particularly those that
are considered HABs (Becker et al., 2019; Wu et al., 2019). For
example, drone imagery, coupled with satellite technology, was
used to effectively detect, forecast, and manage the green tides in
South Yellow Sea, China (Xu et al., 2017). Researchers also used a
drone to track and quantify an intense phytoplankton bloom in
Weitou Bay in the western Taiwan Strait (Shang et al., 2017).
Similarly, several studies have used RGB imagery from drones to
map intertidal coral reefs (Murfitt et al., 2017; Muslim et al.,
2019). Application of hyperspectral UAS for aquatic
environments, including water quality (Zeng et al., 2017),
HABs (Becker et al., 2019), shallow water benthic mapping
(Parsons et al., 2018), and marine fauna surveys (Colefax
et al., 2018).

Deriving quantitative estimates of reflectance can be
particularly challenging from UAVs, particularly under glint
or variable cloud cover when the downwelling irradiance at
the sea surface can be quite different from that measured at
the drone. Shang et al. (2017) provide an innovative method to
calibrate the signal and derive hyperspectral water-leaving
reflectance from drones. Joyce et al. (2019) provide data
collection workflows for planning UAS campaigns to ensure
that necessary pre-planning and safety steps are considered, as
well as requirements including licensing, data processing and
logistical considerations. As noted further in Section 8, we are on
the cusp of achieving significant advances in hyperspectral
remote sensing across the aquatic landscape or “aquascape”.

Autonomous Floating and Underwater Sampling
The availability of high quality in situ observations suitable for
remote sensing algorithm development and product validation is
key to any quantitative remote sensing activity. Unfortunately,
coastal and inland aquatic systems are notoriously difficult to
sample, especially in coordination with airborne or spaceborne
remote sensing. Water constituent concentration and bottom
depth vary across a wide range in temporal and spatial scale.

Correlation scales of water and benthic properties are typically
<10 m and often less than 1 m and traditional ship-based
operations are limited and often prohibited by shallow
bathymetry. Thus, there are significant challenges resulting
from inadequate in situ knowledge that currently limits
progress in any application of remote sensing to coastal and
inland aquatic problems, regardless of sensor configuration. To
address these issues, researchers have begun exploring
autonomous methods of collecting in situ observations.
Autonomous platforms, primarily underwater versions, have
been in development for several decades and have focused on
bathymetry, chlorophyll, and water physical properties associated
with optically deep water (Moline et al., 2005; Ryan et al., 2010;
Johnsen et al., 2013). More recently, attention has turned to
instrumented surface systems designed to support
interdisciplinary applications of hyperspectral remote sensing
operations in shallow coastal environments (Ackleson et al.,
2017).

LOOKING UNDER THE HOOD

Hyperspectral imagery is generated in a “Datacube” with spatial
dimensions in theX and Y axis and wavelength as the Z axis.With
>100 bands, hyperspectral images are notoriously large files that
can be challenging to download and process with some of the
traditional software tools employed in multi-spectral remote
sensing. For example, 12 flight lines from the PRISM airborne
sensor covering 100 km2 of Elkhorn Slough, California and two
long flight lines out 40 km into Monterey Bay, California
provided over 400 GB of raw imagery (Heupel et al., 2013).
Similarly, 16 flightlines covering 250 km2 of a wetland near
Sacramento, California collected by a UAS-mounted Headwall
Nano-Hyperspec pushbroom sensor provided roughly 40 GB of
raw imagery (Bolch et al., 2020). An entire image cannot be fully
loaded into a typical computer memory and the image must be
treated as data tiles, either spectrally or spatially, such that only a
subset of bands or pixels are loaded into memory at one time. For
rendering, an RGB representation of the image is often shown
where a single red, green and blue wavelength is selected to mimic
the human eye as a pseudo-true color. For image processing,
spatial subsets are processed sequentially with some overlap
typically required for certain functions. Software has been
developed and optimized for processing such large imagery
and automatically conducting data tiling spatially or spectrally
as needed for the user (Table 2).

Computational power, data storage and I/O bottlenecks have
been frequent limitations of using hyperspectral data given the
large volume of data. Hence, many of the early studies reduce the
dimensionality of hyperspectral imagery to a few multi-spectral
bands for simple estimates of chlorophyll a and suspended
particulate matter. As high-performance computing and easy-
to-implement parallel processing workflows have proliferated,
increasing data volumes with increasing hyperspectral datasets
and the associated challenges remain lock-step with computing
advances. Data reduction is also common because of the limited
amount of hyperspectral datasets coupled with biogeochemical
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information for algorithm development and validation (Dierssen
et al., 2020). In addition, many approaches are not repeatable
because the imagery has not been adequately corrected for
atmospheric absorption and scattering and sea surface
reflections. In the following sections, we discuss some of the
approaches that have been used for atmospheric correction and
processing hyperspectral imagery.

FINDING THE OCEAN NEEDLE IN THE
ATMOSPHERIC HAYSTACK

Water bodies are typically much darker than the land or
atmosphere above and pulling out the signal that represents
the color of the water is extremely challenging. Except in
highly turbid waters, the water signal is only a few percent in
the pool of photons that reaches a spaceborne sensor. The term
“Atmospheric correction” refers to the techniques used to adjust
at-sensor radiance on airborne and spaceborne platforms for

atmospheric effects, though typically includes compensation for
solar irradiance, water surface effects and directional dependency
of the water leaving signal (Mobley et al., 2016; Frouin et al.,
2019). Particular challenges for atmospheric correction include
absorbing aerosols, clouds, adjacency effects and identifying
when there is interference from bottom reflection (Brando
et al., 2009). Atmospheric correction routines consider the
absorption properties of atmospheric gases, as well as light
scattered within the atmosphere and reflected from the water
surface and/or whitecaps. Such approaches can be extra
challenging for hyperspectral imagery that includes spectral
regions where atmospheric gases absorb and aquatic
ecosystems with high particle loads that scatter light in the
near infrared parts of the spectrum. Hyperspectral imagery
from the ultraviolet to near infrared also holds the promise of
improving upon atmospheric correction, particularly for
estimating absorbing aerosols (Frouin et al., 2019).

Because contributions of diffuse and direct sunlight are
variable and sea surfaces are not flat, removal of reflected light

TABLE 2 | Software available for hyperspectral data processing.

Name Website and Description Interface Publication

Free
ASFit https://github.com/darioomanovic/ASFit

An all-inclusive tool for analysis of UV–Visible spectra of colored dissolved
organic matter (CDOM)

Standalone (GUI) Omanovic et al. (2019)

EnMAP-Box https://enmap-box.readthedocs.io/en/latest/#
Developed for viewing and processing hyperspectral remote sensing
imagery

Plugin for QGIS, GUI and
CLI (python)

Hylatis https://github.com/lasp/hylatis
Cloud-based hyperspectral image analysis toolkit

Cloud-based Wilson et al. (2018)

HyTools https://github.com/EnSpec/HyTools-sandbox
Contribution of files used to load and process hyperspectral imagery

Python library

Hyperspectral Image Analysis
Toolbox (HIAT)

http://www.censsis.neu.edu/software/hyperspectral/hyperspectral.html
Collection of files for processing hyperspectral data

Matlab library Velez-Reyes (2015)

Multi Endmember Spectral
Mixture Analysis (MESMA)

https://mesma.readthedocs.io/en/latest/
Processing, post-processing and visualization of MESMA results.

Python library and plugin
for QGIS

Crabbé et al. (2020)

R packages for raster data (e.g.,
stars and raster)

https://github.com/r-spatial/stars
https://github.com/rspatial/raster
Representation classes for raster data in R, vizualization and analysis tools

R Libraries

SCIATRAN https://www.iup.uni-bremen.de/sciatran/
Coupled ocean atmosphere radiative transfer model.

Standalone (CLI) Rozanov et al. (2014),
Rozanov et al. (2017)

Spectral Library Tool https://spectral-libraries.readthedocs.io
Creates spectral libraries interactively from an image and manages the
metadata

Python library and plugin
for QGIS

Spectral Python http://www.spectralpython.net/ Python library
Water Color Simulator and
WASI-2D

https://c.1und1.de/@519891561215951357/6PlmFxS0RAyf4FLNjVot4A
Radiative transfer and semi-analytical inversion software for aquatic
applications

Standalone (GUI) Gege (2015)

BigDataViewer https://imagej.net/BigDataViewer
Visualization and processing for large image data sets

Plugin for Fiji Pietzsch et al. (2015)

For purchase
ENVI Image Analysis https://www.harris.com/solution/envi Standalone (GUI)
Hydrolight Radiative Transfer https://www.sequoiasci.com/product/hydrolight/

Evaluate how different absorbers and scatterers influence light fields in the
water column

Standalone (GUI and CLI) Mobley (1994)

EPINA Image Lab http://www.imagelab.at/en_home.html Standalone (GUI)
Trimble eCognition https://geospatial.trimble.com/products-and-solutions/ecognition

Image segmentation and feature extraction
Standalone (GUI)

Other resources
IOCCG https://ioccg.org/resources/software/ Several

CLI � Command Line Interface; GUI � Graphical User Interface.
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off the sea surface is challenging for both field and remotely
sensed measurements. Ideally, missions tend to minimize Sun
glint by optimizing viewing geometry and mission scheduling,
which may involve designing spaceborne sensors with pre-
defined oblique viewing angles and orbital dynamics that
result in mid-morning or mid-afternoon overpasses (Hovis
et al., 1980). For aircraft operations, flight planning may
include avoidance of observations made close to local noon
and flight paths that are oriented into or out of the solar
direction to avoid cross-track illumination. There is also a
need to account for glitter that exists as whole pixels
(Lavender and Nagur, 2002). Regardless of sensor design, Sun
glint, adjacency effects, and whitecaps can limit the utility of data
even with the most advanced correction routines.

Some of the more common approaches applied to multi-
spectral and hyperspectral imagery over aquatic water bodies
are provided as a resource (Table 3), in addition to a review of
hyperspectral atmospheric correction approaches (Gao et al.,
2009). However, we also note that historically the atmosphere
has been treated as a prior step to ocean techniques, but advanced
methods for coupled ocean-atmosphere retrievals are an area of
growth in the future (Stamnes, 2003; Jamet et al., 2005; Kuchinke
et al., 2009; Steinmetz et al., 2011; Stamnes et al., 2018).
Hyperspectral atmospheric correction routines include those
that use simulated water leaving reflectance shapes and
retrieve spectra based on some type of a priori spectral library
(Steinmetz et al., 2011; Thompson et al., 2019). Others attempt to
independently retrieve the water and atmospheric properties and
only “lightly constrain” the water-leaving spectral reflectance
(Lavender and Nagur, 2002; Ibrahim et al., 2018;
Vanhellemont, 2019). Most approaches retrieve all
components on a pixel-by-pixel basis, but some are optimized
to use features in the imagery to help constrain one or more
parameter in the solution for the entire scene under investigation

(Guanter et al., 2010; Vanhellemont, 2019). Hence, different
techniques can be used for imagery collected close to land or
within land compared to open ocean. Another problem is the
influence of reflectance from adjacent land/ice pixels that can be
scattered into the field of view of the sensor and “contaminate”
the water signal with often brighter and spectrally disparate
material. This adjacency is particularly problematic for water
near bright ice surfaces and inland waters surrounded by bright
land and vegetation, and can interfere with techniques to
atmospherically correct for aerosols and other imagery.
Various techniques have been proposed for addressing
adjacency (Reinersman and Carder, 1995; Santer and
Schmechtig, 2000; Sterckx et al., 2011; Bulgarelli and Zibordi,
2018), but challenges occur in making the approach applicable
across all diverse landscapes. New approaches have also been
proposed for dealing with pixels containing whitecaps and foam
(Dierssen, 2019). Finally, as further highlighted below, inverse
methods that simultaneously retrieve parameters from a coupled
ocean and atmosphere system without individual atmospheric
correction routines are becoming more common (Chomko et al.,
2003; Stamnes, 2003).

COOKING UP AN ALGORITHM STORM

The number of unknown parameters that can be retrieved from
hyperspectral data will be much less than the number of spectral
bands because of the correlated information between wavebands
(Dekker et al., 2018). Therefore, hyperspectral data may be most
diagnostic for environmental conditions that result in
independent variation of the different optically active
constituents, or to collections of environments (regional or
global scope) each with its own correlation structure. Those
can include systems with surface blooms of different algal

TABLE 3 | Atmospheric correction approaches for aquatic applications.

Name Website Citations

ACOLITE Standalone multi-spectral imagery but with prototype support for hyperspectral sensors
https://github.com/acolite/acolite

Vanhellemont (2019)

ACORN Commercially software that uses MODTRAN4 Gao et al. (2009)
ATREM Used for airborne imagery.

https://www.researchgate.net/publication/268979253_Atmospheric_Removal_Program_ATREM_Users_Guide_
Version_30

Thompson et al. (2015)

CASIDAS Initially developed for CASI and then applied to various hyperspectral and multispectral sensors Lavender and Nagur (2002)
Lavender (2014)

COCHISE Hyperspectral data in the VNIR-SWIR (shortwave infrared) wavelengths Boucher et al. (2002)
FLAASH Plugin to ENVI processing software

https://www.harrisgeospatial.com/docs/FLAASH.html
Cooley et al. (2002)

HATCH Hyperspectral data in the visible and SWIR wavelengths Qu et al. (2003)
iCOR Plugin available in the SNAP toolbox

https://remotesensing.vito.be/case/icor
De Keukelaere (2018)

ISOFIT Python. Simultaneous fitting of surface, atmosphere and instrument models to imaging spectrometer data
https://github.com/isofit/isofit

Thompson et al. (2019)

POLYMER Standalone used to process multi-sensor multi-spectral ocean color imagery
http://hygeos.com/polymer

Steinmetz et al. (2011)

SCAPE-M Plugin for SNAP designed for inland water bodies surrounded by land
https://github.com/senbox-org/s3tbx-scape-m

Guanter et al. (2010)

SeaDAS-
hyperspectral

Plugin for NASA SeaDAS to process HICO and future PACE imagery
https://seadas.gsfc.nasa.gov/

Ibrahim et al. (2018)
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TABLE 4 | Hyperspectral aquatic optical and biodiversity databases.

Dataset Source Description

Field and culture data
Casey et al. (2020). Earth System Science Data, 12 (2), 1,123–1,139.
https://doi.org/10.5194/essd-12-1123-2020.
https://doi.pangaea.de/10.1594/PANGAEA.902230

Field, Global A global compilation of in situ aquatic high spectral resolution inherent and
apparent optical property data for remote sensing applications

LIMNADES
https://limnades.stir.ac.uk

Field, Global Lake bio-optical measurements and matchup data for remote sensing

Carpenter, Dierssen, Hochberg, Lee. 2014–2017. The Coral Reef
Airborne Laboratory (CORAL) database.
https://doi.org/10.5067/SeaBASS/CORAL/DATA001
https://airbornescience.jpl.nasa.gov/campaign/coral

Field, Pacific Reefs In situ IOP and AOP data collected over Pacific coral reefs in conjunction
with PRISM hyperspectral imagery

Knaeps et al. (2018). The SeaSWIR dataset.
https://doi.org/10.1594/PANGAEA.886287

Field, Regional Hyperspectral marine reflectances, total suspended matter, and turbidity
measurements gathered at three turbid estuarine sites

Behrenfeld et al., 2014–2017. North American Aerosol and Marine
Ecosystem Study (NAAMES).
https://doi.org/10.5067/SeaBASS/NAAMES/DATA001

Field, North
Atlantic

Four cruises in North Atlantic with AOPs, IOPs, associated with
phytoplankton and aerosol data

Siegel et al. 2018–2020. Ocean EXPORTS
https://doi.org/10.5067/SeaBASS/EXPORTS/DATA001

Field, Pacific and
Atlantic

Data on export and fate of upper ocean net primary production coupled to
IOP and AOP measurements

Marine Biodiversity Observation Network (MBON) data portal.
https://mbon.ioos.us/

Field, Regional Biodiversity time series of flora and fauna along coastal zones with ancillary
data

Mortelmans et al. (2019). Lifewatch Flanders Marine Institute
observatory data. In prep for reflectance
https://doi.org/10.14284/393

Field, Coastal
North Sea

Monthly phytoplankton pigment, suspended matter, turbidity, and
recently hyperspectral radiometry

Vanderwoude et al. (2020). NOAA GLERL Great Lakes Harmful Algal
Bloom database. In prep. remove link

Field, Great Lakes Monthly sampling of Great Lakes phytoplankton composition and
hyperspectral optics

Bracher et al. (2020). Coupled phytoplankton composition and
radiometry from Atlantic Ocean.
https://doi.org/10.1594/PANGAEA.913536

Field, Atlantic Phytoplankton pigment concentration, groups, and radiometric
measurements in the Atlantic Ocean

Bagniewski, W. et al. (2011). North Atlantic Bloom Experiment 2008.
https://www.bco-dmo.org/project/2098

Field, Atlantic Phytoplankton dynamics, profiled hyperspectral reflectance with
autonomous optical backscatter, attenuation, radiance

Dekker, Anstee, in prep. Digital Earth Australia. Australian shallow
waters spectral library
https://ozcoasts.org.au/management/library/

Field, Australia Spectral library repository for aquatic ecosystem substratum and
substratum cover types

Clementson and Wojtasiewicz (2019a)
Australian national algae culture collection
https://doi.org/10.1016/j.dib.2019.103875

Standards Dataset on the absorption characteristics of extracted phytoplankton
pigments

Clementson and Wojtasiewicz (2019b)
Australian national algae culture collection
https://doi.org/10.1016/j.dib.2019.104020

Culture Dataset on the in vivo absorption characteristics and pigment composition
of various phytoplankton species

Voss et al. (2017)
NOAA marine optical buoy (MOBY)
https://www.star.nesdis.noaa.gov/socd/moby/filtered_spec/

Field, Hawaii Hyperspectral water-leaving reflectance in clear waters

Joyce, K. 2020. Shared drone spectroscopy
https://www.geonadir.com/

Field, Global Public repository for drone data including hyperspectral datasets

Simulated and derived data
Craig et al. (2020). National Aeronautics and Space Administration,
PANGAEA,
https://doi.org/10.1594/PANGAEA.915747

Simulated, Global Top of atmosphere, hyperspectral synthetic dataset for PACE ocean color
algorithm development

Gregg and Rousseaux (2017). Simulating PACE global ocean
radiances. Frontiers in Marine Science, 4.
https://doi.org/10.3389/fmars.2017.00060

Simulated, Global Dynamic simulation of global water-leaving radiances at 1 nm spectral
resolution using an ocean model containing multiple ocean phytoplankton
groupsetc.

Bracher et al. (2017). Phytoplankton composition from 2002–2012
in world ocean
https://doi.org/10.1594/PANGAEA.870486

Derived, Global Global monthly mean surface chlorophyll a for diatoms, coccolithophores
and cyanobacteria from SCIAMACHY data

(Continued on following page)
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communities that present unique absorption and scattering
properties, and water masses that are potentially influenced by
land processes (e.g., erosion, organic leaching), benthic-pelagic
coupling (e.g., tidal and/or wind driven resuspension of
sediments), and flocculation driven by time-space dependent
turbulence and chemistry (estuaries). Much of the information
content studies have been done with simulated data that may not
fully represent the inherent optical properties of natural systems
and do not typically model inelastic processes such as Raman
scattering and fluorescence (Lee et al., 2007; Wolanin et al., 2016),
polarization (Harmel, 2016) and directional dependency,
particularly for three-dimensional benthic structures (Hedley
et al., 2017, 2018). Presently, there is a lack of hyperspectral
backscattering data for different types of aquatic particles for
use in simulations. Therefore, optical closure between models
(Werdell et al., 2018) and measurement techniques is challenging
in bloom conditions and complex water types. To aid in algorithm
development, we have compiled a list of hyperspectral datasets
that may be useful for evaluating different approaches for
estimating aquatic parameters, including phytoplankton and
benthic community composition (Table 4). With more
hyperspectral field data across a wide variety of conditions
(Dierssen et al., 2020), particularly for applications for inland
and coastal waters, we may find potentially new information in
parts of the spectrum previously overlooked. Even without this
further information, hyperspectral data will help reduce the
uncertainty in the retrieved parameters (Werdell et al., 2018).

Blondeau-Patissier et al. (2014) provide a detailed description of
many common indices and numerical techniques used in multi-
spectral ocean color remote sensing. Amore recent review of ocean
color methods for quantifying the inherent optical properties
(IOPs) grouped algorithmic approaches into three broad
categories; empirical, semi-analytical (also referred to as quasi-
analytical), and spectral libraries (also referred to as look-up tables)
(Werdell et al., 2018). However, we believe that a more general
framework is possible to unify approaches and reduce community-
specific jargon with modern terminology of computer and data
science. Empirical relations are inevitably introduced in our
methods because purely analytical approaches are not possible
from remote sensing above the water surface due to complete
internal reflection which limits the angular distribution of light
crossing the air-sea interface and lack of information on the
vertical distribution of particles (Zaneveld, 1995). More
information is available from sensors simultaneously measuring
at multiple angles from a sea surface. Still, such signals can be
challenging to interpret given variable path lengths through the

atmosphere and the ever-changing nature of sea surfaces with non-
random distributions of waves and swells. Ocean color sensors
typically have a small solid angle of detection and measure light
fields that originated from near-nadir directions (upwards) within
the water (McClain, 2009).

Rather than merely list algorithms, we step back and consider
the fundamentals of developing an algorithm with independent
steps of “Data Transformations” and “Retrieval Algorithms.” This
grouping is done because many of the techniques are often
identified with the name of the numerical transformation (e.g.,
derivatives, principal components). Still, the parameters of interest
are identified through statistical techniques like multiple linear
regression. Many of the so-called “Semi-analytical” algorithms fall
within the broader category of “Spectra as References,” where the
remote sensed spectrum is used as a reference that is matched to
spectra modeled using approximations of the forward radiative
transfer equations and spectral shape functions. Some algorithms
are less sensitive to uncertainties in atmospheric correction such as
those focused on narrowband features, and others may require
highly calibrated data across the spectrum.While uncertainties can
be quantified directly with some techniques, like so-called Optimal
Estimation (Rodgers, 1998), techniques have been proposed for
propagating uncertainties through other types of algorithms
(McKinna et al., 2019).

