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This study examines the atrophy patterns in the entorhinal and transentorhinal cortices

of subjects that converted from normal cognition to mild cognitive impairment. The

regions were manually segmented from 3T MRI, then corrected for variability in boundary

definition over time using an automated approach called longitudinal diffeomorphometry.

Cortical thickness was calculated by deforming the gray matter-white matter boundary

surface to the pial surface using an approach called normal geodesic flow. The surface

was parcellated based on four atlases using large deformation diffeomorphic metric

mapping. Average cortical thickness was calculated for (1) manually-defined entorhinal

cortex, and (2) manually-defined transentorhinal cortex. Group-wise difference analysis

was applied to determine where atrophy occurred, and change point analysis was

applied to determine when atrophy started to occur. The results showed that by the

time a diagnosis of mild cognitive impairment is made, the transentorhinal cortex and

entorhinal cortex was up to 0.6 mm thinner than a control with normal cognition. A

change point in atrophy rate was detected in the transentorhinal cortex 9–14 years prior

to a diagnosis of mild cognitive impairment, and in the entorhinal cortex 8–11 years prior.

The findings are consistent with autopsy findings that demonstrate neuronal changes in

the transentorhinal cortex before the entorhinal cortex.

Keywords: transentorhinal, entorhinal, preclinical, cortical thickness, change point, diffeomorphometry

1. BACKGROUND

Evidence suggests that neuropathological changes of Alzheimer’s disease (AD) begin years before
the onset of clinical symptoms (Sperling et al., 2011). Accumulation of these neuropathological
changes is associated with neuronal injury, which can bemeasured indirectly by structural magnetic
resonance imaging (MRI) (Atiya et al., 2003; Kantarci and Jack, 2004). A number of MRI studies
have detected atrophy in the entorhinal cortex (ERC), hippocampus and amygdala associated with
clinical disease severity (Devanand et al., 2007; La Joie et al., 2012; Miller et al., 2015b) and years
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to AD dementia conversion (Atiya et al., 2003; Kantarci and
Jack, 2003). More recent MRI studies have focused on evidence
of atrophy that precede clinical symptoms (Jack et al., 2004;
Csernansky et al., 2005; den Heijer et al., 2006; Apostolova et al.,
2010; Dickerson et al., 2011; Miller et al., 2013; Soldan et al., 2015;
Pettigrew et al., 2016), often detecting these smaller changes using
time-series data analysis (Durrleman et al., 2012) and survival
analysis. These MRI biomarkers of AD-related atrophy prior to
manifestation of clinical symptoms are of interest because (1)
they may aid in assessing efficacy of therapeutic interventions
and (2) they may aid in the identification of populations that can
benefit from therapeutic intervention prior to clinical symptoms.

Braak’s staging of AD suggests that cortical accumulation
of neurofibrillary tangles starts in the transentorhinal cortex
(TEC), spreads medially to the ERC, and then involves the
hippocampus and amygdala (Braak and Braak, 1991; Braak et al.,
2006). Accumulation of tau pathology has been correlated with
changes in cognitive status in the presence of β-amyloid plaques
(Nelson et al., 2012), as well as with TEC atrophy as detected
in MRI (Xie et al., 2018). While relatively few MRI studies exist
on AD-related TEC changes (Tward et al., 2017b; Wolk et al.,
2017), our recent work demonstrated that subjects with mild
cognitive impairment (MCI) have increased baseline atrophy
and increased rate of atrophy compared to cognitively normal
controls, and that changes in the TEC had greater magnitude
than changes in the ERC, hippocampus, and amygdala (Kulason
et al., 2019). In addition, our group’s work on change point
analysis has demonstrated MRI-based shape metrics can detect
atrophy in the ERC earlier than hippocampal and amygdalar
atrophy (Younes et al., 2014). These changes precede clinical
symptoms by up to 10 years.

The evidence of MRI biomarkers that precede clinical
symptoms taken together with evidence of cortical AD-related
changes selectively occurring first in the TEC motivate a close
look at TEC atrophy over the preclinical stage of AD progression.
In this study, we aim to localize, both spatially and temporally,
MRI-based atrophy detection within the TEC and ERC by
examining subjects from two diagnostic groups: stable normal
cognition (NC), and NC to MCI converters.

2. METHODS

2.1. Data Collection
Subjects were selected from the ADNI database
(adni.loni.usc.edu). The criteria for stable NC included the
absence of a diagnosis of MCI or AD on all baseline and
follow-up visits, a CDR score of 0 on all baseline and follow-up
visits, evidence of performance within the normal range on
the Logical Memory Subtest of the Wechsler Memory Scale on
all baseline and follow-up visits (based on education adjusted
norms), and negative results for elevated amyloid β levels on the
baseline visit (greater than a cut off of 192 pg/mL from CSF as
established by the ADNI Biospecimen Core).

The criteria for NC to MCI converters included evidence of
performance within the normal range on the Logical Memory
Subtest of the Wechsler Memory Scale at baseline (based on
education adjusted norms), a CDR score of 0 on the baseline

TABLE 1 | Demographics (mean ± standard deviation where applicable).

Diagnostic group Stable NC NC to MCI

Sample size (n) 33 17

Baseline age (years) 72.3± 5.5 74.9± 5.3

Sex (% Female) 45.5 70.6

# of scans (years) 4.5± 0.6 4.6± 1.1

Scan period (years) 3.4± 1.1 2.9± 1.0

Clinical evaluation period (years) 5.3± 2.4 6.4± 3.7

exam, a diagnosis of NC at baseline, and a diagnosis of MCI or
dementia at a subsequent follow-up visit. Estimated MCI age-of-
onset was established based on annual assessment of diagnosis.
Note that subjects missing a diagnostic evaluation more than a
year prior to MCI diagnosis were excluded, and one subject with
an MCI diagnosis was also excluded due to a stable, high score
on the Logical Memory Subtest of the Weschler Memory Scale 5
years after diagnosis.

In addition, subjects had to have a minimum of three 3T MRI
scans over 2 or more years. Out of the 30 subjects that met all
criteria for NC toMCI converters, all subjects were examined and
17 had a continuous collateral sulcus (CoS) and were included in
this study (see section 2.2 for detailed explanation).We examined
a subset of available stable NC subjects to reach a total sample
size of 50. Out of the 84 subjects that met all criteria for stable
NC, 68 were examined and 33 had a continuous collateral sulcus
and were included in this study. The demographics of subjects
included in this study are summarized in Table 1. Two-sample
t-tests showed no significant diagnostic group differences by
age, number of scans, scan period, or clinical evaluation period.
Pearson chi-squared test showed no significant diagnostic group
difference by sex. Note that the clinical evaluation period is longer
than the scan period because the scan protocol was updated
in the ADNI 3 cohort to an accelerated scan sequence. These
accelerated scans were not included in this analysis.

2.2. Manual Segmentation and
Surface-Based Morphometry
As in previous projects (Tward et al., 2017b; Kulason et al.,
2019), we restricted the analysis to the left hemisphere and
excluded subjects with a discontinuous CoS in the defined region
of interest. There are several variants of the CoS to consider,
illustrated in Figure 1. The first variant is a deep, continuous
sulcus where the rhinal sulcus shares a sulcal bed with the
collateral sulcus proper. This variant has been referred to as
Type I CoS (Ding and Van Hoesen, 2010) and Type II/Type
III rhinal sulcus (Huntgeburth and Petrides, 2012). The second
variant is a discontinuous CoS where the collateral sulcus proper
begins posterior to the GI. This variant has been referred to
as a Type IIa CoS (Ding and Van Hoesen, 2010) and Type I
rhinal sulcus (Huntgeburth and Petrides, 2012). Finally, there is
a variant with a discontinuous CoS where the collateral sulcus
proper begins anterior to the GI, and therefore is excluded for
this study. This variant has been referred to as a Type IIb CoS
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FIGURE 1 | A coronal MRI section and corresponding surface of each CoS variant Type I (left), Type IIa (middle), and Type IIb (right). In Type IIb, the segmentation

was extended to the second CoS, also known as the collateral sulcus proper. The orientation of surfaces is as follows: anterior (top), posterior (bottom), medial (left),

lateral (right).

TABLE 2 | Distribution of collateral sulcus variants.

Type I Type IIa Type IIb

(continuous CoS) (discontinuous (discontinuous

posterior CoS) anterior CoS)

NC (n = 68) 21 (31%) 12 (18%) 35 (51%)

NC to MCI (n = 30) 13 (43%) 4 (13%) 13 (43%)

Total (n = 98) 34 (35%) 16 (16%) 48 (49%)

Type IIb CoS were excluded from this analysis.

(Ding and Van Hoesen, 2010) and also falls into the category for
Type I rhinal sulcus (Huntgeburth and Petrides, 2012). Table 2
categorizes the proportion of CoS variants prior to exclusion
of Type IIb. Previous work has shown there is a relationship
between CoS depth and the boundaries of the ERC and TEC with
respect to anatomical markers (Insausti et al., 1998). Briefly, in
a shallow CoS (< 1cm) the ERC extends to the deepest extent
of the CoS. In a regular CoS (between 1 and 1.5 cm), the ERC
extends to the midpoint of the medial bank of the CoS. In a deep
CoS (> 1.5cm) the ERC extends up to the CoS. In this subject set
we found that excluded Type IIb CoS subjects most often had a
shallow CoS, while the Type I and Type IIa variants included in
this study were of a regular to deep CoS type.

226 3T T1 MRI scans were used in this study. ERC and
TEC were segmented manually using Seg3D software (Center
for Integrative Biomedical Computing, 2016). We followed an
established procedure for segmentation and delineation of the
ERC and TEC (Tward et al., 2017b) that was based on anatomical
landmarks described near cytoarchitectonically-defined ERC
boundaries (Insausti et al., 1998; Ding and Van Hoesen, 2010).

The anterior boundary of the ERC and TEC were defined 4mm
anterior to the hippocampal head. Delineation of the ERC and
TEC anterior to this boundary is more complex and excluded
from this study. Earlier works suggest that the area anterior
to this region is a mix of ERC and perirhinal cortex (Insausti
et al., 1998), or olfactory cortex (Krimer et al., 1997), whereas
a more recent work suggests that this area is, in fact, part of
the ERC (Ding and Van Hoesen, 2010). The posterior boundary
for ERC and TEC was defined 2 mm posterior to the gyrus
intralimbicus (GI) (Insausti et al., 1998). The medial extent of the
ERC was defined as far as the gray/white boundary was visible.
This delineation excludes a small dorsal medial aspect of the ERC
that rests against the amygdala, and is similar to how other T1
MRI protocols delineate the ERC (Desikan et al., 2006; Maass
et al., 2015). The lateral extent of the ERC and medial extent of
the TEC was defined at the medial extent of the collateral sulcus
(CoS), as is found in a deep CoS (Insausti et al., 1998). The lateral
extent of the TEC was defined as being at the deepest extent of
the CoS, as is also found in a deep CoS (Ding and Van Hoesen,
2010).

Figure 2 shows a sample of ERC plus TEC surfaces generated
from manual segmentations. A population template for the ERC
plus TEC surface was calculated from these surfaces by taking
the average (Fréchet mean) diffeomorphism in a Bayesian setting
(Ma et al., 2008). Then, the segmentations were adjusted for
variability in boundaries over time by mapping the population
template simultaneously onto each scan of a time series (Tward
et al., 2017a). The result is a set of surfaces of the ERC plus TEC.

2.3. Surface Parcellation
Studies of this region have tended to use inconsistent
nomenclature. We mapped four atlases with commonly used
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FIGURE 2 | Sample of ERC plus TEC surfaces generated from manual segmentations (left) and the resultant population template (right). The orientation is as

follows: anterior (top), posterior (bottom), medial (left), lateral (right).

sub-regional labels onto our ERC plus TEC population template:
(1) manual labels of ERC and TEC based on cortical folding
seen in structural MRI (Tward et al., 2017b), (2) automated
labels of ERC and parahippocampal gyrus (PHG) based on
cortical folding seen in structural MRI (Desikan et al., 2006),
(3) labels of posterior medial ERC (pmERC), anterior lateral
ERC (alERC), and perirhinal cortex (PRC) based on connectivity
patterns seen in functional MRI after manual segmentation of
ERC in structural 7TMRI (Maass et al., 2015), and (4) histological
labels of intermediate superior ERC, intermediate rostral ERC,
intermediate caudal ERC, prorhinal ERC, medial rostral ERC,
medial caudal ERC, lateral ERC, sulcal ERC and TEC as identified
in an 11T ex vivoMRI (Krimer et al., 1997; Miller et al., 2015a).

Manual segmentation of ERC and TEC was performed on an
scan with a Type IIa CoS variant of regular depth (1.30 cm). To
generate labels from the Desikan-Killiany atlas, FreeSurfer 6.0
was run on the same scan. The functional MRI atlas was provided
on a subject with Type IIa CoS variant of regular depth (1.20
cm) (Maass et al., 2015). The ex vivo MRI atlas was provided
on a subject with a Type IIb CoS variant of shallow depth (0.75

cm). For each atlas, we manually segmented the ERC plus TEC
from the structural MRI following the same protocol as for our
subjects. In the ex vivo case, since the CoS was shallow, the TEC
was extended to the lateral bank of the CoS, as seen in histology
(Insausti et al., 1998; Ding and Van Hoesen, 2010). We then
mapped the atlas labels to the manually-defined ERC plus TEC
surface by linear interpolation. Finally, we mapped these surfaces
and their labels to the population template surface following the
LDDMM framework (Beg et al., 2005). The result was four sets
of labels, one from each atlas, on each vertex of the population
template surface.

The Desikan-Killiany atlas defined the anterior boundary of
ERC at the rostral end of the CoS; this was approximately 6 mm
anterior to the boundary defined in our protocol. The functional
MRI atlas defined the anterior boundary at the rostral end of the
amygdala, which coincided with our protocol’s boundary. The
anterior boundary on the ex vivoMRI atlas was 0.5 mm posterior
to our protocol’s boundary.

The Desikan-Killiany atlas defined the posterior boundary at
the caudal end of the amygdala. This excludes a posterior portion
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of the ERC that runs lateral to the hippocampal formation
(Krimer et al., 1997; Insausti et al., 1998; Ding and Van Hoesen,
2010). The functional MRI atlas defined the posterior boundary
as extending to the caudal end of the CoS. Since this atlas was a
Type IIa CoS variant, the caudal extent of the CoS coincided with
1.2 mm posterior to the GI, or one 0.6 mm slice anterior to our
protocol’s boundary. The posterior boundary of the ex vivo atlas
was 1.0 mm anterior to our protocol’s boundary.

The Desikan-Killiany atlas, functional MRI atlas, and our
protocol defined themedial boundary at the furthest extent where
gray/white boundary was visible. The ex vivo atlas included the
dorsal medial aspect of the ERC that borders the amygdala, a
border that is not always visible on 3T T1 MRI. An overlay of
the ex vivo atlas ERC partition and our protocol’s ERC plus TEC
partition highlights this difference as shown in Figure 3.

Finally, the Desikan-Killiany atlas defined the lateral extent
of entorhinal cortex as the most lateral extent of the CoS. This
boundary definition most closely followed that of a shallow CoS
variant (Insausti et al., 1998), often seen in Type IIb CoS that were
excluded from this study. The functional MRI atlas delineated the
ERC ending at the shoulder of the CoS, a definition that most
closely followed the boundary of a deep CoS variant (Insausti
et al., 1998). Our protocol also followed the delineation that
matches a deep CoS variant. Since the subjects included in this
study range from regular CoS depth (1.0–1.5 cm) to deep CoS
depth (> 1.5 cm), it is likely that our protocol may include a small
portion of the ERC within the TEC label.

2.4. Cortical Thickness
To calculate vertex-wise cortical thickness, we followed an
established procedure based on LDDMM (Ratnanather et al.,
2019). The ERC plus TEC surface was cut into two surfaces: the
pial surface and the gray matter-white matter boundary surface.
The gray matter-white matter boundary surface was deformed
to the pial surface within the LDDMM framework, with an
additional imposed constraint that the surface must flow in the
direction normal to its evolving surface. Cortical thickness was
then estimated as the distance along these trajectories. Average
ERC thickness and average TEC thickness were calculated as the
mean thickness across vertex labeled ERC and TEC, respected, as
mapped from the manual structural MRI atlas.

2.5. Group Difference Analysis
We tested where there were differences in shape measures by
diagnostic group. The log-linear mixed effects model under the
null hypothesis can be written as Equation (1) given a subject i,
scan j, and vertex k.

log(thickness)i,j,k = ak + bk agei,j + ck sexi + ei,k + ǫi,j,k (1)

The constants a, b, c, and the variance of 0-mean Gaussians e and
ǫ are estimated by maximum likelihood. e is the subject-specific
random effect, while age and sex (a binary indicator variable) are
fixed effects.

The log-linear mixed effects model under the alternative
hypothesis can be written as Equation (2).

log(thickness)i,j,k =ak + bkagei,j

+

(

a′k + b′k(agei,j − age_MCIonseti)
)

isMCIi

+ c sexi + ei,k + ǫi,j,k

(2)

isMCI is a binary indicator variable for whether a subject belongs
to the group that converted from NC to MCI, and age_MCIonset
is the age of MCI diagnosis. a′ is the mean difference in log
thickness at the time of MCI diagnosis for subjects that converted
from NC to MCI. b′ corresponds to the disease-related rate of
change in this group.

We tested whether the model under the alternative hypothesis
significantly fit the data better than the model under the null
hypothesis by using the likelihood ratio as a test statistic and
bootstrap resampling 10,000 samples. The bootstrapped samples
were constructed by sampling from whitened residuals under
the null hypothesis. We compared the likelihood ratio to the
distribution of likelihood ratios of the bootstrapped samples.
We corrected for multiple comparisons over the vertices by
using the maximum test statistic over all vertices for each set of
bootstrapped samples (Nichols and Hayasaka, 2003).We rejected
the null hypothesis when the true likelihood ratio was greater
than 95% of the bootstrapped likelihood ratios.

2.6. Change Point Analysis
We tested when a change in atrophy rate occurred with respect to
MCI diagnosis. Details for constructing and testing this change
point model are described in another work (Tang et al., 2017).
Here we provide a brief summary of the approach.

The log-linear mixed effects model under the null hypothesis
can be written as Equation (3) given a subject i, scan j, and
location k.

log(thickness)i,j,k = ak + bk agei,j + ck sexi

+dk age_MCIonseti + ei,k + ǫi,j,k (3)

The constants a, b, c, d, and the variance of 0-mean Gaussians
e and ǫ are estimated by maximum likelihood. e is the subject-
specific random effect, while age and sex (a binary indicator
variable) are fixed effects. Unlike in the group-wise difference
analysis, this model has only two locations in order to reduce
computational complexity: one for average ERC thickness, and
the other for average TEC thickness.

The model under the alternative hypothesis can be written as
Equation (4).

log(thickness)i,j,k =ak + bkagei,j

+ b′k(agei,j − (age_MCIonseti + 1))+

+ cksexi + dkage_MCIonseti + ei,k + ǫi,j,k

(4)

1 is the number of years from a diagnosis of MCI to the
change point in atrophy rate, and (age_MCIonseti + 1)+ =
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FIGURE 3 | Krimer subregions of ERC labeled on 11T ex vivo MRI (left). ERC plus TEC labeled on same MRI following protocol described in section 4.2 (right).

Overlay of segmentations (middle). The orientation is as follows: anterior (top), posterior (bottom), medial (left), lateral (right).

max(age_MCIonseti + 1, 0) is the number of years past the
change point. The constants a, b, c, d, and the variance of 0-mean
Gaussians e and ǫ are estimated by maximum likelihood over a
fixed 1 with yearly increments of 1 between −50 and 50 years.
The best candidate 1 is calculated from the posterior mean.

For stable NC subjects, we estimated MCI diagnosis from a
conditional probability distribution where the age of onset was
constrained to be after the last diagnostic evaluation, and drawn
from a Gaussian distribution with mean age ofµ1 = 93 years and
standard deviation of σ1 = 14.5 years. This distribution of MCI
diagnosis was estimated (Tang et al., 2017) using a set of 1, 000
subjects enrolled with normal cognition and a family history of
Alzheimer’s disease.

Since the subjects in this study were selected to meet
diagnostic group criteria and do not represent a random
sample over the progression of the disease, we re-weighted
the likelihood function by the distribution of stable NC
and NC to MCI converters expected if the subjects were
selected blind to diagnostic group. The subjects in the
ADNI database were enrolled to meet a set number of
subjects per diagnostic group, and as such, cannot be
used to estimate this distribution. Instead, we examined
the BIOCARD database, where subjects were enrolled
cognitively normal and followed for up to 22 years at time
we examined this database (biocard-se.org). This distribution
was calculated from a subset of subjects over 65 years of
age at their most recent follow-up visit. Specifically, the
proportion was 184/260 stable NC and 44/260 NC to
MCI converters.

We tested whether the model under the alternative hypothesis
significantly fit the data better than the model under the null
hypothesis using the likelihood ratio as a test statistic and
bootstrap resampling 1,000 samples. The bootstrapped samples
are constructed by sampling from whitened residuals under the
null hypothesis, with imputed values for age_MCIonset for stable
NC subjects.We compared the likelihood ratio to the distribution
of likelihood ratios of the bootstrapped samples and rejected the
null hypothesis when the likelihood ratio was greater than 95%
of the bootstrapped likelihood ratios. We used the maximum

test statistic over pairs of ERC and TEC statistics to control
family-wise error rate (Nichols and Hayasaka, 2003).

In the case where the null hypothesis was rejected, we
then determined the confidence interval for 1, b and b′ by
bootstrap resampling under the alternative hypothesis 1,000
times. The bootstrapped samples were constructed by sampling
from whitened residuals under the alternative hypothesis, with
imputed values for age_MCIonset for NC subjects. In the case
where the null hypothesis was rejected for both ERC and TEC
measures, we then calculated the probability that the change
point for TEC occurred before the change point for ERC based on
the change point 1 of each pair of bootstrapped samples under
the alternative hypothesis. This one-sided test was selected based
on histological evidence that changes occurred in the TEC before
the ERC (Braak et al., 2006).

3. RESULTS

3.1. Surface Parcellation
The results of the four atlas mappings onto the population
template surface are shown in Figure 4. Comparison of
the atlases highlight inconsistencies introduced by varying
nomenclature and CoS variant. The automated labels based
on cortical folding used by Desikan-Killany defined the ERC
extending into the CoS, a definition that matches a shallow CoS
variant. The atlas also excluded the posterior extent of the ERC.
In contrast, the functional MRI atlas defined the perirhinal cortex
(PRC), an area that includes the TEC, and separated this structure
from the ERC using a definition that matches a deep CoS variant.
Histologically-defined subregions of the ERC show yet another
popular parcellation of this region on a regular depth (1–1.5 cm)
CoS variant. Note how in this definition, the sulcal ERC extends
into the shoulder of the CoS. In this study, average ERC and
average TEC metrics were calculated based on the labels shown
in the manual structural labels (top left).

3.2. Cortical Thickness
Average cortical thickness of TEC and average cortical thickness
of ERC are plotted in Figure 5. The TEC is slightly thicker than
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FIGURE 4 | Manual structural labels (top left), automated structural labels (top right), functional labels (bottom left), histological labels (bottom right) mapped

onto the population template.

the ERC, which is in agreement with previous work (Kulason
et al., 2019). In both regions, organization by MCI diagnosis date
show cortical thickness measures decrease with progression of
the disease, and that the rate of cortical thinning is noticeably
steeper in NC to MCI converters than in stable NC subjects.

3.3. Diagnostic Group Difference Analysis
We rejected the null hypothesis with global p < 0.0001
and concluded that there was a difference in cortical thickness
between diagnostic groups. Figure 6 shows the difference in
atrophy and atrophy rate across all vertices. A summary of
average andmaximum atrophy/atrophy rates is shown inTable 3.
As the data demonstrates, at the time of MCI diagnosis,
individuals who had progressed to a diagnosis of MCI were as
much as 0.58 mm thinner in the ERC and 0.60 mm thinner in
the TEC. The additional atrophy rate in the participants who
progressed from NC to MCI was 2.96% per year in the ERC

on average and 2.43% per year in the TEC on average. This
is a notable increase from age-related atrophy which was, on
average, 0.68% per year in the TEC and 0.66% per year in the
ERC. In other words, the average total atrophy rate in NC to
MCI converters was 5.35 times greater in the ERC and 4.68 times
greater in the TEC compared to stable NC subjects.

3.4. Change Point Analysis
We rejected the null hypothesis and concluded that there was
a change point 9.02 years before MCI onset for the ERC (p <

0.001) and 10.69 years before MCI diagnosis for the TEC (p <

0.001). Prior to the change point, the atrophy rate was 0.35%/year
for the ERC and 0.34%/year for the TEC. After the change
point, the additional atrophy was 3.75%/year for the ERC and
2.58%/year for the TEC. The 95% confidence interval for the
parameters of interest are shown in Table 4. The ERC change
point in thickness occurred at or before the TEC change point
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FIGURE 5 | Average TEC thickness (top) and ERC thickness (bottom) plotted over age (left). Average TEC thickness (top) and ERC thickness (bottom) plotted

with respect to time from baseline scan for NC, and with respect to time from MCI onset for NC to MCI converters (right). Each line corresponds to a subject, the

color to a diagnostic group (stable NC, NC to MCI), and the marker border to sex (no border is male, bordered is female).

TABLE 3 | Summary of group-wise difference analysis by region.

ERC ERC TEC TEC

average max average max

Atrophy at

MCI diagnosis 0.25 mm

(8.46%)

0.58 mm

(16.54%)

0.23 mm

(7.63%)

0.60 mm

(17.34%)

MCI-related

Atrophy rate 2.96%/year 4.23%/year 2.43%/year 4.11%/year

age-related

Atrophy rate 0.68%/year 2.08%/year 0.66%/year 1.61%/year

in 3.75% of bootstrapped samples. We concluded that the TEC
change point preceded the ERC change point.

4. DISCUSSION

The first major finding of this study is that anterior regions of
the ERC and TEC were more than half a millimeter thinner (up
to 17% thinner) in NC to MCI converters at the time of MCI
diagnosis, and that disease-related atrophy was roughly 3% per
year. The evidence suggests that disease-related atrophy begins
prior to an MCI diagnosis in the anterior lateral region of ERC
and anterior region of TEC. This is in line with our previous study

TABLE 4 | 95% confidence interval (min, max).

Change point Age-related rate Disease-related rate

(years before MCI) (%/year atrophy) (%/year atrophy)

ERC thickness (7.63, 11.31) (0.07, 0.65) (3.03, 4.41)

TEC thickness (8.92, 13.80) (0.10, 0.56) (2.11, 3.08)

Change point, age-related rate, and disease-related rate correspond to the variables −1,

−b, and−b′, respectively. The disease-related rate is the additional rate seen post change

point.

that examined subjects after an MCI diagnosis, where we found
disease-related thickness atrophy was 5% atrophy per year in the
TEC and that MCI subjects were on average 23% thinner than
NC (Kulason et al., 2019). The 3% atrophy per year in NC toMCI
converters vs. 5% atrophy per year in subjects afterMCI diagnosis
may suggest that the atrophy rate increases with progression of
the disease from the preclinical to clinical stage.

The second major finding of this study is that there was a
change in the rate of ERC thickness atrophy 8–11 years prior
to MCI diagnosis, and a change in the rate of TEC thickness
atrophy 9–14 years before the diagnosis of MCI. The order of the
change points, TEC before ERC, is consistent with histological
report of neurofibrillary tau accumulation in this region (Braak
et al., 2006). The time of change point is consistent with a
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FIGURE 6 | Top left is the model of a 65-year-old, male, stable NC. Bottom left is the age-related atrophy rate. Top right is the difference in thickness at time of MCI

diagnosis in NC to MCI converters. Bottom right is the additional atrophy rate for NC to MCI converters.

previous study, which found changes in surface area of the
FreeSurfer-defined ERC 8–10 years prior to symptom onset
(Younes et al., 2014).

These findings emphasize the discrepancies in nomenclature
pertaining to the TEC and ERC. We showed how the Desikan-
Killiany atlas defined ERC beginning anterior to our protocol and
ending anterior to our protocol. Our protocol closelymatched the
anterior and posterior boundaries defined in the function MRI
atlas and ex vivo atlases. The Desikan-Killiany ERC extended
laterally into the CoS, which is accurate for shallow CoS common
variant in Type IIb CoS, and not as accurate for the regular and
deep CoS variants that were included in this study. The ex vivo
atlas, a subject with Type IIa CoS variant of regular depth, marked
the sulcal ERC lateral boundary shortly past the shoulder of the
CoS, which is consistent with cytoarchitectonically-defined ERC
in previous studies (Krimer et al., 1997; Insausti et al., 1998;
Ding and Van Hoesen, 2010). The functional MRI atlas and
Desikan-Killiany atlas chose not to define the TEC separate from

perirhinal cortex and fusiform gyrus, respectively. The 4 surface
parcellationsmapped to the same coordinate system highlight the
need for a standardized nomenclature of this region, much like
the work being done to standardize sub-regional boundaries of
the hippocampus (Adler et al., 2018; Olsen et al., 2019).

There are a number of strengths to this study. The subjects
were carefully selected to (1) follow a strict set of inclusion
criteria for diagnostic grouping, and (2) exclude subjects with
a discontinuous CoS within the region of interest. This was
done to reduce confounding factors introduced by other medical
conditions and natural variability in cortical folding. In addition,
scans were manually segmented to avoid errors introduced
by automated segmentation methods. Finally, the results were
put in the context of several atlases for broader interpretation
of findings.

There are also a few limitations to this study, the first being
a relatively small sample size. Accurate segmentations, which
have been performed manually for this study, are extremely
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time consuming. The ERC is particularly difficult to segment
automatically due to its proximity with the meninges and
oculomotor nerve. These neighboring structures are a similar
intensity to gray matter voxels in T1 scans. Some recent work has
been done to address this issue using automatic parcellation (Xie
et al., 2017); a future direction is to determine whether this type
of automated approach to segmentation affects ERC and TEC
metrics produced in this analysis.

Another limitation of this study is that the distribution of
samples is biased by diagnostic grouping. It is difficult to estimate
the true distribution of diagnostic groups because the ADNI
protocol selected subjects based on diagnosis and the follow-up
time varies. This is mitigated by the use of distribution estimates
calculated from the BIOCARD database.

In the future, this study can be extended to include shallow,
discontinuous CoS variants for detecting Alzheimer’s-related
changes. It is of interest to develop metrics of disease progression
that are robust to this natural variation in folding. Autopsy
studies have shown that subjects with a shallow, discontinuous
CoS have a TEC that begins at the deepest extent of the CoS
and extends out laterally, whereas deep, continuous CoS have a
TEC that begins at the shoulder of the CoS and extends only
to the deepest extent of the CoS (Insausti et al., 1998; Ding and
Van Hoesen, 2010). Therefore, a multi-atlas approach with CoS
variant-specific atlases may be desirable to delineate the ERC and
TEC accurately for a full population of subjects.

Finally, given the localization of tau to CA1 after initial
deposits along the boundary of TEC and ERC (Braak and
Braak, 1991), it is of interest to extend thickness analysis to this
region. Unfortunately, the CA1 subfield cannot be segmented
separately from the hippocampal formation in 3T T1 MRI.
Previous volumetric analysis of the hippocampus has shown 9%
atrophy in MCI subjects, compared to 27% volumetric atrophy
of ERC plus TEC in MCI subjects (Kulason et al., 2019). Previous
change point analysis of surface expansion/contraction metrics
have shown a hippocampal change point 2–4 years prior to
symptom onset, compared to 8–10 years prior to symptom onset
for a Desikan-Killiany defined ERC (Younes et al., 2014). As
more high resolution T2 MRI data become available, such as
with data being collected in the more recent ADNI 3 protocol,
it will be of interest to extend this thickness analysis to the
CA1 subfield.

This study provides strong evidence that TEC and
ERC thickness is a sensitive measure to progression to
the symptomatic phase of Alzheimer’s disease and that
disease-related atrophy begins to occur at least 9 years prior to a
clinical diagnosis of MCI.
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The transcriptome of non-coding RNA (ncRNA) species is increasingly focused in
Alzheimer’s disease (AD) research. NcRNAs comprise, among others, transfer RNAs,
long non-coding RNAs and microRNAs (miRs), each with their own specific biological
function. We used smallRNASeq to assess miR expression in the hippocampus of young
(3 month old) and aged (8 month old) Tg4-42 mice, a model system for sporadic AD,
as well as age-matched wildtype controls. Tg4-42 mice express N-truncated Aβ4-42,
develop age-related neuron loss, reduced neurogenesis and behavioral deficits. Our
results do not only confirm known miR-AD associations in Tg4-42 mice, but more
importantly pinpoint 22 additional miRs associated to the disease. Twenty-five miRs
were differentially expressed in both aged Tg4-42 and aged wildtype mice while eight
miRs were differentially expressed only in aged wildtype mice, and 33 only in aged
Tg4-42 mice. No significant alteration in the miRNome was detected in young mice,
which indicates that the changes observed in aged mice are down-stream effects
of Aβ-induced pathology in the Tg4-42 mouse model for AD. Targets of those miRs
were predicted using miRWalk. For miRs that were differentially expressed only in the
Tg4-42 model, 128 targets could be identified, whereas 18 genes were targeted by
miRs only differentially expressed in wildtype mice and 85 genes were targeted by
miRs differentially expressed in both mouse models. Genes targeted by differentially
expressed miRs in the Tg4-42 model were enriched for negative regulation of long-
term synaptic potentiation, learning or memory, regulation of trans-synaptic signaling
and modulation of chemical synaptic transmission obtained. This untargeted miR
sequencing approach supports previous reports on the Tg4-42 mice as a valuable
model for AD. Furthermore, it revealed miRs involved in AD, which can serve as
biomarkers or therapeutic targets.
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INTRODUCTION

MiRs are short non-coding RNAs that are heavily involved
in post-transcriptional regulation of gene expression through
targeting specific mRNAs (Bartel, 2004). The miR transcriptome
(miRNome) includes all miR species and renders a profile of
gene regulation at the studied time point and location. Altered
miR expression profiles therefore provide information not only
about the miRs themselves, but also about their target genes
and, hence, the regulated processes. As miRs have already been
implicated in neurodevelopment and brain aging, as well as in
synapse function and cognitive performance, in both, health and
disease (Salta and De Strooper, 2012, 2017b), this information
can pinpoint mechanisms involved in the molecular pathogenesis
of Alzheimer’s disease (AD). Furthermore, miRs can easily be
targeted by artificial oligonucleotides to influence gene regulation
for therapeutic processes (Roshan et al., 2009). Hence, miRNome
profiling ultimately promotes the search for new biomarkers
and therapeutics.

Next-generation sequencing (NGS) of the miR pool offers an
unbiased technical approach to identify the miR signature of
cells, tissues or organs. Previous reports have demonstrated the
power of NGS to unravel the molecular profile of pathological
alterations in neurodegenerative diseases like AD (Twine et al.,
2011). Differentially expressed genes (DEGs) were identified by
RNASeq of young, and aged Tg4-42 mice in comparison with
5XFAD mice, another AD mouse model (Bouter et al., 2014).
Many of the DEGs specifically found in the 5XFAD model
belong to neuroinflammatory processes typically associated with
plaques. Other DEGs were found in both AD mouse models
indicating common disease pathways associated with behavioral
deficits and neuron loss. The 5XFAD model develops early
plaque formation, intraneuronal Aβ aggregation, neuron loss,
and behavioral deficits (Oakley et al., 2006; Jawhar et al., 2012).
As such the 5XFAD model is widely used in the AD field.
High-throughput RNASeq analysis of young 5XFAD mice, e.g.,
identified DEGs in the frontal cortex mainly associated with
cardiovascular disease and DEGs in the cerebellum mainly
associated with mitochondrial dysfunction (Kim et al., 2012).

A plethora of previous publications discuss miRs as potentially
involved in the pathogenesis of AD and/or as putative
biomarkers for AD including several systematic assessments of
the importance of miRs in this disorder [reviewed for example
by Salta and De Strooper (2012, 2017b), Angelucci et al. (2019),
Wang et al. (2019)]. Notably, the expression of miR-338-5p
was significantly down-regulated in the hippocampus of patients
with AD and 5XFAD transgenic mice (Qian et al., 2019). The
expression of miR-146a correlated with plaque load and synaptic
pathology in Tg2576 and in 5XFAD mice (Li et al., 2011).

We have performed NGS of the miRNome of the
hippocampus of young (3 month old) and aged (8 month
old) Tg4-42 mice, which represent a unique model for sporadic
AD. The Tg4-42 model expresses only wildtype non-mutant
Aβ4–42 and develops at the age of 8 months, severe neuron loss
and hippocampus-related behavioral deficits (Bouter et al., 2013).
At 3 months of age, Tg4-42 mice show reduced neurogenesis
(Gerberding et al., 2019) and synaptic hyperexcitability

(Dietrich et al., 2018), which represents an early sign of AD-
typical alteration. Reduced glucose metabolism detected by
FDG-PET in vivo imaging (Bouter et al., 2019) correlates well
with the observed neuron loss and neurological deficits at

FIGURE 1 | Genotyp-specific expression of miRs with significantly altered
expression level during aging. Volcano plot comparison of the fold changes
and values of miR expression in WT (A) and Tg4-42 (B) mice. The vertical
lines correspond to 2-fold up and down, respectively, and the horizontal line
represents a p-value of 0.05. (C) miRs in hippocampus of young (3 month old)
and aged (8 month old) Tg4-42 and WT mice. Total number of significantly
altered miR expression levels between 3 and 8 months of age n = 58; 8 in WT,
33 in Tg4-42 and 25 in both WT and Tg4-42 mice.
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FIGURE 2 | Box plots of significantly altered miRs in hippocampus of young (3 month old; 3m) and aged (8 month old; 8m) Tg4-42 and WT.

8 months of age (Bouter et al., 2013). The aim of the current
study was to identify miRs and their targets to unravel molecules
and processes triggered by AD-typical memory deficits and
hippocampal neuron death. Therefore, we compared the age
of 3 months (prior to neuron loss and neurological alterations)
with the age of 8 months (after onset of neuron loss and
neurological alterations).

MATERIALS AND METHODS

Transgenic Mice
We used the transgenic mouse lines Tg4-42 kept on the C57Bl/6J
genetic background. Tg4-42 mice express human Aβ4−42 fused to
the murine TRH signal peptide under the control of the neuronal
Thy-1 promoter (Bouter et al., 2013). Young (3 month) and aged
(8 month) Tg4-42 and age-matched wildtype control mice (WT,
C57BL/6J) were studied. All animals were handled according to
the German guidelines for animal care. All efforts were made to
minimize suffering and the number of animals used for this study.

Tissue Harvesting
Mice were sacrificed via CO2 anaesthetization followed by
cervical dislocation. Brain hemispheres were carefully dissected

and the hippocampus removed, frozen on dry ice and stored at
−80◦C for subsequent use.

Small RNA Next-Generation Sequencing
Small RNA-isolation was performed using the miRVana
miRNA Isolation Kit (Life Technologies) according to
the manufacturer’s instructions. For library preparation,
we used the Ion Total RNA-Seq Kit v2 for Small RNA
Libraries (Life Technologies) for sequencing on an Ion
PGM system (Thermo Fisher Scientific) running Torrent
Suite software 5.12.1., again following the instructions of
the manufacturer. STAR v2.6.0a with default parameters
was used to map the reads to the GRCm38 (mm10) mouse
assembly (Dobin et al., 2013). Afterward, read counts per
feature were determined with HTSeq v0.10.0 (Anders et al.,
2015). Bam files were submitted to the European Nucleotide
Archive1 with the accession identification number of the
project PRJEB39314.

Differential Expression Analysis
During quality control of the mapped data, RNAs with less
than 10 readcounts across all samples were excluded and

1https://www.ebi.ac.uk/ena
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TABLE 1 | MiRs significantly altered in hippocampus between 3 and 8 month-old exclusively in Tg4-42 mice.

Expression References

miR-107 −0.7 Wang W.X. et al., 2011; Shu et al., 2018

miR-125a −1.2 Ifrim et al., 2015

miR-125b-1 −1.4 Banzhaf-Strathmann et al., 2014; Lardenoije et al., 2015; Lu et al., 2017; Salta and De Strooper, 2017b; Elliott et al.,
2018; Jin et al., 2018; Ottaviani et al., 2019

miR-129-1 −0.7

miR-129-2 −0.9 Strickland et al., 2011

miR-132 −2.5 Majer et al., 2012; Freischmidt et al., 2013; Bicker et al., 2014; Essandoh et al., 2016; Tasaki et al., 2018

miR-138-2 −1.0 Boscher et al., 2019

miR-139 −1.4 Noh et al., 2014; Lardenoije et al., 2015; Salta and De Strooper, 2017b

miR-154 −0.9

miR-15b −1.2

miR-181c −0.8 Lardenoije et al., 2015; Villela et al., 2016

miR-185 −0.6 Forstner et al., 2013; Wen et al., 2018

miR-219-2 −0.8

miR-298 −1.0

miR-29a −0.8 Bettens et al., 2009

miR-30e −0.7 Margis et al., 2011; Lardenoije et al., 2015; Salta and De Strooper, 2017b

miR-323 −1.1 Che et al., 2019

miR-338 −0.6 Chun et al., 2017

miR-345 −0.8 Freiesleben et al., 2016; Wei et al., 2020

miR-34a −1.5 Sun et al., 2018

miR-369 −0.9 Serpente et al., 2011

miR-381 −1.2 Li et al., 2020

miR-409 −1.1 Liu et al., 2019

miR-411 −1.1

miR-500 −0.8

miR-541 −0.9 Zhang et al., 2011

miR-674 −1.3 Lardenoije et al., 2015; Salta and De Strooper, 2017b

miR-7-2 −1.3

miR-92b +0.6

miR-let7b −1.2 Lehmann et al., 2012; Derkow et al., 2018

miR-let7d −0.7 Singh et al., 2018

miR-let7e −1.0 Derkow et al., 2018

miR-let7i −0.9

References are given for known links to Alzheimer’s disease, other neurodegenerative disorders and/or brain function. Supplementary Table S1 shows the entire list of
miRs level changes. Decreased expression level at 8 month of age, −; increased expression level at 8 month of age, +.

technical replicates were collapsed after heatmap inspection
(Supplementary Figure S1). Transcripts with less than 10 reads
across all remaining samples were discarded. The heatmap in
Supplementary Figure S1 was compiled with variance-stabilized
data, while the differential expression analyses were conducted
on the raw count data, due to DESeq2’s statistical model (Love
et al., 2014). The comparisons were done across contrasts
corresponding to the age groups or the genotypes, respectively.
Correction for multiple testing was done via independent
hypothesis weighting as implemented in DESeq2 (Love et al.,
2014), and a result was deemed significant if FDR <0.05."

MiR Target and Overrepresentation
Analysis
For the target mining of differentially expressed miRs
(FDR<0.05) we used miRWalk version 3 (Sticht et al., 2018),

which uses a random forest based algorithm, and TarPmiR
(Ding et al., 2016), to predict possible miR targets. It also
allows to compare the results with the predictions of other
target mining algorithms such as TargetScan (Agarwal
et al., 2015) and miRDB (Chen and Wang, 2020), as well
as validated interactions from miRTarBase (Chou et al.,
2018). Only gene targets that were confirmed by at least
two of these databases were considered for the further
analysis to minimize false positives. The analysis required
unique miR names mapped to the specific strand. Hence, we
used both miR-3p and miR-5p, if available. The identified
targets were then used to conduct a Gene Ontology (GO)
(Rigden and Fernandez, 2018) overrepresentation analysis
with the PANTHER algorithm (Mi et al., 2019) relying
on the GO release of December 9th, 2019, to check for
biological processes that are targeted by the differentially
expressed miRs.
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RESULTS

NGS of Non-coding RNAs in Mouse
Hippocampus
Small RNASeq yielded 761,373 and 1,054,109 raw sequence
reads for young and old wildtype (WT) mouse hippocampi,
respectively. For young WT mice on average 160,723 reads
(n = 4; on average 84% of raw reads) and for old WT mice
213,338 reads (n = 4; on average 81% of raw reads) per
animal were mapped.

For Tg4-42 mice a total of 758,968 (4 young animals) and
2,252,799 (4 old animals, each sequenced twice) raw reads were
produced. In young Tg4-42 mice, mapping was successful for
on average 160,808 reads per sample (on average 85% of raw
reads) and for old Tg4-42 mice on average 449,797 mapped reads
per animal (224,899 reads per sample; on average 80% of raw
reads) were obtained.

Analyses of miRs at 3 and 8 Months of
Age in Tg4-42 and Wildtype Mice
In order to demonstrate the expression and significant
distribution of identified miRs volcano plots were created
(Figures 1A,B). In total, 237 miRs were detected. There
was a significant change in expression of 58 miRs observed
between young and aged Tg4-42, as well as between
young and aged WT mice (Figure 1C). No significant
differences were observed across genotypes within an age
group (data not shown). Of 33 differentially expressed
miRs exclusively found in aged Tg4-42 mice, some were
reported to be association with AD. The remaining miRs
could now be associated with an AD-typical mouse model
for the first time. Figure 2 demonstrates the levels of all
miRs with a significantly altered expression level between
3 and 8 months of age either in Tg4-42, WT or in both.
In aged Tg4-42 mice, mostly decreased levels of miRs have
been observed.

Table 1 lists references for known links to AD, other
neurodegenerative disorders and/or brain function. Five miRs

TABLE 2 | MiRs significantly altered in hippocampus between 3 and 8 month-old
exclusively in wildtype mice.

Expression References

miR-100 −1.1 Lu et al., 2017; Elliott et al.,
2018; Ottaviani et al., 2019

miR-1298 −1.9

miR-153 +1.2 Gui et al., 2015

miR-191 −0.7 Smith et al., 2010

miR-34b −1.5

miR-423 +1.0

miR-666 −1.4

miR-667 +1.6

References are given for known links to Alzheimer’s disease, other
neurodegenerative disorders and/or brain function. Supplementary Table S1
shows the entire list of miRs level changes. Decreased expression level at 8 month
of age, −; increased expression level at 8 month of age, +.

identified in aged WT mouse brain were increased and four
decreased during aging (Table 2). MiRs found in both Tg4-
42 and WT hippocampi were decreased during aging, only
one was increased (Table 3). The GO annotation analysis of
predicted miR targets in Tg4-42 revealed that reduced long-
term synaptic potentiation, learning or memory, regulation of
trans-synaptic signaling and modulation of chemical synaptic
transmission obtained top scores (Figure 3A). None of these
annotations were overrepresented in WT mice (Figure 3B).
The GO analysis of predicted miR targets in either Tg4-42
or WT mice or both elicited also other cellular components
(Table 4), molecular functions (Table 5) and biological
processes (Table 6).

DISCUSSION

We performed NGS of the miRNome of the hippocampus
of Tg4-42 mice, a model for sporadic AD. We assessed the
pool of miRs before and after onset of AD-typical changes
like gliosis, reduced glucose uptake into the brain, neuron

TABLE 3 | MiRs significantly altered in hippocampus between 3 and 8 month-old
wildtype mice and Tg4-42 mice.

Expression
In WT mice

Expression
In Tg4-42 mice

References

miR-127 −1.1 −0.7 Essandoh et al., 2016

miR-128-1 −1.7 ↓ 1.2 Tiribuzi et al., 2014

miR-128-2 −1.4 −1.5

miR-130a −1.9 −1.3 Zhao et al., 2014

miR-138-1 −0.9 −0.8 Lin et al., 2018

miR-140 −0.9 −1.0

miR-150 −1.8 −1.0 Punga et al., 2015

miR-204 −1.0 −2.3 Cammaerts et al., 2015

miR-212 −1.7 −0.8 Wang W.X. et al., 2011

miR-221 −1.3 −1.0 Seeley et al., 2018

miR-222 −0.6 −1.0 Wang et al., 2015;
Seeley et al., 2018

miR-23a −1.9 −2.6 Fenoglio et al., 2016

miR-23b −1.0 −0.7

miR-300 −1.0 −0.5 Li et al., 2018

miR-30a −1.1 −0.7 Sun et al., 2016

miR-30d −0.6 −0.6

miR-3102 +1.2 +1.3

miR-328 +0.7 +1.8

miR-329 −1.3 −1.0 Urdinguio et al., 2010

miR-34c −1.0 −1.2 Haramati et al., 2011

miR-382 −1.1 −1.1 Song et al., 2017

miR-434 −1.2 −1.3

miR-877 +0.8 +1.5 Zhao et al., 2020

miR-99a −0.8 −1.3 Bras et al., 2018

miR-99b −0.7 −0.9 Cao et al., 2017

References are given for known links to Alzheimer’s disease, other
neurodegenerative disorders and/or brain function. Supplementary Table S1
shows the entire list of miRs level changes. Decreased expression level at 8 month
of age, −; increased expression level at 8 month of age, +.
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TABLE 4 | GO annotation and pathway enrichment analysis of predicted miR targets on Cellular Components.

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

Significant in Tg4-42 and WT

1 GO:0000785 Chromatin 2.24E-02 16 13 3.17E-02 11 9

2 GO:0005622 Intracellular 1.08E-04 161 34 8.21E-03 82 18

3 GO:0043231 Intracellular membrane-bounded organelle 3.51E-03 125 31 2.96E-02 66 18

4 GO:0043229 Intracellular organelle 1.18E-02 137 33 3.75E-02 73 18

5 GO:0005634 Nucleus 8.52E-03 89 30 1.56E-02 52 17

6 GO:0043226 Organelle 4.61E-03 142 33 8.78E-03 76 18

Significant in Tg4-42 only

1 GO:0110165 Cellular anatomical entity 1.11E-02 189 35 2.87E-01 93 19

2 GO:0005694 Chromosome 4.53E-02 23 15 2.32E-01 13 9

3 GO:0043227 Membrane-bounded organelle 3.42E-03 132 32 7.72E-02 68 19

4 GO:0098794 Postsynapse 2.73E-02 18 10 9.06E-01 8 7

5 GO:0032991 Protein-containing complex 9.02E-03 76 26 1.00E+0 34 12

6 GO:0045202 Synapse 4.25E-03 31 15 1.00E+0 12 7

7 GO:0097060 Synaptic membrane 2.43E-02 14 7 1.00E+0 5 4

Significant in WT only

1 GO:0031981 Nuclear lumen 1.65E-01 54 24 3.20E-02 35 13

Benjamini–Hochberg False Discovery Rate (FDR).

loss and loss of reference memory (Bouter et al., 2013, 2019;
Dietrich et al., 2018; Gerberding et al., 2019). The Tg4-42
mouse model is one of few mouse models developing neuron
death in the CA1 region of the hippocampus (Bayer and
Wirths, 2014), as such it might provide a powerful tool for
preclinical drug testing and identification of the underlying
molecular pathways driving AD pathology. The difference of
diverse miR levels between 3 and 8 months of age in Tg4-
42 elicits the AD-typical effects after onset of neuron loss and
behavioral deficits. We cannot draw any conclusion on the
difference in miR levels in aged mice, as the normal lifespan is
at least 24 months.

At least 1% of the human genome encodes miR and
every miR can regulate up to 200 mRNAs suggesting that
dysregulation of miR expression could be associated with several
human pathological conditions including central neurological
disorders (Angelucci et al., 2019). In addition to NGS of
the miRs, we have performed a search for the targets
of identified miRs using state-of-the-art bioinformatics and
addressed the question whether the affected processes are
meaningful in the context of known AD-typical changes in the
Tg4-42 mouse model.

MiRs Identified in the Hippocampus of
8 Month Old Tg4-42 Mice
A total of 33 miRs were altered in the hippocampus between
3 and 8 month-old exclusively found in Tg4-42 mice. All but
one was significantly decreased at the age of 8 months. Some
of the miRs identified were already linked to AD pathology,
while others could be associated to AD for the first time. In
gray matter of the brain of patients with AD, down-regulation

of a set of miRs (including several miR-15/107 genes and miR-29
paralogs) correlated strongly with the density of amyloid plaques.
MiR-212 was found decreased in white matter, whereas miR-
424 was upregulated in AD (Wang A. et al., 2011). Expression
of miR-107 and BACE1 mRNA correlated with alterations in
brain pathology in individuals with mild cognitive impairment
(Wang et al., 2016). MiR-107 reversed the impairments of spatial
memory and long-term potentiation caused by intraventricular
injection of Aβ1−42 (Shu et al., 2018). MiR-125a may have a role in
regulating the translation of PSD-95 mRNA. Impairments in the
local synthesis of PSD-95, important for synaptic structure and
function, may affect dendritic spine development and synaptic
plasticity in fragile X syndrome (Ifrim et al., 2015). MiR-125b-
1 induced tau hyperphosphorylation and cognitive deficits in
AD (Banzhaf-Strathmann et al., 2014), may be involved in
the regulation of inflammatory factors and oxidative stress by
SphK1 (Jin et al., 2018). It has been found to be associated
with other neurodegenerative diseases as well (Lardenoije et al.,
2015; Salta and De Strooper, 2017b). TGF-β induced miR-
100 and miR-125b (Ottaviani et al., 2019). MiR-100 and miR-
125b coordinately suppress Wnt/b-catenin negative regulators,
thereby increasing Wnt signaling (Lu et al., 2017). A pathogenic-
positive feedback loop has been identified in which Aβ induced
Dickkopf-1 expression activating non-canonical Wnt signaling,
promoting synapse loss and enhancing Aβ production (Elliott
et al., 2018). MiR-129-2 was reported to be down-regulated in
spinal cord (Strickland et al., 2011). MiR-132 is involved in
synaptic plasticity (Bicker et al., 2014) and may be associated with
TDP-43 binding in amyotrophic lateral sclerosis (Freischmidt
et al., 2013). Prion-infected hippocampal neurons elicited altered
expression of miR-132 (Majer et al., 2012) and have been
discussed to play an important role in inflammation control
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TABLE 5 | GO annotation and pathway enrichment analysis of predicted miR targets on Molecular Function.

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

Significant in Tg4-42 and WT

1 GO:0005488 Binding 9.51E-05 159 36 1.22E-02 79 20

2 GO:0035326 cis-regulatory region binding 1.46E-03 20 15 2.17E-02 12 10

3 GO:0000987 cis-regulatory region sequence-specific DNA binding 1.35E-03 20 15 2.16E-02 12 10

4 GO:0003677 DNA binding 2.45E-04 42 21 1.69E-02 24 14

5 GO:0000981 DNA-binding transcription factor activity, RNA polymerase II-specific 2.35E-04 25 17 1.56E-02 14 11

6 GO:1901363 Heterocyclic compound binding 1.10E-03 75 28 2.48E-02 39 16

7 GO:0003676 Nucleic acid binding 1.08E-03 53 24 2.41E-02 29 16

8 GO:0097159 organic cyclic compound binding 1.62E-03 75 28 3.45E-02 39 16

9 GO:0005515 Protein binding 4.25E-06 128 33 3.60E-04 67 16

10 GO:0001067 regulatory region nucleic acid binding 5.16E-04 26 19 1.45E-02 15 12

11 GO:0000978 RNA polymerase II cis-regulatory region sequence-specific DNA binding 1.15E-03 20 15 2.09E-02 12 10

12 GO:0001012 RNA polymerase II regulatory region DNA binding 4.73E-04 25 18 2.00E-02 14 11

13 GO:0000977 RNA polymerase II regulatory region sequence-specific DNA binding 4.59E-04 25 18 1.99E-02 14 11

14 GO:0043565 sequence-specific DNA binding 1.03E-03 29 18 1.47E-02 18 12

15 GO:1990837 sequence-specific double-stranded DNA binding 1.24E-03 25 18 2.95E-02 14 11

16 GO:0008134 Transcription factor binding 1.06E-02 19 11 3.04E-02 12 6

17 GO:0140110 Transcription regulator activity 1.25E-04 36 20 1.77E-02 19 12

18 GO:0044212 Transcription regulatory region DNA binding 5.32E-04 26 19 1.73E-02 15 12

19 GO:0000976 Transcription regulatory region sequence-specific DNA binding 6.36E-04 25 18 2.27E-02 14 11

Significant in Tg4-42 only

1 GO:0001216 DNA-binding transcription activator activity 3.00E-02 14 10 7.50E-02 9 7

2 GO:0001228 DNA-binding transcription activator activity, RNA polymerase II-specific 2.92E-02 14 10 7.85E-02 9 7

3 GO:0003700 DNA-binding transcription factor activity 1.06E-04 30 18 7.46E-02 14 11

4 GO:0140297 DNA-binding transcription factor binding 1.14E-02 13 8 7.67E-02 8 5

5 GO:0001217 DNA-binding transcription repressor activity 1.10E-02 11 8 1.00E+0 4 4

6 GO:0001227 DNA-binding transcription repressor activity, RNA polymerase II-specific 1.14E-02 11 8 1.00E+0 4 4

7 GO:0003690 Double-stranded DNA binding 1.30E-03 26 18 6.18E-02 14 11

8 GO:0043167 Ion binding 1.17E-02 77 30 8.46E-01 37 16

9 GO:0019904 Protein domain specific binding 4.26E-03 21 14 1.00E+0 6 4

Benjamini–Hochberg False Discovery Rate (FDR).

(Essandoh et al., 2016). MiR profiling in the human brain has
revealed miR-132 as one of the most severely down-regulated
miRs at the intermediate and late Braak stages of AD, as well
as in other neurodegenerative disorders (Salta and De Strooper,
2017a). MiR-132 has been implicated in synaptic plasticity
together with miR-134 and miR-138 (Bicker et al., 2014).
Duplication of the miR-138-2 locus was observed exclusively
in early onset AD cases and miR-138 overexpression in vitro
induced Aβ production and tau phosphorylation (Boscher
et al., 2019). Interestingly, levels of miR-132 and miR-138-2
were significantly decreased in aged Tg4-42 mice indicating
that dendritic mRNA transport and local translation in the
postsynaptic compartment play an important role in synaptic
plasticity, learning and memory (Bicker et al., 2014) in this
model system for AD. In vitro Aβ treatment increased the
expression of miR-139 targets (Noh et al., 2014), and has been
found to be associated with other neurodegenerative diseases
(Lardenoije et al., 2015; Salta and De Strooper, 2017b). MiR-
181c correlated with genome-wide DNA methylation changes

of ncRNAs in patients with AD (Villela et al., 2016), and
is involved in epigenetics of aging and neurodegeneration
(Lardenoije et al., 2015). Overexpression of miR-185 inhibits
autophagy and apoptosis of dopaminergic neurons by regulating
the AMPK/mTOR signaling pathway in Parkinson’s disease
(Bicker et al., 2014). The 22q11.2 deletion is a known genetic
risk factor for schizophrenia and mouse models of 22q11.2DS
have demonstrated down-regulation of miR-185 in key brain
areas of affected individuals. This reduction was associated
with dendritic and spine development deficits in hippocampal
neurons (Freischmidt et al., 2013). Association studies in the
3′UTR of BACE1 and the miR-29 gene cluster did not identify an
association with AD. A weak statistical interaction was observed
between rs535860 (BACE1 3′UTR) and rs34772568 (near miR-
29a). The authors concluded a major contribution of this miR
(Bettens et al., 2009). MiR-30a has been found to be associated
with Parkinson disease (Margis et al., 2011) as well as Huntington
disease (Lardenoije et al., 2015; Salta and De Strooper, 2017b).
MiR-338-3p depletion has been shown to be important for
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TABLE 6 | GO annotation and pathway enrichment analysis of predicted miR targets on Biological Process.

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

Significant in Tg4-42 and WT

1 GO:0048856 Anatomical structure development 1.05E-05 85 32 2.28E-02 42 14

2 GO:0048646 Anatomical structure formation involved in morphogenesis 1.83E-02 21 11 2.61E-03 16 8

3 GO:0009653 Anatomical structure morphogenesis 8.34E-05 46 22 4.24E-05 30 12

4 GO:0048513 Animal organ development 1.22E-03 53 24 5.78E-03 31 12

5 GO:0007420 Brain development 1.59E-03 19 11 2.81E-03 13 6

6 GO:0000902 Cell morphogenesis 4.41E-02 17 11 3.64E-02 12 7

7 GO:0032989 Cellular component morphogenesis 3.30E-02 19 12 1.17E-02 14 8

8 GO:0016043 Cellular component organization 8.48E-05 80 24 5.23E-03 43 11

9 GO:0071840 Cellular component organization or biogenesis 1.67E-04 81 24 6.33E-03 44 11

10 GO:0007417 Central nervous system development 1.44E-02 20 12 3.08E-02 13 6

11 GO:0048598 Embryonic morphogenesis 2.44E-02 16 12 2.65E-03 13 8

12 GO:0007167 Enzyme linked receptor protein signaling pathway 2.72E-03 17 12 3.38E-03 12 6

13 GO:0060322 Head development 3.91E-03 19 11 5.83E-03 13 6

14 GO:0007275 Multicellular organism development 1.30E-04 77 29 4.27E-03 42 14

15 GO:0009890 Negative regulation of biosynthetic process 3.09E-05 37 23 4.01E-02 18 12

16 GO:2000113 Negative regulation of cellular macromolecule biosynthetic process 3.14E-05 35 22 4.08E-02 17 12

17 GO:0010629 Negative regulation of gene expression 1.15E-05 39 23 1.61E-02 20 13

18 GO:0010605 Negative regulation of macromolecule metabolic process 2.61E-05 50 23 4.26E-02 25 13

19 GO:0051172 Negative regulation of nitrogen compound metabolic process 2.58E-05 48 22 4.97E-02 23 12

20 GO:1903507 Negative regulation of nucleic acid-templated transcription 8.74E-05 31 20 2.82E-02 16 11

21 GO:0045934 Negative regulation of nucleobase-containing compound metabolic process 3.80E-05 35 20 1.84E-02 18 11

22 GO:1902679 Negative regulation of RNA biosynthetic process 8.73E-05 31 20 2.80E-02 16 11

23 GO:0051253 Negative regulation of RNA metabolic process 5.03E-05 33 20 2.14E-02 17 11

24 GO:0045892 Negative regulation of transcription, DNA-templated 8.63E-05 31 20 2.76E-02 16 11

25 GO:0007399 Nervous system development 1.52E-03 43 20 2.46E-02 24 10

26 GO:0048518 Positive regulation of biological process 9.98E-07 97 30 7.35E-05 52 15

27 GO:0009891 Positive regulation of biosynthetic process 4.06E-05 42 22 4.52E-05 27 12

28 GO:0031328 Positive regulation of cellular biosynthetic process 2.76E-05 42 22 3.37E-05 27 12

29 GO:0031325 Positive regulation of cellular metabolic process 9.67E-07 64 28 1.12E-05 38 14

30 GO:0048522 Positive regulation of cellular process 7.16E-07 90 28 1.78E-05 50 14

31 GO:0010628 Positive regulation of gene expression 9.37E-08 49 22 2.74E-05 28 12
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TABLE 6 | Continued

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

32 GO:0010557 Positive regulation of macromolecule biosynthetic process 7.11E-06 42 22 4.21E-05 26 12

33 GO:0010604 Positive regulation of macromolecule metabolic process 1.33E-07 66 28 2.40E-05 37 14

34 GO:0009893 Positive regulation of metabolic process 7.36E-07 68 29 2.64E-05 38 14

35 GO:0051173 Positive regulation of nitrogen compound metabolic process 2.30E-06 61 28 1.51E-05 37 14

36 GO:1903508 Positive regulation of nucleic acid-templated transcription 3.00E-06 39 22 1.58E-05 25 12

37 GO:0045935 Positive regulation of nucleobase-containing compound metabolic process 1.21E-07 46 25 9.54E-06 28 13

38 GO:1902680 Positive regulation of RNA biosynthetic process 2.83E-06 39 22 1.37E-05 25 12

39 GO:0051254 Positive regulation of RNA metabolic process 2.66E-08 45 25 1.64E-05 27 13

40 GO:0045944 Positive regulation of transcription by RNA polymerase II 1.07E-03 28 16 4.64E-04 19 10

41 GO:0045893 Positive regulation of transcription, DNA-templated 7.21E-06 38 21 1.80E-05 25 12

42 GO:0022603 Regulation of anatomical structure morphogenesis 9.88E-04 27 16 3.42E-02 15 9

43 GO:0009889 Regulation of biosynthetic process 1.03E-08 73 28 6.46E-04 35 14

44 GO:0031326 Regulation of cellular biosynthetic process 9.92E-09 73 28 5.24E-04 35 14

45 GO:2000112 Regulation of cellular macromolecule biosynthetic process 1.02E-08 69 27 3.29E-04 34 14

46 GO:0031323 Regulation of cellular metabolic process 1.18E-08 96 30 3.35E-04 46 15

47 GO:0010468 regulation of gene expression 5.80E-09 78 27 6.35E-04 36 14

48 GO:0010556 Regulation of macromolecule biosynthetic process 9.78E-09 71 28 4.07E-04 34 14

49 GO:0060255 Regulation of macromolecule metabolic process 1.05E-08 96 30 1.33E-03 45 15

50 GO:0019222 regulation of metabolic process 1.26E-08 100 31 2.53E-03 46 15

51 GO:0051171 Regulation of nitrogen compound metabolic process 1.03E-08 92 30 3.23E-04 45 15

52 GO:1903506 Regulation of nucleic acid-templated transcription 3.18E-08 62 26 3.24E-04 31 13

53 GO:0019219 Regulation of nucleobase-containing compound metabolic process 2.72E-08 69 29 2.01E-04 35 14

54 GO:0080090 Regulation of primary metabolic process 9.49E-09 95 30 3.46E-04 45 15

55 GO:2001141 Regulation of RNA biosynthetic process 3.06E-08 62 26 3.16E-04 31 13

56 GO:0051252 Regulation of RNA metabolic process 9.26E-09 67 29 3.19E-04 33 14

57 GO:0006357 Regulation of transcription by RNA polymerase II 8.21E-07 46 23 5.09E-04 24 13

58 GO:0006355 Regulation of transcription, DNA-templated 6.53E-08 61 25 3.38E-04 31 13

59 GO:0048731 System development 3.77E-05 72 28 2.69E-03 39 13

60 GO:0009888 Tissue development 3.53E-02 30 17 3.96E-02 19 11

61 GO:0035239 Tube morphogenesis 2.66E-03 20 10 2.96E-02 12 7
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TABLE 6 | Continued

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

Significant in Tg4-42 only

1 GO:0009887 Animal organ morphogenesis 2.48E-02 22 15 2.10E-01 12 9

2 GO:0008306 Associative learning 4.10E-02 6 5 1.00E+00 2 1

3 GO:0007610 Behavior 1.71E-03 20 12 9.40E-01 7 5

4 GO:0065007 Biological regulation 7.24E-04 143 35 3.44E-01 67 16

5 GO:0048514 Blood vessel morphogenesis 2.02E-02 13 8 9.93E-01 5 4

6 GO:0048468 Cell development 1.12E-04 39 19 4.83E-01 16 9

7 GO:0030154 Cell differentiation 1.09E-03 61 26 4.39E-01 28 13

8 GO:0034330 Cell junction organization 5.87E-03 15 11 3.88E-01 7 4

9 GO:0048667 Cell morphogenesis involved in neuron differentiation 2.35E-02 13 9 1.14E-01 8 6

10 GO:0032990 Cell part morphogenesis 1.22E-02 15 11 8.20E-02 9 7

11 GO:0048858 Cell projection morphogenesis 7.70E-03 15 11 6.72E-02 9 7

12 GO:0048869 cellular developmental process 1.78E-03 61 26 4.59E-01 28 13

13 GO:0044260 Cellular macromolecule metabolic process 5.72E-04 63 24 5.02E-01 29 8

14 GO:0044237 Cellular metabolic process 4.38E-02 80 28 1.00E+00 33 9

15 GO:0009987 Cellular process 1.28E-02 155 37 1.00E+00 69 16

16 GO:0044267 Cellular protein metabolic process 2.83E-02 45 20 5.60E-01 22 8

17 GO:0006464 cellular protein modification process 8.05E-03 40 19 9.41E-02 22 8

18 GO:0070887 Cellular response to chemical stimulus 1.47E-03 44 19 2.56E-01 21 8

19 GO:0006974 Cellular response to DNA damage stimulus 2.24E-02 16 9 1.00E+00 3 3

20 GO:0071495 Cellular response to endogenous stimulus 3.29E-03 23 14 2.78E-01 11 6

21 GO:0071363 Cellular response to growth factor stimulus 1.19E-02 13 11 2.08E-01 7 5

22 GO:0071310 Cellular response to organic substance 1.70E-03 37 18 1.68E-01 18 8

23 GO:0033554 Cellular response to stress 2.60E-02 27 15 1.00E+00 8 6

24 GO:0050890 Cognition 8.16E-04 14 11 6.99E-01 5 4

25 GO:1904888 Cranial skeletal system development 4.16E-02 5 5 3.06E-01 3 3

26 GO:0007010 Cytoskeleton organization 1.23E-02 24 15 2.90E-01 12 5

27 GO:0048589 Developmental growth 2.96E-02 13 7 1.34E-01 8 6

28 GO:0032502 Developmental process 4.12E-05 87 32 6.05E-02 42 14

29 GO:0009790 Embryo development 3.48E-02 24 15 5.95E-02 15 9

30 GO:0060429 Epithelium development 2.60E-02 22 14 1.05E-01 13 10

31 GO:0007186 G protein-coupled receptor signaling pathway 1.82E-02 4 3 9.95E-01 3 2

32 GO:0035195 Gene silencing by miRNA 7.35E-03 5 5 6.48E-01 2 2

33 GO:0048699 Generation of neurons 1.40E-03 35 17 1.12E-01 18 10

34 GO:0040007 Growth 3.84E-02 13 7 1.51E-01 8 6

35 GO:0035556 Intracellular signal transduction 3.13E-03 30 15 8.90E-01 12 7
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TABLE 6 | Continued

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

36 GO:0070059 Intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress 4.26E-02 4 4 6.05E-01 2 2

37 GO:0007612 Learning 6.44E-03 9 8 9.88E-01 3 2

38 GO:0007611 Learning or memory 2.69E-04 14 11 5.76E-01 5 4

39 GO:0007616 Long-term memory 6.81E-03 5 5 1.15E-01 3 3

40 GO:0043170 Macromolecule metabolic process 3.88E-04 76 28 9.76E-01 32 9

41 GO:0043412 Macromolecule modification 1.78E-02 41 19 1.84E-01 22 8

42 GO:0007613 Memory 2.35E-03 9 8 3.43E-01 4 4

43 GO:0035278 miRNA mediated inhibition of translation 2.69E-02 3 3 1.00E+00 1 1

44 GO:0050804 Modulation of chemical synaptic transmission 2.01E-04 19 12 8.98E-01 6 5

45 GO:0032501 Multicellular organismal process 1.82E-02 94 31 7.10E-01 45 14

46 GO:0061061 muscle structure development 2.24E-02 14 10 4.53E-01 7 5

47 GO:0048519 Negative regulation of biological process 7.27E-04 77 27 1.49E-01 38 13

48 GO:0009895 Negative regulation of catabolic process 4.44E-02 10 7 1.00E+00 3 3

49 GO:0010648 Negative regulation of cell communication 4.37E-02 26 12 1.00E+00 10 7

50 GO:0010721 Negative regulation of cell development 9.76E-03 13 8 1.00E+00 3 2

51 GO:0045596 Negative regulation of cell differentiation 1.89E-03 21 12 1.00E+00 6 5

52 GO:0034249 Negative regulation of cellular amide metabolic process 4.37E-02 7 7 1.00E+00 1 1

53 GO:0031327 Negative regulation of cellular biosynthetic process 1.75E-05 37 23 6.36E-02 17 12

54 GO:0031330 Negative regulation of cellular catabolic process 4.05E-02 9 6 1.00E+00 2 2

55 GO:0031324 Negative regulation of cellular metabolic process 3.16E-06 53 23 6.26E-02 24 12

56 GO:0048523 Negative regulation of cellular process 4.26E-04 72 25 1.06E-01 36 12

57 GO:0032269 Negative regulation of cellular protein metabolic process 4.24E-02 21 12 1.00E+00 8 6

58 GO:0051093 Negative regulation of developmental process 2.57E-03 25 14 7.96E-01 10 7

59 GO:1902532 Negative regulation of intracellular signal transduction 2.94E-02 14 8 8.35E-01 6 6

60 GO:0010558 Negative regulation of macromolecule biosynthetic process 4.95E-05 35 22 5.11E-02 17 12

61 GO:0051045 Negative regulation of membrane protein ectodomain proteolysis 1.03E-02 3 3 9.48E-02 2 2

62 GO:0009892 Negative regulation of metabolic process 3.02E-06 56 25 6.65E-02 26 13

63 GO:0051241 Negative regulation of multicellular organismal process 1.50E-02 27 16 5.08E-01 13 8

64 GO:0051961 Negative regulation of nervous system development 4.69E-02 11 7 1.00E+00 2 1

65 GO:0050768 Negative regulation of neurogenesis 3.01E-02 11 7 1.00E+00 2 1

66 GO:0043524 Negative regulation of neuron apoptotic process 2.88E-02 8 7 1.55E-01 5 5

67 GO:1901215 Negative regulation of neuron death 1.51E-02 10 9 1.29E-01 6 6

68 GO:0045665 Negative regulation of neuron differentiation 1.82E-02 10 7 1.00E+00 1 1

69 GO:2000635 Negative regulation of primary miRNA processing 3.82E-02 2 2 6.20E-01 1 1

70 GO:0048585 Negative regulation of response to stimulus 4.16E-02 29 13 1.00E+00 10 7
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TABLE 6 | Continued

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

71 GO:0023057 Negative regulation of signaling 4.42E-02 26 12 1.00E+00 10 7

72 GO:0000122 Negative regulation of transcription by RNA polymerase II 3.74E-03 22 15 4.21E-01 10 8

73 GO:0017148 Negative regulation of translation 2.46E-02 7 7 1.00E+00 1 1

74 GO:0040033 negative regulation of translation, ncRNA-mediated 2.70E-02 3 3 1.00E+00 1 1

75 GO:0022008 Neurogenesis 8.64E-04 37 19 1.45E-01 18 10

76 GO:0048666 Neuron development 2.70E-03 22 13 1.69E-01 11 7

77 GO:0030182 Neuron differentiation 2.64E-03 25 15 5.69E-02 14 9

78 GO:0031175 neuron projection development 1.78E-03 20 13 1.46E-01 10 7

79 GO:0048812 Neuron projection morphogenesis 6.34E-03 15 11 6.01E-02 9 7

80 GO:0006807 Nitrogen compound metabolic process 4.11E-02 74 27 1.00E+00 32 9

81 GO:0006996 Organelle organization 3.94E-03 51 21 5.06E-02 28 9

82 GO:0016310 Phosphorylation 4.05E-02 21 14 1.00E+00 9 6

83 GO:0120039 Plasma membrane bounded cell projection morphogenesis 6.89E-03 15 11 6.34E-02 9 7

84 GO:0045597 Positive regulation of cell differentiation 1.50E-02 24 13 8.00E-02 14 8

85 GO:0030307 Positive regulation of cell growth 3.58E-02 8 6 5.61E-01 4 4

86 GO:0048639 Positive regulation of developmental growth 1.63E-03 11 8 6.76E-01 4 4

87 GO:0051094 Positive regulation of developmental process 1.57E-02 30 15 2.09E-01 16 9

88 GO:0045927 Positive regulation of growth 1.40E-03 13 9 1.00E+00 4 4

89 GO:1900273 positive regulation of long-term synaptic potentiation 1.60E-02 4 3 1.00E+00 1 1

90 GO:0061014 Positive regulation of mRNA catabolic process 1.56E-02 5 5 1.00E+00 1 1

91 GO:0048636 Positive regulation of muscle organ development 1.57E-02 6 4 1.00E+00 1 1

92 GO:1901863 Positive regulation of muscle tissue development 2.84E-03 7 5 1.00E+00 2 2

93 GO:0050769 Positive regulation of neurogenesis 3.52E-02 15 8 1.56E-01 9 5

94 GO:0045666 Positive regulation of neuron differentiation 1.66E-02 14 8 6.05E-02 9 5

95 GO:0010976 Positive regulation of neuron projection development 2.09E-02 12 8 6.07E-02 8 5

96 GO:1900153 Positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay 6.12E-03 4 4 1.00E+00 1 1

97 GO:0060213 Positive regulation of nuclear-transcribed mRNA poly(A) tail shortening 1.98E-03 4 4 1.00E+00 1 1

98 GO:0045844 Positive regulation of striated muscle tissue development 1.56E-02 6 4 1.00E+00 1 1

99 GO:0050806 Positive regulation of synaptic transmission 8.45E-03 9 8 1.00E+00 3 3

100 GO:0009791 Post-embryonic development 2.00E-02 7 7 7.25E-01 3 3

101 GO:0016441 Posttranscriptional gene silencing 1.38E-02 5 5 7.50E-01 2 2

102 GO:0035194 Posttranscriptional gene silencing by RNA 1.29E-02 5 5 7.29E-01 2 2

103 GO:0019538 Protein metabolic process 4.44E-02 51 23 1.00E+00 22 8

104 GO:0036211 Protein modification process 7.99E-03 40 19 9.33E-02 22 8
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TABLE 6 | Continued

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

105 GO:0006468 Protein phosphorylation 4.16E-02 17 11 4.21E-01 9 6

106 GO:0042981 Regulation of apoptotic process 2.00E-02 29 16 3.06E-01 15 9

107 GO:0050770 Regulation of axonogenesis 1.82E-02 9 6 6.59E-02 6 5

108 GO:0050789 regulation of biological process 1.53E-04 141 35 9.13E-02 67 16

109 GO:0065008 Regulation of biological quality 1.90E-05 69 23 1.68E-01 31 8

110 GO:0009894 Regulation of catabolic process 2.68E-03 22 15 3.68E-01 10 6

111 GO:0010646 Regulation of cell communication 1.14E-04 60 22 3.45E-01 26 12

112 GO:0060284 Regulation of cell development 2.47E-02 23 11 8.90E-01 10 5

113 GO:0045595 Regulation of cell differentiation 1.35E-03 38 17 6.79E-02 20 9

114 GO:0022604 Regulation of cell morphogenesis 4.39E-02 14 10 5.97E-01 7 5

115 GO:0042127 Regulation of cell population proliferation 2.30E-02 31 17 1.00E+00 10 7

116 GO:0034248 Regulation of cellular amide metabolic process 2.68E-02 12 9 1.00E+00 2 2

117 GO:0031329 Regulation of cellular catabolic process 1.96E-03 20 14 6.40E-01 8 5

118 GO:0051128 Regulation of cellular component organization 1.65E-03 46 23 1.50E-01 23 11

119 GO:0060341 Regulation of cellular localization 1.04E-03 23 11 6.31E-01 9 5

120 GO:0050794 Regulation of cellular process 8.35E-05 136 34 5.79E-02 65 15

121 GO:0032268 Regulation of cellular protein metabolic process 7.75E-03 44 23 4.38E-01 21 12

122 GO:0048638 Regulation of developmental growth 1.25E-02 13 9 8.77E-01 5 5

123 GO:0050793 Regulation of developmental process 5.53E-03 46 21 1.33E-01 24 10

124 GO:0040029 Regulation of gene expression, epigenetic 1.92E-02 9 7 1.00E+00 3 2

125 GO:0060968 Regulation of gene silencing 1.81E-02 6 6 1.00E+00 1 1

126 GO:0060964 Regulation of gene silencing by miRNA 7.93E-03 5 5 1.00E+00 1 1

127 GO:0060966 Regulation of gene silencing by RNA 1.02E-02 5 5 1.00E+00 1 1

128 GO:0040008 Regulation of growth 5.38E-03 19 12 1.00E+00 6 6

129 GO:0032879 Regulation of localization 5.41E-04 52 17 5.64E-02 27 8

130 GO:1900271 Regulation of long-term synaptic potentiation 2.85E-04 7 6 7.69E-01 2 2

131 GO:0042391 Regulation of membrane potential 2.93E-02 12 7 3.32E-01 7 3

132 GO:0065009 Regulation of molecular function 4.38E-02 41 20 3.15E-01 22 10

133 GO:2000026 Regulation of multicellular organismal development 6.79E-03 39 19 5.69E-02 22 10

134 GO:0051239 Regulation of multicellular organismal process 1.52E-02 51 23 8.43E-02 28 11

135 GO:0048634 Regulation of muscle organ development 1.89E-02 8 5 9.31E-01 3 3

136 GO:1901861 Regulation of muscle tissue development 4.60E-03 9 6 4.39E-01 4 4

137 GO:0051960 Regulation of nervous system development 3.96E-03 25 12 2.89E-01 12 6
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TABLE 6 | Continued

Tg4-42 WT

Gene ontology Label FDR No. genes No. miRs FDR No. genes No. miRs

138 GO:0050767 Regulation of neurogenesis 5.14E-03 23 11 5.93E-01 10 5

139 GO:0043523 Regulation of neuron apoptotic process 7.20E-03 11 9 1.56E-01 6 6

140 GO:1901214 Regulation of neuron death 7.69E-03 13 11 4.55E-01 6 6

141 GO:0045664 Regulation of neuron differentiation 2.62E-03 21 10 5.01E-01 9 5

142 GO:0010975 Regulation of neuron projection development 2.13E-02 16 9 4.40E-01 8 5

143 GO:0099601 Regulation of neurotransmitter receptor activity 3.27E-02 5 5 9.02E-01 2 2

144 GO:1900151 Regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay 7.94E-03 4 4 1.00E+00 1 1

145 GO:0060211 Regulation of nuclear-transcribed mRNA poly(A) tail shortening 2.94E-03 4 4 1.00E+00 1 1

146 GO:0060147 Regulation of posttranscriptional gene silencing 1.03E-02 5 5 1.00E+00 1 1

147 GO:2000634 Regulation of primary miRNA processing 3.80E-02 2 2 6.19E-01 1 1

148 GO:0043067 Regulation of programmed cell death 2.26E-02 29 16 2.02E-01 16 9

149 GO:0032880 Regulation of protein localization 4.11E-02 22 13 2.95E-01 12 7

150 GO:0051246 Regulation of protein metabolic process 1.28E-02 45 23 5.12E-01 22 12

151 GO:0023051 Regulation of signaling 4.97E-05 61 22 3.54E-01 26 12

152 GO:0016202 Regulation of striated muscle tissue development 1.70E-02 8 5 9.25E-01 3 3

153 GO:0051963 Regulation of synapse assembly 1.86E-02 7 5 5.64E-02 5 3

154 GO:0050807 Regulation of synapse organization 2.61E-02 10 8 1.69E-01 6 4

155 GO:0050803 Regulation of synapse structure or activity 3.38E-02 10 8 1.98E-01 6 4

156 GO:0048167 Regulation of synaptic plasticity 2.92E-06 15 12 7.00E-01 4 4

157 GO:0045974 Regulation of translation, ncRNA-mediated 2.67E-02 3 3 1.00E+00 1 1

158 GO:0051049 Regulation of transport 1.26E-02 36 14 3.17E-01 18 6

159 GO:0099177 Regulation of trans-synaptic signaling 2.04E-04 19 12 8.99E-01 6 5

160 GO:0060627 Regulation of vesicle-mediated transport 4.23E-02 15 8 7.31E-01 7 2

161 GO:0042221 Response to chemical 1.26E-02 54 22 9.38E-01 24 8

162 GO:0009719 Response to endogenous stimulus 1.53E-03 27 15 1.87E-01 13 7

163 GO:0032354 Response to follicle-stimulating hormone 1.91E-02 3 3 1.45E-01 2 2

164 GO:0034698 Response to gonadotropin 4.15E-02 3 3 2.28E-01 2 2

165 GO:0070848 Response to growth factor 1.52E-02 13 11 2.37E-01 7 5

166 GO:0009725 Response to hormone 2.19E-02 16 11 4.43E-01 8 5

167 GO:0010033 Response to organic substance 4.12E-02 40 19 5.53E-01 20 8

168 GO:0050779 RNA destabilization 3.48E-02 4 4 1.00E+00 1 1

169 GO:0060021 Roof of mouth development 1.41E-04 9 8 5.24E-01 3 3

170 GO:0050808 Synapse organization 1.49E-02 11 9 1.00E+00 4 3

171 GO:0035295 Tube development 1.45E-03 24 12 6.01E-02 13 8
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auditory thalamo-cortical signaling in 22q11DS mice, and may
trigger the pathogenic mechanism of 22q11DS-related psychosis
(Chun et al., 2017). MiR-345-5p may act as blood biomarker
in multiple sclerosis (Freiesleben et al., 2016), and miR-345-
3p attenuated apoptosis and inflammation caused by oxidized
low-density lipoprotein by targeting TRAF6 via TAK1/p38/NF-
kB signaling (Wei et al., 2020). An in vitro study indicated
that miR-34a may inhibit Aβ clearance by targeting endophilin-
3 including uptake and autophagy-mediated degradation (Sun
et al., 2018). The rs1050283 SNP likely acts as a risk factor
for sporadic AD. It is associated with a decreased expression
of oxidized LDL receptor 1 mRNA in the absence of miR-369-
3p de-regulation and may affect the binding of miR-369-3p to
its 3′UTR consensus sequence (Bettens et al., 2009). MiR-381
showed a protective effect against inflammatory damage (Li et al.,
2020). MiR-409 was reported in IL-17-induced inflammatory
cytokine production in astrocytes by targeting the SOCS3/STAT3
signaling pathway in EAE mice (Liu et al., 2019). MiR-541 acts
on neurite outgrowth and differentiation via nerve growth factor
and synapsin I in neuronal precursor cells (Chun et al., 2017).
MiR-674 demonstrated an association with Parkinson disease
and Huntington (Lardenoije et al., 2015; Salta and De Strooper,
2017b). CSF from individuals with AD contained increased
amounts of miR-let7b, and intrathecal injection of miR-let7b
in wild-type mice induced neurodegeneration (Lehmann et al.,
2012). Elevated levels of miR-let7b and miR-let7e were found
in CSF of patients with AD and major depressive symptoms,
but not in patients with fronto-temporal disorder (Derkow
et al., 2018). MiR-let7d is a key regulator of bi-directionally
transcribed genes mediating epigenetic silencing and nucleolar
organization (Singh et al., 2018). For miRs miR-129-1, miR-
154, miR-15b, miR-219-2, miR-298, miR-323, miR-411, miR-
500, miR-7-2, miR-92b, miR-let7i this study is the first to
describe deregulation in an AD mouse model. Interestingly,
GO-Annotation analysis (“Cellular Components”) revealed that
only miRs, which were exclusively deregulated in the Tg4-42
model showed an enrichment of targets in connection with the
synapse. Such and similar annotations were completely absent
among the targets of miRs that were deregulated in both aged
mutant and WT mice. With respect to the “Molecular Function”
and “Biological Process” annotation, this difference is even
more pronounced.

As the Tg4-42 model shows reduced neurogenesis, synaptic
hyperexcitability and develops neuron loss as well as behavioral
deficits without plaque formation, the newly found deregulated
miRs in this model could be involved in plaque-independent
pathological pathways. Taken together these observations
strongly support our conclusion that the identified miRs play a
role in the etiology of AD and thus deserve further investigation
as putative biomarkers or therapeutics.

MiRs Identified in the Hippocampus of
8 Month Old Wildtype Mice
Eight miRs were exclusively altered in the hippocampus
between 3 and 8 month-old in WT mice. TGF-β induced
an lncRNA with its encoded miRs, miR-100 and miR-125b
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FIGURE 3 | GO annotation analysis of predicted miR targets in Tg4-42 (A) and WT mice (B). Number of genes enriched and –log10 (P-value) for each term are
displayed for the top 17 GO terms, if applicable, in molecular function, cellular component and biological process.
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(Ottaviani et al., 2019). MiR-100 and miR-125b coordinately
suppressed Wnt/β-catenin negative regulators thereby
increased Wnt signaling (Lu et al., 2017). MiR-153 was
over-expressed in CSF exosomes from patients with Parkinson
disease (Serpente et al., 2011). There is evidence that miR-
191 and miR-222 are co-regulated and are important for
neurodevelopment (Li et al., 2020). MiR-1298, miR-34b,
miR-423, miR-666 and miR-667 have not been previously
reported to be association to AD, neurodegenerative disorders
or brain function.

MiRs Identified in the Hippocampus of
8 Month Old Tg4-42 and Wildtype Mice
25 miRs were differentially expressed between 3 and 8 month-
old Tg4-42 as well as WT mice. All but three of them
were significantly decreased at 8 months of age. MiR-127
has been reported to modulate macrophage polarization and
therefore may have a crucial role in inflammation (Essandoh
et al., 2016). MiR-128-1 up-regulation correlated with Aβ

degradation in monocytes from patients with sporadic AD
(Tiribuzi et al., 2014). MiR-130a was involved in inflammatory
processes by targeting the transforming growth factor-beta1 and
interleukin 18 genes (Zhao et al., 2014). MiR-132 expression
levels were found to be associated with hippocampal sclerosis
in a subgroup of AD patients (Tasaki et al., 2018). MiR-
138-1 was transcriptionally up-regulated during myelination
and downregulated upon nerve injury (Lin et al., 2018). miR-
150-5p may act as a circulating biomarker for patients with
the autoimmune neuromuscular disorder myasthenia gravis
(Punga et al., 2015). A genetic variant located near the
miR-204 gene was significantly associated with schizophrenia
resulting in reduced expression of miR-204 in neuronal-like
SH-SY5Y cells (Cammaerts et al., 2015). MiR-212 was down-
regulated in white matter of patients with AD (Wang W.X.
et al., 2011). MiR-222 was down-regulated in the AD mouse
model APPswe/PS1E9 (Wang et al., 2015). Lipopolysaccharide
stimulation in mice led to increased expression of miR-221
and miR-222, thereby causing transcriptional silencing of a
subset of inflammatory genes, which depend on chromatin
remodeling. In patients with sepsis, increased expression of
miR-221 and miR-222 correlated with immunoparalysis and
increased organ damage (Seeley et al., 2018). Preliminary
results indicated that aberrant levels of circulating miR-23a
are recovered in fingolimod-treated multiple sclerosis patients
representing a potential biomarker (Fenoglio et al., 2016). MiR-
300 was involved in the inflammatory response in endothelial
cells and enhanced autophagy by activation of the AMPK/mTOR
signaling pathway (Li et al., 2018). MiR-323 suppressed neuron
death via the transforming growth factor-β1/SMAD3 signaling
pathway (Che et al., 2019). The expression of miR-30a was
associated as a prediction serum marker in epilepsy (Lin et al.,
2018). MiR-34c has been shown to have a physiological role
in regulating the central stress response (Cammaerts et al.,
2015). MiR-329 was upregulated in a mouse model for Rett
syndrome, which is a complex neurological disorder that has
been associated with mutations in the gene coding for Mecp2

(Urdinguio et al., 2010). MiR-382 inhibited cell proliferation
and invasion of retinoblastoma by targeting BDNF-mediated
PI3K/AKT signaling pathway (Song et al., 2017). MiR-877-
3P regulated vascular endothelial cell autophagy and apoptosis
under the high-glucose condition (Zhao et al., 2020). MiR-
99a was found overexpressed in the brain of patients with
Down syndrome (Bras et al., 2018). MiR-99b may have
a role in spinal cord injury via the regulation of mTOR
(Cao et al., 2017). Again, several miRs, namely, miR-128-2,
miR-140, miR-23b, miR-30d, miR-3102, miR-328 and miR-
434 could be linked to an AD mouse model for the first
time in this study.

