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Editorial on the Research Topic

Moving Beyond Non-informative Prior Distributions: Achieving the Full Potential of Bayesian

Methods for Psychological Research

Over the last two decades, Bayesian statistics have been established as an alternative to the
well-known frequentist approaches primarily based on maximum likelihood (ML) estimation
(van de Schoot et al., 2017; Koenig and van de Schoot, 2018). With the possibility of
incorporating background knowledge into new analyses, Bayesian methods can potentially
transform psychological research into a truly cumulative scientific discipline. However, the primary
tool to achieve this, namely informative prior distributions, remains a seemingly elusive concept,
especially for novice users. Reasons include, but are not limited to, the frequent criticism regarding
their alleged subjective nature and a lack of knowledge about methods to formalize background
knowledge (Goldstein, 2006; Vanpaemel, 2011). These two aspects are the primary point of
departure for the twelve articles in this Special Issue.

The first set of two articles provides interested readers with means to comprehend the nature
and potential impact of prior distributions in general. As Depaoli et al. (p. 3) state, “Understanding
the impact of priors, and then making subsequent decisions about these priors, is perhaps the
trickiest element of implementing Bayesian methods.” Consequently, their tutorial paper presents
an interactive Shiny app that enables novice and experienced users of Bayesian statistics to
investigate and determine the impact of their specified prior distributions on model results. Arts
et al. examine the impact of different prior distribution specifications for the variance parameter in
a Bayesian approximate measurement invariance with alignment optimization (e.g., van de Schoot
et al., 2013). The authors illustrate visually how the prior specification for the variance parameter
affects the rank ordering of 30 countries in a large-scale assessment of the latent construct”
willingness to sacrifice the environment.” Visualizing different outcomes aids in understanding the
effect of various prior specifications on model results.

The second set of articles aims to convince interested readers of the benefits and advantages of
weakly and fully informative prior distributions compared to their non-informative counterparts
and frequentist ML estimation. The five articles illustrate these benefits across a wide range of
statistical models, with a particular focus on small-sample situations. Tong and Ke show the
benefits and advantages of using weakly and fully informative priors for the precision parameter in
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Bayesian non-parametric growth curve models. Their simulation
demonstrates that using weakly or fully informative priors aids
model convergence and the accuracy of the precision parameter
of the Dirichlet process. This conclusion is essential, as previous
research showed that the precision parameter is crucial for
obtaining good results.

Similarly, Zyphur et al. show that using weakly or fully
informative priors also aids model convergence and parameter
accuracy for cross-lagged panel models. They concluded
that using such priors increases model parsimony, estimate
stability, and thus the general trustworthiness of results,
compared to results obtained with ML estimation. When
dealing with small samples, the role of Bayesian prior
distributions becomes even more crucial for model convergence
and parameter accuracy. Smid and Winter present a tutorial
discussing the dangers and pitfalls of using default priors
implemented in software for Bayesian structural equation
models. They introduce an interactive Shiny app, where
users can investigate the impact of various priors on model
estimates, depending on sample size. Lüdtke et al. examine
the stability of estimates across different Bayesian estimators
in small-sample confirmatory factor analysis. The results
show that estimates based on the posterior mean (EAP)
produced more accurate estimates. Parameter estimates can be
further stabilized using the four-parameter beta distribution
for loadings and factor correlations (e.g., Merkle and Rosseel,
2018). The benefits of using this prior distribution in the
weakly informative specification are present even when prior
distributions are mildly misspecified. Another specification of
weakly informative priors is illustrated in Zitzmann et al. In
the context of multilevel latent variable models, they describe
two strategies (direct and indirect; Zitzmann et al., 2015) to
specify weakly informative priors for the group-level slope
parameter. Their simulation results show that introducing
additional information via these priors stabilizes the model
and provides more accurate parameter estimates in small-
sample situations.

Finally, the third set of articles focuses on different
approaches to formalize background knowledge objectively.
The ultimate aim is to build confidence in the specification
and use of informative prior distributions. In this regard,
Veen et al. focus on expert knowledge for specifying
informative prior distributions. In their paper, they
illustrate how the five-step method (Veen et al., 2017) is
used for prior elicitation for the parameters of a latent
growth curve model. They show how to aggregate expert
knowledge and specify appropriate densities to be used
in a Bayesian analysis. Moreover, they compare the prior
densities with posterior densities from traditionally collected
data and guide how to set up procedures for appropriate
expert elicitation.

Van de Schoot et al. provide another example of eliciting
expert knowledge and using it to specify informative prior
distributions. They also use lesser-known Bayesian methods,

such as tests for prior-data conflicts (Box, 1980), a scoring
algorithm to incentivize truthful responses (John et al.,
2012), and Bayes factors for replication success (Verhagen
and Wagenmakers, 2014), to investigate the prevalence of
questionable research practices among Dutch and Belgian early
career researchers. These articles are complemented by three
illustrations focusing on more quantitative ways to formalize
background knowledge. In this regard, Tran et al. focus on
formalizing background knowledge with systematic parameter
reviews. These reviews consist of a systematic literature search for
studies containing estimates of relevant model parameters and
necessary transformations to make the parameter comparable
across studies. They illustrate how to specify informative prior
distributions based on these synthesized parameter estimates in
the context of the Diffusion Decision Model (DDM; Ratcliff
and McKoon, 2008). The two remaining studies extend this
approach and illustrate ways to consider the similarity of the
available background knowledge and demonstrate how to apply
the necessary weighting of the contributions of the individual
studies to the informative prior distribution. In this regard,
Schulz et al. implement a distribution-based approach. In the
context of mother-adolescent interaction behavior, they illustrate
three methods for pooling results from previously conducted
studies to specify informative prior distributions. Moreover, they
show how to use expert knowledge to weigh the contribution
of each previously conducted study and how to use these
weights in a power prior approach (Carvalho and Ibrahim,
2021).

Lastly, Koenig illustrates how to specify informative prior
distributions using random-effects meta-analytic models. In
the context of Bayesian multiple regression models, they
present a novel method based on propensity-score and
mixed-effects meta-analytic approaches (Tipton, 2014; Cheung,
2015) for quantifying the similarity of background knowledge.
Moreover, they illustrate how to use this similarity measure
to specify similarity-weighted informative prior distributions,
an evidence-based informative prior also based on the power
prior concept (Kaplan and Depaoli, 2013; Ibrahim et al.,
2015).

To enhance reproducibility, crucial for Bayesian papers with
informative priors (van de Schoot et al., 2021), each article in this
Special Issue is accompanied by comprehensive supplementary
material, including annotated code, which provides researchers
with the means to apply the models and methods directly
to their Bayesian analyses. In conclusion, we hope that this
Special Issue enables novice and more experienced Bayesian
researchers to move beyond non-informative prior distributions
and unlock the full potential of Bayesian methods for
psychological research.
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Experts provide an alternative source of information to classical data collection methods
such as surveys. They can provide additional insight into problems, supplement existing
data, or provide insights when classical data collection is troublesome. In this paper, we
explore the (dis)similarities between expert judgments and data collected by traditional
data collection methods regarding the development of posttraumatic stress symptoms
(PTSSs) in children with burn injuries. By means of an elicitation procedure, the
experts’ domain expertise is formalized and represented in the form of probability
distributions. The method is used to obtain beliefs from 14 experts, including nurses
and psychologists. Those beliefs are contrasted with questionnaire data collected on
the same issue. The individual and aggregated expert judgments are contrasted with
the questionnaire data by means of Kullback–Leibler divergences. The aggregated
judgments of the group that mainly includes psychologists resemble the questionnaire
data more than almost all of the individual expert judgments.

Keywords: Bayesian statistics, elicitation, expert judgment, expert knowledge, Latent Growth Curve Model, prior,
prior-data (dis)agreement

INTRODUCTION

Expert elicitation entails the extraction of information from experts and the translation of this
information into a probabilistic representation. There are many reasons to elicit expert knowledge.
In some cases, it is done to supplement existing data using priors that are informed by expert
knowledge (van de Schoot et al., 2018). Alternatively, expert judgments allow for filling information
gaps of certain data (Fischer et al., 2013; Dodd et al., 2017) or they can serve as a quality
control for obtained data (Veen et al., 2018). Elicitation can also be used for forecasting purposes
(Murphy and Winkler, 1974, 1984) or when there are no data available at all (Ho and Smith, 1997;
Hald et al., 2016).

The use of expert knowledge is widespread across many disciplines. To give some examples,
Dodd et al. (2017) elicited expert-based estimates for case-fatality ratios in HIV-positive children
with tuberculosis who did not receive treatment; Barons et al. (2018) describe the use of expert
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judgments to create decision support systems with an example
in food security; and Dewispelare et al. (1995) describe expert
elicitation in relation to the long-term behavior of high-level
nuclear waste repositories. For numerous other examples on
elicitation practices, see for instance Chapter 10 of O’Hagan
et al. (2006), listing applications in sales, medicine, nuclear
industry, veterinary science, and many more. Other examples
using a specific elicitation tool are given in Gosling (2018), while
Cooke and Goossens (2008) describe a database of over 67,000
elicited judgments.

Recently, there is a growing interest in the use of expert
elicitation in the social sciences. Where van de Schoot et al.
(2017) only found two cases that reported the use of expert
opinions to inform priors in 25 years of Bayesian statistics
in psychology, this trend might slowly be changing. For
instance, in their example related to a replication study in
the field of psychology, Gronau et al. (2019) elicited expert
judgments on effect sizes such that these could be used in
informed Bayesian t-tests; Lek and van de Schoot (2018) elicited
prior distribution from teachers concerning the math abilities
of their students; and Zondervan-Zwijnenburg et al. (2017)
elicited expert judgments on the correlation between cognitive
potential and academic performance. Moreover, methods are
being developed to facilitate expert elicitation in a flexible
manner such that experts are guided in the elicitation process
(Veen et al., 2017).

Whatever the reasons of the elicitation, the goal is to
get an accurate representation of the experts’ beliefs and
associated (un)certainty, which enables the representation of
the experts’ domain knowledge in terms of a probability
distribution. Overconfidence of experts is one of the crucial
issues in expert elicitation (O’Hagan et al., 2006), resulting in
elicited probability distributions with little uncertainty. In the
seminal work of O’Hagan et al. (2006), feedback is named
as the most natural way to improve the accuracy of elicited
beliefs, with interactive software being almost essential for the
effective use of feedback. This is corroborated by Goldstein and
Rothschild (2014) who found that visual feedback can increase
even laypeople’s intuitions about probability distributions. Over
a decade has passed since the advice by O’Hagan et al.
(2006), and many have followed it. Elicitation software can
be split into more general and more customized variations.
Some more general frameworks are, for instance, ElicitN, which
was developed by Fisher et al. (2012) for the elicitation of
count data. Truong et al. (2013) made a web-based tool
for the elicitation of variogram estimates which describe a
degree of spatial dependence. The elicitator was developed for
indirect elicitation, creating a scenario-based elicitation (James
et al., 2010; Low-Choy et al., 2012). Morris et al. (2014)
developed MATCH which is based on the R package SHELF
(Oakley, 2019) and which is a very general elicitation tool
that allows multiple elicitation methods to be used interactively
to elicit single parameters. Garthwaite et al. (2013) developed
an elicitation procedure for generalized linear and piecewise-
linear models. Runge et al. (2013) developed one for seismic-
hazard analysis and Elfadaly and Garthwaite (2017) for eliciting
Dirichlet and Gaussian copula prior distributions. Sometimes,

more customized software is developed for specific elicitation
settings (e.g., Bojke et al., 2010; Haakma et al., 2014; Hampson
et al., 2014, 2015). To sum up, the use of software, customized
or not, to increase the accuracy of the elicited beliefs is now
common practice.

In this paper, we present an elicitation methodology especially
designed for eliciting parameters of a Latent Growth Curve
Model (LGM) regarding the development of posttraumatic stress
symptoms (PTSSs) in children with burn injuries. LGMs are
commonly used to analyze longitudinal data, especially in the
social sciences (e.g., Buist et al., 2002; Catts et al., 2008; Orth
et al., 2012). These models include repeated measurements of
observed variables and allow researchers to examine change
or development over time in the construct of interest. For
extensive explanations of LGMs, see Duncan and Duncan
(2004), Little (2013), and Little et al. (2006). Because in
Western high-income countries, the incidence of severe burn
injuries in school-aged children and adolescents is relatively
low and obtaining a large enough sample to estimate LGMs is
challenging. Nevertheless, to gain knowledge on the development
of PTSSs in this group of children, these types of models are
favored over simpler models. Expert elicitation might provide
an alternative to data collection for cases like our motivating
example where traditional data are sparse or they might
supplement such data.

The main aim of this paper is to compare domain expertise
expressed by experts in an elicitation setting to data on the
same topic collected by means of traditional data collection
methods (Egberts et al., 2018). Comparing experts’ domain
knowledge to traditional data collection methods can provide
unique insights into the topic of interest and the perception
thereof. In the remainder of this paper, we first describe
the methodology that is used to elicit the expert judgments.
The methodology is an extension of the Five-Step Method
(Veen et al., 2017) adapted to elicit multiple parameters. We
elicit expert judgments from 14 experts, including nurses and
psychologists working in the burn centers where data on PTSS
in children were collected. Thereafter, we compare individual
expert judgments to aggregated group-level expert judgments
and data collected by means of traditional methods, followed
by a reflection on the elicitation procedure. We conclude the
paper with a Discussion section including recommendations
for future research. All related materials for this study,
including code and data, can be found on the Open Science
Framework (OSF) website for this project at https://osf.io/
y5evf/.

METHODS

In the first section, we describe the motivating example for
this study. In the next section, we elaborate on the elicitation
procedure and on software that has been developed. Finally,
we describe the sample of experts (N = 14) participating
in the elicitation study. The study received ethical approval
from our internal ethics committee of the Faculty of Social
and Behavioral Sciences of Utrecht University. The letter of
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approval can be found in the data archive on the OSF website
for this project.

Motivating Example
The motivating example for this paper is the development of
PTSS in children after a burn event. In a prospective study
on child and parent adjustment after pediatric burns, data
on these symptoms were collected in three Dutch and four
Belgian burn centers. Children aged 8–18 years were eligible
to participate in the study if they had been hospitalized for
more than 24 h and if the percentage of total body surface area
(TBSA) burned was at least 1%. A more detailed description
of the overall study and sample can be found in Egberts et al.
(2018). This sample consists of 100 children who reported on
their symptoms of traumatic stress within the first month after
the burn event (T1) and subsequently at 3 (T2) months post-
burn. For the purpose of the current study, we also included the
measurements obtained at 12 months (T3) post-burn. Children
filled out the Children’s Responses to Trauma Inventory (CRTI,
revised version; Alisic et al., 2006). This measure assesses four
symptom clusters of posttraumatic stress, including intrusion
(e.g., repetitive, intrusive recollections of the trauma), avoidance
(e.g., avoiding conversations of the event), arousal (e.g., difficulty
concentrating), and other child-specific responses (e.g., feelings
of guilt). Further details on this measure can be found in
Alisic et al. (2011).

As the current study includes three measurements of PTSS
at different time points, a straightforward model to analyze the
development of PTSS is an LGM. Figure 1 provides a visual
representation of an LGM for this motivating example. The
model is parameterized such that the latent intercept provides an
estimate for PTSS in the first month after the burn event. The
latent slope describes the change in PTSS at 1 year post-burn.
Parameterizing the slope by year instead of per month is done
to ease the reasoning in the elicitation procedure. Furthermore,
the scale of the PTSS scores has been standardized for the data
of the prospective study and for the elicitation study. The scores
can fall between 0 and 100. A zero score means that none of the
symptoms of any of the clusters of posttraumatic stress is present.
A score of 100 means that all symptoms from all clusters are
present to their maximum extent. A standardized cutoff value
of 42 was used to indicate clinical relevance of symptoms and
corresponds to the cutoff value provided in the CRTI manual. Via
the OSF website for this project, supplementary materials can be
found that describe the LGM analysis for these data, including
assessment of the extent to which the LGM fits the data over the
three time points.

Expert Elicitation
To optimally prepare the experts within the limited time that
was allocated for each elicitation, a short introduction was
presented by the researchers conducting the elicitation (DV and
ME), hereafter named the facilitators. The facilitators presented
the experts with a brief overview of what expert elicitation is,
what it can be used for, and how to interpret the probability
distributions that are used to represent their beliefs. Thereafter,
to familiarize the experts with the elicitation procedure itself,
an example elicitation for an unrelated topic was presented to

the experts using the same elicitation tool. After the example
elicitation, the facilitators introduced the specifics related to
the motivating example and the actual elicitation. Experts were
instructed to think of the same reference population as used
in the questionnaire study (i.e., children hospitalized for at
least 24 h in one of the three Dutch or four Belgian burn
centers with a minimum of 1% TBSA burned). Moreover, the
CRTI symptom clusters were introduced, including specific
examples of symptoms assessed with this measure. In addition,
the measurement scale and research question were introduced,
and experts were invited to ask questions to clarify any part
of the procedure. Once the experts stated that they were ready
to continue with the elicitation, they were requested to sign
the informed consent letter, which they received prior to the
elicitation. If they agreed, they also agreed to the recording of
the elicitation procedure. The experts were requested to reason
aloud during the elicitation. The recordings were transcribed
to provide additional insights into the elicitation procedure
and to track possible differences between experts. The experts
carried out the elicitation procedure using the software that
is described next.

The software and procedure in this study were based on
the Five-Step Method developed by Veen et al. (2017), with a
slight adaptation to elicit multiple parameters instead of a single
parameter. The Five-Step Method decomposes the elicitation
process in multiple smaller steps, providing visual feedback at
each stage of the elicitation procedure. By decomposing the
elicitation task and providing visual feedback, the procedure aims
to reduce bias, for instance from overconfidence. The software
has been developed in the form of a Shiny web application
(Chang et al., 2019). Using Shiny to develop elicitation tools is not
uncommon, see, for instance, Hampson et al. (2014), Hampson
et al. (2015), and the original Five-Step Method by Veen et al.
(2017). In what follows, we describe the Five-Step Method as
implemented for this specific study for each expert. Note that
steps 3 and 4 were repeated for each parameter.

Step 1. Ten fictive individual PTSS trajectories were
elicited for an LGM. These individual trajectories should
be representative for the population. From these individual
trajectories, we could deduce information on the point estimates
for the average intercept and average slope parameters. This first
step is called indirect elicitation because no statement is required
directly concerning the parameters of interest. Figure 2 provides
a visual representation of step 1.

Step 2. Feedback was provided on the average trajectory that
was based upon the 10 individual trajectories that the expert
provided. The expert could accept this as the average trajectory
and thereby accept point estimates for the average intercept and
slope, or the expert could adjust his or her input in step 1. Figure 3
provides a visual representation of step 2.

Step 3. The experts provided a reasonable lowerbound and
upperbound for the point estimates of the group mean intercept
and the group mean slope that were obtained using steps 1 and
2. The lowerbound and upperbound were used to determine
the scale and shape of the probability distribution that was used
to represent the experts’ beliefs. This is called direct elicitation
because the experts provided information directly related to the
parameters of interest.
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FIGURE 1 | Visual representation of a Latent Growth Curve Model with three observed time points for posttraumatic stress symptoms (PTSSs).

FIGURE 2 | Step 1 of the elicitation procedure. Trajectories of posttraumatic stress symptom (PTSS) development were elicited for 10 individuals that are
representative for the population. From these trajectories, point estimates for the average intercept and the average slope were obtained.

Step 4. Feedback was provided on the probability distribution
that was used to represent the experts’ beliefs. Figure 4 provides
a visual representation of steps 3 and 4 with respect to the
average intercept, top panel, and the average slope, bottom panel.
Single-parameter feedback was provided in the form of a prior

density plot, as well as the effect on the implied average trajectory.
The experts could accept and confirm the representation of their
beliefs or adjust their input in step 3.

Step 5. The experts were shown a summary page on the
elicitation, see Figure 5. If the experts accepted the representation
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FIGURE 3 | Step 2 in the elicitation procedure, providing visual feedback on the extracted average trajectory based upon the experts’ provided individual trajectories.

of their beliefs, the probability distributions were now ready to be
saved and used in the analyses.

Sample of Experts
Fourteen experts from all three Dutch burn centers participated
in the elicitation study. These experts had different professions,
including (child) psychologists, pediatric nurses, specialized
nurses for burn injuries, and nurses with an additional
master’s degree [master of science (MSc)]. During the process
of obtaining this degree, these nurses worked closely with
psychologists and observed their work. Though they are
employed at the same burn centers, the tasks and expertise
of nurses and psychologists differ: nurses are assumed to
have a broader clinical view, taking into account physical
and psychological aspects of adjustment, but not necessarily
PTSS. Psychologists have a more focused clinical view and
have specific expertise on PTSS after traumatic events. Because
reporting the individual expert professions would remove
almost all anonymity, we ensured that no elicited probability
distributions can be associated with individual experts and
therefore categorized the experts into two groups. The first group
consisted of experts who have obtained an MSc degree (N =
7), and the second group consisted of experts who have not
(N = 7). As the first group consisted mostly of psychologists
or experts with at least some education in psychology, we
shall refer to this group as the psychologists. The second
group consisted mostly of nurses with a variety of additional
specializations, and we shall refer to this group as the nurses.
The two groups are considered large enough for elicitation
studies. Cooke and Goossens (1999) recommend to use the
largest possible number of experts, stating that four is the
minimum. We were able to include seven experts in both
groups of experts.

RESULTS

This section first covers a descriptive part on the expert
judgments. We report the priors that the experts provided
and the mixture priors that can be made from these expert
judgments on an aggregated and group distinct level. Thereafter,
we report prior-data (dis)agreement measures for all individual
expert judgments and the mixture distributions. These prior-
data (dis)agreements are based upon the data that were collected
in the prospective study by Egberts et al. (2018). Finally, we
report notable results from the audio recordings. Note that
the quantitative results, analyses, and an overview of individual
expert judgments can be found via the OSF website for this
project at https://osf.io/y5evf/. The transcripts of the audio
recordings include many identifying characteristics with respect
to both the experts and patients they described during the
elicitation and to preserve privacy, so these are not available. This
is in accordance with the ethical approval agreement.

Individual and Group Expert Judgments
All 14 expert judgments had been elicited, allowing them to
specify a skewed normal distribution parameterized according
to Burkner (2019). In Figure 6, all the elicited individual expert
prior densities can be found as well as the mixture density
for all experts, the psychologists’ group and the nurses’ group
regarding both the mean intercept and the mean slope of PTSS
development1. Figure 6 shows that the expert judgments differed

1Note that the mixtures are based on normal approximations of the elicited skewed
normal distributions due to computational instability of the mixture distributions
when skewed normal expert priors were used. All experts are weighted equally
in the mixture for all experts. The mixture distributions of the nurses and
psychologists can be seen as a special case of weighting in which half of the experts
receive a weight of 0 and the other half are equally weighted.
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FIGURE 4 | Steps 3 and 4 of elicitation procedure for the average intercept, top panel, and the average slope, bottom panel. The input that was required for step 3
was provided in the fields on the top left of the tab in the elicitation software. The single-parameter feedback was provided on the bottom left of the tab, displaying
the fitted prior density with respect to that parameter. The effect on the implied average trajectory was displayed on the right-hand side of the tab. The average
trajectory that was accepted in step 2 is displayed, and a gray band has been added around this average trajectory that represents the 95% credible interval (CI) for
the average trajectory. In the top panel, only the uncertainty with respect to the intercept was added to the average trajectory. In the bottom panel, the uncertainty
with respect to both the intercept and the slope was added.

quite substantially. Especially concerning the development of
PTSS as expressed by the slope parameter, we can see that
experts disagreed on the direction of the effect and with a lot of
confidence. When we look at the groups of experts, an interesting
pattern emerges. If we combine the expert judgments of the
psychologists and the nurses into their respective group, the
nurses turn out to have a substantially different view from the
psychologists. Not only did the nurses’ judgments express on
average a higher initial amount of PTSS in the population, their

combined view also expressed that these initial PTSS scores are
quite likely to increase on average over time. The psychologists
in contrast assigned almost no probability to an increase in the
average PTSS score over the time period of a year; see Figure 7
for a closer look.

Prior-Data (Dis)Agreement
To assess the (dis)agreement of experts’ judgments with the data
from the prospective study by Egberts et al. (2018), we used
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FIGURE 5 | Summary page of the elicitation procedure. The top left plot within the page displays all individual trajectories that the expert specified. The top right plot
displays the average trajectory that was obtained based on those individual trajectories. The bottom left plot displays the average trajectory with uncertainty (95% CI)
concerning the intercept value taken into account. The bottom right plot displays the average trajectory with uncertainty (95% CI) concerning both the intercept value
and the slope value taken into account.

Kullback–Leibler (KL) divergences (Kullback and Leibler, 1951)
between the posterior distribution that is based upon the data
and an uninformative benchmark prior as well as the individual
and aggregated expert judgments. Using information theoretical
distance measures to asses prior-data (dis)agreement in this
manner has previously been discussed by, for instance, Bousquet
(2008), Lek and van de Schoot (2019), and Veen et al. (2018).
KL divergences provide us with an indication of how much
information is lost as we approximate distribution π1 by another
distribution π2. A higher divergence indicates a higher loss of
information. In this case, π1 will be the posterior distribution
based upon the data and an uninformative benchmark prior,
to which we refer as the reference posterior. We approximate
the reference posterior with the elicited prior distributions and
report the loss of information. For an overview of the priors
that are used to compute the reference posterior, see Figure 8.
Figure 9 visualizes the reference posteriors for the group mean
latent intercept and slope. We used the uninformative benchmark
2 priors that are described in the next paragraph. The differences
are negligible with the use of benchmark 1 priors, as can be seen
in the supplementary materials that describe the LGM analysis.
This demonstrates the principle of stable estimation; the priors
are overwhelmed by the data.

In addition to comparing the expert priors to the benchmark
posterior, we added two other comparisons to create a frame of
reference. Two benchmark situations are added, and their loss
of information is calculated. In the situation of benchmark 1,

we would take some information regarding the measurement
instrument into account. The scale of the measurement
instrument was standardized such that values are between 0
and 100; therefore, a U(0, 100) prior on the group mean
intercept would cover all possible parameter values. With the
parameterization such that the final time measurement implies
a change of 1 times the individual latent slope parameter, taking
the standardized scale into account, a U(−100, 100) prior on
the latent slope covers all possible parameter values and declares
them equally possible. For benchmark 2, we take two N(0, 108)
priors on the latent group mean intercept and slope. It is
still common practice, when using Bayesian statistics, to rely
on default or uninformative priors when calculating posterior
distributions. For instance, in Mplus, the default priors for these
specific parameters are N (0,∞) (Asparouhov and Muthén, 2010,
Appendix A), which are used in, for instance, McNeish (2016),
and van de Schoot et al. (2015). Lynch (2007, chapter 9), using
precision instead of variance, specifies N (0, 0.0001) priors for
these parameters. Benchmark 2 reflects this practice.

The KL divergences are reported in Table 1 and are the
numerical representation of the loss of information that occurs
by approximating the reference posterior densities from Figure 9
by the densities that can be seen in Figure 6 for the experts’ priors.
It seems that most experts are in disagreement with the collected
data from Egberts et al. (2018). There are some individual
exceptions, notably experts 9 and 13, who have a view that is very
similar to the collected data, while some experts provide a similar
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FIGURE 6 | Elicited prior densities from all experts and the associated mixture priors for all experts, the psychologists’ group, and the nurses’ group regarding both
the mean intercept and the mean slope of posttraumatic stress symptom (PTSS) development.

view with respect to one of the two parameters, e.g., experts 3 and
6. It is notable that the group of psychologists in particular and
the group of experts as a whole show less loss of information with
respect to the data than most experts on both parameters. Finally,
what is noteworthy is that benchmark 1, which has no preference
for any part of the parameter space covered by the measurement
instrument, resembles the data more than most expert judgments
and more than the nurses’ judgments as a group.

Audio Recordings
The following observations were noteworthy in the transcripts
of the audio recordings. All psychologists referred specifically to
the concept of PTSS during the elicitation procedure. The group
of nurses mentioned stress a lot, but only two nurses actually
referred to PTSS specifically. Three psychologists reflected on
the linearity assumption of the model and noted that non-linear
trajectories often occur. Five of the nurses expressed sentiments
that the more severe cases came to mind more easily and
therefore might be overrepresented in their beliefs. Only one
psychologist expressed a similar statement. Three experts, one
psychologist and two nurses, actively reflected on the visual

feedback and adjusted their input in the elicitation tool based
on this. One expert, a nurse, stated that although he or she
was sure about the direction of the trajectory, he or she felt
unsure about the associated numerical representation. Finally,
one expert, a nurse, repeatedly mentioned that he or she found
the task hard to do.

DISCUSSION

We were able to elicit expert judgments with respect to the
development of PTSS in young burn victims from 14 experts
and contrasted this with data collected in a traditional way by
means of a questionnaire. Our study demonstrates differences in
views between experts. On an individual basis, the experts were
particularly in disagreement with regard to the change of PTSS
at 1 year post-burn. There is little overlap in expert beliefs when
we look at the elicited prior densities for the slope parameter.
The expert judgments not only differed from one individual to
the next, but there also seems to be a relationship between the
experts’ role in the post-burn treatment process and their view
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FIGURE 7 | Elicited prior distributions from all experts and the associated mixture priors for all experts, the psychologists’ group, and the nurses’ group regarding
the mean slope of posttraumatic stress symptom (PTSS) development. The cumulative distributions are presented. There was a notable difference in expert
judgments between the psychologists’ and the nurses’ groups.

on the children’s development of PTSS. The two groups of experts
differed notably in the aggregated elicited judgments: aggregated
judgments of the psychologists seemed to align with the data
collected by Egberts et al. (2018) while the nurses’ judgments
seemed to differ more.

With respect to the differences between the two groups of
experts, the most remarkable difference was found with respect
to the slope parameter. The aggregated views of the groups of
experts result in distributions with more uncertainty compared to
the individual experts’ beliefs. The dispersed views of the experts
put together ensure coverage of a larger part of the parameters
space than the individual expert judgments do. Interestingly,
the more uncertain distributions still clearly present a difference
in views regarding the development of PTSS in young burn
victims between the nurses’ expert group on the one hand and
the psychologists’ expert group and the data collected by Egberts
et al. (2018) on the other. The aggregated judgments from the
psychologists assigned almost no probability to the group average
PTSS increasing at 1 year post-burn. The aggregated judgments
from the nurses, in contrast, assigned a lot of probability to an

increase of the group average PTSS at 1 year post-burn. As there
is no grounded truth, we cannot conclude which views are a
better, or worse representation. However, the results do indicate
that the nurses and the psychologists are not in agreement on
what happens with respect to the development of PTSS in young
burn victims, despite having received similar information about
(assessment of) PTSS prior to the elicitation.

The audio recordings of the elicitation settings provide
a possible explanation for this important distinction. All
psychologists at some point during the elicitation referred to,
or specifically mentioned, the construct of PTSS. The group
of nurses mentioned several sources of distress, but only two
nurses actually referred to PTSS, while one of them judged
the 1-year post-burn PTSS to decrease. As burn victims can
indeed experience other sources of distress, e.g., related to the
development of scar tissue or operations they have to undergo,
nurses may have convoluted PTSS with other patient symptoms.
This could also explain why the aggregated nurses’ view judged
the initial PTSS level to be higher for the group average than the
aggregated psychologists’ view. Overall, the differences possibly
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FIGURE 8 | Visual representation of the prior densities that are used to obtain the reference posterior. The prior densities are α1 ∼ N(0, 108), α2 ∼ N(0, 108),
ψ11 ∼ half − t(3, 0, 196), ψ22 ∼ half − t(3, 0, 196), ψ21 ∼ U(−1, 1), and θ ∼ half − t(3, 0, 196).

FIGURE 9 | Visual representation of the reference posterior densities for the group mean of latent intercept and slope with the group expert priors for the
parameters. The reference posteriors are approximately distributed, CRTIIntercept ∼ N(22.7, 1.3), and CRTISlope ∼ N(−14.6, 1.9).

reflect the fact that psychologists are trained to diagnose and treat
PTSS, whereas nurses are primarily concerned with procedural
and physical care for the patient and are not involved in
diagnosing and treating PTSS. In a future study, it could be of

interest to investigate the experts’ knowledge of the constructs of
PTSS and see if this is predictive of KL divergence.

Besides differences between the nurses and the psychologists,
we also found a substantial difference between the reference
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TABLE 1 | Kullback–Leibler divergences for all individual and mixture priors to the
reference posterior.

Intercept Slope

Benchmark 1 3.04 3.56

Benchmark 2 8.56 8.39

Nurses 8.19 5.88

Psychologists 1.99 2.18

All 2.72 2.63

Expert 1 42.87 59.18

Expert 2 45.16 25.87

Expert 3 6.71 1.23

Expert 4 72.86 55.38

Expert 5 5.66 98.32

Expert 6 2.10 22.17

Expert 7 79.20 59.61

Expert 8 46.97 4.37

Expert 9 2.48 1.28

Expert 10 43.74 67.55

Expert 11 12.78 64.56

Expert 12 99.94 4.88

Expert 13 0.35 3.62

Expert 14 75.00 74.11

posteriors that provided a representation of the data from
Egberts et al. (2018) and the aggregated nurses prior. In
Figure 9, it can be seen that the psychologists’ views overlapped
with the reference posteriors. The nurses’ views, however,
showed almost no overlap with reference posteriors. This
could also be assessed numerically, as was done with the
KL divergences in Table 1. Because the aggregated nurses
prior had little overlap with the reference posteriors, the
Benchmark 1 priors, i.e., uniform priors that take the information
of the measurement instrument into account, outperformed
this group in terms of loss of information. This implies
that the data collected by Egberts et al. (2018) were better
approximated by an uninformed expression of the questionnaire’s
measurement properties than by the nurses’ group prior. The
children in the study by Egberts et al. (2018) expressed a
lower quantity of PTSS in their self-reported questionnaires
compared to the nurses’ expert judgments on PTSS for
this population.

There can be several explanations for this discrepancy.
First, the questionnaire may have resulted in underreporting
of symptoms, a view also expressed by one of the experts. In
line with this, Egberts et al. (2018) found that mothers gave
higher ratings of their child’s PTSS compared to the children
themselves. On the other hand, mothers’ ratings appeared to be
influenced by their own symptoms of posttraumatic stress and
fathers did not report higher ratings of PTSS compared to their
children. Alternatively, the discrepancy could be explained by
the elicitation of the expert judgments. Especially the nurses’
group reported higher PTSS levels compared to the self-reports,
and the previously mentioned convolution of symptoms and
lack of specific knowledge about PTSS might be a cause for
this observation. In the recordings of the elicitation settings,

we found another possible cause. Five of the nurses expressed
sentiments that the more severe cases came to mind more easily
and therefore might be overrepresented in their beliefs. This is a
clear expression of the well-known availability heuristic (Tversky
and Kahneman, 1973) that can cause biases in elicitation studies
(O’Hagan et al., 2006). In the psychologists’ group, only a single
expert expressed a similar remark. The availability heuristic, if
not remedied, might cause the discrepancy between the reference
posteriors and the expert judgments.

The study showed that providing visual feedback on the
representation of the experts’ beliefs can lead to experts adjusting
their input such that obvious incorrect representations of
their beliefs are remedied. Unfortunately, it is not possible to
validate whether the representation of the experts’ beliefs actually
corresponds to the “true” beliefs of the expert (O’Hagan et al.,
2006; Colson and Cooke, 2018). However, one of the main
reasons to use elicitation software is to ameliorate the effects
of heuristics and biases by getting experts to actively reflect
on the probability distribution that will be used to represent
their beliefs. In the recordings, three experts actively reflect on
their distributions, adjusting them based on the visual feedback.
For this purpose, the elicitation software seems to have worked
well. Nevertheless, it seems from our current study that even
with the graphical feedback, some experts might still suffer from
overconfidence. Expert 11, for instance, stated “. . . of course, I
have a lot of uncertainty anyway.” However, this does not seem
to be reflected in the elicited distribution which has a 99% CI
for the latent intercept (27.2, 41.7) and the latent slope (1.2,
5.9). As the experts were only available to us for a limited time,
we did not provide a specialized training aimed at elicitation
and overcoming heuristics associated with elicitation tasks, which
might be a limitation for the current study and the associated
(individual-level) results.

This study indicates that aggregating expert judgments could
potentially mitigate the severity of individual biases, as one
has to rely less on single, possibly overconfident, experts. The
aggregation of all experts’ judgments or of only the psychologists’
judgments leads to less discrepancy between the traditionally
collected data and the elicited beliefs in comparison to almost any
individual expert and the benchmarks. Aggregating or pooling
of expert judgments into a single distribution is common in
elicitation studies and can be done in several manners. In our
current study, we used opinion pooling with equal weights
(O’Hagan et al., 2006, Chapter 9). Alternatively, there is much
literature on how expert judgments could be weighted in the
aggregation of views. The classical model (Cooke, 1991, Chapter
12) is one of the foremost examples of this. In the classical
approach, calibration questions are used to assess the experts.
Based on the calibration questions, experts’ judgments on the
target question or question of interest are weighted to together
form the groups’ weighted prior beliefs. The calibration questions
should be related to the question of interest, and their answers
should be known but not to the experts (Colson and Cooke,
2018). It is recommended to have at least eight to 10 calibration
questions if dealing with continuous variables (Cooke, 1991,
Chapter 12). The experts are elicited concerning the question
of interest and the calibration questions. Their answers on the
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calibration questions are evaluated against the known true values,
and the experts are rated on their informativeness and accuracy
(Cooke, 1991; Colson and Cooke, 2018). The ratings of the
weighting components are based upon the idea of KL divergences
(O’Hagan et al., 2006, Chapter 9) such as we used to compare
the experts’ judgments against the collected data on the question
of interest directly. As far as we know, there have not been
any studies using the classical approach in the social sciences.
Finding calibration questions turns out to be a hard problem,
as knowing the true answer to these questions is required. We
described the KL divergence between the target question and the
experts’ judgments, but calibrating experts based on these weight
components would be putting emphasis on the traditionally
collected data twice. As the traditionally collected data might
suffer from biases too, consider for instance the total survey
error framework (Groves et al., 2011, Chapter 2) including non-
response error and measurement error, this double emphasis
might not be desirable. Instead, our equal weights aggregation
approach relied on the inclusion of experts with balance in views
and diversity in backgrounds (Cooke and Goossens, 1999).

In conclusion, it is possible to express the experts’
domain knowledge as prior distributions using the described
methodology and compare these elicited distributions to
traditionally collected data. The individual expert judgments
in general show quite some discrepancy in comparison to
traditionally collected data, although there are notable exceptions
to this. When considering the mixtures of the groups of experts,
the discrepancy becomes less pronounced, especially for the
psychologists’ group. The psychologists’ mixture prior has less
KL divergence than mostly any individual expert and notably
less KL divergence than Benchmark 1, the uniform prior that
takes the information of the measurement instrument into
account. The expert judgments add information to the research
area, and exploring (dis)similarities between expert judgments
and traditional data opens up two exciting avenues for future
research. One being the collection of data on the experts that
might be predictive for the amount of KL divergence they exhibit
with respect to traditionally collected data. The second avenue is
the organization of a Delphi-like setting with all experts after the
individual judgments are collected and compared with traditional
data. The group setting can provide insights into the reasons
behind the discrepancies between traditional collected data,
individual experts, and groups of experts. If done in a longitudinal
manner, this could start a learning cycle in which data and
experts converge. Predicting and explaining (dis)similarities
between experts’ judgments and traditional data such as results
of questionnaires can be a potential new line of research for the
social sciences.
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The Importance of Prior Sensitivity
Analysis in Bayesian Statistics:
Demonstrations Using an Interactive
Shiny App
Sarah Depaoli* , Sonja D. Winter and Marieke Visser

Department of Psychological Sciences, University of California, Merced, Merced, CA, United States

The current paper highlights a new, interactive Shiny App that can be used to aid
in understanding and teaching the important task of conducting a prior sensitivity
analysis when implementing Bayesian estimation methods. In this paper, we discuss
the importance of examining prior distributions through a sensitivity analysis. We argue
that conducting a prior sensitivity analysis is equally important when so-called diffuse
priors are implemented as it is with subjective priors. As a proof of concept, we
conducted a small simulation study, which illustrates the impact of priors on final model
estimates. The findings from the simulation study highlight the importance of conducting
a sensitivity analysis of priors. This concept is further extended through an interactive
Shiny App that we developed. The Shiny App allows users to explore the impact of
various forms of priors using empirical data. We introduce this Shiny App and thoroughly
detail an example using a simple multiple regression model that users at all levels can
understand. In this paper, we highlight how to determine the different settings for a
prior sensitivity analysis, how to visually and statistically compare results obtained in the
sensitivity analysis, and how to display findings and write up disparate results obtained
across the sensitivity analysis. The goal is that novice users can follow the process
outlined here and work within the interactive Shiny App to gain a deeper understanding
of the role of prior distributions and the importance of a sensitivity analysis when
implementing Bayesian methods. The intended audience is broad (e.g., undergraduate
or graduate students, faculty, and other researchers) and can include those with limited
exposure to Bayesian methods or the specific model presented here.

Keywords: Bayesian statistics, prior distributions, sensitivity analysis, Shiny App, simulation

INTRODUCTION

Through a recent systematic review of the literature in the Psychological Sciences, we know that
the use of Bayesian methods is on the rise (van de Schoot et al., 2017). However, this review
also highlighted an unnerving fact: Many applied users of Bayesian methods are not properly
implementing or reporting the techniques. The goal of this paper is to tackle one of the main issues
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highlighted in this systematic review—namely, examining the
impact of prior distributions through a sensitivity analysis.
Understanding the impact of priors, and then making subsequent
decisions about these priors, is perhaps the trickiest element
of implementing Bayesian methods. Many users of Bayesian
estimation methods attempt to avoid this issue by using “diffuse”
priors, but this is not always a viable approach because some
models need informative priors. The impact of priors (whether
diffuse or otherwise) is highly dependent on issues related to
model complexity and the structure of the data. Our paper
focuses on how to examine the impact of prior distributions in
a transparent manner.

As a motivating example, we conducted a small simulation
study illustrating the impact of different prior specifications on
final model results. This simulation study shows the importance
of thoroughly examining the impact of priors through a
sensitivity analysis. We also developed an interactive web
application (i.e., Shiny App) for users to learn more about
the impact of priors and the need for a sensitivity analysis
in empirical situations. This App allows users to examine the
impact of various prior distribution settings on final model
results, ensuring that the user is fully aware of the substantive
impact of prior selection. Examining the impact of priors
is central to whether Bayesian results are viable, completely
understood, and properly conveyed. Our Shiny App aids with
further illustrating this issue.

GOALS OF THE CURRENT PAPER

The current paper provides readers with a step-by-step way
of thinking about Bayesian statistics and the use of priors.
Prior distributions turn out to be one of the most important
elements of any Bayesian analysis, largely because of how
much weight and influence they can carry regarding final
model results and substantive conclusions. Our aims are
as follows:

1. Present readers with a friendly introduction to Bayesian
methods and the use of priors. We aim to keep the
paper accessible to people coming from a wide range
of statistical backgrounds, as well as from a variety of
different fields.

2. Illustrate the fact that examining the impact of priors is
an incredibly important task when interpreting final model
results in an applied research setting. We use a small
simulation study to illustrate this point.

3. Introduce a new, interactive Shiny App that we developed
in order to assist in visualizing important elements of a
prior sensitivity analysis.

4. Demonstrate the potential impact of priors through an
empirical example using the interactive Shiny App and data
that we supply, which provides a tool for readers to explore
prior impact in a hands-on setting.

5. Present a set of frequently asked questions regarding priors
and a prior sensitivity analysis, as well as candid answers to
each question.

INTENDED AUDIENCE AND
ORGANIZATION OF THE PAPER

This paper is aimed at novice users of Bayesian methodology. We
have designed the paper to benefit students and researchers
coming from a wide range of statistical backgrounds.
For example, undergraduate students may find the Shiny
App useful to experiment with some basics of Bayesian
statistics and visualize what different prior settings look
like. More advanced graduate students or researchers
may find the simulation study as a helpful illustration for
capturing the importance of prior sensitivity analyses. In
turn, they may also find the application presented in the
Shiny App particularly useful to understand the specific
impact of priors for the model presented here. The paper
and Shiny App have been constructed to benefit students
and researchers coming from a wide array of fields within
the social and behavioral sciences, and all material to
reconstruct the analyses presented here is available online
at: https://osf.io/eyd4r/.

The remainder of this paper is organized as follows. The
next section highlights the main reasons that one would
potentially want to use Bayesian methods in an applied research
context. One of the main reasons that we cover in this section
is that some researchers may want to incorporate previous
knowledge into the estimation process. This is typically done
through something called a prior distribution (or prior), and
the section following describes the potential impact of priors.
This section is particularly relevant to the Shiny App that we
developed, and the issues surrounding priors largely remain at
the crux of recognizing when Bayesian methods are misused or
inaccurately portrayed.

Next, we present information surrounding the multiple
regression model, which is referenced in the subsequent sections.
We then present a small simulation study, which is aimed to
highlight the impact that different prior settings can have on
the accuracy of final model estimates obtained. These results
lead into the importance of conducting a prior sensitivity
analysis. The following section presents information surrounding
our Shiny App, how it works, and how readers can benefit
from using it. We highlight how the App can be used to
learn more about the important issue of prior sensitivity
analysis within Bayesian statistics, and we also provide an
interactive platform for readers to gain a deeper understanding
of the issues described here. Finally, the paper concludes with
a discussion of frequently asked questions regarding prior
sensitivity analysis, as well as final thoughts on the importance
of transparency within research conducted via the Bayesian
estimation framework.

WHY ARE BAYESIAN METHODS USEFUL
IN APPLIED RESEARCH?

There are many reasons why a researcher may prefer to use
Bayesian estimation to traditional, frequentist (e.g., maximum
likelihood) estimation. The main reasons for using Bayesian
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methods are as follows: (1) the models are too “complex”
for traditional methods to handle (see e.g., Depaoli, 2013;
Kim et al., 2013; Cieciuch et al., 2014; Depaoli and Clifton,
2015; Zondervan-Zwijnenburg et al., 2019), (2) only relatively
small sample sizes are available (see e.g., Zhang et al., 2007;
Depaoli et al., 2017a; Zondervan-Zwijnenburg et al., 2019),
(3) the researcher wants to include background information
into the estimation process (see e.g., Zondervan-Zwijnenburg
et al., 2017), and (4) there is preference for the types of results
that Bayesian methods produce (see e.g., Kruschke, 2013). It is
important to note that, regardless of the reasons that Bayesian
methods were implemented, a sensitivity analysis of priors is
always important to include. In the subsequent sections, we
discuss this issue of priors to a greater extent.

WHAT DO WE KNOW ABOUT THE
IMPACT OF PRIORS?

The Bayesian literature (using simulation and applied data)
has uncovered several important findings surrounding the
potential impact of prior distributions on final model results.
Some of the literature has shown that prior impact is
highly dependent on model complexity, and it is incredibly
important to fully examine the influence of priors on final
model estimates. In this section, we unpack this issue a bit
more, highlighting the reasons one might want to examine
their priors.

Priors Can Impact Results (Sometimes in
a Big Way!)
One of the reasons why the use of Bayesian methods is considered
controversial is the notion that priors can (and do!) impact
final model results. What this means in a practical sense is that
a researcher can have a very strong opinion about the model
parameter values, and this opinion (via the prior) can drive
the final model estimates. There are many research scenarios
within the Bayesian context where informative (or user-specified)
priors have an impact on final model estimates. Some examples
include research with models such as the latent growth mixture
model (Depaoli et al., 2017b; van de Schoot et al., 2018), the
confirmatory factor analytic model (Golay et al., 2013), and
logistic regression (Heitjan et al., 2008).

The reverse is true in that the literature has shown that
completely diffuse priors can also impact final model results.
Although Bayesian theory indicates that large sample sizes
can overcome (or swarm) the information in the prior (see
e.g., Ghosh and Mukerjee, 1992), some research indicates that
diffuse priors can impact final model estimates even with larger
sample sizes—sometimes in an adverse manner. Examples of
modeling situations where diffuse priors have been shown in
simulation to adversely impact final model estimates include
probit regression models (Natarajan and McCulloch, 1998),
meta-analysis (Lambert et al., 2005), item response theory
(Sheng, 2010), structural equation modeling (van Erp et al.,
2018)—of which sensitivity analysis guidelines are also provided
for structural equation models, latent growth mixture models

(Depaoli, 2013), and multilevel structural equation models
(Depaoli and Clifton, 2015). In all of these cases, researchers
found that diffuse priors had a substantial (negative) impact on
the obtained estimates.

Accurate estimates are harder to obtain for some parameters
than others. Specifically, more complex models (especially when
coupled with smaller sample sizes) can require additional
information for certain model parameters in order to
supplement flatter likelihoods. For example, in some of our
own investigations, variances can be more difficult to estimate
than means when the likelihood is relatively flatter (and
more peaked for a mean). Models that have many parameters
that are difficult-to-estimate may require more informative
priors, at least on some model parameters. If a parameter
is associated with a flatter likelihood, and diffuse priors are
implemented, then there may not be enough information
(from the data likelihood or the prior) to produce an accurate
estimate. The most common instances where this problem
occurs are with more complex models (e.g., mixture models,
multilevel models, or latent variable models), but the issue is
common enough that the impact of priors should be examined
regardless of the informativeness of the prior settings. An
important take-away from this should be not to blindly rely
on prior settings without understanding their impact, even if
they are intended to be diffuse or they are software-defined
default priors.

If a prior is used to help incorporate the degree of
(un)certainty surrounding a model parameter, then we would
expect it to have some impact. However, it is really important
to understand that impact and account for it when drawing
substantive conclusions. Therefore, Bayesian experts often agree
that an important, and needed, element of Bayesian estimation is
the inclusion of a sensitivity analysis of the priors.

WHAT IS A SENSITIVITY ANALYSIS OF
PRIORS?

A sensitivity analysis allows the researcher to examine the
final model results, based on the original (or reference)
prior, in relation to results that would be obtained using
different priors. Many Bayesian experts (e.g., Muthén and
Asparouhov, 2012; Kruschke, 2015) recommend that a sensitivity
analysis should always be conducted, and there has even been
a checklist developed (Depaoli and van de Schoot, 2017)
that aids in how to conduct and interpret such results in
a transparent manner. For applied papers implementing a
sensitivity analysis of priors, see: Müller (2012),Depaoli et al.
(2017a), or van de Schoot et al. (2018).

The process takes place as follows:

1. The researcher predetermines a set of priors to use for
model estimation. These priors can be default priors from
the statistical software, or they can be user-specified based
on previous knowledge of the model parameters (e.g.,
based on a simple guess, a meta-analysis of prior literature,
interviews with content experts, etc.).
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2. The model is estimated, and convergence is obtained for all
model parameters.

3. The researcher comes up with a set of “competing” priors
to examine; we will describe what this set of priors can
look like in the examples below. The point here is not
to alter the original priors. Rather, it is to examine how
robust the original results are when the priors are altered,
and the model is re-estimated.1 It can also be a method
used to identify priors that would serve as a poor choice
for the model or likelihood—an issue we expand on more
in the discussion.

4. Results are obtained for the “competing” priors and then
compared with the original results through a series of visual
and statistical comparisons.

5. The final model results are written up to reflect the original
model results (obtained in Item 1, from the original priors),
and the sensitivity analysis results are also presented in
order to comment on how robust (or not) the final model
results are to different prior settings.

This last point is particularly important. A systematic review
of Bayesian statistics in the Psychological Sciences (van de Schoot
et al., 2017) unveiled that sensitivity analyses were only reported
in 16.2% of the applied studies over the course of 25 years.
What this means is that the majority of applied Bayesian papers
published in the field did not thoroughly examine the role or
impact of priors.

One of the biggest aids for examining the role or impact
of priors can be to visually examine the resulting posterior
distributions across many different prior settings. We will
highlight some important ways to visualize priors and sensitivity
analysis results in a subsequent section when introducing our
interactive Shiny App.

Visual aids are particularly important here because they can
help the researcher to more easily determine: (1) how different or
similar the posterior distributions are when different priors are
formed, and (2) whether the difference across sets of results (from
different prior settings) is substantively important. In the end, this
latter point is really what matters most. If several sets of priors
produce slightly different posterior estimates but the results are
substantively comparable, then the results are showing stability
(or robustness) across different prior settings. In this case, the
researcher can be more confident that the prior setting is not
influencing the substantive conclusions in a large way.

One may take these last statements to mean that we are
implying the opposite results would be somehow negative
or bad. In other words, is it a problem if my sensitivity
analysis results show that the resulting posterior changes in
substantively meaningful ways when the prior is altered? The
answer is NO. There is not necessarily a “problem” here. It
is incredibly informative to theory-based research to uncover
that results are dependent on the particular theory (i.e., prior)

1Several developments have made this step easier by approximating the posterior
instead of estimating it directly (e.g., Gustafson and Wasserman, 1995; Roos et al.,
2015). These methods have also been implemented in R packages, such as the
‘adjustr’ package (McCartan, 2020). We do not use this package in our Shiny App
as it does not provide the full posterior distribution that we use for our visuals.

being implemented. This is not a bad result at all. It is just
one that requires a bit more care when describing. Whatever
the results are of the sensitivity analysis (e.g., whether results
are stable or not), they should be thoroughly reported in the
results and discussion sections of the paper. These findings can
be presented in terms of visual depictions of the posteriors from
multiple sets of priors, as defined through the sensitivity analysis.
Likewise, results can also be presented in statistical form, where
percent “bias,” or deviation, is computed for parameter estimates
obtained under different prior settings.2 Another alternative
when working with diffuse priors could be to report the results
across a range of diffuse priors as the main analysis. This tactic
might facilitate illustrating the uncertainty surrounding the exact
prior specification, especially if various diffuse priors provide
varying results.

If the priors are shifted only a small amount in the sensitivity
analysis and they result in very different results, then it would
be beneficial to take a closer look at the model code to ensure
everything is properly specified. However, small-to-moderate
shifts in the substantive conclusions are not a concern and
should just be reported along with the findings and subsequently
addressed in the discussion section with respect to learning
something about the robustness of results under different
prior settings.

Note that the original prior settings are not modified during
the sensitivity analysis process. Instead, sensitivity analysis results
are presented, and they may be used as evidence that priors
should be shifted in some way in a future analysis on another
dataset. For transparency reasons, it is important to keep the
original prior and not change it because of something that was
unveiled in the sensitivity analysis. Doing so would be an instance
of Bayesian HARKing (hypothesizing after results are known;
Kerr, 1998), which is just as questionable as frequentist HARKing.

PROOF OF CONCEPT SIMULATION:
ILLUSTRATING THE IMPACT OF PRIORS

Next, we present a small simulation study illustrating the impact
of different prior settings on final model estimates. Since there
is no way to know the true value of a population parameter in
application, it is not possible to know how much bias estimates
contain unless a simulation study is conducted. This simulation
study sets the stage for the importance of examining prior impact
in application, a concept that we focus on in the interactive Shiny
App presented in the following section.

The Model
For illustration purposes, we used the multiple regression
model, which is a very common model that is found in the

2We do not refer to the traditional sense of the word “bias,” where an estimate
is compared to a population value (e.g., in the sense of the comparisons made
in the simulation study presented next). Instead, we are referring here to the
deviation between two estimates, each obtained as a result of different prior
settings. A calculation similar to bias can be implemented, providing the researcher
with an indication of the difference between the estimates resulting from the
sensitivity analysis. We further illustrate this concept in the section detailing the
Shiny App, and we will refer to this concept as “deviation.”
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FIGURE 1 | (A) Multiple regression model used in simulation study, with a
single outcome variable, Y, and two predictors, X1 – X2. (B) Multiple
regression model used in the applied example, with an outcome of Cynicism
and two predictors.

applied psychological literature.3 In turn, it also acts as a
foundation for many other advanced models [e.g., (multilevel)
mixed regression models, or latent growth curve models]. These
reasons make the multiple regression model a good candidate for
demonstration. In addition, we felt this model, even if unfamiliar
to the reader, can be conceptually described and understood
without having strong background knowledge of the model.
Although we limit our discussion to multiple regression, the prior
sensitivity analysis principles that we demonstrate can be broadly
generalized to other model forms (e.g., growth curve models,
confirmatory factor analysis, mixture models).

This model has been used in a variety of research settings
within the social and behavioral sciences. For example, it

3The multiple regression model is a simple model and, with the use of conjugate
priors (described below), the posterior can be analytically derived without the use
of MCMC sampling. However, we felt that using a relatively simple modeling
context (opposed to a more complicated, latent variable model, for example)
would be useful for describing the estimation elements and other concepts that are
illustrated here since these more complicated topics can be generalized to using
with complex models that require MCMC.

has been used to predict academic achievement (Adeyemo,
2007), self-reassurance (Kopala-Sibley et al., 2013), and sleep
quality (Luyster et al., 2011). The base of the model includes
a single (continuous) outcome variable that is predicted by
several different predictor variables; the model can be found in
Figure 1A. In this figure, there is a single outcome variable (called
“Y”), and two correlated predictors (called “X1 − X2”) with
regression weights β1 − β2.

Bayesian methods can be implemented in this modeling
context in a relatively simple manner. For a basic form of the
model, as seen in Figures 1A,B, a researcher may be particularly
interested in placing informative priors on the regression weights
(i.e., the directional paths in the figure) that link the predictors to
the outcome. In this case, it may mean that the researcher has a
particular idea (or theory) about how the variables relate, as well
as how strong of a predictor each variable may be in the model.

Typically, informativeness of a prior is defined by one of
three categories: informative, weakly informative, and diffuse.
Informative priors are usually conceptualized as priors with a
large amount of information surrounding a particular parameter.
What this translates to is a large probability mass hovering
over a relatively narrowed span of possible values for a
parameter to take on. For example, Figure 2A illustrates
an informative prior, with narrowed variation surrounding a
mean value of 75. A weakly informative prior is one that
carries more spread, or variation, than an informative prior.
Figure 2B illustrates a weakly informative prior by highlighting
a wider distributional spread. Finally, a diffuse prior is one
that offers little-to-no information about the parameter value.
One way of conceptualizing this prior form is to use a
normal prior with a very wide variance, making it effectively
flat across a wide range of values. Figure 2C illustrates a
diffuse prior setting for the normal distribution. In all three
of these plots, the normal prior was centered at 75, but the
variance of the priors differed from small (Figure 2A) to
large (Figure 2C).4

4For the purpose of this paper, we will highlight and discuss priors that are
normally distributed because they are the most straightforward to illustrate.

Exam Score
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FIGURE 2 | Examples of prior. distributions that are: (A) informative, (B) weakly informative, and (C) diffuse.
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Next, we illustrate how priors can impact final model
estimates, even for a model as simple as a multiple regression
model. Specifically, we conducted a small simulation study
illustrating the effect of different prior settings.

Simulation Design
The simulation study used a multiple regression model as
displayed in Figure 1A. It contained two continuous predictors, a
correlation parameter linking these predictors, and a continuous
outcome. The population values for these parameters are listed in
Table 1. In this simulation, we implemented various sets of priors
for the regression coefficients linking the two predictors to the
outcome. These prior conditions are listed in Table 1. Overall,
there were 11 prior conditions examined per sample size.

Conditions 1–5 specified informative priors on the regression
parameters linking each of the predictors to the outcome. These
informative priors were not all correct in that some of them had
inaccurate mean hyperparameter settings for the prior (i.e., the
normal prior was not centered on the population value, rather
it was shifted away).5 Condition 3 is a correct informative prior
in that it is centered at the population value and has a relatively
narrowed variance. Conditions 1–2 had priors that were shifted
downward from the population value, and Conditions 4–5 had
priors that were shifted upward.

Conditions 6–10 represented weakly informative priors in
that the variance hyperparameter was increased compared
to the informative conditions (1–5). The same pattern was
exhibited where Condition 8 represented a prior setting with
a mean hyperparameter that was accurate to the population
value. Conditions 6–7 had mean hyperparameter values that
were shifted downward from the truth of the population, and
Conditions 9–10 had mean hyperparameters shifted upward.

Finally, Condition 11 represented a diffuse prior, which
implemented default settings from Mplus (Muthén and
Muthén, 1998-2017) on the regression parameters. Each of
these conditions represented either informative (1–5), weakly
informative (6–10), or diffuse priors. Within the informative
and weakly informative conditions, we specified (according
to the mean hyperparameter) either accurate priors (3 and 8),
downward shifted priors (1–2, 6–7), or priors shifted upward
from the truth (4–5, 9–10). The goal of these conditions was to
highlight the deviation patterns across the sensitivity analysis,
with a focus on sensitivity of results to the mean hyperparameter
(i.e., accuracy of the mean of the prior) and the variance
hyperparameter (i.e., the spread of the prior distribution).

In addition, we also examined the results across three different
sample sizes: n = 25, 100, and 1000. These sample sizes ranged
from relatively small to relatively large, and they were selected to

However, it is important to keep in mind that priors can be specified using a wide
range of distributional forms, including distributions that are not named or not
proper distributions (e.g., those that do not integrate/sum to 1.0). We discuss other
prior forms for non-normally distributed parameters in the App.
5One could argue that if a prior belief dictated a prior that was not centered at the
population value that it would be correct to the theory. We use the term “correct” in
this simulation study to compare a prior that has been centered over the population
value (correct) to one that has been shifted away from the population value though
a deviant mean hyperparameter (incorrect).

TABLE 1 | Population values and simulation conditions for the multiple
regression model.

Population values for simulation

Parameter Population value

Means

X1 Fixed to 01

X2 Fixed to 0

Variances

X1 Fixed to 1

X2 Fixed to 1

Y Intercept 1

Y Resid. Var. 0.5

β1 1.0

β2 0.5

Simulation conditions (sample sizes crossed with prior conditions)

Sample sizes Prior conditions2

n = 25 Informative:

n = 100 (1) β1 ∼ N(0.25, 0.05); β2 ∼ N(0.125, 0.05)

n = 1,000 (2) β1 ∼ N(0.50, 0.05); β2 ∼ N(0.250, 0.05)

(3) β1 ∼ N(1.00, 0.05); β2 ∼ N(0.500, 0.05)

(4) β1 ∼ N(2.00, 0.05); β2 ∼ N(1.000, 0.05)

(5) β1 ∼ N(3.00, 0.05); β2 ∼ N(1.500, 0.05)

Weakly Informative:

(6) β1 ∼ N(0.25, 0.1); β2 ∼ N(0.125, 0.1)

(7) β1 ∼ N(0.50, 0.1); β2 ∼ N(0.250, 0.1)

(8) β1 ∼ N(1.00, 0.1); β2 ∼ N(0.500, 0.1)

(9) β1 ∼ N(2.00, 0.1); β2 ∼ N(1.000, 0.1)

(10) β1 ∼ N(3.00, 0.1); β2 ∼ N(1.500, 0.1)

Diffuse

(11) Regression 1 ∼ N(0, 1010); Slope ∼ N(0, 1010)

Y, the continuous outcome in the model. Resid. Var., residual variance. Predictors
1 and 2 (X1 and X2) were both continuous predictors. β1 = Y on X1. β2 = Y on
X2.

1The means and variances for the predictors were fixed in the model in order
to standardize the predictors. Therefore, estimates are only available for the four
remaining parameters. 2The remaining priors in the model were default diffuse prior
settings as implemented in Mplus.

provide information about how priors impact results differently
as sample sizes shift.

In all, there were 33 cells in this simulation, and we
requested 500 iterations per cell. All analyses were conducted
in Mplus version 8.4 (Muthén and Muthén, 1998-2017) using
the Bayesian estimation setting with Gibbs sampling. For
simplicity, all cells were set up to have a single chain per
parameter, with 5,000 iterations in the chain and the first
half discarded as the burn-in (i.e., 2,500 iterations were left
to form the estimated posterior). Convergence was monitored
with the potential scale reduction factor (PSRF, or R-hat;
Gelman and Rubin, 1992a,b), and all chains converged for all
cells in the design under a setting 1.01 for the convergence
criterion. Another index that can be checked is the effective
sample size (ESS), which is directly linked to the degree of
dependency (or autocorrelation) within the chain. Zitzmann
and Hecht (2019) recommend that ESSs over 1,000 are
required to ensure that there is enough precision in the chain.
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Simulation results indicated that, although the post burn-in
portions of the chain were only 2,500 iterations, all of the
parameters exceeded the minimum of ESS = 1,000 in the
cells examined.6

Simulation Findings
Table 2 presents relative percent bias for all model
parameters across sample sizes and the 11 prior conditions.
Of note, Conditions 3 and 8 represent accurate priors
(informative and weakly informative, respectively), and
Condition 11 reflects diffuse prior settings. All other
priors are either shifted upward or downward, as
would be implemented in a sensitivity analysis. Bolded
values in the table represent problematic bias levels
exceeding ±10% bias.

The most notable finding is how the impact of the priors
diminishes as sample size increases. By the time sample size
was increased to n = 1,000 (which would be rather large
for such a simple model), the prior settings had virtually
no impact on findings. However, under the smaller sample
sizes, and especially n = 25, we can see a noticeable impact
on results. As the priors were shifted for the regression
parameters, bias increased in magnitude. This effect occurred
in the more extreme conditions even when n = 100, which is
not an unreasonable sample size to expect in applied research
implementing such a model.

Mean square errors (MSEs) are also presented in Table 2 for
each parameter. MSE represents a measure of variability and
bias. Notice that MSE values are quite high for n = 25, but they
decrease to a relatively smaller range as sample sizes are increased
to n = 100 and beyond. This pattern indicates that sample size
has a large role in the efficiency and accuracy of the estimates, as
measured through the MSE. In addition, MSEs are much larger
for priors that are centered away from the population value.

The practical implication of this simulation highlighted
that priors can impact findings (which is indisputable in the
Bayesian literature), even when sample sizes are what we
might consider to be reasonable. This fact makes sensitivity
analyses indispensable when examining the impact of priors on
final model results, and examining prior impact is especially
important under smaller sample sizes. In practice, researchers
do not know if subjective priors are accurate to the truth.
We argue that researchers should assume that priors have
at least some degree of inaccuracy, and they should assess
the impact of priors on final model estimates keeping this
notion in mind. The only way to truly examine the impact
of the prior when working with empirical data is through a
sensitivity analysis.

This proof of concept simulation provides a foundation for
the Shiny App, which uses empirical data to further illustrate

6We selected several cells to examine thoroughly for ESS, all had the lowest sample
size (n = 25) and varying degrees of “incorrect” priors. Most parameters had ESS
values of 2,500 or nearby, with some parameters lower. However, all ESS values
exceeded 1,800 in our investigation. This amount exceeds the recommendation by
Zitzmann and Hecht (2019). Therefore, we believe that the chains in the simulation
represent adequate precision. ESS values have also been included in the App, which
we describe in the example section below.

TABLE 2 | Model parameter estimate percent bias (MSE) for the simulation study.

Condition Y Intercept Y Resid. Var. β 1 β 2

n = 25

1 34.91 (0.0508) −0.10 (0.2979) −40.29 (0.1745) −38.50 (0.0474)

2 21.38 (0.0452) −0.18 (0.1811) −25.66 (0.0774) −23.82 (0.0245)

3 11.90 (0.0403) −0.34 (0.1239) −0.05 (0.0115) 1.82 (0.0105)

4 54.99 (0.0520) −0.70 (0.5269) 56.87 (0.3383) 58.30 (0.0961)

5 350.76 (0.1468) −0.68 (14.0520) 157.51 (2.4857) 157.86 (0.6300)

6 22.42 (0.0461) −0.12 (0.1914) −26.50 (0.0919) −23.94 (0.0328)

7 16.66 (0.0434) −0.18 (0.1513) −17.16 (0.0499) −14.60 (0.0235)

8 12.38 (0.0408) −0.30 (0.1266) −0.02 (0.0199) 2.48 (0.0184)

9 30.36 (0.0453) −0.62 (0.2582) 36.66 (0.1601) 38.82 (0.0580)

10 159.46 (0.0866) −1.08 (3.3256) 104.37 (1.1327) 105.58 (0.3039)

11 15.37 (0.0426) −0.20 (0.1451) 0.03 (0.0469) 4.08 (0.0447)

n = 100

1 4.44 (0.0106) 0.00 (0.0211) −13.59 (0.0265) −12.58 (0.0111)

2 3.16 (0.0104) 0.02 (0.0194) −9.06 (0.0160) −8.06 (0.0086)

3 2.17 (0.0103) 0.04 (0.0183) −0.26 (0.0076) 0.70 (0.0068)

4 6.37 (0.0107) 0.08 (0.0245) 17.76 (0.0395) 18.64 (0.0155)

5 23.57 (0.0123) 0.14 (0.0908) 40.44 (0.1742) 41.22 (0.0502)

6 2.98 (0.0105) 0.00 (0.0192) −7.55 (0.0151) −6.46 (0.0094)

7 2.60 (0.0104) 0.00 (0.0187) −5.12 (0.0119) −4.04 (0.0087)

8 2.30 (0.0104) 0.02 (0.0184) −0.30 (0.0091) 0.76 (0.0082)

9 3.52 (0.0105) 0.04 (0.0199) 9.40 (0.0180) 10.42 (0.0108)

10 7.52 (0.0108) 0.06 (0.0272) 19.79 (0.0490) 20.76 (0.0191)

11 2.49 (0.0104) −0.02 (0.0186) −0.36 (0.0112) 0.84 (0.0100)

n = 1000

1 0.27 (0.0010) −0.36 (0.0020) −1.33 (0.0012) −1.56 (0.0010)

2 0.26 (0.0010) −0.36 (0.0020) −0.83 (0.0010) −1.08 (0.0009)

3 0.25 (0.0010) −0.36 (0.0020) 0.16 (0.0010) −0.08 (0.0009)

4 0.30 (0.0010) −0.36 (0.0020) 2.14 (0.0014) 1.90 (0.0010)

5 0.44 (0.0010) −0.36 (0.0021) 4.12 (0.0027) 3.88 (0.0013)

6 0.26 (0.0010) −0.36 (0.0020) −0.59 (0.0010) −0.84 (0.0010)

7 0.25 (0.0010) −0.36 (0.0020) −0.34 (0.0010) −0.58 (0.0009)

8 0.25 (0.0010) −0.36 (0.0020) 0.16 (0.0010) −0.08 (0.0009)

9 0.26 (0.0010) −0.36 (0.0020) 1.16 (0.0011) 0.92 (0.0010)

10 0.30 (0.0010) −0.36 (0.0020) 2.16 (0.0014) 1.92 (0.0010)

11 0.25 (0.0010) −0.36 (0.0020) 0.16 (0.0010) −0.08 (0.0010)

Prior conditions (column 1) are described in Table 1. MSE, mean square error,
which captures a measure of variability accompanied by bias for the simulation
estimates. It can be used as a measure that reflects efficiency and accuracy
in the simulation results. Bolded values represent percent bias exceeding 10%.
Percent bias = [(estimate − population value)/population value] ∗ 100. β1 = Y on
X1. β2 = Y on X2.

the importance of conducting a sensitivity analysis. In the
next section, we present the Shiny App as an educational
tool for highlighting the impact of prior settings. A main
focus of the App is to illustrate the process of conducting
a sensitivity analysis, as well as the type of results that
should be examined and reported when disseminating the
analysis findings. Specifically, we describe how one would
manipulate the settings to examine the impact of priors on final
model results. The Shiny App can be used to gain a deeper
understanding of the impact of priors, as well as understand the
different elements that are needed to properly display sensitivity
analysis results.
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SENSITIVITY ANALYSIS IN ACTION: AN
INTERACTIVE APP

To illustrate the importance and use of prior sensitivity
analysis, we created an interactive application using rstan (Stan
Development Team, 2020), Shiny (Chang et al., 2020), and
RStudio (R Core Team, 2020; RStudio Team, 2020). The App
can be accessed online at https://ucmquantpsych.shinyapps.io/
sensitivityanalysis/. Alternatively, it is available for download on
the Open Science Framework7. To run the App on your personal
computer, open the ui.R and server.R files in RStudio and press
the “Run App” link in the top-righth and corner of the R Script
section of the RStudio window. For more information about
Shiny Apps, we refer to RStudio Team (2020).

Our App consists of seven different tabs, with each containing
information that will help a user understand how to assess the
substantive impact of prior selection. When the App is first
loaded, it defaults to the first tab. This tab introduces the App,
goes over the main steps of a sensitivity analysis, and describes the
other tabs of the App. Within the second tab, a fictional researcher
and their study are introduced. Specifically, a researcher has
collected a sample of 100 participants to examine whether an
individual’s sex or lack of trust in others predicts the individual’s
cynicism (see Figure 1B for an illustration of the model). The
tab discusses the prior distributions specified by the researcher.
While most prior distributions are relatively diffuse (i.e., flat), the
researcher specifies an informative prior for the regression effect
of cynicism on lack of trust. The remainder of the tab focuses
on an evaluation of the posterior results of the original analysis,
using trace plots, posterior density plots and histograms, and
relevant summary statistics [e.g., posterior mean, SD, 90% highest
posterior density interval (HPD interval)].

In the next four tabs, users can specify alternative prior
distributions for each parameter in the model: the intercept of
cynicism (third tab), the regression effect of cynicism on sex
(fourth tab), the effect of cynicism on lack of trust (fifth tab),
and the residual variance of cynicism (sixth tab). Within these
tabs, the priors for the other parameters are held constant. The
user can specify and assess the impact of two alternative prior
distributions at a time. Each time a new set of priors is specified,
additional analyses are run using the rstan package.8 The tabs
include visual and numerical comparisons that can help assess
the impact of the specified prior distributions.

In the seventh tab, users can combine the alternative prior
specifications from the previous four tabs to investigate
the combined influence of alternative priors on the
posterior estimates. Use of the App will be demonstrated in
the next section.

Sensitivity Analysis Process
In this section, we will use the Shiny App to execute and
report a sensitivity analysis. The first step is to identify the

7https://osf.io/eyd4r/
8Models were estimated through the No-U-Turn sampler (NUTS; Hoffman and
Gelman, 2011; Betancourt, 2017) with two chains. Each chain ran for 10,000
iterations, of which 5,000 were discarded as the burn-in.

original (comparison) priors that are to be implemented in the
investigation. Then the researcher would carry out a sensitivity
analysis to examine the robustness of results under different prior
specifications. The researcher would specify alternative priors to
explore through the sensitivity analysis process. In this section,
we will highlight a sensitivity analysis for two parameters in
the model, both of which can be captured through the normal
distribution. Although there are many distributional forms that
priors can take on, the normal distribution is an effective place
to start since it is so visually illustrative of the different forms
the normal prior can adopt. As a result, we discuss sensitivity
analysis in terms of this prior, but it is important to recognize
the issues and processes that we highlight can generalize to other
distributional forms. For example, a sensitivity analysis for the
residual variance of cynicism can also be examined through the
App. The prior for this parameter follows an inverse gamma
(IG) distribution. In addition to the conjugate distributions (i.e.,
the prior and posterior distribution are in the same probability
distribution family) used in the App, it is also possible to examine
non-conjugate priors (e.g., a reference prior). We did not include
alternative, non-conjugate, distributions in our App, as we felt
it would distract from its main pedagogical purpose. For more
information on non-conjugate priors, see Gelman et al. (2014,
p. 36+). An example of a write-up for the prior sensitivity analysis
can be seen in the Appendix.

Specifying Priors on Certain Model
Parameters
Priors are specified on all parameters of a model. In this example,
we will focus on just two model parameters to illustrate the
process of sensitivity analysis. These two parameters are the
regression coefficients linking the two predictors to the outcome
of Cynicism. A separate sensitivity analysis can be conducted on
each parameter, and another analysis examines the combined
specification of the priors. This latter combined analysis helps to
pinpoint the combined impact of a set of alternative priors on all
parameters in the model.

Parameter 1: Cynicism on Sex
The researcher can examine competing prior specifications for
the effect ofCynicism on Sex. For example, if the experts originally
assumed that there was no Sex effect, then a prior such as
N(0,10) could be specified, where the bulk of the distribution is
centered around zero. Notice that this prior is weakly informative
surrounding zero (i.e., it still contains ample spread about the
mean, as opposed to being strictly informative). For the sake of
this example, this prior setting can be viewed as the original prior
in the analysis.

Alternative prior specifications can be examined through the
sensitivity analysis, in order to examine the impact of different
priors (perhaps reflecting different substantive theories) on final
model results. For example, another theory could state that men
(coded as 1) possess higher levels of cynicism than women,
suggesting a positive effect. An informative prior centered around
a positive value can be explored to examine this prior belief:
e.g., N(5, 5). Alternatively, there may be competing research that
indicates that men possess lower levels of cynicism than women,
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suggesting a negative effect. An informative prior centered
around a negative value can be explored to examine the impact
of this prior belief on the posterior results: N(−10, 5). These
prior settings would result in an original prior and two alternative
specifications such that:

• Original = N(0, 10)
• Alternative 1 = N(5, 5)
• Alternative 2 = N(−10, 5).

A plot illustrating these prior differences can be found
in Figure 3.

Parameter 2: Cynicism on Lack of Trust
For this substantive example predicting cynicism (Figure 1B),
we can assume that the researchers based their prior distribution
specifications on previous research, indicating that Lack of Trust
had a strong positive relationship with Cynicism. Specifically,
assume that the original prior (specified by the researchers)
was set at N(6, 1), where the value 6 represents the mean
hyperparameter (or center) of the distribution and the value
1 represents the variance. This prior density, with a variance
hyperparameter of 1, indicates that about 95% of the density
falls between 4 and 8. This relatively narrowed prior suggests
that the researcher had a relatively strong expectation that a
one-point increase in Lack of Trust is related to a 4 to 8 point
increase in Cynicism.

Several competing prior specifications can be imagined for
this regression coefficient of Cynicism on Lack of Trust, each
with their own degree of informativeness. The impact of
these other prior forms can be examined through a sensitivity
analysis. For example, the researcher can examine a diffuse
prior distribution, with the intention of downplaying the
impact of the prior and emphasizing the data patterns to
a larger degree. In this case, a normal distribution can be
used as the prior, but the distribution will have a very large
spread to coincide with the lack of knowledge surrounding
the parameter value. One way of specifying this regression
coefficient prior would be as N(0, 100). With such a wide
variance (akin to Figure 2C), this prior will be largely flat
over the parameter space, representing a diffuse prior for
this parameter.