FIGURE 2 | A pairwise correlation analysis can provide information on
narrowband features that may be related to a parameter of interest. (Modified
from Dierssen et al. (2015)).

TABLE 4 | (Continued) Hyperspectral aquatic optical and biodiversity databases.

Dataset Source Description

General searchable databases
OBIS: https://obis.org/
SPECCHIO: https://specchio.ch/
PANGAEA: https://www.pangaea.de/
SEABASS: https://seabass.gsfc.nasa.gov/
BCO-DMO: https://www.bco-dmo.org/
SPECLIB: https://speclib.jpl.nasa.gov/

Field, Global
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Data Transformations
Data transformations are performed to amplify spectral signals
that are related to the specific components to be retrieved.
Sometimes the transformed data becomes the parameter of
interest, such as the normalized fluorescence line height or
normalized difference vegetation index (NDVI). Still, often the
transformed data is then related to a parameter of interest via
other solution methods as outlined in Retrieval Algorithms below.
In the latter case, transformations are conducted prior to retrieval
of the parameter of interest. The most fundamental
transformation applied in remote sensing is the normalization
of the measured radiance by the estimated downwelling
irradiance to remove variations induced by the quantity and
quality of the incident light field, increasing the correlation of the
measured signal across multiple conditions with the system
properties of interest. After this transformation to reflectance,
several methods are applied to amplify the signal further. Listed
below are some of the most common transformations, such as
normalization of the signal magnitude, reflectance line heights,
spectral derivatives, and coordinate system transformation.

Band Math
The simplest transformations are conducted by applying a
common mathematical operation or function to the reflectance
spectrum. One classical example typically used in multispectral
algorithms is to conduct a ratio of two different bands to evaluate
relative differences rather than the absolute magnitude (Dierssen,
2010). Similarly, the normalized difference index (NDI), a
generalized version of the NDVI, is calculated as the difference
between two bands normalized by the sum of the two bands (Hu
and Feng, 2016). A common transformation conducted in
hyperspectral analyses is to normalize all bands to a given
band, approximately removing the dominance of magnitude
differences over the signal, enhancing the relative spectral
differences. A similar effect can be achieved by normalizing
the spectra to its spectral integral (Spyrakos et al., 2018).

Hyperspectral data are particularly suited for investigating
absorption and fluorescence features that appear as local
minima and maxima in the reflectance spectrum. Such feature-
centric algorithms are mathematically simple and work well when

the feature of interest covers a narrow spectral range and dominates
the reflectance spectrum. Narrow-band analyses are generally less
sensitive to uncertainties in the atmospheric correction. A common
method for finding such narrowband features is to produce a
correlationmatrix quantifying the relationships between the feature
of interest and all pairs of wavebands across the spectrum. For
example, such an approach was used to assess the age of floating
seagrass wrack using a narrowband water absorption feature at
750 nm (Figure 2) (Dierssen et al., 2015).

Line heights (LH) can be calculated following from a
continuum formed by the line between bands (B1 and B3)
surrounding the spectral feature of interest (B2) following:

LH �
∣∣∣∣∣∣∣∣(λB2 − λB1)(RB3 − RB1)

(λB3 − λB1) + RB1 − RB2

∣∣∣∣∣∣∣∣.
Using widely spacedmultispectral data for line heights, such as

in the NASA normalized fluorescence line height algorithm (nflh)
(Behrenfeld et al., 2009), can be problematic because the selected
bands may not be isolated around the feature of interest. The nflh
algorithm, for example, uses 748 nm for Band 3, which is over
60 nm away from the fluorescence peak. Such a distant anchor
point works reasonably well for average Chlorophyll waters
(Figure 3A), but produces an order of magnitude higher nflh
under high suspended sediment load with no fluorescence peak
(Figure 3B) (e.g., Zhao and Ghedira, 2014; Amin and Shulman,
2015).

Hyperspectral line heights have been used to detect specific
accessory pigments like Chlorophyll-c3 at 467 nm (Astoreca et al.,
2008). Variations on line heights and shifting peak wavelengths
can also untangle the complexities of fluorescence in coastal
waters where scattered light (elastic reflectance) significantly
influences the fluorescence band (Gilerson et al., 2007) and for
some types of bloom or seasons when fluorescence is not as
prevalent as scattering enhancements observed in the far red
wavelengths, also referred to as the “red edge” (Gower et al., 2008;
Matthews et al., 2012; Freitas and Dierssen, 2019). Additionally,
hyperspectral data can also reveal different fluorescence peaks
such as the yellow fluorescence observed from phycoerythrin
pigment in the ciliateMesodinium rubrum (Dierssen et al., 2015).

FIGURE 3 | Narrowband features like chlorophyll fluorescence can be inaccurately estimated when using multi-spectral bands that are distant from the feature,
such as the blue bands used in the normalized fluorescence line height (nflh). Examples of (A) water-leaving Reflectance (Rw) spectrum with a typical chlorophyll
fluorescence feature and (B) a spectrum representative of high sediment water with no observable chlorophyll fluorescence leads to an erroneously high nflh.
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Derivative Analysis
Spectral derivatives solved as finite difference derivative
approximations (e.g., Torrecilla et al., 2011) can reduce
relative magnitudes variation in the spectrum, enhancing the
signal of the presence of local minima and maxima. Spectral
derivatives have long been used to evaluate phytoplankton
pigments such that a trough in reflectance is related to
absorption and a peak in reflectance associated with reduced
of absorption or pigment fluorescence. Since the second
derivative is a measure of curvature, it amplifies high-
frequency features of interest that are otherwise quite subtle
within the spectrum and depresses low-frequency changes,
such as the gradual decrease in absorption due to colored
dissolved and detrital matter. However, this also means that
very high-frequency features, such as band-to-band differences
due to sensor noise and relative calibration errors, will also be
amplified within the derivative spectrum. For this reason, spectral
smoothing is often conducted before the application of derivative
analysis, and various techniques have been recommended for
how to smooth data for effective derivative analysis. Often, a
statistical approach like multiple linear regression or optimization
is then used to link the derivative spectrum to the parameters of
interest, but decision trees based on arguments of themaxima and
minima (argmax and argmin) have also been used (Lubac et al.,
2008). Application of derivative analysis to aquatic remote
sensing data has been useful for detecting the presence of
pigments associated with phytoplankton including harmful
species (Bidigare et al., 1989; Craig et al., 2006; Lubac et al.,
2008; Cheng et al., 2013) and benthic organisms associated with

shallow coral reef habitats (Hochberg and Atkinson, 2000;
Louchard et al., 2003).

Coordinate Transformations
Transformations of the coordinate system are typically used to
produce a set of orthogonal variables with uneven distribution of
the total variance, as in classical Principal Components Analysis
(a.k.a., Empirical Orthogonal Functions). The new variables can
be used as a descriptive multivariate method of the optical data, in
which case further transformations of the variables might be
relevant for interpretation (e.g., varimax PCA). They can also be
used for prediction in methods that condition the rotation in the
optical data matrix to achieve an improved classification of (e.g.,
Linear Discriminant Analysis) or correlation with the dependent
variable (e.g., Partial Least Squares Regression). In its simplest
application for retrievals, the coordinate transformation with
PCA is an isolated step after which the new variables are
included in multilinear regression. Preisendorfer also provided
a fundamental text on PCA (Preisendorfer, 1988). These
approaches are increasingly being used to identify different
groups of phytoplankton and suspended mineral composition
(Catlett and Siegel, 2018; Ortiz et al., 2019; Bracher et al., 2020a;
Smith and Bernard, 2020). A related concept is the
transformation of the hyperspectral information to
chromaticity coordinates (hue angle and saturation).

Retrieval Algorithms
A wide variety of hyperspectral methodologies rely on machine
learning techniques across the broad field of environmental science,
as detailed in extensive reviews over the last decade (reviewed in
Paoletti et al., 2019). The basis of most algorithms is considered
within the framework of machine learning, where statistics theory is
used to find patterns in data or to estimate the process that generates
the data. In the first case, methods fall in the class of unsupervized
machine learning with cluster analysis and other methods that also
take in consideration the spatial context, as in object based image
analysis. In the latter case, methods are either in the context of
supervised machine learning, spectral matching or linear matrix
inversion. Within this group, a variety of approaches are used to
related a spectrum, either measured at-sensor, atmospherically
corrected (Finding the Ocean Needle in the Atmospheric
Haystack), or subject to one or more transformations (Data
Transformations), to a parameter or set of parameters of interest.
Parameters can include classes of optical water types, optical
properties including absorption and backscattering, and
biogeochemical quantities of interest like pigment or sediment
concentrations. Clearly, the more representative the training data
available across space and time, the better the models will perform
across the domain. The field of machine learning is advancing
rapidly and influencing the way nearly all algorithms are developed,
tested, and implemented. Some approaches are focused more on
prediction rather than understanding or description of processes,
and many final algorithms involve multiple steps including data
transformations and statistical analyses. Here, we group the retrieval
approaches by the way the spectra are used in the algorithm
(Figure 4).

FIGURE 4 | Approaches for building a hyperspectral algorithm with
selected examples.
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Spectra as Descriptors
The following section highlights some of the common methods
where spectra are used to estimate indices or categories.

Optical Indices
In addition to various band math indices like normalized
fluorescence line height discussed above in Data Transformations,
many different other types of indices have been proposed to detect
differences between floating Sargassum and seagrass wrack
(Dierssen et al., 2015) or to detect different harmful algal bloom
formers (Smith and Bernard, 2020). A spectral classification index
was recently developed by Vandermuelen et al. (2020) to
quantitatively describe the shape of a hyperspectral dataset using
a weighted harmonic mean. Similar to transformations of
hyperspectral data to chromaticity coordinates that relate to
colors observed by the human eye (Dierssen et al., 2006;
Wernand et al., 2013), the Apparent Visible Wavelength (AVW)
represents a one-dimensional geophysical metric of “color” that is
correlated to spectral shape. Such simple metrics correspond to
conceptual changes that can easily be explained to a broad audience
(e.g., the water is “greener” or “bluer”) and can be diagnostic of slight
optical changes that are masked in chlorophyll retrievals.

Cluster Analysis
Many different indices have been developed to classify water types
broadly from clear to turbid similar to the original water classes of
Jerlov (1963) or to identify specific types of algal blooms or
properties of interest. Clustering methods are frequently used
to partition out different types of spectra locally or globally and
track water mass movement and change over time (Lubac and
Loisel, 2007; Aurin et al., 2010; Uitz et al., 2015; Ye et al., 2016).
Clustering methods can include K-means, fuzzy C-means,
hierarchical clustering (e.g., Euclidean distance, Ward linkage),
and hybrid methods. Classification approaches in the pelagic
ocean (i.e., “Seascapes”) have been used to identify water
masses with particular biogeochemical features that can be
linked to biomes and biophysical provinces and provide rapid
information to decision-makers about the changing
environmental conditions (Kavanaugh et al., 2016). Seascapes
are classified using a suite of synoptic time-series observations
from satellites (Montes et al., 2020).

Object Based Image Analysis
Traditional pixel-based image classification considers all pixels
similarly without the context of neighboring pixels or the image
as a whole. However, OBIA segments an image and groups pixels
together into vector objects (Blaschke, 2010). Such approaches are
not common to ocean optics given the relative homogeneity of
ocean surfaces and the lack of structures like rectangular
buildings and long and narrow roads. However, these
techniques are gaining popularity in optically shallow water
remote sensing where bottom features may have spatial
patterns and features (Phinn et al., 2012; Roelfsema et al.,
2018). A variety of methods are available to segment an image
based on the shape and spectral information prior to classification
(Table 2). This can also prevent unwanted salt and pepper
retrievals where classes vary unrealistically within an aquascape.

Spectra as Predictors
The following section presents example techniques where the
spectra or the transformed spectra are used as independent
variables to predict parameters of the system. Prediction
requires the supervised approach to machine learning and
comprises methods of classification and regression analysis.
The term “classification” is used when the dependent variable
is categorical and the term “regression” is used when the it is
continuous. Most familiar methods are those of parametric
regression using linear or non-linear models, but
nonparametric models such as artificial neural networks are
gaining popularity. Below we present an overview of some
common methods.

Parametric Regression
Parametric regression imposes a structure to the modeled
relationship between spectral data and a continuous target
parameter. This requires specifying the relationship structure a
priori, from dedicated exploratory data analysis. For complex data
relations, it demands sophistication in terms of mathematical
functions and orthogonal basis expansions. A benefit of this
approach is that it is data-efficient and can be applied to
sparsely populated sample space. As a contrast, nonparametric
regression does not impose a model structure and often requires a
more densely populated sample space. As discussed above, data is
often transformed first and then linked to a parameter of interest
using linear or nonlinear regression techniques. This type of
approach has been used for the current band ratio chlorophyll a
algorithms and for other parameters like ancillary pigments,
phytoplankton groups, and total suspended matter (Catlett
and Siegel, 2018; Ortiz et al., 2019; Bracher et al., 2020; Smith
and Bernard, 2020). For many aquatic parameters, the regression
analysis is conducted on log-transformed data to cover the full
range of environmental conditions.

Neural Networks
Recently, Artificial Neural Networks have gained much
popularity due to their flexibility in addressing different
applications and can be used with raw data or applied after
data transformations. Training data sets may consist of field
measurements or model simulations representing the wide
range of conditions found in the natural world. Researchers
“train” a neural network over time by analyzing its outputs on
different problems and comparing them with the correct answers.
As in any regression, model development must consider trade-
offs between adding complexity to improve prediction and
increasing the risk of overfitting the solution to the training
data. Accumulation of global datasets covering a wide range of
conditions and advances in computer processing power have
enabled machine learning researchers to vastly expand the size
and complexity of the models, simulate larger datasets for
training, train the models faster, and overall achieve better
results. Neural networks have been gaining popularity in the
aquatic remote sensing and used to derive the diffuse attenuation
coefficient (Jamet et al., 2012; Chen et al., 2014), uncouple
constituents in optically complex waters (Doerffer and
Helmut, 2000; Ioannou et al., 2013), map shallow-water
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benthic features (Sandidge and Holyer, 1998; Filippi, 2007; Liu
et al., 2015), and to evaluate features across different scales (e.g.,
Hieronymi et al., 2017; Pahlevan et al., 2020). Salcedo-Sanz and
colleagues, for example, implemented a neural network to map
shallow benthic coral reef features and concluded that neural
network approaches generally out perform traditional empirical
approaches to the problem such as supervised and unsupervized
classification and regression analysis (Salcedo-Sanz et al., 2016).

Decision Trees
In a decision tree, the analysis begins at the top of the tree where a
single feature of the data is considered and analysis proceeds
downwards based on the decisions made in previous levels of the
tree. At each level of the tree, the computation splits off into two
or more children nodes based on features of the data. The
computation ends when you reach a terminal node at the
bottom of the tree. Even in the simplest algorithms, many
decisions are required to assess whether reflectance in a pixel
is appropriate for subsequent analysis. Some of these decisions
may be considered as part of the “Atmospheric Correction”
decisions such as “Is this a water pixel?” or “Is there a cloud or
cloud shadow obscuring the pixel?” or “Is this optically deep
water?” Many common algorithms in ocean color are decision
trees that use different approaches depending on criteria
established from the spectrum, such as NASA’s current
Chlorophyll a algorithm which uses two different algebraic
approaches depending on whether the pixel is considered a
high or low chlorophyll pixel. Such decisions often involve
subjective or fitted thresholds which determine which
approach will be used. Setting thresholds can be challenging,
and such delineation often does not apply widely across different
images collected in space and time and require tuning for each
application. Decision Trees are common for differentiating water
types, benthic flora and floating vegetation (Hill et al., 2014; Ye
et al., 2016; Castagna et al., 2020).

The supervised Random Forest (RF) classifier belongs to the
group of classifiers that use decision trees and independent
random vectors, with the approach driven by the relationship
between the training and the response dataset rather than starting
with a data model (Breiman, 2001). It provides several benefits
over other supervised classification algorithms, including the
ability to calculate internal error estimates and variable
importance, as well as the capacity to handle weak explanatory
variables (Gislason et al., 2006). The approach has received
attention within the remote sensing community due to both
the classification accuracy and processing speed. Applications
include the classification of submerged vegetation (Espel et al.,
2020) and estimation of bathymetric depth (Yunus et al., 2019).

Spectra as References
A different approach to estimation of a continous variable occurs
when the measured spectrum is taken as a reference and the
methods involve calculating the mixing of endmembers or the
system composition that would result in the observed spectrum.
This approach is typically solved numerically with optimization,
where the measured spectra is taken as a reference to be matched
against by spectra in a spectral library. The parameter values of

the best matching spectra are taken as estimates for the
measurement. An analytical solution via linear matrix
inversion is possible in linear problems, such as linear mixing
of endmembers or when using a linear approximation to the
radiative transfer equation. In the latter, the analysis calculates the
magnitudes (eigenvalues) associated with predefined relative
spectral shapes (eigenvectors) of system components that
would result in the observed spectrum.

The spectral library can contain previous measurements in
which the parameters of interest are known, or can be built from
simulation with a physical model. In the case of simulations, the
library can be generated dynamically at each iteration step or
through the use of a static library or “look-up table” of
measurements or pre-computed simulations. Iterative
approaches can be computationally expensive when applied to
each pixel in a remote sensing image. The computational time
involved in searching the library for the best matching spectrum,
however, may also be high given the number of properties that
must be considered, the number of spectral bands, and how each
parameter varies across the expected range. Library size can be
decreased to an extent by limiting the dimensionality of the
hyperspectral signal to regions of the spectrum containing most
of the information pertaining to the properties of interest.
Spectral libraries have been developed and applied to
differentiating phytoplankton groups or biodiversity (Palacios
et al., 2015) and in optically shallow water to retrieve bottom
depth and benthic cover (Louchard et al., 2003; Mobley et al.,
2005).

Many of the so-called “Semi-analytical Models” fall within the
broader category of optimization using a physical model

FIGURE 5 | Physical models link the water column optical properties to the
light field measured by a satellite. (A) Most semi-analytical algorithms use a
simplification where the directional nature of light is approximated with empirical
constants (Werdell et al., 2018). (B)Anewly posed ZTTmodel parameterizes
the shape of light in the backward direction (phase function), the shape of the
upwelling component of path radiance and the average cosine of downwelling light
Twardowski and Tonizzo (2018).
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representative of the system. Such techniques involve: 1) Formulation
of the problem in a forward model; 2) Iterating or inverting the
forward model algebraically or numerically; and 3) Finding the best
solution in terms of uniqueness, accuracy and efficiency of the model.
The formulation of the forward model in aquatic models often relate
inherent optical properties of the water column (typically the
absorption and backscattering properties of the water constituents)
through radiative transfer theory (Gege, 2017). To-date, most of the
aquatic models have used an approximation of the radiative transfer
equation relating the ratio of backscattering to absorption with an
empirical parameter, gi, that accounts for the angular distribution of
incoming and scattered light (Figure 5A) (Gordon and Brown, 1988).
A more detailed formulation of the forward model was recently
proposed, the Zaneveld-Twardowski-Tonizzo (ZTT) Model, that
parameterizes the angular distribution of both incoming and
upwelled light in the water column (Figure 5B) (Twardowski and
Tonizzo, 2018). Angular considerations become more critical when
retrieving optical properties in more complex coastal and inland
waters.

Many different numerical solutions have been used from non-
linear spectral optimization to adaptive linear matrix inversion (e.g.,
see Table 4 of Werdell et al., 2018). Some form of empirically
determined spectral shape functions are required to retrieve the
inherent optical properties of different constituents, including
particulate backscattering and absorption by phytoplankton,
gelbstoff, and depigmented particles. The term “depigmented
particles” is used rather than tripton, detritus or non-algal particles
because the measurement includes all types of depigmented particles,
including algal cells (Neeley et al., 2018). The solution involves varying
the quantities of each parameter until the difference between the
derived and the measured spectrum is sufficiently minimized. Many
solution methods include techniques to avoid local minima and
maxima and sample the whole parameters space (e.g., Dierssen
et al., 2019).

Derived inherent optical properties can then be related to other
parameters of interest such as concentrations of chlorophyll a, total
suspended matter, and potentially estimates of phytoplankton
community composition via supervised regression techniques
discussed above. In addition to the optical properties regularly
produced from ocean color imagery (Lee et al., 2002; Werdell
et al., 2013), similar approaches have also been successfully used in
simultaneously retrieving water column depth, inherent optical
properties and benthic diversity from hyperspectral imagery
(Hedley et al., 2016b; Garcia et al., 2018; Dierssen et al., 2019). A
significant advantage of optimization approaches is that uncertainties
due to instrumental and environmental noise can be estimated
numerically via the addition of spectral noise before inversion
(Garcia et al., 2014).

A class of optimization techniques well suited for hyperspectral
imagery are referred to as “Optimal Estimation” using Bayes’
theorem (Rodgers, 1998). It entails specifying probability
distributions for the natural variability of the hidden physical
processes (“priors”), a distribution for the spectral measurement
errors, and an explicit forward model. Assuming all distributional
parameters are known, the retrieved state is then the maximum a
posteriori (MAP) estimate of the state given the observed, noisy
radiances. Specifying the sources of variability within a Bayesian

framework allows for the parameterization of the sources of error
and the ability to propagate them into estimates of retrieval
uncertainty (Nguyen et al., 2019).