Annotation Analysis of miR Targets
The analyses of the GO annotation of predicted miR targets
in Tg4-42 and WT mice revealed diverse cellular component,
molecular functions and biological processes similar to our
previous study of the mRNome of the whole brain of Tg4-42
and 5XFAD mice (Bouter et al., 2014). The GO annotations
in Tg4-42 hippocampus demonstrated that the most enriched
pathways belong to synaptic signaling and transmission involved
in memory processes, which was not found in WT mice. Hence,
these pathways appear specific for the AD-typical mental decline
and neurodegenerative events.

CONCLUSION

We were able to validate the Tg4-42 as a valuable model
for sporadic AD. We could confirm previously reported AD-
associations of several miRs. Importantly, the untargeted small
RNASeq approach also allowed us to link several additional miRs
to a mouse model for AD. The identified miRs have a role in
the age-dependent deficits in learning and memory as well as
neuron loss in the hippocampus in Tg4-42 mice. The annotation
of miR target genes supported these strong reductions in synaptic
processes involved in learning and memory.
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wildtype mice. Plus log 2-fold change means higher levels at 8 months of age.
Minus log 2-fold change means lower levels at 8 months of age. P-values are only
shown if significant (<0.05). Abbreviations: 3M, 3 month old; 8M, 8 month old.

REFERENCES
Agarwal, V., Bell, G. W., Nam, J. W., and Bartel, D. P. (2015). Predicting effective

microRNA target sites in mammalian mRNAs. eLife 4:5. doi: 10.7554/eLife.
05005

Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq–a Python framework to
work with high-throughput sequencing data. Bioinformatics 31, 166–169. doi:
10.1093/bioinformatics/btu638

Angelucci, F., Cechova, K., Valis, M., Kuca, K., Zhang, B., and Hort, J. (2019).
MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents?
Front. Pharmacol. 10:665. doi: 10.3389/fphar.2019.00665

Banzhaf-Strathmann, J., Benito, E., May, S., Arzberger, T., Tahirovic,
S., Kretzschmar, H., et al. (2014). MicroRNA-125b induces tau
hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J.
33, 1667–1680. doi: 10.15252/embj.201387576

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell 116, 281–297.

Bayer, T., and Wirths, O. (2014). Focusing the amyloid cascade hypothesis on
N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta
Neuropathol. 127, 787–801. doi: 10.1007/s00401-014-1287-x

Bettens, K., Brouwers, N., Engelborghs, S., Van Miegroet, H., De Deyn, P. P.,
Theuns, J., et al. (2009). APP and BACE1 miR genetic variability has no major
role in risk for Alzheimer disease. Hum. Mutat. 30, 1207–1213. doi: 10.1002/
humu.21027

Bicker, S., Lackinger, M., Weiss, K., and Schratt, G. (2014). MicroRNA-132, -134,
and -138: a microRNA troika rules in neuronal dendrites. Cell Mol. Life. Sci. 71,
3987–4005. doi: 10.1007/s00018-014-1671-7

Boscher, E., Husson, T., Quenez, O., Laquerriere, A., Marguet, F., Cassinari, K.,
et al. (2019). Copy number variants in miR-138 as a potential risk factor for
early-onset Alzheimer’s disease. J. Alzheimers Dis. 68, 1243–1255. doi: 10.3233/
jad-180940

Bouter, C., Henniges, P., Franke, T. N., Irwin, C., Sahlmann, C. O., Sichler, M. E.,
et al. (2019). 18F-FDG-PET detects drastic changes in brain metabolism in
the Tg4-42 model of Alzheimer’s disease. Front. Aging Neurosci. 10:425. doi:
10.3389/fnagi.2018.00425

Bouter, Y., Dietrich, K., Wittnam, J. L., Rezaei-Ghaleh, N., Pillot, T., Papot-
Couturier, S., et al. (2013). N-truncated amyloid beta (Abeta) 4-42 forms
stable aggregates and induces acute and long-lasting behavioral deficits. Acta
Neuropathol. 126, 189–205. doi: 10.1007/s00401-013-1129-2

Bouter, Y., Kacprowski, T., Weissmann, R., Dietrich, K., Borgers, H., Brauß, A.,
et al. (2014). Deciphering the molecular profile of plaques, memory decline and
neuron-loss in two mouse models for Alzheimer’s disease by deep sequencing.
Front. Aging Neurosci. 6:75. doi: 10.3389/fnagi.2014.00075

Bras, A., Rodrigues, A. S., Gomes, B., and Rueff, J. (2018). Down syndrome and
microRNAs. Biomed. Rep. 8, 11–16.

Cammaerts, S., Strazisar, M., Smets, B., Weckhuysen, S., Nordin, A., De Jonghe,
P., et al. (2015). Schizophrenia-associated MIR204 Regulates Noncoding RNAs
and affects neurotransmitter and ion channel gene sets. PLoS One 10:e0144428.
doi: 10.1371/journal.pone.0144428

Cao, F., Liu, T., Sun, S., and Feng, S. (2017). The role of the miR-99b-5p/mTOR
signaling pathway in neuroregeneration in mice following spinal cord injury.
Mol. Med. Rep. 16, 9355–9360. doi: 10.3892/mmr.2017.7816

Che, F., Du, H., Wei, J., Zhang, W., Cheng, Z., and Tong, Y. (2019). MicroRNA-323
suppresses nerve cell toxicity in cerebral infarction via the transforming growth
factor-beta1/SMAD3 signaling pathway. Int. J. Mol. Med. 43, 993–1002.

Chen, Y., and Wang, X. (2020). miRDB: an online database for prediction of
functional microRNA targets. Nucleic Acids Res. 48, D127–D131.

Chou, C. H., Shrestha, S., Yang, C. D., Chang, N. W., Lin, Y. L., Liao, K. W.,
et al. (2018). miRTarBase update 2018: a resource for experimentally validated
microRNA-target interactions. Nucleic Acids Res. 46, D296–D302.

Chun, S., Du, F., Westmoreland, J. J., Han, S. B., Wang, Y. D., Eddins, D., et al.
(2017). Thalamic miR-338-3p mediates auditory thalamocortical disruption
and its late onset in models of 22q11.2 microdeletion. Nat. Med. 23, 39–48.
doi: 10.1038/nm.4240

Derkow, K., Rossling, R., Schipke, C., Kruger, C., Bauer, J., Fahling, M., et al.
(2018). Distinct expression of the neurotoxic microRNA family let-7 in the
cerebrospinal fluid of patients with Alzheimer’s disease. PLoS One 13:e0200602.
doi: 10.1371/journal.pone.0200602

Dietrich, K., Bouter, Y., Muller, M., and Bayer, T. A. (2018). Synaptic alterations
in mouse models for Alzheimer disease-a special focus on N-truncated Abeta
4-42. Molecules 23:718. doi: 10.3390/molecules23040718

Ding, J., Li, X., and Hu, H. (2016). TarPmiR: a new approach for microRNA target
site prediction. Bioinformatics 32, 2768–2775. doi: 10.1093/bioinformatics/
btw318

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al.
(2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
doi: 10.1093/bioinformatics/bts635

Elliott, C., Rojo, A. I., Ribe, E., Broadstock, M., Xia, W., Morin, P., et al. (2018). A
role for APP in Wnt signalling links synapse loss with beta-amyloid production.
Transl. Psychiatry 8:179. doi: 10.1038/s41398-018-0231-6

Essandoh, K., Li, Y., Huo, J., and Fan, G. C. (2016). MiR-mediated macrophage
polarization and its potential role in the regulation of inflammatory response.
Shock 46, 122–131. doi: 10.1097/shk.0000000000000604

Fenoglio, C., De Riz, M., Pietroboni, A. M., Calvi, A., Serpente, M., Cioffi, S. M.,
et al. (2016). Effect of fingolimod treatment on circulating miR-15b, miR23a
and miR-223 levels in patients with multiple sclerosis. J. Neuroimmunol. 299,
81–83. doi: 10.1016/j.jneuroim.2016.08.017

Forstner, A. J., Degenhardt, F., Schratt, G., and Nothen, M. M. (2013). MicroRNAs
as the cause of schizophrenia in 22q11.2 deletion carriers, and possible
implications for idiopathic disease: a mini-review. Front. Mol. Neurosci. 6:47.
doi: 10.3389/fnmol.2013.00047

Freiesleben, S., Hecker, M., Zettl, U. K., Fuellen, G., and Taher, L. (2016). Analysis
of microRNA and gene expression profiles in multiple sclerosis: integrating
interaction data to uncover regulatory mechanisms. Sci. Rep. 6:34512. doi:
10.1038/srep34512

Freischmidt, A., Muller, K., Ludolph, A. C., and Weishaupt, J. H. (2013). Systemic
dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis.
Acta Neuropathol. Commun. 1:42. doi: 10.1186/2051-5960-1-42

Frontiers in Neuroscience | www.frontiersin.org 18 September 2020 | Volume 14 | Article 58052434

https://www.frontiersin.org/articles/10.3389/fnins.2020.580524/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2020.580524/full#supplementary-material
https://doi.org/10.7554/eLife.05005
https://doi.org/10.7554/eLife.05005
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.3389/fphar.2019.00665
https://doi.org/10.15252/embj.201387576
https://doi.org/10.1007/s00401-014-1287-x
https://doi.org/10.1002/humu.21027
https://doi.org/10.1002/humu.21027
https://doi.org/10.1007/s00018-014-1671-7
https://doi.org/10.3233/jad-180940
https://doi.org/10.3233/jad-180940
https://doi.org/10.3389/fnagi.2018.00425
https://doi.org/10.3389/fnagi.2018.00425
https://doi.org/10.1007/s00401-013-1129-2
https://doi.org/10.3389/fnagi.2014.00075
https://doi.org/10.1371/journal.pone.0144428
https://doi.org/10.3892/mmr.2017.7816
https://doi.org/10.1038/nm.4240
https://doi.org/10.1371/journal.pone.0200602
https://doi.org/10.3390/molecules23040718
https://doi.org/10.1093/bioinformatics/btw318
https://doi.org/10.1093/bioinformatics/btw318
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/s41398-018-0231-6
https://doi.org/10.1097/shk.0000000000000604
https://doi.org/10.1016/j.jneuroim.2016.08.017
https://doi.org/10.3389/fnmol.2013.00047
https://doi.org/10.1038/srep34512
https://doi.org/10.1038/srep34512
https://doi.org/10.1186/2051-5960-1-42
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-580524 September 8, 2020 Time: 18:16 # 19

Bouter et al. miRNA-Seq, Tg4-42, Alzheimer

Gerberding, A. L., Zampar, S., Stazi, M., Liebetanz, D., and Wirths, O. (2019).
Physical activity ameliorates impaired hippocampal neurogenesis in the Tg4-
42 mouse model of Alzheimer’s disease. ASN Neurol. 11:692. doi: 10.1177/
1759091419892692

Gui, Y., Liu, H., Zhang, L., Lv, W., and Hu, X. (2015). Altered microRNA profiles
in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease.
Oncotarget 6, 37043–37053. doi: 10.18632/oncotarget.6158

Haramati, S., Navon, I., Issler, O., Ezra-Nevo, G., Gil, S., Zwang, R., et al. (2011).
MicroRNA as repressors of stress-induced anxiety: the case of amygdalar
miR-34. J. Neurosci. 31, 14191–14203. doi: 10.1523/jneurosci.1673-11.2011

Ifrim, M. F., Williams, K. R., and Bassell, G. J. (2015). Single-molecule imaging of
PSD-95 mRNA translation in dendrites and its dysregulation in a mouse model
of fragile X syndrome. J. Neurosci. 35, 7116–7130. doi: 10.1523/jneurosci.2802-
14.2015

Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T. A., and Wirths, O. (2012).
Motor deficits, neuron loss, and reduced anxiety coinciding with axonal
degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model
of Alzheimer’s disease. Neurobiol. Aging 33, 196.e29–196.e40.

Jin, Y., Tu, Q., and Liu, M. (2018). MicroRNA125b regulates Alzheimer’s disease
through SphK1 regulation. Mol. Med. Rep. 18, 2373–2380.

Kim, K. H., Moon, M., Yu, S. B., Mook-Jung, I., and Kim, J. I. (2012). RNA-
Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage
of disease pathology. J. Alzheimers Dis. 29, 793–808. doi: 10.3233/jad-2012-
111793

Lardenoije, R., Iatrou, A., Kenis, G., Kompotis, K., Steinbusch, H. W., Mastroeni,
D., et al. (2015). The epigenetics of aging and neurodegeneration. Prog.
Neurobiol. 131, 21–64.

Lehmann, S. M., Kruger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J.,
et al. (2012). An unconventional role for miR: let-7 activates Toll-like receptor
7 and causes neurodegeneration. Nat. Neurosci. 15, 827–835. doi: 10.1038/nn.
3113

Li, Y., Huang, J., Yan, H., Li, X., Ding, C., Wang, Q., et al. (2020). Protective
effect of microRNA381 against inflammatory damage of endothelial cells
during coronary heart disease by targeting CXCR4. Mol. Med. Rep. 21, 1439–
1448.

Li, Y., Ke, J., Peng, C., Wu, F., and Song, Y. (2018). microRNA-300/NAMPT
regulates inflammatory responses through activation of AMPK/mTOR
signaling pathway in neonatal sepsis. Biomed. Pharmacother. 108, 271–279.
doi: 10.1016/j.biopha.2018.08.064

Li, Y. Y., Cui, J. G., Hill, J. M., Bhattacharjee, S., Zhao, Y., and Lukiw, W. J.
(2011). Increased expression of miR-146a in Alzheimer’s disease transgenic
mouse models. Neurosci. Lett. 487, 94–98. doi: 10.1016/j.neulet.2010.09.079

Lin, H. P., Oksuz, I., Svaren, J., and Awatramani, R. (2018). Egr2-dependent
microRNA-138 is dispensable for peripheral nerve myelination. Sci. Rep. 8:3817.
doi: 10.1038/s41598-018-22010-8

Liu, X., Zhou, F., Yang, Y., Wang, W., Niu, L., Zuo, D., et al. (2019). MiR-409-
3p and MiR-1896 co-operatively participate in IL-17-induced inflammatory
cytokine production in astrocytes and pathogenesis of EAE mice via targeting
SOCS3/STAT3 signaling. Glia 67, 101–112. doi: 10.1002/glia.23530

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.

Lu, Y., Zhao, X., Liu, Q., Li, C., Graves-Deal, R., Cao, Z., et al. (2017). lncRNA
MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via
Wnt/beta-catenin signaling. Nat. Med. 23, 1331–1341. doi: 10.1038/nm.4424

Majer, A., Medina, S. J., Niu, Y., Abrenica, B., Manguiat, K. J., Frost, K. L.,
et al. (2012). Early mechanisms of pathobiology are revealed by transcriptional
temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS
Pathog. 8:e1003002. doi: 10.1371/journal.ppat.1003002

Margis, R., Margis, R., and Rieder, C. R. M. (2011). Identification of blood
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Mild cognitive impairment (MCI) is generally regarded as a prodromal stage of
Alzheimer’s disease (AD). In coping with the challenges caused by AD, we analyzed
resting-state functional magnetic resonance imaging data of 82 MCI subjects and
93 normal controls (NCs). The alteration of brain functional network in MCI was
investigated on three scales, including global metrics, nodal characteristics, and
modular properties. The results supported the existence of small worldness, hubs,
and community structure in the brain functional networks of both groups. Compared
with NCs, the network altered in MCI over all the three scales. In scale I, we found
significantly decreased characteristic path length and increased global efficiency in MCI.
Moreover, altered global network metrics were associated with cognitive level evaluated
by neuropsychological assessments. In scale II, the nodal betweenness centrality of
some global hubs, such as the right Crus II of cerebellar hemisphere (CERCRU2.R)
and fusiform gyrus (FFG.R), changed significantly and associated with the severity and
cognitive impairment in MCI. In scale III, although anatomically adjacent regions tended
to be clustered into the same module regardless of group, discrepancies existed in the
composition of modules in both groups, with a prominent separation of the cerebellum
and a less localized organization of community structure in MCI compared with NC.
Taking advantages of random forest approach, we achieved an accuracy of 91.4% to
discriminate MCI patients from NCs by integrating cognitive assessments and network
analysis. The importance of the used features fed into the classifier further validated
the nodal characteristics of CERCRU2.R and FFG.R could be potential biomarkers in
the identification of MCI. In conclusion, the present study demonstrated that the brain
functional connectome data altered at the stage of MCI and could assist the automatic
diagnosis of MCI patients.

Keywords: Alzheimer’s disease, mild cognitive impairment, resting-state functional MRI, modular structure, graph
theory, machine learning
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INTRODUCTION

Alzheimer’s disease (AD), a neurodegenerative disease,
represents the most common type of dementia (Ahmadlou
et al., 2010; Li et al., 2011). The prevalence of AD is a tremendous
burden to individuals, families, and society. The treatment for
AD remains unavailable and no way can prevent or reverse
the progression of AD; only the early intervention of AD may
influence its onset and deterioration (Al-Shoukry et al., 2020).
Mild cognitive impairment (MCI) is generally regarded as a
prodromal stage of AD since patients with MCI convert to
AD at a rate of approximately 15% per year (Davatzikos et al.,
2011). Hence, it is important to explore the neuropathological
alteration in MCI, discover potential target for neuromodulation
in treating MCI, and prompt effective method for the early
diagnosis of MCI.

Theoretically, the human brain can be represented as a
“connectome,” a large-scale network of interconnected regions
that provides the anatomical substrate for neural communication,
functional processing, and information integration (Fornito et al.,
2013). Brain connectivity has been widely analyzed based on
the graph theory by regarding neural elements (e.g., neurons
and brain regions) as nodes and some measures of structural,
functional, or causal interaction between nodes as edges (Fornito
et al., 2013; Onias et al., 2014; Khazaee et al., 2015; Fang et al.,
2017). Numerous studies have demonstrated its effectiveness in
investigating the altered brain network pattern with MCI (Yao
et al., 2010, 2018; Zhao et al., 2012; Seo et al., 2013; Xiang
et al., 2013; Son et al., 2015; Deng et al., 2016; Pereira et al.,
2016; Sánchez-Catasús et al., 2018). One of the shortcomings
in most related studies is that only the cerebral regions were
considered. However, recent studies have demonstrated that
the cerebellum may play a vital role in neurodegenerative
processes like AD. Evidences from functional imaging studies
have reported the involvement of the cerebellum in various
cognitive tasks besides the traditional motor ones (Stoodley,
2012), and cerebellar abnormality has also been reported in
AD/MCI patients recently (Tabatabaei-Jafari et al., 2017; Pagen
et al., 2020). Therefore, exploring the whole-brain functional
network, including both cerebral and cerebellar regions, can
disclose more comprehensive information of the abnormal brain
connectome in MCI patients.

Graph metrics of the functional brain network are found to be
informative to characterize MCI patients (Khazaee et al., 2016;
Xu et al., 2020). In practice, in a brain functional network, a
region can be deemed as a node, and the edges can be determined
by the functional interaction of nodes. Various metrics have
been proposed in the literature to quantify the topological
characteristics of such a network and can be generally classified
into three distinct scales. Measures from the three scales variously
focus on characterizing aspects of function integration and
segregation, quantifying importance of individual brain regions,
and detecting patterns of local anatomical circuitry (Rubinov and
Sporns, 2010; Tijms et al., 2013).

Moreover, the past decades witness the increasing growth in
clinical use of artificial intelligence. Machine learning approaches
are found to be quite useful for discriminating MCI patients

from normal controls (NCs) (Tanveer et al., 2020). Some
researchers made use of linguistic and/or acoustic features
(Gosztolya et al., 2019; Orimaye et al., 2020; Calzà et al., 2021),
while the overwhelming majority of previous studies focused
on utilizing the neuroimaging biomarkers for the identification
of MCI (Tanveer et al., 2020). Growing functional magnetic
resonance imaging (fMRI) studies have been devoted to the
classification task between MCI patients and NCs (Chen et al.,
2011; Jie et al., 2013, 2014; Suk et al., 2013; Wang et al., 2013;
Wee et al., 2013a,b; Cui et al., 2018; Xu et al., 2020). Most
recently, Xu et al. (2020) utilized a combination of information
in the functional brain connectome for the discrimination
of MCI and NC. When the functional connections, global
metrics, and nodal metrics were combined, an accuracy of
92.9% was achieved on 105 participants (41 MCI patients
and 60 NCs). However, accuracy dramatically dropped to
66.0% when testing the pretrained model with an independent
dataset from the AD Neuroimaging Initiative (ADNI) database
(Xu et al., 2020).

In this study, we retrospectively analyzed resting-state fMRI
(rs-fMRI) data derived from 82 MCI patients and 93 NCs from
ADNI. Brain functional networks were constructed from rs-
fMRI data, and the network metrics were analyzed from three
scales. Both cerebral and cerebellar regions were covered in the
construction of the graph. A weighted network was used in
order to keep the information in the functional connectivity
(FC). Furthermore, graph metrics were then combined to train
and validate an automatic model on MCI and NC subjects.
Our primary goal was to investigate the alterations of network
properties that occurred at the stage of MCI and to find out
whether the analysis of functional network can assist the accurate
diagnosis of MCI patients.

PARTICIPANTS

In this study, rs-fMRI data derived from 82 MCI patients and
93 NCs were obtained from the ADNI database.1 Participants
in ADNI were included in the present study if they met
the following criteria: (i) ages between 55.0 and 80.0; (ii)
scanning with parameters of repetition time of 3,000 ms,
echo time of 30 ms, flip angle of 80◦ or 90◦, slices of
48, and voxel size of 3.31 mm × 3.31 mm × 3.31 or
3.44 mm × 3.44 mm × 3.40 mm; (iii) available records of
their cognitive and behavioral assessments, comprising scores
from the 13-item AD assessment scale (ADAS13), clinical
dementia rating scale sum of boxes (CDRSB), Mini-Mental
State Examination (MMSE), and frequently asked questions
(FAQ); (iv) head motions <1.5 mm and 1.5◦; (v) mean
fractional displacement head motion values <0.2 mm; and
(vi) satisfying MRI quality control and excluding unclear
spatial normalization pictures. The demographics and clinical
characteristics of the participants are illustrated in Table 1. Cross-
sectional comparisons indicated a significant group effect on
ADAS13, CDRSB, MMSE, or FAQ scores.

1http://adni.loni.usc.edu/
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TABLE 1 | Demographic and clinical characteristics of MCI and NC.

Information NC MCI p-value

Number of participants 93 82

Age (years) 70.47 ± 5.91 71.61 ± 5.1 0.176

Gender (male/female) 46/36 36/57 0.024*

ADAS13 score 14.92 ± 6.81 11.62 ± 5.3 0.001*

CDRSB score 1.38 ± 1.26 0.13 ± 0.6 <0.001*

MMSE score 27.89 ± 1.82 28.88 ± 1.46 <0.001*

FAQ total score 3.15 ± 4.53 0.4 ± 1.93 <0.001*

NC, normal controls; MCI, mild cognitive impairment; ADAS13, 13-item Alzheimer’s
Disease Assessment Scale; CDRSB, Clinical Dementia Rating sum of boxes score;
MMSE, Mini-Mental State Examination; FAQ, frequently asked questions; plus–
minus score values are mean ± SD. *Significant difference between the two groups
(p < 0.05).

Data Preprocessing
In this study, after discarding the first several volumes (five
and seven for the data acquired before and after year 2014,
respectively), data preprocessing was conducted with the help
of Data Processing Assistant for Resting-State fMRI Advanced
Edition (version 4.3), which is based on Statistical Parametric
Mapping (SPM,2) and the toolbox for Data Processing and
Analysis of Brain Imaging (DPABI3) (Yan and Zang, 2010;
Yan et al., 2016). First, slice timing, motion correction, and
normalization to the Montreal Neurological Institute space
were conducted using T1 image unified segmentation. Then,
nuisance covariates including six head motion parameters, white
matter signal, cerebral spinal fluid signal, and global signal
were regressed. In order to remove the spiking influence caused
by motion artifacts (Power et al., 2012; Burgess et al., 2016;
Ciric et al., 2017, 2018), a despiking step (Parkes et al., 2017)
was adopted. Next, the temporal filtering (0.01–0.1 Hz) step
was performed. Like general fMRI data using the echo-planar
imaging sequence, artifacts could be caused by the distortion
and loss of signal in the anterior temporal and orbitofrontal
regions in ADNI, which might influence the connectivity between
these regions and the others. To reduce the variability due to
susceptibility artifacts, temporal signal-to-noise ratio (TSNR)
(Murphy et al., 2007) map on the whole brain was calculated
for each subject. A binary TSNR mask was obtained when a
threshold of 20 was set on the averaged TSNR map (Zhuo et al.,
2016) and further intersected with the Automated Anatomical
Labeling (AAL) atlas to generate the final mask. Finally, based on
the TSNR-thresholded AAL atlas, the preprocessed images were
parcellated into 116 regions of interest (ROIs) and the regional
mean time series of blood oxygenation level-dependent signals
with the first 135 time points were extracted from each ROI for
the further analysis.

From ROI Time Series to Weighted and
Undirected Network
Time series derived from the ith and jth ROIs were denoted as Xi
and Xj, respectively. The absolute Pearson correlation coefficient

2http://www.fil.ion.ucl.ac.uk/spm
3http://rfmri.org/DPABI

between Xi and Xj, denoted as rij and calculated by Formula (1),
was used in the present study to evaluate the FC between the two
ROIs.

rij =

∣∣∣∣∣∣∣
∑

(Xi − Xi)(Xj − Xj)√∑
(Xi − Xi)2

√∑
(Xj − Xj)2

∣∣∣∣∣∣∣ (1)

Here, Xi and Xj represent the mean of time series Xi and Xj,
respectively. Given a total of N ROIs, a symmetric matrix w with
N∗N elements can be obtained by evaluating the FC values over
all the possible ROI pairs, as shown in Formula (2):

wij =

{
1, i = j
rij, i, j ∈ [1,N] , and i 6= j

(2)

In order to exclude the self-connections, values in the diagonal
line of matrix w were then set to 0. In this way, for each
individual, a fully connected, undirected, and weighted network
was obtained by regarding each ROI as a node and w as the
adjacent matrix. We also constructed group-level networks based
on the individual adjacent matrix for MCI patients and NCs,
respectively. That is, the element wij of the group-level network
is the average value of wij in each individual graph within a
certain group. Such a group-level network summarizes FC maps
on average over all subjects within the group and captures
the connectivity backbone of the group (Meunier et al., 2009;
Sun et al., 2014).

Topological Metrics in Three Scales
The topological characteristics of a fully connected network
might be contaminated by the presence of numerous weak
connections among ROIs. Generally, a threshold is used, and
only the supra-threshold FCs are retained, leading to a sparse
network for analysis. The term network sparsity or density
was proposed to represent the proportion of supra-threshold
connections relative to all possible connections. As most graph
theoretic measures are contingent on the number of nodes and
the connection density, it is common to prescribe a shared
network sparsity for all the networks compared (Fornito et al.,
2013). However, there is no unified rule for the determination of
network sparsity. Therefore, we used a wide range of sparsities,
i.e., from 5 to 50% with steps of 1%, to analyze graphical
properties of brain functional network. When a certain sparsity
was used, each full-connected network (estimated for either
an individual or a group) was thresholded by keeping the
corresponding number of edges with the strongest FCs.

For each participant, based on the individual network
thresholded by a certain sparsity, classical network metrics for
scale I, such as the clustering coefficient (C), characteristic path
length (L), global efficiency (GE), and small worldness (SW,
random number was set as 1,000) were investigated in this
study. In scale II, the regional nodal characteristics regarding
the global hubs were assessed qualitatively on the group-level
networks obtained across the sparsities ranging from 5 to 50%.
The betweenness centrality of a node i (denoted as bci) in the
group-level network was calculated and normalized as BCi =

bci/ < bci >, where < bci > is the average betweenness of all

Frontiers in Neuroscience | www.frontiersin.org 3 September 2020 | Volume 14 | Article 55843439

http://www.fil.ion.ucl.ac.uk/spm
http://rfmri.org/DPABI
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-558434 September 30, 2020 Time: 16:49 # 4

Zhang et al. Brain Network Alters With MCI

nodes. BCi measures the importance of node i over information
flow between other nodes throughout the network, and the
regions with high values of BCi are usually identified as hubs.
Some studies identified hubs as nodes with BCi larger than 1.5
(He et al., 2008) or 2 (Yao et al., 2010), and in this study, we used
a stricter threshold for the definition of hubs as 2.5. To be noted,
nodal bci was also calculated for each subject on the individual
network and the group difference was evaluated.

In scale III, we investigated the modular structure
quantitatively via the group-level networks. The modular
organization has been thought to be one of the most fundamental
principles in complex systems and demonstrated to exist in
human brain networks in previous studies (Deng et al., 2016;
Pereira et al., 2016; Jalili, 2017). Modularity (denoted as Q in the
following), a measure for the quality of the community structure
in a network (Newman, 2006), was computed on the group-level
networks for a qualitative assessment when network sparsity
ranged from 5 to 50%, with steps of 1%. Meanwhile, modules
were detected as subsets of nodes in the network that are more
densely connected to the other nodes in the same module than to
nodes outside the module (Radicchi et al., 2004).

Definitions and brief descriptions of the network metrics
used are given in the Supplementary Material (Supplementary
Table S1). More details can been found in a previous report
(Rubinov and Sporns, 2010). The calculation of those metrics
were implemented in MATLAB (version R2014a, Mathworks
Inc., Natick, MA, United States) software with Brain Connectivity
Toolbox (Rubinov and Sporns, 2010).

Statistical Analysis
Statistical evaluations were conducted using R program (version
4.0.2). For cross-sectional comparisons of demographic and
clinical characteristics between the MCI and NC groups, the
normality of the data was first evaluated by Lilliefors test. The
Fisher’s exact test was applied to categorical variables (only
gender here), and Wilcoxon rank sum test or t-test was used
to compare the continuous variables in the case of violating the
normality or not. Logistic regression analysis, which considered
group as dependent variable and network metrics (both global
and nodal measures, i.e., C, L, GE, SW, and nodal bci) as
independent variables, was used to evaluate whether there is
significant difference of network metrics between both groups.
Moreover, gender was controlled as concomitant variable in
the logistic regression analysis. p < 0.05 was considered as an
indicator for significant difference.

Classification of MCI and NC
In this study, in addition to four scores of cognitive assessments,
there are four global and 116 nodal (i.e., bc) network metrics
for each subject, resulting in 124 features under each sparsity.
Considering the classification scenario with high-dimensional
features and low-size samples, we hereby proposed a two-layer
random forest approach for the task, with the first layer for
feature selection and the second for classification. Such an
approach was implemented on Python 3.7 with the widely used
scikit-learn library (Pedregosa et al., 2011).

The importance of the used features can be measured by the
out-of-bag (OOB) error (Genuer et al., 2010). In the random
forest approach, under each sparsity, all the 124 features were
fed into the first-layer forest and ranked according to the OOB
error provided by scikit-learn. Afterward, the top N important
features of the first layer were selected and fed into the second
layer to train a model. A wide range of N from 5 to 30 was
considered in this study.

For the second layer, two hyperparameters of the random
forest, i.e., the number of trees in the forest and the maximum
depth of the tree, were fine-tuned. Specifically, a five-fold grid
search was embedded in an outer loop to fulfill a 10-fold
nested cross-validation (CV) for evaluating the performance of
the classifier, i.e., the accuracy, sensitivity, specificity, and area
under receiver operating characteristic curve (AUC). Nested CV
was demonstrated to produce robust and unbiased performance
estimates regardless of sample size (Vabalas et al., 2019).

RESULTS

Global Network Metrics of Scale I
Global network properties including C, L, GE, and SW were
calculated and compared for the MCI and NC groups across
sparsities ranging from 5 to 50%, with steps of 1%. The results
are illustrated in Figure 1. In both groups, all the global
network metrics altered rapidly along with small sparsities and
gradually converged toward a sparsity of 50%. No significant
group difference of C was found at any sparsities (Figure 1A).
Compared to NC, a significant decrease (or increase) of L
(or GE) was observed in MCI across almost all the sparsities
(Figures 1B,C). As shown in Figure 1D, the SW values were
larger than one for both groups under all the calculated
sparsities, suggesting the existence of small-world properties in
the functional networks. However, significant group difference of
SW can only be observed with the sparsity of 16–20%.

Moreover, partial correlation analysis (controlling gender) was
used to evaluate the association between global network metrics
(C, L, GE, and SW) and clinical characteristics (ADAS13, CDRSB,
MMSE, and FAQ scores) by pooling all participants together. The
values of C were shown to be associated negatively with MMSE
and positively with CDRSB, ADAS13, or FAQ scores (Figure 2A),
indicating a stable association between C and clinical symptoms
of MCI regardless of network sparsity. Similarly, significant
correlation was found between other global network metrics and
the cognitive scores.

In Figures 1, 2, rapid alterations can be observed on both
the values of the global network metrics and the correlation
coefficients between them and the clinical scores when the used
network sparsity was small (about <13%). Such an observation
may be attributed to the isolated ROIs in the individual networks,
which has a percentage >5% when sparsity <9% for NC and 12%
for MCI group (shown in Supplementary Figure S1).

Nodal Characteristics of Scale II
The global hubs of the functional brain network were detected
in both groups across all the considered sparsities. As shown in
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FIGURE 1 | Values of global network metrics (the central line represents the group mean and the envelopes represents mean ± standard error) for normal controls
(NC) and mild cognitive impairment (MCI) patients: (A) clustering coefficient, (B) characteristic path length, (C) global efficiency, and (D) small worldness. The symbol
“*” represents a significant group difference of the network metric in the corresponding sparsity (p < 0.05, logistic regression analysis, controlling gender).

Figure 3, the right lobule VIII of cerebellar hemisphere (CER8.R)
and the left insula (INS.L) were identified as global hubs across
almost all the sparsities in both groups. Additionally, global hubs
also occur frequently on regions including the left lobule VIII
of the cerebellar hemisphere (CER8.L), the right lobule IV–V of
the cerebellar hemisphere (CER4-5.R), the right superior frontal
gyrus of the medial orbital surface (ORBsupmed.R), and the right
middle frontal gyrus (MFG.R) in MCI (Figure 3A), as well as
the right lobule VI of the cerebellar hemisphere (CER6.R), the
left lobule IV–V of the cerebellar hemisphere (CER4-5.L), the
bilateral Crus II of the cerebellar hemisphere (CERCRU2), and
the left temporal pole of the superior temporal gyrus (TPOsup.L)
in NC (Figure 3B). Moreover, regions in MCI, including the left
rolandic operculum (ROL.L), the right superior temporal gyrus
(STG.R), the right inferior occipital gyrus (IOG.R), and right
caudate nucleus (CAU.R), and regions in NC, such as the right
putamen (PUT.R), the left superior temporal gyrus (STG.L), the
right temporal pole of superior temporal gyrus (TPOsup.R), and
bilateral fusiform gyrus (FFG) were also identified as global hubs
at about one third (or more) sparsities.

Significant differences of nodal bc between MCI patients and
NCs were found in many ROIs, which were also identified as
global hubs and altered across the groups, such as CER8.L,
CERCRU2.R, bilateral FFG, IOG.R, and CAU.R (Figure 4).
Figure 5 further illustrates the values of bc in those regions,
demonstrating an agreement with the quantitative information
provided by the hubs of the group-level network.

The Modular Structure of Scale III
Figure 6A shows the modularity Q achieved for group-level
networks and the corresponding randomized networks across
the sparsities from 5 to 50%. The value of Q decreased with
the increasing network sparsity for both groups. The result of
permutation tests demonstrated that Q is significantly larger than
those obtained by the randomly shuffled networks, indicating
that the modular structure obtained is non-random across all
the sparsities (Figure 6A) (see Supplementary Material for the
details of permutation tests). The number of modules detected for
each group also alters with the sparsities (Figure 6B). When there
are no isolated nodes in the group-level network (i.e., sparsity
larger than 7%), there would be two to five modules in each group.

Table 2 and Figure 7 illustrated the modular structures
detected in both groups at a sparsity of 16% where we obtained
highest performance to discriminate MCI patients from NCs
(introduced below). Four functionally oriented modules were
uncovered for both groups. For the modular structure of NC,
anatomically adjacent ROIs tended to be clustered into the same
module. The first module, represented as Module I, contains
the thalamus, basal ganglia, and all the ROIs in the cerebellar
regions. Module II of NC covers the entire parietal lobe and the
majority of frontal lobe. Moreover, the right anterior cingulate
and paracingulate gyri, the bilateral precentral gyrus, and the
bilateral posterior cingulate gyrus also joined in this module. The
left middle frontal gyrus and all the ROIs located in the occipital
lobe constitute a new module, named as Module III. All the rest
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FIGURE 2 | Values of correlation coefficient between global network metrics and clinical assessments [13-item Alzheimer’s disease assessment scale (ADAS13),
clinical dementia rating scale sum of boxes (CDRSB), Mini-Mental State Examination (MMSE), and frequently asked questions (FAQ) scores]: (A) clustering
coefficient, (B) characteristic path length, (C) global efficiency, and (D) small worldness. The symbol “×,” “*,” “*,”or “�” represents a significant correlation (p < 0.05,
partial correlation analysis, controlling gender) between the network metric and cognitive score in the corresponding sparsity.

of the ROIs were included in Module IV for NC group. For
the MCI group, although anatomically adjacent regions are still
likely to be included in the same module, alterations occur in
its composition of modules, with a less localized organization
of community structure compared with NC. For example, the
ROIs of the cerebellum are separated into two modules, whereas
they stay in the same module in the NC group. Moreover, the
orbital surface of the frontal lobe distributed in two modules and
exhibited a denser connection with ROIs such as the bilateral
insula, hippocampus, and amygdala.

Classification of MCI and NC
Using the proposed two-layer random forest approach, we
performed the classification of MCI patients and NCs. An
accuracy of 86.3% was obtained by merely using the clinical
assessments (scores of MMSE, CDRSB, ADAS13, and FAQ).
However, when integrated with network metrics, improved
accuracies can be achieved across all the sparsities (as shown in
Figure 8), with highest accuracy of 91.4% obtained at the sparsity
of 16%. The results suggested that the network metrics could
provide additional useful information to assist the diagnosis
of MCI patients.

The highest accuracy (91.4%) was achieved when we used
the top 10 discriminative features (as shown in Figure 9). The
CDRSB was found to be the most informative feature for the
classification of MCI patients and NCs, with an overwhelming

importance compared with the other features. Other cognitive
assessments, FAQ, ADAS13, and MMSE, ranked at the second,
fourth, and fifth positions, respectively. As for the network
properties, nodal bc of CERCRU2.R also ranked in the top 5
important features. Moreover, the top 10 discriminative features
included global metric L and nodal bc of another four regions, i.e.,
FFG.R, the right supramarginal gyrus (SMG.R), the right lobule
VIIB of the cerebellar hemisphere (CERE7b.R), and IOG.R.

DISCUSSION

In the present work, we investigated the alteration of brain
functional network in MCI patients. The network measures
were explored on three scales, concerning its global metrics,
nodal characteristics, and modular properties. Furthermore, the
application of network metrics for patient’s identification was
performed and evaluated on a two-layer random forest approach.
The results showed significant alterations of network metrics in
MCI and suggested that the analysis of brain functional network
could provide assistant information for the diagnosis of MCI with
neuropsychological assessments.

Alterations in Global Network Metrics
The global network properties of scale I have been widely
investigated in previous studies (Stam and Reijneveld, 2007;
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FIGURE 3 | Global hubs of the functional brain networks in (A) the MCI group and (B) the NC group across the sparsities from 5 to 50%. An “∗” symbol indicates
that the corresponding region of interest (ROI) (the value of y-axis) is identified as a global hub at the corresponding sparistiy (the value of x-axis). For abbreviation of
ROIs, see Supplementary Table S2.

Jalili, 2016). However, discrepancies exist in previous studies
regarding the alteration of C, L, and GE of the human brain
network in MCI. Taking L for example, some researchers found
no significant difference between MCI and NC (Yao et al., 2010),
while others reported a significant increase (Yao et al., 2018) or
a significant decrease (Son et al., 2015) of L in MCI compared
with NC. Here, significantly decreased L and increased GE were
found in MCI compared with NC under almost all the considered
sparsities, suggesting that an enhanced functional integration of
brain network might occur at the prodromal stage of AD. Such
an observation might be indicative of a possible compensatory
mechanism in the early stage of AD (Zhou and Lui, 2013).
Moreover, existing studies have demonstrated that the clinical
symptoms of AD, such as impairments of memory, language,
and other cognitive functions, were associated with abnormal
structural and functional brain networks (Liu et al., 2017). In this
study, we also observed a significant correlation between global
network metrics and the clinical cognitive evaluations, suggesting
that graph theory analysis could act as a strategy to differentiate
MCI patients from NC subjects.

Alterations in Nodal Characteristics of
Scale II
The existence of global hubs in human brain networks was
supported by the present study. Although in this study, the global

hubs were identified on the group-level network, it provided
informative findings that might be associated with the underlying
pathological mechanism of MCI.

The most informative observation for the global hubs is its
distribution in the cerebellum. For both groups, stable hubs were
mainly distributed in cerebellar lobules IV–VI, VII, and VIII.
Studies on cerebellar functional topography have shown that
activity in sensorimotor regions were related to the contralateral
cerebellar lobules IV–VI and VIII, whereas more cognitively
demanding tasks engaged prefrontal and parietal cortices along
with cerebellar lobules VI and VII (Stoodley et al., 2012). In
the present study, CER8.R and CER4_5.L or CER4_5.R were
identified as global hubs in both groups, which might suggest
a maintained motor function in the MCI group. However,
prominent alteration has been revealed within cerebellar lobules
VI and VII since bilateral CERCRU2 (a part of lobule VII) and
CER6.L were found to be stable hubs in the NC group but not
in the MCI group (except for a few sparsities). Furthermore,
the nodal bc of CERCRU2.R decreased significantly (p < 0.05,
uncorrected) in MCI patients. We further observed positive
correlation (partial correlation analysis, p < 0.05, controlling
for gender) between nodal bc of CRECRU2.L and MMSE score
across 40 out of 46 sparsities (average correlation coefficient
over these sparsities was 0.19), and negative correlation between
nodal bc of CERCRU2.R and ADAS13 scores (32 sparsities,
average correlation coefficient was −0.18). The MMSE is the
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FIGURE 4 | Group difference of nodal betweenness centrality of the individual brain networks across the sparsities from 5 to 50%. A symbol of “∗” indicates a
significant difference (p < 0.05, logistic regression analysis, controlling gender) of bc in the corresponding region of interest (ROI) (the value of y-axis) at the
corresponding sparsity (the value of x-axis). Additionally, the “o” symbol is employed for a significant difference at the level of p < 0.05/116 (logistic regression
analysis, controlling gender). For abbreviation of ROIs, see Supplementary Table S2.

FIGURE 5 | Nodal betweenness centrality of the individual brain networks for normal control (NC) and mild cognitive impairment (MCI) in six regions of interest
(ROIs). The central line represents the group mean and the envelopes represents mean ± standard error. For abbreviation of ROIs, see Supplementary Table S2.
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FIGURE 6 | (A) The modularity of group-level networks and randomly shuffled networks; (B) the number of modules of the community structure detected in the
group-level networks for normal control (NC) and mild cognitive impairment (MCI) at different network sparsities.

TABLE 2 | Alterations of modular composition in MCI group relative to NC.

Module in NC Anatomical classification (abbreviation) of ROIs Module in MCI

I (34) CERCRU1.L, CERCRU1.R, CERCRU2.L, CERCRU2.R, CER4_5.R, CER6.L, CER6.R, CER7b.L, CER7b.R, CER8.L, CER8.R,
CER9.L, CER9.R, CER10.L, CER10.R, VER4_5, VER6, VER7, VER8, VER9, VER10

I (21)

CER3.L, CER3.R, CER4_5.L, VER1_2, VER3 IV (5)

CAU.L, CAU.R, PUT.L, PUT.R, PAL.L, PAL.R, THA.L, THA.R III (8)

II (37) PreCG.L, PreCG.R, SFGdor.L, SFGdor.R, IFGoperc.L, IFGoperc.R, IFGtriang.L, IFGtriang.R, SFGmed.L, SFGmed.R,
ORBsupmed.L, ORBsupmed.R, PCG.L, PCG.R, SPG.L, SPG.R, IPL.L, IPL.R, SMG.L, SMG.R, ANG.L, ANG.R, PCUN.L, PCUN.R

II (24)

MFG.R, MTG.R I (2)

ORBsup.L, ORBsup.R, ORBmid.L, ORBmid.R, ORBinf.L, ORBinf.R, REC.L, REC.R IV (8)

OLF.R, ACG.L, ACG.R III (3)

III (15) CAL.L, CAL.R, CUN.L, CUN.R, LING.L, LING.R, SOG.L, SOG.R, MOG.L, MOG.R, IOG.L, IOG.R, FFG.L, FFG.R III (14)

MFG.L II (1)

IV (30) STG.L, STG.R, MTG.L, TPOmid.L, TPOmid.R, ITG.L, ITG.R I (7)

ROL.L, ROL.R, SMA.L, SMA.R, PoCG.L, PoCG.R, PCL.L, PCL.R II (8)

OLF.L, INS.L, INS.R, HIP.L, HIP.R, PHG.L, PHG.R, AMYG.L, AMYG.R, HES.L, HES.R, TPOsup.L, TPOsup.R IV (13)

MCG.L, MCG.R III (2)

NC, normal controls; MCI, mild cognitive impairment subjects. For the description of the AAL-atlas abbreviations, see Supplementary Table S2.

best known and the most common used short screening tool of
AD for providing an overall measure of cognitive impairment
in clinical, research, and community settings (Arevalo-Rodriguez
et al., 2015), where ADAS13 is another widely used cognitive
assessment with a higher value indicating poorer cognitive
performance (Mohs et al., 1997; Sano et al., 2011). In this
study, cognitive impairment of the MCI patients was reflected
by both MMSE and ADAS13 scores (Table 1). A previous
study demonstrated that cognitive impairments may occur when
posterior lobe lesions affect cerebellar lobules VI and VII, which
would disrupt cerebellar modulation of cognitive loops with
cerebral association cortices (Stoodley et al., 2012). Therefore,
our findings suggested that alteration of FC in the cerebellum
(especially in the CERCRU2) be associated with the cognitive
impairment in MCI, and the cerebellum may be a potential target
for neuromodulation in treating MCI.

Significant changes of the network metrics of scale II
were also in found the bilateral FFG (especially FFG.R)
and IOG.R. FFG is thought to be a key structure for
functionally specialized computations of high-level vision such

FIGURE 7 | Color online modular structure of functional brain networks for:
(A) normal controls (NC), (B) mild cognitive impairment (MCI) patients. Each
dot in the surface representation (BrainNet Viewer, http://www.nitrc.
org/projects/bnv/, version 1.61) corresponds to a region of interest. The
modular structures were detected based on the group-level network at a
sparsity of 16%.

as face perception, object recognition, and reading (Weiner
and Zilles, 2016). Katja Weibert and Timothy J. Andrews
demonstrated that the activity in FFG.R predicts the behavioral
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FIGURE 8 | The accuracy, area under receiver operating characteristic curve
(AUC), sensitivity, and specificity of the 10-fold cross-validation (CV) for the
classification of mild cognitive impairment (MCI) and normal control (NC) with
the proposed two-layer random forest approach. The dashed line was
achieved by using only the scores of clinical assessments while the solid line
represents the model performance obtained after the combination of clinical
assessments and network analysis.

FIGURE 9 | The top 10 discriminative features and their feature importance in
the first-layer random forest for the classification of mild cognitive impairment
(MCI) and normal control (NC) at a sparsity of 16%. For abbreviation of regions
of interest (ROIs), see Supplementary Table S2.

advantage for the perception of familiar faces (Weibert and
Andrews, 2015). Based on a study of rs-fMRI, Cai et al.
(2015) reported altered FC of FFG in patients suffering
from amnestic MCI. IOG is also important for the visual
function during face processing, since it is connected to
the amygdala via white matter connectivity and forms a
network for facial recognition with the amygdala (Sato et al.,
2017). Previous studies demonstrated activation in bilateral
FFG and IOG.R revealed by a face localizer contrast (faces–
objects) (Rossion et al., 2003). In the present study, we
found that both FFG.R and FFG.L are frequently present as

global hubs in NC but absent in MCI, while IOG.R turns
out in MCI but not in NC. Furthermore, the nodal bc of
FFG.R decreased significantly in MCI while that of IOG.R
significantly increased. We thus speculated that MCI patients
might have an affected function of FFG.R, leading to a
compensatory role in IOG.R.

Alterations in Modular Structure of
Scale III
The present study confirms the existence of modular organization
in human brain networks, even in MCI patients. We detected
four modules for each group. For both groups, although
discrepancies existed in their composition of modules, some
common features can be found in the modular structure. Such
features might throw light on the basis of two fundamental
aspects of the human functional brain network, i.e., the functional
segmentation and integration. On the one hand, anatomically
adjacent ROIs tend to be clustered into the same module,
which might be the foundation of the functional segmentation
of the brain network. On the other hand, those ROIs, whose
anatomical neighbors were involved into a different module,
are likely to act as bridges to connect different modules
and to be identified as global hubs in the whole network.
Such a phenomenon should contribute to the functional
integration and the existence of small-worldness property of
the brain network.

The prominent alteration of the modular structure in MCI
(compared with NC) occurs in the cerebellum, with its ROIs
grouped into two modules. Another obvious change in the
modular structure in MCI occurs in the medial prefrontal
cortex, especially the orbitofrontal cortex (OFC). In previous
studies, the OFC has been found to be involved in sensory
integration, in representing the affective value of reinforcers,
and in decision making and expectation (Kringelbach, 2005).
In the present study, six out of eight OFC ROIs are shifted
to Module IV and clustered with the hippocampus and
parahippocampal regions in MCI. As structural abnormalities
in the OFC have been revealed by neuroimaging studies
in MCI patients (Wang et al., 2020), in the future, it
would be of interest to investigate whether our findings
related to the OFC is the cause or effect of its structural
abnormalities in MCI.

The Classification of MCI and NC
In clinical practice, the MCI diagnosis mainly depended
on concerns of the cognition changes from the patient,
knowledgeable informant, or according to a skilled clinician’s
observation (Langa and Levine, 2014). Neuropsychological
assessments, such as CDRSB and MMSE, are often
used in clinical trial for objective evidence of cognitive
impairment (Langa and Levine, 2014). In the present
study, with the combination of MMSE, CDRSB, ADAS13,
and FAQ scores, we found an accuracy of 86.3% for the
classification of MCI and NC, confirming the effectiveness
of neuropsychological assessments in the diagnosis of MCI.
Improved performances with highest accuracy of 91.4%
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can be achieved by combining neuropsychological assessments
and network analysis after feature selection implemented via
random forest approach. Furthermore, we found that the CDRSB
score played a vital role in discriminating MCI, in line with a
previous study which demonstrated that the CDRSB score could
be used to accurately stage severity of AD and MCI (O’bryant
et al., 2008). In addition, our results of feature selection further
indicated the importance to investigate the role of CERCRU2.R,
FFG.R, and IOG.R in MCI.

CONCLUSION AND LIMITATION

In this study, we investigated the alterations of brain functional
network in MCI. Although small-world properties, global hubs,
and modular structures were observed in both groups, network
metrics significantly changed in MCI when compared with
NC. The role of cerebellar regions, especially the Crus II of
cerebellar hemisphere, were found to be associated with the
cognitive impairment in MCI patients and discriminative in
the identification of MCI. Although network metrics were
demonstrated to provide useful information to assist the
diagnosis of MCI in clinical practice, future investigation is
required to clarify the association between these alterations and
the underlying pathological mechanism of MCI.

Moreover, the sex factor was controlled in the statistical
analysis to evaluate the group difference of network metrics or
their association with clinical characteristics in scales I and II.
Because the modular structure of each group was computed
at group level, the findings in scale III are hereby descriptive,
which suggests that we cannot statistically assess whether they
are partly contributed by sex difference. Given our observation
that sex contribution to scales I and II is trivial, we speculate
that the descriptive modular structure is not contributed by sex
difference. Future study on a larger sample is thus in favor of the
validation of our findings, especially those in scale III.
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Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease that
is the most common cause of dementia. Optogenetics uses a combination of genetic
engineering and light to activate or inhibit specific neurons in the brain.

Objective: The objective of the study was to examine the effect of activation of
glutamatergic neurons in the hippocampus of mice injected with Aβ1-42 on memory
function and biomarkers of neuroinflammation and neuroprotection in the brain to
elucidate the clinical utility of optogenetic neuromodulation in AD.

Methods: AAV5–CaMKII–channelrhodopsin-2 (CHR2)–mCherry (Aβ-CHR2 mice) or
AAV5—CaMKII–mCherry (Aβ-non-CHR2 mice) was injected into the dentate gyrus
(DG) of the bilateral hippocampus of an Aβ1-42-injected mouse model of AD. The
novel object recognition test was used to investigate working memory (M1), short-term
memory (M2), and long-term memory (M3) after Aβ1-42 injection. Hippocampus tissues
were collected for immunohistochemical analysis.

Results: Compared to controls, M1 and M2 were significantly higher in Aβ-CHR2
mice, but there was no significant difference in M3; NeuN and synapsin expression
were significantly increased in the DG of Aβ-CHR2 mice, but not in CA1, CA3, the
subventricular zone (SVZ), or the entorhinal cortex (ENT); GluR2 and IL-10 expressions
were significantly increased, and GFAP expression was significantly decreased, in CA1,
CA3, the DG, and the SVZ of Aβ-CHR2 mice, but not in the ENT.
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Conclusion: Activation of glutamatergic neurons by optogenetics in the bilateral DG of
an Aβ-injected mouse model of AD improved M1 and M2, but not M3. A single-target
optogenetics strategy has spatial limitations; therefore, a multiple targeted optogenetics
approach to AD therapy should be explored.

Keywords: Alzheimer’s disease, amyloid-1-42, channelrhodopsin-2, memory, novel object recognition,
neuroprotection, neuro-inflammation

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that is the most common cause of dementia (Aravanis
et al., 2007). AD is characterized by pathological changes that
include amyloid-β (Aβ) deposition, marked neuronal loss, and
tau hyperphosphorylation (Gomez-Isla et al., 1996; Scheff et al.,
2006; Crews and Masliah, 2010). Increasingly, evidence suggests
that soluble low-molecular-weight Aβ oligomers are associated
with neurotoxicity (Lambert et al., 1998; Lesne et al., 2006; Ono
et al., 2009). In a novel mouse model, small, soluble Aβ1−42
oligomers induced extensive neuronal loss in vivo, and initiated
a cascade of events that mimicked key neuropathological events
in AD (Brouillette et al., 2012).

Optogenetics uses a combination of genetic engineering
and light to activate or inhibit specific neurons in the brain
and explore the functions associated with those neurons
(Deisseroth, 2011). Optogenetics has been used to investigate the
pathophysiology of Parkinson’s disease and epilepsy, but studies
applying optogenetics to AD are scarce.

AAV5–CaMKII–ChR2–mCherry is an adeno-associated virus
(AAV) expressing channelrhodopsin-2 (ChR2)–mCherry under
the control of the glutametergic neuron promoter, CamKII
(Aravanis et al., 2007). The objective of the present study was
to examine the effect of activation of glutamatergic neurons in
the hippocampus of mice injected with soluble low-molecular-
weight Aβ1−42 on memory function and biomarkers of
neuroinflammation and neuroprotection in the brain to elucidate
the clinical utility of optogenetic neuromodulation in AD.

MATERIALS AND METHODS

Study Design
All experiments were approved by the Animal Resources
Committee, Jinan University, China (No. LL-KT-2011134) and
performed according to the Guide for the Care and Use of
Laboratory Animals (NIH publication No. 8523, revised 1985).

A flow chart of the study design is shown in Figure 1. A total
of 36 8-month-old female C57BL/6 mice were purchased from
Guangdong Medical Laboratory Animal Center, China [license
No. SCXK (Yue) 2008-0002]. Mice were housed at 20 ± 2◦C and
55 ± 5% humidity, with free access to food and water, under
a 12/12 h light/dark cycle. The mice were randomly allocated
into three groups: Aβ mice (n = 6), Aβ-non-CHR2 mice (n = 6),

Abbreviations: AD, Alzheimer’s disease; DG, dentate gyrus; ENT, entorhinal
cortex; GFAP, glial fibrillary acidic protein; GluR2, glutamate receptors; IL,
interleukin; NeuN, neuronal nuclei; SVZ, subventricular zone.

and Aβ-CHR2 mice (n = 6). AAV5–CaMKII–CHR2–mCherry
(Aβ-CHR2 mice) or AAV5–CaMKII–mCherry (Aβ-non-CHR2
mice) was injected into the dentate gyrus (DG) of the mouse
bilateral hippocampus. Fourteen days later, 0.2 µg of soluble low-
molecular-weight Aβ1−42 was injected, and light stimulation with
an optical fiber was performed at the same site. Low-molecular-
weight Aβ1−42 injection and light stimulation were repeated once
a day for 7 days. Behavioral tests were performed on Day 0 and
Days 1–6 after Aβ1−42 injection. Mice were sacrificed on Day 7,
and tissues were collected for immunochemical analysis.

Soluble Low-Molecular-Weight Aβ1−42
Aβ1−42 peptide solution was prepared according to a previously
published protocol (Kuperstein et al., 2010; Brouillette et al.,
2012). Briefly, Aβ1−42 peptide (Sigma A9810) was dissolved
in 99% hexafluoroisopropanol (HFIP) (Sigma-Aldrich) to a
concentration of 1 mg/ml. After evaporation under nitrogen
gas, the peptide film was dissolved in dimethylsulfoxide (DMSO;
Sigma-Aldrich) to a concentration of 1 mg/ml and eluted on
a 5 ml HiTrap desalting column (GE Healthcare) with 50 mM
Tris, 1 mM EDTA buffer, and pH 7.5. Aβ1−42 concentration was
measured with a BCA protein assay kit (Pierce, Rockford, IL,
United States). Aβ1−42 was stored on ice and used within 30 min.

Surgical Procedures
AAV5–CaMKII–CHR2–mCherry and AAV5–CaMKII–mCherry
were provided by Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences. All surgeries were performed
under stereotaxic guidance.

Mice were anesthetized with 500 mg/kg of avertin. Bilateral
cannulae (328OPD-2.8/Spc with a removable dummy wire;
Plastics One) were stereotaxically implanted into the DG
of the hippocampus [coordinates with respect to bregma:
−2.2 mm anteroposterior (AP), ± 1.4 mm mediolateral (ML),
−2.1 mm dorsoventral (DV)], as previously described (Paxinos
and Waston, 2005; Brouillette et al., 2012). AAV5–CaMKII–
CHR2–mCherry or AAV5–CaMKII–mCherry were injected
at 100 nl/min for 10 min to a total of 1 µl through a
microelectrode holder (MPH6S;WPI) using a glass micropipette
and a 10 µl Hamilton microsyringe (701LT; Hamilton). The
needle was retained for 5 min following completion of the
injection. Expression of AAV5–CaMKII–CHR2–mCherry and
AAV5–CaMKII–mCherry were histologically confirmed 14 days
after surgery. Subsequently, Aβ1−42 0.2 µg/µl was injected
into the DG at 100 nl/min for 10 min to a total of 1 µl,
as previously described. Next, a fiber optic patchcord optical
fiber (200 mm core diameter; Doric Lenses) was implanted at
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FIGURE 1 | Study design. AAV, adeno-associated virus; CaMK,
Ca2+/calmodulin-dependent protein kinase; CHR2, channelrhodopsin-2;
Aβ, amyloid-β; D, day(s).

the site of the Aβ1−42 injection, and optical stimulation was
generated by a laser (473 nm, 1–3 ms, 10 Hz) (Changchun New
Industries) for 5 min.

Behavioral Test
The novel object recognition test was used to assess the ability
of mice to recognize a novel object in their environment. The
novel object recognition test was conducted in three phases:
(1) Pre-training, mice were allowed to explore an arena without
objects for 5 min daily on Day 0 and Days 1–5 after Aβ1−42
injection. (2) Training phase (acquisition): on Day 6 after Aβ1−42
injection, the mice were placed in the arena with two identical
sample objects (A1 and A2) positioned in two adjacent corners
10 cm from the walls. The mice were placed against the center of
the opposite wall with their back to the objects. The mice were
allowed to explore the objects for 3 min and were then placed in
their home cage. A memory index (M0) was calculated as follows:
M0 (%) = (exploration time devoted to object A2/exploration
time devoted to object A1 + exploration time devoted to object
A2) × 100. (3) Test phase (consolidation): mice were placed
in the arena with two objects in the same position, one was
identical to the sample objects, and the other was novel (A1 and
B). The mice were allowed to explore the objects 5 min, 2 h,
or 24 h after the training phase to measure working memory
(M1), short-term memory (M2), or long-term memory (M3).
The memory indices were calculated as follows: M1, M2, M3
(%) = exploration time devoted to object B/(exploration time
devoted to object A1 + exploration time devoted to object
B) × 100. A higher memory index implied a better ability to
recognize a familiar object.

Immunohistochemistry
Mouse brain was embedded in paraffin. Brain tissue was
sectioned to 30 µm in the coronal plane at the target area

and temporarily stored in a 12-well plate in PBS. Sections
were treated with xylene and rehydrated in graded ethanol
(Fachim et al., 2016). Sections were blocked in 3% BSA at room
temperature for 1 h and incubated in 0.3% Triton X-100/PBS
with primary antibody overnight at 4◦C. Primary antibodies
were mouse antiglial fibrillary acidic protein (GFAP, 5 µg/ml,
Cat. No. MAB3402, Chemicon), monoclonal mouse anti-NeuN
(1:500, Cat. No. MAB377, Millipore), monoclonal mouse anti-
synapsin Ia/b (A-1, 1:100, Cat. NO. sc-398849, Santa Cruz), rabbit
anti-glutamate receptor 2 (GluR-2, 1:4,000 Cat. No. AB1768,
Millipore), or mouse anti-interleukin (IL)-10 (A-2, 1:100 Cat. No.
sc-365858, Santa Cruz). After washing, sections were incubated
with secondary antibody in the dark for 1 h at room temperature.
Secondary antibodies were goat anti-mouse IgG (H&L, 1:2,000
Cat. No. ab7067; Abcam) or goat anti-rabbit IgG (H&L, HRP,
1:2,000 Cat. No. ab6721; Abcam). Images of CA1, CA3, the
DG, the subventricular zone (SVZ), and the entorhinal cortex
(ENT) were visualized with a light microscope (DMI 3000
B; Leica, Buffalo Grove, IL, United States). The number of
immunostained-positive cells was counted using Image J software
(NIH, Bethesda, MD, United States) in a double-blind manner
and was expressed as a percentage of the Aβ mice.

Statistical Analysis
Statistical analyses were performed using SPSS19.0 and Prism
6 (GraphPad). Data are presented as mean ± SEM. Data from
the behavioral tests were compared using repeated measures
analysis of variance. Data from immunohistochemical analysis
were compared with one-way analysis of variance. P < 0.05 was
considered statistically significant.

RESULTS

Effect of AAV5–CaMK–CHR2–mCherry
on Memory Function in Mice
M1 and M2 were significantly increased compared to M0 in
Aβ-CHR2 mice (F = 25.12, P < 0.0001), but there was no
significant difference between M0 and M3 (P > 0.05). There
were no significant differences between M0, M1, M2, and M3
in Aβ-non-CHR2 mice and Aβ mice (Aβ-non-CHR2 mice,
F = 1.524, P > 0.05; Aβ mice, F = 1.099, P > 0.05). M1 and
M2 were significantly higher in Aβ-CHR2 mice compared to
Aβ-non-CHR2 mice and Aβ mice (F = 53.93, P < 0.001 for
M1; F = 18.31, P < 0.001 for M2). There were no significant
differences in M3 in Aβ-CHR2 mice, Aβ-non-CHR2 mice, and
Aβ mice (F = 2.002, P > 0.05) (Figure 2). These results suggest
that working memory and short-term memory, but not long-
term memory, were rescued by optogenetic treatment.

Effect of AAV5–CaMKII–CHR2–mCherry
on NeuN and Synapsin Expression in
CA1, CA3, the DG, the SVZ, and the ENT
NeuN and synapsin expressions were significantly increased
in the DG of Aβ-CHR2 mice compared to that of Aβ-non-
CHR2 mice and Aβ mice (P < 0.05). There were no significant
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FIGURE 2 | Novel object recognition test. Working, short-term, and long-term
memory were assessed based on the memory index during the test phase
(consolidation), 5 min, 2 h, and 24 h after the training phase. Data are
expressed as the mean ± SEM (n = 8). **P < 0.001, vs. the Aβ-CHR2 group.
Aβ mice received repeated injections of Aβ1−42 in the bilateral DG;
Aβ-non-CHR2 mice received AAV5–CaMKII–mCherry and repeated injections
of Aβ1−42 in the bilateral DG, as well as light stimulation; Aβ-CHR2 mice
received AAV5–CaMKII–CHR2–mCherry and repeated injections of Aβ1−42 in
the bilateral DG as well as light stimulation. Memory index (%) = exploration
time devoted to object B/(exploration time devoted to object A1 + exploration
time devoted to object B) × 100. AAV, adeno-associated virus; CaMK,
Ca2+/calmodulin-dependent protein kinase; CHR2, channelrhodopsin-2.
#P < 0.001, vs. M0 (repeated measures analysis of variance).

differences in NeuN and synapsin expression in CA1, CA3, the
SVZ, or the ENT of Aβ-CHR2 mice, Aβ-non-CHR2 mice, and
Aβ mice (P > 0.05) (Figure 3).

Effect of AAV5–CaMKII–CHR2–mCherry
on GluR2, IL-10, and GFAP Expression in
CA1, CA3, the DG, the SVZ, and the ENT
GluR2 and IL-10 expressions were significantly increased, and
GFAP expression was significantly decreased in CA1, CA3, the
DG, and the SVZ of Aβ-CHR2 mice compared to Aβ-non-
CHR2 mice and Aβ mice (P < 0.05). There were no significant
differences in GluR2, IL-10, and GFAP expression in the
ENT of Aβ-CHR2 mice, Aβ-non-CHR2 mice, and Aβ mice
(P > 0.05) (Figure 4).

DISCUSSION

This study used optogenetics and investigated the effect of
stimulating CaMK–CHR2-expressing neurons in the DG of the
bilateral hippocampus on memory function and biomarkers
of neuroinflammation and neuroprotection in the brain
of an Aβ-injected mouse model of AD. Findings showed:
(1) optogenetics improved working memory and short-term
memory, but not long-term memory, in Aβ-CHR2 mice, and
(2) optogenetics activated GluR2, attenuated neuroinflammation,
and exerted neuroprotective effects in the core but not the
peripheral areas of CHR2 expression.

Optogenetics enables precise temporal control of neuronal
activity and has been used in a number of contexts (Gradinaru
et al., 2009; Tye et al., 2011). Bi et al. (2006) proposed the
expression of microbial-type channelrhodopsins, such as ChR2,
in surviving inner retinal neurons as a potential strategy for the
restoration of vision after rod and cone degeneration. Van den
Oever et al. (2013) used optogenetics to explore the involvement
of ventromedial prefrontal cortex (vmPFC) pyramidal cells
in recent and remote conditioned cocaine memory in mice.
Activation of pyramidal cells resulted in the loss of remote
memory, without affecting recent memory, and inhibition of
pyramidal cells impaired recall of recent memory, without
affecting remote memory (Van den Oever et al., 2013).

Cognitive impairment in AD is characterized by memory
disorders, mental and behavioral changes, insomnia, and
autonomic dysfunction (Greene et al., 1996). Memory is a
complex phenomenon, and memory impairment is the most
prominent symptom of AD. In the present study, a novel
object recognition test was used to assess memory function
in an Aβ-injected mouse model of AD. The novel object
recognition test has been used to evaluate the ability of
mice to recognize a novel object in familiar surroundings
(Ennaceur and Delacour, 1988) and to recognize an object after
administration of bilateral lidocaine (Hammond et al., 2004),
providing information on working memory, short-term memory,
and long-term memory. The present study demonstrated that M1
and M2 were significantly higher in Aβ-CHR2 mice compared to
Aβ-non-CHR2 mice and Aβ mice, and there were no significant
differences in M3 in Aβ-CHR2 mice, Aβ-non-CHR2 mice, and
Aβ mice. This implies that optogenetics improved working
memory and short-term memory, but not long-term memory, in
Aβ-CHR2 mice.

The hippocampus is severely affected early in the AD process
(Hyman et al., 1984; Hyman et al., 1994). The hippocampus
proper, which is defined by CA1–CA3 and the dentate gyrus,
is the core structure within a larger hippocampal formation,
which includes the adjacent subicular and rhinal cortices. The
entorhinal cortex is among the first of the medial temporal
lobe regions to exhibit dysfunction in early AD (Khan et al.,
2014). Therefore, the neurobiological mechanisms underlying the
improvement in memory function after optogenetic activation
in the Aβ-injected mouse model of AD were investigated using
histological studies of the neurons and synapses in the mouse
hippocampus and entorhinal cortex.

NeuN and synapsin have neuroprotective effects. NeuN is
a biomarker for arcuate neurons, and synapsins are involved
in synaptogenesis and plasticity of mature synapses and play
a major role in maintaining brain physiology (Meunier et al.,
2015). Synapsins I and II are the major synapsin isoforms in
neurons; both can be recognized by anti-synapsin Ia/b. Synapsin I
is associated with elongation of axons and regulation of synaptic
vesicle fusion. Synapsin II is essential for the synaptic vesicle cycle
through its involvement in vesicle docking (Mirza and Zahid,
2018). In the present study, NeuN and synapsin expression in
the core area of CHR2 injection was significantly increased, while
there was no difference in NeuN and synapsin expression in
the peripheral areas of CHR2 expression, including CA1, CA3,
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FIGURE 3 | Effect of CHR2 on NeuN (A) and synapsin (B) expression in CA1, CA3, the DG, the SVZ and the ENT (n = 6). Arrows show the positive cells, 400×.
∗P < 0.05, ∗∗P < 0.01 vs. the Aβ-CHR2 mice. Aβ mice received repeated injections of Aβ1−42 in the bilateral DG; Aβ-non-CHR2 mice received
AAV5–CaMKII–mCherry and repeated injections of Aβ1−42 in the bilateral DG, as well as light stimulation; Aβ-CHR2 mice received AAV5–CaMKII–CHR2-mCherry
and repeated injections of Aβ1−42 in the bilateral DG as well as light stimulation. DG, dentate gyrus; ENT, entorhinal cortex; NeuN, neuronal nuclei; SVZ,
subventricular zone.

FIGURE 4 | Effect of CHR2 on GluR2 (A), IL-10 (B), and GFAP (C), expression in CA1, CA3, DG, the SVZ, and the ENT (n = 6). Arrows show positive cells, 400×.
*P < 0.05, **P < 0.01 vs. Aβ-CHR2 mice. Aβ mice received repeated injections of Aβ1−42 in the bilateral DG; Aβ-non-CHR2 mice received AAV5–CaMKII–mCherry
and repeated injections of Aβ1−42 in the bilateral DG, as well as light stimulation; Aβ-CHR2 mice received AAV5–CaMKII–CHR2–mCherry and repeated injections of
Aβ1−42 in the bilateral DG as well as light stimulation. DG, dentate gyrus; ENT, entorhinal cortex; GFAP, glial fibrillary acidic protein; GluR2, glutamate receptors;
IL, interleukin; NeuN, neuronal nuclei; SVZ, subventricular zone.

the SVZ, and the more distant ENT, compared to controls. This
suggests that optogenetic activation of glutamatergic neurons in
the DG exerted neuroprotective effects locally, but the effects
of optogenetics declined or disappeared with distance from
CHR2 expression.

Various regions of the brain are involved in executive
memory. The medial temporal lobe (hippocampal system),
prefrontal cortex, diencephalon (papillary body and thalamus),

and amygdala are reciprocally connected and associated with
learning and memory (Naya et al., 2017; Shirayama et al.,
2017; Guo et al., 2019). Short-term memory (including working
memory) and long-term memory are separate systems. The
neural basis of short-term memory and long-term memory
are located in the hippocampus and multiple cortical regions,
respectively (Matthews, 2015; Hampson et al., 2018). In the
present study, the neuroprotective effect of optogenetics was
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limited to the DG and may have been one mechanism underlying
the observed improvement in working memory and short-term
memory in Aβ-CHR2 mice. As optogenetic activation of neurons
in the DG did not extend to the cortex, there was no obvious
enhancement of long-term memory.

Optogenetics combines optics and genetics to control well-
defined events in tissues or behaviors in animals (Duebel et al.,
2015). It drives physiological changes in a tissue by influencing
neurons or synapses via cytokines or neurotransmitters (Van
den Oever et al., 2013). Aβ is a pathological hallmark of AD,
and Aβ-injected mouse models of AD show AD-like behavioral
abnormalities and Aβ pathology. Here, optogenetics was used
to activate glutamatergic neurons in the brain of an Aβ-injected
mouse model of AD.

The glutamate family of receptors includes the
ionotropic receptors [e.g., α-amino-3-hydroxy-5-methyl-4-
isoaxolepropionate (AMPA)] and metabotropic receptors
(mGluR; G-protein coupled). AMPA receptors are comprised of
different combinations of GluR1–GluR4 subunits. RNA editing
at the Q/R site of the GluR2 subunit confers Ca2+ impermeability
to AMPA receptors. The edited form represents nearly 100%
of GluR2 subunits expressed in the adult mammals’ brain
(Burnashev et al., 1992; Borges and Dingledine, 1998). Thus,
the presence of the edited GluR2 subunit plays a key role in
determining a neuron’s vulnerability to glutamate toxicity
(Palmer and Gershon, 1990). In the present study, optogenetics
increased GluR2 expression in CA1, CA3, the DG, and the SVZ,
but not in the ENT.

Glutamate is the most abundant free amino acid in the brain
and is the major excitatory neurotransmitter in the mammalian
central nervous system (Meldrum, 2000; Reiner and Levitz,
2018). Evidence suggests that AD is characterized by impaired
glutamate uptake, alterations in the glutamate–glutamine cycle
(Walton and Dodd, 2007), and glutamatergic excitotoxicity
(Palmer and Gershon, 1990; Lau and Tymianski, 2010), whereby
the neurotoxic action of glutamate follows the overactivation of
Ca2+ -permeable ionotropic glutamate receptors (Choi, 1992).

The maintenance of normal glutamatergic neurotransmission
and glutamate clearance depends on active glutamate uptake
into glial cells and neurons as glutamate released by neuronal
cells is not subsequently metabolized in the extracellular space
(Malik and Willnow, 2019). Excitatory amino acid transporters
(EAATs) are needed to maintain a low glutamate concentration
in the extracellular space and prevent excitotoxicity (Logan and
Snyder, 1971; Tanaka et al., 1997). Activation of mGluR2/3
increases the levels of EAAT1 and 2 proteins (Aronica
et al., 2003; Lyon et al., 2008; Lin et al., 2014), and mice
deficient in mGluR2 have decreased levels of EAAT3 mRNA
(Lyon et al., 2008). In the present study, an increase in
GluR2 may have upregulated the expression of the EAATs,
causing bulk glutamate uptake from the extracellular space
and preventing excitotoxicity. This may be one mechanism
by which optogenetics with CaMKII targeting glutamatergic
neurons exerts a neuroprotective effect.

Findings regarding the associations between AD and
inflammatory cytokines, including interleukin (IL)-1β, IL-2,
IL-4, IL-6, IL-8, IL-12, IL-18, tumor necrosis factor (TNF)-α,

transforming growth factor (TGF)-β, interferon (IFN)-γ, and
the C-reactive protein are controversial (Julian et al., 2015).
However, IL-10, a cytokine with anti-inflammatory properties,
may be a main cytokine associated with the pathogenesis of
AD (Swardfager et al., 2010; Sardi et al., 2011; Kiyota et al.,
2012). IL-10 limits the immune response to pathogens and
microbial flora. AAV serotype 2/1 hybrid-mediated neuronal
expression of the mouse IL-10 gene in hippocampal neurons of
amyloid precursor protein + presenilin-1 bigenic mice resulted
in sustained expression of IL-10, reduced astro/microgliosis,
enhanced plasma Aβ levels, and enhanced neurogenesis.

Glial fibrillary acidic protein (GFAP) is a commonly used
marker for astrocytes (Sofroniew and Vinters, 2010). Aβ

increases GFAP levels in the hippocampus (Meunier et al.,
2015), and GFAP is upregulated in astrocytes of patients with
AD (Perez-Nievas and Serrano-Pozo, 2018), which initiates
neuroinflammation and cellular damage. AAV vectors containing
the astrocyte-specific Gfa2 promoter to target hippocampal
astrocytes and interfere with the biochemical cascades leading to
astrocyte activation in APP/PS1 mice confirmed a deleterious role
for activated astrocytes in AD.

In the present study, increased GluR2 expression may have
alleviated excitotoxicity, upregulated IL-10, and downregulated
GFAP. Thus, diminished neuroinflammation induced by
optogenetics may have protected neurons and synapses from
the neurotoxicity of Aβ. It was noteworthy that there was
increased expression of glutamate receptors (GluR2) and IL-10
and decreased expression of GFAP in CA1, CA3, the DG, and
the SVZ, but not the ENT, which is distant to the injection site.
Neuroprotection induced by optogenetics was limited to the core
area of AAV5–CaMKII–CHR2–mCherry injection. In addition,
activation of glutamatergic neurons by AAV5–CaMKII–CHR2–
mCherry injection increased NeuN and synapsin expression
in the core area (DG) of CHR2 injection, while there were
significant changes in the expression of GluR2, IL-10, and GFAP
in the core and peripheral areas of CHR2 expression, including
CA1, CA3, and the SVZ. This suggests that optogenetic activation
of glutamatergic neurons with the CaMKII–CHR2 gene has an
extensive effect on astrocytes, although the interaction and
mechanism need to be investigated in future studies.

The neuronal–glial network is a potential target for
intervention in AD. Consistent with this, our optogenetic
technique that selectively stimulated CaMKII–CHR2-
expressing neurons in the DG of the bilateral hippocampus
improved working memory and short-term memory, altered
neuroinflammation, attenuated excitotoxicity induced by Aβ,
and exerted neuroprotective effects in our mouse model of AD.
This effect was likely mediated by the neuronal–glial network
and activation of glutamate receptors.

While optogenetics has temporal precision, spatial resolution,
and neuronal specificity, it has inevitable limitations. In the
present study, increased NeuN and synapsin expression were
only found in the DG, and increased IL-10 and GluR2 expression
and decreased GFAP expression were not found in the ENT of the
Aβ-injected mouse model of AD. This implies that activation of
glutamatergic neurons in the DG modulated neuroinflammation
in local and peripheral areas and exerted neuroprotective effects
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locally, and the effects of optogenetics varied with the distance
from CHR2 expression.

Thus, although optogenetics has a potential as an effective
treatment for AD, a single-target strategy has spatial limitations.
AD has a wide range of injuries, and a multiple targeted
optogenetics approach may be a more effective therapy.

CONCLUSION

In conclusion, activation of glutamatergic neurons by
optogenetics in the bilateral DG of an Aβ-injected mouse model
of AD improved working memory and short-term memory and
downregulated biomarkers of neuroinflammation in the core and
peripheral areas of CHR2 expression and upregulated biomarkers
of neuroprotection in the core area of CHR2 expression. Due
to the spatial constraints of optogenetics, a multiple targeted
approach may be needed to address the heterogeneous clinical
presentation and pathology of AD.
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Alzheimer’s disease (AD) is a multifactorial, age-related neurological disease
characterized by complex pathophysiological dynamics taking place at multiple
biological levels, including molecular, genetic, epigenetic, cellular and large-scale brain
networks. These alterations account for multiple pathophysiological mechanisms such
as brain protein accumulation, neuroinflammatory/neuro-immune processes, synaptic
dysfunction, and neurodegeneration that eventually lead to cognitive and behavioral
decline. Alterations in microRNA (miRNA) signaling have been implicated in the
epigenetics and molecular genetics of all neurobiological processes associated with AD
pathophysiology. These changes encompass altered miRNA abundance, speciation and
complexity in anatomical regions of the CNS targeted by the disease, including modified
miRNA expression patterns in brain tissues, the systemic circulation, the extracellular
fluid (ECF) and the cerebrospinal fluid (CSF). miRNAs have been investigated as
candidate biomarkers for AD diagnosis, disease prediction, prognosis and therapeutic
purposes because of their involvement in multiple brain signaling pathways in both
health and disease. In this review we will: (i) highlight the significantly heterogeneous
nature of miRNA expression and complexity in AD tissues and biofluids; (ii) address how
information may be extracted from these data to be used as a diagnostic, prognostic
and/or screening tools across the entire continuum of AD, from the preclinical stage,
through the prodromal, i.e., mild cognitive impairment (MCI) phase all the way to
clinically overt dementia; and (iii) consider how specific miRNA expression patterns could
be categorized using miRNA reporters that span AD pathophysiological initiation and
disease progression.

Keywords: aging, Alzheimer’s disease, AD biomarkers, AD diagnostics, AD heterogeneity, human biochemical
individuality, inflammatory neurodegeneration, microRNA (miRNA)

Abbreviations: AD, Alzheimer’s disease; AD biomarkers; AD diagnostics; AD heterogeneity; human biochemical
individuality; inflammatory neurodegeneration; microRNA (miRNA).
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OVERVIEW

Alzheimer’s disease (AD) represents a complex, multifactorial,
age- and gender-related, progressive neurological degeneration
of the human brain and central nervous system (CNS) whose
clinical course is highly variable, heterogeneous, extremely
insidious, and ultimately lethal. Final outcomes involve complex
and irreversible alterations in behavior, inability to conduct
daily activities, visual, visuospatial and perceptive disruption,
and escalating deficits in cognition and impairment of recent
memories in the AD patient, while older memories are
often retained. Symptomology for AD is also highly variable,
interactive and progressive to the extent of daily to weekly
changes in the AD patient’s psychiatric condition. Clinically,
toward the termination of the AD process there is usually
progressive forfeiture of the swallowing reflex (dysphagia)
and the onset of inspirational pneumonia to which most
AD patients succumb over a clinical course averaging about
∼5–12 years (Dinsmore, 1999; Ahluwalia and Vellas, 2003;
DeTure and Dickson, 2019; von Arnim et al., 2019; Cao
et al., 20201,2,3; last accessed 26 August 2020). The definitive
diagnosis of AD is one of the most difficult and challenging
in neurology (Arvanitakis et al., 2019; Fierini, 2020; Ghaffari
et al., 2020; Guest et al., 2020; Habes et al., 2020; Turner
et al., 2020). AD is more often than not accompanied
by other multimodal dementing neuropathologies including
neurovascular and/or cardiovascular disease involving vascular-
based dementia, multiple infarct dementia (MID) and/or strokes
or “mini-strokes,” frontotemporal dementia (FTD), hippocampal
sclerosis, Lewy body disease, and several other dementing
illnesses and comorbidities such as Down’s syndrome (trisomy
21), epilepsy and prion disease [including bovine spongiform
encephalopathy (BSE; mad cow disease), Creutzfeldt–Jakob
disease, Gerstmann–Sträussler–Scheinker syndrome, and other
relatively rare human prion disorders] and other rare AD
subtypes (Dinsmore, 1999; Lemcke and David, 2018; DeTure
and Dickson, 2019; Checksfield, 2020; Fierini, 2020; Emrani
et al., 2020; Habes et al., 2020; Williams et al., 20204; last
accessed 26 August 2020). The accurate identification of AD is
exacerbated by the global lack of routine diagnostic tools for
identifying patients early enough in their disease course, i.e.,
the “prodromal” period, for designing a suitable intervention
or prospective treatment regimen. Of equal concern is our lack
of basic understanding of the underlying root causes of AD and
the widely observed variability in the clinical presentation of
AD once the onset of the disease process is clinically recognized
(Ashford et al., 1992; Hudon et al., 2020; Patnode et al.,
2020). For AD only symptomatic treatments that suppress the
clinical manifestations are currently available (Lukiw et al., 2012;
Hampel and Lista, 2013; Lukiw, 2013a,b; Praticò, 2013; Hampel
et al., 2014; Kim et al., 2014; Yanagida et al., 2017; Blennow

1https://www.alzinfo.org/articles/when-patients-with-advanced-alzheimers-get-
pneumonia/
2https://www.medicalnewstoday.com/articles/315123
3https://www.alz.org/alzheimers-dementia/stages
4https://www.j-alz.com/editors-blog/posts/is-there-alzheimers-disease

and Zetterberg, 2018; Cole and Seabrook, 2020). Increasing
stratification and categorization of AD, comorbidities and inter-
current illness that may have contributed to the clinical diagnosis
and outcome of AD may be required to develop the most
efficacious treatments (see below).

CLINICAL ASPECTS OF AD
HETEROGENEITY

With regard to the overall general classification of AD, affected
patients are broadly categorized as having either an early onset
(EOAD, under ∼65 years of age), or late onset (LOAD, over
∼65 years of age); about ∼5% of all AD cases appear to have
a genetic component (see below) while the remaining ∼95% of
all AD cases are of an idiopathic or sporadic nature, or are of an
unknown origin (Guerreiro et al., 2012; Jiang et al., 2013; Barnes
et al., 2015; Cao et al., 2020; Dumurgier and Tzourio, 2020). Over
50 susceptibility genes and gene loci have been associated with
LOAD (Sims et al., 2020). The transmissibility of AD amongst
Homo sapiens by casual or iatrogenic routes and involving self-
propagating amyloidogenic prion-like lipoprotein aggregates or
free or microvesicle-encapsulated pathogenic miRNAs has not
been completely ruled out (Lukiw et al., 2012; Burwinkel et al.,
2018; Lemcke and David, 2018; Caughey and Kraus, 2019;
Hampton, 2019; Lukiw, 2020a,b; Lukiw and Pogue, 2020).

The clinical analysis and categorization of presenile dementia
in the elderly typically incorporates semi-structured interviews
with AD patients, their care-givers and other informants to
obtain information necessary to rate the individual’s cognitive
performance in six domains of cognitive and functional
performance: memory skills, orientation, judgment and problem
solving, community affairs, home and hobbies, and personal
care; the clinical dementia rating (CDR; a five point scale
ranging from 0 or normal to 3 for severe dementia) protocol
has evolved as a condensed, useful, reliable and valid global
assessment measure for AD (Morris, 1997; Verhülsdonk et al.,
20155). There are in addition several other widely used psychiatric
and diagnostic tests including the mini-mental status exam
(MMSE; Arvanitakis et al., 2019; Alzheimer’s Association, 2020).
While the diagnostic criteria for AD vary globally systematic
review and meta-analysis of AD incidence and prevalence have
repeatedly revealed several globalized trends (Zhu et al., 2019;
Dumurgier and Tzourio, 2020). These include the significantly
higher occurrence of AD in aged human females (about ∼2
times greater than that in males) and strong association with
aging (Guerreiro et al., 2012; Bhattacharjee and Lukiw, 2013;
Jiang et al., 2013; Cao et al., 2020; Dumurgier and Tzourio,
2020; Lukiw, 2020a,b). The wide variety of behavioral disorders,
extreme heterogeneity in neurological disturbances, mnemonic
and cognitive deficits including significant age- and gender-
based differences, combined with supplementary neurological
diseases such as neurovascular disease and ischemic and/or
hemorrhagic stroke are extremely common, especially in the
most elderly of LOAD patients (Dinsmore, 1999; Fierini, 2020;

5https://knightadrc.wustl.edu/cdr/cdr.htm
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Emrani et al., 2020; Habes et al., 2020). Environmental factors
and life style triggers such as occupational exposures to pesticides,
organic solvents, environmental neurotoxins such as aluminum
and mercury, anesthetics and/or food additives, education,
smoking, increased body-mass index (BMI), obesity, metabolic
syndrome and diabetes, microbial and gastrointestinal (GI)
tract microbiome contributions such as highly proinflammatory
Bacteroides fragilis lipopolysaccharides (BF-LPS) to the onset
and development of AD are being increasingly recognized but
their mechanism of pathological contribution are in most cases
not well understood, and are currently under intense research
investigation (Hill et al., 2014a,b; Altveş et al., 2020; Lukiw,
2020a,b; Rahman et al., 2020). A priori this strongly suggests:
(i) that a considerable array of factors have been evidenced to
contribute to the onset and propagation of AD; and (ii) that
a very wide range of molecular-genetic, neurophysiological and
neurobiological mechanisms, pathways and signaling processes
are affected in the AD brain (Figure 1).