Another version of the prior specification can come from an
alternative theory on the relationship between Lack of Trust and
Cynicism. Perhaps several experts on the topic of cynicism believe
that the degree (or lack) of trust in others has no impact on how
cynical a person is. An informative prior centered around zero,
with a more narrowed variance compared to the prior described
above, reflects this prior belief: N(0, 5).

These prior settings would result in an original prior and two
alternative specifications such that:

• Original = N(6, 1)
• Alternative 1 = N(0, 100)
• Alternative 2 = N(0, 5).

A plot illustrating these prior differences can be found
in Figure 4.

Examining Priors for Parameter 1 and Parameter 2
Simultaneously
Finally, the combination of each of these alternative prior
specifications can also be compared to examine how prior
specifications aligned with alternative theories and previous
research impact the posterior results. In total, we can use the App
to compare six different models at a time.

Assessing Convergence
An alternative prior specification can affect the convergence of
parameters in the model. As such, model convergence should
always be assessed, even if there were no convergence issues with
the original prior specification. A converged chain represents an
accurate estimate for the true form of the posterior.

For example, see Figure 5, which presents two different
plots showing a chain for a single parameter. Each sample
pulled from the posterior represents a dot, and these many
dots are then connected by a line, which represents the chain.
Obtaining stability, or convergence, within the chain is an
important element before results can be interpreted. The mean
according to the y-axis of Figure 5 represents the mean of
the posterior, and the height of the chain represents the
amount of variance in the posterior distribution. Convergence
is determined by stability in the mean (i.e., horizontal center,
according to the y-axis) and the variance (i.e., height of the
chain). Figure 5A shows that there is a great deal of instability
in the mean and the variance of this chain.9 The chain
does not have a stable, horizontal center, and the height of
the chain is inconsistent throughout. In contrast, Figure 5B
shows stability in both areas, indicating visually that it appears
to have converged. There are statistical tools that can help
determine convergence, and they should always accompany
visual inspection of plots akin to those in Figure 5. Some
statistical tools for assessing convergence include the Geweke
convergence diagnostic (Geweke, 1992), and the potential scale
reduction factor, or R-hat (Gelman and Rubin, 1992a,b; Gelman,
1996; Brooks and Gelman, 1998).

The beginning portion of the chain is often highly dependent
on chain starting values (which may be randomly generated
within the software). Therefore, this early portion of the
chain is often discarded and referred to as the burn-in
phase. This part of the chain is not representative of the
posterior since it can be unstable and highly dependent
on the initial value that got the chain started. Only the
post-burn-in phase (i.e., the phase of the chain beyond the
designated burn-in phase) is considered to construct the
estimate of the posterior. The user usually defines the length
of the burn-in through some statistical diagnostics, while
taking into consideration model complexity [e.g., a simple
regression model may require a few hundred iterations in
the burn-in, but a mixture (latent class) model may require
several hundred thousand]. If convergence is not obtained

9There are many other elements that should be examined regarding the chains,
some of which are levels of autocorrelation and the effective sample size. In the
interest of space and the goals of the current tutorial, we refer the reader elsewhere
to learn more about these topics. Some helpful resources are: Kruschke (2015)
and Depaoli and van de Schoot (2017).
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FIGURE 3 | Alternative prior distributions for Sex as a predictor of Cynicism.

FIGURE 4 | Alternative prior distributions for Lack of Trust as a predictor of Cynicism.

for a model parameter, then the practitioner can double
(or more) the number of iterations to see if the longer
chain fixes the issue. If non-convergence still remains, then
it may be that the prior is not well suited for the model
or likelihood. In the case of a sensitivity analysis, this result
could indicate that there is evidence against selecting that
particular prior given the current model and likelihood. For
more information on convergence and chain length, please see
Sinharay (2004) or Depaoli and van de Schoot (2017).

In the App, we evaluated model convergence visually, using
trace plots of the posterior chains, and with diagnostics, using

R-hat and the ESS.10 Figure 6 illustrates that the trace plots,
R-hat (<1.01), and ESS (>1,000) for all parameters in the
original analysis indicated convergence. For this illustration,
Figure 7 shows the trace plots of an analysis that uses alternative
prior specifications for both regression effects: N(−10, 5) for

10As mentioned in the section describing the simulation study, the effective sample
size (ESS) is directly linked to the degree of dependency (or autocorrelation) within
each chain. Specifically, the ESS represents the number of independent samples
that have the same precision as the total number of autocorrelated samples in the
posterior chains. Zitzmann and Hecht (2019) recommend that ESSs over 1,000 are
required to ensure that there is enough precision in the chain.
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FIGURE 5 | Two chains showing different patterns of (non)convergence. Panel (A) shows a great deal of instability throughout the plot, indicating non-convergence.
Panel (B) shows a relatively stable horizontal mean and variance, indicating convergence. Note that both plots exhibit some degree of autocorrelation, but that is
beyond the scope of the current discussion. More information about this issue can be found here: Kruschke (2015) and Depaoli and van de Schoot (2017).

FIGURE 6 | Trace plots of original analysis.
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FIGURE 7 | Trace plots of analysis with N(–10, 5) prior distribution for Sex as a predictor of Cynicism and N(0, 5) for Lack of Trust as a predictor of Cynicism.

Sex as a predictor of Cynicism, and N(0, 5) for Lack of
Trust as a predictor of Cynicism. In this figure, we can see
that the trace plot for the effect of Sex looks more volatile
(though still relatively flat) when using this alternative prior
specification; this is most evident by examining the y-axis
differences across Figures 6, 7. Overall it appears that the
alternative priors do not profoundly affect chain convergence,
despite some differences with the variance of the chain for the
Cynicism on Sex coefficient (i.e., the variance is wider in Figure 6
for this parameter).

Inspecting Posterior Density Plots
The next step in the sensitivity analysis is to examine
how the alternative prior specifications have affected the
posterior distributions of the model parameters. If the posterior
distributions are very similar across a range of prior distributions,
then it implies that the posterior estimate is robust to different
prior distributions. In contrast, if the posterior distribution is
drastically altered as a result of an alternative prior, then it
shows that the posterior distribution depends more heavily on
the specific prior distribution used. For this illustration, we will
focus our discussion of the two alternative prior distributions
for Lack of Trust as a predictor of Cynicism. Figure 8 shows
that the posterior distribution for the effect of Lack of Trust
changes as a result of the alternative prior specifications. Both
posterior distributions shift to a lower range of values. This
result implies that the posterior distribution of the original
analysis is affected by the selected prior distribution and that
alternative (more diffuse) prior distributions would have resulted
in slightly different posterior distributions. In addition, the

posterior distribution of the intercept of Cynicism shifts to a
higher value for both alternative prior distributions, indicating
a substantively different definition of the model intercept (i.e.,
the average value of Cynicism when predictors are zero). Finally,
the posterior distributions of Sex as a predictor of Cynicism
does not appear to be affected by the alternative priors for
the effect of Lack of Trust, while the residual variance of
Cynicism was impacted.

Comparing the Posterior Estimates
Another way to examine the impact of the prior distribution
is to compute the percentage deviation in the average posterior
estimate between models with different prior distributions.
For this illustration, we will again focus our discussion on
the two alternative prior distributions for Lack of Trust as a
predictor of Cynicism. Figure 9 displays summary statistics of
the analyses with the alternative prior specifications, as pulled
from the App. The final two columns show the average posterior
estimates of the original analysis and the percentage deviation
between the original and each alternative analysis. In line with
the downward shift of the posterior densities of the effect
of Lack of Trust across the different prior specifications, the
percentage deviation is −23.040% or −24.851%, depending on
the alternative prior specification. Another way of capturing
the impact of the prior distribution is to compare the 90%
HPD intervals and see whether the substantive conclusion
about the existence of the effect of Lack of Trust changes.
In this case, zero is always outside the 90% HPD interval,
independent of the prior distribution used in the analysis. Thus,
the substantive conclusion regarding the role of Lack of Trust
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FIGURE 8 | Posterior density plots for original and alternative priors for Lack of Trust as a predictor of Cynicism.

as a predictor of Cynicism does not change across the prior
distributions examined here.

Additional Guidelines for Using the App
We constructed the App so that users cannot examine the
combination of different priors in the model before specifying
and looking at each one separately. This design-based decision
was made for pedagogical reasons. We feel that examining
each prior separately is helpful when initially learning about
prior impact. The practice of modifying a prior setting and
tracking how the posterior changes provides a visual learning
experience that enhances discussions surrounding sensitivity
analyses. However, in practice, the implementation and variation
of priors is more complicated. In the final model being estimated,
the combination of priors is the main aspect that matters. There
is research highlighting that priors in one location in a model
can impact results in another location (see e.g., Depaoli, 2012).
Because of this, it is important to examine results with the
combination of priors implemented all at once. These results
reflect the true impact of the prior settings (as opposed to
examining a single parameter at a time). Although this App
allows the user to examine one prior at a time (as a learning
tool), we note that this may not be a feasible practice in some
modeling contexts. For example, some item response theory

models have thousands of parameters, and it would only be
feasible to examine the combination of priors (rather than one
at a time).

The App was designed to enhance pedagogy surrounding
visually demonstrating sensitivity analysis. However, we caution
the reader that it is indeed the combination of prior settings that
drives the substantive impact of the priors.

CONCLUSION

Our aim was to present examples (via simulation and application)
illustrating the importance of a prior sensitivity analysis.
We presented a Shiny App that aids in illustrating some
of the important aspects of examining sensitivity analysis
results. We have formatted the current section to address
frequently asked questions (FAQs) in order to provide an at-
a-glance view of the most important components for applied
researchers to focus on.

Frequently Asked Questions About Prior
Sensitivity Analysis

(1) Why is a sensitivity analysis important within the Bayesian
framework, and what can we learn from it?
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FIGURE 9 | Posterior estimates for the alternative priors for Lack of Trust as a predictor of Cynicism.

A sensitivity analysis is, in many ways, one of the most
important elements needed to fully understand Bayesian results
in an applied research setting. The simulation study, and the
demonstration provided in the Shiny App, showed that priors can
have a substantial impact on the posterior distribution. Without a
sensitivity analysis, it is not possible to disentangle the impact of
the prior from the role that the data play in the model estimation
phase. A sensitivity analysis can help the researcher understand
the influence of the prior compared to the influence of the data. In
other words, this analysis can help to establish how much theory
[i.e., through informed theory or lack of theory (e.g., diffuse
priors)] influences the final model results, and how much the
results are driven by patterns in the sample data.

(2) How many different prior conditions should I test during a
sensitivity analysis? In other words, how extensive should
the sensitivity analysis be?

There is a running saying (or joke) in statistics that the
answer to any statistical question is “it depends.” That saying
certainly holds true here. In this case, there is no definitive
answer to this question, and it really depends on several factors.
The extensiveness of the sensitivity analysis will depend on the
complexity of the model, the intended role of the priors (e.g.,
informative versus diffuse), and the substantive question(s) being
asked. There are some general guidelines that we can provide.
For example, if diffuse priors are implemented in the original
analysis, then it will likely not be relevant to include informative
priors in the sensitivity analysis. Instead, the practitioner would
be better off testing different forms of diffuse priors. However,
if informative priors were used in the original analysis, then it
would be advised to examine different forms of the informative
priors, as well as diffuse prior settings, in the sensitivity analysis.
The practitioner must heavily weigh these different aspects and
decide on the scope of the sensitivity analysis accordingly. The
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main goal here is to understand the impact and role that each
prior is playing. There are no set rules for achieving this goal since
all research scenarios will differ in substantive ways.

(3) What is the best way to display sensitivity analysis results?

Not to borrow too much from the previous FAQ, but the
answer to this current question depends on: (1) what the
sensitivity analysis results are showing, (2) model complexity—
i.e., the number of model parameters, and (3) the number
of conditions examined in the sensitivity analysis. In a case
where results are relatively similar across a variety of prior
conditions, the researcher may opt to have a couple of sentences
indicating the scope of the sensitivity analysis and that results
were comparable. However, in a case where results are altered
when priors differ (e.g., like some of the examples provide in
our Shiny App), the researcher may opt for a larger display
of results. This could be provided through visuals, akin to the
Shiny App plots we presented (e.g., Figures 3, 4, 8, 9), or it
may be in a table format indicating the degree of discrepancy
in estimates or HPD intervals across parameters. In extreme
cases, where there are dozens of parameters crossed with many
sensitivity analysis conditions, the researcher may need to put
the bulk of the results in an online appendix and just narrate
the findings in the manuscript text. Much of this will depend
on the degree of the differences observed across the sensitivity
analysis, as well as journal space limitations. The important issue
is that results must be displayed in some clear fashion (through
text, visuals, or tables of results), but what this looks like will
depend largely on the nature of the investigation and findings
that were obtained.

(4) How should I interpret the sensitivity analysis results?

Sensitivity analysis results are not meant to change or alter
the final model results presented. Instead, they are helpful for
properly interpreting the impact of the prior settings. This
can be valuable for understanding how much influence the
priors have, as well as how robust final model estimates are
to differences in prior settings—whether they be small or large
differences in the priors. Sensitivity analysis results should be
reported alongside the final model estimates obtained (i.e., those
obtained from the original priors implemented). These results
can be used to help bolster the discussion section, as well
as make clearer sense of the final estimates. In addition, we
discussed an alternative above regarding reporting sensitivity
analysis results when diffuse priors are implemented. In this
scenario, the practitioner may choose to report results across a
range of diffuse priors as the final analysis. This is a strategy that
can help illuminate any uncertainty surrounding the exact prior
specification if different forms of diffuse priors provide varying
results. Finally, if the sensitivity analysis process yields a prior
(or set of priors) that produce non-sensical results according
to the posterior (e.g., the posterior does not make sense, see
Depaoli and van de Schoot, 2017), or results in chains that do
not converge, then it may be an indication of a poor prior
choice given the model or likelihood. In this case, the prior and
results should be described, and it may be useful to describe why

this prior setting may not be viable given the poor results that
were obtained.

(5) What happens if substantive results differ across prior
settings implemented in the sensitivity analysis?

It may initially seem uncomfortable to receive results from the
sensitivity analysis that indicate priors have a strong influence
on final model estimates. However, this is really not a point of
concern. Assume sensitivity analysis results indicated that even
a slight fluctuation of the prior settings altered the final model
results in a meaningful (i.e., substantive) manner. This is an
important finding because it may indicate that the exact theory
used to drive the specification of the prior (potentially) has a large
impact on final model results. Uncovering this finding can help
build a deeper understanding about how stable the model (or
theory) is. In contrast, if the model results are relatively stable
under different prior settings, then this indicates that theory (i.e.,
the prior) has less of an impact on findings. Either way, the results
are interesting and should be fully detailed in the discussion.
Understanding the role that priors play will ultimately help lead
to more refined and informed theories within the field.

(6) How do I write up results from a sensitivity analysis?

Sensitivity analysis results should be included in the main
body of the results section of any applied Bayesian paper.
Final model estimates can be reported and interpreted based
on the original prior settings implemented. Then the sensitivity
analysis can be reported in the context of building a deeper
understanding of the impact of the priors. Bayesian results
can only be fully understood in the context of the impact
of the particular prior settings implemented. After reporting
the final model estimates from the original prior settings, a
section can be added to the results entitled something like:
“Understanding the Impact of the Priors.” In this section, visual
or table displays of the sensitivity analysis results should be
included. Results of the analysis should be described, and some
sense of the robustness (or not!) of results to different prior
settings should be addressed. These results can then be further
expanded upon in the discussion section, and recommendations
can be made about what priors the researcher believes should be
further explored in subsequent research. The goal is to provide
a thorough treatment of the analysis and give readers ample
information in order to assess the role of priors in that particular
modeling context.

Final Thoughts
As we demonstrated through the simulation study and the Shiny
App, priors can have a noticeable impact on the final model
results obtained. It is imperative that applied researchers examine
the extent of this impact thoroughly and display findings in
the final analysis report. Visual aids can be a tremendous asset
when presenting sensitivity analysis finding, as they quickly point
toward the level of (dis)agreement of results across different
prior settings.

A key issue when reporting any analysis, but especially one
as complicated as a Bayesian analysis, is transparency. It is
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important to always be clear about what analyses were
conducted, how they were conducted, and how results can
be interpreted. This issue of transparency is key within any
statistical framework, but it is especially an issue for the
Bayesian framework because of how easy it is to manipulate
results by changing prior settings. Bayesian methods are very
useful tools, and it is up to us (i.e., the users, publishers, and
consumers of research) to set a precedence of transparency
and thoroughness when reporting findings. It is our hope

that the Shiny App will play a role in promoting the
importance of this issue.
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APPENDIX

Prior Sensitivity Analysis Example Write Up
The following section represents a hypothetical write-up of sensitivity analysis results, which mimics the example provided in
the Shiny App.

For the first step of our sensitivity analysis, we considered the parameters of most substantive interest in our study. In the case of
our regression example, we were particularly interested in the regression coefficients associated with Sex as a predictor of Cynicism and
Lack of Trust as a predictor of Cynicism. After clearly identifying the parameters of interest, we then identified the most appropriate
priors for the original (comparison) priors in the analysis. For example, we selected N(0,10) as the prior for Sex as a predictor of
Cynicism and N(6,1) as the prior for Lack of Trust as a predictor of Cynicism. The N(0,10) priors suggest Cynicism and Sex are
unrelated, and the N(6,1) indicates a positive relationship between Cynicism and Lack of Trust. In addition to selecting priors for the
parameters of substantive interest, we also set N(41,10) as prior to the intercept and IG(0.5,0.5) as the prior for the residual variance.

To understand the impact of different priors on the posterior distribution, we identified a set of alternative priors to compare to
each of our original priors. For our regression example, we selected the alternative priors of N(5,5) and N(−10,5) for Sex predicting
Cynicism. The N(5,5) alternative prior suggests that men have a higher degree of cynicism than women, and the N(−10,5) alternative
prior means men have a lower degree of cynicism than women. Also, we selected alternative priors N(0,100) and N(0,5) for Lack of
Trust predicting Cynicism. The N(0,100) alternative was much more diffuse than the original prior, suggesting a lack of knowledge
about the parameter. The N(0,5) has a mean of zero, which indicates no relationship between Cynicism and Lack of Trust. For the
intercept, we selected N(0,100) and N(20,10) as alternative priors. The N(0,100) prior is a diffuse, flat prior, and the N(20,10) shits
the mean of the original prior downward. Both priors suggest lower cynicism values. For the residual variance, we selected IG(1,0.5)
and IG(0.1,0.1) as alternative priors. The IG(1,0.5) is more informative than the original prior, and IG(0.1,0.1) is more diffuse than
the original prior. Finally, we also specified combinations of these alternative priors to understand the combined impact of different
priors on model results.

After selecting our alternative priors, we estimated a series of models with different priors. Each model was checked for convergence
via visual inspection of the trace plots, as well as through the R-hat diagnostic. In addition, effective sample sizes (ESSs) were also
monitored to ensure that autocorrelation was not problematic. The alternative priors selected yielded adequate model convergence
and ESS values. Therefore, we moved to the next step of the sensitivity analysis and inspected the posterior density plots. A visual
inspection of the posterior density plots revealed a change in the posterior distributions for Lack of Trust predicting Cynicism
when specifying alternative priors. Specifically, the posterior distribution for Lack of Trust predicting Cynicism shifts to lower values
under both alternative priors, suggesting the prior specification impacts the results. The posterior distribution of the intercept and
residual variance of Cynicism changed depending on the priors specified, which indicates a substantively different interpretation of
the intercept depending on the priors. In contrast, the posterior density plots for Sex as a predictor of Cynicism were relatively similar,
regardless of the alternative prior specification.

We also examined how robust the results were by comparing the posterior estimates across models with different prior
specifications. If priors have little impact on the results, then there will be a low percentage of deviation in the posterior estimates
between models. However, if the priors have a significant effect, then we will see a higher percentage deviation between models. As
expected, given the posterior density plots, we see a downward shift in the estimate for Lack of Trust as a predictor of Cynicism
across different prior specifications. Specifically, the percentage deviation is −23.040% or −24.851%, depending on the alternative
prior specification.

Further evidence of the impact of the prior on the posterior distribution can be obtained by comparing the 90% highest posterior
density (HPD) intervals. If the substantive conclusions regarding a parameter change depending on the prior, then there is evidence
of less robust results. In the case of Lack of Trust as a predictor of Cynicism, zero is always outside the 90% HPD interval, independent
of the prior distribution used in the analysis. Thus, the substantive conclusion regarding the role of Lack of Trust as a predictor of
Cynicism does not change across the prior distributions. This is perhaps the most critical finding of the sensitivity analysis. Although
some parameters were more readily impacted in the model by the prior distributions specified, the substantive interpretation of model
results did not change depending on the prior specified.”
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When Bayesian estimation is used to analyze Structural Equation Models (SEMs), prior
distributions need to be specified for all parameters in the model. Many popular software
programs offer default prior distributions, which is helpful for novel users and makes
Bayesian SEM accessible for a broad audience. However, when the sample size is
small, those prior distributions are not always suitable and can lead to untrustworthy
results. In this tutorial, we provide a non-technical discussion of the risks associated
with the use of default priors in small sample contexts. We discuss how default priors
can unintentionally behave as highly informative priors when samples are small. Also, we
demonstrate an online educational Shiny app, in which users can explore the impact of
varying prior distributions and sample sizes on model results. We discuss how the Shiny
app can be used in teaching; provide a reading list with literature on how to specify
suitable prior distributions; and discuss guidelines on how to recognize (mis)behaving
priors. It is our hope that this tutorial helps to spread awareness of the importance of
specifying suitable priors when Bayesian SEM is used with small samples.

Keywords: Bayesian SEM, default priors, informative priors, small sample size, Shiny app

Bayesian estimation of Structural Equation Models (SEMs) has gained popularity in the last
decades (e.g., Kruschke et al., 2012; van de Schoot et al., 2017), and is more and more often used as
a solution to problems caused by small sample sizes (e.g., McNeish, 2016a; König and van de Schoot,
2017)1. With small samples, frequentist estimation [such as (restricted) Maximum Likelihood or
(weighted) least squares estimation] of SEMs can result in non-convergence of the model, which
means that the estimator was unable to find the maximum (or minimum) for the derivative of
the model parameters. Even when a model converges, simulation studies have shown that the
parameter estimates may be inadmissible (e.g., Heywood cases) or inaccurate (i.e., the estimate
deviates from the population value; Boomsma, 1985; Nevitt and Hancock, 2004). In contrast

1There are many other reasons why researchers use Bayesian SEM, such as the ability to estimate models that are not identified
in the frequentist framework or to resolve issues with missing data, non-linearity, and non-normality (see e.g., Wagenmakers
et al., 2008; Kaplan, 2014, pp. 287–290; van de Schoot et al., 2017). However, the focus of this paper is the use of Bayesian
estimation to deal with small samples.
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to frequentist methods, Bayesian methods do not rely on large
sample techniques, which make Bayesian methods an appealing
option when only a small sample is available. Within the Bayesian
framework, prior distributions need to be specified for all
parameters in the model2. This additional step may pose a barrier
for novice users of Bayesian methods. To make Bayesian SEM
accessible to a broad audience, popular software programs for
analyzing Bayesian SEMs, such as Mplus (Muthén and Muthén,
(1998–2017)) and the blavaan package (Merkle and Rosseel,
2018) in R (R Core Team, 2018), offer default prior distributions.
However, those default prior distributions are not suitable in all
cases. When samples are small, the use of solely default priors can
result in inaccurate estimates—particularly severely inaccurate
variance parameters—unstable results, and a high degree of
uncertainty in the posterior distributions (e.g., Gelman, 2006;
McNeish, 2016a; Smid et al., 2019b). These three consequences
of using default priors with small samples severely limit the
inferences that can be drawn about the parameters in the model.

With small samples, the performance of Bayesian estimation
highly depends on the prior distributions, whether they
are software defaults or specified by the researcher (e.g.,
Gelman et al., 2014; Kaplan, 2014; McElreath, 2016). McNeish
(2016a) discussed that small sample problems (such as non-
convergence, inadmissible and inaccurate parameter estimates)
cannot be fixed by only switching from a frequentist to
a Bayesian estimator. Instead, he argues that if Bayesian
methods are used with small samples, “prior distributions
must be carefully considered” (McNeish, 2016a, p. 764). This
advice is not new: Kass and Wasserman (1996) already
warned against relying on default prior settings with small
samples. In the quarter-century since that initial warning,
Bayesian estimation is increasingly used to deal with small
samples (van de Schoot et al., 2017; Smid et al., 2019b).
Yet researchers remain stubbornly reliant on default priors,
despite clear caution against their use (as shown by McNeish,
2016a; König and van de Schoot, 2017; van de Schoot et al.,
2017).

Goals of This Tutorial Paper
In this tutorial paper, we provide a non-technical discussion
of the risks associated with the use of default priors. We
discuss how default priors can unintentionally behave as highly
informative priors when samples are small. Next, we demonstrate
an educational online Shiny app (available on our Open Science
Framework (OSF) page via https://osf.io/m6byv), in which users
can examine the impact of varying prior distributions and
sample size on model results. We discuss how the Shiny app
can be used in teaching and provide an online reading list
(available via https://osf.io/pnmde) with literature on Bayesian
estimation, and particularly on how to specify suitable prior

2Prior distributions represent information about the parameters and can be based
on previous studies or the beliefs of experts in the field. The prior distributions are
then updated by the likelihood (observed data depended on the model). By using
methods such as Markov chain Monte Carlo (MCMC), the posterior distribution
is simulated, which is a combination of the prior and likelihood. For references
with an elaborate introduction into Bayesian estimation, we refer to our reading
list (https://osf.io/pnmde).

distributions. Finally, we provide guidelines on how to recognize
(mis)behaving priors.

WHAT IS A SMALL SAMPLE?

Before we continue our discussion of the potential dangers
of default priors with small samples, we need to address the
question: What exactly is a small sample? Whether a sample is
small depends on the complexity of the model that is estimated.
One way to express the size of a sample is to look at the ratio
between the number of observations and the number of unknown
parameters in the model (e.g., Lee and Song, 2004; Smid et al.,
2019a). A sample could be considered very small when this
ratio is 2, which means there are just two observations for each
unknown parameter. As SEMs often include many unknown
parameters (i.e., factor loadings, intercepts, covariances), samples
that may appear relatively large are in fact very small. For
example, a confirmatory factor analysis (CFA) model with three
latent factors and fifteen observed items consists of 48 unknown
parameters: 12 factor loadings (first factor loading fixed at 1
for identification), 15 intercepts, 15 residual variances, three
factor variances, and three factor covariances. In this scenario,
a sample of 100 participants would still be considered very
small (ratio = 2.08). This example demonstrates that general
rules of thumb about sample sizes for SEM (e.g., n > 100;
Kline, 2015) can be misleading as they do not take into account
model complexity. Furthermore, model complexity depends on
more than just the number of parameters that are estimated.
Other factors that play are role in model complexity are whether
the model includes components such as categorical variables,
latent factors, multiple groups, or latent classes. A recent review
of simulation studies on SEM (Smid et al., 2019b) showed
that authors of these simulation papers have widely varying
definitions of a “small sample size,” ranging from extremely small
(e.g., n = 8 assessed at three time points with one continuous
variable; van de Schoot et al., 2015) to what some might consider
moderately sized (e.g., n = 200 with 12 ordinal variables; Chen
et al., 2015). Thus, assessing whether a sample is (too) small is
unfortunately not as easy as checking whether a certain number
of participants has been reached, and should be done on an
analysis-by-analysis basis.

DANGERS OF THE DEFAULTS

The risks associated with default priors when Bayesian SEM is
used with small samples can be described as a combination of the
following three factors.

First, when samples are small, priors have a relatively
larger impact on the posterior than when samples are
large. The posterior can be seen as a compromise between
the prior and the likelihood. With a larger sample size,
the likelihood dominates the posterior (see Figure 1C).
However, with a small sample size, the likelihood has relatively
less weight on the posterior. Accordingly, the prior has
relatively more weight on the posterior (see Figure 1A).
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FIGURE 1 | Examples of prior, likelihood and posterior distributions under small (A), medium (B), and large (C) sample sizes. The posterior distribution is dominated
by the prior under the small sample size (A), and dominated by the likelihood under the large sample size (C).

Therefore, it is of great importance to specify suitable prior
distributions when samples are small (e.g., Gelman et al.,
2014).

Second, most of the default priors have very wide
distributions. For instance, the Mplus default prior for means
and regression coefficients is a Normal distribution with a
mean hyperparameter of zero and a variance of 1010 (Muthén
and Muthén, (1998–2017)). The variance hyperparameter
corresponds to a standard deviation of 100.000, meaning,
that 68% of the prior distribution contains values between
−100.000 and 100.000, and 95% of the prior distribution
contains values between −200.000 and 200.0003. When such
default priors are specified, a wide range of parameter values
can be sampled from the posterior during the Bayesian analysis.
All those parameter values are therefore considered plausible,
which might not always be appropriate. For instance, when
measuring mathematical ability on a scale from 0 to 100,
values below 0 and above 100 cannot be present in the data.
Specifying a default prior with such a wide distribution on
the mean of mathematical ability will put a lot of weight on
values that are not reasonable (see e.g., Stan Development
Team, 2017 p. 131). For small sample sizes, the combination
of the relatively larger impact of the prior on the posterior and
the wide distribution of default priors can lead to extremely
incorrect parameter estimates (see e.g., Gelman, 2006; McNeish,
2016a; and the systematic literature review of Smid et al.,
2019b).

The third factor that plays a role, is the false belief that
default priors are non-informative priors which “let the data
speak.” Default priors can act as highly informative priors,
as they can heavily influence the posterior distribution and
impact the conclusions of a study (see e.g., Betancourt, 2017).
As explained by McNeish (2016a, p. 752): “with small samples,
the idea of non-informative priors is more myth than reality
(. . .).” The terminology of informative and non-informative
priors can therefore be confusing (see also Bainter, 2017, p. 596).
In addition, different software programs use different default
priors (see Table 1). van Erp et al. (2018, p. 26) investigated

3Hyperparameters are the parameters of prior distributions, such as the mean and
variance of the Normal distribution, and the alpha and beta in inverse gamma.

the performance of multiple default priors and concluded that,
especially with small samples, all investigated default priors
performed very differently, and “that there is not one default prior
that performed consistently better than the other priors (. . .).”
The choice of software could thus unintentionally influence
the results of a study (see e.g., Holtmann et al., 2016), which
is problematic if one is not aware of this. Note that we
are not advocating against default priors in general. Default
priors can be suitable—even when samples are small—in cases
where all values in the prior distribution are reasonable and
can occur in the data (for example values around 100,000 or
200,000 are realistic in housing price data, see e.g., LeGower
and Walsh, 2017). However, the use of default priors is
problematic when researchers assume they let “the data speak”
while in reality they “let the default priors speak,” meaning
that the priors can heavily impact the results without one
being aware of this.

In the next section, we discuss the Shiny app that we developed
to demonstrate in an example the possible informative behavior of
default priors when the sample is small.

SHINY APP: THE IMPACT OF DEFAULT
PRIORS

We have created a Shiny app that serves as an educational tool
that can be used to learn more about the impact of default priors
in Bayesian SEM. It can be found online via https://osf.io/m6byv,
together with supplementary files and R code to reproduce the
app. In addition, we have created a lesson plan (available for
download in the app) to support the educational focus of the
app. The app consists of three pages: (1) a page where users can
interactively explore the impact of prior settings and sample size
on a Bayesian latent growth model (see Figure 2), (2) an overview
of the prior specifications used in the app, and (3) a list of further
resources to learn more about various aspects of Bayesian SEM.
The main, interactive, page includes a menu that walks users
through selecting their sample size, prior specification settings,
and running the model a first time and a second time with a
doubled number of iterations (in line with the WAMBS checklist
of Depaoli and van de Schoot, 2017). The models in the Shiny
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TABLE 1 | Overview of default prior distributions of main parameters for the software program Mplus and the use of Mplus, JAGS and Stan via the R package blavaan.

Mplus (v. 8.4) Priors on
variance σ2

Blavaan (v. 0.3-8) Priors on
precision 1/σ2 or standard

deviation σ denoted by (SD)

Observed variable intercept N(0, 1010) N(0, 32)

Latent variable intercept, factor loading, and regression N(0, 1010) N(0, 10)

Variance covariance blocks of size 1 IG(–1, 0)

Variance covariance blocks of size larger than 1 IW(0, –p –1), where p is the
size of the matrix

Observed and latent variable variance G(1, 0.5)1

Covariance matrix W(3, I)2

Correlation B(1, 1)

Threshold N(0, 1010) N(0, 3.16)

Default priors corresponding to Mplus version 8.4 (see Asparouhov and Muthén, 2010), and blavaan version 0.3-8 (see Merkle, 2019). Prior distributions in Mplus are
placed on the variance, while the prior distributions in blavaan are by default placed on the precisions (the inverse of the variance) unless stated otherwise. Abbreviations
in order of appearance: N, Normal distribution with hyperparameters mean µ and variance σ2; I, Identity Matrix; IG, Inverse Gamma; G, Gamma; IW, Inverse Wishart; W,
Wishart; B, Beta distribution.
1The prior for the observed and latent variable parameters is placed on the standard deviation (the square root of the variance).
2 In blavaan, three MCMC packages can be used (target = “stan,” “stanclassic” and “jags”) for the analysis. For all the MCMC packages, the same default priors are
specified, with one exception: for target = “jags,” a different prior for the covariance is specified.

FIGURE 2 | Main page of the Shiny app, where users can interactively explore the impact of prior settings and sample size in a Bayesian Latent Growth Model.
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app were externally run using the software Mplus (Muthén and
Muthén, (1998–2017)) to enhance the user experience4.

The main window on the page has five tabs that can be used
to (1) see what model is estimated, (2) check convergence of the
model using the potential scale reduction factor (PSFR; Gelman
and Rubin, 1992), examine the precision of the posterior samples
with the effective sample size (ESS), (3) look at plots of the prior,
likelihood, and posterior and trace plots, (4) inspect parameter
estimates, (5) access the lesson plan.

The Model, Sample Sizes, and Priors
Used in the Shiny App
The model, sample sizes, and prior settings used in the Shiny
app are based on Smid et al. (2019a). Specifically, the model is
a latent growth model (LGM) with a latent intercept and linear
slope, four time points, and a continuous long-term variable (i.e.,
distal outcome) that is predicted by the latent intercept and slope
(see Figure 3). A long-term variable is a variable that is collected
at a wave of assessment that occurs long after the other waves
of assessment in the LGM. An example of a distal outcome is
young adult levels of depression that are predicted by conduct
and emotional problems at ages 4–16 (Koukounari et al., 2017).
Users can select one of three sample sizes: 26, 52, 325, which

4This popular, user-friendly software program for estimating Bayesian SEM has
made it extremely easy to be a naive user of Bayesian statistics (one only needs to
include the line “Estimator = Bayes;” in the input file).

represent a very small, small, and relatively large sample for the
model of interest, which has 13 unknown parameters.

Three different prior specifications are included in the
app: one specification using software default priors and two
specifications with increasing numbers of thoughtful priors.
The default priors that we selected are those specified in
Mplus (Muthén and Muthén, (1998–2017)) and are called
“Mplus default priors” in the Shiny app. The two thoughtful
prior specifications, called “Partial Thoughtful Priors” and “Full
Thoughtful Priors,” were taken from Smid et al. (2019b), details
of which are included on the second page of the Shiny app. In
short, “Partial Thoughtful Priors” includes informative priors for
the mean of the intercept and slope of the LGM, the regression
coefficients, and the intercept of the distal outcome. “Full
Thoughtful Priors” includes informative priors on all parameters
in the model, with the exception of the residual variances.
These two specifications reflect scenarios where a researcher
has access to prior knowledge regarding some or most of the
parameters in the model.

The specific hyperparameter values of the thoughtful priors
(e.g., where the center of the prior is and how narrow the prior
is) in the example used in the app are somewhat arbitrary because
they are based on a simulation study. Specifically, the priors are
all centered around the (known) population values and the width
of the priors is based on the width of the posterior distribution
of the analysis done with Mplus default priors. This approach
is most closely related to a type of prior specification called

FIGURE 3 | The Latent Growth Model with a distal (long-term) outcome variable that is used in the Shiny app, including population values (model and population
values based on Smid et al., 2019a).
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data dependent prior specification (McNeish, 2016b), where an
initial analysis using default priors or frequentist estimation
methods provides the values for the prior hyperparameters. In
applied research, data dependent priors are controversial, as
the researcher technically double-dips by using their data to
specify the priors that are subsequently used to analyze their data
(Darnieder, 2011). To resolve this issue, researchers could split
their data in half and base the prior specification for the Bayesian
analysis on the results of a frequentist analysis using 50% of the
total sample. As this approach would further reduce the sample
size for the final analysis, this approach for specifying priors may
not be feasible with small sample sizes.

The two thoughtful prior specifications included in the app
are just two examples of how thoughtful priors can be included
in Bayesian SEM. Other sources that can be used for specifying
thoughtful priors include previous research, meta-analyses, or
knowledge from experts in the field (for in-depth discussions
of these topics, we refer to Zondervan-Zwijnenburg et al., 2017;
Lek and van de Schoot, 2018; van de Schoot et al., 2018). Even
if prior knowledge is not readily available, researchers can think
about impossible and implausible values for the parameters and
specify prior distributions that only contain information about
the typical range of the parameters. To illustrate this idea, imagine
that the distal outcome of the LGM shown in Figure 3 was
measured with a questionnaire that had a range from 0 to 20.
A researcher could use this information to specify a prior for the
intercept of the distal outcome that makes values outside of that
range highly improbable [e.g., N(10, 15)]. For some parameters,
it may be challenging to identify prior hyperparameters that will
exclude implausible values. For example, the inverse Gamma
distribution is often used as a prior for the (residual) variance
parameters. The parameters of this distribution, called shape and
scale, are not as easily interpreted and thoughtfully specified as
the mean and variance of a normal distribution. Fortunately,
methods for specifying thoughtful prior hyperparameters for the
inverse Gamma distribution have been suggested (e.g., Zitzmann
et al., 2020). Alternatively, researchers may decide to switch
to a different distribution altogether (van Erp et al., 2018).
Examples include the half-Cauchy prior (Gelman, 2006; Polson
and Scott, 2012) or reference priors such as Jeffrey’s prior
(Tsai and Hsiao, 2008).

Using the Shiny App as a Teacher
Since this Shiny app was explicitly developed to serve as an
educational tool, we have created a worksheet and answer key
that can be downloaded directly in the app itself5. In addition,
it is possible within our app to export all plots and tables
created. These can be used in answering the questions on
the worksheet. By making students aware of the impact of
relying on default settings when samples are small, we hope
to teach students about the importance of specifying suitable
prior distributions and to contribute to the responsible use
of Bayesian SEM.

GUIDELINES: HOW TO RECOGNIZE A
(MIS)BEHAVING PRIOR?

To formulate suitable prior distributions and to check afterward
whether the priors are “behaving,” information is needed about
the reasonable range of values for the parameters in the
model. This information can be based on previous studies,
the scale or questionnaire that is used, or expert knowledge
from the field. In our reading list (available via https://osf.
io/pnmde), we provide an overview of relevant literature on
how to specify suitable priors based on multiple sources
of information. Below, we discuss four ways to identify a
(mis)behaving prior after conducting a Bayesian analysis (see also
Table 2), by inspecting for all parameters the (a) effective sample
size, (b) trace plots, (c) prior-likelihood-posterior distributions,
and (d) the posterior standard deviation and 95% highest
posterior density.

Effective Sample Size
Inspecting the effective sample size (ESS) of each parameter in
the model is a good first step in the search for misbehaving priors.
The ESS represents the number of independent samples that have
the same precision as the total number of samples in the posterior
chains (Geyer, 1992). The ESS is closely related to the concept
of autocorrelation, where current draws from the posterior
distribution are dependent on previous draws from the posterior

5The worksheet can be found on the main page under the fifth tab (“Lesson Plan”).

TABLE 2 | Possible signs of “misbehaving” priors.

Effective sample size

- Low effective sample size (i.e., < 1, 000) can be a first indication that the priors are problematic

Trace plots

- Spikes: shape of alien communication captured in a sci-fi movie instead of a fat caterpillar
- Highly improbable values for the parameter on the y-axis based on information about the

reasonable range of values about parameters
- Chains that are not overlapping

Prior-likelihood-posterior comparison

- Substantial deviation between prior, likelihood and/or posterior: e.g., a posterior that is much
narrower or wider than the prior and likelihood, while taking into account the amount of information
in the prior (i.e., level of informativeness of the prior) and in the likelihood (i.e., sample size)

Posterior SD and 95% HPD

- Much smaller or larger posterior SD or 95% HPD than expected based on the amount of information
in the prior (i.e., level of informativeness of the prior) and in the likelihood (i.e., sample size)
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distribution. Autocorrelation is undesirable as it increases the
uncertainty in posterior estimates. If autocorrelation within the
chains is low, then the ESS approaches the total number of
samples in the posterior chains, and the posterior distribution will
be more precise and more likely to approximate the parameter
estimate well (Zitzmann and Hecht, 2019). If autocorrelation
within the chains is high, a larger number of samples will
be necessary to reach an adequate ESS. A low ESS can be
the first indicator that there might be a misbehaving prior.
Multiple recommendations have been made about how to
assess whether the ESS is too low: Zitzmann and Hecht
(2019) recommend that ESSs should ideally be over 1,000
to ensure that there is enough precision in the chain. It is
also possible to compute a lower bound for the number of
effective samples required using a desired level of precision
and the credible interval level of interest (Vats et al., 2019;
Flegal et al., 2020). Finally, it can also be helpful to look at
the ratio of the ESS to the total number of samples, where a
ratio < 0.1 indicates that there are high levels of autocorrelation
in the chains (although this does not necessarily indicate that
the posterior distribution is not precise; Gabry et al., 2019).
A low ESS can serve as the first clue that something might
be wrong, but even if all ESSs appear acceptable, plots and

posterior estimates should be inspected to further confirm if
priors are behaving.

Trace Plots
Three characteristics of a trace plot can indicate a misbehaving
prior. First, the shape of the trace plot: If the multiple chains are
well-behaved, the chains should resemble the hungry caterpillar
after 6 days of eating (see Figure 4A). A misbehaving prior can
result in trace plots that exhibit spikes, closely resembling alien
communication captured in a sci-fi movie (Figure 4C). Second,
do the values that are covered by the posterior make sense for this
parameter, or is the y-axis stretched to cover unrealistic values?
Even when subtle spikes are present (Figure 4B), the y-axis range
could show that the chains are drawing improbable values from
the posterior distribution and should be given extra attention.
Third, a lack of overlap of the chains can indicate a misbehaving
prior. When the chains do not overlap, it indicates that they are
sampling from different parts of the posterior distribution and are
not converging toward the same location.

Prior-Likelihood-Posterior Comparison
One important aspect of our Shiny app is that the prior,
likelihood, and posterior distributions are visualized to make

FIGURE 4 | Traceplots; prior, likelihood, posterior plots; posterior standard deviation (SD) and 95% highest posterior density interval (HPD) for three parameters:
mean intercept (A), residual variance of the distal outcome (B) and the regression effect of the slope on the distal outcome (C) under sample size n = 26 and Mplus
default priors (examples retrieved from the Shiny app). *The Mplus default prior for residual variance parameters is IG(−1, 0), which is improper (i.e., does not
integrate to 1) and has a constant density of 1 on the interval (−∞,∞) (Asparouhov and Muthén, 2010).
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comparisons across different priors and sample size settings
easy6. When there is a substantial deviation between the
prior, likelihood and posterior distributions, results should be
interpreted with caution, especially when the sample size is small.
Researchers should decide how much impact of the prior and
likelihood on the posterior is desirable. Is it preferable that the
posterior is a compromise between the prior and likelihood, or
that the posterior is dominated by one of two? For instance,
when the likelihood and the prior deviate a lot, one might not
want to trust the posterior results7. In case of small samples,
the results might especially be driven by the prior distributions.
This is only desirable when researchers trust the specified prior
distributions, not when they are defaults of the software program.
Figure 4 shows the prior-likelihood-posterior comparison for
three parameters. Although the prior distributions (dashed lines)
look completely flat, default prior distributions were used for all
parameters. In Figure 4A, the posterior (solid line) closely follows
the likelihood distribution (dotted line), which is desirable here
because the default prior (dashed line) is specified and we do
not want it to impact the posterior much. In Figures 4B,C, the
posteriors seem to have tails that are too fat (kurtotic) compared
to the likelihood distribution and the flat default priors, and
results should therefore be inspected further.

Posterior SD and 95% HPD
The posterior standard deviation (SD) and 95% credible (or
highest posterior density; HPD) interval can be inspected to
assess whether the estimates are unusually certain or uncertain.
Uncertainty is demonstrated by a large posterior SD and
a wide 95% HPD.

Available information about reasonable values for the
parameters as well as the amount of information in the prior
and likelihood should be used to assess whether the level of
(un)certainty of the posterior is reasonable. For instance, in
Figure 4C, a posterior SD of 94.64 is reported, which is a
much higher value than would be expected for a regression
estimate and implies that some very extreme values were likely
sampled from the posterior. This level of uncertainty is also
reflected by the extreme spikes in the trace plot and the kurtotic
posterior distribution. The parameters depicted in Figure 4
illustrate that the combination of a non-informative prior and
a small sample size does not always lead to problems across
all parameters in a model. It is important to note that even
if it appears that the priors of the main parameter(s) of
interest are behaving well, a misbehaving prior that is located
elsewhere in the model may lead to inaccuracies in the posterior
estimates of the main parameters. For example, in a multilevel
SEM with a between-level covariate effect, the between-level
variance estimate may not be of substantive interest. However,
a supposedly non-informative prior [IG(0.001, 0.001)] for the
between-level variance parameter can turn into a misbehaving
prior when the amount of variance located at the between-level is

6For details on how we visualized priors, likelihood and posterior distributions, we
refer to the OSF (https://osf.io/m6byv).
7For readers interested in the impact of so-called prior-data conflict, we refer to
simulation studies by Depaoli (2014); Holtmann et al. (2016), and Smid et al.
(2019a).

large (Depaoli and Clifton, 2015). In a simulation study, Depaoli
and Clifton (2015) showed that this misbehaving prior resulted in
a biased posterior estimate of the between-level covariate effect.
A researcher who only inspected the trace plot for the between-
level covariate effect may not have realized that their results were
negatively affected by a prior placed on between-level variance
parameter. For that reason, it is critical to always examine all
parameters in the SEM.

What to Do If You Suspect a Misbehaving
Prior?
When one of the trace plots, prior-likelihood-posterior
distribution plots, posterior SDs or 95% HPDs show signs
of a misbehaving prior, results should not be trusted, and
researchers should proceed with caution. Unfortunately, we
cannot provide rules of thumb for when these indicators of
misbehavior become problematic. It depends on the specified
prior, the data, the parameter, the model of interest, and the
personal judgment of the researcher. A sensitivity analysis can
help assess the impact of the specified prior distributions on the
posterior (see Depaoli and van de Schoot, 2017; van Erp et al.,
2018). Again, it is up to the researcher to decide whether a certain
amount of impact of the prior is desirable or not. Therefore,
Bayesian SEM should only be used with small samples when
researchers are able and willing to make these types of decisions.

Reporting of Bayesian SEM
Although a rich body of literature exists on good practice of how
to perform and what to report for a Bayesian analysis (see e.g.,
Kruschke, 2015, pp. 721–725; Depaoli and van de Schoot, 2017),
we want to stress the importance of transparency and reporting
every decision. We advise to always provide an (online) appendix
in which is explained in detail which priors are specified and why
these specific priors are chosen. For more literature and examples
on reporting Bayesian SEM, we refer to our reading list on https:
//osf.io/pnmde.

AN ILLUSTRATION: THE IMPACT OF
DEFAULT PRIORS

To illustrate the impact of prior settings and sample size—and the
informative behavior of default priors with a small sample size—
we retrieved the trace plots, prior-likelihood-posterior plots, and
posterior SDs from the Shiny app for a single parameter: the
regression effect of the distal outcome regressed on the linear
slope (β2 in Figure 3). The plots (Figure 5) show signs of
a misbehaving prior when samples are small (n = 26, or 52
for this model) when default priors are used. Specifically, the
trace plots exhibit spikes that reach highly improbable values
for the regression coefficient, the plots have a stretched y-axis,
and show chains that are not overlapping. Moreover, the prior-
likelihood-posterior plots for the two small sample sizes show
that the posterior distribution (solid line) is wider than the
likelihood estimate (dotted line). Overall, the plots displayed in
Figure 5 show that default priors, which are assumed to be
non-informative, can impact the results when samples are small.
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FIGURE 5 | Trace plots; prior, likelihood, posterior plots; posterior standard deviation (SD) and 95% highest posterior density intervals (HPD) for regression coefficient
β2 under sample sizes n = 26, 52, 325 when Mplus default priors and partial thoughtful priors are specified. (A,B,E,F,I,J) Trace plot. (C,D,G,H,K,L) Prior, Likelihood,
Posterior Plot.

Options for improving model estimation include increasing the
sample size or specifying suitable priors for the parameters.

SUMMARY

In this tutorial paper, we discussed the risks associated with
default priors in Bayesian SEM when samples are small. We

described the dangers of the defaults as a combination of three
factors: (a) the relatively larger impact of the prior on the
posterior when samples are small, (b) the wide distribution
of default priors that often contain unrealistic values, and (c)
the false belief that default priors are non-informative priors.
We demonstrated an interactive Shiny app, in which users can
investigate the impact of priors and sample size on model
results. The Shiny app can also be used to teach students about
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responsible use of Bayesian SEM with small samples. In this
paper, we showed that default priors can act as highly informative
priors when samples are small. We provided an overview of
relevant literature (available via https://osf.io/pnmde) on how to
specify suitable priors based on multiple sources of information.
We discussed how to recognize a misbehaving prior by inspecting
(a) the effective sample sizes, (b) trace plots, (c) the comparison
of prior-likelihood-posterior distributions, and (d) posterior
standard deviation and 95% highest posterior densities.

It is important to note that we are not arguing that researchers
are solely responsible for breaking away from their reliance
on default priors. There are several strategies that could be
employed to help researchers improve their decisions regarding
prior specification. A simple way in which the use of Bayesian
methods can be improved is by making available educational
tools, such as the App introduced in this paper, to a broad
audience of researchers. More generally, software developers
could implement notifications that nudge users to check the
impact of their prior distributions through techniques proposed
in the current paper (e.g., flag low ESSs and suggest inspection
of trace plots). Another opportunity to intervene and improve
occurs during the peer-review process. Reviewers should closely
examine the decisions authors have made regarding their prior
specification and intervene if the decisions made by the authors
were inappropriate. In such a case, a reviewer can advise that
major revisions are in order to ensure that Bayesian methods were
applied appropriately.

Bayesian SEM should only be used with small samples when
information is available about the reasonable range of values
for all parameters in the model. This information is necessary
to formulate suitable prior distributions and to check afterward
whether the priors are “behaving.” It is our hope that this
tutorial paper helps spread awareness that the use of Bayesian
estimation is not a quick solution to small sample problems in
SEM, and that we encourage researchers to specify suitable prior
distributions and carefully check the results when using Bayesian
SEM with small samples.
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Parametric cognitive models are increasingly popular tools for analyzing data obtained

from psychological experiments. One of the main goals of such models is to

formalize psychological theories using parameters that represent distinct psychological

processes. We argue that systematic quantitative reviews of parameter estimates

can make an important contribution to robust and cumulative cognitive modeling.

Parameter reviews can benefit model development and model assessment by providing

valuable information about the expected parameter space, and can facilitate the more

efficient design of experiments. Importantly, parameter reviews provide crucial—if not

indispensable—information for the specification of informative prior distributions in

Bayesian cognitive modeling. From the Bayesian perspective, prior distributions are an

integral part of a model, reflecting cumulative theoretical knowledge about plausible

values of the model’s parameters (Lee, 2018). In this paper we illustrate how systematic

parameter reviews can be implemented to generate informed prior distributions for the

Diffusion Decision Model (DDM; Ratcliff and McKoon, 2008), the most widely used

model of speeded decision making. We surveyed the published literature on empirical

applications of the DDM, extracted the reported parameter estimates, and synthesized

this information in the form of prior distributions. Our parameter review establishes

a comprehensive reference resource for plausible DDM parameter values in various

experimental paradigms that can guide future applications of the model. Based on the

challenges we faced during the parameter review, we formulate a set of general and

DDM-specific suggestions aiming to increase reproducibility and the information gained

from the review process.
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1. INTRODUCTION

With an expanding recent appreciation of the value of
quantitative theories that make clear and testable predictions
(Lee and Wagenmakers, 2014; Oberauer and Lewandowsky,
2019; Navarro, 2020), cognitive models have become increasingly
popular. As a consequence, open science and reproducibility
reforms have been expanded to include modeling problems. Lee
et al. (2019) proposed a suite of methods for robust modeling
practices largely centred on the pre- and postregistration of
models. In the interest of cumulative science, we believe that
the development and assessment of cognitive models should
also include systematic quantitative reviews of the model
parameters. Several model classes, including multinomial
processing trees (Riefer and Batchelder, 1988), reinforcement
learning models (Busemeyer and Stout, 2002), and evidence-
accumulation models (Donkin and Brown, 2018), have now
been applied widely enough that sufficient information is
available in the literature to arrive at a reliable representation
of the distribution of the parameter estimates. In this paper, we
describe a systematic parameter review focusing on the latter
class of models.

A systematic quantitative characterization of model
parameters provides knowledge of the likely values of the
model parameters and has various benefits. First, it can promote
more precise and realistic simulations that help to optimally
calibrate and design experiments, avoiding unnecessary
experimental costs (Gluth and Jarecki, 2019; Heck and Erdfelder,
2019; Kennedy et al., 2019; Pitt and Myung, 2019; Schad
et al., 2020). Second, knowledge about the parameter space
can be crucial in maximum-likelihood estimation where an
informed guess of the starting point of optimization is often
key to finding the globally best solution (Myung, 2003).
Third,—and most important for the present paper—systematic
quantitative parameter reviews provide crucial information for
the specification of informative prior distributions in Bayesian
cognitive modeling. The prior distribution is a key element
of Bayesian inference; it provides a quantitative summary of
the likely values of the model parameters in the form of a
probability distribution. The prior distribution is combined with
the incoming data through the likelihood function to form the

posterior distribution. The prior distribution is an integral part

of Bayesian models, and should reflect theoretical assumptions
and cumulative knowledge about the relative plausibility of
the different parameter values (Vanpaemel, 2011; Vanpaemel
and Lee, 2012; Lee, 2018). Prior distributions play a role both
in parameter estimation and model selection. By assigning
relatively more weight to plausible regions of the parameter
space, informative prior distributions can improve parameter
estimation, particularly when the data are not sufficiently
informative, for instance due to a small number of observations.
Even as the number of observations grows, informative priors
remain crucial for Bayesian model selection using Bayes
factors (Jeffreys, 1961; Kass and Raftery, 1995). Unfortunately,
the theoretical and practical advantages of the prior have
been undermined by the common use of vague distributions
(Trafimow, 2005; Gill, 2014).

The goal of this paper is to illustrate how a systematic
quantitative parameter review can facilitate the specification of
informative prior distributions. To this end, we first introduce
the Diffusion Decision Model (DDM; Ratcliff, 1978; Ratcliff
and McKoon, 2008), a popular cognitive model for two-choice
response time tasks (see Ratcliff et al., 2016, for a recent review).
Using the DDM as a case study, we will then outline how we used
a systematic literature review in combination with principled
data synthesis and data quantification using distribution
functions to construct informative prior distributions. Lastly,
based on the challenges we faced during the parameter review,
we formulate a set of general and DDM-specific suggestions
about how to report cognitive modeling results, and discuss
the limitations of our methods and future directions to
improve them.

1.1. Case Study: The Diffusion Decision
Model
In experimental psychology, inferences about latent cognitive
processes from two-choice response time (RT) tasks are
traditionally based on separate analyses of mean RT and the
proportion of correct responses. However, these measures are
inherently related to each other in a speed-accuracy trade-off.
That is, individuals can respond faster at the expense of making
more errors. Evidence-accumulation models of choice RT and
accuracy have provided a solution for this conundrum because
they allow for the decomposition of speed-accuracy trade-off
effects into latent variables that underlie performance (Ratcliff
and Rouder, 1998; Donkin et al., 2009a; van Maanen et al.,
2019). These models assume that evidence is first extracted from
the stimuli and then accumulated over time until a decision
boundary is reached and a response initiated. Among the many
evidence-accumulation models, the DDM is the most widely
applied, not only in psychology, but also in economics and
neuroscience, accounting for experiments ranging from decision
making under time-pressure (Voss et al., 2008; Leite et al., 2010;
Dutilh et al., 2011), prospective memory (Horn et al., 2011; Ball
and Aschenbrenner, 2018) to cognitive control (Gomez et al.,
2007; Schmitz and Voss, 2012).

Figure 1 illustrates the DDM. Evidence (i.e., gray line)
fluctuates from moment to moment according to a Gaussian
distribution with standard deviation s, drifting until it reaches
one of two boundaries, initiating an associated response. The
DDM decomposes decision making in terms of four main
parameters corresponding to distinct cognitive processes: (1) the
mean rate of evidence accumulation (drift rate v), representing
subject ability and stimulus difficulty; (2) the separation of the
two response boundaries (a), representing response caution;
(3) the mean starting point of evidence accumulation (z),
representing response bias; and (4) mean non-decision time
(Ter), which is the sum of times for stimulus encoding and
response execution. RT is the sum of non-decision time and the
time to diffuse from the starting point to one of the boundaries.
A higher drift rate leads to faster and more accurate responses.
However, responses can also be faster because a participant
chooses to be less cautious and thus decreases their boundary
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FIGURE 1 | The Diffusion Decision Model (DDM; taken with permission from Matzke and Wagenmakers, 2009). The DDM assumes that noisy information is

accumulated over time from a starting point until it crosses one of the two response boundaries and triggers the corresponding response. The gray line depicts the

noisy decision process. “Response A” or “Response B” is triggered when the corresponding boundary is crossed. The DDM assumes the following main parameters:

drift rate (v), boundary separation (a), mean starting point (z), and mean non-decision time (Ter ). These main parameters can vary from trial to trial: across-trial variability

in drift rate (sv ), across-trial variability in starting point (sz ), and across-trial variability in non-decision time (sTer ). Starting point can be expressed relative to the

boundary in order to quantify bias, where zr =
z
a
= 0.5 indicates unbiased responding. Similarly, across-trial variability in starting point can be expressed relative to the

boundary: szr =
sz
a
.

separation, which will reduce RT but increase errors, causing
the speed-accuracy trade-off. Starting accumulation closer to one
boundary than the other creates a bias toward the corresponding
response. Starting points z is therefore most easily interpreted
in relation to boundary separation a, where the relative starting
point, also known as bias, is given by zr =

z
a . Drift rate can

vary from trial to trial according to a Gaussian distribution with
standard deviation sv. Both non-decision time and starting point
are assumed to be uniformly distributed across trials, with range
sTer and sz , respectively, where sz can be expressed relative to a:
szr =

sz
a . One parameter of the accumulation process needs to

be fixed to establish a scale that makes the other accumulation-
related parameters identifiable (Donkin et al., 2009b). Most
commonly this scaling parameters is the moment-to-moment
variability of drift rate (s), usually with a value fixed to 0.1 or 1.

Fitting the DDM and many other evidence-accumulation

models to experimental data is difficult because of the complexity

of the models and the form of their likelihood resulting
in high correlations among the parameters (i.e., “sloppiness”;
Gutenkunst et al., 2007; Gershman, 2016). Informative prior
distribution can ameliorate some of these problems. The growing

popularity of cognitive modeling has led to extensive application
of the DDM to empirical data (Theisen et al., 2020), providing
us with a large number of parameter estimates to use for
constructing informative prior distributions. In 2009,Matzke and
Wagenmakers presented the first quantitative summary of the
DDMparameters based on a survey of parameter estimates found
in 23 applications. However, their survey is now outdated and
was not as extensive or systematic as the approach taken here.

2. MATERIALS AND METHODS

All analyses were written in R or R Markdown (Allaire et al.,
2018; R Core Team, 2020). The extraced parameter estimates
and the analysis code are available on GitHub (http://github.
com/nhtran93/DDM_priors) and the project’s Open Science
Framework (OSF) site: https://osf.io/9ycu5/.

2.1. Literature Search
The literature search was conducted according to the PRISMA
guidelines (Moher et al., 2009). Every step was recorded and
the inclusion as well as rejection of studies adhered strictly to
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the pre-specified inclusion criteria. Results from different search
engines were exported as BibTex files, maintained with reference
management software and exported into separate Microsoft
Excel spreadsheets.

2.1.1. Search Queries
The literature search was commenced and completed in
December 2017. It consisted of cited reference searches
and independent searches according to pre-specified queries.
Searches in all databases were preformed three times in order to
ensure reproducibility. Four electronic databases were searched
with pre-specified queries: (National Library of Medicine,
2017), PsycInfo (American Psychological Association, 2017),
Web of Science (WoS, 2017), and Scopus (Elsevier, 2017). A
preliminary search of the four databases served to identify
relevant search strings, which were different for each database
(see the Supplementary Materials or https://osf.io/9ycu5/ for
details). The searches began from the publication year of the
seminal paper by Ratcliff (1978). The cited reference searches
were based on Ratcliff and McKoon (2008), Wiecki et al.
(2013), and Palmer et al. (2005), and were performed in
both Scopus and Web of Science. These key DDM papers
were selected to circumvent assessing an unfeasible number
of over 3, 000 cited references to the seminal Ratcliff article,
with a potentially high number of false positives (in terms of
yielding papers that reported parameter estimates), while still
maintaining a wide search covering various areas of psychology
and cognitive neuroscience.

2.1.2. Inclusion and Exclusion Criteria
All duplicated references were excluded. After obviously
irrelevant papers—judged based on title and abstract—were
excluded, the full-texts were acquired to determine the inclusion
or exclusion of the remaining articles. Articles were included
in the literature review if they (i) used the standard DDM
according to Ratcliff (1978) and Ratcliff andMcKoon (2008) with
or without across-trial variability parameters; and (ii) reported
parameter estimates based on empirical data from humans.
Articles were excluded if (i) they reported reviews; and (ii)
the parameter estimates were based on animal or simulation
studies. We also excluded articles that did not report parameter
estimates (neither in tables nor in graphs) and articles that
estimated parameters in the context of a regression model with
continuous predictors that resulted in estimates of intercepts
and regression slopes instead of single values of the model
parameters.

2.1.3. Data Extraction
The data extraction spreadsheet was pilot-tested using six articles
and adjusted accordingly. The following parameter estimates
were extracted: drift rate (v), boundary separation (a), starting
point (z) or bias (zr =

z
a ), non-decision time (Ter), across-trial

variability in drift rate (sv), across-trial range in starting point
(sz) or relative across-trial starting point (szr =

sz
a ), and across-

trial range in non-decision time (sTer ). Parameter estimates were
obtained from tables as well as from graphs using the GraphClick
software (Arizona, 2010). Whenever possible, we extracted

parameter estimates for each individual participant; otherwise we
extracted themean across participants or in Bayesian hierarchical
applications the group-level estimates. When the DDM was fit
multiple times with varying parameterizations to the same data
within one article, we used the estimates corresponding to the
model identified as best by the authors, with a preference for
selections made based on the AIC (Akaike, 1973, 1974), in
order to identify the best trade-off between goodness-of-fit and
parametric complexity (Myung and Pitt, 1997). When the DDM
was applied to the same data across different articles, we extracted
the parameter estimates from the first application; if the first
application did not report parameter estimates, we used the most
recent application that reported parameter estimates. Finally,
articles that obtained estimates using the EZ (Wagenmakers et al.,
2007) or EZ2 (Grasman et al., 2009) methods, or the RWiener
R package (Wabersich and Vandekerckhove, 2014), which all fit
the simple diffusion model estimating only the four main DDM
parameters (Stone, 1960), were excluded due to concerns about
potential distortions caused by ignoring across-trial parameter
variability (Ratcliff, 2008). Note that we did not automatically
exclude all articles without across-trial variability parameters. For
articles that did not use EZ, EZ2, or RWiener, but reported
models without across-trial variability parameters, we assumed
that the author’s choice of fixing these parameters to zero was
motivated by substantive or statistical reasons and not by the
limitations of the estimation software, and hence we included
them in the parameter review.

2.2. Parameter Transformations
Once extracted, parameter estimates had to be transformed in
a way that makes aggregation across articles meaningful. In
this section we report issues that arose with respect to these
transformations and the solutions that we implemented. A
detailed explanation of the transformations can be found in the
Supplementary Materials.

2.2.1. Within-Trial Variability of Drift Rate
In all of the studies we examined, the accumulation-related
parameters were scaled relative to a fixed value of the moment-
to-moment variability in drift rate (typically s = 0.1 or s = 1).
This decision influences the magnitude of all parameter estimates
except those related to non-decision time. Once we determined s
for each article, we re-scaled the affected parameter estimates to
s = 1. Articles that used the DMAT software (Vandekerckhove
and Tuerlinckx, 2008) for parameter estimation were assumed to
use the DMAT default of s = 0.1, and articles that used HDDM
(Wiecki et al., 2013) or fast-DM (Voss and Voss, 2007) were
assumed to use the default setting of 1. Articles (co-) authored
by Roger Ratcliff were assigned s = 0.1.1 We excluded 25
articles because the scaling parameter was not reported and even
if we assumed the scaling parameter to be s, its value could not
be determined.

1Based on personal communication with Roger Ratcliff.
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2.2.2. Measurement (RT) Scale
Although the measurement (i.e., RT) scale influences the
magnitude of the parameter estimates, none of the articles
mentioned explicitly whether the data were fit on the seconds
or milliseconds scale. Moreover, researchers did not necessarily
report all estimates on the same RT scale. For instance, Ter or
sTer were sometimes reported in milliseconds, whereas the other
parameters were reported in seconds. Whenever possible, we
used axis labels, captions and descriptions in figures and tables,
or the default setting of the estimation software to determine the
RT scale. Articles that used the DMAT, HDDM, or fast-DM were
assumed to use the default setting of seconds and we assigned
an RT scale of seconds to papers authored by Roger Ratcliff 2

even if Ter was reported in milliseconds. We also evaluated the
plausibility of the reported estimates with respect to the second or
millisecond scale by computing a rough estimate of the expected
RT for each experimental condition as E(RT) = (a − z)/v. We
then used the following two-step decision rule to determine the
RT scale of each parameter:

1. Determine the RT scale of Ter : If estimated Ter was smaller
than 5, we assumed that Ter was reported in seconds;
otherwise we assumed that Ter was reported in milliseconds.

2. Determine RT scale of remaining parameters: If E(RT) was
smaller than 10, we assumed that the remaining parameters
were reported in seconds; otherwise we assumed that the
remaining parameters were reported in milliseconds.

Once we determined the RT scale for each parameter, we re-
scaled the parameter estimates to the seconds scale. Individual
parameters estimates that were considered implausible after the
transformation (i.e., outside of the parameter bounds, such as
a negative a) were checked manually. In particular, we checked
for (1) inconsistencies in the magnitude across the parameter
estimates within articles (e.g., a value of a indicative of seconds
vs. a value of Ter indicative of milliseconds); (2) reporting
or typographic errors; (3) extraction errors; and (4) errors in
determining the measurement scale, which typically reflected
the use of non-standard experiments or special populations. In
a number of cases we also revisited and whenever necessary
reconsidered the assigned value of s. We removed all parameter
estimates from 13 articles that reported implausible estimates
reflecting ambiguous or inconsistent RT scale descriptions or
clear reporting errors.

2.2.3. Starting Point and Bias
We expressed all starting point z and starting point variability
sz estimates relative to a. As the attributions of the response
options to the two response boundaries is arbitrary, the direction
of the bias (i.e., whether zr is greater or less than 0.5) is
arbitrary. As these attributions cannot be made commensurate
over articles with different response options, values of zr cannot
be meaningfully aggregated over articles. As a consequence, bias,
zr , and its complement, 1 − zr , are exchangeable for the purpose
of our summary. We therefore used both values in order to create
a single “mirrored” distribution. This distribution is necessarily

2Based on personal communication with Roger Ratcliff.

symmetric with a mean of 0.5, but retains information about
variability in bias.3

2.2.4. Drift Rate
There are two ways in which drift rates v can be reported. In the
first, positive drift rates indicate a correct response (e.g., “word”
response to a “word” stimulus and “non-word” response to a
“non-word” stimulus in a lexical decision task) and negative rates
indicate an incorrect response. In the second, positive drift rates
correspond to one response option (e.g., “word” response) and
negative rates to the other option (e.g., “non-word”). Here, we
adopt the former—accuracy coding—method in order to avoid
ambiguity regarding the arbitrary attribution of boundaries to
response options. We do so by taking the absolute values of the
reported drift rates to construct the prior distribution. Readers
who wish to adopt the latter—response coding—method, should
appropriately mirror our accuracy-coded priors around 0.

2.3. Generating Informative Prior
Distributions for the DDM Parameters
After post-processing and transforming the parameter
estimates, we combined each parameter type across articles
and experimental conditions within each study into separate
univariate distributions. We then attempted to characterize these
empirical parameter distributions with theoretical distributions
that provided the best fit to the overall shape of the distributions
of parameter estimates.

2.3.1. Parameter Constraints
Inmany applications of theDDM, researchers impose constraints
on the parameter estimates across experimental manipulations,
conditions, or groups, either based on theoretical grounds
or the results of model-selection procedures. After extracting
all parameters from the best fitting models, we identified
parameters that were constrained across within- and between-
subject manipulations, conditions, or groups within each study.
For the purpose of constructing the prior distributions we only
considered these fixed parameters once and did not repeatedly
include them in the empirical distributions. For instance, a
random dot motion task with three difficulty conditions may
provide only one estimate for a constrained parameter (i.e.,
non-decision time), but three parameters for an unconstrained
parameter (i.e., drift rate).

2.3.2. Synthesis Across Articles
Most studies reported parameter estimates aggregated across
participants, with only eight reporting individual estimates.
Before collapsing them with the aggregated estimates, individual
estimates were averaged across participants in each study.
Parameter estimates were equally weighted when combined
across studies as details necessary for weighting them according
to their precision were typically not available. We will revisit this
decision in the Discussion.

3The bias zr parameters estimated using the HDDM software (Wiecki et al., 2013)

are coded as 1− zr in our parameter review. Note that this has no influence on the

resulting prior distribution as we used both zr and 1− zr to create the prior.
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In the results reported in the main body of this article, we
aggregated the parameter estimates across all research domains
(e.g., neuroscience, psychology, economics), populations
(e.g., low/high socioeconomic status, clinical populations),
and tasks (e.g., lexical decision, random dot motion tasks).
In the Supplementary Materials, we provide examples of
prior distributions derived specifically for two of the most
common tasks in our database (i.e., lexical decision and
random dot motion tasks) and priors restricted to non-
clinical populations. Data and code to generate such task and
population-specific priors are available in the open repository,
so that interested readers can construct priors relevant to their
specific research questions.

2.3.3. Distributions
A full characterization of the distribution of model parameters
takes into account not only the parameters’ average values
and variability but also their correlations across participants
(e.g., people with lower drift rates may have higher thresholds)
and potentially even their correlations across studies or
paradigms using multilevel structures. Although multivariate
prior distributions would be optimal to represent correlations
across participants, they require individual parameter estimates
for the estimation of the covariance matrices. As only eight
studies reported individual parameter estimates, we were
restricted to use univariate distributions.

We attempted to characterize the aggregated results using
a range of univariate distribution functions that respected the
parameter types’ bounds (e.g., non-decision time Ter must
be positive) and provided the best fit to the overall shape
of the empirical distributions. We first considered truncated
normal, lognormal, gamma, Weibull, and truncated Student’s
t distribution functions. However, in some cases the empirical
distributions clearly could not be captured by the univariate
distributions and were contaminated by outliers due to non-
standard tasks, special populations, and possible reporting
errors that we not identified during the post-processing steps.
We therefore also considered characterizing the empirical
distribution using mixture distributions. Mixtures were chosen
from the exponential family of distributions that respected the
theoretical bounds of the parameter estimates. In particular
we used mixtures of two gamma distributions, and truncated
normals mixed with either a gamma, lognormal, or another
truncated normal distribution. Specifically, we focused on
normal mixtures because we assume a finite variance for
the parameters and thus the Gaussian distributions represents
the most conservative probability distribution to assign to
the parameter distributions (for further information see the
principles of maximum entropy; Jaynes, 1988).

The univariate and mixture distributions were fit to the
empirical distributions using maximum-likelihood estimation
(Myung, 2003), with additional constraints on upper and/or
lower bounds. For (mirrored) bias zr and szr , which are bounded
between 0 and 1, we used univariate truncated normal and
truncated t distributions on [0, 1]. A lower bound of zero was
imposed on all other parameters. We then used AIC weights
(wAIC; Wagenmakers and Farrell, 2004) to select the theoretical

distributions that struck the best balance between goodness-
of-fit and simplicity. A table of the AIC and wAIC values for
all fitted univariate and mixture distributions and the code to
reproduce this table, can be found in the open repository on
GitHub or the OSF.

We propose that the wAIC-selected distributions can be used
as informative prior distributions for the Bayesian estimation
of the DDM parameters. For simplicity, for parameters where
a mixture was the best-fitting distribution, we propose as prior
the distribution component that best captures the bulk of the
parameter estimates as indicated by the highest mixture weight.
We will revisit this choice in the Discussion.

3. RESULTS

Figure 2 shows the PRISMA flow diagram corresponding to our
literature search. The total of 196 relevant articles (i.e., “Reported
estimates” in Figure 2) covered a wide range of research areas
from psychology and neuroscience to medicine and economics.
We excluded 38 references because they did not report the scaling
parameters and we were unable to reverse engineer them or
because of inconsistent RT scale descriptions or clear reporting
errors. Thus, we extracted parameter estimates from a total
of 158 references. The most common paradigms were various
perceptual decision-making tasks (e.g., random dot motion
task; 37 references), lexical decision tasks (33), and recognition
memory tasks (17). A total of 29 references included clinical
groups and 26 references used Bayesian estimation methods.

The histograms in Figure 3 show the empirical distributions
of the parameter estimates. The red lines show the best fitting
theoretical distributions or the dominant theoretical distribution
components with the highest mixture weight (i.e., the proposed
informative prior distributions). The black lines show the non-
dominant mixture distribution components. Note that in most
cases the themixture served to inflate the distributions’ tails while
preserving a single mode.

Table 1 gives an overview of the informative prior
distributions, the corresponding upper and lower bounds
(see column “T-LB” and “T-UB”), and whenever appropriate also
the mixture weight of the dominant distribution component. The
table also shows the upper and lower bounds of the parameter
estimates collected from the literature (see column “E-LB”
and “E-UB”); these bounds can be used to further constrain
parameter estimation by providing limits for prior distributions
and bounded optimization methods.

The results of the model comparisons are available at https://
osf.io/9ycu5/. For drift rate v, the selected model was a mixture of
a zero-bounded truncated normal and a lognormal distribution
(wAIC = 0.4), with the mixture weight, and the location and scale
of the dominant truncated normal component shown in the first
row of Table 1.4 For boundary separation a, the selected model
was a mixture of gamma distributions (wAIC = 0.76), with the
shape and scale parameters of the dominant gamma component
shown in the second row of Table 1. For non-decision time Ter

4The location and scale parameters of the truncated normal distribution refer to µ

and σ and not to its expected value and variance.
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FIGURE 2 | PRISMA flow diagram. WoS, Web of Science. RWiener refers to the R package from Wabersich and Vandekerckhove (2014). EZ and EZ2 refer to

estimation methods for the simple DDM developed by Wagenmakers et al. (2007) and Grasman et al. (2009), respectively.

and across-trial variability in non-decision time sTer , the selected
model was a zero-bounded truncated t distribution (wAIC = 1
for both Ter and sTer ). For mirrored bias zr , the selected model
was a truncated t distribution on [0, 1] (wAIC = 1.0). For across-
trial variability in drift rate sv, the selected model was a mixture
of a zero-bounded truncated normal and a gamma distribution
(wAIC = 0.35), where the truncated normal had the highest
mixture weight. Lastly, for szr , the selected model was a truncated
normal distribution on [0, 1] (wAIC = 0.74).

4. DISCUSSION

The increasing popularity of cognitive modeling has led to
extensive applications of models like the Diffusion Decision
Model (DDM) across a range of disciplines. These applications
have the potential to provide substantial information about
the plausible values of the parameters of cognitive models. We
believe that for cognitive models where sufficient information
are available in the literature, a systematic quantitative
characterization of model parameters can be a very useful
addition to existing modeling practices. Parameter reviews can
benefit modeling practices in various ways, from facilitating
parameter estimation to enabling more precise and realistic
simulations to improve study design and calibrate future

experiments (Gluth and Jarecki, 2019; Heck and Erdfelder, 2019;
Pitt and Myung, 2019).

Here, we used the DDM as example case of how a systematic
quantitative parameter review can be incorporated into modeling
practices to provide informative prior distributions for the
model parameters. Our empirical distributions of the parameter
estimates were largely consistent with those of Matzke and
Wagenmakers (2009), but because our sample was much larger
we were better able to capture the tails of the parameter
distributions. Although, for simplicity, here we suggested single-
component distributions as priors, the full mixture distributions
that we selected could also be used. Bayesian DDM software, such
as the Dynamic Models of Choice software (DMC; Heathcote
et al., 2019), can be easily adapted to use any form of univariate
prior, including mixtures. In most cases the mixture served to
inflate the distributions’ tails while preserving a single mode.
However, aggregation over heterogeneous studies naturally
carries with it the possibility of creating multi-modal prior
distributions, as illustrated by the results for sv in Figure 3. If the
data proved sufficiently uninformative that such multi-modality
carried through to the posterior, caution should be exercised in
reporting and interpreting measures of central tendency.

Inferring the parameters of complex cognitive models like
the DDM from experimental data is challenging because
their parameters are often highly correlated. The cumulative
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FIGURE 3 | Prior Distributions for the DDM Parameters. The red lines show the best fitting theoretical distributions or the dominant theoretical distribution

components with the highest mixture weight (i.e., the proposed informative prior distributions). The black lines show the non-dominant distribution components. N,

number of unique estimates.
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TABLE 1 | Informative prior distributions.