UNLOCKING BIODIVERSITY: NEITHER
FISH NOR FOWL

Biodiversity, the diversity within species, between species, and of
ecosystems, is a fundamental characteristic of Earth, and underpins
the structure and functioning of Earth’s ecosystems, as well as human
health, nutrition, and economic livelihoods (Secretariat of the
Convention on Biological Diversity, 2020). Many of the benefits
that we gain from aquatic ecosystems depend on the number and
abundance of species, the interactions between the organisms and the
environment, and the number of different habitats (Malone et al.,
2014). In recognition of the global threats to biodiversity, the
Convention on Biological Diversity (CBD) has listed several targets
for preserving aquatic biodiversity including: sustainable management
offisheries and aquaculture, prevention of nutrient pollution, aswell as
minimization of anthropogenic pressures on coral reefs and other
vulnerable ecosystems. Measures for biodiversity referred to as
Essential Biodiversity Variables (EBVs) are commonly grouped
into six classes: genetic composition, species populations species
traits, community composition, ecosystem structure, and ecosystem
function. SinceMuller-Karger et al. (2018), more biodiversity variables
for phytoplankton are routinely produced from satellites like Sentinel-
2 OLCI, including pigments (chlorophyll a and phycocyanin) and
certain taxonomic groups like cyanobacteria are routinely produced
from aquatic remote sensing platforms) (Figure 6).

Measurements of distribution, abundance, and phenology of bulk
phytoplankton in the open ocean (i.e., derived chlorophyll-a) are
regularly produced from satellite remote sensing. Parameters that
Muller-Karger et al. (2018) classified as “demonstrated limited cases”
could become operational with regular, hyperspectral observations. In
particular, high spatial and radiometric resolution hyperspectral data is
required with a high repeat frequency would enable measurements of
primary producers such as phytoplankton, wetland and submersed
plant and macroalgae species and distribution (including vertical),
pigments and other traits, taxonomic diversity and functional types
(Santos et al., 2012; Anderson et al., 2016; Santos et al., 2016; Bracher
et al., 2017a; Hedley et al., 2017). Where species cannot be measured
directly, hyperspectral remote sensing can be used to monitor drivers
and proxies of biodiversity. For example, hyperspectral remote sensing
can be used to discriminate the water quality constituents and the
spectral underwater light field of the aquatic environment, which
forms the niche formany fish species. Spectral diversity of the primary
producers in aquatic and wetland ecosystems can be used to make
inferences about biodiversity and ecosystem function (Muller-Karger
et al., 2018; Rebelo et al., 2018). Indeed, monitoring of biodiversity of
benthic and pelagic organisms in aquatic ecosystems will advance
remote sensing capabilities with diverse applications that serve both
the research and management communities (Figure 7).

Spectral “fingerprints” can be used to elucidate different light
absorbing, scattering, and fluorescence properties that are related to
the biodiversity of photosynthesizing flora and fauna in the water
column (pelagic), on the seafloor (benthos), and floating on the sea
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surface. Photosynthesizing flora includes different assemblages of
phytoplankton which provide the bulk of the photosynthesis in the
world ocean, and photosynthesizing fauna includes tropical coral reefs
and select mixotrophic plankton like ciliates. Algorithms for
estimating pigment concentration are usually associated with large
uncertainty when applied globally because of the variability in size and
shape of phytoplankton and cellular levels of pigment related to
environmental conditions (Dierssen et al., 2020). Increasingly studies
show that only a limited number of phytoplankton groups (∼5) may
be differentiated globally using hyperspectral absorption spectra in
visible wavelengths (Kramer and Siegel, 2019). The spectral signatures
of the different phytoplankton groups of interest are similar within the
uncertainty of the measurement largely because of the considerable
overlap in pigment composition between different groups (Cael et al.,
2020). Recent analyses of the oligotrophic ocean from theTaraOceans
expedition, for example, suggests that only around five different
phytoplankton groups can be reliably differentiated from their
spectral signatures (Cael et al., 2020). Data from the Santa Barbara
Channel, California revealed that around five phytoplankton pigment
communities, which are covarying assemblages of phytoplankton
groups, could be differentiated based on their spectral properties
(Catlett and Siegel, 2018). Similarly, data from the upwelling

waters around South Africa also was used to retrieve five different
phytoplankton communities relevant to the aquaculture industry
(Smith and Bernard, 2020). However, remote sensing algorithms
and biogeochemical models can be derived and tuned for the
regional or local phytoplankton groups down to specific taxa, if
they are known to occur in an area. And, we have only begun to
assess the hyperspectral scattering and fluorescence properties that
may also aid in differentiating different types and stages of blooms, as
well as relationships to seasonal trends and other remotely sensed
parameters including polarization parameters, temperature,
photosynthetically available radiation, and salinity.

PEERING INTO THE ABYSS

As the pressures of human population and climate change on coastal
and inland aquatic environments rise, the need will increase for more
accurate and timely environmental information to support research
and resource management. With an economic value to the Asia
Pacific region alone currently estimated at U.S. $372 billion, jumping
to U.S. $1.35 trillion by 2030 (Commonwealth of Australia, 2019)
Earth andmarine observing is emerging as a significant business in its

FIGURE 6 | Current capabilities of remotely sensed data for measuring Essential Biodiversity Variables modified fromMuller-Karger et al. (2018). “Unproven” indicates
that methods have not yet been developed to collect these measurements from remote sensing imagery. “Demonstrated” are methods that have been demonstrated and
could potentially be produced with hyperspectral imagery. “Routine” indicates measurements that are produced regularly. “Ecosystem model” indicates EBVs that can be
predicted on the basis of ecosystem models that may incorporate remote sensing imagery. “NA” indicates that the observation is not applicable.
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own right. Hyperspectral remote sensing, in particular, is becoming a
powerful mapping and survey tool that is well suited for optically
complicated coastal and inland aquatic environments, as well as a host
of other applications of societal importance, such as in areas of
agriculture, mineral exploration, forestry, and urban planning. This
broad scope of application will ensure that hyperspectral technology
and access will continue to improve with time. It is, therefore,
reasonable to speculate how future technological advances may
improve how we sense and understand aquatic environments and
to point out key challenges to overcome in order to capitalize on future
technology (Figures 7).

As noted in Suborbital Systems, sensorminiaturization is one of the
most exciting recent advances in hyperspectral technology for
observing highly heterogeneous benthic environments. We can
now mount small and lightweight imaging spectrometers on drone
platforms to fly at low altitude (Parsons et al., 2018), or within
submersible housings to acquire data with an unparalleled spatial
resolution (Chennu et al., 2017; Mogstad and Johnsen, 2017;
Bongiorno et al., 2018). The combined hyperspectral hyperspatial
data will allow us to revisit the research findings in aquatic andmarine
applications using point-based spectrometers of the early 2000s and
apply it in a new spatially explicit manner, while including context,

shape, size, and textural measures for more detailed classifications.
Further, with the availability of sensors of the caliber that were
previously limited to military or high-end commercial consulting,
data capture is rapidly decentralizing and distributing within an
expanding user community. This expansion of platforms results in
potentiallymanymore data sets available to be analyzed and exploited.

The shift in imaging system access and control from external
organizations and large satellites to the individual researcher with
UAS is analogous to transferring computing power from
mainframes to personal computers in the 1980s. By
embedding the technology within research activities, users
have more flexibility in deciding when, where, and how
frequently to collect observations, thus increasing data value
and, therefore, project efficiency. Users can readily create
custom UAS-based systems, or purchase complete systems
including sensors, aircraft, and mission planning and data
analysis software, tailored to applications (Adão et al., 2017).
This is a careful balance though, as the adoption of UAS systems
often comes at the expense of loss of coverage across large areas
without great investment in personnel time and extremely large
data volumes still not manageable for many individual research
groups or investigators (Bolch et al., 2021).

FIGURE 7 | A host of new applications will be available with better discrimination of pelagic and benthic biodiversity promised by hyperspectral imagery. Modified
from Dierssen et al. (2020).
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However, more data is not always synonymous with better data.
Further, neither necessarily leads to better decisions. Decentralized
data capture can lead to inconsistencies in quality, making
comparisons between studies difficult. By popularizing the
collection of remote sensing data, standardized community best
practices in data capture and quality control are needed to avoid
‘garbage in, garbage out’ scenarios (Joyce et al., 2019). Development of
standardized instrument calibration procedures and data capture
protocols, including thorough accompanying metadata (Janssen
et al., 2012; Kalinauskaitė, 2017), should be a future priority of the
user community. For example, no accepted protocols are currently
available on how to best calibrate commercial off-the-shelf
hyperspectral imaging spectrometers for aquatic applications. Such
standardizationwill be particularly important when conductingmulti-
temporal analyses and when sharing datasets between users.

Data sharing is widely recognized for promoting innovation
and growth. Recent moves toward creating open and FAIR
(findable, accessible, interoperable, and reusable) data archives
have largely contributed to an acceleration of new remote sensing
applications. One only needs to look to the vast number of new
and exciting applications of Landsat data that followed open
access to the 30 + year archives to realize the value in this
approach (Wulder et al., 2016; Zhu et al., 2019). This
challenges the assumption that we only obtain value through a
financial transaction when the data collector sells its raw data.
Instead, FAIR data policies place value on the benefits of derived
products. We expect that continued FAIR data practices will
continue to remove barriers to remote sensing technology,
including the availability of hyperspectral imagery, and result
in a greater diversity of people engaging with the data to address
the many environmental challenges facing society.

To allow users to truly exploit raw data, derive products, and
create new knowledge, it is essential to support FAIR data with
the appropriate infrastructure and systems architecture on
similarly accessible platforms (Janssen et al., 2012;
Kalinauskaitė, 2017). Supporting open-source software options
such as QGIS (see Table 2) are critical in continuing to grow
relevant applications through open-minded community
collaboration. Yet, locally hosted software options are unlikely
to be the future for hyperspectral data processing. Hyperspectral
data fits within the category of “big geo data” (Krämer and
Senner, 2015) and is, therefore, better suited to scalable and
distributed cloud processing rather than local computing

capabilities (Wilson et al., 2018; Haut et al., 2019). Although
cloud-based high-performance computing (HPC) is not a new
concept (e.g., Plaza et al., 2011), its intersection with
hyperspectral data for environmental analyses–particularly in
aquatic environments–is in its infancy and remains an area for
considerable future growth.

Technological advances in computing technology, data storage,
and processing combined with the potential for increased data
availability due to decentralized data capture presents exciting
challenges and opportunities for hyperspectral aquatic remote
sensing in the future. The inherent high dimensionality, noise, and
intra-class variability plague the deep learning models that are
otherwise becoming a favored means for analyzing remotely
sensed data (Paoletti et al., 2019). However, with distributed
analyses, opportunities for community collaboration and
crowdsourcing emerge. Examples of this dynamic abound within
the rapidly developing field of machine learning and artificial
intelligence (Chirayath and Li, 2019).

Similarly, global initiatives such as AquaWatch and IOCCG
connect global networks of people, sensors, and platforms to
provide an integrated approach to aquatic ecosystem analyses
(Table 5). Such international groups can also provide a framework
for broad data access spanning nations and individual satellite
missions. In addition, the ocean optics community should be
engaged closely with the broader scientific community involved
with biogeochemical and ecosystem modeling (IOCCG,
2020). Going forward, better quantification of parameter
uncertainties will provide ocean modelers with the metrics
needed for assessing model performance. Finally, merging of
hyperspectral imagery with other types of remote sensing, such
as polarimetry (Chowdhary et al., 2019), provides exciting new
avenues for growth in what can be retrieved across Earth’s
diverse aquascape. There will continue to be a mutual benefit for
the hyperspectral community to continue to engage more
broadly with Earth and marine observations.

In conclusion, the field of hyperspectral aquatic remote sensing is
on the cusp of providing novel ways to sense aquatic ecosystems and
new parameters that can be better used by decision-makers and
scientists alike. The lists of resources and tools provided here are only a
starting point and will expand over time as more hyperspectral data
from satellites, drones and other platforms becomes accessible to the
larger community of scientists and practitioners. To aid in this effort,
we recommend posting resource information on public forums and

TABLE 5 | Relevant outreach programs.

Name Citation/Link Description

Geo Aquawatch https://www.geoaquawatch.org/ Develop and build the global capacity and utility of earth observation-derived water quality data,
products and information to support water resources management and decision making

HYPERedu https://www.enmap.org/events_education/
hyperedu

An online learning platform for hyperspectral remote sensing as part of the education initiative within
the EnMAP mission

IOCCG https://ioccg.org/ Promotes the application of remotely sensed ocean color and inland water radiometry data across all
aquatic environments, through coordination, training, advocacy and provision of expert advice

PACE Early Adopters https://pace.oceansciences.org/app_
adopters.htm

Promotes applied science and applications research designed to scale and integrate PACE data into
policy, business, and management activities that benefit society and inform decision making

Remote Sensing
Toolkit

https://www.rsrc.org.au/rstoolkit Designed for managers to understand how images collected from different satellites and aircraft can
be used to map and monitor changes over time
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updating resource lists and tools regularly. While the foundations for
algorithm development and data processing are becoming well
established, a significant gap is the availability of field data for both
algorithm training and validation across the global ocean and inland
waterways including common and episodic environmental
conditions. This includes not just the collection of well-calibrated
hyperspectral imagery but merged datasets coupling hyperspectral
reflectance with ancillary biodiversity and biogeochemical properties
obtained with consistent methodology and metadata. Such efforts will
require global cooperation and data sharing. Indeed, interdisciplinary,
international, commercial, and citizen collaborations will drive us
forward as a community to realize the hype of hyperspectral remote
sensing and provide important new insights into the blue marble
Earth.
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Detection and Sourcing of CDOM in
Urban Coastal Waters With UV-Visible
Imaging Spectroscopy
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Curtis L. Cash5 and Cédric G. Fichot1*
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Ultraviolet (UV)-visible imaging spectroscopy is an emerging and highly anticipated
technology, expected to improve the remote sensing of coastal waters and expand its
range of applications. Upcoming NASA satellite missions including PACE and GLIMR will
feature imaging spectrometers capable of measuring hyperspectral remote-sensing
reflectance (Rrs) across the visible range and well into the near-infrared and ultraviolet
domains. The availability of UV reflectance is expected to facilitate the remote sensing of
chromophoric dissolved organic matter (CDOM) in optically complex waters, thereby
improving coastal water-quality monitoring. Although this argument is well supported by
the dominance of CDOM absorption in the UV domain, few studies have directly evaluated
the potential advantages conferred by UV reflectance for monitoring CDOM-related
coastal water quality. Here, we took advantage of a 6-week wastewater diversion
event in Santa Monica Bay, California in 2015 and the availability of Portable Remote
Imaging SpectroMeter (PRISM) imagery acquired during the diversion to assess if UV-
visible imaging spectroscopy could facilitate the detection of CDOM and help differentiate
wastewater effluent-derived CDOM from other sources. A comparison of local empirical
algorithms with varying amounts of spectral information implemented on PRISM data
showed that incorporating UV Rrs as a predictor significantly improved retrieval of CDOM
absorption coefficients (ag). Optimal performance was reached when combining Rrs(365),
Rrs(400), and Rrs(700) as predictors of ag in a multiple linear regression. The use of the
entire UV-visible spectrum (365–700 nm) in a partial-least-squares regression (PLSR) did
not improve retrievals, indicating that a few carefully chosen predictors in the UV-visible
domain were sufficient to empirically differentiate CDOM from phytoplankton in coastal
waters minimally influenced by sediments or bottom reflectance. Finally, the development
of a new fluorescence-based indicator of effluent-derived CDOM (effluent fluorescence
ratio, EFR) helped demonstrate the feasibility of remotely detecting CDOM from
wastewater. A PLSR-based algorithm using Rrs(365–700) provided reasonable EFR
retrievals and successfully identified effluent-derived CDOM at the wastewater outfall
when implemented on PRISM imagery. Although further work should investigate the
influence of effluent-CDOM fluorescence on Rrs more mechanistically, these results
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confirmed that UV-visible imaging spectrometers can facilitate coastal CDOM-related
water quality monitoring and expand its range of applications.

Keywords: imaging spectroscopy, hyperspectral, UV reflectance, water quality, CDOM, fluorescence, wastewater,
coastal

INTRODUCTION

Urban coastal waters are productive environments that provide
important ecosystem services to humans, including the dilution
of terrestrial inputs (IOCCG, 2008; Rabalais et al., 2009;
McLaughlin et al., 2017), fisheries and aquaculture, and
various recreational and transportation services (Halpern et al.,
2012; Caron et al., 2017; Gierach et al., 2017). The rapid
expansion of urban centers around the world has dramatically
increased the impact of human activities on land use, runoff,
hydrodynamics, atmospheric deposition, and local climate at the
land-ocean interface, and these can influence the water quality of
the adjacent coastal waters (McKinney, 2002; Halpern et al., 2008;
Halpern et al., 2012). Increased runoff from impervious surfaces
(Ackerman and Weisberg, 2003; Bay et al., 2003; Dojiri et al.,
2003) and pollution point sources (e.g., wastewater effluent) can
lead to elevated concentrations of nutrients, organic matter, and
contaminants in urban coastal waters and negatively impact
water quality in this environment. These water quality impacts
have serious consequences for the services these ecosystems
provide and for human health in these densely populated areas.

Chromophoric dissolved organic matter (CDOM) is a major
optical water-quality indicator that can be diagnostic of runoff
and point sources of pollution in urban coastal waters (IOCCG,
2015; Fichot et al., 2016; Cao et al., 2018). CDOM is ubiquitous
and naturally present in coastal waters, where it is not only
produced in situ by biological processes, but is also strongly
influenced by terrestrial sources (e.g., soils) through runoff
(Hansell and Carlson, 2014). The spectral optical properties of
CDOM (absorption and fluorescence) have therefore been used
in various proxies of terrestrial runoff and/or as indicators of
dissolved organic matter (DOM) source and degradation state in
coastal waters (Vodacek et al., 1997; Hernes and Benner, 2003;
Stedmon and Markager, 2003; Boyd and Osburn, 2004; Chen
et al., 2004; Helms et al., 2008; Tzortziou et al., 2008; Fichot and
Benner, 2012; Murphy et al., 2013; Yamashita et al., 2013). In
urban waters, wastewater effluent represents another potentially
significant source of CDOMwith characteristic optical properties
(Goldman et al., 2012; Devlin et al., 2015), which can be leveraged
and used in optical proxies indicative of CDOM-related
pollution.

CDOM is optically active and therefore has the advantage of
being amenable to ocean-color remote sensing (Siegel et al., 2002;
Mannino et al., 2008; Swan et al., 2013; Cao et al., 2018; Werdell
et al., 2018). Ocean-color remote sensing can facilitate the
monitoring of several optical water quality indicators (e.g.,
phytoplankton, turbidity, CDOM) over large areas and could
enable the detection of CDOM-related pollution in urban coastal
waters (IOCCG, 2015). However, it faces major challenges in
these types of waters, where a combination of difficult

atmospheric corrections and optical complexity of the waters
can lead to large uncertainties and errors in the derived water-
quality products (Aurin and Dierssen, 2012; Werdell et al., 2018).
Coastal waters are generally optically complex, (IOCCG, 2000)
because they are influenced by a combination of riverine and
coastal-wetland inputs, upwelling of deep water, phytoplankton
blooms, and in some cases urban wastewater effluent. This optical
complexity often cannot be accurately resolved using existing
multispectral sensors, which have constrained spectral ranges and
resolutions (Aurin and Dierssen, 2012; Dekker et al., 2018).
Considering that CDOM optical properties are most
prominent in the ultraviolet (UV) and blue regions, these
spectral limitations are particularly restrictive for detecting
CDOM and distinguishing among different CDOM sources.
UV observations are beyond the spectral ranges of many
current ocean color sensors, and phytoplankton can interfere
with or even dominate optical variability at blue wavelengths in
more phytoplankton-dominated waters (Mobley et al., 2005; Zhu
et al., 2011; Fichot et al., 2016; Werdell et al., 2018).

Recent advances in imaging spectroscopy (hyperspectral
imagery) with broader and finer spectral capabilities than
multispectral ocean-color sensors are expected to improve
retrieval accuracy for in-water constituents in complex coastal
waters from remote-sensing reflectance, Rrs(λ) (Mouw et al.,
2015; Werdell et al., 2018). UV reflectance, in particular, is
expected to facilitate the separation of chlorophyll-a and
CDOM in optically complex waters. The upcoming NASA
Plankton, Aerosol, Cloud, ocean Ecosystems (PACE) and
Geosynchronous Littoral Imaging and Monitoring Radiometer
(GLIMR) missions will provide UV-visible observations of the
coastal ocean at high spectral resolution. These new spectral
capabilities offer the potential to improve CDOM retrievals in
optically complex coastal waters and to retrieve more specific
optical properties of CDOM that are indicative of its source.
However, few studies have directly assessed the utility of these
new spectral capabilities for retrieving CDOM and differentiating
its sources in coastal waters.

In this study, we evaluated the utility of UV-visible imaging
spectroscopy for detecting CDOM accurately in urban coastal
waters. We also tested the feasibility of remotely differentiating
effluent-derived CDOM from other sources (e.g. terrestrial
runoff). We specifically assessed the value of UV reflectance
and of enhanced spectral resolution. This study took
advantage of a 6-week wastewater diversion event and a
related water-quality monitoring effort that took place in the
urban waters of Santa Monica Bay (Southern California) in fall
2015 (City of Los Angeles, Environmental Monitoring Division,
2017; Trinh et al., 2017), and leveraged imagery from the NASA/
JPL Portable Remote Imaging SpectroMeter (PRISM) airborne
instrument (Mouroulis et al., 2014; Thompson et al., 2019). We
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used the PRISM data, as well as in-situ hyperspectral
measurements of Rrs(λ) and coincident laboratory
measurements of CDOM spectral absorption and excitation-
emission matrix (EEM) fluorescence, to compare the
performance of several algorithms with varying levels of UV-
visible spectral information. The data were also used to develop a
fluorescence-based indicator of wastewater effluent and evaluate
the amenability of this indicator to UV-visible imaging
spectroscopy to detect point-source effluent. To the extent of
our knowledge, this is the first attempt to use imaging
spectroscopy in the UV range to facilitate water quality
monitoring in coastal waters.