TRADITIONAL PATHOPHYSIOLOGICAL
BIOMARKERS FOR AD ARE
NON-SPECIFIC

Alzheimer’s disease neuropathology encompasses several
interrelated features: (i) the progressive disorganization and
dropout of neocortical synapses that involve loss of selective
synaptic components, synaptic atrophy, “pruning” and synaptic
loss; (ii) neuronal atrophy, cytoarchitectural deficits and
neurite retraction and degeneration, neuronal cell death and
loss of inter-neuronal communication; (iii) the progressive
deposition and accumulation of amyloid-beta (Aβ) peptides
and other insoluble end-stage oxidized lipoproteins into
dense, pro-inflammatory senile plaque (SP) aggregates; (iv)
the accumulation and aggregation of hyper-phosphorylated
tau proteins into neurofibrillary tangles (NFT) that disrupt
the normal neural cell cytoarchitecture; (v) neurovascular
pathology; (vi) dysfunctional autophagy; (vii) progressive
inflammatory neurodegeneration and anatomical targeting
of specific anatomical regions of the brain and primarily
the association neocortex and hippocampal CA1 regions;
(viii) alterations in the innate-immune response and other
immunological biomarkers; (ix) changes in the gastrointestinal
tract (GI-tract) microbiome; (x) dysfunction and alterations
in the glymphatic system of the CNS; (xi) multiple functional
associations with diet, obesity, metabolic disease and diabetes;
and (xii) blood lipoprotein composition and blood type (Lukiw
et al., 1992; Lukiw, 2007; Cogswell et al., 2008; Lukiw, 2013a,b;
Praticò, 2013; Hampel and Lista, 2013; Kim et al., 2014; Sherva
et al., 2014; Canobbio et al., 2015; De Marco and Venneri, 2015;
Jin et al., 2015; Verhülsdonk et al., 2015; Wang et al., 2015;
Zhao et al., 2015; Blennow and Zetterberg, 2018; Hampel et al.,
2018a,b,c; Arvanitakis et al., 2019; von Arnim et al., 2019; Cole
and Seabrook, 2020; Dumurgier and Tzourio, 2020; Hampel
et al., 2020a,b; Khoury and Grossberg, 2020; Lewczuk et al., 2020;
McGurran et al., 2020; Rodriguez and Lachmann, 2020; Rossini
et al., 2020; Stanciu et al., 2020; Turner et al., 2020).

These highly interactive characteristics once again collectively
underscore the participation of multiple pathogenic pathways,
and the involvement of multiple deficits in the expression of
CNS genes and genetic regulatory mechanisms in AD (Colangelo
et al., 2002; Jaber et al., 2019; Sims et al., 2020). Importantly,
the magnitude of each of these neuropathological biomarkers
varies widely amongst the prodromal, moderate, and severe
states of AD and not one of these multiple features of AD
change are either characteristic or distinguishing for the AD
phenotype. Put another way many of these attributes are in
part typical of other incapacitating age-related neurological
disorders of the human CNS. Accordingly, this culminates
in a remarkably heterogeneous neuropathological framework
for AD, with significant variations in disease initiation, onset,
progression, severity of neuropathology, extent of behavioral
disruption, cognitive deficits and memory loss, visual and
visuospatial impairment, time course and other temporal aspects,
CDR or MMSE ratings in individual AD patients and the frequent
contribution of inter-current illness, and particularly with
other kinds of age-related neurological disease (Verhülsdonk
et al., 2015; Rossini et al., 2020; Tetreault et al., 2020). Given
the enormous complexity of traditional biomarkers and their
compartmentalization in AD onset, course and diagnosis, it
is clear that the most informative molecular biomarkers for
AD will be those which are involved in multiple regulatory
aspects of brain function and neuropathological signaling. The
participation of small families of pathology-implicated miRNAs
are emerging as prime candidates that help define the molecular
genetics and epigenetics of AD.

microRNA (miRNA) - Definitions and
Actions
microRNAs (miRNA) represent a class of∼19–23 nucleotide (nt)
single-stranded non-coding RNA (sncRNA) that are important
epigenetic, posttranscriptional regulators of messenger RNA
(mRNA) complexity. Their diminutive size, amphipathic nature,
high solubility make them extremely mobile, omnipresent
throughout the brain and CNS and the smallest information-
carrying nucleic acid signaling molecules in eukaryotes yet
described (Hill et al., 2014a,b; Pogue et al., 2014; Lemcke and
David, 2018; Zhao et al., 2018; Lukiw, 2020a,b; van den Berg
et al., 2020). To date about ∼2650 individual human miRNAs
have been cataloged and characterized, however, the abundance
of miRNAs in the human brain and retina number only about
∼20–35 individual, high abundance, neurologically functional
species which exhibit both tissue and cell type-specific expression
patterns (Burmistrova et al., 2007; Lukiw, 2007; Hill and Lukiw,
2016; Konovalova et al., 2019; Singh and Yadav, 2020; Wu and
Kuo, 2020; miRBase release 22.1; October 20186; last accessed 26
August 2020). The major mode of action of these sncRNAs is to
interact, via base-pair complementarity, with the 3’-untranslated
region (3’-UTR) of their target messenger RNAs (mRNAs), and
in doing so degrade that mRNA, and hence decrease the potential
for that specific mRNA to be expressed (Roshan et al., 2009;
De Smaele et al., 2010; McGeary et al., 2019; Eisen et al., 2020;

6www.mirbase.org
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FIGURE 1 | AD is an extremely heterogeneous neurological disorder. Just as there are multiple factors that have significant potential to contribute to AD type and AD
symptomatic and molecular-genetic heterogeneity, the neuropathological pathways and pathway biomarkers encompassing these factors can be intercepted and
interrogated to obtain extremely useful diagnostic information which more clearly define the prodrome, onset and course of AD as well as related progressive
neurodegenerative disorders. The pervasive and modulatory nature of miRNAs in both brain tissues and multiple biofluid compartments (such as the ECF, CSF, and
blood serum) make miRNAs ideal candidates to expand our understanding of the diagnosis of temporal aspects of the AD pathophysiology.

Pawlica et al., 2020). The most widely observed mechanism in the
mammalian brain is for an inducible and up-regulated miRNA
to down-regulate their polyA+ mRNA targets and thereby
reduce the expression of mRNA-encoded genetic information.
The mechanism of action of miRNAs has been described and
schematized in some detail (see Hobert, 2008; Eichhorn et al.,
2014; Kleaveland et al., 2018; McGeary et al., 2019; Eisen et al.,
2020; Figure 2).

Interestingly, single mRNA 3’-UTRs in the mammalian
brain and retina can have multiple miRNA binding site
targets, and single miRNAs may have more than one mRNA
target making them strong potential candidates for addressing
the multiple complexities of the disruption of mRNA-based
gene expression in AD (Colangelo et al., 2002; Lukiw and
Alexandrov, 2012; Eichhorn et al., 2014; Eisen et al., 2020).
These findings support the strengthening contention: (i) that
brain-enriched miRNAs operate as fundamental components
of an epigenetically controlled post-transcriptional signaling
network in the mammalian CNS (Lukiw and Alexandrov, 2012;
Kleaveland et al., 2018; Jaber et al., 2019; Eisen et al., 2020);
and (ii) that miRNAs have an established capability to act
independently, coordinately and/or cooperatively to create a
highly sophisticated and interactive regulatory miRNA-mRNA
network for families of brain genes that regulate many essential
brain functions that are specifically altered in AD brain (Jaber
et al., 2017; Kleaveland et al., 2018; Eisen et al., 2020; Lukiw,
2020a,b). Importantly, information-carrying ribonucleic acids

such as highly soluble and mobile, single-stranded non-coding
RNAs (sncRNAs) including microRNAs (miRNAs) can affect the
operation of a large number of highly interactive pathogenic
signaling pathways in the CNS, and represent strategic candidates
for promoting AD onset, and for modulating or maintaining AD
propagation and disease spread (Alexandrov et al., 2012; Lukiw
et al., 2012; Chandrasekaran and Bonchev, 2016; Clement et al.,
2016; Kleaveland et al., 2018; Lemcke and David, 2018; Hill, 2019;
Jaber et al., 2019; Konovalova et al., 2019; Condrat et al., 2020;
Fan et al., 2020; Kou et al., 2020).

microRNA (miRNA) SIGNALING IN AD

The multi-system, multi-pathway and sometimes overlapping
regulatory roles for potentially pathogenic miRNA gene families
in the neocortex, hippocampus, the limbic system and the
CNS in general make miRNA prime candidates for modulating
the expression of many mRNA targets in complex, progressive
and ultimately lethal neurological disorders of the CNS that
include AD (Lukiw, 2007; Zhao et al., 2016a,b; Jaber et al.,
2017, 2019; Figure 2). It is for this reason there has been much
recent interest in vesicle-encapsulated and/or biofluid-enriched
monomeric miRNAs as potential ribonucleic acid indicators
which are predictive and/or diagnostic biomarkers for the onset
and development of AD (Bahlakeh et al., 2020; Krammes et al.,
2020; Serpente et al., 2020; Wang et al., 2020). Indeed homeostatic
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FIGURE 2 | Highly simplified schematic of an AD-relevant microRNA-messenger RNA (miRNA-mRNA) regulatory network involving 3 different miRNAs and 4
different mRNAs; this drawing graphically illustrates the molecular-genetic mechanism of microRNA (miRNA) generation and targeted miRNA-mRNA interaction;
selective pathogenic families of miRNAs (for example miRNA-9, miRNA-146a and miRNA-155), transcribed from genes located on 3 different chromosomes (chr
1q22, chr 5q33.3, chr 21q21.3) generate precursor miRNAs (pre-miRNAs) which are subsequently processed into neurologically active mature miRNAs (miRNA-9,
miRNA-146a and miRNA-155 shown as an example); many more chromosomes, miRNAs and mRNAs and miRNA-mRNA signaling networks are probably involved;
many AD-relevant miRNA encoding genes are under transcriptional control by the pro-inflammatory transcription factor NF-kB (p50/p65); mature miRNAs
subsequently find their target mRNAs (TREM2, CFH, IRAK-1, and TSPAN12 shown) and the miRNA-mRNA double-stranded RNA complex is blocked at the
entrance to the ribosome (blue spherical complex on mRNA stand) and the miRNA-mRNA complex is degraded; the major mode of miRNA action in the mammalian
brain is pathologically up-regulated miRNAs driving the down-regulation of AD-relevant genes (see text); single miRNAs can target multiple mRNAs and multiple
miRNAs can target a single mRNA (see also Figure 3); miRNAs have established roles in recognizing multiple mRNA sequences (genetic pleiotropy), combinatorial
and cooperativity in gene regulation, template accessibility (mediated by various RNA binding proteins; in this diagram orange spheres at the miRNA-mRNA interface
called “Argonaute proteins”) and post-transcriptional regulation of the transcriptome (Hobert, 2008; Jaber et al., 2019; Eisen et al., 2020; Lukiw, 2020a,b).
Combined with other metrics, the precise quantitation of miRNA abundance, speciation and complexity in various AD biofluids has strong potential for increasing the
accuracy of AD diagnostics; recent preliminary in vitro studies further indicate that anti-miRNA (antimiR, antagomir, AM)-based therapies may be effective in
quenching the excessive miRNA-mediated downregulation of critical mRNA-driven gene expression in AD (Zhao et al., 2016a,b; Jaber et al., 2019; Fan et al., 2020;
Ghaffari et al., 2020).

levels of all 2650 miRNAs are an excellent indicator of normal
brain operation and of homeostatic brain function in health
and in aging, the development of dyshomeostasis, and the
onset of disease. The nature of miRNA’s epigenetic and post-
transcriptional regulation of about ∼27,000 messenger RNA
(mRNAs), participation in a complex miRNA-mRNA linked
network defining the brain cell’s transcriptome, and the shaping
of this transcriptome over time under many neurophysiological
conditions is both highly informative in understanding the

molecular-genetics of human brain function and has been
useful in the field of diagnostic and prognostic biomarkers for
AD and other progressive inflammatory neurodegeneration of
the human CNS (Jaber et al., 2017, 2019; Sims et al., 2020).
Patterns of miRNA expression are complex – for example natural
miRNA abundance has been shown to fluctuate during neural
development and differentiation of the human brain and in the
aging CNS (Giorgi Silveira et al., 2020; Ma et al., 2020; Wu
and Kuo, 2020). Emerging data continue to support the concept
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that the analysis and characterization of specific miRNAs may
be especially useful in the prodromal and pre-clinical phases of
AD in which a very subtle pro-inflammatory neuropathology
develops and molecular changes begin to accumulate even in the
absence of the full-blown clinical symptoms as shown by the
moderate and more advanced phases of AD (Hill and Lukiw,
2016; Bahlakeh et al., 2020; Fan et al., 2020; Ma et al., 2020;
Wu and Kuo, 2020).

microRNA (miRNA) AND
PROGRESSIVE INFLAMMATORY
NEURODEGENERATION

In general, up-regulated miRNAs and down-regulation of
essential neural signaling components (via down-regulation of
key mRNAs) have been proposed by many independent groups
to be a highly active process in the initiation and propagation
of progressive inflammatory neurodegenerative diseases such as
AD, amyotrophic lateral sclerosis (ALS), Huntington’s disease
(HD), Parkinson’s disease (PD), trisomy 21 (T21; DS; Down’s
syndrome), motor neuron disease, neurovascular disease, prion
disease and several other terminal neuropathies (Holohan et al.,
2013; Christoforidou et al., 2020; Singh and Yadav, 2020; Wang
and Zhang, 2020; Wu and Kuo, 2020). It is interesting that
to date no single newly generated de novo miRNA has been
associated with AD – that is, miRNA alterations in AD reflect
significant and absolute differences in abundance, speciation and
perhaps stoichiometric relationships of existing miRNA species.
Put another way, no specific miRNA “suddenly appears” at the
onset, or propagation of AD, and it is a matter of up-regulation
or down-regulation of an already existing miRNA species in a
specific anatomical region that has been the most consistently
observed in the AD brain. Interestingly, very recent molecular-
genetic studies have indicated that even when derived from cell
and tissue sources that are homogenous, such as pluripotent stem
cells, individual cells in these unique populations often exhibit
significant differences in miRNA abundance and complexity,
gene expression, protein abundance and phenotypic output; here
individual families of miRNAs appear to have a deterministic role
in reconfiguring the “pluripotency network” and miRNA-mRNA
linking patterns in individual cells with important downstream
functional consequences (Li et al., 2015; Liu et al., 2015; Atlasi
et al., 2020; Chakraborty et al., 2020; Kumar and Reddy, 2020).

Since a general down-regulation in gene expression in AD
brain, especially for AD relevant components such as synaptic
and cyto-architectural elements, deficits in the clearance of
pro-inflammatory components and amyloid aggregates, and
the consistent catabolic nature of the neurodegenerative disease
process, has been repeatedly reported by multiple independent
research groups, it follows that miRNAs that control gene
expression in various AD tissues and biofluids could be indicative
for AD-type change and perhaps diagnostic for prodromal
aspects of the AD. Further, understanding of miRNA biogenesis
and the signaling pathways in which groups of miRNAs
participate either cooperatively or synergistically might aid the
discovery of diagnostic biomarkers or development of effective

therapeutics for progressive and lethal neurodegenerative
disorders (Zhao et al., 2016a,b; Cole and Seabrook, 2020).

OVERVIEW OF miRNA ABUNDANCE IN
AD TISSUES AND BIOFLUID
COMPARTMENTS

One important limitation of the analysis of miRNAs in human
CNS tissues, extracellular fluid (ECF) and CSF is that, apart
from CNS biopsies, brain tissue samples must be obtained post-
mortem, and miRNAs have a relatively short post-mortem half-
life in both human brain and retina, on the range of about ∼1
to 3 h for a typical 22 nucleotide (nt) single–stranded miRNA
(∼45% G + T) in the human neocortical and hippocampal
compartments that have been analyzed and for which there
is experimental data (Sethi and Lukiw, 2009; Rüegger and
Großhans, 2012; Pogue et al., 2014; Tudek et al., 2019). Very
few studies have addressed miRNA half-life in vitro or in vivo
but currently both miRNA and mRNA decay kinetics have been
shown: (i) to follow the same AU-enrichment rules of single-
stranded miRNA and mRNA stability that is, the more AU-
enriched elements (AREs) in the sncRNA, miRNA or mRNA,
the shorter the half-life (Sethi and Lukiw, 2009; Rüegger and
Großhans, 2012; Clement et al., 2016; Van Meter et al., 2020); (ii)
to be stabilized in part by miRNA binding proteins (Zang et al.,
2020); (iii) to be further stabilized by circularization (circRNA;
Lukiw, 2013a,b; Zhao et al., 2016a,b; Xie et al., 2017; Kondo et al.,
2020) and/or (iv) by their inclusion into exosomes or intracellular
or extracellular micro-vesicles (Badhwar and Haqqani, 2020;
Bitetto and Di Fonzo, 2020; Groot and Lee, 2020; Upadhya
et al., 2020). Another indication of the usefulness of post-mortem
material for molecular-genetic studies is that nuclei extracted
from human brain biopsies or post-mortem brain tissues are
able to fully support in vitro run-on transcription for up to ∼3–
4 h after which there is a precipitous decline in polymerization
activity (Cui et al., 2005; Rüegger and Großhans, 2012; Clement
et al., 2016). It is important to appreciate the fact that microRNAs
(miRNAs) with a mass of just ∼7628 Da (for a typical 22 nt
sncRNA like miRNA-146a) are the smallest and most abundant
ribonucleic acid information-carrying components of tissues, the
ECF, the CSF and blood serum compartments. The miRNA
abundance in tissues, ECF, CSF or blood serum provides valuable
insight and “current snapshot” of soluble pathogenic sncRNA
biomarkers that may be diagnostic for human neurological
disease types. These miRNA “information packages” have recently
been shown to be sequestered into extracellular, lipophilic
microvesicles or exosomes that shuttle between cells and tissues
and/or amongst ECF, CSF and blood serum compartments
(Alexandrov et al., 2013; Jaber et al., 2017, 2019; Badhwar and
Haqqani, 2020; Bitetto and Di Fonzo, 2020; Upadhya et al.,
2020; Vanherle et al., 2020). Extracellularly secreted miRNAs
circulating in the peripheral blood are referred to as “circulating
miRNAs”; they are either encapsulated by extracellular vesicles
such as exosomes and microvesicles, or bound to molecules
such as the Argonaute protein, or HDL cholesterol (Zernecke
et al., 2009; Arroyo et al., 2011; Vickers et al., 2011; Ishibe et al.,
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2018; Groot and Lee, 2020; Upadhya et al., 2020). In addition,
miRNAs that leak from destroyed cells and apoptotic bodies are
also found among circulating serum miRNAs and have been
implicated in the spreading of AD neuropathology (Zernecke
et al., 2009; Lukiw et al., 2012). It is also noteworthy to point out
that while the ECF, CSF and blood serum can be considered as
relatively contiguous biofluids, there may be selective biophysical
barrier-mediated effects on miRNA permeability, translocation
and trans-membrane transport of microRNAs which ends up as
having the ECF, CSF, and blood serum compartments essentially
distinct in their miRNA content and stoichiometric abundance
(Blennow et al., 2010; Alexandrov et al., 2013; Hampel et al.,
2018a,b,c; Ishibe et al., 2018; see below).

As the name suggests ECFs have been shown as being
representative of the saline-based biofluids surrounding
individual brain cell types (Alexandrov et al., 2012; Pogue et al.,
2014; Shetty and Zanirati, 2020). ECF, sometimes referred to as
interstitial fluid (ISF), drains through very narrow intercellular
spaces within gray matter into bulk flow perivascular channels
that surround penetrating arteries and then flows to the surface
of the brain to join the CSF that drains into cervical lymph nodes
(Shetty and Zanirati, 2020; Upadhya et al., 2020; Weller, 2020).
Human brain CSF, produced by the choroid plexus and secreted
into the brain ventricles and subarachnoid space, plays critical
roles in the biophysical and immune protection of the brain
and provides intra-cerebral transport of nutrients, cofactors and
hormones, as well as small signaling molecules such as sncRNAs
and miRNAs. Since ECF and CSF circulates throughout
and within the entire CNS: (i) ECF and CSF composition is
representative of the biofluids surrounding both brain cells and
multiple anatomical regions of the brain and spinal cord; and (ii)
provides valuable insight into soluble pathogenic bio-markers
that bathe CNS cells and tissues, including soluble miRNAs
that have diagnostic value for human brain health, disease or
injury (Hampel et al., 2018a,b,c; Shetty and Zanirati, 2020;
Weller, 2020). Human peripheral blood serum is defined as
the clear-yellowish fluid that remains from blood plasma after
clotting factors (such as fibrinogen and prothrombin) have been
removed after clot formation and whole blood centrifugation,
and contains the same components as plasma such as fatty
acids, hormones, cytokines, chemokines, carbohydrates, growth
factors, and miRNAs (both free miRNAs and those packaged into
extracellular vesicles) and is the circulating carrier of exogenous
and endogenous fatty acids, free lipids and lipoproteins in the
systemic circulation (Hill, 2019; Penner et al., 2019; Lukiw and
Pogue, 2020; Shetty and Zanirati, 20207; last accessed 26 August
2020). The ease and relative non-invasiveness of blood serum and
CSF accessibility, and acquisition in large human populations,
makes it one of the most studied of all biofluid compartments in
diagnostic medicine for AD and other neurological disorders.

Regarding the presence and persistence of the same miRNAs
in multiple AD brain tissues and biofluids, we are aware of
only one relevant peer-reviewed research report concerning
miRNAs in the extracellular fluid (ECF) obtained from highly
purified AD brain tissue supernatants, and parallel studies on

7https://www.innov-research.com/blogs/news/the-importance-of-human-serum

encapsulated miRNAs packaged into extracellular vesicles in ECF
and CSF (Alexandrov et al., 2012; Lukiw and Pogue, 2020).
The purpose of the Alexandrov et al. (2012) paper was to
ascertain if the increased miRNAs found in AD brain tissues
were contiguous with up-regulated miRNAs found in AD ECF
and CSF. Based on extensive fluorescent miRNA-array and RNA
sequencing analysis, the results indicated significant common
increases in miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a,
miRNA-155 that were shared by AD brain tissues, ECF and CSF.
Transcription from each of these inducible miRNA genes are
known to be under NF-kB (p50/p65)-regulated genetic control
(Zhao et al., 2015; Lukiw, 2020a,b). Interestingly in miRNA
abundance analysis of Aβ-peptide stressed human neuronal-
glial (HNG) cell primary co-cultures, ECF displayed an up-
regulation of these same miRNAs, an effect that was quenched
using anti-NF-kB agents CAPE and CAY10512. Overall the
results indicated that these same microRNAs including miRNA-
9, miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155
are brain tissue-, CSF- and ECF-abundant, NF-kB-sensitive
pro-inflammatory miRNAs, and their enrichment in both
tissues and circulating AD biofluids suggest that they may be
involved in the modulation or proliferation of miRNA-triggered
pathogenic signaling throughout the human brain and CNS
(Alexandrov et al., 2012; Hill, 2019; Lukiw and Pogue, 2020;
Shetty and Zanirati, 2020).

In related studies and using different sources of AD
samples including blood serum, post-mortem brain tissues,
AD fibroblasts, AD β-lymphocytes, AD cell lines, transgenic
AD (TgAD) mouse models and AD CSF all confirmed the
increased presence (and biomarker potential) of miRNA-455-
3p. This miRNA was found to reduce Aβ peptide toxicity,
while enhancing mitochondrial biogenesis and synaptic activity
and maintaining healthy mitochondrial dynamics (Kumar and
Reddy, 2019; Kumar et al., 2019; Kumar and Reddy, 2020). These
findings further underscore the concept that these independently
documented differences may: (i) be just another example of the
high levels in heterogeneity of miRNA expression in different
human populations from different AD brains and patients; (ii)
serve as an example of the considerable miRNA redundancy
and complexity in the AD process; and (iii) indicate that
multiple miRNAs are involved in the regulation of multiple
gene expression pathways and patterns whose abundances are
highly sensitive to alterations in the biochemical, neurochemical,
neuropathological, and/or cellular environment (Alexandrov
et al., 2012; Lukiw, 2013a,b; Kumar and Reddy, 2019; Kumar
et al., 2019; Kumar and Reddy, 2020; Lukiw and Pogue, 2020).

INFORMATIVE miRNAS IN AD

As previously discussed, the decidedly heterogeneous nature
of AD appears to pervade through all molecular, genetic and
epigenetic, neuropathological and behavioral, mnemonic and
cognitive aspects of the disease, including the pre-clinical
symptomology, initiation, disease course and presentation.
Indeed in depth summaries of hundreds of peer-reviewed
scientific reports to date has provided no general consensus
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of what single specific miRNAs are up-or-down regulated in
any tissue or biofluid compartment in many thousands of AD
patients, but rather a “trend” or “pattern” in certain miRNA
abundance and speciation. This is perhaps not too surprising
because of the manifold symptoms typically presented by AD
patients, their often complicated and non-uniform drug history,
the insidious nature and progressiveness of the disease, the
age and gender of the AD patient, and other disease-related
aspects including inter-current illness and the genetic make-up
of individual AD patients.

Concerning the potential for contribution of specific miRNAs
to AD, we recently surveyed the number of published papers
on “miRNA biomarkers for AD” using the National Institutes of
Health National Library of Medicine website MedLine at PubMed
Central (8last accessed 26 August 2020). Using the keywords
“Alzheimer’s disease’ and ‘miRNA”) indicates that there are just
under ∼13,000 publications on this topic since the original
publication on selective miRNA alterations in AD brain about
∼14 years ago (Lukiw, 2007). Inspection of several of these
recent reports continues to support the contention of extensive
miRNA heterogeneity in both AD tissues and biofluids (ECF,
CSF, and blood serum) and continues to provide no general
consensus of any single miRNA that defines causation for the onset
or duration of the AD pathophysiology (Moradifard et al., 2018;
Peña-Bautista et al., 2019; Silvestro et al., 2019; Swarbrick et al.,
2019; Condrat et al., 2020; Giorgi Silveira et al., 2020; van den
Berg et al., 2020). It is becoming clear, however, that a panel
of multiple AD-relevant “pro-inflammatory” or “pro-pathology”
miRNAs may be useful in contributing to the diagnosis of
AD at any stage of the disease. For example one extremely
thorough systematic review was recently conducted to quantify
significantly deregulated miRNAs in the peripheral blood of AD
patients, and these deregulated miRNAs were cross-referenced
against the miRNAs known to be deregulated in limbic regions of
brain tissues, such as the hippocampus, in moderate-to-advanced
stages of AD (Swarbrick et al., 2019). These analyses resulted
in a panel of at least 11 miRNAs (in numerical ascendancy) -
miRNA-26b, miRNA-30e, miRNA-34a, miRNA-34c, miRNA-107,
miRNA-125b, miRNA-146a, miRNA-151, miRNA-200c, miRNA-
210, and hsa-miRNA-485, hypothesized to be both deregulated
early in AD and up to nearly ∼20 years before the onset
of any clinical symptomology. Network analysis of these 11
miRNAs indicated that they were found to be associated with
the cell cycle and cell surface receptor (Wnt/β-catenin) signaling,
cellular response to stress, cellular senescence, gene expression
regulation, and nerve growth factor and Rho GTPase signaling.
Another in depth study had previously indicated that just five
miRNAs – miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a,
and miRNA-155 – are significantly abundant in AD neocortical
brain tissues as well as the ECF and CSF and each miRNA
was found to interactively contribute to the AD pathophysiology
(Figure 2). Interestingly, each of these five miRNAs have been
shown to contain strong binding sites for the inflammatory
transcription factor NF-kB in their immediate promoters, are
therefore said to be under NF-kB (p50/p65) control and are
referred to as “pro-inflammatory miRNAs” (Pogue and Lukiw,

8www.ncbi.nlm.nih.gov

2018; Gong and Sun, 2020; Zamani et al., 2020). The contiguous
presence of specific pro-inflammatory miRNAs in AD tissue,
ECF and CSF may be the result of their trans-compartmental
solubility or may be part of a RNA-based signaling system
between neocortical brain tissues and the ECF and/or CSF that
is reflective or diagnostic for the neurodegenerative disease state
(Alexandrov et al., 2012; Jaber et al., 2019; Veitch et al., 2019;
Wang et al., 2020).

miRNA FOR PRECISION
MEDICINE-BASED DIAGNOSTICS AND
THERAPEUTICS

Extensive demographic analysis tells us that human
neurodegenerative diseases such as AD are among the fastest
growing neurologically incapacitating diseases of aging human
populations in Westernized societies (9last accessed 26 August
2020). Despite the significant medical and scientific advances
made in our understanding of the AD pathophysiological
mechanisms on a global scale, there is currently no effective cure
for this rapidly expanding form of age related and terminally
lethal senile dementia. AD is the leading cause of dementia
and globally about ∼50 million people have some form of
dementia, and someone in the world develops dementia every
3 s (10last accessed 26 August 2020). The repeated failures of
pharmacological strategies and clinical trials over the last decade
in the development of novel and efficacious treatments and
disease-modifying therapeutics for AD is due in part to the
fact that AD is a singularly heterogeneous disorder caused by
“human genetic and biochemical heterogeneity,” considerably
different genetic and epigenetic profiles, age, gender and lifestyle
factors, prodromal and more advanced phases of the disease,
environmental triggers, misdiagnosis and/or importantly, the
presence of other “inter-current illness” (Figure 1; Lukiw,
2013a,b; Blennow and Zetterberg, 2018; Cole and Seabrook,
2020; Lewczuk et al., 2020). The majority of clinical trials
have focused on the immunological modulation of amyloid-β
peptide (Aβ40 and Aβ42) signaling in AD, including therapeutic
drugs targeted against Aβ42 peptide accumulation, inhibition
of β-secretase and γ-secretase cleavage enzymes, and anti-Aβ

peptide monoclonal antibody approaches, however, in most
of the clinical trials for patients with mild-to-moderate AD
these drugs did not meet the expected endpoints. While Aβ

peptides have long been proposed to play a central role in AD,
and the Aβ pathway remains a valuable therapeutic target,
the accuracy, importance, and even the correctness of the
“amyloidocentric hypothesis” in driving AD neuropathology has
been recently questioned (Ricciarelli and Fedele, 2017; Mullane
and Williams, 2018; Cole and Seabrook, 2020). In addition,
most AD patients are diagnosed in the middle-to-late-stages of
this disorder when irreversible damage to the brain has already
occurred, and the “pre-clinical” or “prodromal” phase has already
passed. More recently therapeutic approaches and disease

9https://www.alz.org/alzheimers-dementia/facts-figures
10https://www.usagainstalzheimers.org/learn/alzheimers-crisis?gclid=
EAIaIQobChMI287JsPG96QIVDdbACh0HjAm0EAAYBCAAEgILDvDBwE
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modification strategies directed against other AD-implicated
pathological mechanisms, including alterations in tau signaling,
the cholinergic system, anti-microbial and anti-viral approaches
and hormone replacement therapies, to name a few, may provide
improved clinical efficacy (Bhute et al., 2020; Habes et al., 2020;
Hampel et al., 2020a,b; Iqbal et al., 2020; Zhou et al., 2020).

Using data-driven studies in the identification of the earliest
signs of AD and the implementation of biomarker testing
and PET and/or MRI neuroimaging during the prodromal
or earliest stages of the disease is an urgent contemporary
quest in AD diagnostics (Zhao et al., 2015; Fierini, 2020;
Emrani et al., 2020; Habes et al., 2020). This current void
may be in part filled by precise miRNA profiling of miRNA-
containing biofluids along the course of AD. The use of novel
molecular-genetic, multimodal neuroimaging techniques and
their integration under the systems biology approach should: (i)
allow clinicians and researchers to better understand miRNA-
based factors involved in AD initiation and trajectory; and
(ii) to deliver targeted interventions tailored to the molecular-
genetic and miRNA-signaling profiles of the individual AD
patient, according to the precision medicine paradigm (Hampel
et al., 2016, 2017, 2018a,b,c, 2019; Lista et al., 2016; Castrillo
et al., 2018; Veitch et al., 2019). Such a precision medicine-
based framework is now increasingly facing the clinical and
biological/genetic complexity and heterogeneity of AD. This is
the field where miRNA neurobiology involving both stabilized
miRNAs and anti-miRNA strategies may play a significant and to
date yet unexploited role (Zhao et al., 2016a,b; Jaber et al., 2019;
Ghaffari et al., 2020).

It is also clear that given the complexity of AD onset, disease
course and diagnosis effective future therapeutic approaches
including miRNA and anti-miRNA (antimiR, antagomir, AM)
strategies: (i) will need to be concurrent and multidimensional,
targeting the multiple disease pathways and neurological
symptoms that will both inhibit both primary disease
pathogenesis and minimize ancillary off-target effects; (ii) will
be integrated with advancement in the development of specific
and sensitive neuroimaging and biofluid-based diagnostic tools
for miRNA and other AD-relevant biomarkers; (iii) will involve
precision medicine and individualized therapies developed within
the systems biology and systems neurophysiology approaches;
and (iv) will be utilized in parallel with primary medical care for
screening and in a second level diagnostic work-up for specialist
diagnosis and clinical management (see below; Gurland et al.,
1995; Galvin et al., 2010; Hampel et al., 2016, 2019; Lista et al.,
2016; Castrillo et al., 2018; Jaber et al., 2019; Penner et al., 2019;
Turner et al., 2020).

microRNA, “HUMAN BIOCHEMICAL
INDIVIDUALITY” AND THERAPEUTIC
STRATEGIES

If high-density Gene-chip-based microarray analysis, LED-
Northern analysis and current RNA sequencing strategies are
of any indication of AD variability, then there are real and
significant human population differences in miRNA abundance,

speciation and complexity throughout the course of AD. For
example one study has demonstrated variability in miRNA
abundance, speciation and complexity amongst different human
populations with specific reference to AD incidence amongst
Caucasians and African Americans (Lukiw, 2013a,b). There
continues to be an urgent requirement to identify novel protein,
proteolipid and ribonucleic acid biomarkers, advanced high-
resolution MRI- and PET-based neuroimaging techniques and
related diagnostic methodologies for the early detection of AD
in different populations. Together these will be potentially useful
as a multidimensional screening technology yielding data whose
integration will allow the determination, and gauge the potential
risk to develop cognitive decline and/or impending neurological
disruption in AD compared to healthy aging cognitively normal
individuals from different population groups.

While the characterization of miRNA in neurodegenerative
disease is highly informative, this information alone cannot
easily discriminate between closely related neurodegenerative
conditions. Many miRNA signals appear to be non-specific
biomarkers of brain cell atrophy, injury or death and
inflammatory neurodegeneration, response to psychoactive
medications or they may be associated with other non-AD
pathologies that have gone undiagnosed or misdiagnosed
(Figure 1). However, in combination with other specific
biomarkers or diagnostic tools, the quantification of multiple
species of miRNAs might be a useful part of the diagnostic
puzzle to assist in the detection and discrimination of certain
specific neurodegenerative disorders even though they may
possess significant clinical overlap (Juźwik et al., 2019; Kou
et al., 2020; Lukiw and Pogue, 2020; Ma et al., 2020). The
analysis of miRNAs over time, such as in integrated studies of
neurodevelopment in humans and in experimental transgenic
animal models of AD (TgAD), have already been shown:
(i) to be a promising tracer and prognostic biomarker for
homeostatic brain function during normal brain development
and neuronal differentiation from the embryonic period to
adulthood (Giorgi Silveira et al., 2020); and (ii) in conjunction
with extensive neuropsychological testing, may be further
useful to monitor and predict the incidence of onset, the
rate of progression of disease activity and its trajectory,
and to further evaluate in detail both therapeutic responses
and clinical efficacy (Peña-Bautista et al., 2019). Significant
heterogeneity in AD symptomology, large variation in clinical
disease presentation, progression and patterns of neural system
disconnection and degeneration, and molecular, genetic and
epigenetic biomarkers at various stages of AD progression
make this disease: (i) perhaps the preeminent example of what
Linus Pauling originally referred to as “human biochemical
individuality” – that each human individual represents a
remarkably and biochemically unique case with regard to their
health and susceptibility to develop disease (Pauling, 1976;
reviewed in the context of AD by Lukiw, 2013a,b); and (ii)
a target of both highly precise interventional treatment and
the best example yet described for the potential application
of “personalized medicine.” As previously pointed out, the
strong heterogeneity in AD neuropathology, course and miRNA
profiles of individuals with AD versus age- and gender matched
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FIGURE 3 | An example of a highly interactive miRNA-mRNA regulatory network involving 5 miRNAs and 9 mRNAs; there is a significant contribution of up-regulated
miRNA signaling (red boxes) to specific aspects of the down-regulated mRNA-mediated expression of key AD-relevant genes (green boxes) and AD neuropathology
(Chandrasekaran and Bonchev, 2016; Clement et al., 2016; Hill and Lukiw, 2016; Jaber et al., 2017, 2019; Lukiw, 2020a,b). Just 5 significantly up-regulated
miRNAs – miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155 (all reported to be up-regulated in AD and/or TgAD models) – can account for the
down-regulation of 8 mRNA targets critically involved in multiple aspects of AD neuropathology (IRAK-2 is up-regulated due to a compensatory mechanism as
described in Cui et al., 2010). Briefly, these miRNAs down-regulate miRNA-directed mRNA target degradation involved in phagocytosis deficits, amyloidogenesis
and tau pathology (TREM2, TSPAN12), inflammation, NF-kB- and innate-immune signaling (IkBKG, CFH, IRAK1; with a compensatory increase in IRAK-2),
neurotropism (15-LOX, VDR), synaptic maintenance and synaptogenesis (SYN-2), all of which are distinguishing pathological features characteristic of AD
neuropathology. Using DNA and RNA sequencing, microfluidic-based GeneChip microarray analysis and advanced LED-Northern dot blot analysis it has been
recently reported that: (i) miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155 are easily detected in the human brain neocortex and retina; (ii) all have
NF-kB-recognition features in their immediate upstream promoters; (iii) these same miRNAs are induced by increases in NF-kB due to reactive-oxygen species (ROS)
induced stress; and (iv) these 5 miRNAs form a pro-inflammatory gene family up-regulated in AD brain neocortex and hippocampal CA1 (Colangelo et al., 2002;
Cogswell et al., 2008; Zhao et al., 2015; Fan et al., 2020; Lukiw, 2020a,b). This diagram is based on studies from our laboratories in which each AD and age-and
gender-matched control sample (N∼135) were interrogated for 2,650 human miRNAs and 27,000 human mRNAs using RNA sequencing, microarray analysis
and/or advanced LED-Northern dot blotting technologies in a single experiment and miRNA-mRNA linkage analysis and bioinformatics were subsequently analyzed
(Jaber et al., 2019; Fan et al., 2020; Lukiw and Pogue, 2020; manuscript in preparation).

controls strongly support this concept. The integration of
multiple pharmacogenomic strategies for a personalized medical
treatment in AD is now currently the most effective choice to
optimize our existing therapeutic tools while reducing unwanted
off-target effects. These include a significant dedication of
medical personnel to individual AD patients in cooperation
with family and caregivers, multiple combinatorial approaches
including extensive clinical assessment, intermittent brain
neuroimaging over the onset and course of AD and a host of
multiple molecular, genetic, epigenetic, neurophysiological, and
neurobiological strategies with focus on CSF, serum biomarkers,
miRNA and perhaps other sncRNA abundance in these biofluid
compartments. While significant progress is being made: it
is important to point out that: (i) combinatorial diagnostic
methodologies incorporating molecular genetic markers such
as miRNA screening combined with DNA-based gene mutation
analysis, advanced MRI- or PET-neuroimaging techniques
and conscientious clinical evaluations, still have difficulty
in the diagnosis of AD, often requiring the stratification of
AD into complex subgroups and post-mortem verification
(Guerreiro et al., 2012; Pogue and Lukiw, 2018; Penner et al.,
2019; Peña-Bautista et al., 2019; Guest et al., 2020; Habes et al.,
2020; Hampel et al., 2020a,b; Hudon et al., 2020; Khoury and
Grossberg, 2020; Sherva et al., 2014; Rossini et al., 2020; Serpente
et al., 2020; Sims et al., 2020; Singh and Yadav, 2020; Swarbrick
et al., 2019; Turner et al., 2020; van den Berg et al., 2020;

Wang et al., 2020; Weller, 2020); and (ii) currently available
pharmacology and strategic treatments (including targeted
drug delivery) based on these diagnostic tools, in the majority
of cases, still do not directly address the primary underlying
cause of either EOAD or LOAD but are sadly limited to the
temporary alleviation of clinical symptoms (Di Resta and
Ferrari, 2019; Veitch et al., 2019; Guest et al., 2020; Khoury
and Grossberg, 2020; Lewczuk et al., 2020; Patnode et al., 2020;
Rahman et al., 2020).

CONCLUDING REMARKS

As critical modulators of the brain and CNS transcriptome
across neurodevelopment, aging and in neurological health
and disease, both in human studies and in TgAD models,
research evidence continues to implicate miRNAs as major
epigenetic contributors to AD onset, incidence, neuropathology,
epidemiology, disease course, severity and progression (Sethi
and Lukiw, 2009; Lukiw, 2013a,b; Jaber et al., 2017, 2019;
Wang et al., 2017; Condrat et al., 2020; Cole and Seabrook,
2020; Lukiw and Pogue, 2020; Moradifard et al., 2018; Wang
and Zhang, 2020; Wang et al., 2020; Figure 3). Importantly,
to date no single miRNA has been found that is diagnostic
for the “prodromal” or “MCI” phase of AD or for any
particular defined stage of the disease and this is likely to
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remain the case in future miRNA abundance studies. The
most recent findings underscore the idea that it is very
unlikely that any single miRNA in brain tissues, the ECF, CSF,
blood serum, urine or any other biofluid compartments from
multiple human populations will be predictive for AD at any
stage of the disease. What might be particularly useful for
significantly improved AD diagnostics, however, would be a
selective, high-density panel of a “pathogenic and inflammatory
neurodegeneration-associated miRNA family” that along with
other molecular-based, gene expression-based or neuroimaging-
related biometrics could more accurately identify and predict
the onset and course of AD-type change (Wang et al., 2017;
Wang and Zhang, 2020; Wang et al., 2020; see Figure 3).
According to the systems biology approach, one of the
pillars of precision medicine, a comprehensive evaluation,
encompassing multiple pathophysiological mechanisms at
different biological levels is needed to fully untangle the
dynamics of AD and inform therapeutic decision-making
at the individual level. miRNA-, mRNA- and protein-based
gene expression alterations and patterns, AD-relevant DNA
mutations, pro-inflammatory biomarkers, such as the novel
flood of inflammatory cytokines contributing to the cytokine
storm in AD, Aβ40- and Aβ42-peptide load in the ECF, CSF
and blood serum, combined with data from MRI- and PET-
based neuroimaging, familial and clinical history and lifestyle
factors could be extremely useful in improving diagnosis and
prognosis of AD onset and development and perhaps, even
the susceptibility to AD initiation and/or development (Zhao
et al., 2015; Wang et al., 2017; Frost et al., 2019; Hampel et al.,
2019; Juźwik et al., 2019; Swarbrick et al., 2019; Adams et al.,
2020; Condrat et al., 2020; Hampel et al., 2020a,b; Serpente
et al., 2020; Turner et al., 2020; Wang and Zhang, 2020;
Wang et al., 2020).

One may argue that the heterogeneity of miRNAs in AD
tissues and biofluids may make these ribonucleic acid-based
biomarkers too variable in reflecting a pathological condition,
however, of the known ∼2650 currently identified human
miRNAs only about ∼35 miRNA species are known to be
abundant in the brain, retina and CNS (see above; 11Lukiw, 2007;
Zhao et al., 2015; Jaber et al., 2017). If miRNA abundance is
any reflection of its importance, this appears to significantly
restrict the total number of expressed miRNAs that may be mis-
regulated in AD brain. Moreover the basis of “individualized
prevention, precise and personalized” treatment strategies using
a systems biology approach requires an input from a very large
number of independent data sources. While miRNA abundance,
speciation and complexity is a very important one of these data
sources, it is the information that may be extracted from all of
these data sources together that should be the most effective
as a diagnostic, prognostic and/or screening tool across the
entire continuum of AD (Wang et al., 2015, 2017; Jaber et al.,
2017, 2019; Lukiw and Pogue, 2020; Wang and Zhang, 2020;
Wang et al., 2020).

Lastly, multiple analytical molecular-genetic approaches,
geriatric, and clinical evaluation, current neuroimaging

11http://www.mirbase.org/

methods and resulting integrated diagnostic and predictive
strategies are currently within the capabilities of contemporary
clinical and medical neurology. Improved clinical data
acquisition, coordination, interpretation and integration
of clinical, laboratory and healthcare resources will be
required to obtain a more accurate diagnostic profile of
the “provisional AD patient.” miRNA-mRNA linkage or
association mapping for AD-relevant neurological pathways
should be additionally useful as a diagnostic approach because
miRNA-mediated regulatory mechanisms appear to involve
a large number of pathogenic and highly integrated gene
expression pathways in the CNS. An equally wide variety
of “individualized prevention, precise and personalized”
treatment strategies will also be required to more effectively
address AD and other insidious, age-related neurological
disorders, including the application of novel and highly
customized, personalized and/or combinatorial miRNA
modulatory and/or anti-miRNA-based pharmacological
strategies whose therapeutic design and implementation
have yet to be considered.
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Altveş, S., Yildiz, H. K., and Vural, H. C. (2020). Interaction of the microbiota with
the human body in health and diseases. Biosci. Microb. Food Health 39, 23–32.
doi: 10.12938/bmfh.19-023

Alzheimer’s Association (2020). Alzheimer’s Disease Facts and Figures March 2020.
Chicago, IL: Alzheimer’s Association.

Arroyo, J. D., Chevillet, J. R., and Kroh, E. M. (2011). Argonaute2 complexes
carry a population of circulating microRNAs independent of vesicles in human
plasma. Proc. Natl. Acad. Sci. U.S.A. 108, 5003–5008. doi: 10.1073/pnas.10190
55108

Arvanitakis, Z., Shah, R. C., and Bennett, D. A. (2019). Diagnosis and management
of dementia: review. JAMA 322, 1589–1599. doi: 10.1001/jama.2019.4782

Ashford, J. W., Kumar, V., Barringer, M., Becker, M., Bice, J., Ryan, N., et al. (1992).
Assessing Alzheimer severity with a global clinical scale. Int. Psychogeriatr. 4,
55–74. doi: 10.1017/s1041610292000905

Atlasi, Y., Jafarnejad, S. M., Gkogkas, C. G., Vermeulen, M., Sonenberg, N.,
and Stunnenberg, H. G. (2020). The translational landscape of ground state
pluripotency. Nat. Commun. 11:1617. doi: 10.1038/s41467-020-15449-9

Badhwar, A., and Haqqani, A. S. (2020). Biomarker potential of brain-secreted
extracellular vesicles in blood in Alzheimer’s disease. Alzheimers Dement.
12:e12001. doi: 10.1002/dad2.12001

Bahlakeh, G., Gorji, A., Soltani, H., and Ghadiri, T. (2020). MicroRNA alterations
in neuropathologic cognitive disorders with an emphasis on dementia: lessons
from animal models. J. Cell Physiol. doi: 10.1002/jcp.29908 [Epub ahead of
print].

Frontiers in Neuroscience | www.frontiersin.org 12 October 2020 | Volume 14 | Article 58543269

https://doi.org/10.1093/advances/nmz086
https://doi.org/10.1016/s0889-8561(02)00048-6
https://doi.org/10.1016/j.jinorgbio.2013.05.010
https://doi.org/10.1016/j.jinorgbio.2013.05.010
https://doi.org/10.12938/bmfh.19-023
https://doi.org/10.1073/pnas.1019055108
https://doi.org/10.1073/pnas.1019055108
https://doi.org/10.1001/jama.2019.4782
https://doi.org/10.1017/s1041610292000905
https://doi.org/10.1038/s41467-020-15449-9
https://doi.org/10.1002/dad2.12001
https://doi.org/10.1002/jcp.29908
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-585432 October 30, 2020 Time: 12:26 # 13

Zhao et al. miRNA Biomarkers in Alzheimer’s Disease

Barnes, J., Dickerson, B., Frost, C., Jiskoot, L. C., Wolk, D., and van der Flier, W. M.
(2015). Alzheimer’s disease first symptoms are age dependent: evidence from
the NACC data set. Alzheimers Dement. 11, 1349–1357. doi: 10.1016/j.jalz.2014.
12.007

Bhattacharjee, S., and Lukiw, W. J. (2013). Alzheimer’s disease and the microbiome.
Front. Cell Neurosci. 7:153. doi: 10.3389/fncel.2013.00153

Bhute, S., Sarmah, D., Datta, A., Rane, P., Shard, A., Goswami, A., et al. (2020).
Molecular pathogenesis and interventional strategies for Alzheimer’s disease:
promises and pitfalls. ACS Pharmacol. Transl. Sci. 3, 472–488. doi: 10.1021/
acsptsci.9b00104

Bitetto, G., and Di Fonzo, A. (2020). Nucleo-cytoplasmic transport defects and
protein aggregates in neurodegeneration. Transl. Neurodegener. 9:25. doi: 10.
1186/s40035020-00205-2

Blennow, K., Hampel, H., Weiner, M., and Zetterberg, H. (2010). Cerebrospinal
fluid, and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–
144. doi: 10.1038/nrneurol.2010.4

Blennow, K., and Zetterberg, H. (2018). Biomarkers for Alzheimer’s disease:
current status and prospects for the future. J. Intern. Med. 284, 643–663. doi:
10.1111/joim.12816

Burmistrova, O. A., Goltsov, A. Y., Abramova, L. I., Kaleda, V. G., Orlova,
V. A., and Rogaev, E. I. (2007). MicroRNA in schizophrenia: genetic and
expression analysis of miR-130b (22q11). Biochemistry 72, 578–582. doi: 10.
1134/s0006297907050161

Burwinkel, M., Lutzenberger, M., Heppner, F. L., Schulz-Schaeffer, W., and Baier,
M. (2018). Intravenous injection of beta-amyloid seeds promotes cerebral
amyloid angiopathy (CAA). Acta Neuropathol. Commun. 6:23. doi: 10.1186/
s40478-018-0511-7

Canobbio, I., Abubaker, A. A., Visconte, C., Torti, M., and Pula, G. (2015).
Role of amyloid peptides in vascular dysfunction and platelet dysregulation in
Alzheimer’s disease. Front. Cell Neurosci. 9:65. doi: 10.3389/fncel.2015.00065

Cao, Q., Tan, C. C., Xu, W., Hu, H., Cao, X. P., Dong, Q., et al. (2020). The
prevalence of dementia: a systematic review and meta-analysis. J. Alzheimers.
Dis. 73, 1157–1166. doi: 10.3233/JAD-191092

Castrillo, J. I., Lista, S., Hampel, H., and Ritchie, C. W. (2018). Systems
biology methods for Alzheimer’s disease research toward molecular signatures,
subtypes, and stages and precision medicine: application in cohort studies and
trials. Methods Mol. Biol. 1750, 31–66. doi: 10.1007/978-1-4939-7704-8_3

Caughey, B., and Kraus, A. (2019). Transmissibility versus pathogenicity of self-
propagating protein aggregates. Viruses 11:E1044. doi: 10.3390/v11111044

Chakraborty, M., Hu, S., Visness, E., Del Giudice, M., De Martino, A., Bosia, C.,
et al. (2020). MicroRNAs organize intrinsic variation into stem cell states. Proc.
Natl. Acad. Sci. U.S.A. 117, 6942–6950. doi: 10.1073/pn1073as.1920695117

Chandrasekaran, S., and Bonchev, D. (2016). Network topology analysis of post-
mortem brain microarrays identifies more Alzheimer’s related genes and
microRNAs and points to novel routes for fighting with the disease. PLoS One
11:e0144052. doi: 10.1371/journal.pone.0144052

Checksfield, M. (ed.) (2020). “National Academies of Sciences, Engineering, and
Medicine; Division of Behavioral and Social Sciences and Education; Board
on Behavioral, Cognitive, and Sensory Sciences; Committee on Developing a
Behavioral and Social Science Research Agenda on Alzheimer’s Disease and
Alzheimer’s Disease-Related Dementias,” in Proceedings of the a Workshop,
(Washington (DC): National Academies Press (USA)).

Christoforidou, E., Joilin, G., and Hafezparast, M. (2020). Potential of activated
microglia as a source of dysregulated extracellular microRNAs contributing
to neurodegeneration in amyotrophic lateral sclerosis. J. Neuroinflam. 17:135.
doi: 10.1186/s12974-020-01822-4

Clement, C., Hill, J. M., Dua, P., Culicchia, F., and Lukiw, W. J. (2016). Analysis of
RNA from Alzheimer’s disease post-mortem brain tissues. Mol. Neurobiol. 53,
1322–1328. doi: 10.1007/s12035-015-9105-6

Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., et al. (2008).
Identification of miRNA changes in Alzheimer’s brain and CSF yields putative
biomarkers and insights into disease pathways. J. Alzheimers. Dis. 14, 27–41.
doi: 10.3233/jad-2008-14103

Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., and Lukiw, W. J.
(2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal
CA1: transcription and neurotrophic factor down-regulation and up-regulation
of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70, 462–473.
doi: 10.1002/jnr.10351

Cole, M. A., and Seabrook, G. R. (2020). On the horizon-the value and promise
of the global pipeline of Alzheimer’s disease therapeutics. Alzheimers Dement.
6:e12009. doi: 10.1002/trc2.12009

Condrat, C. E., Thompson, D. C., Barbu, M. G., Bugnar, O. L., Boboc, A., Cretoiu,
D., et al. (2020). miRNAs as biomarkers in disease: latest findings regarding their
role in diagnosis and prognosis. Cells 9:276. doi: 10.3390/cells9020276

Cui, J. G., Li, Y. Y., Zhao, Y., Bhattacharjee, S., and Lukiw, W. J. (2010).
Differential regulation of interleukin-1 receptorassociated kinase-1 (IRAK-1)
and IRAK-2 by miRNA-146a and NF-kB in stressed human astroglial cells and
in Alzheimer disease. J. Biol. Chem. 285, 38951–38960. doi: 10.1074/jbc.M110.
178848

Cui, J. G., Zhao, Y., and Lukiw, W. J. (2005). Isolation of high spectral quality
RNA using run-on gene transcription; application to gene expression profiling
of human brain. Cell Mol. Neurobiol. 25, 789–794. doi: 10.1007/s10571-005-
4035-x

De Marco, M., and Venneri, A. (2015). ’O’ blood type is associated with larger
grey-matter volumes in the cerebellum. Brain Res. Bull. 116, 1–6. doi: 10.1016/
j.brainresbull.2015.05.005

De Smaele, E., Ferretti, E., and Gulino, A. (2010). MicroRNAs as biomarkers
for CNS cancer and other disorders. Brain Res. 1338, 100–111. doi: 10.1016/j.
brainres.2010.03.103

DeTure, M. A., and Dickson, D. W. (2019). The neuropathological diagnosis
of Alzheimer’s disease. Mol. Neurodegener. 14:32. doi: 10.1186/s13024-019-
0333-5

Di Resta, C., and Ferrari, M. (2019). New molecular approaches to Alzheimer’s
disease. Clin. Biochem. 72, 81–86. doi: 10.1016/j.clinbiochem.2019.04.010

Dinsmore, S. T. (1999). Alzheimer’s disease diagnosis. J. Am. Osteopath. Assoc. 99,
S1–S6. doi: 10.7556/jaoa.1999.99.9.s1

Dumurgier, J., and Tzourio, C. (2020). Epidemiology of neurological diseases in
older adults. Rev. Neurol. 4, S0035–S3787. doi: 10.1016/j.neurol.2020.01.356

Eichhorn, S. W., Guo, H., and McGeary, S. E. (2014). mRNA destabilization is the
dominant effect of mammalian microRNAs by the time substantial repression
ensues. Mol. Cell 56, 104–115. doi: 10.1016/j.molcel.2014.08.028

Eisen, T. J., Eichhorn, S. W., Subtelny, A. O., Lin, K. S., McGeary, S. E., Gupta, S.,
et al. (2020). The dynamics of cytoplasmic mRNA metabolism. Mol. Cell. 77,
786-799.e10. doi: 10.1016/j.molcel.2019.12.005

Emrani, S., Lamar, M., Price, C. C., Wasserman, V., Matusz, E., Au, R., et al. (2020).
Alzheimer’s/vascular spectrum dementia: classification in addition to diagnosis.
J. Alzheimers. Dis. 73, 63–71. doi: 10.3233/JAD-190654

Fan, W., Liang, C., and Ou, M. (2020). MicroRNA-146a is a wide-reaching
neuroinflammatory regulator and potential treatment target in neurological
diseases. Front. Mol. Neurosci. 13:90. doi: 10.3389/fnmol.2020.00090

Fierini, F. (2020). Mixed dementia: neglected clinical entity or nosographic artifice?
J. Neurol. Sci. 15:116662. doi: 10.1016/j.jns.2019.116662

Frost, G. R., Jonas, L. A., and Li, Y. M. (2019). Friend, foe or both? immune activity
in Alzheimer’s disease. Front. Aging Neurosci. 11:337. doi: 10.3389/fnagi.2019.
00337

Galvin, J. E., Fagan, A. M., Holtzman, D. M., Mintun, M. A., and Morris, J. C.
(2010). Relationship of dementia screening tests with biomarkers of Alzheimer’s
disease. Brain 133, 3290–3300. doi: 10.1093/brain/awq204

Ghaffari, M., Sanadgol, N., and Abdollahi, M. (2020). A systematic review of
current progresses in the nucleic acid-based therapies for neurodegeneration
with implications for Alzheimer’s Mini. Rev. Med. Chem. doi: 10.2174/
1389557520666200513122357 [Online ahead of print]

Giorgi Silveira, R., Perelló Ferrúa, C., do Amaral, C. C., Fernandez
Garcia, T., de Souza, K. B., and Nedel, F. (2020). microRNAs
expressed in neuronal differentiation and their associated pathways:
systematic review and bioinformatics analysis. Brain Res. Bull. 157,
140–148.

Gong, J., and Sun, D. (2020). Study on the mechanism of curcumin to reduce the
inflammatory response of temporal lobe in Alzheimer’s disease by regulating
miRNA-146a. Minerva Med. doi: 10.23736/S0026-4806.20.06463-0

Groot, M., and Lee, H. (2020). Sorting Mechanisms for MicroRNAs into
Extracellular Vesicles, and Their Associated Diseases. Cells 9:1044. doi: 10.3390/
cells9041044

Guerreiro, R. J., Gustafson, D. R., and Hardy, J. (2012). The genetic architecture
of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol. Aging 33,
437–456. doi: 10.1016/j.neurobiolaging.2010.03.025

Frontiers in Neuroscience | www.frontiersin.org 13 October 2020 | Volume 14 | Article 58543270

https://doi.org/10.1016/j.jalz.2014.12.007
https://doi.org/10.1016/j.jalz.2014.12.007
https://doi.org/10.3389/fncel.2013.00153
https://doi.org/10.1021/acsptsci.9b00104
https://doi.org/10.1021/acsptsci.9b00104
https://doi.org/10.1186/s40035020-00205-2
https://doi.org/10.1186/s40035020-00205-2
https://doi.org/10.1038/nrneurol.2010.4
https://doi.org/10.1111/joim.12816
https://doi.org/10.1111/joim.12816
https://doi.org/10.1134/s0006297907050161
https://doi.org/10.1134/s0006297907050161
https://doi.org/10.1186/s40478-018-0511-7
https://doi.org/10.1186/s40478-018-0511-7
https://doi.org/10.3389/fncel.2015.00065
https://doi.org/10.3233/JAD-191092
https://doi.org/10.1007/978-1-4939-7704-8_3
https://doi.org/10.3390/v11111044
https://doi.org/10.1073/pn1073as.1920695117
https://doi.org/10.1371/journal.pone.0144052
https://doi.org/10.1186/s12974-020-01822-4
https://doi.org/10.1007/s12035-015-9105-6
https://doi.org/10.3233/jad-2008-14103
https://doi.org/10.1002/jnr.10351
https://doi.org/10.1002/trc2.12009
https://doi.org/10.3390/cells9020276
https://doi.org/10.1074/jbc.M110.178848
https://doi.org/10.1074/jbc.M110.178848
https://doi.org/10.1007/s10571-005-4035-x
https://doi.org/10.1007/s10571-005-4035-x
https://doi.org/10.1016/j.brainresbull.2015.05.005
https://doi.org/10.1016/j.brainresbull.2015.05.005
https://doi.org/10.1016/j.brainres.2010.03.103
https://doi.org/10.1016/j.brainres.2010.03.103
https://doi.org/10.1186/s13024-019-0333-5
https://doi.org/10.1186/s13024-019-0333-5
https://doi.org/10.1016/j.clinbiochem.2019.04.010
https://doi.org/10.7556/jaoa.1999.99.9.s1
https://doi.org/10.1016/j.neurol.2020.01.356
https://doi.org/10.1016/j.molcel.2014.08.028
https://doi.org/10.1016/j.molcel.2019.12.005
https://doi.org/10.3233/JAD-190654
https://doi.org/10.3389/fnmol.2020.00090
https://doi.org/10.1016/j.jns.2019.116662
https://doi.org/10.3389/fnagi.2019.00337
https://doi.org/10.3389/fnagi.2019.00337
https://doi.org/10.1093/brain/awq204
https://doi.org/10.2174/1389557520666200513122357
https://doi.org/10.2174/1389557520666200513122357
https://doi.org/10.23736/S0026-4806.20.06463-0
https://doi.org/10.3390/cells9041044
https://doi.org/10.3390/cells9041044
https://doi.org/10.1016/j.neurobiolaging.2010.03.025
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-585432 October 30, 2020 Time: 12:26 # 14

Zhao et al. miRNA Biomarkers in Alzheimer’s Disease

Guest, F. L., Rahmoune, H., and Guest, P. C. (2020). Early diagnosis and targeted
treatment strategy for improved therapeutic outcomes in Alzheimer’s disease.
Adv. Exp. Med. Biol. 1260, 175–191. doi: 10.1007/978-3-030-426675_8

Gurland, B. J., Wilder, D. E., Chen, J., Lantigua, R., Mayeux, R., and Van Nostrand,
J. (1995). A flexible system of detection for Alzheimer’s disease and related
dementias. Aging 7, 165–172. doi: 10.1007/BF03324308

Habes, M., Grothe, M. J., Tunc, B., McMillan, C., Wolk, D. A., and Davatzikos,
C. (2020). Disentangling heterogeneity in Alzheimer’s disease and related
dementias using data-driven methods. Biol. Psychiatry 88, 70–82. doi: 10.1016/
j.biopsych.2020.01.016

Hampel, H., Caraci, F., Cuello, A. C., Caruso, G., Nisticò, R., Corbo, M., et al.
(2020a). A path toward precision medicine for neuroinflammatory mechanisms
in Alzheimer’s disease. Front. Immunol. 11:456. doi: 10.3389/fimmu.2020.
00456

Hampel, H., Vergallo, A., Caraci, F., Cuello, A. C., Lemercier, P., Vellas, B., et al.
(2020b). Alzheimer Precision Medicine Initiative (APMI). Future avenues for
Alzheimer’s disease detection and therapy: liquid biopsy, intracellular signaling
modulation, systems pharmacology drug discovery. Neuropharmacology
2020:108081. doi: 10.1016/j.neuropharm.2020.108081

Hampel, H., and Lista, S. (2013). Use of biomarkers and imaging to assess
pathophysiology, mechanisms of action and target engagement. J. Nutr. Health
Aging 17, 54–63. doi: 10.1007/s12603-013-0003-1

Hampel, H., Lista, S., Teipel, S. J., Garaci, F., Nisticò, R., Blennow, K., et al.
(2014). Perspective on future role of biological markers in clinical therapy
trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem.
Pharmacol. 88, 426–449. doi: 10.1016/j.bcp.2013.11.009

Hampel, H., O’Bryant, S. E., Castrillo, J. I., Ritchie, C., Rojkova, K., Broich, K.,
et al. (2016). Precision Medicine - The golden gate for detection, treatment
and prevention of Alzheimer’s disease. J. Prev. Alzheimers Dis. 3, 243–259.
doi: 10.14283/jpad.2016.112

Hampel, H., O’Bryant, S. E., Durrleman, S., Younesi, E., Rojkova, K., Escott-Price,
V., et al. (2017). A precision medicine initiative for Alzheimer’s disease: the
road ahead to biomarker-guided integrative disease modeling. Climacteric 20,
107–118. doi: 10.1080/13697137.2017.1287866

Hampel, H., O’Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C. L., Lista, S.,
et al. (2018a). Blood-based biomarkers for Alzheimer disease: mapping the road
to the clinic. Nat. Rev. Neurol. 14, 639–652. doi: 10.1038/s41582-018-0079-7

Hampel, H., Toschi, N., Babiloni, C., Baldacci, F., Black, K. L., Bokde, A. L. W.,
et al. (2018b). Revolution of Alzheimer precision neurology. Passageway of
systems biology and neurophysiology. J. Alzheimers Dis. 64, S47–S105. doi:
10.3233/JAD-179932

Hampel, H., Vergallo, A., Aguilar, L. F., Benda, N., Broich, K., Cuello, A. C., et al.
(2018c). Precision pharmacology for Alzheimer’s disease. Pharmacol. Res. 130,
331–365. doi: 10.1016/j.phrs.2018.02.014

Hampel, H., Vergallo, A., Perry, G., and Lista, S. (2019). Alzheimer precision
medicine initiative (APMI). The Alzheimer precision medicine initiative.
J. Alzheimers Dis. 68, 1–24. doi: 10.3233/JAD-181121

Hampton, T. (2019). Studies further support transmissibility of Alzheimer disease-
associated proteins. JAMA 321, 1243–1244. doi: 10.1001/jama.2019.2650.xx28

Hill, A. F. (2019). Extracellular vesicles and neurodegenerative diseases. J. Neurosci.
39, 9269–9273. doi: 10.1523/JNEUROSCI.0147-18.2019

Hill, J. M., Bhattacharjee, S., Pogue, A. I., and Lukiw, W. J. (2014a). The
gastrointestinal tract microbiome and potential link to Alzheimer’s disease.
Front. Neurol. 5:43. doi: 10.3389/fneur.2014.00043

Hill, J. M., Zhao, Y., Bhattacharjee, S., and Lukiw, W. J. (2014b). miRNAs
and viroids utilize common strategies in genetic signal transfer. Front. Mol.
Neurosci. 7:10. doi: 10.3389/fnmol.2014.00010

Hill, J. M., and Lukiw, W. J. (2016). microRNA (miRNA)-mediated pathogenetic
signaling in Alzheimer’s disease (AD). Neurochem. Res. 41, 96–100. doi: 10.
1007/s11064-015-1734-7

Hobert, O. (2008). Gene regulation by transcription factors and microRNAs.
Science 319, 1785–1786. doi: 10.1126/science.1151651

Holohan, K. N., Lahiri, D. K., Schneider, B. P., Foroud, T., and Saykin, A. J.
(2013). Functional microRNAs in Alzheimer’s disease and cancer: differential
regulation of common mechanisms and pathways. Front. Genet. 3:323. doi:
10.3389/fgene.2012.00323

Hudon, C., Escudier, F., De Roy, J., Croteau, J., Cross, N., Dang-Vu, T. T., et al.
(2020). Behavioral and psychological symptoms that predict cognitive decline

or impairment in cognitively normal middle-aged or older adults: a meta-
analysis. Neuropsychol. Rev. doi: 10.1007/s11065-020-09437-5 [Online ahead
of print].

Iqbal, U. H., Zeng, E., and Pasinetti, G. M. (2020). The use of antimicrobial and
antiviral drugs in Alzheimer’s Disease. Int. J. Mol. Sci. 21:E4920. doi: 10.3390/
ijms21144920

Ishibe, Y., Kusaoi, M., Murayama, G., Nemoto, T., Kon, T., Ogasawara, M., et al.
(2018). Changes in the expression of circulating miRNAs in systemic lupus
erythematosus patient blood plasma after passing through a plasma adsorption
membrane. Ther. Apher. Dial. 22, 278–289. doi: 10.1111/1744-9987.12695

Jaber, V., Zhao, Y., and Lukiw, W. J. (2017). Alterations in micro RNA-messenger
RNA (miRNA-mRNA) coupled signaling networks in sporadic Alzheimer’s
disease (AD) hippocampal CA1. J. Alzheimers. Dis. Parkinsonism 7:312. doi:
10.4172/2161-0460.1000312

Jaber, V. R., Zhao, Y., Sharfman, N. M., Li, W., and Lukiw, W. J. (2019).
Addressing Alzheimer’s disease (AD) neuropathology using anti-microRNA
(AM) strategies. Mol. Neurobiol. 56, 8101–8108. doi: 10.1007/s12035-019-
1632-0

Jiang, T., Yu, J. T., Tian, Y., and Tan, L. (2013). Epidemiology and etiology of
Alzheimer’s disease: from genetic to non-genetic factors. Curr. Alzheimer Res.
10, 852–867. doi: 10.2174/15672050113109990155

Jin, S. C., Carrasquillo, M. M., Benitez, B. A., Skorupa, T., Carrell, D., and Patel, D.
(2015). TREM2 is associated with with increased risk for Alzheimer’s disease in
African Americans. Mol. Neurodegener. 10, 19–26.
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Background: The associations between olfactory identification (OI) ability and the

Alzheimer’s disease biomarkers were not clear.

Objective: This meta-analysis aimed to examine the associations between OI and Aβ

and tau burden.

Methods: Electronic databases (PubMed, Embase, PsycINFO, and Google Scholar)

were searched until June 2019 to identify studies that reported correlation coefficients or

regression coefficients between OI and Aβ or tau levels measured by positron emission

tomography (PET) or cerebrospinal fluid (CSF). Pooled Pearson correlation coefficients

were computed for the PET imaging and CSF biomarkers, with subgroup analysis for

subjects classified into different groups.

Results: Nine studies met the inclusion criteria. Of these, five studies (N = 494) involved

Aβ PET, one involved tau PET (N = 26), and four involved CSF Aβ or tau (N = 345).

OI was negatively associated with Aβ PET in the mixed (r = −0.25, P = 0.008) and

cognitively normal groups (r =−0.15, P= 0.004) but not in the mild cognitive impairment

group. A similar association with CSF total tau in the mixed group was also observed. No

association was found between OI and CSF phosphorylated tau or Aβ42 in the subgroup

analysis of the CSF biomarkers. Due to a lack of data, no pooled r value could be

computed for the association between the OI and tau PET.

Conclusion: The associations between OI ability and Aβ and CSF tau burden in older

adults are negligible. While current evidence does not support the association, further

studies using PET tau imaging are warranted.

Keywords: olfaction, Alzheimer’s disease, amyloid-β, tau, positron emission tomography, cerebrospinal fluid
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INTRODUCTION

Amyloid-β (Aβ) aggregates and tau neurofibrillary tangles are
known as the two neuropathological hallmarks of Alzheimer’s
disease (AD) (Villemagne et al., 2018). The importance of
the two biomarkers, whether for clinical or research use,
is obvious in the biologically oriented effort to tackle the
worldwide AD issue (Jansen et al., 2015; Alzheimer’s Association,
2020). This is especially true when the National Institute
on Aging and Alzheimer’s Association (NIA-AA) proposed
the Aβ/tau/neurodegeneration (AT(N)) classification system to
update the diagnostic criteria for AD recommended in 2011(Jack
et al., 2018). This biomarker-driven research framework has
shown potential to improve the predictive accuracy for memory
decline among non-demented elderly individuals and thereby
provide prognostic values for clinical change and progression
(Jack et al., 2019; Yu et al., 2019).

In the evolving biomarker research field of AD, olfactory
function has been frequently seen in studies related to
neurodegenerative diseases (Marin et al., 2018; Dintica et al.,
2019; Tu et al., 2020) since its first association with dementia was
claimed in 1974 (Waldton, 1974). Impaired olfaction, olfactory
identification (OI) ability in particular, has been reported in AD
and prodromal AD ailments, such as mild cognitive impairment
(MCI) (Roalf et al., 2017; Marin et al., 2018; Jung et al.,
2019). Moreover, several lines of evidence have indicated that
OI impairment is valuable in predicting cognitive decline in
cognitively intact participants and progression from MCI to
AD dementia, and it might suggest neurodegeneration in the
brain among non-demented older adults (Devanand et al., 2015;
Roberts et al., 2016; Dintica et al., 2019). OI, the ability to identify
and name specific odorants, is therefore considered a potential
early biomarker of cognitive decline and AD dementia.

Due to the well-known disadvantages of current standard
measures of AD biomarkers, namely, their expensive cost and
invasiveness, a convenient, inexpensive, and easily accessible test
that predicts amyloid and tau status would therefore reduce the
burden and cost of clinical AD trials. Studies have attempted to
identify correlations of OI ability with amyloid and tau burden
both in vitro and in vivo. Postmortem studies (Kovacs et al.,
1999; Attems et al., 2005; Attems and Jellinger, 2006; Wilson
et al., 2007, 2009; Franks et al., 2015) have linked OI ability
with the pathologic manifestations of AD, Aβ, and neurofibrillary
tangles. Studies involving in vivo positron emission tomography
(PET) imaging scans or cerebrospinal fluid (CSF) measures also
showed interesting results. But the results are inconsistent and
inconclusive; the aim of this systematic review was therefore to
provide a comprehensive overview of OI ability associated with
the Aβ and tau burden in older adults.

METHODS

Selection Criteria
This systematic review was conducted according to the PRISMA
guidelines (Moher et al., 2015) and followed a predetermined
protocol (PROSPERO No. CRD42019138642). The selection
criteria of the studies were as follows: (1) reported associations

between OI test scores and Aβ or tau levels (measured via PET
imaging or CSF); (2) evaluated OI by common smell tests, such as
the University of Pennsylvania Smell Identification Test (UPSIT),
the “Sniffin’ Sticks” OI test, and the Odor Stick Identification
Test for Japanese (OSIT-J); (3) included older adults (mean
age of sample ≥ 60 years); and (4) made data available in the
publication or via contact with the authors to allow computation
of correlation coefficients.

Search Strategy
Systematic electronic databases (PubMed, Embase, PsycINFO,
and Google Scholar) were searched for articles published in
English from their inception until June 2019 with the following
search items: “olfaction” OR “smell” OR “odor” OR “olfactory”
AND “amyloid” OR “tau” OR “cerebrospinal fluid” OR “positron
emission tomography.” Filters were applied to limit searches
to human studies in the English language. The reference lists
and similar articles of the eligible publications were searched
manually for additional studies.

Amyloid and Tau Assessment
PET amyloid imaging agents included Pittsburgh Compound
B (PIB), florbetapir, and florbetaben. PET tau imaging agents
included tau-specific ligands, such as flortaucipir. Estimates of
amyloid and tau binding in PET studies were used from the
global cortex or cortical regions via standardized uptake value
ratios (SUVRs) or distribution volume ratios (DVRs). The CSF
method included measurement of Aβ 1-42 (Aβ42), p-tau181, and
t-tau levels.

Odor Identification Test
OI was tested with the UPSIT, Sniffin’ Sticks, OSIT-J, or other
commercially available tests. The shorter versions of the UPSIT
and Sniffin’ Sticks test were also eligible. Homemade tests and
tests that also assessed other olfactory functions (e.g., olfactory
threshold or discrimination) were excluded.

Data Extraction and Study Quality
Assessment
Data were independently extracted by two investigators (LT
and XL) from cross-sectional cohort studies and baseline
measurements of longitudinal studies with clinical follow-up.
For the studies with different groups of subjects, i.e., cognitively
normal (CN), MCI, AD, and mixed (whole sample) groups,
the correlation coefficient values were extracted separately for
the subgroup comparisons when data were available. The
following information was extracted from each included study:
the sample size, the study design, the country and cohort name,
the methodology used to measure AD biomarkers, the odor
tests, the sample demographic characteristics, and the bivariate
correlations (or related statistical information) between the AD
biomarkers and the OI score. The methodologic quality of each
included study was assessed using the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) tool (Whiting et al.,
2011).
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FIGURE 1 | Representation of the search strategy.

Effect Size Computation and Statistical
Analysis
The cross-sectional associations between OI test scores and Aβ

or tau levels were evaluated using Pearson correlation coefficients
(r). A preadjusted rwas used in all studies when available. In cases
where r values were not reported, they were calculated from the
scatter plot graph of the OI score vs. Aβ or tau levels. Two studies
(Körtvélyessy et al., 2015; Risacher et al., 2017) reported a non-
significant association between the OI score and Aβ or tau levels,
but no data were available. In this case, z = 0.00 was assigned
as a conservative estimate. The other three studies reported an
unstandardized regression coefficient (b) (Growdon et al., 2015;
Reijs et al., 2017; Vassilaki et al., 2017), with which we calculated
r according to previous methods (Kim et al., 2019). Specifically,
the following formulas were used:

(Estimated r)2 = t2 / (t2 + n – 2)
t = b/the standard error of b
Estimated r × b ≥ 0.
We used the Comprehensive Meta-Analysis (CMA), version 3

software (Biostat, NJ) to compute the r values and calculate the
pooled mean r values for the PET imaging and CSF biomarkers,
with subgroup analysis for subjects classified into different
groups. As random-effects models incorporate between-study
heterogeneity and give wider (i.e., more conservative) confidence

intervals (CIs) when heterogeneity is suspected, all analyses and
plots were reported using a random-effects model. The presence
of publication bias with a funnel plot was not assessed because
very few studies were included in our meta-analysis (Sterne et al.,
2011). To examine between-study heterogeneity, in addition to
Cochran’s Q (to determine whether the between-study variability
was greater than the sampling error) and τ (to quantify the
between-study variance of the true effect sizes), the I2 statistic was
also used.

Post hoc subgroup analyses were conducted to determine
the source of the heterogeneity when statistically significant
heterogeneity was identified. The analyses examined the degree
to which heterogeneity resulted from variance due to moderators
such as (a) the type of OI test (e.g., UPSIT edition), (b) the
PET imaging method (PIB or non-PIB) and the measurements
(SUVR or DVR), (c) the code of the SUVR/DVR (continuous or
categorical), (d) adjustments for covariates (e.g., age, sex) or lack
thereof, (e) the sample size, and (f) the method r was obtained.

RESULTS

Description of Studies
A total of nine eligible studies were included in the final
systematic review and meta-analysis (see Figure 1 for flowchart),
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with five studies pertaining to Aβ PET and four about CSF Aβ

or tau. The characteristics of the included studies are shown
in Table 1. The selected studies were published between 2010
and 2018. Seven studies were cross-sectional, and two were
longitudinal. The median number of subjects per study was
93 (range, 22–215), with a total number of 839 (56% female)
subjects. Three studies with a relatively large sample (over 100)
focused on CN older adults, two of which utilized the PET
imaging method (Growdon et al., 2015; Vassilaki et al., 2017).
For the PET method, the included total sample sizes of CN,
MCI, and AD individuals were 392, 75, and 20, respectively,
with seven subjective cognitive decline (regarded as CN in our
analysis) individuals. The sample sizes for the studies using the
CSF method were 161, 63, and 95 individuals, respectively, with
26 non-AD dementia patients. The mean sample age was 71.8
years (SD= 6.8).

Demographic variables such as age, sex, and education were
adjusted statistically in a few studies. The inclusion criteria
for individuals with MCI were mostly according to Petersen’s
criteria, while for AD, it was the NINCDS-ADRDA criteria. The
methodologic quality assessment showed that only the patient
selection domain had the high risk of bias, mostly due to
inappropriate exclusions (Table 2).

AD Biomarkers
Five studies applied Aβ PET imaging [four used 11C PIB (Bahar-
Fuchs et al., 2010; Growdon et al., 2015; Vassilaki et al., 2017;
Kreisl et al., 2018); one used 18F-florbetapir/florbetaben (Risacher
et al., 2017)], and only one study utilized tau PET imaging [18F-
flortaucipir (Risacher et al., 2017)]. For the majority of studies,
the PET SUVR was used as a continuous variable to explore the
association between the Aβ burden and OI score. Four studies
measured CSF levels, two of which examined Aβ42, p-tau, and
t-tau (Körtvélyessy et al., 2015; Lafaille-Magnan et al., 2017),
whereas one study measured Aβ42 and p-tau (Kouzuki et al.,
2018), and the other one measured Aβ42 and t-tau (Reijs et al.,
2017).

Odor Identification Score
The OI score was obtained mostly (seven studies) from the
UPSIT, with 40 odors used by four studies and a short edition
(6∼12 odors) used by three studies. The other two studies used
either Sniffin’ Sticks (Körtvélyessy et al., 2015) or the OSIT-J
(Kouzuki et al., 2018). The raw OI scores were reported by all
studies except one (Lafaille-Magnan et al., 2017), which used
a transformed UPSIT error score. In this case, the raw score
was calculated from the scatter plot graph. One study (Dhilla
Albers et al., 2016) was excluded because a homemade olfactory
screening with mixed evaluation was adopted.

Correlation Between the Odor
Identification Score and PET Imaging
Meta-analyses were based on the correlation between the OI
score and the PET SUVR or DVR. For two studies (Growdon
et al., 2015; Vassilaki et al., 2017), the r values were calculated
based on the regression coefficients. For correlations of subgroup
subjects (CN, MCI, and AD), the r values were obtained via the

authors for one study (Kreisl et al., 2018) and calculated from the
scatter plot graph for another study (Bahar-Fuchs et al., 2010).
One study (Risacher et al., 2017) reported a non-significant
association without available data, in which z= 0.00 was assigned
accordingly. Our results showed that the OI score was negatively
associated with Aβ PET SUVR or DVR in the mixed group
(r =−0.25, 95% CI [−0.42,−0.07], P = 0.008; Figure 2).

Subgroup analysis also showed a negative association in the
CN group (r = −0.15, 95% CI [−0.24, −0.05], P = 0.004).
However, the MCI group showed no correlation (r = −0.2, 95%
CI [−0.72, 0.46], P = 0.568). Only one study had an AD group,
which also showed no correlation. The combination of MCI
and AD together did not change the result (data not shown).
The association between the OI score and tau PET imaging was
reported by one study (Risacher et al., 2017), showing that the tau
level in themean temporal lobe was negatively associated with the
preadjusted UPSIT total score (r =−0.45, P < 0.05).

Correlation Between the Odor
Identification Score and CSF Biomarkers
Meta-analyses were based on the correlation between the OI
score and CSF biomarker levels. For two studies, the r values
were calculated based on the regression coefficients (Reijs et al.,
2017) or from the scatter plot graph (Lafaille-Magnan et al.,
2017). One study (Körtvélyessy et al., 2015) reported a non-
significant association without available data, in which z = 0.00
was assigned accordingly. MCI and AD were analyzed together
given the limited data.

Our analysis showed that the OI score was negatively
associated with CSF t-tau in the mixed group (r=−0.17, 95% CI
[−0.28,−0.05], P = 0.006; Figure 3). The same was true for CSF
p-tau (r = −0.14, 95% CI [−0.28, 0.001], P = 0.052) and Aβ42 (r
= 0.14, 95% CI [−0.01, 0.28], P = 0.069) in the mixed group but
only with a marginal association. Subgroup analysis showed no
association in the CN or MCI/AD group for CSF Aβ42 or t-tau
(data not shown).

Moderator Effects
The present data showed a statistically significant heterogeneous
between-study variability for the PET imaging method in the mix
(Q = 15.2, P < 0.01, τ 2 = 0.033, I2 = 73.68%) and MCI groups
(Q= 10.3, P < 0.01, τ 2 = 0.267, I2 = 80.64%). Post hoc subgroup
analyses indicated that the pooled r values in the mixed group
remained statistically significant when the moderator variables
were adjusted (Table 3).

A significant negative correlation (r = −0.55, 95% CI [−0.72,
−0.32], P < 0.001) for the MCI group was observed when
these accounted for data from studies that had utilized the
40-item UPSIT, although this only pertained to two studies.
Table 3 provides a summary of the meta-analysis by potential
moderator variables of the association between the OI score and
PET imaging.

DISCUSSION

This meta-analysis explored the relationships between OI ability
and the cerebral measures of amyloid and tau deposition via
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TABLE 1 | Characteristics of the included studies.

References Design

(follow-up)

Country N Cohort Mean age

[year (SD)]

Sex, female (%) Olfactory test AD biomarker Classification Statistical analysis

Bahar-Fuchs et al.

(2010)

XS Australia 63 Longitudinal PiB PET

project at Austin Health

73.6 (8.2) 58.6 UPSIT (6-item) PET: Aβ (11C PIB) CN, MCI, AD Pearson correlation

Growdon et al. (2015) XS USA 215 Harvard Aging Brain Study 73.9 (5.9) 59.1 UPSIT PET: Aβ (11C PIB) CN Multiple linear

regression

Kreisl et al. (2018) LT (1 year) USA 71 Longitudinal observational

study of AD biomarkers

68.5 (7.6) 49.0 UPSIT PET: Aβ (11C PIB) CN, MCI Pearson correlation

Risacher et al. (2017) XS USA 26 Indiana Alzheimer Disease

Center

70.4 (8.8) 63.4 UPSIT PET: Aβ

(18F-florbetapir/florbetaben);

Tau (18F-flortaucipir)

CN, SCD, MCI Pearson correlation

Vassilaki et al. (2017) XS USA 119 Mayo Clinic Study of Aging 79.2 (–) 48.5 UPSIT (12-item) PET: Aβ (11C PIB),
18F-FDG-PET

CN Multiple linear

regression

Körtvélyessy et al.

(2015)

XS Germany 22 Memory Clinic, University of

Magdeburg

72.7 (6.9) 66.7 Sniffin (12-item) CSF: Aβ42, p-tau, t-tau AD Pearson correlation

Kouzuki et al. (2018) XS Japan 71 Faculty of Medicine, Tottori

University

78.3 (1.1) 43.8 OSIT-J CSF: Aβ42, p-tau CN, MCI, AD Pearson correlation

Lafaille-Magnan et al.

(2017)

XS Canada 100 The PREVENT-AD cohort 62 (6) 70.0 UPSIT CSF: Aβ42, p-tau, t-tau CN Multiple linear

regression

Reijs et al. (2017) LT (3 years) Netherlands 152 The EDAR study 67.4 (9.5) 47.2 UPSIT (12-item) CSF: Aβ42, t-tau CN, MCI, AD,

non-AD dementia

Multiple linear

regression

XS, cross sectional; LT, longitudinal; UPSIT, University of Pennsylvania Smell Identification Test; OSIT-J, Odor Stick Identification Test for Japanese; PET, positron emission tomography; 11C PIB, 11C-Pittsburgh compound B; Aβ, amyloid β;

CSF, cerebrospinal fluid; Aβ42, amyloid-β42; t-tau, total tau; p-tau, phosphorylated tau;
18F-FDG, 18fluorodeoxyglucose; CN, cognitively normal; SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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TABLE 2 | Risk of bias and applicability concern summary: review authors’ judgements about each domain for included studies, individually.

Study Risk of bias Applicability concerns

Patient selection Index test Reference standard Flow and timing Patient selection Index test Reference standard

1. Bahar-Fuchs

2. Growdon

3. Kreisl

4. Risacher

5. Vassilaki

6. Körtvélyessy

7. Kouzuki

8. Lafaille-Magnan

9. Reijs

, low risk; , high risk; , unclear risk.

FIGURE 2 | Forest plot summarizing the correlations between the odor identification score and amyloid PET imaging data and their 95% confidence intervals for

different groups. (Squares represent study weighting due to sample size, and the diamond represents the weighted mean effect size estimated in a random-effects

model. CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease).

PET imaging or CSF evaluation. Our main finding was that Aβ

(measured by PET) and t-tau (measured by CSF evaluation)
depositions were only weakly associated with OI scores across a
mixed population (CN, MCI, and AD) of older adults. A weak
association was also observed in the CN group between the Aβ

deposition (measured by PET) and OI score. As all the pooled
absolute r values were <0.3, the correlation could be considered
negligible. There were no associations between the MCI and AD
groups or between CSF Aβ42 and t-tau. In addition, no pooled r
value could be computed for the association between the OI score

and tau PET due to the lack of data. These findings suggest that
the associations between OI ability and Aβ and CSF tau burden
in older adults are negligible. OI ability is believed to be linked
with the pathologic manifestations of AD in postmortem studies
(Kovacs et al., 1999; Attems et al., 2005; Attems and Jellinger,
2006; Wilson et al., 2007, 2009; Franks et al., 2015). Among the
AD pathologic changes associated withOI, neurofibrillary tangles
were particularly noted, especially in olfactory bulb (OB) (Kovacs
et al., 1999; Attems et al., 2005; Attems and Jellinger, 2006) and
central olfactory regions (entorhinal cortex and CA1/subiculum
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FIGURE 3 | Forest plot summarizing the correlations between the odor identification score and cerebrospinal fluid biomarker levels and their 95% confidence intervals

in the mixed group. Squares represent study weighting due to sample size, and the diamond represents the weighted mean effect size estimated in a random-effects

model. Aβ42, amyloid-β42; t-tau, total tau; p-tau, phosphorylated tau.

TABLE 3 | Pooled Pearson’s r values and 95% confidence intervals (CIs) adjusted for moderator variables (for Aβ PET only).

Moderator variables MCI Mix

r [95% CI] I2 r [95% CI] I2

Odor test UPSIT-L −0.55 [−0.72, −0.32]*** 0 −0.26 [−0.56, 0.1] 85

UPSIT-S Bahar-Fuchs et al. (2010)+ −0.23 [−0.4, −0.04]* 40

PET method PIB −0.24 [−0.79, 0.53] 90 −0.29 [−0.47, −0.09]** 79

Non-PIB Risacher et al. (2017) Risacher et al. (2017)

PET measure SUVR −0.2 [−0.72, 0.46] 81 −0.35 [−0.57, −0.09]* 79

DVR – Growdon et al. (2015)

Amyloid analysis Continuous −0.2 [−0.72, 0.46] 81 −0.35 [−0.59, −0.05]* 71

Categorical – −0.14 [−0.24, −0.03]* 0

Sample size >100 – −0.14 [−0.24, −0.03]* 0

<100 −0.2 [−0.72, 0.46] 81 −0.35 [−0.59, −0.05]* 71

Method of obtaining r Reported Kreisl et al. (2018) −0.45 [−0.63, −0.23]*** 54

Estimated 0.18 [−0.23, 0.53] 0 −0.13 [−0.23, −0.02]* 0

The results for adjusted covariates equaled those of the odor test.