DDM parameter N Distribution Weight Location/Shape Scale df T-LB T-UB E-LB E-UB

v 1,893 Truncated normal* & lognormal 0.85 1.76 1.51 0 + Inf 0.01 18.51

a 890 Gamma* & gamma 0.76 11.69 0.12 0 + Inf 0.11 7.47

Mirrored zr 203 Truncated t – 0.5 0.05 1.85 0 1 0.04 0.96

Ter 857 Truncated t – 0.44 0.08 1.32 0 + Inf 0 3.69

sv 317 Truncated normal* & gamma 0.75 1.36 0.69 0 + Inf 0 3.45

szr 278 Truncated normal – 0.33 0.22 0 1 0.01 0.85

sTer 352 Truncated t – 0.17 0.04 0.88 0 + Inf 0 4.75

N, The number of unique estimates; Weight, The mixture weight of the dominant distribution component; df, Degrees of freedom; T-LB, Theoretical lower bound of the prior distribution;

T-UB, Theoretical upper bound of the prior distribution; E-LB, Lower bound of the empirical parameter estimates; E-UB, Upper bound of the empirical parameter estimates; *, Dominant

distribution component.

knowledge distilled into parameter estimates from past research
can practically benefit both traditional optimization-based
methods (e.g., maximum likelihood) and Bayesian estimation.
In the former case, parameter reviews can provide informed
guesses for optimization starting points as well as guidance
for configuring bounded optimization methods. Even when
powerful and robust optimization algorithms (e.g., particle
swarm methods) are used, reasonable initial values and bounds
can increase time efficiency and are often helpful for avoiding
false convergence on sub-optimal solutions. In the latter—
Bayesian case—parameter reviews can facilitate the use of
informative prior distributions, which benefits both Bayesian
model selection and parameter estimation.

Informative priors are essential for Bayesian model selection
using Bayes factors (Jeffreys, 1961; Kass and Raftery, 1995).
Unlike other model-selection methods like the Deviance
Information Criteria (DIC; Spiegelhalter et al., 2014) and Widely
Applicable Information Criterion (WAIC; Vehtari et al., 2017)
that depend only on posterior samples, Bayes factors depend
crucially on the prior distribution even when large amounts of
data are available. This is because the marginal likelihood of the
competingmodels is obtained by taking a weighted average of the
probability of the data across all possible parameter settings with
the weights given by the parameters’ prior density. The workflow
outlined here may therefore facilitate the more principled use
of prior information in Bayesian model selection in the context
of evidence-accumulation models (for recent developments, see
Evans and Annis, 2019; Gronau et al., 2020).

In terms of Bayesian estimation, the extra constraint provided
by informative priors can benefit some parameters more than
others. In the DDM, for example, the across-trial variability
parameters are notoriously difficult to estimate (Boehm et al.,
2018; Dutilh et al., 2019). This has led to calls for these
parameters to be fixed to zero (i.e., use the simple diffusion
model; Stone, 1960) to improve the detection of effects on the
remaining parameters (van Ravenzwaaij et al., 2017). Informative
priors may provide an alternative solution that avoids the
potential systematic distortion caused by ignoring the variability
parameters (Ratcliff and McKoon, 2008) and enables the study
of effects that cannot be accommodated by the simple diffusion
model, such as differences between correct and error RTs

(Damaso et al., submitted). Of course, in extreme cases, the
central tendency of informative prior distributions may provide
guidelines for fixing difficult-to-estimate model parameters to a
constant (e.g., Matzke et al., 2020).

Information about the empirical distribution of parameter
estimates, both in terms of the main body and the tails of
the distributions, can especially benefit design optimization and
parameter estimation in non-standard and difficult to access
populations (e.g., Shankle et al., 2013; Matzke et al., 2017). For
example, in clinical populations long experimental sessions are
often impossible due to exhaustion or attention lapses. Expenses
can also be constraining, such as with studies using costly fMRI
methods. Therefore, data are often scarce, with a total number
of trials as low as 100 reported in some DDM applications (e.g.,
O’Callaghan et al., 2017). In these cases, experimental designs can
be optimized, and parameter estimation improved, with the aid of
informative parameter distributions that put weight on plausible
parts of the parameter space. Moreover, informative priors can
also increase sampling efficiency and speed up the convergence
of MCMC routines.

Ideally, informative prior distributions for cognitive
models should be based on prior information extracted
from experimental paradigms (or classes of paradigms) and
participant populations relevant to the research question at
hand, although care should be exercised in the latter case
where group members fall along a continuum (e.g., age or
the severity of a clinical diagnosis). In reality, constructing
such highly specific priors might not always be feasible, either
because of a paucity of relevant parameter values reported
in the literature, or when new paradigms or populations are
studied. However, we believe that using informative priors based
on a range of broadly similar paradigms and heterogeneous
populations is better than using vague priors, as long as
appropriate caution is exercised in cases when the data are not
sufficiently informative and hence the prior dominates inferences
about the model parameters. Here, we presented informative
prior distributions for parameter estimates aggregated across
paradigms and populations and also provided paradigm-specific
priors for the two most popular tasks in our database (e.g.,
lexical decision and random dot motion task) and priors for
non-clinical populations.
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The variance of the paradigm/population-specific priors
showed a general decreasing tendency. The decrease in variance
was relatively small for the priors based on non-clinical
populations, and was restricted to the main DDM parameters.
For the lexical decision task, the variance of all of the priors
decreased relative to the overall priors. For the random dot
motion task, with the exception of v, all variances decreased,
albeit the decrease was negligible for a. To summarize, for the
tasks and groups we examined here, paradigm and population
heterogeneity appears to introduce additional variability in the
parameter estimates, but the degree of additional variability
strongly depends on the type of parameter. Our open repository
provides the data and code to generate informed prior
distributions for any selection of studies included in the
database so that researchers can construct informative prior
distributions relevant to their own research questions. Naturally,
paradigm/population-specific priors are only sensible when a
sufficiently large number of parameter estimates are available
in the database to fit the theoretical (mixture) distributions, or
when researchers can augment the repository with estimates from
additional studies.

Despite their usefulness, systematic quantitative parameter
reviews are not without their pitfalls. Using available cumulative
knowledge from past literature always has to be viewed in light
of the file drawer problem (Rosenthal, 1979). Many researchers
have not published their non-significant results, therefore the
literature is biased, and thus the parameter estimates retrieved
from the literature might be biased toward specific model settings
that converged or led to significant results. Furthermore, some
cognitive models are too new and have not been widely applied
to empirical data, so past literature might not provide researchers
with a sufficiently reliable representation of the distribution
of the parameter estimates. Therefore, cognitive modelers may
not always be able to incorporate our proposed quantitative
parameter review into their workflow, and should carefully weigh
out the feasibility and benefits of such an endeavor.

4.1. Recommendations for Reporting
Cognitive Modeling Results
Our literature review revealed a wide variety of reporting
practices, both in terms of what researcher report and how they
report their modeling results. The diversity of reporting practices
is likely to reflect differences between disciplines and is in itself
not problematic. However, we believe that the full potential
of cumulative science can only be realized if authors provide
sufficient information for others to interpret and reproduce their
results. We endorse code and data sharing, and—following Lee
et al. (2019)—we strongly urge researchers to provide sufficiently
precise mathematical and statistical descriptions of their models,
and to post-register exploratory model developments. In what
follows, we reflect on the challenges we faced in performing
the systematic parameter review, and formulate a set of
general and DDM-specific suggestions that aim to increase
computational reproducibility and the expected information gain
from parameter reviews. Although our recommendations are
certainly not exhaustive and do not apply to all model classes, we

hope that they provide food for thought for cognitive modelers in
general and RT modelers in particular.

4.1.1. Model Parameterization and Scaling
The following recommendations are aimed at supporting
well-informed choices about which model and which model
parameters to include in a parameter review. Most parametric
cognitive models can be parameterized in various ways. First,
some cognitive models require fixing one (or more) parameters
to make the model identifiable (Donkin et al., 2009b; van
Maanen and Miletić, 2020). In the DDM, modelers typically
fix the moment-to-moment variability of drift rate s to 0.1
or 1 for scaling purposes. Note, however, that the exact value
of the scaling parameter is arbitrary, and—depending on the
application—one may chose to estimate s from the data and
use other parameters for scaling. We stress the importance
of explicitly reporting which parameters are used for scaling
purposes and the value of the scaling parameter(s) because the
chosen setting influences the magnitude of the other parameter
estimates. Another scaling issue relates to the measurement
units of the data. For example, RTs are commonly measured in
both seconds and milliseconds. Although the measurement scale
influences the magnitude of the parameter estimates, none of
the articles included in the present parameter review explicitly
reported the measurement unit of their data. Further, articles did
not consistently report all parameter estimates on the same RT
scale (i.e., all parameter estimates reported in seconds, but Ter

reported in milliseconds). Hence, we urge researchers to make
an explicit statement on this matter and whenever possible stick
to the same measurement unit throughout an article to avoid
any ambiguity.

Second, in cognitive models one parameter is sometimes
expressed as a function of one or more other parameters.
The DDM, for instance, can be parameterized in terms of
absolute starting point z or relative starting point zr =

z
a (i.e., bias). The choice between z and zr depends on
the application but can also reflect default software settings.
Although the two parametrizations are mathematically identical
and have no consequences for the magnitude of the other
parameters, it is clearly important to communicate which
parameterization is used in a given application. Third, in
many applications, researchers impose constraints on the model
parameters across experimental manipulations, conditions,
or groups. Such constraints sometimes reflect practical or
computational considerations, but preferably they are based on
a priori theoretical rationale (e.g., threshold parameters cannot
vary based on stimulus properties that are unknown before a
trial commences; Donkin et al., 2009a) or the results of model-
selection procedures (e.g., Heathcote et al., 2015; Strickland
et al., 2018). Regardless of the specific reasons for parameter
constraints, we urge modelers to clearly communicate which
parameters are hypothesized to reflect the effect(s) of interest, and
so which are fixed and which are free to vary across the design.
Moreover, we recommend researchers to report the competing
models (including the parametrization) that were entertained to
explain the data, and indicate the grounds on which a given
model was chosen as best, such as AIC (Akaike, 1981), BIC
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(Schwarz, 1978), DIC (Spiegelhalter et al., 2002, 2014), WAIC
(Watanabe, 2010), or Bayes factors (Kass and Raftery, 1995).
We note that parameter reviews are also compatible with cases
where there is uncertainty about which is the best model, through
the use of Bayesian model averaging (Hoeting et al., 1999). In
this approach, the parameter estimates used in the review are
averaged across the models in which they occur, weighted by the
posterior probability of the models.

4.1.2. Model Estimation
In the face of the large number of computational tools available
to implement cognitive models and the associated complex
analysis pipelines, researchers have numerous choices on how
to estimate model parameters. For instance, a variety of
DDM software is available, such as fast-DM (Voss and Voss,
2007), HDDM (Wiecki et al., 2013), DMC (Heathcote et al.,
2019), DMAT (Vandekerckhove and Tuerlinckx, 2008), using
a variety of estimation methods, such as maximum likelihood,
Kolmogorov-Smirnov, chi-squared minimization (Voss and
Voss, 2007), quantile maximum probability (Heathcote and
Brown, 2004), or Bayesian Markov chain Monte Carlo (MCMC;
e.g., Turner et al., 2013) techniques. We encourage researchers
to report the software they used, and whenever possible, share
their commented code to enable computational reproducibility
(McDougal et al., 2016; Cohen-Boulakia et al., 2017). Knowledge
about the estimation software can also provide valuable
information about the parametrization and scaling issues
described above.

4.1.3. Parameter Estimates and Uncertainty
We recommend researchers to report all parameter estimates
from their chosen model and not only the ones that are related
to the experimental manipulation or the psychological effect of
interest. In the DDM in particular, this would mean reporting
the across-trial variability parameters, and not only the main
parameters (i.e., drift rate, boundary separation, starting point,
and non-decision time), even if only a subset of parameters is
the focus of the study. Ideally, in the process of aggregation
used to create prior distributions, estimates should be weighted
by their relative uncertainty. The weighing should reflect the
uncertainty of the individual estimates resulting from fitting the
model to finite data and—if average parameters are used, as
was the case here—also sampling error reflecting the sample
size used in each study. Although we had access to the sample
sizes, most studies reported parameter estimates averaged across
participants without accounting for the uncertainty of the
individual estimates. Moreover, the few studies that reported
individual estimates provided only point estimates and failed
to include measures of uncertainty. As a proxy to participant-
level measures of uncertainty one may use the number of
trials that provide information for the estimation of the various
model parameters. However, this approach requires a level of
detail about the experimental design and the corresponding
model specification (including the number of excluded trials
per participant) that was essentially never available in the
surveyed studies.

Given these problems with reporting, we have decided to give
equal weights to all (averaged) parameter estimates regardless of
the sample size. The reason for this decision was that studies
with large sample sizes typically used a small number of trials
and likely resulted in relatively imprecise individual estimates,
whereas studies with small sample sizes typically used a large
number of trials and likely resulted in relatively precise individual
estimates. We reasoned that as a result of this trade-off, the equal
weighting may not be necessarily unreasonable. To remedy this
problem in future parameter reviews, we urge researchers to
either report properly weighted group average estimates or report
individual estimates along with measures of uncertainty, let these
be (analytic or bootstrapped) frequentist standard errors and
confidence intervals (e.g., Visser and Poessé, 2017), or Bayesian
credible intervals and full posterior distributions (Jeffreys, 1961;
Lindley, 1965; Eberly and Casella, 2003).

4.1.4. Individual Parameters and Correlations
Ideally, researchers should report parameter estimates for each
individual participant. In the vast majority of the studies
examined here, only parameters averaged over participants were
available. This means that we were unable to evaluate correlations
among parameter estimates reflecting individual differences.
Such correlations are likely quite marked. For example, in the
DDM a participant with a higher drift rate, which promotes
accuracy, is more likely to be able to afford to set a lower
boundary and still maintain good performance, so a negative
correlation between rates and boundaries might be expected.
Access to individual parameters would allow estimation of these
correlations, and thus enable priors to reflect this potentially
important information. As we discuss below, the failure to report
individual estimates brings with it important limitations on what
can be achieved with the results of systematic parameter reviews.

4.2. Limitations and Future Directions
The approach to parameter reviews taken here—obtaining values
from texts, tables, and graphs from published papers and
performing an aggregation across studies—has the advantage of
sampling estimates that are representative of a wide variety of
laboratories, paradigms, and estimation methods. Indeed, for the
priors presented in Figure 3we included a few studies with much
longer RTs than are typically fit with the DDM (e.g., Lerche
and Voss, 2019). The larger parameter values from these studies
had the effect of broadening the tails of the fitted distributions
so they represent the full variety of estimates reported in
the literature.

However, this approach has a number of limitations beyond
those related to the vagaries of incomplete reporting practices
just discussed. The first limitation is related to the aggregation
of parameter estimates over different designs. The most
straightforward example concerns including parameters from
studies with long RTs. The solution is equally straightforward:
only including studies with RTs that fall in the range of interest
specific to a particular application. A related but more subtle
issue occurs in our DDM application where the meaning of
the magnitude of the response bias (zr) parameter is design
specific, and so it is difficult to form useful aggregates over
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different paradigms. To take a concrete example, a bias toward
“word” responses over “non-word” responses in a lexical-
decision paradigm cannot be made commensurate with a
bias favoring “left” over “right” responses in a random dot
motion paradigm. Our approach—forming an aggregate with
maximum uncertainty by assuming either direction is equally
likely (i.e., mirroring the values)—removes any information
about the average direction while at least providing some
information about variability in bias. Although this approach
likely overestimates the variability of the bias estimates, we
believe that overestimation is preferable to underestimation
which might result in an overly influential prior distribution.
Again, this problem can again be avoided by constructing
priors based on a more specific (in this case task-specific)
aggregation. Our online data repository reports raw starting
point and bias estimates, which combined with the design
descriptions from the original papers could be used to perform
such an aggregation. The priors for the lexical decision task
reported in the Supplementary Materials provide an example
that did not require us to mirror the bias estimates. We
note, however, that we had to exclude a paper where it
was unclear which response was mapped to which DDM
boundary, so we would add a reporting guideline that this
choice be spelled out. We also note that similar problems
with aggregation over different designs are likely to occur for
other parameter types and also beyond the DDM, for instance
in evidence-accumulation models such as the Linear Ballistic
Accumulator (Brown and Heathcote, 2008). For instance, if
one decomposes drift rates in the DDM into the average over
stimuli and “stimulus bias” (i.e., the difference in rates between
the two stimulus classes; White and Poldrack, 2014), then
the same issue applies, but now with respect stimuli rather
than responses.

The second limitation—which is related to incomplete
reporting, but is harder to address within a traditional journal
format—concerns obtaining a full multivariate characterization
of the prior distribution of parameters that takes into account
correlations among parameters as well as their average values
and variability. Because most estimates reported in the literature
are averages over participants, we were restricted to providing
separate univariate characterizations of prior distributions for
each parameter. To the degree that the implicit independence
assumption of this approach is violated5 problems can arise.
Continuing the example of negatively correlated rates and
boundaries, although a higher value of both separately may be
quite probable, both occurring together may be much less likely
that the product of their individual probabilities that would be
implied by independence.

6To be clear, we are not talking about correlations among parameters within a

participant, which are a consequence of the mathematical form of the model’s

likelihood and the particular parameterization adopted for the design. Rather,

we are addressing correlations at the population level, i.e., across participants.

Although the two types of correlations can be related, they are not the same and in

our experience can sometimes differ very markedly.

Problems related to this limitation arise, for example, if in
planning a new experiment one were to produce synthetic data
by drawing parameter combinations independently from the
univariate priors in Figure 3, potentially producing simulated
participants with parameter values that are unlikely in a real
experiment. With Bayesian methods, ignoring the correlations
among parameters can compromise the efficiency of MCMC
samplers and complicate the interpretation of Bayes factors
because the resulting uni-variate priors will assign mass to
implausible regions of the parameter space. Although standard
Bayesian MCMC samplers used for evidence-accumulation
models have not taken account of these population correlations,
a new generation of samplers is appearing that does (Gunawan
et al., 2020). This development underscores the need for future
systematic parameter reviews to move in the direction of
multivariate characterizations. This may be achieved by revisiting
the original data sets, which due to open science practices
are becoming increasingly available, refitting the DDM, and
then using the resulting individual parameter estimates to form
multivariate priors. This future direction will be time consuming
and computationally challenging, and will no doubt bring with it
new methodological problems that we have not addressed here.
Nevertheless, we believe that the long-term gains for cognitive
modeling will make this enterprise worthwhile.
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Bayesian approaches for estimating multilevel latent variable models can be beneficial in

small samples. Prior distributions can be used to overcome small sample problems, for

example, when priors that increase the accuracy of estimation are chosen. This article

discusses two different but not mutually exclusive approaches for specifying priors. Both

approaches aim at stabilizing estimators in such away that theMean Squared Error (MSE)

of the estimator of the between-group slope will be small. In the first approach, the MSE

is decreased by specifying a slightly informative prior for the group-level variance of the

predictor variable, whereas in the second approach, the decrease is achieved directly by

using a slightly informative prior for the slope. Mathematical and graphical inspections

suggest that both approaches can be effective for reducing the MSE in small samples,

thus rendering them attractive in these situations. The article also discusses how these

approaches can be implemented in Mplus.

Keywords: Bayesian estimation, Markov chain Monte Carlo, multilevel modeling, structural equation modeling,

small sample

As van de Schoot et al. (2017) pointed out, the number of applications of Bayesian approaches is
growing quickly, mainly because software that is easy to use such as Mplus (Muthén and Muthén,
2012) is providing Bayesian estimation as an option. Bayesian approaches can be beneficial in
several respects, for example, by offering greater flexibility (e.g., Hamaker and Klugkist, 2011;
Muthén and Asparouhov, 2012; Lüdtke et al., 2013) or fewer estimation problems (e.g., Hox et al.,
2012; Depaoli and Clifton, 2015; Zitzmann et al., 2016), particularly when latent variable models
are estimated. One major difference between Bayesian and traditional Maximum Likelihood (ML)
estimation is that the former not only uses the information from the data at hand (i.e., the likelihood
function) but combines it with additional information from what is called the prior distribution.
Inferences are based on the result of this combination, that is, the posterior distribution. Scholars
have advised researchers against the use of default priors in an automatic fashion and have
encouraged them to specify priors on their own (e.g., McNeish, 2016; Smid et al., 2020). This may
be an obstacle to some researchers. However, the prior can also be considered a feature of Bayesian
estimation that can be used to improve estimation by choosing a favorable prior—a task that is
particularly challenging but also particularly worth pursuing when the sample size is small.
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The choice of prior has received a lot of attention in
the methodological literature (e.g., Natarajan and Kass, 2000;
Gelman, 2006; Chung et al., 2013), and scholars have made
different suggestions about how priors can be specified in
advantageous ways. Only recently, Smid et al. (2020) discussed
how priors can be “thoughtfully” constructed on the basis of
previous knowledge about the parameter of interest (e.g., on
the basis of a previous study or a meta-analysis) in order to
reduce small-sample bias. However, it has been argued that the
variability of an estimator should not be ignored when evaluating
the quality of a method (e.g., Greenland, 2000; Zitzmann et al.,
2020), particularly when the sample size is small. Therefore,
other suggestions for specifying the prior have been aimed at
reducing the Mean Squared Error (MSE), which combines bias
and variability: MSE = bias2 + variability. One such approach
was proposed by Zitzmann et al. (2015), who focused on the
between-group slope in multilevel latent variable modeling. The
authors suggested that researchers should suitably modify the
estimator of the group-level variance of the predictor variable
because this will result in a more stable (i.e., more accurate)
estimator of the slope. To this end, a slightly informative prior is
specified for the group-level variance of the predictor to pull the
variance estimates away from zero (i.e., the indirect approach).
By doing so, the estimates of the slope will not be too large, and
the MSE of the estimator of the slope will be reduced. Notably,
in contrast to Smid et al.’s (2020) suggestion, the prior does
not need to match previous knowledge or the true value of the
parameter in the population. Rather, an incorrect prior whose
location deviates from the parameter in the population might
reduce the MSE even more than a correct prior will. Zitzmann
et al. (2015) found that for a standardized predictor (standardized
at Level 1), a slightly informative inverse gamma prior for the
group-level variance provided a somewhat biased but muchmore
accurate (because it had a smaller MSE) estimator in small
samples. Alternatively, to reduce the MSE of the estimator of the
slope, one can specify a slightly informative prior directly for the
slope in order to shrink the estimates and thereby ensure that they
will not be too large (i.e., the direct approach).

In the present article, we mathematically work out the idea
behind the direct approach for a simple multilevel latent variable
model, and we contrast this approach with the indirect approach
and with ML. Then, we graphically show the benefits that both
approaches have over ML when the sample size is small. Finally,
we discuss how these approaches can be implemented in Mplus.

1. EXAMPLE MODEL

Before we go into detail, we present an example model that
we will use later to illustrate the different strategies. The model
was suggested by Lüdtke et al. (2008) as one way to yield
(asymptotically) unbiased estimates of between-group slopes in
contextual studies (see also Asparouhov and Muthén, 2019). To
this end, on the group level in the model, the dependent variable
Y is predicted by a latent variable (i.e., the latent group mean)
instead of the unreliable manifest group mean of the predictor
variable, which is why the model was named themultilevel latent

covariate model (Lüdtke et al., 2008). Such latent group means
have become part of many more complex multilevel structural
equation models that are commonly applied in research practice
(see Preacher et al., 2010, 2016, for overviews of such models).

More specifically, the individual-level predictor X splits into
two uncorrelated and normally distributed parts: a between-
group part Xb, which is the latent group mean, and a within-
group part Xw, which is the individual deviation from Xb. For
a person i = 1, . . . , n in group j = 1, . . . , J, the decomposition
thus reads:

Xij = Xb,j + Xw,ij (1)

Xb,j is distributed around µX with variance τ 2X , whereas the

deviation Xw,ij has variance σ 2
X . Hereafter, we will also call

σ 2
X and τ 2X the within-group and between-group variances

of X, respectively.
Applying Raudenbush and Bryk’s (2002) notation, the

regression at the individual level reads:

Level 1: Yij = β0j + βwXw,ij + εij (2)

where βw is the (fixed) within-group slope that describes the
relationship between the predictor and the dependent variable at
the individual level, and the εij are normally distributed residuals.
The residual variance is σ 2

Y . At the group level, the intercept β0j

is regressed on Xb:

Level 2: β0j = α + βbXb,j + δj (3)

where α is the overall intercept, and βb is the between-group
slope (i.e., the relationship between X and Y at the group level).
The δj are normally distributed residuals with variance τ 2Y .

Here, we focus on the between-group slope (βb), which is of
great interest in many applications of multilevel models (e.g., in
the analysis of contextual effects). When the data are balanced
(i.e., equal numbers of persons per group), the ML estimator of
βb is given by:

ˆβb =
τ̂YX

τ̂ 2X
(4)

where τ̂ 2X and τ̂YX are sample estimators of the group-
level variance of X and the group-level covariance of
X and Y , respectively.

Some statistical properties of the ML estimator in Equation 4
need to be discussed first to be able to compare this estimator
with the Bayesian estimators later on. First, by using the first-
order Taylor expansion (e.g., Casella and Berger, 2001; see also
Grilli and Rampichini, 2011) and ignoring terms involving higher
order factors such as 1

n2(n−1)
or 1

n2
for better readability, then the

bias of ˆβb can roughly be approximated by:

E
(

ˆβb

)

−βb ≈ −

2

J − 1

{

−

2 (1− ρX)

nρX
+

1− ρX

nρX

(

1+
βw

βb

)}

βb

(5)

Frontiers in Psychology | www.frontiersin.org 2 January 2021 | Volume 11 | Article 61126766

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zitzmann et al. Prior Specification

where ρX =

τ 2X
τ 2X+σ 2

X

is the intraclass correlation (ICC) of X.1

This equation could be simplified further, but we continue to
use this expression here to emphasize formal similarities with the
biases of the Bayesian estimators (see below). However, even in
its current form, it is evident from Equation (5) that the bias
critically depends on the sample size (because J occurs in the
denominator) and that the bias is generally non-zero in small
samples. However, if we let J become large, the bias diminishes
because 1

J−1 becomes very small—a property of the estimator that
we refer to as “asymptotic unbiasedness.” In a similar way, we can
yield an approximation of the variability of ˜βb:

Var
(

ˆβb

)

≈

1

J − 1

{[

ρY

ρX
+

1− ρX

nρX

(

ρY

ρX
+

1− ρY

1− ρX

)]

τ 2Y + σ 2
Y

τ 2X + σ 2
X

+

[

−1−
2 (1− ρX)

nρX

βw

βb

]

β2
b

}

(6)

where ρY =

τ 2Y
τ 2Y+σ 2

Y

is the ICC of Y . Similar to the bias, the

variability depends on the sample size in such a way that the
variability will be small when J is large. Because the MSE of ˆβb

is the sum of the squared bias and the variability,

MSE
(

ˆβb

)

≈

[

E
(

ˆβb

)

− βb

]2
+ Var

(

ˆβb

)

(7)

this measure will be small as well. Taken together, the more
information the data provide, the more the overall accuracy of
the estimator improves.

Whereas the asymptotic properties are favorable, the ML
estimator tends to be biased in small samples, and it has high
variability and thus a largeMSE in these situations (e.g., McNeish,
2017). This challenges the usefulness of the ML estimator when
the sample size is small because the result from a single study
might be highly inaccurate. Therefore, scholars have called
for alternative estimators that are less variable and thus more
accurate (i.e., they have a smaller MSE), although they might be
more biased thanML. In themultilevel literature, such estimators
have been suggested by Chung et al. (2013), Greenland (2000),
Grilli and Rampichini (2011), and Zitzmann et al. (2015), for
example. Next, we develop the direct strategy, and recap the
indirect strategy of specifying the prior.

2. THE DIRECT STRATEGY

We refer to the first strategy as the direct strategy because the
prior is specified directly for the between-group slope (βb). To
illustrate, we assume a normal prior, which can be formalized as:

βb ∼ N
(

a, b
)

(8)

which should be read as “βb is normally distributed with mean a
and variance b.” However, for better interpretability, we employ

1The ICC quantifies the amount of the total variance that can be attributed to

differences between the groups (e.g., Snijders and Bosker, 2012).

another, more convenient parameterization. Instead of a and b,

we use the terms β0 and
τ 2Y

ν0τ
2
X

:

βb ∼ N

(

β0,
τ 2Y

ν0τ
2
X

)

(9)

As we will show, β0 and ν0 can be meaningfully interpreted.
One way of expressing the likelihood for the slope is:

βb ∼ N

(

ˆβb,
τ̂ 2Y

Jτ̂ 2X

)

(10)

where τ̂ 2Y and τ̂ 2X are the sampling variances of τ 2Y and τ 2X ,
respectively. If we combine the prior in Equation (9) with the
likelihood, we obtain the following posterior:

βb ∼ N

(

ν0

ν0 + J
β0 +

J

ν0 + J
ˆβb,

J

ν0 + J

τ̂ 2Y

Jτ̂ 2X

)

(11)

which is also a normal distribution. The mean of this distribution
defines the Bayesian Expected A Posteriori (EAP) estimator,
which is the standard choice for a point estimator in Bayesian
estimation (Note that the Bayes module inMplus uses themedian
of the posterior).Withw =

J
ν0+J , this Bayesian estimator can also

be expressed as:

¯βb = (1− w) β0 + w ˆβb (12)

As can be seen from the equation, the estimator is simply the
weighted average of the mean of the prior (β0) and ˆβb, which
suggests straightforward interpretations for the parameters of the
prior. One may think of β0 as the prior guess for the between-
group slope and ν0 as the prior sample size (see also Hoff, 2009).
These interpretations are substantiated by the observation that
the larger ν0, the smaller w, and the more the estimates shrink
toward β0. Less technically speaking, whenwe aremore confident
in β0, the prior will gain more weight, and the posterior will
shift to the mean of the prior. However, when we choose ν0 to
be very small, w will be close to 1, and ¯βb will be similar to ˆβb,
which justifies the view that the modified estimator includes the
original ML estimator as a limiting case. Notice that the prior
guess does not need to represent previous knowledge about βb.
Rather, it could be set to a value that is much smaller than what
previous studies have suggested and also much smaller than the
parameter in the population. However, such an “incorrect” prior
guess might still be beneficial, particularly when the sample size
is small.

To be able to compare the properties of the Bayesian estimator
with the ML estimator and with the Bayesian estimator from the
second strategy of specifying the prior, we again use the Taylor
expansion, and we ignore terms involving higher order factors. A
rough approximation of the bias of ¯βb is then given by:

E
(

¯βb

)

− βb ≈ (1− w) β0

+

{

− (1− w) −
2w

J − 1

[

−

2 (1− ρX)

nρX

+

1− ρX

nρX

(

1+
βw

βb

)]}

βb (13)
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Similar to the ML estimator, ¯βb is generally biased when
the sample size is small. However, the bias vanishes when J
approaches infinity because w approaches 1, and 1

J−1 approaches
0 (asymptotic unbiasedness). Moreover, if ν0 is set to a value close
to 0, the bias will become similar to the bias of ˆβb.

The variability of ¯βb can be approximated as:

Var
(

¯βb

)

≈

w2

J − 1

{[

ρY

ρX
+

1− ρX

nρX

(

ρY

ρX
+

1− ρY

1− ρX

)]

τ 2Y + σ 2
Y

τ 2X + σ 2
X

+

[

−1−
2 (1− ρX)

nρX

βw

βb

]

β2
b

}

(14)

With a very large J, the variability becomes negligibly small,
and the same holds for the MSE. However, the more interesting
questions are: How does the MSE of ¯βb depend on the prior
parameters (β0, ν0) when the sample size is small, and how must
they be chosen such that the MSE will be smaller than the MSE
of ML? Before we compare the different choices for (β0, ν0), we
present another strategy for specifying the prior. Alternatively to
specifying the prior directly for the between-group slope, one can
also specify a prior for the group-level variance of the predictor,
thereby also modifying the estimator of the slope. We call this
strategy the indirect strategy.

3. THE INDIRECT STRATEGY

The principle that underlies the indirect strategy was discovered
in the early years of Structural Equation Modeling (SEM), where
models were fit on the basis of the variances and covariances of
variables. One observation was that when the sample size was
small, covariance matrices tended to be on the border of positive
definiteness (e.g., a variance estimate close to 0, correlations close
to −1 or 1; e.g., van Driel, 1978; Dijkstra, 1992; Kolenikov and
Bollen, 2012). Hence, estimators of slope parameters tended to
have high variability and thus also a large MSE. This led Yuan
and Chan (2008) to develop the ridge technique to mitigate such
problems as it modifies the estimator of the covariance matrix
by adding a small value to the main diagonal (see also Yuan and
Chan, 2016; Yang and Yuan, 2019). The main idea behind this
technique can also be adapted for Bayesian estimation. Papers by
Chung et al. (2013), Chung et al. (2015), or Zitzmann et al. (2015)
are good examples of this. By means of simulation, Zitzmann
et al. (2015) verified that specifying a slightly informative prior
for the group-level variance of the predictor that pulls estimates
of this variance slightly away from zero can increase the accuracy
of the estimator of the between-group slope by reducing its
MSE. Note that pulling the variance estimates away from zero
corresponds to adding a value to these estimates. A formal
argument for why such a prior reduces theMSE was only recently
presented by Zitzmann et al. (2020). For reasons of completeness
and comparability with the two previously presented estimators,
we illustrate the strategy here once more, using the example
model from above.

Rather than beginning with the assumption of a normal prior
for the between-group slope, we begin with a gamma prior for the

inverse of the group-level variance of the predictor variable (τ 2X):

1

τ 2X
∼ Gamma

(

a, b
)

(15)

where a and b are the parameters of the gamma distribution.2

Equation (15) reads “τ 2X is inverse-gamma distributed.” As
for the normal prior in the previous section, we employ a
reparameterization for better interpretability later on. If we set

a to ν0
2 and b to

ν0τ
2
0

2 , the prior reads:

1

τ 2X
∼ Gamma

(

ν0

2
,
ν0τ

2
0

2

)

(16)

where, as we will show, τ 20 and ν0 have interpretations similar to
those of the parameters of the (reparameterized) normal prior.

The likelihood for the inverse of the group-level variance can
be written as:

1

τ 2X
∼ Gamma

(

J

2
,
Jτ̂ 2X
2

)

(17)

where τ̂ 2X is the sample variance. Combined with the prior in
Equation (16), we yield the inverse gamma posterior:

1

τ 2X
∼ Gamma

(

ν0 + J

2
,
ν0τ

2
0 + Jτ̂ 2X
2

)

(18)

As Zitzmann et al. (2020) showed in their Appendix C, the mean
of this distribution can be approximated as:

τ̄ 2X ≈ (1− w) τ 20 + wτ̂ 2X (19)

where w =
J

ν0+J . This equation defines the Bayesian EAP

estimator of τ 2X . It is interesting to note that the equation
resembles Equation (12). The right-hand side of the equation is
also a weighted average, and τ 20 and ν0 can be thought of as the
prior guess and the prior sample size, respectively (see Hoff, 2009;
Lüdtke et al., 2018; Zitzmann et al., 2020).

Adding a prior for τ 2X also has consequences for the estimator
of the between-group slope (βb). Replacing the denominator in
Equation (4) (τ̂ 2X) with τ̄ 2X results in:

˜βb =
τ̂YX

(1− w) τ 20 + wτ̂ 2X
(20)

This new estimator is indicated by a tilde (∼) in order to better
differentiate it from the ML estimator and from the Bayesian
estimator that results from the direct strategy of specifying the
prior (Equation 12).

2The inverse of a variance is sometimes also referred to as the precision in the

statistical literature (e.g., Hoff, 2009).
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To derive some properties of ˜βb, we apply exactly the same
reasoning that led to the respective properties of ˆβb and ¯βb.
Accordingly, the bias of ˜βb is roughly:

E
(

˜βb

)

− βb ≈
(

f − 1
)

βb −
2wf 2

J − 1

{

−wf

[

1+
2 (1− ρX)

nρX

]

+ 1

+

1− ρX

nρX

(

1+
βw

βb

)}

βb (21)

where f is used as an abbreviation for the ratio
τ 2X

(1−w)τ 20+wτ 2X
.3

Notice that the equation implies that ˜βb is generally biased when
the sample size is finite, whereas the bias diminishes when J
approaches infinity (asymptotic unbiasedness). Moreover, the
bias becomes similar to the biases of ¯βb and ˆβb when we let ν0
become very small.

The variability of ˜βb is:

Var
(

˜βb

)

≈

f 2

J − 1

{[

ρY

ρX
+

1− ρX

nρX

(

ρY

ρX
+

1− ρY

1− ρX

)]

τ 2Y + σ 2
Y

τ 2X + σ 2
X

+

[

2wf

(

wf

(

1+
2 (1− ρX)

nρX

)

− 2

(

1+
1− ρX

nρX

(

1+
βw

βb

)))

+ 1

+

2 (1− ρX)

nρX

βw

βb

]

β2
b

}

(22)
Similar to the previous equation, we can easily infer that when
J is large, the variability will be small and, thus, the MSE,
which combines bias and variability, will be small as well—an
observation that once again demonstrates the role of the sample
size in determining the accuracy of estimations. However, as
mentioned above, it is muchmore interesting to ask how the prior
parameters τ 20 and ν0 must be chosen such that the MSE will be
reduced in comparison with ML in small samples.

4. COMPARING THE MSEs IN SMALL
SAMPLES

In this section, we investigate the MSE of the different strategies
for specifying priors in small samples for different choices of
the prior parameters, using the example model from above to
simulate data that are typical in psychology. Because it is difficult
to infer from the equations how the MSEs compare with each
other, they were plotted against the sample size to allow for
graphical comparisons.

In accordance with Lüdtke et al. (2008), we considered the
case of standardized variables (standardized at Level 1), and

3We would like to state that we recognized a typo in the bias formula of

Zitzmann et al.’s (2020) original publication. There should be a minus sign in

front of the first term of the curly-bracketed expression. Equation (21) presents the

corrected formula. However, the numerical results on which Figure 3 in Zitzmann

et al. (2020) was based were not affected by the typo because these results were

generated from formulas that were correct and also provided even more precise

approximations than the ones presented in the article (because terms with higher

order factors were not omitted).

we assumed that the between-group slope (βb) was 0.7 in
the population. Moreover, we set the number of persons per
group (n) to 5, which is not uncommon in many subdisciplines
of psychology, including organizational, personality, and social
psychology. The ICC of the predictor was 0.1, which could be
considered small- to medium-sized compared with typical ICCs
(Snijders and Bosker, 2012; Zitzmann et al., 2015). The sample
size at the group level (J) was varied from 20 to 60 groups because
these numbers represent small sample sizes (e.g., Hox et al.,
2012; see also Hox et al., 2010) and the aim was to compare the
estimators in these situations.

Figure 1 depicts a normalized version of the MSE, the Root
Mean Squared Error (RMSE), for five different estimators of
the slope. The first estimator in the figure is the ML estimator
(solid black line). The second estimator (blue dashed line) is
the Bayesian estimator that results when the direct strategy is
combined with a correct prior for βb (i.e., the prior guess, β0,
equals the parameter in the population). Because βb was 0.7 in the
population, a correct prior for βb was specified by setting β0 equal
to this value. The third estimator (blue dotted line) also resulted
from the direct strategy. However, β0 was set to 0 (and thus well
below 0.7) in order to shrink estimates that were too large toward
zero. The fourth estimator (red dashed line) resulted from the
indirect strategy with a correct prior for the group-level variance
of the predictor (τ 2X). The prior guess (τ

2
0 ) was set to 0.1, which

was the value of τ 2X in the population.4 The fifth estimator (red
dotted line) resulted from the indirect strategy as well. However,
β0 was set to 1, which was above the parameter in the population.
Thus, estimates of the variance were pulled away from zero, and,
therefore, the estimates of the slope were shrunken. The three
different panels of Figure 1 show the RMSEs for different values
of ν0: 0.1 (upper left), 1.0 (upper right), and 5.0 (lower left). The
first two values can be considered choices that are only slightly
informative, whereas the latter is more informative and was used
here to illustrate what happens to the RMSE when the priors
become more informative.

As can be seen in the Figure 1, the different estimators tended
to provide different RMSEs. The RMSE was largest for the ML
estimator, whereas the RMSE was reduced when a Bayesian
estimator was used. The reduction was particularly pronounced
when J was very small. In addition and more important, the
extent of the reduction also depended on the strategy for
specifying the prior and the choices for the prior parameters.
Although the direct strategy reduced the RMSE overall, the
RMSE was slightly smaller when this strategy was combined with
an incorrect prior (i.e., β0 = 0) than with a correct prior (i.e.,
β0 = 0.7). Moreover, the choice of a larger ν0 was associated with
a smaller RMSE. However, the smallest RMSEs emerged when the
indirect strategy was used with an incorrect prior (i.e., τ 20 = 1,
which was also the upper bound of τ 2X due to standardization).
With a larger value of ν0 = 1, the RMSE was reduced relative to
a ν0 of 0.1. However, setting ν0 to 5 did not yield an RMSE that
was even smaller. Rather, the RMSE was slightly larger than with
a ν0 of 1 because the bias induced by the prior outweighed the
variability in the computation of the RMSE. Additional results

4Because of the standardization, τ 2X is equal to the value of the ICC.
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FIGURE 1 | The analytically derived Root Mean Squared Error (RMSE) in estimating the between-group slope for the direct and the indirect approach as a function of

the sample size at the group level (J) and the prior distribution. Results are shown for n = 5 persons per group and an intraclass correlation of ICC = 0.1. ML,

maximum likelihood; direct, the prior was specified directly for the between-group slope; indirect, the prior was specified for the group-level variance of the predictor

variable; correct, correct prior (i.e., the prior guess equaled the value of the parameter in the population); incorrect, incorrect prior (i.e., the prior guess deviated from

the parameter in the population); ν0, prior sample size.

are presented in the Appendix. Figure A1 shows the RMSEs
of the different estimators for a larger number of 10 persons
per group, whereas Figure A2 shows the RMSEs for a higher
ICC of .2. Although the RMSEs were smaller in Figures A1, A2
compared with Figure 1, the big picture was similar overall:
The different estimators provided different RMSEs. All Bayesian
estimators provided smaller RMSEs than the ML estimator in
very small samples except the indirect strategy with an incorrect
informative prior.

To sum up, both strategies for specifying the prior offer
attractive ways to obtain more accurate estimators of the
between-group slope in small samples when used with slightly
informative priors. Especially when no previous knowledge exists

about the parameters, the choice of a relatively small prior guess
for the between-group slope or a relatively large prior guess for
the group-level variance of the predictor could be useful when
these choices are combined with a small ν0 in the low one-
digit range. Although somewhat biased, the resulting Bayesian
estimators of the slope were found to be more accurate than ML
when the sample size was small.

5. DISCUSSION

It has been argued that Bayesian approaches can be beneficial
when the sample size is small because prior distributions can
be used to increase estimation accuracy. In the present article,
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we focused on the between-group slope because this parameter
is often of interest in multilevel latent variable modeling. Two
approaches for specifying priors can be distinguished, both
of which are aimed at reducing the MSE of the estimator
of the between-group slope: In the first approach, a slightly
informative prior is specified directly for the slope, whereas in
the indirect approach, the MSE is reduced by using a slightly
informative prior for the group-level variance of the predictor
variable. In the present article, we worked out the former
approach mathematically and compared it with the indirect
approach and with ML. Graphical inspections suggested that
both approaches can be very effective in reducing the MSE
compared with ML in small samples, rendering them attractive
for researchers. We would like to add that these approaches

are not mutually exclusive and that researchers can also apply
them simultaneously by specifying slightly informative priors
for the slope as well as for the group-level variance of the
predictor variable. To provide initial information about how such
a simultaneous application of the two approaches performs, we
conducted an additional simulation study with 20 to 60 groups,
5 persons per group, and an ICC of the predictor variable of
0.1. Figure 2 depicts the RMSE for five different estimators of
the slope. The first estimator is the ML estimator (solid black
line). The second estimator (blue dashed line) is the Bayesian
estimator that resulted when the direct strategy and the indirect
strategy were simultaneously applied and combined with correct
priors for the between-group slope and the group-level variance
of the predictor, respectively. The third estimator (blue dotted

FIGURE 2 | The simulated Root Mean Squared Error (RMSE) in estimating the between-group slope for the combined approach as a function of the sample size at

the group level (J) and the prior distribution. Results are shown for n = 5 persons per group and an intraclass correlation of ICC = 0.1. ML, maximum likelihood;

correct/correct, correct priors (i.e., the prior guesses equaled the values of the parameters in the population) were specified for the between-group slope and the

group-level variance of the predictor variable; correct/incorrect, a correct prior was specified for the between-group slope, and an incorrect prior (i.e., the prior guess

deviated from the parameter in the population) was specified for the group-level variance of the predictor variable; incorrect/correct, an incorrect prior was specified

for the between-group slope, and a correct prior was specified for the group-level variance of the predictor variable; incorrect/incorrect, incorrect priors were specified

for the between-group slope and the group-level variance of the predictor variable; ν0, prior sample size.
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line) also resulted from combining the two strategies. However,
whereas the direct strategy was combined with a correct prior,
the indirect strategy was combined with an incorrect prior. The
fourth estimator (red dashed line) resulted from simultaneously
applying the direct strategy with an incorrect prior and the
indirect strategy with a correct prior. The fifth estimator (red
dotted line) resulted from the simultaneous application of the two
strategies as well. However, both strategies were combined with
incorrect priors. The three different panels of the figure show the
RMSEs for different values of the prior sample size. Again, the
RMSE was largest for the ML estimator, whereas the RMSE was
reduced when a Bayesian estimator was used, particularly when
this estimator was combined with slightly informative priors
and the sample size was small. Thus, the overall finding from
this simulation confirmed that a simultaneous application of
the two approaches (i.e., specifying slightly informative priors
for the slope as well as for the group-level variance of the
predictor variable) can also be beneficial. However, because the
consequences of such a use could not be studied exhaustively
here, it would be interesting to conduct a more thorough
simulation on this topic in future research.

Although our findings were generally favorable and could be
considered a successful “proof of concept,” a word of caution is
nevertheless needed. Our demonstrations were very limited. For
example, the specific conditions we studied do not completely
reflect real data. Future research should consider a wider range of
conditions for more conclusive findings. Moreover, the example
model we used was overly simple. Realistic models typically
involve more than one predictor and also multiple indicators
per construct. However, one can derive the Bayesian estimators
analogously in this more general multivariate case. Zitzmann
(2018) even showed that in a multilevel SEM with two latent
predictors with three indicators each, a slightly informative
inverse Wishart prior for the covariance matrix of the predictors
led to more accurate estimators of the between-group slopes,
particularly when the samples size was small. Finally, the MSEs
of the estimators we derived were only rough approximations.
These approximations can nevertheless be useful for deriving
hypotheses about which prior works well under which condition.

Before we come to Mplus, we wish to acknowledge that
parameter stabilization does not require Bayesian estimation.
In fact, the idea of using slightly informative priors is similar
to using techniques from the frequentist framework (Hastie
et al., 2009). For example, the weighting parameter (w) of the
Bayesian estimator in Equation (12) has an effect similar to
that achieved by the penalty in regularized SEM (e.g., Jacobucci
et al., 2016), and the weighting parameter in Equation (19)
corresponds with the tuning parameter in ridge generalized least
squares (e.g., Yuan and Chan, 2016) and regularized consistent
partial least squares estimation (e.g., Jung and Park, 2018).
Despite the existence of these methods, we employed Bayesian
estimation here for reasons of convenience and because this type
of estimation is an option in Mplus, which is the software that
many researchers use to fit multilevel latent variable models.

Mplus does not use Bayesian estimation as the default, and
users must request it by setting ESTIMATOR to BAYES. Next,
to yield a more accurate estimator of the between-group slope

by using a slightly informative prior for this parameter, users
must specify such a prior manually. In Mplus, normal priors are
parameterized as in Equation (8), where a is the mean and b is the
variance. Thus, to specify a normal prior with the prior guess (β0)
and the prior sample size (ν0) equaling 0 and 1, respectively, users

must compute a and b first. Given a = β0 and b =

τ 2Y
ν0τ

2
X

, we yield

an a of 0 and a b of
τ 2Y
τ 2X
. Because τ 2Y and τ 2X are unknown, they

need to be replaced with, for example, their sample estimates.
Assuming that these estimates are τ̂ 2Y = 0.15 and τ̂ 2X = 0.1, then
the prior is specified by the following line of code:

MODEL PRIORS:
Name of slope ~ N( 0, 1.5);

Our findings suggest that this prior increases the accuracy of
estimation in small samples. Choosing an even smaller value for b
can also be useful in these situations. Alternatively, one could also
specify a slightly informative prior for the group-level variance
of the predictor. To be able to do this, users must compute the
parameters a and b in Equation (15) because Mplus uses this
parameterization of the inverse gamma prior. Setting both τ 20 and

ν0 to 1 results in a = b =
1
2 , using a =

ν0
2 and b =

ν0τ
2
0

2 . The
following code line implements the prior with Mplus:

MODEL PRIORS:
Name of variance ~ IG( 0.5, 0.5);

For a standardized predictor, this prior is quite effective when the
sample size is small. Specifying somewhat larger values (e.g., by
setting ν0 = 2) might increase estimation accuracy even further
(Depaoli and Clifton, 2015).

To conclude, we worked out and discussed Bayesian
approaches that perform better than ML in small samples,
and we offered some practical guidance on how to implement
these approaches with Mplus. We hope that this article will
help researchers in the field of psychology move beyond using
Bayesian estimation as “just another estimator” and will help
them make choices that are beneficial when their aim is to fit
multilevel latent variable models and the sample size is small.
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APPENDIX

FURTHER RESULTS

FIGURE A1 | The analytically derived Root Mean Squared Error (RMSE) in estimating the between-group slope for the direct and the indirect approach as a function

of the sample size at the group level (J) and the prior distribution. Results are shown for n = 10 persons per group and an intraclass correlation of ICC = 0.1. ML,

maximum likelihood; direct, the prior was specified directly for the between-group slope; indirect, the prior was specified for the group-level variance of the predictor

variable; correct, correct prior (i.e., the prior guess equaled the value of the parameter in the population); incorrect, incorrect prior (i.e., the prior guess deviated from

the parameter in the population); ν0, prior sample size.
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FIGURE A2 | The analytically derived Root Mean Squared Error (RMSE) in estimating the between-group slope for the direct and the indirect approach as a function

of the sample size at the group level (J) and the prior distribution. Results are shown for a small number of n = 5 persons per group and an intraclass correlation of

ICC = 0.2. ML, maximum likelihood; direct, the prior was specified directly for the between-group slope; indirect, the prior was specified for the group-level variance of

the predictor variable; correct, correct prior (i.e., the prior guess equaled the value of the parameter in the population); incorrect, incorrect prior (i.e., the prior guess

deviated from the parameter in the population); ν0, prior sample size.
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This article describes some potential uses of Bayesian estimation for time-series and
panel data models by incorporating information from prior probabilities (i.e., priors)
in addition to observed data. Drawing on econometrics and other literatures we
illustrate the use of informative “shrinkage” or “small variance” priors (including so-
called “Minnesota priors”) while extending prior work on the general cross-lagged panel
model (GCLM). Using a panel dataset of national income and subjective well-being
(SWB) we describe three key benefits of these priors. First, they shrink parameter
estimates toward zero or toward each other for time-varying parameters, which lends
additional support for an income → SWB effect that is not supported with maximum
likelihood (ML). This is useful because, second, these priors increase model parsimony
and the stability of estimates (keeping them within more reasonable bounds) and thus
improve out-of-sample predictions and interpretability, which means estimated effect
should also be more trustworthy than under ML. Third, these priors allow estimating
otherwise under-identified models under ML, allowing higher-order lagged effects and
time-varying parameters that are otherwise impossible to estimate using observed data
alone. In conclusion we note some of the responsibilities that come with the use of
priors which, departing from typical commentaries on their scientific applications, we
describe as involving reflection on how best to apply modeling tools to address matters
of worldly concern.

Keywords: panel data model, Granger causality (VAR), Bayesian, shrinkage estimation, small-variance priors

FROM DATA TO CAUSES III: BAYESIAN PRIORS FOR GENERAL
CROSS-LAGGED PANEL DATA MODELS (GCLM)

Panel data models track multiple independent units N over multiple occasions of measurement
T with parameters typically estimated by frequentist methods (e.g., Arellano, 2003; Baltagi, 2013;
Little, 2013; Allison, 2014; Hsiao, 2014; Hamaker et al., 2015). This approach to causal inference
was recently illustrated by Zyphur et al. (2020a,b), showing the benefits of a general cross-lagged
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panel model (GCLM) specified as a structural equation model
(SEM) and estimated by maximum likelihood. However,
moving away from such frequentist estimators, time-series,
and panel data models can be extended to allow additional
flexibility in data and model structures, thereby enhancing
the range of applications and practical usefulness of models
such as the GCLM.

In the current article we do this by showing how Bayesian
estimation and inference can expand the range of available model
specifications because Bayesian approaches allow including
information from prior probabilities (i.e., priors) as well
as observed data when estimating parameters (for general
discussions see Gill, 2008; Gelman et al., 2014). Prior probabilities
can be specified in various ways when estimating panel
data models (e.g., Schuurman et al., 2016) including weakly
informative priors to improve the stability of estimates (keeping
them within more reasonable bounds; Lüdtke et al., 2018), but
here we illustrate the use of informative “small variance” or
“shrinkage” priors for parameters and/or parameter differences
using an approach that follows from existing work (see Muthén
and Asparouhov, 2012; Asparouhov et al., 2015; Zyphur and
Oswald, 2015). This approach to informative priors “shrinks”
parameter estimates toward zero or toward each other while
allowing estimates to deviate from these priors as a function
of observed data.

In this article we endeavor to show how, in the context of panel
data models, such priors have many benefits, helping to solve
the problem of “how to build models that are flexible enough to
be empirically relevant . . . but not so flexible as to be seriously
over-parameterized” (Koop and Korobilis, 2010, p. 269). In brief,
these priors allow many parameters to be estimated while at the
same time minimizing model complexity, shrinking parameter
estimates toward zero, and/or toward each other by inducing
a strong positive correlation among parameters (i.e., reducing
parameter differences; Korobilis, 2013). Two key benefits of this
prior specification and of Bayesian estimation and inference more
generally are as follows.

First, the priors increase generalizability by reducing variance
in a classic bias-variance trade-off, which is important for
practically applying results from panel data models by reducing
overfitting (Korobilis, 2013). Second, they allow estimating
models that are under-identified in frequentist approaches due
to limited T and/or N, such as when estimating time-varying unit
effects and multiple lagged effects (see Canova, 2007; Koop and
Korobilis, 2010; Canova and Ciccarelli, 2013; Giannone et al.,
2015). By using informative priors, under-identified parameters
need not be strictly constrained to zero or equality over time
as would be required with frequentist estimators, thus allowing
model results to be more sensitive to observed data patterns
when compared to models that constrain parameters to zero or
equality over time.

In what follows, we illustrate these benefits by first reviewing
the GCLM and its identification in SEM under frequentist
estimators. We then describe Bayesian estimation and inference,
focusing on the benefits of small-variance priors. Using Gallup
World Poll data from Diener et al. (2013) used in Zyphur et al.’s
articles, we then fit various models to illustrate the benefits of our

Bayesian approach. In so doing, we support different conclusions
than the original two articles on the GCLM, which revealed no
causal effects among income and subjective well-being (SWB).
With a Bayesian approach, we show a positive short-run and
long-run effect of income on SWB, but not the reverse. We
conclude with brief thoughts on panel data models, including the
importance of using them to study processes that are of serious
worldly concern. Before continuing we emphasize that our effort
here is to illustrate some of the logic and potential uses of prior
probabilities for time-series and panel data models, rather than
provide a comprehensive overview of priors in longitudinal data
models. Other work on priors, sensitivity analyses, and reporting
standards exists and we advise interested authors to further
explore these topics (e.g., Depaoli and van de Schoot, 2017; Smid
et al., 2020), including specifically in the domain of panel data
models similar to the GCLM (Lüdtke et al., 2018).

THE GENERAL CROSS-LAGGED PANEL
MODEL (GCLM)

The GCLM is specified for a unit i at an occasion t with
two variables xi,t and yi,t (for additional insight see Zyphur
et al., 2020a,b). Parenthetical superscripts (x) and (y) indicate
the equation in which a coefficient belongs; subscripts x and y
indicate the predictor with which a coefficient is associated; and
h indicates a lag or lead, such as yi,t−h. With this notation, the
general model is shown as follows (for t > 1):

xi,t = α
(x)
t + λ

(x)
t η

(x)
i + β

(x)
x1 xi,t−1 + δ

(x)
x1 u(x)

i,t−1 + β
(x)
y1 yi,t−1

+δ
(x)
y1 u(y)

i,t−1 + u(x)
i,t (1)

yi,t = α
(y)
t + λ

(y)
t η

(y)
i + β

(y)
y1 yi,t−1 + δ

(y)
y1 u(y)

i,t−1 + β
(y)
x1 xi,t−1

+δ
(y)
x1 u(x)

i,t−1 + u(y)
i,t (2)

wherein ui,t is an impulse capturing random events that are
meant to mimic random assignment to levels of a variable,
with variance ψut and contemporaneous covariance or “co-
movement”ψ(xy)

ut ; αtis an occasion effect at a time t; ηiis a unit
effect capturing stable factors over time, withη

(x)
i ∼ N(0, ψ

(x)
η ),

η
(y)
i ∼ N(0, ψ

(y)
η ), and covarianceψ(xy)

η ; λt is a time-varying unit
effect; β(x)

x1 and β
(y)
y1 are autoregressive (AR) effects of past impulses

on the same variable (with coefficients on lagged predictors
taking a form β

(y)
yh , wherein h is the lag); δ

(x)
x1 and δ

(y)
y1 are moving

average or MA effects of past impulses on the same variable; β
(x)
y1

and β
(y)
x1 are cross-lagged or CL effects of past impulses on another

variable; and δ
(x)
y1 and δ

(y)
x1 are cross-lagged moving average or

CLMA effects of past impulses among different variables1. With

1In order to identify a scale for η we fix one of each λ
(x)
t and λ

(y)
t terms to unity.

In our previous papers and in our online Excel file that automates Mplus input,
we did this for the final occasion λ6 = 1. Choosing this or any other occasion is
an arbitrary decision, but in the current paper we set λ1 = 1 in order to facilitate
some of the Bayesian prior specifications we describe.
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this logic, we interpret at least three kinds of effects: (1) total
effects of a variable on itself combine AR and MA terms to show
the short-run persistence of impulses [e.g., β(y)

y1 + δ
(y)
y1 ] such that a

process is more mean-reverting as these terms tend towards zero;
(2) Granger-causal effects of impulses that combine all CL and
CLMA terms to show short-run or direct effects among different
variables over time [e.g., β

(y)
x1 + δ

(y)
x1 ]; and (3) impulse responses

map the change in a system across all parameters due to an
impulse [e.g., a change along u(y)

i,t ], showing long-run or total
effects of an impulse across all variables in a system over time (see
Zyphur et al., 2020a).

We map this general model structure onto the following SEM:

yi = 3ηi (3)

ηi = α+ Bηi + ζi (4)

with all terms as follows for an AR(1)MA(1)CL(1)CLMA(1)
model and a single unit effect for each of k observed variables
at T occasions: yiis a kT length vector of observed variables; 3

is a kT × (2kT + k) matrix, mapping kT observed variables onto
kT latent analogs; ηi is a 2kT + k length vector, with kT terms
mapped to yi, kT impulses, and k unit effects; α is a 2kT + k
length vector with kT occasion effects only; B is a (2kT + k)×
(2kT + k) matrix with kT unities to map kT observed variables
to kT impulses, kT time-varying unit effects, 2k AR and MA
terms, and 2k(k− 1) CL and CLMA terms; and ζi is a 2kT +
k length vector with covariance matrix 9 containing k unit
effect variances, k(k− 1)/2 unit effect covariances, kT impulse
variances, and kT(k− 1)/2 co-movements.

As with time-series and panel data models in general, the
GCLM requires choosing different numbers of unit effects and
the following lag orders: p lags in an AR(p) model; q lags in an
MA(q) model; c lags in an CL(c) model; l lags in an CLMA(l)
model. Substantive and statistical checking should inform these
choices, with an emphasis on conservative models that balance
theory and contextual knowledge with model fit (Armstrong
et al., 2015; Green and Armstrong, 2015). In Zyphur et al.
(2020a) this was done by modeling income xi,t and SWB yi,t
for N = 135 countries and T = 6 years from 2006 to 2011 (see
Diener et al., 2013). After substantive and statistical checking,
an AR(1)MA(2)CL(1)CLMA(1) model was chosen for income
xi,t (adding a higher-order MA term δ

(x)
x2 u(x)

i,t−2 to Eq. 1), and
an AR(1)MA(1)CL(1)CLMA(1) model was chosen for SWB yi,t
(fitting with Eq. 2).

Descriptive statistics are in Zyphur et al. (2020a) and results
are in Table 1 as the maximum-likelihood or “ML” model these
authors estimated. Table 2 shows Granger causality tests from
the four steps discussed by these authors, with AIC and BIC
values showing that eliminating CL and CLMA effects improves
model fit (by decreasing AIC and BIC values, indicating better
model quality as a trade-off between fit and parsimony). This fails
to support any form of Granger causality using the logic from
Zyphur et al. (2020a). Finally, impulse responses in Figures 1A–D
show very weak support for long-run effects with CIs that include
zero, and an unexpected negative SWB → income effect. In
sum, these results are counter to those originally presented by

TABLE 1 | Model results.

Parameters Estimates (SEs or posterior SDs)

(Ranges for time-varying parameters)

ML Bayes 1 Bayes 2

SWB → SWB AR/MA Terms β
(y)
y1 and δ

(y)
y1

β
(y)
y1 0.39 (0.36) 0.34 (0.21)

[0.30, 0.39]
0.34 (0.21)
[0.29, 0.39]

δ
(y)
y1 0.19 (0.32) 0.15 (0.19)

[0.08, 0.22]
0.16 (0.19)
[0.08, 0.23]

β
(y)
y1 + δ

(y)
y1 0.58* (0.09) 0.49* (0.08)

[0.38, 0.62]
0.49* (0.08)
[0.38, 0.62]

Income → Income AR/MA terms β
(x)
x1 and δ

(x)
x1

β
(x)
x1 0.96* (0.13) 0.97* (0.03)

[0.94, 1.0]
0.97* (0.03)
[0.94, 1.0]

δ
(x)
x1 −0.33 (0.25) −0.27* (0.07)

[−0.30, −0.21]
−0.26* (0.07)
[0.30, −0.21]

δ
(x)
x2 0.06 (0.09) 0.02 (0.06)

[−0.03, 0.08]
0.01 (0.04)

[−0.07, 0.11]

δ
(x)
x. −0.27 (0.19) −0.25* (0.10)

[−0.32, −0.13]
−0.26* (0.08)

[−0.35, −0.10]

β
(x)
x1 + δ

(x)
x. 0.69* (0.20) 0.72* (0.08)

[0.62, 0.87]
0.72* (0.07)
[0.59, 0.90]

Income → Subjective well-being CL/CLMA terms β
(y)
x1 and δ

(y)
x1

β
(y)
x1 0.13 (0.32) 0.23 (0.20)

[0.19, 0.26]
0.24 (0.20)
[0.20, 0.26]

δ
(y)
x1 0.01 (0.25) −0.03 (0.19)

[−0.07, 0.01]
−0.03 (0.19)

[−0.08, 0.002]

β
(y)
x1 + δ

(y)
x1 0.14 (0.16) 0.22 (0.12)

[0.12, 0.25]
0.22 (0.12)
[0.12, 0.24]

Subjective well-being → Income CL/CLMA terms β
(x)
y1 and δ

(x)
y1

β
(x)
y1 −0.10 (0.07) 0.01 (0.03)

[−0.001, 0.03]
0.01 (0.02)

[−0.001, 0.03]

δ
(x)
y1 0.08 (0.07) −0.02 (0.05)

[−0.04, 0.01]
−0.02 (0.05)
[−0.04, 0.01]

β
(x)
y1 + δ

(x)
y1 −0.02 (0.04) −0.01 (0.05)

[−0.04, 0.01]
−0.01 (0.04)
[−0.04, 0.01]

Co-movement in impulses ψ
(xy)
ut

as correlations

ψ
(xy)
u1 0.64 (0.59) 0.87* (0.31) 0.87* (0.30)

ψ
(xy)
u2 0.45* (0.21) 0.44* (0.17) 0.44* (0.17)

ψ
(xy)
u3 0.003 (0.13) 0.05 (0.13) 0.05 (0.13)

ψ
(xy)
u4 −0.02 (0.12) 0.05 (0.13) 0.06 (0.13)

ψ
(xy)
u5 0.32* (0.14) 0.41* (0.11) 0.41* (0.11)

ψ
(xy)
u6 0.11 (0.13) 0.14 (0.11) 0.15 (0.11)

Unit effect variances ψ
(y)
η andψ

(x)
η , and covariance ψ

(xy)
η as a correlation

ψ
(y)
η 1.01 1.01 1.01

ψ
(x)
η 0.40 0.37 0.37

ψ
(xy)
η 0.96* (0.06) 0.86* (0.18) 0.86* (0.18)

Time-varying unit effects (“factor loadings”) λ
(y)
t and λ

(x)
t as correlations

λ
(y)
1 0.96* (0.06) 0.92* (0.10) 0.91* (0.10)

λ
(y)
2 0.48 (0.32) 0.47* (0.18) 0.47* (0.18)

λ
(y)
3 0.48 (0.32) 0.44* (0.17) 0.44* (0.17)

λ
(y)
4 0.46 (0.30) 0.51* (0.18) 0.51* (0.17)

λ
(y)
5 0.52 (0.30) 0.45* (0.17) 0.45* (0.17)

λ
(y)
6 0.46 (0.33) 0.44* (0.18) 0.45* (0.17)

λ
(x)
1 0.73* (0.25) 0.69* (0.19) 0.68* (0.19)

λ
(x)
2 −0.03 (0.22) −0.01 (0.06) −0.01 (0.06)

(Continued)
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TABLE 1 | Continued

Parameters Estimates (SEs or posterior SDs)

(Ranges for time-varying parameters)

ML Bayes 1 Bayes 2

λ
(x)
3 0.15 (0.09) −0.01 (0.05) −0.01 (0.05)

λ
(x)
4 0.16* (0.07) 0.02 (0.05) 0.02 (0.05)

λ
(x)
5 0.15* (0.08) 0.01 (0.06) 0.01 (0.06)

λ
(x)
6 0.16* (0.08) −0.01 (0.05) −0.01 (0.05)

Fit indices

k / pD 54 50.69 50.78

PPP – 0.32 0.32

DIC – 829.23 827.65

ML, maximum likelihood; SWB, subjective well-being; AR, autoregressive; MA,
moving average; CL, cross-lagged; CLMA, cross-lagged moving average; BIC,
Bayes information criterion; DIC, deviance information criterion; k / pD, the number
of model parameters, which is exactly k under ML and is estimated as pD
for Bayes models.
* p < 0.05.

Diener et al. (2013), who found a positive income→ SWB effect
as well as a positive SWBincome effect, which Zyphur et al.
(2020a) proposed was likely due to failing to control for unit
effects η

(x)
i and η

(y)
i (and their covariance ψ

(xy)
η ).

However, the model chosen by Zyphur et al., was limited
by their reliance on a frequentist estimator. Although these
estimators are common and inferences based on them may
be sound in many cases, estimators such as ML rely on only
observed data rather than also incorporating prior information
about parameters (van de Schoot et al., 2017). Specifically, time-
varying unit effects λtηi and AR/MA terms rely on kT(T −
1)/2 observed auto-covariances for estimation. On the other
hand, unit effect covariances ψ

(xy)
η , CL/CLMA terms, and

impulse co-movements ψ
(xy)
ut rely on k(k− 1)T2/2 observed

cross-covariances for estimation. In turn, for an SEM to be
identified the number of observed auto- and cross-covariances
(associated with T) must grow with the number of time-varying
unit effects λtηi and the p, q, c, and l lag orders for AR, MA,
CL, and CLMA terms (for a general discussion of identification

TABLE 2 | Granger Causality Tests and 1 R2.

ML Bayes 1 Bayes 2

AIC / BIC DIC DIC

Step 1: Derive fit of full model

845.94 / 1002.82 829.23 827.65

Step 2: Constraint all income→ SWB effects

841.86 / 990.03 835.48 833.85

Step 3: Constrain all SWB→ Income effects

844.08 / 992.25 820.83 818.71

Step 4: Constraining all CL/CLMA terms

842.62 / 984.98 833.35 831.70

ML, maximum-likelihood; SWB, subjective well-being; AIC, Akaike’s information
criterion; BIC, Bayes information criterion; DIC, Deviance information criterion.

see Bollen, 1989). Also, with many estimated parameters, the N
required to assure asymptotic assumptions are met for ML also
increases. Furthermore, even with large T and N, some models
may not be identified and may violate asymptotic assumptions,
such as if AR, MA, CL, and CLMA effects are time-varying, which
we can show by modifying Eqs. 1 and 2 with a t subscript as
follows (for t > 1):

xi,t = α
(x)
t + λ

(x)
t η

(x)
i + β

(x)
x1,txi,t−1 + δ

(x)
x1,tu

(x)
i,t−1 + β

(x)
y1,tyi,t−1

+δ
(x)
y1,tu

(y)
i,t−1 + u(x)

i,t (5)

yi,t = α
(y)
t + λ

(y)
t η

(y)
i + β

(y)
y1,tyi,t−1 + δ

(y)
y1,tu

(y)
i,t−1 + β

(y)
x1,txi,t−1

+δ
(y)
x1,tu

(x)
i,t−1 + u(y)

i,t (6)

This model allows for “regime changes” as changes in effects
over time (Stock and Watson, 1996, 2009), which is reasonable
given the fact that people, organizations, and entire economies
are complex dynamic systems that are always in flux (Williams
and Cook, 2016). However, Eqs. 5 and 6 imply that there are
now T − 1 unique parameters for each AR, MA, CL, and CLMA
term, and these proliferate rapidly as k increases, such that the
total number of time-varying AR, MA, CL, and CLMA effects
is (T − 1)[2k+ 2k(k− 1)]. For example, with k = 4 observed
variables and T = 10 occasions of measurement, Eqs. 5 and
6 imply a model with 288 β and δ terms, requiring large N.
Furthermore, this large number of terms is based on lag orders
that are limited to the simplest p = q = c = l = 1 case, which
will not always hold in practice and, when it does not, will put
substantial requirements on observed data and the estimates
derived from them.

Clearly, for GCLMs like that in Eqs. 5 and 6 and for panel data
models more generally, parameter identification and overfitting
as well as meeting ML assumptions may be difficult (Lüdtke
et al., 2018), especially as lag orders and the number of unit
effects grow. Due to this problem, parameter estimates—and
therefore Granger causality tests and impulse responses—may
have reduced generalizability and the number of parameters that
can be estimated are limited by N and T. This is unfortunate for
many reasons, such as difficulty in supporting hypotheses due to
moderate N. Also, ironically, the parameter restrictions required
to achieve model identification run counter to the impetus for
panel data models like ours, which is partly to overcome the
“incredible” identifying assumptions typically found in regression
models (see Sims, 1980, 1986). In order to provide a solution
to these problems, we now describe a Bayesian approach to
estimation and inference.

BAYESIAN ESTIMATION AND
INFERENCE

There are two key differences between Bayesian and frequentist
estimation. The first and perhaps primary difference is that
whereas frequentist probabilities apply to data (or events),
Bayesian probabilities apply to parameters (or hypotheses;
Zyphur and Oswald, 2015). The implication is that instead of
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FIGURE 1 | (A–D) Impulse Response Functions for AR(1)MA(2) Model Under Maximum-Likelihood. Impulses begin in 2007, showing the effect of a 1-unit impulse in
2007 over the next 4 years with 95% confident intervals.

representing relative frequencies, probabilities represent degrees
of belief or knowledge (Howson and Urbach, 2006). The classic
idea is that Bayesian probabilities are meant to be inductive,
allowing direct probabilistic inferences about parameters in a
model θ given observed data Y (Hacking, 2001; Jaynes, 2003).
With this orientation, Bayesian estimation and inference are
done in order to represent degrees of uncertainty around
parameters, measured by a “posterior” probability distribution
f (θ|Y). The mean, median, or mode of this distribution is used
to describe specific parameter point estimates and variance in
the distribution is used to describe uncertainty in parameters
for hypothesis testing. For example, the SD of a parameter
distribution can be used to approximate a frequentist SE for the
computation of Bayesian p-values (for discussion, see Muthén
and Asparouhov, 2012; Zyphur and Oswald, 2015). In all cases,
posterior distributions are meant to represent knowledge or
beliefs about parameters, with hypothesis tests serving to inform
knowledge or beliefs about parameters based on model results.

The second difference between frequentist and Bayesian
methods is how such results are derived, which is to say how
a posterior distribution f (θ|Y) is estimated. Unlike frequentist
estimation, Bayesian estimators must directly incorporate two
sources of information to estimate parameters in a model θ:
prior probabilities of parameters f (θ) that serve to indicate the
knowledge or beliefs about parameters before estimation; and
the probability of observed data Y given parameter estimates

f (Y|θ), which can be understood as a likelihood. The result is
posterior probabilities f (θ|Y), which are then used for inference.
The proportional relation (∝) among these terms can be shown
as follows (see Muthén and Asparouhov, 2012):

f (θ|Y) ∝ f (θ)f (Y|θ) (7)

wherein model results f (θ|Y) are derived based on both
information in the priors f (θ) and the data Y in the form of the
model likelihood f (Y|θ).

The result of this logic is that Bayesian estimators are justified
based on the degree to which they satisfy the rule in Eq. 7,
which is designed to be a logically consistent system for updating
prior knowledge or beliefs with additional data (Zyphur and
Oswald, 2015). This is very much unlike frequentist estimators,
which are justified based on asymptotic theories that describe
how estimators perform when, for example, a sample size grows
to infinity and/or a study is conducted an infinite number
of times. One result of this difference between Bayesian and
frequentist logics is that frequentist estimators like ML satisfy
assumptions only as N →∞, which creates problems for SEM
with many parameters and small N (Anderson and Gerbing,
1984; MacCallum et al., 1996). Conversely, because Bayesian
estimation requires only that the rule in Eq. 7 be followed,
models with many parameters and small N are not problematic
apart from the way that small N exacts an appropriate toll
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by increasing levels of uncertainty in f (θ|Y) (rather than also
violating assumptions about the estimator in relation to N; for
insight into the importance of priors in such cases see Smid et al.,
2020). The point is that as long as estimation follows the rule in
Eq. 7, then a sample size N is always appropriate even if it makes
reducing uncertainty in a posterior distribution f (θ |Y) difficult.

Given the focus on Eq. 7, a key question to answer for
a Bayesian approach is how to choose prior probabilities for
model parameters in f (θ). Typically, “uninformative” or “diffuse”
priors are used forf (θ) in an attempt to eliminate their influence
on posteriors f (θ|Y) (Gelman et al., 2014). The point of these
priors can be conceptualized as “flattening” probability (i.e.,
“leveling” belief or knowledge) across the range of possible
parameter values in θ. This is akin to being agnostic about
specific parameter values (i.e., having no strong prior knowledge
or beliefs), which is meant to result in reducing the influence
of priors f (θ) during estimation. In turn, such priors produce
strong agreement among Bayesian and frequentist estimates as N
increases, which is sensible because as priors’ influence decreases,
posteriors are increasingly dominated by the likelihood f (Y|θ)
that many frequentist methods maximize (the reader can see
this by conceptually by removing the prior from Eq. 7). In turn,
statistical modeling programs such as Mplus often use various
kinds of diffuse priors by default, such as a prior for a regression
slope with a variance that is, practically speaking, infinity, such
as β ∼ N(0, 1010) (Asparouhov and Muthén, 2010; Muthén,
2010). The reader can intuit how this prior is uninformative
by recognizing that the mean of the distribution 0 has virtually
no greater probability than a value of 100 for β, because β ∼

N(0, 1010) implies an extremely flat probability distribution
(i.e., approximately equal belief or knowledge for any specific
value of β).

Conversely, priors become informative and increasingly
influential as they become increasingly dense around specific
parameter values, such as a small-variance prior for a regression
slope β ∼ N(0, 0.01) (Muthén and Asparouhov, 2012; Zyphur
and Oswald, 2015). In this case, the density of the prior
distribution is high around the value 0, and during estimation
this pulls estimates of β toward 0 (Gill, 2008; Gelman et al.,
2014). Thus, informative priors that favor null parameter values
effectively “shrink” parameter estimates toward 0, which is useful
because this increases generalizability by reducing the tendency
to overfit model estimates to an observed dataset (McNeish,
2015). As Giannone et al. (2015) note, priors such as these “are
successful because they effectively reduce the estimation error
while generating only relatively small biases in the estimates of
the parameters” (p. 436). Of course it is notable that alternative
small-variance priors can be chosen—as we note further below
with references to relevant work that the reader may consult—our
choice of small-variance priors here follows from existing work
using these in the psychology and organizational literature (see
Muthén and Asparouhov, 2012; Zyphur and Oswald, 2015).

Furthermore, because Bayesian estimation relies on prior
probabilities f (θ) and the likelihood f (Y|θ), priors behave more
like observed data when they favor specific parameter values—
whatever these might be. By this we mean that in a model
with small-variance priors, parameters will be identified as a

function of the information in observed data and the priors,
so that even if there is insufficient information in a dataset to
identify a parameter, the small-variance prior may serve to help
identification. This can be understood by considering that as
priors f (θ) become more informative, this is akin to a reduction in
the number of parameters that are freely estimated in a Bayesian
model (symbolized as pD). In turn, a diffuse prior such as β ∼

N(0, 1010) offers little help in identifying estimates of β without
sufficient information in the likelihood f (Y|θ) to do so. On the
other hand, a small-variance prior such as β ∼ N(0, 0.01) may
allow estimating β even when there is insufficient information in
the model likelihood to do so (e.g., if a likelihood is relatively
“flat” across a range of values for β; Asparouhov et al., 2015).
This is because a model with a small-variance prior for the β

does not “freely” estimate it in a frequentist sense, but instead
combines the prior β ∼ N(0, 0.01) with the data Y in the form
of the likelihood f (Y|θ).

In sum, informative priors, such as small-variance priors, are
useful because they can shrink estimates to avoid overfitting,
thereby increasing generalizability, while at the same time helping
to identify parameters that otherwise may not be estimable due
to insufficient information in a dataset Y. Furthermore, these
priors can serve to operationalize prior knowledge or beliefs
about parameters, while allowing data to update the priors to
produce results that combine these two sources of information.
As previously noted, this is consistent with the interest of an
informal Bayesian who seeks to use panel data models to change
knowledge or beliefs about the ways in which variables are
causally related over time (Granger, 1980).