Study Area and Wastewater Effluent
Diversion
Santa Monica Bay is a semi-enclosed coastal bay in the Southern
California Bight that ranges fromMalibu in the north to the Palos
Verdes peninsula in the south (Figure 1). Santa Monica Bay is
directly adjacent to the heavily urbanized greater Los Angeles
area, which includes many densely populated coastal
communities such as Santa Monica and Venice as well as the
heavily trafficked Marina del Rey and Los Angeles International
Airport. The bay provides valuable resources in the form of
recreation, fisheries, transportation, wastewater disposal, water

for industrial processes, and various other ecosystem services
(Ackerman and Weisberg, 2003; Bay et al., 2003; Dojiri et al.,
2003). The northernmargin of SantaMonica Bay is dominated by
the Santa Monica Mountains National Recreation Area, and has
higher topographic relief and a sparser population (Bay et al.,
2003) than the rest of the bay. Across much of the bay, water
depth is less than 50 m but can reach depths greater than 500 m in
submarine canyons that chisel through the bay (Figure 1).

This urban coastal-water system consists of heterogeneous,
dynamic and optically complex waters influenced by marine
currents, precipitation, and point sources of nutrients (Howard
et al., 2014; Howard et al., 2017) or pollution (Trinh et al., 2017).
Relative to the nearby open ocean, productivity in Santa Monica
Bay is high, stimulated by nutrient inputs from spring upwelling
events, as well as point sources of nutrients within the bay (Bray
et al., 1999). Nutrient availability and currents in the bay are also
influenced by the introduction of cold waters from the California
Current System, intensified by seasonal coastal upwelling (Caron
et al., 2017; Trinh et al., 2017). Local currents within Santa
Monica Bay are highly variable, influenced by interactions of
wind and strong temperature gradients with regional currents in
the Southern California Bight (Washburn et al., 2003; Caron et al.,
2017; City of Los Angeles, Environmental Monitoring Division,
2017).

Santa Monica Bay receives less runoff than most river-
influenced coastal margins due to the dry local climate of
Southern California, with salinity in the bay typically varying
over a relatively narrow range (33 ± 2 PSU) outside of terrigenous
freshwater plumes (Tiefenthaler et al., 2000). Santa Monica Bay
receives low riverine inputs relative to other coastal areas. Low
precipitation conditions are punctuated by intermittent, although
often intense, rain events (Bay et al., 2003; Dojiri et al., 2003).
Runoff reaches the bay through several highly engineered,
concrete-hardened urban creeks in greater Los Angeles
(Ballona Creek and Santa Monica Creek) and through the
more natural creek and river systems that drain the Santa
Monica Mountains to the north of the bay (including Malibu
Creek and Topanga Creek (Ackerman and Weisberg, 2003; Bay
et al., 2003; Dojiri et al., 2003). These intermittent runoff events
have been shown to substantially influence coastal water quality
and biogeochemistry in the bay (City of Los Angeles,
Environmental Monitoring Division, 2017).

The Hyperion Wastewater Reclamation Plant is the largest
wastewater treatment facility in Los Angeles. It released
approximately 230 million gallons of secondary-treated
wastewater effluent into Santa Monica Bay daily in 2015 (City
of Los Angeles, Environmental Monitoring Division, 2017). This
effluent is treated with physically, chemically, and bacterially
mediated processes to remove sediments and organo-solids.
During normal operations, effluent is released through a 5-
mile offshore outfall in waters that are more than 60 m deep
(Lyon and Sutula, 2011; City of Los Angeles, Environmental
Monitoring Division, 2017; Gierach et al., 2017; Trinh et al.,
2017). In fall 2015, during scheduled maintenance lasting 6 weeks
(September 21, 2015-November 2, 2015), secondary-treated
effluent from Hyperion was released at an older 1-mile
offshore outfall in waters less than 20 m deep (City of Los

FIGURE 1 | Map of Santa Monica Bay with the sampling stations
including the 1-mile outfall station (D9W, red triangle), the stepout stations
surrounding the outfall (orange diamonds), and the other stations (yellow
circles). The 1-mile and 5-mile outfall pipes extending from the Hyperion
Wastewater Treatment Plant are represented by black lines.

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 6479663

Harringmeyer et al. UV-Visible CDOM Imaging Spectroscopy

216

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Angeles, Environmental Monitoring Division, 2017). High
surface concentrations of organic matter, coliform bacteria,
and algal blooms were associated with the effluent plume
and impacted surface water quality. Preemptive closure of
nearby beaches was therefore necessary at times during the
diversion (City of Los Angeles, Environmental Monitoring
Division, 2017). The water quality monitoring efforts
described in this paper, including in-situ sampling, were led
by the City of Los Angeles Environmental Monitoring Division
(CLAEMD). Field measurements during the water quality
monitoring efforts were aided by the collection of PRISM
airborne imagery.

DATA AND METHODS

In-situ Sample Collection and
Measurements
Eighty-three surface water samples were collected before, during,
and after the wastewater diversion (sampling from September
16-November 11, 2015) aboard the R/V La Mer and R/V
Marine Surveyor along a zig-zagging pattern of stations
oriented northwest-southeast in Santa Monica Bay
(Figure 1 and Table 1). One station was located directly
above the 1-mile Hyperion effluent outfall (Station D9W),
and four more stations were positioned at “stepout” locations
approximately 750 m north, south, east, and west of the outfall
(Figure 1). The dispersion of the effluent from the outfall
during the diversion was driven by complex and variable
current patterns in Santa Monica Bay during the diversion
(City of Los Angeles, Environmental Monitoring Division,
2017). As a result, some stepout stations were heavily
influenced by effluent whereas others were minimally
impacted. Salinity was measured at 1-m depth using an SBE
19-plus Conductivity-Temperature-Depth (CTD) rosette
(Seabird Scientific®) equipped with 1.7 L Niskin bottles.
Two WETLabs® WETStar single-channel fluorescence
sensors were also mounted in the CTD rosette and
provided simultaneous measurements of chlorophyll-a
fluorescence (460 nm excitation and 695 nm emission) and
DOM fluorescence (370 nm excitation and 460 nm emission).
Surface water samples were collected at 1 m depth using the

Niskin bottles of the CTD rosette. Samples were gravity filtered
through 0.7 µm filters (GF/F glass-fiber filters) directly from
the Niskin bottles into clean borosilicate EPA clear glass vials
(acid washed with 10%-HCl and furnaced at 450°C for 4 h) and
placed immediately at 4°C in the dark until analysis in the
laboratory. Glass-fiber filters with a 0.7 µm effective pore size were
used in this study as a clean filtration method that allowed samples
to be rapidly filtered between sample collections. Differences
between filtration through 0.7 and 0.2 µm filters are likely to be
small for the relatively low particle concentrations measured in
Santa Monica Bay (Laanen et al., 2011). Scattering effects from any
remaining sub-micron-scale particles after 0.7 µm filtration are
expected to be further mitigated by the spectral fitting routine
applied during laboratory analysis for CDOM absorption (Zhu
et al., 2020; described below).

In-situ Radiometry
In-situ radiometric measurements were collected nearly
simultaneously with sample collection at 45 stations using a
Satlantic Inc. HyperPro free-falling optical profiling system
(Seabird Scientific). The HyperPro system is composed of
three, hyperspectral Satlantic Hyper Ocean Color
Radiometers (HyperOCR): two HyperOCR mounted on the
profiler to measure underwater downwelling irradiance Ed(λ)
and upwelling radiance Lu(λ) and a third radiometer that
measures downwelling surface irradiance above the air-
water interface Es(λ). The HyperPro was used in two
deployment methods during field sampling: tethered surface
reflectance buoy mode and profiling mode. These methods are
described in further detail for these data in a previous
publication (Trinh et al., 2017). Briefly, in both modes, the
water-leaving radiance Lw(λ) is calculated by extrapolating
below-surface upwelling radiance and downwelling irradiance
measurements across the air-water interface. Water-leaving
radiance is then divided by Es(λ), measured by the above-water
reference sensor, to calculate remote sensing reflectance
Rrs(λ) � Lw(λ)/Es(λ). Care was taken during both surface
reflectance buoy-mode and profiler-mode deployments to
keep the profiler at least 30 m away on the sunward side of
the ship to minimize instrument shading. In profiler mode,
observations from multiple freefall casts were combined to collect
repeatable, representative Rrs measurements. Spectral Rrs(λ)

TABLE 1 | Summary of in-situ variables. Ranges of observed environmental parameters are reported for each sampling day. Gray rows denote sampling conducted during
the wastewater effluent diversion.

Sampling date Salinity
[PSU]

ag(365)
[m−1]

ag(443)
[m−1]

EEM mean
effluent

peak FE [RU]

EEM mean runoff
peak

FR [RU]

Chlorophyll-a
Fluorescence [FU]

[DOC]
[µmol L−1]

September 16, 2015 32.64–33.24 0.10–0.57 0.027–0.18 0.0071–0.033 0.012–0.067 0.013–0.15 159–214
September 24, 2015 32.21–33.31 0.17–0.60 0.050–0.20 — — — —

September 30, 2015 31.80–33.44 0.07–0.92 0.017–0.32 0.0036–0.18 0.0089–0.11 0.0–3.6 155–350
October 14, 2015 31.75–33.48 0.06–0.75 0.015–0.26 0.0039–0.14 0.010–0.092 0.0079–1.2 147–284
October 21, 2015 32.11–33.45 0.08–0.66 0.021–0.22 0.0049–0.092 0.0085–0.073 0.018–3.5 146–230
October 26, 2015 33.64–32.40 0.07–0.33 0.019–0.10 0.0076–0.070 0.026–0.068 — 168–226
November 5, 2015 33.30–33.38 0.11–0.20 0.030–0.063 0.0060–0.014 0.011–0.021 0.050–1.3 155–167
November 11, 2015 33.35–33.44 0.10–0.21 0.028–0.064 0.0055–0.013 0.0091–0.020 0.047–0.32 139–155
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measurements from the HyperPro, covered a range from 350
to 700 nm in 3–4 nm increments, but were interpolated to
1 nm spectral resolution. In-situ Rrs(λ) data were smoothed
using a Savitzky-Golay filter (Savitzky and Golay, 1964) with
frame size of 13 nm and polynomial of order 4 (Vandermeulen
et al., 2017) implemented using the sgolayfilt function in
Matlab. This smoothing was selected for its preservation of
spectral shape and with a window chosen to smooth spectra
without eliminating narrow features (Vandermeulen et al.,
2017). In-situ Rrs(λ) data were used to validate PRISM
Rrs(λ) and to calibrate empirical algorithms. For inter-
comparability with PRISM data described below, Rrs(λ)
analyses were limited to the 365–700 nm spectral range.
Rrs(λ) spectra collected at in-situ stations are shown in
Supplementary Figure S1.

Chromophoric Dissolved Organic Matter
Absorption Coefficient Spectra
Absorption-coefficient spectra of CDOM, ag(λ), were
determined for the 83 surface-water samples (Figure 2) and
five effluent-dilution samples (see below) using a
Shimadzu UV-1830 dual-beam spectrophotometer. As
described above, samples were gravity filtered using pre-
combusted glass fiber filters (0.7 µm pore size) and stored at

4°C in borosilicate glass bottles prior to measurement. The
absorbance (optical density) of each filtered sample was
measured in 1-nm increments from 250 to 700 nm. Samples
were placed in 5 cm-pathlength quartz cells, and measurements
were compared to simultaneous blank measurements of pure
water (Millipore Milli-Q Direct 16). Samples were allowed to
equilibrate to room temperature to avoid artifacts in pure-water
absorption at longer wavelengths caused by temperature
differences (Sullivan et al., 2006).

An exponential fit of the absorbance spectrum from 500 to
700-nm was used to compute an offset value that was subtracted
from the entire absorbance spectrum (Fichot and Benner, 2011;
Zhu et al., 2020). Offset-corrected spectral absorbances were
converted to Napierian CDOM absorption coefficients, [m−1].
This offset correction is well suited to coastal waters, because it
does not assume that absorption coefficients in the 680–700 nm
are negligible as is often done in procedures used to correct
CDOM absorbance for open ocean waters (Johannessen et al.,
2003).

Chromophoric Dissolved Organic Matter
Fluorescence Excitation-Emission Matrices
Seventy-six filtered (0.7 µm) surface water samples and the five
effluent-dilution samples were analyzed for excitation and

FIGURE 2 | Map of in-situ ag(365) measured during the field campaign in the fall 2015. Pre-diversion samples were measured on September 16 after a heavy
precipitation event on September 15 (>6 cm of rain) and exhibited higher CDOM content at the north end of the bay. During the wastewater diversion, the highest ag(365)
were observed near the 1-mile outfall. After the end of the wastewater diversion, there was little precipitation, and ag(365) was low at all sampling stations across Santa
Monica Bay.
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emission matrix (EEM) fluorescence using a Photon Technology
International PTI 814 spectrofluorometer with a 1 cm quartz
cuvette (Walker et al., 2009). Excitation was performed in 5 nm
increments from 240 to 450 nm, and emission was measured in
2 nm increments from 300 to 600 nm. During the measurement,
the emission signal was normalized to a reference detector to
remove fluctuations of the light source. The raw EEM spectra
were exported to MATLAB and processed with the drEEM
toolbox (Murphy et al., 2013) to correct for the inner filter
effect and to apply a Raman calibration. Finally, a Raman-
normalized excitation and emission spectrum of Milli-Q water
(18.2 MΩ cm) was subtracted from sample EEM spectra to
remove the Raman signal. EEM fluorescence was not
measured on September 24 and at two stations on October 21
because of low sample volume.

Dissolved Organic Carbon Concentration
Dissolved organic carbon (DOC) was measured by high-
temperature combustion using a Shimadzu TOC-V analyzer
equipped with an autosampler (Fichot and Benner, 2011).
Samples were gravity filtered using pre-combusted glass fiber
filters (0.7 µm pore size), acidified with 2 mol L−1 HCl, and stored
at 4°C in borosilicate glass bottles until analysis within a few days
of sampling. DOC concentration in the blanks were negligible,
and accuracy and consistency of measured DOC concentrations
was checked by measuring a deep seawater reference standard
(University of Miami) every sixth sample.

Effluent Dilution Experiment
A sample of undiluted wastewater effluent was provided by the
Hyperion Wastewater Reclamation Plant for our use in a dilution
experiment. In order to simulate the effects of effluent-derived
DOM on the absorption and fluorescence characteristics of the
water, the effluent sample was diluted in a surface seawater
sample obtained in offshore Santa Monica Bay after the
diversion. Specifically, the pure effluent sample (100%) was
diluted to generate seawater solutions containing 5, 1, 0.2, and
0% (no addition) of effluent by volume. Each sample was then
analyzed for CDOM absorption spectra and EEM fluorescence as
described above.

Algorithm Development
We developed local empirical algorithms for the remote retrieval
of CDOM absorption coefficient from UV-visible Rrs(λ)
measurements. These algorithms were tested against two
standard methods: a local empirical blue-red band ratio
algorithm, and the Quasi-Analytical Algorithm version 6,
updated in 2014 (QAA_V6) (Lee et al., 2007; Lee et al., 2009;
Lee et al., 2014). Absorption at 365 and 443 nm were selected as
representative scalar measures of CDOM to be inferred by the
algorithms. The ag(365) was selected because it directly
influences Rrs(365), the shortest UV wavelength for which we
have Rrs(λ). The Rrs(λ) in this wavelength range is expected to be
less influenced by other in-water constituents. Algorithms were
also developed for ag(443), to facilitate comparison with the
QAA. Absorption coefficients of CDOM at 365 and 443 nm were

highly correlated, and the accuracy of their retrieval by empirical
algorithms was comparable, allowing for fair comparison of local
empirical algorithms that utilize UV reflectance with other
methods.

Empirical Algorithms for ag(λ)
UV-red and blue-red band-ratio algorithms were compared to
assess the utility of including UV reflectance in simple empirical
algorithms to facilitate the retrieval of accurate ag(365) and
ag(443) in a coastal environment where optical variability is
largely driven by phytoplankton (Trinh et al., 2017). We also
assessed the value of additional spectral information for the
development of such empirical algorithms. Algorithms based
on multiple linear regression (MLR) utilizing three bands and
a full-spectrum partial least squares regression (PLSR) algorithm
were compared to explore the improvements in CDOM retrieval
offered by increasing spectral resolution. Specifically, to assess the
utility of UV measurements and high spectral resolution data for
the retrieval of ag(443), five strategies were tested:

1) univariate regression on a blue-red reflectance band
ratio Rrs(443)/Rrs(665);

2) univariate regression on a UV-red reflectance band
ratio Rrs(365)/Rrs(665);

3) visible multiple linear regression on Rrs(412), Rrs(443),
and Rrs(700);

4) UV-visible multiple linear regression on Rrs(365), Rrs(400),
and Rrs(700);

5) UV-visible partial least squares regression on full-spectrum
Rrs(365−700).

Empirical algorithms for deriving bio-optical properties from
Rrs(λ) were calibrated using in-situ data including stations where
Rrs(λ) was measured along with CDOM absorption (n �41).
Empirical fits for ag(λ) were conducted by first taking the log-log
transform of ag(443) and the Rrs predictor variables and then
performing linear regression (equivalent to fitting a power-law).
For all multiple linear regression algorithms, initial wavelength
selection was conducted by performing forward and backward
variable selection, conducted using the MATLAB stepwiselm
function to select variables based on local minimization of the
Bayes Information Criterion (BIC). As stepwise variable
selection is sensitive to initial selection of predictors, it was
performed using reflectance observations at 5 nm intervals
across the entire measured wavelength range (or from 412 to
700 for the visible-only MLR) as the initial predictor variable.
The wavelengths most frequently selected by stepwise variable
selection were then tested together in different combinations of
wavebands, based on understanding of bio-optical signatures
and chosen to reduce correlation between variables by not
choosing Rrs(λ) observations from wavelengths <10 nm
apart. Finally, forward and backward variable selection was
again conducted using the MATLAB stepwiselm function to
identify a best-performing MLR model.

We also tested empirical algorithms for inferring CDOM
using partial least squares regression. PLSR is a statistical
technique for collapsing many highly correlated explanatory
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variables into a smaller number of uncorrelated predictors ranked
in order of explanatory power (Mevik and Wehrens, 2007).
Linear combinations of predictors are used to create
components that have maximized correlation with the
response variable. To predict bio-optical parameters, PLSR was
implemented using the MATLAB plsregress function from the
Statistics and Machine Learning Toolbox™. PLSR models were
tested for both log-transformed and linear Rrs and log-
transformed and linear bio-optical properties.

PLSR was tested for overfitting using a “leave-p-out” cross-
validation routine with p � 4. Four data points, representing
approximately 10% of the available data, was selected as an
appropriate subset for validation in order to balance bias and
variance in cross-validation (Arlot and Celisse, 2010). During
“leave-four-out” cross-validation, PLSR coefficients were
calibrated using the remaining n−4 data points, and the
resulting empirical algorithm was validated using the four
points that had been held out. Error statistics (root mean
squared error (RMSE), mean absolute error (MAE), mean
absolute percent error (MAPE), and R2) were calculated
between the fitted and measured parameter of interest on
the four points that were held out. This process was repeated
for all possible subsets of four stations (40 choose four
combinations for predicting EEM fluorescence peak ratio
and 45 choose four combinations for fits on ag), and
averaged error statistics across all leave-four-out
combinations were calculated. The averaged leave-four-out
error statistics were used to select an appropriate number of
PLSR components.

Full error statistics for empirical algorithm calibration are
presented in Table 2. The performance of these empirical
algorithms was also compared to QAA retrievals to assess
the performance of locally calibrated empirical algorithms
against a well-established semi-analytical approach. The same
procedure was used to calibrate empirical algorithms for
ag(365), but in this case no direct comparison with the QAA
was possible.

Effluent Fluorescence Peak Ratio Empirical Algorithm
Development
We also assessed the feasibility of remotely detecting CDOM
source information, specifically inferring a fluorescence proxy for
the degree of effluent impact. From in-situ stations where both
Rrs(λ) and EEM fluorescence were measured (n � 40), we
developed empirical algorithms for inferring the ratio between
the mean intensity of an EEM fluorescence peak associated with
effluent, FE , (340–360 nm excitation and 426–454 nm emission),
and one that was indicative of runoff-influenced CDOM, FR,
(255–265 nm excitation and 382–398 nm emission) from remote
sensing reflectance (see Results). The effluent fluorescence ratio
(EFR, mean intensity of the effluent-associated peak/mean
intensity of the runoff-associated peak) was used as an optical
proxy for the degree of effluent impact in a sample (see below for
full definition of EFR). Unlike FE, which increased with increasing
CDOM regardless of source (although the increase in FE was
greater for effluent-derived CDOM), EFR compared the relative
intensity of fluorescence in different ranges of the spectrum.
Therefore, EFR was a specific indicator of effluent, because it
increased only when the amount of effluent-derived CDOM
increased and was decreased by the addition of runoff-derived
CDOM. Empirical algorithms utilizing MLR on Rrs(400),
Rrs(425), and Rrs(400)/Rrs(425) and a full-spectrum,
Rrs(365–700), PLSR were fitted to data from 36 calibration
stations with in-situ Rrs and EEM fluorescence data.