PET, positron emission tomography; UPSIT, University of Pennsylvania Smell Identification Test, -L = 40 items, -S = 6∼12 items; PIB, Pittsburgh Compound B; SUVR, standardized

uptake value ratio; DVR, distribution volume ratio; MCI, mild cognitive impairment.

“+” references.

*P < 0.05; **P < 0.01; ***P < 0.001.

area of the hippocampus) (Wilson et al., 2007). This was in line
with the tau PET imaging study (Risacher et al., 2017) included in
our analysis, which indicated a low negative correlation between
the tau and OI score in the mean temporal lobe. Of note,
this was in response to the idea endorsed by Kametani et al.
suggesting that it is tau contributed to the development and
progression of AD, not Aβ (Kametani and Hasegawa, 2018).
Nevertheless, the meta-analysis of in vivo CSF t-tau, not p-
tau, yielded only a very weak association, which was considered
negligible. The inconsistency of the two findings might be
explained by the following aspects: the histopathological study
contained a relatively small sample size with advanced age and a

span of several years between olfactory testing and death. More
importantly, in vitro neuropathological studies focused mainly
on specific olfactory-related regions, while in vivo CSF studies
could not take the same approach. However, the association
with OI for the Aβ burden on autopsy appeared non-significant,
which supported our meta-analysis findings, particularly the
results regarding CSF Aβ, despite a low negative correlation that
could be observed in the mixed group with moderator variables
adjusted for the Aβ PET imaging.

The mixed group, in general, showed a negligible correlation
between OI ability and the Aβ and CSF tau burden. However,
the MCI and AD groups, both of which are associated with OI
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impairment and inclined to be associated with Aβ or tau burden
(Jansen et al., 2015; Roalf et al., 2017; Villemagne et al., 2018;
Jung et al., 2019), showed no correlation between the two at all
among the different biomarker classifications. The correlation
was observed in theMCI group for Aβ PETwhen only the studies
that applied the 40-item UPSIT were included, which was largely
due to one study alone (Kreisl et al., 2018). Although part of the
irrelevant finding may be related to the relatively small size of the
sample within the included studies, especially for the AD group
with Aβ PET imaging (n= 20), we speculate that OI ability is not
specific to the underlying AD pathophysiology, especially Aβ. On
the other hand, the CN group is usually characterized by intact
OI ability and a lack of Aβ or tau burden, making the correlation
between the two likely. In fact, Kreisl et al. (2018) attributed
the correlation between OI ability and PIB SUVR largely to the
subjects with high OI scores and low PIB binding in their study.
Nevertheless, our results did not show any correlations in the
CN group, with a negligible association for Aβ PET imaging.
This result again suggests that OI ability is non-specific for the
underlying Aβ burden.

The weak association between OI ability and the cerebral
measures of amyloid and CSF tau levels might be explained by
several possibilities. First, like the notion mentioned above, OI
impairment may not be specific to AD. It is known that impaired
OI is associated with normal aging, and some age-related changes
in olfactory function may relate to factors irrelevant to AD
pathophysiology (e.g., deterioration of the olfactory epithelium
and ossification of the cribriform plate) (Doty et al., 1984;
Doty and Kamath, 2014). In addition, many neuropsychiatric
disorders, such as Parkinson’s disease (Hoyles and Sharma,
2013), dementia with Lewy bodies (Mahlknecht et al., 2015), and
schizophrenia (Kamath et al., 2019), are reported to be associated
with OI impairment. In addition to AD pathologic alterations,
alpha-synucleinopathy of Parkinson’s disease and dementia with
Lewy bodies in the cortical brain and olfactory-related regions are
also observed and are supported by convincing evidence (Wilson
et al., 2007; Arnold et al., 2010; Nag et al., 2019).

Second, the limitations of the Aβ burden itself and its current
measures are worth noting. The Aβ burden is not conclusive
in determining the risk of AD or cognitive impairment. The
prevalence of incidental Aβ positivity increases with age, and
approximately a quarter of CN elders are amyloid-positive
on PET scans or CSF evaluations (Jansen et al., 2015); the
so-called asymptomatic cerebral amyloidosis stage may make
the correlation between cerebral amyloid and OI impairment
fruitless because the latter occurs predominantly in MCI and
AD but not CN (Jansen et al., 2015; Jung et al., 2019). It
is also worth noting that Aβ burden reaches a plateau early
in the disease process or even in the preclinical phase of
the AD (Ingelsson et al., 2004; Serrano-Pozo et al., 2011);
hence, it is not the most appropriate to correlate OI with
Aβ in AD, especially in late stage. Furthermore, a more
toxic soluble or oligomeric form of Aβ (Walsh et al., 2002;
Shankar et al., 2008), which is considered critical in the AD
pathological cascade but has not been measured in the included
studies, may potentially correlate with OI ability more directly
(Bahar-Fuchs et al., 2010).

Third, the same concept may apply to CSF t-tau and p-tau,
which are often used to stage preclinical AD and are viewed
as biomarkers of a “disease state,” despite potentially correlating
with OI ability (Mattsson et al., 2017; Lian et al., 2019). It was
suggested that CSF P-tau levels might vary among AD and
occur before measurable cognitive decline, which also makes
the correlation difficult (Leuzy et al., 2019; Meyer et al., 2020).
However, there are advantages to associating PET tau, viewed as a
biomarker of a “disease stage,” with dementia status and cognitive
decline (Brier et al., 2016; Mattsson et al., 2017). Risacher et al.
(2017) stated that tau deposition significantly correlated with
OI ability, on the condition that Aβ was positive. This, to a
certain extent, corresponds with the definition of AD under the
AT(N) scheme (Jack et al., 2018), which requires that both Aβ

and tau are positive. Therefore, correlating OI ability with PET
tau will be promising and plausible, especially when focusing on
Aβ-positive individuals.

Finally, the included PET studies focused mainly on
composite gray matter from frontal, parietal, lateral temporal
cortex, and other regions of interest (Growdon et al., 2015;
Vassilaki et al., 2017; Kreisl et al., 2018) but olfactory
structure, while an olfactory region-targeted evaluation approach
may strengthen the exploratory association. A number of
neuroimaging studies indicate the association between structural
and functional degeneration of distinct brain regions and
olfactory impairment, mainly to the hippocampus and the
primary olfactory cortex (Thomann et al., 2009; Growdon et al.,
2015; Vasavada et al., 2015, 2017; Risacher et al., 2017; Vassilaki
et al., 2017; Wu et al., 2019). In addtion, postmortem studies
mentioned above (Kovacs et al., 1999; Attems et al., 2005; Attems
and Jellinger, 2006; Wilson et al., 2007, 2009) also state that
the association between AD pathologic changes and OI largely
reflects in the OB. Thus, it might be wiser to adopt a strategic
regional analysis, rather than averaging the biomarker levels
for the whole brain. Nevertheless, PET has so far not provided
sufficient resolution measuring Aβ and/or tau deposition in the
OB in humans, as stated by Risacher et al. (2017).

Furthermore, the prion-like hypothesis in AD is also worth
noting concerning the olfactory impairment. Like the prion
detected in olfactory epithelium of sporadic Creutzfeldt-Jakob
disease (Tabaton et al., 2004), Aβ and tau also appeared in
olfactory structures in AD and healthy subjects, including
olfactory epithelium and OB (Kovacs et al., 1999; Wilson et al.,
2007; Arnold et al., 2010; Brozzetti et al., 2020), both are
susceptible to protein and enzyme modifications involved in
AD pathogenesis (Dibattista et al., 2020). It was hypothesized
that pathological modifications lead to the activation of protein
accumulation in the OB after environmental insults, and then
induces the propagation of the disease within the brain in a prion-
like fashion by a templating process (Rey et al., 2018). Thus, OB
was considered the entry site for this prion-like spreading in AD.
Here, Aβwas proposed as an initiator for AD pathogenesis, while
prion-like propagation of tauopathy dominated the process and
might even independent of Aβ (Walker, 2018). Taken together,
we believe these underlying pathologic development starting
from olfactory neurons may contribute to the OI impairment,
as memory dysfunction in AD and/or MCI was not enough
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to explain this deficit (Wilson et al., 2007; Reijs et al., 2017).
Hence, the olfactory region-based association, again, between
OI ability and Aβ, tau particularly is important. Recently, a
non-invasive nasal brushing technique was used to collect the
olfactory neuroepithelium (Brozzetti et al., 2020), from which
neurodegeneration-associated proteins were detected, making
correlating OI ability with Aβ and tau levels in peripheral
olfactory system in vivo possible. This, certainly, may help clarify
the relationship between the olfactory function and biomarkers
of interest. A comprehensive search, a detailed subgroup analysis,
and the appraisal of potential moderators for heterogeneity are
the strengths of the study. In addition, active communication
with the authors of the included studies and the comprehensive
extraction of additional data provided our analysis with more
power than the original publications offered.

However, several limitations of our study should also be noted.
First, the available data did not allow us to correlate PET tau
with OI ability or to identify associations within the AD group.
In addition, other olfactory functions (olfactory threshold and
discrimination) were not considered in this study. Thus, the
inferences in the study cannot be extended to the above situation.
Second, the sample sizes in general were modest but relatively
small in the AD group and the CSF analysis, which reflects the
limited amount of available data in the associated field and limits
the power of detecting associations. Third, it was shown that the
association was greater if the OI was defined by suggested cutoffs
of abnormality, such as anosmia and normosmia (Vassilaki et al.,
2017). Unfortunately, no such data could be obtained because
only one study took the approach. Fourth, t-tau/Aβ42 or p-
tau/Aβ42 might correlate with odor identification better than
single CSF measures due to their improved ability for defining
biomarker positivity, but the data was limited. Two studies
reported p-tau/Aβ42, and the pooled results indicated a weak
association (r = −0.17, P = 0.03). Fifth, it is advisable to take
APOE ε4 allele into account when analyzing the associations
between OI ability and amyloid-β and tau burden as the latter
interacts with APOE ε4 allele. This has not been done as only a
few studies adjusted APOE ε4 allele. Finally, the comprehensive
data extraction was a double-edged sword, as it may have
yielded results that deviate from the original results due to the
recalculation and estimation of the data.

Future studies using PET tau imaging with larger sample
sizes may help further clarify this issue. Concerning other
olfactory functions, a recently published study (Lian et al.,
2019) investigated the relationship between the threshold
discrimination identification score and CSF Aβ and tau levels
in AD patients with or without olfactory dysfunction (OD),
finding that only t-tau levels were significantly lower in the
AD-OD group, but the significant correlation disappeared after
adjusting for age, sex, education, and disease duration. The same
was true for the study by Doorduijn et al. (2020), which found
no associations between AD biomarker levels and threshold
discrimination identification. Another excluded study using odor
percept identification performance with a homemade test to
correlate with Aβ PET data also yielded a negative result (Dhilla
Albers et al., 2016). These findings appear to be consistent with
our meta-analysis results. Additionally, the p-tau/t-tau ratio has
recently been shown to be related to olfaction in peripheral

olfactory systems (Liu et al., 2018); thus, it might be interesting
to examine the association between the p-tau/t-tau ratio and
OI ability.

Here, we provide a thorough analysis on the negligible
association between OI ability and Aβ and CSF tau burden, from
the limitation of theOI test andAβmeasures themselves (both are
lack of specificity) and the drawbacks of currently averaging the
Aβ levels for the whole brain, to the possible association between
the pathologic development (amyloid plaques and tauopathy)
and OI impairment based on the prion-like hypothesis in AD.
Specifically, we point out that the prion-like spreading Aβ,
especially tau along the olfactory pathway (starting from OB)
may contribute to the OI impairment, in parallel of memory
dysfunction to some extent. This highlights a strategic regional
analysis in the future, and a handful of other ideas, such as treating
OI as a categorical variable (e.g., anosmia, normosmia), using t-
tau/Aβ42 or p-tau/Aβ42, focusing on the APOE ε4 allele carriers,
and most importantly measuring by PET tau imaging.

In summary, our meta-analysis suggests that OI impairment
correlates marginally with Aβ PET data but not CSF Aβ and
more weakly correlates with CSF t-tau but not p-tau. These
findings may disappoint those who intend to use OI ability alone
for the early detection of AD. Nevertheless, PET tau might be
more strongly associated with OI impairment; however, more
studies are needed to clarify this association. Importantly, our
results should not be regarded as a rationale for denying the
value of olfactory testing in AD research. OI test may have
limited value predicting amyloid and tau status when used alone,
yet it is possible that an enhanced association between the two
may be yielded when combined with other biologic markers
discussed above (e.g., focusing on APOE ε4 carriers using tau
PET imaging with olfactory region-based analysis), and it is
still valuable in predicting cognitive decline and progression
from MCI to AD dementia. In fact, as a low-cost, non-invasive
method of evaluating olfactory function, the assessment of OI
ability, combined with global cognitive testing, has the potential
to help clinicians identify persons who rarely transition to
dementia (Devanand et al., 2019), thus helping practitioners
decide whether to apply further diagnostic investigations, such as
PET scans, which help reduce the burden and cost of clinical AD
trials and as the first diagnostic tau radiotracer for use with PET
was approved by the US Food and Drug Administration, further
research is possible and warranted.
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Sushmitha Gururaj†, Paul J. Sampognaro†, Andrea R. Argouarch and Aimee W. Kao*

Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA,
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Progranulin (PGRN) is a tightly regulated, secreted glycoprotein involved in a wide range
of biological processes that is of tremendous interest to the scientific community due
to its involvement in neoplastic, neurodevelopmental, and neurodegenerative diseases.
In particular, progranulin haploinsufficiency leads to frontotemporal dementia. While
performing experiments with a HIS-tagged recombinant human (rh) PGRN protein, we
observed a measurable depletion of protein from solution due to its adsorption onto
polypropylene (PPE) microcentrifuge tubes. In this study, we have quantified the extent
of rhPGRN adsorption to PPE tubes while varying experimental conditions, including
incubation time and temperature. We found that ∼25–35% of rhPGRN becomes
adsorbed to the surface of PPE tubes even after a short incubation period. We then
directly showed the deleterious impact of PGRN adsorption in functional assays and
have recommended alternative labware to minimize these effects. Although the risk
of adsorption of some purified proteins and peptides to polymer plastics has been
characterized previously, this is the first report of rhPGRN adsorption. Moreover, since
PGRN is currently being studied and utilized in both basic science laboratories to
perform in vitro studies and translational laboratories to survey PGRN as a quantitative
dementia biomarker and potential replacement therapy, the reported observations here
are broadly impactful and will likely significantly affect the design and interpretation of
future experiments centered on progranulin biology.

Keywords: progranulin, adsorption, neurodegeneration, polypropylene, cathepsins

INTRODUCTION

Progranulin (PGRN) is an evolutionarily conserved, cysteine-rich, secreted glycoprotein with a
diverse set of functions. The pleiotropic nature of PGRN is evidenced by a growing body of
work that details its participation in important biological processes such as vascular protection
(Kanazawa et al., 2015), neuronal connectivity and survival (Gass et al., 2012; Ward et al., 2014),
wound healing (Zhu et al., 2002), inflammation (Jian et al., 2013; Tanaka et al., 2013; Minami
et al., 2014; Xu et al., 2016), and immunity (Matsubara et al., 2012; Jian et al., 2013). In recent
years, it has become apparent that cells maintain tight regulation of PGRN levels. Excessive
PGRN production is associated with cancers that grow aggressively and metastasize early (He
and Bateman, 1999; Yang et al., 2015; Serrero et al., 2016), while PGRN haploinsufficiency and
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homozygous loss of function states lead to adult-onset
frontotemporal dementia (FTD) (Baker et al., 2006; Cruts
et al., 2006) and childhood-onset neuronal ceroid lipofuscinosis
(NCL) (Smith et al., 2012), respectively. Intriguingly, PGRN gene
(Pgrn) delivery has also demonstrated ameliorative effects in
animal models of both Alzheimer’s (Van Kampen and Kay, 2017)
and Parkinson’s disease (Van Kampen et al., 2014).

Based on these observations, circulating PGRN has garnered
recent attention as a potential quantitative biomarker for
neurodegeneration, particularly for FTD. Pgrn mutations causing
FTD manifest in reduced plasma, serum, and cerebrospinal
fluid (CSF) PGRN protein levels compared to non-mutation
carriers (Ghidoni et al., 2008; Finch et al., 2009; Sleegers
et al., 2009; Nicholson et al., 2014; Meeter et al., 2016;
Wilke et al., 2017). Perhaps the strongest argument for the
consideration of PGRN levels is that the clinical diagnosis of
FTD lies in recent clinical trials testing PGRN replacement
therapy, in which successful dose-dependent increases in plasma
and CSF PGRN are already being reported (NCT03636204,
NCT03987295). However, discrepancies exist within the current
literature. For example, reduced serum PGRN do not seem
to correlate tightly with reduced PGRN levels in the CSF of
both Pgrn ± and Pgrn−/− FTD patients, suggesting either
differences in peripheral PGRN regulation or potential sources
of measurement error in PGRN quantification between these
sample types (Wilke et al., 2016).

Our laboratory studies PGRN and its impact on lysosome
biology and protein homeostasis (Salazar et al., 2015; Butler et al.,
2019a,b,c). In several of our biochemical assays involving human
plasma and CSF, we routinely use an ∼80kDa recombinant
HIS-tagged human Progranulin (rhPGRN) protein as a control
for the full-length human PGRN protein. While performing
these experiments, we observed inconsistencies in our rhPGRN
control measurements in enzyme-linked immunosorbent assays
(ELISA) and mass spectrometry assays. Troubleshooting these
inconsistencies led to the discovery of an important caveat
of working with this recombinant protein: PGRN depletes
from solution by adsorbing to the polypropylene surface of
microcentrifuge tubes. Given the nearly universal presence
of polypropylene and other plastic labware in experimental
workflows, we performed a detailed characterization of rhPGRN
adsorption to polypropylene tubes. This study quantifies the
adsorption of PGRN to polypropylene tubes, demonstrates
the functional effects of this adsorption, and recommends
alternatives to polypropylene to counteract it. Given the
significant evidence for PGRN’s tight in vivo regulatory control
and in light of recent diagnostic and therapeutic efforts aimed
at modulating PGRN levels in patients (particularly, those with
neurodegenerative disease), we present these data in an effort to
optimize future work in these areas.

MATERIALS AND METHODS

Materials
Labware–1.5 mL polypropylene microcentrifuge tubes (E&K
Scientific Products, No. 695054), 1.5 mL LoBind microcentrifuge
tubes (Fisher Scientific Sci, No. E925000090), polypropylene

pipet tips (United States Scientific, No. 1,111–1,700, 1–200 µL,
low binding pipet tips (Sigma-Aldrich, No. CLS4151).
Antibodies–anti-progranulin C-terminus (Thermo Fisher
#40-3400, 1:1,000).

BSA Coating of Polypropylene Tubes
BSA (Sigma, St. Louis, MO, United States) was dissolved in
deionized water at a concentration of 100 mg/mL and sterile
filtered. 100 µl of the BSA solution was incubated in the
1.5 mL polypropylene tubes for 24 h at room temperature.
The solution was then aspirated, spun, and all remaining
solution was aspirated.

PGRN Adsorption Experiments
Recombinant human PGRN (R&D Systems Inc., No. 2420-PG-
050) was prepared to the required concentration in Dulbecco’s
Phosphate Buffered Solutions (DPBS) (Thermo Fisher Scientific,
Waltham, MA, United States). Experiments were performed
in 1.5 mL polypropylene tubes, Lobind tubes, or BSA-coated
polypropylene tubes. Low binding pipet tips were used in all
experiments except in the pipetting loss experiments, where
polypropylene tips were used. 30 µl of 100 nM PGRN solution
was made in each tube or in the control tube for the serial
transfer and pipetting experiments and 30 µl of 250, 150, 100,
75, 50, or 25 nM was made in the dilution series experiments.
10′ incubations were performed on ice, unless specified as in
the temperature and time experiments. To analyze PGRN in
solution, either aliquots (5 µl) or the entire 30 µl volume
were removed as indicated by the figure legends, and mixed
with 4X lithium dodecyl sulfate (LDS) (Thermo Fisher Sci,
No., NP0007) and 10X reducing agent (Thermo Fisher Sci, No.
NP0009). These sample mixtures were boiled and visualized by
Western blot. Adsorbed PGRN was analyzed by aspirating all the
remaining solution from the tubes, adding 4X Laemmli buffer
and 10X reducing agent, and boiling the tubes. Each tube was
vortexed before and after boiling, and PGRN was then visualized
by Western blot.

In vitro Cleavage Assays
Recombinant human PGRN (R&D Systems Inc., No. 2420-PG-
050) was prepared in DPBS (Thermo Fisher Scientific, Waltham,
MA, United States). Experiments were performed in 1.5 mL
polypropylene tubes and Lobind tubes. Low binding pipet tips
were used in all experiments. 400 ng of rhPGRN was incubated
with 250 nM of Cathepsin L (R&D Systems, No. 952-CY-010)
in the presence of sodium acetate buffer (pH 4.5), 10 µM of
dithiothreitol (DTT), and 10 µM of ethylenediaminetetraacetic
acid (EDTA) for 2.5, 5, 10, and 15 min. These timed incubations
were quenched by the addition of 4X LDS (Thermo Fisher Sci
No., NP0007) and 10X reducing agent (Thermo Fisher Sci, No.
NP0009), and placed on ice. These sample mixtures were then
boiled and visualized by Western blot.

Western Blots
Progranulin was visualized by reducing (sodium dodecyl sulfate–
polyacrylamide gel electrophoresis) SDS-PAGE using 4–12%
Bis-Tris gels (Thermo Fisher sci, No. NP0302BOX). Proteins
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were transferred to PVDF membrane (Bio-Rad, No. 1620177)
and blocked with 5% milk (Thermo Fisher, No.NC9121673)
or Odyssey buffer (Li-cor No. 927-50010) for 2 h at room
temperature. Membranes were incubated in primary antibodies
overnight at 4◦C. Li-cor secondary antibodies were used at
1:5,000 dilution for 1 h at room temperature and blots were
imaged using the Odyssey CLx imager.

Analysis of Western Blots
In order to quantify the relative intensity of bands on Western
Blots, the captured images from the Odyssey CLx were subject
to analysis using ImageJ (Rasband, W.S., ImageJ, United States
National Institutes of Health, Bethesda, MD, United States,
1997–2012)1. For Figures 1A,B, % PGRN values were obtained by
normalizing to the control band signal. For all of the other figures,
% PGRN detected either in solution or adsorbed to the tube for a
particular condition was calculated as a fraction of the total signal:
{[intensity of in solution or adsorbed to tube band/(intensity of in
solution+ adsorbed to tube) bands]× 100}.

Statistics
All results shown are representative of three independent
experiments. All statistics were performed using GraphPad Prism
Version 6 (GraphPad Software, La Jolla, CA, United States). For
comparisons with control, One-way ANOVA followed by Holm-
Sidak’s multiple comparisons test was used. For comparisons in
all other figures, the difference between protein levels in solution
and adsorbed to the tube at a given condition were calculated
by paired t-tests while differences between the conditions within
the in solution and adsorbed groups were calculated by One-way
ANOVA followed by Dunnett’s multiple comparisons test. In all
graphs, error bars indicate the standard deviation of the data. P
values for the concerned tests are as specified in figure legends.

RESULTS

rhProgranulin Protein Adsorbs to
Polypropylene Tubes
It is well established that most proteins and peptides readily
bind to experimental surfaces owing to their amphipathic
nature (Nakanishi et al., 2001). This very property is exploited
beneficially in several bio-techniques, such as the ELISA
immuno-assay where the coating of 96-well plastic plates relies
on non-specific adsorption, and ion exchange chromatography
whose central principle is the binding between charged proteins
and resins. However, adsorption can exert undesirable impacts
on quantitative protein studies and can lead to inaccurate
working concentrations. We observed in our experiments that
the incubation of rhPGRN protein in PPE microcentrifuge tubes
depleted the protein amounts in solution over time. Therefore,
we hypothesized that the rhPGRN was becoming adsorbed to
polypropylene tubes.

To quantitatively assess rhPGRN adsorption to polypropylene
tubes, 100 nM rhPGRN was incubated in tubes on ice for 10 min,

1http://imagej.nih.gov/ij/

then serially transferred and incubated for 10 min in a new tube;
this procedure was subsequently repeated four more times. Each
empty tube was stripped of adsorbed PGRN by boiling with
reducing Laemmli buffer and run on SDS-PAGE gels, along with
the entirety of the rhPGRN left in tube 6 (Figure 1A). Pipetting
loss of protein was minimized in these experiments by using low
binding pipette tips. Upon comparison with a control sample
that underwent no transfers, ∼10–25% of PGRN was found to
become adsorbed to a tube with each incubation such that after
five transfers, only ∼15% of the protein remained in solution
(p < 0.0001) (Figure 1B). We also measured this phenomenon
via ELISA and found similar results (Supplementary Figure 1).

Next, we asked if the concentration of PGRN affects the
extent of adsorption; for example, if concentrations lower
than 100 nM would be entirely depleted from solution or if
higher concentrations might be found in solution still due
oversaturation of the adsorption surface. A concentration series
(250–25 nM) was set up in polypropylene tubes for 10-min
incubations and the adsorbed and in-solution PGRN were
measured (Figure 1C). Within the tested concentration range,
∼25–35% of protein was consistently found to be adsorbed across
all concentrations.

We further examined PGRN loss to tube adsorption as a
result of repeated pipetting during routine aspiration and/or
dispensing of the solution in experiments. To test this, we
prepared 100 nM PGRN solution in polypropylene tubes as
previously described but instead of serially transferring the
solution into new tubes, we reapplied it to the same tube with
a fresh 100 µL polypropylene pipet tip. Samples 1 through 5
were prepared by sequentially increasing the number of times
the full volume was aspirated and dispensed with a single tip
from one to five, respectively (Figure 1D). When compared to a
control preparation that was not subjected to pipetting, we found
that pipetted samples underwent no measurable adsorption
loss. The pipetting and incubation experiments differ primarily
in the time of exposure of the sample to the plastic. The
exposure time of the pipette tip’s binding surface is only a few
seconds whereas samples were incubated for 10 min in the
tubes. Taken together with the previous results, in experimental
practice it appears that polypropylene tubes, but not pipet tips,
lead to measurable PGRN adsorption to labware under the
conditions tested.

Time and Temperature Impact
Adsorption of Recombinant Progranulin
to Polypropylene Tubes
Given the aforementioned findings, as well as the fact
that experimental conditions such as incubation time and
temperature are often important factors in study design, we
examined if rhPGRN adsorption to polypropylene tubes is
influenced by (1) duration of incubation and (2) temperature. We
also briefly looked at frozen storage (Supplementary Figure 2).
To study incubation time as a factor, adsorbed and in-solution
PGRN amounts were measured at the previously tested 10-
min incubation timepoint, but also after 1, 4, 8, 16, 24, and
48 h of incubation on ice. Although the majority of PGRN
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FIGURE 1 | Recombinant Progranulin Protein Adsorbs to Polypropylene Tubes. (A,B) 100 nM rhPGRN was serially transferred through tubes 1–5, which were
stripped for adsorbed protein after a 10-min incubation in each tube. Tube 6 contains the protein remaining in solution at the end of five serial transfers. The control is
100 nM PGRN that underwent no transfers. Low binding pipet tips were used to minimize pipetting loss. One-Way ANOVA with Holm-Sidak’s Multiple Comparisons
test was performed (****p < 0.0001, 1–6 vs. Control, n = 3). (C) A dilution series of 250–25 nM PGRN was set up in polypropylene tubes. After a 10-min incubation
on ice, the PGRN in solution as well as adsorbed to every tube was prepared for analysis. Low binding pipet tips were used to minimize pipetting loss. (D) 100 nM
PGRN was prepared in tubes 1–6. Polypropylene tips were used to aspirate and dispense the full volume of solution 0–5 times, respectively, into the same tube. The
control is 100 nM PGRN subjected to no pipetting. PGRN levels were measured by Western blot and membranes were immunoblotted with anti-PGRN antibody. All
immunoblots are representative of three independent experiments.

adsorption seemed to occur rapidly with ∼40% adsorbed at the
end of 10 min, we observed a trend toward further protein
absorption over time, including a statistically significant increase
of ∼25–35% additional starting protein found adsorbed to the
tube at 24 h (p = 0.0458) (Figure 2A). It must be noted that

this 40% adsorption is higher than was reported in previous
10-min incubations (Figures 1B,C). Indeed, we observed inter-
experimental variation across our entire study and found the
amount of adsorption to have a range as broad as 10–40%
between experiments.
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FIGURE 2 | Time and Temperature Impact Adsorption of Recombinant Progranulin to Polypropylene Tubes. (A) 100 nM PGRN was incubated for 10′, 1, 4, 8, 16,
24, or 48 h in polypropylene tubes on ice. One-Way ANOVA with Dunnett’s Multiple Comparisons were performed (*p < 0.05, 1/4/8/16/24/48 h vs. 10′, n = 3).
(B) 100 nM PGRN was incubated in polypropylene tubes for 10′ on ice, at room temperature (RT) or at 37◦C (n = 3). At the end of the incubations, PGRN in solution
as well as adsorbed to the tube was prepared for analysis. PGRN levels were measured by Western blot and membranes were immunoblotted with anti-PGRN
antibody. All immunoblots are representative of three independent experiments.

PGRN adsorption to PPE may also be temperature dependent.
Incubation at room temperature (RT) or at 37◦C for 10 min
trended toward increasing PGRN adsorption when compared
to ice-incubation (Figure 2B). These results demonstrate
that the considerable amount of basal PGRN adsorption
observed under conventionally used experimental guidelines
for recombinant proteins is further increased by varying
conditions such as duration or temperature of incubations,
necessitating additional caution among experimenters when
designing protocols with PPE tubes.

PGRN Adsorption Is Reduced in Low
Binding and BSA-Coated Tubes
We tested two alternatives to polypropylene tubes: (1) BSA-
coated tubes prepared by incubating 100 mg/ml BSA in
polypropylene tubes for 24 h at room temperature (Figure 3)
and (2) commercially available low-binding “LoBind” tubes
(Figure 4). As in a previous set of experiments, rhPGRN
concentrations from 25 to 250 nM were incubated in LoBind or
BSA-coated tubes for 10 min on ice. Overall, both LoBind and
BSA-coated tubes performed better than polypropylene tubes,
with BSA-coated tubes resulting in nearly complete retention of
PGRN in solution across the concentration range (Figures 3A,
4A). LoBind tubes, on the other hand, resulted in lesser PGRN
adsorption loss than polypropylene tubes (∼10–15 vs. ∼25–
35%), but did not completely prevent it.

Additionally, we examined if the two alternative tubes
would fare better under conditions that exacerbated rhPGRN
adsorption loss in polypropylene tubes, namely longer incubation
times and higher incubation temperatures. We found that
PGRN adsorption did not increase in a time- or temperature-
dependent manner in LoBind (Figures 3B,C) or BSA-coated
tubes (Figures 4B,C). However, a measurable amount of PGRN

adsorption did occur in LoBind tubes at all the measured
timepoints, consistent with previous results that it was but a slight
improvement to polypropylene tubes. BSA coating, in contrast,
prevented adsorption entirely under all tested conditions. Taken
together, these results indicate that under the test conditions,
BSA-coated tubes appear to be the most reliable at maintaining
working concentrations of rhPGRN in solution, followed by
LoBind tubes, and polypropylene tubes.

PGRN Adsorption to PPE Tubes Disrupts
a Functional Assay
Following the above described characterization, it was critical
for us to determine if PGRN adsorption interferes with the
results of a functional assay. We routinely study the dynamics
of PGRN processing into granulins using in vitro protease
cleavage assays with rhPGRN and commercially available
recombinant human lysosomal proteases. Based on previous
work identifying the endo-lysosomal enzyme Cathepsin L
(CTSL) as a PGRN protease (Lee et al., 2017), we compared
the results from dynamic rhPGRN cleavage assays between
polypropylene and Lobind tubes (Figure 5). Because BSA
is a known CTSL substrate, BSA-coated tubes were not
included in this experiment. Here, rhPGRN was incubated
with recombinant CTSL at pH 4.5 for 2.5, 5, 10, or 15 min
at 37◦C. At the end of each timepoint, the full reaction
volume was transferred to a new tube and the protein in
solution as well as adsorbed to the incubation tube were
prepared for western blot analysis as previously described. In
this functional assay, the observed PGRN cleavage product
(approximately 75 kDa in size) was noticeably absent from
solution when the reaction was performed within polypropylene
tubes, particularly at the 2.5-min timepoint. Taken together, these
results demonstrate that in vitro cleavage assay kinetics are also
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FIGURE 3 | PGRN Adsorption is Prevented in BSA-Coated Tubes. (A) A dilution series of 250–25 nM PGRN was set up in BSA-coated polypropylene tubes for
10-min incubations on ice (n = 3). (B) 100 nM PGRN was incubated for 10′, 1, 4, 8, 16, 24, or 48 h in BSA-coated tubes on ice (n = 3). (C) 100 nM PGRN was
incubated in BSA-coated tubes for 10′ on ice, at room temperature (RT) or at 37◦C (n = 3). At the end of the incubations, PGRN in solution as well as adsorbed to
the tube was prepared for analysis. PGRN levels were measured by Western blot and membranes were immunoblotted with anti-PGRN antibody. All immunoblots
are representative of three independent experiments.

subject to artifactual changes depending on the amount of protein
adsorbed to the tube.

DISCUSSION

This study demonstrates that the adsorption of rhPGRN
to polypropylene tubes has the potential to create artifacts
in working concentrations and hence impact the results of
quantitative studies. This adsorption to polypropylene increases
proportionally with increased duration of incubation and

temperature. We show that using commercially available LoBind
tubes and BSA coated polypropylene tubes can decrease or
prevent adsorption, respectively.

Historically, common strategies to combat adsorption include
adding detergents and increasing salt concentrations (Smith
et al., 1978), coating surfaces with bovine serum albumin
(BSA) (Felgner and Wilson, 1976) or polyethylene glycol (PEG)
(Kramer et al., 1976), using siliconizing agents (Suelter and
DeLuca, 1983), and choosing optimal labware (Goebel-Stengel
et al., 2011). More recently, manufacturers have developed novel
plastic polymers with lower protein retention properties than
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FIGURE 4 | PGRN Adsorption is Reduced in LoBind Tubes. (A) A dilution series of 250–25 nM PGRN was set up in LoBind tubes for 10-min incubations on ice
(n = 3). (B) 100 nM PGRN was incubated for 10′, 1, 4, 8, 16, 24 or 48 h in LoBind tubes on ice (n = 3). (C) 100 nM PGRN was incubated in LoBind tubes for 10′ on
ice, at room temperature (RT) or at 37◦C (n = 3). At the end of the incubations, PGRN in solution as well as adsorbed to the tube was prepared for analysis. PGRN
levels were measured by Western blot and membranes were immunoblotted with anti-PGRN antibody. All immunoblots are representative of three independent
experiments.

polypropylene for use in commercially available low binding
“LoBind” tubes and pipette tips. Our comparative assessment
of BSA-coated and LoBind tubes reveals BSA coating of
polypropylene tubes to be an effective and inexpensive step
toward preventing PGRN adsorption. The ability of BSA to block
PGRN adsorption may be the result of a few factors. First, the
polypropylene binding surface may achieve occupancy saturation
by BSA and second, BSA may interact directly with the rhPGRN
so as to facilitate PGRN protein remaining in solution. Protein
adsorption theory suggests that in multi-component solutions,

the former is dominant; a mass transfer phenomenon known
as the Vroman Effect dictates that in a collection of proteins
capable of electrostatically interacting with polypropylene, the
most concentrated protein of the lowest molecular weight
would arrive at the surface first, followed by the larger, less
abundant ones (Fang et al., 2005). This likely underlies why
protein adsorption has been described predominantly in single-
component preparations of purified proteins and peptides.
However, BSA contamination can be suboptimal and interfere
in certain experimental designs, such as the in vitro cleavage
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FIGURE 5 | Protease Kinetics of Cathepsin L mediated PGRN Cleavage are Disrupted in Polypropylene Tubes. (A) 400 ng PGRN was incubated with 250 nM of
Cathepsin L for 2.5, 5, 10 and 15 min in either polypropylene or LoBind tubes. (B,C) Quantification of the relative percentage of full-length PGRN and its
approximately 75 kDa cleavage product after incubation with Cathepsin L for the aforementioned time points. Paired t-tests were performed (∗p < 0.05 in solution
vs. adsorbed to tube for every condition, n = 3). All immunoblots are representative of three independent experiments.

assays described here. The presence of BSA (a known CTSL
substrate) (Völkel et al., 1996) or any other contaminant in the
reaction would likely disrupt interactions between the intended
binding partners. Of note, our study has not exhausted the
available coating alternatives such as glycine, poly-glycine or
poly-alanine. Until future studies are performed testing such
coating options, we recommend LoBind tubes for studies that
preclude introduction of BSA into carefully optimized assay
reactions such as ours.

However, the question of whether adsorption exclusively
plagues purified protein preparations is worth asking. Complex
human body fluids such as blood, plasma, and CSF are the
most used sources for the measurement of endogenous PGRN by
ELISA immuno-assays. As previously mentioned, inherent to the
affordability of currently available plate-based assays is the use
of polymer plastic 96-well plates. ELISAs of plasma and serum
are likely buffered by albumin, immunoglobulins and other high
concentration carrier proteins that effectively coat PPE tubes
to prevent lower concentration protein binding to the surface.

Indeed, the major human plasma proteins (albumin, γ-globulin,
fibrinogen) are not only significantly more concentrated than
PGRN by orders of magnitude, but also smaller by molecular
weight, ensuring in theory that they would preferentially bind to
the surface as per the Vroman effect (Anderson and Anderson,
2002). Additionally, sandwich ELISA assays such as those
presently in the market for human PGRN consist of plates
whose wells are coated with the capture antibody at the time
of use. In combination, we believe that published reports of
endogenous PGRN in human plasma and serum samples may
suffer from adsorption-related errors to a negligible degree.
However, it is entirely possible that protein adsorption accounts
for some fraction of the reduced CSF PGRN levels found in recent
studies (Wilke et al., 2016), given the decreased abundance of
carrier proteins relative to blood preparations (Hühmer et al.,
2006). In support, some instances of protein adsorption from
complex biological samples onto tubes have been observed. For
example, Aβ amyloid from mammalian and C. elegans extracts
undergo adsorption to multi-well plates and Eppendorf tubes
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(Murray et al., 2013), and in ventricular CSF, 370 proteins
including but not limited to the most abundant proteins were
reported as adsorbed to a polycarbonate surface used for
microdialysis (Undin et al., 2015). Considering that circulating
PGRN is increasingly referenced to as a potential biomarker for
FTD and is being tested as a potential replacement therapy in
clinical trials, it is imperative that a characterization study similar
to ours be done in human plasma, serum, and CSF.

So, what can be done? Until such a comparison study is
conducted with endogenous PGRN, it is our recommendation
that rigorously consistent experimental practices minimizing
adsorption should be used for all in vitro PGRN research.
Experimental steps and conditions that are routinely part
of PGRN studies such as the transfer of samples between
tubes, the duration of incubation of samples in tubes, and
the incubation temperature, all play an important role in the
maintenance of accurate working concentrations in solution. In
parallel, we recognize the limitations of our recommendation,
as demonstrated by our own limitations with using BSA-coated
tubes in in vitro assays. Our group is one of many routinely
using such assays to understand the proteolytic processing of
PGRN into granulins, wherein reaction conditions are established
with utmost care to facilitate interactions between rhPGRN
and rh proteolytic enzymes. In such instances, we recommend
the consistent use of LoBind tubes, which we have adopted in
all of our studies.

It must be noted that while our study has characterized
adsorption of one particular rhPGRN protein (R&D), several
other recombinant PGRN proteins are commercially available.
Future studies examining whether polymer binding is a
ubiquitous property across all rhPGRN proteins and peptides
may shed light on structure, and in turn, function and biology. As
a start, certain unique properties of predicted PGRN structures
lend toward an interesting hypothesis—the unusually high
numbers of disulfide bridges may contribute to an inflexible
exterior of hydrophobic residues, a known characteristic of
“sticky” proteins. The predicted structure of PGRN may be
theorized as sticky throughout given the distribution of disulfide
bridges, however, future testing of truncated protein including
multi-granulin peptides and individual granulin peptides would
help confirm or deny this hypothesis.

In this work, we have observed that ∼25–40% of rhPGRN
becomes adsorbed to the surface of polypropylene tubes when
used for routine experimental use. This phenomenon may lead to
unreliable quantification of rhPGRN and may create deleterious

effects with PGRN functional assays. Our study deems it prudent
for PGRN researchers, both at the bench and in the clinic, to
pay close attention to experimental design, choice of optimal
labware, and to prepare PGRN-containing samples in a cautious
and consistent manner.
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Alzheimer’s disease is associated with the cerebral accumulation of neurofibrillary tangles

of hyperphosphorylated tau protein. The progressive occurrence of tau aggregates in

different brain regions is closely related to neurodegeneration and cognitive impairment.

However, our current understanding of tau propagation relies almost exclusively on

postmortem histopathology, and the precise propagation dynamics of misfolded tau

in the living brain remain poorly understood. Here we combine longitudinal positron

emission tomography and dynamic network modeling to test the hypothesis that

misfolded tau propagates preferably along neuronal connections. We follow 46 subjects

for three or four annual positron emission tomography scans and compare their

pathological tau profiles against brain network models of intracellular and extracellular

spreading. For each subject, we identify a personalized set of model parameters that

characterizes the individual progression of pathological tau. Across all subjects, the mean

protein production rate was 0.21 ± 0.15 and the intracellular diffusion coefficient was

0.34 ± 0.43. Our network diffusion model can serve as a tool to detect non-clinical

symptoms at an earlier stage and make informed predictions about the timeline of

neurodegeneration on an individual personalized basis.

Keywords: tau PET, Neuroimaging, model calibration, Alzheimer’s disease, network diffusion model

1. INTRODUCTION

The accumulation of pathological amyloid-β and hyperphosphorylated tau protein is a classical
hallmark of Alzheimer’s disease that occurs years to decades before a clinical diagnosis is possible
(Duyckaerts et al., 2009). The widely accepted amyloid cascade hypothesis is based on the
assumption that the abnormal aggregation of amyloid-β is the disease initiator, which then causes
a series of pathological events including the production and propagation of misfolded tau protein
followed by neurodegeneration, regional atrophy, and ultimately cognitive impairment (Jack and
Holtzman, 2013). Even though recent years have brought a better qualitative understanding of the
various biomarkers involved in Alzheimer’s disease (Jack et al., 2013), little is known about the
causal, quantitative, and temporal relationships between those markers. Mathematical models can
help establish these relations, but they often lack reliable longitudinal data for model calibration
and validation.

Positron emission tomography (PET) is a non-invasive imaging technique that enables the
tracking of amyloid and tau distributions in a living brain non-invasively in vivo (Johnson et al.,
2016; Villemagne et al., 2018). The tau PET tracer [18F]-AV-1451 binds to paired helical filaments
within tau’s neurofibrillary tangles (NFT), as proven in postmortem studies when comparing PET
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signal to histology (Marquié et al., 2015). Hyperphosphorylated
tau plays a central role in disease progression due to its
confirmed direct relation to neurodegeneration and cognitive
impairment (Bejanin et al., 2017; Xia et al., 2017). This
relation was first revealed in postmortem histological analyses
showing strong correlations between the location and density
of tau neurofibrillary tangles and sites of neurodegeneration
(Giannakopoulos et al., 2003). Imaging studies confirmed that
the intensity of in vivo tau PET signal was strongly correlated
to regional tissue atrophy measured in longitudinal magnetic
resonance images (MRI) (Gordon et al., 2018; Iaccarino et al.,
2018; La Joie et al., 2020).

Today, it has become widely accepted that tau is more closely
associated with the neurodegenerative process than amyloid-β
(Buckley et al., 2017). The observation of pathological amyloid-β
and tau protein is not unique to Alzheimer’s disease and is
similarly associated with healthy aging (Knopman et al., 2003).
However, in Alzheimer’s disease patients, the propagation
sequence of tau protein differs from the one observed in
cognitively unimpaired older adults and seems to follow a
consistent, stereotypical and reproducible pattern: In cross-
sectional autopsy studies, pathological tau first appeared in the
transenthorinal cortex before spreading into neighboring regions
in the limbic and temporal cortex. After this, neurofibrillary
tangles were found to propagate into a wide range of the
association isocortex and finally into the primary sensory
cortex (Braak and Braak, 1991; Braak et al., 2006). However,
the precise spreading pattern of misfolded tau, from one brain
region to another, remains incompletely understood. Evidence
from animal models suggests that hyperphosphorylated tau
propagates along the brain’s anatomical neuronal connections
(De Calignon et al., 2012; Liu et al., 2012). This is in line
with findings from PET imaging studies, which revealed a
striking similarity between patterns of in vivo tau PET signal
and the brain’s connectome (Jones et al., 2017; Pereira et al.,
2019). Studies have detected higher PET signal intensity
in strongly interconnected regions, indicating increased
accumulation of tau in these connectivity hubs (Cope et al.,
2018).

Tau PET imaging has only been developed recently and
longitudinal studies that follow the spatio-temporal distribution
of tau in one and the same subject are still rare. A few longitudinal
studies exist, but they are limited to a single follow-up visit (Jack
et al., 2018; Harrison et al., 2019). To better understand the
spreading of misfolded tau, modeling groups have implemented
network diffusion and epidemic spreading models to simulate
the propagation of tau through the brain and claim good
performance when using functional or structural connectomes
as basis for their models (Raj et al., 2012, 2015; Torok et al.,
2018; Vogel et al., 2020; Weickenmeier et al., 2019). However,
none of these models is validated on longitudinal tau data
with multiple points in time. Instead, these studies either base
their conclusions on atrophy data by postulating correlations
between tau topology and atrophy (Raj et al., 2012, 2015; Torok
et al., 2018), or on cross-sectional tau PET images that require
additional assumptions regarding the initial conditions and
model configuration (Vogel et al., 2020).

Recent studies suggest to model the accumulation and
spreading of misfolded protein using partial differential
equations on a network model based on the brain connectome
(Raj et al., 2012; Iturria-Medina et al., 2014; Henderson et al.,
2019). Within this framework, the complex pathogenic cascade
of protein production, conversion, aggregation, and clearance
is captured in, and simplified to, a Fisher-Kolmogorov model
(Fisher, 1937; Kolmogorov et al., 1937; Fornari et al., 2019, 2020).
While these models show good qualitative agreement with the
pathological stages from histopathology (Braak and Braak, 1991),
they have not yet been calibrated and validated with real patient
data. A calibrated model of misfolded tau protein would enhance
our understanding of disease progression, from a qualitative to
a quantitative level. Characterizing the typical time-dependent
evolution of disease biomarkers is essential for developing new
diagnostic tools to detect non-clinical symptoms at an earlier
stage and for evaluating potential new treatments.

Here we use longitudinal tau PET images from 46 subjects
to calibrate the parameters of two competing network diffusion
models based on either anisotropic intracellular spreading
in a connectivity-weighted network or isotropic extracellular
spreading in a distance-weighted network. A side-by-side
comparison of both models with the longitudinal PET
images allows us to test the hypothesis that misfolded tau
spreads preferably intracellularly, along neuronal connections.
In contrast to previous studies, we do not make artificial
assumptions about initial tau seeding or the age at onset. Instead,
we directly extract the initial conditions from the first PET scan
and use the second, third, and fourth scans for personalized
model calibration.

2. MATERIALS AND METHODS

2.1. Image Data Selection
Our study uses longitudinal imaging data from the Alzheimer’s
Disease Neuroimaging Initiative database (ADNI), a multisite,
longitudinal, public database of MRI and PET images for
normal cognitive aging, mild cognitive impairment, and early
Alzheimer’s disease ADNI (2020). We include data from 46
participants who have undergone at least three consecutive
annual tau PET scans. Of these, 16 are diagnosed as cognitively
normal, 9 with significant memory concern, 19 with mild
cognitive impairment, and two with clinically confirmed
Alzheimer’s disease. A total of 26 are classified as amyloid
positive based on previously evaluated β-amyloid PET images
(Landau et al., 2013). To decrease bias, we conduct our study
blind to diagnosis status. All acquired AV1451-PET scans have
previously been preprocessed according to standard ADNI
protocols (ADNI, 2020) to be co-registered and averaged, and to
have a standardized image and voxel size and a uniform image
resolution of 8 mm FWHM. For each PET scan, we obtain a
corresponding high resolution T1 weighted magnetic resonance
image (MRI) from the database, recorded on average within 3
months prior or post PET acquisition. When a concurrent MRI
scan is not available, we use data acquired at the closest visit in
time. The average time span between longitudinal tau PET scans
was 1.0 year, ranging from 0.6 to 2.8 years.

Frontiers in Neuroscience | www.frontiersin.org 2 December 2020 | Volume 14 | Article 56687696

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Schäfer et al. Modeling Longitudinal Tau PET Data

FIGURE 1 | Image data analysis. Workflow for region of interest (ROI) based positron emission tomography (PET) image analysis. For each subject, at each time point,

we co-register the PET images to the T1 weighted magnetic resonance images (MRI), which we segment using FreeSurfer to calculate the standardized uptake value

ratios (SUVR) for each region of interest (ROI). Our study contains 46 subjects, 3–4 time points, and 83 regions of interest.

2.2. Image Data Analysis
For each subject, we analyze the longitudinal PET data using
the method summarized in Figure 1 (Baker et al., 2017).
Briefly, we co-register the PET images to the corresponding
MRI scan using SPM (SPM, 2020) with 4th degree spline
interpolation and run a full reconstruction of the T1 MRI
using FreeSurfer (FreeSurfer, 2020). This segments the brain
into 68 cortical and 45 subcortical regions and allows us to
extract regional values of tau binding from the PET images.
We define an inferior cerebellar gray matter reference region
using the SUIT template (Diedrichsen, 2006), which we reverse
normalize into the subject’s native T1 MRI space. To create
regional standardized uptake value ratios (SUVR), we normalize
all regional uptake values with respect to the tracer uptake
value from the reference region. Known off-target binding
sites, e.g., the basal ganglia and vascular structures like the
choroid plexus and dural venous sinuses, have been shown
to contaminate the AV1451 PET signal in subcortical regions
and the hippocampus (Lowe et al., 2016; Marquié et al., 2017;
Lemoine et al., 2018). We exclude these regions from the
analysis and focus our model optimization on the 66 remaining
cortical regions.

2.3. Brain Network Modeling
We model the spreading of hyperphosphorylated tau in the
brain as a diffusion process within a network, which we
represent as a weighted undirected graph G with N nodes and
E edges. To test the hypothesis of preferred tau spreading along
neuronal connections, we create two competing network models,
a connectivity-weighted network for anisotropic intracellular

spreading and a distance-weighted network for isotropic
extracellular spreading.

For the connectivity-weighted network, we extract the graph
Gcon from diffusion tensor MRI data of 418 healthy subjects
from the Human Connectome Project (McNab et al., 2013)
using the Budapest Reference Connectome v. 3.0 (Szalkai et al.,
2017). We map the original graph with N = 1, 015 nodes
onto a graph with N = 83 nodes (Fornari et al., 2019).
These 83 nodes correspond to the brain regions extracted in
the FreeSurfer segmentation of cortex and subcortex, allowing
us to directly compare our model degrees of freedom with the
regional tau signal. Figure 2 shows the connectivity-weighted
network with strong connections in red and weak connections
in blue. In this graph, each edge is weighted by the average
number of fibers nij detected between two nodes i and j
divided by the average fiber length lij along this connection
across all 418 brains. This introduces the adjacency matrix
of the connectivity-weighted network as Acon

ij = nij/lij.

Figure 2 shows the adjacency matrix of the connectivity-
weighted intracellular spreading model with a small number
of strong connections within each hemisphere and only few
connections between them.

For the distance-weighted network, we construct a graph Gdist

with the same 83 nodes as the first graph Gcon. However, for
this case, we define an edge between each pair of nodes and
weight it by the inverse of the Euclidian distance dij between the
two nodes. This introduces the adjacency matrix of the distance-
weighted network as Adist

ij = 1/dij. Figure 2 shows the adjacency

matrix of the distance-weighted extracellular spreading model
with a large number of moderately strong connections across the
entire brain.
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FIGURE 2 | Brain network models. Connectivity-weighted network from the human brain connectome and adjacency matrices of connectivity-weighted intracellular

spreading model and distance-weighted extracellular spreading model. The intracellular spreading model features a small number of strong connections within each

hemisphere and only few connections between them; the extracellular spreading model features a large number of moderately strong connections across the entire

brain. Colors represent the connectivity between two brain regions.

2.4. Network Diffusion Modeling
Motivated by the hypothesis that tau protein misfolds and
spreads in a prion-like fashion (Jucker andWalker, 2011; Fornari
et al., 2020), we use a Fisher-Kolmogorov model (Fisher, 1937;
Kolmogorov et al., 1937) to characterize the accumulation of
pathological tau in the brain (Fornari et al., 2019; Thompson
et al., 2020). The model is governed by a single non-linear
reaction-diffusion equation that predicts the spatio-temporal
evolution of the unknown, the concentration of misfolded
protein c,

dc

dt
= ∇ · (D · ∇c)+ α c [ 1− c ], (1)

where D and α denote the diffusion tensor and the local
production rate of misfolded protein. The production rate α

captures the processes of protein production, clearance, and
conversion (Fornari et al., 2019). To model diffusion within a
network, we discretize Equation (1) on the undirected graphs
Gcon and Gdist. We introduce the concentration of misfolded
proteins ci at all i = 1, ...,N nodes and express the change in the
concentration as

dci

dt
= −κ

N
∑

j=1

Lij cj + α ci[ 1− ci], (2)

where κ characterizes the global diffusion between two regions
and α the local production or clearance of misfolded protein. A
central element of Equation (2) is the weighted graph Laplacian
Lij, a square matrix, which we construct from the adjacency
matrix Aij. The sum of all elements across each row of the

adjacency matrix Aij defines the degree matrix Dii,

Dii = diag

N
∑

j=1,j6=i

Aij. (3)

The graph Laplacian Lij, the difference of the degree matrix and
the adjacency matrix, summarizes the connectivity of the graph,

Lij = Dij − Aij. (4)

For each subject, we identify a personal diffusion coefficient κ and
a personal protein production rate α that best characterize the
progression of pathological tau from their individual longitudinal
PET scans. Depending on the type of model, we replace
the adjacency matrix Aij in Equations (3) and (4) with the
connectivity weighted or distance weighted adjacency matrix,
Acon
ij or Adist

ij . For comparison, we normalize both matrices such

that their entries lie within the [0,. . .,1] interval. Using these
normalized matrices, we identify the intracellular or extracellular
diffusion coefficient κ and the production rate α.

2.5. Parameter Identification
The simulation with the network diffusion model provides
a region-specific normalized concentration csim with values
between zero, for no misfolded protein, and one, for a maximum
misfolded protein concentration, 0 ≤ csim ≤ 1. To map the
recorded PET standardized uptake value ratios into a zero-to-
one interval, we fit a two-component Gaussian mixture model to
the raw PET data from all subjects, time points, and regions. We
assume that many regions and subjects are free from pathological
tau and use this distribution to identify a tau positivity threshold
of 1.1. We set all values below this threshold to zero and map
the remaining values craw onto the scaled values cpet using
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the maximum and minimum non-zero PET signals cmax =

max{craw} and cmin = min{craw} as cpet = [ craw− cmin ]/[ cmax−

cmin ], such that 0 ≤ cpet ≤ 1. We adopt a least squares
optimization to identify the personalized diffusion coefficients
κ and production rates α that best reproduce the progression
of tau for each subject. Specifically, we optimize the parameter
set for the connectivity-weighted and the distance-weighted
networks by minimizing the squared error between the simulated

concentrations csimi,t and the PET recorded concentrations c
pet
i,t

within one subject for all i = 1, ..., nroi regions of interest and
all t = 1, ..., nvisit follow-up visits,

err =

nroi
∑

i=1

nvisit
∑

t=1

β [ csimi,t (κ ,α)− c
pet
i,t ]2 . (5)

Here, β is a scalar factor to improve numerical stability, nroi is
the number of cortical regions for which we have high confidence
data according to section 2.2.

2.6. Model Performance
For comparison, we perform the optimization on three null
models to probe the importance of the different model
components. For the first null model, we leave out the term
for local protein production, α = 0, and optimize solely the
diffusion coefficient κ . For the second null model, we leave out
the diffusion term, κ = 0, and optimize solely the protein
production rate α. For the third null model, we assume that tau
is neither spreading nor produced, κ = 0,α = 0, which implies
that the protein concentration in each region remains constant
across all follow-up visits. We identify the subjects with positive
production rate, α > 0. We assume these are the subjects with
pathological tau expression who are more likely to develop or
have signs of Alzheimer’s disease and focus our further analysis
on this subgroup. For the two network models and the three
null models, we compare the performance in terms of the global
residual error across all subjects, all cortical regions of interest,
and all follow-up visits. We plot the observed vs. predicted values
and calculate a correlation coefficient to illustrate the quality of
the respective fits. We use paired-sample t-tests to determine
whether differences in subject-wise prediction error between
different models are significant. Furthermore, we use Fisher’s R-
to-z transform to determine whether differences in correlation
coefficients between different models are significant.

2.7. Model Prediction
Our dataset only spans a time period of 2–3 years whereas
the accumulation of tau typically spans a period of around 15
years (Bateman et al., 2012). We use the connectivity-weighted
intracellular model and distance-weighted extracellular model to
predict the tau concentrations across the brains of all 46 subjects
for a time window of 15 years. This allows us to explore the long-
term performance of the two models, compare their predictions
against histopathological findings, and test our hypothesis of
intracellular spreading.

3. RESULTS

3.1. Regional Tau PET Concentration
Figure 3 illustrates the regional average standardized uptake
value ratios across all subjects and visits on a template brain
surface. The temporal lobes show the highest tau PET signal
intensity, followed by occipital and frontal lobes. The precentral
and postcentral gyrus display the lowest tau signal intensities.

3.2. Longitudinal Tau PET Concentration
Figure 4 illustrates the results of our image analysis for all 46
subjects, shown as blocks of columns, all time points, shown as
columns, and 66 cortical regions as well as the hippocampus,
shown as rows. The color code indicates the normalized tau
standardized uptake value ratios. On the horizontal axis, subjects
are ordered according to their overall tau load averaged across
all regions and visits, with the most affected subject on the left
and the least affected subject on the right. On the vertical axis,
regions are ordered with respect to their overall tau load averaged
across all subjects and visits with the regions showing the highest
involvement at the top and regions with the lowest involvement
at the bottom. The inferiortemporal, middletemporal, and
fusiform gyrus, the amygdalae, and the hippocampus are the
regions that are most consistently affected with high tau signals.
They are followed by the inferiorparietal lobule, the precuneus,
the entorhinal cortex, and the temporalpole. Interestingly,
we see bands of moderately but consistently affected regions
involving the orbitofrontal cortex, the frontalpole, and the
inferiorfrontal gyrus including the parsorbitalis, parstriangularis,
and parsopercularis. For most regions, the right hemisphere
seems to be less affected by tau than the left hemisphere. This
asymmetry is especially prominent for the temporalpole, the
inferiorfrontal gyrus, the middlefrontal gyri, and the posterior
cingulate cortex. The precentral, paracentral, and postcentral
gyrus are the least affected regions. The hippocampus and
amygdalae appear to be affected above average in most subjects,
even in subjects with very low tau signal in all other regions
of interest.

3.3. Parameter Identification
Figure 5 indicates the ranges of the personalized production
rates α and diffusion coefficients κ for the connectivity-
weighted intracellular and distance-weighted extracellular
diffusion models for 21 subjects. Out of the 46 subjects, 21
exhibited a longitudinal tau signal that was best fit using a
positive protein production rate, α > 0 and 25 exhibited a
signal best fit using a negative production rate, α < 0. We
postulate that the 21 subjects with a positive production rate
are the subjects with pathological tau expression who are
more likely to develop Alzheimer’s disease and focus on the
results of this subgroup. The majority of these 21 subjects, 16
out of 21, were identified with a positive amyloid status. Of
the remaining five, two had no amyloid status reported, one
reported a positive cerebrospinal fluid amyloid status, and
two reported a negative PET and cerebrospinal fluid amyloid
status. While the production rates for the connectivity-weighted
intracellular and distance-weighted extracellular models with
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FIGURE 3 | Regional tau PET concentration. Mean tau concentration from PET scans across all 46 subjects with 3–4 annual scans across all brain regions. Red

regions consistently exhibit high tau loads in all subjects while blue regions tend to be free of tau in most subjects.

FIGURE 4 | Longitudinal tau PET concentration. Standardized uptake value ratios from PET scans for 46 subjects with 3–4 annual scans in 66 cortical regions and

the hippocampus. Regions on the vertical axis are sorted by mean tau load, from top to bottom. Subjects on the horizontal axis are sorted by mean tau load across all

regions and visits, from left to right. Each block of columns represents data for one subject. Within each block, each subcolumn represents data from one annual PET

scan.

α = 0.21 ± 0.15 and α = 0.20 ± 0.14 are in a similar range,
the diffusion coefficient for the connectivity-based model with
κ = 0.34 ± 0.43 is notably larger than for the distance-weighted
model with κ = 0.01 ± 0.01. This difference in the diffusion
coefficients compensates the difference in magnitude of the
entries in the adjacency matrices of the two models, which we
can see in Figure 2. For the connectivity-weighted intracellular
model, the diffusion coefficient κ shows three outliers associated

with subjects that exhibit more and faster spreading than the
average subject.

3.4. Model Performance
Figure 6 summarizes the performance of the two network
models compared to the four null models described in
section 2.6, the intracellular and extracellular spreading
models without production, the pure production model
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FIGURE 5 | Parameter identification. Personalized production rate α and diffusion coefficient κ for the intracellular and extracellular diffusion models, only including the

21 subjects with a positive production rate. For the connectivity-weighted intracellular spreading model, α = 0.21± 0.15 and κ = 0.34± 0.43. For the

distance-weighted extracellular spreading model, α = 0.20± 0.14 and κ = 0.01± 0.01.

FIGURE 6 | Model performance. Simulated concentration csim and PET-based concentration cpet of pathogenic tau protein for intracellular and extracellular network

diffusion models and null models without production, without diffusion, and without both. Each data point represents the simulated and PET-based concentration for

one subject, one visit, and one region of interest. The further a data point is away from the gray line, the worse the prediction. The global residual error err of each

model measures the overall prediction error of each model. (*) indicates a subject-wise error significantly higher than for the full model in paired-sample t-test. The

correlation coefficient R measures the correlation strength between prediction and observation for each model. (**) indicates a correlation coefficient significantly lower

than for the full model using Fisher’s R-to-z transform.

without diffusion, and a model without diffusion and
production. Each data point represents the simulated

concentration csim and PET-based concentration cpet

for one subject, one visit, and one region of interest.
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FIGURE 7 | Model performance. Inherent data correlation. Baseline and final PET-based concentrations cpet, and simulated concentration csim over PET-based

concentration cpet of pathogenic tau protein for intracellular and extracellular network diffusion models. Each data point represents the PET-based concentration for

one subject, one region of interest, and one visit. (**) Correlation coefficient R is significantly lower than for the two proposed models.

FIGURE 8 | Personalized model prediction. Regional tau concentrations from raw and scaled standardized uptake value ratios craw and cpet vs. simulated tau

concentrations csim with a connectivity-weighted intracellular and a distance-weighted extracellular model for personalized initial conditions, production rates, and

diffusion coefficients of subject #12 from Figures 9, 10. Lateral view, left hemisphere.

For an ideal fit, all points would lie on the gray
diagonal line.

The lowest residual error, and best correlation between the
simulated and PET-based concentration was achieved with the
distance-weighted extracellular model with err = 2.3861 and

R = 0.9756, followed closely by the connectivity-weighted
intracellular model with err = 2.4618 and R = 0.9752. A
paired-sample t-test showed no significant difference between the
subject-wise errors associated with extracellular and intracellular
models (perr = 0.07). Fisher’s R-to-z transform showed
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FIGURE 9 | Personalized model prediction. Regional tau concentrations from raw and scaled standardized uptake value ratios craw and cpet vs. simulated tau

concentrations csim with a connectivity-weighted intracellular and a distance-weighted extracellular model for personalized initial conditions, production rates, and

diffusion coefficients of subject #12 from Figures 9, 10. Medial view, right hemisphere.

no significant difference between the correlation coefficients
associated with extracellular and intracellularmodels (pR = 0.59).
Eliminating the production term from the diffusion equation,
α = 0, significantly increased the prediction errors for both
the intracellular and extracellular models, to err = 4.3736 (perr
= 5.7e-04) and err = 4.2912 (perr = 6.0e-04). The correlation
coefficients significantly decreased to R= 0.9528 (pR = 0.0) and R
= 0.9533 (pR = 0.0) when eliminating the production term. The
prediction error of the null model without diffusion, κ = 0, with
err= 2.7269 is significantly higher than with the full models (perr
= 0.002, perr = 0.0015), but significantly lower than with the null
models without production (perr = 0.0012, perr = 0.0016). This is
not surprising, when considering how close to zero the diffusion
coefficient was for the distance-weighted extracellular model in
Figure 5. Notably, the correlation coefficient R = 0.9740 is not
significantly lower for the model without diffusion compared to
the full models with diffusion (pR = 0.0012). The final null model,
which assumes that all tau concentrations remain constant at the
value from the first scan, results in the largest residual error of err
= 4.5624 with significantly higher subject-wise prediction errors

than all other null models (perr ≤ 0.0051) and significantly lower
correlation strength R = 0.9514 (pR = 0.0). On the personalized
level, the distance-weighted extracellular model performs better
for 13 subjects and the connectivity-weighted intracellular model
performs better for the remaining 8. The model performance
suggests that the production term α is a critical component of the
tau pathology model that significantly affects the quality of model
prediction. Additionally, we see that the data imply existing tau
propagation from region to region, even though the diffusion
term seems to have overall less importance than the production
term. Finally, even with the most simplified null model for which
the tau PET concentration does not change in time, the data
points are, even though slightly scattered, still relatively close
to the diagonal line that marks the perfect correlation between
simulation and PET data. This emphasizes the limitation of the
current approach, which only contains longitudinal data from 2
to 3 years. We will continuously update our model as more time
points become available to address this limitation.

Figure 7 illustrates the correlation between baseline and final
observed PET data for all subjects and regions of interest. The
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FIGURE 10 | Model prediction of intracellular model. Simulated tau concentrations csim with connectivity-weighted intracellular model for 21 subjects for 15 years in

66 cortical regions and the hippocampus. Each block of columns represents the simulation for one subject with their personalized initial conditions, production rate α,

and diffusion coefficient κ. Within each block, each subcolumn represents simulated concentrations for 1 year.

plot shows that the data inherently exhibits a high correlation,
with a correlation coefficient of R= 0.9496. This again highlights
how small the observed changes in tau load are over the
observation period of 2–4 years. Fisher’s R-to-z transform
however confirms that the correlation significantly increases with
our proposed intracellular and extracellular models (pR = 0.0).

3.5. Model Prediction
To investigate the predictive nature of the connectivity-
based intracellular and distance-based extracellular models, we
simulate the spatio-temporal pathogenic tau distribution for all
21 subjects with positive production rate throughout a period
of 15 years using the models from sections 2.3, 2.4 with the
personalized initial conditions, production rate α, and diffusion
coefficient κ .

Figures 8, 9 show the personalized model predictions for a
single subject, with personalized initial conditions, production
rates, and diffusion coefficients. The first and second row
showcase the PET tau concentrations from the raw and scaled
standardized uptake value ratios craw and cpet for 3 years. The
third and fourth row show the simulated tau concentrations
csim from the connectivity-weighted intracellular model with
α = 0.422 and κ = 0.133 and the distance-weighted
extracellular model with α = 0.437 and κ = 0.007 for
the first 3 years and for year 10. Both models first follow
the observed PET concentration closely with only marginal
differences in the predictions. However, after 10 years, the

predicted tau concentration pattern from the intracellular model
is much more heterogeneous than the concentration from the
extracellular model. This is especially visible in the medial view
of the right hemisphere in Figure 9, where the colors of the
intracellular model still range from dark blue to red, whereas in
the extracellular model predicts values in the color range from
yellow to red.

Figures 10, 11 show the predictions for the connectivity-
weighted intracellular model and the distance-weighted
extracellular model. Each block of columns represents
the simulation for one subject for the 15-year window.
For some subjects, the predicted long-term response is
similar for both models. However, in most subjects, the
predicted pathological pattern differs between the intracellular
and extracellular approach. Interestingly, the intracellular
model maintains a staggered and sequential involvement
of different regions within one subject, the extracellular
model predicts a more homogeneous and smoothened
spatial distribution of pathological tau protein. In this
sense, the intracellular model preserves the inhomogeneous
topology of the tau spreading process, in which individual
regions of the cortex begin to express high concentrations of
pathological tau in a sequential way, with successively more
regions affected over time. In contrast, the extracellular
model predicts a gradual increase in pathological tau
protein, but involves all regions homogeneously at the
same time.
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FIGURE 11 | Model prediction of extracellular model. Simulated tau concentrations csim with connectivity-weighted intracellular model for 21 subjects for 15 years in

66 cortical regions and the hippocampus. Each block of columns represents the simulation for one subject with their personalized initial conditions, production rate α,

and diffusion coefficient κ. Within each block, each subcolumn represents simulated concentrations for 1 year.

4. DISCUSSION

The objective of this study was to identify personalized
parameters of a network diffusion model for pathogenic tau
propagation using longitudinal tau PET data. As part of this
study, we tested the hypothesis that misfolded tau spreads
through the brain primarily along neuronal connections.
To test this hypothesis, we compared the performance
of two competing network models, a connectivity-based
intracellular spreading model and a distance-based extracellular
spreading model. Ultimately, both modeling approaches
resulted in good correlations between the observed tau PET
concentrations and the simulated tau concentrations. While
we were not able to confidently confirm our hypothesis
about the transport mechanism of tau because of the
limited amount of available longitudinal data, the long-term
predictions of tau pathology support our intracellular spreading
hypothesis. The intracellular spreading model predicted a
more heterogeneous tau spreading that agrees better with the
well-accepted histopathological staging than the extracellular
spreading model.

Previous studies that model the propagation of tau pathology

have used cross-sectional PET (Vogel et al., 2020) or atrophy data

(Raj et al., 2012; Torok et al., 2018) for mode validation. However,
even though longitudinal tau pathology has successfully been

correlated with atrophy patterns (La Joie et al., 2020), there are
multiple factors calling into question the use of tissue atrophy as

a direct predictor for tau pathology. First, there is a considerable

time lag between tau accumulation and neurodegenerative tissue
atrophy in Alzheimer’s disease (Bejanin et al., 2017; Harrison
et al., 2019), the exact magnitude of which is unknown. Second,
tau accumulation is not a unique cause for atrophy during aging
and disease, so directly inferring tau topology from atrophy
measurements could be misleading. Opting for tau PET data
allows for a more direct quantitative validation. However, using
cross-sectional PET data for calibration of a time-dependent
model introduces a certain bias, as it requires additional
assumptions for initial conditions at disease onset, age at onset
and propagation speed. Cross-sectional studies also neglect inter-
individual differences in disease progression. Here, instead, we
evaluate the performance of tau pathologymodels calibrated with
longitudinal tau PET data. This inherently removes the need to
make assumptions about initial conditions and minimizes bias.

From the longitudinal data, we inferred a sequence of regions
earliest and most affected by misfolded tau. This sequence is—
despite some slight differences in the initial regions—in line
with the results from cross-sectional studies (Cho et al., 2016;
Vogel et al., 2020) and with the well-accepted histopathological
staging (Braak and Braak, 1991; Braak et al., 2006): Histologically,
neurofibrillary tangles were first observed in the transentorhinal
cortex before spreading into proper entorhinal cortex and the
hippocampus. The amygdala is one of the regions affected next,
followed by a more widespread range of regions in the inferior
facies of the temporal and occipital lobe and finally other regions
of the isocortex in temporal, frontal, occipital and parietal lobe.
The only regions found to be relatively spared of pathology
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even in late disease stages were the primary sensory areas and
primary motor field in the precentral and postcentral gyrus.
Our data roughly follows this sequence, with the hippocampus
and amygdalae affected early on and in many subjects and
the postcentral and precentral gyri affected the least across all
subjects. The results of our analysis imply less involvement of
the entorhinal cortex than expected according to Braak’s stages.
This discrepancy could originate from technical limitations of
our PET image analysis. The entorhinal cortex is a very small
structure and the standardized PET image resolution is low due
to the multi-site nature of the ADNI database. Thus, uptake value
measurements in the entorhinal region could be compromised
through bleed in from other regions and tissues.

Unavoidably, all segmentation and co-registration algorithms
are associated with a certain error. For FreeSurfer’s parcellation
and segmentation algorithm, the entorhinal cortex is associated
with a relatively low correlation between manual and automated
segmentation when compared to other regions (Desikan et al.,
2006; McCarthy et al., 2015). Therefore, errors in segmentation,
co-registration and the low PET resolution may have caused
inaccuracies in our measurements for the entorhinal cortex and
led to the resulting low rankings of 15 and 18 in our sequence.
However, a longitudinal PET study has recently shown that early
tau accumulation can be more widespread and is not necessarily
confined just to the entorhinal cortex in all individuals (Jack
et al., 2018). The tau PET signal in the hippocampus is known
to be often compromised by off-target binding to the nearby
choroid plexus (Lemoine et al., 2018). This could explain, why
we observe consistently high binding to the hippocampus in our
dataset, even in subjects that have a very low tau load in all other
regions. Overall, the results from our longitudinal image analysis
are reasonable, especially when considering the integral image
quality, and are in general agreement with existing literature.

We identified the parameters of two network diffusion
models using longitudinal PET data of 46 subjects. We then
focused on the 21 subjects with a positive protein production
rate. We postulate that those individuals are most likely to
follow the typical Alzheimer’s disease cascade with prion-
like tau pathology. The majority of those subjects had been
classified as amyloid positive, which supports our hypothesis, and
indicates an abnormal accumulation of amyloid-β prior to the
observed accumulation of tau. The distribution of personalized
model parameters from the model optimization process exhibits
a notable variance considering inter-individual differences in
disease progression. In a recent study, which compared the
performance of a connectivity-based to a distance-based network
model with respect to cross-sectional tau PET data of 312
subjects, the connectivity-based model was clearly superior in
reproducing the data (Vogel et al., 2020). However, when directly
comparing the two models with respect to our longitudinal tau
data, we did not see a clear superiority of the connectivity-
weighted model. In fact, both models performed nearly equally
well, resulting in good correlations between simulated and
observed tau PET distributions over time. This is likely due to
the limited time span of our data, covering disease development
only within 3–4 years. We found the change in tau burden—
especially the propagation from region to region—to be so low
that even a model without diffusion term would simulate the data

acceptably well. Solely based on our parameter identification,
it is thus not possible to solidly confirm the hypothesis that
tau spreads along the brain’s connectome. However, when
comparing the long-term prediction of the two models, we
found that the connectivity-weighted intracellular model predicts
more defined and distinct distributions of tau that are in line
with the histopathologically observed heterogeneity of tangle
spread. As more longitudinal tau PET data become available
over the course of the next years, we will revisit our analysis to
draw more sophisticated conclusions and confirm or disprove
our hypothesis.

While our connectivity-based network diffusion model is able
to describe the spatio-temporal evolution in our data well, it is
still associated with some residual error. These shortcomings of
themodelmay arise from the fact that there could be other factors
influencing the spread of misfolded tau through the brain. For
example, it has been suggested that differences in gene expression
between regions could cause regionally varying production and
clearance rates of healthy or misfolded tau and thereby affect
the progression of pathology (Grothe et al., 2018). This regional
vulnerability could be included in our model in the future by
allowing the production rate α to be a region-specific parameter
informed by gene expression.

We have previously proposed and examined a coupled non-
linear finite element model for the simulation of Alzheimer’s
disease related atrophy dependent on local tau pathology
(Weickenmeier et al., 2018; Schäfer et al., 2019). The model
parameters of our network diffusion model could directly be
applied to inform neurodegeneration models. Since more and
more studies are confirming a qualitative correlation between tau
pathology and regional brain atrophy measurements (Harrison
et al., 2019; La Joie et al., 2020), our next step will be
to characterize this correlation more quantitatively using our
coupled model informed by the here presented longitudinal
tau PET data on the one hand and longitudinal atrophy
measurements from structural MRI of the same patients on the
other hand.

This study comes with several limitations, some of which can
naturally be addressed as more data become available: First, the
size of our cohort was limited to a small number of subjects
with a sufficient number of follow-up tau PET scans. Our data
show that there is a lot of inter-subject variability in tau PET
data. Including more subjects, will increase statistical power and
make it easier to deduce clear trends for disease progression
and typical tau pathology. To counteract potential overfitting,
in the future, we will use Bayesian hierarchical modeling, a
statistical approach allowing for the inference of personalized
parameters drawn from a common distribution. This will allow
us to account for commonalities between all subjects while
simultaneously attesting to inter-subject variability. Second, the
maximum number of visits per subject was limited to four. As
subjects will return for future scans, we will be able to follow
the observations in individual subjects over longer periods of
time and evaluate the longitudinal performance of our model.
While histopathology shows that truncated tau proteins prevail
and the presence of hyperphosphorylated tau decreases as the
disease advances, our study does not show a clear trend in this
direction, which could be a result of the limited amount of data
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and the short time window of observation. We will keep adding
future studies of years 5 and 6 to our analysis and hope to see
a clearer trend in the future. Third, since ADNI is a multi-
center study, the images are acquired on various scanner types
with various different resolutions. To balance these differences in
image quality, all data used in this work were standardized to the
lowest common resolution. This low resolution in PET images
intensifies partial volume effects, since multiple tissue types can
be contained in one voxel, resulting in contamination of regional
intensities through wash-out and bleed-in.

5. CONCLUSION

We proposed a new method to calibrate different network
diffusion models using longitudinal tau PET data. We identified
personalized model parameters that characterize the individual
nature of tau pathology progression in 46 subjects. Specifically,
we used the misfolded protein production rate to stratify
all subjects into those with a positive production rate, more
likely to develop neurodegeneration, and those with a negative
production rate. For the subjects with a positive production rate,
we found a mean production rate of 0.21 ± 0.15 and a mean
intracellular diffusion coefficient of 0.34 ± 0.43. Our results
suggest that the propagation of misfolded tau from region to
region is slow in most subjects—barely measurable within a time
frame of 3 to 4 years—calling for further investigation once
more longitudinal data become available. Our overall findings
support the hypothesis that tau pathology propagates across
the brain along structural neuronal connections. Ultimately, our
method allows us to quantitatively characterize personalized
tau pathologies in their spatio-temporal characteristics, which
can in turn be used to inform models of other related disease
biomarkers, including regional atrophy.
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Recent studies show that fibrinogen plays a role in the pathogenesis of Alzheimer’s
disease (AD), which may be crucial to neurovascular damage and cognitive impairment.
However, there are few clinical studies on the relationship between fibrinogen and AD.
59 11C-PiB-PET diagnosed AD patients and 76 age- and gender-matched cognitively
normal controls were included to analyze the correlation between plasma β-amyloid (Aβ)
and tau levels with fibrinogen levels. 35 AD patients and 76 controls with cerebrospinal
fluid (CSF) samples were included to further analyze the correlation between CSF Aβ and
tau levels with fibrinogen levels. In AD patients, plasma fibrinogen levels were positively
correlated with plasma Aβ40 and Aβ42 levels, and negatively correlated with CSF Aβ42
levels. Besides, fibrinogen levels were positively correlated with CSF total tau (t-tau),
and phosphorylated tau-181 (p-tau) levels and positively correlated with the indicators
of Aβ deposition in the brain, such as t-tau/Aβ42, p-tau/Aβ42 levels. In normal people,
fibrinogen levels lack correlation with Aβ and tau levels in plasma and CSF. This study
suggests that plasma fibrinogen levels are positively correlated with Aβ levels in the
plasma and brain in AD patients. Fibrinogen may be involved in the pathogenesis of AD.

Keywords: Alzheimer’s disease, fibrinogen, β-amyloid, tau, pathogenesis, biomarkers

INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disease that causes cognitive and
memory impairment (Castellani et al., 2010; Jia et al., 2014). The main pathological hallmarks of
AD include extracellular senile plaques containing β-amyloid (Aβ) and intracellular neurofibrillary
tangles formed by phosphorylated tau (Huang and Mucke, 2012; Long and Holtzman, 2019). Recent
studies have shown that fibrinogen also plays an important role in the pathogenesis of AD (Cortes-
Canteli and Strickland, 2009). Fibrinogen can bind to Aβ, which intensifies inflammation in the AD
brain and accelerates the decline of cognitive function in AD patients (Ahn et al., 2014; Merlini et al.,
2019). The Aβ-fibrinogen interaction may be crucial to the progression of neurovascular damage
and cognitive impairment in AD (Xu et al., 2008; Cortes-Canteli et al., 2010). However, there are
few clinical studies on the relationship between fibrinogen and Aβ. This study aims to explore the
relationship between fibrinogen and Aβ levels in AD patients and normal people.
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MATERIALS AND METHODS

Study Population
Alzheimer’s disease patients were recruited from Chongqing
Daping Hospital from December 2018 to May 2020. Age- and
gender-matched controls with normal cognition were randomly
recruited from the hospital at the same time. Subjects were
excluded for the following reasons: (1) a family history of
dementia; (2) a concomitant neurologic disorder that could
potentially affect the cognitive function or other types of
dementia; (3) severe cardiac, pulmonary, hepatic, or renal
diseases or any type of tumor; (4) enduring mental illness (e.g.,
schizophrenia); (5) Diseases that may affect fibrinogen levels (e.g.,
bleeding disorders, hereditary abnormal fibrinogenemia, etc.); (6)
Recently used treatments that affect fibrinogen levels (e.g., blood
transfusion); (7) an allergy to the 11C-Pittsburgh compound.

AD Diagnosis and Sampling
The diagnosis of AD was made according to the criteria
of the National Institute of Neurological and Communicative
Diseases and Stroke/AD and Related Disorders Association
following the protocols we used before (Li et al., 2011).
Besides, the patients who collected blood all received Aβ

positron emission tomography (PET) examination of Pittsburgh
compound B (PiB), and the diagnostic criteria were PiB-PET
positive. The demographic data and medical history (such as
hypertension, coronary heart disease, and diabetes mellitus)
were collected and the cognitive and functional status was
assessed based on a neuropsychological battery. Fasting blood
was collected between 07:00 and 09:00 to avoid the potential
circadian rhythm influence. The blood samples were centrifuged
within an hour of collection and EDTA plasma was aliquoted
in 0.5 mL polypropylene tubes and stored at −80◦C until
used. The cerebrospinal fluid (CSF) samples were centrifuged
at 2,000g at 4◦C for 10 min, and the aliquots were then
immediately frozen and stored at −80◦C until use. The informed
consent was obtained before the acquisition of the blood
and CSF samples.

Measurements of Fibrinogen, Aβ, and
Tau Levels
Fibrinogen levels were measured using standard laboratory
methods in the Clinical Laboratory, Daping Hospital,
Chongqing, China. Fibrinogen−C is the test to measure
fibrinogen by the Clasus method and is carried out with the
commercial kit HemosIL Fibrinogen assay (Instrumentation
Laboratory Company, United States) on ACL-TOP
(Instrumentation Laboratory Company, United States).
The kit uses an excess of thrombin to convert fibrinogen
to fibrin in diluted plasma. Plasma levels of Aβ42, Aβ40
were measured using the commercially available single-
molecule array (SIMOA) Human Neurology 3-Plex A assay
kit (Quanterix, United States) on-board of the automated
SIMOA HD-1 analyzer (Quanterix, United States). CSF
levels of Aβ40, Aβ42, total tau (t-tau), and phosphorylated
tau-181 (p-tau) were measured using the human Aβ and

tau enzyme-linked immunosorbent assay (ELISA) kits
(Innotest, United States). All of the measurements were
performed according to the manufacturer’s instructions
(Wilke et al., 2018).

Statistical Analysis
The differences in demographic characteristics and fibrinogen
levels between the groups were assessed with two-tailed
independent t-tests, Mann–Whitney U test, or Chi-square
test. Spearman correlation analyses were used to examine the
correlations between fibrinogen levels and Aβ levels. The data are
expressed as the mean ± standard deviation (SD). All hypothesis
testing was two-sided, and p < 0.05 was defined as statistically
significant. The computations were performed with SPSS version
20.0 (SPSS Inc., United States).

RESULTS

Characteristics of the Study Population
The characteristics of the subjects are shown in Tables 1, 2. The
study consisted of 59 AD patients diagnosed by 11C-PiB PET and
76 age- and gender-matched cognitively normal controls. There
were no significant differences in age, sex, education level, or the
comorbidity of hypertension, diabetes mellitus, cardiovascular
disease, and hyperlipidemia between AD patients and cognitively
normal controls. AD patients consisted of a higher proportion of

TABLE 1 | Characteristics of the participants with plasma samples.

Characteristics Controls
(n = 76)

PiB-PET (+)-AD
(n = 59)

p-value

Age, mean (SD), y 68.42 (8.52) 66.31 (9.53) 0.180

Female, n (%) 46 (60.5) 33 (57.6) 0.602

Education level, mean
(SD), y

9.24 (4.36) 9.61 (4.44) 0.629

MMSE score, mean (SD) 26.28 (3.05) 12.37 (5.06) <0.001

APOE ε4 carriers, no (%) 8 (10.53) 18 (30.51) 0.004

Diabetes, (%) 11 (14.47) 9 (15.25) >0.999

Hypertension, (%) 19 (25.00) 15 (25.42) >0.999

Dyslipidaemia, (%) 21 (27.63) 16 (27.12) >0.999

Coronary artery
disease, (%)

13 (17.11) 11 (18.64) 0.825

Stroke history, (%) 6 (7.89) 3 (5.08) 0.731

Plasma Aβ40, mean (SD),
pg/mL

284.4 (71.67) 219.2 (107.1) <0.001

Plasma Aβ42, mean (SD),
pg/mL

15.42 (4.598) 9.915 (5.126) <0.001

Plasma t-tau, mean (SD),
pg/mL

4.544 (2.536) 5.923 (3.196) 0.006

Plasma t-tau/Aβ42, mean
(SD), pg/mL

0.3271 (0.2658) 0.8143 (0.8529) <0.001

Plasma Aβ42/Aβ40, mean
(SD), pg/mL

0.05516 (0.01391) 0.04859 (0.01793) 0.018

MMSE, mini-mental state examination; APOE ε4, apolipoprotein E ε4 allele;
p-value, two-tailed independent t-tests, Mann–Whitney U test or Chi-square
test as appropriate.
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APOE ε4 carriers (p = 0.004) and showed lower MMSE scores
(p < 0.001). The AD patients had lower levels of both plasma
Aβ40 (219.2 ± 107.1 pg/mL vs. 284.4 ± 71.67 pg/mL, p < 0.001)
and Aβ42 (9.915 ± 5.126 pg/mL vs. 15.42 ± 4.598 pg/mL,
p < 0.001) than the control group. The AD patients with
CSF had lower levels of CSF Aβ40 (9150 ± 3926 pg/mL vs.
12190 ± 4482 pg/mL, p = 0.001) and Aβ42 (629.5 ± 286.5 pg/mL
vs. 1508 ± 673.2 pg/mL, p < 0.001), and higher levels of CSF
t-tau (402.3 ± 183.6 pg/mL vs. 184.0 ± 61.38 pg/mL, p < 0.001),
CSF p-tau (66.09 ± 28.38 pg/mL vs. 42.84 ± 18.18 pg/mL,
p < 0.001), CSF t-tau/Aβ42 (0.809 ± 0.511 pg/mL vs.
0.146 ± 0.080 pg/mL, p < 0.001), and CSF t-tau/Aβ42
(0.1317 ± 0.0844 pg/mL vs. 0.0334 ± 0.0206 pg/mL, p < 0.001)
than the control group.

Correlation Between Fibrinogen Levels
With Plasma Aβ Levels
There was no significant difference in plasma fibrinogen levels
between AD patients and the control group [PiB-PET (+)-
AD vs controls: 3.13 ± 0.563 g/L vs. 3.03 ± 0.433 g/L,
p = 0.256] (Figure 1). There was also no significant difference
in fibrinogen levels between APOE ε4 carriers and APOE ε4
non-carriers (Supplementary Figure 1A). Besides, there was
no significant correlation between fibrinogen levels and MMSE
scores (Supplementary Figure 1B).

Fibrinogen levels in AD patients diagnosed by positive PiB-
PET had a significantly positive correlation with plasma Aβ42
levels (γ = 0.263, p = 0.045) and Aβ40 levels (γ = 0.327,
p = 0.011). There was no correlation between fibrinogen levels
and plasma Aβ42 levels (γ = 0.094, p = 0.421) and Aβ40
levels (γ = 0.111, p = 0.340) in controls. In all subjects,
fibrinogen levels had a significantly positive correlation with
plasma Aβ40 levels (γ = 0.189, p = 0.028) but not with
Aβ42 levels (γ = 0.106, p = 0.220) (Figure 2). There was no
correlation between fibrinogen levels in both AD and controls
with plasma t-tau levels, Aβ42/Aβ40 levels, and t-tau/Aβ42 levels
(Supplementary Figure 2).

FIGURE 1 | Comparison of the plasma fibrinogen levels between the controls
and PiB-PET (+)-AD patients. ns denotes no statistical significance.

Correlation Between Fibrinogen Levels
With CSF Aβ Levels
Of all the clinical AD patients, 35 people had CSF collected
to further analyze the correlation between fibrinogen levels
with CSF Aβ and tau levels. As shown in Table 2, there were
no significant differences in the comorbidity of hypertension,
diabetes mellitus, cardiovascular disease, and hyperlipidemia
between the two groups. Also, no significant difference was
found in the fibrinogen between these two groups (AD vs
controls: 2.97 ± 0.510 g/L vs. 3.03 ± 0.433 g/L, p = 0.541).
Fibrinogen levels in AD patients had significantly positive
correlation with CSF Aβ42 levels (γ = −0.339, p = 0.049), but
no correlation with CSF Aβ40 levels (γ = −0.204, p = 0.271).
There was no correlation between fibrinogen levels in controls
with CSF Aβ42 levels (γ = −0.074, p = 0.536) and Aβ40
levels (γ = −0.121, p = 0.298). In all subjects, there was no
correlation between fibrinogen levels with CSF Aβ42 levels
(γ = −0.053, p = 0.591) and Aβ40 levels (γ = −0.115, p = 0.240)
(Figures 3A,B).