Priors for Time-Series and Panel Data
Models
Due to their ability to address overfitting and non-identified
parameters, informative priors have become popular in time-
series and panel data modeling, particularly in a vector
autoregressive or VAR framework (for discussions, see Canova,
2007; Koop and Korobilis, 2010; Giannone et al., 2015). To
illustrate this, the approach we use here relies on small-variance
priors for parameters as well as parameter differences for time-
varying terms. As examples, consider that higher-order lags
may be shrunk toward zero, such as a second-order MA effect:
δ
(y)
y2 ∼ N(0, 0.01); or, differences in time-varying parameters

may be shrunk toward each other, such as AR effects at
different occasions: (β

(x)
x1,t − β

(x)
x1,t+1) ∼ N(0, 0.01). Although the

former approach may be somewhat familiar (especially in the
econometric VAR community), the latter approach is more novel
and is designed for cases wherein similar parameters are expected
to have small differences. To understand priors such as (β

(x)
x1,t −

β
(x)
x1,t+1) ∼ N(0, 0.01), it may be useful to connect this to terms

associated with an SEM (e.g., Eqs. 3 and 4). Specifically, a prior
distribution for regression terms in a matrix B, or f (B), may
be parameterized as f (B) ∼ MVN(0, 9B), with the covariance
matrix 9B having diagonal elements that imply a diffuse prior
distribution (e.g., 1000) and off-diagonal elements that imply
large covariances among the parameters (e.g., 999.95). Taken
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together, the large on-diagonal values imply that, on average,
parameter values will be largely driven by the data Y, but
the large off-diagonal values operationalize a prior expectation
of very small parameter differences, thus shrinking parameters
toward each other during estimation (without also shrinking
them toward zero).

This approach with small-variance priors is a simplification of
others, such as state-space models with hierarchical priors (see
Koop and Korobilis, 2010; Korobilis, 2013). Although these other
methods can be approximated using our approach in various
ways (for insight see Chow et al., 2010), our goal is not to extend
these other methods but instead to provide an introduction
to using small-variance priors for panel data models in SEM
within a very user-friendly framework. For this our Mplus input
and output are available in Supplementary Material with the
required data from Zyphur et al.’s online materials so that the
reader can freely experiment with priors in GCLMs (notably
R users can convert our basic GCLM code into Lavaan using
the R program Mplus2lavaan, available here: https://rdrr.io/cran/
lavaan/man/mplus2lavaan.html).

The interested reader may also want to examine more
technical on the choice of small-variance priors after exploring
our article (e.g., Canova, 2007; Canova and Ciccarelli, 2013),
especially that which covers the level of prior informativeness in
the form of prior variances (e.g., Giannone et al., 2015). Related
work also exists in psychology showing that weakly informative
priors can help stabilize model parameters in models similar
to the GCLM (Lüdtke et al., 2018), which as we show offers
important insights that helps motivate some small-variance prior
specifications. For pedagogical purposes, we set prior variances
at 0.01 (i.e., a prior SD of 0.1) in order to express somewhat
strong prior expectations that parameters are close to the mean
and to be consistent with existing work on small-variance
priors (Muthén and Asparouhov, 2012; Zyphur and Oswald,
2015), but in practice researchers may use sensitivity analyses to
examine informativeness or they may use automated techniques
to determine prior variances (e.g., Giannone et al., 2015).

THE GCLM WITH SMALL-VARIANCE
PRIORS

In order to show how a Bayesian approach to estimation and
inference can benefit time-series and panel data models (or other
models), we now modify the GCLM presented previously and
we alter the way it has been estimated by using small-variance
priors. We begin with time-varying parameters that incorporate
small-variance priors for differences in parameter estimates over
time (sometimes called time-varying effects models or TVEMs)
and then we proceed to a more traditional form of small-variance
“Minnesota” prior for higher-order lags in panel data models—
named for the location of the central bank and economists who
pioneered the approach.

Time-Varying Parameters
Our general panel data model from Eqs. 1 and 2 can be usefully
extended by allowing time-varying AR, MA, CL, and CLMA

effects, which we show as follows (for t > 2):

xi,t = α
(x)
t + λ

(x)
t η

(x)
i + β

(x)
x1,txi,t−1 + δ

(x)
x1,tu

(x)
i,t−1 + δ

(x)
x2,tu

(x)
i,t−2

+β
(x)
y1,tyi,t−1 + δ

(x)
y1,tu

(y)
i,t−1 + u(x)

i,t (8)

yi,t = α
(y)
t + λ

(y)
t η

(y)
i + β

(y)
y1,tyi,t−1 + δ

(y)
y1,tu

(y)
i,t−1 + β

(y)
x1,txi,t−1

+δ
(y)
x1,tu

(x)
i,t−1 + u(y)

i,t (9)

wherein all terms are as described previously. This kind of
specification is important because researchers have found that
some of the greatest improvements in fit and prediction
come from allowing time-varying parameters (a type of non-
stationarity; Sims and Zha, 2006). However, in our case of k = 2
and T= 6, this model is not identified with a frequentist estimator
because of the many time-varying terms. For example, income
xi,t has 19 parameters that rely on only 15 auto-covariances
for estimation: five time-varying unit effects λt ; one unit effect
varianceψ(x)

η ψ
(x)
η ; five AR terms; and eight MA terms. Also, even

the SWB variable with only an MA(1) specification has 16 unique
parameters that rely on 15 auto-covariances, meaning the model
is under-identified for both x and y. Yet, even if the model
were identified, the abundance of parameters might overfit the
data, producing results that are not as generalizable—a problem
that frequentist estimators can produce in panel data models
like Eqs. 8 and 9. Furthermore, given our modest sample size
N = 135, estimating so many parameters calls into question
the asymptotic justification for ML in relation to the number of
parameters estimated.

In order to increase model parsimony and identify the model
while at the same time helping to address asymptotic concerns
related to the ML estimator used in Zyphur et al. (2020a), we take
a Bayesian approach with small-variance priors for differences in
AR, MA, CL, and CLMA terms, with priors as follows (for t > 1)
to allow differences in parameters over time by “shrinking” these
differences (i.e., by helping parameters remain similar over time):

AR effects for income : (β
(x)
x1,t − β

(x)
x1,t+1) ∼ N(0, 0.01)

MA effects (first− order) for income : (δ
(x)
x1,t − δ

(x)
x1,t+1) ∼

N(0, 0.01)

MA effects (second− order) for income : (δ
(x)
x2,t − δ

(x)
x2,t+1) ∼

N(0, 0.01)

CL effects for income : (β
(x)
y1,t − β

(x)
y1,t+1) ∼ N(0, 0.01)

CLMA effects for income : (δ
(x)
y1,t − δ

(x)
y1,t+1) ∼ N(0, 0.01)

AR effects for SWB : (β
(y)
y1,t − β

(y)
y1,t+1) ∼ N(0, 0.01)

MA effects for SWB : (δ
(y)
y1,t − δ

(y)
y1,t+1) ∼ N(0, 0.01)

CL effects for SWB : (β
(y)
x1,t − β

(y)
x1,t+1) ∼ N(0, 0.01)

CLMA effects for SWB : (δ
(y)
x1,t − δ

(y)
x1,t+1) ∼ N(0, 0.01)
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Where in all terms are as above and the expected differences
in each set of parameters are set to a small value. This prior
specification implies that the GCLM under ML is not nested
within this model with time-varying lagged effects—although
it still provides an interesting opportunity to compare results.
Specifically, with a mean of 0 and a variance of 0.01, these
normally distributed priors set a roughly 68% probability that
the parameters are within ++/−. One of each other over
time. This is akin to relatively strong prior beliefs that the
parameters are similar over time, which can be understood in
relation to a prior f (B) ∼ MVN(0, 9B), with the covariance
matrix 9B having large diagonal and off-diagonal elements—
implying diffuse priors while at the same time imposing an
expectation of similar parameter values over time. Conveniently,
observed data will test the veracity of this expectation by pulling
posteriors away from these priors if this is warranted by the data
(Muthén and Asparouhov, 2012).

To continue, we can increase model parsimony further by
setting small-variance priors for time-varying unit effects, which
we illustrate in two ways. First, recall that SWB is often highly
stable (see Easterlin, 1995, 2001; Diener and Lucas, 1999; Clark
et al., 2008). Indeed, in psychology, it is common to assume a
form of mean-stationarity for ηi by setting λt ≡ 1 (e.g., Hamaker
et al., 2015). This assumption of constant effects is so common
that it is the default for multilevel models and most fixed-effects
approaches (see Nezlek, 2012a,b; Allison, 2014; Hoffman, 2015).
Our results in Table 1 for the ML model support this, showing
similar effects for λ

(y)
t over T. Therefore, we set the following

small-variance priors to operationalize an expectation of mean-
stationarity for η

(y)
i (for t> 1): (λ(y)

t − λ
(y)
t+1) ∼ N(0, .01).

This kind of prior specification—operationalizing theory and
past findings—is in the spirit of Minnesota priors (see Koop and
Korobilis, 2010). In this tradition, econometricians often assume
small if any unit effects for variables like income (Canova and
Ciccarelli, 2013). Instead, trends are often treated as stochastic
rather than deterministic—as noted in Zyphur et al. (2020b)—
which is supported by results in Table 1 for the ML model,
showing weak time-varying effects λ

(x)
t . Conveniently, Bayesian

priors allow a model that incorporates time-varying unit effects
but simultaneously bets against them, so to speak. To put this
into practice, we use a prior that assumes no unit effects (for t > 1)
λ

(x)
t ∼ N(0, 0.01). This prior has multiple benefits: it shrinks unit

effects toward zero; it reduces the number of parameters that are
freely estimated; and it allows unit effects to manifest in posteriors
as a function of the observed data—in part by leaving income’s
unit effect variance ψ

(x)
η unrestricted2.

Furthermore, these prior specifications on the factor loadings
of the latent unit effects help to resolve a dilemma that other
researchers may experience when using a relatively small sample
(here N = 135) in the presence of modest unit effects variances
(for an overview and relevant simulations see Lüdtke et al., 2018).

2As a form of sensitivity analysis, we also estimated a model with a small-variance
prior for differences in income’s unit effects, setting (λ

(x)
t − λ

(x)
t+1) ∼ (0, 0.01) (for

t> 1). We observed no notable differences in model results with this set of priors
versus the prior (λ

(x)
t ) ∼ (0, 0.01).

Specifically, the default non-noninformative or diffuse priors in
Mplus can cause estimation problems with unit effect variances
and their factor loadings, which we encountered with variances
tending to zero and loadings that were incredibly large when
estimating the GCLM with a Bayes estimator and the default
priors in Mplus (we omit results but the reader can find them in
our online materials in the file “AR(1)MA(2) (Step 1, Full Model)
Bayes.out”). One solution to this problem is imposing a mean-
stability assumption by restricting the factor loadings to equality
over time (after the t = 1 occasion, which resolves the problem
with the parameter estimates as shown in the file “AR(1)MA(2)
(Step 1, Full Model) Bayes_mean stability.out”). However, the
small-variance priors we describe here allow avoiding the mean-
stability assumption while also stabilizing the variance and factor
loadings estimates.

In sum, the above combination of small-variance priors
minimizes model complexity due to time-varying parameters
while at the same time allowing the estimation of all parameters
even when they are not identified with frequentist estimators or
because of other estimation problems. Using a Bayes approach,
we estimate the model in Eqs. 8 and 9 with the above priors
using a Markov Chain Monte Carlo (MCMC) method with a
Gibbs sampler in Mplus. For this and other models that follow,
estimation is done with at least 10,000 iterations in two chains—
these were thinned by retaining every 50th estimate (for a total
of 500,000 iterations) to assure convergence within the 10,000
estimates and eliminate autocorrelation across the iterations.

Convergence is checked by examining the quality of chain
mixing with the estimated or potential scale reduction (PSR)
factor, with values of 1.05 or less typically used as a cut-off
(see Gill, 2008, pp. 478–482; Asparouhov and Muthén, 2010).
We also use Kolmogorov-Smirnov tests that compute p-values
for parameter differences between chains, testing convergence
for each parameter separately (while allowing for a Type-I
error rate of 0.05 across all p-values). Model fit is evaluated
by the posterior-predictive probability or p-value (PPP), which
indicates the relative fit of model-generated data versus observed
data, with values of 0.50 being optimal and values greater than
0.05 typically considered acceptable (Muthén and Asparouhov,
2012). Comparisons of models may be done using the deviance
information criterion (DIC) as a relative index of model quality
(balancing fit and parsimony), with smaller values indicating
a better model. The DIC is useful because it is uniquely
sensitive to the number of estimated parameters pD, which is
a function of the number of unrestricted parameters and the
amount of information provided by priors (see Asparouhov
et al., 2015), and thus this value will typically not be an
integer value as in the ML case where priors do not exist.
Consistent with other approaches, we use the SD of posterior
distributions to compute Bayesian analogs of two-tailed p-values
(Zyphur and Oswald, 2015). For impulse responses, we use 95%
credibility intervals with the highest posterior density, which are
similar to bootstrap CIs (Rubin, 1981). For all parameters not
explicitly mentioned, we use default uninformative/diffuse priors
in Mplus (Asparouhov and Muthén, 2010), which is done for
convenience and to keep the reader focused on the bespoke priors
specification used here.
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Model results are in Table 1 under the “Bayes 1” model,
showing acceptable fit (PPP = 0.32). For concision, we report
the averages and ranges of time-varying AR, MA, CL, and CLMA
terms (readers can examine full results in our online materials).
For example, AR effects for income have four terms associated
with each occasion of measurement that is endogenous to all
lagged effects, with β

(x)
x1,3 = 0.97, β

(x)
x1,4 = 0.97, β

(x)
x1,5 = 0.94, and

β
(x)
x1,6 = 1.0, for which Table 1 shows the mean 0.97, the range

[0.94, 1.0], and the average posterior SD = 0.03 (p < 0.001). As
Table 1 shows, averaged terms are similar to their frequentist
counterparts in many cases, such as the AR effect for the ML
model β(x)

x1 = 0.96 versus the Bayesian average 0.97. Furthermore,
ranges are relatively small for Bayesian estimates, indicating little
difference in most parameters over time under the combination
of small-variance priors and observed data used here.

However, a noticeable change occurs in the level of uncertainty
around parameters. For example, the AR effect for the ML model
has an SE = 0.13, whereas the Bayes average has an SD = 0.03.
This reduction in uncertainty is expected for two reasons. First,
allowing parameters to vary over time can increase their fit
to the data at each occasion, reducing uncertainty around the
estimates as a function of better fit to the covariance for any
two occasions. Second, as Table 1 shows, the total number of
parameters estimated in the Bayes model is slightly smaller than
the ML-based model (54 versus an estimated pD = 50.69 in the
Bayes model), ostensibly because of the small-variance priors.
In turn, although time-varying effects are allowed, the Bayes
model appears to be slightly more parsimonious, implying less
uncertainty for the entire model, which on average should result
in smaller Bayesian posterior SDs than ML-based SEs.

An interesting consequence of this uncertainty reduction is
that Granger-causality tests and impulse responses show different
results for the income→ SWB effect, supporting it much more
strongly. In the ML-based model, the income → SWB effect is
β

(y)
x1 + δ

(y)
x1 = 0.14, SE = 0.16, p = 0.40; whereas in the Bayes model

it becomes β
(y)
x1 + δ

(y)
x1 = 0.22, SD = 0.12, p = 0.06. However,

rather than relying on p-values, we test Granger-causality using
the DIC. As shown in Table 2, the DIC for the full model is
829.23, and eliminating the income→ SWB CL and CLMA terms
increases this to 835.48, indicating reduced model quality and
therefore supporting an income → SWB effect. Alternatively,
removing the SWB → income CL and CLMA terms, the DIC
falls to 820.83, indicating improved model quality and therefore
failing to support an SWB → income effect. Finally, testing
for income-SWB feedback by constraining all CL and CLMA
terms also reduces model quality with a DIC of 833.35, providing
support for feedback effects. Yet, this raises the question of
whether the income → SWB effect is driving the larger DIC
value when eliminating all CL and CLMA terms in order to
test for feedback.

To investigate this and to show long-run effects, we examined
impulse responses (see Figures 2A–D)3. The differences between
the ML-based and Bayesian impulse responses are notable, with

3Time-varying AR, MA, CL, and CLMA effects imply a unique impulse response
for each impulse over time. We calculate impulse responses based on the first

much less uncertainty around income’s persistence over time
(the top-right figure). Also, impulse responses show a larger
effect for income → SWB and much less uncertainty around
the estimate, with 95% credibility intervals encompassing zero
only at the margins (consistent with p = 0.06). Furthermore,
the SWB → income effect is approximately zero across all
periods. These findings lend more credibility to a positive long-
run income → SWB effect when compared to the frequentist
estimates in Figures 1A–D, and less credibility to a long-run
SWB→ income effect. The results also imply that the lower DIC
value when testing feedback is due to the income→ SWB effect
rather than the opposite, arguing against income-SWB feedback.

In sum, the small-variance priors we use allow model
specifications that are plausible yet under-identified with
frequentist methods. By allowing effects to vary over time,
we provide a better fit to the observed data and reduce the
uncertainty around estimates, pointing to an effect of income on
SWB that appears to be long-lasting. Indeed, when eliminating
the SWB→ income CL and CLMA effects, which is warranted
based on the decrease in the DIC, we show an income→ SWB
effect combining CL and CLMA terms: β

(y)
x1 + δ

(y)
x1 = 0.24 with

a posterior SD = 0.12, p = 0.04. Furthermore, this effect with
a one-tailed test has a p = 0.02 and the 95% credibility interval
in Figures 2A–D exclude zero. The implication is that a positive
impulse to national income may have a positive immediate and
long-run effect on SWB, neither of which was found in the
ML-based analyses in Tables 1, 2, and Figures 1A–D, because
of the restrictions on the effects that were required. For our
“informal Bayesian,” this implies updated knowledge or belief
about a causal income → SWB effect, which may be used to
inform policy decisions.

Reducing Lag Orders
To further tackle overparameterization and provide an additional
tool for estimating models that may be under-identified, small-
variance priors can be applied to high-order lags and unit effects.
As with time-varying parameters, the issue is that estimating
many lagged effects and time-varying unit effects can overfit
observed data while also making models under-identified with
frequentist estimators. This is important because, for prediction,
“[e]vidence favors Bayesian estimation of an equation with high-
order lags rather than restricted models arrived at by classical
testing methods” (Allen and Fildes, 2001, p. 335; Stock and
Watson, 2001).

To illustrate this approach while keeping our results both
concise and comparable to those presented thus far, we specify
the same models for both income and SWB (Eqs. 8 and 9), but set
small-variance priors on the second-order MA lag for income. In
Zyphur et al. (2020a) the authors appear compelled to choose a
single model for income, comparing the results of AR(1)MA(1),
AR(1)MA(2), AR(2)MA(1), and AR(2)MA(2) models for xi,t .
Conveniently, a Bayes estimator changes the nature of this choice
by allowing higher-order lags to have small-variance priors with
means of zero, reflecting an expectation of no higher-order lagged

available impulse given the model lag order MA(2). For discussion of impulse
responses for time-varying parameters and Bayesian estimators, see Koop (1996).
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FIGURE 2 | (A–D) Impulse Response Functions for AR(1)MA(2) Model With Bayesian Small-Priors. Impulse begin in 2007, showing the effect of a 1-unit impulse in
2007 over the next 4 years, with 95% credibility intervals (with the highest posterior density).

effects while allowing them to emerge as a function of the data.
The result is an ability to retain time-varying effects for AR, MA,
CL, and CLMA terms while also allowing them to have many lags
that minimally add to model complexity due to the use of small-
variance priors. To show this, we set the following small-variance
prior for the time-varying δ

(x)
x2,t term in Eq. 8: δ

(x)
x2,t ∼ N(0, 0.01).

This small-variance prior allows the second-order MA terms to
vary over time while shrinking them toward zero and keeping the
number of estimated parameters manageable.

The results of this model are shown in Table 1 under the
“Bayes 2” model, with Granger causality tests in Table 2. As
Table 1 shows, the fit of the model improves over the previous
“Bayes 1” model that allowed the second-order MA term δ

(x)
x2,t to

be unrestricted with a small-variance prior on differences with
(δ

(x)
x2,t − δ

(x)
x2,t+1) ∼ N(0, 0.01). Specifically, the DIC falls from

829.23 to 827.65, indicating some improvement by shrinking
second-order MA terms toward zero while still allowing them to
be time-varying.

Interestingly, this second Bayes model also fits the data better
than two others that may also seem warranted and of interest
to researches exploring different MA structures for income. The
first is a model wherein the same small-variance prior is applied
but the second-order MA term is constrained to equality over
time, with an effect δ

(x)
x2 as in the original ML model in Table 1

andδ
(x)
x2 ∼ (0, 0.01). The DIC for this model increases to 831.46,

arguing for the time-varying specification with the same null
small-variance prior δ

(x)
x2,t ∼ N(0, 0.01) in the Bayes 2 model in

Table 1. The second model that seems plausible is one that
takes the prior expectation of no effect as the actual model
specification, fixing the second-order MA term to zero (i.e., fixing
δ
(x)
x2,t ≡ 0), resulting in a purely MA(1) specification for income.

This model has a DIC that increases to 830.63, again favoring
the MA(2) specification with the small-variance null prior on
the second-order lagged MA effect δ

(x)
x2,t ∼ (0, 0.01). In sum, the

small-variance priors that allow time-varying effects outperform
other plausible specifications in this case, and allow researchers
to operationalize an expectation of no higher-order lagged effects
while still allowing results to be pulled away from this prior
expectation as a function of the data.

Given the improved fit of the second Bayes model in terms
of the DIC, it is interesting to note that, again, Granger-causality
tests under this model show an increase in the DIC when
removing the income→ SWB effect (see Table 2, Bayes 2 model),
with the full model DIC = 827.65, but with all income→ SWB
CL and CLMA terms eliminated the DIC increases to 833.85.
This is consistent with the overall income→ SWB effect, which
again is β

(y)
x1 + δ

(y)
x1 = 0.22, SD = 0.12, p = 0.06. Furthermore, as

before, constraining the SWB → income CL and CLMA terms
to zero improves model fit with DIC = 818.71, failing to support
Granger-causality in this direction. Also, feedback effects appear
to exist with DIC= 831.70 under a model with no CL and CLMA
terms, but this appears to be entirely due to the income→ SWB
effect, which is supported by impulse responses, which we omit
because they are very similar to Figures 2A–D.
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In sum, there are at least three benefits of the informative,
small-variance priors that we use here. First, they shrink estimates
toward zero or toward each other for time-varying parameters,
which in our model reduces uncertainty substantially and thereby
supports an income→ SWB effect that could not be supported
with an ML estimator. This is useful because, second, the increase
in model parsimony due to the model priors also increases
generalizability, which means the income→ SWB effect is also
more trustworthy than under ML. Third, the priors we use
allow estimation that would be impossible with a frequentist
estimator, allowing higher-order AR, MA, CL, and CLMA effects
while also using small-variance priors that reduce the need
to choose amongst models that have different lag orders for
these terms. These three benefits are in addition to those that
apply to Bayesian estimation more generally, including not only
its fit with an “informal Bayesian” using panel data models
to make inferences under uncertainty, but also computational
efficiencies of Bayesian estimation (see Chib, 2008; Muthén and
Asparouhov, 2012; Zyphur and Oswald, 2015). For more details,
the reader may consult additional work on Bayesian analysis
for panel data models (e.g., Sims, 1980, 1986; Canova, 2007;
Koop and Korobilis, 2010; Korobilis, 2013; Giannone et al., 2015;
Schuurman et al., 2016).

DISCUSSION

In their recent series “From Data to Causes,” Zyphur et al.
(2020a) described the GCLM parameters and their relationship
to Granger causality and intervention planning via impulse
responses, with all terms estimated via ML in an SEM framework.
These authors also compared their approach to others, noting
the benefits of dynamic models that make the future conditional
on the past while controlling for unit effects, thus addressing
issues with static approaches including latent curve models
(i.e., latent growth or trajectory models; Zyphur et al., 2020b).
However these authors did not acknowledge shortcomings of
their frequentist estimation method and thus in the current
article we extended the GCLM to the case of Bayesian estimation
and inference, showing the usefulness of small-variance priors
for both parameter estimates and parameter differences in
models that would otherwise have high dimensions that produce
generalizability and/or estimation problems. The result is that
here we were able to estimate time-varying parameters while
shrinking higher-order lagged effects and time-varying unit
effects for income toward zero, reducing parameter uncertainty
and allowing us to support an income→ SWB effect that does
not receive support under ML estimation.

With such Bayesian approaches to time-series and panel
data modeling, researchers have a set of powerful tools for
doing the practical work that defines the applied social sciences.
This work has various characteristics that often center on
theorizing and empirically studying causal effects, such as the
income → SWB effect, which we support in the current study.
For any applied science, the point of such a finding—and research
more generally—is a practical affair, with researchers seeking
to develop understandings of the world that can guide action,

such as organizational or public policy interventions (Cartwright
and Hardie, 2012). In turn, the point of these interventions is
to create specific kinds of outcomes, such as improving SWB
by helping poor nations to develop their economies in order
to increase income. To these ends, a benefit of small-variance
priors and methods of “shrinkage” more generally is to improve
generalizability so that such inferences can have a greater chance
of working in real-world situations.

However, there are various dangers associated with using
models such as ours uncritically. One danger is the well-
known problem of exactly how a researcher or policy maker
should derive priors—what sources of information should be
used for this purpose—and how the choice of different prior
specifications may affect results. These topics have received
substantial attention in Bayesian literature and we encourage the
interested reader to engage with this work (again the interested
reader may consult excellent work on these and other topics;
e.g., Depaoli and van de Schoot, 2017; Smid et al., 2020).
As we noted previously our use of the specific small-variance
prior of ∼N(0,0.01) was used for example purposes and to fit
with previous literature (see Muthén and Asparouhov, 2012;
Zyphur and Oswald, 2015). Future work may investigate other
potential types of small-variance priors to complement the
existing and ever-growing body of work on the use of priors
for Bayesian analysis of time-series and panel data models (e.g.,
Lüdtke et al., 2018).
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Background: Bayesian estimation with informative priors permits updating previous
findings with new data, thus generating cumulative knowledge. To reduce subjectivity
in the process, the present study emphasizes how to systematically weigh and
specify informative priors and highlights the use of different aggregation methods
using an empirical example that examined whether observed mother-adolescent
positive and negative interaction behavior mediate the associations between maternal
and adolescent internalizing symptoms across early to mid-adolescence in a 3-year
longitudinal multi-method design.

Methods: The sample consisted of 102 mother-adolescent dyads (39.2% girls, Mage

T1 = 13.0). Mothers and adolescents reported on their internalizing symptoms and their
interaction behaviors were observed during a conflict task. We systematically searched
for previous studies and used an expert-informed weighting system to account for their
relevance. Subsequently, we aggregated the (power) priors using three methods: linear
pooling, logarithmic pooling, and fitting a normal distribution to the linear pool by means
of maximum likelihood estimation. We compared the impact of the three differently
specified informative priors and default priors on the prior predictive distribution,
shrinkage, and the posterior estimates.

Results: The prior predictive distributions for the three informative priors were quite
similar and centered around the observed data mean. The shrinkage results showed that
the logarithmic pooled priors were least affected by the data. Most posterior estimates
were similar across the different priors. Some previous studies contained extremely
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specific information, resulting in bimodal posterior distributions for the analyses with
linear pooled prior distributions. The posteriors following the fitted normal priors and
default priors were very similar. Overall, we found that maternal, but not adolescent,
internalizing symptoms predicted subsequent mother-adolescent interaction behavior,
whereas negative interaction behavior seemed to predict subsequent internalizing
symptoms. Evidence regarding mediation effects remained limited.

Conclusion: A systematic search for previous information and an expert-built weighting
system contribute to a clear specification of power priors. How information from multiple
previous studies should be included in the prior depends on theoretical considerations
(e.g., the prior is an updated Bayesian distribution), and may also be affected by
pragmatic considerations regarding the impact of the previous results at hand (e.g.,
extremely specific previous results).

Keywords: intergenerational transmission, internalizing psychopathology, mother-adolescent interaction,
informative priors, linear pool, logarithmic pool, Bayesian estimation, longitudinal mediation analysis

INTRODUCTION

New studies and analyses in social sciences are theoretically
and empirically grounded in previous knowledge that has often
accumulated in decades of research. While there is overall
agreement that this process is essential to generate strong
hypotheses, findings from previous studies are rarely integrated
into new analyses. Accounting for such previous findings in
subsequent analyses by means of informative priors in Bayesian
estimation allows researchers to draw more precise conclusions
and obtain insight into the relation between previous knowledge
and the current data.

Bayesian estimation with informative priors increases the
precision of the posterior distributions by updating previous
information with new data and thus gradually accumulating
knowledge. While the frequentist approach regards parameters
of interests as unknown, but assumes that there is only one
true parameter value in the population, the Bayesian approach
regards parameters of interest as uncertain and describes
them with a probability distribution (van de Schoot et al.,
2014). By combining previous information with new data from
the analyses, Bayesian estimation allows researchers to make
assumptions about model parameters, such as curtailing or
excluding certain parameter values (Zondervan-Zwijnenburg
et al., 2017). To date, most empirical studies rely on diffuse or
naive prior distributions, such as default software settings, that
do not account for the available previous knowledge (e.g., van
de Schoot et al., 2017). Simulation studies and mathematical
demonstrations indicated that using informative priors that
are derived from previous studies, meta-analyses, or experts,
outperformed frequentist approaches and approaches using
diffuse priors in terms of decreased relative bias, improved
estimation accuracy (e.g., decreased RMSE values), and increased
power when samples were too small for complex analyses (Smid
et al., 2019; Zitzmann et al., 2020). However, if informative
priors are not chosen carefully or are weakly defined, Bayesian
estimation methods may perform poorly and result in biased
estimates (Depaoli, 2013; Holtmann et al., 2016). Therefore, a

systematic and transparent approach is essential when specifying
informative priors (Zondervan-Zwijnenburg et al., 2017; van
de Schoot et al., 2021). The present study highlights the use
of different approaches to systematically define informative
priors and the integration of new data to answer novel
research questions.

Weighting Previous Studies
If previous designs are not consistent with the new study, for
example due to different populations or different assessments,
this can raise potential bias and inflated type I errors (Hobbs
et al., 2011; Viele et al., 2014). Previous findings should therefore
strongly inform the posterior distributions when they are based
on designs that are comparable to the present study, and
weakly when they are not. To ensure that previous findings
do not outweigh the current data and dominate the posterior
distributions, power priors that downweigh previous data by
determining the amount of relevant information have been
recommended (Ibrahim and Chen, 2000). Specifically, a power
prior takes the likelihood of the information from the previous
study to the power δ, where δ is a value between 0 (ignore
the previous data completely) and 1 (treat the data as equal to
the current data and fully include the evidence). For normal
distributions, when delta δ 6= 0, raising the likelihood to the
power δ is equal to dividing the variance from the previous
study by δ and using it as the prior variance σ2

0. Traditionally,
power priors include the use of unknown weights, which
have been criticized to over-attenuate the influence of previous
data (Neelon and O’Malley, 2010) as they do not capture the
extent to which previous findings are applicable to the present
design and data.

Previous studies can be more or less similar to a specific
study’s design and thus provide stronger or weaker input
for priors than other studies. Meta-analyses, for example,
quantify existing information, and thus provide accumulated,
more robust evidence than single studies. However, they also
include a wide range of different methodological designs, such
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as different participant age ranges or assessment methods,
and thus cannot provide strong input for specific parameter
estimates if individual participant data is not available. Empirical
studies that closely reflect the research questions and design of
the new study that is to be conducted provide the strongest
input for informative priors, but are more susceptible to
potential estimation errors, biases, or chance findings than meta-
analyses. How much weight a particular study receives, should
therefore depend on a range of aspects that correspond to
the study’s design at hand. Longitudinal studies, for example,
involve different considerations than cross-sectional studies,
such as temporal ordering and the lengths of intervals between
time points. If the study at hand employs a longitudinal
design, findings from studies with repeated measurements
would receive more weight than studies that solely include
measurements at the same time point. Only a previous
study with data that can be considered exchangeable with
the new data should receive a weight of 1. To determine
how much an individual study deviates from the new data,
we therefore propose to determine each study’s individual
weight for the construction of power priors. Studies with
lower relevance obtain lower scores for δ, which means that
their variance will be inflated. The larger the variance (i.e.,
uncertainty), the smaller the impact of a previous study on
the specified prior distribution, and therefore also on the
posterior distribution.

A carefully constructed and justified weighting scheme
that is tailored to the specific research question is essential
when specifying informative priors. To avoid arbitrary and
subjective decisions, expert knowledge can inform this process
(Bolsinova et al., 2017; van de Schoot et al., 2018; Veen
et al., 2020). Expert knowledge as input for prior distributions
has been previously used to estimate the size of parameters
for which no data was available (e.g., Hald et al., 2016)
or to complement existing data (e.g., van de Schoot et al.,
2018). Our proposed method includes quantifying and weighing
previous information, systematically collecting and justifying
all decisions, visualizing informative priors, and conducting
sensitivity analyses to compare the impact of different priors
on the posterior estimates (Zondervan-Zwijnenburg et al.,
2017). This can be beneficial beyond a pure meta-analytical
approach that solely quantifies previous information. As such,
Bayesian estimation with informative priors allows researchers
to update previous information by combining it with new data.
This cumulative process gradually decreases the uncertainty of
parameter estimates (König and van de Schoot, 2018). In the
current study, we used expert knowledge to define inclusion
criteria and create an appropriate weighting scheme for all
included previous studies.

Aggregating Previous Studies
If multiple studies contain information on one parameter,
the previous information needs to be aggregated into one
distribution. Three aggregation methods are: (1) linear pooling,
(2) logarithmic pooling, and (3) a normal distribution fitted to
the linear pool.

Linear Pooling
The linear pool of distributions sums the densities provided by
the different studies, resulting in a mixture prior (Genest and
Zidek, 1986). The linear pool directly represents the previous
studies by combining them without any modifications to the
initial information. One way to obtain the linear pool is to
run multiple Bayesian analyses: one for each prior specification.
Subsequently, the posterior samples can be aggregated (see
Zondervan-Zwijnenburg et al., 2017). This method can be
applied in any software package that allows for Bayesian
estimation with customizable prior specifications. However, as
parameter estimates within a model are not independent, this
method becomes impractical in a model in which multiple
parameters have multiple sources of previous information. In
more advanced Bayesian software such as Stan (Carpenter
et al., 2017), the linear pool of previous studies can be
programmed at once. A difficulty that remains is that a linear pool
becomes multimodal when the different prior likelihoods diverge.
Multimodality is complex for estimation and interpretation. It
may cause non-convergence, and it can be odd to consider, for
example, 0.2 and 0.5 equally plausible values, but 0.35 a value with
low probability. There is the possibility that this scenario occurs
when local maxima have previously been found.

Logarithmic Pooling
Whereas the linear pool sums distributions, the logarithmic
(a.k.a. geometric) pool multiplies them. In practice this means
that extreme modes originating from only one study can be
compensated by their multiplication with other studies that
allocate less probability to this area. In this manner, the
logarithmic pool emphasizes the common range of parameter
values. Logarithmic pools are typically unimodal and less
dispersed than linear pools (Genest and Zidek, 1986). The
logarithmic pool can also be considered a Bayesian updating
procedure, in which the first1 study is the initial prior.
A potential disadvantage of the logarithmic pool, however, is
that if one previous study places near-zero probability to a
range of values, the multiplication by near-zero probability
will predominate in the pooled distribution. de Carvalho et al.
(2020) define pooled distribution and their parameters for sets
of common distributions. When the pooled distribution is a
common distribution as well, the prior can be easily specified in
software packages that allow for Bayesian estimation with custom
prior distributions.

Normal Distribution Fitted to the Linear Pool
Another alternative to including a potentially bimodal linear
pool, is to obtain the normal distribution best fitting to
this pooled distribution. In this method, the previous studies
are considered to be samples from an underlying normal
distribution. By fitting a normal distribution to the results of
the previous studies, we aim to retrieve the underlying normal
distribution of the parameter. When the underlying previous
studies have different means, the fitted normal distribution will

1Note that just as in multiplication in general, the order of updating is irrelevant
for the final outcome.
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have a variance larger than that of the underlying studies.
Once the hyperparameters of the fitted normal distribution are
obtained, the normal prior distribution can be specified in any
software package that allows for Bayesian estimation with custom
prior distributions.

Conducting sensitivity analyses with different priors,
including diffuse default priors, allows us to compare findings
and highlight the robustness of our model results if priors are
modified (van Erp et al., 2018). The current study will compare
the results of these three pooling methods and diffuse default
priors on the posterior distributions in an empirical example
that examined whether mother-adolescent interaction behavior
meditates the associations between maternal and adolescent
internalizing behavior.

Empirical Application:
Mother-Adolescent Interaction Behavior
as Mediator in the Transmission of
Internalizing Symptoms
Adolescence is a crucial period for the development of
internalizing problems, such as symptoms of anxiety
or depression, which increase adolescents’ risk for
psychopathological disorders, school dropout, and
unemployment in later life (Kessler et al., 2012; Clayborne
et al., 2019). Maternal internalizing symptoms are among the
most salient predictors of adolescent internalizing symptoms
(e.g., Goodman and Gotlib, 1999; Connell and Goodman, 2002).
Genetic similarities cannot fully explain these associations
(Natsuaki et al., 2014; Eley et al., 2015) and specific patterns
of how mothers and adolescents interact may be another
mechanism through which maternal internalizing symptoms are
associated with adolescent internalizing symptoms (Goodman
and Gotlib, 1999). Specifically, internalizing symptoms might
render mothers less sensitive to their children’s needs, more
emotionally unavailable, and more irritated, which can suppress
mothers’ expression of positive interaction behavior and increase
their expression of negative, hostile and angry interaction
behavior toward the adolescent (Lovejoy et al., 2000). Such
diminished positive and heightened negative interaction
behavior may in turn undermine the adolescents’ self-esteem
and emotion-regulation, make them feel helpless, and prompt
negative self-evaluations, which render them more sensitive to
internalizing symptoms (Gottman et al., 1997; Garber and Flynn,
2001). Hence, it is likely that maternal interaction behavior
underlies the transmission of internalizing symptoms from
mothers to adolescents.

Transactional theories (e.g., Sameroff, 2009) suggest that
adolescents are not only influenced by their parents, but
also influence their parents. Hence, associations between
maternal and adolescent internalizing symptoms are likely
to be bidirectional (Hughes and Gullone, 2010; Wilkinson
et al., 2013). Adolescent internalizing symptoms can disrupt
interactional processes in the family (Sheeber et al., 2001; Berg-
Nielsen et al., 2002) and thus, similarly, predict changes in
mother-adolescent interaction behavior (e.g., Nelemans et al.,
2014), which in turn prompt maternal internalizing symptoms.

It is thus important to include bidirectional associations
between maternal and adolescent internalizing symptoms
when investigating the mediating role of mother-adolescent
interaction behavior. Similarly, as social interactions include
two partners who continuously regulate and react to each
other’s behaviors (Fogel, 1993), it is essential to examine
not only maternal interaction behavior toward adolescents,
but also adolescents’ interaction behavior toward mothers.
However, most studies to date are based on the assumption
that associations between maternal and adolescent internalizing
symptoms are unidirectional from mothers to adolescents
and only driven by maternal interaction behavior toward
adolescents. If potential effects from adolescents to mothers
are ignored, alleged mediation effects may be spurious. Fully
understanding the mediating role of mother-adolescent positive
and negative interaction behavior in the transmission of
internalizing symptoms thus requires a model that reflects
reciprocal associations between mothers and adolescents. In
this study, we will investigate whether mother-adolescent
interaction behavior underlies the intergenerational transmission
of internalizing symptoms, including associations from both
mothers to adolescents and from adolescents to mothers.

Several studies have been conducted to support each
pathway in the theoretically proposed mediation model (see
Supplementary Material for a systematic and critical review of
previous literature). Findings from meta-analyses on mother-
child interactions indeed indicated associations of maternal
interaction behavior with maternal internalizing symptoms
(Lovejoy et al., 2000; McCabe, 2014) and child internalizing
symptoms (McLeod et al., 2007a,b; Yap et al., 2014; Pinquart,
2017). Observational, longitudinal assessments in adolescence
best reflect our study’s design and thus provide strong specific
information. The few studies that meet these criteria, however,
remain inconsistent regarding whether maternal internalizing
predict both subsequent positive (Simons et al., 1993; Feng
et al., 2007) and negative interaction behavior (Feng et al.,
2007) as well as whether interaction behavior predicts subsequent
adolescent internalizing symptoms (Hofer et al., 2013; Milan
and Carlone, 2018) or not (Feinberg et al., 2007; Schwartz
et al., 2012). Studies on reversed associations from adolescents
to mothers remain scarce and the one available study found
that adolescent interaction behavior did not predict maternal
internalizing symptoms (Milan and Carlone, 2018).

The Present Study
This study applied a systematic approach to defining
informative priors in Bayesian estimation to highlight the
role of Bayesian estimation in integrating and cumulating
empirical knowledge. We compared the effects of three different
kinds of informative priors on the posterior distribution using
an empirical illustration: Specifically, we examined whether
observed mother-adolescent positive and negative interaction
behavior mediate associations between maternal and adolescent
internalizing symptoms, using a multi-method longitudinal
design (see Figure 1). To increase the precision of our results,
we systematically searched and weighed findings from previous
studies, using an expert-designed weighting and scoring system,
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FIGURE 1 | Conceptual SEM models examining the mediating effects of positive (model A) and negative interaction behavior (model B) in the associations between
maternal and adolescent internalizing symptoms. M, maternal; A, adolescent; pos, positive; neg, negative.

and synthesized the information into linear pool, logarithmic
pool, and fitted normal prior distributions. Furthermore,
we conducted sensitivity analyses to compare the impact of
informative and diffuse priors on the mediating effects of
mother-adolescent interaction behavior in the transmission of
internalizing symptoms. This allowed us to identify the role of
different priors and the robustness of our results.

MATERIALS AND METHODS

All relevant materials, documents, and syntax files are available at
https://osf.io/c37mv.

Participants
The sample consisted of 102 mother-adolescent dyads (39%
girls, Mage T1 = 13.0, SDage = 0.51) who were part of a larger
sample of families participating in the ongoing Research on
Adolescent Development And Relationships Young (RADAR-Y)
study. All participants were assessed in annual home visits. Most
adolescents (95%) and their mothers (91%) were of Dutch origin.
They predominantly lived with both biological parents (86%) in

medium to high socioeconomic status households (91%), based
on parents’ occupation level.

Sample attrition was low across all time points (1–7%), with
94 mother-adolescent dyads who participated at the first time
point remaining in the study at the third time point. Mothers and
adolescents who dropped out of the study did not significantly
differ from those who remained in the study on most of the study
or background measures (ANOVA p-values ≥ 0.056). However,
mothers who dropped out of the study showed more negative
interaction behavior at the second time point, F(1,87) = 4.67,
p = 0.033, than mothers who remained in the study.

Procedure
The present study used three time points from early to mid-
adolescence, when adolescents were on average approximately
13, 14, and 15 years of age. Families were recruited through 230
randomly selected elementary schools in the central and western
regions of Netherlands. Of those initially selected (N = 1,544),
families who did not fulfil the full family requirements (n = 364),
could not be contacted or withdrew their participation (n = 569),
or did not provide written consent for all family members
(n = 114) were excluded. Of those 497 families who participated
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at the first time point, a subsample of 102 randomly selected
mother-adolescent dyads participated in an interaction task.

During annual home assessments, adolescents and their
mothers completed a series of questionnaires and subsequently
participated in a conflict interaction task. The conflict task
consisted of a 10-min videotaped interaction between adolescents
and their mothers, during which they discussed a topic of
frequent disagreement, explained their individual thoughts, and
presented a solution to the conflict. Prior to the task, adolescents
and their mothers agreed upon a topic, chosen out of a series of
suggested subjects or an own subject. The interviewer ensured
that a topic was chosen, but was otherwise absent during the topic
selection and the actual conflict task. Adolescents and mothers
were compensated for their participation at each time point. The
study procedure was approved by the Medical Research Ethics
Committee of the University Medical Center Utrecht.

Measures
Adolescent Internalizing Symptoms
We assessed adolescent internalizing symptoms as a combined
score of self-reported anxiety and depression symptoms. Anxiety
symptoms were measured with the Screen for Child Anxiety
Related Emotional Disorders (SCARED; Birmaher et al., 1997),
which consists of 38 items (e.g., “I get really frightened for
no reason at all”) on a 3-point scale (1 = almost never,
3 = often). Depression symptoms were measured with 2nd
edition of the Reynolds Adolescent Depression Scale (RADS-2;
Reynolds, 2000), which consists of 23 items (e.g., “I feel that
no one cares about me”) on a 4-point scale (1 = almost never,
4 = often). As anxiety and depression symptoms correspond to
the same higher-order latent factor of internalizing symptoms
within a hierarchical structure of psychopathology (Achenbach,
1966; Lahey et al., 2017), total anxiety and depression scores were
averaged after a multiple imputation procedure to form a total
internalizing symptom score for each participant. The anxiety,
depression, and total internalizing scales showed high internal
consistency across all time points (α = 0.91–0.96). Higher scores
indicated higher levels of adolescent internalizing symptoms.

Maternal Internalizing Symptoms
We assessed maternal internalizing symptoms with the
anxious/depressed, withdrawn, and somatic complaints
syndrome scales of the Adult Self Report (ASR; Achenbach
and Rescorla, 2003). The syndrome scales consist of 18 items
(e.g., “I feel lonely”), 9 items (e.g., “I keep from getting involved
with others”), and 12 items (e.g., “I feel tired without good
reason), respectively, that are measured on a 3-point scale
(0 = not true, 2 = very true or often true). The total internalizing
scale showed high internal consistency across all time points
(α = 0.90–0.91). Higher scores indicated higher levels of maternal
internalizing symptoms.

Maternal and Adolescent Interaction Behavior
Rating scales were adapted from the Family Interaction Task
coding system (Weinfield et al., 1999, 2002). We observed
maternal and adolescent positive interaction behavior toward the
other by coding verbal and nonverbal expressions/displays of

maternal emotional involvement during the conflict task. Verbal
expressions include showing interest, listening, responding,
and understanding. Nonverbal expressions included smiling,
interested attitude, nodding, maintained eye contact. We
observed maternal and adolescent negative interaction behavior
toward the interaction partner by coding how hostile and
angry the mother or adolescent behaved during the conflict
task. Maternal negative behaviors included blaming, rejecting,
mocking, and exerting negative facial expressions or physical
reactions. Adolescent negative behaviors included sighing and
groaning, pouting, refusing to cooperate, criticizing, and exerting
negative facial expressions or physical reactions.

Three independent raters coded maternal and adolescent
interaction behavior toward the other on a 5-point scale (1 = low
score on the relevant interaction behavior, 5 = high score on
the relevant interaction behavior). All raters underwent extensive
training before coding a random selection of the sample. Higher
scores of positive interaction behavior indicated more common,
appropriate, and consistent use of these verbal and nonverbal
expressions, while higher scores of negative interaction behavior
indicated higher levels of negative, hostile behaviors. Interrater
agreements using intraclass correlations (ICC) based on 15% of
the sample showed acceptable agreement for maternal interaction
behavior (ICCs = 0.80–0.89) and adolescent interaction behavior
(ICCs = 0.86–0.87).

Prior Distributions From Previous
Knowledge
For the regression paths in our models, we implemented two
search strategies (see Figure 2 for a flowchart on study inclusion):
a search for meta-analyses and reviews, and a search for
empirical studies.

Meta-Analyses and Systematic Reviews
We conducted a literature search in Web of Science for all
meta-analyses and systematic reviews published until December
2019, based on a combination of key words that reflected the
target sample (child, adolescent) and their parents (parent∗,
maternal, and mother), internalizing symptoms (anxi∗, depress∗,
and internalizing), as well as positive and negative behaviors
(positive, negative, affect, warmth, hostil∗, and rejection) during
the interaction (interaction∗, relation∗, and parenting). Meta-
analyses were selected if they (a) included studies on adolescence,
and (b) assessed positive and/or negative interaction behavior,
as defined for our sample, from mother or parent toward
adolescent and/or from adolescent toward mother or parent.
This search strategy identified 388 studies, of which 7 meta-
analyses and 1 systematic review were included in this study.
Some meta-analyses showed substantial overlap in studies. In
these cases, we only included the meta-analysis that scored
highest on the scoring scheme (i.e., most comparable to
our design) to avoid biasing the results. This led to a final
inclusion of 4 meta-analyses, of which 2 focused on the
associations between maternal internalizing symptoms and
mother-adolescent interaction behavior and 2 focused on the
associations between mother-adolescent interaction behavior
and adolescent internalizing symptoms. The systematic review

Frontiers in Psychology | www.frontiersin.org 6 March 2021 | Volume 12 | Article 62080294

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-620802 March 23, 2021 Time: 14:23 # 7

Schulz et al. Applying Systematically Defined Informative Priors

FIGURE 2 | Flow chart for study inclusion from search 1 (meta-analyses and systematic reviews) and search 2 (empirical studies) based on the PRISMA guidelines.

that was included identified 3 additional empirical studies that
were not included in the meta-analyses and mainly focused on
associations that were not investigated in any meta-analysis (e.g.,
associations between adolescent internalizing symptoms and
adolescent interaction behavior). One of these empirical studies
did not provide standardized information and was thus excluded.

Empirical Studies
Our second search strategy to identify relevant studies was
twofold: First, we conducted a literature search in Web of
Science for all empirical studies that were not included in the
meta-analyses published from January 20122 until March 2020
using the same search string as for the meta-analyses, but
only for adolescent samples (adolescen∗, youth, teen∗, youngst∗,
student∗, emerging adult∗, early adult∗, and young adult∗)
and observational studies (observ∗, code∗, rater, tape∗, task∗,
and record∗). Studies were selected if they (a) included an
adolescent sample, but did not include participants younger than
7 years or older than 25 years at the first measurement, (b)
included longitudinal estimates for the cross-lagged parameters,
and (c) assessed positive and/or negative interaction behavior
from mother toward adolescent and/or from adolescent toward
mother using observations. This search identified 275 studies, of
which 11 were included (see Figure 2). Second, we searched all
cross-sectional meta-analyses for studies that met the inclusion
criteria and had estimates that were not included in the meta-
analytic effect sizes. This resulted in an additional inclusion
of 2 studies. Studies that failed to provide any or only partial
standardized information were excluded (k = 8). The final
inclusion yielded 47 effect sizes from 4 meta-analyses and 5
independent empirical studies (see Supplementary Table 1 for
all included studies per parameter and model).

Power Prior Weighting Scheme
To evaluate each previous study’s contribution to our research
question, we designed a scoring system that reflects each

2As starting year, we chose the date of the last updated search of the meta-analyses.

study’s weight in the specification of prior distributions. Four
experts on adolescent relationships and mental health (third,
fifth, sixth, and seventh author) discussed and evaluated the
importance of several methodological aspects, which were
further quantified to represent one score (see Table 1A). For
example, a longitudinal measurement most closely reflected
our study design, and therefore received a higher score than
a cross-sectional measurement. The final weighting scheme
included ten categories: longitudinal associations, same time
lag, controlling for earlier internalizing symptoms, mother-
adolescent interaction behavior assessed solely observational,
age range from early to mid-adolescence (12–16), included
symptoms of depression and anxiety, or anxiety only, controlling
for other partner’s symptoms, controlling for other partner’s
interaction behavior, community sample, and meta-analysis. The
ten categories were associated with 5–20 points depending on
the importance of the criterion. Each included study received the
allocated number of points per category depending on whether
or not they fulfilled the criteria (see Table 1B). The final score for
each study determined its associated weight, δ, in the power prior.

Specification of Prior Distributions
To be able to use previous information from studies with various
measures, the data of the present study was standardized, and all
prior distributions concerned standardized effects. Hence, only
information from previous studies that presented or allowed to
compute standardized effects and the associated standard errors
was used3. The hyperparameters for the normally distributed
prior distributions were a mean and standard deviation.

The longitudinal associations of maternal and adolescent
internalizing symptoms with mother-adolescent positive (i.e.,
model A) and negative interaction behavior (i.e., model B)

3If only the standard error of the unstandardized effect was present, we multiplied
that standard error with the standard deviation of the independent variable and
divided by the standard deviation of the dependent variable. If a t-statistic was
present, the standard error was computed by dividing the standardized effect by
t. If a confidence interval for the standardized effect was provided, the difference
between upper and lower limit was divided by 2 and by 1.96.
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TABLE 1A | Weighting scheme for informative priors.

Category Points Details

T1-T2 (longitudinal) 10 The estimates of longitudinal studies are usually smaller than those of cross-sectional studies. As our parameter are
longitudinal estimates as well, longitudinal designs should receive most weight in relation other categories.

- controlling for
symptoms at T1

20 Longitudinal studies that do not control for symptoms at T1 might have quite large estimates and cannot indicate
change. As this is the most crucial aspect of longitudinal research, studies that also control for T1 symptoms should
receive more weight.
Not applicable for T1→ T2 associations (deleted from final score)!

- Same time lag
- (1 year)

5 Studies that use the same time lag as we do are closer to our study design and thus deserve more weight.

Observation 15 The study list only includes empirical studies with observational assessments of the parent-adolescent interaction as
these (multi-method) estimates are usually smaller than self-reports. However, meta-analyses often include a
combination of observations and self-reports, which is difficult to disentangle. Therefore, estimates from “pure”
observations should receive more weight than mixed studies (and most weight in relation to other categories as this is
another main aspect of our study).

Early adolescence
(12–16)

10 Some studies, and particularly the meta-analyses, used a broader age range than our study or even just adolescence
(but all studies include adolescence). As our study focuses on early-mid adolescence, studies that included a similar
age group should receive some more weight.

Internalizing
symptoms include
both anxiety and
depression, or
anxiety only

10 Most studies do not focus on a combination of depression and anxiety symptoms, but only include one of those
symptoms (mostly depression). As we will use a combination of both, studies that include measures on internalizing
symptoms or both depression and anxiety symptoms should receive more weight.
Most studies focus on mother or adolescent depression (rather than anxiety). To counterbalance that, we will also
award 5 points if the study only focused on anxiety (i.e., either combined or anxiety only).

Including covariates
- parental
symptoms
- other interaction
behaviors

5

5

If studies include other relevant covariates that might better reflect our study associations, such as parental symptoms
(for T2-T3 parameters), they might receive additional weight.

Community sample
(does not include
clinical/diagnostic
groups)

10 Many (older) studies include two subsamples, of which one is usually clinical. Therefore, the final sample includes
participants who may have higher levels of internalizing symptoms than our participants. For these participants, the
associations may be stronger. Thus, studies with a community sample which is closer to our sample should receive
more weight.

Meta-analysis 10 Meta-analyses combine information from several studies and thus provide the most comprehensive evidence. Therefore
they should receive somewhat more weight than individual studies.

10 categories
(standard 5)

100
(80)

Each study can score between 0 and 100 points (or between 0 and 80 points for T1 → T2 associations).

describe the main parameters in the model (see Figure 1).
We did not consider the datapoints from previous studies
to be exchangeable with our current dataset, nor to be a
previous sample from the same population (Spiegelhalter
et al., 2004). The previous information was thus considered
less relevant than the current data, and therefore, needed
to be downweighed by power priors. The power prior
weights δ were systematically determined through our
weighting scheme (section “Power Prior Weighting Scheme”).
Studies with lower relevance obtained lower scores for δ,
which means that their variance was inflated. The larger
variance (i.e., uncertainty) diminishes its impact on the
posterior distribution.

When multiple studies contained information on one
parameter, the information needed to be aggregated into
one distribution. We evaluated three methods to aggregate
previous information: (1) linear pooling, (2) logarithmic
pooling, and (3) a normal distribution fitted to the linear
pool. Additionally, we conducted sensitivity analyses with
default priors from the statistical R package brms as a
reference (Bürkner, 2017). The four posterior distributions

were compared and evaluated based on estimation issues and
interpretability to indicate the role of previous information.
The defined informative priors for all longitudinal regression
parameters are provided in Table 2. For all other parameters
in the model, the following low-informative prior was used:
N(0,10).

The linear and logarithmic pool both used the study’s
normal prior distributions with σ/δ as input for the
standard deviation. Subsequently, each of the distributions
received an equal weight in the pooling procedure. The
normal pool was programmed in Stan (see syntax in
the Supplementary Material). The hyperparameters
for the logarithmic pool of normal distributions were
calculated according to de Carvalho et al. (2020). To
obtain a normal distribution fitting to the linear pool,
we first drew 5,000 random samples from each of the
weighted normal prior distributions for one parameter.
Subsequently, we fitted a normal distribution to these
samples (i.e., fitted normal) by means of the fitdist
function of the R-package fitdistrplus (Delignette-Muller
and Dutang, 2015) using maximum likelihood estimation.
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TABLE 1B | Final scoring of all included studies.

Study T1-T2 lag cT1 obs Age Mdep+anx (or anx) Adep+anx (or anx) covs covi comm MA Score

Points 10 5 20 15 10 10 5 5 10 10 100

Lovejoy et al. (2000) x x 25

Simons et al. (1993)* x x 20

McCabe (2014) x x x 35

Pinquart (2017) x x x x x 60

Weymouth et al. (2016) x x x 30

Allen et al. (2006) x x x x x x 70

Asbrand et al. (2017) x x x 35

Dadds et al. (1992) x 15

Dietz et al. (2008) x x 25

Griffith et al. (2019), (neg) x x x x x 60

Griffith et al. (2019), (pos) x x x x 55

Hofer et al. (2013) x x x x x x x 80

Jackson et al. (2011) x 15

Milan and Carlone (2018), (only cs) x x x x 30

Milan and Carlone (2018) x x x x x x 60

Nelson et al. (2017) x x x 30

Olino et al. (2016) x x x x 50

Schwartz et al. (2012) x x x x x x 70

Szwedo et al. (2017) x x x x 55

van Doorn et al. (2016) x x x 25

Note. T1-T2 = longitudinal assessment, lag = same time lag used (for longitudinal studies), cT1, controlling for T1 symptoms (for longitudinal studies); obs, observational
assessment of parent-adolescent interaction; age, age range early adolescence; N, sample size; M, maternal; A, adolescent; year, publication year; covs, controlling for
parental symptoms; covi , controlling for other interaction behaviors; comm, community sample; MA, meta-analysis; x, indicates that the category is met, gray studies
were excluded from the final analyses due to insufficient standardized information.
*Study included in aforementioned meta-analysis.

The estimated mean and standard deviation associated
with the best fit were used as hyperparameters for
the priors in Stan.

Statistical Analyses
Missing data was modest and ranged from 2-13% for most
variables. Only at T1, 54% of the RADS-2, which is one
of the two scales for internalizing problems, was missing
because not all subscales of this questionnaire were administered
to all participants. Based on Little’s missing completely at
random (MCAR) test that detected no systematic patterns of
missingness, normed χ2/df = 1.19, we inferred that missing
data was not likely to bias our analyses. To handle the
missing data, multiple imputation was conducted by means of
the R-package mice (Van Buuren and Groothuis-Oudshoorn,
2011). All variables that had a correlation >0.10 with the
variables to be imputed were included as predictors in the
imputation model, except for the identification variable. As
indicated by the imputation plots and absence of logged
events, the 20 imputations were successful. The fraction of
missing information (fmi) in all regression paths ranged
from 0.07 to 0.38.

To evaluate the impact of the different prior distributions,
we assessed convergence, conducted prior predictive checks,
estimated the posterior distributions, and calculated posterior
shrinkage. Convergence was assessed in randomly selected

posteriors based on three imputed datasets to avoid false
positives (Bürkner, 2020), using the potential scale reduction
(PSR; Gelman and Rubin, 1992) and effective sample size (ESS).
The PSR (or R̂) compares the variance between and within
chains. A PSR value near 1.0 indicates convergence. Originally,
1.05 was taken as an upper bound for convergence or even
1.10 with many model parameters, but more recently, smaller
values like 1.01 and 1.001 have been recommended (e.g., Vehtari
et al., 2019; Zitzmann and Hecht, 2019). The ESS quantifies
the number of effectively independent draws from the posterior
distribution, and is a measure of precision as it indicates how
well an estimate is approximated. An ESS larger than 400 is
recommended to get a stable estimate (e.g., Vehtari et al., 2019;
Zitzmann and Hecht, 2019).

In a prior predictive check, samples are taken from the
prior distribution to simulate new data based on the sampled
parameter estimates. Together, the simulated datasets form the
predictive distribution. The predictive distribution encompasses
the data that can be expected given the multivariate prior
distribution on the parameters. With a predictive distribution,
the analyst can evaluate whether the (multivariate) prior relates
to sensible data. Furthermore, the current observed data can
be compared to the predictive distribution. In the present
study, prior predictive distributions were evaluated for each
of the four dependent variables and each of the four prior
specifications in both models.
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TABLE 2 | Informative priors for the regression parameters in Model A and Model B.

Parameter description and names Linear pool Logarithmic pool Fitted normal Image

Maternal internalizing symptoms
T1→ Maternal positive interaction T2
MPonMint
b_meanMP2[1]

N(−0.18, 0.0179)0.4375
+

N(−0.21, 0.1040)0.3125
+

N(−0.29, 0.0015)0.3750

N (−0.29, 0.01) N (−0.23, 0.20)

Adolescent internalizing symptoms
T1→ Maternal positive interaction T2
MPonAint
b_meanMP2[2]

N(−0.06, 0.0077)0.5000
+

N(−0.09, 0.0950)0.3125
+

N(−0.12, 0.1755)0.1875
+

N(−0.16, 0.6407)0.3750

N (−0.06, 0.03) N (−0.10, 0.98)

Maternal internalizing symptoms
T1→ Adolescent positive
interaction T2
APonMint
b_meanAP2[1]

N(−0.06, 0.0704)0.3750 N (−0.06, 0.19) N (−0.06, 0.19)

Adolescent internalizing symptoms
T1→ Adolescent positive
interaction T2
APonAint
b_meanAP2[2]

N(−0.01, 0.1768)0.1875
+

N(−0.41, 0.0871)0.3125
+

N(−0.26, 0.0697)0.3750

N (−0.30, 0.26) N (−0.22, 0.61)

Maternal positive interaction
T2→ Maternal internalizing
symptoms T3
MintonMP
b_AS31MMInt[1]

N(−0.21, 0.1040)0.2500
+

N(−0.29, 0.0015)0.3000
N (−0.29, 0.01) N (−0.25, 0.29)

Adolescent positive interaction
T2→ Maternal internalizing
symptoms T3
MintonMP
b_AS31MMInt[2]

N(−0.01, 0.0753)0.6000 N (−0.01, 0.13) N (−0.01, 0.13)

(Continued)
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TABLE 2 | Continued

Parameter description and
names

Linear pool Logarithmic pool Fitted normal Image

Maternal positive interaction
T2→ Adolescent internalizing
symptoms T3
AintonMP
b_INT31AA[1]

N(−0.06, 0.0128)0.6000
+

N(−0.16, 0.0546)0.6000
+

N(−0.09, 0.0950)0.2500
+

N(−0.12, 0.2219)0.1500
+

N(−0.05, 0.0578)0.5500

N (−0.06, 0.05) N (−0.10, 0.68)

Adolescent positive interaction
T2→ Adolescent internalizing
symptoms T3
AintonAP
b_INT31AA[2]

N(−0.01, 0.1768)0.1500
+

N(−0.41, 0.0871)0.2500
+

N(−0.26, 0.0014)0.3000

N (−0.26, 0.01) N (−0.21, 0.73)

Maternal internalizing
symptoms
T1→ Maternal negative
interaction T2
MNonMint
b_meanMN2[1]

N(0.40, 0.0459)0.3125
+

N(0.29, 0.1030)0.3750
N (0.38, 0.18) N (0.34, 0.22)

Adolescent internalizing
symptoms
T1→ Maternal negative
interaction T2
MNonAint
b_meanMN2[2]

N(0.04, 0.0204)0.5000
+

N(0.10, 0.0948)0.3125
+

N(0.27, 0.1699)0.1875
+

N(0.16, 0.1020)0.3750
+

N(0.26, 0.1338)0.4375

N (0.05, 0.09) N (0.17, 0.47)

Maternal internalizing
symptoms
T1→ Adolescent negative
interaction T2
ANonMint
b_meanAN2[1]

N(0.06, 0.09)0.3750 N (0.06, 0.24) N (0.06, 0.24)

Adolescent internalizing
symptoms
T1→ Adolescent negative
interaction T2
ANonAint
b_meanAN2[2]

N(0.17, 0.1743)0.1875
+

N(0.28, 0.0916)0.3125
+

N(0.26, 0.0875)0.3750
+

N(0.23, 0.1348)0.4375

N (0.26, 0.31) N (0.23, 0.53)

(Continued)
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TABLE 2 | Continued

Parameter description and
names

Linear pool Logarithmic pool Fitted normal Image

Maternal negative interaction
T2→ Maternal internalizing
symptoms T3
MintonMN
b_AS31MMInt[1]

N(0.24, 0.1017)0.2500
+

N(0.29, 0.0010)0.3000
N (0.29, 0.0046) N (0.27, 0.29)

Adolescent negative interaction
T2→ Maternal internalizing
symptoms T3
MintonAN
b_AS31MMInt[2]

N(0.01, 0.0601)0.6000 N (0.01, 0.10) N (0.01, 0.10)

Maternal negative interaction
T2→ Adolescent internalizing
symptoms T3
AintonMN
b_INT31AA[1]

N(0.09, 0.0102)0.6000
+

N(0.10, 0.0948)0.2500
+

N(0.27, 0.1699)0.1500
+

N(0.21, 0.0343)0.6000
+

N(0.26, 0.0260)0.3000
+

N(0.15, 0.0537)0.6000

N (0.11, 0.04) N (0.19, 0.50)

Adolescent negative interaction
T2→ Adolescent internalizing
symptoms T3
AintonAN
b_INT31AA[2]

N(0.17, 0.1743)0.1500
+

N(0.26, 0.0010)0.3000
N (0.25, 0.0046) N (0.20, 0.82)

M, maternal; A, adolescent; int, internalizing; P, positive interaction behavior; N, negative interaction behavior;on, describes the direction of regression (e.g., MPonMint
indicates the association from maternal internalizing symptoms at T1 to maternal positive interaction behavior at T2). The hyperparameters of the normal distributions are
a mean and a standard deviation.

Posterior shrinkage (or contraction) s describes the degree
of reduction in uncertainty from the prior to the posterior
distribution of a parameter:

s = 1−
σ2

posterior

σ2
prior

,

where σ2
posterior is the variance of the posterior distribution and

σ2
prior is the variance of the prior distribution. The inclusion of

the likelihood of the data in the posterior tends to decrease the
prior uncertainty, resulting in shrinkage. If the data is highly
informative compared to the prior, the posterior shrinkage will
be close to 1. If the data provides little additional information,
the posterior shrinkage will be close to 0.

All Bayesian analyses were conducted in Stan by means of
the rstan (Stan Development Team, 2020) and brms (Bürkner,

2017) R-packages in R 4.0 (R Core Team, 2020). We conducted
our analyses with 3 chains, each running 8,000 iterations of
which the first 3,000 were discarded. The software analyzed
each of the 20 imputed datasets separately. Afterward, the
separate posterior distributions were taken together to aggregate
the results (Gelman et al., 2004, p. 520; Zhou and Reiter,
2010)4. We constructed two structural equation models (SEMs)
to examine whether maternal and adolescent positive (see
Figure 1A) and negative interaction behavior (see Figure 1B)
mediated the association between maternal and adolescent
internalizing symptoms across time. All models included 2-year
autoregressive paths for adolescent and maternal internalizing

4brms includes a function that applies multiple imputation and the aggregation
of results in one step, but we did not use it for reasons of comparability between
methods.
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symptoms. We further included correlations between maternal
and adolescent interaction behavior. Finally, we calculated eight
indirect effects to assess whether maternal and adolescent positive
and negative interaction behavior mediated the associations
from maternal to adolescent internalizing symptoms as well
as from adolescent to maternal internalizing symptoms by
multiplying the associations between internalizing symptoms
and mother-adolescent interaction behavior from T1 to T2
and from T2 to T3.

RESULTS

Descriptive Statistics
Table 3 displays the means, standard deviations, and correlations
among all study variables. Interaction behavior correlated
moderately to strongly, both within mother and adolescent
interaction behavior as well as between mother and adolescent
interaction behavior. Maternal and adolescent interaction
behavior correlated moderately with maternal and adolescent
internalizing symptoms.

Convergence and Precision
PSR values were <1.01 and ESS >1,000 for all parameters in
all viewed analyses for the analyses with logarithmic pooled
priors, fitted normal priors, and default priors. However,
the analyses with linear pooled priors also showed some
insufficient results with respect to convergence and precision.
In Model A, a PSR of 1.02 was observed for maternal
internalizing symptoms at T1 predicting maternal positive
interaction behavior at T2 (MPonMint), and a PSR of 1.04
for maternal positive interaction behavior at T2 predicting
maternal internalizing symptoms at T3 (MintonMP). The ESS
was <200 for maternal internalizing symptoms at T1 predicting
maternal positive interaction behavior at T2 (MPonMint),
maternal positive interaction behavior at T2 predicting maternal
internalizing symptoms at T3 (MintonMP), and in some
analyses also for adolescent positive interaction behavior at T2
predicting maternal internalizing symptoms at T3 (MintonAP).
In model B, two PSR values >1.05 were observed: 1.07
for maternal negative interaction behavior at T2 predicting
maternal internalizing symptoms at T3 (MintonMN), and 1.12
for adolescent negative interaction behavior at T2 predicting
adolescent internalizing symptoms at T3 (AintonAN). The
regression of adolescent internalizing problems on adolescent
negative interaction behavior (AintonAN) was also repeatedly
associated with a particularly low ESS (i.e., <50). For the purpose
of this illustration, we will continue to evaluate the results as they
are, without any further modifications to the estimation process.

Prior Predictive Check
We evaluated the predictive distributions of the four dependent
model variables in both studies for each of the four methods (i.e.,
32 predictive distributions). Figure 3 displays a selection of four
illustrative predictive distributions.

For each of the informative prior specifications, there was a
considerable spread in predicted likelihoods and their associated

means and standard deviations. The predicted means mostly
ranged from −40 to +40, centered around the observed
data mean of 0 (all variables were centered). The predictive
distribution for the default brms priors, however, almost had an
infinite range including many implausible predicted likelihoods.
This behavior was expected, as default priors are not supposed to
direct the estimation process, but it also demonstrates that default
priors do not contain meaningful information.

Shrinkage
The posterior shrinkage for all parameters of interest and all prior
specifications in both models can be found in Table 4. In all
cases, the posterior shrinkage for the default brms priors was
approaching 1.00, indicating that the data strongly diminished
the posterior variance as compared to the prior variance. This
finding was expected as default priors usually have an extremely
wide variance to let the likelihood of the data predominate the
posterior results. The logarithmic pool generally showed the
lowest posterior shrinkage. In 9 out of 16 posterior parameter
distributions, the posterior shrinkage for the logarithmic pooled
prior was <0.20, and in 6 out of 16 it was even <0.05. In these
cases, the logarithmic pooled prior greatly affected the posterior
results. The shrinkage of the linear pooled prior and the fitted
normal prior were relatively similar and varied between 0.27 and
0.90. It should be noted however, that the multimodality of the
linear pooled prior and its associated posterior was not captured
by our shrinkage measure that summarizes the distributions by
their variances. Consequently, even though the shrinkage was
larger than that of the fitted normal prior in 50% of the cases,
we cannot interpret this outcome as if the likelihood had a
larger impact on the posterior of the linear pooled prior than
the fitted normal.

Indirect Pathways Through Maternal and
Adolescent Interaction Behavior
Positive Interaction Behavior
The results for the positive interaction behavior model as
analyzed with the three different prior settings are provided
in Table 5. Based on the analysis with linear pooled priors,
we found that only for the longitudinal associations from
maternal and adolescent internalizing symptoms at T1 to
maternal positive interaction behavior at T2 (Mmaternal = −0.24,
95% HPD = [−0.30,−0.13], Madolescent = −0.15, 95%
HPD = [−0.35,−0.04]), the 95% highest posterior density
(HPD) interval did not include 0 as probable value. The
completely negative 95% HPD indicates that higher levels of
maternal and adolescent internalizing symptoms predicted lower
levels of subsequent maternal positive interaction behavior 1
year later. Although there was limited evidence that maternal
and adolescent internalizing symptoms predicted adolescent
positive interaction behavior as the 95% HPD included both
negative and positive values, the values were mostly negative.
This indicates that there was more probability toward such
a negative effect, but still some probability that the effect
was positive. For all other associations, negative as well as
positive values were part of the 95% HPD. Hence, we are
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TABLE 3 | Descriptives of all study variables.

Variable M SD 1 2 3 4 5 6 7

1 Adolescent internalizing T1 −0.12 0.95

2 Adolescent internalizing T3 −0.02 0.88 0.601

3 Maternal internalizing T1 0.19 0.17 0.195 0.148

4 Maternal internalizing T3 0.19 0.18 0.105 0.195 0.669

5 Maternal positive interaction T2 3.50 0.79 −0.177 −0.293 −0.293 −0.366

6 Maternal negative interaction T2 1.48 0.72 −0.81 0.082 0.184 0.185 −0.574

7 Adolescent positive interactionT2 3.30 0.91 −0.185 −0.309 −0.232 −0.106 0.471 −0.260

8 Adolescent negative interactionT2 1.43 0.79 0.152 0.194 0.171 0.238 −0.279 0.223 −0.735

FIGURE 3 | Means (x-axis) and standard deviations (y-axis) in the prior predictive distribution for the four prior specifications. The dark-blue dots represent the
means in the imputed observed datasets (centered at 0). (A) Linear pool. (B) Logarithmic pool. (C) Fitted normal distribution. (D) Default.

not certain if and how positive interaction behavior at T2
predicted maternal or adolescent internalizing symptoms
at T3, 1 year later. Furthermore, the 95% HPD of the
autoregressive paths from maternal and adolescent internalizing
symptoms at T1 to their internalizing symptoms at T3 were
completely positive (Mmaternal = 0.49, 95% HPD = [0.33,0.66],
Madolescent = 0.44, 95% HPD = [0.27,0.61]), indicating that
maternal and adolescent symptoms showed modest stability
across time. All mediational paths included negative as well as
positive values in their 95% HPD, indicating that there was no
clear evidence on the existence and direction of the indirect
effects from maternal to adolescent or adolescent to maternal
internalizing symptoms through maternal or adolescent positive
interaction behavior.

The analyses based on logarithmic pooled priors showed
generally similar results. As for the analyses with the linear
pooled priors, both higher levels of maternal and adolescent

internalizing symptoms at T1 predicted lower levels of maternal
positive interaction behavior at T2 (Mmaternal = −0.29,
95% HPD = [−0.30,−0.28], Madolescent = −0.07, 95%
HPD = [−0.12,−0.02]). In contrast to the linear pooled priors,
lower levels of maternal and adolescent positive interaction
behavior at T2 predicted higher levels of their own, but not the
other’s internalizing symptoms at T3 (Mmaternal = −0.29,
95% HPD = [−0.30,−0.28]; Madolescent = −0.26, 95%
HPD = [−0.27,−0.24]). For all other direct associations,
the 95% HPD included both positive and negative values. Similar
to the linear pooled priors, maternal and adolescent internalizing
symptoms at T1 predicted their own respective symptoms
at T2. Furthermore, maternal positive interaction behavior
mediated the association between adolescent and maternal
internalizing symptoms, as indicated by the 95% HPD of the
indirect effect that was completely positive (Mindirect = 0.02,
95% HPD = [0.01,0.04]). This suggests that higher levels of

Frontiers in Psychology | www.frontiersin.org 14 March 2021 | Volume 12 | Article 620802102

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-620802 March 23, 2021 Time: 14:23 # 15

Schulz et al. Applying Systematically Defined Informative Priors

adolescent internalizing symptoms predicted higher levels of
maternal internalizing symptoms 2 years later through decreased
positive maternal interaction behavior. No other indirect
effects were found.

Based on the analysis with normal distributions fitted to
the linear pooled priors, we detected similar results as for
the analysis using linear pooled priors. Comparable to the
analyses with both linear and logarithmic pooled priors,
maternal and adolescent internalizing symptoms at T1 predicted
maternal positive interaction behavior at T2 (Mmaternal = −0.23,
95% HPD = [−0.38,−0.07]; Madolescent = −0.20, 95%
HPD = [−0.38,−0.03]). However, we found no evidence
for associations between maternal or adolescent interaction
behavior and their subsequent internalizing symptoms, which
is in line with the linear pooled priors, but only partially in line
with the logarithmic pooled priors. As in the other analyses
using linear and logarithmic pooled priors, maternal and
adolescent internalizing symptoms at T1 predicted their own
respective symptoms at T2. No indirect effects were found.
Further sensitivity analyses with default priors, which relied
on prespecified non-informative priors, yielded the same
conclusions as the analysis with fitted normal priors.

Examining the posterior samples per parameter (see Figure 4)
indicated that the linear pooled priors affected posterior
samples for some parameters in such a manner that they
became bimodal. For example, the posterior distribution of
the association between maternal internalizing behavior and
subsequent maternal positive interaction behavior (MPonMint)
shows that there was some strong evidence from previous studies.
This previous evidence supports an effect that is larger than
what is found in the current data, as indicated by the shift in

TABLE 4 | Shrinkage in model A and B.

Linear pool Logarithmic pool Fitted normal Default

MPonMint 0.67 −0.00 0.54 > 0.99

MPonAint 0.89 0.04 0.89 > 0.99

APonMint 0.51 0.50 0.51 > 0.99

APonAint 0.83 0.60 0.81 > 0.99

MintonMP 0.54 0.00 0.66 > 0.99

MintonAP 0.27 0.39 0.32 > 0.99

AintonMP 0.89 0.10 0.84 > 0.99

AintonAP 0.82 0.01 0.84 > 0.99

MNonMint 0.57 0.49 0.57 > 0.99

MNonAint 0.82 0.20 0.77 > 0.99

ANonMint 0.58 0.58 0.58 > 0.99

ANonAint 0.81 0.67 0.80 > 0.99

MintonMN 0.58 −0.00 0.69 > 0.99

MintonAN 0.28 0.30 0.30 > 0.99

AintonMN 0.86 0.07 0.81 > 0.99

AintonAN 0.87 −0.01 0.88 > 0.99

M, maternal; A, adolescent; int, internalizing; P, positive interaction behavior; N,
negative interaction behavior;on, describes the direction of regression, indirect
effects are reported in direction of the association (e.g., MintMPAint describes
the indirect effect from maternal to adolescent internalizing symptoms via maternal
positive interaction behavior).

modes as compared to the analyses with default priors. On the
other hand, for the association between adolescent internalizing
symptoms and subsequent maternal positive interaction behavior
(MPonAint), the posterior distribution still reflects some strong
evidence from previous studies for an effect smaller than
found in the data.