Portable Remote Imaging SpectroMeter
Imagery
PRISM imagery was collected during a flyover on October 26,
2015. The instrument, mounted on an ER-2 aircraft flying at an
approximate altitude of 20 km, captured a swath from northwest
to southeast along the coastline of Santa Monica Bay.
Atmospheric correction was conducted using an Optimal
Estimation formulation that simultaneously models surface
and atmospheric reflectance contributions from statistical

FIGURE 3 | Comparison of in-situ environmental parameters measured during the field campaign: (A) ag(365) versus chlorophyll-a fluorescence with color scale
indicative of salinity, (B) salinity versus ag(365) with color scale indicative of chlorophyll-a fluorescence, and (C) salinity versus chlorophyll-a fluorescence with color scale
indicative of ag(365). In situ chlorophyll-a fluorescence was not measured at all stations (black symbols in panel B do not have chlorophyll-a data).
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priors (Thompson et al., 2018). The atmospheric correction
approach, including the calibration and orthorectification of
the PRISM imagery were described at length in a recent
manuscript (Thompson et al., 2019). The spatial resolution of
the image is approximately 20 m, and includes spectral
measurements made approximately every 3 nm from 350 to
1,050 nm. This high spatial resolution provides opportunities
for detecting patterns in water quality at small scales, but also
introduces additional challenges for interpreting data in some
areas. For example, several boats are visible in maps of Rrs(λ) and
derived products. Reflectance measurements at wavelengths
shorter than 365 nm were not available for this analysis
because they were excluded during the Level-1-to-Level-2
processing of the PRISM data in order to include only spectral
regions of reliable instrument calibration and atmospheric
correction. PRISM swaths were trimmed to remove sensor
artifacts at the edges of the swath and to remove waters with
depth <10 m due to suspected influence of wave action and
bottom effects in shallower waters (Supplementary Figure S2).

Statistical Analysis
Statistical analyses were conducted in R (R Core Team, 2018) and
MATLAB version R2018b. Figures were produced in R using the
fields package, and in MATLAB. Multiple linear regression and
partial least squares regression were implemented using
MATLAB version R2018b.

RESULTS

Chromophoric Dissolved Organic Matter
Variability in Santa Monica Bay
The spatial distribution of CDOM absorption in Santa Monica
Bay was very variable over the course of the fall sampling, as local
inputs from riverine and wastewater effluent sources were added
to the bay (Figure 2). On September 16, following a major rain
event before the diversion (>6 cm of rain fell on September 15 in
the wettest September storm in more than 100 years), higher
ag(365) values were observed nearshore and in the northern end
of the bay (Figure 2), where several rivers and creeks from the

Santa Monica Mountains drain to the bay. Later, during the
Hyperion wastewater diversion (sampling from September 16-
November 11, 2015), the highest ag(365) values (up to 0.92 m−1

on September 30) were typically observed at or near the diverted
1-mile outfall (Figure 2 and Supplementary Figure S3). After
the diversion, precipitation was low and ag(365) values
remained low across the entire bay, with a small offshore-
inshore gradient (Figure 2). This change in CDOM
distribution during the sampling window illustrated several
of the dominant CDOM regimes in Santa Monica Bay: 1)
runoff-dominated before the diversion, 2) influenced by
wastewater effluent during the diversion, and 3) low-CDOM
conditions after the diversion.

The relationships between CDOM, chlorophyll-a, and salinity
in this data set were complex and variable, and were consistent
with variable sourcing of in-water constituents (Figure 3).
Overall, these urban coastal waters exhibited general
correlations between chlorophyll-a, ag(365), and salinity that
were consistent with terrigenous inputs driving most of the
optical variability (Bowers and Brett, 2008). However, upon
close inspection, the relationships between ag(365),
chlorophyll-a, and salinity clearly separated into two
distinguishable trends. The first, where lower salinities were
accompanied by elevated levels of chlorophyll-a and CDOM,
was consistent with the influence of terrigenous inputs. The
second, where lower salinities were accompanied by elevated
CDOM but much more moderate levels of chlorophyll-a,
corresponded to the wastewater-influenced waters of the
diversion.

Attempting to Differentiate Chromophoric
Dissolved Organic Matter Sources Using
Absorption
Overall, the variability of the CDOM absorption coefficient
spectra adhered to expected relationships, but did not enable
the identification of different CDOM sources. The absorption
spectra followed the typical exponential spectral shape for CDOM
(Supplementary Figure S3), and ag(λ)was well correlated across
wavelengths. In particular, the two wavelengths explored in this

TABLE 2 | Summary statistics associated with the performance comparison of the six ag(443) algorithms (see also Figure 8). Statistics include root mean squared error
(RMSE), mean average percent error (MAPE), mean absolute error (MAE), and R-squared for each algorithm.

Algorithm RMSE MAPE MAE R2

Blue-red band ratio
log(ag(443)) on log(Rrs(443)/Rrs(665)) 0.051 29.364 0.028 0.378

UV-red band ratio
log(ag(443)) on log(Rrs(365)/Rrs(665)) 0.037 23.108 0.021 0.671

QAA v.6
(Not including major outliera) 0.038 23.969 0.022 0.637

Visible-only multiple linear regression (MLR)
log(ag(443)) on log(Rrs(412)) + log(Rrs(443)) + log(Rrs(700)) 0.030 20.140 0.016 0.765

UV-Visible multiple linear regression (MLR)
log(ag(443)) on log(Rrs(365)) + log(Rrs(400)) + log(Rrs(700)) 0.026 13.782 0.012 0.831

Partial-least-square regression (PLSR)
log(ag(443)) on log(Rrs(365:700)); 5 components 0.026 13.896 0.012 0.830

aMajor outlier of the QAA algorithm was sample D5W collected on September 30, 2015 (See Figure 2).
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study, ag(365) and ag(443), were strongly and linearly correlated
with an R2 � 0.99 (Figure 4A), indicating a limited range of
CDOM spectral slope coefficient values in the 365–443 nm range
and no obvious differences between CDOM from different
sources (e.g., terrestrial runoff versus wastewater effluent). In a
few cases, some ag(λ) spectra exhibited broad features at λ <
360 nm that were suggestive of the presence of dissolved
mycosporine-like amino acids (MAAs) exuded from
phytoplankton (Morrison and Nelson, 2004; Tilstone et al.,
2010). As in most coastal environments, CDOM absorption
was also strongly correlated with DOC concentration
(Figure 4B; (Mannino et al., 2008; Fichot and Benner, 2011)).
Although this relationship remained consistent during the
sampling window and enabled estimation of [DOC] from
CDOM with reasonable accuracy, it did not help discriminate
between different sources of CDOM.

Spectral slopes of CDOM absorption coefficient also did not
offer opportunities to differentiate effluent-derived CDOM from
other sources. Absorption spectral slopes between 275 and
295 nm (S275−295) were correlated with UV-visible spectral
slope (S365−443), with no difference in behavior for effluent-
derived CDOM (Figure 4C) from other sources. The spectral
slope coefficient between 275 and 295 nm (S275−295), a now well-

established tracer of terrigenous inputs in coastal waters (Helms
et al., 2008; Fichot and Benner, 2012), generally adhered to an
expected power-law relationship with ag(365) and did not
facilitate the discrimination of effluent-derived CDOM from
other sources (Figure 4D). The UV-visible spectral slope,
S365−443, followed a similar yet less well-defined pattern,
decreasing with increasing ag(365) (Figure 4E). Effluent
samples did not differ in DOC-specific CDOM absorption
from other CDOM sources either. The DOC-specific CDOM
absorption coefficient, apg(365) � ag(365)/[DOC], followed
previously described relationships with S275−295 for coastal
areas (Fichot and Benner, 2012; Cao et al., 2018), and almost
all samples plotted along the same general relationship
(Figure 4F).

Samples collected near the effluent outfall during the diversion
exhibited high ag(365), but that criterion alone was not sufficient
to identify wastewater effluent, as runoff and phytoplankton
blooms are also associated with elevated CDOM. Furthermore,
the effluent-derived CDOM also exhibited low S275−295 and
S365−443 values similar to those of terrigenous CDOM. The
spectral shape of CDOM absorption did not differ significantly
enough to facilitate the distinction of effluent-derived CDOM.
Therefore, while effluent-impacted samples had relatively high

FIGURE 4 | Plots of CDOM absorption characteristics: (A) relationship between absorption coefficients of CDOM at 365 and 443 nm, (B) relationship between
ag(365) and [DOC], (C) spectral slope in the UV-B (S275–295) versus UV-A to visible (S365–443) domain, (D) relationship between ag(365) and S275–295, (E) relationship
between ag(365) and S365–443, and (F) relationship between S275–295 and [DOC]-specific absorption by CDOM (apg). Organic matter in effluent impacted samples,
collected at the 1-mile outfall during the diversion, occurs in relatively high abundance, but does not differ in absorption characteristics from other CDOM sources.
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FIGURE 5 | CDOM fluorescence excitation emission matrices (EEMs): (A) EEM of a pre-diversion sample with high ag(365) associated with terrigenous runoff that
fluoresces strongly at the runoff-associated peak FR (255–265 nm excitation and 382–398 nm emission), (B) EEMof an effluent-impacted sample, collected at the 1-mile
outfall during the diversion, which exhibits a strong effluent-associated fluorescence peak FE (340–360 nm excitation and 426–454 nm emission) that is much less
prominent in samples not influenced by effluent, (C) EEM of a low ag(365) sample collected at the 1-mile outfall after the diversion.

FIGURE 6 |Relationships between: (A) intensity of the effluent-associated fluorescence peak FE and ag(365), (B) intensity of effluent-associated fluorescence peak
FE and intensity of the runoff-associated fluorescence peak FR, (C) the effluent fluorescence ratio EFR � FE /FR and the % effluent by volume from the dilution experiment
samples, and (D) the EFR and ag(365).
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CDOM, absorption alone did not offer prescriptive
characteristics for separating wastewater effluent-impacted
waters from riverine and autochthonous CDOM in Santa
Monica Bay.

Differentiating Chromophoric Dissolved
Organic Matter Sources Using
Fluorescence
In contrast to CDOM absorption, EEM fluorescence proved
useful for separating effluent-derived CDOM from other
sources. Samples collected around the 1-mile outfall during
the diversion exhibited a distinct fluorescence peak (FE) often
associated with wastewater effluent (sometimes described in
previous literature as Peak C) (Goldman et al., 2012; Carstea
et al., 2016), centered around 340–360 nm excitation and
426–454 nm emission (Figure 5). Other regions of the
fluorescence EEM, such as the FR peak centered at
255–265 nm excitation and 382–398 nm emission (Figure 5),
were less sensitive to effluent and more sensitive to other sources
of CDOM such as runoff. These fluorescence features associated
with different origins of CDOM provided an opportunity to
discriminate between CDOM sources based on fluorescence.

Samples collected at or near the wastewater effluent outfall
during the diversion fluoresced more intensely at the effluent
peak (higher FE values) than other samples with similar ag(365)
values. This was evident in the observed relationship between
ag(365) and FE for all samples (Figure 6A), in which samples
near the outfall clearly had enhanced FE for the same level of
ag(365). Furthermore, the samples from the effluent dilution
experiment (created by diluting a sample of pure effluent
provided by the Hyperion wastewater treatment plant with
deep-ocean seawater) also exhibited a very similar relationship
between FE with ag(365) as the bay samples. The relationship
between FE and FR (Figure 6B) was generally similar to the
relationship between FE and ag(365), with samples collected near
the outfall exhibiting higher FE and FR than samples collected at
other locations in Santa Monica Bay. However, samples that were
solely influenced by runoff (samples collected at other locations in
Santa Monica bay with relatively high ag(365) and low salinity)
exhibited much lower FE values for the same FR. A ratio of the two
peaks captures this effluent-influenced fluorescence pattern,
while limiting the influence of total CDOM content.

The dependence of FE and FR on CDOM source provided an
opportunity to distinguish CDOM from effluent-influenced
samples. Here, we propose EFR,

EFR � FE
FR

(1)

as an optical indicator of effluent-impacted waters, where FE is
the mean fluorescence intensity in Raman Units (RU) of the
effluent peak (340–360 nm excitation and 426–454 nm emission),
and FR is the mean fluorescence intensity in RU for the runoff
peak (255–265 nm excitation and 382–398 nm emission). EFR
was selected as a specific indicator of effluent impact, because it
was increased by increasing effluent-derived CDOM, but not by
increasing runoff-derived CDOM. FE alone was not a specific

indicator of effluent, since some samples with increased FE
(>0.02 RU) were collected from both effluent-impacted and
runoff-impacted waters. However, by including a ratio of
FE/FR, EFR leveraged the fact that effluent-impacted CDOM
had higher FE relative to other fluorescence peaks, thereby
facilitating effluent detection.

The effluent dilution experiment clearly revealed the
dependence of the EFR on the fraction of wastewater effluent
diluted in a local seawater sample (Figure 6C). EFR values
increased asymptotically with the fraction of effluent from a
value of approximately 0.75 for 0% effluent to almost 2 for 5%
effluent. The increased utility of EFR over FE for distinguishing
samples impacted by wastewater effluent was further
demonstrated by the relationship between FE and EFR for the
samples collected in the bay (Figure 6D). In particular, a few
runoff-impacted samples had increased FE values (∼0.2), but
exhibited no such increase in EFR. Samples from the outfall
during the diversion and from the effluent dilution have higher
EFR than those collected at other stations, and this behavior
allowed for the differentiation of effluent-derived CDOM from
runoff-derived CDOM.

The spatial distribution of EFR values in Santa Monica Bay
during the sampling window (Figure 7) was very consistent with
the modeled dispersion of the effluent (Supplementary Figure
S4). No EFR higher than 0.8 were detected before or after the
diversion, and the highest EFR values detected during the
diversion (>1.5) were at the wastewater outfall. Higher EFR
values (>1.0) also occurred in the area surrounding the outfall
(stepout stations). Samples with increased EFR generally occurred
near the path of effluent plume, as inferred in particle trajectory
modeling (Supplementary Figure S4) conducted by the Southern
California Coastal Observatory System based high frequency
radar observations of local currents in Santa Monica Bay (City
of Los Angeles, Environmental Monitoring Division, 2017).

The effluent fluorescent peak FE is a well-positioned
fluorescence feature in CDOM because it has the potential to
influence remote-sensing reflectance. This fluorescence is
particularly intense, meaning it can produce a significant
radiance. Furthermore, unlike most other CDOM fluorescence
peaks which require excitation at wavelengths shorter than
300 nm, the FE peak is excited by UV radiation (∼350 nm)
that is naturally present in underwater solar irradiance (Fichot
and Miller, 2010). It also emits broadly in the blue part of the
spectrum (∼440 nm). Phytoplankton also absorb strongly in this
wavelength range creating potential for fluorescence reabsorption
and possibly introducing further challenges for remote detection.
However, past studies (Hoge et al., 1993; Green and Blough, 1994;
Lee et al., 1994), have included remote detection of CDOM
fluorescence features despite interference from phytoplankton
absorption, indicating that some changes in CDOM fluorescence
are remotely detectable. Therefore, we expect that the sun-
induced fluorescence of effluent-derived CDOM could drive
detectable changes in remote-sensing reflectance, allowing for
the fully remote detection of wastewater effluent based on its
optical characteristics. As an optical proxy based in part on FE ,
EFR offers utility for differentiating effluent-derived CDOM from
other sources. It also offers a potential mechanism for inferring
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effluent influence from ocean color remote sensing. The potential
applications and challenges remote EFR detection are further
explored in the Discussion section in the context of the results of
this work.

Algorithm Performance Comparison
We compared the performance of empirical algorithms
developed for ag(443) to specifically assess the utility of: 1) Rrs

in the UV range, and 2) Rrs at high spectral resolution (Figure 8).
Our results indicated that the MLR algorithm utilizing Rrs(365),
Rrs(400), and Rrs(700) inferred ag(443)with the highest accuracy
(full summary statistics in Table 2) between fitted and measured
values (RMSE � 0.026). Despite including much more spectral
information, the five-component PLSR algorithm performed
similarly (RMSE � 0.026) to the MLR, suggesting that a large
number of spectral bands was not necessary for retrieving CDOM
accurately with empirical approaches. The MLR coefficients for
all algorithms are listed in Supplementary Table S2, the PLSR
component loading plots are presented in Supplementary Figure
S5, and summaries of leave-four-out error for selecting number of
components are presented in Supplementary Table S1. The two
band ratio algorithms performed substantially worse than the
empirical algorithms utilizing more predictors. The UV-red
algorithm (RMSE � 0.037) performed better than the standard
blue-red method (RMSE � 0.051). As expected, the UV-visible
MLR (RMSE � 0.026) also outperformed the visible MLR
(RMSE � 0.030). From the performance of the five

empirical algorithms, we found that adding UV bands, in
addition to red and blue, improved CDOM retrieval in
complex coastal waters (in both the band ratio and MLR
algorithms), but that increasing the number of bands (as in
the PLSR algorithm) beyond three bands used in the UV-
visible MLR algorithm offered minimal improvement to
ag(443) retrieval accuracy.

To compare empirical CDOM absorption retrieval to an
established semi-analytical method, we included ag(443)
retrieved by the QAA in our analysis. While the QAA returns
spectrally-resolved water inherent optical properties (IOPs), it
pools absorption by detritus (ad) and ag into a combined adg(λ)
spectrum, only inferring ag independently from ad at 443 nm (Lee
et al., 2014). Due to the semi-analytical, more mechanistic nature
of the QAA, no calibration was conducted. The best-performing
empirical algorithms for ag(443), MLR and PLSR, outperformed
the QAA (RMSE � 0.038) in the complex, coastal waters of Santa
Monica Bay. However, QAA retrieval of ag(443) outperformed
the red-blue band ratio and had comparable accuracy to the UV-
red band ratio algorithm.

Across all of the algorithms tested, the sample collected at
D9W (wastewater outfall) on October 14 was an outlier, with
inferred ag(443) anomalously low relative to measured ag(443)
(Figure 8). This mismatch may have been caused by boat drift
between radiometry and sample collection, particularly as
conditions changed rapidly over steep spatial gradients around
the outfall, or potential contamination of the sample. However,

FIGURE 7 |Distribution of in-situ EFR in Santa Monica Bay during the sampling window. No EEM analysis was conducted for September 24. EFR values >1.0 were
only detected near the outfall during the diversion. Data from September 16 (after major rain event) show that the EFR is largely insensitive to runoff.
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we did not have a definitive basis on which to exclude that data
point, and therefore included it in our analyses.

Implementation of Chromophoric Dissolved
Organic Matter Algorithms on Portable
Remote Imaging SpectroMeter Imagery
The CDOM algorithms were implemented on the PRISM
remote-sensing reflectance (Figure 9) to produce maps of
CDOM at 20 m resolution in Santa Monica Bay for October
26. Mapped Rrs(λ) from PRISM imagery followed reasonable
distributions in Santa Monica Bay, with variability tracking
different water masses. Rrs(665) and Rrs(555) increased in
nearshore coastal areas and at the wastewater effluent outfall,
highlighting areas with higher backscattering from
suspended particles or phytoplankton. Distributions of
Rrs(443) and Rrs(365) showed some similarities, with
decreased reflectance in these nearshore and outfall areas,

likely driven by increased CDOM and phytoplankton
absorption at short wavelengths. A plume of water with
decreased reflectance at Rrs(443) and, especially, Rrs(365)
delineated a counterclockwise swirling, current-driven
entrainment of material at the northern end of the bay.
Overall, the observed spatial patterns of all Rrs(λ), even for
Rrs(λ) in the UV domain, were very realistic and consistent with
expectations for this coastal environment. To the extent of our
knowledge, this represents one of the first high-resolution images of
UV remote-sensing reflectance at wavelengths shorter than 380 nm
collected over coastal waters.

The spatial distributions and inferred ranges of ag(443) from
the different algorithms showed expected similarities but also
some important differences (Figure 10). All approaches
identified a point source of high CDOM at the diverted
wastewater outfall as well as plumes of CDOM swirling in
Santa Monica Bay north of Marina del Rey, and smaller
plumes of higher ag(443) at the north end of the bay. The

FIGURE 8 | Performance comparison of six different ag(443) algorithms. In-situ data used for calibration (n � 41) are displayed as blue circles, and end-to-end
validation points comparing measured ag(443) to inferred ag(443) from nearest neighbor PRISM pixels (n � 4) are displayed as orange diamonds. Most of the ag(443)
algorithms presented here, with the exception of the QAA, are empirical and were developed using coincident in-situmeasurements of Rrs and ag(443): (A) log-log fit on
blue-red band ratio Rrs(443)/Rrs(665), (B) log-log fit on UV-red band ratio Rrs(365)/Rrs(665), (C) the QAA algorithm v.6, which exhibited one major outlier and is
plotted without it to facilitate comparison (inset plot includes outlier), (D) log-log visible-only multiple linear regression (MLR) on Rrs(412), Rrs(443), Rrs(700); (E) log-log UV-
visibleMLR onRrs(365),Rrs(400),Rrs(700), and (F) a log-log partial-least-square regression (PLSR) on the full spectrumRrs(365–700), using the first five components. The
sample collected at station D9W on October 14 was an outlier, with low inferred ag(443) relative to measured ag(443) for all algorithms. This sample is indicated with a
dashed circle.
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location of this high ag(443) plumes in northern Santa Monica
Bay is consistent with the presence of rivers and creeks draining
the Santa MonicaMountains. The band ratio algorithms (Figures
10A,B) appear to overestimate ag(443) in areas with intermediate
CDOM content (0.05< ag(443)< 0.1), relative to other strategies.
Overestimation of ag(443) relative to measured data was also
visible in band ratio fits of the in-situ data. Perhaps surprisingly,
the maps derived from the UV-red band ratio and the blue-red
band ratio exhibited similar patterns, suggesting that UV
reflectance alone used in a band ratio was not sufficient to
retrieve CDOM in this phytoplankton-dominated system.
Similar algorithms were developed for ag(365) and these
were applied to PRISM Imagery (Supplementary Table
S3). Summaries of ag(365) algorithm performance and
maps of ag(365) are presented in Supplementary Figures
S6, S7.