Correlation Between Fibrinogen Levels
With CSF Tau Levels
To further reveal the relationship between fibrinogen and
AD pathological changes, we then detected the t-tau and
phosphorylated tau in CSF and analyzed their correlation.
Fibrinogen levels in AD patients had significantly positive
correlation with CSF t-tau levels (γ = 0.356, p = 0.042)
and p-tau levels (γ = 0.426, p = 0.012). There was no
correlation between fibrinogen levels in controls with CSF
t-tau levels (γ = −0.004, p = 0.974) and p-tau levels
(γ = 0.024, p = 0.837). In all subjects, there was no
correlation between fibrinogen levels with CSF t-tau levels
(γ = 0.086, p = 0.373) and p-tau levels (γ = 0.157, p = 0.102)
(Figures 3C,D).

Correlation Between Fibrinogen Levels
With CSF Tau/Aβ42 Levels
Compared with a single marker, recent studies have found that
the ratio of tau and Aβ42, including t-tau/Aβ42 and p-tau/Aβ42,
has a higher correlation with the PiB-PET cortical standard
uptake ratio (SUVR), which can better reflect the pathology of
Aβ deposition in the brain (Hansson et al., 2018; Schindler et al.,
2018). Based on this, we calculated the correlation between these
two ratios and fibrinogen to explore the relationship between
fibrinogen and the pathological process in the brain. We found
that fibrinogen levels in AD patients had significantly positive
correlation with CSF t-tau/Aβ42 levels (γ = 0.524, p = 0.002) and
p-tau/Aβ42 levels (γ = 0.427, p = 0.013). There was no correlation
between fibrinogen levels in controls with CSF t-tau/Aβ42 levels
(γ = 0.081, p = 0.494) and p-tau/Aβ42 levels (γ = 0. 074,
p = 0.538). In all subjects, fibrinogen levels had a significantly
positive correlation with CSF t-tau/Aβ42 levels (γ = 0.206,
p = 0.034) but not with p-tau/Aβ42 levels (γ = 0.161, p = 0.102)
(Figures 3E,F).
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FIGURE 2 | Correlations between fibrinogen levels with plasma Aβ42 levels (A) and Aβ40 levels (B) in AD patients diagnosed by positive PiB-PET and normal
controls (NC).

DISCUSSION

This study explored the correlation between fibrinogen levels
and Aβ, tau levels in humans for the first time. In AD patients,
fibrinogen levels were positively correlated with plasma Aβ40
and Aβ42 levels, and negatively correlated with CSF Aβ42 levels.
Besides, fibrinogen levels were positively correlated with CSF

TABLE 2 | Characteristics of the participants with CSF samples.

Characteristics Controls (n = 76) AD (n = 35) p-value

Age, mean (SD), y 68.42 (8.52) 66.34 (1.47) 0.240

Female, n (%) 46 (60.5) 18 (51.43) 0.412

Education level, mean
(SD), y

9.24 (4.36) 9.63 (3.80) 0.652

MMSE score, mean (SD) 26.28 (3.05) 12.03 (4.08) <0.001

APOE ε4 carriers, No (%) 8 (10.53) 14 (40.00) 0.001

Diabetes, (%) 11 (14.47) 6 (17.14) 0.779

Hypertension, (%) 19 (25.00) 8 (22.86) 0.819

Dyslipidaemia, (%) 21 (27.63) 11 (31.43) 0.822

Coronary artery disease,
(%)

13 (17.11) 7 (20.00) 0.792

Stroke history, (%) 6 (7.89) 2 (5.71) 0.726

CSF Aβ40, mean (SD),
pg/mL

12190 (4482) 9150 (3926) 0.001

CSF Aβ42, mean (SD),
pg/mL

1508 (673.2) 629.5 (286.5) <0.001

CSF t-tau, mean (SD),
pg/mL

184.0 (61.38) 402.3 (183.6) <0.001

CSF p-tau, mean (SD),
pg/mL

42.84 (18.18) 66.09 (28.38) <0.001

CSF t-tau/Aβ42, mean
(SD), pg/mL

0.146 (0.080) 0.8867 (0.672) <0.001

CSF p-tau/Aβ42, mean
(SD), pg/mL

0.0334 (0.0206) 0.1317 (0.0844) <0.001

MMSE, mini-mental state examination; APOE ε4, apolipoprotein E ε4 allele;
p-value, two-tailed independent t-tests, Mann–Whitney U test or Chi-square
test as appropriate.

t-tau and p-tau levels and were positively correlated with the
indicators of Aβ deposition in the brain, such as t-tau/Aβ42,
p-tau/Aβ42 levels. In normal people, fibrinogen levels lack
correlation with Aβ and tau levels in plasma and CSF.

Previous studies have shown that the destruction of the
blood-brain barrier can cause fibrinogen to enter the brain
and accelerate neuronal damage in the pathological process of
neurological diseases such as AD (Adams et al., 2004). Therefore,
compared with normal people, the pathological development
may be aggravated due to a large amount of fibrinogen in
the brain of AD patients (Lipinski and Sajdel-Sulkowska, 2006;
Cortes-Canteli et al., 2014), and the cognitive function of AD
patients decreases as their plasma fibrinogen levels increase
(Oijen et al., 2006; Xu et al., 2008). In this study, we found
that plasma and CSF Aβ levels in AD patients were significantly
correlated with their plasma fibrinogen levels, which further
provided clinical evidence that fibrinogen may involve in the
development of AD pathological damage.

Platelets are the main place where Aβ is produced in
the periphery, so the activation of platelets will increase the
production of peripheral Aβ (Chen et al., 1995; Shen et al.,
2008). Fibrinogen can induce platelet aggregation and activation,
leading to more blood Aβ formation (Bennett, 2001; Chen
et al., 2003). The fibrinogen in the brain of AD patients will
combine with Aβ deposition to form oligomers with abnormal
structures, resulting in a decrease of free fibrinogen levels in
the plasma (Ahn et al., 2010). This is also the possible reason
why the plasma fibrinogen in AD patients is not significantly
increased. These oligomers are difficult to degrade, they can block
blood vessels, cause thrombosis and abnormal fibrinolysis, reduce
cerebral blood flow perfusion, accelerate neurovascular injury
and neuroinflammation, and aggravate the formation of amyloid
angiopathy (CAA) (Paul et al., 2007; Cortes-Canteli et al., 2010).
The increased binding affinity of Aβ to fibrinogen will aggravate
the above process and lead to the occurrence of hereditary
cerebral amyloid angiopathy (HCAA) (Cajamarca et al., 2020). In
addition to forming complexes with Aβ, fibrinogen in cerebral
blood vessels will also form clots with the help of APOE ε4
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FIGURE 3 | Correlations between fibrinogen levels with CSF Aβ levels (A,B), tau levels (C,D), and tau/Aβ42 levels (E,F) in AD patients and normal controls (NC).

gene and homocysteine, leading to more Aβ deposition in
the cerebral blood vessel wall and CAA formation (Hultman
et al., 2013; Chung et al., 2016). Besides, too much fibrinogen
in the brain can also lead to insufficient cerebral perfusion,
aggravating cerebral hypoxia, and the formation of Aβ plaques
in AD patients (Miners et al., 2018). Animal studies have also
observed that removing this part of fibrinogen can alleviate AD-
related pathologies in the brain of mice and improve cognitive
impairment (Cortes-Canteli et al., 2010). Therefore, there is a
positive correlation between plasma Aβ and fibrinogen levels, and
a negative correlation between CSF Aβ and fibrinogen levels in
AD patients, and the more stable Aβ42 has a better correlation,

while the integrity of the blood-brain barrier in normal people
is not destroyed, which may be the reason for the lack of
correlation between them.

According to the Aβ cascade hypothesis, the increase of Aβ

can further induce the hyperphosphorylation of the microtubule-
associated protein tau and accumulation in the cells, forming AD-
related pathological changes such as neurofibrillary tangles, and
leading to increased levels of t-tau and p-tau in the CSF of AD
patients (Huang and Mucke, 2012). This may explain the positive
correlation between tau and fibrinogen levels in AD patients. But
so far there is no direct evidence that fibrinogen can exacerbate
tau phosphorylation.
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In addition to the Aβ pathway, previous studies have also
found that fibrinogen can directly affect neuroinflammation
by inducing the activation of microglia through CD11b/CD18
integrin receptors and other means (Ryu et al., 2009).
Blocking this approach can reduce neuroinflammation, synaptic
dysfunction, and cognitive decline in AD mice (Merlini
et al., 2019). Fibrinogen may play an important role in the
pathogenesis of AD.

This study provides clinical evidence for the relationship
between fibrinogen and AD, suggesting that fibrinogen may
play a role in the pathogenesis of AD. It is worth noting
that this is a cross-sectional observational study, we cannot
determine the effect of fibrinogen on the progression of
AD. To further clarify the impact, cohort studies need
to be continued in the future. In addition, we need to
increase the number of CSF samples from AD patients,
adopt more accurate detection methods for CSF biomarkers
such as SIMOA, and further analyze the correlation between
fibrinogen and amyloid-PET SUVR to better verify the effect
of fibrinogen on Aβ deposition in the brain. At the same
time, whether drugs to reduce fibrinogen will improve the
cognitive function decline of AD patients remains to be
further studied.

CONCLUSION

Our research shows that plasma fibrinogen levels are
positively correlated with Aβ levels in the plasma and
brain in AD patients, which further shows that fibrinogen
can promote Aβ deposition in the brain and accelerate
tau phosphorylation. Fibrinogen may be involved in the
pathogenesis of AD.
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Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are two major
alcohol-metabolizing enzymes. Moderate alcohol intake is a protective modified factor in
Alzheimer’s disease (AD) while heavy alcohol intake and abstinence increased dementia
risk. The associations between Alzheimer’s disease and alcohol-metabolizing genes are
uncertain. This study examined the association of AD with seven ADH/ALDH single-
nucleotide polymorphisms (SNPs), ADH1C rs2241894, ADH1B rs1229984, ALDH1B1
rs2073478, ALDH2 rs886205, rs4767944, rs4648328, and rs671. We enrolled 157
AD and 168 age- and sex-matched control subjects in pilot study to examine the
association of AD with ADH/ALDH SNPs. Reconstructed ALDH2 haplotypes were
performed. We measured plasma level of ADH1C and checked the interaction effect
of AD–rs2241894 genotype on plasma ADH1C level. In extension study, we further
examined 339 AD and 2,504 healthy control from the Taiwan Biobank. In pilot study, we
observed that ADH1C rs2241894 TT genotype was negatively associated with AD in a
recessive genetic model (OR = 0.25, 95% CI 0.09–0.75, p < 0.0001) in women. A strong
linkage disequilibrium was observed among the four examined SNPs of ALDH2. No
haplotype was related to AD. The plasma ADH1C level in AD was higher than that in
control. After adjusted by age, sex, hypertension, diabetes mellitus, and alcohol, we
found a significant interaction effect of AD–rs2241894 genotype on plasma ADH1C
level (p = 0.04). This interaction effect was attributable to the association between AD
and plasma ADH1C level (β estimate = 366, 95% CI 92.7∼639.4, p = 0.009). The
genetic distribution of ADH1C rs2241894 showed strong ethnic heterogeneity, in which
the T allele was the minor allele accounting for 28.5% in our study and 23.6% in East
Asians, while it was a major allele in Americans, Europeans, and the global populations.
No association was discovered between AD and the five SNPs: rs2241894, rs1229984,
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rs2073478, rs886205, and rs671 in the extension study. In summary, this study revealed
a suggestive association between ADH1C rs2241894 and female AD in the pilot study,
but failed to confirm this finding in a population database. Further age-matched and
large sample size case-control studies are needed before rs2241894 can be interpreted
as a protective genetic factor of AD.

Keywords: alcohol dehydrogenase, aldehyde dehydrogenase, Alzheimer’s disease, ADH1C level, ADH1C
rs2241894

INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of dementia,
especially in the elderly. The prevalence is 40.2 per 1,000 persons
in participants older than 60 years in the community (Fiest et al.,
2016). The incidence of the disease doubles every 5 years after
65 years of age (Querfurth and LaFerla, 2010; Hebert et al., 2013).
Patients suffer from cognitive decline and eventually progress
to loss of daily function or death. Amyloid and tau deposition
causes oxidative stress and worsens mitochondrial and synaptic
dysfunction (Querfurth and LaFerla, 2010). Non-modifiable risk
factors of AD include aging, female sex, and genetic risks,
such as carrying the apolipoprotein E (APOE) e4 allele (Corder
et al., 1993), whereas risk factors, such as diabetes mellitus
(DM), hypertension (HTN), obesity, smoking, excessive alcohol
consumption over 168 g weekly, and educational attainment, are
potentially modifiable (Lourida et al., 2019).

Alcohol abuse is a major factor in brain damage (Ridley
et al., 2013). According to the Centers for Disease Control and
Prevention (CDC) of the United States, heavier drinkers were
defined as those consuming more than 28 g of pure alcohol per
day in the case of men and 14 g in the case of women (Schoenborn
et al., 2013). Fourteen grams of pure alcohol corresponds to a
12-US-fluid-ounce (350 mL) glass of 4.1% beer or a 5-US-fluid-
ounce (150 mL) glass of 12% alcohol-by-volume wine. A 23-
year follow-up prospective cohort study suggested that alcohol
consumption is a risk factor for dementia in both sexes. The
effect of alcohol consumption and dementia is considered to
be J-shaped, where excessive alcohol intake (>112 g/week) or
abstinence increased dementia risk, compared with consuming
9–112 g/week (Sabia et al., 2018). The J-shaped effect was also
observed between alcohol and AD. In systemic reviews, drinking
patterns are associated with AD and mild cognitive impairment,
where abstinence and heavy drinking were associated with an
increased risk of AD onset compared with moderate drinking
(Rehm et al., 2019).

Alcohol is primarily metabolized by alcohol dehydrogenase
(ADH) and aldehyde dehydrogenase (ALDH). The metabolism
of alcohol produces acetaldehyde, acetate, and reactive oxygen
species. Both high ADH activity and low ALDH activity cause an
excess of acetaldehyde and result in oxidative stress (Ohta et al.,
2004). ADH families (EC 1.1.1.1) are a group of dehydrogenase
enzymes that facilitate the interconversion between alcohols
and aldehydes or ketones with the reduction of NAD + to
NADH during the biosynthesis of various metabolites. ALDH
families (EC 1.2.1.3) are a group of enzymes that catalyze the
oxidation of aldehydes (Cederbaum, 2012). ADH and ALDH

variants have been shown to influence alcohol dependence in
previous studies (Sun et al., 2019). Lacunar infarction (Suzuki
et al., 2004) and neuropsychiatric disease were observed to be
associated with the ADH genotype, whereas Parkinson’s disease
was not (Suzuki et al., 2004; Garcia-Martin et al., 2019; Kim
et al., 2020). On the other hand, ALDH2 polymorphism is
related to Parkinson’s disease and intracranial hemorrhage (Chen
et al., 2019; Huang et al., 2020). The prevalence of the ADH1B,
ADH1C, and ALDH2 genotypes is higher in Asians (Eng et al.,
2007). In the literature review, approximately 30% of people in
Asia and 47% of people in Taiwan were found to carry genetic
variants of the ALDH2 A allele by rs671 with reduced enzymatic
activity (Chiang et al., 2016). ALDH1B1, which shares significant
sequence homology with ALDH2, is related to drinking habits
in Caucasians (Husemoen et al., 2008). The association between
ALDH2 genetic polymorphisms and AD was inconclusive. Some
reports suggested that ALDH2∗2 (rs671 variation) is a risk factor
for AD in Japanese (Kamino et al., 2000), whereas others reported
no association in Japanese and older Korean populations (Kim
et al., 2004; Komatsu et al., 2014). ALDH2 rs886205 affects the
methylation of the ALDH2 premotor region (Pathak et al., 2017).
Meta-analysis showed a borderline influence of ALDH2∗2 on AD
in a recessive genetic fashion (Hao et al., 2011; Chen et al., 2019),
but it was not identified as a true susceptibility AD gene among
the 695 gene candidates in the AlzGene database. To date, there
have been no studies addressing ALDH1B1 polymorphisms and
AD risks. In ADH1C, the rate of alcohol elimination was proved
to be associated with the SNPs across ADH1C and ADH1B
(Birley et al., 2009). From GWAS (genome-wide association) of
alcohol dependence in African- American, ADH1C rs2241894
(p.Thr151 =) is a risk loci mapped to alcohol-metabolizing
enzyme genes (Gelernter et al., 2014). No report of the association
between AD and ADH1C SNPs so far.

We selected ADH1C rs2241894 (ADH1C, chr4: 99344976,
Synonymous Variant, c.453 A > T,C, p.Thr151 =), ADH1B
rs1229984 (chr4:99318162, Missense Variant, c.143A > G,
p.His48Arg), ALDH1B1 rs2073478 (chr9:38396068, c.320G > A,
p.Arg107His), ALDH2 rs886205 (G > A, promoter, 5’-
untranslated region), ALDH2 rs4767944 (C > G,T, Intron
Variant), ALDH2 rs4648328 (C > T, intron variant, intron 3),
and ALHD2 rs671 (G > A, missense variant Glu504Lys, exon
12) based on previous evidence of their association with alcohol
dependence (Edenberg and Foroud, 2013).

Only a few studies have addressed the associations between
AD and alcohol-metabolizing enzymes. Given that the
ADH/ALDH pathway is involved in numerous risks of AD,
including oxidative stress, HTN, and alcohol consumption, this
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study first utilized single-center case-control data for evaluation,
and then used Taiwan population genomic data for replication
analyses to examine whether these genes are AD-susceptible
genes. This study was extended to ALDH-related pathways,
which is a novel route to examine the association between AD
and the ADH gene.

MATERIALS AND METHODS

Patient and Control Subject Recruitment
This study was designed as a two-step process. First, we
enrolled 157 AD patients and 168 age- and sex-matched
control subjects in a pilot study. AD diagnosis was made
according to the 2011 diagnostic criteria of the National
Institute on Aging-Alzheimer’s Association workgroups
(NIAAA) (McKhann et al., 2011). The control group
consisted of sex- and age-matched subjects who visited
Chang Gung Memory Hospital (CGMH) for a health exam or
treatment for diseases other than neurodegenerative diseases or
cerebrovascular diseases.

Second, the number of AD patients was expanded to
339. A total of 2504 healthy participants selected from the
Taiwan Biobank were included in the extension study. The
Taiwan Biobank is a prospective population-based study that
enrolled healthy seniors with extensive baseline phenotypic
measurements, genomic data, and stored biological samples. The
criteria for selecting the control groups from the Taiwan Biobank
were the age range 50–70 years, no history of stroke or dementia,
and self-reporting as being of Taiwanese Han Chinese ancestry

(Chen et al., 2016). Details on the Taiwan Biobank can be found
on its official website1.

Selection of SNPs, Genotyping, and
Haplotype Construction for Cases and
Control
Based on a previously reported association with alcohol
dependence (Edenberg and Foroud, 2013), the pilot study
analyzed seven SNPs, namely, ADH1C rs2241894, ADH1B
rs1229984, ALDH1B1 rs2073478, ALDH2 rs886205, ALDH2
rs4767944, ALDH2 rs4648328, and ALHD2 rs671. Only 5 SNPS
were evaluated in extension study because custom Taiwan
Biobank chips (Affymetrix, Santa Clara, CA, United States)
only contains only 5 ones, namely ADH1C rs2241894, ADH1B
rs1229984, ALDH1B1 rs2073478, ALDH2 rs886205. Among these
SNPs, ADH1C rs2241894 is believed to affect alcohol metabolism.
ADH1B rs1229984 is a well-studied genetic variant associated
with alcohol dependence in Asians. Genomic DNA was
extracted from peripheral leukocytes using the Stratagene DNA
extraction kit (La Jolla, CA, United States). SNP polymorphisms
were genotyped using TaqMan R© Assays in the ABI Prism
7900HT Sequence Detection System (catalog #4317596, Applied
Biosystems, Foster City, CA, United States) (Schleinitz et al.,
2011). Plasma ADH1C level was determined using human
ADH1C ELISA kit (catalog #MBS2889930, MyBioSource, San
Diego, CA, United States) and monitored spectrophotometrically
at 450 nm on a multifunctional microplate reader (Tecan infinite
200) by following the manufacturer’s instructions. Levels of

1https://taiwanview.twbiobank.org.tw/index

TABLE 1 | Background demographic distribution and frequency of the genotype in the pilot study.

Males (n = 147) Females (n = 178)

AD Controls p-Value AD Controls p-Value

(n = 73) (n = 74) (n = 84) (n = 94)

Age (years) 69.4 ± 9.0 67.1 ± 5.3 0.06 65.4 ± 5.9 67.0 ± 6.3 0.08

Education (years) 8.4 ± 4.1 9.3 ± 4.7 0.31 7.4 ± 4.5 5.6 ± 4.7 0.01

Hypertension (%) 55.40% 52.51% 0.69 45.2% 44.7% 0.94

Diabetes mellitus (%) 20.30% 21.10% 0.9 36.9% 20.2% 0.01

Alcohol use (%) 17.60% 16.90% 0.92 1.2% 1.1% 0.94

APOE ε4 carrier n = 73 30.1% n = 57 12.3% 0.02 n = 84 43.4% n = 83 21.7% 0.01

ADH1B

rs1229984 TT/TC/CC 49.4/39.5/11.1 56.2/41.1/2.7 0.14 60.7/35.7/3.6 53.2/42.6/4.3 0.6

ADH1C

rs2241894 CC/CT/TT 43.8/42.5/13.7 52.1/38.4/9.6 0.55 54.8/44.0/1.2 46.8/43.6/9.6 0.05

ALDH1B1

rs2073478 GG/GT/TT 47.9/36.6/15.5 52.8/31.9/15.3 0.82 41.0/51.8/7.2 48.4/36.6/15.1 0.07

ALDH2

rs886205 GG/GA/AA 77.0/21.6/1.4 78.1/20.5/1.4 0.99 82.1/17.9/0.0 74.5/22.3/3.2 0.18

rs4767944 TT/TC/CC 48.6/41.9/9.5 41.1/49.3/9.6 0.63 51.8/41.0/7.2 47.8/38.0/14.1 0.34

rs4648328 CC/CT/TT 67.1/28.8/4.1 57.5/38.4/4.1 0.46 68.7/26.5/4.8 64.9/31.9/3.2 0.66

rs671 GG/GA/AA 46.6/35.6/17.8 46.6/42.5/11.0 0.44 47.6/41.7/10.7 41.5/50.0/8.5 0.53

N, number, AD, Alzheimer disease, ADH, alcohol dehydrogenase, ALDH, aldehyde dehydrogenase. Data are expressed as percentage or mean ± SE. Comparisons
between AD cases and controls were analyzed using the χ2 test or t-test where appropriate.
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ADH1C were determined from a standard curve. Patterns of
linkage disequilibrium (LD) were evaluated using Haploview v4,
and haplotypes were reconstructed using PHASE 2.0 (Barrett
et al., 2005) based on the LD results. Haplotypes with a frequency
<1% were excluded from the association analysis. In participants
from the Taiwan Biobank, SNP genotypes were obtained from the
data derived from the custom Taiwan Biobank chips and run on
the Axiom Genome-Wide Array Plate System (Affymetrix, Santa
Clara, CA, United States).

Statistical Analysis and Power
Estimation
Pearson’s χ2-test or t-test was used to compare the demographic
data and the distributions of genotypes of AD and control. Two-
tailed p-values were derived from the χ2-test or Fisher’s exact test.
Association analyses were performed stratified by sex. Hardy–
Weinberg equilibrium was performed via χ2-test for all SNPs at
a significance level of 0.05. Multivariable logistic regression was
used to analyze the phenotype-genotype associations of AD with
ADH and ALDH alleles under dominant, recessive, and additive
genetic models. The covariables included age, years of education,
HTN, DM, and alcohol use. Since considering Bonferroni
correction, the significance level was set to 0.007 in pilot study
and 0.01 in extension study. The permutation testing was
performed when the p-value was under Bonferroni correction
in pilot study. Analysis of interaction effect (Chen et al., 2009)
was performed to evaluate how carrying APOE ε4 influence the
ADH1C rs2241894 to AD susceptibility, because APOE ε4 and
ADH1C shared the common pathway of oxidative stress. All
the data analyses were performed using SAS software version
9.1.3 (SAS Institute, Cary, NC, United States). Association of the
interaction effect between AD and rs2241894 genotypes on the
plasma ADH1C level was tested by the general linear models
(GLM) with adjustment for age, sex, DM, HTN, and alcohol.
We also perform analysis of interaction effect of AD-rs2241894
genotype in ADH1C level.

We evaluated the ability to detect an association between an
SNP and AD via a power calculation implemented in QUANTO
version 1.0 (Gauderman, 2002). When Minor allele frequency
(MAF) > 0.2 under a recessive genetic model at a significance
level of 5%, we observed that the power to identify an association
was greater than 0.8 when the per-allele genetic effect was greater
than 3.5 and 2.0 in the pilot case-control study and in the
extension study, respectively.

RESULTS

Demography of the Pilot Case-Control
Study
A total of 157 AD patients and 168 controls were included in
the pilot study (Table 1). The years of education were higher in
the female AD patients than in the controls. The age and sex
between the AD patients and the controls were matched in this
dataset. The proportion of APOE ε4 carriers was higher in the AD
patients than in the controls. The proportion of DM was higher in
the female patients with AD than in the controls. There were no
differences in age, HTN frequency, and the proportion of alcohol
use. As the proportion of alcohol use was remarkably different
between sexes, the analyses were stratified by sex.

Genotype Frequency and Association
Analysis of the Pilot Case-Control Study
All seven SNPs were in Hardy–Weinberg equilibrium at a
significance level of 0.05. The frequencies of each genotype
in the AD and control subjects are listed in Table 1. The
proportion of ADH1C rs2241894 TT genotype (minor allele T)
was significantly lower in the female patients with AD than in
the female controls. The association between the SNP genotype
and AD is presented in Table 2. In the female group, ADH1C
rs2241894 was significantly associated with AD in the recessive
genetic model (OR = 0.25, 95% CI 0.09–0.75, p < 0.0001). APOE
ε4 carriers had no interactive effect between AD and ADH1C

TABLE 2 | Associations of the candidate SNPs with AD in the pilot study.

Gene SNP Position Dominant
p-values

Additive p-values,
(OR, 95% CI)

Recessive p-values,
(OR, 95% CI)

ADH1B: Missense Variantc.143A > G,
p.His48Arg

rs1229984 chr4:99318162 M: 0.496, F: 0.04 M: 0.23, F: 0.07 M: 0.12, F: 0.99

ADH1C: Synonymous Variant, c.453
T > A,C, p.Thr151 =

rs2241894 chr4:99344976 M: 0.487, F: 0.256 M: 0.45, F: 0.04 M: 0.06, F < 0.0001
(0.25, 0.09–0.75)

ALDH1B1: Missense Variant,
c.320G > A, p.Arg107His

rs2073478 chr9:38396068 M: 0.66, F: 0.25 M: 0.52, F: 0.83 M: 0.48, F: 0.15

ALDH2: 2KB Upstream Variant, A > G rs886205 chr12:111766623 M: 0.788, F: 0.193 M: 0.77, F: 0.08 M: 0.84, F: NA

ALDH2: Intron Variant, C > G,T rs4767944 chr12:111771537 M: 0.205, F: 0.661 M: 0.43, F: 0.39 M: 0.64, F: 0.24

ALDH2: Intron Variant, C > T rs4648328 chr12:111784984 M: 0.338, F: 0.707 M: 0.45, F: 0.92 M: 0.88, F: 0.53

ALDH2: Missense Variant,
c.1510G > A, p.Glu504Lys

rs671 chr12:111803962 M: 0.987, F: 0.388 M: 0.69, F: 0.55 M: 0.41, F: 0.91

M, male, F, female, NA, not applicable, OR, odds ratio, 95% CI = 95% confidence interval. Logistic regression was performed, adjusting for age, education, HTN, DM,
and alcohol use.
P-value with Bonferroni correction for significance was 0.007. The permutation testing of 10,000 replicates was performed when the p-value was significant under
Bonferroni correction.
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rs2241894. This study did not find an association between AD
and the other six SNPs in the female groups and any candidate
SNPs in the male groups (Supplementary Table 1).

Demography of the Extension Study
Among 339 AD patients and 2,504 control subjects in the
extension cohort study, there were 123 AD and 1,271 controls
in men (Table 3). The AD patients were older than the control
subjects. Among men, the mean age was 71.0 (± 10.1) in the AD
group and 64.1 (± 2.8) years in the control group (p < 0.05).
Among women, the mean age was 72.6 (± 8.5) in the AD group
and 64.0 (± 3.0) in the control group (p < 0.05). The years of
education were higher in the AD group than in the control group
(AD 8.6 ± 4.3, control 5.2 ± 1.2, p < 0.05). The proportions
of HTN and DM were higher in the AD group than in the
control group (HTN AD 50.5%, control 35.4%, p < 0.05, DM
AD 37.5%, control 8.8%, p < 0.05). As the proportion of alcohol

use was remarkably different between sexes, the analyses were
stratified by sex.

Genotype Frequency and Association
Analysis of the Extension Study
All five SNPs were in the Hardy–Weinberg equilibrium at a
significance level of 0.05. The frequencies of each genotype in
the AD and control subjects are listed in Table 3. The association
between the SNP genotype and AD is presented in Table 4. The
ADH1C rs2241894 genotype had no association with AD after
adjusting for age, years of education, proportion of alcohol use,
and comorbidities in both sexes. No association was discovered
between AD and the other SNPs (Supplementary Table 2).

Haploview Analysis of ALDH2 SNPs
In the pilot case-control study, a haplotype block of ALDH2 was
further constructed by rs886205, rs4767944, rs4648328, and rs671

TABLE 3 | Background demographic distribution and frequency of the genotype in the extension study.

Males (n = 1394) Females (n = 1449)

AD Controls p-Value AD Controls p-Value

(n = 123) (n = 1271) (n = 216) (n = 1233)

Age (years) 71.0 ± 10.1 64.1 ± 2.8 2.3E-66 72.6 ± 8.5 64.0 ± 3.0 8.06E-134

Education (years) 8.6 ± 4.3 5.2 ± 1.2 1.1E-85 4.9 ± 4.6 4.6 ± 1.3 0.06

Hypertension (%) 48.8% 45.6% 0.50 50.5% 35.4% 2.40E-5

Diabetes mellitus (%) 22.0% 14.0% 0.17 37.5% 8.8% 5.80E-31

Alcohol use (%) 14.6% 11.7% 0.35 0.9% 1.1% 0.86

ADH1B

rs1229984 TT/TC/CC 54.1/35.2/10.7 54.2/39.3/6.6 0.21 48.3/46.40/5.2 54.7/39.3/6.0 0.14

ADH1C

rs2241894 CC/CT/TT 46.7/46.2/10.7 51.2/42.3/6.6 0.21 57.1/37.2/5.7 55.3/38.1/6.6 0.38

ALDH1B1

rs2073478 GG/GT/TT 50.8/35.0/14.2 46.1/42.9/11.0 0.21 42.4/48.1/9.5 46.7/42.8/10.5 0.35

ALDH2

rs886205 GG/GA/AA 77.3/20.3/2.4 77.9/20.8/1.3 0.62 76.5/22.5/0.9 77.5/21.5/1.0 0.90

rs671 GG/GA/AA 50.8/35.2/13.9 50.6/40.8/8.6 0.11 49.1/40.6/10.4 50.6/40.8/8.5 0.67

n, number; AD, Alzheimer disease; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase. Data are expressed as percentage or mean ± SE. Comparisons
between AD cases and controls were analyzed using the χ2 test or t-test where appropriate.

TABLE 4 | Associations of the candidate SNPs with AD in the extension study.

Gene SNP Position Dominant p-values Additive p-values Recessive p-values,
(OR, 95% CI)

ADH1B: Missense Variantc.143A > G,
p.His48Arg

rs1229984 chr4:99318162 M: 0.46, F: 0.78 M: 0.41, F: 1.00 M: 0.58, F: 0.59

ADH1C: Synonymous Variant,
c.453T > A,C p.Thr151 =

rs2241894 chr4:99344976 M: 0.24, F: 0.39 M: 0.09, F: 0.29 M: 0.08, F: 0.72

ALDH1B1: Missense Variant,
c.320G > A, p.Arg107His

rs2073478 chr9:38396068 M: 0.12, F: 0.12 M: 0.34, F: 0.40 M: 0.72, F: 0.77

ALDH2: 2KB Upstream Variant, A > G rs886205 chr12:111766623 M: 0.48 F: 0.51 M: 0.19, F: 0.46 M: NA, F: 0.60

ALDH2: Missense Variant,
c.1510G > A, p.Glu504Lys

rs671 chr12:111803962 M: 0.57, F: 0.65 M: 0.39, F: 0.56 M: 0.29, F: 0.59

M, male, F, female, NA, not applicable, OR, odds ratio, 95% CI = 95% confidence interval, Logistic regression was performed, adjusting for age, education, HTN, DM,
and alcohol use. p-value with Bonferroni correction for significance was 0.01.
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using Haploview (4.2), where there was one block with strong LD
(Figure 1). In the haplotype analyses, there was no association
between the haplotype and AD susceptibility.

Plasma ADH1C Level
In pilot case-control study, we examined the plasma level
of ADH1C. AD had higher ADH1C level in comparison to
control group (n = 78, n = 72, 781 ± 383, 665 ± 242,
respectively) (p = 0.03) (Figure 2A). After adjusted by age,
sex, HTN, DM, and alcohol, we found a significant interaction
effect of AD–rs2241894 genotype on plasma ADH1C level
(p = 0.04) (Figure 2B). This interaction effect was attributable
to the association between AD and plasma ADH1C level (β
estimate = 366, 95% CI 92.7∼639.4, p = 0.009).

DISCUSSION

Our study demonstrated a suggestive association between AD
and ADH1C rs2241894 genotypes in a recessive fashion. To
the best of our knowledge, this is the first study to propose
ADH1C rs2241894 genotypes as a protective factor of AD
in the Taiwanese female population. Although there was a
correlation between AD andADH1C rs2241894 in the pilot study,
the result in the extension study was not significant in both
sexes, which may indicate the possibility of other confounding
factors, such as age and lifestyle. This study did not find
associations between AD and ADH1B (rs1229984), ALDH1B1
(rs2073478), and ALDH2 (rs886205, rs4767944, rs4648328, and
rs671), indicating that ADH1B, ALDH1B1, and ALDH2 played
no role in the relationship between alcohol and AD.

Alcohol elimination was catalyzed by ADH and ALDH
(Zakhari, 2006). Class I ADH, consisting of several homo-
and heterodimers of alpha, beta, and gamma subunits, exhibits
high activity for ethanol oxidation to acetaldehyde, thus
playing a major role in ethanol catabolism (Cederbaum, 2012).
ADH1C encodes the gamma subunit of class I ADH. ADH1C
cytoplasmic expression was mainly observed in glandular cells
of the gastrointestinal tract, including the liver, duodenum,
and stomach. ADH1B and ADH1C have polymorphisms that
produce isoenzymes with distinct kinetic properties. Previous
studies showed that the genetic variations in ADH genes were
related to alcohol consumption (Edenberg and Foroud, 2013);
however, this was more evident for the ADH2 gene, whereas the
ADH1C polymorphism, as in our study, showed a small influence
on the risk of alcoholism. In a previous SNP study, ADH1C
was associated with alcohol elimination rate, whereas rs2241894
was not associated with the in vivo kinetic model of alcohol
metabolism (Birley et al., 2009).

Alcohol metabolism via ADH produces acetaldehyde and
oxygen radicals, which are highly reactive molecules (Zakhari,
2006). Neurons are extremely sensitive to attacks by destructive
free radicals. In the brains of AD patients, free radical
leads to DNA damage, protein oxidation, lipid peroxidation,
and advanced glycosylation, which further aggravates AD
pathology including neurofibrillary tangles and senile plaques
(Tonnies and Trushina, 2017).

FIGURE 1 | Haploview disequilibrium coefficients (D’) of the pairwise loci in the
AD and control groups. Four SNPs in the genomic region of ALDH2 loci were
analyzed using Haploview version 4.2 software. Strong LD was observed
among rs886205, rs4767944, rs4648328, and rs671. Four SNPs constituted
one haplotype block that span 37 kb. A D’ value of “0” indicates the
independence of the two examined loci, whereas a value of “1” demonstrates
complete linkage. The strength of LD is depicted by the intensity of red color.
It changes from white to red as D’ × 100 progresses from 1 to 100.

The genetic distribution of ADH1C rs2241894 showed strong
ethnic heterogeneity, in which the T allele was the minor allele
accounting for 28.5% in our study, 23.6% in East Asians, and 40%
in South Asians, while it was a major allele in Americans (83.0%),
Europeans (76.5%), and the global populations (52.8%) (Huang
et al., 2020). ADH1C rs2241894 (A > G, synonymous variant
Thr151, exon 5) is a synonymous variant. Moreover, we did not
find functional SNPs that have LD with rs2241894 on SNPsnap2.
To the best of our knowledge, there is no report showing an
association between AD and rs2241894 or nearby SNPs.

Differences in drinking habit and alcohol metabolism exist
between sex. In the United States, epidemiological evidence
suggests that nearly 20% of adult males suffer from alcohol
abuse or alcoholism-related complications. On the other hand,
only approximately 5–6% of adult females are alcoholic or
abuse alcohol on a regular basis (Mumenthaler et al., 1999). In
Asia, men are prone to alcohol drinking in contrast to women
(Millwood et al., 2019), in which we have demonstrated that the
rate of alcohol consumption was 0% in women versus 26% in
men (Chen et al., 2006, 2009). In addition, the toxic effect of
alcohol can be influenced by genes; for example, men carrying

2https://data.broadinstitute.org/mpg/snpsnap/
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FIGURE 2 | ADH1C level in AD and control. Plasma ADH1C level was higher in AD than in control (A). (B) there was a marginal interaction effect between AD and
rs2241894 genotype on plasma ADH1C level (p = 0.04), in which those carried minor allele T had lower ADH1C level in AD patients but higher ADH1C level in the
controls.

APOE ε2ε3 have a greater tendency to suffer from strokes than
those with ε3ε3 when they have alcohol exposure (Chen et al.,
2009). In alcoholic pharmacokinetics, women have increased
bioavailability and a faster clearance rate (Mumenthaler et al.,
1999). Another example of alcohol–gene interaction is the class
III ADH (glutathione-dependent ADH). Women develop higher

blood alcohol levels than men in spite of an equal alcohol intake
due to a smaller gastric metabolism in women due to the lesser
activity of class III ADH in females (Baraona et al., 2001).
Therefore, sex differences in the effects of alcohol metabolism
on AD should be tested to illuminate the genetic roles of AD in
personalized management (Sultatos et al., 2004).
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The association between AD and ADH1C rs2241894 was
significant in the pilot study but not in the extension study.
The conflicting findings may be due to the difference between
the two control groups. The controls were older and had more
comorbidities in the pilot study than the extension study, but
similar to the AD patient group. The subjects from the Taiwan
Biobank were younger and healthier, and may have better
lifestyles, such as social activities, exercise, and diet. In addition,
the number of patients was relatively small compared with the
control number in the extension study. The positive result may
be caused by a statistical effect.

LIMITATION

This study is the first to discuss the association between ADH1C
rs2241894 and AD under sex disparities. However, there are some
limitations to our study. First, alcohol intake was much lower in
Asian females than in males; therefore, the sample size was small,
especially for those with alcohol use. Second, the frequencies
of alcohol-metabolizing genes differ among ethnicities (Huang
et al., 2020). Besides, the sizes of the examined samples are
small and have limited power to detect genetic association of
minor/modest effect with AD. The discrepancy in the results
of pilot and extension study may be caused by age difference
between two groups. The result should be interpretated with
caution and further studies with age-matched and larger sample
size were indicated for further confirmation of the results herein.

CONCLUSION

This study revealed a suggestive association between the genetic
variant of ADH1C rs2241894 and female AD in Taiwanese
population. Carrying the ADH1C rs2241894 TT genotype may
be a protective factor for elderly female Taiwanese individuals.
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Aging is an irreversible process and the primary risk factor for the development
of neurodegenerative diseases, such as Alzheimer’s disease (AD). Mitochondrial
impairment is a process that generates oxidative damage and ATP deficit; both factors
are important in the memory decline showed during normal aging and AD. Tau is a
microtubule-associated protein, with a strong influence on both the morphology and
physiology of neurons. In AD, tau protein undergoes post-translational modifications,
which could play a relevant role in the onset and progression of this disease. Also,
these abnormal forms of tau could be present during the physiological aging that
could be related to memory impairment present during this stage. We previously
showed that tau ablation improves mitochondrial function and cognitive abilities in
young wild-type mice. However, the possible contribution of tau during aging that
could predispose to the development of AD is unclear. Here, we show that tau deletion
prevents cognitive impairment and improves mitochondrial function during normal aging
as indicated by a reduction in oxidative damage and increased ATP production. Notably,
we observed a decrease in cyclophilin-D (CypD) levels in aged tau−/− mice, resulting
in increased calcium buffering and reduced mitochondrial permeability transition pore
(mPTP) opening. The mPTP is a mitochondrial structure, whose opening is dependent
on CypD expression, and new evidence suggests that this could play an essential role
in the neurodegenerative process showed during AD. In contrast, hippocampal CypD
overexpression in aged tau−/− mice impairs mitochondrial function evidenced by an
ATP deficit, increased mPTP opening, and memory loss; all effects were observed in
the AD pathology. Our results indicate that the absence of tau prevents age-associated
cognitive impairment by maintaining mitochondrial function and reducing mPTP opening
through a CypD-dependent mechanism. These findings are novel and represent an
important advance in the study of how tau contributes to the cognitive and mitochondrial
failure present during aging and AD in the brain.
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INTRODUCTION

Aging is a biological process associated with progressively
accumulating damage in the organism and also is the principal
risk factor for several neurodegeneration diseases, including
Alzheimer’s disease (AD) (Stauch et al., 2014; Xia et al., 2018).
Concerning brain function, aging leads to the deterioration of
cognitive capacities as a consequence of synaptic alterations
(Wyss-Coray, 2016) and loss of neurons in the hippocampus
(Swerdlow, 2011; Lopez-Otin et al., 2013). Tau protein regulates
the dynamics of microtubules (Tapia-Rojas et al., 2019a).
However, post-translational tau modifications dissociate it from
the microtubules, leading to the formation of aggregates (Wang
et al., 2010; Wyss-Coray, 2016), and inducing alterations in
synaptic and cognitive functions (Avila et al., 2013; Zuo et al.,
2016). Nevertheless, misfolded tau is detected in the brain of
approximately one-third of elderly people without dementia
(Elobeid et al., 2016), which may contribute to the neuronal
alterations observed in aging. Additionally, these pathological
forms of tau play a relevant role in the onset and progression of
AD (Xia et al., 2018), but the exact mechanism leading to neural
toxicity is unclear. In AD brains, tau is ∼three to fourfold more
hyperphosphorylated than in normal conditions, forming paired
helical filaments (PHF), and intraneuronal neurofibrillary tangles
(NFT) (Iqbal et al., 2010).

Mitochondria are organelles required for ATP generation,
calcium regulation, and maintenance of redox balance (Sebastian
et al., 2017; Perez et al., 2018a). Mitochondrial dysfunction
has been proposed as the common denominator connecting
aging and the pathogenesis of AD (Du et al., 2012; Jara
et al., 2019; Wu et al., 2019). Indeed, mitochondrial and
synaptic dysfunction are the early characteristics of AD (Perez
et al., 2018a). The loss of mitochondrial function leads to
increased production of reactive oxygen species (ROS), decreased
ATP formation (Sebastian et al., 2017), and reduced calcium-
buffering capacity (Rottenberg and Hoek, 2017). Interestingly,
these events could be associated with mitochondrial permeability
transition pore (mPTP) opening (Perez and Quintanilla, 2017),
which plays a relevant role in aging and AD (Du et al.,
2011). Importantly, the formation and opening of the mPTP
is enhanced by cyclophilin-D (CypD) expression (Du et al.,
2008; Gauba et al., 2017; Hurst et al., 2017; Panel et al., 2018).
Also, relevant studies have shown increased CypD levels in
AD brain samples and mice models (Du et al., 2008). More
importantly, CypD (-/-) mice crossing with APP/PS1 AD mice
model that presented neurotoxicity and memory impairment
prevented mitochondrial dysfunction, synaptic impairment, and
cognitive decline indicating an important contribution to CypD
in neurodegenerative changes shown in AD (Du et al., 2011).

Interestingly, a novel association between mitochondrial
dysfunction and tau pathology contributing to AD pathology
has been shown (Quintanilla et al., 2012, 2014; Perez et al.,
2018a). We showed that the expression of pathological forms
of tau (phosphorylated and truncated) promote mitochondrial
depolarization, mitochondrial fragmentation, and oxidative
stress, compromising mitochondrial function (Quintanilla et al.,
2009, 2014; Perez et al., 2018b). More importantly, in a recent

study, we showed that tau ablation enhanced cognition and
improved mitochondrial function in the hippocampi of young
mice compared to wild-type animals (Jara et al., 2018). However,
the contribution of tau and mitochondria to the normal aging
process is unclear and controversial. Some reports have shown
that tau knockdown impairs brain capacity, including motor and
cognitive function in the adult brain (Lei et al., 2012; Velazquez
et al., 2018). In contrast, Morris et al. (2013) showed that the
absence of tau did not affect cognition performance in aged
mice. Considering these discrepancies, we investigated the effects
of tau absence on behavioral impairment and mitochondrial
function during aging, using 18-month-old wild-type (WT) and
tau-knockout (tau−/−) mice. We observed that tau−/− mice
maintained their cognitive capacities during aging, including
hippocampal memory and social behavior. Besides, we observed a
reduction in oxidative damage and higher ATP levels in the aged
tau−/− animals. Interestingly, we observed reduced levels of
CypD and lower sensitivity to calcium overload in hippocampal
mitochondria from the aged tau−/− mice, suggesting a reduced
activity of mPTP. To corroborate that CypD deficiency is
involved in the mitochondrial and cognitive improvement
observed in aged tau−/− mice, we overexpressed CypD in the
hippocampus of these mice using a lentiviral vector (Li et al.,
2012; Parr-Brownlie et al., 2015). Notably, CypD overexpression
was sufficient to impair mitochondrial calcium buffer capacity
and to reduce ATP production in aged tau−/− mice. Most
importantly, the cognitive abilities observed in the aged tau−/−
mice were significantly reduced. Thus, genetic reduction of
tau preserves mitochondrial bioenergetics and cognitive abilities
during aging by a mechanism that involves CypD and possibly
the mPTP opening in the hippocampus.

MATERIALS AND METHODS

Animals
Wild-type (WT, C57BL/6J background) and homozygous tau-
knockout (tau−/−) mice were obtained from the Jackson
Laboratory (B6.129-Mapttm1Hnd/J Bar Harbor, ME, Stock
N◦007251). WT C57BL/6J mice were used as litter control,
considering the control suggestions by The Jackson Laboratory
and also that tau KO strain have this genetics background.
The animals were handled according to the guidelines of the
National Institute of Health (NIH, Baltimore, MD). They were
maintained at the Bioterio Central of Universidad Autónoma de
Chile. All mice were housed at 23◦C and on a 12-h light/dark
cycle with food and water ad libitum. Experimental procedures
were approved by the Bioethical and Biosafety Committee of
the Universidad Autónoma de Chile. All studies were conducted
on wild type (WT) and tau KO (tau−/−) littermates. A total
of nine WT and seven tau−/− mice, 18 months old were used
in the cognitive tests. For the biochemical studies, we used
additional (n = 3) WT and tau−/− mice. For mitochondrial
analysis, we used a separate cohort with n = 4 mice per group.
All groups include female and male animals, with differences
observed between sex.
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Reagents and Antibodies
The primary antibodies used were as follows: Anti-β-tubulin
(sc-9104, Santa Cruz Biotechnology, Inc., 1:2,000), anti-Total
OXPHOS Human WB Antibody Cocktail (ab110411, Abcam,
Inc. 1:2,000), anti-COX IV (11967S, Cell Signaling, 1:1,000),
anti-β-actin (sc-47778, Santa Cruz Biotechnology, Inc., 1:1,000),
anti-Opa1 (PA1-16991, Thermo Fisher Scientific, 1:1,000),
anti-Cyclophilin D (sc-376061, Santa Cruz Biotechnology,
Inc., 1:1,000), anti-ANT (Santa Cruz biotechnology; 1:1,000),
anti-Mfn1 (sc-50330, Santa Cruz Biotechnology, Inc. 1:1,000),
anti-Mfn2 (sc-50331, Santa Cruz Biotechnology, Inc., 1:1,000),
anti-phospho-DRP1 (Ser616) (4494, Cell Signaling, 1:1,000),
anti-DRP1 (sc-271583, Santa Cruz Biotechnology, Inc.,
1:1,000), anti-nitrotyrosine (141682, US Biological, Life
Sciences, 1:500), and anti-4HNE (H6275-02, US Biological,
Life Sciences, 1:1,000). The fluorescent dyes used were as follows:
MitoTrackerTM Red CM-H2Xros (M7513, Thermo Fisher
Scientific), MitoTrackerTM Green FM (M7514, Thermo Fisher
Scientific), and VECTASHIELD Mounting Medium with DAPI
(H1200, Vector Laboratories, Inc.).

Behavioral Tests
All behavioral tests were monitored using an automatic
tracking system (ANY-maze Behavioral tracking software,
United Kingdom).

Novel Object Recognition (NOR) Test
NOR tests were performed in a 38 × 38 × 32 cm acrylic
box and were performed according to Jara et al. (2018).
The animals were habituated in the box for 2 consecutive
days, without any object. During testing, each animal was
placed in the box containing two identical objects (old objects)
for 10 min. Then, the box and objects were cleaned (50%
methanol). After 2 h, the animal was exposed to one of the
old objects and a new object of different shapes and colors.
The recognition index was calculated as the time spent by the
mouse exploring the new object divided by the time spent
exploring both objects.

Barnes Maze Test
Barnes maze test was performed according to Olesen et al.
(2020). The paradigm consists of an elevated circular platform,
with 20 equally spaced holes along the perimeter. The animals
must learn to escape from the open platform surface to a
small chamber located under the platform, guided by visual–
spatial cues. For reinforcement, we used aversive white noise.
During the acquisition phase, the mouse was placed in a
cylindrical black. After 5 s, white noise was switched on, and
the mouse explored. The trial ended when the mouse entered
the escape chamber or after 3 min of exploration. When
the mouse entered the escape chamber, the white noise was
turned off. If the mouse did not achieve this criterion, it was
guided to the escape chamber. This protocol was repeated
thrice on day 1 and twice on day 2. Forty-eight hours after
training, the time spent on the mouse until finding the escape
chamber was evaluated.

Social Interaction Test
For this task, a previously described protocol was used (Jara et al.,
2018). Briefly, the mice were habituated in a three-chamber box
(each chamber was 20 × 40 × 22 cm) for 10 min. Subsequently,
one object and one unknown mouse were placed inside a cage
and were presented to the experimental mouse, one in each lateral
chamber. Each mouse was positioned in the central chamber and
was allowed to explore the cage for 10 min. In the final part of
the test, an unknown mouse replaced the previous object. The
experimental mouse was allowed to explore for 10 min.

Object-Based Attention Test
For this task, a previously described protocol was used (Jara
et al., 2018). Briefly, the test was performed in a rectangular
apparatus, containing two chambers, which included the
exploration chamber (40 × 40 × 22 cm) and the test chamber
(40 × 20 × 22 cm). First, the animals were exposed to the
habituation phase, a session of 10 min exploring both empty
chambers. Later, during the acquisition phase, the mice were
subjected to a 3-min session exploring five objects (1, 2, 3, 4, and
5) distributed within the chamber. Finally, in the retention phase,
immediately after the acquisition phase (<15 s), an old object
(used in the acquisition phase) was placed in its original position,
and a sixth novel object was placed in the test chamber. The mice
explore both objects for 3 min. A recognition index is calculated
as (T6× 100)/(T2+ T6), where T2 and T6 are the time duration
spent by each mouse with objects 2 and 6, respectively.

Total RNA Extraction
Total RNA was isolated from 100 mg of tissue using the
TRIzol reagent (Life Technologies, Thermo Fisher Scientific,
United States) following the manufacturer’s instructions.
Residual DNA was removed with RNase free-DNase I,
Amplification Grade (Invitrogen, Thermo Fisher Scientific).
RNA yield and purity were determined by a TECAN plate reader
(Infinite 200 PRO series).

Reverse Transcription for cDNA
Synthesis
One microgram of RNA was subjected to reverse transcription
using ImProm-II Reverse Transcription System (Promega) by the
manufacturer’s protocol. For qPCR analysis, the cDNA sample
was diluted 10× in nuclease-free water.

Real-Time PCR
The real-time PCR reaction was performed in triplicates in
the LightCycler 96 System (Roche Diagnostics GmbH, Roche
Applied Science, Mannheim, Germany) using KAPA SYBR FAST
qPCR Master Mix (2×) in a final reaction volume of 10 µl.
Amplification conditions consisted of an initial hot start at
95◦C for 10 min followed by amplification for 40 cycles (95◦C
for 15 s, 60◦C for 20 s, and 72◦C for 20 s). Melting curve
analysis was performed immediately after amplification from 55
to 95◦C. Values were normalized to 18S expression levels using
the 1CT method.
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Gene Forward primer Reverse primer

CypD 5′-AGGAGATAGCCCCAGGAGAT-3′ 5′-TTGCATACACGGCCTTCTCTT-3′

Western Blot
The hippocampi of WT and tau−/− mice were dissected
and immediately processed (Jara et al., 2018). Briefly, the
hippocampal tissues were homogenized in RIPA buffer
(10 mM Tris-Cl, pH 7.4, EDTA 5 mM, 1% NP-40, 1%
sodium deoxycholate, and 1% SDS) supplemented with
a protease/phosphatase inhibitors mixture (25 mM NaF,
100 mM Na3VO4, and 30 µM Na4P2O7). The protein
samples were centrifuged at 14,000 rpm for 15 min
at 4◦C. The protein concentrations were determined
using the BCA Protein Assay Kit (Pierce, Thermo
Fisher Scientific, United States). The samples were
resolved by SDS-PAGE, followed by immunoblotting
on PVDF membranes.

Hippocampal Slices and Staining With
Mitochondrial Fluorescent Dyes
Coronal 20-µm-thick slices of unfixed tissue were obtained
from the brain of WT and tau−/− mice and stained
(Jara et al., 2018; Tapia-Rojas et al., 2019b; Torres et al.,
2020). Slices were mounted on slides and incubated with
MitoTraker Green FM (mitochondrial mass) plus MitoTraker
Red CM-H2Xros (mitochondrial membrane potential), in
KRH buffer for 45 min at 37◦C. After incubation, the
slices were washed three times for 5 min in PBS and
mounted with DAPI mounting medium. Images were
acquired with a fluorescence microscope (LX 6000X,
Leica, Germany).

Measurement of ATP Concentration
ATP concentration was measured in the hippocampal lysates
using a luciferin/luciferase bioluminescence assay kit (ATP
determination kit #A22066, Molecular Probes, Thermo
Fisher Scientific, United States), as previously described
(Jara et al., 2018). The amount of ATP in each sample was
calculated from standard curves and normalized to the total
protein concentration.

Isolation of Hippocampal Mitochondria
Hippocampal mitochondria were isolated as previously described
(Jara et al., 2018; Carreras-Sureda et al., 2019). Briefly, four
mice per group (WT and tau−/−) were euthanized, and the
hippocampi were rapidly removed and suspended in MSH buffer
(230 mM mannitol, 70 mM sucrose, 5 mM HEPES, pH 7.4)
supplemented with 1 mM EDTA and protease inhibitor cocktail.
Homogenates were centrifuged at 600 g for 10 min at 4◦C to
discard nuclei and cell debris. The supernatant was centrifuged
at 8,000 g for 10 min; the mitochondrial pellet was washed twice
in MSH without EDTA.

Evaluation of Mitochondrial Calcium
Buffering Capacity
Mitochondrial swelling was measured by monitoring
absorbance decline at 540 nm in a fresh mitochondrial
fraction (Karadayian et al., 2015; Olesen et al., 2020). Intact
mitochondria scatter light at 540-nm wavelength. The prolonged
mPTP opening provokes the swelling of mitochondria,
which reduces the absorbance. Isolated mitochondria were
resuspended in MSH buffer containing 5 mM malate,
5 mM glutamate, 1 mM phosphate, and 2 mM MgCl2.

Mitochondrial samples (0.5 mg/ml of total protein) were
exposed to different calcium concentrations to generate calcium
overload, which induces mitochondrial swelling associated
with mPTP opening.

Surgical Procedures
Animals received bilateral intrahippocampal administration
of Lenti ORF particles (GFP-tagged)-mouse peptidylprolyl
isomerase D (Ppid; cyclophilin D) (Type: Human Tagged
ORF Clone Lentiviral Particle; Tag: mGFP; Vector: pLenti-
C-mGFP, #RC223397L2V, Origene) by stereotaxic injection
(Vargas et al., 2014). A total of n = 5 mice were used
per group. We used Sham injection in WT and control tau
KO mice. Tau−/− mice were anesthetized using isoflurane
and placed in a stereotaxic frame (Stoelting, United States).
The skull was exposed for several millimeters anterior and
posterior to the bregma. Boreholes were made above the left
and right hippocampal CA1 (coordinates: 2.46 mm anterior
to the bregma, 1.0 mm lateral, 1.5 mm relative to dura
mater). One microliter of the lentiviral vector was injected
(108 TU/ml). Three weeks after infection, the animals were
subjected to cognitive tests and euthanized immediately after for
biochemical analysis.

Statistical Analysis
The data are expressed as the mean ± standard error of the
mean (S.E.M.). The data was analyzed using the Student’s t-test
with Dunnett’s post-hoc test or one-way ANOVA followed by
Bonferroni’s post-hoc test. A value of p < 0.05 is statistically
significant. All statistical analyses were performed using Prism
software (GraphPad Software Inc.).

RESULTS

The Absence of Tau Prevents the
Impairment of Hippocampus-Dependent
Memory During Aging
The hippocampus is susceptible to aging (Bartsch and Wulff,
2015). Neurobiological alterations in the aged hippocampus
include oxidative damage and altered communication among
neurons (Bettio et al., 2017; Jara et al., 2019). These events
result in impaired hippocampal function, affecting learning and
memory (Bettio et al., 2017; Jara et al., 2019). Pathological
forms of tau have been linked to memory-related disorders, such
as AD (Amadoro et al., 2010; Pooler et al., 2013). However,
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it is unclear if tau contributes to memory loss during the
physiological aging process. To determine the impact of the
absence of tau on hippocampal memory impairment during
aging, 6- and 18-month-old (mo) WT and tau−/− mice
were subjected to behavioral tests, including the Novel Object
Recognition (NOR) test, which evaluates recognition memory,
and the Barnes maze test, which is a spatial memory task
(Broadbent et al., 2004). For the NOR test, mice were subjected
to the familiarization phase. During this stage, each animal
explored the chamber containing two identical objects, for
10 min (Figure 1A). The behaviors of the 18-month-old WT
and tau−/− mice during the familiarization phase are shown
in the heat maps in Figure 1B. We observed that the 18-
month WT mice explored the chamber with the two objects for
less time than both the aged tau−/− and the 6-month mice
of both genotypes (Figure 1C). These observations suggested
that aged WT mice had reduced explorative abilities, whereas
tau−/− mice maintained their capacity. Two hours later, the
recognition phase was performed. During this stage, the mice
explored the chamber containing a familiar object and a novel
object for 5 min (Figure 1D). Figure 1E presents the heat maps
for the performance of the 18-month mice during this phase.
The aged tau−/− mice showed preference for the novel object,
in contrast to the aged WT mice. Quantitative analysis revealed
that during this phase, the 18-month tau−/− animals spent
significantly more time exploring the chamber for the novel
object compared to the WT mice of the same age (Figure 1F).
In addition, the behavior of the aged tau−/− mice was similar
to that of the 6-month tau−/− mice, suggesting that tau
ablation preserves the recognition memory that is normally
affected during aging.

Next, we evaluated the impact of tau deletion on spatial
learning and memory, another type of hippocampus-dependent
memory that is reduced during aging (Rosenbaum et al.,
2012). For this purpose, we performed the Barnes maze test
(Figure 1G). Figures 1H,I show the heat maps of 18-month
WT and tau−/− mice on training day 1 (Figure 1H) and 2
(Figure 1I). On each day, we measured the time that the mice
spent finding the escape chamber (escape latency). Aged tau−/−
mice exhibited reduced escape latency compared to the aged WT
mice (Figure 1J). These findings suggest that the aged tau−/−
mice learn faster than the aged WT mice. However, during the
second training day, all experimental groups were located in
the escape chamber with a similar latency (Figure 1K). Finally,
2 days after training, the trial was performed in the absence of
an escape chamber. The behavior of each experimental group
is shown in the heat maps and the representative tracks in
Figure 1L. We evaluated the time spent in the quadrant where
the escape chamber was previously located, and interestingly,
we observed that the aged tau−/− mice remembered the escape
zone, as did the animals belonging to both 6-month groups.
In contrast, the 18-month WT mice did not remember the
escape chamber location (Figure 1M). Therefore, these studies
indicate that the absence of tau prevented the loss of spatial
memory observed in the aged WT animals. Thus, tau deletion
preserves recognition and spatial memory that are normally
impaired during aging.

Tau−/− Mice Maintain Their Social
Abilities During Aging
During aging, decreased social contact has been reported (Shoji
et al., 2016). Sociability and social memory are processed by the
prefrontal cortex, hippocampus, hypothalamus, and amygdala
(Bicks et al., 2015). In aging, a reduced preference for novel
conspecific individuals occurs (Charles and Carstensen, 2010;
Smith et al., 2018). To evaluate whether tau deletion modified
social abilities during aging, we performed a social interaction
test (Figure 2; Jara et al., 2018). During the first phase, the
mice explored a chamber containing a mouse and an object
for 10 min (Figure 2A). Figure 2B shows heat maps of the
18-month WT and tau−/− mice. We observed that all groups
showed a preference for exploring the unknown mouse compared
with the unknown object, suggesting a similar ability to socialize
(Figure 2C). Subsequently, the object was replaced by a new
unknown mouse, and the experimental were animals to explore
the chamber for another 10 min (Figure 2D). The heat maps
showed that aged tau−/− mice spent more time with the new
mouse compared with the aged WT mice (Figure 2E). We found
that both 6-month groups preferred exploring the new mouse,
in contrast to aged WT mice that spent similar time exploring
the known and unknown mice (Figure 2F). Interestingly, this
analysis also revealed that aged tau−/− mice also preferred
exploring the new mouse (Figure 2F) indicating that the absence
of tau maintains social recognition memory during aging.

Finally, we performed a recognition-based attention test
to determine if aging affects the attentive behavior in WT
and tau−/− mice, since variations in this behavior could be
responsible for the changes detected in memory and social
abilities (Chun and Turk-Browne, 2007). For this test, five
different objects were placed in the chamber, as indicated in
Figure 2G. The mice explored the chamber containing the objects
for 3 min, and 15 s later, the chamber size was reduced, an old
object remained in the chamber (object 2), and a new object was
added (object 6). Figure 2H showed heat maps of the aged WT
and tau−/− mice during the test phase. We found that the aged
WT and tau−/− mice spent a similar time exploring the new
object (Figure 2I). Therefore, our results indicated that 18-month
WT and tau−/−mice did not show differences in their attention
capacity during aging. Thus, the changes observed between WT
and tau−/− mice could be related to memory loss occurring in
the aged WT mice that are prevented by the absence of tau.

Tau Absence Prevents Mitochondrial
Bioenergetics Failure Observed During
Aging
Mitochondrial dysfunction contributes to aging by increasing the
production of ROS and promoting deficits in the bioenergetic
processes (Chistiakov et al., 2014; Jara et al., 2019). Oxidative
damage and aging are strongly connected (Rottenberg and
Hoek, 2017). To determine if the absence of tau has a
significant effect on the oxidative damage occurring during
aging, we dissected the hippocampi of 18-month WT and
tau−/− mice, and the samples were analyzed by Western blot.
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FIGURE 1 | The absence of tau prevents the loss of hippocampal-dependent memory during aging. (A) Scheme of the novel object recognition (NOR) test,
familiarization phase. (B) Heat maps of the aged WT and tau−/− groups in the NOR familiarization phase. (C) Graph of exploration time for both objects 1 and 2,
during the familiarization phase. (D) Scheme of NOR testing phase; 2 h after the familiarization phase, the mice explored a familiar object and a novel object. (E) Heat
maps of the aged WT and tau−/− groups during the NOR testing phase. (F) Graph of exploration time of both old and novel objects, during the testing phase.
(G) Representation of the Barnes maze. (H,I) Heat maps and tracks of aged WT and tau−−/−− mice in the Barnes maze, during training days 1 and 2. (J,K)
Escape latency (time each mouse spent to find the escape chamber) on training days 1 and 2. (L) Heat maps of aged WT and tau−/− mice and representative
tracks until the finding of the escape chamber. (M) Graph of the time in the escape chamber quadrant. *p < 0.05, **p < 0.01; mean ± S.E.M.

We evaluated the levels of oxidized proteins using an anti-
HNE antibody that recognizes the stably formed HNE-protein
adducts (products of lipid peroxidation) (Bettio et al., 2017), and

anti-nitrotyrosine antibody that detects protein modifications
involving nitrotyrosine (Jara et al., 2018). Our results showed
that the levels of lipid peroxidation products were significantly
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FIGURE 2 | Tau−/− mice maintain their social abilities during aging. (A) Scheme of phase 1 of the social interaction test. (B) Heat maps of aged WT and tau−/−
mice during phase 1 of the social interaction test. (C) Graph of the exploration time of both the mouse and the object. (D) Scheme of phase 2 of the social
interaction test. (E) Heat maps of aged WT and tau−/− mice during phase 2 of the social interaction test. (F) Graph of the exploration time of both the old and new
mice. (G) Scheme of the object-based attention test. Mice were exposed to five objects (1–5) for 3 min (exploration phase). After a 15-s interval, the mice were
exposed to one old (2) and one novel object (6) for 3 min. (H) Heat maps showing data for the aged mice in the test. (I) Graph of time spent for the exploration of the
new object. *p < 0.05, **p < 0.01, ***p < 0.001; mean ± S.E.M.

reduced in the hippocampi of the aged tau−/− mice in
comparison to the WT mice of the same age, as indicated
by densitometry analysis (Figures 3A,B), whereas nitrotyrosine
protein levels showed no significant differences between the
two experimental groups (Figures 3A,C). These results show
that the absence of tau reduced oxidative damage mediated by
peroxidation in the aged tau−/− animals.

On the other hand, mitochondria are dynamic organelles that
change their size depending on intracellular and extracellular
signals (Sebastian et al., 2017). During aging, mitochondria are
prone to gradual deterioration (Chistiakov et al., 2014). For this
reason, we measured the mitochondrial mass in the hippocampi
of aged WT and tau−/− mice and did not detect any difference
between the two groups (Supplementary Figure 1A). Besides,
mitochondria undergo continuous cycles of fusion/fission events,
influencing their functionality (Sebastian et al., 2017). Therefore,
we measured the levels of proteins involved in mitochondrial

dynamics in both aged WT and tau−/− mice (Supplementary
Figure 1C). Fusion events are controlled by the dynamin-
related GTPases as well as mitofusins (Mfn1 and Mfn2) and
optic atrophy 1 (OPA1) proteins, which induce the fusion of
outer and inner mitochondrial membranes, respectively (Hood
et al., 2018). In contrast, fission is mediated by dynamin-related
protein 1 (Drp1), which is recruited to the outer membrane to
constrict mitochondria and induce their division, a process that is
mainly stimulated by Drp1 phosphorylation at Ser616 (Sebastian
et al., 2017). We observed that both fission and fusion protein
levels were not significantly different between the experimental
groups (Supplementary Figure 1B). Therefore, the absence of
tau did not affect the expression of the proteins that regulate
mitochondrial dynamics during aging.

Mitochondria are the main producers of ATP in neurons,
and during the aging process, they are particularly susceptible
to damage (Schon and Manfredi, 2003; Jara et al., 2019).
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FIGURE 3 | Tau absence prevents mitochondrial bioenergetics impairment observed during aging. (A) Western blot of hippocampal lysates from aged WT and
tau−/− mice for the measurement of oxidative damage with antibodies against 4HNE and n-Tyr. (B,C) Densitometric analysis of 4HNE (B) and n-Tyr (C) Western
blots. (D) Representative images of unfixed hippocampal slices from aged WT and tau−/− mice, stained with MitoTracker Red CM-H2Xros. (E) Quantitative analysis
of MitoTracker Red CM-H2Xros fluorescence intensity in the DG, CA1, and CA3 hippocampal regions. (F) Western blot and (G) densitometric analysis for
mitochondrial OXPHOS complexes I–V in whole hippocampal extracts from aged WT and tau−/− mice. (H) ATP concentrations in the hippocampus of aged WT
and tau−/− mice, expressed as pmol of ATP/µg of total protein. *p < 0.05; mean ± S.E.M. 4HNE, 4-hydroxynonenal; DG, dentate gyrus; n-Tyr, nitrotyrosine;
OXPHOS, oxidative phosphorylation.

To determine whether the absence of tau could be beneficial
for mitochondrial bioenergetics during aging, we incubated
unfixed hippocampal slices of aged WT and tau−/− mice
with the dye MitoTracker Red CMXH2Ros to measure the
mitochondrial membrane potential. This dye detects functional

mitochondria, and the fluorescence intensity is proportional
to mitochondrial membrane potential (Figure 3D; Jara et al.,
2018; Tapia-Rojas et al., 2019b). Figure 3D showed similar
mitochondrial membrane potential levels in all regions of the
hippocampus, including the dentate gyrus (DG), CA1, and CA3
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of aged WT and tau−/− mice (Figure 3E). Also, we evaluated
the protein levels of the mitochondrial respiratory complexes
involved in oxidative phosphorylation (OXPHOS) using the
antibody cocktail OXPHOS that contains a mix of antibodies
specific for the five mitochondrial complexes (Jara et al., 2018).
We observed that the two groups of mice had similar levels of
all mitochondrial complexes (Figures 3F,G). Finally, the main
mitochondrial function involves the production of ATP, and it
is known that during aging, ATP formation is reduced in the
hippocampus (Navarro and Boveris, 2010). Interestingly, when
we evaluated ATP production, we observed that the 18-month
tau−/− mice had significantly higher ATP levels compared to
WT mice of the same age (Figure 3H). Therefore, our results
indicate that the mitochondria in aged tau−/− mice maintain
their bioenergetics capacity during aging.

Aged Tau−/− Mice Exhibit Decreased
Levels of CypD, Which Reduces mPTP
Opening
The levels of CypD are increased in the brain of WT mice
during aging (Gauba et al., 2017). This is interesting because
CypD is a fundamental protein for the formation of the
mPTP (Du et al., 2008, 2011; Jara et al., 2019). To investigate
whether tau ablation alters the levels of mPTP components,
we performed Western blot analysis using hippocampal lysates
from aged WT and tau−/− mice (Figure 4A). We observed
that the levels of CypD were significantly reduced in the
aged tau−/− mice compared with the WT mice of the
same age, while the levels of adenine nucleotide translocase
(ANT) and ATP synthase proteins, two recognized protein
members of mPTP (Perez and Quintanilla, 2017), showed no
significant differences between the two groups as observed
by densitometry analysis (Figure 4B). Interestingly, we also
observed decreased mRNA levels of CypD in the 18-month
tau−/− mice (Figure 4C), suggesting decreased synthesis and
expression of CypD.

Importantly, reduced CypD expression prevents mPTP
opening in the brain and heart (Du et al., 2011; Hom et al.,
2011). Considering that increased calcium concentrations in
the mitochondria can induce mPTP opening (Baumgartner
et al., 2009), we evaluated the sensitivity to calcium overload
(mitochondrial calcium-buffering capacity) in enriched
mitochondrial preparations from aged WT and tau−/−
hippocampus. Fresh hippocampal mitochondria were exposed
to different calcium concentrations (10, 20, 50, 100, and
200 µM CaCl2) as indicated in Figure 4D. To detect
mitochondrial swelling as a consequence of mPTP opening
by increasing calcium concentrations, we measured the
absorbance changes at 540 nm (Karadayian et al., 2015).
Figure 4E shows the calcium overload curves of both
mouse groups, and interestingly, we observed that the
aged tau−/− mice exhibited lower sensitivity to calcium
overload compared to the aged WT mice (Figure 4E).
These observations indicate that tau deletion could reduce
premature mitochondrial mPTP opening induced by
calcium overload.

Hippocampal CypD Overexpression
Reduced Mitochondrial Bioenergetics in
the Aged Tau−/− Mice and Induced
mPTP Opening
The expression levels of the main proteins involved in mPTP
formation are modified during aging (Rottenberg and Hoek,
2017). CypD is increased in the brains of aged WT mice, and
this could be responsible for mPTP opening (Gauba et al., 2017).
To test the hypothesis that increased expression of CypD in WT
mice is involved in mitochondrial dysfunction occurring in aged
mice, we overexpressed CypD in aged tau−/− mice (17-month)
by lentiviral transduction (Figure 4F). Intra-hippocampal viral
administration was performed in both cerebral hemispheres.
Three weeks after viral infection, the levels of CypD were
measured. Similar to Figure 4B, we observed that the levels
of CypD were significantly reduced in the aged tau−/− mice
compared with the WT mice of the same age, while the levels
of CypD in the tau−/− group infected with the lentiviral vector
are significantly higher (Figures 4G,H). Then, we evaluated
the mitochondrial sensitivity to calcium overload (Figure 4I).
We observed that the aged tau−/− mice overexpressing CypD
(tau−/− CypD) had increased calcium sensitivity compared to
the aged tau−/− mice, which was similar to the aged WT
mice (Figure 4I). Importantly, these results indicate that CypD
overexpression is sufficient to reduce the mitochondrial calcium
buffering capacity, similar to WT mice (Figure 4G). Finally, we
measured the bioenergetics of mitochondria, by the evaluation of
ATP production. Most importantly, we observed that the aged
tau−/− CypD mice showed reduced ATP production compared
with the aged tau−/− mice (Figure 4J). Interestingly, the ATP
levels produced by the tau−/− CypD mice were similar to the
levels observed in aged WT mice, suggesting that tau contributes
to bioenergetics defects that occur during aging, by a mechanism
that involves CypD. Thus, CypD overexpression in tau−/−
mice replicated the mitochondrial defects observed in the aged
WT mice and suggested that tau contributes to mitochondrial
dysfunction in the hippocampus during the aging process.

Overexpression of CypD Reduced the
Improvement in Memory and Social
Abilities Exhibited in the Aged Tau−/−
Mice
Considering that mitochondrial dysfunction can induce cognitive
impairment (Mancuso et al., 2009) and that CypD overexpression
in the aged tau−/− mice resulted in a loss of mitochondrial
functionality, we sought to evaluate the behavioral performance
of the tau−/−CypD mice. First, we evaluated their social capacity
using the social interaction task (Jara et al., 2018). Figure 5A
illustrates the heat maps that represent the behavior of the aged
WT, tau−/−, and tau−/− CypD mice during the first stage. The
aged tau−/− CypD mice explored for a shorter time than the
aged tau−/− control mice, similar to the aged WT mice, showing
similar exploration times for both the mouse and the object
(Figure 5B). In the second stage, when the object was replaced
by a new mouse, we observed that only the aged tau−/− mice
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FIGURE 4 | Reduced mitochondrial calcium buffering and improved bioenergetics in the hippocampi of aged tau−/− mice are reverted by overexpression of CypD.
(A) Western blot of hippocampal lysates and (B) densitometric analysis of proteins that form the mPTP, including CypD, ANT, and ATP synthase in aged WT and
tau−/− mice. (C) Relative mRNA expression of CypD in aged WT and tau−/− mice. (D) Representation of mitochondrial membrane swelling after calcium overload
to determine mPTP opening in aged WT and tau−/− mice. (E) Response of isolated mitochondria after calcium overload. The decreased absorbance indicated
mitochondrial swelling. (F) Representation of lentiviral vector transduction in tau−/− mice for the overexpression of CypD [Lenti ORF particles (GFP-tagged)-mouse
peptidylprolyl isomerase D (Ppid; cyclophilin D) (#RC223397L2V. Origene)]. (G) Western blot of hippocampal lysates and (H) densitometric analysis of CypD protein
in aged WT, tau−/− control, and tau−/− overexpressing CypD mice. (I) Graphical representation of the response of isolated mitochondria after calcium overload in
aged WT, tau−/− control, and tau−/− CypD mice. (J) ATP concentrations measured in whole hippocampal extracts from aged WT, tau−/− and tau−/− CypD
mice. ATP concentration is expressed as pmol of ATP/µg of total protein extract. *p < 0.05, **p < 0.01; mean ± S.E.M.

spent more time investigating the new mouse (Figure 5C). In
contrast, the aged WT and tau−/− CypD mice spent a similar
time exploring the new and old mice (Figure 5C). These results
indicated that overexpression of CypD in tau−/− mice reduced
the social abilities that the aged tau−/− normally maintain
during aging. Thus, the impairment of social behavior observed
during aging could be related to the changes in CypD expression.
Additionally, we subjected the mice to the NOR test. During the

familiarization phase (Figure 5D), all groups of mice spent a
similar amount of time exploring the two objects. In contrast,
during the recognition phase, as shown in the heat maps, the
behaviors of tau−/− mice and tau−/− CypD were different
(Figure 5E). The aged tau−/−mice explored the novel object for
a significantly longer time, whereas the tau−/− CypD mice spent
the same amount of time as the WT mice in investigating the
new object (Figure 5F). This indicated that aged tau−/− CypD
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FIGURE 5 | Tau−/− mice overexpressing CypD showed reduced social abilities and hippocampus-dependent memory similar to aged WT mice. (A) Heat maps of
aged WT, tau−/− control, and tau−/− CypD mice during phase 1 of the social interaction test. (B) Graph of the exploration time of both the mouse and object for
the aged WT, tau−/− control, and tau−/− CypD mice. (C) Graph of the exploration time of both old and new mouse area for the aged WT, tau−/− control, and
tau−/− CypD mice. (D) Graph of the familiarization phase illustrating the exploration time of both objects 1 and 2 for the aged WT, tau−/− control, and tau−/−
CypD mice. (E) Heat maps of aged WT, tau−/− control, and tau−/− CypD groups during the NOR testing phase. (F) Graph of the exploration time of both the old
and novel objects by the aged WT, tau−/− control, and tau−/− CypD mice, during the testing phase. Escape latency during training days 1 (G) and 2 (H) for the
aged WT, tau−/− control, and tau−/− CypD mice. (I) Heat maps and representative tracks of aged WT, tau−/− control, and tau−/− CypD mice while seeking the
escape chamber. Graph of the time in the quadrant (J) and the area (K) that the aged WT, tau−/− control, and tau−/− CypD mice spent to find the escape
chamber. *p < 0.05, **p < 0.01, ***p < 0.001; mean ± S.E.M.

mice were incapable of recognizing the old object, and therefore,
the overexpression of CypD led to the loss of the recognition
memory. Finally, we evaluated the effects of CypD overexpression
on spatial learning and memory using the Barnes maze test
(Figures 5G–I). On each day of training, we measured the escape
latency, i.e., the time each mouse spent to find the escape chamber
(Figures 5G,H). Our results showed that during the first training
day, the aged tau−/− CypD mice and the aged tau−/− mice
learned the location of the escape chamber at a similar time.
This was in contrast to the aged WT mice that were incapable
of finding the escape chamber (Figure 5G). During the second
training day, we observed that the aged tau−/− mice exhibited
reduced escape latency compared with the aged WT and tau−/−
CypD mice (Figure 5H). These results indicated that, although
aged tau−/− CypD mice initially learned faster than the aged
WT mice, they had a similar behavior at the end of the training.
Finally, 2 days after training in the Barnes maze, a new trial was

performed in the absence of the escape chamber (Figures 5J,K).
The behaviors of the experimental groups are shown in the heat
maps and the representative tracks in Figure 5I. We measured
the time that the mice spent in the quadrant of the escape
chamber, and interestingly, the aged tau−/− mice remembered
the escape zone, in contrast to the WT and tau−/− CypD mice
(Figure 5J). More specifically, when we measured the time the
mice explored the area around the escape chamber, a similar
result was observed; the aged tau−/− mice found the correct
location, whereas the tau−/− CypD mice had lost this ability,
similar to the WT mice (Figure 5K). Therefore, these results
indicated that overexpression of CypD in the absence of tau
induced a loss of spatial memory and led to overall impairment
of the hippocampal-dependent memory during aging.

Altogether, our results indicated that CypD overexpression
in the aged tau−/− mice triggers mitochondrial dysfunction
and memory loss similar to the aged WT mice. Thus, these
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data strongly suggested that tau contributes to physiological
aging by a CypD-dependent mechanism. This is relevant
because this is the first study demonstrating that tau negatively
affects mitochondrial functionality and cognition during aging
and suggests a new target for the treatment of aging-
associated alterations.

DISCUSSION

In the present study, we used an aged (18-month) homozygous
tau-knockout (tau−/−) to identify the importance of tau in
the cognitive and mitochondrial alterations observed during
aging. We report that aged WT mice exhibit an impairment
of memory and social abilities, accompanied by reduced
ATP production and high mitochondrial calcium sensitivity
in the hippocampus. We show for the first time that the
absence of tau prevents cognitive impairment in aged mice
and mitochondrial dysfunction, evidenced by increased ATP
production and reduced sensibility to mitochondrial calcium
stress. Most importantly, the enhanced mitochondrial calcium-
buffering capacity could be related to the reduction in CypD
expression, since CypD overexpression in tau−/− mice led to
ATP deficiency and premature mitochondrial swelling, probably
due to mPTP opening. Thus, our results suggest that tau
contributes to the mitochondrial and cognitive impairment in
the hippocampus observed during normal aging and eventually
to the development of neurodegenerative diseases, such as AD.

Loss of specific cognitive abilities is common during aging
and in neurodegenerative diseases, such as AD (Fjell et al.,
2014; Jara et al., 2019). The hippocampus is crucial for learning
and memory; however, several studies suggest that the function
of the hippocampus diminishes with age (Bettio et al., 2017).
Likewise, other processes, dependent on the communication
with the hippocampus, including social capacity, are affected
by aging (Charles and Carstensen, 2010). In this study, we
performed a battery of cognitive tests and report that aged
tau−/− mice maintain their learning capacity, memorize, and
recognize objects and spatial locations, in contrast to aged WT
mice that showed a significant reduction in these capacities.
Besides, we observed normal sociability in the aged tau−/−
mice, while the aged WT mice lost the ability to interact with
an unknown new mouse. These results are consistent with a
previous report using the same genetic background of tau KO
mice by Dawson et al. (2001) (C57BL/6J background; 4- to 5-
month-old males) showing that tau deletion prevents memory
decline in adult mice exposed to chronic stress (Lopes et al.,
2016). While our work provides evidence that tau deletion
prevents cognitive impairment during aging, other studies using
tauGFP knock-in/knock-out mice (Stock No: 029219 | tauGFP,
Jackson Laboratory) or C57Bl6/SJL (F1) female mice (Stock
No. 100012, Jackson Laboratory) injected with Adeno-associated
virus (AAV) construct containing a shRNA to MAPT gene
showed that tau ablation in the hippocampus causes learning
and memory deficits (Biundo et al., 2018; Velazquez et al., 2018).
These contradictory results can probably be explained by the

diverse genetic background, the methodology used to generate
the ablation of tau, and the age of the animals used in the study.

Oxidative damage is characteristic of senescence and can
affect brain functions (Palomera-Avalos et al., 2017; Jara et al.,
2019). Oxidative stress is one of the most studied hypotheses
to explain aging and neurodegeneration (Barja, 2014; Jara et al.,
2019). Increased oxidative stress in the aging hippocampus is
the result of an imbalance between the production of oxidative
molecules and the anti-oxidant defense, leading to increased
levels of ROS species (Uttara et al., 2009; Huang et al., 2016; Jara
et al., 2019). Here, we demonstrate that the loss of tau prevents
the oxidative damage associated with the formation of 4-HNE
adducts, possibly by reducing ROS formation or increasing anti-
oxidant activity. Therefore, these results suggest that the tau
protein contributes to oxidative damage during aging, damage
that is exacerbated in AD brains.

Mitochondria are the main producers of ROS, a sub-product
of the respiratory chain (Chistiakov et al., 2014). Alterations
in mitochondrial function lead to increased ROS production
(Navarro and Boveris, 2010). In contrast, improvement of
mitochondrial function has a beneficial effect (Rottenberg and
Hoek, 2017). Supporting this idea, our group has previously
reported that reduced oxidative damage in the hippocampus
of young tau−/− mice could be the result of improved
mitochondrial performance (Jara et al., 2018). Therefore, we
evaluated this possibility in aged mice. Interestingly, we detected
significantly increased ATP production in the aged tau−/−
mice, indicating that mitochondrial bioenergetics are maintained
during aging in the absence of tau. This could explain, almost
in part, the early mitochondrial dysfunction observed in AD
(Wang et al., 2020).

Mitochondrial function is influenced by fusion and fission
events (Chistiakov et al., 2014; Wang et al., 2020). We
demonstrated that the loss of tau did not induce changes in
either fusion or fission proteins. Similarly, differences in the
mitochondrial mass could have repercussions for mitochondrial
function (Wenz, 2011; Chistiakov et al., 2014). However, we
detected similar mitochondrial mass in the aged tau−/− and
WT mice, indicating that the improvement of mitochondrial
ATP production detected in the absence of tau is independent
of mitochondrial dynamics or mass. Another possibility is an
inefficient OXPHOS process as a consequence of alterations in
the expression and/or activity of OXPHOS complexes (Reinecke
et al., 2009; Tatarkova et al., 2011). Our results indicate that
mitochondrial membrane potential and OXPHOS proteins did
not change in the absence of tau. Therefore, considering that aged
tau−/− mice present similar mitochondrial potential levels and
expression of the OXPHOS complexes, higher ATP production
may result from increased respiratory chain activity ATP synthase
dependent. Future studies are needed to explore this possibility.

Mitochondria have additional functions to ATP formation
(Perez et al., 2018a; Jara et al., 2019), contributing to cellular
homeostasis and cell death (Hurst et al., 2017; Pérez and
Quintanilla, 2017). These functions are partially regulated by the
mPTP, a channel whose prolonged opening induces deterioration
of cellular calcium homeostasis, oxidative stress, and decreased
ATP production (Panel et al., 2018). Excessive production of
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ROS promotes mitochondrial and cellular oxidative damage, and
neurodegeneration (Wenz, 2011; Jara et al., 2019). mPTP opening
can be triggered by ROS and mitochondrial calcium overload
(Hurst et al., 2017) both of which are enhanced in aging and
age-related neurodegenerative diseases (Panel et al., 2018). The
most known mPTP components are CypD, adenine nucleotide
translocase (ANT), and ATP synthase (Rottenberg and Hoek,
2017; Panel et al., 2018), which mediate its function, although
currently, its composition and structure, except for CypD, is not
completely resolved (Jonas et al., 2015; Panel et al., 2018). We
evaluated the components of this multi-protein complex, and
interestingly, we observed that aged tau−/− mice had reduced
levels of CypD, whereas the levels of the other proteins were
similar to the levels seen in the aged WT mice. This is important
because CypD is a crucial component for the formation of mPTP
(Hom et al., 2011; Gauba et al., 2017; Perez and Quintanilla,
2017). In fact, our results are in concordance with previous
studies showing that CypD deficiency increases mitochondrial
function and cognitive abilities in transgenic mouse model of
AD, indicating a protective effect in mice with neurodegenerative
diseases (Du et al., 2011).

Mitochondria act by buffering high calcium concentrations
(Hurst et al., 2017). However, when mitochondria are incapable
of regulating calcium overload, they undergo swelling and

promote mPTP opening, ultimately resulting in cell death (Perez
and Quintanilla, 2017). To evaluate if reduced levels of CypD
observed in tau−/− mice decreases the calcium sensibility
that leads to mitochondrial swelling, we exposed isolated
mitochondria to increasing calcium concentrations (Figure 4).
Notably, we observed that the absence of tau reduced calcium
sensitivity associated with mPTP opening. This is important
because mitochondrial calcium dysregulation leads to prolonged
mPTP opening and contributes to neurodegeneration, such as
AD (Gauba et al., 2017; Panel et al., 2018). Therefore, we propose
a possible role for tau in promoting mitochondrial mPTP-
related swelling under physiological conditions, such as aging and
neuronal damage that could lead to AD.

To validate that increased CypD levels induced by tau
are responsible for mitochondrial and cognitive abnormalities
detected in aged WT mice, we overexpressed CypD in aged
tau−/−mice using a lentiviral vector.