Negative Interaction Behavior
The results for the negative interaction behavior model as
analyzed with the three different prior settings are provided
in Table 6. Based on the analysis with linear pooled priors,
we found that higher levels of maternal, but not adolescent
internalizing symptoms predicted higher levels of subsequent
maternal, but not adolescent negative interaction behavior 1 year
later (M = 0.23, 95% HPD = [0.06,0.39]). In turn, maternal
negative interaction behavior at T2 predicted adolescent, but not
maternal internalizing symptoms 1 year later at T3 (M = 0.11,
95% HPD = [0.01,0.23]). There was limited evidence that
adolescent negative interaction behavior at T2 predicted their
own or their mothers’ internalizing symptoms at T3, 1 year later.
Although for these associations the 95% HPD included both
positive and negative values, the values were mostly positive. This
indicates that there was more probability toward a positive effect,
but still some probability that the effect was negative. Maternal
negative interaction behavior mediated the association between
maternal and adolescent internalizing symptoms, as indicated
by the 95% HPD of the indirect effect that was completely
positive (Mindirect = 0.03, 95% HPD = [0,0.06]). This suggests
that higher levels of maternal internalizing symptoms predicted
higher levels of adolescent internalizing symptoms 2 years later
through increased maternal negative interaction behavior. No
other indirect effects were found.

The analyses with logarithmic pooled priors again
demonstrated generally similar results. Higher levels of maternal,
but not adolescent internalizing symptoms at T1 predicted higher
levels of maternal negative interaction behavior at T2 (M = 0.23,
95% HPD = [0.08,0.39]). Maternal negative interaction behavior
at T2 in turn predicted adolescent internalizing symptoms
(M = 0.10, 95% HPD = [0.04,0.16]) and, in contrast to the
linear pooled priors, also maternal internalizing symptoms at T3
(M = 0.29, 95% HPD = [0.28,0.30]). Higher levels of adolescent
negative interaction behavior at T2 further predicted higher
levels of subsequent adolescent internalizing symptoms at T3
as indicated by the completely positive 95% HPD (M = 0.26,
95% HPD = [0.25,0.27]), which contrasts with the analysis using
linear pooled priors. For all other direct associations, the 95%
HPD included both positive and negative values. Similar to
the linear pooled priors, we detected evidence for an indirect
effect from maternal to subsequent adolescent internalizing
symptoms through increased maternal negative interaction
behavior (Mindirect = 0.02, 95% HPD = [0.00,0.05]).

Based on the analysis with fitted normal priors, we found
slightly different results. While maternal internalizing symptoms
at T1 also predicted maternal negative interaction behavior 1
year later at T2 (M = 0.22, 95% HPD = [0.06,0.38]), there was
only limited evidence that maternal negative interaction
behavior predicted subsequent adolescent internalizing
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TABLE 5 | Parameter estimates using different prior settings for model A.

Linear pool priors Logarithmic pool priors Normal fitted to linear pool priors Default priors

Parameter Mean 95% HPD Mean 95% HPD Mean 95% HPD Mean 95% HPD

MPonMint −0.24 −0.30 −0.13 −0.29 −0.30 −0.28 −0.23 −0.38 −0.07 −0.23 −0.40 −0.06

MPonAint −0.15 −0.35 −0.04 −0.07 −0.12 −0.02 −0.20 −0.38 −0.03 −0.21 −0.39 −0.03

APonMint −0.12 −0.28 0.03 −0.13 −0.28 0.03 −0.13 −0.28 0.03 −0.15 −0.32 0.03

APonAint −0.16 −0.33 0.01 −0.16 −0.33 0.01 −0.14 −0.33 0.05 −0.14 −0.32 0.05

MintonMP −0.12 −0.29 0.10 −0.29 −0.30 −0.28 −0.07 −0.24 0.09 −0.04 −0.24 0.15

MintonAP 0 −0.15 0.15 0.07 −0.06 0.19 −0.02 −0.16 0.12 −0.04 −0.24 0.16

MintonMint 0.49 0.33 0.66 0.46 0.30 0.62 0.50 0.35 0.66 0.51 0.35 0.67

AintonMP −0.06 −0.20 0.07 −0.04 −0.11 0.03 −0.08 −0.27 0.10 −0.08 −0.27 0.11

AintonAP −0.09 −0.26 0.12 −0.26 −0.27 −0.24 −0.03 −0.23 0.16 −0.03 −0.22 0.17

AintonAint 0.44 0.27 0.61 0.42 0.24 0.59 0.45 0.27 0.61 0.45 0.28 0.61

AintMPMint 0.02 −0.01 0.08 0.02 0.01 0.04 0.01 −0.02 0.06 0.01 −0.03 0.06

AintAPMint 0 −0.03 0.03 −0.01 −0.04 0.01 0 −0.02 0.03 0.01 −0.03 0.04

MintMPAint 0.02 −0.02 0.05 0.01 −0.01 0.03 0.02 −0.02 0.07 0.02 −0.02 0.08

MintAPAint 0.01 −0.02 0.05 0.03 −0.01 0.07 0 −0.02 0.04 0 −0.03 0.04

M, maternal; A, adolescent; int, internalizing; P, positive interaction behavior; N, negative interaction behavior; on, describes the direction of regression, indirect effects
are reported in direction of the association (e.g., MintMPAint describes the indirect effect from maternal to adolescent internalizing symptoms via maternal positive
interaction behavior).

symptoms at T3 as the posterior distribution was wider
and the 95% HPD thus included positive and negative
values (M = 0.11, 95% HPD = [−0.04,0.27]. However,
adolescent negative interaction behavior predicted maternal
internalizing symptoms 1 year later at T3 (M = 0.11, 95%
HPD = [0.00,0.23]). No indirect effects were found in this
analysis. Further sensitivity analyses using default priors again
yielded the same conclusions as the normal priors fitted
to the linear pool. For the association between adolescent
negative interaction behavior at T2 and subsequent maternal
internalizing symptoms at T3, the effect size doubled in size
compared to the linear pool, logarithmic, and fitted normal
priors. The 95% HPD was even further from 0 (M = 0.22,
95% HPD = [0.06,0.38]), indicating stronger evidence that
negative behaviors of adolescents predicted internalizing
symptoms in mothers.

Some deviations between the results above stand out. For
example, even though the mode of the pooled priors is closer to
zero than the data (see Figure 5; AintonMN) maternal negative
interaction behavior at T2 predicted adolescent internalizing
symptoms at T3 with both pooled priors, but not with the
fitted normal and default priors. Apparently, the density in
the region slightly above 0 was so high that 0 was excluded
from the 95% HPD for the pooled priors. On the other hand,
adolescent negative interaction behavior at T2 only predicted
maternal internalizing symptoms at T3 with default priors,
suggesting that the prior for this parameter had a higher
probability in the region around zero than our data. The posterior
distribution of the association between adolescent negative
interaction behavior and subsequent adolescent internalizing
symptoms seemed strongly affected by the prior distribution
as well, as there was a small region with extremely high
probability (i.e., a spike) in the posterior around 0.25 in the
analyses using linear and logarithmic pooled priors (see Figure 5;

AintonAN); the 95% HPD of the linear pooled results, however,
still included 0.

DISCUSSION

The present study used Bayesian estimation with systematically
obtained results from previous studies and systematically defined
prior weights, following three prior aggregation methods. The
illustrative empirical research question behind this analysis
concerned the mediation of bidirectional associations between
maternal and adolescent internalizing symptoms from early to
mid-adolescence by mother-adolescent positive and negative
interaction behavior. We retrieved 47 effect sizes from 9 studies
that provided information on some of the relevant parameters of
our model and were thus integrated into our analyses.

Empirical Discussion: The Mediating
Role of Mother-Adolescent Interaction
Behavior
Consistent with theoretical and empirical evidence that
internalizing symptoms can lower maternal positive
interaction behavior toward their children (Simons et al.,
1993; Goodman and Gotlib, 1999; Lovejoy et al., 2000;
McCabe, 2014), the distributions consistently showed that
higher levels of maternal internalizing symptoms predicted
lower levels of their own, but generally not adolescent
positive and negative interaction behavior in the following
year. Mothers with increased internalizing symptoms
might be emotionally unavailable, easily irritated, and
unable to sensitively respond to their children’s needs,
which can suppress encouraging or nurturing behaviors
and exacerbate hostile, rejecting behaviors in subsequent
interactions with their children (Lovejoy et al., 2000). As
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FIGURE 4 | Posterior distributions of the final results involving positive interaction behavior; linear pooled priors are displayed in orange, logarithmic pooled priors in
light-purple, fitted normal priors in green, and default priors in gray.

maternal internalizing symptoms can disrupt interactional
processes between mothers and adolescents, they are likely
to drive relationship erosion in the long term (Coyne et al.,
1991; Meeus, 2016). Interestingly, although the analyses
using linear and logarithmic pooled priors suggested a
clear negative association from adolescent internalizing
symptoms to maternal positive interaction behavior as well,
our findings generally provided only little evidence for
the theoretical propositions that adolescent internalizing
symptoms disrupt interactions in the family (Sheeber et al., 2001;
Berg-Nielsen et al., 2002).

Despite theoretical propositions and empirical findings that
less positive and more negative mother-adolescent interaction
behavior predict adolescent internalizing symptoms (McLeod
et al., 2007a,b; Yap et al., 2014; Pinquart, 2017), we found
that maternal or adolescent internalizing symptoms predicted
later mother-adolescent interaction behavior more often
than that mother-adolescent interaction behavior predicted
later internalizing symptoms. This is in line with one of
the few mediation studies that found associations between
maternal internalizing symptoms and observed maternal
interaction behavior, but not between interaction behavior and
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TABLE 6 | Parameter estimates using different prior settings for Model B.

Linear pool priors Logarithmic pool priors Normal fitted to linear pool priors Default priors

Parameter Mean 95% HPD Mean 95% HPD Mean 95% HPD Mean 95% HPD

MNonMint 0.23 0.06 0.39 0.23 0.08 0.39 0.22 0.06 0.38 0.19 0.01 0.37

MNonAint 0.04 −0.10 0.19 0.04 −0.08 0.16 0.04 −0.15 0.22 0.04 −0.15 0.23

ANonMint 0.10 −0.06 0.27 0.10 −0.06 0.27 0.10 −0.06 0.27 0.11 −0.07 0.30

ANonAint 0.13 −0.04 0.30 0.13 −0.04 0.30 0.12 −0.05 0.29 0.11 −0.06 0.29

MintonMN 0.11 −0.07 0.29 0.29 0.28 0.30 0.08 −0.07 0.23 0.03 −0.14 0.19

MintonAN 0.11 −0.01 0.23 0.07 −0.05 0.18 0.11 0 0.23 0.22 0.06 0.38

MintonMint 0.49 0.34 0.64 0.46 0.30 0.61 0.49 0.34 0.65 0.49 0.34 0.65

AintonMN 0.11 0.01 0.23 0.10 0.04 0.16 0.11 −0.04 0.27 0.11 −0.05 0.27

AintonAN 0.20 −0.02 0.26 0.26 0.25 0.27 0.10 −0.06 0.26 0.10 −0.06 0.26

AintonAint 0.44 0.27 0.60 0.43 0.26 0.59 0.45 0.28 0.61 0.45 0.28 0.61

AintMNMint 0 −0.01 0.03 0.01 −0.02 0.05 0 −0.02 0.03 0 −0.02 0.02

AintANMint 0.01 −0.01 0.04 0.01 −0.01 0.03 0.01 −0.01 0.04 0.02 −0.01 0.08

MintMNAint 0.03 0 0.06 0.02 0 0.05 0.02 −0.01 0.07 0.02 −0.01 0.07

MintANAint 0.02 −0.01 0.06 0.03 −0.02 0.07 0.01 −0.01 0.04 0.01 −0.01 0.05

M, maternal; A, adolescent; int, internalizing; P, positive interaction behavior; N, negative interaction behavior; on, describes the direction of regression; indirect effects
are reported in direction of the associxation (e.g., MintMNAint describes the indirect effect from maternal to adolescent internalizing symptoms via maternal negative
interaction behavior).

adolescent internalizing symptoms (van Doorn et al., 2016). One
possible reason for this finding may be that mother-adolescent
interaction behavior is more likely to influence immediate, short-
term emotions in mothers or adolescents. While particularly
maternal internalizing symptoms may have long-lasting effects,
maladaptive interactions may exert their effects at a shorter
time interval than we could detect with annual assessments.
Alternatively, highly negative and less positive interactions
between mothers and adolescents are quite common in early to
mid-adolescence as mother-adolescent conflicts become more
intense (Hadiwijaya et al., 2017). It is possible that because such
behaviors are relatively typical during this time in adolescence,
they are experienced as tied to that specific interaction and thus
do not directly influence adolescent mood in the long term.

The limited evidence that we found for the associations
between mother-adolescent interaction behavior and later
internalizing symptoms concerned mainly negative interaction
behavior in the analyses using linear and logarithmic pooled
priors. This may be expected given that the impact of negative
events and emotions is generally stronger than the impact
of positive events or emotions (Baumeister et al., 2001).
Although the effect sizes were generally comparable in all
analyses, using different informative priors yielded somewhat
different conclusions based on the distributions and credibility
intervals. Together with the detected indirect effect that
maternal negative interaction behavior mediated the associations
between maternal internalizing and subsequent adolescent
symptoms using linear pooled and logarithmic priors, however,
they suggest that negative interaction behavior may play a
role in the transmission of internalizing symptoms. Hostile
behaviors might make interaction partners feel rejected and
helpless, undermine their self-esteem, and elicit negative
self-evaluations, which might in turn increase their risk
for internalizing symptoms in the long-term (Gottman

et al., 1997; Garber and Flynn, 2001). Interestingly, we also
found that decreased maternal positive interaction behavior
mediated the associations between adolescent internalizing
symptoms and subsequent maternal internalizing symptoms,
but this indirect effect was only evident using logarithmic
pooled priors.

The different conclusions using different priors also warrant
caution. Specifically, they suggest that our data contrasts with
previous findings. In the linear pooled prior distribution, we
indeed detected two spikes toward a positive distribution for
the associations from maternal negative interaction behavior
to later adolescent internalizing symptoms, whereas the
logarithmic pooled priors suggested one extreme dense,
narrow distribution closer to zero and the fitted normal
priors indicated a similar, but flat distribution. The detected
spikes in the linear and logarithmic pooled priors resulted
from information found in previous studies, which drove
these conclusions, whereas associations that we only detected
with fitted normal and default priors suggested that our data
provided stronger evidence than previous findings. Using
different approaches to define informative priors allowed
us to compare their impact on the results and evaluate
the robustness of our conclusions. Once we updated the
information collected in previous studies with our new data, the
posterior distributions shifted to a varying degree depending
on how we specified the priors. Differences between the
posteriors were particularly pronounced when our data strongly
diverged from previous studies. While the posteriors generated
from logarithmic pooled priors were strongly influenced by
previous data and thus only shifted little compared to the
prior distributions, the linear pooled priors often resulted in
bimodal distributions that reflected the discrepancy between
previous and new data. These differences in priors and
previous compared to new data emphasize that for some
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FIGURE 5 | Posterior distributions of the final results involving negative interaction behavior; linear pooled priors are displayed in orange, logarithmic pooled priors in
light-purple, fitted normal priors in green, and default priors in gray.

associations, we may not yet have enough evidence to draw
final conclusions.

The Role of Different Informative Priors
While we were able to include a range of findings relating to
our model parameters, these studies reflected our own study’s
design to a varying degree and might thus introduce potential
bias (Hobbs et al., 2011; Viele et al., 2014). Each included
study provides a varying amount of relevant information and
certainty, which is essential to take into account when specifying
informative priors. How much a previous study contributes,
depends on the focus and methodological considerations of
the specific study. A weighting scheme therefore needs to be
tailored to each new study’s purpose and design. To avoid
bias, such as increased subjectivity, it is important to engage
content experts who can judge the relevance of weighting aspects
and justify all decisions transparently in an accessible logbook

(Zondervan-Zwijnenburg et al., 2017). Therefore, we involved
content experts to design a weighting scheme and scoring system
that allowed us to consider each study’s specific contribution
with respect to our data. Our illustrative example represented a
longitudinal, multi-method design, which constituted the core
of our weighting scheme. As cross-sectional studies cannot be
used to disentangle the temporal order of associations, they
provided only weak evidence for our parameters. Similarly,
longitudinal studies that did not control for previous levels
of psychopathological symptoms at an earlier point in time
are not useful to measure change, and therefore received less
weight as well. While a weighting scheme is an essential tool
to combine findings from more or less comparable studies,
it needs to be carefully constructed and reviewed to avoid
inaccurate inferences and conclusions. In this study, we followed
recommendations, such as including experts for the composition
of the weighting scheme or the estimation of the weights (e.g.,
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Zondervan-Zwijnenburg et al., 2017), which can further help
to reduce subjectivity. Instead of weights based on the match
between previous studies and the design of the study at hand,
weights can also be based on optimality criteria (e.g., maximum
entropy, minimum Kullback-Leibler divergence) or modeled by
means of a prior on the weights (e.g., de Carvalho et al., 2020).
These methods do not take the content of studies into account,
which can be regarded their strength because of increased
objectivity, but also their weakness because previous studies
are not valued based on criteria that are considered important
by experts.

Our statistical evaluation showed that analyses based on
linear pooled priors may suffer from estimation problems
(i.e., insufficient convergence and precision), where other prior
specifications do not show the same issues. Furthermore, the
prior predictive distributions were comparable across prior
specification methods, except for the default prior, which does
not produce a meaningful predictive distribution. Generally, we
found that the posterior distributions based on the analyses
with linear pooled priors displayed bimodal distributions and
strong spikes in multiple occasions. The posteriors resulting
from the logarithmic pooled priors were spiked and highly
driven by the previous information as confirmed by the low
associated shrinkage. In the current study, two studies (i.e.,
Pinquart, 2017; Milan and Carlone, 2018) caused all spikes. These
studies reported estimates with extremely small (standardized)
standard errors, thus strengthening the evidence for these effects.
While Pinquart (2017) conducted a longitudinal meta-analysis
on the associations between parental behaviors and adolescent
internalizing symptoms with over 1,000 included studies, Milan
and Carlone (2018) investigated actor and partner effects in
how mother and adolescent internalizing symptoms predicted
maternal and adolescent behaviors during an interaction task.
Both studies provide important information for our analyses,
but do not precisely reflect our study design. Specifically,
Pinquart’s meta-analysis also included (young) children and
reported parental behaviors. Milan and Carlone, on the other
hand, only sampled adolescent girls, who have been found to
show higher levels of internalizing symptoms (Zahn-Waxler
et al., 2008) and to be more sensitive to interpersonal experiences
than adolescent boys (Flook, 2011). The design differences were
taken into account by using power priors based on a systematic
weighting scheme. In the current study, we did not lower study
weights based on the specificity of the results. From a perspective
of building cumulative knowledge, that would be a questionable
practice. From a more pragmatic perspective, however, it may be
sensible to downweigh information that appears unreasonably
specific. For example, when expert elicitation is used to form
prior distributions, it is suggested that the analyst decides to
exclude an expert’s distribution if their probability density is too
narrow (de Carvalho et al., 2020).

Linear pooled priors integrate all available literature to its
full avail and consider the influence of potentially differing
previous findings. These distributions allow – or even demand –
researchers to examine extreme or varying findings and discuss
their data more specifically in relation to the literature. In this
manner, the linear pooled prior and its associated posterior

may also provide directions for future research. However, a
multimodal posterior distribution may also render it difficult
to interpret the findings directly. Furthermore, extra caution is
warranted to establish sufficient convergence and precision.

Logarithmic pooled priors reflect an updating process of
previous studies. As such, they are closely tied to the idea
of building cumulative knowledge. In the current study, the
specificity of some of the previous results overruled other
previous findings and the current data in the posterior. However,
this does not disqualify the logarithmic pooling procedure in
general, nor in this case specifically. The posterior still represents
our updated previous knowledge.

An alternative to downweighing previous results based on
their extreme specificity, is to fit normal distributions to the
linear pooled previous information. Similar to logarithmic pooled
priors, fitted normal distributions behave well during Bayesian
estimation and, similar to linear pooled priors, use previous
information to inform the analyses. Particularly if previous
research is scarce, contradictory or only few studies are sampled,
fitted normal distributions are useful to specify informative priors
without overemphasizing the effect of one individual study. Fitted
normal priors are best suited when it can be assumed that the
previous results are random samples from an underlying normal
distribution, or when the analyst considers it a pragmatic midway
between the more informative pooled and default priors.

In contrast to informative priors, default priors neglect
previous knowledge about how mother-adolescent interaction
behavior mediate the associations between maternal and
adolescent internalizing symptoms. The predictive distribution
clearly showed that default priors are highly unspecific with
regards to expected future data. The associated shrinkage
confirmed that the observed data completely overruled the
unspecific previous information. For default priors, this behavior
is desired. Previous studies, however, have shown that the use of
default, non-informative priors may strongly bias the results and
decrease estimation accuracy, particularly in small samples (Smid
et al., 2019; Zitzmann et al., 2020).

Strengths, Limitations, and Implications
This study applied Bayesian estimation with informative priors
to examine in an illustrative example whether observed mother-
adolescent interaction behavior underlies the longitudinal
associations between maternal and adolescent internalizing
symptoms from early to mid-adolescence. Using a novel,
comprehensive approach in which we first systematically
quantified previous study findings in a meta-analytic design and
then used this previous knowledge as input for the analyses
allowed us to draw more precise conclusions about the potential
mediating role of mother-adolescent interaction behavior. Such
a strategy exceeds a pure meta-analytical approach, because it
allowed us to incorporate existing information from a wide
variety of studies that resemble our present study to varying
degrees. Meta-analyses provide good starting points for new
Bayesian analyses. Previous studies generate and raise new
research questions, and Bayesian estimation with informative
priors allows for a cumulative approach that does not ignore
existing knowledge, but gradually updates it. This way, existing
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knowledge will be integrated into the empirical process.
Particularly when previous research is scarce or when new studies
are needed to address important limitations of previous research,
including prior distributions can help to further cumulate
knowledge. In our study, information was available on only
some parameters, but not on the complete mediation model that
we aimed to test. While the limited previous information was
not sufficient to perform a meaningful meta-analysis, we were
able to use the existing information to conduct new analyses
that addressed previous limitations or remaining questions and
integrated previous knowledge. By using three different priors,
we were further able to show the robustness of our results across
different approaches.

Despite these strengths, this study had some limitations
with respect to the empirical mediation analysis. First, we only
observed mother-adolescent interaction behavior at one time
during early to mid-adolescence. While this approach allowed
us to reduce the complexity of our model to fit our sample size,
summary scores may not accurately reflect the processes that
occur during the interactions between mothers and adolescents.
It may be important to not only examine which average behaviors
mothers and adolescents show during interactions, but also how
these behaviors mutually influence each other on a moment-to-
moment basis.

Second, a full longitudinal mediation approach would further
require the assessment of all variables at each time point to
account for the stability of not only internalizing symptoms
across time, but also the stability of interaction behavior as
well as concurrent associations between interaction behavior and
internalizing symptoms. Due to the limited sample size in our
data (N = 102 mother-adolescent dyads), we had insufficient
information to inform a three-wave fully recursive model, which
would have been ideal.

Third, longitudinal studies rarely employ the same time
intervals between measurements, which renders comparing the
findings from these studies difficult. Parameter estimates often
depend on the time interval that was used (e.g., Gollob and
Reichardt, 1987) as the underlying processes that measure
change on a micro-scale, such as moment-to-moment or day-
to-day, can differ from those on a macro-scale, such as year-
to-year (Ebner-Priemer and Trull, 2009; Voelkle et al., 2012;
Hollenstein et al., 2013). Consequently, studies with varying
time scales might result in different conclusions that are
not directly comparable. In our study, we tried to address
time dependency by adding additional weight to studies that
incorporated the same time interval as we did. However, we
were only able to include few longitudinal studies, of which
none received this additional weight. Future studies that aim
to incorporate more, or exclusively, longitudinal studies might
consider continuous rating options, such as continuous-time
modeling or continuous-time meta-analytical procedures that
allow to account for the effect of time more precisely (e.g., Van
Montfort et al., 2018; Kuiper and Ryan, 2020). Another option
could be to include a selection of varying weighting schemes and
subsequently evaluate how different rating decisions affect the
results. However, these approaches were beyond the scope of our
empirical illustration.

In this study, we made use of differently composed informative
priors to compare their effects on the posterior distributions.
While our approach allowed us to systematically specify and use
informative priors for the analyses of our data, quantifying, and
weighing each previous study in such a systematic way requires
a substantial amount of time and effort. If taken seriously, the
task is equivalent to conducting a weighted meta-analysis with
the additional benefit of including information from studies that
resemble the present study to a varying extend. By allowing
researchers to integrate new data and evaluate novel research
questions using existing knowledge, this approach moves beyond
where meta-analytical methods usually end and allows for
knowledge to further cumulate over time.

As such, Bayesian estimation with informative priors can
address important shortcomings of current empirical practices
and serve the goal of empirical research to generate scientific
growth of knowledge. Nevertheless, in such a systematic
approach it is essential to effectively use previous information
for Bayesian estimation. Knowing the literature and making
informed decisions about relevant studies allows researchers
to consider the most suitable approach to defining priors for
their specific situation. This is important to avoid incorporating
information from only one individual sample, while years
of research already established well-grounded expectations.
Focusing on the 95% HPD for hypothesis testing, our results
did not detect many differences between the use of pooled or
fitted normal priors.

How results from multiple previous studies on the same
parameter should be included in the associated prior depends on
theoretical considerations: Should the prior reflect the previous
results as they are (linear pool), be an update of previous
results (logarithmic pool), or be considered a set of random
samples from an underlying normal distribution (normal fitted
to the linear pool)? The differences between the approaches are
emphasized when results diverge across previous studies: Are all
results plausible and can they coexist in the prior distribution
(linear pool), is only the consensual part plausible (logarithmic
prior), or is there an underlying truth that is best resembled
by a fitted normal distribution (fitted normal)? Additionally,
pragmatic considerations can be taken into account. For example,
the logarithmic pool is a theoretically sound (Bayesian) approach
to aggregate multiple previous results that will emphasize
consensual values, but extremely specific results from previous
studies lead it to exclude large portions of the sample space.
In the same situation, the posterior distributions based on the
linear pooled priors do not exclude the observed values. However,
the bimodal results that can result from diverging previous
findings are difficult to interpret substantively. In these cases, a
prior distribution like the fitted normal may be preferred, as it
eliminates most of the impact of studies with high density when
more studies contribute to the previous information.

CONCLUSION

Testing a comprehensive model that includes mediation effects
requires a large sample size to detect small-to-moderate effects
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that are common in social science. Typically, studies including
longitudinal, observational designs include only relatively small
samples as they are time-consuming, costly, demand more
of the participants, and face recruitment difficulties, such as
dropout. Attempting to estimate complex models with traditional
analytical techniques can result in estimation problems as well
as inaccurate parameter estimates (e.g., van de Schoot et al.,
2017), and thus limit the conclusions that can be drawn from
such models. Furthermore, by using informative priors, we
gain insight into how our data relate to the results from
previous studies.

The findings of our study indicated that posterior distributions
were generally stable across different prior distributions with
differing levels of existing knowledge on the associations between
mother-adolescent interaction behavior and internalizing
symptoms. Specifically, we consistently found that even though
mother-adolescent interaction behavior might play a relatively
limited role in the transmission of internalizing symptoms
from early to mid-adolescence, particularly negative interaction
behavior might still be relevant. Nevertheless, the choice of
prior aggregation did alter the results for some parameters
and may well make a difference in other studies. Researchers
should carefully consider how to aggregate previous results
into one prior distribution, and always conduct sensitivity
analyses to demonstrate if the results hold with different prior
specifications. As illustrated by our example, using Bayesian
estimation with informative priors offers a great opportunity
to use accumulated knowledge to increase the precision of our
outcomes. If conducted thoroughly, the approach equals and
moves beyond where a weighted meta-analysis usually ends as it
not only quantifies previous knowledge, but also integrates new
data into a cumulative process. Such precision and accumulation
of knowledge is important in moving empirical science forward,
but also in informing therapeutic programs that aim to prevent
or reduce adolescent internalizing symptoms by targeting often
proposed risk factors, such as maladaptive interaction behavior
between mothers and adolescents.
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Bayesian non-parametric (BNP) modeling has been developed and proven to be a

powerful tool to analyze messy data with complex structures. Despite the increasing

popularity of BNP modeling, it also faces challenges. One challenge is the estimation of

the precision parameter in the Dirichlet processmixtures. In this study, we focus on a BNP

growth curve model and investigate how non-informative prior, weakly informative prior,

accurate informative prior, and inaccurate informative prior affect themodel convergence,

parameter estimation, and computation time. A simulation study has been conducted.

We conclude that the non-informative prior for the precision parameter is less preferred

because it yields a much lower convergence rate, and growth curve parameter estimates

are not sensitive to informative priors.

Keywords: non-parametric Bayesian, robust method, growth curve modeling, Dirichlet process mixture, prior,

precision parameter

1. INTRODUCTION

Bayesian non-parametric (BNP) modeling, also called semiparametric Bayesian modeling in the
literature, has been recognized as a valuable data analytical technique due to its great flexibility and
adaptivity (e.g., Müller and Mitra, 2004; Gershman and Blei, 2012). It is rapidly gaining popularity
among methodologists and practitioners and has been applied to a variety of models including
regressions, latent variable models with complex structures, sequential models, etc. BNP models
are on an infinite dimensional parameter space and the complexity of the models adapts to the
data. One of the most popular BNP models is Dirichlet process (DP) mixtures. Being able to adapt
the number of latent classes to the complexity of the data, DP mixtures are powerful in modeling
empirical data. However, they also face technical challenges. One challenge is the estimation of the
precision parameter in the DP mixture. In this study, we focus on the prior of precision parameter
and investigate how it affects model convergence, parameter estimation, and computation time in
BNP growth curve modeling.

Growth curve models are broadly used in longitudinal research (e.g., Meredith and Tisak, 1990;
McArdle and Nesselroade, 2014). Many popular longitudinal models in social and behavioral
sciences, such as multilevel models, some mixed-effects models, and linear hierarchical models,
can be written as a form of growth curve models. In growth curve models, dependent variables
are repeatedly measured and explained as a function of time and possible control variables. The
mean function between the dependent variables and time is the mean growth. Random effects
and measurement errors cause the individual growth trajectories to deviate from the mean growth
curve. Traditional growth curve modeling is typically based on the normality assumption. That
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is, both the random effects and measurement errors are
assumed to follow normal distributions. However, empirical
data often violate the normality assumption (Micceri, 1989;
Cain et al., 2017). Non-normal population distributions and
data contamination are two common causes of non-normality.
Although standard errors and test statistics have been corrected
to reduce the adverse effect of distributional assumption violation
(e.g., Chou et al., 1991; Curran et al., 1996), normal-distribution-
based maximum likelihood estimation may still yield inefficient
or inaccurate parameter estimates, and thus misleading statistical
inferences (e.g., Yuan and Bentler, 2001; Maronna et al., 2006).
Therefore, researchers have developed robust methods to obtain
accurate parameter estimation and statistical inference.

The ideas of robust methods can be divided into two types.
For the first type, the key idea is to downweight extreme cases.
To do so, this type of robust methods assigns a weight to each
subject in a dataset according to its distance from the center
of the majority of the data (e.g., Pendergast and Broffitt, 1985;
Singer and Sen, 1986; Silvapulle, 1992; Yuan and Bentler, 1998;
Zhong and Yuan, 2010). For the second type, the key idea is to
use non-normal distributions that are mathematically tractable
while building the statistical model. For example, latent variables
and/or measurement errors are assumed to follow a t or skew-t
distribution (Tong and Zhang, 2012; Zhang, 2016) or amixture of
certain distributions (Muthén and Shedden, 1999; Lu and Zhang,
2014). While being useful, these methods have limitations under
certain conditions. For example, the downweighting method
does not perform well when latent variables contain extreme
scores (see Zhong and Yuan, 2011). Using a t distribution or a
mixture of normal distributions still imposes restrictions on the
shape of the data distribution.

The aforementioned issues are automatically resolved by BNP
methods. BNP modeling relies on a building block, DP, to handle
the non-normality issue. DP is a distribution over probability
measures that can be used to estimate unknown distributions.
Consequently, the non-normality issue can be addressed by
directly estimating the unknown random distributions of latent
variables or measurement errors (i.e., obtaining the posteriors of
the distributions).

The advantages of using BNP methods with DP priors
have been discussed in the literature (e.g., Ghosal et al.,
1999; MacEachern, 1999; Hjort, 2003; Müller and Mitra, 2004;
Fahrmeir and Raach, 2007; Hjort et al., 2010). They do not
constrain models to a specific parametric form which may limit
the scope and type of statistical inferences in many situations,
especially when data are not normally distributed. Thus, a typical
motivation of using BNP methods is that one is unwilling to
make somewhat arbitrary and unverified assumptions for latent
variables or error distributions as in the parametric modeling.
Meanwhile, BNP methods can provide full probability models
for the data-generating process and lead to analytically tractable
posterior distributions.

BNP methods have been applied to complex models. For
example, Bush and MacEachern (1996), Kleinman and Ibrahim
(1998), and Brown and Ibrahim (2003) used DP mixtures to
handle non-normal random effects. Burr and Doss (2005) used
a conditional DP to handle heterogeneous effect sizes in the

context of meta-analysis. Ansari and Iyengar (2006) included
Dirichlet components to build a semiparametric recurrent choice
model. Dunson (2006) used dynamic mixtures of DP to estimate
the varied distributions of a latent variable, which change non-
parametrically across groups. Si and Reiter (2013), Si et al. (2015)
used DP mixtures of multinomial distributions for categorical
data with missing values. BNP approach has also been adapted to
structural equation modeling to relax the normality assumption
of the latent variables (e.g., Lee et al., 2008; Yang and Dunson,
2010). Tong and Zhang (2019) directly used a DP mixture to
model non-normal data in growth curve modeling.

Although the application of BNP modeling has increased
dramatically since the theoretical properties of BNP methods
were better understood and their computational hurdles were
removed (e.g., Neal, 2000), BNP modeling is still unfamiliar to
the majority of researchers in social and behavioral sciences.
Additionally, there are technical issues that have not yet been
fully addressed (Sharif-Razavian and Zollmann, 2009). The
convergence issue is one of such unanswered questions. Non-
convergence can occur when BNP method is applied to complex
models. Tong and Zhang (2019) found that non-convergence
was largely caused by the precision parameter of the mixing
DP. The precision parameter is a critical hyperparameter that
governs the expected number of mixture components. When
a non-informative prior was used for the precision parameter,
non-convergence occurred or a longer computation time was
observed (Tong and Zhang, 2019). Informative priors may help
solve this issue. However, only a few studies have noticed and
discussed the effect of the precision parameter in DP mixtures
(e.g., West, 1992; Ohlssen et al., 2007; Jara et al., 2011). Ishwaran
(2000) was among the few that studied the informative prior for
the precision parameter. Ishwaran (2000) suggested to use the
Gamma(2, 2) prior to encourage both small and large values of
the precision parameter. In sum, despite its impact on the model
convergence issue, no study has systematically investigated how
the prior for the precision parameter should be specified.

Therefore, in this study, we evaluate and compare non-
informative, weakly informative, accurate informative, and
inaccurate informative priors for the precision parameter of
DP mixtures. We study how these priors influence model
convergence, model estimation, and computation time in BNP
growth curve modeling. In the next section, we introduce
BNP growth curve modeling. After providing the conditional
posterior distribution of the precision parameter, we use a
simulation study to assess the impact of four types of priors
for the precision parameter. Recommendations are provided at
the end of the article. We also provide a guideline about the
implementation of BNP growth curve modeling using R (R Core
Team, 2019) in the Appendix.

2. BAYESIAN NON-PARAMETRIC GROWTH
CURVE MODELING

We now introduce a typical growth curve model and a BNP
method based on thismodel. Consider a longitudinal dataset with
N subjects and T measurement occasions. Let yi = (yi1, . . . , yiT)

′
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be a T × 1 random vector with yij being a measurement from
individual i at time j (i = 1, . . . ,N; j = 1, . . . ,T). A growth curve
model without covariates can be written as

yi = 3bi + ei,

bi = β + ui,

where 3 is a T × q factor loading matrix that determines the
growth curves, bi is a q × 1 vector of random effects, and ei is
a vector of measurement errors. The vector of random effects bi
varies around its mean β . The residual vector ui represents the
deviation of bi from β . When

3 =











1 0
1 1
...

...
1 T − 1











, bi =

(

Li
Si

)

, and β =

(

βL

βS

)

,

themodel is reduced to a linear growth curvemodel with random
intercept Li and random slope Si. The mean intercept and slope
are denoted as βL and βS, respectively.

Traditionally, ei and ui are assumed to follow multivariate
normal distributions with mean vectors of zero and covariance
matrices 8 and 9 , respectively, so ei ∼ MNT(0,8) and ui ∼

MNq(0,9). Here,MN denotes amultivariate normal distribution
and its subscript indicates its dimension. Measurement errors are
often assumed to be uncorrelated with each other and have equal
variances across time. Statistically, this simplification means the
covariance matrix of measurement error 8 is reduced to 8 =

σ 2
e Iwhere σ 2

e is a scale parameter. In linear growth curve models,
ui = (uLi, uSi)

′. Its covariance matrix is then 9 = cov(ui) =
(

σ 2
L σLS

σLS σ 2
S

)

. Here, σ 2
L and σ 2

S represent the variances of the

random intercept and slope across individuals, respectively, and
σLS represents the covariance between the random intercept
and slope.

BNP methods do not make arbitrary distributional
assumptions as in the parametric modeling and thus are
more flexible in handling non-normal data (e.g., Lee et al., 2008;
Tong and Zhang, 2019). Unlike conventional non-parametric
methods such as permutation tests, BNP methods use full
probability models to describe the data-generating process and
thus can derive posterior distributions for model parameters.

Within the BNP modeling scope, the parametric distributions
of latent variables andmeasurement errors in traditionalmethods
are replaced by unknown random distributions. To estimate
these unknown distributions, DP is frequently used as the prior
(Ferguson, 1973, 1974). Specifically, a random “sample” from a
DP is a random distribution. Here, we denote it as G. A DP
has two hyperparameters, α and G0. The base distribution, G0,
represents the central tendency or “mean” distribution in the
distribution space. The precision parameter, α, quantifies how far
away realizations of G deviate from G0. According to Ferguson
(1973), DP is a conjugate prior that has two desirable properties:
(1) a sufficiently large support, and (2) analytically manageable

posterior distributions. Ferguson further derived the posterior of
G, DP(α̃, ˜G0). Here, α̃ = α + N and

˜G0 =
α

α + N
G0 +

N

α + N
GN

withGN being the empirical distribution of the data. Notably, the
posterior point estimate of G, E(G|data) =

˜G0, is a weighted
average of the base distribution or prior mean G0 and the
empirical distribution or data GN . When α = 0, the posterior
point estimate is reduced to the empirical distribution GN , which
is pure non-parametric. When α approaches to infinity, the
posterior point estimate gradually approximates G0, which is
parametric. A common practice is to specify a gamma prior
for α, which would yield a posterior estimate that is neither 0
nor infinity.

In BNP growth curve modeling, latent variables and/or
measurement errors can be modeled non-parametrically. In
this article, we focus on the distributional assumption of
measurement errors. When the normality of measurement errors
is suspected, we assume that ei ∼ Ge where Ge is an unknown
random distribution that is determined by the data. In the BNP
framework, DP is typically adopted to specify Ge. Because the
distribution of ei is continuous but DP is essentially discrete, a
DPmixture (DPM) can be used tomodel themeasurement errors
such that

Ge =







































D(µ
(1)
e ,8(1)), with p = p1

D(µ
(2)
e ,8(2)), with p = p2

...
...

D(µ
(k)
e ,8(k)), with p = pk

...
...

,

where D represents a predetermined multivariate distribution
(e.g., multivariate normal, t, multinomial, etc.), and

µ
(k)
e and 8(k), k = 1, . . . ,∞ are means and covariances

of the multivariate distribution in the kth component with
probability pk. Theoretically, given an arbitrary distributional
shape, there could be infinite number of mixture components
as k goes to infinity. In practice, a finite number of mixture
components often can describe a distribution well and the
number of mixture components is determined by the DP
precision parameter α. Smaller α yields a smaller number of
mixture components. If α approaches infinity, there would be N
mixture components, one associated with each subject. Namely,
the precision parameter α is an important parameter that can
determine the complexity of the model and how well the model
fits the data, and thus may affect the convergence of the model.
For the intraindividual measurement errors in the typical linear
growth curve model, Tong and Zhang (2019) proposed that

ei|8i ∼ MNT(0,8i),

8i|G ∼ G,

G ∼ DP(α,G0).
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That is, the unknown distribution Ge is approximated by a
mixture of multivariate normal distributions where the mixing
measure has a DP prior, Ge ∼ DPM. The DP prior DP(α,G0)
can be obtained using the truncated stick-breaking construction
(e.g., Sethuraman, 1994; Lunn et al., 2013). Specifically, DP(·) =
∑C

j=1 pjδzj (·), 1 ≤ C < ∞, where C (1 ≤ C ≤ N,often set

at a large number) is a possible maximum number of mixture
components, δzj (·) denotes a point mass at zj and zj ∼ G0

independently. The random weights pj can be generated through
the following procedure. With q1, q2, . . . , qC ∼ Beta(1,α), define

p
′

j = qj

j−1
∏

k=1

(1− qk), j = 1, . . . ,C.

Then, pj is obtained by

pj =
p
′

j
∑C

k=1 p
′

k

, (1)

to satisfy that
∑C

j=1 pj = 1. In practice, the updating of ei can

proceed as in a typical DP mixture model and its distribution is
an infinite mixture distribution1.

In general, the distribution of ei through the truncated stick-
breaking construction is

Ge =























D(µ
(1)
e ,8(1)), with p = p1

D(µ
(2)
e ,8(2)), with p = p2

...
...

D(µ
(C)
e ,8(C)), with p = pC

,

where D represents a predetermined multivariate distribution,

µ
(j)
e and 8(j), j = 1, . . . ,C are means and covariances of the

multivariate distribution in the jth component, and pj is obtained
using Equation (1). Given that the mean of ei is 0, we constrain
∑C

j=1 pjµ
(j)
e = 0. For simplicity, in this study, we follow Tong

and Zhang (2019) and use multivariate normal distributions for

themixing components and constrainµ
(j)
e to be 0.We use inverse

Wishart priors p(8(j)) = IW(n0,W0) for the covariance matrices
of the mixture components, 8(j), j = 1, . . . ,C. Following
Lunn et al. (2013, p. 294), we fix the shape parameter n0 at
a specific number and assign an inverse Wishart prior to the
scale matrix W0. With such a specification, the measurement
error for individual i, ei, has a pj probability of coming from

the mixing component MN(0,8(j)). The measurement errors
for other individuals may also come from the same mixing
component. Let K denotes the number of mixing components or
MN(0,8(j)) with j = 1, . . . ,C. In other words,K is the number of
latent classes for ei and K can be smaller than C, K ≤ C. Within
each class, eis come from the same distribution.

We would like to note that a similar approach to BNP
modeling is finite mixture modeling (FMM). FMM estimates

1In practice, infinite-dimension means finite but unbounded dimension.

or equivalently approximates an unknown distribution using a
mixture of known distributions. A key difference between FMM
and BNP modeling is that the number of mixture components
is treated as known in FMM, whereas this number is treated as
unknown and is freely estimated in BNP modeling. As a result,
when FMM is used to handle non-normality, additional analyses
such as model comparison are needed to determine the unknown
number of mixture components. BNP modeling therefore is
believed to have the advantage of being more objective and data-
driven, given that additional analyses such as model comparison
that may be vulnerable to subjectivity are avoided.

Bayesian methods are applied to estimate BNP growth curve
models. Bayesian methods are becoming increasingly popular
in recent years because of their flexibility and powerfulness in
estimating models with complex structures (e.g., Lee and Shi,
2000; Lee and Song, 2004; Zhang et al., 2007; Lee and Xia, 2008;
Tong and Zhang, 2012; Serang et al., 2015). The key idea of
Bayesian methods is to compute the posterior distributions for
model parameters by combining the likelihood function and the
priors. As introduced previously, β ,8, and 9 are the model
parameters in traditional growth curve model. In a BNP growth
curve model, β and 9 remain model parameters. In contrast,
the measurement error covariance matrix 9 is not directly
estimated. Instead, we obtain ei based on which we can get 8.
Another important parameter in BNP growth curve modeling
is the precision parameter α. Let p(β ,9 ,α) be the joint prior
distribution of model parameters, and let L be the likelihood
function. The joint posterior distribution of model parameters is

p(β ,9 ,α|yi) ∝

∫

p(β ,9 ,α)× L db,

where b = (b
′

1, . . . , b
′

N)
′

. It is difficult to solve for this integral
in practice. Instead, Markov chain Monte Carlo (MCMC)
methods (e.g., Gibbs sampling; Robert and Casella, 2004)
are often used to obtain parameter estimates and statistical
inferences. Specifically, we first derive the conditional posterior
distribution for each of the parameters. We then iteratively
draw samples from the derived conditional posteriors to obtain
empirical marginal distributions of the model parameters.
Finally, statistical inferences are made based on the empirical
marginal distributions (Geman and Geman, 1984).

3. PRECISION PARAMETER IN BNP
MODELS

The convergence issue in BNP growth curve modeling is likely
related to the precision parameter (Tong and Zhang, 2019). Here,
we provide a theoretical discussion on how the prior of the
precision parameter can influence the number of latent classes
for ei.

The DP precision parameter α is the key to govern the
expected number of latent classes. It directly determines the
distribution of K, the number of latent classes of ei. With a
larger K, measurement errors of different individuals are more
likely to have different distributions. West (1992) found that K
asymptotically follows a Poisson distribution
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TABLE 1 | Different percentiles (5, 50, 95%) of the distribution of the number of clusters K, given different values of precision parameter α, and sample size N.

α = 0.1 α = 1 α = 2

5% 50% 95% 5% 50% 95% 5% 50% 95%

N = 200 1 1 3 3 7 11 7 13 19

N = 600 1 2 3 4 8 13 9 15 21

N = 1,000 1 2 3 4 8 13 10 16 23

K = 1+ x, x ∼ Poisson
(

α
(

γ + logN
))

(2)

where γ is Euler’s constant. Several percentiles of the distribution
of K are given in Table 1. As shown in the table, K increases as α

and N increases.
As discussed previously, a gamma prior Gamma(a1, a2) is

often used for the hyperparameter α. Given such a prior,
West (1992) derived the posterior of α as a mixture of two
gamma densities

α|· ∼ πxGamma(a1 + K, a2 − logx)

+(1− πx)Gamma(a1 + K − 1, a2 − logx),

where x is an augmented variable x|· ∼ Beta(α + 1,N) and the

weights πx is defined by πx/(1− πx) =
a1 + K − 1

N(a2 − logx)
. Although

West (1992) also provided an approximation to the posterior of
α, p(α|·) ≈ Gamma(a1 + K − 1, a2 + γ + logN), how good the
approximation was has not been investigated.

A non-informative prior for α seems to be reasonable,
especially when the information about number of latent classes
are not available. However, a non-informative prior may cause
non-convergence of Markov chains. Therefore, it is worth
evaluating different priors for the precision parameter.

4. A SIMULATION STUDY

We now present a simulation study to evaluate the influence
of the prior for the precision parameter in BNP growth curve
modeling when data are normally distributed and contain
outliers2. The linear growth curve model in the previous section
is used. Measurement errors are modeled non-parametrically
to address the non-normality. Based on the results of previous
studies, the number of times points (T), the covariance between
the random intercept and slope (σLS), and themeasurement error
variance (σ 2

e ) have trivial effects on the performance of BNP
growth curve modeling (e.g., Tong and Zhang, 2019). Therefore,
we only consider a set of values for these parameters in this
study. We follow the empirical data analysis results in Tong and
Zhang (2019) to select the population parameter values: the fixed
effects are fixed at β = (βL,βS)

′

= (6.2, 0.3) ′; the number of
measurement occasion is T = 4; measurement error variance

2Note that non-normal data may be caused by non-normal population

distributions or data contaminations. We work with outliers in this simulation

study because BNP methods are essentially infinite mixture modeling procedures.

Generating and dealing with outliers frommultiple different distributions aremore

manageable as we easily know the true number of underlying classes. It is worth

verifying the conclusions of this paper for non-normal population distributions in

the future.

σ 2
e = 0.5; variances of the random intercept and slope are 1

and 0.1, respectively, and the covariance between the random
intercept and slope σLS = 0.

Three potentially influential factors are manipulated in the
simulation study, including sample size, data distribution, and
precision parameter prior. First, two sample sizes are considered,
N =200 or 600, representing small and large sample sizes.
Second, data are either normal or containing outliers. When
generating outliers, three proportions of outliers are considered,
r% =5, 10, or 20%. To generate outliers, we randomly select r%
observations at each measurement occasion and replace them
by extreme values. The extreme values are generated from 10
different distributions with a large mean of Li + Si(j − 1) +
mσe where m ≥ 5 is generated from a truncated Poisson
distribution, and a variance of σ 2

e which is the same as that of
the normal data. As a result, the true distribution of the data
is a mixture of 11 distributions. Outliers generated in this way
conform to the definition of outliers (Yuan and Zhong, 2008;
Tong and Zhang, 2017). See Supplementary Figures 1, 2 to aid
the understanding of the shape of generated normal data and data
with outliers. Third, four priors for the precision parameter are
investigated (see Figure 1): a diffuse prior Gamma(0.001, 0.001),
a weakly informative prior Gamma(2, 2) suggested by Ishwaran
(2000), an accurate informative prior Gamma(100, 100), and an
inaccurate informative prior Gamma(10, 100). Gamma(10,100)
is an inaccurate informative prior because its mean is 0.1 and
its variance is as small as 0.001. According to Table 1, the
resulting number of latent classes ranges from 1 to 3, whereas
the true number of mixed underlying distribution is 11. For
all the other model parameters, conventional non-informative
priors such as those in Zhang et al. (2013) are used. Specifically,
fixed effects β have non-informative diffuse priorsN(0, 106). The
covariance matrix of the random intercept and slope 9 has an
inverse-Wishart prior with an identity scale matrix and degrees
of freedom being 2.

In each simulation condition, 500 datasets are generated. BNP
growth curve modeling is applied for each dataset using JAGS
with the rjags package in software R (Plummer, 2017; R Core
Team, 2019). The total length of Markov chains is set at 50,000
and the first half of iterations is the burn-in period3. We assess
how different priors affect model convergence rate, parameter
estimation, and computation time.

Geweke tests (Geweke, 1991) are used to perform the
convergence diagnostics. After the burn-in period, if parameter
values are sampled from the stationary distribution of the chain,

3Multiple lengths of Markov chains were tested before the current setting was

selected. The convergence results with 50,000 iterations were about the same as

those for longer chains.
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FIGURE 1 | Density curves for the four precision parameter priors used in the simulation study.

the means of the first and last parts of the Markov chain
(by default the first 10% and the last 50%) should be equal
and Geweke’s statistic asymptotically follows a standard normal
distribution. A Markov chain converges when the Geweke’s
statistic is between –1.96 and 1.96. If none of the convergence
diagnostics (i.e., Geweke tests) for all model parameters suggest
non-convergence, the model is said to have converged. In
each simulation condition, the convergence rate is defined
as the proportion of converged models out of the total 500
generated replications.

For the assessment of model estimation, we obtain the
parameter estimate bias, average standard error (ASE), empirical
standard error (ESE), mean squared error (MSE), and coverage

probability (CP) of the 95% highest posterior density (HPD)
credible intervals for each parameter based on converged
simulation replications4.

In addition, the estimation time (in seconds) is recorded
for each replication. The average estimation time (AET) is the
average of the estimation time for all the converged replications.

4ASE is the mean estimated standard error across replications. ESE is the standard

deviation of the parameter estimates from all replications. MSE is computed as

squared bias plus squared ESE. Posterior credible interval, also called credible

interval, is the Bayesian counterpart of the frequentist confidence interval. A HPD

interval is essentially the narrowest interval on a posterior that covers a given

proportion of the probable posterior values.
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FIGURE 2 | Convergence rate for different priors when N = 200.

All program code and detailed results for the simulation
study are available on our GitHub site: https://github.com/
CynthiaXinTong/PrecisionParPrior_BNP_GCM.

4.1. Main Results
Figure 2 shows the convergence rate for BNP growth curve
modeling with different precision parameter priors when sample

size is 200. This figure clearly shows that outliers harm model

convergence. Note that the convergence rate for data with 5%

outliers is the lowest. This may be because a small proportion
of outliers (e.g., 5%) creates a steep and high-curvature region

for the Markov chain to enter and thus more difficult to
converge. As the outlier proportion increases, the curvature
becomes smoother so the convergence rate is higher. Among
the four studied priors, the non-informative prior for the
precision parameter always leads to the lowest convergence
rate, i.e., less than 30% across all the simulation conditions.
Informative priors substantially increase the model convergence
rate. Specifically, the convergence rate doubles when we switch
from the non-informative prior to the weakly informative prior
suggested by Ishwaran (2000) in the condition with normal
data. The incremental amount is about 30% of the original
convergence rate in the conditions with outliers. Both accurate
informative priors and inaccurate informative priors lead to
higher convergence rates. The importance of using informative

priors is more salient when data are not normal. Note that
inaccurate informative priors yield slightly higher convergence
rates than accurate informative priors because the variance of the
inaccurate prior is lower and thus its precision is higher. When
N = 600, model convergence results for BNP growth curve
models follow the same pattern, and thus are not reported here.

For converged replications, we evaluate the impact of
precision parameter priors on parameter estimation and
computation time. Results for N = 200 are summarized
in Tables 2–5. The relative performance of the four priors in
conditions with a larger sample size (N = 600) has a similar
pattern. Detailed results for N = 600 are available in the
Supplementary Document.

From Tables 2–5, we obtain the following findings. First, the
estimates of growth curve parameters (βL,βS, σ

2
L , σ

2
S , σLS, σ

2
e ) are

not affected by different priors. Estimation bias, standard errors,
MSE, and coverage probability of the 95% HPD credible interval
across different precision parameter prior conditions are very
close to each other, respectively. Note that when outliers exist
(see Tables 3–5), the true population parameter value of the
measurement error variance σ 2

e is unknown. So, bias, MSE, and
CP for this parameter cannot be calculated.

Second, the estimation of the hyperparameter α is greatly
affected by different priors. When the non-informative prior
is used, the estimated α can be very large (e.g., 28.284 in
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TABLE 2 | Model estimation for BNP growth curve modeling with different precision parameter priors when data are normal and N = 200.

Prior Est. Bias ASE ESE MSE CP AET

Gamma(0.001, 0.001) βL 6.204 0.004 0.082 0.084 0.007 0.957 539.332

βS 0.301 0.001 0.033 0.032 0.001 0.957 539.332

σ 2
L 0.999 –0.001 0.138 0.142 0.020 0.936 539.332

σ 2
S

0.118 0.018 0.021 0.018 0.001 0.922 539.332

σLS –0.010 –0.010 0.040 0.034 0.001 0.993 539.332

σ 2
e 0.497 –0.003 0.024 0.036 0.001 0.816 539.332

K 2.113 – 0.803 2.331 – – 539.332

α 11.134 – 18.109 104.805 – – 539.332

Gamma(2, 2) βL 6.198 –0.002 0.082 0.080 0.006 0.958 740.331

βS 0.302 0.002 0.033 0.031 0.001 0.965 740.331

σ 2
L 1.008 0.008 0.139 0.131 0.017 0.965 740.331

σ 2
S

0.118 0.018 0.021 0.018 0.001 0.927 740.331

σLS –0.010 –0.010 0.040 0.034 0.001 0.983 740.331

σ 2
e 0.499 –0.001 0.024 0.034 0.001 0.823 740.331

K 4.106 – 2.415 0.776 – – 740.331

α 0.732 – 0.526 0.126 – – 740.331

Gamma(100, 100) βL 6.200 0.000 0.083 0.083 0.007 0.948 1024.509

βS 0.299 -0.001 0.033 0.032 0.001 0.958 1024.509

σ 2
L 1.014 0.014 0.139 0.133 0.018 0.967 1024.509

σ 2
S

0.117 0.017 0.021 0.018 0.001 0.942 1024.509

σLS –0.010 –0.010 0.040 0.036 0.001 0.976 1024.509

σ 2
e 0.499 –0.001 0.024 0.036 0.001 0.827 1024.509

K 5.037 – 1.924 0.407 – – 1024.509

α 0.992 – 0.099 0.004 – – 1024.509

Gamma(10, 100) βL 6.202 0.002 0.082 0.082 0.007 0.945 370.307

βS 0.301 0.001 0.033 0.031 0.001 0.971 370.307

σ 2
L 1.001 0.001 0.138 0.129 0.017 0.971 370.307

σ 2
S

0.117 0.017 0.021 0.018 0.001 0.942 370.307

σLS –0.012 –0.012 0.040 0.037 0.001 0.974 370.307

σ 2
e 0.498 –0.002 0.024 0.035 0.001 0.835 370.307

K 1.981 – 0.874 0.199 – – 370.307

α 0.099 - 0.031 0.001 – – 370.307

Est, estimate; ASE, average standard error; ESE, empirical standard error; MSE, mean squared error; CP, coverage probability of the 95% HPD credible interval; AET, average

estimation time.

Table 3) or small (e.g., 0.019 in Table 5), associating with a large
standard error. When Gamma(2, 2) or Gamma(100, 100) is used,
estimated α is almost always close to 1. When Gamma(10, 100)
is used, estimated α is around 0.1. Different α values indicate
a different total number of classes K. In general, a larger α

value may yield a larger number of latent classes. Since the
estimated α has a large standard error when the non-informative
diffuse prior is used, the corresponding estimated K can also
be large or small. For the weakly informative and accurate
informative priors, the estimated number of latent classes ranges
from 4 to 6 for different data conditions, whereas for the
inaccurate informative prior, the estimated number of latent
classes is about 2 or 3. It is interesting to see that although
distinctively different hyperparameter estimates are obtained
leading to different number of latent classes, the estimated growth

curve parameters are essentially similar. This is because although
outliers are generated from 10 different distributions, the 10
different distributions are not separated far apart.With a low class
separation, one distribution may be enough to describe several
outliers generated from different distributions. Thus, even the
inaccurate informative prior can yield a precision parameter that
is adequate to model the measurement errors.

Third, BNP growth curve modeling with the inaccurate
informative prior Gamma(10, 100) requires the shortest
computation time. This is because the inaccurate informative
prior here has the smallest variance and thus is most
“informative” among the four priors.

Fourth, outliers affect the performance of BNP growth curve
modeling. When data contain a large proportion of outliers (e.g.,
20%), estimation bias for the average of random intercepts βL
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TABLE 3 | Model estimation for BNP growth curve modeling with different precision parameter priors when data contain 5% of outliers and N = 200.

Prior Est. Bias ASE ESE MSE CP AET

Gamma(0.001, 0.001) βL 6.300 0.100 0.092 0.083 0.017 0.793 841.706

βS 0.313 0.013 0.037 0.036 0.001 0.948 841.706

σ 2
L 1.006 0.006 0.160 0.145 0.021 0.956 841.706

σ 2
S

0.118 0.018 0.024 0.017 0.001 0.985 841.706

σLS –0.009 –0.009 0.046 0.044 0.002 0.985 841.706

σ 2
e 3.133 – 0.125 0.138 – – 841.706

K 5.184 – 1.189 5.433 – – 841.706

α 28.284 – 51.922 75.124 – – 841.706

Gamma(2, 2) βL 6.311 0.111 0.092 0.088 0.020 0.763 971.782

βS 0.311 0.011 0.037 0.034 0.001 0.957 971.782

σ 2
L 1.007 0.007 0.161 0.146 0.021 0.967 971.782

σ 2
S

0.117 0.017 0.024 0.018 0.001 0.976 971.782

σLS –0.008 –0.008 0.046 0.041 0.002 0.976 971.782

σ 2
e 3.119 – 0.124 0.136 – – 971.782

K 6.515 – 2.905 0.981 - - – 971.782

α 1.126 – 0.676 0.171 – – 971.782

Gamma(100, 100) βL 6.298 0.098 0.091 0.090 0.018 0.794 1088.448

βS 0.314 0.014 0.037 0.034 0.001 0.944 1088.448

σ 2
L 0.987 –0.013 0.158 0.134 0.018 0.964 1088.448

σ 2
S

0.117 0.017 0.024 0.018 0.001 0.976 1088.448

σLS –0.004 –0.004 0.045 0.041 0.002 0.992 1088.448

σ 2
e 3.133 – 0.124 0.130 – – 1088.448

K 6.161 – 1.930 0.467 – – 1088.448

α 1.003 – 0.100 0.005 – – 1088.448

Gamma(10, 100) βL 6.311 0.111 0.091 0.090 0.020 0.767 561.074

βS 0.311 0.011 0.037 0.034 0.001 0.952 561.074

σ 2
L 0.985 –0.015 0.158 0.144 0.021 0.960 561.074

σ 2
S

0.119 0.019 0.024 0.018 0.001 0.964 561.074

σLS –0.009 –0.009 0.046 0.042 0.002 0.968 561.074

σ 2
e 3.118 – 0.124 0.136 – – 561.074

K 2.903 – 0.872 0.240 – – 561.074

α 0.103 – 0.032 0.001 – – 561.074

Est, estimate; ASE, average standard error; ESE, empirical standard error; MSE, mean squared error; CP, coverage probability of the 95% HPD credible interval; AET, average

estimation time.

and variance of random intercepts σ 2
L are much larger than those

when outlier proportion is low. In addition, outliers influence
computation time. It is worth mentioning that it is most time
consuming when the outlier proportion is 5%. A possible reason
is that a small proportion of outliers creates a steep and high-
curvature region forMarkov chains to enter and thus takes longer
time to converge. With more outliers, the curvature is smoother
so the computation is faster.

5. DISCUSSION

Restricting to a parametric probability family can delude
investigators and falsely make an illusion of posterior certainty
(Müller and Mitra, 2004). On the contrary, BNP methods
are adaptive and powerful to discover complex patterns in

real data. Although BNP growth curve modeling has been
proposed, the effect of the precision parameter was not fully
studied. In this article, we have conducted a simulation study
to investigate how different types of precision parameter priors
impact the convergence rate, model estimation, and computation
time in BNP growth curve modeling. We found that the non-
informative prior suffered from the lowest convergence rates
while the inaccurate informative prior with the smallest prior
variance yielded the highest convergence rates and the fastest
computations. Furthermore, we found that the estimation of
growth curve parameters was not affected by the prior of the

precision parameter. Based on these results, we recommend to

use informative priors with high precision in practice.
We would like to note that although it seems counterintuitive

that the inaccurate informative prior for the precision parameter
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TABLE 4 | Model estimation for BNP growth curve modeling with different precision parameter priors when data contain 10% of outliers and N = 200.

Prior Est. Bias ASE ESE MSE CP AET

Gamma(0.001, 0.001) βL 6.437 0.237 0.103 0.102 0.066 0.348 591.282

βS 0.335 0.035 0.043 0.039 0.003 0.917 591.282

σ 2
L 1.018 0.018 0.187 0.173 0.030 0.977 591.282

σ 2
S

0.126 0.026 0.028 0.022 0.001 0.917 591.282

σLS –0.007 –0.007 0.053 0.047 0.002 0.977 591.282

σ 2
e 5.464 – 0.173 0.180 – – 591.282

K 3.112 – 1.106 1.728 – – 591.282

α 1.041 – 2.885 7.422 – – 591.282

Gamma(2, 2) βL 6.424 0.224 0.103 0.105 0.061 0.426 938.496

βS 0.336 0.036 0.043 0.038 0.003 0.886 938.496

σ 2
L 1.020 0.020 0.187 0.174 0.031 0.966 938.496

σ 2
S

0.121 0.021 0.027 0.020 0.001 0.970 938.496

σLS –0.008 –0.008 0.053 0.044 0.002 0.979 938.496

σ 2
e 5.448 – 0.172 0.171 – – 938.496

K 6.314 – 2.798 0.942 – – 938.496

α 1.090 – 0.652 0.163 – – 938.496

Gamma(100, 100) βL 6.428 0.228 0.104 0.100 0.062 0.398 1045.439

βS 0.332 0.032 0.043 0.040 0.003 0.903 1045.439

σ 2
L 1.020 0.020 0.188 0.172 0.030 0.964 1045.439

σ 2
S

0.123 0.023 0.027 0.021 0.001 0.961 1045.439

σLS –0.009 –0.009 0.053 0.043 0.002 0.982 1045.439

σ 2
e 5.459 – 0.174 0.175 – – 1045.439

K 6.091 – 1.911 0.409 – – 1045.439

α 1.002 – 0.100 0.004 – – 1045.439

Gamma(10, 100) βL 6.426 0.226 0.103 0.102 0.062 0.395 389.282

βS 0.333 0.033 0.043 0.041 0.003 0.897 389.282

σ 2
L 1.011 0.011 0.185 0.177 0.032 0.957 389.282

σ 2
S

0.123 0.023 0.027 0.021 0.001 0.943 389.282

σLS –0.007 –0.007 0.052 0.045 0.002 0.975 389.282

σ 2
e 5.457 – 0.172 0.169 – – 389.282

K 2.935 – 0.878 0.206 – – 389.282

α 0.103 – 0.032 0.001 – – 389.282

Est, estimate; ASE, average standard error; ESE, empirical standard error; MSE, mean squared error; CP, coverage probability of the 95% HPD credible interval; AET, average

estimation time.

performed the best, such findings have been observed in the
literature. For example, Finch and Miller (2019) found that
slightly informative priors can be advantageous in small samples
even when these priors are incorrect. Depaoli (2013) showed
that growth mixture model estimations obtained with inaccurate
priors were still more accurate than maximum likelihood
or Bayesian estimation with diffuse priors. Zitzmann et al.
(2020) explicitly discussed this issue for small samples. Our
simulation results also supported the argument that the amount
of information in the prior can be more important than the
accuracy of the prior under certain circumstances.

We also want to point out that the estimation bias was
relatively large in our simulation study, when compared to that
in previous studies (Tong and Zhang, 2019). This is because
we consider much higher outlier proportions. When the outlier

proportion is low (i.e., 5%), parameter estimates are very close to
the true population values. As the outlier proportion increases,
the bias increases. One possible way to improve the performance
of BNP growth curve modeling when the outlier proportion is
high is to use a non-normal base distribution. In our simulation
study, for simplicity, we used normal distributions with zero
mean as the mixing components of BNP modeling. This cannot
handle asymmetric non-normal distributions, which may partly
explain the less satisfactory performance of BNP modeling in the
conditions with high outlier proportions. But BNP methods in
general are very flexible. A non-normal base distribution may
overcome this limitation. While future studies may continue
along this path, we want to emphasize that BNP modeling as in
our study still outperforms traditional growth curve modeling
and is recommended to use in general when data are suspected
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TABLE 5 | Model estimation for BNP growth curve modeling with different precision parameter priors when data contain 20% of outliers and N = 200.

Prior Est. Bias ASE ESE MSE CP AET

Gamma(0.001, 0.001) βL 6.890 0.690 0.149 0.120 0.490 0.000 460.170

βS 0.385 0.085 0.061 0.054 0.010 0.735 460.170

σ 2
L 1.321 0.321 0.315 0.284 0.183 0.884 460.170

σ 2
S

0.141 0.041 0.038 0.027 0.002 0.952 460.170

σLS 0.019 0.019 0.080 0.062 0.004 0.980 460.170

σ 2
e 9.238 – 0.242 0.258 – – 460.170

K 2.713 – 0.810 0.307 – – 460.170

α 0.019 – 0.047 0.089 – – 460.170

Gamma(2, 2) βL 6.890 0.690 0.150 0.120 0.490 0.000 949.186

βS 0.381 0.081 0.061 0.052 0.009 0.787 949.186

σ 2
L 1.358 0.358 0.321 0.279 0.206 0.879 949.186

σ 2
S

0.143 0.043 0.038 0.024 0.002 0.962 949.186

σLS 0.011 0.011 0.082 0.064 0.004 0.983 949.186

σ 2
e 9.167 – 0.245 0.265 – – 949.186

K 5.458 – 2.392 0.564 – – 949.186

α 0.941 – 0.566 0.095 – – 949.186

Gamma(100, 100) βL 6.882 0.682 0.149 0.121 0.480 0.000 1056.953

βS 0.381 0.081 0.061 0.054 0.010 0.774 1056.953

σ 2
L 1.323 0.323 0.314 0.284 0.185 0.878 1056.953

σ 2
S

0.143 0.043 0.038 0.026 0.003 0.944 1056.953

σLS 0.010 0.010 0.081 0.062 0.004 0.981 1056.953

σ 2
e 9.172 – 0.243 0.256 – – 1056.953

K 5.695 – 1.811 0.321 – – 1056.953

α 0.998 – 0.099 0.003 – – 1056.953

Gamma(10, 100) βL 6.897 0.697 0.150 0.116 0.499 0.000 391.429

βS 0.379 0.079 0.061 0.052 0.009 0.803 391.429

σ 2
L 1.354 0.354 0.319 0.280 0.204 0.861 391.429

σ 2
S

0.141 0.041 0.038 0.026 0.002 0.956 391.429

σLS 0.014 0.014 0.081 0.064 0.004 0.980 391.429

σ 2
e 9.166 – 0.242 0.255 – – 391.429

K 2.880 – 0.855 0.151 – – 391.429

α 0.103 - 0.032 0.001 – – 391.429

Est, estimate; ASE, average standard error; ESE, empirical standard error; MSE, mean squared error; CP, coverage probability of the 95% HPD credible interval; AET, average

estimation time.

to be non-normal (Tong and Zhang, 2019) no matter the non-
normality is caused by non-normal population distribution or
data contamination.

The convergence rate of BNP growth curve modeling
was found to be higher in previous studies, i.e., close
to one (Tong and Zhang, 2019). We would like to note
that the difference is likely due to the list of parameters
counted during convergence assessment. In Tong and Zhang
(2019), the convergence rate was computed only for growth
curve parameters. When only growth curve parameters are
considered, non-convergence rarely occurred in our study.
The major problem is the precision parameter. As shown
in the simulation study, non-convergence frequently arose
for this parameter (detailed Geweke tests results for each
parameter are available on our GitHub site: https://github.

com/CynthiaXinTong/PrecisionParPrior_BNP_GCM). Another
possible reason why convergence rates were relatively low (below
70%) in our simulation is that Geweke tests often yield lower rates
of convergence than other diagnostic methods (e.g., Jang and
Cohen, 2020). However, as pointed out in Jang and Cohen, the
pattern of convergence rates for model comparison was similar
for different diagnostic tests. Namely, our conclusions about
which precision parameter priors to use in BNP growth curve
modeling will not be affected by the diagnostic tests. We further
discuss the use of Geweke tests in the next paragraph. Notably,
although the non-convergence for the precision parameter
seemed not to impact parameter estimates for the growth
curve parameters, such issue may mislead model fit assessment.
Although model assessment and model comparison methods
have been proposed for variousmodels, samples of different sizes,
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and data structures (e.g., Celeux et al., 2006), their performance
in BNP analysis has not been studied. Therefore, future studies
on how different precision parameter priors affect model fit
assessment are encouraged.

In our study, model convergence diagnostics were conducted
using Geweke tests. Although Geweke tests are commonly
used in the Bayesian literature, it is impossible to say with
certainty that a finite sample from an MCMC algorithm is
representative of an underlying stationary distribution and a
combination of strategies aiming at evaluating and accelerating
MCMC sampler convergence is recommended (Cowles and
Carlin, 1996). For our simulation study, Geweke tests were
relatively easy to systematically implement. In empirical studies,
we recommend using multiple strategies (e.g., trace plots,
multiple chains) to check model convergence. In addition,
since Zitzmann and Hecht (2019) pointed out that it is
possible that the approximation of the Bayesian estimates is
still not optimal even when a chain converges, we recommend
substantive researchers conducting sensitivity analysis and
evaluating how the length of the Markov chains affects the model
estimation results.

Our study echoed the previous literature in that using
informative priors may help reduce computation time in
Bayesian modeling. We would like to note that there are
other approaches that can be used to further increase the
computation efficiency. For example, Berger et al. (2020) and
Daniels and Kass (1999) proposed shrinkage priors, and Hecht
et al. (2020) proposed a model reformulation approach in which
the sample covariance matrix was modeled instead of individual
observations. This latter approach has been applied to the
Bayesian continuous-time model (Hecht and Zitzmann, 2020) as
well as the Bayesian STARTS model (Ludtke et al., 2018). Future
research on BNP growth curve modeling could incorporate this
approach and other potentially efficient approaches to reduce
computation time.

The employment of BNP growth curve modeling is a field
still in its early stage. New DP variants and generalizations
are being proposed every year to cater to specific applications.
BNP modeling was only used to handle the non-normality
in intraindividual measurement errors in our study. The
similar strategy can be used for random effects, such as
random intercepts and slopes. Also, although we worked with
balanced data, BNP growth curve modeling should be able to
handle unbalanced data (e.g., individually varying time points).
However, as implied by previous studies (Tong, 2014), the
convergence issue may be more challenging, thereby awaiting
future studies.
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With small to modest sample sizes and complex models, maximum likelihood (ML)
estimation of confirmatory factor analysis (CFA) models can show serious estimation
problems such as non-convergence or parameter estimates outside the admissible
parameter space. In this article, we distinguish different Bayesian estimators that can
be used to stabilize the parameter estimates of a CFA: the mode of the joint posterior
distribution that is obtained from penalized maximum likelihood (PML) estimation, and
the mean (EAP), median (Med), or mode (MAP) of the marginal posterior distribution that
are calculated by using Markov Chain Monte Carlo (MCMC) methods. In two simulation
studies, we evaluated the performance of the Bayesian estimators from a frequentist
point of view. The results show that the EAP produced more accurate estimates of the
latent correlation in many conditions and outperformed the other Bayesian estimators in
terms of root mean squared error (RMSE). We also argue that it is often advantageous
to choose a parameterization in which the main parameters of interest are bounded,
and we suggest the four-parameter beta distribution as a prior distribution for loadings
and correlations. Using simulated data, we show that selecting weakly informative four-
parameter beta priors can further stabilize parameter estimates, even in cases when
the priors were mildly misspecified. Finally, we derive recommendations and propose
directions for further research.

Keywords: measurement error, latent variable models, Bayesian methods, prior distribution, Markov Chain Monte
Carlo, penalized maximum likelihood estimation, constrained maximum likelihood estimation, confirmatory
factor analysis

INTRODUCTION

In the social and behavioral sciences, constructs (e.g., intelligence, extraversion) are often
conceptualized as latent variables that are measured by error-prone observed indicators (e.g.,
items). Structural equation modeling (SEM) is a very prominent approach that is used to correct
for measurement error when assessing multivariate relationships among latent constructs (Bollen,
1989; Hoyle, 2012). In the SEM approach, a measurement part is distinguished from a structural
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part. In the measurement part, measurement models are specified
to allow for an error-free estimation of the relations in the
structural model. In research practice, maximum likelihood (ML)
estimation is routinely used to obtain parameter estimates for
structural equation models. However, one major limitation of
ML estimation is that it needs large sample sizes to reveal its
optimal properties (e.g., unbiasedness, efficiency). With small to
modest sample sizes and complex models, ML estimation can
show serious estimation problems such as non-convergence or
parameter estimates that are outside the admissible parameter
space (e.g., negative variances; see Anderson and Gerbing, 1984;
Boomsma, 1985; Hoogland and Boomsma, 1998; Chen et al.,
2001; Gagné and Hancock, 2006; Wolf et al., 2013; Smid and
Rosseel, 2020).

In the last decades, several researchers have shown that
the Bayesian approach has the potential to solve some of the
estimation problems that occur in small sample applications of
SEM (e.g., Lee, 2007; Song and Lee, 2009; Kaplan and Depaoli,
2012; Muthén and Asparouhov, 2012). First, if appropriate prior
distributions are used, the Bayesian approach guarantees that
parameter estimates will be within the admissible range, and
estimation problems can usually be avoided. Second, Bayesian
methods allow for the stabilization of parameter estimates by
specifying weakly informative prior distributions for the SEM
parameters (Lee and Song, 2004; Chen et al., 2014; Can et al.,
2015; Depaoli and Clifton, 2015; McNeish, 2016; Lüdtke et al.,
2018; van Erp et al., 2018; Miocevic et al., 2020). The basic idea
is that incorporating even a small amount of information into the
prior distribution of the SEM parameters provides some direction
for their estimation, while inferences can still be driven by the
data (Gelman et al., 2014).

In this article, we focus on the estimation of confirmatory
factor analysis (CFA) models in which several latent factors
are measured by a set of observed variables (Bollen, 1989).
We investigate two critical issues in the Bayesian estimation of
CFA models with small sample sizes. First, we discuss different
Bayesian point estimators that can be used as estimates for CFA
model parameters: the mode of the joint posterior, and the mode,
mean, or median of the marginal posterior. Furthermore, we
clarify that two popular methods for calculating Bayesian point
estimates, penalized maximum likelihood (PML) estimation
and Markov Chain Monte Carlo (MCMC) methods, produce
different Bayesian point estimates and compare the performance
of the different Bayesian point estimators to the traditional ML
estimation of CFA models. Second, we discuss the specification
of prior distributions in the Bayesian approach and argue that it
can be advantageous to choose a parameterization in which the
model parameters (i.e., standardized loadings, latent correlations)
are bounded. More specifically, we suggest the four-parameter
beta distribution as a prior distribution for bounded parameters
(see also Muthén and Asparouhov, 2012; Merkle and Rosseel,
2018) and investigate in a simulation study how the specification
of weakly informative prior distributions can help to stabilize
parameter estimates in small sample size conditions.