We also conducted an end-to-end validation (Figure 8 and
Supplementary Figure S8) for which ag(443) retrieved from
PRISM Rrs(λ) were compared to ag(443) measured at collocated
matchup stations on October 26. However, only a very small

number of data points from closely located validation stations
(n � 4) were available for this validation, and these data did not
provide sufficient information for reliable validation and
meaningful comparison of the algorithms.

Effluent-Chromophoric Dissolved Organic
Matter Detection Algorithm and
Implementation on Portable Remote
Imaging SpectroMeter
Algorithms for retrieving EFR were developed using a five-
component PLSR on Rrs(365–700) (Figure 11). The
component loading plots for the PLSR is presented in
Supplementary Figure S9. The performance of this fully
spectral algorithm was compared to that of a simpler
algorithm based on the MLR of EFR on Rrs(400), Rrs(425),
and Rrs(400)/Rrs(425). Based on in-situ data alone, the PLSR
algorithm retrieved EFR with a slightly higher accuracy (RMSE �
0.156, R2 � 0.608) than the MLR algorithm (RMSE � 0.160, R2 �
0.589). However, for error metrics that were comparable across

FIGURE 9 | Remote-sensing reflectance spectra, Rrs(λ), measured by the airborne Portable Remote Imaging SpectroMeter (PRISM) after atmospheric correction
(Thompson et al., 2019) during a flyover of Santa Monica Bay, CA on October 26, 2015: (A) Rrs(365)map, (B) Rrs(443)map, (C) Rrs(555)map, (D) Rrs(665)map, and
(E) comparison of PRISM-derived Rrs(λ) spectra with coincident Rrs(λ) spectra measured in situwith a Satlantic HyperPro at four matchup stations: D8W, D8.5W, D9W
(outfall), and D9.5W.
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parameters, (MAPE and R2), retrieval accuracies for both EFR
algorithms were lower than for their corresponding ag(443)
algorithms (Compare Tables 2, 3).

The EFR algorithm was applied to the PRISM imagery and
generated maps of EFR at 20 m resolution across Santa Monica
Bay. The range of remotely sensed EFR values matched that of the

FIGURE 10 | Maps of ag(443) retrieved from the PRISM Rrs(λ) using the QAA and the empirical algorithms developed in this study. The ag(443) retrievals were
made using the following algorithms: (A) blue-red band ratio Rrs(443)/Rrs(665), (B) UV-red band ratio Rrs(365)/Rrs(665), (C) QAA algorithm v.6, (D) visible-only multiple
linear regression (MLR) on Rrs(412), Rrs(443), Rrs(700); (E) UV-visible MLR on Rrs(365), Rrs(400), Rrs(700), and (F) partial-least-square regression (PLSR) on the full
spectrum Rrs(365–700) using the first five components.

FIGURE 11 | Performance of an empirical PLSR-based algorithm for Effluent Fluorescence Ratio (EFR) and its implementation on the PRISM Rrs(λ) data: (A) EFR
values modeled from the in-situmeasured Rrs(λ) using the PLSR-based algorithm, versus EFR values measured on the samples’ fluorescence EEM spectra. In-situ data
used for calibration (n � 36) are displayed as green circles, and end-to-end validation points comparing measured EFR to inferred EFR from nearest neighbor PRISM
pixels (n � 4) are displayed as orange diamonds. (B) Implementation of the PLSR-based algorithm on the PRISM Rrs(λ) data.
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in-situ data. The map of EFR derived from the PLSR algorithm
correctly detected the highest EFR at the wastewater effluent
outfall (EFR between 0.85 and 1.25) and low EFR (<0.85) across
the rest of Santa Monica Bay. In this respect, the PLSR algorithm
appeared to successfully infer the wastewater effluent-influenced
plume of DOM at the outfall, while minimizing sensitivity to
CDOM from runoff and other sources. The MLR algorithm did
not detect a similar maximum at the outfall (Supplementary
Figure S10), and retrieved high EFR at other locations with high
CDOM. Fitting and mapping of the MLR algorithm suggested
that the small number of spectral Rrs bands may not have
provided sufficient information to resolve EFR independently
from CDOM concentration.

DISCUSSION

Ultraviolet Reflectance Improved
Chromophoric Dissolved Organic Matter
Retrievals in Urban Coastal Waters
Incorporating UV reflectance in empirical band-ratio algorithms
offered only minor improvements to the accuracy of CDOM
retrievals in Santa Monica Bay. A single blue-red band-ratio
algorithm did not perform well in these waters and produced a
spatial distribution of CDOM that closely resembled the
distribution of chlorophyll-a (Trinh et al., 2017). Surprisingly,
replacing the blue band (443 nm) with a UV band (365 nm), a
domain where CDOM has a stronger influence, only slightly
improved the accuracy of CDOM retrievals. The average percent
error of ag(443) estimates decreased from approximately 30% for
the red-blue ratio, to about 23% for the UV-red algorithm. This
limited improvement is likely due to other in-water constituents
also exerting a significant influence on UV reflectance in these
waters. The dry climate of Southern California introduces less
terrigenous CDOM to Santa Monica Bay compared to the more
river-influenced waters typically found along the US coastline. As
a result, the optical variability of the Santa Monica Bay waters
tends to be strongly influenced by phytoplankton dynamics
(Kahru et al., 2012; Caron et al., 2017; Trinh et al., 2017),
making it more challenging to retrieve CDOM in these waters.
The similarities between the mapped distribution of ag(443)
inferred using the UV-red band ratio and the distribution
inferred by the blue-red band ratio indicated that simply
replacing a blue band by a UV one was not sufficient to
remove the interference of other constituents in coastal waters
strongly influenced by phytoplankton dynamics.

However, the inclusion of both UV and blue reflectance in a
simple multi-band regression algorithm (MLR-based)
significantly improved ag(443) retrievals. The UV-visible
MLR-based algorithm combined UV, blue, and red Rrs and
performed substantially better than the simpler UV-red band
ratio algorithm, producing an average percent error of <14% for
ag(443). The combined use of UV and blue Rrs in this algorithm
likely facilitated the empirical differentiation between
phytoplankton and CDOM. The benefit of using UV
reflectance in the UV-visible MLR-based algorithm was also
evident when comparing its performance to that of a similar
MLR-based algorithm that used only visible bands (i.e., 412, 443,
and 700 nm). The visible-only MLR-based algorithm produced
slightly better results than the two band-ratio algorithms, but was
outperformed by the UV-visible MLR-based algorithm, and its
corresponding ag(443) map still included features influenced by
phytoplankton. In contrast, the UV-visible MLR algorithm and
the QAA both produced a similar ag(443) distribution that was
distinct from that of phytoplankton. From the in-situ data alone,
the UV-visible MLR algorithm actually outperformed the QAA.
However, the QAA is not specifically optimized for the waters in
Santa Monica Bay and the inclusion of UV spectral information
likely offered an advantage to the UV-visible MLR-based
algorithm. Overall, this analysis revealed that a simple
combination of three UV, blue and red bands in a local
empirical algorithm was able to retrieve ag(443) accurately
and produced realistic CDOM maps in these phytoplankton-
dominated waters.

The inclusion of additional spectral bands did not improve the
performance of the empirical ag(443) algorithms. The PLSR
algorithm leveraged all the spectral information available, but
had comparable accuracy to the much simpler UV-visible MLR-
based algorithm. This finding is consistent with CDOM
absorption not having narrow characteristic absorption peaks
like phytoplankton pigments (Rowan, 1989; Bricaud et al., 1995;
Kutser et al., 2006). Instead, CDOM has a broad, featureless
exponential shape, where the agvariation at a single wavelength is
highly predictive of that at other wavelengths. It is therefore not
surprising that ag(443) was inferred with optimal accuracy from
a small number of carefully chosen bands. In some cases,
redundant spectral information in empirical approaches can be
detrimental due to the potential of overfitting if precautions are
not taken to avoid it (e.g., cross-validation as used in this study).

Although the three-band approach optimally retrieved
ag(443) in Santa Monica Bay, a larger number of bands would
likely prove useful or essential to retrieve CDOM accurately in
more optically complex waters. The strong influence of

TABLE 3 | Summary statistics associated with the performance comparison of the two EFR algorithms (see also Figure 11 and Supplementary Figure S10). Statistics
include root mean squared error (RMSE), mean average percent error (MAPE), mean absolute error (MAE), and R-squared for each algorithm.

Algorithm RMSE MAPE MAE R2

Multiple linear regression (MLR)
EFR on Rrs(400) + Rrs(425) + Rrs(400)/Rrs(425) 0.160 16.934 0.119 0.589

Partial-least-square regression (PLSR)
EFR on Rrs(365–700); 5 components 0.156 13.490 0.100 0.608
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phytoplankton in Santa Monica Bay presented some challenges
for differentiating CDOM from phytoplankton. However, these
waters have only moderate concentrations of in-water
constituents and relatively low concentrations of non-algal
particles relative to many other coastal environments, thereby
avoiding challenges associated with highly absorbing and/or
turbid waters (Brezonik et al., 2015; Zheng et al., 2015; Fichot
et al., 2016). Accounting for the influence of non-algal particles
is expected to be feasible for these applications, but might
require the use of more bands. Waters in Santa Monica Bay are
also mostly optically deep, so complex optical influences from
bottom reflectance did not impede retrieval of water-column
optical properties. Other studies have leveraged hyperspectral
Rrs(λ) to improve the retrieval of IOPs in waters also
influenced by or bottom reflectance (Lee et al., 1994;
Mobley et al., 2005; Dekker et al., 2011). Increasing the
amount of spectral information, and utilizing more
complex, radiative-transfer-informed approaches may be
necessary to retrieve CDOM accurately in optically shallow
waters.

On the Specific Detection of
Effluent-Derived Chromophoric Dissolved
Organic Matter
The EFR, a new fluorescence-based water quality indicator that
we introduced in this study, facilitated the differentiation of
effluent-derived CDOM from other sources of CDOM in coastal
waters. The fact that all effluent-impacted waters in Santa
Monica Bay had high CDOM, but not all high-CDOM
waters were effluent-impacted presented challenges for
prescriptively identifying effluent. Here, the EFR leveraged
the enhanced fluorescence of effluent-impacted samples at
the FE peak relative to the fluorescence at the FR peak in
order to overcome this challenge. The ratio of two
fluorescence peaks associated with different CDOM sources
(FE being more sensitive to effluent, and FR being more
sensitive to runoff) provided the means to differentiate
between two sources of CDOM independently of the level of
CDOM absorption observed. As a result, the EFR represents a
simple but reliable potential indicator of the degree of effluent
influence in these waters.

Here, we tested the feasibility of retrieving EFR empirically
from remote sensing. In contrast to other CDOM fluorescence
peaks in EEM spectra, the FE peak that is characteristic of the
effluent CDOM (340–360 nm excitation and 426–454 nm
emission) is theoretically amenable to remote sensing. The
fluorescence of peak FE is stimulated in situ by UV radiation
that is naturally abundant in incident solar irradiance and emits
fluorescence in the blue region, thereby producing a sun-
induced fluorescence signal that can influence Rrs(λ). Here,
the empirical algorithms developed from the in-situ data set
retrieved EFR with enough accuracy (EFR error of ∼0.1) to
separate samples heavily influenced by effluent. A PLSR-based
algorithm retrieved EFR more accurately than the best 3-band
MLR algorithm we were able to produce. When applied to
PRISM data, the PLSR algorithm produced an EFR map with

high values (>1.0) found only in the vicinity of the wastewater
outfall. This algorithm specifically identified waters containing
significant wastewater effluent, without being sensitive to
CDOM from runoff or planktonic sources. In contrast, the
MLR-based algorithm proved ineffective at discerning
effluent-impacted EFR from the other CDOM sources,
thereby suggesting the crucial importance of high spectral
resolution for this purpose. While other strategies have
leveraged EEMs to detect wastewater effluent (Goldman
et al., 2012; Carstea et al., 2016), this is, to the extent of our
knowledge, the first successful attempt at sourcing effluent-
derived CDOM with remote sensing.

The presence of effluent in surface waters was only detected at
relatively high concentrations of effluent. CDOM fluorescence is
a relatively weak IOP, and its small influence relative to
backscattering or absorption is likely responsible for the
challenge of detecting effluent at low concentrations. The re-
absorption of emitted fluorescence by effluent-CDOM and other
absorbing constituents further decreased the influence of
fluorescence signatures on ocean color. Due to the resulting
small impact of fluorescence on Rrs(λ), minor errors in
atmospheric correction, temporal or spatial mismatch between
stations and remote sensing, and measurement differences
between in-situ and airborne reflectance measurements can
have a disproportionate effect on retrieval accuracy. At low
effluent concentrations, the optical signature of effluent-
derived CDOM fluorescence is therefore expected to rapidly
decrease below the detection threshold set by these practical
limitations.

This feasibility study identified purely empirical
relationships and did not explore the mechanistic
relationship between effluent-impacted CDOM fluorescence
and Rrs(λ). Radiative transfer modeling of the effects of
wastewater effluent fluorescence on surface Rrs(λ) would help
further refine the detection limits of effluent-derived CDOM.
For example, the HydroLight radiative transfer numerical
model (Mobley, 1989; Mobley et al., 1993; Mobley et al.,
2020) already allows for the inclusion of a standard CDOM
fluorescence when modeling Rrs(λ), but would need to be
modified to facilitate the incorporation of different types of
CDOM fluorescence to help specifically assess the effects
effluent-CDOM fluorescence on Rrs(λ). Future avenues for
this work could also include developing in-situ optical
instruments leveraging the effluent-associated fluorescence
peak. Prior studies have also sought to detect CDOM
remotely using its fluorescence (Green and Blough, 1994; Lee
et al., 1994) through stimulated fluorescence with a UV laser
(Hoge et al., 1993; Vodacek et al., 1995). An active sensor
providing appropriate light for fluorescence excitation could
stimulate the FE peak (e.g. an 350 nm excitation and 440 nm
emission) and would yield a stronger fluorescence signal in
effluent impacted waters. Work also remains for generalizing
this approach beyond a single effluent release scenario. A
broader survey of wastewater optical characteristics across a
wide range of scenarios could allow for the remote detection of
source-specific optical properties different environmental
settings.
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Relevance to Coastal Water-Quality
Monitoring With Future Ocean Color
Missions
This study revealed that some improvements to CDOM-related
coastal water quality monitoring can be made possible through
the use of UV-visible imaging spectroscopy, an area where
visible multispectral approaches have had limited success
(IOCCG, 2000; Aurin and Dierssen, 2012; IOCCG, 2015;
Dekker et al., 2018). The upcoming PACE and GLIMR
missions will include UV-visible imaging spectrometers with
comparable specifications as PRISM and are therefore expected
to provide such improvements in coastal water quality
monitoring. Here, the inclusion of UV reflectance (using
simple-to-implement empirical algorithms) not only
facilitated the accurate detection of CDOM in urban coastal
waters, but also enabled its sourcing. This study also showed
that high spectral resolution was essential to remotely
differentiating effluent-derived CDOM. Stepping beyond the
usual retrieval of ag , the identification of CDOM source presents
exciting opportunities for water quality monitoring in complex
urban coastal waters. Improved CDOM retrievals will also help
improve coastal organic-carbon budgets. The empirical
relationships typically observed between ag(λ) and [DOC] in
coastal waters (Ferrari et al., 1996; del Vecchio and Blough,
2004; Mannino et al., 2008; Fichot and Benner, 2011) will
facilitate the remote quantification of DOC stores and
dynamics in ocean margins (Fichot and Benner, 2014;
Mannino et al., 2016; Cao et al., 2018). In turn, these will
help improve carbon budgets for the coastal ocean which
currently have large uncertainties (Cai, 2011; Bauer et al.,
2013; Najjar et al., 2018).

The extent to which water-quality monitoring capabilities
will be enhanced by UV-visible imaging spectroscopy will be
contingent on our ability to apply accurate atmospheric
corrections and on the availability of high-quality in-situ
validation data (IOCCG, 2012). The extended spectral
range, enhanced spectral resolution, and improved signal-
to-noise ratio of imaging spectrometers in upcoming
missions (e.g., PACE and GLIMR) should facilitate the
detection of CDOM and its subtler IOPs like effluent-
CDOM fluorescence, but can only do so if accurate Rrs(λ)
are retrieved in the UV region. State-of-the-art atmospheric
corrections and comprehensive field-validation strategies in
coastal environments that include the UV region will therefore
be necessary (IOCCG, 2012; Werdell et al., 2018) to achieve
these improvements. Fortunately, upcoming missions like
PACE will include polarimeters to better account for the
contribution of various types of aerosols and are expected
to facilitate atmospheric corrections and considerably improve
Rrs(λ) measurements in the UV and blue regions.
Furthermore, ambitious field-data collection efforts are also
planned in support of the PACE mission and will provide data

for vicarious calibration and validation. The consistent
collection of high-quality CDOM absorption and
fluorescence properties (EEM) in coastal waters should be
an integral part of these efforts.
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Kelp forests dominate autotrophic biomass and primary productivity of approximately
30,000 to 60,000 km of shallow temperate and Arctic rocky reef coastline globally and
contribute significantly to carbon cycling in the coastal ocean. Rapid biomass turnover is
driven by very high growth rates and seasonal environmental drivers. As a result, kelp
biomass varies greatly with time, space, and by species. In the northeast Pacific region, bull
kelp (Nereocystis leutkeana) and giant kelp (Macrocystis pyrifera) form extensive floating
surface canopies with a distinct spectral signature compared to the surrounding water.
Studies have shown that remote sensing is advantageous for deriving large-scale
estimates of floating surface canopy biomass, which comprises more than 90% of bull
and giant kelp standing stock. However, development and validation of remotely derived
kelp canopy biomass is lacking because existing approaches are time intensive and costly.
This study attempted to close that gap by developing a rapid survey design utilizing diver
and unmanned aerial vehicle (UAV) imagery across six sites in northern and central
California. Kelp sporophytes were collected and measured for morphometric
characteristics and genera-specific allometry to canopy biomass. Kelp density was
measured using in situ diver surveys and coupled with UAV imagery to quantify kelp
canopy biomass at a range of ground sampling distances. We successfully estimated kelp
canopy biomass from UAV imagery at 33% (2/6) of the survey sites, but consistently
determining canopy biomass via this approach was challenged by both survey design and
kelp patch-specific spatial characteristics. The morphologies of bull kelp in Monterey were
significantly different than other regions measured, but further work should be conducted
to fully characterize differences in canopy biomass at the regional and sub-regional scale.
We use this opportunity to suggest survey design strategies that will increase the success
of future methodological development of UAV biomass retrieval. We also recommend
developing long-term, annual genera-specific monitoring programs across the northeast
Pacific region and beyond to validate remote sensing derived biomass estimates beyond
the small number of existing well-characterized sites.

Keywords: nereocystis, macrocystis, bull kelp, giant kelp, canopy biomass, semi-variogram, UAV, UAS
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INTRODUCTION

Kelp forests are highly productive and diverse nearshore
ecosystems that thrive along shallow temperate and Arctic
rocky reefs (Steneck et al., 2002) and they dominate
autotrophic biomass and primary productivity across
approximately 25% of the world’s coastlines (Reed and
Brzezinski, 2009; Wernberg et al., 2019). As a result, kelp
forests are a biogenic habitat that support a range of goods
and services of ecological (three-dimensional habitat structure,
biodiversity, nutrient cycling, etc.) and economic (coastline
defense, recreational and commercial fisheries, harvestable
biomass) value (Teagle et al., 2017). Kelps contribute
significantly to nutrient and carbon cycling in the coastal
ocean (Reed and Brzezinski, 2009), where rapid biomass
turnover is driven by very high growth rates and seasonal
environmental drivers (Reed et al., 2008). However, deriving
large-scale estimates of kelp standing stock is challenging
because kelp forests and macroalgal habitats are spatially and
temporally dynamic (Dayton et al., 1999). Distribution of
biomass is driven by species, environmental conditions, and
physical disturbance such as waves and swell (Ebeling et al.,
1985), and patch-level biological and physical factors such as
grazing, spore dispersal, and substrate type (Dayton et al., 1984).
These challenges influence our ability to determine accurate
regional and global rates of kelp net primary productivity,
carbon cycling, and carbon sequestration. Determining kelp
biomass based carbon metrics is imperative as kelp forests are
threatened by the influence of anthropogenic factors such as
climate change (Wernberg et al., 2016; Rasher et al., 2020),
increasing frequency and intensity of marine heatwaves
(Oliver et al., 2017; Cavanaugh et al., 2019; Straub et al., 2019;
Dexter et al., 2020; McPherson et al., 2021), and overfishing (Ling
et al., 2009).

In the northeast Pacific region (Aleutians Islands, Alaska to
Baja California, Mexico) giant kelp (Macrocystis pyrifera) and bull
kelp (Nereocystis luetkeana) are the dominant surface canopy
forming kelps. Their canopies are easily observed using remote
sensing techniques, such as plane-based aerial surveys,
spaceborne satellites, and unmanned aerial vehicles (UAVs)
because the spectral signature of the surface canopy is distinct
from the surrounding water. This is advantageous for
determining estimates of standing stock because nearly all
(>90%) of bull and giant kelp biomass and, thereby primary
production, is contained within the surface canopy. Historically,
the most common kelp mapping approaches have evaluated kelp
canopy area rather than biomass because 1) many mapping
campaigns are conducted by state natural resource
departments that have prioritized canopy extent as a metric
for kelp as a harvestable and managed natural resource (e.g.
California Department of Fish and Wildlife (CDFW), Oregon
Department of Fish and Wildlife (ODFW), Washington
Department of Natural Resources (WDNR), Alaska
Department of Fish and Game, etc.), and 2) species- or
region-specific relationships between pixel spectral
characteristics and biomass have not been widely developed
nor validated. While there is significant value in monitoring

kelp canopy area, estimating large-scale rates of primary
productivity and carbon sequestration will continue to be
limited unless region and genera-specific biomasses can be
derived from remote sensing data.