Three weeks after transduction, we detected reduced
mitochondrial bioenergetics in these animals, similar to
that observed in aged WT mice. In particular, aged tau−/−
mice overexpressing CypD presented reduced levels of ATP,
accompanied by increased calcium sensitivity, associated with
mPTP opening. These results indicate that the absence of
tau contributes to improved mitochondrial function reducing

FIGURE 6 | Possible role of tau protein on mitochondrial dysfunction and cognitive impairment during aging. Our results revealed that tau ablation significantly
decreased the expression of CypD and prevented the mitochondrial and cognitive impairment associated with normal aging. However, based on studies in
Alzheimer’s disease and other pathologies, we suggest two scenarios: (i) Modified forms of tau, including phosphorylated and cleaved forms, could induce increased
ROS production and higher calcium concentrations, ultimately leading to mitochondrial dysfunction and mPTP opening; (ii) tau interact with mitochondrial proteins,
such as CypD, promoting mitochondrial failure and more active mPTP. All these events could contribute to the cognitive deficits observed during normal aging.
CypD, cyclophilin-D; mPTP, mitochondrial permeability transition pore; ROS, reactive oxygen species.
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CypD expression. Considering that mitochondrial function
is fundamental for brain function and cognition gave the
high energy demand of the synapses (Hara et al., 2014),
this could explain the behavioral changes observed in WT
mice. We observed negative behavioral changes, suggesting that
overexpression of CypD affects recognition and spatial memory,
and social abilities in the aged tau−/− mice. It is important to
mention that we perform sham surgery in the control group, to
reduce the effects of the surgical procedure when we compare
these animals with tau−/− mice infected with a lentiviral vector
containing CypD-GFP. However, to be sure that the complete
effect is related to CypD overexpression and not to the expression
of an unrelated gene, such as GFP, a lentiviral vector containing
only GFP could be used; nevertheless, we do not have that
viral vector at this time. Future studies may revise this question
to discard effects related to GFP expression. Also, to confirm
the dependence between tau and CypD on mitochondrial and
hippocampal function during aging, a knockdown of CypD in
aged WT mice will be generated, hoping that this will reduce
age-associated cognitive and mitochondrial disturbances.

Our results revealed that tau ablation significantly decreased
the expression of CypD and thus prevented the mitochondrial
and cognitive impairment associated with normal aging. In light
of these findings, additional studies are needed to understand
the mechanism by which tau induces increased levels of CypD
and mitochondrial dysfunction. However, based on studies on
AD or other pathologies, two hypotheses have been proposed: (i)
Modified forms of tau could induce increased ROS production
and higher calcium concentrations (Panel et al., 2018; Perez
et al., 2018a), which could result in mitochondrial dysfunction
and ultimately in mPTP opening; (ii) Tau may interact with
mitochondrial proteins (Liu et al., 2016), such as CypD (Amadoro
et al., 2010) promoting mitochondrial failure and a more active
mPTP. All these events could contribute to cognitive deficits
observed in normal aging (Figure 6). The hypothesis that
tau could interact with CypD are results of previous reports
using human AD brain samples in which it was demonstrated
that NH2-derived tau fragment interacts with CypD (Amadoro
et al., 2012). This idea is also supported by previous studies
of co-immunoprecipitation that indicate that tau interacts with
an ample variety of proteins, of which 51% correspond to
membrane-bound proteins (Liu et al., 2016). More specifically,
within the membrane-associated target, 40.4% correspond to
mitochondrial proteins (Liu et al., 2016).
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INTRODUCTION

Alzheimer’s disease (AD) is the most common type of dementia and its prevalence is expected to
rise in response to an aging human population. Yet, there is no disease-modifying drug currently
available. The neuropathological hallmarks of AD are amyloid plaques composed of amyloid ß (Aß)
peptides derived from successive cleavages of Amyloid Precursor Protein (APP) and neurofibrillary
tangles (NFTs) constituted of the microtubule-associated protein tau (Brion, 2006). In AD brains,
tau is hyperphosphorylated and aggregated to form paired helical filaments (PHF-tau). The disease
pathogenesis precedes the overt clinical symptoms by 10–15 years. Early diagnosis and biomarkers
are thus crucial for future clinical trials of AD. However, current standard biomarkers such as
amyloid-PET scans are highly expensive and the patients are exposed to a considerable amount
of ionizing radiation at each test. Cerebrospinal-fluid analyses for Aß and tau are highly invasive
due to lumbar punctures (Dolgin, 2018). We need to search for additional biomarkers that are less
expensive and less invasive.

Emerging evidence suggests that Aß modifies the metabolism of phosphoinositides (PIs)
(Berman et al., 2008; Kam et al., 2016). PIs control major signaling pathways and cell processes in
eukaryotic cells. Ten enzymes of the inositol and phosphoinositide 5-phosphatases (hereafter, PI 5-
phosphatases) have been identified in the human genome i.e., INPP5A, INPP5D (SHIP1), INPPL1
(SHIP2), INPP5G (SYNJ1), INPP5H (SYNJ2), OCRL, INPP5E (Pharbin), INPP5B, INPP5J (PIPP)
and INPP5K (SKIP) (Figure 1). Except for INPP5A, PI 5-phosphatases essentially dephosphorylate
PI(4,5)P2 and PI(3,4,5)P3 at the 5-position of the inositol ring with different degrees of catalytic
efficiency and selectivity for each isoenzyme. PI 5-phosphatases are involved in fine-tuning
regulation of PI(4,5)P2 and PI(3,4,5)P3, key intracellular signaling molecules known to be present
in different subcellular compartments of the cells. Recent genetic and epigenetic studies have
unequivocally suggested that some of the PI 5-phosphatases are implicated in AD, in addition to
several other human diseases (Ramos et al., 2019). In this opinion article, we review recent findings
on the PI 5-phosphatases in relation to AD, aging and cognitive functions. Such information could
be potentially useful for developing novel biomarkers for AD in the future.
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FIGURE 1 | The figure shows the schematic illustrations of the major domains of PI 5-phosphatases and summarizes the implications of PI 5-phosphatases and PIs in

AD. Each PI 5-phosphatase contains a highly conserved 5-phosphatase domain shown in green. PI, phosphoinositide; SHIP1, SH2 domain-containing inositol

polyphosphate 5-phosphatase-1; SHIP2, SH2 domain-containing inositol polyphosphate 5-phosphatase-2; SYNJ1, Synaptojanin 1; SYNJ2, Synaptojanin 2; OCRL,

(Continued)
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FIGURE 1 | oculocerebrorenal syndrome of Lowe, PIPP, proline-rich inositol polyphosphate 5-phosphatase; SKIP, skeletal muscle and kidney enriched inositol

phosphatase; CAAX, CAAX motif; SH2, Src homology 2; PH, Pleckstrin-homology; PRD, proline-rich domain; NPxY, a conserved tyrosine phosphorylation motif

(Asn-Pro-x-Tyr) for binding to a phospho-tyrosine binding (PTB) domain; SAM, sterile alpha motif; SAC1, suppressor of actin 1; RRM, RNA recognition motif; ASH,

ASPM-SPD2-Hydin domain; RhoGAP, Rho GTPase-activating protein domain; CB, clathrin binding domain; SRD, serine rich domain; SKICH, SKIP COOH terminal

homology domain.

INPP5A and Cognitive Functions
Unlike other PI 5-phosphatase family members, INPP5A
recognizes only soluble inositol 1,4,5-trisphosphate
[Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate
[Ins(1,3,4,5)P4] as substrates. INPP5A is ubiquitously expressed
including in the hippocampus and prefrontal cortex, the brain
regions highly affected in AD, and is abundantly detected in
cerebellum (Liu et al., 2020). INPP5A negatively controls the
mobilization of intracellular calcium by decreasing Ins(1,4,5)P3
levels (De Smedt et al., 1997). DNA methylation of the INPP5A
gene is increased in association with aging in neurons (Gasparoni
et al., 2018). Meta-analysis of blood-based DNA methylation has
shown that the methylation of cg12507869 located in the INPP5A
gene had a significant negative correlation with phonemic verbal
fluency and was associated with logical memory and vocabulary
(Marioni et al., 2018). Blood-based DNA methylation of
cg12507869 in the INPP5A could be thus considered as a
potential biomarker for aging and cognitive functions.

SHIP1 and AD
SHIP1 is a hematopoietic-specific PI 5-phosphatase activated

downstream of a multitude of receptors for growth factors,

cytokines, antigens, immunoglobulin and toll-like receptor

agonists. Once activated and correctly localized, SHIP1

generally acts as a negative regulator of signaling processes in

hematopoietic cells, for example on the B cell receptor activation

signaling pathway (Ramos et al., 2019). SHIP1 is detected in
the brain, primarily in microglia reflecting its myeloid origin.
Genome-wide association studies (GWAS) have identified the
risk variant rs35349669 in INPP5D, the gene encoding human
SHIP1 for late-onset AD (Lambert et al., 2013). INPP5DmRNA is
significantly upregulated in human AD brains and in transgenic
mouse brains with knock-in mutations of APPNL−G−F/NL−G−F

(Castillo et al., 2017). INPP5D mRNA expression in peripheral
leucocytes is elevated in early AD but is decreased with cognitive

decline (Yoshino et al., 2017). Further long-time follow-up of
the participants would be necessary to decipher the correlation

between the level of INPP5DmRNA and cognitive decline. Since
SHIP1 converts PI(3,4,5)P3 to PI(3,4)P2, the amounts of these

PIs in the blood leucocytes may also be altered and needs to
be further investigated (as discussed in section PI Metabolism
and Autophagic-Endosomal-Lysosomal Abnormalities). Taken
together, the level of INPP5D mRNA in leucocytes could be an
interesting target to develop a blood-based biomarker in the
early stages of AD.

SHIP2 and AD
SHIP2, encoded by INPPL1, is ubiquitously expressed including
in the brain (Muraille et al., 1999). By using PI(3,4,5)P3 as

substrate, SHIP2 controls PI(3,4)P2 content, a major SHIP2
product (Ghosh et al., 2018). SHIP2 can also dephosphorylate
PI(4,5)P2, another albeit less potent substrate (Elong Edimo
et al., 2016). PI(3,4)P2 is scarce under normal conditions but
increases through signaling following PI 3-kinase activation.
This lipid plays critical roles as a second messenger in cell
migration, polarity, feedback control of PI(3,4,5)P3 generation,
and basal mTORC1 activity (Ramos et al., 2019). SHIP2 is
directly implicated in several human diseases: mutations in
INPPL1 cause opsismodysplasia, a rare autosomal recessive
disease characterized by delayed bone maturation (Fradet and
Fitzgerald, 2017). SHIP2 is also upregulated in some cancer cells,
particularly in aggressive human breast cancer cells (Ghosh et al.,
2018). SHIP2 negatively regulates insulin/IGF-I actions and is
implicated in type 2 diabetes and metabolic syndrome (Marion
et al., 2002). Recent network-based approach has unraveled that
SHIP2 is also linked to AD and cognitive decline: upregulation
of INPPL1 transcript in the brain significantly correlates with
cognitive decline in human AD patients (Mostafavi et al., 2018).
The same study also reported that SHIP2 immunoreactivity
was detected in astrocytes and neurons in the post-mortem
human brain tissues of AD patients and that lentivirus-
mediated down regulation of SHIP2 in cultured astrocytes
significantly reduced Aß production (Mostafavi et al., 2018).
Other independent studies have reported SHIP2 functions as
a mediator of amyloid toxicity via tau hyperphosphorylation
(Kam et al., 2016) and actin-cytoskeleton reorganization (Lee
et al., 2019). Kam et al. reported that the interaction between
Aß and the FcγRIIb immuno-receptor leads to a translocation
of SHIP2 to the plasma membrane to form a protein complex
in which SHIP2 dephosphorylates PI(3,4,5)P3 into PI(3,4)P2.
Increased amounts of PI(3,4)P2 lead to decreased inhibitory
phosphorylation of GSK3ß at Ser9 via endoplasmic reticulum
(ER) stress in cultured neurons (Kam et al., 2016). Consequently,
tau phosphorylation by GSK3ß is increased by Aß via FcγRIIb-
SHIP2 complex (Kam et al., 2016). SHIP2 inhibitors are thus
under active scrutiny as a novel therapeutic target for AD.
Actually, SHIP2 inhibitors represent new treatments for several
diseases: SHIP2 inhibition has been reported to partially rescue
memory deficits in transgenic mouse models of diabetes and
AD (Soeda et al., 2010; Kam et al., 2016) and to prevent
metastasis in breast cancer cells (Ghosh et al., 2018). Since
both SHIP1 and SHIP2 play critical roles in antagonizing
microglial proliferation and phagocytosis, the use of both SHIP1
and SHIP2 inhibitors has been proposed in AD to enhance
basal microglial homeostatic functions for therapeutic purposes
(Pedicone et al., 2020). Although SHIP2 could be a potential
biomarker and a valuable therapeutic target for AD, it remains
largely elusive whether SHIP2 undergoes a significant alteration
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in subcellular localization and post-translational modifications
during the progression of the disease. SHIP2 has more than
20 putative phosphorylation sites and its phosphatase activity
and substrate recognition are, at least partially, regulated by
phosphorylation, protein-protein interaction and subcellular
localization (Elong Edimo et al., 2011). Given that SHIP2 is
translocated to plasma membranes upon Aß-FcγRIIb interaction
(Kam et al., 2016), subcellular localization of SHIP2 should be
significantly altered in AD brains. Since FcγRIIb activation leads
to tyrosine phosphorylation of SHIP2 (Muraille et al., 1999), the
post-translational modifications of SHIP2 could be altered in the
affected areas of AD brains. It remains to be carefully determined
in post-mortem brain tissues of AD patients whether there are
changes in SHIP2 subcellular localizations, post-translational
modifications and the impact of SHIP2 upregulation in AD on
PI amounts, particularly PI(3,4,5)P3 and PI(3,4)P2.

SYNJ1 and SYNJ2
SYNJ1 and SYNJ2 are both highly conserved and their genetic
variants are associated with cognitive abilities in a cohort
with a mean age of 70 (Lopez et al., 2012). SYNJ1 is a
brain-enriched presynaptic phosphatase involved in synaptic
vesicle recycling, clathrin-coated vesicle uncoating at synapse
(Cremona et al., 1999) and autophagosomal maturation within
presynaptic terminals (Vanhauwaert et al., 2017). SYNJ1, whose
gene is located in chromosome 21, is linked to endolysosomal
abnormalities in Down syndrome (Cossec et al., 2012). Several
mutations in SYNJ1 gene are associated with early-onset
Parkinsonism (Tran et al., 2020). Some of the polymorphisms
in SYNJ1 are also linked with age of onset in familial AD,
late-onset AD and Down syndrome with AD (Miranda et al.,
2018). SYNJ1 is expressed in neurons and is implicated in Aß
toxicity (Berman et al., 2008), synaptic toxicity (McIntire et al.,
2012) and Aß clearance (Zhu et al., 2013). The mRNA level
of SYNJ1 is significantly upregulated in post-mortem AD brains
in association with APOE genotype (Zhu et al., 2015; Ando
et al., 2020). SYNJ1 protein undergoes a significant solubility
change and is co-enriched with PHF-tau in the sarkosyl-
insoluble fraction (Ando et al., 2020). SYNJ1 immunoreactivity
is detected in actin-positive Hirano bodies, some NFTs and
plaque-associated dystrophic neurites in post-mortem human
AD brains (Ando et al., 2020). Such aberrant alteration of
mRNA levels, protein localization, and protein solubility of
SYNJ1 could be applied to establish a valid biomarker for AD.
While SYNJ1 is brain specific, its paralog SYNJ2 is ubiquitously
expressed, but is also abundantly expressed in the synapse. In the
temporal cortex from patients with depressive disorder, SYNJ2
transcript expression is significantly decreased (Aston et al.,
2005). Furthermore, differential methylation in the gene of SYNJ2
has been also reported in association with aging in neuronal cells
(Gasparoni et al., 2018).

Potential Involvements of Other PI
5-Phosphatases in AD
The implication of the other members of PI 5-phosphatase family
in AD remains largely unknown. Given that AD is associated
with autophagic-endosomal-lysosomal dysfunction (Nixon et al.,
2008), we speculate that INPP5E and OCRL, highly expressed

in the brain and critical in autophagosome-lysosome fusion (De
Leo et al., 2016; Hasegawa et al., 2016), might be involved in
dysregulation of autophagy in AD brains.

PI Metabolism and
Autophagic-Endosomal-Lysosomal
Abnormalities
Consistent with alterations of some PI 5-phosphatases observed
in AD brains, there are substantial findings suggesting that PIs
undergo dysregulation during the disease progression in AD
brains (Stokes andHawthorne, 1987) and in the AD blood plasma
(Mapstone et al., 2014). In the AD prefrontal cortex where both
amyloid and tau pathologies are abundant, the amounts of PI
3-phosphate (PI3P) and PI(4,5)P2 are significantly decreased
(Morel et al., 2013). Deficiency of PIs in AD brains may be linked
to autophagic-endosomal-lysosomal abnormalities observed in
neurons of the AD patients even at an early stage (Nixon et al.,
2008). Considering that PIs regulate membrane dynamics, we
hypothesize that autophagic-endosomal-lysosomal abnormalities
could be a potential target for developing AD biomarkers. For
instance, endosomal morphology alteration has been observed in
iPSC-neurons derived from AD fibroblasts (Israel et al., 2012)
and AD blood monocytes (Corlier et al., 2015). Whereas the
precise mechanisms underlying endosomal abnormalities remain
to be determined, such endosomal alterations in peripheral cells
could be considered as a novel potential approach to develop
AD biomarkers.

DISCUSSION

Upregulation of some PI 5-phosphatases and PI dysregulations
have been evidenced in AD and such alterations could be
useful to develop new biomarkers for AD. Careful investigations
will be needed to assess if these alterations are AD-specific
or also associated with other diseases. Blood-based analyses of
some PI 5-phosphatases, PI metabolism, transcriptomic and
epigenetic changes have demonstrated alterations in AD and are
conceivable strategies toward development of new biomarkers.
Further studies will also be needed to evaluate the sensitivity
and the specificity of these alterations during the progression
of AD compared to currently available other markers such
as those of PET and CSF analyses. These studies will be
critical for deciphering the most reliable biomarkers and their
complementarity for the diagnosis and the prognosis of this
devastating disease.
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The ability of tau aggregates to recruit and misfold monomeric tau and propagate
across brain regions has been studied extensively and is now recognized as a
critical pathological step in Alzheimer’s disease (AD) and other tauopathies. Recent
evidence suggests that the detection of tau seeds in human samples may be relevant
and correlate with clinical data. Here, we review the available methods for the
measurement of such tau seeds, their limitations and their potential implementation for
the development of the next-generation biomarkers.

Keywords: tau, seed, biomarker, Alzheimer’s disease, cerebrospinal fluid

INTRODUCTION

The accumulation and deposition of tau protein aggregates in the human brain is a hallmark
of Alzheimer’s disease (AD) and other tauopathies. The capacity of certain toxic tau species or
conformers to propagate from one cell to another and template or “seed” endogenous tau in a
prion-like mechanism has been now widely studied and demonstrated in various disease models.
In vitro, the aggregation of recombinant tau into paired helical filaments is accelerated by the
addition of pre-formed seeds, suggesting a seeded nucleation process that results in the elongation
of aggregates (Friedhoff et al., 1998; von Bergen et al., 2000). In cellular models, tau aggregates are
internalized and induce aggregation of intracellular monomeric tau (Frost et al., 2009; Guo and Lee,
2011; Kfoury et al., 2012). In transgenic mice overexpressing mutant tau, the injection of synthetic
tau fibrils or brain lysates from patients with tauopathies induces aggregation of tau and the spread
of the pathology to distant brain regions (Clavaguera et al., 2009; Iba et al., 2013). The critical role
of tau seeding and spreading in the pathogenesis of AD is further supported by the stereotypical
progression of tau pathology across brain regions that has been described by neuropathological
studies (Braak and Braak, 1991) and confirmed more recently by molecular imaging studies (Cho
et al., 2016; Scholl et al., 2016; Schwarz et al., 2016). Moreover, seed-competent tau is detected in
the synaptic compartment in brain regions along the Braak staging before the appearance of the
pathology (Holmes et al., 2014; DeVos et al., 2018). This soluble seed-competent species represent
a small percentage of total tau that elutes as a high molecular weight (>∼300,000) fraction from a
size exclusion chromatography column (Takeda et al., 2015, 2016).

Using modern AD biomarkers including tau and amyloid imaging by positron emission
tomography (PET), volumetric magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF)
measurement of Aβ and tau (and in the near future plasma levels of Aβ and tau), one can accurately
diagnose AD at a presymptomatic or prodromal stage [reviewed in Cohen et al. (2019), Zetterberg
and Bendlin (2020)]. However, there is currently no available biomarker that can predict on a
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time scale the clinical fate of an individual with evidence of brain
amyloid or tau neuropathology. Recently, we have demonstrated
that the tau seeding activity in postmortem AD brain extracts
is quantitively and qualitatively correlated with disease severity
and rate of progression (Dujardin et al., 2020). Therefore, the
quantification of tau seeds in human biofluids such as CSF
could represent a potential prognostic biomarker that may greatly
improve individual patient care.

Here, we review the currently available quantitative methods
to measure seed-competent tau, their advantages and limitations
as well as their potential development for a broader use in a
biomarker pipeline.

CEREBROSPINAL FLUID BIOCHEMICAL
ASSAYS

The measurement of Aβ42, total tau (t-tau) and phospho-tau
(p-tau) in the CSF by immunoassays is a core component of
AD clinical criteria (Frisoni et al., 2017; Jack et al., 2018). The
typical profile in AD patients is characterized by high level
of t-tau and p-tau and reduced level of Aβ42. The sensitivity
and specificity of these measures varies greatly across studies.
A recent meta analysis concluded that they may be better
used to rule out the diagnosis of AD because of a greater
sensitivity than specificity (Ritchie et al., 2017). High CSF
t-tau is generally considered as a measure of acute injury
or ongoing neurodegeneration (Blennow et al., 1995). It is
therefore not specific for AD and is found elevated in rapidly
progressive dementia such as Creutzfeldt Jakob disease or in
acute traumatic brain injury or stroke (Hesse et al., 2000;
Ost et al., 2006; Skillback et al., 2014). Elevated CSF p-tau,
is found in AD and is therefore useful to discriminate AD
from other dementia such as dementia with Lewy bodies or
frontotemporal dementia (Hampel et al., 2004). Interestingly, in
non-AD tauopathies (or FTLD-tau), even though pathological
brain aggregates consist in phosphorylated tau, inconsistent
findings are reported in the literature regarding CSF levels of
t-tau or p-tau. Discrepant studies have reported elevated t-tau
and p-tau (Casoli et al., 2019), high t-tau but normal p-tau
(Foiani et al., 2019) normal level of both (Goossens et al.,
2018) or even decreased level of both (Wagshal et al., 2015).
Those studies rely on ELISA-based quantitation which depend
on antibody epitopes. While p-181 epitope is usually used
for p-tau detection, the use of other phospho-epitope could
potentially help discriminate tauopathies. The CSF biomarkers
are useful from a diagnostic perspective in AD. However, their
performance in assessing clinical progression of the disease
or conversion to dementia is variable in the literature. Some
studies found a correlation between elevated t-tau and p-tau
with faster decline or higher mortality (Samgard et al., 2010;
Degerman Gunnarsson et al., 2014). Other longitudinal studies
found no correlation or even a relative stability of tau levels
during the course of the disease (Andreasen et al., 1999;
Sunderland et al., 1999; Vemuri et al., 2009; Williams et al.,
2011). A recent study found a correlation between t-tau and
p-tau levels and faster cognitive decline in ApoE-ε4 carriers

only, which confirmed their limited predictive utility (Wattmo
et al., 2020). Recently, the sensitivity of assays to detect p-tau in
plasma has been improved. The plasma levels that are typically
measured fall in a range between 1 and 10 pg/ml. Several
recent studies have demonstrated that elevated plasma p-tau (p-
tau181 or p-tau217) levels can discriminate AD from controls
or from other neurodegenerative dementias (Janelidze et al.,
2020; Palmqvist et al., 2020; Thijssen et al., 2020). Interestingly,
plasma p-tau181 seemed to correlate with CSF p-tau181 and
tau burden on PET imaging (Janelidze et al., 2020). These
promising results need to be confirmed in larger primary
care cohorts to validate the feasibility and clinical utility of
this new biomarker.

CELL-BASED ASSAYS

The development of reporter cell lines, based on Förster
resonance energy transfer (FRET) has been an important step
in the understanding of the prion-like propagation of tau
(Holmes et al., 2014). This type of biosensor is currently
widely used to detect tau seeding activity in brain samples.
It relies on the overexpression of the repeat domain (RD)
of tau with the pro-aggregating P301L mutation fused to
either a cyan fluorescent protein (CFP) or yellow fluorescent
protein (YFP). After exposure to exogenous seed-competent
tau, fluorescent reporters aggregate, which produce FRET signal
that is typically quantified by flow cytometry, 24–72 h after
exposure to tau seeds (Furman et al., 2015) (Figure 1). The
original and most commonly used biosensor cell line is a
clonal HEK293T line that was developed by the group of Marc
Diamond and that is now commercially available (ATCC CRL-
3275). Moreover, a similar reporter system can be used in
mouse primary neuronal cells (Holmes et al., 2014). Slightly
modified versions of this assay have also been tested by other
groups. For instance, different fluorescent protein pairs have
been used to increase the dynamic range of the assay (Chen
et al., 2019). The addition of liposomes (lipofectamine) to
facilitate the transduction of seeds into cells greatly increases
the sensitivity of the biosensor assay but bypasses tau uptake
mechanisms and therefore does not reflect seeding as it happens
in the brain. A recent report suggests that the fusion of tau
RD to fluorescent proteins may induce steric hindrance that
avoids the elongation of tau aggregates into paired helical
filaments (Kaniyappan et al., 2020b). The authors propose that
the increase of FRET signal after exposure to seed-competent
tau may result from cellular processes different from aggregation.
Nevertheless, in a heterogeneous group of AD patients, the use
of biosensor cells transduced by lipofection analyzed by live
cell imaging and image processing could consistently detect
a lag phase followed by an exponential elongation phase and
a plateau phase in the aggregation, suggesting that the assay
is relevant to seeding in the disease process (Dujardin et al.,
2020). The use of such biosensor is therefore an interesting
approach to quantify seed-competent tau in human biofluids.
While the assay is sensitive enough to quantify seeds in
postmortem ventricular CSF (Takeda et al., 2016), lumbar CSF
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FIGURE 1 | The most promising techniques for the quantitation of tau seeding activity in human biofluid. (A) In cell-based assay, seed-containing sample is incubated
on a biosensor cell line overexpressing tau linked to either a CFP or YFP fluorescent protein. Upon aggregation, energy transfers between CFP and YFP allows for
the detection of FRET signal using flow cytometry. Signal is quantified as integrated fret density which is the product between the percentage of FRET-positive cells
and the median fluorescence intensity in the FRET channel. (B) In RT-QuIC, seed-containing material is incubated with recombinant tau substrate with thioflavin T in
optimized conditions. Seed-competent material induces the aggregation of the substrate which generate ThT fluorescence that is measured over time.

requires concentration steps that may alter quantitative aspect
of measurement (Takeda et al., 2016; Crotti et al., 2019). Thus,
some optimization needs to be done to improve the assay
sensitivity and tailor it for a clinical use with reasonable volume
of CSF. Such optimization may include ways to enhance the
aggregation of FRET probes, including using tau constructs that
may be more disease-relevant such as fragments covering the
whole structure of amyloid core of tau aggregates (Fitzpatrick
et al., 2017), or adapting the linker between fluorescent reporters
and the tau protein to avoid steric hindrance (Kaniyappan
et al., 2020a). In addition, adapting the fluorescent protein pairs
to increase the FRET efficiency may also increase the signal
produced by reporter cell lines (Bajar et al., 2016). A cell-
based assay was able to detect tau seeding in brain from
various tauopathies (Sanders et al., 2014). However, whether
specific probe construct will be able to discriminate seeds
from different pathologies has yet to be demonstrated. Even if
some adaptations need to be tested and validated, they appear

realistic and may contribute to push FRET based biosensor
to a clinical application. Fluorescence-based assays for routine
diagnostics are already used in various clinical fields such as
oncology or immunology.

SEED AMPLIFICATION ASSAYS

The capacity of proteopathic seeds from neurodegenerative
disorders to self-propagate, recruit and template the aggregation
of monomers has been exploited in a wide range of biomarker
assays. The demonstration that infectious prions could misfold
native prion protein and generate seeds in a cell-free environment
opened the way to this type of assay (Kocisko et al., 1994).
Various generations of assays using either unaffected brain
sample as substrate (Saborio et al., 2001) or Escherichia coli-
produced recombinant prion protein (Atarashi et al., 2007)
have been developed over the years and led to the widely
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used technique of Real-Time Quaking-Induced Conversion (RT-
QuIC) for the diagnosis of sporadic Creutzfeldt Jakob disease
(Atarashi et al., 2011; Orru et al., 2014). This system relies
on the incubation in a 96-well plate, of biospecimen, typically
CSF, with recombinant prion protein in excess, thioflavin T;
in a defined buffer, at a controlled temperature (42◦C), with
shaking cycles over the course of several days. Thioflavin T
fluorescence is measured every 45 min (Figure 1). The mean
of highest fluorescence values over the course of the analysis
is compared to control samples to determine positivity. In
the presence of seeding-competent material, the typical trace
starts with a lag phase that corresponds to the time needed
for aggregating material to reach a concentration that can be
detected by thioflavin T. The signal then reaches a plateau
that reflects the conversion of all monomer substrate into
amyloid (Schmitz et al., 2016). Similar methods have been
used to detect seeds in synucleinopathies or tauopathies. The
specificity of the seed amplification relies on the design of the
substrate protein. Therefore, different RT-QuIC assays have been
initially reported to detect specifically 3R, 4R, or 3R/4R seeds
in corresponding tauopathies. For the detection of seeds in
Pick’s disease, which is characterized by 3-repeat tau deposition,
a K19 tau fragment from 244 to 372, lacking the second
repeat was used (Saijo et al., 2017). The only cysteine was
mutated to serine to prevent the formation of disulfide bonds
during the reaction. Despite the fact that this fragment does
not cover the entire structure of Pick’s disease’s tau filaments
(Falcon et al., 2018), RT-QuIC could detect tau seeds in
postmortem CSF with very high sensitivity (Saijo et al., 2017).
A modified version of this assay, incorporating a second tau
fragment covering the entire cryoEM structure of AD paired
helical filaments (residues 306–378) was able to detect seeds
in AD brain (Kraus et al., 2019). When an extended 3-repeat
cysteine free K12 fragment spanning from 244 to 400 was
used, the self-polymerization of the probe was reduced and
RT-Quic assay sensitivity and specificity were consequently
increased, allowing for the detection of seeds in both 3R (Pick’s
disease) and 3R/4R [AD, chronic traumatic encephalopathy
(CTE)] tauopathies (Metrick et al., 2020). Recently, the same
group published an updated assay capable of measuring tau
seeds from 4R tauopathies (progressive supranuclear palsy
and corticobasal degeneration) with a sensitivity down to
2 femtograms (Saijo et al., 2020). For the first time, the
authors described some signal in antemortem lumbar CSF
suggesting that RT-QuIC -based assays could, with further
optimization, detect, and or quantify seeds in the CSF of
AD patients in the future. Interestingly, in both K12 and
4R assays the analysis of ThT amplitude can discriminate
the different diseases-specific conformers (AD vs. Pick’s or
PSP vs. CBD) using the same assay conditions. Combining
the two assays may hence be used to infer histopathological
diagnosis. One limitation of tau RT-QuIC assays is that they
rely on the use of heparin to promote the templating of
tau substrate. It was shown that the structure of heparin-
induced tau filaments differs from those found in AD or
other tauopathies (Zhang et al., 2019). It might be interesting
to evaluate substrates that include some post translational

modifications that have been recently associated with seeding
(Wesseling et al., 2020).

IN VIVO SEED AMPLIFICATION ASSAYS

It is now well established also that injection of tau seeds into a
transgenic animal that over-expresses human tau can lead to tau
aggregates after several months (Clavaguera et al., 2009, 2013;
Iba et al., 2013; Ahmed et al., 2014). Interestingly, in a mouse
model overexpressing equimolar amount of both 3R and 4R
tau isoforms the intracerebral injection of pathological tau seeds
from different tauopathies (AD, CBD, PSP, and PiD) recruited
the corresponding predominant isoform (He et al., 2020). In
addition, the seeds from distinct tauopathies recapitulated cell-
type specificity of the pathology in the recipient animal. CBD and
PSP-derived seeds induced neuronal but also oligodendrocytic
and astrocytic pathology as observed in human brain. All
together, these results suggest that distinct seeds may carry
different conformations that lead to specific isoform recruitment
and to transmission to specific cell types. Skachokova et al.
(2019) extended these observations to determine if the tau
present in lumbar CSF collected from AD patients might also
trigger aggregation of endogenous tau, and found that, over a
period of about 4 months, CSF injected intrahippocampally into
young P301S overexpressing mice did indeed form aggregates,
reinforcing the idea that tau seeds detected using in vitro
assays are biologically relevant in the intact organism as well (;
Dujardin et al., 2020). Although not frequently used, animal-
based bioassays have been validated for clinical diagnosis (e.g., for
the detection of botulinum toxin) and could potentially be used
as a platform for the detection of tau seeding activity in human
biofluids. However, the accuracy and feasibility of such approach
still needs to be demonstrated.

DISCUSSION AND FUTURE DIRECTIONS

The focus of biomarkers to date has been to aid in the diagnosis
of neurodegenerative diseases, especially AD. This has been
challenging in part because of the widespread recognition that
neuropathological lesions can precede symptoms by years if not
decades, so that knowing how to interpret positive results in an
assay among the “controls” has been problematic. Nonetheless,
largely with the aid of elegant studies in genetically defined at
risk populations, PET scans for both Amyloid and tau and CSF
biomarkers are well established. Yet some limitations remain:
none of the tau-based markers are yet useful for non-AD
tauopathies, and none of the currently available markers provide
insight into the prognosis of an individual patient. Recent studies
using brain tissue raise the possibility that there is considerable
variability in tau post translational modifications across patients,
which also is reflected in seed properties in a tau bioactivity
assay (Dujardin et al., 2020; Sepulveda-Falla et al., 2020). If
these alterations are also detectable in CSF, such differences may
well provide insight into predicting relative rates of progression
in living patients as well. Similarly, development of additional
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markers of synaptic structure or function, inflammatory status
of glia, and blood brain barrier dysfunction may all help
in providing critical information for physicians and patients.
Finally, biomarkers that provide insight into rates of progression
might be valuable in stratifying individuals for enhancing
design of clinical trials, and, hopefully in the near future, for
decisions about the risk/benefit of therapeutic interventions,
as well.
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The high prevalence of Alzheimer’s disease (AD) among the elderly population and
its lack of effective treatments make this disease a critical threat to human health.
Recent epidemiological and genetics studies have revealed the polygenic nature of
the disease, which is possibly explainable by a polygenic score model that considers
multiple genetic risks. Here, we systemically review the rationale and methods used to
construct polygenic score models for studying AD. We also discuss the associations
of polygenic risk scores (PRSs) with clinical outcomes, brain imaging findings, and
biochemical biomarkers from both the brain and peripheral system. Finally, we discuss
the possibility of incorporating polygenic score models into research and clinical practice
along with potential challenges.

Keywords: Alzheimer’s disease, polygenic score, APOE, genetics, polygenic risk score, polygenic hazard score,
risk prediction

INTRODUCTION

Alzheimer’s disease (AD), an aging-related neurodegenerative disease and the most common form
of dementia, is a health threat to societies worldwide. AD has a complex etiology that is influenced
by both genetic and environmental factors, which account for its variable risk among individuals.
The presence of known coding mutations located in APP and PSEN genes that exhibit extremely
high disease penetrance for early-onset AD can be determined by genetic analysis well before
disease onset. Moreover, sporadic late-onset AD (LOAD), which accounts for most AD cases, is
suggested to be highly heritable (approximately 60–80%) in the general population (Gatz et al.,
2006). Therefore, studying individual genomes might identify individuals at high risk of developing
AD, create a time window for intervention, and aid the development of intervention strategies.

However, genome-wide association studies (GWASs) of LOAD have only revealed a few dozen
genetic risk loci with mild or moderate disease risk-modifying effects; individually, these cannot
adequately explain an individual’s risk of having AD at the population level (Lambert et al.,
2013; Jansen et al., 2019). The inconsistencies among epidemiological studies regarding the high
heritability of LOAD as well as the lack of causal genetic factors that adequately explain disease
risk imply that LOAD has a polygenic nature: its risk might be modulated by the aggregate effects
of many hidden variants as well as environmental factors. Accordingly, given that polygenic risk
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analysis has recently become a key facet in cohort studies of
LOAD, herein we systemically review the current approaches to
polygenic risk analysis along with their applications in AD.

KEY ELEMENTS OF POLYGENIC SCORE
MODELS

Polygenic score models consider the aggregate effects of multiple
variants to evaluate genetic contributions to continuous or
discrete traits—for instance, gene expression levels or disease
status (Chatterjee et al., 2016). Hence, polygenic score models
require knowledge about which variants modify the disease
in question. Variants are normally selected by screening the
summary statistics generated by GWASs with proper filtering
of the association p-values. Various p-value thresholds can be
applied (e.g., 0.0001, 0.01, or 0.5) to obtain the pools of variants
that exhibit optimal performance for AD classification (Escott-
Price et al., 2019b). Meanwhile, several methods have been
applied to overcome the redundancy of genetic information
(i.e., the effects of the variants on a given disease) due to high
linkage disequilibrium among selected variants. For instance,
linkage disequilibrium-based pruning, which removes variants
in high linkage disequilibrium, or linkage disequilibrium-aware
clumping, which simultaneously removes variants in high
linkage disequilibrium while retaining variants with the smallest
p-values, have been applied to select the most informative
variants to construct a polygenic score model. In addition
to p-value–based selection, other statistical learning methods
such as lasso regression, which can select the most informative
variants for AD classification by removing variants minimally
associated with the disease, have been also incorporated into
polygenic risk analysis for AD (Romero-Rosales et al., 2020;
Zhou et al., 2020).

Once the variants for model construction have been
determined, their genotype dosages are summarized into a
single value that can represent an individual’s status (i.e., their
relative risk of having AD). The easiest way to achieve this
is to simply sum the number of risk alleles across all selected
variants to generate an unweighted polygenic score (Tosto
et al., 2017). Meanwhile, two types of weighting measures are
commonly introduced into polygenic score models to account
for the variable impacts of individual variants on disease risk
and generate a more accurate polygenic score model. First,
the effect size can be determined from an association test,
meta-analysis, or log-transformed odds ratios, thus yielding
a weighted polygenic risk score (PRS) model (Tosto et al.,
2017). Second, log-transformed hazard ratios generated from
association analysis for disease onset age can also be introduced
to produce a polygenic hazard score (PHS), which indicates
an individual’s instantaneous risk of developing a given disease
(Tan et al., 2018).

Nevertheless, introducing statistical learning methods into
polygenic risk analysis enables simultaneous variant selection and
model construction. Such methods, including lasso regression
and support vector machines, can directly learn from the
raw genotype data and use the same framework to construct

models to predict various outcomes (e.g., phenotypes, cognitive
performance, and onset age). Moreover, they may perform better
than PRS and PHS models given their ability to better capture
both local and global genomic structures.

OVERVIEW OF POLYGENIC SCORE
RESEARCH FOR ALZHEIMER’S DISEASE

The number of published research articles associated with AD
polygenic score models has dramatically increased over the last
15 years (Figure 1A). In 2005, one study reported an AD
polygenic score model constructed from nine cholesterol-related
single nucleotide polymorphisms (SNPs) including APOE-ε4 that
exhibited superior performance for classifying AD compared to
APOE-ε4 alone [area under the receiver operating characteristic
curve (AUC) = 0.74 vs. 0.66 for the polygenic score model and
APOE-ε4, respectively] (Papassotiropoulos et al., 2005). That
study was also the first to demonstrate the applicability of
polygenic score models to predict AD risk—even before AD
GWASs demonstrated the polygenic nature of AD.

Large-scale AD GWASs in populations of European descent
bolstered AD polygenic score research in recent years by
providing comprehensive information about the effects of
individual variants on AD risk at a genome-wide scale. Those
studies’ summary statistics, which contain the effect sizes of
individual variants, can be directly applied as weighting factors
to construct a PRS model. In fact, several AD polygenic risk
studies were based on the summary statistics generated by the
IGAP Consortium published in 2013 (Lambert et al., 2013)
and investigated AD polygenic score models in populations of
European descent (Marden et al., 2014, 2016; Escott-Price et al.,
2015, 2017a,b, 2019a,b; Habes et al., 2016; Harrison et al., 2016;
Louwersheimer et al., 2016; Lupton et al., 2016; Mormino et al.,
2016; Walter et al., 2016; Darst et al., 2017; Desikan et al., 2017;
Foley et al., 2017; Gibson et al., 2017; Hayes et al., 2017, 2020;
Marioni et al., 2017; Morgan et al., 2017; Tan et al., 2017, 2019;
Xiao et al., 2017; Axelrud et al., 2018, 2019; Cruchaga et al.,
2018; Del-Aguila et al., 2018; Ge et al., 2018; Kauppi et al., 2018,
2020; Patel et al., 2018; Stephan et al., 2018; Tasaki et al., 2018;
Andrews et al., 2019; Chaudhury et al., 2019; Elman et al., 2019;
Guerreiro et al., 2019; Korologou-Linden et al., 2019a,b; Kremen
et al., 2019; Lancaster et al., 2019; Leonenko et al., 2019a,b; Logue
et al., 2019; Wang et al., 2019; Yu et al., 2019; Ajnakina et al.,
2020; Han et al., 2020; Matloff et al., 2020; Reus et al., 2020;
Yesavage et al., 2020). Meanwhile, a few other studies focusing
on populations of non-European descent also applied the IGAP
data to select variants for genotyping analysis (Marden et al.,
2014; Tosto et al., 2017; Axelrud et al., 2018, 2019; Li et al.,
2020). Notably, the study populations of most AD polygenic risk
studies (Figure 1B) and studied individuals (Figure 1C) were of
European descent.

The availability of GWAS results from AD genetics studies has
enabled the selection of variants for model construction. Studies
using the same IGAP summary statistics can generate models
with different numbers of variants (from 6 to 1.1 million sites)
by selecting different p-value thresholds (Ajnakina et al., 2020;
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FIGURE 1 | Summary of polygenic score research on Alzheimer’ disease. (A) Numbers of published papers by year. (B) Proportions of studies by population.
(C) Proportions of study participants by ethnic group.

Han et al., 2020; Reus et al., 2020). Meanwhile, the sample sizes
used for polygenic score models also vary among studies: from
less than 80 to more than 20,000 participants (Desikan et al., 2017;
Chandler et al., 2019). Regarding model construction, PLINK
and PRSice are the most widely used tools to select variants
and construct polygenic score models. Other statistical analysis
methods, such as linear support vector machine (Filipovych
et al., 2012), lasso regression (Romero-Rosales et al., 2020;
Zhou et al., 2020), multilocus genotype patterns analysis (Barral
et al., 2012), and decision tree (Yokoyama et al., 2015; Porter
et al., 2018c), have also been adopted to construct polygenic
score models for AD.

Of note, polygenic score models have been implemented to
investigate the effects of genetic variants on various aspects
of AD pathogenesis and progression. Most studies focus on
clinical outcomes, specifically the classification of patients with
AD (Papassotiropoulos et al., 2005; Sabuncu et al., 2012; Marden
et al., 2014; Adams et al., 2015; Escott-Price et al., 2015, 2017b,
2019b; Yokoyama et al., 2015; Lupton et al., 2016; Tosto et al.,
2017; Xiao et al., 2017; Cruchaga et al., 2018; Patel et al., 2018;
Chaudhury et al., 2019; Leonenko et al., 2019a,b; Zhang et al.,
2019; Altmann et al., 2020; Andrews et al., 2020; Zhou et al.,
2020). Some other studies investigated the possible associations
between AD polygenic score models and the risk of conversion
to AD or mild cognitive impairment (MCI) (Filipovych et al.,
2012; Rodríguez-Rodríguez et al., 2013; Verhaaren et al., 2013;
Carrasquillo et al., 2015; Desikan et al., 2017; Tosto et al., 2017;
Kauppi et al., 2018; Chaudhury et al., 2019; Elman et al., 2019;
Ajnakina et al., 2020; Altmann et al., 2020; Andrews et al., 2020),
cognitive function (Louwersheimer et al., 2016; Del-Aguila et al.,
2018; Ge et al., 2018; Kauppi et al., 2018, 2020; Porter et al.,
2018a,c,b; Stephan et al., 2018; Tan et al., 2018, 2019; Tasaki
et al., 2018; Korologou-Linden et al., 2019a; Han et al., 2020;
Zhou et al., 2020), and memory function (Barral et al., 2012;
Verhaaren et al., 2013; Marden et al., 2014, 2016; Adams et al.,
2015; Carrasquillo et al., 2015; Mormino et al., 2016; Hayes et al.,
2017; Marioni et al., 2017; Axelrud et al., 2018; Ge et al., 2018;

Porter et al., 2018a,b,c; Tan et al., 2018, 2019; Altmann et al.,
2020). Notably, given that the brain’s structure and functions
are closely associated with cognitive ability, several studies have
also investigated the use of polygenic score models to predict
brain status including changes in brain structure (Sabuncu et al.,
2012; Habes et al., 2016; Harrison et al., 2016; Nho et al., 2016;
Desikan et al., 2017; Foley et al., 2017; Hayes et al., 2017, 2020;
Xiao et al., 2017; Ge et al., 2018; Kauppi et al., 2018; Li et al.,
2018; Tasaki et al., 2018; Chandler et al., 2019, 2020; Tan et al.,
2019; Wang et al., 2019; Altmann et al., 2020; Matloff et al.,
2020; Zhou et al., 2020) and function (Xiao et al., 2017; Axelrud
et al., 2019; Chandler et al., 2019, 2020). Moreover, some studies
investigated biochemical changes indicative of brain status, such
as AD pathological hallmarks including amyloid-beta (Aβ) load
and tau tangles (Mormino et al., 2016; Darst et al., 2017; Desikan
et al., 2017; Laiterä et al., 2017; Ge et al., 2018; Porter et al.,
2018a,b,c; Tan et al., 2018, 2019; Tasaki et al., 2018; Leonenko
et al., 2019a; Yu et al., 2019; Altmann et al., 2020), enzyme
activity in brain samples (Martiskainen et al., 2015; Laiterä et al.,
2017), and levels of proteins (e.g., the “ATN” biomarker panel,
which comprises Aβ, tau, and neurofilament light polypeptide) or
metabolites (Papassotiropoulos et al., 2005; Sabuncu et al., 2012;
Martiskainen et al., 2015; Louwersheimer et al., 2016; Mormino
et al., 2016; Darst et al., 2017; Morgan et al., 2017; Cruchaga
et al., 2018; Porter et al., 2018a; Tasaki et al., 2018; Korologou-
Linden et al., 2019b; Tan et al., 2019; Altmann et al., 2020; Hayes
et al., 2020; Li et al., 2020; Reus et al., 2020; Zhou et al., 2020).
Some studies also used polygenic score models to evaluate the
extent to which certain diseases or pathways modulate AD risk
(Papassotiropoulos et al., 2005; Moskvina et al., 2013; Mukherjee
et al., 2015; Walter et al., 2016; Gibson et al., 2017; Hayes
et al., 2017; Demichele-Sweet et al., 2018; Creese et al., 2019;
Elman et al., 2019; Guerreiro et al., 2019; Kremen et al., 2019;
Lancaster et al., 2019; Andrews et al., 2020; Yesavage et al., 2020).
Collectively, those studies suggest that genetic factors have crucial
roles in modifying AD risk and highlight the potential utility
of polygenic score models in AD research and routine clinical
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practice. In the following section, we summarize the key findings
of each of those aspects.

POLYGENIC SCORE MODELS FOR
PREDICTING ALZHEIMER’S DISEASE
RISK

The primary goal of a polygenic score model is to classify
individuals according to disease risk (AD in this case).
Numerous studies conducted in recent decades have established
various polygenic score models and report their ability to
adequately distinguish patients with AD from cognitively normal
individuals. Reported AD prediction accuracy ranges from an
AUC of 0.57 (Tosto et al., 2017) to 0.84 (Escott-Price et al., 2017a).
Notably, Yokoyama et al. (2015) generated a PRS using a decision
tree model and report an AUC of 0.88 for the prediction of AD
(vs. 0.69 for APOE genotype) in their discovery cohort (n = 192).
However, this model failed to surpass the accuracy of using APOE
genotype to predict AD in their replication cohort (AUC = 0.62
vs. 0.63 for the PRS and APOE genotype, respectively; n = 276).
In contrast, several other studies demonstrate that PRS models
exhibit superior performance to APOE genotype for predicting
AD or associated cognitive states as indicated by significant
associations between AD and PRSs that do not include APOE
genotype (Sabuncu et al., 2012; Xiao et al., 2015; Leonenko et al.,
2019a,b; Zhang et al., 2019) or PRS results after controlling for
APOE genotype (Tosto et al., 2017; Escott-Price et al., 2019b).
Specifically, in one study recently published by Escott-Price
et al. (2019b), the application of a PRS to homozygous APOE-
ε3 carriers achieved an AUC of 0.831 for the prediction of AD
with a comparable AUC of 0.834 after excluding the variants
in the APOE region in homozygous APOE-ε3 carriers. Thus,
polygenic effects might account for the non-APOE–dependent
genetic mechanisms of AD pathogenesis. Meanwhile, a whole-
exome sequencing study conducted by Patel et al. (2018) revealed
the applicability of polygenic score models using exonic variants
to predict AD, yielding an AUC of 0.830 for AD prediction
with the inclusion of APOE genotype, age, sex, and 19 GWAS-
identified SNPs, further implying the polygenic contribution of
the exonic regions to the modulation of AD risk.

In addition to disease risk, a few studies investigated the
possible contribution of polygenic risk to the modulation of the
likelihood of AD conversion, specifically conversion from MCI
to AD (Rodríguez-Rodríguez et al., 2013; Tan et al., 2017; Kauppi
et al., 2018; Chaudhury et al., 2019) or conversion from cognitive
normality to MCI or AD (Carrasquillo et al., 2015; Tan et al., 2017;
Logue et al., 2019; Altmann et al., 2020), or the time to develop
AD (Verhaaren et al., 2013; Desikan et al., 2017; Tosto et al., 2017;
Ajnakina et al., 2020; Andrews et al., 2020). Of note, Tan et al.
(2017) studied 1,081 asymptomatic elderly adults and report a
PHS model based on 31 SNPs selected from IGAP and ADGC
phase 1 data that can accurately predict the risk of conversion
from cognitive normality to AD (hazard ratio = 2.36), from MCI
to AD (hazard ratio = 1.17), and from cognitive normality or MCI
to AD (hazard ratio = 1.31). Furthermore, Kauppi et al. (2018)
integrated the PHS with cognitive score and brain atrophy status,

resulting in relatively high accuracy for predicting conversion
from MCI to AD (AUC = 0.84).

Notably, Carrasquillo et al. (2015) suggest that only APOE-
inclusive PRSs are correlated with the likelihood of developing
MCI or AD in a longitudinally assessed cohort. Moreover,
Rodríguez-Rodríguez et al. (2013) also report that conversion
from MCI to AD cannot be successfully predicted by PRSs
after controlling for age, sex, and APOE genotype. However,
the models in both studies included fewer than 10 non-APOE
variants. Meanwhile, by integrating more variants into the
analysis, Altmann et al. (2020) observed significant associations
between AD polygenic risk and clinical conversion from non-
demented to demented status as well as Clinical Dementia Rating
Scale Sum of Boxes (CDR-SB) score after excluding the effect
of the APOE locus. Therefore, the polygenic risk effects from
non-APOE loci probably contribute to the likelihood of AD
development and progression.

POLYGENIC SCORE MODELS FOR
PREDICTING MEMORY AND COGNITIVE
FUNCTIONS

Besides disease states, polygenic risk is also correlated with
individual memory function (Barral et al., 2012; Verhaaren et al.,
2013; Marden et al., 2014, 2016; Adams et al., 2015; Carrasquillo
et al., 2015; Mormino et al., 2016; Hayes et al., 2017; Marioni et al.,
2017; Axelrud et al., 2018; Ge et al., 2018; Porter et al., 2018a,b,c;
Tan et al., 2018, 2019; Altmann et al., 2020). Specifically,
a multilocus mapping analysis conducted by Barral et al.
(2012) demonstrates an association between episodic memory
and specific genetic patterns from GWAS-identified variants;
a few other studies also suggest possible associations between
polygenic risk and episodic memory function. Specifically, a
PRS study conducted by Marden et al. (2014) suggests that AD
polygenic risk might modulate both baseline memory and its
rate of decline in people of non-Hispanic European descent
(n = 7,172) or African descent (n = 1,081). Again, there is some
controversy about the effects of non-APOE polygenic risks on
memory function. For instance, Carrasquillo et al. (2015) suggests
that only APOE-inclusive PRSs are correlated with worsening
memory function, while Verhaaren et al. (2013) and Porter
et al. (2018b) report a significant association between non-APOE
polygenic risk and memory function. Moreover, Ge et al. (2018)
report a significant correlation between high AD polygenic risk
and the rate of memory decline after controlling for APOE-ε4
genotype. Hence, the polygenic risk effects from non-APOE loci
likely also influence memory function.

Polygenic scores can also indicate individual cognitive
functions. Several studies report associations between polygenic
risk and cognitive functions (Louwersheimer et al., 2016; Del-
Aguila et al., 2018; Ge et al., 2018; Kauppi et al., 2018, 2020;
Porter et al., 2018a,b,c; Stephan et al., 2018; Tan et al., 2018,
2019; Tasaki et al., 2018; Korologou-Linden et al., 2019a; Han
et al., 2020; Zhou et al., 2020). For instance, Korologou-Linden
et al. (2019a) report an association between PRS and lower
total, verbal, and performance intelligence quotients in childhood
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and adolescence, and Kauppi et al. (2020) suggest that AD
polygenic risk is indicative of individual differences in the rate of
cognitive decline in normal aging. Meanwhile, Xiao et al. (2017)
and Li et al. (2018) did not identify a significant association
between AD polygenic risk and cognitive function in cognitively
normal individuals.

POLYGENIC SCORE MODELS FOR
PREDICTING BRAIN STATUS

The associations of polygenic scores with memory and cognitive
function imply possible alterations of brain structure and
functions. Several studies have examined the associations
between AD polygenic risk and MRI findings (Sabuncu et al.,
2012; Habes et al., 2016; Harrison et al., 2016; Mormino et al.,
2016; Nho et al., 2016; Desikan et al., 2017; Foley et al., 2017;
Hayes et al., 2017, 2020; Xiao et al., 2017; Ge et al., 2018; Kauppi
et al., 2018; Li et al., 2018; Chandler et al., 2019; Tan et al., 2019;
Wang et al., 2019; Altmann et al., 2020; Matloff et al., 2020; Zhou
et al., 2020), fMRI findings (Xiao et al., 2017; Axelrud et al., 2019;
Chandler et al., 2020), and PET imaging findings (Mormino et al.,
2016; Darst et al., 2017; Ge et al., 2018; Porter et al., 2018a,b,c; Tan
et al., 2018, 2019; Leonenko et al., 2019a; Altmann et al., 2020).

Notably, some studies have examined the associations between
AD polygenic risk and the volumetric changes of various brain
regions such as the retrosplenial and posterior cingulate cortices
(Sabuncu et al., 2012), frontal cortex (Chandler et al., 2019),
entorhinal cortex (Harrison et al., 2016; Desikan et al., 2017;
Hayes et al., 2020), amygdala (Lupton et al., 2016; Zhou et al.,
2020), and hippocampus (Harrison et al., 2016; Lupton et al.,
2016; Desikan et al., 2017; Foley et al., 2017; Xiao et al., 2017;
Axelrud et al., 2018; Ge et al., 2018; Lancaster et al., 2019;
Altmann et al., 2020; Hayes et al., 2020; Matloff et al., 2020;
Zhou et al., 2020).

Interestingly, some studies have focused on individuals of
varying ages including young adolescents (Li et al., 2018;
Chandler et al., 2019) and elderly people (Lupton et al., 2016;
Nho et al., 2016; Darst et al., 2017; Desikan et al., 2017; Tan
et al., 2019; Hayes et al., 2020). Specifically, Li et al. (2018)
and Chandler et al. (2019) report significant associations of AD
polygenic risk with gray matter cerebral blood flow and gray
matter volume, respectively, in young individuals, indicating a
potential long-term effect of polygenic risk on brain function well
before AD onset.

In addition to structural changes, AD polygenic risk might
be associated with brain Aβ load (Mormino et al., 2016; Darst
et al., 2017; Porter et al., 2018a,c; Tan et al., 2018, 2019;
Leonenko et al., 2019a; Altmann et al., 2020) as measured by
PET imaging. Moreover, several studies discuss the possible
effects of polygenic risk on brain functional changes including
hippocampal activation (Xiao et al., 2017; Chandler et al., 2020)
and connectivity between specific brain regions (Axelrud et al.,
2019), providing additional evidence for the effects of AD
polygenic risk on brain function. Meanwhile, Aβ measured by
PET imaging has been introduced to stratify AD patients prior
to PRS evaluation (Porter et al., 2018b).

POLYGENIC SCORE MODELS FOR
PREDICTING BIOCHEMICAL CHANGES
IN THE BRAIN AND PERIPHERAL
SYSTEM

Corroborating PET imaging findings, AD polygenic risk is
also associated with the levels of several hallmark proteins
of AD in postmortem brain tissues. For instance, AD PRSs
are reported to be significantly correlated with Aβ and tau
tangle levels (Tasaki et al., 2018), although some studies did
not identify such a correlation between AD polygenic risk and
Aβ levels (Laiterä et al., 2017; Yu et al., 2019). Notably, AD
polygenic risk might be correlated with the activity of brain
γ-secretase (but not β-secretase) (Martiskainen et al., 2015;
Laiterä et al., 2017) as well as levels of VGF, IGFBP5, and
STX1A in brain tissues as measured by proteomic analysis
(Tasaki et al., 2018).

As the ATN biomarkers in cerebrospinal fluid (CSF) are
correlated with the brain pathology in AD, several studies also
suggest possible correlations between PRSs and CSF biomarkers
including Aβ (Sabuncu et al., 2012; Martiskainen et al., 2015;
Darst et al., 2017; Cruchaga et al., 2018; Hayes et al., 2020;
Li et al., 2020) and tau or p-tau (Louwersheimer et al.,
2016; Darst et al., 2017; Cruchaga et al., 2018; Porter et al.,
2018a; Tan et al., 2018; Altmann et al., 2020; Li et al., 2020;
Reus et al., 2020). However, Louwersheimer et al. (2016) and
Mormino et al. (2016) did not observe a correlation between
AD polygenic risk and CSF Aβ levels. Meanwhile, Reus et al.
(2020) examined the associations between polygenic risk and
412 CSF proteins and protein fragments, and found that
48.8% of the candidate proteins were associated with at least
one of the 14 constructed scores, implying a possible global
alteration of the CSF proteome that is possibly associated
with polygenic risk.

Notably, a recent study also implies the involvement of the
peripheral immune system in AD pathogenesis (Zhou et al.,
2018), while other studies demonstrate associations between
AD polygenic risk and plasma proteins (Morgan et al., 2017;
Korologou-Linden et al., 2019b; Zhou et al., 2020) or metabolites
(Papassotiropoulos et al., 2005; Korologou-Linden et al., 2019b).
Specifically, by applying the proximity extension assay to plasma
proteomic analysis, we investigated 280 proteins and revealed
potential protein candidates (i.e., osteopontin and neurocan
core protein) along with a protein network associated with AD
polygenic risk—again implying global changes in plasma profiles
that might be modulated by polygenic risk (Zhou et al., 2020).

POLYGENIC SCORE MODELS FOR
EXAMINING THE INVOLVEMENT OF
OTHER DISEASES IN ALZHEIMER’S
DISEASE PATHOGENESIS

The complex etiology of AD is reflected by the identification
of various modifiable risk factors such as cardiovascular
risk factors, hypertension, and immune factors. Polygenic
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score models suggest that AD genetic risks are associated
with cholesterol levels (Papassotiropoulos et al., 2005),
depression (Gibson et al., 2017), schizophrenia (Demichele-
Sweet et al., 2018; Creese et al., 2019), frontotemporal lobar
degeneration, amyotrophic lateral sclerosis (Adams et al.,
2015), insulin sensitivity (Walter et al., 2016), microglial
dysfunction (Lancaster et al., 2019), and mitochondrial
dysfunction (Andrews et al., 2020). Meanwhile, the polygenic
risks for cardiovascular risk factors, frontotemporal lobar
degeneration, and amyotrophic lateral sclerosis are implicated
in the pathogenesis of MCI (Adams et al., 2015; Elman et al.,
2019). Thus, these findings collectively suggest the underlying
mechanisms of AD comorbidities and indicate possible pathways
for intervention.

APPLICATIONS AND POTENTIAL ISSUES

Given the high prevalence of AD, early risk prediction might
facilitate early intervention and greatly mitigate the future growth
of the AD patient population. Specifically, polygenic risk factors
rooted in individual genomes can be used as biomarkers for
the early assessment of relative risk at a population scale. To
illustrate the utility of such a strategy, delaying disease onset
by 5 years would reduce the predicted AD population among
people aged 70 years or above by 41% in the United States.
in 2050 (Zissimopoulos et al., 2015). Furthermore, inspiring
work by Solomon et al. (2018) further suggests that lifestyle
interventions might override the risk effects of APOE-ε4,
implying a possible means of delaying AD onset once an
individual is informed of their relative risk of developing
AD. Moreover, a recent study revealed that prior knowledge
of genetic risk would also be critical for drug discovery, as
drugs targeting proteins encoded in genetic risk loci would
be more likely to be successful in phase II and III clinical
trials (King et al., 2019). Notably, a polygenic score study of
coronary heart disease risk showed that compared to people
with lower genetic risk, those with higher genetic risk exhibited
a greater decrease in absolute disease risk after receiving statin
therapy (Mega et al., 2015). Therefore, conducting population-
scale genetic screening for AD might simultaneously support
the development of intervention strategies and enable the
stratification of individuals according to their risk of AD based
on their genetic patterns. More specifically, a hierarchal screening
strategy for AD risk evaluation combining genetic, circulatory
factors, and brain imaging techniques can be implemented at a
populational scale to facilitate disease risk screening and clinical
research on personalized interventions in a genotype-aware
manner (Figure 2).

Nevertheless, there are potential issues that could hinder
the development and implementation of polygenic scoring
in routine clinical practice. First, policies protecting patient
privacy must be carefully considered, because the results of
one person’s genetic test might not only indicate their own
risks of certain diseases but also those of their close relatives
(Clayton et al., 2019). Second, the possible consequences of
informing certain individuals about their estimated genetic

FIGURE 2 | Proposed hierarchal strategy for Alzheimer’s disease risk
screening. Individuals enrolled in a screening task are first examined according
to genetic risk as indicated by polygenic risk analysis. Individuals who have
relatively high risk and report symptoms are referred for biomarker
examination to evaluate amyloid-beta, tau (and p-tau), and neurofilament light
polypeptide levels (i.e., the “ATN” panel) in blood or cerebrospinal fluid (CSF).
Those who exhibit altered levels of biomarkers are further referred to clinicians
for cognitive assessment followed by brain imaging including magnetic
resonance imaging and positron emission tomography.

risks for certain diseases must be carefully considered, as this
could have positive and/or negative outcomes. Fortunately, after
receiving brain amyloid imaging, cognitively normal people with
elevated amyloid loads tend to make more changes to their
lifestyle and future plans than those who do not have elevated
amyloid loads (Largent et al., 2020). In addition, in one recent
study, providing genetic test results illustrating the 3-year risk of
developing AD to patients with MCI did not increase the risk
of anxiety or depression (Christensen et al., 2020). Meanwhile,
different diagnostic criteria across study cohorts might introduce
bias into genetics studies and the subsequent construction
of polygenic score models, although this can be reduced or
eliminated by further incorporating other biomarkers to refine
clinical diagnosis (Escott-Price et al., 2017a). Furthermore, the
application of polygenic score models can help refine the results
of genetic analyses based on control cohorts (i.e., controls in
whom the disease of interest has not been investigated in
detail) by ruling out individuals at risk of developing diseases
(Escott-Price et al., 2019a). Moreover, polygenic score models
may be used to define an individual’s risk of having a specific
neurodegenerative disease, as studies have demonstrated that
such models (or the genotyping of specific variants) can predict
the risk of Parkinson’s disease (Nalls et al., 2016), Huntington’s
disease (Kremer et al., 1994), amyotrophic lateral sclerosis (Saez-
Atienzar et al., 2021), and multiple sclerosis (The International
Multiple Sclerosis Genetics Consortium (IMSGC), 2010). In
addition, polygenic score models may help estimate the effects
of aging on disease risk. Finally, conducting polygenic risk
analysis requires the availability of population-specific genetic
risk information at the single-variant level. We previously showed
that a polygenic score model based on the Chinese population
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performs poorly when applied to an AD cohort of European
descent (Zhou et al., 2020). The poor performance of that
polygenic score model can be explained by the differences in
the genomic structures between populations of East-Asian and
European descent. Given that there are limited AD GWASs
on populations of non-European descent (Zhou et al., 2018;
Kunkle et al., 2020), it is critical to comprehensively analyze AD
genetic risk in such populations to facilitate the development
of polygenic score models and their associated applications in
populations worldwide.
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Amyloid-beta (Aβ) 42/40 ratio, tau phosphorylated at threonine-181 (p-tau), and total-
tau (t-tau) are considered core biomarkers for the diagnosis of Alzheimer’s disease (AD).
The use of fully automated biomarker assays has been shown to reduce the intra-
and inter-laboratory variability, which is a critical factor when defining cut-off values.
The calculation of cut-off values is often influenced by the composition of AD and
control groups. Indeed, the clinically defined AD group may include patients affected
by other forms of dementia, while the control group is often very heterogeneous due
to the inclusion of subjects diagnosed with other neurological diseases (OND). In
this context, unsupervised machine learning approaches may overcome these issues
providing unbiased cut-off values and data-driven patient stratification according to the
sole distribution of biomarkers. In this work, we took advantage of the reproducibility of
automated determination of the CSF core AD biomarkers to compare two large cohorts
of patients diagnosed with different neurological disorders and enrolled in two centers
with established expertise in AD biomarkers. We applied an unsupervised Gaussian
mixture model clustering algorithm and found that our large series of patients could
be classified in six clusters according to their CSF biomarker profile, some presenting
a typical AD-like profile and some a non-AD profile. By considering the frequencies
of clinically defined OND and AD subjects in clusters, we subsequently computed
cluster-based cut-off values for Aβ42/Aβ40, p-tau, and t-tau. This approach promises
to be useful for large-scale biomarker studies aimed at providing efficient biochemical
phenotyping of neurological diseases.

Keywords: Alzheimer’s disease, biomarkers, dementia, cerebrospinal fluid, amyloid-beta, tau, machine learning,
clustering analysis
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative
disorder evolving to dementia (Goedert and Spillantini, 2006).
Increasing knowledge of the molecular mechanisms underlying
the pathogenesis of AD has progressively improved the protocols
employed for its diagnosis in clinical practice (Jack et al., 2018).
However, AD is also recognized as a heterogeneous disorder
that may occur under several distinct phenotypes which can
mimic other forms of dementias and other neurodegenerative
conditions (Di Fede et al., 2018). Such phenotypic heterogeneity
sometimes makes the differential diagnosis between AD and
other similar neurological diseases problematic (Sawyer et al.,
2017; de Souza et al., 2019; Villain and Dubois, 2019).
Cerebrospinal fluid (CSF) core biomarkers for AD – i.e., amyloid-
beta (Aβ) 42/40 ratio, tau phosphorylated at threonine-181
(p-tau), and total-tau (t-tau) – are largely used in clinical
settings, research, and drug trials (Paterson et al., 2018; Gaetani
et al., 2020). However, their clinical utility to differentiate AD
from non-AD neurodegenerative dementias, such as dementia
with Lewy bodies (DLB) or frontotemporal dementia (FTD), is
less established (Bartlett et al., 2012; Molinuevo et al., 2014).
For a long time, manual enzyme-linked immunosorbent assay
(ELISA) has been widely employed as the reference method
for the analysis of the CSF AD biomarkers. However, its
broad-scale use is critically hampered by the assay variability,
which influences the measurement of the analytes and the
interpretation of the outcome data, especially in the routine
clinical context (Mattsson et al., 2012; Le Bastard et al.,
2015). Due to these concerns, ELISA was recently replaced
in worldwide laboratories by fully automated assays – such
as chemiluminescence enzyme immunoassay (CLEIA) – which
offer grounds to cut sample manipulation steps and to reduce
the intra- and inter-laboratory variability for CSF biomarker
measurement (Kollhoff et al., 2018). Nevertheless, there is still a
need for harmonization of CSF biomarker assays across centers
involved in AD diagnostics (Mattsson-Carlgren et al., 2020).
For instance, the lack of established universal biomarker cut-
offs makes the calculation of internal reference values mandatory
for each laboratory both for clinical and research purposes.
This calculation is often critically influenced by the choice and
composition of AD and control groups; the clinically defined
AD group may include patients affected by other forms of
dementia (e.g., FTD and DLB) due to misdiagnosis, while the
control group is often very heterogeneous due to the inclusion
of subjects diagnosed with other neurological diseases (OND)
who underwent lumbar puncture (LP) for diagnostic purposes.
On the one hand, OND may better represent the real cases
afferent to neurology clinics compared to healthy subjects.
However, the heterogeneity of the inclusion criteria adopted in
each center for the definition of OND controls represents a
source of variability for the calculation of biomarkers cut-off
values. In addition, the absence of standardized methodological
and statistical approaches represents one of the most critical
issues to study the distribution of CSF core AD biomarkers in
different subgroups of patients and to validate in larger cohorts
the cut-off values able to discriminate between AD and other

AD-mimicking disorders (Simrén et al., 2020). In this context,
unsupervised machine learning approaches may overcome both
misdiagnosis and the lack of standardization of inclusion
criteria providing unbiased cut-off values and data-driven patient
stratification according to the sole distribution of biomarkers. In
this work, we took advantage of the reproducibility of automated
determination of the CSF core AD biomarkers to compare two
large cohorts of patients diagnosed with different neurological
disorders and enrolled in two centers with established expertise in
AD biomarkers. We applied an unsupervised Gaussian mixture
model (GMM) clustering algorithm and found that our large
series of patients could be classified in six clusters according
to their CSF biomarker profile, some presenting a typical AD-
like profile and some a typical non-AD profile. By considering
the frequencies of clinically defined OND and AD subjects in
clusters, we subsequently computed cluster-based cut-off values
for Aβ42/Aβ40, p-tau, and t-tau.

MATERIALS AND METHODS

Patients
A total of 616 prospectively collected CSF samples from patients
referring to the Neurology Clinic, University of Perugia (cohort
1), and from the Carlo Besta Neurological Institute, Milan
(cohort 2), were used in this study. All patients underwent a
standardized assessment including medical history, physical and
neurological examination, laboratory tests, neuropsychological
evaluation, and brain imaging (computed tomography or
magnetic resonance imaging, MRI). 18Fluoro-2-deoxyglucose
positron emission tomography (FDG-PET), dopamine
transporter single photon emission computed tomography
(DaT-Scan), and electroencephalogram were also performed in
selected cases, according to clinical suspicion. According to the
purposes of our investigation, clinical diagnoses were made by
consensus in a multidisciplinary meeting of neurologists with a
deep expertise in the field of neurodegenerative diseases, without
knowledge of CSF results. Therefore, we did not consider the
most updated criteria for AD diagnosis, based on A/T/(N)
classification (Jack et al., 2018), but rather we defined patients as
affected by AD or other neurological disorders only according
to the available clinical criteria, as follows. Patients with
neurodegenerative disorders included 257 patients with probable
AD (Dubois et al., 2007) both at dementia and prodromal (MCI)
stages, 50 frontotemporal dementia (FTD) patients (Faber, 1999),
56 patients with Parkinson’s disease (PD) (Postuma et al., 2015), 7
PD with dementia (PDD) patients (Emre et al., 2007), 21 patients
with dementia with Lewy bodies (DLB) (McKeith et al., 2017), 58
patients with atypical parkinsonism or parkinsonism of different
etiology (Gilman et al., 2008; Armstrong et al., 2013; Höglinger
et al., 2017; Rektor et al., 2018), 1 patients with amyotrophic
lateral sclerosis (ALS) (Traynor et al., 2000), 8 patients with
Creutzfeldt-Jakob disease (CJD) (Manix et al., 2015), 27 patients
with normal pressure hydrocephalus (NPH) (Relkin et al.,
2005), and 2 patients with genetically confirmed degenerative
spinocerebellar ataxia (SCA). Patients were classified as having
subjective cognitive decline (SCD) if they complained cognitive

Frontiers in Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 647783166

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-647783 March 24, 2021 Time: 15:34 # 3

Bellomo et al. Unsupervised Profiling of AD Biomarkers

deficits but neuropsychological evaluation was normal or showed
subtle deficits not fulfilling criteria for mild cognitive impairment
(MCI) (8 patients). Patients with stable MCI (sMCI) showed
unchanged neuropsychological results after 1-year follow-up (20
patients). Other diagnostic groups included vascular dementia
(5 patients) (Román et al., 1993), cerebral amyloid angiopathy
(CAA) (Smith and Greenberg, 2003) (3 patients), autoimmune
encephalitis (8 patients) (Graus et al., 2016), encephalopathies
of different etiology (2 patients), relapsing-remitting multiple
sclerosis (MS) (Thompson et al., 2018) (6 patients), and
cognitively impaired late-onset epilepsy (1 patient) (Scheffer
et al., 2017). Patients categorized as having cerebrovascular
diseases (CVD) showed significant brain small vessel disease
at MRI (i.e., white matter changes, microbleeds, and lacunar
infarcts) without fulfilling diagnostic criteria for VaD and CAA (3
patients). Dementia of unknown origin (uDEM) was defined for
those subjects in which brain imaging including both MRI and
nuclear imaging excluded vascular and neurodegenerative origins
(3 patients). Cognitively unimpaired patients referring to our
centers for psychiatric disorders or neurological conditions like
headaches, seizures, mononeuropathies, and polyneuropathies,
in which brain imaging did not reveal gross abnormalities nor
underlying neurodegenerative diseases, were classified as control
subjects with other neurological diseases (OND) (71 patients).

Samples Collection and Analysis
Lumbar puncture was performed according to international
guidelines (Teunissen et al., 2009); 10–12 mL of CSF was collected
in sterile polypropylene tubes (Sarstedt R© tubes, code: 62.610.210)
and centrifuged for 10 min (2000 × g), at room temperature.
Aliquots of 0.5 mL were frozen at −80◦C in polypropylene tubes
(Sarstedt R© tubes, code: 72.730.007). CSF samples were analyzed
on the fully automated chemiluminescent platform Lumipulse
G600-II (Fujirebio Inc) for β-amyloid 1-42 (Aβ42), β-amyloid 1-
40 (Aβ40), t-tau and p-tau (Thr181) levels. For cohort 1, all the
CSF samples were analyzed directly in their 0.5 mL storage tubes,
while for cohort 2 samples were analyzed by transferring them
in Hitachi R© polystyrene sample caps (code: 80351). Throughout
this work, Aβ42/Aβ40 ratio was used since it represents a more
robust marker of amyloidosis with respect to the sole Aβ42
(Biscetti et al., 2019). Moreover, the use of Aβ42/Aβ40 can
also partially compensate the above-mentioned methodological
difference between the two centers, since the Aβ absorption due
to tube transfer (Toombs et al., 2014) is thought to act similarly
for the 1-40 and 1-42 Aβ isoforms (Lewczuk et al., 2006).

Cohorts Merging
A preliminary experiment was carried out to assess the inter-
center variability of the CSF biomarkers and the possibility
to merge the two cohorts. A total of 40 CSF samples (20
from each center) were measured with Lumipulse-G automated
platforms in the two laboratories by using kits originating from
the same batches. The composition of this validation cohort is
reported in Supplementary Table 1. The concordance between
the measurements was assessed by correlation analysis.

Statistical Methods
The data analysis was performed by using R software v 3.6
(R Core Team, 2013).

Correlation Analysis
Because of the known non-optimal normality of biomarker
data (Bellomo et al., 2020a), Passing Bablok regressions (Passing
and Bablok, 1983) were preferred to parametric least squares
regressions. Confidence intervals (CI) for the fitted parameters
were calculated with the bootstrap method (Carpenter and
Bithell, 2000). Principal component analysis (PCA) was then
applied to the whole dataset to graphically show the absence of
a significant separation among samples belonging to different
cohorts. The R-package mcr was used for these calculations
[mcr package | R Documentation (2021)].

Cluster Analysis
The GMM algorithm (Figueiredo and Jain, 2002) of the machine
learning Python package Scikit-learn v 0.23.2 (Pedregosa et al.,
2011) was used for the cluster analysis. Biomarker values
were all z-scored prior to the analysis. The optimal number
of clusters was chosen minimizing the Bayesian information
criterion (BIC) function (Schwarz, 1978). After the clustering,
all the samples biomarker values were back-transformed into the
original dimensions. Median biomarker values together with the
95% data range were calculated for each cluster. The prevalences
of diagnostic categories in each cluster were represented in
percentages in a heatmap. Both diagnostic groups and clusters
were grouped according to a hierarchical clustering (Rokach and
Maimon, 2005; Gu, 2021). Euclidean distance and average linkage
were used as parameters for clustering.

Calculation of Cut-Off Values
Cut-off values were calculated for OND vs. AD and among
clusters by maximizing Youden’s index with the p-ROC package
in R v3.6 (Robin et al., 2011). Cut-off CI were calculated by using
2000 bootstrap replicates.

Calculation of Cut-Off Values on Age- and
Gender-Matched Subsets
Age histogram matching was performed by random exclusion
of subjects within bins of 5 years width. Exclusion of
samples according to gender was subsequently conducted until
p-values > 0.25 were obtained by logistic regression (Dobson and
Barnett, 2018; glm function | R Documentation, 2021) both for
age and gender. Recalculation of cut-off values for the age- and
gender-matched subsets was performed as described in section
“Calculation of Cut-Off Values.”

RESULTS

Patients Demographical Data
A total of 616 patients whose CSF samples were tested for AD
biomarker by Lumipulse-G, were included in the study regardless
of age and clinical diagnoses. Among them, 257 were clinically
diagnosed as AD and 71 cognitively unimpaired subjects affected
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by minor neurological non-neurodegenerative disorders were
classified as OND. The whole cohort originated by merging
two sub-cohorts: 303 subjects referred to the biobank of the
Neurology clinic of the University of Perugia (cohort 1), while
313 referred to the biobank of the Carlo Besta Neurological
Institute of Milan (cohort 2). The demographical details of the
subjects included are reported in Supplementary Table 3.

Merging of the Two Cohorts
Assessment of CSF AD biomarkers with Lumipulse-G CLEIA
technology showed very low inter-center variability in external
quality control programs (Leitão et al., 2019; Paciotti et al., 2019).
However, we performed a small scale inter-center variability
study, measuring a total of 40 samples across the two centers
involved, to assess the possibility to merge the cohorts from
Perugia (cohort 1, 303 subjects) and Milan (cohort 2, 313
subjects). Patients’ diagnoses, mean biomarker values and inter-
assay/inter-laboratory coefficients of variations (CV) are reported
for all of these samples in Supplementary Table 1. As expected,

the mean inter-assay CV of Aβ42/Aβ40 (7%) was lower compared
to the ones of Aβ42 (12%) and Aβ40 (9%). Mean inter-
assay CV of p-tau (4%) and t-tau (9%) were also relatively
low. Correlation and Passing-Bablok linear regression analyses
showed a good agreement between the measurements performed
in the two centers (Figures 1A–C). A Pearson’s correlation
coefficient above 0.9 was found for each of the tested biomarkers
and all the measured slopes were equal to 1 within their 95%
CI. Intercepts for Aβ42/Aβ40 and p-tau were null within their
95% CI, whereas a non-null negative intercept was obtained
for t-tau, although being small compared to usual nominal
t-tau values. The results of Passing-Bablok linear regression
analysis for Aβ42 and Aβ40 are shown in Supplementary
Table 2. As expected (Lewczuk et al., 2006), we found a
greater deviance from identity between the measurements of
these two peptides performed in the two laboratories with
respect to their ratio. We subsequently analyzed all the 616
samples included in the study by means of PCA. Projection
of the data into the principal components space (Figure 1D)

FIGURE 1 | (A–C) Passing-Bablok regression analyses of Aβ42/Aβ40, p-tau, and t-tau measured on 40 samples (20 from each cohort) in the two centers.
Correlations have been calculated in terms of Pearson’s correlation coefficients (r). Fitted slopes and intercepts with their 95% CI are also shown. (D) Plot (PC1 vs.
PC2) relative to the PCA performed on the whole dataset with samples belonging to different cohorts highlighted in different colors. The ellipses relative to the 95%
data range of each cohort are also shown together with the projections of Aβ42/Aβ40, p-tau and t-tau in the PC1-PC2 space.

Frontiers in Neuroscience | www.frontiersin.org 4 March 2021 | Volume 15 | Article 647783168

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-647783 March 24, 2021 Time: 15:34 # 5

Bellomo et al. Unsupervised Profiling of AD Biomarkers

showed that the measurement from the two centers did not
show any significant grouping related to the site of analysis, as
shown by the ellipses representative of the 95% data range of
the two cohorts.

Both the regression and the PCA analysis showed that the
inter-center variability was negligible for Aβ42/Aβ40, p-tau and
t-tau. Cut-off values for Aβ42, Aβ42/Aβ40, p-tau and t-tau for
cohort 1, cohort 2 and for the two cohorts merged are also
reported in the Supplementary Table 4. The calculated cut-off
values did not significantly differ within their 95% CI between
cohort 1 and 2. Thus, we proceeded to merge the two cohorts for
subsequent analyses, without applying any correction factor for
Aβ42/Aβ40, p-tau and t-tau.

Clustering
For the unsupervised cluster analysis, we included all the
subjects who consecutively underwent LP in the two centers
and whose CSF was assayed for Aβ42/Aβ40, p-tau and t-tau
with Lumipulse-G (N = 616). Considering the results of the
PCA plotted in Figure 1D, we decided to apply GMM as
clustering algorithm (Pedregosa et al., 2011). Other clustering
algorithms such as K-means are known for not providing
good fittings for anisotropic data. In order to standardize
the dimensions of the three biomarkers considered, biomarker
values were substituted with the corresponding Z-scores before
the analysis and then back-transformed for plotting and data
interpretation. The optimal number of clusters was decided
according to BIC (Schwarz, 1978). A plot relative to the BIC

function is shown in Supplementary Figure 1. Accordingly,
the optimal number of clusters turned out to be 6. The
results of the unsupervised clustering analysis are shown in
Figure 2A, GMM centroids and covariance matrices are reported
in Supplementary Table 5. As it can be seen by comparing
the 3D scatter plots in Figures 2A,B, most AD and OND
samples were assigned to different clusters. In particular, most
OND were included in cluster 1 while most AD subjects (95%)
were comprised in clusters 3, 4, 5, and 6. Considering the
biomarker 95% data ranges of each cluster (Figure 2C), clusters
3–6 corresponded to low Aβ42/Aβ40 values and high values of
p-tau and t-tau, which, according to the A/T/(N) criteria (Jack
et al., 2018), correspond to the presence of amyloidosis, tauopathy
and tau-related neurodegeneration, respectively. These four
clusters mainly differed in p-tau and t-tau values (Figure 2C).
Among AD patients, for all the AD clusters, the prevalences
of demented subjects (N = 253) did not significantly differ
from the prevalences of subjects in the MCI phase (N = 53)
by applying Fisher’s exact test for count data. Cluster 1 was
instead characterized by higher values of Aβ42/Aβ40 and small
values of p-tau and t-tau. Biomarker values in cluster 2 were
instead highly variable with respect to the other clusters (wide
95% data ranges for all the three biomarkers). This cluster
was characterized by smaller Aβ42/Aβ40 median values with
respect to clusters 3–6 and higher p-tau and t-tau median values
compared to cluster 1.

The percentages of AD patients, OND and other sufficiently
represented (N > 6) clinical conditions in each cluster are

FIGURE 2 | (A) Samples distribution in the core AD biomarkers space. The colors indicate the cluster to which the sample is belonging, after GMM analysis.
(B) Samples belonging to AD patients and OND are highlighted in red and black, respectively. (C) Median biomarker values with the 95% data range of each cluster
represented in brackets.
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reported in Figure 3. Interestingly, not only AD but also PDD,
DLB, and CBD had a relevant presence (>20%) in clusters
3–6. Conversely, MS, PSP, sMCI, and synucleinopathies without
dementia (PD and MSA) majorly colocalize with OND in
cluster 1. The composition of cluster 2 was instead highly
variable, consisting in the totality of CJD subjects and relevant
percentages (≥20%) of NPH, ENC, FTD, and VAD. Considering
the distribution of clinically defined OND and AD subjects in
the clusters together with the clusters data ranges with respect to
the calculated biomarkers cut-off values, we decided to indicate
cluster 1 as the “control” cluster and clusters 3–6 as “AD-
clusters”. Grouping of the clusters and of the clinical diagnoses
showed that cluster 1, the control cluster, was the most distant
from the others, followed by cluster 2 which was included in
a separated branch with respect to cluster 3–6. The clinical
diagnosis showed also a peculiar grouping, with AD, PDD,
and DLB in the same branch of the dendrogram, while the
other conditions (mostly included in clusters 1 and 2) in a
second large branch. CJD clustered separately from all the other
conditions being characterized by high Aβ42/Aβ40 ratios and
high t-tau values.

According to the prevalence of AD and OND in clusters 1–6,
we calculated cut-off values for each biomarker considering AD
vs. OND clinical diagnoses, control cluster vs. AD clusters and
cluster 2 vs. AD clusters. The results are shown in Table 1.

We noticed that the cut-offs of the comparison control
cluster vs. AD clusters were relatively similar to what obtained
using the clinical diagnosis grouping (OND vs. AD), being
mostly comprised within the 95% CI. Cut-off values for
control cluster vs. AD clusters remained unchanged also
by considering an age- and gender-matched subsets of the
population (Supplementary Figure 2).

TABLE 1 | Cut-off values for the three core AD biomarkers with their 95% CI were
calculated by maximizing the Youden’s index for AD vs. OND, between samples
belonging to the AD clusters (cluster 3, 4, 5, and 6) and “control” cluster (cluster 1)
and between samples belonging to the AD clusters and cluster 2.

Aβ42/Aβ40 p-tau (pg/ml) t-tau (pg/ml)

OND vs. AD 0.073 (0.063, 0.079) 53.5 (47.2, 57.5) 371 (332, 393)

Control cluster vs.
AD clusters

0.072 (0.070, 0.074) 50.0 (46.2, 52.3) 392 (359, 396)

Cluster 2 vs. AD
clusters

0.073 (0.072, 0.078) 71.6 (50.6, 82.8) 1403 (485, 1999)

On the other hand, the cluster 2 vs. AD clusters comparison
showed significant differences in the absolute values of cut-
offs for t-tau and p-tau, while the Aβ42/Aβ40 ratio did not
change significantly.

DISCUSSION

In the last decade, CSF Aβ42/Aβ40 ratio, p-tau and t-tau emerged
as reliable markers of brain amyloidosis, tauopathy and tau-
related neurodegeneration. The introduction of these markers
into clinical practice has substantially helped the neurologist to
change the definition of AD from a syndromal to a molecular
construct (Jack et al., 2018). In particular, considering the well-
established A/T/(N) system (Jack et al., 2018), AD is now
defined by the presence of both brain amyloidosis (A+) and
tauopathy (T+), with neurodegeneration (N+) being a non-
necessary condition. The recent advent of automated platforms
for core AD biomarker assessment in CSF, has been of substantial
help in limiting both intra and inter-assay variability with

FIGURE 3 | Heatmap descriptive of the GMM cluster analysis results. For each diagnostic category with a sample size (N subjects) ≥ 5, the percentages of samples
in each cluster are shown. Hierarchical clustering was used for ordering diagnostic groups and clusters.
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respect to manual ELISA (Le Bastard et al., 2015). In this
work, we used the reproducibility of automated CSF core
AD biomarker determination to compare two large cohorts
of patients diagnosed with various neurological disorders and
enrolled in two centers with proven expertise in AD biomarkers.
After a small round-robin validation step on 40 CSF samples,
we were able to confirm the good reproducibility of the
determinations between the two centers using the automated
procedure. In order to overcome the diagnostic heterogeneity of
both AD and control groups, we applied unsupervised GMMs to
cluster the patients (n = 616) according to their CSF biomarker
profile and investigate the degree of overlap between the clinical
diagnosis and the data-driven classification of the subjects. The
data spontaneously grouped in six clusters, 4 of these (clusters 3–
6) contained the 95% of clinically defined AD patients (Figure 3),
characterized by low Aβ42/Aβ40 values and high values of p-tau
and t-tau (Figure 2C). Interestingly, high percentages (>50%)
of synucleinopathies with dementia (DLB and PDD) and CBD
(33%) fell in these clusters. This fact is not surprising, since
the presence of brain amyloidosis and tauopathy is a feature of
both DLB and PDD (Irwin et al., 2013; Irwin and Hurtig, 2018;
Bellomo et al., 2020b). Cluster 1 instead contained the majority
of OND subjects (77%), and PD (84%), MSA (87%), PSP (86%),
and MS (100%) patients, suggesting that AD pathology is not
frequent in these conditions. This result, together with the high
concordance between cut-off values for the OND vs. AD and
control cluster vs. AD clusters comparisons, suggest that these
conditions may be treated as controls with respect to core AD
biomarkers. The inclusion of NPH in control groups should be
instead avoided since neurodegeneration and dilution effects may
significantly alter the concentration of t-tau and Aβ peptides
(Graff-Radford, 2014), in a way that is not fully compensated by
computing their ratio. By considering the clusters with highest
and lowest frequencies of AD and OND subjects, we were able
to compute cluster-defined cut-off values. In our work, the cut-
off values calculated by the clustering method were concordant
to the ones calculated by relying on clinical diagnoses for AD
vs. OND, but this approach may be of more substantial help
while facing low numbers of well clinically characterized OND
and/or AD subjects. The cut-off values calculated for AD clusters
vs. control cluster were substantially unchanged considering age-
and gender-matched subsets of the clusters (Supplementary
Figure 2), thus reinforcing the reliability of the approach
used. Because of these advantages, unsupervised and partially
supervised machine-learning algorithms (like the one we applied)
have recently started to be applied in neurodegenerative diseases
diagnostics (Skillbäck et al., 2015; Racine et al., 2016; Toschi
et al., 2019). Moreover, these approaches represent a best choice
while dealing with a large number of biomarkers or candidate
biomarkers (Solorio-Fernández et al., 2020), e.g., in omics studies
(Lopez et al., 2018). The inclusion of a wide panel of CSF
markers, possibly linked to different biological pathways, may
help in differentiating synucleinopathies with dementia and FTD
from AD and synucleinopathies without dementia and PSP from
controls. As a limitation of our study, we must report the small
sample size of some diagnostic categories (e.g., MS, VAD and
PDD). Thus, the frequencies of these categories in clusters may

potentially be biased. Another limitation is the lack of amyloid
PET, which is of substantial help in identifying brain amyloidosis
and well correlates with brain amyloidosis markers such as CSF
Aβ42 and Aβ42/Aβ40 (Alcolea et al., 2019; Leitão et al., 2019).
However, this partially supervised approach is insensitive to the
presence of hidden interfering pathologies in control subjects
and to the presence of few AD misdiagnosis, which may occur
when the diagnosis is made prevalently by the examination of
clinical features. Since the definition of AD and control clusters
depended only on the prevalences of clinically defined AD and
OND subjects within each cluster, we expect that this approach
may provide reliable results as long as the diagnosis/exclusion
of AD is correct in the majority of the cases. As an example,
considering the biomarker distributions presented in this study,
to misclassify the control cluster it would have required at least
28 out of 71 OND subjects (40%) misdiagnosed for AD.