The article is organized as follows. We start by describing
how a basic CFA model is estimated with traditional ML
estimation. We then discuss the specification of CFA models

in the Bayesian approach and describe different Bayesian
estimators that can be used to estimate CFA model parameters.
In the context of a CFA model with two latent factors, we
discuss issues of parameterization and the specification of prior
distributions, and we illustrate conditions under which the
different Bayesian estimators produce different results. We then
present the results of two simulation studies in which we
compare traditional ML estimation with the Bayesian approach.
In the first simulation study, we evaluate the influence of
correctly and misspecified prior distributions on the quality
of parameter estimates in small sample size conditions. In
the second simulation study, we investigate the robustness of
the Bayesian approach against distributional misspecifications
(i.e., non-normality). Finally, we derive recommendations and
propose directions for further research.

CONFIRMATORY FACTOR ANALYSIS

Let x denote a vector of p observed variables. Then, a CFA model
with m latent factors is represented as follows:

x = ν+3η+ ε, (1)

where ν is a p × 1 vector containing intercepts, 3 is a p × m
matrix of factor loadings, η is an m × 1 vector of latent factors,
and ε denotes the vector of multivariate normally distributed
residuals with zero mean vector and covariance matrix �. In
the following, we assume that the mean structure is saturated
and completely reflected in the intercepts, that is, E(x) = ν.
Thus, the focus is on modeling the covariance structure 6 of the
observed variables.

The covariance matrix of the observed variables 6 can be
written as a function of the model parameters of the CFA model:

6(θ) = 383T
+�, (2)

Where 8 is the m × m covariance matrix of the latent factors,
θ = (θ1,. . .,θq) is a q× 1 vector that contains the q non-redundant
parameters in 3, 8, and � that are estimated; and 6(θ) is the
model-implied covariance matrix. Thus, the covariance of the
observed variables can be decomposed into a part due to the
covariance structure of the latent factors and a part that is due
to measurement error.

Maximum Likelihood Estimation
Maximum Likelihood estimation is routinely used to obtain
parameter estimates of CFA models (Jackson et al., 2009). Let
x1,. . .,xn denote a set of independently and identically distributed
p× 1 vectors of observed variables that are multivariate normally
distributed. Then, for an observed data set, X = {xi}i=1,...,n, the
likelihood function is written as:

L(θ|X) =
n∏

i=1

f (xi; ν,6(θ)), (3)

where f (x; µ, 6) denotes the multivariate normal density with
mean vector µ and covariance matrix 6. It is known that the
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sample-based covariance matrix S = 1
n
∑n

i=1 (xi − x)(xi − x)′ is
a sufficient statistic for 6, and hence for 6(θ), which also
implies sufficiency for θ. Thus, the likelihood can be written
as L(θ| X) = L(θ|S), and the sample covariance matrix S of the
p observed variables can be used as input in the SEM framework.
The log-likelihood can be simplified as (Bollen, 1989):

l(θ) = log L(θ|S)

= −
n
2
[p · log (2π) + log |6 (θ)| + tr

(
6 (θ)−1 S

)
], (4)

where tr is the trace operator, that is, the sum of the diagonal
elements of a square matrix. The value θ̂ML = arg max

θ

l(θ) that

maximizes l(θ) is the ML estimate. It should be emphasized that
the latent variables η do not appear in the likelihood in Equation
4. Therefore, it has also been referred to as the marginal likelihood
where the latent variables are integrated out (Fox et al., 2017;
Merkle et al., 2019).

Statistical inference in ML estimation is based on the
asymptotic covariance matrix of the ML estimator θ̂ML which
is obtained from the negative second partial derivatives of the
log-likelihood function with respect to the model parameters:

ACOV(̂θML) =

{
−

[
∂2l (θ)
∂θ∂θ′

]∣∣∣∣
θ=̂θML

}−1

, (5)

where the diagonal elements of the q × q matrix are used
as estimates of standard errors. The term in brackets is also
known as observed information matrix (with θ̂ML plugged into
the matrix of the second partial derivatives of l (θ); see Held and
Bové, 2014). In research practice, robust standard error estimates
are often used for statistical inference in SEM (Savalei, 2014;
Maydeu-Olivares, 2017).

The desirable properties of ML estimation (e.g., most
efficient estimates) are based on asymptotic theory and are only
guaranteed to hold with large sample sizes (Yuan and Bentler,
2007). In small samples and complex models, ML estimation is
prone to serious estimation problems such as failure to converge
or inadmissible solutions (e.g., negative variance estimates or
correlations that are larger than one; Anderson and Gerbing,
1984; Wothke, 1993; Chen et al., 2001; Yuan and Chan, 2008).
Furthermore, in small to medium samples, SEMs that correct for
measurement error, even though approximately unbiased, can
produce much more variable estimates of structural relationships
(i.e., larger empirical sampling variance) than biased manifest
approaches that ignore measurement error and use manifest
scale scores (Hoyle and Kenny, 1999; Ledgerwood and Shrout,
2011; Savalei, 2019; see also Li and Beretvas, 2013; Zitzmann
et al., 2016).

Constrained Maximum Likelihood
Estimation
As mentioned above, in standard ML estimation, parameter
estimates are not constrained to any specific interval, and
nothing prevents, for example, variance estimates from becoming
negative (Savalei and Kolenikov, 2008; Held and Bové, 2014).

Constrained ML estimation can mitigate estimation problems
and avoid parameter estimates outside the admissible parameter
space. For example, Lüdtke et al. (2018) showed in simulation
studies that constrained ML estimation of the trait-state-
error model for multi-wave data (Kenny and Zautra, 1995)
outperformed unconstrained ML estimation in terms of the
frequency of estimation problems and the accuracy of the
parameter estimates (see also Gerbing and Anderson, 1987; Chen
et al., 2001).

In constrained estimation, the parameter space over which
optimization is performed is restricted to admissible values (e.g.,
variances are constrained to be positive; Schoenberg, 1997). To
this end, inequality constraints that restrict parameter estimates
to lower and upper bounds must be specified (see Savalei and
Kolenikov, 2008). More specifically, in the constrained estimation
approach, a multivalued function h is specified on the vector of
SEM parameters, that is, h(θ) ≥ 0. For example, if a parameter θ

(e.g., correlation) is supposed to be bounded by a lower bound
l and an upper bound u, that is, l ≤ θ ≤ u, the constraints
would be given as follows: h(θ) = (θ − l, u − θ) ≥ (0, 0).
Further possible constraints include restricting factor loadings or
residual variances to positive values. Note that the constrained
ML estimator θ̂CML is the parameter vector θ that maximizes
the log-likelihood l(θ) in Equation 4 and fulfills the constraints
that are imposed in h. Statistical inference can be based on the
asymptotic covariance matrix that is obtained from plugging
θ̂CML into the matrix of second derivatives of l(θ):

ACOV(̂θCML) =

{
−

[
∂2l (θ)
∂θ∂θ′

]∣∣∣∣
θ=̂θCML

}−1

, (6)

where the diagonal elements of the q × q matrix are again used
as estimates of standard errors (Dolan and Molenaar, 1991; but
see Schoenberg, 1997, for alternative standard error estimation
methods). The asymptotic covariance in Equation 6 can be
enforced to be positive definite in empirical data if the parameter
estimates are slightly pulled away from the boundary (e.g., by
constraining correlations to the interval [−1+ε, 1−ε]).

In most SEM programs such as Mplus (Muthén and Muthén,
2012) and lavaan (Rosseel, 2012), unconstrained ML estimation
that does not impose any restrictions on the admissible parameter
space is used as the default (see Kline, 2016). In the present article,
we compare the performance of constrained and unconstrained
ML estimation of CFA models with different Bayesian estimators.
These are discussed in the next section.

Bayesian Approach to Confirmatory
Factor Analysis
In the Bayesian approach, statistical inference is based on the
posterior distribution, which is determined by the likelihood
function and the prior distribution π(θ) of model parameters (for
a general introduction to the Bayesian approach, see Jackman,
2009; Gelman et al., 2014; van de Schoot et al., 2021). Using
the observed data X (or the sufficient statistic S) and the
prior distributions, the joint posterior distribution p(θ|X) of the
parameters is determined by multiplying the likelihood with the
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prior:

p (θ |X)

=
L(θ|X)π (θ)∫
L(θ|X)π (θ) dθ

= L (θ |X)π (θ)C ∝ L (θ |X)π (θ) ,

(7)

where C = 1/
∫
L (θ | X)π (θ) dθ is a normalizing constant. As

can be seen, the posterior distribution is proportional to the
product of the likelihood and the prior. If a researcher does not
want to make assumptions about a parameter, non-informative
(diffuse) prior distributions that are intended to have only a
minimal influence on the results are selected (van de Schoot et al.,
2021). Moreover, the Bayesian approach offers the opportunity to
stabilize parameter estimates by specifying a weakly informative
prior distribution π(θ) “which contains some information –
enough to ‘regularize’ the posterior distribution, that is, to keep
it roughly within reasonable bounds – but without attempting
to fully capture one’s scientific knowledge about the underlying
parameter” (Gelman et al., 2014, pp. 51). Thus, the idea is
to incorporate a small amount of information into π(θ) that
provides some direction for the estimation of model parameters
but, at the same time, still allows the inferences to be driven by
the likelihood (Baldwin and Fellingham, 2013; Chung et al., 2013;
Lüdtke et al., 2013; Depaoli and Clifton, 2015). In the following,
we discuss different Bayesian point estimates that are obtained
from the posterior distribution p (θ |X).

Bayesian Point Estimates
Point estimates in the Bayesian approach are usually calculated
by summarizing the center of the marginal posterior distribution
of the particular parameters of interest (e.g., latent correlation).
More formally, let θ(−d) = (θ1,. . .,θd−1, θd+1,. . ., θq) denote the
vector of parameters in which the dth entry of θ has been omitted.
The univariate marginal posterior distribution of θd, in which all
other components of θ are integrated out, is given by:

pd (θd | X) =
∫

p(θ|X)dθ(−d) = C
∫

L(θ|X)π(θ)dθ(−d). (8)

Bayesian point estimates of θd are obtained from location
parameters (i.e., mean, median, mode) of the marginal posterior
distribution. The posterior mean θ̂d,EAP (d = 1,. . .,q) is given by
the expectation of the posterior distribution:

θ̂d,EAP =

∫
θdpd (θd | X) dθd =

∫
θdp (θ | X) dθ. (9)

The posterior median (Med) θ̂d,Med is the median of the
marginal posterior distribution∫ θ̂d,Med

−∞

pd (θd | X) dθd = 0.5. (10)

The posterior mode θ̂d,MAP is given by the value that
maximizes the marginal posterior distribution (maximum-a-
posteriori; MAP):

θ̂d,MAP = arg max
θd

pd (θd|X) (11)

Note that all three Bayesian point estimates θ̂d,EAP, θ̂d,Med
and θ̂d,MAP are functionals of the joint posterior distribution
and involve high-dimensional integration to obtain the marginal
posterior distribution. In practice, simulation-based methods
such as MCMC are often used to evaluate these high-
dimensional integrals. As another option for a low number of
parameters, numerical integration techniques can be employed
(Held and Bové, 2014).

Alternatively, the mode of the joint posterior distribution
p (θ|X) can be used as a Bayesian point estimate:

θ̂PML = arg max
θ

p (θ|X) = arg max
θ

[
log L (θ|X)+ log π(θ)

]
.

(12)
Note that for the computation of θ̂PML (penalized maximum

likelihood estimate; PML estimate; see Section “Penalized ML
Estimation”) it is not required to evaluate the normalization
constant of the posterior distribution. Three points need to
be made about the mode of the joint posterior. First, with a
diffuse prior (i.e., π is a constant function with respect to θ),
the likelihood is proportional to the posterior distribution (see
Equation 12), and the mode of the joint posterior coincides with
the ML estimator. Second, it needs to be emphasized that the
univariate modes θ̂d,MAP (d = 1,. . .,q) of the marginal posterior
distributions may not equal the components of the mode θ̂PML
of the joint posterior distribution (Held and Bové, 2014). Note
that the EAP has (in contrast to MAP and Med) the desirable
property that it is invariant with respect to marginalization (see
Equation 9); that is, the EAP for θd of the univariate posterior
distribution pd equals the EAP of the multivariate posterior p (see
Fox, 2010, p. 69). Third, for a multivariate normally distributed
estimate θ̂ML ∼ MVN(θ, n−1V1) and a multivariate normal prior
distribution (i.e., π (θ) ≡ MVN(θ0,V0)), it is well known that the
posterior distribution is also multivariate normal (Gelman et al.,
2014), that is

p (θ|X) ≡ MVN
((

V−1
1 + n−1V−1

0
)−1 (V−1

1 θ̂ML + n−1V−1
0 θ0

)
,

n−1 (V−1
1 + n−1V−1

0
)−1

)
. (13)

In this case, all estimators θ̂PML, θ̂d,MAP, θ̂d,Med, and θ̂d,EAP
coincide. However, as ML estimates are only asymptotically
normally distributed and often priors different from the
normal distribution are used, it is not guaranteed that the
different Bayesian estimators perform similarly, particularly
in small samples. This fact is essential as different estimation
methods produce different Bayesian point estimators. In
the following, we distinguish between PML estimation
and MCMC methods.

Penalized ML Estimation
Penalized ML estimation maximizes the log-posterior function:

w (θ) = l (θ)+ log π(θ). (14)

The log-posterior is a function of the log-likelihood l(θ) = log
L(θ|X) and additional information given by the prior log π(θ).
The maximizer θ̂PML is also referred to as the maximum a
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posteriori (MAP) estimator (Gelman et al., 2014). Alternatively,
the logarithm of the prior distribution logπ (θ) can be interpreted
as a penalty term that is added to the log-likelihood function,
which motivates the label “penalized” ML (Cole et al., 2014; see
also Cousineau and Helie, 2013). It should also be emphasized
that constrained ML estimation can be regarded as a variant of
PML estimation when uniform prior distributions are imposed
on the admissible parameter space (e.g., Rindskopf, 2012). In this
case, it holds that θ̂PML = θ̂ CML.

Statistical inference in PML estimation can be obtained by
plugging in the PML estimate θ̂PML into the matrix of second
derivatives of the log-likelihood l(θ):

ACOV
(̂
θPML

)
=

{
−

[
∂2l (θ)
∂θ∂θ

′

]∣∣∣∣
θ=̂θPML

}−1

, (15)

where the diagonal elements are used as estimates of standard
errors. Note that the standard error estimates only rely on the
log-likelihood l(θ) part and that the part of the prior distribution
log π(θ) is ignored. The motivation for pursuing this strategy
is that the prior is only used to stabilize the estimation. Based
on experience from our simulations, it is vital to ignore the
prior part in the computation of uncertainty for obtaining valid
frequentist statistical inference because it would otherwise result
in undercoverage.

Penalized maximum likelihood estimation has been shown
to circumvent estimation problems, particularly when the
likelihood is flat, and has been successfully applied to stabilize
parameter estimates in a wide range of models such as logistic
regression models (Firth, 1993; Heinze and Schemper, 2002),
latent class models (Galindo-Garre and Vermunt, 2006; DeCarlo
et al., 2011), item response theory models (Mislevy, 1986; Harwell
and Baker, 1991), and multilevel models (Chung et al., 2013).
It should also be emphasized that in the pre-MCMC era, PML
estimation was the standard approach for obtaining estimates
for Bayesian factor analysis models (e.g., Martin and McDonald,
1975; Press and Shigemasu, 1989) and Bayesian SEM models (e.g.,
Lee, 1981; Lee, 1992; Poon, 1999). Furthermore, PML estimation
bears strong similarities to regularized ML estimation, in which,
too, penalty functions are added to the log-likelihood (Jacobucci
and Grimm, 2018; van Erp et al., 2019; Fan et al., 2020). Note that
regularized estimation is often applied for effect selection, such
as the determination of non-vanishing item loadings in factor
analysis (Jin et al., 2018) or the allowance of non-invariant item
parameters in multiple-group factor analysis (Huang, 2018).

MCMC Estimation
Another strategy that is used to obtain Bayesian estimates is
to apply simulation-based techniques. This is motivated by the
fact that in practice, the joint posterior distribution of the
parameters is often difficult to evaluate because high-dimensional
integration is required to compute the normalization constant C
(see Equation 7; Held and Bové, 2014, Ch. 8). Simulation-based
techniques – implemented in general-purpose Bayesian software
such as WinBUGS (Spiegelhalter et al., 2003), JAGS (Plummer,
2003), NIMBLE (de Valpine et al., 2017), or Stan (Carpenter
et al., 2017) – use MCMC algorithms to approximate the

posterior distribution by iteratively sampling from conditional
distributions. The most prominent MCMC methods are Gibbs
sampling, Metropolis-Hastings sampling, and the no-U-turn
sampler (Gelman et al., 2014; Junker et al., 2016).

In the present study, we implemented a Metropolis-
Hastings step within a Gibbs sampling algorithm to estimate
the parameters of the CFA model. The Metropolis-within-
Gibbs algorithm uses the following sampling steps to generate
observations from the conditional distributions. At the (t + 1)th
iteration with current values

(
θ
(t)
1 , . . . , θ

(t)
q

)
sample:

θ
(t+1)
1 from p(θ1|X,θ

(t)
2 , θ

(t)
3 , ..., θ

(t)
q )

θ
(t+1)
2 from p(θ2|X,θ

(t+1)
1 , θ

(t)
3 , ..., θ

(t)
q )

...

θ(t+1)
q from p(θq|X,θ

(t+1)
1 , θ

(t+1)
2 , ..., θ

(t+1)
q−1 ) (16)

There are q steps in the (t + 1)th iteration. All conditional
distributions are unidimensional, and parameters are updated
conditional on the latest value of the other parameters.

We now show how one component of the parameter vector θ,
say θd, is updated in the Metropolis-within-Gibbs algorithm. To
generate a sample from the conditional distribution of θd given
the most recent values of the other parameters, we rewrite the
conditional distribution using Bayes theorem:

p(θd|X,θ
(t+1)
1 , θ

(t+1)
2 , ..., θ

(t+1)
d−1 , θ

(t)
d+1, ..., θ

(t)
q ) ∝

L(θ(t+1)
1 , θ

(t+1)
2 , ..., θ

(t+1)
d−1 , θd, θ

(t)
d+1, ..., θ

(t)
q |X) · π(θd) (17)

The conditional distribution is proportional to the product
of the likelihood and the prior distribution for θd. A new value
is sampled from a proposal distribution N(θ(t)d , τ

2(t)
θd
) where

θ
(t)
d is the value of θd from the previous iteration and τ2

θd
is

the proposal distribution standard deviation, which is adapted
in the MCMC algorithm (see Section “Analysis Models and
Outcomes”). Negative proposed values are not accepted, and the
value from the previous iteration is used. Then the Metropolis-
Hastings ratio is calculated as follows:

M
(
θ
(∗)
d , θ

(t)
d

)
=

L(θ(t+1)
1 , θ

(t+1)
2 , θ

(t+1)
d−1 , θ

(∗)
d , θ

(t)
d+1, ..., θ

(t)
q |X) · π(θ

(∗)
d )

L(θ(t+1)
1 , θ

(t+1)
2 , θ

(t+1)
d−1 , θ

(t)
d , θ

(t)
d+1, ..., θ

(t)
q |X) · π(θ

(t)
d )

,

(18)

where M = M
(
θ
(∗)
d , θ

(t)
d

)
is the Metropolis-Hastings ratio as a

function of the proposed value θ
(∗)
d and the previous value θ

(t)
d .

The proposed value θ
(∗)
d is then accepted and set to θ

(t+1)
d with

probability min(1, M). Acceptance rates of roughly between
0.40 and 0.50 are considered optimal in the literature (Hoff,
2009; Gelman et al., 2014) to obtain an MCMC chain that has
relatively low autocorrelation and mixes well (i.e., moves around
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the sample space in a seemingly random fashion without any
long-term trends).

When the chain converges, the draws
θ(t) =

(
θ
(t)
1 , ..., θ

(t)
d , ..., θ

(t)
q

)
can be seen as samples from

the joint posterior distribution of the CFA model parameters (for
a detailed discussion of assessing convergence in MCMC, see
Cowles and Carlin, 1996; Gill, 2007; Jackman, 2009). Usually, the
initial draws are discarded (burn-in phase) because the initial
draws are affected by the starting values of the chain (Gelman
et al., 2014). Bayesian point estimators are constructed from the
samples of the posterior distribution. The expected a posteriori
(EAP) estimator for a parameter θd, θ̂d,EAP, is obtained by
averaging across the T iterations, that is,

θ̂d,EAP = T−1
T∑
t=1

θ
(t)
d . (19)

The median θ̂d,Med is estimated by computing the sample
median of the draws θ

(t)
d (t = 1, . . ., T). The mode θ̂d,MAP can

be defined as the univariate mode of the kernel density estimate
(Silverman, 1998) of the univariate density for the sample of θ

(t)
d

(t = 1, . . ., T) (see Johnson and Sinharay, 2016). Notably, it has
been proposed that the multivariate mode (PML) could also be
estimated by choosing the sampled parameter that maximizes
the posterior distribution (see the discussion in the Stan users
group1):

θ̂PML−MCMC = arg max
t=1,...,T

p
(
θ(t)|X

)
. (20)

However, if the PML is of primary interest, deterministic
optimization using the Newton approach (see Section “MCMC
Estimation” and Equation 12) is generally preferable.

The standard deviation of the posterior distribution can
be used as a measure of uncertainty (Gelman et al., 2014).
Comparable to a confidence interval in the frequentist approach,
it is possible to calculate a Bayesian credibility interval (BCI). The
BCI is based on percentile points of the posterior distribution
and describes the probability that the interval covers the true
value of the parameter after observing the data. Note that in
contrast to the confidence interval in the frequentist approach,
no assumptions about the sampling distribution (e.g., symmetry,
normality) need to be made for the BCI.

Finally, it should also be emphasized that in the presented
MCMC approach, the Bayesian point estimates are based on the
marginal likelihood L(θ|X) – or L(θ|S) if the sufficient statistic
S is used – in which the latent variables η are integrated out
(Equation 4). However, in many applications of MCMC-based
SEM, a joint estimation approach is used that relies on the joint
likelihood L(θ, η|X), which also includes the latent variables η

in the likelihood (Lee, 2007; Muthén and Asparouhov, 2012).
In the joint estimation approach, the MCMC method2 generates

1https://shortly.cc/ArTE6
2In the joint estimation approach, the joint likelihood L (θ, η|X) =∏n

i=1 f (xi; ν+3ηi,�) · f (ηi; 0,8) is considered, and the MCMC method
generates samples for θ and η (t = 1,. . .,T): θ(t), η(t)p (θ, η | X) ∝
L (θ, η | X) · π (θ). Note that the joint estimation approach needs the raw
data X instead of the sufficient statistic S (see Choi and Levy, 2017).

samples for θ and η. When individual factor scores are not of
interest, however, the latent variables η are nuisance parameters
that can reduce the computational efficiency of the MCMC
algorithm (Hayashi and Arav, 2006; Choi and Levy, 2017; Lüdtke
et al., 2018; Hecht et al., 2020; Merkle et al., 2020).

Previous Research Comparing Bayesian Estimation
Approaches
The different Bayesian point estimators, that is, θ̂PML, θ̂d,EAP,
θ̂d,MAP, and θ̂d,Med, can be evaluated from a frequentist point of
view – population parameters θ are treated as fixed but unknown
constants, and the distribution of the Bayesian estimators is
evaluated across all possible samples from the population (Stark,
2015). For simple univariate quantities (e.g., proportions, means),
Bolstad and Curran (2017) compared frequentist properties
(i.e., bias and RMSE) of mode, median, and mean using
analytical derivations (see also Carlin and Louis, 2009; Efron,
2015). For more complex statistical models, several studies
used simulated data to compare the performance of Bayesian
estimators for different model parameters. Hoeschele and Tier
(1995) compared the MAP and EAP (obtained from MCMC
methods) for estimating variance components in multilevel
models (see also Browne and Draper, 2006). Like the present
study, Choi et al. (2011) evaluated two Bayesian estimators
(MAP and EAP obtained from numerical integration) to estimate
a polychoric correlation. The EAP estimates were biased and
pulled toward the prior distribution (i.e., shrinkage effect),
but less variable than the MAP estimates. In the context
of IRT models, Azevedo et al. (2012; see also Azevedo and
Andrade, 2013; Waller and Feuerstahler, 2017) and Kieftenbeld
and Natesan (2012) compared PML and EAP estimates for
a multiple-group 2PL model and the graded response model,
respectively. In both studies, it turned out that the EAP
estimates slightly outperformed PML in terms of RMSE (see
also Bürkner, 2020). Yao (2014) and Johnson and Kuhn (2015)
compared MAP and EAP estimation for person parameter
estimation in unidimensional IRT models. Again, EAP estimates
were biased (i.e., shrinkage effects) but were also less variable
than MAP estimates (see also Johnson and Kuhn, 2015).
For log-linear models, Galindo-Garre et al. (2004) found that
the MAP outperformed the EAP for estimating main and
interaction effects.

In the context of SEM and CFA models, systematic
comparisons of the frequentist performance of Bayesian
estimators are scarce. Simulation studies that evaluated the
performance of different Bayesian estimators for estimating
SEMs focused on either the Med (e.g., Hox et al., 2012, 2014;
Depaoli and Clifton, 2015; Holtmann et al., 2016), the EAP
(e.g., Lee and Song, 2004; Natesan, 2015) or the MAP (e.g.,
Zitzmann et al., 2016). One notable exception is the study by
Miocevic et al. (2020) that evaluated the EAP, MAP, and Med
for estimating an indirect effect (i.e., the product of two path
coefficients) in a latent mediation model using MCMC methods.
The relative performance of the different estimators in terms of
RMSE depended on the specification of the prior distribution
(accurate vs. inaccurate) and the size of the true indirect effect,
with a slight disadvantage for the MAP when accurate priors were
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specified. However, it is unclear whether these findings generalize
to other SEM parameters (e.g., loadings, latent correlations),
making it difficult for applied researchers to choose between
different Bayesian estimators. This lack of guidance is also
reflected in the fact that popular software packages for SEM use
different Bayesian estimators as default. The commercial software
packages Mplus (Muthén, 2010) and Amos (Arbuckle, 2017)
provide the Med, whereas the R package blavaan (Merkle and
Rosseel, 2018) uses the EAP (see Taylor, 2019). In the present
study, we evaluate the performance of four different Bayesian
estimators for latent correlations and loadings in CFA models.

CFA WITH TWO FACTORS:
PARAMETERIZATION, PRIOR
DISTRIBUTIONS, AND ESTIMATION
METHODS

In the following, we consider a CFA model with two
latent variables, which are each measured by three observed
indicator variables (see Figure 1). We use this model to
discuss three relevant issues in the practical application of
the Bayesian approach: model parameterization, specification of
prior distributions, and different Bayesian estimators (mode of
the joint posterior, and mean, median, and mode of the marginal
posterior). Although this is a very simple model, it is a building
block for many more complicated SEM models, such as latent
mediation models or multilevel SEMs (Hoyle, 2012; Kline, 2016).

Parameterization
To mitigate estimation problems, it can be advantageous to
choose a parameterization of the CFA model that transforms
the optimization problem of estimating unbounded parameters
into an optimization involving bounded parameters. We start

FIGURE 1 | Confirmatory factor analysis (CFA) model with two latent factors.
The variances of the latent factors are set to 1.0.

with an unstandardized parameterization in which the two latent
variables η1 and η2 are measured by indicators xj (j = 1,. . ., 6):

xj = λ∗j ηm[j] + ε∗j , (21)

Where m[·] is a function that maps the item index j to
the corresponding index m[j] of the latent variable, λ∗j are
the unstandardized non-negative loadings, and ε∗j are normally

distributed residuals with Var
(
ε∗j

)
= ω∗jj. Two strategies for

identifying the metric of the latent factors are often used (Kline,
2016; see also Gonzalez and Griffin, 2001). In the first strategy
(reference variable method) the first loading of each latent factor
is set to one, and the variances and covariance of the latent factors
are freely estimated. In the second strategy, the variances of the
latent variables are set to one, that is, Var(η1) = Var(η2) = 1, and
the latent correlation between the factors is directly estimated.
In the Bayesian framework, the reference variable method has
been the most common choice (see Lee, 1981; Erosheva and
Curtis, 2017; Merkle and Rosseel, 2018; Miocevic et al., 2020).
This may be explained by the fact that the second strategy is not
easily applicable to general SEM models because the variances of
endogenous latent variables are not free parameters in standard
SEM specifications (Kline, 2016; see also Kaplan and Depaoli,
2012; van Erp et al., 2018).

In this paper, we suggest a parameterization of the CFA
model in which the parameters of interest are bounded,
and the standardized loadings and the latent correlation are
directly estimated (Little, 2013). Using a parameterization with
bounded or standardized parameters has the advantage that it
is straightforward to restrict correlations to admissible values
between −1 and 1. This is more difficult to accomplish
when the correlation is derived from the variances and
covariance of the latent variables (e.g., very small variance
estimates; Rindskopf, 1984)3. Furthermore, a parameterization
with bounded parameters is often more convenient for applied
researchers when specifying thoughtful prior distributions (Smid
et al., 2020; Zitzmann et al., 2021). Let σj denote the standard
deviation of the observed indicator xj, then Equation 21 can be
rewritten as:

xj = σj(λjηm[j] + εj), (22)

where λj (j = 1,. . .,6) are the standardized loadings, and
εj are the residuals of the standardized solution. It can be
shown that the parameterizations in Equations 21 and 22

are equivalent. It holds that σ2
j =

(
λ∗j

)2
+ ω∗jj, λj = λ∗j /

√
ω∗jj,

and Var(εj) = 1 – λ2
j . Thus, the standardized error variance

is positive if the standardized loadings are restricted to be
positive. In many applications, especially with established
scales, restricting loadings to positive values seems plausible

3This was confirmed by preliminary simulation studies in which we also included
unconstrained ML estimation with the reference variable method (i.e., first loading
fixed to 1). The parameterization with bounded parameters clearly outperformed
the parameterization with freely estimated variances and covariance of the latent
variables in terms of estimation problems (e.g., convergence) and quality of
parameter estimates (e.g., RMSE).

Frontiers in Psychology | www.frontiersin.org 7 April 2021 | Volume 12 | Article 615162134

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-615162 April 29, 2021 Time: 12:12 # 8

Lüdtke et al. CFA With Small Samples

because researchers commonly have strong presumptions on
the direction of relationships between the observed and latent
variables. Technically, the parameterization in Equation 22
can be implemented in the SEM framework by introducing
an intermediate layer of latent variables (phantom variables;
see Rindskopf, 1984) and non-linear constraints for the
measurement error variances.4

In the present study, our main focus is on estimating the
correlation between the latent variables, that is, Cov(η1, η2) = ρ.
As we are interested in estimating the latent correlation that
corrects for the unreliability of the scale scores, it is instructive
to see how the reliability of the manifest sum score is related
to the standardized loadings of the measurement model. In
the data-generating model, we assume that the standardized
loadings of the indicators for a latent factor are equal and set
to λ (tau-congeneric measurement model; Traub, 1994). Then,
the indicator-specific reliability is given by Rel1 = λ2, and the
reliability of the sum score of I items is:

RelI =
λ2

λ2 + (1− λ2)/I
=

Rel1
Rel1 + (1− Rel1)/I

. (23)

As can be seen, the reliability of the sum score RelI is a function
of the indicator-specific reliability Rel1 and the number of items.
Thus, by rearranging terms, the reliability of an indicator can be
written as:

Rel1 =
RelI

1+ I(1− RelI)
. (24)

For example, with I = 3, a standardized loading of λ = 0.58
translates into a reliability of 0.60 for the sum score (see Table 1).
This relationship between the standardized loading and the
reliability of the sum score is helpful when specifying the prior

4For constrained ML estimation, it can be shown that this parameterization of
the CFA model with standard deviations that are constrained to be positive and
loadings that are restricted to the interval [0, 1] is (analytically) equivalent to a
parameterization in which the loadings and error variances of the unstandardized
solution are constrained to be positive and the variances of the latent factors are
set to one. Thus, using the parameterization of the CFA model in Equation 21
for constrained ML estimation should – in theory – provide the same results as
a CFA model with the corresponding inequality constraints on the loadings and
error variances.

TABLE 1 | Relationship between standardized loading, indicator-specific reliability,
and reliability of sum score for three indicators.

λ Rel1 RelI

0.35 0.13 0.30

0.43 0.18 0.40

0.50 0.25 0.50

0.58 0.33 0.60

0.66 0.44 0.70

0.76 0.57 0.80

0.87 0.75 0.90

λ = standardized loading; Rel1 = indicator-specific reliability; RelI = reliability of
sum score.

distributions for the loadings because, in most cases, it is easier to
make plausible assumptions about the overall reliability of a scale
than about every single item (Smid et al., 2020).

Specification of Prior Distributions
In the CFA model, the standardized loadings and latent
correlations are bounded parameters. For bounded parameters,
the beta distribution is a natural choice. The density f of the beta
distribution X ∼ Beta(a, b) on the interval [0, 1] is given as:

f (x) = B
(
a, b

)−1xa−1(1− x)b−1, x ∈ [0, 1] (25)

where B is the Beta function. The mean and the variance can be
computed as:

E (X) =
a

a+ b
and Var (X) =

ab(
a+ b

)2
(a+ b+ 1)

. (26)

Alternatively, the beta distribution can be parameterized as
a function of a mean µ and a prior sample size ν, that is,
X ∼ Beta(µ, ν), where µ = a(a + b)−1 and ν = a + b − 2
(Hoff, 2009). The prior sample size is explained by the fact
that the uniform distribution, which reflects complete ignorance
about a parameter, is given by setting a = b = 1. Thus, a prior
sample size of ν = 1 + 1 − 2 = 0 corresponds to the uniform
prior on [0, 1]. The variance of the beta distribution is given as
Var(X) = µ(1− µ)(ν + 3)−1. For the given µ and ν, the original
a and b parameters are determined by a = (ν + 2)µ and b = (ν +
2)(1− µ), respectively.

However, the beta distribution is only appropriate for
parameters with a parameter space that equals [0, 1]. The four-
parameter beta distribution (also known as a scaled, stretched,
or generalized beta distribution) extends the support of the beta
distribution to arbitrary bounded intervals and allows a more
flexible specification of prior distributions (Johnson et al., 1994).
The four-parameter beta distribution Y ∼ Beta4(a, b, l, u) can
be obtained by shifting a beta-distributed random variable X ∼
Beta(a, b) by lower (l) and upper (u) bounds: Y = l + (u − l)X.
The density of Y is then given as:

f (x) =
(
u− l

)−1 B
(
a, b

)−1
(
x− l
u− l

)a−1(u− x
u− l

)b−1
, x ∈ [l, u]

(27)
Again, the four-parameter beta distribution can be

reparameterized as Y∼ Beta4(µ, ν, l, u) with a prior guess
of µ = a(a + b)−1 and a prior sample size of ν = a + b − 2.
The parameters of the original specification Y ∼ Beta4(a, b, l,
u) can be obtained as a = (ν + 2)(µ − l)(u − l)−1 and b = (ν
+ 2)(u − µ)(u – l)−1. In previous research, the four-parameter
beta distribution has been applied as prior distribution for item
parameters in three-parameter logistic models (Zeng, 1997;
Gao and Chen, 2005), and for correlations between observed
scores (Gokhale and Press, 1982; O’Hagan et al., 2006) or
latent variables in factor models (Muthén and Asparouhov,
2012; Merkle and Rosseel, 2018). However, to the best of our
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FIGURE 2 | Four-parameter beta distributions for a standardized loading λ (left panel) and the correlation ρ (right panel). With a larger prior sample size (νλ or νρ),
the distribution puts more probability mass around the prior guess (µλ or µρ).

knowledge, we are not aware of any applications of the four-
parameter beta distribution as prior distribution for loadings in
the SEM framework (see Table 1 in van Erp et al., 2018, for an
overview of prior distributions in the SEM context).

When specifying the lower and upper bounds of the four-
parameter beta distribution, the numerical stability of parameter
estimates can be improved if parameters are coerced further away
from the boundaries by a small value ε (e.g., ε = 0.001). For
a standardized loading λ that can be assumed to be bounded
between 0 and 1, we suggest a Beta4(µλ, νλ, ε, 1 − ε) prior
distribution and interpret µλ as a prior guess for the standardized
loading and νλ as the sample size of prior observations on which
the prior guess is based (Lüdtke et al., 2018)5. If only little
information is available about the standardized loading or the
reliability of a scale, a small value for νλ is chosen so that the
prior distribution is only weakly centered around the prior guess
µλ. Figure 2 (left panel) shows for a prior guess of µλ = 0.50
(i.e., standardized loading of 0.50) how increasing νλ (i.e., prior
sample sizes of 1, 3, and 10) changes the shape of the four-
parameter beta distribution. Note that with µλ = 0.50 and νλ = 0,
the four-parameter beta distribution corresponds to a uniform
distribution on the interval [ε, 1 − ε], which reflects complete
ignorance about the size of the loading.

5Alternatively, if a researcher is not willing to make assumptions about the sign of
the loading (i.e., loadings are assumed to be positive), the loadings can be restricted
to [−1, 1]. However, if this specification is chosen, researchers need to define
one marker item for which loadings must be restricted to [0, 1]. Otherwise, sign
switching issues can occur in the MCMC algorithm. In preliminary simulations,
we investigated the effect of both restrictions. If the loadings of the data-generating
model were all positive, the performance for the two variants of restrictions was
very similar.

For the latent correlation that is restricted to the interval
[−1, 1], we suggest a Beta4(µρ, νρ, −1 + ε, 1 − ε) distribution
where µρ is the prior guess for the correlation and νρ is again
the prior sample size on which the prior guess is based (see for
a similar approach Muthén and Asparouhov, 2012; Merkle and
Rosseel, 2018). Figure 2 (right panel) illustrates the influence
of the prior sample size νρ (1, 3, and 10) on the shape of the
Beta4(µρ, νρ, − 1 + ε, 1 − ε) with a prior guess of µρ = 0.30.
Setting µρ = 0 and νρ = 0 gives the uniform distribution on [−1
+ ε, 1− ε].

Illustrative Comparison of Different
Bayesian Point Estimates
To illustrate how the different Bayesian point estimates can
produce different estimates of the latent correlation, we further
simplify the two-factor model and assume that all loadings are
equal. Thus, we need to estimate only two parameters6: the
correlation ρ (ranging between −1 and 1) and the standardized
loading λ (ranging between 0 and 1). Thus, for this simplified
model, the likelihood function L(ρ,λ|S) is only a function of ρ

and λ, given the sufficient statistic S. Furthermore, we assume
uniform priors for both parameters (i.e., constant functions with
respect to ρ and λ), which results in a joint posterior p (ρ,λ | S)

6For this illustration, we further reduced the number of estimated parameters,
assumed that the indicators had a variance of one, and also fixed the variances of
the indicators in the analysis model to one. The main purpose of the illustration
was to demonstrate the differences between the mode from the joint posterior
and the EAP that is obtained from the marginal posterior distribution. A more
systematic and realistic evaluation of the different estimators is provided in the
two main simulations.
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that is proportional to the likelihood. In PML estimation, the
mode of the joint posterior distribution is calculated as:

(ρ̂PML, λ̂PML) = arg max
(ρ,λ)

p (ρ,λ|S) = arg max
(ρ,λ)

L(ρ,λ|S) (28)

and ρ̂PML is used as a point estimate of ρ. Note that this
is the first component of the multivariate mode, which is
calculated by directly maximizing the density of the joint
posterior distribution. It becomes clear from Equation 28 that the
PML estimate is also the constrained ML estimate because the
likelihood function is maximized, that is θ̂PML = θ̂ CML.

In contrast, when using MCMC methods, the univariate mode
(MAP), median (Med), and mean (EAP) are often used as point
estimates for ρ. The marginal posterior distribution pρ of ρ is
obtained by integrating the joint posterior p (ρ,λ|S) with respect
to λ:

pρ (ρ|S) =
∫

p (ρ,λ|S) dλ = C
∫

L(ρ,λ, |S)dλ, (29)

where C = 1/
s

L (ρ,λ|S) dρdλ is the normalizing constant.
The corresponding marginal location parameters are given as
follows:

ρ̂MAP = arg max
ρ

pρ (ρ|S) = arg max
ρ

∫
L(ρ,λ, |S)dλ, (30)

∫ ρ̂Med

−∞

pρ (ρ|S) dρ = 0.5, and (31)

ρ̂EAP =

∫
ρpρ (ρ|S) dρ =

s
ρL(ρ,λ|S)dρdλ

s
L(ρ,λ|S)dρdλ

. (32)

In our simple bivariate case, the univariate EAP ρ̂EAP can be
calculated by numerically evaluating the posterior on a bivariate
discrete grid of values ρ and λ. The integrals in Equation 32
can be obtained by numerical integration using a rectangle
rule (see also Choi et al., 2011). Similarly, the median ρ̂Med
and the univariate MAP ρ̂MAP can be obtained by a numerical
evaluation of the integrals in Equations 30 and 31. However,
this would not be practical with a larger number of parameters,
and simulation-based MCMC techniques are needed to evaluate
high-dimensional integrals (Held and Bové, 2014).

We now employ an idealized scenario to illustrate the
difference between the different Bayesian estimates of the latent
correlation. In this case, the empirical covariance matrix S
(i.e., the sufficient statistic) obtained from the data was set to
be equal to the true covariance matrix 6 =6(θ). Hence, the
likelihood estimates (i.e., the constrained ML and the PML
estimates) coincided with the data-generating parameters. The
true correlation was ρ = 0.70, and the standardized loading was
λ = 0.50. Figure 3 shows, for a small sample size of N = 30,
a contour plot of the joint posterior distribution for ρ and λ

(upper left panel) and the marginal posterior distribution of ρ

(lower left panel). As can be seen, the mode of the joint posterior
(ρ̂PML = 0.700) provides a different Bayesian estimate of the
correlation than the mode (ρ̂MAP = 0.710), mean (ρ̂EAP = 0.568)
or median (ρ̂Med = 0.610) of the marginal posterior. This can be

explained by the fact that the marginal posterior is negatively
skewed, and the mean and—to a slightly lesser extent—the
median are pulled toward zero (i.e., shrinkage effect; see also
Choi et al., 2011). However, with a larger sample of N = 100, the
Bayesian estimates from the joint posterior (upper right panel)
and the marginal posterior (lower right panel) agree more closely
(ρ̂PML = 0.700, ρ̂MAP = 0.704, ρ̂EAP = 0.675, and ρ̂Med = 0.686), and
the marginal posterior distribution of ρ is more symmetrically
centered around the true value of 0.70.

Illustrative Simulation Study
To further explore how these differences between the Bayesian
point estimates affect their frequentist properties, we ran a
small simulation study in which we manipulated the sample
size (N = 30, 50, 100, and 1000) and the magnitude of
the true correlation (ρ = 0.10, 0.30, 0.50, 0.70, and 0.90).
The standardized loading was set to 0.50. We generated
1000 replications for each condition and calculated the
bias, variability (i.e., the standard deviation of the empirical
sampling distribution), and the RMSE (which combines
bias and variability into a measure of accuracy) for the
different point estimates (PML, MAP, EAP, and Med) of the
latent correlation ρ.

The results are shown in Table 2 and confirm the findings
from the illustration that the mode from the joint posterior
(PML) and the mode from the marginal posterior (MAP)
perform very similarly. Both produced approximately unbiased
estimates of the latent correlation, except for the condition
with a very large correlation (ρ = 0.90) and a small sample
size (N = 30). By contrast, the mean (EAP) and the median
(Med) of the marginal posterior provided negatively biased
estimates, particularly in conditions with small sample sizes.
However, the EAP and Med were also less variable (i.e., smaller
empirical sampling variability) than the estimates produced by
both the PML estimate and the MAP, resulting in overall more
accurate estimates in terms of the RMSE, which combines
bias and variability. The results also show that there is a
turning point at which, with a larger true correlation, the
bias introduced by the EAP outweighs the gains in efficiency
(i.e., less variable estimates of the EAP). Thus, the EAP
seems to be most beneficial with a small to moderate true
correlation (i.e., ρ ≤ 0.50) and does not generally result
in more accurate estimates of the latent correlation. A very
similar pattern holds true for the Med. However, in almost
all conditions, the Med was outperformed by either the EAP
or the MAP in terms of RMSE. Notably, the multivariate
mode (PML) performed similarly to the univariate mode
(MAP). However, in other models, particularly with strongly
correlated parameter estimates, the multivariate and univariate
modes can provide substantially different point estimates.7

Finally, the findings confirm that with large samples, the

7For example, in the context of state-trait models, Lüdtke et al. (2018) found
in simulation studies that PML (obtained from constrained ML estimation) was
clearly outperformed by the MAP (obtained from MCMC) in terms of the accuracy
of the estimated variance components (e.g., stable trait variance, state variance).
This can be explained by the fact that using marginal distributions stabilizes point
estimates if model parameters are substantially correlated.
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FIGURE 3 | Illustrating the difference between the joint and marginal posterior distribution: the red square in the first row indicates the (multivariate) mode of the joint
posterior distribution for N = 30 (upper left panel) and N = 100 (upper right panel); the green triangle, blue circle, and purble star in the second row indicate the
(univariate) mode, mean, and median of the marginal posterior distribution for the correlation ρ for N = 30 (lower left panel) and N = 100 (lower right panel). Note
that with N = 30, the mode of the joint posterior (PML) for ρ strongly deviates from the mean of the marginal posterior (EAP).

different Bayesian point estimates converge and produce almost
identical results.

We also investigated the performance of the different Bayesian
point estimates for the loading parameter λ (see for the detailed
results Supplementary 1 at https://doi.org/fwr7). Across all
conditions (i.e., true correlations and sample sizes) the biases
for the four estimators were relatively small (PML: M = −0.001,
range = −0.010 to 0.005; MAP: M = −0.004, range = −0.019
to 0.006; Med: M = −0.013, range = −0.040 to 0.003; EAP:
M = −0.017, range = −0.050 to 0.001). In addition, the PML
provided slightly more accurate estimates in terms of RMSE
than the three Bayesian estimates that were based on the
marginal posterior.

In the following, we report the results of two simulation
studies that provide a more comprehensive comparison of the
different Bayesian point estimates. In these simulations, MCMC
methods are used to evaluate the high-dimensional integrals that

are needed for computing the MAP, EAP, and Med from the
marginal posterior distribution.

SIMULATION STUDY 1

Simulation study 1 had two main goals. First, we evaluated
the performance of the different Bayesian estimators and
compared them with unconstrained ML estimation. For small
sample sizes, we expected unconstrained ML estimation to
show serious estimation problems (i.e., non-convergence or
inadmissible parameter estimates). In addition, based on our
illustration, we assumed that using the EAP (obtained from
MCMC) as a point estimate would produce more stable
estimates of latent correlations than the multivariate mode
from PML estimation, particularly in conditions with small
sample sizes and small to moderate correlations. Second, we
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TABLE 2 | Illustrating differences between the mode of the joint posterior (PML) and the mode (MAP), median (Med), and mean (EAP) of the marginal posterior as point
estimators of the correlation: bias, standard deviation, and RMSE as a function of the true correlation (ρ) and sample size (N).

Bias SD RMSE

ρ N PML MAP Med EAP PML MAP Med EAP PML MAP Med EAP

0.1 30 0.000 0.001 −0.017 −0.024 0.417 0.416 0.322 0.293 0.417 0.416 0.322 0.294

50 0.005 0.007 −0.003 −0.007 0.301 0.305 0.273 0.259 0.301 0.305 0.272 0.259

100 −0.011 −0.009 −0.011 −0.012 0.210 0.213 0.208 0.205 0.211 0.213 0.208 0.206

1000 0.001 0.001 0.001 0.001 0.061 0.061 0.060 0.060 0.061 0.061 0.060 0.060

0.3 30 −0.001 0.002 −0.053 −0.073 0.410 0.406 0.308 0.281 0.410 0.405 0.312 0.290

50 0.007 0.010 −0.019 −0.031 0.294 0.295 0.258 0.246 0.294 0.295 0.259 0.248

100 0.002 0.006 −0.002 −0.006 0.196 0.198 0.192 0.189 0.196 0.198 0.192 0.189

1000 −0.002 −0.002 −0.003 −0.003 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061

0.5 30 0.005 0.006 −0.093 −0.126 0.345 0.340 0.262 0.244 0.345 0.340 0.278 0.274

50 0.006 0.010 −0.040 −0.060 0.278 0.276 0.237 0.226 0.278 0.276 0.241 0.234

100 0.004 0.008 −0.008 −0.015 0.186 0.185 0.174 0.169 0.186 0.185 0.174 0.170

1000 0.001 0.002 0.001 0.001 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060

0.7 30 −0.026 −0.024 −0.150 −0.192 0.299 0.292 0.231 0.221 0.300 0.293 0.275 0.292

50 −0.004 −0.002 −0.081 −0.108 0.234 0.229 0.190 0.183 0.234 0.229 0.206 0.212

100 0.001 0.003 −0.030 −0.043 0.169 0.166 0.142 0.137 0.169 0.166 0.145 0.143

1000 −0.001 0.000 −0.001 −0.001 0.054 0.054 0.055 0.055 0.054 0.054 0.055 0.055

0.9 30 −0.069 −0.070 −0.227 −0.277 0.218 0.213 0.182 0.181 0.228 0.224 0.290 0.331

50 −0.039 −0.039 −0.145 −0.178 0.164 0.160 0.132 0.131 0.169 0.165 0.196 0.221

100 −0.021 −0.022 −0.083 −0.102 0.124 0.122 0.095 0.091 0.126 0.124 0.126 0.137

1000 0.001 0.001 −0.006 −0.009 0.052 0.052 0.045 0.043 0.052 0.052 0.045 0.044

SD = standard deviation of empirical sampling distribution; RMSE = root mean square error; ρ = true latent correlation; N = sample size; PML = mode of joint posterior
(obtained from maximizing the joint posterior); MAP = mode of marginal posterior (obtained from maximizing the marginal posterior); Med = median of marginal posterior
(obtained from numerical integration); EAP = mean of marginal posterior (obtained from numerical integration). Biases smaller than −0.05 or larger than 0.05 are
printed in bold.

evaluated the extent to which the parameter estimates of the
Bayesian approach are sensitive to different specifications of the
prior distributions for the standardized loadings and the latent
correlation. We assumed that by choosing weakly informative
and correctly specified prior distributions (i.e., four-parameter
beta distributions), the estimates of the latent correlations could
be stabilized. Furthermore, we explored whether the Bayesian
approach produces more accurate estimates, even with mildly
misspecified prior distributions. Overall, we expected the impact
of choosing different prior distributions to be more pronounced
with small sample sizes.

Simulation Model and Conditions
The data-generating model was a two-factor CFA model, as
given by Figure 1. Each factor was measured by three mean-
centered and normally distributed indicators. The indicators
were assumed to be parallel, with standardized loadings of 0.50
and a variance of one. This resulted in a reliability of RelI = 0.50
for each scale (i.e., sum score of the three items) and a reliability
of Rel1 = 0.25 for a single indicator. We manipulated the latent
correlation between the two factors (ρ = 0.30, 0.50, and 0.70) and
the sample size (N = 30, 50, and 100). For each of the 3 × 3 = 9
conditions, we generated 1,000 simulated data sets.

Analysis Models and Outcomes
Each of the simulated data sets was analyzed with a two-factor
CFA model in which the loadings were freely estimated, and the

variances of the two factors were each fixed to one. The model had
21− 13 = 8 degrees of freedom (the mean structure was assumed
to be saturated). Two ML estimation approaches were used. In
unconstrained ML estimation, we imposed no constraints on
the parameter estimates (loadings, residual variances, and the
latent correlation). In constrained ML estimation, we used the
parameterization in which standard deviations of the indicators
are constrained to be positive, the standardized loadings are
restricted to the interval [0, 1], and the latent correlation is
restricted to the interval [−1, 1]8. In the Bayesian approach,
we used PML estimation and MCMC methods, and varied the
prior distribution for the standardized loadings and the latent
correlation. PML estimation was implemented using a quasi-
Newton optimization (employing the nlminb optimizer in the
R package stats) using the wrapper function pmle from the
R package LAM (Robitzsch, 2020). The standard errors were
calculated based on the second derivatives of the observed log-
likelihood function (see Equation 15). The estimated standard
errors were used to calculate 95% confidence intervals.

8For constrained ML estimation, we also included the equivalent parameterization
(see Equation 20) in which the loadings and residual variances were constrained
to be positive and the latent correlation was restricted to the interval [−1, 1].
As expected, the results for both parameterizations were virtually identical in
every replication (results were numerically identical in 95.5% of the replications
for N = 30, in 98.4% for N = 50, and in 99.9% for N = 100). Moreover,
the parameterization using standardized instead of unstandardized loadings
performed slightly better in terms of RMSE.
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For the MCMC method, we implemented an adaptive
Metropolis-Hastings algorithm in which the proposal
distribution is adapted during the burn-in phase (see Equation
18; Draper, 2008). In this procedure, a desirable acceptance rate
r along with a tolerance level (r − δ, r + δ) is specified (in our
case r = 0.45 and δ = 0.10). Then, in the burn-in phase of the
algorithm, the empirical acceptance rates r∗ for each parameter
are calculated in batches of 50 iterations. At the end of each
batch, the proposal distribution standard deviation (e.g., for the
latent correlation τρ ) is updated as follows:

τρ =


τ̃ρ

(
2− (1−r∗)

1−r

)
if r∗ > r + δ

τ̃ρ

(
1/
(

2− r∗
r

))
if r∗ < r − δ

τ̃ρ else

, (33)

Where r∗ is the empirical acceptance rate from the most
recent batch of iterations, and τ̃ρ is the proposal distribution
standard deviation that was used in the most recent batch. Thus,
the proposal distribution standard deviations are modified if the
acceptance rate is not within the tolerance level (r − δ, r + δ).
The modification of the proposal distributions was stopped after
the burn-in phase (2,500 iterations). To evaluate the tuning phase
for the proposal distribution standard deviations, we investigated
the empirical acceptance rates for one condition of the main
simulation. The average acceptance rate for the model parameters
was close to the desired value of 0.45, which is considered optimal
in the literature to achieve efficient MCMC chains (Hoff, 2009).

This algorithm was implemented using the function amh from
the R package LAM (Robitzsch, 2020). Before running the main
simulation study, we investigated the behavior of the MCMC
sampler in preliminary simulations by inspecting two criteria: (a)
the potential scale reduction factor (PSR; Gelman et al., 2014),
and (b) the effective sample size (see Zitzmann and Hecht, 2019,
for a discussion). Applying these two criteria suggested that an
average chain length of 5,000 iterations with a burn-in period of
2,500 iterations was sufficient to provide a good approximation
of the posterior distribution. The Bayesian point estimates were
defined as the mean (EAP), mode (MAP), and median (Med) of
the marginal posterior distribution. Furthermore, the Bayesian
credible interval (BCI) was defined by the 2.5th and the 97.5th
percentiles of the posterior distribution (Gelman et al., 2014).

For both the PML and the MCMC methods, we varied the
prior distributions for the standardized loadings and the latent
correlation. For each standardized loading, we specified a four-
parameter beta distribution Beta4(µλ, νλ, ε, 1 − ε) with a
prior guess of µλ = 0.5 and prior sample sizes of νλ = 1
and νλ = 3 (see Figure 2). In addition, we included a prior
distribution with µλ = 0.5 and νλ = 0, which corresponds to a
uniform distribution on [ε, 1 − ε]. For the latent correlation, we
specified a four-parameter beta distribution Beta4(µρ, νρ, −1 +
ε, 1 − ε) with a prior guess that matched the true correlation
of the data-generating model (i.e., µρ = ρ) and two levels of
prior sample sizes (νρ = 1 and 3). We also specified a prior
distribution with µρ = 0 and νρ = 0, which corresponds to
a uniform distribution on [−1 + ε, 1 − ε]. This resulted in
3 (loadings) × 3 (correlations) = 9 different specifications of

the prior distributions. Note that these prior distributions were
correctly specified (i.e., prior guess matched the true population
value or uniform prior distribution was specified) and only
differed in the amount of information that was incorporated into
the prior specification (i.e., prior sample size).

We also investigated the impact of misspecified prior
distributions. To this end, we specified a wide range of four-
parameter beta distributions for the standardized loadings and
the correlation. For the standardized loadings, we included
misspecified priors with a prior guess of µλ = 0.80 and prior
sample sizes of νλ = 1 and νλ = 3. For the latent correlation,
we specified a prior distribution with a prior guess of µρ = 0.50
and prior sample sizes of νρ = 1, and νρ = 3. However, we also
included misspecified priors that underestimated (with a prior
guess of µρ = 0.20) or overestimated (with a prior guess of
µρ = 0.80) the true correlation. Again, each misspecified prior
was included with prior sample sizes of νρ = 1 and νρ = 3.
In addition, we used an uniform distribution for the latent
correlation (i.e., µρ = 0 and νρ = 0). These prior settings for
correlations were fully crossed with the different prior settings for
correctly and misspecified prior settings on standardized factor
loadings. In total, we specified 5 (standardized loadings) × 7
(correlations) = 35 models with different prior specifications, and
we estimated them with both the PML and the MCMC methods.

For the standard deviations of the indicator variables, we
used improper prior distributions that are constant (Muthén
and Asparouhov, 2012). The specification of the improper prior
distribution for the standard deviation was held constant across
the conditions of the simulation and the analysis models. The
R code for the data-generating model and the different analysis
models is provided in Supplementary 2 at https://doi.org/fwr7.

We used three criteria to evaluate the different estimation
approaches: bias, RMSE, and coverage rate. Bias was calculated by
determining the difference between the mean parameter estimate
and the true population parameter value from each design cell.
We assessed the overall accuracy with the (empirical) RMSE,
which combines the squared empirical bias and the variance
of the parameter estimates into a measure of overall accuracy.
Finally, we determined the coverage rate of the 95% confidence
intervals. A coverage rate between 91% and 98% was considered
acceptable (Muthén and Muthén, 2002).

Results
We first report the results for the two ML estimation approaches.
Second, we compare the different Bayesian estimators in the case
of correctly specified prior distributions. Third, we investigate the
impact of misspecified prior distributions on the performance of
the Bayesian approach.

ML Estimation
For unconstrained ML estimation, a solution was considered to
show estimation problems when the algorithm did not converge
using the defaults in the nlminb optimizer or when the algorithm
converged to a solution that included an inadmissible estimate
(i.e., correlation smaller than−1 or larger than 1). Table 3 shows
that the percentage of estimation problems for unconstrained
ML estimation strongly depended on the sample size and the
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TABLE 3 | Simulation study 1: percentage of solutions with estimation problems
for unconstrained maximum likelihood (ML) estimation and constrained maximum
likelihood (CML) estimation by magnitude of the true correlation (ρ) and
sample size (N).

ML CML

ML Conv Conv+Adm Boundary ML = CML

ρ ρ ρ ρ

N 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

30 54.5 64.4 67.9 51.3 57.3 53.4 6.3 11.1 21.6 28.0 33.0 34.8

50 73.1 82.7 88.0 70.9 77.5 73.9 3.4 6.3 17.0 53.1 61.7 64.3

100 94.0 97.6 99.6 93.9 96.4 92.8 0.4 1.4 7.2 87.1 92.8 91.6

ML Conv = percentage of converged solutions for unconstrained ML estimation;
ML Conv+Adm = percentage of converged solutions with admissible values for
unconstrained ML estimation, that is, estimated correlation was within the interval
[−1, 1]; CML Boundary = percentage of solutions for constrained ML estimation
with boundary estimate for correlation; ML = CML = percentage of solutions
in which estimated correlation for ML and CML estimations were numerically
identical (up to three decimal places). Note that ML Conv+Adm are not conditional
percentages and, thus, values cannot exceed those of ML Conv.

magnitude of the true correlation. For example, with N = 30
and ρ = 0.30, only 54.5% of the replications converged, and
51.3% of the replications provided converged solutions with
admissible estimates. In contrast, for constrained ML estimation,
all replications converged. However, in small samples and with
a large correlation, a substantial percentage of the solutions
for constrained ML estimation showed values at the boundary
of the parameter space (e.g., estimated correlation equals one).
Furthermore, the results also show that with increasing sample
size, the estimates of unconstrained ML and constrained ML
converged to each other. For example, in the condition with
N = 100 and a large correlation (ρ = 0.70), unconstrained
and constrained estimation provided (numerically) identical
estimates of the latent correlation in 91.6% of the replications.

Table 4 shows the bias and RMSE for unconstrained and
constrained ML estimation as a function of the sample size and
the true correlation. The results are presented for three different
subsets of replications. First, we included only replications in
which unconstrained ML estimation converged and estimated
correlations had admissible values; that is, they fell within the
range of −1 and 1 (“Conv+Adm” in Table 4). Second, we
present results for all replications in which unconstrained ML
estimation converged, and inadmissible values (i.e., correlations
smaller than −1 or larger than 1) were truncated to −1 or 1
(“Conv”). Third, we show the results for all replications (“All”).
Note that only constrained ML estimation converged for all
replications. As can be seen, the two approaches performed very
similarly across the different subsets of replications. The results
also show that the estimates produced from replications without
estimation problems (“Conv+Adm”) are a highly selective set
of estimates that strongly differ in terms of RMSE from the
estimates that are provided by the full set of replications (“All”).
In the following, we use constrained ML estimation, which is
equivalent to PML estimation with uniform distributions on the
admissible parameter space, and compare it with the Bayesian
estimation approach.

Bayesian Estimation With Correctly Specified Priors
Table 5 shows the bias for PML and the EAP (obtained from the
MCMC method) with uniform and different correctly specified
prior distributions as a function of the sample size and the
magnitude of the true correlation. In these specifications, the
prior guesses for the correlation (i.e., µρ = 0.30, 0.50, or 0.70)
as well as the standardized loading (i.e., µλ = .50) were set to
the true value (when the prior sample sizes of the corresponding
priors were at least one). Note that when using a prior sample
size of zero, µρ was set to zero, and a uniform distribution was
specified. As can be seen, both the PML and the EAP produced
biased estimates of the correlation, particularly when the sample

TABLE 4 | Simulation study 1: bias and RMSE for unconstrained maximum likelihood (ML) estimation and constrained maximum likelihood (CML) estimation of the latent
correlation as a function of the true correlation (ρ), the sample size (N), and different sets of replications.

Bias RMSE

Conv+Adm. Conv. All Conv+Adm. Conv. All

ρ N ML CML ML CML CML ML CML ML CML CML

0.3 30 0.022 0.055 0.043 0.068 −0.016 0.352 0.358 0.395 0.395 0.411

50 0.025 0.035 0.040 0.049 −0.003 0.284 0.288 0.310 0.309 0.328

100 0.003 0.006 0.004 0.006 −0.004 0.202 0.201 0.203 0.203 0.210

0.5 30 −0.037 −0.003 0.019 0.048 −0.025 0.299 0.295 0.332 0.322 0.360

50 −0.042 −0.032 −0.015 −0.005 −0.049 0.266 0.262 0.299 0.285 0.316

100 0.000 0.002 0.006 0.008 0.003 0.196 0.194 0.202 0.201 0.206

0.7 30 −0.124 −0.088 −0.034 −0.008 −0.068 0.299 0.269 0.299 0.274 0.344

50 −0.071 −0.063 −0.012 −0.005 −0.035 0.242 0.234 0.252 0.245 0.275

100 −0.026 −0.025 −0.004 −0.003 −0.004 0.172 0.171 0.184 0.183 0.185

RMSE = root mean square error; ρ = true latent correlation; N = sample size; ML = unconstrained ML estimation; CML = constrained ML estimation. Conv+Adm = all
replications in which unconstrained ML converged with admissible values, that is, estimated correlation was within the interval [−1, 1]; Conv = all replications in which
unconstrained ML estimation converged and estimated correlations outside [−1, 1] are truncated to −1 or 1; All = all replications (only constrained ML produced estimates
for all replications). Biases smaller than −0.05 or larger than.05 are printed in bold.
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TABLE 5 | Simulation study 1: bias and RMSE for the mode of the joint posterior (PML) and the mean of the marginal posterior (EAP) as Bayesian point estimates of the
latent correlation with different correctly specified prior distributions as a function of the sample size and true correlation (ρ).

Bias SD RMSE Gain

ρ ρ ρ

N Meth νρ νλ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

30 PML 0 0 −0.001 −0.052 −0.069 0.415 0.393 0.330 100 100 100

0 1 0.034 −0.010 −0.017 0.434 0.399 0.313 105 101 93

0 3 0.043 0.001 −0.003 0.424 0.389 0.302 103 98 90

1 0 0.086 0.153 0.158 0.370 0.364 0.264 92 100 91

1 1 0.119 0.198 0.192 0.374 0.347 0.230 95 101 89

1 3 0.121 0.213 0.209 0.364 0.346 0.219 92 102 90

3 0 0.049 0.092 0.165 0.283 0.257 0.233 69 69 85

3 1 0.086 0.117 0.190 0.291 0.249 0.208 73 69 83

3 3 0.088 0.121 0.210 0.280 0.245 0.196 71 69 85

EAP 0 0 −0.072 −0.146 −0.215 0.284 0.263 0.236 71 76 95

0 1 −0.021 −0.077 −0.124 0.331 0.300 0.245 80 78 81

0 3 −0.008 −0.057 −0.098 0.342 0.310 0.248 83 79 79

1 0 0.058 0.129 0.104 0.221 0.173 0.149 55 54 54

1 1 0.081 0.153 0.133 0.266 0.209 0.137 67 65 57

1 3 0.089 0.164 0.136 0.277 0.221 0.138 70 69 58

3 0 −0.006 0.002 0.087 0.169 0.151 0.105 41 38 41

3 1 0.018 0.035 0.112 0.191 0.178 0.116 46 46 48

3 3 0.024 0.045 0.122 0.197 0.185 0.118 48 48 50

50 PML 0 0 −0.018 −0.010 −0.041 0.335 0.302 0.275 100 100 100

0 1 0.004 0.021 −0.011 0.343 0.293 0.255 102 97 92

0 3 0.006 0.027 0.001 0.331 0.286 0.247 99 95 89

1 0 0.042 0.139 0.148 0.312 0.321 0.248 94 116 104

1 1 0.061 0.165 0.167 0.310 0.309 0.228 94 116 102

1 3 0.060 0.170 0.188 0.301 0.305 0.216 91 116 103

3 0 0.021 0.070 0.149 0.250 0.234 0.228 75 81 98

3 1 0.045 0.094 0.161 0.257 0.220 0.212 78 79 96

3 3 0.045 0.097 0.181 0.249 0.217 0.202 75 79 98

EAP 0 0 −0.068 −0.091 −0.147 0.251 0.230 0.213 77 82 93

0 1 −0.033 −0.037 −0.085 0.278 0.245 0.213 83 82 82

0 3 −0.026 −0.022 −0.065 0.283 0.250 0.215 85 83 81

1 0 0.013 0.103 0.095 0.214 0.191 0.149 64 72 63

1 1 0.027 0.123 0.117 0.243 0.217 0.141 73 82 66

1 3 0.032 0.131 0.127 0.250 0.226 0.142 75 86 68

3 0 −0.023 −0.004 0.074 0.170 0.158 0.131 51 52 54

3 1 −0.004 0.027 0.096 0.191 0.175 0.138 57 59 60

3 3 0.003 0.036 0.102 0.195 0.180 0.138 58 61 62

100 PML 0 0 −0.006 −0.004 0.005 0.222 0.211 0.183 100 100 100

0 1 0.005 0.008 0.013 0.220 0.203 0.176 99 96 97

0 3 0.009 0.012 0.017 0.216 0.199 0.173 97 95 95

1 0 0.021 0.099 0.165 0.216 0.266 0.196 98 134 140

1 1 0.032 0.101 0.166 0.211 0.252 0.191 96 129 139

1 3 0.035 0.100 0.168 0.208 0.246 0.189 95 126 139

3 0 0.016 0.040 0.156 0.193 0.185 0.187 87 89 134

3 1 0.027 0.048 0.161 0.190 0.179 0.184 86 88 134

3 3 0.030 0.052 0.159 0.188 0.177 0.181 85 87 132

EAP 0 0 −0.039 −0.052 −0.056 0.191 0.188 0.166 88 92 96

0 1 −0.019 −0.028 −0.033 0.198 0.190 0.161 90 91 90

0 3 −0.014 −0.018 −0.022 0.200 0.189 0.160 90 90 88

1 0 −0.006 0.045 0.105 0.183 0.199 0.136 82 96 94

(Continued)
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TABLE 5 | Continued

Bias SD RMSE Gain

ρ ρ ρ

N Meth νρ νλ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

1 1 0.007 0.059 0.114 0.190 0.202 0.132 86 100 96

1 3 0.013 0.064 0.119 0.192 0.203 0.131 87 101 97

3 0 −0.020 −0.011 0.074 0.157 0.158 0.138 71 75 86

3 1 −0.004 0.007 0.085 0.164 0.159 0.136 74 75 88

3 3 0.002 0.015 0.089 0.167 0.159 0.135 75 76 88

SD = standard deviation of empirical sampling distribution; RMSE = root mean square error. PML = penalized maximum likelihood (mode of joint posterior); EAP = mean
of marginal posterior; νρ = prior sample size for latent correlation; νλ = prior sample size for standardized loading; biases smaller than -0.05 or larger than 0.05 are printed
in bold. For the RMSE gain, the RMSE of PML estimation with uniform prior distributions is used as a reference method; values smaller than 100 indicate that the RMSE
of the respective method is lower than the RMSE of the reference method.

sizes were small (N ≤ 50). In addition, there was a tendency
that increasing the prior sample size from νρ = 1 to νρ = 3,
and thereby selecting a more informative prior distribution for
the latent correlation, decreased the bias for both the PML
(νρ = 1: M = 0.129, SD = 0.053, range = 0.021 to 0.213; νρ =3:
M = 0.099, SD = 0.044, range = 0.016 to 0.210) and the EAP
(νρ =1: M = 0.086, SD = 0.038, range = −0.006 to 0.164; νρ =3:
M = 0.036, SD = 0.023, range = −0.023 to 0.122). Interestingly,
the results were less clear for increasing the sample size from νρ =
0 to νρ = 1, particularly for the PML.

For the RMSE, which combines bias and the variability
of an estimator, we used the PML method with uniform
prior distributions on the standardized loadings and the latent
correlation as a reference method. As this specification of the
PML method is equivalent to constrained ML estimation, it
allows a direct comparison of the Bayesian approaches with
the best performing ML approach. The RMSE gain in Table 5
reports the relative gain of an estimator compared to the reference
method (i.e., values larger/smaller than 100 indicate that the
RMSE for the respective method is larger/smaller than for the
reference method). The results show that the EAP obtained from
the MCMC method clearly outperformed PML estimation across
all sample size conditions and true values of the latent correlation.
As expected from the illustration, the differences between the
mode of the joint posterior distribution (PML) and the mean
(EAP) of the marginal posterior were most pronounced in
conditions with a very small sample size (N = 30) and a small true
correlation. For example, in the condition with N = 30, ρ = 0.30,
and uniform prior distributions, the RMSE of the estimates
produced by the EAP were only 71% as large as the estimates
produced by the PML. This is an important finding because it
clearly shows that, even with (diffuse) uniform distributions on
the loadings and the correlation, using the EAP (obtained from
MCMC) stabilizes the parameter estimates compared to the PML
(or constrained ML) method.

To further understand the RMSE differences, we calculated
the empirical standard deviation (SD) of the estimators across
the 1000 replications within each cell. The results show that the
estimates of the PML were consistently more variable (across the
different prior specifications) than those of the EAP. For both
estimators, PML and EAP, selecting a more informative prior

distribution for the correlation (e.g., νρ = 3 instead of νρ = 1) had
a large positive effect on the accuracy of the parameter estimates.
By contrast, choosing a more informative prior distribution
for the standardized loadings did not consistently influence the
accuracy of the estimates of the latent correlation. Thus, adding
information to the prior distribution for the parameter of interest
was the only specification that helped to stabilize estimates of the
latent correlation in small sample sizes.

The main findings for bias and RMSE are summarized in
Figure 4 for the case with uniform prior distributions on the
standardized loadings and the correlation. We also show the
results for the mode (MAP) and the median (Med) of the
marginal posterior of ρ. As can be seen, the Med performed
similar to the EAP but showed slightly larger RMSE values.
By contrast, the MAP provided less accurate estimates of the
correlation in terms of RMSE and was even outperformed by the
PML in almost all conditions (except for N = 100 and ρ = 0.3).

Furthermore, we assessed the coverage rates for the PML and
MCMC methods. As can be seen in Table 6, the PML method
provided acceptable coverage rates with percentages close to
the nominal 95% in conditions with N = 100. In addition, the
coverage rates produced by the MCMC method were sometimes
too low, even in conditions with N = 100. However, these low
coverage rates can be explained by the fact that the MCMC
method was also more biased in these conditions.

Finally, we also investigated the bias and RMSE of the different
Bayesian estimates for a standardized loading. The main results
are summarized in Figure 5 for the case with uniform prior
distributions (for the detailed results, see Supplementary 3
at https://doi.org/fwr7). Overall, the findings are in line with
the results for the correlation. The EAP produced the most
accurate estimates of the loadings in terms of RMSE across
the investigated conditions, even though the estimates were
slightly negatively biased, particularly in conditions with N = 30.
Interestingly, with smaller sample sizes, the univariate mode
(MAP) was clearly outperformed by the multivariate mode
(PML). Further simulation research should compare the different
Bayesian point estimates for more extreme values of the loading
(i.e., standardized loading of 0.3 or 0.9). It is possible that with
smaller or larger loading values, the bias introduced by the
EAP outweighs the gains in variability, resulting in different
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FIGURE 4 | Simulation Study 1: Bias (left panels) and RMSE gain (right panels) of the estimators of the correlation (ρ) as a function of the sample size and the
magnitude of the true correlation. For the RMSE gain, PML is used as a reference method; values smaller than 100 indicate that the RMSE of the respective method
is lower than the RMSE of the reference method; PML = mode of joint posterior; MAP = mode of marginal posterior; Med = median of marginal posterior;
EAP = mean of marginal posterior. Results are shown for models with uniform prior distributions for the correlation and the standardized loadings.

conclusions about the overall accuracy of the different Bayesian
point estimates.

Bayesian Estimation With Misspecified Priors
We also assessed the impact of misspecified prior distributions.
Table 7 shows the bias and RMSE for N = 30 and N = 100.
The main findings can be summarized as follows. First,

even in the case of misspecified prior distributions, the EAP
outperformed the PML in terms of the RMSE and provided
more accurate parameter estimates across most conditions and
prior specifications. Second, a misspecified prior distribution
for the loading had only a small and sometimes even positive
effect on the RMSE. One possible explanation is that we only
included misspecified priors that overestimated the true size of
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TABLE 6 | Simulation study 1: coverage rates of the latent correlation for
penalized maximum likelihood and Markov chain monte carlo methods with
different correctly specified prior distributions as a function of the magnitude of the
true correlation (ρ) and sample size.

PML MCMC

ρ ρ

N νρ νλ 0.3 0.5 0.7 0.3 0.5 0.7

30 0 0 85.8 87.0 91.1 98.9 98.6 98.0

0 1 87.6 91.2 96.8 97.5 97.9 97.9

0 3 88.5 94.1 97.5 97.3 97.7 98.1

1 0 88.9 90.3 94.7 99.2 98.0 89.3

1 1 90.0 93.6 97.7 98.2 95.9 84.3

1 3 90.7 94.2 98.3 98.2 95.5 83.3

3 0 92.8 95.6 96.8 99.6 99.5 99.4

3 1 95.2 97.0 98.3 99.6 99.0 98.5

3 3 97.5 97.8 98.8 99.2 99.1 98.0

50 0 0 86.6 90.1 93.1 97.1 98.2 97.4

0 1 88.4 92.7 95.7 95.5 96.1 96.7

0 3 90.1 93.6 97.4 94.9 95.7 97.0

1 0 87.9 90.0 96.5 97.5 96.9 89.4

1 1 89.9 92.4 98.2 96.2 95.6 87.3

1 3 92.0 91.8 98.8 95.6 93.8 85.3

3 0 91.8 96.4 97.7 98.8 98.8 98.3

3 1 95.1 97.2 98.7 98.0 98.3 96.5

3 3 96.7 97.0 99.3 97.9 97.5 95.5

100 0 0 89.9 92.7 97.0 95.6 95.7 96.8

0 1 92.1 94.8 97.0 95.3 96.1 97.2

0 3 92.8 95.4 97.5 94.8 96.4 96.9

1 0 91.0 92.3 94.4 96.8 96.7 89.9

1 1 92.3 92.5 94.6 96.1 94.9 88.5

1 3 93.0 91.0 95.1 95.5 94.5 87.8

3 0 93.8 95.8 95.1 97.3 98.5 97.0

3 1 95.5 96.3 95.1 97.1 97.8 96.4

3 3 95.8 96.1 95.8 96.6 98.0 95.1

PML = mode of joint posterior (obtained from penalized maximum likelihood) with
standard errors (calculated from observed information matrix); MCMC = Bayesian
Credible Interval (BCI) based on MCMC; ρ = true latent correlation; νρ = prior
sample size for latent correlation; νλ = prior sample size for standardized loading.
Coverage rates smaller than 91% or larger than 98% are printed in bold.

the loading (i.e., µλ = 0.80). Overestimating the reliability of the
indicators by assuming a large positive loading comes close to a
manifest approach that ignores the unreliability of scale scores
when calculating the correlation. However, with small sample
sizes, it has been shown that a manifest approach can produce
more accurate estimates of structural relationships than a latent
approach that corrects for measurement error (e.g., Lüdtke et al.,
2008; Ledgerwood and Shrout, 2011; Savalei, 2019). Third, for
the prior distribution of the correlation, the results clearly show
that overestimating the true size of the latent correlation (i.e.,
µρ = 0.80) had a more negative impact on the accuracy of the
estimates in terms of RMSE than underestimating the size of the
true correlation (i.e., µρ = 0.20). More importantly, choosing a
small correlation of 0.20 as a prior guess for the prior distribution,
even though misspecified, produced more accurate estimates of

the correlation than the Bayesian approach with uniform priors
on the loadings and the correlation, particularly when the sample
size was N = 30. Thus, a conservative approach that uses smaller
prior guesses for the latent correlation seems to be a promising
strategy when the goal is to stabilize the estimates of the latent
correlations with weakly informative prior distributions (i.e.,
prior sample sizes of 1 or 3).