Studies reporting validation of remote sensing derived
estimates of kelp canopy biomass are limited, but the general
approach is to establish location specific empirical relationships
between in situ measurements of kelp biomass and image-based
kelp classification methods. Allometry is primarily used to derive
in situ biomass from kelp morphology such as blade length, bulb
diameter (Stekoll et al., 2006), or a combination of multiple
morphometric features (Rassweiler et al., 2008). Stekoll et al.
(2006) created the first remote estimates of kelp canopy biomass
for bull kelp and Allaria fistulosa in southeast Alaska using high
spatial resolution (0.5–2 m) multispectral (4 band) airborne data
and ground truthing techniques in 2002 and 2003. Normalized
difference [(ρnir – ρblue)/(ρnir + ρblue)] was used to generate kelp
classification and was converted to biomass using in situ density
counts in 16 m2 surface quadrats and an allometric relationship to
sub-bulb diameter (defined as 15 cm below the greatest diameter
of the bulb). Cavanaugh et al. (2010), Cavanaugh et al. (2011)
found a strong correlation between spectral band information
and canopy biomass using 10 m (SPOT) and 30 m (Landsat TM)
spatial resolutions for giant kelp along the Santa Barbara coast.
Image based kelp classification was conducted using both
normalized difference vegetation index (NDVI; Cavanaugh
et al., 2010) and multiple endmember spectral mixture analysis
(MESMA; Cavanaugh et al., 2011). Satellite data were linked to
canopy biomass derived from long-term subtidal monitoring of
giant kelp by the Santa Barbara Channel Long-term Ecological
Research program within permanent approximately 1,600 m2

plots (Rassweiler et al., 2008). Canopy biomass was derived
using diver measurements of frond length and conversion
factors derived from sporophytes collected and dissected in the
lab monthly for a 2 year period (Rassweiler et al., 2008).
Subsequently, the relationship between MESMA derived kelp
fraction and Santa Barbara giant kelp canopy biomass has been
used to make regional estimates of canopy biomass from Baja
California, Mexico to Año Nuevo, California using USGS Landsat
imagery across more than 30 years (Bell et al., 2015; Cavanaugh
et al., 2019; Bell et al., 2020b). Despite the robust nature of the
satellite-derived canopy biomass from the Santa Barbara coastal
sites, sub-regional differences in sporophyte morphology and
allometry affecting the broader regional validity of this
relationship have not previously been considered.

In addition to the applicability of biomass predictions, there is
increasing motivation to apply higher spatial resolution (<30m)
imagery to kelp mapping efforts in regions where complex shoreline
topography exists (Nijland et al., 2019) and significant kelp canopy
declines have occurred (McPherson et al., 2021). To date, a range of
platforms with varying spatial resolutions have been applied to kelp
mapping efforts (Schroeder et al., 2019). Multispectral USGS
Landsat imagery (30m spatial resolution) has been widely used
because of the large temporal and spatial scales at which data are
freely available (Cavanaugh et al., 2010; Cavanaugh et al., 2011; Bell
et al., 2015; Young et al., 2015; Beas-Luna et al., 2020; Bell et al.,
2020b; Friedlander et al., 2020; McPherson et al., 2021; Houskeeper
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et al., 2022). Studies comparing the suite of sensors (Landsat TM,
ETM+, and OLI) to higher spatial resolution aerial imagery (e.g.
CDFW/ODFW) have found that though false positives (water pixels
mis-identified as kelp) by Landsat are uncommon, the sensor often
misses pixels containing less than 20% kelp (Hamilton et al., 2020;
Finger et al., 2021). Furthermore, the difference between relatively
high (~2m) and moderate (30 m) spatial resolution is pronounced
when canopy coverage is low (Finger et al., 2021; kelp reflectance
signals are lower than Landsat’s detection capabilities) or coastline
features (large tidal range and complex topography) limit detection
of fringing kelp beds within a 30m buffer to the shore (Nijland et al.,
2019). Mora-Soto et al. (2020) and Huovinen et al. (2020) were the
first studies to use European Space Agency (ESA) Sentinel-2 (10 m)
imagery to map giant kelp. The creation of a global kelp map by
Mora-Soto et al. (2020) was validated against previously surveyed or
observed beds, but the approach was not effective at detecting bed
sizes <1 ha (10,000m2) and results were limited to kelp canopy area
rather than biomass or productivity.

Increasingly, scientists and managers are using UAV platforms
to customize and validate kelp mapping efforts, despite the
tradeoffs in the total area covered using UAVs versus other
platforms and logistical challenges. UAVs offer flexibility for
studying kelp beds at local, and potentially sub-regional, scales
and have applicability in offshore aquaculture (Bell et al., 2020a),
satellite remote sensing validation (Mora-Soto et al., 2020),
physiology (Bell et al., 2020a), and may supplement expensive
aerial surveys by resource management/monitoring efforts
(Hohman et al., 2019). UAVs are also optimal for observations
of local scale kelp bed variability; Cavanaugh et al. (2021) illustrated
the significance of tidal height and current velocity on changes in
kelp canopy area and the effect across sites.

Given the flexibility of UAV platforms, developing effective field
surveys is more accessible than with satellite imagery and the
potential for quantifying fine-scale physiological metrics using
UAVs mounted with multispectral or hyperspectral sensors is
possible given sufficient understanding of biomass. Due to the
limited number of validation studies deriving kelp canopy biomass
using remote sensing data we designed a rapid sampling approach
where morphology measurements and diver surveys were used to
estimate in situ kelp canopy biomass and a UAV platformwas used
to map floating kelp canopy. Though the surveys were designed
with the aim to develop and scale regional estimates of giant and
bull kelp canopy biomass, this was challenged by several factors.
Key outcomes include 1) an investigation of the regional
differences in allometric relationships for canopy biomass
derivation, and 2) characterizing the features of both the survey
design and kelp patch that influenced our ability to reliably retrieve
estimates of canopy biomass from the UAV imagery. Finally, we
suggest in situ sample designs to improve outcomes for future
approaches to deriving canopy biomass using remote sensing
platforms.

METHODS

Survey locations–Six sites along the California coastline were
selected for in situ diver and UAV surveys in July and August

2019 (Figures 1, 2; Table 1). Three of the sites consisted of pure bull
kelp, two in Mendocino County in northern California (Figure 1
magenta box; Figures 2A, B) and one along the northeastern side of
the Monterey Peninsula in central California (Figure 1 green box;
Figure 2C). The other three consisted of pure giant kelp along the
northeastern side of the Monterey Peninsula (Figure 1 green box;
Figures 2D–F). The length of time between conducting the dive and
UAV surveys for sites did not exceed 30 days. Site locations were
chosen based on accessibility to kelp beds, protection from large
swell, sporophyte collection and transport to shore, and ease of
accessibility for UAV flight operations.

UAV data acquisition and processing–A graphical overview
describing the processing scheme for UAV imagery (top panel)
and in situ surveys (bottom panel) is described in Figure 3. High
resolution multispectral imagery were obtained at each survey site
(Table 1) using a DJI Matrice 100 quadcopter mounted with a
MicaSense RedEdge-M pointed nadir to the water surface. The
RedEdge-M simultaneously captures data in five spectral bands, the
blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm),
and near-infrared (NIR; 840 nm) (See Supplementary Table S1 for

FIGURE 1 | A map of the California coastline illustrating specific areas
where survey sites were located in Mendocino County (magenta box) and
Monterey County (green box).
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FWHM). The RedEdge-M was equipped with a downwelling light
sensor (DLS) for all flights. To calibrate reflectance for each flight,
we imaged a spectral calibration panel with known reflectance
during the middle of each mission when UAV batteries were
swapped. Our along-track overlap between consecutive images

was 80% and side-track overlap between consecutive flight lines
was 75%. Sun glint can distort the reflectance of pixels when
imagery is collected when the Sun is at or close to zenith (90°).
To avoid glint contamination, we conducted flights at or close to
optimal Sun angle conditions (~45° to zenith).

FIGURE 2 | Micasense RedEdge-M false color orthomosaics of the six survey sites. (A) Noyo Harbor (NH), Mendocino County; (B) Portuguese Beach (PB),
Mendocino Peninsula; (C)Point Piños (PP), Monterey Peninsula; (D)Otter Cove (OC), Monterey Peninsula; (E) San Carlos Beach (SCB), Monterey Peninsula; (F)Hopkins
Marine Station (HMS), Monterey Peninsula.

TABLE 1 | Detailed description of each survey location including region (Mendocino County or Monterey Peninsula), kelp genera, dive site coordinates, dive survey date,
substrate type, UAV survey date, and mean tidal height during each UAV survey, survey site mean state (MLLW and MHHW) from Pt. Arena, CA and Monterey, CA
(tidesandcurrents.noaa.gov).

Site Name Site
Location

Kelp
Genera

Latitude Longitude Dive Survey
Date

Substrate
Type

UAV Survey
Date

UAV Survey
Tidal

Height (m)

Site Tidal Range (m)

Noyo Harbor (NH) Mendocino
County

bull kelp 39.429 −123.810 7 August
2019

Sandy Rocky 8 August 2019 0.77 Pt. Arena, CA
MLLW = -0.012
MHHW = +1.7

Portuguese
Beach (PB)

Mendocino
County

bull kelp 39.303 −123.802 8 August
2019

Sandy Rocky 8 August 2019 1.72

Point Piños (PP) Monterey
Peninsula

bull kelp 36.630 −121.919 August 14
and 28, 2019

Rocky 12 September
2019

1.34 Monterey, CA
MLLW = +0.018
MHHW = +1.4

Otter Cove (OC) Monterey
Peninsula

giant kelp 36.640 −121.928 26 July 2019 Rocky 2 July 2019 1.1

San Carlos
Beach (SCB)

Monterey
Peninsula

giant kelp 36.612 −121.894 22 July 2019 Sandy Rocky 3 July 2019 0.14

Hopkins Marine
Station (HMS)

Monterey
Peninsula

giant kelp 36.621 −121.901 10 July 2019 Sandy Rocky 5 July 2019 0.98
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RedEdge-M imagery was processed in the photogrammetric
software Pix4D Mapper (Pix4D, 1,008 Prilly, Switzerland). Raw
images with pixel values in digital numbers (DN) were converted
to radiance (L; Wm−2 nm−1 sr−1) using a standard MicaSense
radiometric calibration model. Radiance values were converted to
unitless reflectance (ρ) using a band constant reflectance
calibration factor (F; 1/W m−2 nm−1 sr−1). F was determined
from the reflectance panel measurement made during survey
flights by multiplying image L by F for each respective band, i,
where:

Fi � ρi
Li

. (1)

and ρi and �Li are the mean calibration panel reflectance and
radiance values, respectively, for band i. Calibration panel reflectance
values were provided by MicaSense. We assumed sky conditions
were consistent throughout the duration of the flight (~20–30min).
Reflectance images were then made into orthomosaics. The stitched
orthomosaics for each spectral band were exported as GeoTIFFs
from Pix4D Mapper. Individual band orthomosaics were then
merged and resampled to 10 cm spatial resolution using the
Python 3.1 function gdalwarp and average interpolation as the
resampling method. Finally, the five band rasters were subset to
the appropriate dive site coordinates (Table 1; Figure 3A) using the
Python 3.1 functions gdal_translate and gdalwarp (GDAL/OGR
Contributors 2021), respectively.

Pixel based kelp detection–A vegetation index termed
‘Normalized Difference Red-edge Blue’ (NDREB) developed by
Cavanaugh et al., 2021 was used to classify kelp pixels in UAV
reflectance images (Figures 3B–D). Cavanaugh et al., 2021
showed that NDREB was superior at separating kelp and
water compared to other multispectral indices. In brief, we
calculated the NDREB [(ρrededge – ρblue)/(ρrededge + ρblue)] for
each 10 cm pixel (Figure 3B) and calculated histograms of the
vegetation index values (Figure 3C). Each site image displayed a
bimodal distribution of NDREB values. The midpoint between
the two peaks was calculated using the Python 3.1 findpeaks
module. Kelp was classified at each survey site by using the
midpoint as the threshold value. Kelp pixels were defined as being
greater than the threshold value (Figure 3D).

In situ surveys of kelp density and biomass–In situ surveys were
used to develop spatially resolved estimates of canopy biomass for
bull and giant kelp across six sites via 1) assessment of subtidal stipe
(frond) density (Figure 3E), 2) sporophyte collection and
morphometric measurement for development of genera-specific
allometry and conversion of diver stipe (frond) density to canopy
biomass (Figure 3 bottom panel arrows), and the resulting derived
biomass (Figure 3F). Results from field-based data were related to
NDREB kelp classification results fromUAV surveys with the aim to
acquire image-based estimates of kelp canopy biomass (Figure 3).
For both genera, sporophyte lengths were measured to the nearest
mm using a diver transect tape and weights were measured to the
nearest 0.01 kg using a portable electronic balance.

FIGURE 3 | A flow chart of the methodology used in the detection of kelp in each 10 cm pixel (top panel) and deriving in situ kelp canopy biomass via diver and
morphometric surveys (bottom panel).
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Diver survey design - Subtidal surveys were designed to rapidly
assess spatial distribution and patterns of stipe (frond) density
across many kelp beds. Dive sites consisted of 3,600 m2 square
plots surveyed in a radial configuration (Figure 4). At five of the
six sites (Portuguese Beach, Point Piños, Otter Cove, San Carlos
Beach, and Hopkins Marine Station; Figures 4B–F), eight
separate transects were conducted. At Noyo Harbor
(Figure 4A), only four of the eight transects were conducted
because ocean conditions limited dive operations. Point Piños
(Figure 4C) was surveyed across two separate days (Table 1)
because ocean conditions limited dive operations after the first
four transects were conducted on 14 August 2019.

Survey teams consisted of two divers. One navigated each
compass heading (30°, 60°, 120°, 150°, 210°, 240°, 300°, and 330°)
and reeled out the transect tape to 40 m, while the other counted
stipes (fronds) within a 2-m swath along the transect tape. Stipe
(frond) counts were recorded for every 5-m interval (area = 10m2),
which we have termed the ‘transect interval’. Each individual
transect began at the 5-m mark to avoid overlap of stipe (frond)
counts at the center of the survey area. As a result, each complete
dive survey consisted of a series of 4 or 8, 70m2 transects or a total
dive survey area of 280m2 (Noyo Harbor) or 560m2 (Portuguese
Beach, Point Piños, Otter Cove, San Carlos Beach, and Hopkins
Marine Station). The geospatial location of each transect interval was
trigonometrically determined using the GPS location (UTM) of the
center buoy and the transect distance from the center buoy.

Morphology and allometry for canopy biomass - Adult
sporophytes (Figure 5), defined as the mature stage of the bull
and giant kelp diploid lifecycles, were indiscriminately collected
for morphometric measurement and canopy biomass
determination across multiple locations in central and
northern California (Table 2) in 2018 and 2019, including
five of the six dive sites surveyed in 2019 (Noyo Harbor,
Point Piños, Otter Cove, Hopkins Marine Station, and San
Carlos Beach). Specifically, we measured morphology at four
sites for giant kelp (total of 11 sporophytes) in 2019 and six sites
for bull kelp (total of 86 sporophytes) in 2018 and 2019
(Table 2). Divers removed sporophytes from the substrate
manually by cutting the primary stipe just above the holdfast
(Figure 5; Supplementary Figure S1A), brought them to the
surface and then to shore where morphometric measurements
were conducted on a clean surface (Supplementary Figures
S1B–F). When tissue hydration could not be maintained using
fresh seawater, a portable pop-up tent was used to shade samples
(Supplementary Figures 1C, D).

Bull kelp morphometric measurements were made for stipe
length and width, bulb diameter, sub-bulb diameter (15 cm below
the base of the bulb), longest blade length/width, longest blade
weight, number of blades, canopy weight (top 1 m of stipe
including all the blade biomass), and total sporophyte weight
(Figure 5). Central and northern California data from 2018 to
2019 (n = 86) were combined with data collected on the western

FIGURE 4 |MicaSense RedEdge-M near-infrared reflectance (ρNIR) for each dive survey site overlayed with the locations for the midpoint of each transect interval
with the color of the dot corresponding to the measured in situ canopy biomass. (A) Noyo Harbor (NH), (B) Portuguese Beach (PB), (C) Point Piños (PP), (D) Otter Cove
(OC), (E) San Carlos Beach (SCB), (F) Hopkins Marine Station (HMS).
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coast of Prince of Wales Island, Alaska in 2018 (Pearson and
Eckert, 2019; n = 55).

Bulb diameter was randomly measured within the 3,600 m2

dive survey plot. The site-specific mean bulb diameter was used to
estimate the mean canopy biomass per sporophyte at each bull
kelp site. The total wet biomass for each transect interval (10 m2)
was calculated by taking the product of the stipe counts within
each transect interval and the site-specific mean canopy biomass
per sporophyte derived from allometry.

Giant kelp sporophytes were divided into two sections, the
sub-surface canopy and surface canopy (Figure 5). The surface
canopy was determined by measuring the depth of the holdfast

prior to collection. Within each section, morphometric
measurements were made for total tissue weight, number of
blades, and number of fronds. Central California giant kelp
data were combined with SBC LTER measurements of canopy
biomass and frond counts from 2002 to 2003 (Reed and
Rassweiler, 2018; n = 36). At each giant kelp dive site, the
canopy biomass per transect interval was estimated using the
allometric relationship developed between the total number of
stipes (fronds)/sporophyte and the canopy biomass. We counted
within each transect interval to calculate the corresponding
canopy biomass. An ANCOVA was run using the Python
3.1 pingouin statistics module (Vallat, 2018) to determine if

FIGURE 5 | Relevant morphometric characteristics of bull kelp (Nereocystis leutkeana) and giant kelp (Macrocystis pyrifera) adult sporophytes (image credit: Niky
Taylor; UCSC).

TABLE 2 | Detailed information of site-specific sporophyte collection including site name, region, kelp genera, latitude/longitude, and collection dates.

Site Name Site Location Kelp Genera Latitude Longitude Collection Date(s) - # of Sporophytes

Casper Cove Mendocino County bull kelp 39.362 −123.820 Sept. 17, 2018–10
Albion Cove Mendocino County bull kelp 39.228 −123.772 Sept. 18, 2018–15
Bodega Marine Lab Sonoma County bull kelp 38.311 −123.071 Sept. 25, 2018–17
Noyo Harbor Mendocino County bull kelp 39.429 −123.812 Sept. 19, 2018–12

7 Aug. 2019–22
Point Piños Monterey Peninsula bull kelp 36.641 −121.931 Aug. 28, 2019–10
Hopkins Marine Station Monterey Peninsula giant kelp 36.622 −121.902 8 July 2019–2

10 July 2019–1
17 July 2019–1

San Carlos Beach Monterey Peninsula giant kelp 36.613 −121.895 22 July 2019–1
31 July 2019–1

Ocean Cove Monterey Peninsula giant kelp 36.630 −121.919 26 July 2019–1
Aug. 8, 2019–1
Aug. 26, 2019–1

Steamer Lane Santa Cruz giant kelp 36.952 −121.023 Aug. 16, 2019–2
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region (and season) had an influence on the slope and intercepts
of the relationship between the dependent variable (bulb diameter
or frond count) and canopy biomass.

Retrieving canopy biomass from NDREB–A spatial analysis was
conducted to compare in situ derived canopy biomasses to mean
NDREB kelp classification at four different radii around the transect
interval (0.5, 1.5, 2.5, 5 m). We chose these radii because they relate
to relevant spaceborn sensor’s ground sampling distances -
PlanetScope (3 m), Planet RapidEye (5 m), ESA Sentinel-2 (10 m)
(spectral characteristics are described in Supplementary Table S1).
All pixels that fell within the radius were averaged, resulting in a
single mean NDREB value per transect interval location. A full site
level comparison of mean biomass and mean NDREB was also
conducted with relevance to deriving canopy biomass from the
Landsat suite (30 m) and SBC LTER retrievals of canopy biomass
with Landsat (Cavanaugh et al., 2011; Bell et al., 2015).

Semi-variogram analysis–A geostatistical approach was used
to describe kelp patch spatial autocorrelation and patch
characteristics by calculating the semi-variance of each survey
site’s NDREB (Figure 3D) and in situ biomass measurements
(Figure 3F). Prior to conducting the variogram analysis, in situ
biomass data were interpolated into a 2-D grid with theMATLAB
function griddata, using a triangulation-based linear
interpolation method. We used the Python 3.1 Variogram and
DirectionalVariogram classes within the SciKit-GStat (skgstat)
module to determine the semi-variance (γ), which can be
described as half of the measured variance between pairs of
values separated by an increasing lag distance between pixels (h):

γ(h) � 1
2N(h) p ∑N(h)

i�1 (NDREB(xi) −NDREB(xi+h)2) (2)

where NDREB (or in situ biomass) are the observations at
locations xi and xi + h and N(h) is the number of point pairs
at that lag. Semi-variance parameters were estimated by fitting
spherical models to the empirical semivariograms:

γ � η + C p(1.5 p h
r
− 0.5 p

h3

α
) (3)

where η is the nugget, C is the sill, and α is the range. The η
describes the total unresolved variability, or noise, while C
describes the total resolved variability. The α describes the
distance at which the semi-variance reaches a maximum and,

therefore, the distance of spatial autocorrelation. Spherical
models are ideal when the increase in semi-variance is steep
or being estimated within a small region (such as the 60 m length
scale of this study). However, because this was a descriptive
analysis for patch characteristics, we do not report specific η, C, or
α information from the different sites.