Overall, our findings suggest that automated assays are
amenable for large-scale biomarker studies across centers.
Furthermore, the use of unsupervised (or partially supervised)
machine learning approaches may help the biochemical
phenotyping of neurological disorders, being also a robust
option for the definition of cut-off values. The implementation
of such approaches in biomarker research could substantially
improve the development of adequate diagnostic protocols
and increase the quality of diagnostic tools for complex and
heterogeneous disorders presenting with overlapping clinical
syndromes, like dementias.
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Introduction: Subjective cognitive decline (SCD) is the preclinical stage of Alzheimer’s
disease and may develop into amnestic mild cognitive impairment (aMCI). Finding
suitable biomarkers is the key to accurately identifying SCD. Previous resting-state
functional magnetic resonance imaging (rs-fMRI) studies on SCD patients showed
functional connectivity disorders. Our goal was to explore whether local neurological
homogeneity changes in SCD patients, the relationship between these changes and
cognitive function, and similarities of neurological homogeneity changes between SCD
and aMCI patients.

Materials and Methods: 37 cases of the healthy control (HC) group, 39 cases of the
SCD group, and 28 cases of the aMCI group were included. Participants underwent rs-
fMRI examination and a set of neuropsychological test batteries. Regional homogeneity
(ReHo) was calculated and compared between groups. ReHo values were extracted
from meaningful regions in the SCD group, and the correlation between ReHo values
with the performance of neuropsychological tests was analyzed.

Results: Our results showed significant changes in the ReHo among groups. In the
SCD group compared with the HC group, part of the parietal lobe, frontal lobe, and
occipital lobe showed decreased ReHo, and the temporal lobe, part of the parietal
lobe and the frontal lobe showed increased ReHo. The increased area of ReHo was
negatively correlated with the decreased area, and was related to decrease on multiple
neuropsychological tests performance. Simultaneously, the changed areas of ReHo in
SCD patients are similar to aMCI patients, while aMCI group’s neuropsychological test
performance was significantly lower than that of the SCD group.

Conclusion: There are significant changes in local neurological homogeneity in SCD
patients, and related to the decline of cognitive function. The increase of neurological
homogeneity in the temporal lobe and adjacent area is negatively correlated with
cognitive function, reflecting compensation for local neural damage. These changes in
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local neurological homogeneity in SCD patients are similar to aMCI patients, suggesting
similar neuropathy in these two stages. However, the aMCI group’s cognitive function
was significantly worse than that of the SCD group, suggesting that this compensation
is limited. In summary, regional neural activity homogeneity may be a potential biomarker
for identifying SCD and measuring the disease severity.

Keywords: subjective cognitive decline, mild cognitive impairment, regional homogeneity, resting-state
functional MRI, cognitive function

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia
in the elderly. The pathophysiological changes leading to AD
have begun years or even decades before AD symptoms appear
(Sperling et al., 2011). According to the recommendations from
US National Institute on Aging-Alzheimer’s Association (NIA-
AA), the progress from normal to AD can be divided into
three stages: (1) the preclinical stage, (2) the mild cognitive
impairment (MCI) stage, and (3) dementia stage (Jack et al.,
2011). In these stages, neuronal damage and cognitive decline
progress continuously and irreversibly. Therefore, it is essential
to identify potential patients with AD as early as possible.

Subjective cognitive decline (SCD) is considered the last
stage of the preclinical stage of AD. SCD refers to individuals
subjectively perceive the decline of their memory or other
cognitive abilities compared with their previous cognitive ability
(Jessen et al., 2014). The decline is gradually developed and
not caused by any acute events, while there is no objective
cognitive impairment. Performing neuropsychological testing on
people with SCD will find that they do not meet the MCI
diagnostic criteria. At this stage, individuals suffer only mild
neuropathological damage and still have a considerable cognitive
reserve; therefore, SCD is considered a critical window for
intervention to prevent individuals from progressing to AD
(Jessen et al., 2014; Rabin et al., 2017).

If the neuropathological changes continue to deteriorate,
individuals with SCD may progress to MCI. MCI is an early but
objective state of cognitive impairment (Petersen, 2004; Albert
et al., 2011), in which the amnestic mild cognitive impairment
(aMCI) subtype is closely related to AD. The aMCI patients’
general cognitive function is impaired, with memory function as
the primary manifestation. Although still retain roughly intact
functional activities, patients with aMCI have a high conversion
rate to AD (Mitchell and Shiri-Feshki, 2009).

To accurately identify potential AD patients, it is necessary
to select appropriate biomarkers, which is particularly
important for SCD patients because they have no obvious

Abbreviations: SCD, subjective cognitive decline; AMCI, amnestic mild cognitive
impairment; Rs-fMRI, resting-state functional magnetic resonance imaging;
ReHo, regional homogeneity; AD, Alzheimer’s disease; MMSE, Mini-Mental State
Examination; ACE-III, Addenbrooke’s Cognitive Examination; MoCA-B, Montreal
Cognitive Assessment-Basic; AVLT, Auditory Verbal Learning Test; BVMT, Brief
Visuospatial Memory Test; AFT, Animal Verbal Fluency Test; BNT, Boston
Naming Test; ST, Silhouettes Test; STT, Shape Trail Test; JLO, Judgment of Line
Orientation; DST, Digit Span Test; MNI, Montreal Neurological Institute; ROI,
Region of interest; DRR, decreased ReHo region; IRR, increased ReHo region;
AAL, anatomical automatic labeling atlas.

abnormal neuropsychological test performance at this stage.
At present, the core biomarkers in AD are mainly divided
into cerebrospinal fluid and imaging biomarkers (Scheltens
et al., 2016). cerebrospinal fluid biomarkers mainly including
Aββ42, total tau, and phosphorylated tau, while imaging
biomarkers mainly including Aβ42 and tau PET CT. The
biomarkers in cerebrospinal fluid have good sensitivity (Shaw
et al., 2009; Visser et al., 2009) but can only be detected by
invasive examination, making it difficult for these biomarkers
to be widely used. Therefore, we need more non-invasive
markers. Resting-state functional magnetic resonance imaging
(rs-fMRI) is a method to explore the functional activity
of the brain; much progress has been made in the use of
rs-fMRI in the fields of MCI and AD, proving that there
are significant brain function changes in these stages (Pan
et al., 2017; Bi et al., 2020a,b; Moguilner et al., 2020).
In the field of SCD, rs-fMRI has also been used, mainly
focused on brain network connectivity changes. A previous
study (Dillen et al., 2017) has shown that the functional
connectivity among nodes in the default mode network of
SCD patients is weakened; the connectivity between the
default mode network and hippocampus is also affected.
These changes in connectivity are related to the decline of
memory ability. Another study (Viviano et al., 2019) found
that the posterior memory network’s connectivity in patients
with SCD also decreased, but no significant changes were
found in simultaneous diffusion-weighted image analysis.
A study of SCD using machine learning (Yan et al., 2019)
confirmed changes in the default network connectivity
and found changes in the subcortical structure network.
Based on these studies on large-scale network connectivity,
a recent study (Wang et al., 2019) went one step further
and found primary medium-scale network damage in SCD
patients. Some studies found the correlation between rs-
fMRI and classical pathological biomarkers in the preclinical
stage of AD, which suggest that fMRI can be considered a
potential imaging biomarker. A study using amyloid-PET,
FDG-PET, and fMRI found left frontal cortex connectivity
underlies cognitive reserve in prodromal Alzheimer disease,
suggested that functional changes in the prodromal stage of
AD are consistent with the pathological changes (Franzmeier
et al., 2017). Another study on MCI found a correlation
between local functional activity and the Aβ/p Tau ratio of
cerebrospinal fluid, which may be a sensitive indicator of
AD pathology (Ren et al., 2016). Using machine learning to
analyze the fMRI and cerebrospinal fluid biomarkers of SCD
individuals in the ADNI database, researchers found that
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SCD individuals showed higher nodal topological properties
associated with Aβ levels and memory function, suggested
the compensatory mechanism of the functional connectivity
(Chen et al., 2020). A subsequent RS-fMRI study based on
the DELCODE cohort suggested that local brain function
changes in patients with SCD were associated with Aβ load
(Li et al., 2021).

Previous studies have revealed changes in the strength of
connectivity in SCD patients but did not explain why these
changes occur. To explore the possible mechanisms behind
connectivity changes, we first need to find a suitable local brain
function indicator. Regional homogeneity (ReHo) (Zang et al.,
2004) is a stable indicator to detect regional synchronization
and can be used to evaluate the regional neural activity
homogeneity. Using Kendall’s coefficient concordance, ReHo
can evaluate the time series similarity between local voxels and
adjacent voxels. The abnormality of ReHo, including decrease
or increase, may reflect the disorder and compensation of local
brain function and may explain the internal cause of whole-
brain network disorder (Zuo et al., 2013; Xiong et al., 2020).
With these characteristics, ReHo is a very suitable indicator to
study the local brain function changes in patients with SCD.
In addition, A regional functional synchronization study found
that ReHo might have distinctive association patterns with Aβ

retention in elders with normal cognitive (Kang et al., 2017). By
measuring ReHo and biomarkers, researchers found the ReHo in
different regions of aMCI patients is related to cognitive function
and cerebrospinal fluid Aβ42 level (Luo et al., 2018). These
studies suggested that in the preclinical stage of AD, regional
neural activity homogeneity may be related to pathological
changes to some extent.

The aim of this study was to reveal the regional neural
activity homogeneity changes in patients with SCD and the
significance of these changes. We used rs-fMRI ReHo to compare
the differences between SCD patients and normal subjects. In
order to verify whether SCD is a preclinical stage of AD, we also
included patients with aMCI for the same analysis to find out
whether there is a similarity between the SCD and aMCI groups.
In order to clarify the relationship between regional neural
activity homogeneity and cognitive function, we used a variety
of neuropsychological tests to analyze the correlation with ReHo.

Based on the current existing facts: (1) SCD is a
preclinical state of neurodegenerative disease; there are
local neuropathological changes at this stage, and (2) the
neuropsychological manifestations of SCD patients are still
roughly within the normal range. We make the following
hypothesis: (1) there are corresponding changes in regional brain
function in patients with SCD, and the scope of this change is
large enough to affect large-scale brain functional connectivity;
(2) generally normal cognitive function in SCD patients may be
due to a certain degree of functional compensation; (3) as the
precursor stage of aMCI, the changes of regional brain function
in SCD may be similar to aMCI to some extent; (4) in patients
with SCD, there may be a correlation between their cognitive
ability and these regional brain function changes, which will lead
to a gradual decline in their cognitive function if the changes
continue to progress.

MATERIALS AND METHODS

Participants
Participants were recruited from the community
through advertising between August 2018 to November
2019. The recruitment was carried out in the
neuropsychological testing room of the Department
of Geriatrics, Shanghai Jiao Tong University Affiliated
Sixth People’s Hospital, Shanghai, China. A total of 104
participants were included.

The Healthy Control Group (HC Group)
HCs were additionally required to have no significant impairment
in cognitive function, no memory complaints or memory loss
observed, MMSE score ≥ the cutoff (Katzman et al., 1988), a
CDR score of 0 (Morris, 1993), and a Hamilton Depression
Rating Scale score of 12 or less in the past 2 weeks (Worboys,
2013). MRI manifestations: no key parts such as thalamus
and hippocampal infarction; no white matter damage (Fazekas
Scale ≥ 3) (Fazekas et al., 1987).

Thirty-seven healthy participants were classified as the HC
group [15 men; age: mean = 63.86 years, standard deviation
(SD) = 8.25 years; the number of years of full-time education:
mean = 12.11 years, SD = 3.42 years; Mini-Mental State
Examination (MMSE): mean = 28.57, SD = 1.21].

The Subjective Cognitive Decline Group (SCD Group)
The diagnosis criteria of SCD was based on features referred to
SCD plus (preclinical AD) (Jessen et al., 2014): (a) subjective
decline in memory, rather than other domains of cognition; (b)
onset of SCD with the last five years; (c) concerns (worries)
associated with SCD; (d) feeling of worse performance than
others of the same age group; (e) normal performance on
Neuropsychological scale and did not reach the criteria for MCI
or dementia. We used the SCD-initiative (SCD-I) framework
to include individuals with SCD (Jessen et al., 2018; Miebach
et al., 2019), who have the following performance: Reported
subjective cognitive decline (worse than peers) and worried about
it; the first occurrence of subjective cognitive decline was less
than 5 years before the interview; after adjusting for age, sex
and education, compared with HCs, the score difference of
each test in the neuropsychological battery was less than 1.5
standard deviations.

Thirty-nine patients diagnosed with SCD were included (14
men; age: mean = 64.56 years, SD = 7.34 years; number of years of
full-time education: mean = 11.69 years, SD = 3.30 years; MMSE:
mean = 27.90, SD = 1.94).

The Amnestic Mild Cognitive Impairment (aMCI
Group)
The inclusion criteria for aMCI was referred from the criteria
proposed by Jak/Bondi (Bondi et al., 2014): (1) Cognitive
concern or complaints by the subject, informant, nurse,
or physician during the last year; (2) Mini-Mental State
Examination (MMSE) above cut-off ( > 24/30); (3) objective
memory impairment assessment by long-delay free recall and
recognition of Auditory Verbal Learning Test (AVLT) in at
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least 1.0 standard deviation (SD) below the norm for age
and education; (4) Maintained activities of daily living or
slight impairment in instrumental activities of daily living,
in other words, no more than one item from the Activities
of Daily Living Scale (ADL)-Chinese version suffered obvious
changes; (5) Absence of dementia, according to the NIA-
AA criteria.

Twenty-eight patients diagnosed with aMCI were included (13
men; age: mean = 65.71 years, SD = 6.90 years; number of years of
full-time education: mean = 12.19 years, SD = 3.16 years; MMSE:
mean = 27.07, SD = 1.72).

The Exclusion Criteria
The exclusion criteria were: (a) patients diagnosed or with a
history of head injury, head surgery, mental diseases, brain
tumors, acute cerebral hemorrhage, cerebral ischemia, non-
degenerative brain injury; (b) patients with severe visual
or hearing impairment; and (c) patients who could not
undergo MRI. To exclude other possible causes for the
amnestic impairment, each subject had a uniform structured
evaluation performed by a neurologist, which included
a medical history inquiry and neurological examination.
Blood tests included complete blood count, thyroid function
tests, serum vitamin B12, and Venereal Disease Research
Laboratories test.

Neuropsychological Assessments
All participants underwent extensive neuropsychological tests,
included: MMSE (total score: 30) (Folstein et al., 1975),
Addenbrooke’s Cognitive Examination (ACE-III) (total score:
100) (Mioshi et al., 2006), Montreal Cognitive Assessment-
Basic (MoCA-B) (total score: 30) (Huang et al., 2018b),
Auditory Verbal Learning Test (AVLT) (score: 12 per round,
immediate recall score equals the sum of the first, second
and third recall scores, recognition score: 24) (Zhao et al.,
2015), Brief Visuospatial Memory Test (BVMT) (score: 12
per round, immediate recall score equals the sum of the
first, second and third recall scores) (Pliskin et al., 2020),
Animal Verbal Fluency Test (AFT) (Zhao et al., 2013a),
Boston Naming Test (BNT) (total score: 30) (Mack et al.,
1992), Silhouettes Test (ST) (total score: 15) (Huang et al.,
2018a), Shape Trail Test (STT) (Zhao et al., 2013b), Stroop
Test (total score: 24) (Chen et al., 2019), Judgment of Line
Orientation (JLO) (total score: 30) (Qualls et al., 2000), and
Digit Span Test (DST) (sequence score: 12; reverse score: 10)
(Johansson and Berg, 1989).

Functional Magnetic Resonance Imaging
Image Acquisition
Resting-state fMRI was performed with a 3.0-Tesla scanner
(SIEMENS MAGNETOM Prisma 3.0T, Siemens, Erlangen,
Germany). parameters were: echo-planar imaging (EPI)
sequence, transverse plane, repetition time = 800 ms, echo
time = 37 ms, flip angle = 52 ◦, matrix size = 104 × 104, field
of view = 208 mm × 208 mm, slice number = 72 slices, slice
thickness = 2 mm, and voxel size = 2 mm × 2 mm × 2 mm.
The scan obtained 488 slices and took a total of 404 s. During

the entirety of the scan, the participants were asked to lie in the
scanner, close their eyes but not fall asleep, try to keep their heads
still, and not to think systematically.

TABLE 1 | Demographic data and neuropsychological tests between groups.

HC (n = 37) SCD (n = 39) aMCI (n = 28) Test
statistic

Age (year)a 63.86 ± 8.250 64.56 ± 7.337 65.71 ± 6.895 0.478

Sexb Male = 15 Male = 14 Male = 13 0.751

Edu years (year)a 12.108 ± 3.42211.692 ± 3.300 12.185 ± 3.1627 0.227

Hypertensionb 24.3% 28.2% 32.1% 0.488

Hyper-
cholesterolemiab

8.1% 12.8% 10.7% 0.447

Diabetesb 13.5% 10.2% 14.3% 0.296

General cognitive
function

MMSEc 29 (28,30) 28 (27,29) 27 (26,28)* 12.069

ACE-IIIc 87 (82.5,90.5) 82 (77,86)* 75 (73,81)**† 26.792

MoCA-Bc 27 (26,28) 26 (23,28) 23 (22,25)**† 25.177

Memory function

AVLT immediate
recallc

18 (15.5,20.5) 19 (15,21) 12 (11,14)**‡ 37.136

AVLT 4th recallc 6 (5,8) 6 (5,8) 3 (2,2.75)**‡ 47.123

AVLT 5th recallc 6 (4.5,7.5) 6 (5,7) 2 (1,3)**‡ 49.797

AVLT 6th recallc 6 (5,7.5) 5 (4,7) 2 (2,3)**‡ 44.665

AVLT recognitionc 22 (21,23) 22 (21,24) 18 (16,18.75)**‡ 55.987

BVMT immediate
recallc

22 (16.5,26) 21 (17,25) 18 (14.25,20.75)* 6.586

BVMT 4th recallc 10 (7.5,11.5) 10 (8,11) 8 (5.25,10) 6.074

BVMT 5th recallc 10 (8,11.5) 10 (8,11) 8 (5.25,10) 6.269

BVMT 6th recallc 5 (5,6) 5 (5,6) 4 (4,4)**‡ 23.940

BVMT recognitionc 12 (12,12) 12 (12,12) 12 (10,12)**† 20.005

Language
function

AFTc 19 (18.5,21.0) 17 (15,20)* 16 (14,17.75)** 16.042

BNTc 26 (24,27) 24 (223,27) 23 (21.25,26)* 6.542

Executive
function

STT-A total time
(sec) c

40 (34,51) 44 (36,55) 52.5 (39.25,61.25)* 8.225

STT-B total time
(sec) c

113 (89,137) 116 (95,136) 127.5 (109.25,171.00)

Stroop test Ac 24 (24,24) 24 (24,24) 24 (24,24) 1.829

Stroop test Bc 24 (23,24) 24 (23,24) 23 (20,24) 11.985

Spatial Function

STa 10.5 ± 2.61 9.7 ± 2.46 10.0 ± 2.16 1.206

JLOa 21.2 ± 5.04 20.7 ± 4.82 21.4 ± 4.32 0.186

Attention function

DST sequencec 8 (7.5,8.5) 8 (6,8) 7 (5,8)* 8.837

DST reversec 5 (4,6) 5 (4,5) 4.5 (4,5) 3.137

aANOVA test, bChi-square test; cKruskal–Wallis H-test; *compared with HC group,
p < 0.05; **compared with HC group, p < 0.001; †compared with SCD group,
p < 0.05; ‡compared with SCD group, p < 0.001. MMSE, Mini-Mental State
Examination. ACE-III, Addenbrooke’s Cognitive Examination. MoCA-B, Montreal
Cognitive Assessment-Basic. AVLT, Auditory Verbal Learning Test. BVMT, Brief
Visuospatial Memory Test. AFT, Animal Verbal Fluency Test. BNT, Boston Naming
Test. STT, Shape Trail Test. ST, Silhouettes Test. JLO, Judgment of Line Orientation.
DST, Digit Span Test.
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Imaging Data Processing
The data were processed using Statistical Parametric Mapping
12 (SPM12)1 and RESTplus2 toolkits (Jia et al., 2019). In order
to stabilize the magnetic field of the MRI scanner and allow the
participant to adapt to the noise, the first 20 time points were
removed. Next, the following preprocessing steps were carried
out: slice timing to correct differences in image acquisition
time between slices, realignment for the correction of head
motion (excessive head movement: ≥ 3 mm or 3◦), spatially
normalized to the Montreal Neurological Institute (MNI) space
and resampled to 3 mm isotropic voxels, remove linear and
quadratic trends of the time-series signals, regress out the white
matter, cerebrospinal fluid, global mean signal, and Friston-24
motion parameters, and band-pass (0.01–0.08 Hz) filter.

The ReHo was obtained by calculating the Kendall
coordination coefficient of the time process for each of the
27 nearest neighboring voxels and then standardized by dividing
each voxel’s value by the global average. Finally, the standardized
mean ReHo graphs were spatially smoothed using a Gaussian
kernel (FWHM = 6 mm).

Statistical Analysis
SPSS (IBM SPSS Statistics, Version 26.0. IBM Corp, Armonk,
NY, United States) software was used to analyze demographic
data and neuropsychological test scores. Data were tested
for normality using a Shapiro-Wilk normality test. Normally
distributed data were presented as means ± SD. The non-
normally distributed data were expressed as the median (quartile
range). Pearson Chi-Square test was used to test the differences
for sex, hypertension, hypercholesterolemia, and diabetes. The
analysis of variance (ANOVA) was used to analyze the age,
education years, and neuropsychological test scores conformed to
normality among the three groups. For neuropsychological test
scores that do not conform to the normal distribution, a non-
parametric test (Kruskal-Wallis H-test) was performed among
the three groups. In post-hoc analysis, Bonferroni’s correction
was applied when multiple comparisons were performed. To

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2http://restfmri.net/forum/restplus

analyze the correlation between neuropsychological tests and
ReHo values, we conducted Spearman rank correlation analysis.

SPM12 was used to establish a statistical model to analyze the
differences in ReHo. ANOVA analysis was carried out among
the three groups to determine the areas where there were
differences. The independent-sample t-test was then carried out
for comparing ReHo between the SCD group with the HC
group and the aMCI group with the HC group. False Discovery
Rate (FDR) correction for multiple comparisons was performed
(p < 0.001, k > 10 voxels) using RESTplus toolkits. To separately
show the differences between the SCD group compared with the
HC group and the aMCI group compared with the HC group, we
performed whole-brain two-sample t-tests. In order to display the
results of two t-tests together without increasing the false-positive
rate, the FDR correction threshold was adjusted to 0.0005.

Compared with the HC group, the significant clusters that
survived after the multiple comparison correction were defined
as regions of interest (ROIs). If only one cluster survived, it was
considered the significant cluster and chosen as ROI. If multiple
clusters survived, the cluster with the highest peak t-value and
the largest volume was considered the most significant and was
defined as the ROI. The ReHo values of ROIs were extracted and
used for Spearman rank correlation analysis.

The imaging results were visualized using BrainNet Viewer3

(Xia et al., 2013) and RESTplus.

RESULTS

Demographic Data and
Neuropsychological Performances
Comparison of Demographic Data Between Groups
There were no statistical differences in age, sex, and education
years among the three groups. There were no statistical
differences in hypertension (24.3% in HC group, 28.2% in SCD
group, 32.1% in aMCI group), hypercholesterolemia (8.1% in HC
group, 12.8% in SCD group, 10.7% in aMCI group), and diabetes

3http://www.nitrc.org/projects/bnv/

FIGURE 1 | ANOVA revealed differences among the three groups. ReHo was significantly different among the three groups (Two-tailed ANOVA-test; FDR p < 0.001,
k > 10 voxels). ANOVA, one way analysis of variance. The color bars indicate t-values, blue color represents negative values and red color represents positive
values. L, Left; R, Right.
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(13.5% in HC group, 10.2% in SCD group, 14.3% in aMCI group)
among the three groups.

Comparison of Neuropsychological Performance
Between Groups
Multi-group comparisons found differences in MMSE, ACE-III,
MoCA-B, AVLT immediate recall, AVLT 4th recall, AVLT 5th
recall, AVLT 6th recall, AVLT recognition, BVMT immediate
recall, BVMT 6th recall, BVMT recognition, AFT, BNT, STT-
A total time, and DST sequence (Table 1). There were no
significant difference between the three groups in BVMT-4th
recall, BVMT-5th recall, ST, STT-B total time, JLO (Table 1).
Post-hoc analysis with Bonferroni’s correction was conducted to
confirm differences occurred between groups.

Comparison between the SCD group and the HC group
In the following neuropsychological tests, there were significant
differences between the SCD group and the HC group: ACE-III
[82 (77, 86) vs. 87 (82.5, 90.5), p = 0.002], VFT [17 (15, 20) vs. 19
(18.5, 21.0), p = 0.002] (Table 1).

Comparison between the aMCI group and the HC group
In the following neuropsychological tests, there were significant
differences between the aMCI group and the HC group: MMSE
[27 (26, 28) vs. 29 (28, 30), p = 0.002], ACE-III [75 (73, 81)
vs. 87 (82.5, 90.5), p = 0.000], MoCA-B [23 (22, 25)
vs. 27 (26, 28), p = 0.000], AVLT immediate recall [12 (11, 14)
vs. 18 (15.5, 20.5), p = 0.000], AVLT 4th recall [3 (2, 2.75) vs.
6 (5, 8), p = 0.000], AVLT 5th recall [2 (1, 3) vs. 6 (4.5, 7.5),
p = 0.000], AVLT 6th recall [2 (2, 3) vs. 6 (5.0, 7.5), p = 0.000],
AVLT recognition [18 (16, 18.75) vs. 22 (21, 23), p = 0.000],
BVMT immediate recall [18 (14.25, 20.75) vs. 22 (16.5, 26),
p = 0.036], BVMT-6th recall [4 (4, 4) vs. 5 (5, 6), p = 0.000],
BVMT-recognition [12 (10, 12) vs. 12 (12, 12), p = 0.000], VFT
[16 (14, 17.75) vs. 19 (18.5, 21.0), p = 0.000], BNT [23 (21.25, 26)
vs. 26 (24, 27), p = 0.033], DST-sequence [7 (5, 8) vs. 8 (7.5, 8.5),
p = 0.015] (Table 1).

Comparison between the aMCI group and the SCD group
In the following neuropsychological tests, there were significant
differences between the aMCI group and the SCD group: ACE-
III [75 (73, 81) vs. 82 (77, 86), p = 0.021], MoCA-B [23 (22, 25)
vs. 27[26, 28), p = 0.007], AVLT immediate recall [12 (11, 14) vs.
19 (15, 21), p = 0.000], AVLT 4th recall [3 (2, 2.75) vs. 6 (5, 8),
p = 0.000], AVLT 5th recall [2 (1, 3) vs. 6 (5, 7), p = 0.000], AVLT
6th recall [2 (2, 3) vs. 6 (4, 7), p = 0.000], AVLT recognition [18
(16, 18.75) vs. 22 (21, 24), p = 0.000], BVMT-6th recall [4 (4, 4)
vs. 5 (5, 6), p = 0.000], BVMT-recognition [12 (10, 12) vs. 12 (12,
12), p = 0.001], STT-A total time [52.5 (39.25, 61.25) vs. 40 (34,
51), p = 0.012] (Table 1).

rs-fMRI ReHo
ANOVA Analysis
ReHo was significantly different between the three groups. The
ANOVA showed that the differential brain regions were located
in Temporal_Inf_L/R, Fusiform_L/R, Temporal_Sup_L/R,
Insula_L/R, ParaHippocampal_L/R, Temporal_Pole_Sup_L/R,
Hippocampus_L/R, Frontal_Inf_Orb_L/R, Temporal_Mid_L/R,

TABLE 2 | ANOVA revealed differences among three groups.

CLUSTER (AAL) Volume (voxels) CLUSTER (AAL) Volume (voxels)

Cluster 1 Total: 22,347 Cluster 2 Total: 6,158

Peak (MNI): 39 -18 -24 Peak t: 63.7643 Peak (MNI): 3 -66 45 Peak t: 41.1763

Temporal_Inf_L 584 Precuneus_L 499

Temporal_Inf_R 495 Occipital_Mid_L 448

Fusiform_R 458 Precuneus_R 448

Fusiform_L 438 Angular_R 408

Temporal_Sup_L 392 Occipital_Mid_R 328

Insula_R 358 Temporal_Mid_R 315

Insula_L 340 Parietal_Inf_R 311

ParaHippocampal_R 325 Temporal_Mid_L 311

Cerebelum_4_5_L 315 Parietal_Inf_L 271

Cerebelum_6_R 299 SupraMarginal_R 244

ParaHippocampal_L 283 Parietal_Sup_L 235

Temporal_Pole_Sup_L 274 Angular_L 233

Hippocampus_R 268 Parietal_Sup_R 216

Hippocampus_L 267 Occipital_Sup_R 191

Frontal_Inf_Orb_L 251 Cuneus_R 168

Cerebelum_6_L 244 Cuneus_L 155

Frontal_Inf_Orb_R 242 Occipital_Sup_L 153

Temporal_Mid_L 228 Postcentral_R 110

Putamen_L 227

Temporal_Sup_R 215

Putamen_R 214

Cerebelum_4_5_R 196

Caudate_R 185

Caudate_L 184

Temporal_Pole_Sup_R 179

Postcentral_L 172

Rolandic_Oper_L 160

Precentral_L 158

Frontal_Sup_Orb_R 127

Rectus_R 117

Temporal_Pole_Mid_R 112

Frontal_Sup_Orb_L 100

ANOVA, one way analysis of variance. AAL, anatomical automatic labeling atlas.
MNI, Montreal Neurological Institute space. Only clusters of more than 100 voxels
were reported.

Putamen_L/R, Caudate_L/R, Postcentral_L/R, Rolandic_
Oper_L, Precentral_L, Frontal_Sup_Orb_L/R, Rectus_R,
Temporal_Pole_Mid_R, Precuneus_L/R, Occipital_Mid_L/R,
Angular_L/R, Parietal_Inf_L/R, SupraMarginal_R, Parietal_
Sup_L/R, Occipital_Sup_L/R, and Cuneus_L/R (Two-tailed
ANOVA-test; FDR p < 0.001, k > 10 voxels) (Figure 1 and
Table 2).

The SCD Group Compared With the HC Group
In the following areas, the ReHo of the SCD group decreased
compared to the HC group: Occipital_Mid_L/R, Precuneus_R,
Angular_L/R, Parietal_Inf_L/R, Temporal_Mid_L/R, Parietal_
Sup_L/R, SupraMarginal_R, Occipital_Sup_L/R, Cuneus_L,
Frontal_Mid_L/R, Frontal_Sup_L/R, and Frontal_Sup_Medial_L
(Two-tailed, FDR p < 0.001, k > 10 voxels) (Figure 2
and Table 3). In the following areas, the ReHo of the SCD
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FIGURE 2 | Changed ReHo in the SCD group compared with the HC group. (A) The brain regions with increased ReHo in the SCD group compared with the HC
group. (B) The brain regions with decreased ReHo in the SCD group compared with the HC group. (C) Brain regions with increased and decreased ReHo in the
SCD group compared with the HC group. Two-tailed t-test; FDR < 0.0005, k > 10 voxels. The color bars indicate t-values, blue color represents negative values
and red color represents positive values. L, Left; R, Right.

group increased compared to the HC group: Temporal_Inf_L/R,
Fusiform_L/R, Temporal_Sup_L/R, Insula_L/R, Para-
Hippocampal_L/R, Hippocampus_L/R, Frontal_Inf_Orb_L/R,
Temporal_Pole_Sup_L/R, Putamen_L/R, Temporal_Mid_L,
Caudate_L/R, Postcentral_L, Rolandic_Oper_L, Precentral_L,
Frontal_Sup_Orb_R, Rectus_R, and Temporal_Pole_Mid_R
(Two-tailed, FDR p < 0.0005, k > 10 voxels) (Figure 2 and
Table 4).

The aMCI Group Compared With the HC Group
Comparing the aMCI group with the HC, the brain area with
ReHo changes was very similar to the SCD group (Tables 3, 4).

In the following areas, the ReHo of the aMCI group
decreased compared to the HC group: Frontal_Mid_L/R,
Frontal_Sup_L/R, Precuneus_L, Angular_L/R, Precuneus_R,
Parietal_Inf_L/R, Temporal_Mid_L/R, Occipital_Mid_L,
SupraMarginal_R, Occipital_Mid_R, Parietal_Sup_L/R,
Occipital_Sup_L/R, and Cuneus_R (Two-tailed, FDR p < 0.001,
k > 10 voxels) (Figure 3 and Table 3). Bonferroni’s correction
was used for Post-hoc analyses. In the following areas, the
ReHo of the aMCI group increased compared to the HC
group: Temporal_Inf_L/R, Fusiform_L/R, Temporal_Sup_L/R,
Insula_L/R, ParaHippocampal_L/R, Temporal_Pole_Sup_L/R,
Hippocampus_L/R, Frontal_Inf_Orb_L/R, Putamen_L/R,
Temporal_Mid_L, Caudate_L/R, Postcentral_L, Frontal_Sup_
Orb_L/R, Precentral_L, Rectus_R, Rolandic_Oper_L, and
Temporal_Pole_Mid_R (Two-tailed, FDR p < 0.0005, k > 10
voxels) (Figure 3 and Table 4).

Similarity Between the aMCI Group and the SCD
Group
Our study focused on comparing the SCD group and the aMCI
group with the HC group to explore the change patterns of these
two groups (SCD and aMCI group). We visually observed the

change patterns in the SCD group and the aMCI group and found
these two groups were very similar (Figures 2, 3).

Correlation Analysis
Define ROI
In the SCD group, the significant cluster with increased ReHo
(Table 3, SCD group > HC group, cluster 1, peak coordinate:
-42 -18 -24) was defined as increased ReHo ROI (IRR). The
most significant cluster with decreased ReHo (Table 4, SCD
group < HC group, cluster 1, Peak coordinate: 45 -45 48) was
defined as decreased ReHo ROI (DRR). The ReHo values of
these two ROIs were extracted and analyzed with spearmen
rank correlation.

Correlation Between ReHo With Neuropsychological
Performances
The ReHo value of DRR and IRR was significantly negatively
correlated (r = −0.517, p = 0.001) (Spearman rank correlation,
two-tailed) (Figure 4). The ReHo value of DRR was significantly
positively correlated with AFT (r = 0.352, p = 0.028) (Spearman
rank correlation, two-tailed) (Figure 4). The ReHo value of IRR
was significantly negatively correlated with ACE-III (r = −0.456,
p = 0.004), MoCA-B (r = −0.351, p = 0.028), BVMT immediate
recall (r = −0.352, p = 0.044), BVMT 4th recall (r = −0.337,
p = 0.036), BVMT 5th recall (r = −0.370, p = 0.021), BVMT
recognition (r = −0.433, p = 0.006), AFT corrections (r = −0.397,
p = 0.012), ST (r = −0.433, p = 0.006), JLO (r = −0.353,
p = 0.027), DST sequence (r = −0.416, p = 0.008) (Spearman rank
correlation, two-tailed) (Figure 4).

DISCUSSION

Prior studies have noted the importance of SCD. Although it is
generally believed that neuropathological changes have occurred
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TABLE 3 | Brain regions with decreased ReHo in the SCD group and the aMCI
group compared to the HC group.

SCD group < HC group aMCI group < HC group

Cluster (AAL) Volume (voxels) Cluster (AAL) Volume (voxels)

Cluster 1 Total: 5122 Cluster 1 Total: 889

Peak (MNI): 45 -45 48 Peak t: -7.9188 Peak (MNI): 48 24 36 Peak t: -7.4097

Precuneus_L 446 Frontal_Mid_R 423

Occipital_Mid_L 412 Frontal_Sup_R 219

Precuneus_R 382 Cluster 2 total: 4706

Angular_R 348 Peak: 3 -63 45 Peak t: -9.9902

Parietal_Inf_L 328 Precuneus_L 429

Parietal_Inf_R 306 Angular_R 408

Temporal_Mid_R 270 Precuneus_R 393

Temporal_Mid_L 267 Parietal_Inf_R 282

Occipital_Mid_R 261 Temporal_Mid_L 277

Parietal_Sup_L 244 Occipital_Mid_L 257

Angular_L 223 SupraMarginal_R 250

SupraMarginal_R 178 Angular_L 224

Parietal_Sup_R 154 Temporal_Mid_R 211

Occipital_Sup_R 135 Occipital_Mid_R 187

Cuneus_L 124 Parietal_Inf_L 174

Occipital_Sup_L 110 Parietal_Sup_R 148

Cluster 2 total: 503 Parietal_Sup_L 142

Peak: 33 57 15 Peak t: -7.0202 Occipital_Sup_L 133

Frontal_Mid_R 321 Occipital_Sup_R 125

Frontal_Sup_R 106 Cuneus_R 121

Cluster 3 total: 1021 Cluster 3 total: 527

Peak: -42 30 39 Peak t: -6.6576 Peak (MNI): -42 33 36 Peak t: -6.5666

Frontal_Mid_L 352 Frontal_Mid_L 273

Frontal_Sup_L 172 Frontal_Sup_L 101

Frontal_Sup_Medial_L 144

AAL, anatomical automatic labeling atlas. MNI, Montreal Neurological Institute
space. Only clusters of more than 100 voxels were reported.

at this stage, it is still difficult to detect such changes non-
invasively. The first question in this study sought to determine
is whether it is possible to find changes in neural activity
homogeneity in the brains of SCD patients and the characteristics
of these changes in different brain regions. If these changes
did exist, the second question this study aimed to address was
whether they were associated with cognitive decline. The third
question we wanted to discuss was the similarity and significance
of these changes in patients with SCD and aMCI. Regarding the
first question, we found that in SCD patients, there were increased
and decreased ReHo in several brain regions, suggesting that
these regions had changed neurological activity homogeneity.
Besides, there was a correlation between the increased and
decreased areas of ReHo. On the second question, we found
correlation between changed ReHo and neuropsychological
performance, suggesting that the homogeneity of neural activity
may be related to cognitive ability. At last, it was worth noting
that the areas with changed ReHo in the SCD group were quite
similar to the aMCI patients. These results suggest that regional
neural activity homogeneity may be a potential biomarker for
identifying SCD and measuring the disease severity.

TABLE 4 | Brain regions with increased ReHo in the SCD group and the aMCI
group compared to the HC group.

SCD group > HC group aMCI group > HC group

Cluster (AAL) Volume (voxels)Cluster (AAL) Volume (voxels)

Cluster 1 Total: 21,873 Cluster 1 Total: 22,001

Peak (MNI): -42 -18 -24 Peak t: 11.5543 Peak (MNI): 36 -33 -24 Peak t: 11.7286

Temporal_Inf_L 558 Temporal_Inf_L 590

Fusiform_R 452 Temporal_Inf_R 486

Temporal_Inf_R 438 Fusiform_R 442

Fusiform_L 432 Fusiform_L 413

Temporal_Sup_L 379 Temporal_Sup_L 359

Insula_R 344 Insula_R 319

Insula_L 318 ParaHippocampal_R 310

Cerebelum_4_5_L 311 Cerebelum_4_5_L 298

ParaHippocampal_R 308 Cerebelum_6_R 281

Cerebelum_6_R 292 ParaHippocampal_L 281

ParaHippocampal_L 280 Temporal_Pole_Sup_L 273

Hippocampus_L 266 Insula_L 272

Hippocampus_R 256 Hippocampus_L 268

Frontal_Inf_Orb_R 252 Hippocampus_R 263

Temporal_Pole_Sup_L 251 Cerebelum_6_L 227

Frontal_Inf_Orb_L 240 Frontal_Inf_Orb_L 226

Cerebelum_4_5_R 229 Frontal_Inf_Orb_R 225

Cerebelum_6_L 223 Putamen_L 217

Putamen_R 221 Temporal_Mid_L 214

Putamen_L 221 Putamen_R 201

Temporal_Mid_L 214 Temporal_Sup_R 200

Caudate_L 208 Caudate_R 189

Caudate_R 191 Cerebelum_4_5_R 184

Temporal_Sup_R 188 Caudate_L 173

Postcentral_L 159 Temporal_Pole_Sup_R 162

Temporal_Pole_Sup_R 158 Postcentral_L 126

Rolandic_Oper_L 158 Frontal_Sup_Orb_R 126

Precentral_L 152 Precentral_L 125

Frontal_Sup_Orb_R 122 Rectus_R 120

Rectus_R 109 Rolandic_Oper_L 120

Vermis_4_5 102 Cerebelum_8_L 119

Temporal_Pole_Mid_R 100 Cerebelum_9_R 117

Frontal_Sup_Orb_L 104

Temporal_Pole_Mid_R 101

AAL, anatomical automatic labeling atlas. MNI, Montreal Neurological Institute
space. Only clusters of more than 100 voxels were reported.

In the ANOVA analysis of rs-fMRI, ReHo changes in a wide
range of brain areas were shown among the three groups. Further
comparisons between groups showed that compared with the HC
group, both the SCD group and aMCI group showed similar
and regular changes in brain areas. In the SCD group, the ReHo
decreased in part of the parietal lobe, frontal lobe, occipital
lobe, and temporal lobe. The correlation analysis showed that
the ReHo of DRR was positively correlated with AFT scores,
suggesting that the decrease of neural activity homogeneity in
these areas may be related to the impairment of language fluency.
Most of these involved areas have been confirmed to be related
to cognitive function in previous studies. The parietal lobe
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FIGURE 3 | Changed ReHo in the aMCI group compared with the HC group. (A) The brain regions with increased ReHo in the aMCI group compared with the HC
group. (B) The brain regions with decreased ReHo in the aMCI group compared with the HC group. (C) Brain regions with increased and decreased ReHo in the
aMCI group compared with the HC group. Two-tailed t-test; FDR < 0.0005, k > 10 voxels. The color bars indicate t-values, blue color represents negative values
and red color represents positive values. L, Left; R, Right.

is a critical node for integrating cognitive activities; although
recruitment is distributed in multiple brain regions in every
cognitive activity, the parietal lobe is a converging area. A study
(Bzdok et al., 2016) found that the function of rostro-ventral
and caudo-ventral regions in the parietal lobe was significantly
associated with social-cognitive and language processing. In
the frontal lobe and cognition related field, a study on MCI
(Garcia-Alvarez et al., 2019) found that damage to the cortex
and functional circuits of the frontal lobe is associated with
a decline in working memory and executive function, as well
as with the loss of daily function. A study using near-infrared
spectroscopy (Chaudhary et al., 2011) revealed that the oxy-
hemoglobin increased during the verbal fluency task while the
deoxy-hemoglobin decreased in the frontal cortex. Although
the occipital lobe is mainly involved in visual function, recent
studies have suggested that the occipital lobe is also associated
with cognitive decline in MCI and AD patients. A multimodal
imaging study in healthy group, MCI group, and AD group
showed that the number of connections between brain regions
gradually decreased, especially in the occipital-parietal lobe (Li
et al., 2018). Another study focused on cholinergic impairment in
MCI patients found that Acetylcholinesterase activity was mainly
reduced in the lateral temporal cortex and the occipital lobe
(Richter et al., 2019). These studies suggest that the occipital
lobe and cognitive impairment relationship are probably closely
related to the parietal and temporal lobes. Our results matched
those observed in earlier studies. It is worth noting that the ReHo
value of DRR seems to be only correlated with verbal fluency, and
no obvious correlation with other cognitive domains has been
found. This suggests that the decrease of neural homogeneity in
these areas may not independently reflect the degree of cognitive
impairment. In previous studies on SCD, it has been found that
these areas, such as the parietal and frontal lobes, play a role in the

cognitive decline of SCD mainly through abnormal connections
with other parts of the brain or networks (Viviano et al., 2019;
Wang et al., 2019).

It is somewhat surprising that our study found a much larger
area with significantly increased ReHo in the SCD group. These
areas are centered on the temporal lobe and extend to the
adjacent part of the occipital lobe, parietal lobe, and subcortical
structures. The temporal lobe’s structural changes, especially
in the medial temporal lobe and the hippocampus, have been
identified as typical MRI markers of AD (Scheltens et al., 2016;
Lane et al., 2018). In a study using FDG-PET (Pagani et al.,
2017), researchers established a cohort of MCI due to AD through
longitudinal follow-up. They found that in MCI patients who
eventually converted to AD, FDG uptake was lower in temporal
and parietal cortices; in MCI patients who did not convert to
AD, the FDG intake in these areas did not change. This study
further confirmed that the temporal lobe and parietal lobe play
an essential role in predicting MCI patients’ development to AD.
Some PET studies using tracers for tau protein found uptake
in orbitofrontal, parietal, hippocampal, and temporal cortices in
humans with AD (Fodero-Tavoletti et al., 2011; Villemagne et al.,
2014). An amyloid PET study found a high binding affinity for
Aβ in the frontal, temporal, and posterior cingulated cortices in
AD patients (Maya et al., 2016). These PET studies using special
tracers provide pathological evidence for multiple brain areas
dominated by the temporal lobes. In addition, some studies (Hilal
et al., 2015; Koshiyama et al., 2018) have revealed the role of
specific subcortical nuclei in cognitive and social function, and
these observations were similar to our results.

Due to the resolution and sensitivity characteristics, no
consistent conclusion of studies using PET in the preclinical stage
of AD has been reached so far. Structural damage often occurs
at a later stage; therefore, it is also difficult to locate specific
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FIGURE 4 | The correlation of DRR/IRR and neuropsychological performance. The correlation between the ReHo value of DRR/IRR and the neuropsychological
tests performance. DRR, decreased ReHo region. IRR, increased ReHo region. ACE-III, Addenbrooke’s Cognitive Examination. MoCA-B, Montreal Cognitive
Assessment-Basic. BVMT, Brief Visuospatial Memory Test. AFT, Animal Verbal Fluency Test. ST, Silhouettes Test. JLO, Judgment of Line Orientation. DST,
Digit Span Test.

damaged brain regions of SCD patients through structural MRI.
Rs-fMRI has a high spatial resolution and sensitivity to changes
in neural activity and function. Moreover, it does not need to
perform tasks to stimulate neural activities, which makes rs-
fMRI has good stability and repeatability. We had predicted that
compensatory phenomena in the brain of patients with SCD
could be detected by rs-fMRI, but the scope of compensation
found in the study is beyond our expectations. We cautiously
speculate that this compensation may be one reason why SCD
patients can retain roughly normal cognitive abilities. The results
of the subsequent correlation analysis confirmed this speculation
to a certain extent. We analyzed the correlation between
the ReHo value of IRR (the ROI representing the increased
ReHo area) and neuropsychological test performance, found
that the ReHo of IRR was negatively correlated with multiple
neuropsychological tests performance. These neuropsychological
tests include ACE-III and MoCA-B reflecting general cognitive
function; BMVT reflecting memory function; AFT and ST
reflecting language function; JLO reflecting spatial function;
and DST reflecting attention function. These different cognitive
domains’ performance decreased with the increase of the Reho

value of IRR, indirectly indicating that the increase in local
neural activity homogeneity in these areas reflects brain damage
aggravation. ReHo has shown the relation with brain function
compensation in different studies (Chen et al., 2016; Guo et al.,
2016), suggesting that we should pay attention to the role of
ReHo in the research of relatively mild diseases that may have
functional compensation.

Compared with the HC group, the distribution of brain
regions with changed ReHo in the SCD and aMCI groups was
similar. We think there might be multiple possible reasons. The
first reason is that SCD is the latest stage of preclinical AD, and
its outcome is likely to be aMCI. The two stages are closely
linked in the course of the disease, so there is likely to be a
significant similarity in neurological damage manifestations. The
second reason is that the primary method used to distinguish
these two stages is neuropsychological testing. Commonly used
neuropsychological tests may not have sufficient sensitivity and
specificity in the early stage of the disease; therefore, there
may be some overlap in the diagnosis of these two stages to
a certain extent (Jessen et al., 2020). The third reason is that
our research participants were recruited through advertising and
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volunteered for a full set of complex and lengthy tests. These
participants who actively participated in the study may have
more concerns about memory complaints, which may cause the
participants in the SCD group to be more severe than the cohort
obtained by community screening. This reason may aggravate
the problem of diagnosis overlap caused by the second reason.
Therefore, the results of our research need to be interpreted
and promoted cautiously. Our study found that although
certain brain areas of MCI patients also showed improved local
neurological uniformity similar to those of SCD patients, their
neuropsychological test performance was significantly lower than
that of SCD patients. This suggests that this kind of compensation
is limited, and there is a ceiling effect. When the disease reaches
a certain level, this compensation will not be able to maintain the
patient’s relatively normal cognitive function.

CONCLUSION

We used rs-fMRI to study the regional neural activity
homogeneity of SCD patients’ brains and found significant
changes. Part of the parietal, frontal, and occipital lobes showed
decreased neural homogeneity and positively correlated with
some cognitive domains’ decline. The temporal lobe, part
of the parietal lobe and frontal lobe, showed an increase
in neural homogeneity. The ReHo value of the area with
increased neural homogeneity is negatively correlated with
multiple neuropsychological tests’ performance, suggesting that
the increased regional neural activity homogeneity in SCD
patients may be a compensatory manifestation of neural damage.
Simultaneously, the neurological homogeneity of SCD patients
is similar to that of aMCI patients, which confirms that patients
in these two stages have similar neuropathy. However, the aMCI
group’s cognitive function was significantly worse than that of
the SCD group, suggesting that this compensation is limited.
In summary, regional neural activity homogeneity may be a
potential biomarker for identifying SCD and measuring the
disease severity.

LIMITATION

However, there are some limitations in this study, which can
restrict the generalizability of our results. First, the sample size
was not large enough, and AD patients were not included in

the study. Second, although a complete set of neuropsychological
tests was used, there might be some overlap between SCD and
aMCI groups. Third, we did not perform the examination of
pathological biomarkers. Considering the limitations mentioned
above, the results of this study should be interpreted with caution.
In follow-up research, We should expand the sample size, explore
a more sensitive neuropsychological test diagnostic approach,
and examine pathological biomarkers.
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Background: Tau positron emission tomography (PET) imaging can reveal the
pathophysiology and neurodegeneration that occurs in Alzheimer’s disease (AD) in vivo.
The standardized uptake value ratio (SUVR) is widely used for semi-quantification of
tau deposition but is susceptible to disturbance from the reference region and the
partial volume effect (PVE). To overcome this problem, we applied the parametric
estimation of reference signal intensity (PERSI) method—which was previously evaluated
for flortaucipir imaging—to two tau tracers, flortaucipir and [18F]-APN-1607.

Methods: Two cohorts underwent tau PET scanning. Flortaucipir PET imaging data
for cohort I (65 healthy controls [HCs], 60 patients with mild cognitive impairment [MCI],
and 12 AD patients) were from the AD Neuroimaging Initiative database. [18F]-APN-1607
([18F]-PM-PBB3) PET imaging data were for Cohort II, which included 21 patients with a
clinical diagnosis of amyloid PET-positive AD and 15 HCs recruited at Huashan Hospital.
We used white matter (WM) postprocessed by PERSI (PERSI-WM) as the reference
region and compared this with the traditional semi-quantification method that uses
the whole cerebellum as the reference. SUVRs were calculated for regions of interest
including the frontal, parietal, temporal, and occipital lobes; anterior and posterior
cingulate; precuneus; and Braak I/II (entorhinal cortex and hippocampus). Receiver
operating characteristic (ROC) curve analysis and effect sizes were used to compare
the two methods in terms of ability to discriminate between different clinical groups.

Results: In both cohorts, regional SUVR determined using the PERSI-WM method was
superior to using the cerebellum as reference region for measuring tau retention in AD
patients (e.g., SUVR of the temporal lobe: flortaucipir, 1.08 ± 0.17 and [18F]-APN-1607,
1.57 ± 0.34); and estimates of the effect size and areas under the ROC curve (AUC)
indicated that it also increased between-group differences (e.g., AUC of the temporal
lobe for HC vs AD: flortaucipir, 0.893 and [18F]-APN-1607: 0.949).
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Conclusion: The PERSI-WM method significantly improves diagnostic discrimination
compared to conventional approach of using the cerebellum as a reference region and
can mitigate the PVE; it can thus enhance the efficacy of semi-quantification of multiple
tau tracers in PET scanning, making it suitable for large-scale clinical application.

Keywords: APN-1607, flortaucipir, tau, neurodegeneration, Alzheimer’s disease

INTRODUCTION

Tau protein is a microtubule-associated protein that is
abundantly expressed in the central nervous system (Goedert
et al., 1991). Abnormal tau hyperphosphorylation in neurons
causes the protein to self-aggregate and form paired helical
filaments (PHFs) that contribute to the pathogenesis of
neurodegenerative diseases. In Alzheimer’s disease (AD), the
deposition of amyloid β (Aβ) is the initial pathologic event
leading to the formation of senile plaques (SPs) followed by
neurofibrillary tangles (NFTs), leading to neuronal loss and
cognitive decline (Braak and Braak, 1991). Diseases involving tau
protein misfolding or hyperphosphorylation and accumulation
are known as tauopathies; these include AD, frontotemporal
dementia with parkinsonism linked to chromosome 17 (FTDP-
17), Pick’s disease, progressive supranuclear palsy (PSP),
corticobasal degeneration (CBD), and chronic traumatic
encephalopathy (Villemagne et al., 2015; Okamura et al.,
2018). According to the 2018 National Institute on Aging and
Alzheimer’s Association guidelines for AD, SPs and NFTs can
be detected in vivo by positron emission tomography (PET)
imaging with Aβ and tau tracers to differentiate dementia from
other neurodegenerative diseases. In addition to Aβ deposition,
tau retention is a major factor contributing to AD pathogenesis.

The first generation of radiolabeled tau tracers for PET were
developed based on different binding targets of tau PHFs such
as quinoline derivatives (e.g., [18F]THK523, [18F]THK5105,
[18F]THK5117, and [18F]THK5351), PBB3-based tracers
(e.g., [11C]PBB3), and benzimidazole pyrimidine derivatives
(e.g., flortaucipir/[18F]-AV-1451/[18F]-T807 and [18F]T808).
The second generation of tracers show improved binding
selectivity and pharmacokinetics and include [18F]AM-PBB3
and [18F]-APN-1607/[18F]PM-PBB3 (Leuzy et al., 2019); and
[18F]RO-948, [18F]GTP1, and [18F]MK-6240 (Okamura et al.,
2018). In AD clinical trial, these tracers have demonstrated high
binding affinity for tau PHFs and tau selectivity (Scholl et al.,
2016; Shimada et al., 2017; Sone et al., 2017; Lu et al., 2020).
Additionally, the amount of tracer that was retained and the
brain regions in which it was detected in AD was significantly
correlated with the clinical severity of dementia (Devous et al.,
2018; Villemagne et al., 2018). This is one of the advantages of
tau PET over Aβ PET, as amyloid burden shows little association
with dementia severity (Rabinovici and Jagust, 2009). Reliable
and reproducible methods for tau quantification in PET images
are critical for diagnosis.

Semi-quantitative methods are non-invasive and widely
used to eliminate the effects of arterial blood sampling in
clinical studies, and have been applied to tau PET in AD
(Shcherbinin et al., 2016). Conventionally, in PET images of

target-specific biomarker retention, AD biomarkers are measured
by standardized uptake value ratio (SUVR) in regions of interest
(ROIs), which is the ratio of average activity concentration
in the target ROI relative to that in the reference region.
In the calculation of SUVR, inter-subject variation should be
minimized. Global mean normalization or normalization to an
anatomic reference region can be done easily in clinical practice
as it does not require complex mathematical modeling. Proper
normalization reference region can enhance cross-sectional
accuracy and longitudinal coherence in PET studies (Zhang et al.,
2017). Optimal reference regions vary for different PET tracers,
and include the cerebellum, pons, and sensorimotor cortex.

The cerebellum was shown to be devoid of NFT deposition
(Marquie et al., 2015); therefore, the whole cerebellum or
cerebellar gray matter (GM) is commonly used as reference
region for tau PET in AD. In several studies, tau PET
images were resampled by normalizing the subject-specific
magnetic resonance imaging (MRI) template to the T1
MRI template for spatial normalization of ROIs, with the
cerebellar GM as the reference (Shcherbinin et al., 2016;
Kang et al., 2017; Kitamura et al., 2018; Wong et al., 2018;
Lohith et al., 2019; Lu et al., 2020; Mueller et al., 2020).
However, cerebellar GM or the whole cerebellum has the
disadvantages of small size, low signal detection sensitivity,
and susceptibility to noise and truncation. In particular,
in longitudinal studies, the partial volume effect (PVE)
can cause a spillover or cross-contamination of counts
between adjacent structures due to limited spatial resolution
(Meechai et al., 2015). Therefore, a reliable technique for tau
PET image analysis is needed that minimizes the influence
of these factors.

A subject-specific, data-driven technique known as parametric
estimation of reference signal intensity (PERSI) was recently
proposed for the analysis of flortaucipir PET images (Southekal
et al., 2018). This method reduces inter-subject variability while
enhancing discrimination between cohorts by using white matter
(WM) as the reference region for count normalization based on
signal intensity histograms, as tau binding by WM is considered
negligible. PERSI can mitigate the PVE by distinguishing voxels
associated with non-specific binding, which have lower signal
intensity, from those that reflect contamination.

To determine whether the PERSI method is applicable to
different tau tracers, in this study we applied the method to
the analysis of data from tau PET imaging with flortaucipir
and [18F]-APN-1607. We first retested the PERSI method in
a cohort that underwent PET imaging with flortaucipir as
the tau tracer (Cohort I, including healthy controls [HCs]
and patients with mild cognitive impairment [MCI] and
AD), which has been previously reported. As PERSI has
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not been validated for second-generation tau tracers, we
then applied the method to a second cohort that underwent
PET imaging with [18F]-APN-1607 (Cohort II, including HCs
and AD patients). We evaluated the count normalization
performance of PERSI using WM as a reference region
in the PET images.

MATERIALS AND METHODS

Subjects
We retrospectively analyzed data from two cohorts who
underwent tau PET scans. Flortaucipir PET scans and
corresponding structural MRI scans for Cohort I was obtained
from the AD Neuroimaging Initiative (ADNI) database1 and
its extensions. This cohort consisted of 65 HCs along with
60 MCI and 12 AD patients. The primary goal of the ADNI
was to test whether serial MRI and PET imaging findings,
biological markers, and data from clinical and neuropsychologic
assessments can be combined to predict and measure the
progression of MCI and AD. In Cohort II, 21 AD patients
clinically diagnosed as amyloid PET-positive (based on visual
evaluation by three nuclear medicine specialists with 8 years
of clinical experience on average) and 15 HCs underwent
[18F]-APN-1607 PET scanning. Clinically probable AD was
determined based on current diagnostic criteria (McKhann
et al., 2011). Experienced neurologists from the cognitive
impairment clinic administered the Mini-Mental State
Examination (MMSE) to all subjects. The demographic and
clinical characteristics of the participants are summarized in
Table 1.

The inclusion and exclusion criteria for the diagnostic
categories of ADNI were as follows: (1) age between 55–
85 years; (2) participants underwent flortaucipir PET and
structural MRI scanning; (3) participants underwent a battery
of neuropsychologic and cognitive examinations including the
Montreal Cognitive Assessment (MoCA), Clinical Dementia
Rating–Sum of Boxes (CDR-SB), and MMSE; (4) HCs had MMSE
scores between 24–30 (inclusive), were non-depressed, non-MCI,
and non-demented; and (5) severe AD patients with MMSE < 10
or MoCA < 10 were excluded. The detailed diagnosis-specific

1adni.loni.usc.edu

inclusion and exclusion criteria for the HC, MCI, and AD groups
can be found in the ADNI dataset2.

All procedures in this study were in accordance with the
ethical standards of the institutional research committee and with
the Helsinki Declaration of 1975 and its later amendments. This
study was approved by the institutional review boards of ADNI
and the Institutional Review Board of Huashan Hospital (HIRB),
Fudan University, China (no. 2018-363). Written, informed
consent was obtained from each subject.

PET Imaging and Data Preprocessing
Flortaucipir PET images for Cohort I were obtained 75–105 min
after administration of 370 MBq (10.0 mCi) ± 10% flortaucipir.
Detailed information on data acquisition is provided in the study
protocol in the ADNI database.

Subjects in Cohort II were scanned with a Siemens
Biograph 64 PET/computed tomography (CT) system (Siemens,
Erlangen, Germany) in three-dimensional (3D) mode at
Huashan Hospital. A low-dose CT transmission scan was
performed before PET scanning for attenuation correction. Static
emission scans were acquired 90–110 min after intravenous
injection of 370 MBq [18F]-APN-1607. Image reconstruction was
performed with the ordered subset expectation maximization
3D method with six iterations and 21 subsets, Gaussian
filtering, and a full width at half-maximum (FWHM) of
3.5 mm. The subjects also underwent anatomic MRI in
a 3.0-T horizontal magnet (Discovery MR750; GE Medical
Systems, Boston, MA, United States) at Huashan Hospital
(Lu et al., 2020).

Positron emission tomography image preprocessing was
performed using the Statistical Parametric Mapping 12 (SPM
12; Wellcome Department of Cognitive Neurology, University
College London, London, UK) package in Matlab (MathWorks,
Sherborn, MA, United States). The unified segmentation and
normalization algorithms of SPM12 were used to spatially
normalize the T1-weighted MR images acquired at screening
to the Montreal Neurological Institute (MNI) brain template
while simultaneously generating probabilistic segmentations for
GM, WM, and cerebrospinal fluid. The PET images were also
spatially normalized to MNI space using deformation field images
generated from the MRI segment.

2http://adni.loni.usc.edu/methods/documents/

TABLE 1 | Clinical and demographic characteristics of the study subjects.

Group Sex, M/F Age, years Education, years MMSE MoCA CDR-SB

Flortaucipir (ADNI database) HC (65) 24/41 74.1 ± 3.89 16.6 ± 2.32 29.2 ± 0.98 26.4 ± 2.47 0.046 ± 0.14

MCI (60) 21/39 75.0 ± 5.96 16.3 ± 2.68 28.3 ± 1.74* 24.8 ± 2.76 1.18 ± 0.75*

AD (12) 6/6 77.5 ± 9.71 16.4 ± 2.57 22.7 ± 2.42* 18.1 ± 4.36 5 ± 2*

[18F]-APN-1607 HC (15) 10/5 60.8 ± 4.3 9.47 ± 3.3 27.6 ± 1.3 / 0

AD (21) 11/10 60.3 ± 10.6 11.3 ± 5.15* 16.7 ± 7.6* / 8.62 ± 3.8*

Data are presented as mean ± standard deviation.
*P < 0.05 (two-sample t-test).
AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CDR-SB, Clinical Dementia Rating – Sum of Boxes; HC, healthy control subjects; MCI,
patients with mild cognitive impairment; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination.
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PET Quantification Analysis
We evaluated the performance of the PERSI method for [18F]-
APN-1607 PET imaging quantification. The threshold of the
WM probabilistic segmentation from individual T1-weighted
MR images was set as 0.9 to generate a binary WM image. PET
images spatially normalized to MNI space were masked with the
individual WM image. The voxels within this WM region were
plotted as a histogram and then fitted to a bimodal Gaussian
distribution using a non-linear trust region reflective algorithm.
For higher intensity peaks, the PERSI method identifies voxels
with contamination based on counts from adjacent cortical
tissues with confirmed flortaucipir uptake; lower intensity peaks
reflect a stable reference signal intensity. We removed voxels
in higher intensity peaks and retained those in lower intensity
peaks (i.e., the FWHM of the lower peak location) as the
individual reference region. Thus, PET images for each subject
used this subject-specific WM region as the reference for count
normalization and smoothing with a Gaussian filter of 8 mm
FWHM (Southekal et al., 2018).

For comparison, we calculated the SUVR of different groups
using additional reference regions: (1) the traditional reference
region consisting of the whole cerebellum, and (2) WM based
on PERSI. The whole brain was parcellated into the following
regions for SUVR calculations: frontal, parietal, temporal, and
occipital lobes; anterior and posterior cingulate; precuneus;
and Braak I/II (entorhinal cortex and hippocampus) (Scholl
et al., 2016), which are regions known to be associated with
progressive neurodegeneration in AD. The whole cerebellum and
all ROIs were manually delineated on the Automated Anatomical
Labeling template (Tzourio-Mazoyer et al., 2002).

Statistical Analysis
Demographic characteristics were compared between AD and
HC groups using the two-sample t-test or chi-squared test.
Effect sizes for the ability of SUVR to discriminate between
dementia patients and HC subjects were evaluated with Cohen’s d
(d = [mean1-mean2]/sqrt[(std1

2
+ std1

2)/2]). We also carried out
receiver operating characteristic (ROC) curve analyses for each
regional SUVR to assess the capacity for discrimination between
diagnostic groups based on the area under the ROC curve (AUC)
value. All statistical analyses were performed using SPSS v22.0
software (SPSS Inc., Chicago, IL, United States). P-values < 0.05
were considered significant.

RESULTS

Application of the PERSI Method to
Flortaucipir PET Images
To compare quantitative efficacy using PERSI-WM vs the whole
cerebellum as the reference region, we examined flortaucipir
SUVRs within each group of predefined ROIs. SUVRs derived
from PERSI-WM revealed significantly higher tau retention in
the frontal, parietal, temporal, and occipital lobes, posterior
cingulate, precuneus, and Braak I/II in AD and MCI patients
compared to HCs (Figure 1). Braak I/II had the highest tau

retention (1.51 ± 0.23). Interestingly, in the anterior cingulate,
SUVRs derived from the cerebellum showed comparable tau
retention in MCI and AD patients, whereas SUVRs derived from
PERSI-WM showed higher tau retention in the AD group than in
the MCI group, suggesting that this method is superior to using
the cerebellum as a reference region.

We next carried out ROC curve analysis and calculated effect
sizes to evaluate the diagnostic utility of PERSI-WM compared
to the cerebellum (Table 2). PERSI-WM yielded larger effect sizes
and AUCs in all ROIs than the cerebellum; the AUCs were 0.517–
0.951 between the HC and AD groups and 0.472–0.874 between
the HC and MCI groups in all ROIs. PERSI-WM had the largest
effect size (Cohen’s d) compared to HCs (AD, 1.37; MCI, 0.282)
in the temporal lobe and the largest AUC compared to HCs
(AD, 0.951; MCI 0.874) in Braak I/II. Estimates of the effect size
and AUCs indicated that PERSI-WM increased between-group
differences compared to the whole cerebellum (Table 2).

Validation of the PERSI Method With
[18F]-APN-1607 PET Images
Typical signal intensity histograms of the WM used to derive the
PERSI reference region for representative participants (HC and
AD patient) are shown in Figure 2. In HCs, only a single major
peak was observed whereas in AD patients, voxels that had spilled
into the WM were captured by a higher peak.

To compare the quantitative efficacy between PERSI-WM and
cerebellum as reference regions, we examined [18F]-APN-1607
SUVRs within each group of predefined ROIs. SUVRs derived
from PERSI-WM showed significantly higher tau retention in
the frontal, parietal, temporal, and occipital lobes; anterior and
posterior cingulate; precuneus and Braak I/II in the AD group
than in the HC group (Figure 3), with the highest tau retention
in precuneus (1.73± 0.53).

We next carried out ROC curve analysis and calculated
effect sizes to evaluate the diagnostic utility of PERSI-
WM compared to the cerebellum. PERSI-WM had larger
effect sizes and AUCs in ROIs compared to the cerebellum
(Table 3). PERSI-WM had the largest effect size (Cohen’s d)
compared to HCs in the precuneus (AD: 3.64) and in the
temporal lobe (AD: 2.53). The AUC between the HC and
AD groups was 0.933–0.975 in all ROIs. Estimates of the
effect size and AUCs indicated that the PERSI-WM method
increased between-group differences compared to the whole
cerebellum (Table 3).

DISCUSSION

In tauopathies, tau PHFs can be non-invasively detected in vivo
by PET imaging with different tau tracers such as benzimidazole
pyrimidine derivatives (flortaucipir) and PBB3-based tracers
([18F]-APN-1607). In this study, we evaluated the utility and
reliability of the PERSI method for analyzing data from PET
imaging using 2 different tau tracers—i.e., flortaucipir and
[18F]-APN-1607. We found that PERSI-WM had larger effect
sizes and AUC values between diagnostic groups based on
tau retention in specific ROIs. These results demonstrate that
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FIGURE 1 | Regional flortaucipir SUVR count normalization. (A) The whole cerebellum was the reference region for quantification. (B) PERSI-WM for HC, MCI, and
AD groups. Mean group SUVRs (±SD) across predefined ROIs are shown.

PERSI-WM has better diagnostic performance for dementia
than the traditional method of using the cerebellum as the
reference region.

TABLE 2 | Mean standardized uptake value ratio of cortical regions by diagnostic
group (Cohort I).

Cortical region Reference area††† AUC Effect size‡‡‡

HC-MCI HC-AD HC-MCI HC-AD

Frontal lobe Cerebellum 0.561 0.517 0.198 0.33

PERSI-WM 0.535 0.561 0.178 0.70

Parietal lobe Cerebellum 0.513 0.521 0.056 0.27

PERSI-WM 0.508 0.60 0.01 0.64

Temporal lobe Cerebellum 0.581 0.753 0.252 0.82

PERSI-WM 0.523 0.893 0.282 1.37

Occipital lobe Cerebellum 0.546 0.697 0.183 0.74

PERSI-WM 0.595 0.801 0.161 1.01

Anterior cingulate Cerebellum 0.572 0.642 0.22 0.51

PERSI-WM 0.598 0.615 0.28 0.449

Posterior cingulate Cerebellum 0.503 0.533 0.137 0.35

PERSI-WM 0.521 0.633 0.211 0.72

Precuneus Cerebellum 0.554 0.597 0.209 0.44

PERSI-WM 0.472 0.681 0.229 0.928

Braak I/II Cerebellum 0.762 0.856 0.476 0.672

PERSI-WM 0.874 0.951 0.521 0.923

†Cerebellum, the whole cerebellum served as a reference region for quantification;
PERSI-WM, parametric estimation of reference signal intensity with white matter as
the reference region.
‡Presented as standardized Cohen’s d; values in bold type represent superior
diagnostic ability.
AD, Alzheimer’s disease; AUC, area under the receiver operating characteristic
curve; HC, healthy control subjects; MCI, patients with mild cognitive impairment;
SUVR, standardized uptake value ratio.

We used the PERSI-WM method for count normalization in
flortaucipir and [18F]-APN-1607 imaging. The results obtained
for the two tau tracers were consistent; in both cases, the
ability to distinguish between diagnostic groups was greater with
SUVRs based on WM than with those based on the cerebellum.
Additionally, in the anterior cingulate, SUVRs derived from the
cerebellum showed high tau retention in MCI and AD patients
whereas those derived from PERSI-WM showed higher tau
retention in AD patients than in MCI patients. This suggests that
in clinical practice, suboptimal count normalization can result in
misdiagnosis or inaccurate assessment of disease severity. PERSI
has been shown to improve diagnostic accuracy (Southekal et al.,
2018). Our results provide evidence that the PERSI-WM method
is superior to the conventional method of using the cerebellum as
a reference region for the diagnosis of dementia, and suggest that
the former is more useful for tau and Aβ PET imaging.

In this study, tau retention was detected in brain regions
that are susceptible to neurodegeneration in AD including the
frontal, parietal, temporal, and occipital lobes; anterior and
posterior cingulate; precuneus; and Braak I/II (entorhinal cortex
and hippocampus). Several tau tracers show elevated signals in
the temporal region and more broadly throughout the cortex in
AD patients than in HCs (Wong et al., 2018; Lohith et al., 2019;
Lu et al., 2020; Mueller et al., 2020). Tau retention was detected
in Braak I/II in the early stages of AD and MCI (Maass et al.,
2017), which is supported by our results. We observed relatively
high tau retention in the temporal and occipital lobes in Cohort I
(flortaucipir cohort) and in the precuneus and posterior cingulate
in Cohort II ([18F]-APN-1607); the latter is relatively consistent
with a previous report on [18F]-APN-1607 tau retention based
on effect sizes in the same brain regions, which also found
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FIGURE 2 | Subject-specific WM histograms for two typical subjects evaluated by [18F]-APN-1607 PET. (A) A 56-year-old HC (male). (B) A 56-year-old AD patient
(female). Purple and cyan areas represent lower- and higher-intensity signals, respectively; the black dotted line shows the sum of two peaks (bimodal Gaussian
distribution). For AD patients, voxels that spilled into the WM were captured by the higher peak.

FIGURE 3 | Regional [18F]-APN-1607 SUVR count normalization. (A) The whole cerebellum was the reference region for quantification. (B) PERSI-WM for HC and
AD groups. Mean group SUVRs (±SD) across predefined ROIs are shown.

that PERSI-WM had better diagnostic performance than the
cerebellar cortex (Lu et al., 2020).

We used the same PERSI method to calculate SUVRs for
two tracers in two different cohorts. PERSI-WM could effectively
distinguish AD patients from HCs in Cohort II. Based on MMSE
and CDR-SB scores, cognitive decline was more severe in AD
patients of Cohort II than in those of Cohort I; this suggests that
the former had higher tau retention, which could result in a larger
effect size and AUC, although further investigation in a larger
population is required to confirm this possibility.

In both Cohort I and II, SUVR in HC were <1.0 in some
brain regions such as the frontal and parietal lobes, especially
with the PERSI method. SUVR of cortex <1.0 have been obtained
for other tau tracers using cerebellum GM as a reference region,
including [18F]-AV-1451 (Shcherbinin et al., 2016), [18F]-PI-
2620 (Mueller et al., 2020), [18F]-MK-6240 (Lohith et al., 2019),
and [18F]-RO-948 (Wong et al., 2018). Shcherbinin et al. (2016)
reported a [18F]-AV-1451 study with four young cognitively
normal (YCN) subjects, five old cognitively normal (OCN)
subjects, five MCI and four AD. Although mean SUVR from 80
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TABLE 3 | Mean standardized uptake value ratio of cortical regions by diagnostic
group (Cohort II).

Cortical region Reference††† AUC Effect size‡‡‡

Frontal lobe Cerebellum 0.914 1.52

PERSI-WM 0.975 2.38

Parietal lobe Cerebellum 0.930 1.55

PERSI-WM 0.956 2.97

Temporal lobe Cerebellum 0.937 1.61

PERSI-WM 0.949 2.53

Occipital lobe Cerebellum 0.922 1.54

PERSI-WM 0.971 2.66

Anterior cingulate Cerebellum 0.803 1.15

PERSI-WM 0.949 1.79

Posterior cingulate Cerebellum 0.921 1.83

PERSI-WM 0.933 2.48

Precuneus Cerebellum 0.943 1.93

PERSI-WM 0.968 3.64

Braak I/II Cerebellum 0.823 0.64

PERSI-WM 0.937 1.33

†Cerebellum, the whole cerebellum served as a reference region for quantification;
PERSI-WM, parametric estimation of reference signal intensity with white matter as
the reference region.
‡Presented as standardized Cohen’s d.
AUC, area under the receiver operating characteristic curve.

to 100 min after injection of all 4 groups were above 1.0 in five
target ROIs including the frontal, lateral parietal, occipital, mesial
temporal and lateral temporal lobe. However in the time courses
of regional SUVR for subjects in each diagnostic category figure,
some YCN and/or OCN subjects showed SUVRs <1.0 in the
above six target ROIs. Mueller et al. (2020) reported a [18F]-PI-
2620 study with 10 HC and 12 AD. In the Supplementary Table
1 of Muller’s study, HC showed mean SUVR <1.0 in posterior
cingulate from 60 to 90 min after injection. Interestingly, SUVR
in subcortical WM was <1.0 (0.90 ± 0.10) at same time. This
suggested that PERSI based on WM may have less binding than
cerebellum. Lohith et al. (2019) reported a [18F]-MK-6240 study
with four HC and six MCI or AD. In the regional (representative
cortical and subcortical) SUVR-time course with cerebellar cortex
as reference figure, 2 HC showed SUVR <1.0 in temporal cortex
and hippocampus from 60 to 90 min after injection. Wong et al.
(2018) reported a [18F]-RO-948 study with six HC and four AD.
Supplementary Table 4 of Wong’s study showed SUVR of HC <1
in hippocampus, parahippocampus and insula. Therefore, SUVR
of some cortex region <1 maybe reflect non-specific binding of
the tracer to neuro-pigments, which has been observed in in vitro
autoradiography studies. SUVRs <1 can mostly be attributed
to off-target binding in WM (Lohith et al., 2019). The WM is
a key aspect of the PERSI method that can yield lower SUVRs
compared to the cerebellum.

This study had several shortcomings. (1) The size of the
[18F]-APN-1607 cohort was relatively small, and only HCs and
AD patients were included. The PERSI method is a data-driven
approach for reducing spatial variability; therefore, additional
[18F]-APN-1607 data are needed to fully verify the applicability of
the PERSI method for the diagnosis of dementia, including from
different disease stages such as MCI. (2) In a [18F]-APN-1607

PET study, AD patients showed higher binding than HCs in
regions outside the cerebral cortex such as the caudate and
putamen (Lu et al., 2020); and in a flortaucipir study, the
putamen showed higher binding in AD patients than in HCs.
We focused only on ROIs in the cerebral cortex in the present
study, but future investigations should include more ROIs in
other brain regions. (3) For longitudinal studies, the PERSI
method can mitigate the influence of the PVE. AD is a chronic
neurodegenerative disease with long course, with AD patients
followed up multiple times over a long period. As both cortical
atrophy and tracer uptake kinetics can change over time, the
WM as a reference region can be variably affected at different
time points. PERSI can alleviate the PVE by detecting the
optimal reference signal based on voxel intensity, such that
the results are less affected by differences in uptake pattern
or image processing errors at different time points (Landau
et al., 2015; Southekal et al., 2018). There were no longitudinal
data for the two tau tracers examined in this study, although
these could enhance the applicability of the PERSI method. (4)
In the present study, the flortaucipir data were obtained from
the ADNI database; as such, our analyses were retrospective.
A prospective study with flortaucipir PET is needed to validate
our results. (5) Although we tested the PERSI method with
different tracers in two cohorts, the study population included
only AD patients with amyloid deposition, with no amyloid-
negative dementia patients. For more definitive conclusions,
amyloid status and findings from anatomic MRI or glucose
metabolism PET imaging should be considered. (6) Because of
the small size of Cohort II ([18F]-APN-1607 PET), we did not
examine voxel-wise correlations between cognitive impairment
(e.g., MMSE score) and [18F]-APN-1607 binding in the cerebral
cortex of AD patients, although this is important to confirm the
broader clinical utility of the PERSI method.

CONCLUSION

The PERSI-WM method is superior to the conventional method
of using the cerebellum as a reference region for semi-
quantification of tau deposition and detection of multiple tau
tracers in PET imaging; it can also mitigate the influence of the
PVE. Thus, the PERSI method can be promising for the accurate
diagnosis of dementia based on PET imaging.
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Alzheimer’s disease (AD) is the most common form of dementia and is a progressive

neurodegenerative disease that primarily develops in old age. In recent years, it has

been reported that early diagnosis of AD and early intervention significantly delays

disease progression. Hence, early diagnosis and intervention are emphasized. As a

diagnostic index for AD patients, evaluating the complexity of the dependence of the

electroencephalography (EEG) signal on the temporal scale of Alzheimer’s disease

(AD) patients is effective. Multiscale entropy analysis and multifractal analysis have

been performed individually, and their usefulness as diagnostic indicators has been

confirmed, but the complemental relationship between these analyses, which may

enhance diagnostic accuracy, has not been investigated. We hypothesize that combining

multiscale entropy and fractal analyses may add another dimension to understanding the

alteration of EEG dynamics in AD. In this study, we performed both multiscale entropy

and multifractal analyses on EEGs from AD patients and healthy subjects. We found

that the classification accuracy was improved using both techniques. These findings

suggest that the use of multiscale entropy analysis and multifractal analysis may lead to

the development of AD diagnostic tools.

Keywords: EEG signal, Alzheimer’s disease, multifractal, multiscale entropy, early diagnosis

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia and is a progressive
neurodegenerative disease that primarily develops in old age (Liu et al., 2014). The World Health
Organization estimates that the global prevalence of AD will increase to 0.6% in 2030 and 1.2%
by 2046 (Brookmeyer et al., 2007). Although there is no effective treatment for AD, in recent
years, it has been reported that early diagnosis of AD and early intervention significantly delay
the progression of the disease. Hence, it would be ideal to diagnose AD early in its clinical course
(Liu et al., 2014).

In AD, there are three significant anatomical changes: progressive neuronal death,
neurofibrillary tangles, and senile plaques in extensive brain areas (Sims et al., 2017; Yamaguchi-
Kabata et al., 2018). Positron emission tomography (PET) and magnetic resonance imaging (MRI)
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are often used to diagnose AD and detect neurotransmitter
activity disorders, amyloid beta plaque deposition, and brain
atrophy (Ewers et al., 2011; McKhann et al., 2011; Sperling et al.,
2011). As methods focused on functional neural activity, studies
based on the temporal behavior of neural activity were conducted
using electroencephalography (EEG), magnetoencephalography
(MEG), and functional magnetic resonance imaging (fMRI)
(Greicius et al., 2004; Jeong, 2004; Stam, 2005; Dickerson and
Sperling, 2008; Takahashi, 2013; Yang and Tsai, 2013; Wang et al.,
2017; Nobukawa et al., 2020).

Among all these evaluations, EEG is cost-effective, widely
available, and non-invasive, making it ideal for clinical
applications (Vecchio et al., 2013; Kulkarni and Bairagi, 2018).
AD’s pathological progression alters EEG behavior, such as
slow waves, low synchronization of neural activity among brain
regions, and low temporal complexity. Complexity analysis is a
good approach to detect cortical disconnection in AD because
this state impairs mutual neural interaction among widespread
brain regions. Studies assessing EEG signals’ complexity in
patients with AD focused on deterministic chaos and fractal
dimensions, such as the correlation dimension and Lyapunov
exponent (Kantz and Schreiber, 2004). These studies reported
a reduction in the complexity of neural activity in AD patients
(Woyshville and Calabrese, 1994; Besthorn et al., 1995; Jelles
et al., 1999; Jeong, 2004; Smits et al., 2016; Al-Nuaimi et al., 2017).
Moreover, EEG dynamics at each temporal scale and frequency
band, such as theta, beta, and gamma bands, are associated with
differentmemory function components, cognitive and perceptual
function (Klimesch et al., 2007). Hence, as a diagnostic index for
AD patients with various brain function defects, the evaluation of
the complexity with temporal scale dependence in EEG signal is
effective (Mizuno et al., 2010; Nobukawa et al., 2019, 2020).

Multiscale entropy (MSE) analysis and multifractal (MF)
analysis are known as typical temporal scale complexity
dependency analyses (Takahashi, 2013; Yang and Tsai, 2013). In
addition to EEG’s temporal dependency in AD, MSE analysis
also showed lower complexity on a small temporal scale in the
frontal region in AD; in comparison, higher complexity was
observed across this brain region in AD on a larger temporal scale
(Mizuno et al., 2010; Ni et al., 2016). Zorick et al. reported that a
statistical model based onMF analysis could detect clinical stages
of severity and degree of progress from cognitive impairment
to AD (Zorick et al., 2020). As described above, MSE and MF
analyses have a high ability to detect the complexity in EEG
signals of AD. As such, these indices might become biomarkers
for AD to evaluate the alteration of EEG complexity (Mizuno
et al., 2010; Ni et al., 2016; Nobukawa et al., 2020).

Recent studies have focused on the enhancement of
classification accuracy combining several feature values,
including complexity indexes in EEG of AD patients (Wang
et al., 2015; Gómez et al., 2017; Ieracitano et al., 2020; Nobukawa
et al., 2020). Particularly, Wang et al. (2015) and Gómez
et al. (2017) showed that combinations of spectrum and
bispectrum entropy measures enhance the accuracy of EEG
signals classification in AD. Therefore, these combinations of
complexity measures are a new avenue for the diagnosis of AD
EEG signals. Furthermore, Cukic et al. showed that multiscale

TABLE 1 | Physical characteristics of healthy control (HC) and subjects with

Alzheimer’s disease (AD).

HC participants AD participants p-values

Male/female 7/11 5/11 0.72

Age(year) 59.3 (5.3, 55–66) 57.5 (4.7, 43–64) 0.31

MMSE score NA 15.5 (4.7, 10–26) NA

analysis (MSE) and fractal dimension provide complementary
information on brain activity in healthy subjects (Cukic et al.,
2018). This complementary relationship may enhance the
accuracy of AD identification. In this context, we hypothesize
that the combination of MSE and fractal analysis may contribute
to a better understanding of EEG dynamics’ alteration in AD. In
this study, we performed MSE analysis and multifractal analysis
on the EEGs of patients with AD and healthy controls (HC).

2. MATERIALS AND METHODS

2.1. Subject
The subjects of this study were 16 patients with AD and 18 sex-
matched and aged-matched healthy old individuals (see Table 1)
(Mizuno et al., 2010; Nobukawa et al., 2019, 2020). The sample
size of AD and HC groups was determined based on previous
works on complexity analysis (Abásolo et al., 2008; Mizuno et al.,
2010; Nobukawa et al., 2019, 2020). For this study, we defined
healthy old individuals as nonsmokers and not on medication.
Subjects with medical or neurological conditions, including
epilepsy or head trauma in the past, and subjects with a history of
alcohol or drug dependence were excluded.We recruited patients
with AD or probable AD who met the NINCDS-ADRDA criteria
and in a state before the onset of primary dementia based on
DSM-IV criteria. Recruited patients with AD were not receiving
medications that act on the central nervous system.

Each patient was evaluated using the Function Assessment
Stage (FAST) and Mini-Mental State Examination (MMSE).
Three patients had mild dementia (FAST 3); seven moderate
dementia (FAST 4); and six severe dementia (FAST 5). The
MMSE score ranged from 10 to 26, with an average of 15.56.
Table 1 shows subjects’ characteristics. All subjects provided
informed consent prior to the start of the study. The research
protocol was approved by the Ethics Committee of Kanazawa
University. All procedures in this study were conducted in
accordance with the Declaration of Helsinki.

2.2. EEG Recordings
As reported in previous studies, methods have been established
to record and preprocess EEG data (Mizuno et al., 2010).
When recording the EEG, the participants were seated in
an electrically shielded and soundproof recording room, and
the room lighting was controlled. For the EEG measurement,
16 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,
F7, F8, Fz, Pz, T5, and T6) were used in the electrode
arrangement called the International 10–20 System. EEG activity
was measured using the binaural connection as a reference.
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EEG-4518 manufactured by Nihon Kohden Co., Ltd. Tokyo,
Japan, was used for measurement. Eye movements were tracked
using bipolar electrocardiography (EOG). The EEG signal
was recorded using a sampling frequency of 200 Hz and
bandpass filtered at 2.0–60 Hz. As pre-processing steps were
not conducted (i.e., filtering except for bandpass, artifacts
removal, or data reconstruction), because such processing may
destroy the data’s intrinsic dynamics, we visually selected epochs
without artifacts. The electrode/skin conductance impedance
was carefully controlled at each electrode to < 5k�. Each
subject’s EEG signal was measured for 10–15 min in a resting
state with eyes closed. A video surveillance system was used
to visually inspect the subjects’ alertness and to confirm that
only epochs with closed eyes and a wakefulness state (not light
sleep) weremeasured. Visual inspection of EEG and EOG records
identified EEG time series segments recorded in a wakefulness
state with closed eyes. Subjects were considered fully awake when
predominant alpha activity appeared in the posterior region in
response to the fast eye movements of the EOG channel (Wada
et al., 1996). MSE analysis and MF analysis were conducted
against a continuous 50-s(10000 data points) epoch.

2.3. Multifractal Analysis
In MF analysis, wavelet readers derived from the coefficients of
the discrete wavelet transform are widely used (Jaffard et al., 2006;
Wendt and Abry, 2007). The discrete wavelet coefficient of the
discrete signal X(t) is given by

dX(j, k) =

∫

R
X(t)2j,ψ0(2

−jt − k)dt (j = 1, 2, ..., k = 1, 2, ...),

(1)

where ψ0 is a compact-supported mother wavelet function. One-
dimensional wavelet leaders were expressed by

Lx(j, k) = sup
λ′⊂3λj,k

|dX(j, k)|. (2)

Here, λ = λj,k = [k2j, (k + 1)2j] represents the time interval

of scale 2j, and 3λj,k−1 = ∪λj,k ∪ λj,k+1 represents the adjacent
time (Wendt and Abry, 2007). The singular value spectrum D(h),
which is the distribution of the fractal dimension represented by
the Hölder exponent h, is represented by wavelet leaders (Jaffard
et al., 2006; Wendt and Abry, 2007):

D(h) = inf
q6=0

(1+ qh− ζL(q)). (3)

Here, q indicates the moment for scaling index ζL(q). The scaling
index ζL(q) and the structural function SL(q, j) are represented by
Equations (4, 5), respectively:

ζL(q) = lim inf
j→0

(

log2 SL(q, j)

j
,

)

(4)

SL(q, j) =
1

nj

nj
∑

k=1

|LX(j, k)|
q. (5)

FIGURE 1 | Singular value spectra D(h) in multi-fractal analysis for one healthy

control (HC) subject. Here, h exhibits Hölder exponent. c1 shows h-value

where D(h) = 1.0 (q = 0); absolute value of c2 corresponds to the range of

D(h) distribution between q = −5 and 5.