SIMULATION STUDY 2

The previous simulation study assumed that the observed
variables were multivariate normally distributed. However, the
true distribution is rarely known for real data, and the CFA
will likely be misspecified to some extent. In Simulation Study
2, we investigate how robust the Bayesian approach is against
the misspecification of the distributional assumptions. More
specifically, we consider the case of observed variables that
are linearly related but have non-normal marginal distributions
(Foldnes and Olsson, 2016). Again, we compared the different
Bayesian point estimates obtained from the joint posterior (PML)
or the marginal posterior distribution (MAP, EAP, and Med). As
a benchmark, we also included ML approaches that are based
on robust estimation approaches (Yuan et al., 2004; Yuan and
Zhang, 2012). For further comparisons, we also considered an
unweighted least squares (ULS) estimation method (Browne,
1974). Limited information methods such as ULS are expected
to be more robust in modeling violations than ML estimators
(MacCallum et al., 2007).

Simulation Model and Conditions
The data-generating model was again a two-factor CFA model
with six observed variables. We generated a covariance structure
(see Equation 2) that followed a CFA model with parallel and
standardized loadings of 0.50 and a variance of one for the
observed variables. The procedure of Foldnes and Olsson (2016)
was used to generate six observed variables that preserved the
covariance structure and had a prespecified level of skewness
and kurtosis for the marginal distributions of observed variables.
Six different combinations of skewness and kurtosis values were
chosen to implement a range of non-normal distributions for
the observed variables: 0/0 (skewness/excess kurtosis), 0/3, 0/7,
1/3, 1/7, and 2/7. Again, we manipulated the latent correlation
between the two factors (ρ = 0.10, 0.30, 0.50, 0.70, and 0.90)
and the sample size (N = 30, 50, 100, and 500). For each
of the 5 × 5 × 4 = 100 conditions, we generated 1,000
simulated data sets.

Analysis Models
Each of the simulated data sets was analyzed with a two-
factor CFA in which the loadings were freely estimated, and
the variances of the two factors were set to one. We used PML
estimation with a uniform prior distribution on the standardized
loadings and the correlation. In addition, we included a robust
version of PML (PMLR) in which the sufficient statistics x and S
were replaced by a robust sample mean vector xrob and a robust
sample covariance matrix Srob that were obtained with the R
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FIGURE 5 | Simulation Study 1: Bias (left panels) and RMSE gain (right panels) of the estimators of a loading (λ) as a function of the sample size and the
magnitude of the true correlation. For the RMSE gain, PML is used as a reference method; values smaller than 100 indicate that the RMSE of the respective method
is lower than the RMSE of the reference method; PML = mode of joint posterior; MAP = mode of marginal posterior; Med = median of marginal posterior;
EAP = mean of marginal posterior. Results are shown for models with uniform prior distributions for the correlation and the standardized loadings.

package rsem (Yuan and Zhang, 2012). The robust estimation
procedure provides Huber-Type M-estimates of means and
covariances and has been shown to produce more efficient
parameters, particularly for distributions with heavy tails (Yuan
et al., 2004). For comparison purposes, we also included an ULS
estimation method. The ULS estimate is defined as:

θ̂ULS = arg min
θ

tr
{
(S−6(θ))T (S− 6(θ))

}
(34)

The ULS method was also specified with robustly estimated
means and covariances (ULSR; Yuan et al., 2004). Finally, the
MCMC method was applied to obtain the mode (MAP), mean
(EAP), and median (Med) of the marginal posterior distributions.
We specified uniform distributions for the standardized loadings
and the correlation. For the standard deviations of the indicator
variables, we used improper prior distributions that are constant
for all conditions of the simulation and all (Bayesian) analysis

Frontiers in Psychology | www.frontiersin.org 19 April 2021 | Volume 12 | Article 615162146

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-615162 April 29, 2021 Time: 12:12 # 20

Lüdtke et al. CFA With Small Samples

TABLE 7 | Simulation study 1: bias and RMSE for the latent correlation as a function of different misspecified prior distributions and the sample size.

Bias RMSE

µλ = 0.5 µλ = 0.8 µλ = 0.5 µλ = 0.8

Meth µρ νρ νλ = 0 νλ = 1 νλ = 3 νλ = 1 νλ = 3 νλ = 0 νλ = 1 νλ = 3 νλ = 1 νλ = 3

N = 30

PML 0 0 −0.038 0.009 0.019 −0.139 −0.022 0.391 0.393 0.379 0.361 0.367

0.5 1 0.161 0.196 0.201 −0.008 0.119 0.388 0.396 0.397 0.325 0.344

0.5 3 0.094 0.120 0.123 −0.019 0.089 0.281 0.281 0.278 0.261 0.263

0.2 1 −0.027 0.021 0.026 −0.114 −0.002 0.320 0.322 0.317 0.323 0.318

0.2 3 −0.086 −0.040 −0.039 −0.136 −0.046 0.269 0.259 0.255 0.290 0.272

0.8 1 0.297 0.328 0.347 0.112 0.237 0.432 0.444 0.447 0.358 0.384

0.8 3 0.337 0.360 0.392 0.153 0.271 0.427 0.436 0.453 0.329 0.373

EAP 0 0 −0.141 −0.070 −0.050 −0.180 −0.103 0.303 0.307 0.314 0.313 0.314

0.5 1 0.131 0.151 0.161 −0.035 0.056 0.222 0.264 0.276 0.247 0.268

0.5 3 0.004 0.038 0.048 −0.066 0.011 0.157 0.188 0.196 0.199 0.202

0.2 1 −0.121 −0.071 −0.058 −0.163 −0.088 0.242 0.248 0.252 0.277 0.268

0.2 3 −0.178 −0.140 −0.131 −0.192 −0.131 0.245 0.231 0.228 0.266 0.243

0.8 1 0.360 0.340 0.330 0.145 0.222 0.387 0.377 0.375 0.282 0.319

0.8 3 0.309 0.320 0.327 0.151 0.231 0.334 0.346 0.352 0.252 0.300

N = 100

PML 0 0 −0.011 0.002 0.006 −0.039 −0.024 0.203 0.196 0.194 0.194 0.181

0.5 1 0.089 0.090 0.090 0.031 0.035 0.273 0.261 0.255 0.231 0.212

0.5 3 0.032 0.042 0.046 0.002 0.014 0.183 0.180 0.179 0.173 0.162

0.2 1 −0.008 0.004 0.008 −0.034 −0.020 0.190 0.184 0.183 0.186 0.173

0.2 3 −0.036 −0.024 −0.020 −0.055 −0.040 0.172 0.165 0.164 0.176 0.164

0.8 1 0.188 0.185 0.163 0.091 0.082 0.332 0.324 0.302 0.262 0.234

0.8 3 0.218 0.216 0.203 0.135 0.118 0.340 0.332 0.321 0.286 0.253

EAP 0 0 −0.059 −0.034 −0.024 −0.113 −0.069 0.191 0.187 0.187 0.207 0.185

0.5 1 0.039 0.054 0.059 −0.053 −0.016 0.199 0.207 0.208 0.195 0.180

0.5 3 −0.016 0.003 0.011 −0.069 −0.030 0.155 0.156 0.157 0.171 0.154

0.2 1 −0.062 −0.039 −0.029 −0.109 −0.066 0.176 0.171 0.171 0.197 0.174

0.2 3 −0.095 −0.072 −0.061 −0.128 −0.086 0.174 0.163 0.160 0.195 0.170

0.8 1 0.191 0.182 0.178 0.038 0.059 0.278 0.270 0.266 0.213 0.204

0.8 3 0.177 0.173 0.176 0.041 0.064 0.248 0.249 0.253 0.195 0.189

RMSE = root mean square error. PML = penalized maximum likelihood (mode of joint posterior); EAP = mean of marginal posterior; µρ = prior guess for latent correlation;
νρ = prior sample size for latent correlation; µλ = prior guess for loading νλ = prior sample size for loading; biases smaller than –0.05 or larger than 0.05 are printed in
bold. For each sample size condition, RMSE values larger than the RMSE for the PML method with uniform priors on loadings (µλ = 0.5, νλ = 0) and the correlation
(µρ = 0, νρ = 0) are printed in bold. The true correlation and loadings were set to ρ = 0.50 and λ = 0.50, respectively.

models. The R code for the data-generating model and the
different analysis models is provided in Supplementary 4 at
https://doi.org/fwr7.

Results
Table 8 shows the bias and RMSE for the different estimators
of the correlation for conditions with a true correlation of
ρ = 0.50 (see Supplementary 5 for detailed information about
the other conditions). We again report RMSE gain with PML as
the reference method (i.e., values larger/smaller than 100 indicate
that the RMSE for the respective method is larger/smaller than
for PML). Overall, the results confirm the previous findings that
the EAP and Med produce (negatively) bias estimates of the
correlation. However, with smaller sample sizes (N ≤ 50), the
estimates of the EAP and the Med were also more accurate in
terms of the RMSE gain. When the variables strongly deviated

from normality and the sample size was large, the robust
estimation approaches (PMLR, ULSR, and ULSR) were slightly
more efficient (i.e., smaller SD of the parameter estimates) than
the different Bayesian point estimates. However, the results
also reveal that, for moderate deviations from normality, the
conclusions about the performance of the different Bayesian
point estimates are relatively robust against distributional
misspecifications. In addition, it should be mentioned that
the multivariate mode (PML) consistently outperformed the
univariate mode (MAP) across all conditions.

Furthermore, we obtained similar results for the estimates
of the loadings (see Supplementary 6); that is, the estimates
produced by the EAP and Med were slightly biased but
overall more accurate in terms of RMSE than the other
approaches. Again, the performance differences between the
Bayesian point estimates were relatively robust against deviations
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TABLE 8 | Simulation study 2: bias and RMSE for the latent correlation as a function of the distribution of the observed variables (skewness and kurtosis) and
the sample size.

Bias RMSE Gain

skew/kurt N PML PMLR ULS ULSR MAP Med EAP PML PMLR ULS ULSR MAP Med EAP

0/0 30 −0.065 −0.067 −0.010 −0.011 −0.003 −0.131 −0.154 100 101 99 101 116 80 77

50 −0.019 −0.020 0.016 0.017 −0.018 −0.085 −0.092 100 101 96 98 114 85 82

100 −0.014 −0.016 0.008 0.008 −0.051 −0.063 −0.061 100 101 94 95 116 95 92

500 −0.002 −0.002 0.002 0.001 −0.011 −0.012 −0.013 100 101 99 100 102 101 101
0/3 30 −0.038 −0.033 0.000 0.007 0.027 −0.106 −0.130 100 100 101 98 119 80 77

50 −0.042 −0.036 0.002 0.001 −0.037 −0.102 −0.109 100 98 97 94 108 84 81

100 −0.007 −0.004 0.015 0.016 −0.041 −0.058 −0.056 100 94 96 91 117 95 92

500 −0.003 −0.005 0.001 −0.002 −0.011 −0.013 −0.014 100 97 99 95 104 101 101
0/7 30 −0.043 −0.024 0.007 0.016 0.024 −0.108 −0.133 100 95 101 98 116 82 79

50 −0.021 −0.011 0.019 0.021 −0.021 −0.085 −0.092 100 96 97 93 115 87 84

100 −0.004 −0.004 0.018 0.013 −0.037 −0.054 −0.052 100 92 98 89 117 94 91

500 −0.003 −0.002 0.001 0.002 −0.012 −0.013 −0.014 100 92 99 91 101 100 101

1/3 30 −0.048 −0.046 0.003 0.004 0.026 −0.110 −0.136 100 99 103 99 119 81 79

50 −0.023 −0.018 0.016 0.019 −0.019 −0.086 −0.093 100 98 95 94 111 82 79

100 −0.006 −0.012 0.013 0.008 −0.042 −0.055 −0.054 100 99 94 93 116 96 92

500 0.002 −0.002 0.005 0.001 −0.006 −0.008 −0.009 100 97 99 96 103 101 101

2/7 30 −0.015 −0.009 0.033 0.029 0.064 −0.078 −0.105 100 95 99 93 114 77 74

50 −0.017 −0.017 0.017 0.001 −0.014 −0.079 −0.086 100 94 97 94 113 87 84

100 −0.003 −0.015 0.015 0.001 −0.035 −0.051 −0.049 100 93 98 89 117 96 93

500 0.003 −0.014 0.007 −0.011 −0.006 −0.007 −0.008 100 95 99 94 103 100 100

RMSE = root mean square error. PML = penalized maximum likelihood; PMLR = penalized maximum likelihood with robustly estimated covariance matrix;
ULS = unweighted least squares; ULSR = unweighted least squares with robustly estimated covariance; MAP = mode of marginal posterior; Med = median of marginal
posterior; EAP = mean of marginal posterior; µρ = prior guess for latent correlation; νρ = prior sample size for latent correlation; skew = skewness; kurt = kurtosis;
Biases smaller than –0.05 or larger than 0.05 are printed in bold. For the RMSE gain, the RMSE of PML estimation is used as a reference method; values smaller than
100 indicate that the RMSE of the respective method is lower than the RMSE of the reference method. The true correlation and loadings were set to ρ = 0.50 and
λ = 0.50, respectively.

from normality, and larger sample sizes were needed to show the
gains in efficiency for the robust estimation approaches (with the
exception that the ULS method performed less favorably with
N = 500).

DISCUSSION

In this article, we showed that a Bayesian approach can stabilize
the parameter estimates of a CFA model in small sample size
conditions. We discussed different Bayesian point estimators—
the mode (PML) of the joint posterior distribution and the
mean (EAP), median (Med), or mode (MAP) of the marginal
posterior distribution—and evaluated their performance in two
simulation studies from a frequentist point of view. The results
showed that the EAP outperformed the PML in terms of RMSE
and produced more accurate estimates of latent correlations in
many conditions. These performance gains can be explained
by the fact that the EAP pulls large estimates toward zero
(i.e., shrinkage effect), resulting in less variable estimates of the
correlation. However, there is a turning point at which, with a
larger true correlation, the EAP is less accurate than the PML
because the bias introduced by the shrinkage effect outweighs
the gains in efficiency (see Choi et al., 2011). As expected,
with larger sample sizes, the differences between the Bayesian
point estimates vanished, and the different Bayesian estimators

performed similarly. We also suggested the four-parameter beta
distribution as a prior distribution for loadings and correlations
and argued that it could often be advantageous to choose a
parameterization in which the main parameters of interest are
bounded (Muthén and Asparouhov, 2012; Merkle and Rosseel,
2018). Another finding of our simulation study was that selecting
weakly informative four-parameter beta distributions as priors
helped stabilize parameter estimates (e.g., Depaoli and Clifton,
2015; van Erp et al., 2018). Importantly, this was also the case
when the prior was mildly misspecified.

The main limitation of our simulation study is that we used a
very simple CFA model with only two latent factors and a small
number of items with no cross-loadings (i.e., simple structure).
It would be straightforward to extend the discussed approaches
to models with more latent factors. In constrained ML estimation
and PML estimation, appropriate determinant constraints could
be implemented to ensure the positive definiteness of the
correlation matrix of latent variables (Wothke, 1993; Rousseeuw
and Molenberghs, 1994). For the MCMC method, determinant
constraints could be introduced in the Metropolis-Hastings step
to check for the positive definiteness of the correlation matrix (see
Browne, 2006).

In addition, we only assessed the quality of statistical
inferences (i.e., coverage rates) with normally distributed
variables. It would be an interesting topic for future research
also to investigate robust estimation approaches for Bayesian
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CFA models. First, one could use robustly estimated covariance
matrices as input for Bayesian CFA models. In this case, robust
standard errors must also be applied in Bayesian estimation
because the model is misspecified (Müller, 2013; Walker,
2013; Bissiri et al., 2016). Second, models with more flexible
distributions for the latent factors and residuals could be applied
(Lin et al., 2018). For example, Zhang et al. (2014) proposed
a Bayesian factor analysis model with scaled t-distributions
(and freely estimated degrees of freedom) that are less sensitive
to outlier values.

The results of the present study could be extended into
several directions. First, it would be interesting to explore
further the potential of PML estimation for CFA models in
challenging data constellations (e.g., small samples, complex
models; Rosseel, 2020). PML estimation seems to be particularly
promising when researchers do not need full access to the
posterior distribution and are only interested in obtaining stable
point estimates for the parameters of interest. In contrast to
simulation-based MCMC techniques, which can be slow and
challenging to implement, PML estimation shares the advantage
of traditional ML estimation that a deterministic optimization
of the log-posterior is performed with clear convergence criteria
and reasonable computational efficiency (Cousineau and Helie,
2013). In Simulation Study 1, for example, the average run
time was about 2 min for MCMC but only two seconds for
PML. The run time differences could be considerably larger
with more complex models (Chung et al., 2013). Second, data
sets in psychological research often have a multilevel structure
(e.g., individuals are nested within clusters/groups) and, in many
applications, it is of interest to analyze relationships among latent
constructs at both levels of analysis (e.g., individual level and
group level; Heck and Thomas, 2015). However, a notable finding
in the multilevel literature is that a substantial number of groups
is needed to obtain stable parameter estimates of group-level
relationships (Lüdtke et al., 2011; Li and Beretvas, 2013; Kelava
and Brandt, 2014; Can et al., 2015). Thus, an important topic
for future research could be to extend the Bayesian approaches
discussed here to multilevel CFA models (Kim et al., 2016).
Finally, it would be interesting to compare the different Bayesian
estimators to other approaches that have been suggested as
solutions for estimation problems in small sample size conditions

(Rosseel, 2020). For example, a two-step approach, such as factor
score regression, has been suggested as a robust alternative
to SEMs in challenging data constellations (Smid and Rosseel,
2020). Besides, alternative error correction approaches could
be used that introduce lower bounds to circumvent small
estimates of reliability in order to stabilize the estimation of
latent correlations (Grilli and Rampichini, 2011). Using these
lower bounds, l can be translated into a uniform distribution
of standardized loadings on the interval [l, 1]. However, using
lower bounds for the indicator-specific reliability larger than zero
possibly introduces too much information. Besides, parameter
estimates could be pretty sensitive to the subjective choice
of lower bounds.

To conclude, this article showed that the Bayesian approach
has great potential for estimating CFA models with small
sample sizes. Using simulated data, we showed that the four-
parameter beta distribution can be used as a prior distribution
for standardized loadings and latent correlations to stabilize
parameter estimates in challenging data constellations. However,
in real applications, the specification of prior distributions should
be accompanied by a sensitivity analysis that tests how sensitive
the resulting parameter estimates are to different specifications of
prior information (Depaoli and van de Schoot, 2017).
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Specifying accurate informative prior distributions is a question of carefully selecting
studies that comprise the body of comparable background knowledge. Psychological
research, however, consists of studies that are being conducted under different
circumstances, with different samples and varying instruments. Thus, results of previous
studies are heterogeneous, and not all available results can and should contribute
equally to an informative prior distribution. This implies a necessary weighting of
background information based on the similarity of the previous studies to the focal study
at hand. Current approaches to account for heterogeneity by weighting informative prior
distributions, such as the power prior and the meta-analytic predictive prior are either
not easily accessible or incomplete. To complicate matters further, in the context of
Bayesian multiple regression models there are no methods available for quantifying
the similarity of a given body of background knowledge to the focal study at hand.
Consequently, the purpose of this study is threefold. We first present a novel method
to combine the aforementioned sources of heterogeneity in the similarity measure ω.
This method is based on a combination of a propensity-score approach to assess the
similarity of samples with random- and mixed-effects meta-analytic models to quantify
the heterogeneity in outcomes and study characteristics. Second, we show how to use
the similarity measure ω as a weight for informative prior distributions for the substantial
parameters (regression coefficients) in Bayesian multiple regression models. Third, we
investigate the performance and the behavior of the similarity-weighted informative
prior distribution in a comprehensive simulation study, where it is compared to the
normalized power prior and the meta-analytic predictive prior. The similarity measure
ω and the similarity-weighted informative prior distribution as the primary results of
this study provide applied researchers with means to specify accurate informative
prior distributions.

Keywords: informative prior distributions, prior information, heterogeneity, similarity, Bayesian multiple
regression, comparability

INTRODUCTION

Informative prior distributions are a crucial element of Bayesian statistics, and play a pivotal role
for scientific disciplines that aim at constructing a cumulative knowledge base. Informative prior
distributions are background knowledge quantified and introduced in a Bayesian analysis. Their use
allows studies to build upon each other, hence to update the knowledge base of a scientific discipline
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continuously. This is also a central tenet of the new statistics
(Cumming, 2014). Despite the increase of Bayesian statistics
in various scientific disciplines over the last years, the use of
informative prior distributions is still relatively rare (for instance
in Psychology, see van de Schoot et al., 2017; for Educational
Science see König and van de Schoot, 2018). Thus, the potential of
Bayesian statistics for cumulative science is not fully realized yet.

Goldstein (2006) states that the tentative use of informative
prior distributions is due to their frequently criticized subjective
nature. Vanpaemel (2011) adds the lack of methods to formalize
background knowledge as another reason. From an applied
viewpoint, this is more severe: if the background knowledge
is inaccurate, which is the case if the prior mean does not
equal the population mean, parameter estimates may be biased
(McNeish, 2016; Finch and Miller, 2019). Specifying accurate
informative prior distributions is a question of carefully selecting
studies that comprise the body of comparable background
knowledge. Psychological research, however, consists of studies
that are being conducted under different circumstances, with
different samples and varying instruments. Thus, results of
previous studies include different sources of heterogeneity, and
not all available results can and should contribute equally to
an informative prior distribution (Zhang et al., 2017). This
implies a necessary weighting of background information based
on the similarity of the previous studies to the focal study
at hand. Current approaches to account for heterogeneity
by weighting informative prior distributions are either not
easily accessible or incomplete. For example, the power prior
weighs the likelihood of the data and requires complicated
intermediate steps in order to use the quantified heterogeneity
properly (Ibrahim et al., 2015; Carvalho and Ibrahim, 2020).
The meta-analytic predictive prior (Neuenschwander et al.,
2010) is more intuitive by weighting the informative prior
distribution directly, but uses heterogeneity in outcomes only.
To complicate matters further, to date there are no methods
available for investigating and quantifying the similarity of
a given body of background knowledge to the focal study
at hand. Specifying accurate informative prior distributions,
however, requires an approach that quantifies all sources
of heterogeneity in a body of background knowledge into
a measure of similarity, and using this measure to weight
the associated informative prior distribution in a direct
and intuitive way.

Consequently, the purpose of this study is threefold. We
first present a novel method to combine the aforementioned
sources of heterogeneity in the similarity measure ω. This
method is based on a combination of a propensity-score
approach to assess the similarity of samples with random-
and mixed-effects meta-analytic models to quantify the
heterogeneity in outcomes and study characteristics (e.g.,
Tipton, 2014; Cheung, 2015). Second, we show how to use
the novel similarity measure ω as a weight for informative
prior distributions for the substantial parameters (regression
coefficients) in Bayesian multiple regression models. Third, we
investigate the performance and the behavior of the similarity–
weighted informative prior distribution in a comprehensive
simulation study, where it is compared to the normalized

power prior (Carvalho and Ibrahim, 2020) and the meta-
analytic predictive prior (Weber et al., 2019). The similarity
measure ω and the similarity-weighted informative prior
distribution as the primary results of this study provide
applied researchers with means to specify accurate informative
prior distributions.

The structure of this paper is as follows. First, the conceptual
background of similarity is illustrated. Next, it is shown how
these sources of heterogeneity can be quantified and combined
in the similarity measure ω. Based on this, the similarity-
weighted informative prior distribution is described. The design
and results of the simulation investigating the performance and
behavior of this distribution is presented next, followed by a
discussion of how the similarity measure ω and the similarity-
weighted informative prior distribution contribute to building
confidence in and to systemizing the use of informative prior
distributions in Psychological research. Please note that, in order
to keep the manuscript as accessible as possible, mathematical
details are kept at a minimum.

CONCEPTUAL BACKGROUND

The Concept of Similarity
When specifying informative prior distributions, researchers are
confronted with a body of background knowledge comprised of
conceptual replications of studies (Schmidt, 2009). Conceptual
replications focus on the general theoretical process, without
copying the methods of previously conducted studies (Makel
et al., 2012). Thus, the studies differ in samples, variables,
and other characteristics. Without assessing their similarity
to the focal study at hand, using studies for informative
prior distributions might imply an unwarranted generalization;
excluding studies might be too restrictive and imply that
no background knowledge is available, when in truth there
is. Hence, an adequate similarity measure should take into
account all relevant sources of heterogeneity in research results.
Consequently, the conceptual framework of the similarity
measure ω follows Shadish et al. (2002), who build upon
Cronbach (1982), and distinguishes between units and treatments
(UT), outcomes (O), and settings (S) of the studies as sources
for heterogeneity. More specifically, we conceptualize UT as
samples and predictor variables, O as outcome variables or
effect sizes, and S as study characteristics commonly investigated
as moderators in mixed-effects meta-analytic models. Thus,
we define similarity as the variability in research results due
to the three sources of heterogeneity. This differentiation
takes into account that heterogeneity in outcomes is not
sufficient for an adequate assessment of similarity (Lin et al.,
2017). The quantification of the three sources of heterogeneity
is addressed next.

Quantifying Sources of Heterogeneity
For a similarity measure to work adequately, it is pivotal
that the different sources of heterogeneity can be quantified
accurately with state-of-the-art methods. More specifically,
the similarity measure ω is based on three components:
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(a) the modified generalizability index B that is based on
Tipton (2014), (b) the between-study heterogeneity τ2 resulting
from (Bayesian) random-effects meta-analytic models, and
(c) δτ2 , the difference between the residual variance τ2

res of
(Bayesian) mixed-effects meta-analytic models and τ2 (for
an overview see, for instance, Jak, 2015). Each individual
measure quantifies important aspects of the comparability of
research results.

Quantifying Similarity in Predictors and Samples
With B
The first component of the similarity measure ω is the
modified generalizability index B. In its original form, the
generalizability index B is a propensity score-based measure
of distributional similarity between a sample and a population
(Tipton and Olsen, 2018). We modified it so that it describes
the similarity between the samples of the focal study and
a previously conducted study that is part of the body of
available background knowledge. The generalizability index and
its modified version takes values between zero and one, which
indicate no and perfect similarity of the two samples, respectively.
It is based on s(X), a theoretical sampling propensity score
defined as s (X) = Pr(Z = 1|X), and describes the probability
Z of an individual being in the sample of the focal study
(vs. being in the sample of the previously conducted study)
based on a set of covariates X (Tipton, 2014). The sampling
propensity score can be estimated by a logistic regression model
log[s(X)/1-s(X)] = α0+αm+Xm, where m = 1, ,m is the number
of covariates. Adapting Tipton (2014), for a set of covariates X
and sampling propensity score s(X), the modified generalizability
index is then defined as β =

∫ √
ff (s)fp(s)ds, where ff (s) and

fp(s) are the distributions of sampling propensity scores in the
sample of the focal and previously conducted study, respectively.
An estimator of β is provided by a discrete version of the
generalizability index B =

∑
h
√wfhwph, where h is the number

of bins and wfh and wph are the proportions of the focal and
previously conducted study samples, respectively (Tipton, 2014).
In case of multiple previously conducted studies, the modified
version of the generalizability index B is calculated for each
comparison of the samples of the focal and previously conducted
studies. It is the average of the individual indices B = 1

k
∑

k Bk,
with k being the number of previously conducted studies. We
implemented this procedure as a kernel density estimation with a
Gaussian kernel and a non-parametric bandwidth selector (Moss
and Tveten, 2019), so that the number of bins does not have to be
chosen a priori.

Quantifying Heterogeneity in Outcomes With τ2

The second component of the similarity measure ω is the
between-study heterogeneity τ2, which is a measure for the
variance in effect sizes, such as standardized mean differences,
log-odds ratios, and more recently, partial and semi-partial
correlations as effect sizes for regression coefficients (Aloe and
Thompson, 2013). It is the variance component of random-
effects meta-analytic models, which assume that the population
effect sizes are not equal across the studies. Several studies show

that this assumption is usually correct: the typical between-study
heterogeneity in outcomes ranges from 0.13 to 0.24 (van Erp
et al., 2017; Stanley et al., 2018; Kenny and Judd, 2019). Random-
effects meta-analytic models allow individual studies to have their
own effect (e.g., Cheung, 2015). Let yk be the effect found in
study k. The study-specific model is then yk = β + uk + εk
where β is the average effect size, uk are deviations from
the average effect size, εk is the study-specific error term
and Var(εk) is the known sampling variance. The variance of
these deviations Var(uk) is the between-study heterogeneity τ2

indicating the variability of the effect sizes across the studies
included in the meta-analysis. The between-study heterogeneity
is strictly positive τ2 > 0. When τ2 increases, consensus in the
average effect decreases. This lack of consensus in the average
effect, the uncertainty quantified by τ2, should be represented
in a weight of an informative prior distribution. However, only
the meta-analytic predictive prior distribution uses τ2 as weight.
Both the average effect and the between-study heterogeneity τ2

can be estimated by Maximum Likelihood, Restricted Maximum
Likelihood and Bayesian estimation methods (for overviews, see
Veroniki et al., 2016; Williams et al., 2018). For situations with
a small number of studies, and the known problems of ML and
REML estimators regarding τ2 in these cases, we implemented
a hierarchical Bayesian random-effects meta-analytic model to
estimate τ 2 accurately.

Quantifying Heterogeneity in Study Characteristics
with δτ2

The third component of the similarity measure ω is δτ2 , the
difference between the residual variance τ2

res in the effect
sizes, estimated by a (Bayesian) mixed-effects meta-analytic
model, and their estimated between-study heterogeneity τ2.
Mixed-effects meta-analytic models extend random-effects
meta-analytic models by introducing study characteristics
as potential moderators of the effects. The study-specific
model is then yk = βxk + uk + εk, where xk is a vector of
predictors including a constant of one (Cheung, 2015). Under
the mixed-effects meta-analytic model, the variance of the
deviations Var(uk) is the residual variance τ2

res in the effect
sizes after controlling for study characteristics as moderators.
If τ2

res < τ2, the study characteristics explain variance in
the effect sizes. This implies that the effect sizes not only vary
across studies, but also across specific study characteristics.
For example, it is possible that effects found in the 1980s differ
systematically from effects found in the 2010s. Thus, there is
additional uncertainty in the average effect that is quantified
by δτ2 . If τ2

res ≥ τ2, the study characteristics do not explain
any variance in the effect sizes, and δτ2 is truncated to zero.
Hence, δτ2 > 0 if τ2

res < τ2, and 0 otherwise. Similar to
the random-effects meta-analytic models, for situations with
a small number of studies we implemented a hierarchical
Bayesian mixed-effects meta-analytic model to estimate τ2

res and,
subsequently, calculate δτ2 accurately.

The Similarity Measure ω
The similarity measure ω integrates the three components
into a single index. It is conceptually similar to the variance
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component of a Bayesian hierarchical model (comparable to
the a0-parameter of the power prior; Ibrahim et al., 2015;
Neuenschwander et al., 2009). Thus, its use as weight for
informative prior distributions places certain demands on the
measure, both mathematically and conceptually. First, similar
to the a0-parameter of the power prior (Ibrahim et al., 2015),
the similarity measure ω needs to take values between zero and
one, ω ∈ [0, 1]. This avoids any potential overweighting of the
quantified background knowledge, compared to the information
contained in the data of the focal study. Moreover, the similarity
measure ω→ 1 as the comparability of the previously conducted
studies in the body of background knowledge and the focal
study increases. On the one hand, when ω = 0 the previously
conducted studies and the focal study are not comparable, and
no information contained in the informative prior distribution
is used. On the other hand, when ω = 1, the focal study is
a direct replication of the previously conducted studies in the
body of background knowledge, and the information contained
in the prior distribution is used fully. Second, the similarity
measure ω needs to adequately reflect the inverse relation
between B, and τ2 and δτ2 . While an increasing B indicates
an increased comparability, increasing τ2 and δτ2 indicate a
decreasing comparability. Thus, the similarity measure needs
to align the conceptual meaning of the three indices to reflect
the comparability of the focal study with the study in the
body of background knowledge adequately. Third, the similarity
measure ω needs to be flexible in specification and discriminate
strongly across the range of plausible values especially for
τ2 and δτ2 , which we know to typically range between 0.13
and 0.24 (van Erp et al., 2017; Stanley et al., 2018; Kenny
and Judd, 2019). This aims at conservative estimates of ω,
again to avoid the informative prior distribution overwhelming
the likelihood of the data of the focal study. Considering all
these requirements, the similarity measure ω can be expressed
formally as,

ω =

 1

1+ exp
[

10∗
(√

τ2 + δτ2 − 0.24
)]
 ∗B (1)

Thus, the similarity measure ω essentially is a logistic function
of τ2 and δτ2 with maximum value L = 1, midpoint ω0 = 0.24
and slope s = 10, weighted by B = 1

K
∑

k Bk, where k = 1...K
is the number of previously conducted studies. The parameters
of this weighted logistic function are chosen so that the resulting
values of the similarity measure ω adequately reflects the
characteristics of Psychological research: the midpoint is carefully
chosen following van Erp et al. (2017), and the slope is chosen
to discriminate adequately across the typical range of between-
study heterogeneity (Stanley et al., 2018; Kenny and Judd, 2019).
We assume an additive relationship between τ2 and δτ2 . Taken
together, the behavior of the similarity measure is as required:
ω→ 1 as τ2 and δτ2 decrease and B increases. Applying equation
(1) to a situation of a Bayesian multiple regression model with
three predictors and ten previously conducted studies yields three
parameter-specific similarity measures, which can be used to
weigh an informative prior distribution.

Applying ω – The Similarity-Weighted
Informative Prior Distribution
The similarity measure ω can now be used to weight an
informative prior distribution and integrate it, without any
necessary intermediary calculations, in a usual Bayesian analysis.
Contrary to the power prior of Ibrahim et al. (2015), who
weight the likelihood of the previously conducted studies, in
this case it involves raising the informative prior distribution to
the power ω, p (θ | D) ∝ p (D | θ) π (θ)ω where p (θ | D) is the
posterior distribution of a parameter θ, p (D | θ) is the likelihood
of the data, and π (βθ)ω is the similarity-weighted informative
prior distribution. Because this prior distribution utilizes data
from previously conducted studies, it belongs to the class of
evidence-based informative prior distributions (Kaplan, 2014).
We illustrate the use of the similarity measure ω as weight for
an informative prior distribution with an example of a simple
Bayesian multiple regression with three predictors. Let y be a
n× 1-vector of outcomes, and X a n× p predictor matrix, where
n is the sample size of the focal study and p = 3 the number of
predictors. Then,

y ~N(β0 + Xβ, σ2) (2)

is the likelihood of the Bayesian multiple regression model, with
β0 being the intercept, β a p× 1-vector of regression coefficients,
and σ2 being the error variance. The prior specification is as
follows:

β0~N(0, 10) (3)

β~N(µp, SE2
p)

ωp (4)

σ2~half − Cauchy(0, 2.5) (5)

Both β0 and σ2 receive weakly informative prior distributions,
and the hyperparameters of the informative prior distributions
(means and standard deviations) for the regression coefficients
βp are the average effects µp and their standard errors SE2

p
estimated by multiple univariate or a single multivariate random-
effects meta-analysis (Cheung, 2015; Smid et al., 2020). They
are weighted by the parameter-specific similarity measures ωp.
Generally speaking, as ω→ 0 the peak around the mean of
the informative prior distribution flattens, and the distribution
becomes broader. A broader prior distribution carries less
information about the parameter of interest; hence, the broader
the distribution the lesser its informativeness.

SIMULATION

We conducted a comprehensive simulation to assess the behavior
of the similarity measure ω and to investigate the performance
of the similarity-weighted informative prior distribution. R-code,
functions, and data of the simulation are available at https://doi.
org/10.17605/OSF.IO/8AEF4.
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Design
The design consisted of the following, systematically varied
factors. First, the number of previously conducted studies
that are part of the available body of background knowledge
(K = 3, 5, 10). Second, the sample sizes of the previously
conducted studies, indicated by the difference between the
average sample sizes of these studies and the sample size of the
focal study (smaller and larger 4N = − 100, 100). Third,
the similarity of the predictors, indicated by the differences
in means of the respective distributions (i.e., their overlap)
between the previously conducted studies and the focal study
(from large overlap to no overlap 4µ = 0.25, 0.5, 1, 2, 3).
Fourth, the between-study heterogeneity in the effect sizes, thus
the (lack of) consensus in the background knowledge (small
to large τ2

= 0.025, 0.05, 0.10, 0.15, 0.20, 0.35, 0.5).
Moreover, we simulated one moderator variable that
explained 10% of the between-study heterogeneity
in the effect sizes. Thus, the simulated amount
of variance in outcomes and study characteristics
is τ2
+ δτ2 = 0.0275, 0.055, 0.110, 0.165, 0.275, 0.385, 0.550.

In total, the design of the simulation consisted of 210 conditions.

Data Generation and Analysis
We applied the following procedure to generate the datasets
in each condition. First, we simulated the dataset of the
focal study, according to the multiple regression model in
equation (2), with fixed sample size NF = 200, true regression
coefficients βF = (0.5, 0.25, −0.5) and a normally distributed
error σ2

F~N(0, 1). Predictors in XF were drawn from standard
normal distributions. Next, we constructed the database of
previously conducted studies, also according to the multiple
regression model in equation (2) with normally distributed
error σ2

D N(0, 1). As a first step, the sample size for the k-th
(k = 1...K) study of the database was drawn from a normal
distribution N(NPi , 25), where NPi = NF + 4N . In the second
step, for the k-th study of the database a vector of regression
coefficients βk was drawn from a multivariate normal distribution
with mean vector µβk = (0.4, 0.0, 0.3), i.e., their meta-analytic
means, and variance τ2. Compared to βF , the mean coefficients
in µβk represent certainty, disagreement, and contradiction in
the size of the effect. Predictors in Xk were drawn from normal
distributions N(µNP , 1), where µNP = 4µP . This procedure was
repeated one hundred times in each condition, resulting in 21,000
datasets (i.e., the simulated dataset of the focal study and the
databases of the previously conducted studies).

Each dataset was analyzed with a Bayesian multiple regression
model with (a) non-informative priors for the regression
coefficients (pooled analysis), (b) the normalized power prior
(NPP), (c) the meta-analytic predictive prior (MAP), and (d)
the similarity-weighted informative prior distribution (SWIP).
For the non-informative model, the datasets of the focal and
previously conducted studies were pooled into a single dataset.
The NPP was implemented as a standard normal-inverse gamma
model as described in Carvalho and Ibrahim (2020). For
both the MAP and SWIP a Bayesian random-effects meta-
analysis was run with the generated database of previously

conducted studies to calculate the meta-analytic mean effect,
its standard error, and the between-study heterogeneity τ2. The
meta-analytic mean effect and its standard error were used
as hyperparameters of the MAP and SWIP. The meta-analysis
was based on Fisher’s r-to-z transformed partial correlation
coefficients using the metafor-package (Viechtbauer, 2010). This
follows Aloe and Thompson (2013) who introduced partial or
semi-partial correlations as adequate effect sizes for regression
coefficients. The specification of the MAP model and its
robustification procedure followed the standard implementation
of the RBesT-package outlined in Weber et al. (2019). Prior to
the SWIP analysis, the modified generalizability index B for the
previously conducted studies and the similarity measure ω was
calculated as in equation (1). The similarity measure ω was then
introduced as parameter-specific weight for the informative prior
distributions for the regression coefficients as in equation (4). All
models were specified with Stan and its R interface RStan (Stan
Development Team, 2020). Four chains each of length 2,000 with
1,000 burn-in cycles were set up. Different random starting values
were supplied to each chain. Convergence was assessed using
the Gelman-Rubin R-statistic (Gelman and Rubin, 1992), where
R < 1.02 indicated convergence. All solutions converged.

Evaluation Criteria
To assess the behavior of the similarity measure ω we
focused on its relation to τ2

+ δτ2 and 4µ , and its relation
to the shrinkage in the parameter estimates. Therefore, we
estimated linear models. Shrinkage was defined as the difference
between the focal-study estimates (the true values βF) and
the estimates obtained by the similarity-weighted informative
prior distribution. Moreover, comparing the performance of
the different prior distributions involved, for each condition,
averaging the parameter estimates and their standard errors
over replications, β = 1

R
∑

R β and SEβ =

√
1
R
∑

R SE
2
β,

respectively. The similarity measure behaves as expected if it
decreases as τ2

+ δτ2 and 4µ increase. Moreover, shrinkage
should increase as the similarity increases. Good performance
of the different informative prior distributions is indicated by
increasing shrinkage of the parameter estimates toward their
meta-analytic means, as well as decreasing standard errors of the
parameter estimates, depending on the degree of similarity.

RESULTS

Behavior of the Similarity Measure ω
Figure 1 illustrates the behavior of the similarity measure ω

conditional on τ2
+ δτ2 for different levels of 4µ combined for

all three regression coefficients (left panel), and the behavior
of the shrinkage of the estimates of the three regression
coefficients, conditional on the similarity measure ω (right
panel), across all simulation conditions. The similarity measure ω

behaves as expected; as both τ2
+ δτ2 and 4µ increase, i.e.,

the similarity between the focal and the previously conducted
studies decreases, the similarity measure ω decreases as well.
Moreover, we have a non-compensatory relation between the
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FIGURE 1 | Regression curves of the relation between the similarity measure ω and τ2
+ δτ2 for different levels of 4µ (left panel), and the relation between the

shrinkage and the similarity measure ω, for each β-parameter (right panel), based on estimates from 21,000 simulated datasets.

components of the similarity measure. High similarity in samples
and predictors does not compensate for a lack of similarity
regarding outcomes and study characteristics, and vice versa.
The shrinkage of the parameter estimates behaves accordingly:
as the focal and the previously conducted studies become more
similar, indicated by an increasing similarity measure ω, the
estimates of the regression coefficients shrink toward their meta-
analytic means. If the focal and previously conducted studies are
highly dissimilar, shrinkage is close to zero, and the estimates
of the regression coefficients remain at estimates resulting from
the focal study. Lastly, shrinkage is stronger when the meta-
analytic means and the focal-study estimates of the regression
coefficients are considerably apart (see β3, compared to the
other two parameters). This is, however, just an effect of the
distance between the values of β3 = − 0.5 and its meta-
analytic mean µβ3 = 0.3. With an increasing distance between
a parameter estimate and it meta-analytic mean, the potential
amount of shrinkage increases as well. Moreover, the different
direction of the shrinkage in case of β3 is due to the meta-
analytic mean being larger than the focal-study estimate. In case
of the other regression coefficients, their meta-analytic means
are smaller than their focal-study estimates, thus the shrinkage
is negative.

Performance of the Similarity-Weighted
Informative Prior Distribution
Figures 2, 3 illustrate the behavior of the estimates of the three
regression coefficients and their standard errors, respectively,
obtained from the pooled Bayesian analysis, the NPP, the
MAP, and the SWIP, conditional on the simulated factors. The
estimated regression coefficients obtained with the SWIP lie

consistently between their true values βF and their true meta-
analytic means µβk . Shrinkage toward the true meta-analytic
means is sensitive to changes in both τ2

+ δτ2 and 4µ. In
contrast, the MAP consistently yields parameter estimates close
to the true values βF , except for β3 when τ2

+ δτ2 < .10.
Thus, the MAP is largely insensitive to changes in both τ2

+

δτ2 and 4µ. Compared to the NPP, shrinkage of the parameter
estimates of the SWIP is comparably sensitive to changes in
both τ2

+ δτ2 and 4µ, but more conservative. For example,
when 4µ is large, the NPP sometimes yields overestimated
parameters. Moreover, while the SWIP shrinks the parameters
never beyond their estimates obtained with the pooled analysis,
the NPP shrinks the parameter estimates in some cases beyond
their meta-analytic means.

This general pattern is similar in case of the standard error
of the parameter estimates. In case of the SWIP, the standard
errors decrease as the similarity of the focal and previously
conducted studies increases. More specifically, they converge
to the standard errors of the pooled Bayesian analysis. This
implies a similarity-dependent borrowing of information from
the previously conducted studies that increases the precision
of the parameter estimates of the focal study. This is true
for all simulation conditions, although it is most distinct
when the number of available studies is large (K = 10).
In contrast, the standard errors of the estimates of the MAP
do not converge; they largely remain at around 0.7. Thus,
the MAP does not borrow information from the previously
conducted studies. The standard errors of the estimates of the
NPP tend to be smaller than the standard errors of the SWIP,
especially when the number of previously conducted studies is
large (K = 10). Thus, the NPP borrows more information.
When the focal-study estimates and their meta-analytic means
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FIGURE 2 | The behavior of the parameter estimates across simulation conditions. The similarity of the focal and the previously conducted studies decreases from
left to right. Pooled = pooled Bayesian analysis; NPP = normalized power prior; MAP = meta-analytic predictive prior; SWIP = similarity-weighted informative prior
distribution. The dashed horizontal line represents the true value of the respective regression coefficient of the focal study. The dotted horizontal line represents the
true (generating) meta-analytic mean of the respective regression coefficient.

contradict (in case of β3), however, the standard errors of
the estimates of the NPP tend to be larger, especially when
the number of previously conducted studies is small and 4µ

is large.

Overall, the performance of the SWIP is more consistent
and sensitive to changes in similarity between the focal and
previously conducted studies, compared to both the NPP and
MAP, while yielding conservative estimates. As the similarity
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FIGURE 3 | The behavior of the standard errors of the parameter estimates across simulation conditions. The similarity of the focal and the previously conducted
studies decreases from left to right. Pooled = pooled Bayesian analysis; NPP = normalized power prior; MAP = meta-analytic predictive prior;
SWIP = similarity-weighted informative prior distribution.

increases, the parameter estimates of the SWIP shrink toward the
estimates of the pooled Bayesian analysis, and more information
is borrowed from the body of available background knowledge.

Thus, the standard errors of the parameter estimates decrease,
and the estimates are more precise. In this context, the number of
previously conducted studies plays a vital role. When the number
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is small, i.e., when there is less information to borrow, both
shrinkage and precision are less distinct.

DISCUSSION

The purpose of this study was to illustrate a novel method
to assess the similarity of studies in the context of specifying
informative prior distributions for Bayesian multiple regression
models. We illustrated the quantification, based on a propensity-
score approach and random- and mixed-effects meta-analytic
models (e.g., Tipton, 2014; Cheung, 2015), and combination of
heterogeneity in samples and predictors, outcomes, and study
characteristics in the novel similarity measure ω. We showed how
to use the similarity measure ω as a weight for informative prior
distributions for the regression coefficients, and investigated the
behavior of the similarity measure ω and the similarity–weighted
informative prior distribution, comparing its performance to the
normalized power prior and meta-analytic predictive prior.

The Performance of the
Similarity-Weighted Informative Prior
Distribution
The results of our simulation show that the parameter estimates
of the similarity-weighted informative prior distribution behave
similar to those of hierarchical Bayesian models: as the
similarity of the focal and previously conducted studies
increases, they shrink toward their pooled, meta-analytic
means. Simultaneously, the precision of the parameter estimates
increases because more information is borrowed from the
previously conducted studies. From the perspective of cumulative
knowledge creation, this behavior is desired. As evidence from
comparable studies accumulates, our knowledge of the size
of an effect becomes incrementally more certain until, over
time, it represents the best knowledge we have (unless the
evidence contradicts; Kruschke et al., 2012; König and van de
Schoot, 2018). The meta-analytic predictive prior, on the one
hand, does not provide this increasing certainty in the size
of an effect. Compared to the similarity–weighted informative
prior distribution, the similarity-dependent shrinkage is much
less distinctive. Since the meta-analytic predictive prior only
considers the heterogeneity in outcomes, it may be an indication
that, echoing Lin et al. (2017), this is not sufficient for an adequate
assessment of similarity of the focal and previously conducted
studies. Parameter estimates of the normalized power prior, on
the other hand, exhibit a stronger, but inconsistent shrinkage
toward the pooled, meta-analytic means. From the perspective
of cumulative knowledge creation, this is problematic, because
the normalized power prior provides parameter estimates that
are biased, and the precision of the estimates does not increase
consistently as evidence accumulates.

Since the performance of the similarity-weighted informative
prior distribution stands or falls with the accuracy of the
components of the similarity measure ω, it is essential to
estimate the random and mixed-effects meta-analytic models as
unbiased as possible. This is usually based on either maximum
likelihood (ML) or restricted maximum likelihood (REML)

estimation (e.g., Cheung, 2015). These likelihood-based methods,
however, exhibit poor performance especially when the number
of previously conducted studies is small (Bender et al., 2018),
additionally to the general underestimation of the between-study
heterogeneity of ML-based random-effects meta-analytic models
(Cheung, 2015). Several studies show a superior performance of
Bayesian approaches, especially hierarchically specified random
and mixed-effects meta-analytic models, in terms of the accuracy
of the (residual) variance components (Williams et al., 2018;
Seide et al., 2019). Thus, when using the similarity measure ω

to specify the similarity-weighted informative prior distributions,
we recommend using these Bayesian approaches to estimate
both the mean effect size and its variance components, as
illustrated in this study.

On the one hand, the similarity-weighted informative prior
distribution simplifies the concept of the normalized power prior.
The similarity measure is used to weight the informative prior
distribution directly, which is more intuitive and less challenging
than weighting the likelihood of the data from the previously
conducted studies (Ibrahim et al., 2015). The complex calculation
of multiple marginal likelihoods by means of bridge sampling
approaches (see Carvalho and Ibrahim, 2020) is not necessary.
Calculating marginal likelihoods can be complicated and time-
consuming especially when the underlying models are complex
(for instance, structural equation models), and their likelihood is
analytically intractable (Ibrahim et al., 2015). On the other hand,
the similarity-weighted informative prior distribution extends
both the normalized power prior and meta-analytic predictive
prior by taking into account multiple sources of heterogeneity
in previously conducted studies, and quantifying these sources in
the similarity measure ω. The benefits of this holistic approach
are illustrated by the performance of the similarity-weighted
informative prior distribution.

Future Directions
The similarity measure ω and the similarity-weighted
informative prior distribution offer various opportunities
for further research. First, the inconsistent behavior of the
normalized power prior may be due to the limited number of
available small-sample studies (Neuenschwander et al., 2009).
Thus, a limitation of this study is that we only considered
sample sizes of the focal and previously conducted studies
that are of a comparable order of magnitude. Investigating
the performance of the similarity-weighted informative prior
distribution in situations where these sample sizes differ
by orders of magnitude, and where the sample sizes of the
previously conducted studies vary considerably, is an important
topic for further research. If the sample sizes of the focal and
previously conducted studies vary considerably in size (especially
when NP � NF), it is possible to multiply the scale parameter
of the informative prior distribution SE2

p by the ratio NP/NF .
This can be understood as a mechanism to avoid that the prior
information overwhelms the likelihood, because it flattens the
distribution and makes it less informative. Second, the similarity
measure can be used as the a0-parameter of the normalized
power prior. Investigating the behavior of the normalized
power prior in the context of a fixed–a0 approach, where the
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study-specific a0-parameters are fixed to the values of the study-
specific similarity measures may be an interesting topic for future
research. Especially because the fixed–a0 approach is considered
superior to the random–a0 approach, where the comparability
of the focal and previously conducted studies is inferred from
the data, and the prior distribution for the a0-parameter has
to be chosen carefully (Neuenschwander et al., 2009; Ibrahim
et al., 2015). Third, comparing ML-based and Bayesian meta-
analytic or other approaches in the context of assessing the
similarity of studies, i.e., regarding their impact on the behavior
of the similarity-weighted informative prior distribution, is
another important topic for future studies. As mentioned above,
the precision of the average effect sizes that are used as the
hyperparameters of the informative prior distributions, are
pivotal for the accuracy of these distributions. Identifying the
correct approach, especially when the number of previously
conducted studies is small (Bender et al., 2018), is crucial
for the performance of the similarity-weighted informative
prior distribution. Fourth, the calculation of the modified
generalizability index B still requires the availability of the
raw data of the previously conducted studies. This remains
a limitation for the applicability of the similarity measure.
Extending its applicability is a question of being able to calculate
the modified generalizability index B in situations when only
summary data are available. It is possible, however, to simulate a
number of datasets based on correlation matrices, or means and
standard deviations, and to calculate B for each of the simulated
datasets. The pooled B can then be used to calculate the similarity
measure. Such an approach, similar to multiple imputation
or the estimation of plausible values, will be addressed and
investigated in a future study. Fifth, both the similarity measure
and the similarity-weighted informative prior distribution are
currently only available for multiple regression models, i.e.,
univariate methods. It may be fruitful to extend and adapt both
to multivariate methods, for example structural equation models.

Concluding Remarks
As mentioned in the introduction to this study, specifying
accurate informative prior distributions is a question
of carefully selecting studies that comprise the body of
comparable background knowledge. Given the considerable

heterogeneity of studies that are being conducted in Psychological
research (different circumstances, with different samples and
instruments), the results of these studies are heterogeneous, and
not all available results can and should contribute equally to an
informative prior distribution. The similarity measure ω and the
similarity-weighted informative prior distribution developed in
this study provide researchers with tools to (a) justify the selection
of studies that contribute to the informative prior distribution,
and (b) to accomplish the necessary similarity-based weighting
of the available background knowledge. On the one hand, the
quantification of the similarity of studies, and the similarity-
based weighting of prior information, are important elements
of a systematization of the specification and use of informative
prior distribution. Being able to justify empirically the use of
previously conducted studies for the specification of informative
prior distributions, on the other hand, helps building confidence
in the use of informative prior distributions. The theoretical
rationale of the similarity measure ω and the evidence-based
nature of the similarity-weighted informative prior distribution
may help to supersede the subjective notion of informative prior
distributions. We hope that the similarity measure ω and the
similarity-weighted informative prior distribution stimulates
further research, eventually helping researchers in Psychology to
move beyond non-informative prior distributions, and to finally
exploit the full potential of Bayesian statistics for cumulative
knowledge creation.
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Nationwide opinions and international attitudes toward climate and environmental

change are receiving increasing attention in both scientific and political communities.

An often used way to measure these attitudes is by large-scale social surveys. However,

the assumption for a valid country comparison, measurement invariance, is often not

met, especially when a large number of countries are being compared. This makes

a ranking of countries by the mean of a latent variable potentially unstable, and may

lead to untrustworthy conclusions. Recently, more liberal approaches to assessing

measurement invariance have been proposed, such as the alignment method in

combination with Bayesian approximate measurement invariance. However, the effect of

prior variances on the assessment procedure and substantive conclusions is often not

well understood. In this article, we tested for measurement invariance of the latent variable

“willingness to sacrifice for the environment” using Maximum Likelihood Multigroup

Confirmatory Factor Analysis and Bayesian approximate measurement invariance, both

with and without alignment optimization. For the Bayesian models, we used multiple

priors to assess the impact on the rank order stability of countries. The results are

visualized in such a way that the effect of different prior variances and models on group

means and rankings becomes clear. We show that even when models appear to be

a good fit to the data, there might still be an unwanted impact on the rank ordering

of countries. From the results, we can conclude that people in Switzerland and South

Korea are most motivated to sacrifice for the environment, while people in Latvia are less

motivated to sacrifice for the environment.

Keywords: measurement invariance, visualization, Bayes, group ranking, MGCFA, prior sensitivity, Bayesian

approximate measurement invariance (BAMI)

INTRODUCTION

One of themain issues the world population faces today is climate and environmental change. Some
of the challenges that have to be faced include floods, droughts, food insecurity, and biodiversity
loss. These challenges may give rise to socioeconomic problems such as refugee crises, relocating
populations and cities, and famines (Zhang et al., 2020). As the challenges will differ across regions,
but are not limited by national borders, international cooperation is required. At the same time,
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a “one size fits all” solution is unlikely to solve these issues
(Andonova and Coetzee, 2020). Several studies have been
conducted on how the inhabitants of different countries perceive
the subject of climate and environmental change, and the
different aspects of social behavior regarding this subject: e.g.,
knowledge of climate change, risk perception, and the willingness
to act (van Valkengoed and Steg, 2019). Hadler and Kraemer
(2016) showed that the inhabitants of different countries do not
assess all these threats in the same way: in some countries air
pollution is seen as a major threat, while in others water shortages
are considered a hazard.

The term “environmental concern” has been used widely to
explain environmental behavior (e.g., Dunlap and Jones, 2002;
Bamberg, 2003; Schultz et al., 2005; Franzen and Meyer, 2010;
Marquart-Pyatt, 2012a; Fairbrother, 2013; Pampel, 2014; Mayerl,
2016; Pisano and Lubell, 2017; Shao et al., 2018). However, a
clear definition of this concept is lacking (e.g., Dunlap and Jones,
2002; Schultz et al., 2005). Bamberg (2003, p. 21) described
environmental concern as “the whole range of environmentally
related perceptions, emotions, knowledge, attitudes, values, and
behaviors,” while Dunlap and Jones (2002, p. 485) described
environmental concern as “the degree to which people are aware
of problems regarding the environment and support efforts
to solve them and/or indicate the willingness to contribute
personally to their solution.” Following the latter definition,
environmental concern consists of at least two parts: on the one
hand, perceptions of environmental problems (e.g., risks and
beliefs), and, on the other hand, the willingness to contribute to
the solution (e.g., to pay more taxes or higher prices, or to fly
less). This translates into two latent variables that operationalize
environmental concern: “environmental attitude” (EA) and
“willingness to sacrifice (or pay) for the environment” (WTS).
These two latent variables have been used both individually and
in combination to operationalize environmental concern (Mayerl
and Best, 2019). The latent variable WTS is frequently used
to measure the extent to which people are willing to sacrifice
something in their daily life (money, goods, time, comfort) to
save the environment, and has been examined by several authors
(e.g., Ivanova and Tranter, 2008; Fairbrother, 2013; Franzen and
Vogl, 2013; Pampel, 2014; Sara and Nurit, 2014; Shao et al., 2018).
The relation with cultural, sociological, economic, or political
factors has been studied quite extensively (e.g., Marquart-Pyatt,
2012b; Franzen and Vogl, 2013; Pampel, 2014; Bozonnet, 2016;
McCright et al., 2016; Shao et al., 2018).

Large-scale surveys are often used for exploring knowledge,
attitudes, and (intentional) behavior regarding climate and
environmental change (e.g., Bamberg, 2003; Franzen and Meyer,
2010; Marquart-Pyatt, 2012a; Hadler and Kraemer, 2016; Knight,
2016; Pisano and Lubell, 2017; Libarkin et al., 2018). One
precondition for the valid comparison of attitudes toward
climate and environmental change across many countries is
that measurement properties are equivalent across countries
(Jöreskog, 1971; Vandenberg and Lance, 2000). This means
that all participants in all countries should interpret both the
survey questions and the underlying latent variables in the
same way. This equivalence of measurement properties is also
called Measurement Invariance (MI). Establishing whether MI

holds is usually done by conducting a maximum-likelihood
(ML) Multi-Group Confirmatory Factor Analysis (MGCFA).
There are at least four types of MI: configural (also referred
to as “weak”), metric, scalar (“strong”), and residual (“strict”)
invariance. Configural invariance allows for the comparison of
latent variables among groups, metric invariance allows for a
comparison of the items (questions) that make up the latent
variable(s) among groups, and scalar invariance allows for the
comparison of latent means across groups. Scalar invariance,
however, is rarely established, especially when many groups are
compared (e.g., Muthen and Asparouhov, 2013; Lommen et al.,
2014; Kim et al., 2017; Marsh et al., 2018)1.

Measurement invariance of the latent variable WTS has been
investigated byMayerl and Best (2019), and they established both
configural andmetric invariance, but not scalar invariance. Using
ML MGCFA, Marquart-Pyatt (2012b) also found configural and
metric invariance, but not scalar invariance. To our knowledge,
scalar invariance for the latent variable WTS has not been found
by other authors, rendering the substantive interpretation of
results from country rankings potentially untrustworthy (Byrne
and van de Vijver, 2017; Marsh et al., 2018).

Alternative approaches have been proposed, such as alignment
optimization, which allows for few but larger parameters
differences between some groups (Asparouhov and Muthén,
2014), Bayesian Approximate MI (Muthén and Asparouhov,
2012; van de Schoot et al., 2013), hereinafter referred to as
BAMI2, which allows multiple but small differences between all
groups, or a combination of both, BAMI alignment (Asparouhov
and Muthén, 2014). When BAMI alignment is used, small
variances are allowed for each group, while a few groups are
allowed to have large variances. This leads to fewer noninvariant
parameters than when the ML alignment method is applied,
facilitating the interpretation of the model (Asparouhov and
Muthén, 2014). Although this might be a highly interesting
approach when a comparison of many groups is desired, it
seems that, at least up until now, this approach has not been
applied often: we only found two studies in which BAMI and
alignment are combined: De Bondt and Van Petegem (2015)
and van de Vijver et al. (2019), and certainly not in the field of
environmental change.

The key to using Bayesian methods is the use of priors:
some “wiggle room” is defined between which the variances of
different groups are allowed to vary. However, the selection of
these priors (from simulation studies, literature, or experience)

1Residual invariance means that the sum of specific variance (variance of the item

that is not shared with the factor and error variance) are also equal across groups

(Putnick and Bornstein, 2016). Since this is not a requirement for comparing

means across groups, we do not report it in this article.
2In previous research, the term Approximate MI (van de Schoot et al., 2013) has

sometimes been used as a collective term for anymethod that can be used when the

criteria for the exact scalar model are not fulfilled (Russell et al., 2016; Flake and

McCoach, 2018), and sometimes to mention a specific method (e.g., Byrne and

van de Vijver, 2017; Amérigo et al., 2020). To prevent any further confusion, we

propose to use the term Bayesian Approximate Measurement Invariance (BAMI)

when using a Bayesian model with strong informative priors on differences

between factor loadings and/or intercepts, thus excluding non-Bayesian (ML or

empirical Bayes) type of methods like random item effects (Fox and Verhagen,

2018).
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is not an easy task. It seems that researchers applying Bayesian
methods are not always fully aware of the potential impact of
specifying priors (e.g., Spiegelhalter et al., 2000; Rupp et al., 2004;
Ashby, 2006; Kruschke et al., 2012; Rietbergen et al., 2017; van de
Schoot et al., 2017; König and van de Schoot, 2018; Smid et al.,
2020). Nonetheless, for the verification and reproducibility of
research (Munafò et al., 2017; van de Schoot et al., 2021), it is
crucial to evaluate the influence of varying priors on the impact
of substantive conclusions, which is referred to as sensitivity
analysis. Some general guidelines regarding prior sensitivity can
be found in the literature (e.g., Depaoli and van de Schoot, 2017;
van Erp et al., 2018; van de Schoot et al., 2019; Pokropek et al.,
2020). Although a sensitivity analysis of different prior settings
helps to determine the impact of prior variances on substantive
conclusions, it has, to our knowledge, never been applied for
BAMI with empirical data.

The goals of our article are to apply themethod of BAMI to the
concept of “willingness to sacrifice (or pay) for the environment,”
compare the results of different prior settings to each other and to
other methods of dealing with measurement invariance (i.e., ML
MGCFA and the ML alignment method) through visualization,
and to provide an example for a transparent workflow.

In what follows, we first provide a technical introduction to
the four methods we used to assess MI. As it can be difficult to
interpret multiple models and methods, and because we want
to be as transparent as possible in our decision-making process,
we summarize our design choices and possible alternatives in a
decision tree. We test the models to evaluate whether and how
different prior variances influence the ranking of the countries
on the latent variable WTS. We visualize the results to facilitate a
comparison of the latent means of different models and methods
without the use of complex and elaborate tables. All appendices,
the scripts to reproduce our results, the final output files and
additional material can be found on website of the Open Science
Framework (OSF) (Arts et al., 2021).

TECHNICAL BACKGROUND

In this section, we introduce the fourmethods we used to evaluate
measurement invariance: (1) ML MGCFA, (2) ML MGCFA
using the alignment optimization, (3) BAMI, and (4) BAMI in
combination with the alignment method.

MGCFA
The MGCFA model is defined as:

yipg = νpg + λpgηig + ǫipg (1)

where p = 1, ...P is the number of observed indicator variables,
g = 1, ...G is the number of groups, i = 1, ...N is the number
of individual observations, λpg is a vector of factor loadings, νpg
is a vector of intercepts and ηig is a vector of latent variables.
Furthermore, ǫipg is a vector of error terms that is assumed to be
normally distributed with N(0, θpg), and ηig is assumed to have a
distribution ofN(αg ,ϕg). θpg is the variance of ǫipg , αg is themean
of normally distributed latent variable ηig , and ϕg is the variance

of ηig . For WTS let P = 3 (3 items) and G = 30 (30 countries),
which means that λpg is a 3× 30 matrix. The same is true for νpg .

In the configural model, both λ and ν are allowed to vary
across groups3, but the factor structure is equal for all groups,
that is, in all 30 countries the latent variable WTS is covered by
the same three items.

When both the number of latent variables and the factor
loading λ are held equal across groups but the intercept ν is
allowed to vary, one is testing for metric invariance: λ11 = λ12 =

λ13, etc. This means that for every group, the latent variable ηg
contributes equally to item ypg .

If metric invariance holds, it is possible to test for scalar
invariance. In this case both loadings λ and intercepts ν are held
equal across groups: λ11 = λ12 = λ13 etc. and ν11 = ν12 = ν13
etc., so that Equation (1) becomes:

yp = νp + λpη + ǫipg (2)

When scalar invariance holds, the latent means of WTS can be
compared between groups, and a ranking of the latent means
can be made. However, scalar, or strong, invariance is very
rare, especially when comparing many groups (Asparouhov and
Muthén, 2014; Byrne and van de Vijver, 2017; Kim et al., 2017;
Marsh et al., 2018). This is due to the fact that with increasing
number of countries, the probability increases that countries
substantially deviate in answering behavior. When many groups
with small deviations are being compared, these small deviations
add up to the non-invariance of the scale assessing WTS.

Alignment Optimization
To reduce the impact of a lack of measurement invariance
for many groups, the alignment optimization method has been
introduced (Muthen and Asparouhov, 2013; Asparouhov and
Muthén, 2014). Alignment optimization consists of two steps
(Asparouhov and Muthén, 2014). First, a null model M0 is
estimated with loadings and intercepts allowed to vary across
groups. As loadings and intercepts are freed across groups, factor
means and factor variances are set to 0 and 1 for every group:
αg = 0 and ϕg = 1. Now, the latent variable for the null model
ηg0 can be calculated.

Second, the method divides groups G into pairs Q and tries to
find, for every Q, the intercepts and loadings that yield the same
likelihood as the M0 model (Asparouhov and Muthén, 2014;
Flake and McCoach, 2018). Now, λpg and νpg can be calculated,
where αg and ϕg have to be chosen in such a way that they
minimize the amount of measurement non-invariance and q1,
q2, etc. are the different pairs of groups in the data. For the
full set of equations, see Asparouhov and Muthén (2014), Flake
and McCoach (2018). This means that, for the latent variable
WTS, q = 1...435 for every item (for every item there are 435
possible pairs).

3Technically speaking, this is not entirely correct: for identification of the model,

Mplus by default fixes the loading/intercept of the first item of every group to 1. For

more details about parameterization of CFA models we refer the interested reader

to Little et al. (2006).
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The total amount of measurement non-invariance is shown by
the total loss/simplicity function F:

F =

∑

p

∑

g1<g2

wg1,g2 f (λpg1 ,q1 − λpg2 ,q1 )

+

∑

p

∑

g1<g2

wg1,g2 f (νpg1 ,q1 − νpg2 ,q1 ) (3)

In Equation (3), for the intercepts and loadings of every Q,
the differences between the parameters are summed and then
scaled by the Component Loss Function (CLF) f . Group sizes are
appointed by weight factors wg1 and wg2 , where wg1 is the weight
factor of group 1 and wg2 is the weight factor of the, differently
sized group 2. In this way, bigger pairs of groups contribute more
to the total loss function than smaller pairs. The weight factor can
be calculated as follows:

wq = wg1,g2 =
√

Ng1Ng2 (4)

The CLF has been used in exploratory factor analysis (EFA)
to estimate factor loadings with the simplest possible structure
(Jennrich, 2006). For the alignment the CLF is:

f (x) =
√

√

x2 + ǫ (5)

with ǫ being a small number, for example, 0.01 (Asparouhov
and Muthén, 2014). This positive number ensures that f (x) has
a continuous first derivative, making the optimization of the total
loss function F easier. As ǫ is so small, f (x) ≈

√

|x|, which leads
to no loss if x = 0, amplified loss if x < 1, and attenuated loss if
x > 1 (Asparouhov and Muthén, 2014). Due to this CLF, F will
be minimized when there are a few large non-invariant loadings
and intercepts and a majority of approximately non-invariant
loadings and intercepts (Kim et al., 2017). When there are many
medium-sized non-invariant parameters, the total loss function
does not optimize (Flake andMcCoach, 2018). If F does optimize,
the parameters αg and ϕg will be identified for all groups except
the first one. For the first group, the variance can be calculated
using the following parameter constraints, making the number
of estimated parameters (2G− 1):

ϕ1 × ...× ϕg = 1 (6)

α1 can be set to 0, although this is not always needed and
might lead to untrustworthy estimates (Asparouhov andMuthén,
2014). When α1 and ϕ1 are both constrained, the alignment is
called FIXED in Mplus, and when only ϕ1 is constrained, that
alignment is said to be FREE.

Although the alignment optimization allows for some large
invariances between groups, all other groups are assumed to have
the same loadings and intercepts. In other words, small variances
between groups cannot be taken into account. To ensure that
mean and variance can be fixed for one country (as it is in the
MGCFA and BAMI), we have to opt for the FIXED alignment
and specify one country to be fixed.

BAMI
A synopsis of Bayesian statistics, including the most important
aspects of determining prior distributions, likelihood functions
and posterior distributions, in addition to discussing different
applications of the method across disciplines can be found in
van de Schoot et al. (2021).

With BAMI, priors with a mean of zero and some small
variance are put on the differences between factor loadings
and the differences between intercepts across groups: the terms
λpg and νpg from Equation (1) are now estimated being
approximately equal across groups instead of exactly equal: λ11 ≈
λ12 ≈ λ13 etc. instead of λ11 = λ12 = λ13, etc. and ν11 ≈ ν12 ≈

ν13 etc. instead of ν11 = ν12 = ν13, etc.
The prior is not put directly on the differences between

parameters, but on the covariances between parameters. This
means that, for instance

V(λ11 − λ12) = V(λ11)+ V(λ12)− 2Cov(λ11, λ12) (7)

where V(λ11 − λ12) is the difference between the variances of
the first loading of the first group and the first loading of the
second group. If we assume that these prior variances are small,
for instance 0.5, and the covariance is 0.495, that would lead to a
value of 0.01 for V(λ11 − λ12), or V

d.
BAMI uses strong informative priors on cross-group variances

of loadings λ and intercepts ν. It is important to carefully select
these priors since they have a strong impact on the posterior
results. Large values of Vd will result in decreasing the chance of
model convergence, as they do not impose enough information
on the model (Muthén and Asparouhov, 2012). Smaller values of
Vd, on the other hand, might bring the model too close to a scalar
model, reducing flexibility of the model to deal with the existing
non-invariance.

BAMI With Alignment
The alignment method and BAMI can be combined. In that case,
small variances are allowed for each group, while a few groups are
allowed to have large variances. The alignment method for BAMI
is similar to that for the exact method:

In the first step, an M0 model is estimated, from which
the optimal set of measurement parameters from the configural
model is calculated. Now the M0 model is a model where the
intercepts and loadings are approximately equal across groups
and the factor means and variances are estimated as free
parameters in all groups but the first one.

In the second step, this MB0 model, the posterior of the
configural factor loadings and intercepts are computed using the
following equations:

λpg,0 = λpg,B
√

ϕBg (8)

νpg,0 = νpg,B + αBgλpg,B (9)

where λpg,0 and νpg,0 are the configural loadings and intercepts
and αBg ,ϕBg , λpg,B, and νpg,B are the BAMI parameters. Using
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the BAMI parameters and Equations (8) and (9), the configural
loadings and intercepts are computed for every iteration. These
are then used to form the posterior distribution for λpg,0 and νpg,0.

In the third and final step, the aligned estimates are obtained
for every iteration using the configural factor loading and
intercept values to minimize the simplicity function of Equation
(3). The aligned parameter values obtained from one iteration are
used as starting values in the next iteration. Finally, the aligned
parameter values from all iterations are then used to estimate
the aligned posterior distribution as well as the point estimates
and the standard errors for the aligned parameters (Asparouhov
andMuthén, 2014). This leads to fewer non-invariant parameters
than when the ML alignment method is applied, facilitating the
interpretation of the model (Asparouhov and Muthén, 2014).

METHODS AND DATA

Data
We used the data from the 2010 Module on Environment of the
ISSP (ISSP Research Group, 2019). For the full report on this
module, see GESIS (2019). The latent variable WTS consists of
three questions, see Table 1 for the exact wording, with answers
on a five-point response scale (1 being very unwilling and 5
being very willing) and a cannot choose option for participants
who could not or would not answer the question. WTS has,
in combination with EA, been tested for MI by Mayerl and
Best (2019) to explain the concept “environmental concern”
when applied to 30 countries: Austria, Belgium, Bulgaria,
Canada, Chile, Croatia, Czech Republic, Denmark, Finland,
France, Germany, Great Britain, Israel, Japan, Latvia, Lithuania,
Mexico, New Zealand, Norway, Philippines, Russia, Slovakia,
Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland,
Turkey, and the United States. They found that, although metric
invariance was achieved, scalar invariance was not. When we
repeated this analysis we came to the same conclusion, for the
results of this analysis, see Appendix A in Arts et al. (2021). For
simplicity reasons, we only focus on the latent variable WTS, just
like Ivanova and Tranter (2008), Fairbrother (2013), Franzen and
Vogl (2013), Pampel (2014), Sara and Nurit (2014), and Shao
et al. (2018). To further analyze this scale, we first ensured that
we used the exact same data from the ISSP 2010 environment
module and we followed the identical procedure as in the
original study to handle missingness (i.e., listwise deletion—
correspondence with author, November 26 2019), resulting in the
same sample (n = 24,583). For the exact procedure and all code,
see Appendix A in Arts et al. (2021). The sample sizes per country
ranges from 798 (Iceland) to 3,112 (South Africa) with an average
group size of 1,401, see for more details Table 2.

Analytical Strategy
We assessed the measurement invariance of the latent variable
WTS by applying four methods for detecting MI: ML MGCFA,
the ML alignment optimization, BAMI, and BAMI with
alignment optimization. For all analyses, one reference country
was selected for which the factor mean and factor variance are
held to 0 and 1, respectively (Spain). By fixing the mean and
variance for a specific reference country for every model, it is

TABLE 1 | Exact wording of the questions in WTS.

Number Question

Q12a How willing would you be to pay much higher prices

in order to protect the environment?

Q12b How willing would you be to pay much higher taxes

in order to protect the environment?

Q12c How willing would you be to accept cuts in your

standard of living in order to protect the

environment?

TABLE 2 | Participating countries in the ISSP environmental module.

Country Sample size Country Sample size

Argentina 1,130 Lithuania 1,023

Australia 1,946 Mexico 1,637

Austria 1,019 Netherlands 1,472

Belgium (Flanders) 1,142 New Zealand 1,172

Bulgaria 1,003 Norway 1,382

Canada 985 Philippines 1,200

Chile 1,436 Portugal 1,022

Croatia 1,210 Russia 1,619

Czech Republic 1,428 Slovakia 1,159

Denmark 1,305 Slovenia 1,082

Finland 1,211 South Africa 3,112

France 2,253 South Korea 1,576

Germany 1,407 Spain 2,560

Great Britain 928 Sweden 1,181

Iceland 798 Switzerland 1,212

Israel 1,216 Taiwan 2,209

Japan 1,307 Turkey 1,665

Latvia 1,000 United States 1,430

Total 50,437

ensured that any differences in outcomes are due to amethod and
not due to a difference in default settings of the model (for some
models by default the parameters are fixed for the first group,
while for other models it is the last group). We selected Spain as
the reference country since the results presented by Mayerl and
Best (2019) indicate that the results for WTS from this country
can be seen as “average” within the group of thirty countries.

For the BAMI method, both with and without alignment, we
tested the effect of different priors on the models. One way of
selecting priors for new data is by using the results of simulation
studies. Table 3 shows an overview of simulation studies that
have investigated BAMI and the priors that were used. As can
be seen from this table, the simulation results are not entirely
conclusive: The authors of these articles report that they achieve
the best results when using priors with a variance of 0.001,
0.005, 0.01, or 0.05. However, the number of groups, group
sizes and invariance criteria in these studies vary, complicating
a comparison of the best performing prior variance(s).

We also searched for empirical studies in which BAMI was
applied to empirical data. In a total of 30 empirical studies,
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TABLE 3 | Simulation studies using Bayesian approximate measurement

invariance.

Article Number of

groups

Group size Prior

variance

Invariance

criteria

Muthén and

Asparouhov, 2012

40 500 0.10, 0.05, PPP

0.01

van de Schoot

et al., 2013

2 1,000 0.50, 0.05, PPP, 95% CI

0.01, 0.005,

0.0005

Kim et al., 2017 25, 50 50, 100,

1,000

0.05, 0.001 DIC, PPP,

95% CI, BIC

Lek et al., 2018 2 50, 100,

200, 1000

0.10, 0.05,

0.01, 0.001

95% CI

Shi et al., 2017 2 500 0.10, 0.05,

0.01

PPP, 95%CI

Pokropek et al.,

2019

24 1500 0.10, 0.05,

0.01, 0.005

cor, RMSEA,

95%CI

Pokropek et al.

(2020)

4, 24, 50 400, 1500,

3,000

0.05, 0.025,

0.01, 0.005,

0.001, 0.000∗

BIC, DIC,

PPP

∗A Bayesian model with a prior variance of 0 is the scalar model.

PPP, posterior predictive p-value; DIC, deviance information criterion; 95% CI, 95%

credibility interval; cor, correlation; RMSEA, root mean square error of approximation; BIC,

Bayesian information criterion.

there were 13 in which only one prior was used, and in eight
of these 13 studies, no specification was given as to why that
specific prior was used. In the 17 studies where multiple priors
were tested, three did not provide any information on why these
priors were selected. The 14 other studies based the priors used
on Muthén and Asparouhov (2012), van de Schoot et al. (2013),
Asparouhov et al. (2015), or Seddig and Leitgöb (2018). For more
information about these empirical studies and their variances see
the additional material (Arts et al., 2021). The most frequently
used prior variance in these studies is 0.01, followed by 0.05 as
recommended by Muthén and Asparouhov (2012) and van de
Schoot et al. (2013), respectively. However, other priors were
also included in the different sensitivity analyses, ranging from
0.000000001 to 0.5.