RESULTS

Allometric relationships for canopy biomass were developed for
bull kelp and giant kelp based on morphometric measurements
and their relationship to canopy biomass (Figure 5). Longest
blade length was the strongest predictor of bull kelp canopy
biomass (r2 = 0.78; Table 3). Sub-bulb diameter, bulb diameter,
and number of blades were also significant predictors of canopy
biomass (r2 = 0.72, 0.64, and 0.48, respectively; Table 3). Our
results were consistent with Stekoll et al. (2006) for bull kelp in
Alaska. Bulb diameter was selected to use for deriving canopy
biomass in this study because bulb diameter can be quickly
measured by divers or from a boat at the surface of the kelp
canopy. The strongest predictor of giant kelp canopy biomass
was the number of canopy blades (r2 = 0.81; Table 3).
Additionally, mean canopy frond length and number of
fronds at the base of the sporophyte were statistically
significant predictors of canopy biomass (r2 = 0.57 and 0.48,
respectively; p < 0.05). Our sample size of sporophytes was
relatively small, collected in July and August 2019 (n = 11).
However, combining our dataset with SBC LTER measurements
of stipe (frond) count and canopy biomass collected monthly in
2002 and 2003 increased the sample size to n = 40, increased the
F-statistic 23.1 (p < 0.05), but reduced the overall coefficient of
determination to 0.32 (Table 3).

All in situ diver measurements of bull kelp bulb diameter
displayed a Gaussian probability distribution (Figures 6A–C).
The range of bulb diameter at Point Piños (Figure 6C; 7.06 ±
0.96; n = 148) was significantly different than Noyo Harbor
(Figure 6A; 6.50 ± 0.76; n = 80; t-statistic = 4.5; p < 0.05) and
Portuguese Beach (Figure 6B; 6.44 ± 0.64; n = 79; t-statistic = 5.12;
p < 0.05). Additionally, the morphology of Monterey Peninsula bull
kelp bulb diameter was significantly different from the morphology
of bull kelp in Alaska and Mendocino (Table 4). As a result, there
were significant differences between the bull kelp allometric

TABLE 3 | Linear regression statistics for the different morphometric measurements for estimates of wet weight.

Bull Kelp Slope (m) Intercept (b) r2 F-Statistic n

Longest blade length (cm) 24.1 ± 2.4 153.4 ± 14.4 0.78 103.2 32
Sub-bulb diameter (cm) 0.2 ± 0.03 2.6 ± 0.16 0.72 76.2 32
Bulb diameter (cm) 0.2 ± 0.03 5.8 ± 0.20 0.64 53.1 32
Number of blades 3.0 ± 0.6 40.7 ± 40.7 0.48 27.7 32

Giant Kelp Slope (m) Intercept (b) R2 F-Statistic n

Number of blades (canopy) 0.03 ± 0.01 0.2 ± 4.1 0.81 38.8 11
Mean frond length (canopy) 0.07 ± 0.02 -7.9 ± 9.6 0.57 10.6 10
Number of fronds (base)–this study 0.9 ± 0.3 -0.8 ± 8.6 0.48 8.2 11
Number of fronds (base)–SBC LTER 0.4 ± 0.1 4.2 ± 3.6 0.32 23.1 40
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relationship by region (Figure 6D;Table 5). However, giant kelpwas
not influenced by region or season (Table 5). The per sporophyte
canopy biomass measurements were generally higher for giant kelp

than bull kelp and maxima were ~15 and 60 kg for bull kelp and
giant kelp, respectively (Figure 6).

Though measured canopy biomass values ranged significantly
across site and genera, NDREB values were generally within range
of each other (Figure 7; top row = bull kelp sites; bottom row = giant
kelp sites). A predictive relationship between canopy biomass and
NDREBwas observed at two of the study sites, Portuguese Beach (bull
kelp; Figure 7B) and San Carlos Beach (giant kelp; Figure 7E) for all
sampling radii (0.5, 1.5, 2.5m; Table 6). Regression statistics for these
two sites was characterized by high F-statistic and r2 values relative to
the other four sites. However, across all sites, there was no influence of
averaging radii on the predictive power of the relationship between

FIGURE 6 | The probability distribution of bull kelp bulb diameter for (A) Noyo Harbor, (B) Portuguese Beach, (C) Point Piños. (D) Scatter plot of wet bull kelp
canopy biomass against bulb diameter fitted with OLS linear regressions for Alaska (blue line), Mendocino (teal line), Monterey (green line), and all regions combined
(black line). (E) Scatter plot of wet giant kelp canopy biomass against frond number fitted with OLS linear regressions for all data from Santa Barbara, CA (blue line),
summer data from Santa Barbara (blue dashed line), Monterey, CA (green line), and all regions combined (black line). Regression details listed in Supplementary
Table S1. Grey shaded areas represent regression 95% CI.

TABLE 4 |Results from pairwise Tukey’s HSD post-hoc test for region specific bull
kelp bulb diameters. *denotes significance.

Location A Location B Mean (A) Mean (B) Std. Error p-value

Alaska Mendocino 2.6 3.9 0.47 0.012
Alaska Monterey 2.6 9.0 0.91 *0.001
Mendocino Monterey 3.9 9.0 0.90 *0.001
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canopy biomass and NDREB. Portuguese Beach (Figure 7C) and
Point Piños exhibited the largest range in measured canopy biomass
(0 to >60 kg-ww m−2; Figure 7) that were associated with high diver
recorded stipe densities (Figures 3E, F). Conversely, giant kelp
stations had a smaller ranged in measured canopy biomass as a
result of lower diver measured stipe densities (0–15 kg-ww m−2;
Figures 7D–F).

No significant relationship was observed when site level means of
NDREB and in situ canopy biomass were compared (Figure 8).
Portuguese Beach and Point Piños showed high mean canopy
biomass relative to the mean station NDREB reflecting higher
diver measured stipe densities for these two bull kelp sites
(Figures 3E, F). The remaining four stations were characteristic
of relatively lowmean canopy biomass and a range of mean NDREB
values from 0.18 to 0.39 reflecting sparser diver measured stipe
densities at those four stations.

The descriptive variogram analysis conducted for NDREB and
diver measured canopy biomass indicated differences in patch level
spatial patterns between Portuguese Beach, San Carlos Beach and the
other survey sites (Figure 9). Althoughwewere not able to consistently
develop predictions of canopy biomass from NDREB, the patterns of
semi-variance across the site’s spatial extents were similar between the
diver surveys andNDREB, indicating that similar spatial patterns were
being observed with both methods. For Portuguese Beach and San
Carlos Beach (the two sites where robust relationships of canopy
biomass were achieved), a dominant ‘u-shaped’ pattern was visible in
the semi-variograms, where variability rapidly rises to the edge of the
patch (the peak of the ‘u-shape’) and falls outside of the patch beyond
approximately 30m from the center of the survey site.

DISCUSSION

In the northeast Pacific region, bull kelp and giant kelp form
the base of an ecologically and economically important
temperate nearshore coastal ecosystem with extensive
floating surface canopies. Remote sensing is advantageous
for detecting their floating canopy and deriving large-scale
estimates of surface canopy biomass, which comprises more
than 90% of bull and giant kelp standing stock (Rassweiler
et al., 2008). Development and validation of remotely derived
kelp canopy biomass is lacking because the associated
methodology is time intensive and costly, but important
because biomass is necessary for determining rates of net
primary productivity and quantifying carbon cycling in
temperate nearshore regions. In this study, we compiled

bull and giant kelp morphometric measurements from
different regions in the NE Pacific to assess the validity of
applying a single biomass conversion relationship across
disparate regions. We also surveyed six spatially distinct
sites (3 bull kelp and 3 giant kelp) with varying stipe and
canopy characteristics for measurements of in situ canopy
biomass via diver and UAV surveys with the aim to retrieve
canopy biomass estimates from remote sensing imagery. The
results exhibited that 1) kelp morphology differed slightly
across the regions we examined but didn’t strongly
influence in situ estimates of canopy biomass, and 2)
reliable, consistent remote sensing retrieval of canopy
biomass was difficult using the survey approach developed
here and dependent on specific kelp patch characteristics
across sites.

Kelp allometry for canopy biomass measurements–Deriving
and utilizing allometric relationships for canopy biomass is a
key component of developing methods for canopy biomass
retrieval from spaceborne and aerial platforms (Stekoll et al.,
2006; Cavanaugh et al., 2010). In this study, we compared the
regional differences in bull kelp bulb diameter and giant kelp
stipe count as predictors of canopy biomass and found that
across all regions, these metrics were robust predictors of
canopy biomass. The effect of region on the slopes and
intercept of the linear relationships were small for both
genera (Figure 6; Table 4 and Table 5) and indicates that it
may be generally acceptable to apply a relationship derived
from one region to others across the NE Pacific. It is possible
that the morphological differences we observed were a result of
local-scale hydrodynamics influencing tissue morphology,
rather than regional-scale processes (Koehl and Alberte,
1988; Koehl, 2022).

However, the sample sizes for some of our regions were
relatively low (e.g. giant kelp from the Monterey region).
Sample sizes of studies collecting sporophyte morphology is
influenced by the per sporophyte effort it requires to collect
this information. A single giant kelp sporophyte can take up to
15 person-hours to conduct a complete morphometric survey.
Bull kelp is less labor intensive, on the order of two person-
hours per sporophyte. Both genera require SCUBA (from
shore or boat) to collect and deliver sporophytes that can
weigh up to 60 kg to the lab for processing. While the logistical
challenges may be the primary reason for the lack of data, the
collection of this data have not been prioritized by funding and
management agencies in the past. We advocate for allocating
resources into developing predictive relationships for canopy

TABLE 5 | ANCOVA results for the effect of region (and seasons for giant kelp) on the slope and intercepts of the relationship between the dependent variable (bulb diameter
or frond count) and canopy biomass. Bull kelp regions are Monterey, Mendocino, and Alaska. Giant kelp regions/seasons are Santa Barbara (all), Santa Barbara
(summer), and Montery. *denotes significance.

Genera Group Degrees of
Freedom (Df)

F p-value Effect Size

Nereocystis Region 2 11.6 *2.3 × 10−5 0.15
Nereocystis Bulb Diameter (cm) 1 84.7 *5.3 × 10−16 0.38
Macrocystis Region/season 2 2.6 8.5 × 10−2 0.074
Macrocystis Sporophyte frond 1 44.6 *6.9 × 10−9 0.41
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biomass to further improve accuracy of kelp canopy retrieval
from spaceborne sensors via long-term monitoring and
targeted studies with UAVs.

The influence of kelp patch characteristics on canopy biomass
retrievals–Descriptive results from the semi-variogram analysis
indicated that kelp bed characteristics play a role in accurately
determining canopy biomass retrievals. If a kelp patch was larger
than the spatial area of the dive survey (i.e. a breakdown in
autocorrelation did not occur within the survey area), we were
limited in our ability to develop a robust working relationship
between canopy biomass and NDREB. If the kelp patch was
smaller than the spatial area of the dive survey (i.e., pixel
autocorrelation broke down within the dive survey area), we

were able to identify a relationship between canopy biomass and
kelp fraction. This pattern in the semi-variance results described
sites with a distinct kelp patch surrounded by water and biomass
at these sites also had a robust correlation with NDREB. Out of
the six sites, Portuguese Beach (Figure 4B; Figure 7) and San
Carlos Beach (Figure 4E; Figure 7) were clear examples of this
pattern, exhibiting dense, relatively homogenous stipe (frond)
counts inside the kelp bed and a relatively homogenous absence
of stipes (fronds) outside of the kelp bed. This indicates a
potential mismatch between the scale of measurements by
diver survey and remote sensing because 1) surveying large
patches is quantified best by satellite remote sensing but is not
feasible for in situ surveys, and 2) very high spatial resolution

TABLE 6 | Original Least Squared (OLS) regression statistics from Figure 7 with slope and intercept values ± 1 standard deviation.

Station NDREB Sampling
Radii (m)

n Slope (m) Intercept (b) r2 F-Statistic

Noyo Harbor (NH) 0.5 28 1.1 ± 3.23 3.3 ± 0.96 0.004 0.12
1.5 28 2.2 ± 3.06 3.1 ± 0.97 0.020 0.52
2.5 28 2.3 ± 3.15 3.0 ± 0.98 0.025 0.68

Portuguese Beach (PB) 0.5 56 37.3 ± 7.33 5.7 ± 2.07 0.324 25.9
1.5 56 42.1 ± 8.78 5.2 ± 2.21 0.299 23.1
2.5 56 45.6 ± 10.0 4.7 ± 2.35 0.264 20.8

Point Piños (PP) 0.5 56 1.5 ± 7.82 21.7 ± 2.11 0.001 0.04
1.5 56 2.4 ± 10.8 21.6 ± 2.21 0.001 0.05
2.5 56 6.2 ± 13.5 21.2 ± 2.37 0.004 0.21

Otter Cove (OC) 0.5 56 2.7 ± 1.33 1.7 ± 0.58 0.072 4.20
1.5 56 3.5 ± 1.42 1.5 ± 0.58 0.103 6.22
2.5 56 3.7 ± 1.55 1.49 ± 0.59 0.097 5.79

San Carlos Beach (SCB) 0.5 56 6.5 ± 1.48 1.2 ± 0.45 0.264 19.3
1.5 56 6.5 ± 1.49 1.2 ± 0.48 0.263 19.3
2.5 56 6.8 ± 1.51 1.1 ± 0.48 0.273 20.3

Hopkins Marine Station (HMS) 0.5 56 2.7 ± 1.90 1.4 ± 0.78 0.036 2.00
1.5 56 2.6 ± 1.98 1.4 ± 0.80 0.032 1.78
2.5 56 2.4 ± 2.05 1.5 ± 0.82 0.026 1.42

FIGURE 7 | Transect interval canopy biomass in kg wet weight (kg-ww) against average NDREB values from a 1.5 m radius around each transect interval (A) Noyo
Harbor; (B) Portuguese Beach; (C) Point Piños; (D)Otter Cove; (E) San Carlos Beach; (F)Hopkins Marine Station with OLS regression (black lines) and 95% confidence
intervals (grey shading). Significance of the OLS regression is indicated with an asterisk. See Table 6 for each sampling radii and site’s regression statistics.
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measurements of canopy can be observed with UAVs, but diver
survey methods are limited in the coarseness of their
observations.

The influence of kelp genera on canopy biomass retrievals–Bull
and giant kelp have distinctly different morphologies and surface
canopy characteristics which influenced accurate retrievals of
canopy biomass estimates from UAV based observations. Bull
kelp has a single gas-filled stipe and pneumatocyst (Figure 5)

with long blades (length � 1 m) that can number up to the
hundreds concentrated at the top of the sporophyte. Unlike giant
kelp blades, the blades of a bull kelp do not float on the water
surface without sufficient tidal and current forcing. Because tides
and current were not producing significant drag on the bull kelp
canopy at our survey sites (as visible in the imagery; Figure 4),
much of the biomass in the canopy (Figure 5 bull kelp blades) was
below the water surface at our study sites. Therefore, the spectral
signature of the kelp canopy observed was emergent stipes and
bulbs. This may have resulted in a heterogeneous surface
comprised of kelp tissue and water and relatively low NDREB
in comparison to in situ biomass measurements.

Diver estimates of canopy biomasses ranged significantly
depending on the density of bull kelp sporophytes resulting in
area normalized canopy biomasses at Portuguese Beach and Point
Piños that were approximately 7 times greater than the giant kelp
sites (Figure 7). Although bulb diameter can predict an individual
sporophyte’s canopy biomass with relative accuracy, using stipe
counts did not translate well to area normalized canopy biomass
at interval locations, either because the sporophytes fanned out
and distributed at the surface or because blades were below the
water surface and were not detected by the sensor on the UAV.
Further consideration should be given to the deepest survey site
(Point Piños; ~30 m) where it is likely that a portion of the
sporophytes counted by divers didn’t reach the surface, resulting
in an overestimation of in situ canopy biomass.

Giant kelp blades grow along the entire frond from the base
to the growing tip (meristem; Figure 5). More of the canopy
biomass is floating on the water surface or just below because
the base of each giant kelp blade (length � 30 cm) contains a
single pneumatocyst. A single giant kelp sporophyte can
contain up to ~100 fronds clustered together (Figure 5;
Supplementary Figure S1A). Therefore, dense floating
canopies of giant kelp fronds can form, often with many

FIGURE 9 | Semi-variogram for each station NDREB (grey) and diver measured canopy biomass (black). NDREB are overlayed with a spherical model fit.
(A) Noyo Harbor; (B) Portuguese Beach; (C) Point Piños; (D) Otter Cove; (E) San Carlos Beach; (F) Hopkins Marine Station.

FIGURE 8 | Mean station canopy biomass plotted again mean station
NDREB with ± 1SE bars in grey. Different circles represent conditions of stipe
density at the different dive sites.
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fronds laying on top of each other at the surface. However,
since the distribution of individual sporophytes at the
substrate is often sparse and non-homogenously distributed
across a kelp patch, disparities can develop between sparse
diver counts of fronds and the expression of dense surface
canopy, and an under-representation of in situ canopy
biomass. It is likely that stipe count, though relatively easy
for divers to conduct is an unreliable approach for remote
sensing validation studies of giant kelp.

The influence of survey design on canopy biomass retrievals - The
in situ diver survey approach developed in this study was similar to
methodology for Landsat derived giant kelp canopy biomass
(Rassweiler et al., 2008; Cavanaugh et al., 2011) and aerial
survey derived Alaska bull kelp biomass (Stekoll et al., 2006) in
that disparate kelp beds weremeasured to quantify canopy biomass
and then associated with spectral characteristics of kelp canopy.
However, the goal of our survey design was to rapidly assess as
many large sites as possible by only collecting stipe (frond) counts
within each 5-m section of the transect. The radial survey pattern
allowed us to have eight transects of reasonable length (35 m)
within each survey site. By assessing a large area, we could increase
the sample size, and therefore, the number of matchup locations
between in situ canopy biomass and UAV imagery. However, it is
possible that persistent errors and offsets were introduced to the
transect interval’s geospatial locations via this approach. Despite
SBC LTER’s robust prediction of Santa Barbara giant kelp canopy
biomass estimates from 30m Landsat (Cavanaugh et al., 2011; Bell
et al., 2020b), we had little success developing a similar relationship
using mean site level (60 × 60m) NDREB and canopy biomass,
likely due to limitations in the number of sites that could be
sampled within the given timeframe of the study.

Our findings shed light on the advantages of site-specific long-term
monitoring for retrieving canopy biomass from remote sensing
platforms at the kelp bed scale (~10–30m), allows for the
development of temporally and spatially robust relationships.
However, this approach is not always feasible for subtidal
monitoring programs (which, in itself, are lacking). We recognize

there should be alternative methods to retrieving canopy biomass.
UAVs provide flexibility for survey design and approach to adjust
measurement temporal frequency, the spatial extent of the survey (a
single bed to multiple), and postprocessing pixel spatial binning (pixel
sizes from 10 cm +). If given a long enough timeseries or enough data
points, UAV’s can collect the required information, but as
demonstrated here, it requires multiple measurements (i.e. a
timeseries) to build reliable relationships.

Suggested survey design for future UAV methods–Based on the
results presented here and lessons learned, we provide a
recommended survey design aimed at retrieving canopy
biomass estimates from remote sensing methods. Primarily, we
believe measurements should focus directly on the surface canopy
rather than subtidal stipe counts or biomass (Figure 10). This allows
for direct comparison of in situ surface biomass measurements to
pixel-based kelp classification metrics. Specifically, we recommend
conducting in situ canopymeasurements across a variety of densities
(either within a single bed or multiple different beds) within a
bounding box marked by buoys/markers in the center and corners
(Figure 10 white and orange dots). Buoys should remain deployed
for the extent of the UAV survey for ground truthing and geospatial
positioning of the in situ site. Quadrat sampling points for surface
measurements within the bounding box can be randomized by
heading/distance to remove bias associated with using underwater
compass headings for calculation of GPS locations. As such GPS
measurements at the center of each quadrat location can be taken.
Within each 1m2 quadrat, measurements of the bulb diameter (bull
kelp), sub-bulb diameter (bull kelp), mean canopy stipe length (giant
kelp), and stipe count (bull and giant kelp) can be used to estimate
canopy biomass (Table 3). Taking subtidal stipe counts is a good
comparison to other surveys being conducted by relevant
monitoring organizations (i.e. Reef Check California, CDFW,
Humble State University, etc.), but as indicated by the results
presented here can be unreliable for developing fine spatial scale
estimates of biomass. We recommend conducting UAV surveys on
the same day just before or after in situ canopymeasurements or at a
similar tidal height.

FIGURE 10 | Suggested survey design for future in situ validation studies of canopy biomass using a UAV platform.
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CONCLUSION

Estimation of kelp canopy area has rapidly advanced, leading
to regional-scale (e.g Bell et al., 2020b) to global-scale (e.g.
Mora-Soto et al., 2020) estimates, and assessments of kelp
canopy area in very remote locations (Friedlander et al., 2020;
Houskeeper et al., 2022). Despite these advances, it is desirable
in some cases to move beyond canopy area to assess biomass,
and then primary productivity, as that provides information
on kelp bed health, carbon sequestration, and viability.
Validation studies of kelp canopy biomass retrievals via
remote sensing are lacking because the data is difficult to
collect, but this data is important because accurate large-scale
estimates of productivity and carbon cycling cannot be made
without them. We attempted to close the data gap by
developing a rapid and thorough approach to gathering the
in situ and remote sensing data that are required to retrieve
biomass from remote sensing platforms. Although, specific
kelp patch configuration and survey design limited the
number of sites where we successfully retrieved kelp
canopy biomass, we consider our findings valuable to the
kelp remote sensing community, to whom there is very little of
this data available. Understanding the challenges in
determining remotely derived kelp canopy biomass is
important and our general conclusions can be used to
extrapolate to other regions and potentially other kelp
genera. To aid in future efforts, we outline an improved
survey design for future in situ validation studies using
UAVs. Finally, we strongly recommend funding/
implementation of long-term monitoring programs, such as
those used by the SBC LTER, across the region for both giant
and bull kelp. Critically, this requires both standardization of
methodology and consistent funding by management agencies
for such efforts. The alternative is to rely solely on canopy area
which can be a poor proxy for biomass and productivity,
limiting our understanding of how kelp beds respond to short-
and long-term environmental conditions.
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