About this Research Topic
Despite their relevance in tissue development in vivo, the mechanisms governing the interactions between the cytoskeleton and nucleus during mechanotransduction have not yet been fully elucidated. Measurements of pan-nuclear dynamics may provide further insights and novel research angles to basic cellular and developmental biology. To advance our understanding of such complex and intricate signaling network, population-based studies, light imaging microscopy, single cell microfluidic approaches as well as advanced sequencing and other molecular techniques have been developed. Yet an emerging field that may provide new tools for chromatin research is vibrational spectroscopy-based chemical imaging. Label-free characterization of vibrational modes in molecules that are specific as a chemical fingerprint and provide the chemical composition and heterogeneity of a sample, has gained increased traction recently. Fourier Transform Infrared (FTIR) and Raman microscopy techniques have been shown to be powerful biochemical tools for monitoring DNA conformational changes and studying chromatin architecture. Developing novel approaches and/or combining vibrational imaging with other tools such as microfluidics to assess chromatin structure and conformation at the single cell level could enable a more comprehensive understanding of chromatin architecture dynamics.
The aim of this Research Topic is to showcase recent and novel research trends in the chromatin architecture field. Areas to be covered may include, but are not limited to:
• Development of novel microfluidics and flow cytometry approaches
• Application of chemical specific imaging techniques in the study of the chromatin architecture
• Measurement of the interaction between cytoskeleton and nucleus during mechanotransduction
• Contactless strategies to probe cellular and nuclear mechanics (e.g. Brillouin microscopy)
• DNA, RNA and related single molecules conformation and dynamics probing
• Advanced single cell proteomic techniques that could identify potential chromatin architecture signatures
Keywords: Chromatin, Nuclear Architecture, Conformation, Decondensation, Activation, Maturation, Microfluidics, Label-Free Imaging
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.