We decided to estimate five different models, with priors
with a variance of 0.05–0.01 (decreasing at 0.01 per prior) and
three models with priors with variances of 0.001, 0.0005, and
0.0001. This includes the prior variances that are used most
often in both simulation and empirical studies. Using such a
large number of priors should create a clear overview of the
influence of different prior variances on the rank order stability
of the countries when ranked on their latent factor means.
In addition to priors on the differences between loadings and
intercepts, there are also priors on other parameters, such as
the residuals. However, we will not discuss these priors in this
article and we relied on the Mplus default values which can
be found in Muthén and Muthén (2019). To ensure that the
chains reached their target distributions, we checked whether
all iterations after burn-in met the Gelman-Rubin criterion.
Therefore, we set the convergence criterion to a rather strict 0.01
instead of the default 0.05 (Muthén and Muthén, 2019) and the

maximum and minimum number of iterations to 100,000 and
40,000, respectively.

For the analysis in this article, we used the software Mplus
version 8.4 (Muthén and Muthén, 2019). The results were
analyzed using R version 6.3.2 (RDevelopment Core Team, 2017)
and MplusAutomation version 0-7.3 (Hallquist and Wiley, 2018)
was used for the exchange between the two programs. More
information about the analysis and the exact Mplus and R code
can be found in Appendix B on Arts et al. (2021).

Model Fit

To assess model fit for ML MGCFA, the indices that are
most widely used are the χ2-value, root mean square error of
approximation (RMSEA), comparative fit index (CFI), Tucker-
Lewis index (TLI), and the standardized root mean square
residual (SRMR) (Gallagher and Brown, 2013, p. 298). When
testing for configural invariance cutoff values of CFI ≥ 0.95,
TLI ≥ 0.95, RMSEA ≤ 0.06, and SRMR ≤ 0.08 have been
proposed by Hu and Bentler (1999). When checking for metric
and scalar invariance, relative fit indices are more useful than
absolute fit indices (Chen, 2007). These relative fit indices are
a comparison of configural with metric and metric with scalar
fit indices. Depending on these fit indices, the model for metric
invariance can be assumed to perform better or worse than the
model for configural invariance (and the same is true for metric
and scalar invariance). For sample sizes above 300, 1RMSEA
≤0.015 and 1CFI ≤0.01 or 1SRMR ≤0.03 indicate invariance
when moving from the configural to the metric model, and
1RMSEA ≤0.015 and 1CFI ≤0.01 or 1SRMR ≤0.01 indicate
noninvariance when moving from the metric to the scalar model
(Chen, 2007).

For the alignment method, fit indices have not been specified.
Muthen and Asparouhov (2014) propose that the results can
be considered trustworthy when no more than 25% of the
parameters are non-invariant. However, Kim et al. (2017) have
argued that this way the degree and location of non-invariance
cannot be taken into account.

When BAMI is used, the model fit may be indicated by the
posterior predictive p-value (PPP-value). This value indicates
the ratio between the iterations for which the replicated χ2

value exceeds the observed χ2 value (Pokropek et al., 2020).
A PPP-value of 0.50 indicates perfect model fit; a value below
0.50 indicates an underfit of the model, and a value above 0.50
indicates an overfit. Furthermore, the 95% credibility interval
(CI) should include 0, preferably with 0 in the middle of
the interval (Muthén and Asparouhov, 2012; van de Schoot
et al., 2013). As PPP-values decline, the model fits the data
less well. However, a specific cutoff value at which the model
no longer fits the data is hard to determine. Muthén and
Asparouhov (2012) suggest that models with PPP-values lower
than 0.10, 0.05, or 0.01. do not fit the data anymore. In the
literature, PPP-values above 0.05 are often seen as an indication
for good model fit. A drawback of the PPP-value is that it
might not identify a model with good fit correctly when using
different priors with large sample sizes (Asparouhov andMuthén,
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2010, 2019; Hoijtink and van de Schoot, 2018; Hoofs et al.,
2018)4.

Recently, Bayesian versions of fit indices have been
proposed: Bayesian RMSEA (BRMSEA), Bayesian CFI
(BCFI), and Bayesian TLI (BTLI) can be computed based
on differences between the observed and replicated discrepancy
functions (Liang, 2020). These Bayesian fit statistics have been
implemented in Mplus version 8.4, making it more convenient
to identify good model fit (Asparouhov and Muthén, 2019). The
calculation of these fit indices is very similar to that of the fit
indices of an exact model, and therefore, the same cutoff values
can be used (Asparouhov and Muthén, 2019; Garnier-Villarreal
and Jorgensen, 2020). This means that BCFI≥ 0.95, BTLI≥ 0.95,
and BRMSEA ≤ 0.06 indicate good model fit. However, just as
with the MLmodels, a combination of cutoff values must be used
to indicate good or bad model fit. Other criteria that are being
used to determine model fit are the BIC (Schwarz, 1978) and
the DIC (Spiegelhalter et al., 2002). These information theoretic
indices are less self-explanatory than the other fit indices: when
selecting the best performing model from a series of models
(the model that fits the data best and is the least complex), the
model with the lowest BIC or DIC is preferred. This does not
mean that the model with the lowest BIC or DIC is a good fit
to the data: it is simply preferable to models with a higher BIC
or DIC. Asparouhov et al. (2015) stated that, when sample sizes
are large, coupled with a large number of observed indicators,
DIC is preferable to BIC and Pokropek et al. (2020) concluded
that DIC is a good indicator to identify the preferred prior mean
and variance. On the other hand, Hoijtink and van de Schoot
(2018) stated that the DIC is not suitable for evaluating models
with small priors. This makes the use of the DIC as fit index
promising, but also shows that its value should be treated with
care. At a minimum, DIC should always be combined with other
fit indices.

BAMI with alignment has, similar to the ML alignment
method, no guidelines to determine model fit. Both De Bondt
and Van Petegem (2015) and van de Vijver et al. (2019) tested
a model with multiple small prior variances. De Bondt and Van
Petegem (2015) used a prior variance of 0.01 and conducted a
sensitivity analyses with prior variances decreasing with a factor
10, and van de Vijver et al. (2019) used a prior variance of 0.05
and conducted a sensitivity analyses with prior variances of 0.001,

4Hoijtink and van de Schoot (2018) demonstrated that, with increasing sample

sizes, the PPP-value does not decrease, but increases. Therefore, the prior-posterior

predictive p-value (PPPP-value) was proposed by Hoijtink and van de Schoot

(2018), and a generalized version was implemented in Mplus by Asparouhov

and Muthén (2017). Whereas, the original PPP-value is a test of model fit which

tests the fit of the model to the data and is based on comparing the model with

the unrestricted covariance model, the PPPP-value is a test for the approximate

parameters in the model. The PPPP-value is not a test for model fit and should not

be interpreted as evidence that the model fits the data. The proper interpretation

of the PPPP-value is given by Asparouhov and Muthén (2017): “If the test does

not reject, the minor parameters (represented by θ1) can be assumed to come from

N(0, v) distribution, with v being a small variance. More broadly speaking, if the

PPPP does not reject, that means that there is no evidence in the data for the minor

parameters in model M(θ1, θ2) to be outside the N(0, v) distribution” (p. 10). Here,

θ2 represents the large parameters of model M. Unfortunately, the PPPP-value is

not yet available for BAMI in Mplus.

0.005, 0.01, 0.05, and 0.1. Both De Bondt and Van Petegem (2015)
and van de Vijver et al. (2019) analyzed the alignment part of the
model by comparing, for each item, the intercepts and loadings
across paired groups. This can be a very laborious process when
multiple items and multiple groups are concerned. One could
also use the rule of thumb that, to obtain trustworthy results, no
more than 25% of the parameters can be invariant, as proposed
by Muthen and Asparouhov (2014).

As shown above, there are many different criteria and cut-off
values that provide insight into whether a model fits the data.
Since there are so many different indicators these cutoff values
should be treated with care: fit statistics can be influenced by,
e.g., sample size or model complexity (Chen, 2007). Additionally,
having one indication of goodmodel fit is not enough to conclude
that the model is a good fit to the data, and multiple fit statistics
may even contradict each other. This exact point was addressed
by Lai and Green (2016), who showed that RMSEA and CFI can
contradict each other. Even when there is sufficient evidence that
a model is a good fit to the data, this does not necessarily mean
that it is the best model.

RESULTS

MGCFA
The fit indices for the metric and scalar MGCFA are shown in
Table 4. Since the configural model was saturated, the results are
not shown here. Therefore, for the metric model we asses the
absolute fit indices instead of the relative fit indices. The metric
model shows good fit, with a CFI and TLI of 0.993 and 0.989,
respectively. With 0.069 the RMSEA value is above 0.06 but still
below 0.08, indicating at least a reasonable fit. The fit indices
for the scalar model all point to rejection of the scalar model:
1RMSEA, 1SRMR and 1CFI are well above the cutoff values of
0.015, 0.01, and 0.01 (0.085, 0.057, and 0.065, respectively). Based
on these results we conclude that scalar invariance is absent, and
that a comparison of the latent variable WTS across countries
may not be trustworthy. However, this exact approach could be
too strict in its assessment.

Alignment Optimization
Regarding the alignment optimization, the invariant, and
non-invariant parameters are shown in Table 5 with non-
invariant parameters bolded and in brackets. Most non-invariant
parameters can be found in the intercepts, with 48 non-invariant
parameters, while for the loadings only seven parameters are
non-invariant. However, a total of 55 parameters are non-
invariant, which is 30.55% of all parameters. This is well
above 25%, a rough cut-off value proposed by Muthen and
Asparouhov (2014), implying that, for these data, a valid rank
order comparison cannot be made if the ML alignment method
is used.

BAMI
For BAMI, only the results for the models that converged are
presented here (models with a prior variance of 0.02, 0.01, 0.001,
0.0005, and 0.0001). These models also converged when the
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TABLE 4 | Fit statistics of the MGCFA model.

χ2 (df) 1χ2(1 df) p-value RMSEA 1 RMSEA SRMR 1 SRMR CFI 1 CFI TLI 1 TLI

Configural*

Metric 287.324 (58) 0.00 0.069 0.051 0.993 0.989

Scalar 2382.434 (116) 2095.110 (58) 0.00 0.154 0.085 0.108 0.057 0.928 0.065 0.944 0.045

*This model was saturated. df, degrees of freedom; RMSEA, root mean square error of approximation; SRMR, standardized root mean square residual; CFI, comparative fit index; TLI,

Tucker-Lewis index. Numbers are absolute.

TABLE 5 | (Non)invariant parameters for ML alignment optimization.

Intercepts/Thresholds

Q12a 33 (40) (56) (100) (124) 152 191 203 (208) 246 (250) (276) (376) (392) (410) 428 440 484

(554) (578) (608) 643 703 705 710 752 (756) 792 (826) (840)

Q12b 33 40 56 (100) 124 (152) (191) (203) 208 246 250 276 376 392 410 (428) (440) (484) 554

578 (608) (643) (703) 705 (710) (752) 756 (792) (826) (840)

Q12c 33 (40) 56 (100) 124 (152) 191 (203) 208 (246) 250 276 376 (392) (410) (428) (440) 484

(554) 578 (608) 643 703 705 (710) (752) (756) (792) (826) (840)

Loadings

Q12a 33 40 56 100 124 152 191 203 208 246 250 276 376 392 410 428 440 484 554 578 608 643 703 705 710 752 756 792 826 840

Q12b 33 40 56 100 124 152 191 (203) 208 246 250 (276) 376 392 410 428 440 484 554 (578) 608 643 703 705 (710) 752 756 792 826 840

Q12c 33 40 (56) 100 124 152 191 203 208 246 250 276 376 392 (410) 428 440 484 554 578 608 643 703 705 710 752 (756) 792 826 840

Noninvariant parameters are in bold and within parentheses.

number of iterations was doubled, which was not the case for the
models with other prior settings.

To select the model(s) with a good fit, one could use model
fit indices, but just as with regular SEM there is not one single
statistic that should be used, and only a combination of fit indices
should be used to indicate model fit. Table 6 shows fit statistics
for the models with prior variances 0.02, 0.01, 0.001, 0.0005, and
0.0001. Table 6 shows that only for models with a prior variance
of 0.02 and 0.01 the PPP > 0 (0.36 and 0.12, respectively) and
the 95% CI contains 0. BRMSEA is 0.014 for the model with a
prior variance of 0.02, and it is 0.049 for the model with prior
variance of 0.01. For the other models, BRMSEA > 0.1. For the
model with prior variance 0.02, both BCFI and BTLI are 1.00, and
for the model with prior variance 0.01 BCFI is 0.999 and BTLI
is 0.994, indicating good model fit. Using PPP-value, the model
with variance 0.02 comes closest to 0.5 with a PPP-value of 0.36.
However, the PPP-value might be untrustworthy because of the
large sample size of our study (24,583 respondents) (Asparouhov
and Muthén, 2019). Hoijtink and van de Schoot (2018) stated
that the PPP-value is not suitable for evaluating small priors.
Concerning both CI and BRMSEA, only the models with prior
variances of 0.02 and 0.01 indicate a good fit. When looking
at BCFI and BTLI, however, the models with prior variances
of 0.02, 0.01, 0.001, and 0.005 all indicate good fit, although
fit statistics approach to their cutoff values as prior variances
decline. When combining the above results with the DIC for the
differentmodels, the values for themodel with prior variance 0.02
is the lowest (19,7428.86), indicating that this is the best fitting
model based on post-hoc fit indices.

Figure 1 shows the means of the latent variable for the BAMI
models with variances of 0.02, 0.01, 0.001, 0.0005, and 0.0001.

From this figure it can be seen that with declining prior variance,
the outcome of the model approaches that of the scalar model (on
the right). This is to be expected, as the scalar model is a model of
priors with a mean and variance of 0.

Figure 2 is a graph of the means per country per model (scalar
invariance, ML alignment, and all BAMI models). For illustrative
purposes, we present the results for BAMI both with and without
alignment in one figure. Figure 1 shows that the overall mean
differences between latentmeans of the differentmodels are small
but increase as the prior variance decreases: 10.01−0.02 is 0.007
and 10.0005−0.0001 is 0.069. For individual countries, this is not
always the case: Figure 2 shows that, for the 15 lowest ranking
countries this same pattern is visible, but for the top 15 countries
the means increase with prior variance. However, as the countries
rank lower, the differences between models increase. For the
lowest-ranking country (Latvia) the difference between themodel
with prior variance 0.02 and that with prior variance 0.0001
is 0.616, while for the highest-ranking country (Switzerland)
the difference is 0.208. For the three highest-ranking countries
(Switzerland, South Korea and Denmark) the model with the

highest prior variance (0.02) shows larger differences from the
model with a prior variance of 0.01 (0.173, 0.161, and 0.128,
respectively) than do other models with consecutively lower
prior variances.

BAMI With Alignment
When the BAMImodel with alignment is applied, first, the BAMI

model is estimated. The outcome of the BAMI models is given
in the description above (Table 6). From this BAMI model, a

configural model is estimated, which is then aligned. This means

that fit indices cannot be used to indicate model fit of the final
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TABLE 6 | Fit statistics of the BAMI models.

Prior

variance
PPP 95% CI BRMSEA BCFI BTLI BIC DIC

0.02 0.363 [−52.706 to 79.836] 0.014 1.000 1.000 200288.68 197428.66

0.01 0.117 [−25.495 to 109.968] 0.049 0.999 0.994 200324.54 197514.18

0.001 0.000 [669.517 to 852.222] 0.117 0.976 0.968 201095.93 198186.01

0.0005 0.000 [1100.629 to 1286.848] 0.130 0.962 0.960 201546.82 198601.39

0.0001 0.000 [1873.721 to 2022.907] 0.148 0.938 0.949 202327.90 199334.78

PPP, posterior predictive probability; CI, credibility intervals; BRMSEA, Bayesian root mean square error of approximation; BCFI, Bayesian comparative fit index; BTLI, Bayesian

Tucker-Lewis index; BIC, Bayesian information criterion; DIC, deviance information criterion.

FIGURE 1 | Means for configural invariance, scalar invariance, ML alignment, and BAMI models. AT, Austria; BE, Belgium; BG, Bulgaria; CA, Canada; CL, Chile; HR,

Croatia; CZ, Czech Republic; DK, Denmark; FI, Finland; FR, France; DE, Germany; GB, Great Britain; IL, Israel; JP, Japan; LV, Latvia; LT, Lithuania; MX, Mexico; NZ,

New Zealand; NO, Norway; PH, Philippines; RU, Russia; SK, Slovakia; SI, Slovenia; ZA, South Africa; KR, South Korea; ES, Spain; SE, Sweden; CH, Switzerland; TR,

Turkey; US, United States. The x-axis shows the different models—configural, scalar, ML alignment, and BAMI—with their specific variances. The dashed black line

shows the overall mean.

model. Instead, just as with the ML alignment model, we use
the percentage of non-invariant parameters to determine good
model fit.Table 7 shows the number of non-invariant parameters
per model.

From this table, it can be seen that, as prior variances
decrease, so does the number of non-invariant parameters. The
three models with prior variances of 0.02, 0.01, and 0.001

all have a percentage of non-invariant parameters above 25%
(although the model with prior variance 0.001 is only slightly
above), making the results, and thus a group ranking from
these models, unreliable. For the models with prior variances of
0.0005 and 0.0001 the percentages of non-invariant groups are
16.67 and 1.67, respectively, implying good model fit and a valid
group ranking.
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FIGURE 2 | Means per country for scalar invariance, ML alignment, and BAMI models with and without alignment. AT, Austria; BE, Belgium; BG, Bulgaria; CA,

Canada; CL, Chile; HR, Croatia; CZ, Czech Republic; DK, Denmark; FI, Finland; FR, France; DE, Germany; GB, Great Britain; IL, Israel; JP, Japan; LV, Latvia; LT,

Lithuania; MX, Mexico; NZ, New Zealand; NO, Norway; PH, Philippines; RU, Russia; SK, Slovakia; SI, Slovenia; ZA, South Africa; KR, South Korea; ES, Spain; SE,

Sweden; CH, Switzerland; TR, Turkey; US, United States. The x-axis shows the different models—scalar, ML alignment, and BAMI with and without alignment—with

their specific variances. Models that appear to ba a good fit to the data are indicated in bold green, models with bad fit in red.

TABLE 7 | The number of non-invariant parameters for the BAMI models with alignment.

Prior

Variance

Number of non-invariant intercepts Number of non-invariant loadings Total number

Q12a Q12B Q12C Q12a Q12B Q12C Sum %

0.02 15 16 19 2 5 5 62 34.44

0.01 15 15 19 0 5 5 59 32.78

0.001 9 15 16 0 2 4 46 25.56

0.0005 4 11 12 0 1 2 30 16.67

0.0001 0 3 0 0 0 0 3 1.67

As with the ML alignment model, most non-invariant
parameters are the intercept parameters. For the model with
the lowest number of non-invariant parameters (prior variance
0.0001), these parameters belong to the intercepts of question 12b
(are you willing to pay higher taxes to save the environment), for
the countries Lithuania, South Africa, and Turkey. When taking
into account only the models with a percentage of non-invariant
parameters below 25%, there are 12 countries for which all

parameters are invariant for bothmodels: Spain, Austria, Canada,
Denmark, Finland, Germany, Israel, Mexico, Russia, Slovakia,
Slovenia, and Sweden. Figures 2, 3 show that, as the priors
decrease, so do themean differences of themodel outcomes (both
the overall means and the means per country).

Figure 3 shows that for the first three models with decreasing
prior variance, the overall means also decrease. However, as
prior variances decrease further (0.0005 and 0.0001), they rise

Frontiers in Psychology | www.frontiersin.org 10 July 2021 | Volume 12 | Article 624032173

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Arts et al. Measurement Invariance: Priors and Visualization

FIGURE 3 | Means for configural invariance, scalar invariance, ML alignment, and BAMI models with alignment. AT, Austria; BE, Belgium; BG, Bulgaria; CA, Canada;

CL, Chile; HR, Croatia; CZ, Czech Republic; DK, Denmark; FI, Finland; FR, France; DE, Germany; GB, Great Britain; IL, Israel; JP, Japan; LV, Latvia; LT, Lithuania; MX,

Mexico; NZ, New Zealand; NO, Norway; PH, Philippines; RU, Russia; SK, Slovakia; SI, Slovenia; ZA, South Africa; KR, South Korea; ES, Spain; SE, Sweden; CH,

Switzerland; TR, Turkey; US, United States. The x-axis shows the different models—configural, scalar, ML alignment, and BAMI with alignment—with their specific

variances. The dashed black line shows the overall mean.

slowly toward the means of the scalar model. The differences
between means of models with consecutive priors are less
clear than for the BAMI models (Figure 1). Now, 10.01−0.02

0.016, 10.001−0.01 0.042, 10.0005−0.0001 0.0675, and 10.001−0.0005

0.031. Although this pattern is visible in the means per model
(Figure 3), it is less distinctive when looking at the means of
individual countries (Figure 2). In that case, this pattern is most
pronounced for Latvia and, to a lesser extent, Bulgaria, Lithuania,
Hungary, Russia, South Africa, Slovakia, Turkey, the Philippines,
Denmark, Croatia, and Switzerland. Figures 2, 3 show that, as
prior variances decrease, so do the mean differences of the

model outcomes (both the overall means and the means per
country). Again, Latvia is the country with the most pronounced
differences when comparing different priors.

Ranking
Figures 1–3 show that the latent means vary depending on the

choice of prior variance. Models with smaller prior variances

seem to have outcomes that approach the outcome of the scalar
model. However, there is some variation at the country level.

From Figure 2, we observe that there appear to be four different
groups of countries with similar means: Switzerland, South Korea
and Denmark at the top, then a large group with the United
States, Canada, Chile, Germany, Norway, Japan, Israel, Sweden,
New Zealand, Mexico, Austria, Great Britain, Finland, Spain,
Slovenia, France, Turkey, Philippines, Slovakia, and South Africa.
The third group comprises Russia, Czech Republic, Bulgaria,
Lithuania, and Croatia, while the bottom group consists of only
one country: Latvia. In particular for the second group, means are
very close together, and it can be difficult to distinguish individual
country means. Figure 4 shows the ranking of the 30 countries
for the analyzed models that converged. This figure shows that
for nearly all the models, ranking changes somewhat when a
different prior variance is used. Upon closer inspection, 13 of
the 30 countries occupy the same place in the ranking for all
the models, and most changes appear to be in the middle of
the ranking. When combined with Figure 2, it becomes clear
that country mean differences are small, especially for the BAMI
model with alignment. For the BAMI models, country means
differ slightly more, especially at the top and the bottom of the
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ranking. Mean differences for Latvia decrease with decreasing
prior variance, and these differences are larger than the overall
mean difference per model.

Comparing the individual country means of the BAMI and
BAMI with alignment model shows that for all countries the
differences between the models decrease with prior variance:
differences between models are lowest when models with the
lowest prior variances are compared. For the models with a prior
variance of 0.0001 the country rankings are the same.

Focusing on only the models that appear to have a good fit to
the data, according to their fit statistics, only the BAMI models
with a prior variance of 0.02 and 0.01 and BAMI models with
alignment with a prior variance of 0.0005 and 0.0001 are of
importance. When comparing the rankings of these models, the
ranking for the BAMI models is almost identical: only Spain and
New Zealand switch places when changing models. The ranking
of the BAMI models with alignment shows more variation: 23
countries rank the same for both models, while Mexico, New
Zealand, Belgium, Austria, Great Britain, and Slovenia all shift
one place up or down and Spain moves two places in the ranking.

These figures show that, regardless of prior variance or
even model fit, people in Switzerland and South Korea are
most motivated to sacrifice for the environment, while people
in Bulgaria and Latvia are less motivated to sacrifice for
the environment.

Decision Tree

As it can be difficult to draw conclusions from the means and
rankings as shown in Figures 1–4, we devised a decision tree
(Figure 5). This tree provides some insight into the decisions
that we had to make regarding group means, group rankings and
the influence of priors. Based on this decision tree, other readers
might come to different conclusions. The tree comprises the
entire process needed to evaluate the information contained in
Figures 1–4, starting with the MGCFA test for scalar invariance:

1. We started with an ML MGCFA test for scalar invariance. To
test for scalar invariance it is necessary that configural and
metric invariance are met.

a. Yes: It is now possible to compare ranks.
b. No: Try another method to make means comparison valid.

Go to step 2.
We did not find scalar invariance, so we followed the “no”
arrow to step 2.

2. Do you expect a large difference in parameters for some
groups and equality for the rest of the groups5?

a. Yes: Equality for almost all groups. Go to step 3.
b. No: Only small differences or small and large differences.

Go to step 4.
We assumed there would be some differences in the
parameters, although we did not know how large these

5When in doubt whether large difference in parameters for some groups are to be

expected, it is advisable to consult a substantive expert of your field. The decision

whether large parameters can be expected should be based on previous research

and/or expertise.

differences would be or how many groups would differ
from each other, so we first followed the “yes” arrow to step
3 and tested for ML alignment.

3. Does the alignment optimization yield < 25%
non-invariant parameters?

a. Yes: The rank order can be trusted
b. No: Try another method to make means comparison valid.

Go top step 4.
This yielded > 25% non-invariant parameters, so we
followed the “no” arrow to step 4.

4. Do you expect only small differences in parameters for
different groups6?

a. Yes: Only small differences. Use BAMI, Go to step 4A.
b. No: Both small and large differences. Use BAMI in

combination with alignment optimization. Go to step 4B.
Now, we had to decide whether we expected small or large
differences in parameters for different groups. Since we did
not know how large the differences per group were, we
used both, as they lead to step 5 in this decision tree; which
option we chose would not make a difference.

5. Then, we needed to decide which priors to use and run
the different models. We based our priors on previous
literature on the use of BAMI (both simulations and empirical
examples). We then moved to step 6.

6. We visualized the outcomes of the differentmodels [scalar,ML
alignment, and BAMI models (with and without alignment)
that converged] in Figures 1–4 (means and group rankings).
The code to create these Figures can be found in Appendix C
on Arts et al. (2021). We moved to step 7.

7. Is the rank order as a whole stable? (Figure 4)

a. Yes: No or only minor changes in rank. Then the rank
order is not at all or only slightly influenced by the choice
of priors.

b. No: Many changes across groups and models. Go to step 8.
Since there were numerous changes in the rank order, we
did not consider the rank order stable and we followed the
“no” arrow to step 8.

8. Does the pattern of the rank order across different models
make sense?

a. Yes: Many changes, but all changes in the same section of
the ranking (e.g., top) or the same groups change rank. Go
to step 9.

b. No: The pattern seems erratic. Go to step 10.
From Figure 5 we concluded that the upper and the lower
parts of different rankings hardly change, and most rank
changes take place in the middle part of the ranking.
We considered this a logical pattern and followed the
“yes” arrow.

6Similarly, when in doubt whether small differences for many groups are to be

expected, it is advisable to consult a substantive expert of your field. The decision

whether small parameter differences can be expected should be based on previous

research and/or expertise.
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FIGURE 4 | Rankings per model. AT, Austria; BE, Belgium; BG, Bulgaria; CA, Canada; CL, Chile; HR, Croatia; CZ, Czech Republic; DK, Denmark; FI, Finland; FR,

France; DE, Germany; GB, Great Britain; IL, Israel; JP, Japan; LV, Latvia; LT, Lithuania; MX, Mexico; NZ, New Zealand; NO, Norway; PH, Philippines; RU, Russia; SK,

Slovakia; SI, Slovenia; ZA, South Africa; KR, South Korea; ES, Spain; SE, Sweden; CH, Switzerland; TR, Turkey; US, United States. The x-axis shows the different

models—scalar, ML alignment, and BAMI with and without alignment—with their specific variances. Models that appear to ba a good fit to the data are indicated in

bold green, models with bad fit in red.

9. Are individual groups stable across models?

a. Yes: Individual groups never move more than one place up
or down in the ranking across different models. Then the
rank order is not or only slightly influenced by the choice
of priors

b. No: Individual groups continue moving up or down the
ranking across different models.
Changes in rank nearly always applied to the same
countries, making the pattern rather stable. However, as
some countries moved up or down two or three positions
in the ranking across models, we found that stability of
the groups could not be guaranteed. We followed the
“no” arrow.

10. Are the mean differences per group per model small?

a. Yes. There is almost no difference between groups, and the
influence of the priors is small.

b. No: Do not use rank order.
Figure 3 shows that the differences per group are quite
small, especially in the middle part of the ranking where
most changes in rank take place. We therefore conclude
that there is almost no difference between groups.

CONCLUSION AND DISCUSSION

The latent variable “willingness to sacrifice for the environment”

(WTS) is an important aspect of environmental concern. It
can provide insights into the intentional behavior regarding

environmental concern, which, in turn, provides more insight

into the willingness of the respondents to take action to protect
the environment. Given that country rankings of latent means of
WTS are frequently used in comparative studies, it is important
to assess whether substantive findings are indeed trustworthy
or are methodological artifacts due to lack of metric or scalar
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FIGURE 5 | Decision tree.

invariance. The latent variable WTS was, in combination with
the latent variable environmental attitude (EA), previously tested
for MI by Mayerl and Best (2019). Using MGCFA, they did
not find scalar invariance, questioning comparisons of the latent
means across countries. However, recent discussions in MI point
out that the approach of ML MGCFA may be too strict, and
approaches such as alignment or BAMI, or a combination of
both, may be a viable solution when exact scalar invariance tests
fail (e.g., van de Schoot et al., 2013; Asparouhov and Muthén,
2014). In this article, we examinedWTS in 30 different countries,
using the 2010 ISSP data. We did not establish scalar invariance
when using MGCFA, which is in line with the findings of Mayerl
and Best (2019). In addition to MGCFA, we also assessed MI
using ML alignment, BAMI and BAMI with alignment method.

Based on our results, we can determine which countries
consistently rank high on the latent variable WTS (Switzerland
and South Korea) and which countries consistently rank low
(Latvia). However, we cannot say that, e.g., respondents in
Sweden are more or less willing to sacrifice for the environment
than respondents in Mexico. Thus, a more general conclusion
about these country rankings can be drawn (high, low), but
when exact ranking (e.g., fourth or fifth), or even exact means,
are important, these country rankings should not be used. In
conclusion, only with BAMI plus alignment optimization we
were able to obtain stable results. From these, we can conclude
that people in Switzerland and South Korea are most motivated
to sacrifice for the environment, while people in Latvia are less
motivated to sacrifice for the environment.

Regarding the use of different prior variances when using
the BAMI method, models with a prior variance of 0.02 and

0.01 showed good model fit for most fit statistics (PPP, 95% CI,
BRMSEA, BCFI, BTLI). For the model with variances of 0.001
and 0.0005 BCFI and BTLI were within limits. When taking into
account that PPP might incorrectly identify model fit for models
with large sample sizes (van de Schoot et al., 2012; Mulder,
2014), the results of BAMI models with a variance of 0.001
and 0.0005 might still fit the data. BIC and DIC are lowest for
the BAMI model with a prior variance of 0.02, but the use of
DIC for models with small prior variances has been disputed
by Hoijtink and van de Schoot (2018). For the BAMI models
with alignment the models with the smallest prior variances
(0.0005 and 0.0001) give trustworthy results with a percentage of
non-invariant parameters of 16.67 and 1.67%, respectively. This
indicates that the BAMI models with a prior variance of 0.02 and
0.01 are a good fit to the data, while for the BAMI with alignment
models, the models with a prior variance of 0.0001 and 0.0005
give trustworthy results.

Concerning comparing means of the BAMI models with
different prior variances, both with and without alignment, the
means are very similar for the models with prior variances of
0.0001 (difference of the overall mean per model is 0.001). These
country rankings are, with the exception of Great Britain and
Spain (rank 16 and 18, respectively) also the same for the scalar
model. However, the scalar model and the BAMI model with a
prior variance of 0.0001 cannot be assumed to be a good fit to the
data (seeTables 4, 6), while the BAMImodel with alignment with
the same prior can. When comparing two models that indicate
reliable outcomes—the BAMI with prior variance of 0.02 and the
BAMI with alignment model with a prior variance of 0.0001—
differences per country are much larger (ranging from 0.616 to

Frontiers in Psychology | www.frontiersin.org 14 July 2021 | Volume 12 | Article 624032177

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Arts et al. Measurement Invariance: Priors and Visualization

0.029, with the exception of 0 for Spain), thus indicating that
prior variances can have a large influence on model outcomes,
and that the model results that appear to be reliable, can be
very close or even equal to the results of a model that should
be rejected. This also shows the difficulty of comparing BAMI
models to BAMI models with alignment: because the ground on
which models should be rejected are very different, it is difficult
to say which model should be preferred, if any.

It is our opinion that visualizing the results facilitates
determining of the effect of different prior variances. A visual
presentation of the results could be a valuable addition to the
presentation of results in elaborated tables that can be challenging
to interpret, especially when many groups are compared. The
visualization approach that we used in this article is, however,
not the only possibility to visualize (MI) results. Depending on
e.g., research question, group size, and personal preferences, the
researcher can choose other ways to visualize the results. For
example, van de Schoot et al. (2015) chose to display the effect
of different prior variances on the differences between groups
in several line charts, while Pokropek et al. (2020) decided to
use color-coded tables to identify the most suitable fit statistic
to identify the optimal prior, Zercher et al. (2015) used scatter
plots to represent latent means per country, and van de Vijver
et al. (2019) used a 3-dimensional plot showing the Euclidean
distances between different groups. However, most researchers
still use (mainly) tables to present their results (e.g., Chiorri et al.,
2014; De Bondt and Van Petegem, 2015; Gucciardi et al., 2016;
Seddig and Leitgöb, 2018; Solstad et al., 2020; Vilar, 2020). We
propose that a visual presentation of the results can improve the
comprehension of test results, and can serve as a useful addition
to previous presentations of results. This can be particularly
useful when a researcher is faced with contradictory priors:
a visualization of model outcomes with these different priors
immediately shows the effect that the priors might or might
not have. In particular researchers who are less familiar with
the subject of Bayesian modeling might benefit from such a
visual presentation.

Limitations
This study has some limitations, that need to be mentioned.
First, the latent variable WTS is linked to intentional
behavior, but intentional behavior alone cannot explain
environmental concern. This one-scale, three-item model is an
oversimplification of real-world data: multiple latent variables
are required to provide insight into environmental concern. If
MI holds for WTS in combination with other latent variables
(e.g., EA) a country ranking would be more meaningful when
determining nationwide environmental concern. Also, WTS
is mainly financially driven (two out of three question refer to
paying to protect the environment: see Table 1). This would
mean that respondents who cannot or do not want to contribute
financially but are willing to contribute in some other way
affect this latent variable differently than those who are willing
to sacrifice financially. Second, in the analysis of the different
methods, most settings were Mplus default settings. Using
different settings might lead to different outcomes: e.g., a
different simplicity function when using alignment could affect

model outcome when the alignment optimization is used. It is
also possible to choose Bayes as an estimator instead of ML.
In that case, analysis starts with the same M0 model as for
ML alignment, and then loadings and intercepts are estimated
using noninformative priors using Equation (3) (Asparouhov
and Muthén, 2014). For other Mplus settings see Muthén and
Muthén (2019). However, testing the many different settings
in Mplus is beyond the scope of this article. Third, we used a
decision tree (Figure 5) to interpret the results based on a visual
inspection of country means and rankings. In this decision tree,
several choices have to be made based on the ranking order and
pattern (Figure 4). This pattern might not be interpreted by
everyone in the same way: at Step 7 (is the rank order as a whole
stable), Step 8 (does the pattern of the rank order make sense),
and Step 9 (are individual groups stable across models) the
reader has to decide whether a pattern is stable, the rank order
makes sense, and individual groups are stable across models.
It is also up to the reader to decide if the differences between
group means are small or large (step 10). So, depending on
the reader, conclusions might be different. However, we argue
that using a decision tree always involves arbitrary decisions,
like non-testable identification constraints, see for a discussion
Little et al. (2006). We also believe that, in this case, the benefits
of a decision tree (transparency to the workflow) outweigh
the disadvantages.

Future Research
In this article we show that, for WTS, MI is present, making
a ranking of countries possible. We also show that country
means are not independent of specified priors and that, although
the differences are small, an exact country ranking cannot
be assumed. A combination of multiple latent variables (EA,
knowledge of environmental concern, risk perception) might
provide more insight into environmental concern. This would
complicate model specification and analysis somewhat, since
it would, e.g., make the use of priors on cross-loadings an
important part of the model (Xiao et al., 2019; Liang et al.,
2020). Another potential promising area of future study is the
method of Robitzsch (2020), which improves the alignment
optimization. A comparison with BAMI has not been made,
yet. Future research may provide more insight into WTS and
the topic of environmental concern. Looking at Figure 2, we
see that four groups of countries have very similar means. It
would be interesting to further investigate why this division
into four groups appears. Is this also the case when other
latent variables are investigated (separately or combined with
WTS)? Is it purely data driven or are there underlying reasons
that can explain these four groups (psychological, sociological,
political, economic, etc.)? A multilevel model that includes
such factors, might shed more light on why these four groups
exist. The prior variances that we used in this article were
based on previous literature on prior selection (both simulation
and empirical studies). Another approach to selecting priors
could be to consult literature on environmental change to
determine the factors that drive environmental concern. Priors
could then be based on e.g., socioeconomic status of a country,
geography (and thus the environmental threat a particular
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country faces) or political system and stability. Multilevel tests
aiming to unravel these factors have been conducted by e.g.,
Marquart-Pyatt (2012a), Fairbrother (2013), Pampel (2014), and
Pisano and Lubell (2017), but, to our knowledge, such factors
have not yet been included in a Bayesian model. However,
the use of such priors would emphasize the strength of
Bayesian modeling.
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The popularity and use of Bayesian methods have increased across many research
domains. The current article demonstrates how some less familiar Bayesian methods
can be used. Specifically, we applied expert elicitation, testing for prior-data conflicts,
the Bayesian Truth Serum, and testing for replication effects via Bayes Factors in a
series of four studies investigating the use of questionable research practices (QRPs).
Scientifically fraudulent or unethical research practices have caused quite a stir in
academia and beyond. Improving science starts with educating Ph.D. candidates: the
scholars of tomorrow. In four studies concerning 765 Ph.D. candidates, we investigate
whether Ph.D. candidates can differentiate between ethical and unethical or even
fraudulent research practices. We probed the Ph.D.s’ willingness to publish research
from such practices and tested whether this is influenced by (un)ethical behavior
pressure from supervisors or peers. Furthermore, 36 academic leaders (deans, vice-
deans, and heads of research) were interviewed and asked to predict what Ph.D.s
would answer for different vignettes. Our study shows, and replicates, that some Ph.D.
candidates are willing to publish results deriving from even blatant fraudulent behavior–
data fabrication. Additionally, some academic leaders underestimated this behavior,
which is alarming. Academic leaders have to keep in mind that Ph.D. candidates
can be under more pressure than they realize and might be susceptible to using
QRPs. As an inspiring example and to encourage others to make their Bayesian work
reproducible, we published data, annotated scripts, and detailed output on the Open
Science Framework (OSF).

Keywords: informative prior, Bayes truth serum, expert elicitation, replication study, questionable research
practices, Ph.D. students, Bayes Factor (BF)
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INTRODUCTION

Several systematic reviews have shown that applied researchers
have become more familiar with the typical tools of the Bayesian
toolbelt (Johnson et al., 2010a; König and van de Schoot, 2017;
van de Schoot et al., 2017, 2021a; Fragoso et al., 2018; Smid
et al., 2020; Hon et al., 2021). However, there remain many
tools in the Bayesian toolbelt that are less familiar in the applied
literature. In the current article, we illustrate how some less
familiar tools can be applied to empirical data: A Bayesian expert-
elicitation method (O’Hagan et al., 2006; Anca et al., 2021) – also
described in van de Schoot et al. (2021b), a test for prior-data
conflict using the prior predictive p-value (Box, 1980) and the
Data Agreement Criterion (DAC) (Veen et al., 2018), a Bayes
truth serum to correct for socially desirable responses (Prelec,
2004), and testing for replication effects via the Bayes Factor
(Bayarri and Mayoral, 2002; Verhagen and Wagenmakers, 2014).
These methods are applied to the case of how Ph.D. students
respond to academic publication pressure in terms of conducting
questionable research practices (QRPs).

In what follows, we first elaborate on QRPs, how Ph.D.
candidates respond to scenarios of QRPs, and senior academic
leaders (deans, heads of departments, and research directors,
etc.) believe Ph.D. candidates will deal with this pressure. In
four separate sections, we present the results of the different
studies and illustrate how the Bayesian methods mentioned above
can be applied to answer the substantive research questions,
thereby providing an example of how to use Bayesian methods
for empirical data. Also, Supplementary Material, including
annotated code, part of the anonymized data, and more detailed
output files, can be found on the Open Science Framework
(OSF)1. The Ethics Committee of the Faculty of Social and
Behavioral Sciences at Utrecht University approved the series
of studies (FETC15-108), and the questionnaires were co-
developed and pilot-tested by a university-wide organization
of Ph.D. candidates at Utrecht University (Prout) and the
Dutch National Organization of Ph.D. candidates (PNN).
Supplementary Appendix A–C contains additional details
referred to throughout the text.

THE CASE OF QUESTIONABLE
RESEARCH PRACTICES TO SURVIVE IN
ACADEMIA

Science has always been a dynamic process with continuously
developing and often implicit rules and attitudes. While a
focus on innovation and knowledge production are essential
to academic progress, it is equally important to convey and
stimulate the use of the most appropriate research practices
within the academic community (Martinson et al., 2005; Fanelli,
2009; Tijdink et al., 2014). There is an intense pressure to publish
since scientific publications are integral in obtaining grants
or obtaining a tenured position in academia (Gopalakrishna
et al., 2021; Haven et al., 2021). Ph.D. candidates have noted
that the most critical factors related to obtaining an academic

1https://osf.io/raqsd/

position were the number of papers presented, submitted, and
accepted in peer-reviewed journals (Sonneveld et al., 2010;
Yerkes et al., 2010). In an observational study by Tijdink et al.
(2014), 72% of respondents reported pressure to publish was
“too high” and was associated with higher scores on a scientific
misconduct questionnaire measuring self-reported fraud and
QRPs. With increasing publication pressure, a growing number
of scholars, and ever more interdisciplinary and international
studies being conducted, academic norms have become diverse
and complicated. Publication pressure combined with the
ambiguity of academic standards has contributed to QRPs such as
data fabrication, falsification, or other modifications of research
results (Fanelli, 2010). Early-career scientists may struggle to
identify QRPs and, as Sijtsma (2016) noted, may even commit
QRPs unintentionally. Anecdotally, statements such as “this is
how we always do it,” “get used to it,” or “this is what it takes to
survive in academia” may also be familiar to some researchers and
students, which do not help develop a sense of ethical standards
for research practices.

In response to these observations, the contemporary debate
about appropriate scientific practices is fierce and lively and has
extended to non-academic domains. Therefore, how we conduct
research and, equally important, how we inform, mentor, and
educate young scientists is essential to sound scientific progress
and how science is perceived and valued (Anderson et al., 2007;
Kalichman and Plemmons, 2015). An observational study by
Heitman et al. (2007), for example, found that scholars who
reported receiving education about QRPs scored 10 points higher
on a questionnaire about these issues (reporting that they are less
likely to participate in QRPs) compared to scholars without prior
QRP training. A Ph.D. trajectory is essentially about educating
someone to become an independent scientist, ethical research
practices should be part of all graduate curricula. Still, early-
career scientists mostly learn from observing the scientific norms
and practices of academic leaders (Hofmann et al., 2013), most
of whom are their direct supervisors. Ph.D. candidates are in
a highly dependent relation with these senior faculty members.
Senior faculty, therefore, is in the position to influence the Ph.D.
candidate, which also holds for ethical issues concerning scientific
behavior. At the same time, Ph.D. candidates compete with their
peers for a limited number of faculty positions, a situation that
may also be a factor in yielding to questionable scientific behavior.

The various potential sources of pressure from senior
academic leaders and peer competition occur in an early stage
of their academic career when Ph.D. candidates are susceptible
to learning about ethical research practices. Senior researchers
with a role-model function may not completely understand the
pressure experienced by the current cohort of Ph.D. candidates.
It has, so far, never been investigated how such pressure interacts
with the occurrence of questionable research behavior among
Ph.D. candidates, nor how academic leaders predict the behavior
of Ph.D. candidates in such situations.

Therefore, in the current article, we present a series of four
studies investigating these issues.

For the first study, we asked Ph.D. candidates from a wide
range of Social Sciences faculties across Netherlands what they
would do when faced with the three scenarios, how they
would respond, to whom to talk about it, and whether they
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had experienced a similar situation in their career. We also
added experimental conditions: in the description of the senior
scholar for the vignettes, we manipulated the level of ethical
leadership (high/low) and research transparency (high/low).
Ethical leadership and research transparency were used as a
manipulation check to see if participants interpreted the vignettes
correctly. These two factors were included because in the
organizational sciences, ethical leadership is thought to be a
way to improve employees’ ethical conduct (Brown and Treviño,
2006), and increased research transparency is offered as a solution
to prevent fraud and misconduct in many fields of science
(Parker et al., 2016).

For the second study, we interviewed academic leaders about
what they expected. Ph.D. candidates would do in the scenarios
from Study 1. The social sciences within Netherlands had a
real wake-up call with the Stapel case (Callaway, 2011; Levelt
et al., 2012; Markowitz and Hancock, 2014). Hopefully, this
case would have created awareness, at least in academic leaders.
The question is whether the academic leaders would think the
Ph.D. candidates, who mostly started their projects after the
news about Stapel had faded away, also changed their attitude
toward scientific fraud and QRPs. Therefore, after obtaining
the results from the academic leaders, we tested for expert-
data (dis)agreement (Bousquet, 2008; Veen et al., 2018) between
the academic leaders and the Ph.D. candidates to see if the
academic leaders over-or underestimated the replies given by the
Ph.D. candidates.

The third study concerned a conceptual replication of the
first vignette in Study 1 (data fabrication). Replication is
not only an essential aspect of scientific research but has
also been recommended as a method to help combat QRPs
(Sijtsma, 2016; Sijtsma et al., 2016; Waldman and Lilienfeld,
2016). Study 3 participants were from a major university in
Netherlands not included in Study 1 and represented Psychology
and medical sciences. We also added two new scenarios (gift
authorship and omitting relevant information) and a second
experimental condition in which we manipulated peer and
senior pressure by including cues in the vignette about the
(imaginary) prevalence of QRPs of fellow Ph.D. candidates and
professors at a different, fictional, university. It was based on the
assumption that obedience to authority–from superiors or peers–
influences questionable behavior, as evidenced by the large body
of literature on the theory of planned behavior (Ajzen, 1991)
and more general work on subjective norms and peer pressure
(Terry and Hogg, 1996).

Finally, in Study 4, we replicated the experiment of Study 1
in a new sample outside the Netherlands, namely, in three Social
Sciences faculties in Belgium. Replication studies are not only an
essential aspect of science; as mentioned above, they may also aid
in uncovering and potentially reducing QRPs.

STUDY 1–VIGNETTE STUDY A

There were two goals for Study 1: First, to investigate how Ph.D.
candidates would respond to the vignettes about data fabrication,
deleting outliers to get significant results, and salami slicing; see

Supplementary Appendix A for the text used in the vignettes.
Second, we used a randomized experiment to investigate whether
characteristics in the description of the senior, in terms of ethical
leadership and transparency, would influence their responses.

Methods
Participants, Procedure, and Design
The Ph.D. candidates for Study 1 were recruited from 10
Social Sciences or Psychology faculties at eight universities
in Netherlands out of 10 universities with Social Sciences or
Psychology faculties. Two more universities were invited, but
one declined to participate, and at the other, the data collection
never got started due to practical issues. We always asked a
third party (usually a Ph.D. organization within the university)
to send invitations to their Ph.D. candidates to participate in our
study. This procedure ensured that we were never in possession
of the email addresses of potential participants. We used the
online survey application, LimeSurvey, to create a separate,
individualized survey for each university involved. To further
ensure our participants’ privacy, we configured the surveys
to save anonymized responses without information about IP
address, the date and time they completed the survey, or the
location of their computer (city and country). Furthermore, we
ensured that all demographics questions were not mandatory for
participants to complete to decide how much information they
wished to share with us. Finally, participants were offered the
possibility to leave an email address if they wanted to receive
notice of the outcomes of our research. However, we never
created a data file that contained both the email addresses and
the survey data. Participants were randomly assigned to one of
the four conditions within the survey.

In total, 440 Ph.D. candidates completed the questions for
at least one scenario. Descriptive statistics about the sample
can be found in Table 1. The survey focused on the three
scenarios concerning QRPs/fraud: (1) data fabrication, (2)
deleting outliers to get significant results, and (3) salami-slicing;
see Supplementary Appendix A for the exact text we used. After
presenting a scenario to the participant, we first asked an open-
ended question: “What would you do in this situation?” Then we
asked: “Would you (try to) publish the results coming from this
research?” (Yes/No) followed by an open-ended question “If you
want, you can elaborate on this below.”

We compared responses of the Ph.D. candidates across
four conditions, which were combinations of two two-level
factors, Leadership and Data. To convey these conditions to the
participant, we used different combinations of the introductory
texts. LimeSurvey allowed us to automatically and randomly
assign participants to one of the four conditions for the first
experiment and then again in one of the four conditions
of the experiment.

To check whether participants perceived the manipulations
(high versus low ethical leadership and high versus low research
transparency), we included scales for both ethical leadership
(Yukl et al., 2013) (Cronbach’s alpha 0.919) and research
transparency (developed for this study, see Supplementary
Appendix A for the questions used, Cronbach’s alpha 0.888).
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TABLE 1 | Descriptive statistics for Study 1 (N = 440), Study 3 (N = 198), and
Study 4 (N = 127).

Variable Study 1 Study 3 Study 4

Gender Male 128 (29.09%) 48 (24.24%) 80 (62.99%)

Female 247 (56.14%) 121 (61.11%) 35 (27.56%)

Prefer not to
disclose

12 (2.73%) 8 (4.04%) 2 (1.57%)

Missing 53 (12.05%) 21 (10.61%) 10 (7.87%)

Age 31.65 (7.84;
24/70)

31.40 (6.15;
24/64)

29.06 (4.79;
23/48)

n = 365 n = 166 n = 116

Employment
type

Standard Ph.D.
candidate

296 (67.27%) 150 (75.76%) 45 (35.43%)

No Ph.D.
candidate but

Ph.D.
scholarship

17 (3.86%) 10 (5.05%) 56 (44.09%)

External Ph.D.
candidate

15 (3.45%) 10 (5.10%) 7 (5.51%)

Other 53 (12.01%) 20 (10.10%) 10 (7.87%)

Missing 59 (13.41%) 8 (4.04%) 9 (7.09%)

Data: Collecting
and/or
analyzing

I collect and
analyze

370 (84.09%) 139 (70.20%) 103 (81.10%)

I collect,
someone else

analyses

20 (4.55%) 14 (7.07%) 4 (3.15%)

I analyze
existing data

37 (8.41%) 32 (16.16%) 14 (11.02%)

My research is
mainly

theoretical

7 (1.59%) 9 (4.55%) 4 (3.15%)

Missing 6 (1.36%) 4 (2.02%) 2 (1.57%)

Certainty career
in academics

Scale 1–10 6.76 (2.27;
1/10)

6.82 (2.32;
1/10)

5.39 (2.56,
1/10)

n = 440 n = 198 n = 127

Ambition career
in academics

Scale 1–10 6.80 (2.20;
1/10)

6.91 (2.14;
1/10)

5.50 (2.49;
1/10)

n = 440 n = 198 n = 127

Perceived
publication
pressure

Scale 1–6 4.64 (0.91; 1/6)

Is publication
pressure
present in the
research field?

Scale 1–10 7.11 (1.87;
1/10)

7.41
(1.77;1/10)

Data are mean (SD; min/max) or frequency (%).

In Supplementary Appendix B, we describe the results of
the manipulation checks for Ethical Leadership and Data
Transparency. We concluded that the manipulation resulted in
a different score on both variables across conditions, indicating
that our manipulation was effective.

Analytic Strategy
We first provide descriptive statistics about the responses of the
Ph.D. candidates to each of the vignettes.

Second, we present the replies to the open-ended questions.
We grouped the responses in several categories. Grouping of

the open answer was made based on group discussions and
consensus among the authors using an ad hoc bottom-up process.
Multiple categories could be given to each answer. We discussed
ambiguous responses and only classified participants’ answers
in one of the categories if all authors reached a consensus.
We also examined whether, based on information in the open-
ended questions, the Ph.D. candidates provided an honest reply
to the yes/no question about publishing and recoded the item
into a new variable next to the existing variable. For the first
scenario, in 22 cases, the information in the open-ended answer
did not correspond with the yes/no question. An equal number
of responses was recoded from “yes” to “no” and from “no”
to “yes.” For the second scenario, we recoded 154 answers. In
most of these cases (97%), the Ph.D. candidate indicated in the
open-ended answers that they would publish the results only if
the outliers were described in the article. Since the scenario was
about publishing the data without providing more information,
we recoded these answers to “no.” As a result, the percentage
of participants indicating that they would attempt to publish
dropped from 48.8 to 12.5% (a 36.3% decline). In the third
scenario, in 16 cases, the information in the open-ended answer
did not correspond with the yes/no answer. It resulted in a decline
of 1.5% in the participants’ indication that they would attempt to
publish. Again, the decisions were discussed and only changed if
consensus was reached among all authors.

Third, we used Bayes Factors for contingency tables in
JASP (JASP-Team, 2018) to examine whether the experimental
conditions affected the participants’ attitude toward publishing
data or analyses that might have fallen victim to QRPs. When
a hypothesis is tested against an alternative hypothesis, and the
results indicate that BF ≈ 1 implies that both hypotheses are
equally supported by the data. However, for example, when
BF = 10, the support for one hypothesis is 10 times larger than
the support for the alternative hypothesis. For interpretation of
Bayes Factors, we refer interested readers to the classical paper of
Kass and Raftery (1995).

Results
Most Ph.D. candidates in this study (96.6%) answered “yes” to
the question of whether they consider the vignette scenario to be
fraudulent (see Table 2). As for the first scenario, almost all Ph.D.
candidates believe data fabrication is fraudulent; interestingly,
5.9% (25 students) would still publish the results, and some
participants reported having experienced such a situation.

Most participants provided extensive answers to the open-
ended questions. We grouped their responses into six categories.
The first category comprised 34.6% of the Ph.D. candidates who
indicated they would never publish such results because they feel
morally obliged not to do so, as is implied by statements like “it
wouldn’t feel good to do so” or “I can’t accept that for myself,” or
put more strongly:

“Never, this goes against all I stand for and this is not what research
is about, I feel very annoyed that this question is even being asked.”

The second category of Ph.D. candidates (22.6%) reported that
they would first talk to someone else before taking any action. Of
these Ph.D. candidates, 23.9% would first talk to another Ph.D.
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candidate, 23.9% to their daily supervisor, 20.7% to their doctoral
advisor, 20.7% to the project leader, 7.6% to the confidential
counselor, and 3.3% to someone else. The third category of
Ph.D. candidates (15.5%) indicated they would first take a more
pragmatic approach before doing anything else. They would only
want to decide when, for example, more information is provided,
new data is collected, or more analyses are conducted. The fourth
category of Ph.D. candidates (10.5%) is afraid the situation might
backfire on them in a later stage of their career which is their main
argument for not proceeding with the paper, as is exemplified by
this statement:

“I’d rather finish my thesis later than put my career at risk.”

The fifth category of Ph.D. candidates (8.7%) provides as the
main argument that they believe in good scientific practice and a
world where science serves to advance humanity:

“Producing science and knowledge is part of academia so that
humans can get closer to the ’truth’, producing fake stuff is not part
of academia and I don’t want to be part of that.”

“In the long-term, being honest provides the best answers to societal
issues.”

Lastly, we identified a group of Ph.D. candidates (8%) as “at-
risk.” They either reported that if the pressure were high enough,
they would proceed with the publication, as indicated by the
following quote:

“It’s not a solid yes, but a tentative one. I can image, just to be
realistic, in terms of publishing pressures and not wanting to be out
of contract, that this would be the best bet after all.”

Or, they would follow their supervisor:

“If the supervisors tell me it’s okay, I would try to publish the data.”

Or, they simply have no qualms about it:

“Since it will get me closer to obtaining my Ph.D.”

The result of testing for manipulation effect was that for
all scenarios, the null model, assuming no effect for condition,
was preferred over the alternative model (all BF01’s < 1); see
Supplementary Appendix C for detailed results.

Intermediate Conclusion
The first study shows that at least some Ph.D. candidates are
willing to publish results even if they know the data has been
made up, the deletion of outliers is not adequately described,
or if they are asked to split their papers into several sub-
papers (i.e., salami-slicing). The percentage of Ph.D. candidates
who actually experienced such a situation is low but not
zero (see Table 2). Contrary to our expectations and although
the manipulation checks were successful (see Supplementary
Appendix B)–neither ethical leadership of the senior/supervisor
nor transparency in the description resulted in differences in the
Ph.D. candidates’ intended publishing behavior.

TABLE 2 | Results in percentages of the vignette studies Study 1 (N = 440), Study 3 (N = 198), and Study 4 (N = 127).

Study 1 Study 3 Study 4

“Is this
fraud?” (%

Yes)

“Yes, I
would try

to
publish”

“Have you
experienced a

similar
situation?” (%

Yes)

“Is this
fraud?” (%

Yes)

“Yes, I
would try

to
publish”

“Have you
experienced a

similar
situation?” (%

Yes)

“Is this
fraud?” (%

Yes)

“Yes, I
would try

to
publish”

“Have you
experienced a

similar
situation?” (%

Yes)

Scenario 1:
Data
fabricationa

96.6% 5.9% 3.2% 92.4% 9.6% 5.5% 92.9% 13.4% 5.5%

(n = 440) (n = 440) (n = 440) (n = 198) (n = 198) (n = 198) (n = 127) (n = 127) (n = 127)

Scenario 2:
Deleting outliers
to get
significant
results

56.4% 12.3% 12.9%

(n = 407) (n = 407) (n = 407)

Scenario 3:
Salami slicinga

65.2% 32.0% 9.3% 16.6% 38.9% 17.2% 23.6% 32.8% 17.3%

(n = 397) (n = 397) (n = 397) (n = 185) (n = 185) (n = 185) (n = 119) (n = 119) (n = 119)

Scenario 4: Gift
authorship

42.4% 59.2% 30.3% 40.6% 58.8% 16.7%

(n = 184) (n = 184) (n = 184) (n = 118) (n = 118) (n = 116)

Scenario 5:
Excluding
information

71.7% 12.1% 13.6% 72.4% 16.1% 15.8%

(n = 182) (n = 182) (n = 182) (n = 118) (n = 118) (n = 118)

aFor Studies 3 and 4, we modified the description based on feedback from the participants, see Supplementary Appendix A.
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STUDY 2–EXPERT ELICITATION AND
PRIOR-DATA CONFLICTS

The goal of Study 2 was to investigate how academic leaders
believed Ph.D. candidates would respond to the three scenarios
and to test whether the beliefs of the seniors about Ph.D.
candidates’ behavior regarding QRPs conflicted with the observed
data from Study 1.

Methods
Participants and Design
We invited 36 academic leaders working at 10 different faculties
of Social and Behavioral Sciences or Psychology in Netherlands–
deans, vice-deans, heads of departments, research directors,
and confidential counselors–to participate in the study and
share what they believed Ph.D. candidates would answer when
facing the three scenarios. The design of the study and how
confidentiality would be ensured (i.e., personal characteristics
would not be disclosed, answers would not be connected to
specific data or results or used as predictors for explaining
possible disagreements with the collected data in Study (2) was
described in a face-to-face interview with the first author (RS).
All academic leaders answered at least one scenario and very few
skipped questions (response per scenario was 34, 35, and 33 from
the 36 different leaders).

Analytic Strategy
The method used to obtain the necessary information from the
experts is referred to as prior elicitation (O’Hagan et al., 2006),
which is the process of extracting and creating a representation
of an expert’s beliefs. During a face-to-face interview, we used
the Trial-Roulette elicitation method to capture the beliefs of the
seniors in a statistical distribution. This elicitation method was
introduced by O’Hagan et al. (2006) and was validated by Johnson
et al. (2010b); Veen et al. (2017), Zondervan-Zwijnenburg et al.
(2017), and Lek and Van De Schoot (2018).

To obtain a proper representation of the experts’ beliefs
about the percentage of Ph.D. candidates answering “yes” to the

questions whether to publish the paper in the three scenarios,
participants had to place twenty stickers, each representing five
percent of a distribution, on an axis representing the percentage
of Ph.D. candidates answering “yes” from 0% (left) to 100%
(right). The placement of the first sticker at a specific position
on the axis should indicate perceived likeliness by the expert for
that value. In contrast, the other stickers represented uncertainty
around this estimate, thereby creating a stickered distribution.
The elicitation procedure resulted in one stickered distribution
per expert per scenario, for a total of 102 valid distributions
(six distributions could not be transformed into a parametric
beta distribution). See Figure 1 for an example of such a
stickered distribution and see Figure 2 for all the statistical
distributions per scenario. The method we used to obtain
statistical distributions based on the stickered distributions is
published in van de Schoot et al. (2021b).

To examine whether the beliefs expressed by the senior
academic leaders conflict with the observed data of the Ph.D.
candidates (Study 1), we tested for an expert-data conflict. Box
(1980) proposed using prior predictive distributions to test if
the collected data was unlikely for this predictive distribution.
Evans and Moshonov (2006) presented a variation, the prior-
predictive check (PPC) computed per expert, and results in a
value reflecting the existence of prior-data conflict. With the
PPC, the prior distribution itself is used to predict various
proportions that could have been observed. These predicted
proportions can be used to assess the probability that the
actual data proportion can be found using the prior distribution
resulting in a probability value. When the value is less than 0.05,
it reflects a prior-data conflict; see Figure 3. To cross-validate
the results, we also computed the DAC developed by Bousquet
(2008) and extended by Veen et al. (2018), where values >1
indicate a conflict. Since the results of both measures are highly
comparable, see Figure 4; the results section below presents
only the detailed PPC results. For a comparison between the
two methods, see Lek and Van De Schoot (2019). The complete
results, including annotated syntax, can be found on OSF (see
text footnote 1).

FIGURE 1 | Example of a stickered distribution using (A) the trial roulette method and (B) the probability distribution obtained with the SHELF software (Oakley and
O’Hagan, 2010).
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FIGURE 2 | The parametric beta distributions based on the experts’ stickered
distributions for Scenario 1 (A; n = 34), 2 (B; n = 35) and 3 (C; n = 33).

Results
As shown in van de Schoot et al. (2021b), 82% (40 and 18%
for scenarios 2 and 3, respectively) of the academic leaders
believed the percentage of Ph.D. candidates willing to publish a

paper, even if they did not trust the data because of potential
data fabrication, to be precisely zero (n = 8) or close to zero
(n = 20).

When testing for prior-data conflicts for Scenario 1 (data
fabrication), it appeared 20 experts (58.8%) showed no significant
conflict with the data based on the PPC. Nine experts (26.5%)
significantly underestimated the percentage of Ph.D. candidates
willing to publish with fabricated data, while the remaining five
(14.7%) overestimated this percentage. For Scenario 2 (Deleting
Outliers), fewer experts (15; 42.9%) showed no significant
conflict with the data. Only six experts (17.1%) significantly
underestimated the percentage of Ph.D. candidates willing to
publish with data that suppressed outliers, while 14 experts
(40.0%) overestimated this percentage. For Scenario 3 (Salami
Slicing), the lowest number of experts (11; 33.3%) showed
no significant conflict with the data. Five experts (15.2%)
significantly underestimated the percentage of Ph.D. candidates
who would be willing to publish with data resulting from
salami slicing, while most experts (17; 51.5%) overestimated
this percentage.

Intermediate Conclusion
Some academic leaders overestimated the percentage, and
some were in tune with the outcomes of Study 1. However,
academic leaders (too) often underestimate the willingness of
Ph.D. candidates to “survive academia” utilizing fraudulent or
QRPs. Underestimation is far more problematic because one
student or researcher conducting QRPs can have profound
implications. It is not easy to predict such behavior but expecting
it to be non-existent, as several academic leaders believed, is
overly optimistic. These findings indicate an awareness gap
with senior academic leaders, a worrisome conclusion, given
their position in the academic hierarchy and their role in
policy development.

STUDY 3–VIGNETTE STUDY B

There were three goals for Study 3: First, to conceptually
reproduce and extend the vignette study (we modified the
description of the scenarios based on feedback to study 1, and we
added three new scenarios). Our second goal was to investigate
the influence of peer and elite pressure. The third goal was to
examine honesty about having committed a QRP through the
Bayes truth serum (Prelec, 2004).

Methods
Participants, Procedure, and Design
For Study 3, we received a list of email addresses from one
university of all Ph.D. candidates in two faculties (Psychology and
Medicine), allowing us to send out our invitation email. We used
the same online survey tool and set-up as study 1.

In total, 198 Ph.D. candidates completed the questions for
at least one of the scenarios. The Ph.D. candidates were from
two different faculties of one major university in Netherlands.
Descriptive statistics on the sample can be found in Table 1.
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FIGURE 3 | (A) A histogram of predicted data is shown based on the prior derived from the expert (shown in B). The red lines indicate the credibility interval of the
prior predictive distribution, and the blue line the observed percentage. The probability value appeared to be <0.001, showing there is a prior-data conflict. A table
with results per expert can be found on the OSF.

Measures/Analytic Strategy
The first part of our survey was an adjusted version of the
experiment applied in Study 1. Instead of three scenarios, we used
only one scenario, an updated version of the Data Fabrication
scenario adapted based on the Ph.D. candidates’ feedback in
Study 1; see Supplementary Appendix A for the new text. The
conditions for this experiment remained the same as in Study 1.

The second part of our experiment concerned the effect
of varying levels of Peer and Elite pressure on participants’
publishing behavior when confronted with three QRPs: (1)
Salami slicing (an adjusted version of the one used in Study 1),
(2) gift authorship, i.e., adding an additional co-author who did
not contribute to the article, and (3) leaving out relevant results.
The effect of pressure was studied by adding vignettes that varied
the pressure source (peer or elite) and the extent of pressure (low
or high fictive percentages of the source of pressure partaking in
QRPs). Again, we used Bayes Factors in JASP to test for the effects
of the different conditions.

We also wanted to get a more accurate estimate of the
prevalence of three QRPs (Salami Slicing, Gift Authorship, and
Excluding Results) using the Bayesian truth serum (Prelec, 2004;
John et al., 2012): a scoring algorithm that can be used to provide
incentives for truthful responses. Participants were presented
with an introductory text aimed at motivating participants to
answer truthfully and asking them to answer three questions
about the prevalence of each QRP in the department:

1. What percentage of your colleagues within your
department has engaged in (QRP) on at least one occasion
(on a scale from 0 to 100%)? (prevalence estimate).

2. Among those colleagues who have engaged in (QRP) on
at least one occasion, what percentage would indicate that
they have engaged in this research practice (on a scale from
0 to 100%)? (admission estimate).

3. Have you engaged in this research practice? (self-
admission rate).

Based on responses to the questions above, it is possible to
compute a more realistic Actual Prevalence. John et al. (2012)
suggested calculating the geometric mean of the self-admission
rate, the average admission rate, and the prevalence estimate
derived from the admission rate to come to a conservative Actual
Prevalence Rate. The geometric mean is based on the product
of the individual numbers (as opposed to the arithmetic mean,
which is based on their sum); see Figure 5 and the OSF for
annotated syntax (see text footnote 1).

Results
Ethical Leadership and Transparency Experiment
Similar to Study 1, most Ph.D. candidates in the sample (92.4%)
considered the data fabrication scenario fraudulent, but almost
10% would try to publish the results, and 5.5% reported
experiencing such a situation. Again, the manipulation check
was successful (see Supplementary Appendix B); the null model
was always preferred over the alternative model (BF01 < 1).
Also, again, the results indicate that the experimental conditions
did not differ in publishing behavior; see Supplementary
Appendix C for details.

Peer and Elite Pressure Experiment
Compared to Study 1, a much lower percentage of Ph.D.
candidates considered the vignette of salami-slicing to be fraud
(65.2 versus 16.6%). In contrast, the percentage of candidates
who had been in such a situation doubled to 17%. The
overall rates of participants who answered “yes, I would try
to publish” were comparable to Study 1. The new scenarios
of gift authorship and excluding information are considered
fraud by more Ph.D. candidates. A majority of the Ph.D.
candidates would publish the results in the scenario of gift

Frontiers in Psychology | www.frontiersin.org 8 November 2021 | Volume 12 | Article 621547189

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-621547 November 24, 2021 Time: 6:10 # 9

van de Schoot et al. Questionable Research Practices to Survive in Academia

FIGURE 4 | Results for the prior predictive check (A–C), the DAC (D–F), and for the combination of the two (G–I) for each scenario separately. The dotted line
represents the cut-off values used. The green dots in (G–I), indicate identical conclusions for both measures, and the orange dots indicate numerical differences. It
should be noted all of these are boundary cases, for example, a PPC of 0.049 (conflict) and a DAC score of 0.98 (no conflict).

authorship, but fewer had actually been in this situation, see
Table 2. Concerning the Peer and Elite Pressure experiment,
we did not find an effect for the experimental conditions
(BFs < 1); see Supplementary Appendix C for detailed results.
One exception was the model for salami slicing (Scenario
3r), which had a BF of 575, reflecting evidence in favor of
a dependency in the contingency table. This result indicates
higher pressure resulted in a higher percentage of Ph.D.
candidates willing to publish the paper, especially when it
concerned peer pressure.

Bayesian Truth Serum
Figure 5A shows our findings using the Bayesian truth serum.
For example, 31% of the participants admitted to using the
practice of gift authorship, much higher than for the other
two scenarios. They expected that 40% of their colleagues did
the same but that only 42% would admit doing so, leading
to a Derived Prevalence Estimate of 73%. The conservative
(geometric) prevalence rate would then be 46%, 14% more than
the self-admission rate, comparable with the other two scenarios,
12, and 11%, respectively.
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FIGURE 5 | Bayesian truth serum Results of Study 3 (A) and Study 4 (B).

STUDY 4–INTERNATIONAL
REPLICATION STUDY

The goal of the fourth study was to replicate the experiments of
Study 3 and compute Bayes Factors for testing the replication
effect of the Bayesian truth serum questions.

Methods
Participants, Procedure, and Design
The Ph.D. candidates were from 3 Social Sciences faculties in
Belgium. We applied an identical procedure to Study 3. In

total, 127 Ph.D. candidates completed the questions for at least
one scenario. Descriptive statistics on the sample can be found
in Table 1.

Analytic Strategy
First, we computed a Bayes Factor similar to the Bayes Factor
we used in the previous sections to test the manipulation check
and experimental conditions (H0 = no effect). Second, we used
the Equality of Effect Size Bayes Factor (Bayarri and Mayoral,
2002), which provides direct support, or lack thereof (i.e., H0), to
whether the effect size found in the original study (Study 3) equals
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TABLE 3 | Results of the Bayesian test of replication where Original refers to Study 3 and Replication refers to Study 4.

Question Scenario Study Mean SD t BF1 BF2 BF3

Admission estimate Salami Original 28.10 32.45 12.18 4.51E + 22

Replication 36.54 31.19 13.20 2.69E + 22 5.30E + 22 0.67

Gift authorship Original 42.45 35.67 16.75 2.74E + 36

Replication 42.69 32.07 15.00 4.59E + 26 6.71E + 27 6.67

Excluding results Original 21.54 29.81 10.16 4.99E + 16

Replication 22.93 26.81 9.64 6.94E + 13 6.79E + 14 7.10

Prevalence estimate Salami Original 23.07 27.69 11.72 1.91E + 21

Replication 33.31 30.39 12.35 2.45E + 20 7.87E + 20 1.38

Gift authorship Original 40.48 34.78 16.38 2.11E + 35

Replication 42.19 29.96 15.87 4.63E + 28 3.12E + 29 2.16

Excluding results Original 22.58 27.47 11.57 6.48E + 20

Replication 29.44 29.52 11.24 5.05E + 17 3.96E + 18 4.65

BF1 refers to the Bayes Factor testing whether the estimate is zero or not. BF2 refers to the Bayes Factor Test for Replication Success. BF3 refers to the Equality of Effect
Size Bayes Factor.

the effect size found in the replication attempt (Study 4). Third,
we used the Bayes Factor Test for Replication Success (Verhagen
and Wagenmakers, 2014) which is a test of the null hypothesis
(H0 = no replication) versus the alternative replication hypothesis
(successful replication, Hrep). Annotated R-code to reproduce our
results can be found on the OSF (see text footnote 1).

Results
The overall percentage of participants who answered “yes, I
would try to publish” is shown in Table 2.

For the Supervisor and Data Transparency experiment, as
shown in Supplementary Appendix B, the manipulation check
worked, but, as before, we did not find an effect for the
experimental conditions; see Supplementary Appendix C for
detailed results. These results mean that the experimental
conditions did not result in differences in publishing behavior.

The Bayes truth serum results can be found in Figure 5B,
and the percentages are very similar to those of Study 3. Table 3
displays the results of testing for a replication effect. For both
studies and all three questions and scenarios, the Bayes Factors
show extreme support of the percentages not being zero (see the
results in the column titled BF1). The Bayes Factor for replication
success (BF2) also shows great support for replicating the effects
found in Study 3. The Equality of effect sizes Bayes Factor
(BF3) provides support for some combinations, for example,
the self-admission rate of the Salami slicing scenario with a
BF of 13.74 and observed percentages of 13.13–13.39 [note
that this Bayes Factor is typically much smaller (Verhagen and
Wagenmakers, 2014)]. For some other conditions, there is less or
even no support. In all, the percentages are pretty similar with
similar effect sizes.

GENERAL DISCUSSION

The scientific community is where early career researchers such
as Ph.D. candidates are socialized and develop their future norms
of scientific integrity. Although there are positive indications
in the public debate that QRPs are no longer acceptable, our

results show that an alarming percentage of Ph.D. candidates
still reported intentions to conduct fraud when under pressure,
even when asked about it in hypothetical scenarios where
social desirability is probably quite prevalent. QRPs can be a
sensitive topic that may lead to social desirability response bias
or untruthful responses (consciously or unconsciously), possibly
due to obedience to authority. We consider even one Ph.D.
candidate reporting intentions to commit fraud an alarming
number. The Bayesian truth serum results gave far higher
scores than the survey vignettes and are meant to be more
trustworthy. So, the qualitative data indicates that publication
pressure (surviving in academia) and supervisors’ norms seem to
drive the intention to conduct fraud.

Contrary to our expectations, and although the manipulation
checks were all successful, neither ethical leadership of the
senior/supervisor nor data transparency affected these vignettes
on the Ph.D. candidates’ intended publishing behavior. More
worrying, academic leaders–such as deans and heads of
departments—might have a blind spot for the pressure Ph.D.
candidates may experience to conduct QRPs or even fraud.
Academic leaders do not always have an accurate, up-to-date
perception of Ph.D. candidates’ willingness to engage in QRPs;
eight leaders put all their density mass on exactly 0%, see
Figure 5A in van de Schoot et al. (2021b). Some academic leaders
in this study underestimated the inclination of Ph.D. candidates
to conduct fraud or QRPs, although it must be said that some
experts overestimated the percentage. It appeared not easy to
predict such behavior but expecting it to be non-existent is
overly optimistic.

All in all, the pressure to conduct QRPs or even commit
fraud remains a significant problem for early-career scientists.
We should keep an open eye for the possibility that early
career researchers at least consider committing fraud when
under pressure clears the way for discussing such practices.
In this respect, it is imperative to inform senior academic
leaders that their estimates of QRPs occurrence may be off.
And although the awareness gap can go both ways in terms of
over and underestimating the probability Ph.D. candidates would
commit QRPs, it should be clear that underestimation could

Frontiers in Psychology | www.frontiersin.org 11 November 2021 | Volume 12 | Article 621547192

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-621547 November 24, 2021 Time: 6:10 # 12

van de Schoot et al. Questionable Research Practices to Survive in Academia

lead to more severe consequences in terms of scientific accuracy
and rigor. Supervisors should take the initiative in having open
discussions with the Ph.D. candidates in their department about
good scientific practice versus unethical behavior. Leaders in
general such as deans, vice-deans, heads of department, research
directors, and confidential counselors should develop policies to
address and prevent fraud and QRPs. It may seem an obvious
statement to many academics. Still, as the responses in the current
studies show, there are supervisors and academic leaders who do
not think QRPs are a problem when they clearly still are.

The applied studies’ strengths lay not only in the use
of innovative Bayesian methods, but external validity is also
supported using surveys and open answer formats, interviews, an
experiment, and conceptual replication. The analyses focused on
the quantitative aspects of the data to demonstrate the Bayesian
methods outlined in the aim of the manuscript. We have added a
report on the OSF (see text footnote 1) for interested readers with
the descriptive qualitative responses and frequencies.

Although we expect these results to be generalizable (as
supported by the replication study), the sample from Belgium
may share similarities to Netherlands samples. Generalization
to other countries and cultures will, of course, benefit from
additional research and further future replication. Another
limitation is the lack of a baseline condition without fraudulent
research practices. Future studies could include conditions or
scenarios without QRPs for comparison purposes. We also
did not evaluate potential differences in “trying to publish”
between Ph.D. candidates who reported encountering such QRP
scenarios and those who have not. Future research may benefit
by designing a study to examine whether experiencing these
situations results in fraud beliefs or publishing decisions versus
hypothetical scenarios.

In sum, supervisors, deans, and other faculty must keep in
mind that Ph.D. candidates can be under more pressure than they
realize and might be susceptible to using QRP.

CONCLUSION

More and more scientists have started to use Bayesian methods,
and we encourage researchers to use the full potential of Bayesian
methods. In this article, we demonstrated the application of
some less commonly applied Bayesian methods by showcasing
the use of expert elicitation, prior-data conflict tests, the
Bayes truth serum, and testing for replication effects. As
in all studies, many methodological and analytical decisions
were made. While this could be seen as a limitation, we
believe this is part of the transition toward Open Science.
Therefore, to enable reproducibility, we shared all the underlying
data and code following the FAIR principles: findability,

accessibility, interoperability, and reusability. We hope our
endeavor inspires other scientists to FAIR-ify their own work and
provide the opportunity for other researchers to evaluate other
alternative choices.
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