Here, nj indicates the number of samples of X when the scale
is 2j. As Hölder exponent h approaches 1.0, the shape of the
time series becomes more differentiable. In contrast, as Hölder
exponent h approaches zero, the shape of the time series becomes
nearly discontinuous. If the scaling index ζL(q) is a linear
function and D(h) converges to a particular h, then the signal
is monofractal. On the other hand, in the scaling index, where
ζL(q) deviates from linearity and D(h) is distributed over a
wide range of h, the signal is multifractal. In this study, to
capture the profile of D(h), we used the primary cumulant c1 of
D(h), which corresponds to a dominant component of D(h) as
smoothness index estimated in the entire time-series. Moreover,
we used the secondary cumulant c2, which corresponds to
the magnitude of fluctuation intermittently appearing as the
index for multifractality. Figure 1 shows the results of multi-
fractal analysis of one HC subject. c1 shows h-value where
D(h) = 1.0 (q = 0), which corresponds to the degree of
differentiability in the dominant component of the entire time-
series, i.e., smoothness. The absolute value of c2 corresponds to
the range of D(h) distribution between q = −5 and 5. In the
monofractal time-series, D(h) converges at a particular h (in the
time-series with no multifractality, D(h) converges at h-value
with q = 2), while in the multifractal time-series, the range of
D(h) becomes wider (Ihlen, 2012; Mukli et al., 2015). Therefore,
the degree of variation of D(h) corresponding to c2 reflects the
multifractality. In this study, multifractal analysis was performed
using the wavelet toolbox of MATLAB (https://jp.mathworks.
com/products/wavelet.html).

2.4. Multiscale Entropy Analysis
To perform the multiscale entropy (MSE) analysis, we used the
dependence of the EEG time series complexity on the temporal
scale (Costa et al., 2002). The sample entropy for the time-series
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of random Z-scored variable {x1, x2, ..., xN} is defined as

h(r,m) = − log
Cm+1(r)

Cm(r)
. (6)

Cm(r) is the probability of |xmi − xmj | < r(i 6= j, i, j = 1, 2, ...).

xmi indicates anm-dimensional vector xmi = {xi, xi+1, ..., xi+m−1}.
{xi, xi+1, ..., xN} is obtained course-grained process:

xj =
1

τ

jτ
∑

i=(j−1)τ+1

yi(1 ≤ j ≤
N

τ
). (7)

where, {y1, y2, ..., yN} is observed signals. τ (τ = 1, 2, ...) is the
temporal scale. In this study, we set m = 2 and r = 0.2 (Costa
et al., 2002). In this study, MSE analysis was performed using the
Physio Toolkit, a toolbox of MATLAB (http://physionet.incor.
usp.br/physiotools/sampen/).

2.5. Statistical Analysis
For c1 and c2, repeated measures analysis of variance (ANOVA)
with the groups (HC vs. AD) as the between-subject factor
and the electrodes (16 electrodes from Fp1 to T6) as
the within-subject factors was performed to test for group
differences. The result of ANOVA is represented by F-value
based on a comparison of variances within/between groups.
The Greenhouse-Geisser adjustment was applied in degrees of
freedom. The α bilateral level of 0.05 was used, considered a
statistically significant criterion to avoid type I errors. Post-hoc t-
tests were used to assess the significant main effects of group and
per-electrode interactions. Benjamini–Hochberg false discovery
rate (FDR) correction was applied to the t-score for multiple
comparisons in c1 and c2 (q < 0.05) (16 p-values: 16 electrodes).

For sample entropy, repeated measures ANOVA with groups
(HC vs. AD) as the between-subject factor and electrode (16
electrodes from Fp1 to T6) and temporal scale (30 temporal
scales) as within-subject factors, was performed to test for group
differences. The Greenhouse-Geisser adjustment and α bilateral
level of 0.05 were applied. The result of ANOVA is represented
by F-value based on a comparison of variances within/between
groups. Post-hoc t-tests were used to assess the significant main
effects of the group and per-electrode and per-temporal-scale
interactions. The FDR correction was applied to the t-score for
multiple comparisons (q < 0.05) (480 p-values: 16 electrode ×
30 scales).

Receiver operating characteristic (ROC) curves were used
to evaluate the ability to identify AD. To identify AD, a
logistic regression model based on the sample entropy, c1 and
c2, was used. Here, the logistic regression model outputs the
identification probability of AD for each subject. Subsequently,
the true positive rate/false positive rate at each threshold of
identification probability from 0 to 1.0 in both groups are
measured. Principal component analysis is used as a preprocess
for dimensionality reduction. Logistic regression was applied
to the 1st–3rd principal components of each evaluation index.
The identification accuracy was evaluated by measuring the
area under the ROC curve (AUC), which is an index of
identification accuracy. Subsequently, according to AUC values,

FIGURE 2 | Singular value spectra of Alzheimer’s disease (AD) group and HC

group. The mean and standard deviation among each group of D(h) and h.

Since the distribution is wide, it is considered that it reflects the multi-fractal

property of both groups’ EEG signal.

TABLE 2 | AD vs. HC repeated measure ANOVA analysis results [F-value (p

value)] in multifractal (MF) analysis results, F and p value with p < 0.05 are

represented by bold characters.

Group Group × nodes

c1 F = 9.088 (p = 0.005) F = 1.460 (p = 0.204)

c2 F = 0.654 (p = 0.425) F = 1.981 (p = 0.072)

the classification accuracy is graded in logistic regression models
based on the sample entropy, c1 and c2. Here, AUC =

1.0 corresponds to complete identification, and AUC = 0.5
corresponds to random identification.

3. RESULTS

3.1. Multifractal Analysis
We performedMF analysis on both HC and AD groups. Figure 2
shows the mean and standard deviation for each group of D(h)
and h. Since the distribution is wide, it reflects the multi-fractal
property (Sikdar et al., 2018) of both groups’ EEG signal. Table 2
shows the repeated measures ANOVA results of 1st (c1) and 2nd
(c2) cumulants of singular spectrum. The significant main effect
in c1 was confirmed. The mean values of c1 and c2 in the AD
and HC groups and the result of the post-hoc t-test between AD
and HC are shown in Figure 3. The significantly higher c1 values
in the AD group (q < 0.050 corresponding to p < 0.012) was
confirmed at F3, Fz, F4, C3, C4, P3, Pz, and P4.

3.2. Multi Scale Entropy Analysis
We performed an MSE analysis in the HC and AD groups.
Table 3 shows the repeated measures ANOVA results of MSE
analysis. Significant group × scale interactions without the main
effect of sample entropy were confirmed. As post hoc t-test,
the mean values of sample entropy in HC and AD groups
and the t-value between HC and AD are shown in Figure 4.
The results demonstrated a significantly lower sample entropy
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FIGURE 3 | (A) 1st cumulant of singular value spectrum c1. Mean value of c1 in the HC (left) and AD (right) groups. (B) t-values between the AD and HC groups. The

warm (cold) color represents higher (smaller) c1 values of AD than those for HC. The left and right correspond to the t-value and t-value satisfying the false discovery

rate (FDR) correction criteria q < 0.050 corresponding to (p < 0.012). c1 of the AD group had significantly higher values at F3, Fz, F4, C3, C4, P3, Pz, and P4. (C) 2nd

cumulant of singular value spectrum c2. Mean value of c2 in the HC (left) and AD (right) groups. (D) t-value between the AD and HC groups warm (cold) color

represents higher (smaller) c2 values of AD than those for HC. There are no-significant high/low t-values satisfying FDR correction criteria q <0.05 (corresponding to

p < 0.003).
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of AD (q < 0.050 corresponding to p < 0.002) in the
temporal scale region 1 to 5 (0.005 to 0.025 s). The result of
MSE analysis was reported in our previous studies (Mizuno
et al., 2010; Nobukawa et al., 2020). Particularly, in the study by

TABLE 3 | AD vs. HC repeated measure ANOVA results [F-value (p-value)] in multi

scale entropy (MSE) analysis results, F and p value with p < 0.05 are represented

by bold characters.

Group Group × node Group × scale Group × node × scale

F = 1.233

(p = 0.275)

F = 1.860

(p = 0.129)

F = 11.457

(p = 0.003)

F = 0.979

(p = 0.451)

Mizuno et al. (2010), multiscale entropy analysis against AD EEG
signals was reported, while our recent study (Nobukawa et al.,
2020) showed the relationship between functional connectivity
characterized by phase synchronization and multiscale entropy
in AD EEG signals.

3.3. ROC Curve
To evaluate the classification ability in c1 and c2, we evaluated
ROC curves. Figure 5 shows the result of ROC in the case with
1st–3rd principal components in each evaluated index. In the
sample entropy case, the values are averaged in 1 to 5 temporal
scale. AUC in the c1 case exhibits the highest classification
ability (AUC = 0.85 in the case c1; AUC = 0.78, in the case
of c2; AUC = 0.82 in the case sample entropy). Furthermore,

FIGURE 4 | Multi-scale entropy analysis in HC and AD group. The horizontal axis represents the temporal-scale factor, τ . (A) Mean values of sample entropy from 1

(0.005 s) to 30 (0.15 s) scale factors in HC (left part) and AD (right part). (B) t-value between the AD and HC groups(left part). The warm (cold) color represents a

higher (smaller) sample entropy value for AD than that for HC. The t-value satisfying the FDR correction criteria q < 0.050 corresponding to (p < 0.002). Significantly

smaller sample entropy of AD low temporal scale regions 1 to 5 (0.005 to 0.025 s).
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FIGURE 5 | Receiver operating characteristic curve (ROC) for c1, c2, and

sample entropy. The area under the ROC curve (AUC) is shown in the legend.

As classifier, logistic regression is used. In this case, c1, c2, and sample

entropy, each 1st-3rd principal component was used separately. In the case

represented by “ALL, all 1st–3rd principal components component of c1, c2,

sample entropy were used. We evaluated ROC in the case using all these

values; the results show the enhancement of classification ability (AUC = 1.00).

we evaluated ROC using all these values; the results showed
an enhancement of classification ability (AUC = 1.00). To
investigate why the combination of c1, c2, and sample entropy
enhances classification ability, we evaluated their relationship by
correlation analysis. Figure 6 shows a scatterplot among the 1st
component of c1, c2 and sample entropy used for ROC evaluation
in Figure 5. The correlation coefficients R are shown in Table 4.
The results show a high negative and positive correlation between
c1 and sample entropy, a positive correlation between c2 and
sample entropy, and a relatively low negative correlation between
c1 and c2. This relatively low correlation between c1 and c2
suggests that c2 includes complementary information regarding
multifractality in the classification. Moreover, to investigate the
correlation between c1 and c2, not the principal components,
the correlation coefficient R between c1 and c2 in HC and AD
groups is demonstrated in Figure 7. The results show the spatial
dependency of correlation coefficient R, which might contribute
to the enhancement of classification accuracy shown in Figure 7.

To demonstrate that the decision region for AD is determined
by c1, c2, and sample entropy, decision regions for AD with
decision probability > 0.9 by logistic regression model were
depicted on the plane between the 1st principal component of c1
and the 1st principal component of c2 and the plane between the
1st principal component of c1 and the 1st principal component
of the sample entropy (see Figure 8). Here, all other components
except the plane axis were set to average among subjects in both
the HC and AD groups. As a result, we confirmed that the
decision region exhibits dependent on all of them.

4. DISCUSSIONS

This study evaluated AD identification accuracy by focusing
on the complementary relationship between two complexity
analyses. The MF and MSE of EEG signals in HC and AD

were evaluated, and classification accuracies quantified by the
AUC of logistic regression models were compared. The results
of c1 as the index for the smoothness of the EEG time
series by MF analysis showed that c1 of AD significantly
increased. However, the results of c2, as the index for the
EEG time series’ multifractal nature by MF analysis, show
that no significant AD alteration was observed. MSE analysis
showed a significant region-specific reduction of small-temporal-
scale sample entropy of AD (corresponding to the complexity
of faster temporal EEG behaviors). In the comparison of
classification accuracy between c1, c2, and small-temporal-scale
sample entropy, c1 exhibits the highest classification accuracy.
Moreover, the classification accuracy with c1 was enhanced
by considering the complementary relationship of c2 and
sample entropy.

We must discuss the reason why c1 as the degree of
smoothness increase in AD. In the alteration of EEG/MEG
signals in AD, a reduction in temporal complexity has been
widely observed (Woyshville and Calabrese, 1994; Besthorn
et al., 1995; Jelles et al., 1999; Jeong, 2004; Wickramasinghe
and Geisler, 2008; Smits et al., 2016; Kulkarni, 2018; Smailovic
et al., 2019). Correspondingly, our results of sample entropy at
a small temporal scale also exhibited a reduction in complexity.
Considering the negative correlation between c1 and the small-
temporal-scale sample entropy (see Table 4), the increase in
c1, that is, the enhancement of EEG signal smoothness in AD,
was caused by the decrease in small-temporal-scale complexity.
Therefore, the enhancement of c1 reflects the loss of temporal
complexity of neural activity in AD. This finding agrees with
previous studies onMF analysis in AD (Jaffard et al., 2006;Wendt
and Abry, 2007).

Furthermore, we must consider why small temporal scale
complexity decreases in AD. Dysfunction of the gamma-
aminobutyric acid (GABA) signaling system caused by
deposition of amyloid β and tau protein have been reported.
These changes lead to the reduced oscillation of the gamma
band activity produced by GABA signaling (Nava-Mesa et al.,
2014; Govindpani et al., 2017; Calvo-Flores Guzmán et al., 2018).
Consequently, dysfunction of the mutual interaction of gamma
band activity can reduce the complexity more on the faster than
on the slower temporal scales (Ahmadlou et al., 2011; Nobukawa
et al., 2019).

Next, it is necessary to consider why the classification
accuracy was highest when c1, c2, and sample entropy were used.
According to Cukic et al., sample entropy and fractal dimension
by mono-fractal analysis show a complementary relationship
among temporal scales (Cukic et al., 2018), and this relationship
can enhance the ability to detect an alteration of complexity.
Our results (see Figure 8) also showed that a decision region for
AD with decision probability > 0.9 by logistic regression model
exhibits a dependency on c1, c2, and sample entropy. Therefore,
the combination of c1 corresponding to the fractal dimension and
sample entropy might enhance the accuracy of AD detection. In
addition to these findings, a recent MF analysis in AD showed
that the multifractal degree reflects disease-specific alterations
of complexity (Zorick et al., 2020). Although the classification
ability in case of separate use of multifractals measured by c2
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FIGURE 6 | Scatter plots for 1st principal component of c1, c2 and sample entropy used to evaluate of ROC in Figure 5. (A) Scatter plots between c1 and c2. The

result showed a relatively low negative correlation (R = −0.56(HC),R = −0.42(AD)). (B) Scatter plots between c1 and the sample entropy. The results showed a high

negative correlation [R = −0.77(HC),R = −0.85(AD)]. (C) Scatter plots of the between sample entropy and c2. The result showed a positive correlation

[R = 0.82(HC),R = 0.78(AD)].

TABLE 4 | Correlation coefficient values (R) for each combination of c1, c2, and

sample entropy in HC and AD.

c1 vs. c2 c1 vs. Sample entropySample entropy vs. c2

Correlation coefficient(HC) R = −0.56 R = −0.77 R = 0.82

Correlation coefficient(AD) R = −0.42 R = −0.85 R = 0.78

is relatively low, the combination with c2 may contribute to the
improvement of classification accuracy.

To investigate whether the high heterogeneity of severity
in patients with AD affects classification, we investigated
distributions of c1, c2, and mean sample entropy in a scale
from 1 to 5 according to severity as classified by FAST (3 (mild
dementia), 4 (moderate dementia), and 5 (severe dementia),
through repeated measures ANOVA with severity as a between-
subject factor and electrode as a within-subjects factor. The
results showed that severity did not have any significant main
effect or interaction in c1 (F = 0.412, p = 0.671), c2 (F = 0.706,
p = 0.512), and sample entropy (F = 0.532, p = 0.6); while
a significant interaction between severity and electrodes in c1
(F = 2.103, p = 0.036) appeared. Therefore, although in larger
AD groups a severity-dependent effect may appear, the bias of

high heterogeneity of severity is limited. Additionally, in patients
with mild dementia, no differences in the distribution of c1, c2,
and sample entropy compared to more severe patients appeared
in the repeated measures ANOVA. Therefore, the classification
accuracy may not change in case of a classification between
HC and patients with mild dementia, which corresponds to the
condition assumed for early diagnosis.

Finally, we must consider the limitations of this study. First,
EEG signals do not always reflect the neural activity directly
under the electrode. In this study, 16 electrodes were used to
measure EEG, but the spatial resolution was too low to identify
AD’s complex functional connection structure. However, it is
possible to use MEGs with a high spatial resolution and cortical
positioning to solve this problem. Second, pre-processing for
EEG signals was not adopted except for a band-pass filter.
However, a recent study by Racz et al. (2018) indicated that
appropriate pre-processing is needed for complexity analysis.
Artifacts and noise are to be avoided, especially at the stage of
clinical application. Therefore, this pre-processing for complexity
analysis must be developed and adopted in future studies.
Third, we consider that for our EEG data set, the multifractal
analysis method proposed by Jaffard et al. (2006) and Wendt
and Abry (2007) is sufficient, because a corrupted/inversed
D(h) distribution did not arise (see Figure 2). Additionally,
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FIGURE 7 | Correlation coefficient R between c1 and c2 in HC and AD groups. Spatial dependency of correlation coefficient R was confirmed, which might contribute

the enhancement of classification accuracy shown in Figure 5.

FIGURE 8 | Decision region (given by red region) for AD with decision probability more than 0.9 by logistic regression model was shown on the plane between 1st

principal component of c1 and 1st principal component of c2 (left part) and plane between 1st principal component of c1 and 1st principal component of sample

entropy (right part). Here, the other components except axis of planes were set to average among subjects in both HC and AD groups. The dependency on all of them

in the decision region was confirmed.

this study was conducted on the assumption of multifractality
in EEG signals (Takahashi, 2013; Yang and Tsai, 2013; Sikdar
et al., 2018). However, several studies highlighted the issues
of incorrect estimation of multifractal indexes in time-series
without multifractality (Grech and Pamula, 2012; Mukli et al.,
2015). Therefore, multifractal analysis methods with higher
robustness (Mukli et al., 2015) are desired at the stage of clinical
application, since proper validation of EEGmultifractality (Mukli
et al., 2015; Racz et al., 2018) is an important issue. Fourth, the
AD group had high heterogeneity of severity, and the sample
size of the AD group was small, which could have influenced
the classification accuracy. Therefore, the classification ability of
our proposed method must be evaluated in larger AD groups.
Additionally, a Bayesian statistic approach is more suitable for
small size and high sample heterogeneity than that based on
frequentist inference.

5. CONCLUSION

In this study, both MSE and MF analysis showed a reduction
in EEG complexity in AD patients. Classification accuracy is
better by combining MSE analysis and MF analysis than when

applying each one individually. Despite its limitations, this study
shows that MSE and MF analysis play complementary roles in
detecting the alteration of neural activity in AD. The use of both
MSE and MF analysis may facilitate the development of AD
diagnostic tools.
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Background: Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are the two
main types of dementia. We investigated the electroencephalogram (EEG) difference and
clinical correlation in early-onset Alzheimer’s disease (EOAD), and FTD using multimodal
EEG analyses. EOAD had more severe EEG abnormalities than late-onset AD (LOAD).
Group comparisons between EOAD and LOAD were also performed.

Methods: Thirty patients diagnosed with EOAD, nine patients with LOAD, and 14
patients with FTD (≤65 y) were recruited (2008.1–2020.2), along with 24 healthy controls
(≤65 y, n = 18; >65 y, n = 6). Clinical data were reviewed. Visual EEG, EEG microstate,
and spectral analyses were performed.

Results: Compared to controls, markedly increased mean microstate duration, reduced
mean occurrence, and reduced global field power (GFP) peaks per second were
observed in EOAD and FTD. We found increased durations of class B in EOAD and
class A in FTD. EOAD had reduced occurrences in classes A, B, and C, while only class
C occurrence was reduced in FTD. The visual EEG results did not differ between AD and
FTD. Microstate B showed correlations with activities of daily living score (r = 0.780,
p = 0.008) and cerebrospinal fluid (CSF) Aβ42 (r = −0.833, p = 0.010) in EOAD.
Microstate D occurrence was correlated with the CSF Aβ42 level in FTD (r = 0.786,
p = 0.021). Spectral analysis revealed a general slowing EEG, which may contribute to
microstate dynamic loss. Power in delta was significantly higher in EOAD than in FTD
all over the head. In addition, EOAD had a marked increased duration and decreased
occurrence than late-onset AD (LOAD), with no group differences in visual EEG results.

Conclusion: The current study found that EOAD and FTD had different EEG changes,
and microstate had an association with clinical severity and CSF biomarkers. EEG
microstate is more sensitive than visual EEG and may be useful for the differentiation
between AD and FTD. The observations support that EEG can be a potential biomarker
for the diagnosis and assessment of early-onset dementias.

Keywords: EEG microstate, early onset Alzheimer’s disease, frontotemporal dementia, CSF biomarkers, spectral
analysis
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia, accounting for 60–80% of cases (Scheltens et al.,
2016). A diagnosis of AD below the age of 65 is classed as
early-onset AD (EOAD). EOAD accounts for only 5%–10% of
all AD cases (Dai et al., 2018). Accumulation of abnormally
folded amyloid beta (Aβ) and hyperphosphorylated tau proteins
in amyloid plaques and neural tangles is causally related to
neurodegenerative processes (Karran et al., 2011). Low Aβ42
levels, high concentrations of t-tau and p-ta, and the ratio of
tau/Aβ42 help to discriminate AD from healthy controls and
other dementias (Shaw et al., 2009; Casoli et al., 2019). Patients
with EOAD display greater cerebrospinal fluid (CSF) anomalies
(Dumurgier et al., 2013) and more severe electroencephalogram
(EEG) abnormalities (Micanovic and Pal, 2014).

Frontotemporal dementia (FTD) accounts for approximately
10% of all dementias (Hogan et al., 2016), characterized
by prominent changes in social behavior and personality
or aphasia accompanied by pathological changes in the
frontal and temporal lobes. TAR (trans-active response) DNA-
binding protein 43, tau, and fused-in-sarcoma protein were
the three major disease proteins in the neuropathology of
FTD (Wang et al., 2013). It can be difficult to distinguish
clinically FTD from AD, especially EOAD, as EOAD may
more commonly manifest with non-memory presentations, like
language problems (Koedam et al., 2010).

Electroencephalogram is a relatively cost-effective, non-
invasive technique, increasingly considered to be a potential
biomarker for dementia differentiation recently. Several
characteristics of the EEG have been put forward as biomarkers
in AD and might be useful in the early recognition of neural
signatures of dementias and differential diagnosis. Spectral EEG
measures in AD showed a reduction of alpha and beta spectral
powers and an increase in theta and delta spectral powers.
The changes were associated with disease severity (Horvath
et al., 2018). Recently, EEG microstate analyses were used in
dementia. EEG microstates are defined as quasi-stable brief
patterns of coordinated electrical activity on the scalp surface,
which was first described by Lehmann et al. (1987) (Schumacher
et al., 2019). The topographies remained transiently stable for
60–150 ms before rapidly transitioning into a new state.

Electroencephalogram microstates have been shown to be
associated with cognition and perception (Milz et al., 2016;
Santarnecchi et al., 2017). Previous studies observed microstate
changes in cognitive disorders (Stevens and Kircher, 1998;
Nishida et al., 2013; Hatz et al., 2015; Musaeus et al., 2019;
Schumacher et al., 2019; Smailovic et al., 2019; Tait et al.,
2020). However, microstate characteristics and correlation with
CSF biomarkers in early-onset dementias, including AD and
FTD, have not been well studied. The current study was set to
investigate the EEG microstate in EOAD and FTD, along with
EEG spectral analysis, and the correlations with clinical data and
CSF biomarkers. The differences in EEG data were then analyzed
to test the utility of EEG as a biomarker for clinical evaluations
and differential diagnosis. Comparisons between EOAD, late-
onset AD (LOAD), and healthy controls were also performed to

investigate the difference between microstate and visual EEG and
the effect of age.

MATERIALS AND METHODS

Patients
The study population consisted of patients with cognition
impairment in Peking Union Medical College Hospital between
June 2015 and October 2019. Patients were diagnosed based
on information obtained from an extensive clinical history,
physical examinations, and lab examinations and excluded mood
disorders and schizophrenia. All patients diagnosed with AD
met the IWG-II criteria (Dubois et al., 2014) with cognitive
scales, brain MRI, and CSF biomarker results. For FTD diagnosis,
the Neary et al. (1998) or the McKhann et al. (2001) criteria
were employed with brain MRI and CSF biomarker results for
differentiation from AD. Dementia diagnoses were performed
independently by two experienced clinicians. Patients who had
complications of other neurological or psychiatric disorders, and
severe systemic diseases that may influence the central nervous
system, were excluded. Patients with AD were divided into
EOAD and LOAD by age 65. Patients with FTD who were older
than 65 years were further excluded. Clinical assessment scales
included the Mini-Mental State Examination (MMSE) (Folstein
et al., 1975), the Montreal Cognitive Assessment (MoCA)
(Nasreddine et al., 2005), and activities of daily living (ADL)
score. The data of CSF biomarkers and cognitive assessments
undergone at the same time with EEG recordings were used for
further analyses.

Biomarkers Assessments
Cerebrospinal fluid t-tau, p-tau, and Aβ42 were measured
using an enzyme-linked immunosorbent assay (Fujirebio,
Ghent, Belgium). Samples were handled by experienced senior
laboratory technicians blinded to patients’ information.

EEG Examination and Data
Preprocessing
Video EEG monitoring was performed using a 19-channel video-
EEG monitoring system (EEG-1200C, Nihon Kohden, Tokyo,
Japan) in hospital for more than 2 h. Recording electrodes
were placed according to the international 10–20 system with
a sampling frequency of 500 Hz. The visual EEG results were
evaluated by at least one experienced epilepsy specialist. The
degree of visual EEG abnormality was scored as follows: (1)
0 = normal; (2) 1 = mildly abnormal; (3) 2 = moderately
abnormal; and (4) 3= severely abnormal (Table 1).

Resting-state EEG data without excessive noise, artifacts,
and epileptiform discharges were preprocessed with EEGLAB
(R13_6_5b) in MATLAB R2017a. An independent component
analysis was used for further artifact removal. Data were bandpass
filtered into the range of 0.1–40 Hz and were recomputed against
the average reference. EEG data were split into non-overlapping
epochs of 2 s. Patients with less than 25 epochs were excluded. It
resulted in 30 patients with EOAD, 14 with FTD, and 18 healthy
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TABLE 1 | Definitions of visual EEG abnormality scores.

Visual EEG scores Definitions

1 = mildly abnormal At least one of the following EEG patterns:
• <50% asymmetrical background activity;
• Irregular alpha rhythm;
• Excess beta activity with amplitude >50 µV,
• Excessive theta activity mainly over the frontal

region
• Mildly excessive delta activity

2 = moderately
abnormal

At least one of the following EEG patterns:
• Occipital 7–8-Hz frequency band
• No obvious occipital alpha rhythm
• Asymmetry [>50%] moderately high delta activities
• Sporadic epileptiform discharges

3 = severely abnormal At least one of the following EEG patterns:
• Persistent low-voltage or electrical silence
• Periodic phenomenon
• Dominant background delta or theta activity
• Rhythmic epileptiform discharges

controls (≤65 y) for further analyses. Moreover, nine patients
with LOAD and six healthy controls (>65 y) were included in the
current study. Frequency spectral analysis was performed in the
following frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), and beta (12–30 Hz).

Microstate Analysis
The microstate analysis was conducted using the EEGLAB plugin
Microstate 1.1 in MATLAB R2017a. EEG data were further
bandpass filtered into the 1–20-Hz range for microstate analysis.
The overall variances across all electrodes were quantified by
measuring the global field power (GFP). GFP was calculated
as the standard deviation of the data at each time point
(Wackermann et al., 1993; Hatz et al., 2015):

GFPt =

√∑n
i=1 u

2
i

n

(n = number of channels

u = amplitude in uV at time point t)

Electroencephalogram topographies tend to be stable during
periods of high GFP (Lehmann et al., 1987). The scalp maps at
the momentary peaks of the GFP were extracted and clustered
using a k-means cluster analysis (Hatz et al., 2015). Previous
studies revealed that the optimal number of microstate classes
belonged to two to six classes (mean 3.7 classes), according to
the agglomerative clustering procedure (Lehmann et al., 1993;
Khanna et al., 2015; Michel and Koenig, 2018). The current
study used a cross-validation criterion and the Krzanowski–
Lai criterion by the Cartool software (Brunet et al., 2011) to
determine the optimal number of microstate classes, testing the
entire range of 1–12 classes.

The cluster analysis resulted in mean microstate topographies
for each class. Each group model maps were created based
on individual model maps. The resulting class-labeled group
microstate maps were then fit back to the templates to assign
model maps to each participant.

Microstate topographies of each microstate class
were compared between groups using a non-parametric
randomization test (TANOVA, topographical analysis of
variance), as implemented in the Ragu software (Koenig et al.,
2011). GFP peaks per second (PPS), microstate duration (ms),
frequency of occurrence of each microstate (/s), the percentage of
total analysis time covered by each microstate (%), and transition
probabilities were calculated.

Frequency Spectral Analysis
Frequency spectral analysis was performed using a fast Fourier
transform (FFT, 1,000-point) algorithm. The absolute power
spectral density [PSD, dB, 10 log10(V2/Hz)] for each channel
based on the periodogram was calculated. The relative PSD
(rPSD) was computed by normalizing the total power in the
whole frequency range. The absolute and relative PSDs were
averaged across channels within groups to measure global
comparisons between groups in each frequency band.

Statistics Analyses
The relatively symmetrical data distribution of microstate, rPSD,
and absolute PSD is shown in the box plots (Supplementary
Material 1). Although there were outliers, it intuitively
conformed to the normal assumption. Multivariate analysis
of variance (MANOVA) was therefore performed to assess
group differences of microstate variables. When overall
significant effects were found, univariate ANOVAs followed by
post hoc analyses with Bonferroni correction were performed.
A Spearman correlation test was used for the correlation analysis.
Continuous non-normal data were examined using the Kruskal–
Wallis test or Mann–Whitney U test for group comparisons. The
chi-square test was used for group comparison of categorical
data. The level of significance was set at 0.05. Statistics analyses
were performed using IBM SPSS Statistics v22.

RESULTS

Clinical and demographic data between dementia and control
groups are presented in Table 2. Controls, EOAD, and FTD
participants had no significant differences in age and gender.
The FTD group was significantly less impaired in the MMSE
than EOAD group (p = 0.015). Additionally, the two dementia
groups did not differ significantly in terms of dementia
duration, ADL, and MoCA. The percentage of patients taking
acetylcholinesterase inhibitors (AChEIs) at the same time of EEG
recordings did not differ between the two dementia groups.

Cerebrospinal fluid biomarker results were available in eight
patients with EOAD and eight with FTD at the time of EEG
recordings. The levels of Aβ42, t-tau, and p-tau did not differ
between the EOAD and FTD groups. However, the ratio of p-tau
to Aβ42 was shown to be significantly higher in EOAD, compared
to FTD (p = 0.028). A percentage of 36.4% (4/11) subjects in
the EOAD group were APOE ε4 carriers, of which one patient
(11.1%) had two copies. For the FTD group, 42.9% (3/7) of
patients were carriers of the APOE ε4 genotype, and no one had
APOE ε4 homozygotes.
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TABLE 2 | Demographic, clinical data, and CSF biomarkers in dementia and control groups.

HC (n = 18) EOAD (n = 30) FTD (n = 14) p

Age (mean, range) 54 (44–64) 55 (41–64) 57 (47–64) p = 0.112

Gender (M:F) 10:8 11:19 8:6 p = 0.476

Disease course (mean, range, /y) – 3.4 (0.25–13) 3.1 (0.75–6) PAD-FTD = 0.603

AChEI – 16 (53.3%) 5 (35.7%) PAD-FTD = 0.342

MMSE (mean, range – 12 (1–25, n = 29) 19 (6–27, n = 9) PAD-FTD = 0.010

MoCA (mean, range) – 13 (8–21, n = 7) 17 (12–19, n = 6) PAD-FTD = 0.234

ADL (mean, range) – 33 (20–50, n = 10) 25 (0–39, n = 6) PAD-FTD = 0.313

CSF biomarkers (pg/ml, mean, range) – n = 8 n = 8

Aβ42 420 (281–550) 658 (287–870) PAD-FTD = 0.065

T-tau 445 (94–1573) 261 (117–587) PAD-FTD = 0.505

P-tau 69.2 (40.9–122) 47.3 (26.7–71) PAD-FTD = 0.13

T-tau/Aβ42 1.18 (0.20–4.59) 0.46 (0.15–1.09) PAD-FTD = 0.083

P-tau/Aβ42 0.18 (0.11–0.36) 0.09 (0.03–0.20) PAD-FTD = 0.028

APOE ε4 – PAD-FTD = 0.782

0 7/11 (63.6%) 4/7 (57.1%)

1 3/11 (27.3%) 3/7 (42.9%)

2 1/11 (9.1%) 0

Visual EEG score PAD-FTD = 0.304

0 24 (100%) 13 (43.3%) 8 (57.1%)

1 3 (10.0%) 2 (14.3%)

2 14 (46.7%) 4 (28.6%)

3 0 0

HC, healthy controls; EOAD, early-onset Alzheimer disease; FTD, frontotemporal dementia.

Overall, 17 EOAD patients had abnormal EEG results,
including three patients with scores of 1, and 14 with scores
of 2. For the FTD group, eight patients had scores of 0, two
had scores of 1, and four had scores of 2. No participants
had severe abnormal EEG results. The main EEG visual
signs were abnormal or disappeared posterior dominant alpha
rhythm and anterior dominant or diffuse slowing. Only one
patient with EOAD had epileptiform discharges. The Mann–
Whitney U test showed no significant group difference in
visual EEG severity.

EEG Microstates
The median optimal number of microstate classes in the EOAD
and control groups was four, while the median in FTD was
five. The overall median optimal number in the entire dataset
was four. Therefore, the number of microstate classes was
therefore set to four for further analyses, commonly used in
most studies, labeled as A, B, C, and D (Koenig et al., 1999;
Michel and Koenig, 2018). The mean global explained variance
(standard deviation, SD) of four microstates in each group was
79.8% (3.3%) for controls, 74.1% (2.3%) for EOAD, and 77.0%
(4.4%) for FTD.

Group microstate maps are illustrated in Figure 1. After
application of the Bonferroni correction, TANOVAs for each
microstate class showed that the EOAD maps were different
from control maps for classes B and C, and FTD maps were
different from EOAD and control maps for class A. There were no
significant group differences between FTD and controls in model
map topography for classes B, C, and D.

Across all microstate classes, the mean microstate duration
was 66.9 ms in controls, 77.8 ms in EOAD patients, and 76.6 ms
in FTD patients. The mean duration in dementia groups was
increased significantly compared to controls (PHC-EOAD = 0.002;
PHC-FTD = 0.028) (Table 3). The mean number of unique
microstate occurrences per second and PPS was reduced
in EOAD and FTD, compared to HC (mean occurrence:
PHC-EOAD < 0.001, PHC-FTD = 0.035; PPS: PHC-EOAD < 0.001,
PHC-FTD = 0.001) (Figure 2).

Microstate analysis results are presented in Table 3 and
Figure 2. There were no significant differences between the
EOAD and FTD groups. Compared to controls, microstate A
duration in FTD and microstate B and D durations in EOAD
were increased. Microstate C occurrence was reduced in both
dementia groups compared to controls, with no significant
difference between EOAD and FTD groups. Microstate A
and B occurrences were significantly reduced in EOAD,
compared to controls. No significant group differences were
observed in microstate coverage and transition probabilities
(Supplementary Material 2).

Relation Between Microstate and
Clinical/CSF Biomarker Data
We found that the degree of visual EEG abnormality was
negatively correlated with MMSE score (r = −0.380, p = 0.042)
in EOAD. Visual EEG scores were positively correlated with
disease course (r = 0.631, p = 0.021), p-tau (r = 0.756,
p = 0.030), and the ratio of t-tau to Aβ42 (r = 0.756, p = 0.030)
in FTD.
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FIGURE 1 | Microstate class topographies. The letters of (A–D) on the top represent the four microstate classes, respectively. Group comparisons used by TANOVA.
Significant p-values after Bonferroni correction are illustrated. FTD had different microstate (A) map from HC and EOAD. Microstate (B,C) map was different in EOAD,
compared to HC. No group difference in microstate (D) was observed. FTD, frontotemporal dementia; EOAD, early onset Alzheimer’s disease; HC, healthy controls.

TABLE 3 | EEG microstate data in dementia and control groups.

Duration /ms (Std) HC(n = 18) EOAD(n = 30) FTD(n = 14) ANOVA(2,59) PHC-EOAD PEOAD-FTD PHC-FTD

A 64.7 (9.1) 70.3 (6.9) 74.1 (14.8) F = 3.805p = 0.028 0.181 0.703 0.028

B 64.6 (8.1) 75.7 (10.7) 70.4 (16.6) F = 5.140p = 0.009 0.007 0.493 0.510

C 66.8 (9.7) 78.3 (13.9) 75.3 (25.2) F = 2.913p = 0.062

D 63.0 (14.3) 77.5 (21.8) 74.6 (19.5) F = 3.279p = 0.045 0.043 1.000 0.290

Mean duration 66.9 (5.8) 77.8 (9.3) 76.6 (15.0) F = 7.008p = 0.002 0.002 1.000 0.028

Occurrence /s (Std) HC EOAD FTD ANOVA(2,59) PHC-EOAD PEOAD-FTD PHC-FTD

A 3.82 (0.64) 3.18 (0.57) 3.62 (0.97) F = 5.219p = 0.008 0.009 0.167 1.000

B 3.95 (0.79) 3.35 (0.47) 3.57 (0.72) F = 4.981p = 0.010 0.008 0.889 0.292

C 4.31 (0.72) 3.62 (0.71) 3.36 (0.42) F = 9.439p ≤ 0.001 0.003 0.682 <0.001

D 3.38 (0.65) 3.21 (0.76) 3.42 (1.14) F = 0.391p = 0.678

Mean occurrence 3.87 (0.31) 3.34 (0.36) 3.49 (0.57) F = 9.757p ≤ 0.001 <0.001 0.724 0.035

PPS 22 (1.4) 18 (1.7) 19 (3.0) F = 25.879p ≤ 0.001 <0.001 0.085 0.001

HC, healthy controls; EOAD, early-onset Alzheimer disease; FTD, frontotemporal dementia; PPS, global field power peaks per second.

In the EOAD group, microstate B coverage was
negatively correlated with the concentration of CSF Aβ42
(r = −0.833, p = 0.010) and was positively correlated with
the ADL score (r = 0.780, p = 0.008). Additionally, the
transition probability from A to B was positively related
to the ADL score (r = 0.657, p = 0.039) and negatively
related to the CSF Aβ42 concentration (r = −0.714,
p = 0.047). The P-tau concentration was negatively related
to the transition probability from A to C (r = −0.738,
p= 0.037).

In the FTD group, the CSF Aβ42 level was positively related to
microstate D occurrence (r = 0.786, p = 0.021) and transition
probability from D to A (r = 0.714, p = 0.047). There was a
negative correlation between the mean occurrence and CSF t-tau
concentration (r = −0.714, p = 0.047). ADL was negatively

related to transition probability from D to B (r = −0.886,
p= 0.019).

The microstate variables were not significantly correlated
with MoCA scores, ratios of p-tau to Aβ42, and the number of
APOE ε4copies in both groups. PPS showed no correlation with
cognitive scores and CSF biomarkers. The Spearman correlations
with a relatively high significance level (p < 0.040) are illustrated
in Figure 3. The correlations with p-value > 0.040 required a
larger sample to be confirmed.

EEG Microstate in Early- and Late-Onset
AD
Group comparisons in EOAD (n = 30), LOAD (n = 9), and age-
matched controls (young: n = 18, old: n = 6) were performed.
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FIGURE 2 | Microstate characteristics. Group comparison of microstate duration (A), occurrence (B), and GFP peaks per second (C). p-values result from pairwise
post hoc tests following univariate ANOVAs. ∗p < 0.05. FTD, frontotemporal dementia; EOAD, early-onset Alzheimer’s disease; HC, healthy controls; GFP, global
field power.

FIGURE 3 | Correlations between microstate and clinical data. (A–F) Spearman’s correlations between microstate variables and clinical data, including cognitive
scores and cerebrospinal fluid biomarkers levels. FTD, frontotemporal dementia; EOAD, early-onset Alzheimer’s disease; ADL, activities of daily living.

Demographic data and clinical assessment scales are presented
in Table 4. There are no significant differences between the
AD subgroups in terms of gender, MMSE, MoCA, ADL, and
visual EEG score.

The differences between HC and EOAD groups were
consistent with the above observations. Moreover, we found that
microstate B duration and the mean duration were significantly
increased in EOAD, compared with LOAD. Microstate A
occurrence, the mean occurrence, and PPS were reduced in
EOAD, compared with LOAD. Additionally, a preferential
transition to microstates A from D was revealed in LOAD,
compared to age matched controls (0.090 vs. 0.047, p = 0.02).
No significant group differences were observed in LOAD and
age-matched controls in other microstate analyses.

Frequency Spectral Analysis
The across-channel grand average of global EEG PSD in each
group is illustrated in Figures 4A,C. The means of the absolute

PSD in the control group were higher than in the dementia
groups in alpha and beta bands with significance (Figure 4A
and Table 5). As shown in Figure 4C and Table 5, the global
rPSD in dementia groups was significantly reduced in alpha
and beta bands and increased in delta bands, compared to
controls. Moreover, rPSD in the theta band was higher in EOAD,
compared to the control group. The topographies calculated
from the global absolute and relative PSDs over frequency
bands were illustrated in Figures 4B,D. The topographies
revealed that PSD changes were presented in the whole
scalp regions.

Early-onset Alzheimer’s disease had a higher rPSD in the delta
band, compared to FTD. The rPSD of three separated scalp
regions (anterior: Fp1, Fp2, F3, F4, C3, C4, Fz, Cz; posterior: P3,
P4, O1, O2, Pz; temporal: F7, F8, T3, T4, T5, T6) was calculated
and compared among groups. The group comparison results in
rPSD of each scalp region were the same with results in global
rPSD (Supplementary Material 3).
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TABLE 4 | Clinical and EEG microstate data in early- and late-onset AD and age-matched controls.

HC AD

Younger (1) n = 18 Older (2) n = 6 EOAD (3) n = 30 LOAD (4) n = 9

Age (mean, range) 54 (44–64) 71 (68–74) 55 (41–64) 69 (65–75)

Gender (M:F) 10:8 4:2 11:19 5:4 PEOAD-LOAD = 0.398

Disease course (mean, range, /y) 3.4 (0.25–13.0) 3.0 (1.0–6.0) PEOAD-LOAD = 0.844

AChEI 16:14 3:6 PEOAD-LOAD = 0.451

MMSE (mean, range 12 (1–25) 14 (3–27) PEOAD-LOAD = 0.493

MoCA (mean, range) 13 (8–21) 11 (6–15) PEOAD-LOAD = 0.831

ADL (mean, range) 33 (20–50) 35 (22–54) PEOAD-LOAD = 0.524

Visual EEG score 0 (n = 13)
1 (n = 3)
2 (n = 14)

0 (n = 5)
1 (n = 2)
2 (n = 2)

PEOAD-LOAD = 0.327

Duration/ms (Std) 1 2 3 4 ANOVA (3,59)

A 64.7 (9.1) 64.9 (6.7) 70.3 (6.9) 64.9 (6.7) F = 2.913 p = 0.042

B 64.6 (8.1) 66.45 (5.3) 75.7 (10.7) 64.9 (10.6) F = 7.042 p < 0.001
P1−3 = 0.001, P3−4 = 0.024

C 66.8 (9.7) 86.0 (28.6) 78.3 (13.9) 63.5 (10.5) F = 3.322 p = 0.026

D 63.0 (14.3) 64.8 (17.9) 77.5 (21.8) 65.7 (12.5) F = 2.999 p = 0.038
P1−3 = 0.043

Mean duration 66.9 (5.8) 74.1 (14.4) 77.8 (9.3) 66.0 (7.9) F = 7.401 p < 0.001
P1−3 = 0.001, P3−4 = 0.005

Occurrence/s (Std) 1 2 3 4 ANOVA (3,59)

A 3.82 (0.64) 3.52 (1.23) 3.18 (0.57) 4.19 (0.73) F = 6.899 p < 0.001
P1−3 = 0.008, P3−4 = 0.002

B 3.95 (0.79) 3.72 (0.96) 3.35 (0.47) 3.99 (0.43) F = 4.316 p = 0.008
P1−3 = 0.032

C 4.31 (0.72) 4.47 (0.54) 3.62 (0.71) 3.79 (0.70) F = 4.961 p = 0.004
P1−3 = 0.005

D 3.38 (0.65) 2.75 (0.38) 3.21 (0.76) 3.75 (0.59) F = 1.746 p = 0.167

Mean occurrence 3.87 (0.31) 3.61 (0.59) 3.34 (0.36) 3.93 (0.46) F = 9.435 p < 0.001
P1−3 < 0.001, P3−4 = 0.001

Coverage (Std) 1 2 3 4 ANOVA (3,59)

A 0.25 (0.06) 0.22 (0.07) 0.22 (0.04) 0.26 (0.04) F = 3.2 p = 0.030

B 0.25 (0.07) 0.25 (0.06) 0.25 (0.04) 0.25 (0.04) F = 0.16 p = 0.923

C 0.28 (0.07) 0.35 (0.07) 0.28 (0.07) 0.24 (0.05) F = 1.867 p = 0.145

D 0.22 (0.08) 0.18 (0.06) 0.25 (0.11) 0.24 (0.06) F = 0.999 p = 0.400

PPS (Std) 22 (1.4) 21 (2.7) 18 (1.7) 21 (2.6) F = 21.441 p < 0.001
P1−3 < 0.001, P3−4 = 0.003

HC, healthy controls; EOAD, early-onset Alzheimer disease; LOAD, late-onset Alzheimer disease; PPS, global field power peaks per second.

DISCUSSION

The current study investigated the EEG microstate’s changes,
PSD, and visual EEG in EOAD and FTD. Comparison
results between EOAD and LOAD were also presented. The
correlations between EEG microstate and clinical severity and
CSF biomarkers in AD and FTD were observed.

Cognitive scores and CSF biomarkers were different between
FTD and EOAD, as expected. A previous study reported that
FTD was associated with greater impairments in ADLs than AD
(Mioshi et al., 2007). We found that the two groups had similar
ADL scores, but significantly higher MMSE scores in FTD than
in EOAD were revealed. It indicated that FTD needs a higher

MMSE score to get the same ADL with EOAD. The present study
revealed that the ratio of p-tau to Aβ42 was significantly increased
in EOAD compared to FTD, which is in line with previous studies
on AD and FTD (Visser et al., 2009; Vergallo et al., 2017).

The visual EEG severity was correlated with the MMSE
score negatively in EOAD and disease course positively in FTD.
Previous studies reported the positive correlation between visual
EEG scores and clinical severity (Kowalski et al., 2001; de
Waal et al., 2011), which was also supported in the present
study. We found that visual EEG severity was correlated with
CSF biomarkers in FTD. Previous studies observed an inverse
correlation between Aβ levels and with the MMSE score
(Lewczuk et al., 2020). However, another study also reported
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FIGURE 4 | Frequency spectral analysis. (A) and (C) Across-channel grand average of absolute power spectral density (PSD, dB) and relative PSD (%µV2Hz−1)
over frequency for each group are illustrated. (B) and (D) The topographies were calculated from PSD in each frequency band. A general slowing EEG was
presented in both FTD and EOAD groups. FTD, frontotemporal dementia; EOAD, early-onset Alzheimer’s disease; HC, healthy controls.

TABLE 5 | Power spectral density in dementia and control groups.

PSD (dB) (mean, std) HC n = 18 EOAD n = 30 FTD n = 14 MANOVA (2, 59) PHC-EOAD PEOAD-FTD PHC-FTD

1–4 Hz 2.90 (8.1) 1.91 (2.88) 0.74 (3.32) F = 0.716p = 0.493

4–8 Hz −0.07 (8.54) −0.91 (2.72) −2.90 (2.98) F = 1.231p = 0.299

8–12 Hz 3.73 (8.65) −3.21 (3.69) −3.53 (3.81) F = 10.085p ≤ 0.001 <0.001 1.000 0.002

12–30 Hz −4.15 (8.38) −11.19 (2.40) −10.73 (2.54) F = 12.445p ≤ 0.001 <0.001 1.000 0.001

rPSD (%, mean, std) HC EOAD FTD MANOVA(2,59) PHC-EOAD PEOAD-FTD PHC-FTD

1–4 Hz 0.98 (0.4) 2.26 (0.54) 1.70 (0.81) F = 25.725p ≤ 0.001 <0.001 0.025 0.003

4–8 Hz 1.01 (0.4) 1.39 (0.37) 1.24 (0.62) F = 4.159p = 0.020 0.016 0.861 0.469

8–12 Hz 2.14 (0.72) 0.95 (0.69) 1.19 (0.94) F = 14.167p ≤ 0.001 <0.001 1.000 0.003

12–30 Hz 0.32 (0.10) 0.15 (0.06) 0.21 (0.09) F = 28.330P ≤ 0.001 <0.001 0.087 <0.001

HC, healthy controls; EOAD, early-onset Alzheimer disease; FTD, frontotemporal dementia.

that CSF biomarkers had no association with cognition scales
(Vemuri et al., 2010). In the current study, we found no
correlation between CSF biomarkers and cognition scales, which
might be explained with the small sample.

Electroencephalogram microstate topographies in EOAD and
FTD significantly deviate from controls. Microstate B and C
maps were different between EOAD and control, while the class
A map differed between FTD and control. Previous studies
on patients with dementias revealed very different results. Two
studies revealed no topography differences between AD (mean

age 65–70 y) and controls (Stevens and Kircher, 1998; Nishida
et al., 2013; Grieder et al., 2016), but topographies of classes B and
C in semantic dementia, a variant of FTD, were different from
maps in control (Grieder et al., 2016). Schumacher et al. (2019)
reported that all five classes (A–E) maps were different between
AD (mean age 75 y) and control groups. Another study reported
that AD (mean age 68 y) had different topographies of classes A
and D compared to the control group (Smailovic et al., 2019).
Microstate topography showed poor consistence in all these
studies. Age may be one of the factors that influenced the results.
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Both FTD and EOAD groups showed increased mean
microstate duration and reduced mean occurrence. The
increased duration, reduced occurrence, and PPS reflect the
loss of microstate dynamics, which may be related to the EEG
slowing (Schumacher et al., 2019). Tait et al. also reported that
microstate transitions were slower in AD, compared to healthy
controls (Tait et al., 2020). Some studies revealed that microstate
durations were decreased in patients with dementia or cognitive
impairment (Dierks et al., 1997; Strik et al., 1997; Stevens and
Kircher, 1998; Nishida et al., 2013). However, more recent studies
reported increased durations (Musaeus et al., 2019; Schumacher
et al., 2019; Smailovic et al., 2019) and reduced occurrences
(Schumacher et al., 2019; Smailovic et al., 2019) in AD, all based
on the clustering algorithms, like topographic atomize and
agglomerate hierarchical clustering (TAAHC) and k-means. The
microstate map classification methods which differed in these
studies may be one of the reasons for the different results. We
also found that PPS was reduced in AD and FTD, compared to
controls. PPS was easier to be calculated, compared to microstate
which requires clustering. It showed the same change tendency
with mean occurrence, indicating a good simple marker for EEG
slowing and microstate dynamics loss.

In addition, microstate variables changes were different in
EOAD and FTD. We found increased durations of class B
in EOAD and class A in FTD. Microstate C occurrence was
decreased in both dementia groups, and microstate A and B
occurrences were reduced only in the EOAD group. EOAD had
more microstate classes changes, compared to FTD.

Microstate B was significantly different in EOAD for
topography and duration and correlated with CSF Aβ42 and ADL
score, with a high Spearman’s rank coefficient. These class B
alterations were not presented in FTD. Previous studies revealed
that microstate B was associated with the bilateral occipital
cortex (Britz et al., 2010). AD patients have more atrophy in the
occipital gyrus and precuneus than FTD patients (Zhang et al.,
2011), which may partially explain the difference of microstate B
alteration between EOAD and FTD. For microstate A change in
FTD, class A was associated with superior and middle temporal
lobes (Britz et al., 2010), consistent with the frontotemporal
pathologic abnormalities in FTD. These results indicated that
microstate may be helpful to differentiate EOAD and FTD.

Cerebrospinal fluid biomarkers were related to microstate in
both dementia groups. The Aβ42 level was related to microstate
B coverage negatively in EOAD and to microstate D occurrence
positively in FTD, with high Spearman’s rank coefficient.
Smailovic et al. (2019) reported microstate B coverage negatively
associated with the Aβ42 level in patients with AD (mean age 68
y), but with low Spearman’s rank coefficient. The associations
with Aβ42 level were also observed in other classes (Smailovic
et al., 2019). The current study demonstrated a stronger
correlation between microstate and CSF biomarkers in patients
with EOAD. CSF Aβ42 and tau have high diagnostic accuracy.
The correlation between biomarkers and EEG microstate and
visual scores indicated that EEG could be a potential diagnostic
method for early-onset dementia. Since EEG is a non-invasive
and convenient examination, the diagnostic value of microstate
for early-onset dementia is worthy of further work.

For EOAD and LOAD group comparisons, earlier studies
reported that visual EEG abnormalities were more severe in
EOAD (Schreiter-Gasser et al., 1993; de Waal et al., 2011).
Since visual EEG results showed no difference between the
two AD groups, the microstate differences between EOAD and
LOAD indicate that loss of microstate dynamics may be more
sensitive than visual EEG slowing. EOAD also showed more
microstate changes than LOAD. Moreover, microstate analyses
showed that no significant differences in microstate duration
and occurrence were observed between LOAD and age-matched
controls, which may due to the small sample size. A lager sample
study is required.

The spectral analysis demonstrated that FTD and EOAD had
lower rPSD in alpha and beta bands, and higher rPSD in delta
bands, indicating that the general EEG was slowing. It further
suggests that loss of microstate dynamics may be attributed to
EEG slowing. A diffuse slowing with reduction of power in faster
rhythm and increased power in slow rhythm has been observed
in AD (Bennys et al., 2001; Malek et al., 2017) and FTD (Lindau
et al., 2003). Additionally, the power in the delta band was
increased in AD compared to FTD (Lindau et al., 2003; Caso
et al., 2012), which was consistent with findings in the current
study. We found delta band rPSD in EOAD was higher than
rPSD in FTD all over the head, indicating a more diffuse slowing
in EOAD than FTD.

LIMITATIONS

The present study has some limitations. First, the sample size of
EOAD and FTD patients with CSF biomarker results was small.
Therefore, the correlation analysis results with low Spearman’s
rank coefficient and significance level were not strong enough.
A larger sample will draw more convincing conclusions. Second,
the sample size of LOAD was small, and patients with late-onset
FTD (>65 y) were lacked. In addition, part of patients with
dementia were taking AChEIs which may influence EEG data
(Babiloni et al., 2013). There was no difference in the number
of patients taking AChEIs between FTD and EOAD. However,
group comparisons between dementia and control groups may
be influenced by the use of AChEIs. Further work, like better
statistical analysis, or the set of prospective studies, may help to
solve the effect.

CONCLUSION

The current study demonstrated that EOAD and FTD both had
EEG slowing and loss of microstate dynamics, compared to
controls. Moreover, EOAD and FTD had different microstate
class changes, with no differences in visual EEG results. Similar
results were also observed in-group comparisons between EOAD
and LOAD. It indicated that microstate is more sensitive than
visual EEG and may be useful for differentiation between EOAD
and FTD. Correlations with clinical severity and CSF biomarkers
were observed in EOAD and FTD, suggesting that microstate
could be a potential marker for dementia diagnosis and clinical
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severity evaluations. However, microstate analyses can produce
numerous variables. Some variables, like topography, had poor
consistency, while some variables, like durations, which were
not specific to one class, showed similar characteristics in recent
studies. Age and clustering methods may be the reasons, but more
work is required to identify which EEG variables are useful for
disease diagnosis and evaluations.
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The blood–brain barrier (BBB) plays a vital role in maintaining the specialized

microenvironment of the neural tissue. It separates the peripheral circulatory system

from the brain parenchyma while facilitating communication. Alterations in the distinct

physiological properties of the BBB lead to BBB breakdown associatedwith normal aging

and various neurodegenerative diseases. In this review, we first briefly discuss the aging

process, then review the phenotypes and mechanisms of BBB breakdown associated

with normal aging that further cause neurodegeneration and cognitive impairments.

We also summarize dementia such as Alzheimer’s disease (AD) and vascular dementia

(VaD) and subsequently discuss the phenotypes and mechanisms of BBB disruption

in dementia correlated with cognition decline. Overlaps between AD and VaD are also

discussed. Techniques that could identify biomarkers associated with BBB breakdown

are briefly summarized. Finally, we concluded that BBB breakdown could be used as an

emerging biomarker to assist to diagnose cognitive impairment associated with normal

aging and dementia.

Keywords: blood-brain barrier, biomarkers, cognitive impairment, aging, dementia

INTRODUCTION

The central nervous system (CNS) comprises the brain and spinal cord that control all the essential
functions of the body. The distinctive physiological and anatomical structure of the brain and
spinal cord makes the CNS a largely immune-privileged organ (Engelhardt and Coisne, 2011;
Ransohoff and Engelhardt, 2012). Blood vessels are essential to transport oxygen and nutrients,
remove CO2 and other waste products, and, thus, maintain homeostasis in the body. Blood vessels
that vascularize the CNS acquire specific anatomical and functional characteristics that collectively
form the blood–brain barrier (BBB) (Obermeier et al., 2013; Zhao et al., 2015).

At the cellular level, the BBB is developed by continuous non-fenestrated endothelial cells (ECs)
encompassed by pericytes, smoothmuscle cells, astrocytes, microglia, oligodendroglia, and neurons
that are altogether called the neurovascular unit (NVU) (Zlokovic, 2011; Blanchette and Daneman,
2015; Chow and Gu, 2015). At the molecular level, the BBB ECs are compacted by claudins,
occludins, and ZO-1 [tight junction (TJ) proteins] and junction adhesionmolecules (JAM) proteins
to restrict the paracellular and transcellular diffusion of molecules in the CNS. In addition, the BBB
ECs mediate influx transporters to select metabolite uptake from the blood and efflux transporters
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to remove toxins and waste products from the brain into
the blood. In BBB ECs, leukocyte adhesion molecules (LAMs)
express very low to suppress immune surveillance in the brain
(Quaegebeur et al., 2011; Engelhardt and Ransohoff, 2012; Chow
and Gu, 2015; Xiao et al., 2020). Thus, the BBB confines the
access of neurotoxic compounds, blood cells, and pathogens to
the brain (Winkler et al., 2011). In addition, the BBB sustains the
homeostasis of the brain through tight regulation of the transport
of molecules between the brain parenchyma and peripheral
circulation (Abbott, 2013). Figure 1A shows the normal BBB.

Hence, the BBB is a fundamental and crucial element
of normal and healthy brain function. Any impairment
in the cellular or molecular components causes BBB
breakdown that results in BBB dysfunction. Aging is one
of several factors involved in the breaking of the BBB
and was first observed in aged patients reported in the
1970s (Tibbling et al., 1977). In dysfunctional BBBs, the
possibility of permeability increases; thus, toxic and blood-borne
inflammatory substances that infiltrate the brain could change
the biochemical microenvironment of the neurons, thus leading
to neurodegenerative diseases and dementia (Abbott et al., 2010;
Zeevi et al., 2010; Zlokovic, 2011; Rosenberg, 2014; Sweeney et al.,
2018b). It has been reported that BBB disruption in aged people
is strongly related to Alzheimer’s disease (AD) and cognitive
impairment (Farrall and Wardlaw, 2009; Van De Haar et al.,
2016; Skillbäck et al., 2017; Zenaro et al., 2017; Sweeney et al.,
2018b; Nation et al., 2019). Figure 1B shows the impaired BBB.

In this review, we first briefly discuss the aging process,
and then review the phenotypes and mechanisms of BBB
breakdown associated with normal aging that further cause
neurodegeneration and cognitive impairments. We also
summarize dementia such as AD and vascular dementia (VaD);
then, we discuss the phenotypes and mechanisms of BBB
disruption in dementia correlated with cognition decline.
Subsequently, we also discuss the overlap between AD and
VaD. Furthermore, we mention biomarkers associated with BBB
breakdown during aging and dementia; additionally, we also
briefly discuss various techniques to identify BBB biomarkers.
Finally, we conclude that BBB breakdown could be used as a
novel biomarker to diagnose cognitive impairment associated
with normal aging and dementia.

BBB BREAKDOWN IN NORMAL AGING

The universal process in an organism leads to the cumulation
of biological variations responsible for progressively diminishing
bodily functions over time, which is known as aging (Kritsilis
et al., 2018). Because of the advancement in medicine and
the living standard of humans, life expectancy has doubled
worldwide (Aw et al., 2007). Aged people are estimated to make
up approximately 20% of the world population in the next
50 years (Ellison et al., 2015). In terms of the brain and the
BBB, normal aging can be defined as a retrogression in the
activities of the body with no cognitive ailment and dementia.
Although ailments do not occur in this case, the frequency of
age-related diseases increases with the aging process. Alzheimer’s,

cardiovascular, Parkinson’s disease, stroke, and various other
neurological diseases commonly occur in aged people (Erdo
et al., 2017). A recent study demonstrated that BBB breakdown
could be considered a biomarker for the normal aging process
(Verheggen et al., 2020). Furthermore, BBB breakdown also
impairs the influx of nutrients (glucose) and oxygen and
efflux of waste products, which may cause hypoxia-associated
inflammation (Elahy et al., 2015; Raja et al., 2018). Subsequently,
age-related BBB pathology makes the brain more susceptible to
neuronal impairment and even causes neurodegeneration (Levit
et al., 2020; Banks et al., 2021). It has been reported that aged
people with prior cognitive impairment were more vulnerable
to BBB disruption than people with no cognitive dysfunction
of the same age; hence, BBB disruption can be considered an
early biomarker related to declines in human cognition (Nation
et al., 2019). All these studies show that the way alterations in
BBB components progress with time might be an interesting
research topic to explore in association with the normal
aging brain.

Phenotypes of BBB Breakdown in Normal
Aging
During aging, various changes occur in the structure and
function of brain vasculature. In the aged brain, the BBB
becomes broken; hence, the permeability of the BBB
elevates (Villeda et al., 2011; Hyman et al., 2012) and
declines in the cerebral blood flow (CBF) occur (Tarumi
and Zhang, 2018). The potency of neovascularization
diminishes (Rivard et al., 2000; Gao et al., 2009) and the
density of capillary of brain vasculature reduces with age
(Reeson et al., 2018). It has been observed that, during
aging, BBB breakdown is the first incident that starts in
the hippocampus, which may lead to declines in cognition
(Montagne et al., 2015). In normal aging, the main changes
that are strongly correlated to BBB breakdown are presented in
Table 1.

It has been reported that, in aging, the brain endothelium
becomes progressively dysfunctional, which is correlated with
aberrant changes in the BBB (Cai W. et al., 2017; Edwards et al.,
2019). The extracellular matrix (ECM) of the basal membrane
or basal lamina covers the brain endothelium and is considered
uniform and thin. In normal aging, the thickness of the ECM
increases with the increase in collagen IV and argin but decreases
in laminin concentrations (Candiello et al., 2010). Although
the ECM has a role in maintaining BBB integrity by inducing
TJ (occludin) protein expression, changes in the ECM cause
BBB disruption, and thus result in increased BBB permeability
(Hawkins and Davis, 2005; Candiello et al., 2010; Sanchez-
Covarrubias et al., 2014).

In the CNS BBB, ECs associated with pericytes, astrocytes,
neurons, and glial cells that develop and maintain their specific
phenotype led to BBB integrity (Erickson and Banks, 2018).
However, with aging, this association caused BBB breakdown.
During aging, physiological ultrastructure changes have been
reported in pericytes, such as an increase in mitochondria size
(Hicks et al., 1983), vesicular and lipofuscin-like inclusions
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FIGURE 1 | Schematic diagram shows the normal/young blood–brain barrier (BBB) and dysfunctional/aged BBB. (A) Shows BBB in a young or normal state with

tight and adherens junctions, a low rate of transcytosis, no diffusion of toxins, the presence of influx (Glut-1) and efflux (P-gp) transporters, and a low expression of

leukocytes adhesion molecules (LAMs). The basal lamina is thin and surrounded by pericytes, astrocyte endfeet, and microglia. (B) Shows BBB in an aged or disease

state with a high rate of transcytosis and diffusion of toxins, repression in influx and efflux transporters, upregulated expression of LAMs, and increased density of the

extracellular matrix (ECM). Pericytes, astrocytes, and microglia are not associated with the basal lamina.

(Rascher and Wolburg, 2002), and foamy transformations
(Sturrock, 1980). In addition, the protrusions on the basal
lamina or the ECM membrane of the microvessels have been
observed to result in the degeneration of pericytes (Ueno et al.,
1998). A loss of pericytes has also been reported in aging
mice, rats, and the human brain (Stewart et al., 1987; De Jong
et al., 1990; Bell et al., 2010; Duncombe et al., 2017; Goodall
et al., 2018) but some studies observed that the number of
pericytes increases in aged rat brains (Heinsen and Heinsen,
1983; Peinado et al., 1998). However, no change was observed
in the number of pericytes in aged monkey brains (Peters et al.,
1991).

Platelet-derived growth factor receptor beta (PDGFRβ)
maintains the phenotype of pericytes in the brains of aged
mice with PDGFRβ+/−, which shows that the loss of pericytes
leads to BBB breakdown and increased BBB permeability (Bell
et al., 2010). It has been reported, in the aged human brain, the
level of soluble PDGFRβ in cerebrospinal fluid (CSF) increases,
showing damage to the pericyte associated with BBB disruption
(Montagne et al., 2015; Sagare et al., 2015; Nation et al., 2019).
In addition, it has been reported that, in APOE4 carriers, the
elevated PDGFRβ in the CSF may be used as a biomarker of
cognitive impairment (Montagne et al., 2020).

The endfeet of astrocytes that ensheath the pericytes have
a contribution to BBB development and maintenance. With

the age, vascular coverage and aquaporin-4 (AQP4) expression
of astrocyte endfeet are reduced whereas glial fibrillary acidic
protein (GFAP) expression and endfeet sizes are increased
(Middeldorp and Hol, 2011; Duncombe et al., 2017; Goodall
et al., 2018), leading to increase in reactive astrogliosis.

Microglia are distributed ubiquitously in the CNS and
activated during aging and pathology (Kettenmann et al., 2011;
Kofler and Wiley, 2011; Harry, 2013; Sanchez-Covarrubias
et al., 2014). Microglia have a ramified structure in the
resting state, but when activated, this structure changes into an
amoeboidmorphology during aging or a pathophysiological state
(Kettenmann et al., 2011). During aging or stress, the activated
microglia produce tumor necrosis factor-α (TNF-α), proteases,
nitric oxide (NO), and peroxide (Ronaldson and Davis, 2012),
which are associated with an alteration in the TJ protein. This
alteration induces BBB leakage (Huber et al., 2006), which, in
turn, leads to cell injury and neurodegeneration (Ronaldson and
Davis, 2012).

Studies have shown that neurons directly connect with brain
ECs and astrocytes (Ben-Menachem et al., 1982; Cohen et al.,
1996, 1997; Tong and Hamel, 1999; Vaucher et al., 2000; Sanchez-
Covarrubias et al., 2014). Impairment in this association results in
BBB breakdown and leads to an increase in BBB permeability to
albumin (Berezowski et al., 2004). Figure 1 shows the difference
between young or normal BBB and aged or dysfunctional BBB.
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TABLE 1 | Changes associated with blood–brain barrier (BBB) breakdown in normal aging, Alzheimer’s disease (AD), and vascular dementia (VaD).

BBB

elements

Characteristics Aging References AD References VaD References

ECs • Endothelium degeneration,

Mitochondrial content

decrease, pinocytotic vesicle

increase

• Microvessel density decrease

Yes (Bell and Zlokovic, 2009;

Grinberg and Thal, 2010;

Richardson et al., 2012; Rouhl

et al., 2012; Sagare et al.,

2012)

Yes (Salmina et al., 2010;

Villar-Vesga et al., 2020;

Chacón-Quintero et al.,

2021; González-Molina

et al., 2021)

Yes (Wardlaw et al., 2003;

Zhang et al., 2014; Rajani

et al., 2018; Wang et al.,

2018; Tayler et al., 2021;

Zhu et al., 2021)

Extracellular

components

• Increase (accumulation) Yes (Brown and Thore, 2011) Yes (Zlokovic, 2011; Hawkes

et al., 2013; Morris et al.,

2014; Howe et al., 2020)

Yes (Ueno et al., 2002;

Rosenberg, 2017)

Basal

lamina

• Thickness increase Yes (Grinberg and Thal, 2010;

Richardson et al., 2012; Rouhl

et al., 2012)

Yes (Zlokovic, 2011; Morris

et al., 2014)

Yes (Ueno et al., 2002;

Iadecola, 2013;

Rosenberg, 2017)

Pericytes • Pericytes number decrease

• PDGFRβ in CSF increase

Yes (Bell et al., 2010; Montagne

et al., 2015; Sagare et al.,

2015; Duncombe et al., 2017;

Erdo et al., 2017; Goodall

et al., 2018; Nation et al.,

2019)

Yes (Sengillo et al., 2013;

Halliday et al., 2016;

Montagne et al., 2018;

Miners et al., 2019;

Uemura et al., 2020)

Yes (Iadecola, 2013;

Montagne et al., 2018;

Yang et al., 2018; Uemura

et al., 2020)

Astrocytes • Vascular coverage reduction

• GFAP upregulation

• AQP4 downregulation

Yes (Middeldorp and Hol, 2011;

Duncombe et al., 2017;

Goodall et al., 2018; Heithoff

et al., 2021)

Yes (Abbott et al., 2006; Yang

Y. et al., 2011; Kimbrough

et al., 2015; Ahmad et al.,

2019)

Yes (Wardlaw et al., 2003;

Iadecola, 2013; Saggu

et al., 2016; Price et al.,

2018; Wang et al., 2018;

Tayler et al., 2021)

Microglia • Release of neurotoxins

• Changes to

amoeboid morphology

Yes (Kettenmann et al., 2011;

Ronaldson and Davis, 2012)

Yes (Zotova et al., 2011;

Hansen et al., 2018;

Ahmad et al., 2019;

Hemonnot et al., 2019;

Leng and Edison, 2020)

Yes (Wu et al., 2016; Wang

et al., 2018; Tayler et al.,

2021)

Neurons • Synaptic plasticity

diminishment

• Impaired long-term

potentiation

• Dysfunctional neurogenesis

• Elevation in apoptosis

• Neurodegeneration

Yes (Buschini et al., 2011; Blau

et al., 2012; Cerbai et al.,

2012; Lucke-Wold et al.,

2014)

Yes (Crews and Masliah,

2010; Arendt et al., 2015;

Vasic et al., 2019; Bartels

et al., 2020)

Yes (Saggu et al., 2016;

Montagne et al., 2018;

Wang et al., 2018; Tayler

et al., 2021; Zhu et al.,

2021)

Tight

junctions

Proteins

• CLDN5, OCLN, ZO-1

expression decreases and

BBB integrity reduction, BBB

permeability increase

Yes (Bake et al., 2009; Wang

et al., 2011; Lassman et al.,

2012; Elahy et al., 2015)

Yes (Biron et al., 2011; Cuevas

et al., 2019; Yamazaki

et al., 2019)

Yes (Wang et al., 2018; Yang

et al., 2018)

Transporter

dysfunctions

• Influx transporter: Glut1

expression decrease, glucose

uptake reduction

• Efflux Transporter: LRP-1

(human) and P-gp expression

decrease (mouse)

Yes (van Assema et al., 2012;

Ding et al., 2013; Jiang et al.,

2013; Chiu et al., 2015;

Ramanathan et al., 2015;

Hoffman et al., 2017;

Patching, 2017; Sweeney

et al., 2019a)

Yes (Owen et al., 2010; Jaeger

et al., 2011; Ding et al.,

2013; Chiu et al., 2015;

Ramanathan et al., 2015;

Winkler et al., 2015;

Halliday et al., 2016;

Patching, 2017; Yu et al.,

2020; Kyrtata et al., 2021)

Yes (Hase et al., 2019)

Circulating

factors

• ASM (acid sphingomyelinase),

sphingomyelin

phosphodiesterase 1

(Smpd1) upregulation

Yes (Park et al., 2018; Wangb

et al., 2019)

* *

Other

factors

• SIRT1 expression decrease Yes (Chang and Guarente, 2014;

Imai and Guarente, 2014;

Stamatovic et al., 2019)

* *

“*” shows no obvious research studies are found related to AD and VaD.

Mechanisms of BBB Breakdown During
Normal Aging
During aging, various mechanisms cause BBB breakdown and
increase BBB permeability. For example, in aging, oxidative stress

induces ECs to produce TNF-α that cause the degradation of

the basement membrane, and TJs (Occludin, Zonula occludins-

1), which, in turn, results in BBB disruption and an increase

in BBB permeability (Donato et al., 2007; Bake et al., 2009; Lee
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et al., 2012; Elahy et al., 2015; Cai W. et al., 2017). In addition,
the activity of caspase 3/7 in the aged brain increases, which
causes the suppression of cell viability and the upregulation
of apoptosis in pericytes (Schultz et al., 2018), resulting in
the reduction of the number of pericytes in the BBB (Bell
et al., 2010). The senile pericytes produce NO and react with
O2, causing increased oxidative stress and compromised BBB
integrity (Hughes et al., 2006; Sweeney et al., 2016; Cai W. et al.,
2017). Similarly, in aging, oxidative stress enhances astrocytes
to upregulate the expression of cytokines and chemokines,
such as matrix metalloproteinase 3 (MMP3) and p16INK4A
[senescence-associated secretory phenotype (SASP)], that induce
BBB disruption, neuroinflammation, and cognitive impairments
(Simpson et al., 2010; Salminen et al., 2011; Cai Z. et al., 2017;
Bussian et al., 2018). In aging, oxidative stress also activates
the microglia to release cytokines, chemokines IL-6, IL1ß,
and TNF-α, which results in the elevation of reactive oxygen
and nitrogen species; this ultimately causes the breakdown of
the BBB (Gredilla et al., 2010; Choi et al., 2014; Fivenson
et al., 2017). With age, oxidative stress causes the production
of reactive oxygen species (ROS) to elevate in the CNS, but
the capability of neurons to clear ROS decreases, resulting
in neurodegeneration (Nicholls and Budd, 2000; Mattson and
Magnus, 2006). Furthermore, with age, calcium dysregulation
in neurons occurs, which represses calcium-binding proteins
correlated with the elevation of ROS. This results in BBB
degradation and neuronal loss (He et al., 1997) as shown
(Figure 2).

Once the BBB integrity becomes compromised, blood-
derived proteins such as fibrinogen and plasminogen cross
the BBB, and the pro-inflammatory fibrin aggregates in
the brain (Cortes-Canteli et al., 2015). A study using a
mouse model showed that accumulated fibrin bind with
CD11b/CD18 and activate microglia, which then triggers
a decline in cognition (Merlini et al., 2019). Accumulated
fibrin in brain also induce increased ROS level and activates
nicotinamide adenine dinucleotide phosphate (NADPH
oxidase), which upregulates pro-inflammatory gene expression
and causes damage to neuronal axons (Ryu et al., 2018;
Merlini et al., 2019). In addition, fibrinogen phosphorylates
Smad 1/5/8 represses oligodendrocyte progenitor cells
(OPCs) (Ryu et al., 2015). Furthermore, the complex of
Aβ-fibrinogen activates microglia via CD11b/CD18, which
inhibits the breakdown of fibrinogen and promotes neuronal
degeneration (Cortes-Canteli et al., 2010; Zhao et al., 2017) as
shown (Figure 3A).

The tissue-type plasminogen activator (tPA) binds and
activates low-density lipoprotein receptor-related protein-1
(LRP-1) on ECs. In run, these ECs produce pro-MMPs (MMP-
2, MMP-3, and MMP-9) (Wang et al., 2003; Cheng et al., 2006;
Suzuki et al., 2009). Subsequently, tPA converts the surface-
bound inactive plasminogen (Plg) into active plasmin (Plm)
(Doeuvre et al., 2010; Yepes et al., 2021). Plasmin, in turn,
activates the MMPs, leading to the degradation of TJs and basal
lamina (Mazzieri et al., 1997; Ramos-DeSimone et al., 1999;
Monea et al., 2002; Rosenberg and Yang, 2007; Yang Y. et al.,
2011). Furthermore, tPA also binds with LRP-1 on astrocytes,

which induces plasmin-mediated activation of Rho kinases and
retracts the endfeet of the astrocytes from the blood vessel
wall, thus resulting in BBB dysfunction (Niego et al., 2012).
In addition, a study suggested that plasminogen might regulate
brain inflammation during AD (Baker et al., 2018) as shown
(Figure 3B).

Human brain ECs continuously produce complement
regulatory proteins and components (Wu et al., 2016), which are
elevated by CNS injury or infiltration into the brain when the
BBB is dysfunctional. However, at a young age or in a normal
state, complement proteins mostly do not cross the BBB (Hoarau
et al., 2011; Veerhuis et al., 2011). Once the complement proteins
cross the compromised BBB, they could alter the functions of the
microglia, oligodendrocytes, and neurons (Orsini et al., 2014).
Complement activation produces C3a and C5a that interact
with C3aR and C5aR1, respectively, which play a significant
role in the infiltration of inflammatory cells into the brain
and the induction of cytokine cascades (IL-1, TNF-α, IL-6,
IL-8, IL-17) subsequently leading to neurodegeneration (Jacob
and Alexander, 2014; Alexander, 2018). In AD, amyloid-beta
(Aβ) activates the complement signaling by binding to C1q.
Inhibition of the C5/C5aR1 pathway was also reported to be
a protective therapeutic target in AD (Fonseca et al., 2009) as
shown (Figure 3C).

BBB BREAKDOWN IN DEMENTIA
(INCLUDING AD AND VASCULAR
DEMENTIA)

Dementia is a group of conditions or disorders that affect the
functions of the brain. It is a progressive neurological disease
associated with impairments in cognition and deterioration
of the everyday life activities of an affected individual (Mills
et al., 2007; Kirshner, 2009). In dementia, BBB breakdown and
cerebral hypoperfusion cause brain damage and a decline in
cognition (Nation et al., 2019; Tayler et al., 2021). Dementia is
a considerable health complication affecting millions of people
worldwide. In developed countries, AD and VaD are two
significant types of dementia with a prevalence of about 4.4
and 1–2%, respectively (Ray et al., 2013), with AD being the
most common type of dementia in aged people (Ballaed et al.,
2011; Hyman et al., 2012). The World Alzheimer Report 2018
estimated that approximately 50 million people of the global
population suffer from dementia, which can increased to 82
million in 2030 and triple to 152 million by 2050 (Patterson,
2018). Alzheimer’s is considered to account for 60–70% of all
dementia cases worldwide (Leng and Edison, 2020). As the BBB
has vital contributions to maintaining the microenvironment
of the CNS, any impairment in the cellular or molecular
components of the BBB can cause various neurodegenerative
diseases, including AD (Zlokovic, 2005; Erickson and Banks,
2013; Zenaro et al., 2017). After AD, VaD is the second
most common type of dementia, accounting for 15% of all
dementia cases worldwide (O’Brien and Thomas, 2015). Vascular
dementia is a type of neurological disease with a defect in
cognition caused by impairment in the vascular system, such
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FIGURE 2 | Schematic diagram shows the mechanisms of blood–brain barrier (BBB) breakdown in normal aging. (1) Oxidative stress increases with age. (2) Oxidative

stress triggers endothelial cells ECs to release tumor necrosis factor-α (TNF-α) and consume more ATP. (3) Oxidative stress induces pericytes to release nitric oxides

that react with reactive oxygen to further upregulate the oxidative stress causing pericytes apoptosis associated with loss in BBB integrity. (4) During aging, oxidative

stress stimulates and activates astrocytes to release cytokines and chemokines that degrade the basement membrane and tight junction leading to BBB impairment.

(5) Oxidative stress also activates the microglia to secrete cytokines, chemokines, reactive oxygen, and nitrogen species, causing degradation in BBB integrity. (6)

Oxidative stress also induces neurons to release reactive oxygen species (ROS) and calcium ions accumulation that cause to degrade the neurovascular unit (NVU).

(7) Toxins freely diffuse to and from the brain, causing neurodegeneration and decline in cognition.

as a reduction in CBF (Sabayan et al., 2012). Various vascular
pathologies are associated with VaD, such as infarcts and
white matter (WM) alterations (O’Brien and Thomas, 2015). In
addition, brain hemorrhage, ischemia, and hypoxia may be the
causing factors of VaD (Kirshner, 2009; Grinberg and Heinsen,
2010).

BBB Breakdown in AD
Pathophysiology of AD

Aging is responsible for pathophysiological changes that
aggravate neurological diseases. It causes the thickening of the
wall of the blood vessel and increases blood vessel tortuosity,
which may lead to BBB disruption (Rosenberg, 2012). The
BBB breakdown in AD results in the accumulation of insoluble
extracellular plaques of β-amyloid (Aβ) along the walls of
blood vessels and causes inflammation in the NVU (Kinnecom
et al., 2007; Kang et al., 2017). In neuronal cytoplasms, the
accumulation of neurofibrillary tangles (NFT) of P-tau is also
associated with AD (Kang et al., 2017). It has been observed that,
in AD, the reduction of Aβ clearance is correlated with declines
in CBF and cognitive impairment (Sagare et al., 2012). These

pathological markers are associated with BBB impairment, which
causes microglial activation, neuroinflammation, degeneration
of neurons, and cognitive impairment (Bhaskar et al., 2010;
Iadecola, 2013). As pericytes have a crucial role in the
development and maintenance of BBB, their number and density
decreased in the cortex and hippocampus of AD patients
(Sengillo et al., 2013), subsequently leading to the upregulation
of the expression of Aβ and p-tau protein (Sagare et al.,
2013).

Vascular (stroke, hypertension, diabetes, etc.) and genetic
factors (APOE4) are two pathways that cause BBB impairment
and oligemia (reduced CBF) that result in dementia. In the
Aβ-independent pathway (blue), the BBB breakdown causes
a release of neurotoxins from one side and leads to CBF
reduction on another side. In the Aβ-dependent pathway (green),
the BBB breakdown impairs the clearance of Aβ and APP
(amyloid precursor protein), leading to the aggregation of Aβ

in the brain. The accumulated Aβ and vascular hypoperfusion
phosphorylate tau, leading to the formation of NFTs. In addition,
the deposited Aβ also cause inflammation in the brain. In
conclusion, both factors and pathways cause neurodegeneration
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FIGURE 3 | Diagram that shows fibrinogen, tissue-type plasminogen activator (tPA), plasmin, and complement proteins/cytokines/Aβ cross compromised the

blood–brain barrier (BBB), causing neuronal loss and decline in cognition. (A) (1) Fibrinogen activates the microglia via CD11b/CD18, which releases

inflammatory/toxic molecules causing neurodegeneration and cognitive impairment. (2) Fibrinogen induces reactive oxygen species (ROS), activates nicotinamide

adenine dinucleotide phosphate (NADPH oxidase), and upregulates proinflammatory genes causing axonal retraction and cognitive impairment. (3) Fibrinogen

phosphorylates SMAD 1/5/8 and represses oligodendrocyte progenitor cells (OPCs) leading to oligodendrocyte loss. (B) (1) tPA binds with low-density lipoprotein

receptor-related protein-1 (LRP-1) of endothelial cells (ECs), which secretes pro-matrix metalloproteinases (MMPs). tPA activates plasminogen into plasmin, which

further activates pro-MMPs that degrade tight junctions (TJs) and basal lamina. (2) tPA also binds with the LRP-1 of astrocytes, induces plasmin mediated activation of

Rho kinase, and results in astrocyte retraction leading to BBB impairment. (C) During aging and dementia such as Alzheimer’s disease (AD), complement proteins,

oxidative stress, and the aggregated amyloid-beta (Aβ) activate the astrocytes and microglia, leading to neuroinflammation. The C3aR and C5aR1 signalings on

activated microglia cause the release of cytokines [IL-1, IL-6, tumor necrosis factor-α (TNF-α), and toll-like receptor 4 (TLR-4)] and result in neurodegeneration. To

aggravate neuronal apoptosis, C5a as a neuronal-derived signal that interacts with C5aR1 on neurons in an autocrine way. Furthermore, C3a as an astrocytic-derived

signal binds to C3aR on neurons to exacerbate neuronal morphology. During neuroinflammation, microglia-derived C5b binds with the membrane attack complex

(MAC) that enhances neuronal loss.

leading to dementia (AD) (Iadecola and Davisson, 2008; Jack,
2010;Winkler et al., 2011; Sagare et al., 2013; Edwards et al., 2019)
as shown (Figure 4).

Phenotypes of BBB Breakdown in AD

In AD patients, the BBB is shown as leakages in brain vasculature,
the perivascular aggregation of fibrinogen, albumin, thrombin,
and immunoglobulin (IgG), the loss of TJs, and the degeneration
of ECs and pericytes (Nelson et al., 2016). Furthermore, identical
phenotypes were also observed in Apoe−/− mice due to BBB
impairment (Nishitsuji et al., 2011; Bell et al., 2012; Hammer
et al., 2014; Soto et al., 2015; Castillo-Gomez et al., 2016; Di
Cataldo et al., 2016), indicating that ApoE is vital for maintaining
BBB integrity.

As pericytes are crucial for maintaining the BBB, any
dysfunction in the signaling pathways of pericytes results in
the breakdown of BBB, which causes dementia and other
neurodegenerative diseases (Sagare et al., 2013; Nikolakopoulou
et al., 2019). Brain microvascular endothelial cells (BMEC)
secrete platelet-derived growth factor BB (PDGF-BB)
and activate PDGFRβ signaling, which is essential for the
proliferation, migration, and survival of pericytes (Stratman
et al., 2010). An impairment in PDGFRβ signaling leads to
pericyte degeneration (Stratman et al., 2010; Nation et al.,
2019). According to a previous study, PDGFRβ signaling was
decreased in adult Foxf2 deficient mice, thus resulting in high

BBB permeability (Reyahi et al., 2015). Impairment in the BBB
was also reported in Pdgfrβ+/− pericyte-deficient mice, which
subsequently caused neuronal degeneration (Bell et al., 2010). In
the AD murine model (APPsw/0), the deterioration of pericytes
results in the dysfunction of the BBB, leading to amyloid β

accumulation and tau protein (p-tau) phosphorylation (Sagare
et al., 2013). The breakdown of the BBB was also reported in AD
patients associated with the reduction in pericytes (Sengillo et al.,
2013). Studies also showed that the leakage of the BBB in AD
patients starts at the hippocampus, resulting in an increase of
soluble PDGFRβ (sPDGFRβ) in the CSF (Montagne et al., 2015;
Miners et al., 2019). Additionally, the level of sPDGFRβ in the
CSF can be used as a biomarker to predict dementia and other
neurodegenerative diseases such as AD (Nation et al., 2019).

Astrocytes are one of the main components of the NVU and
are essential for the integrity of the BBB. In an in vitro study,
it was observed that Sonic hedgehog (Shh) signaling released
from astrocytes plays a vital role in the maintenance of BBB
integrity by upregulation of CLDN5 and OCLN (Alvarez et al.,
2011; Wang et al., 2014). Recently, it was also reported that,
in the stroke mouse model, ischemia-induced astrogliosis led to
the downregulation of the expression of TJ protein claudin-5
and occludin (Matthes et al., 2021), suggesting that astrocytes
have a role in the regulation of TJ proteins. Another recent
study reported that, in the tamoxifen-induced astrocyte ablation
adult mouse model, the expression of TJ protein ZO-1 was
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FIGURE 4 | Schematic diagram shows two pathways that cause dementia [specifically Alzheimer’s disease (AD)]. Vascular factors (stroke, hypertension, diabetes,

etc.) and genetic factors (such as APOE4) cause defects in the vascular system leading to blood–brain barrier (BBB) impairment and oligemia (reduced cerebral blood

flow), which finally correlate with dementia and neuronal degeneration. In the amyloid-beta (Aβ)-independent pathway (blue), vascular and genetic factors cause BBB

breakdown and the secretion of neurotoxins from one side and oligemia from the other side. While in the Aβ-dependent pathway (green), the first BBB breakage

impairs Aβ clearance and the amyloid precursor protein (APP), resulting in the accumulation of Aβ in the brain. Vascular hypoperfusion and Aβ phosphorylate tau (p-tau)

that forms neurofibrillary tangles (NFTs). Finally, both pathways cause neurodegeneration/synaptic impairment/neuronal damage leading to dementia (specifically AD).

downregulated in vessel regions where astrocyte loss occurred,
which may show the role of astrocytes in maintaining the
integrity of the BBB in adult brains (Heithoff et al., 2021). A
conditional knockout mouse study also showed that the deletion
of laminins in astrocytes caused a decline in astrocytic AQP4
(Aquaporin4) expression, thus leading to a loss of TJ in ECs (Yao
et al., 2014). In the AD brain, various changes in the morphology
of astrocytes have been reported to cause BBB breakdown (Cai
Z. et al., 2017). The depolarization of astrocyte endfeet may
diminish the integrity of BBB, which was reported in the tg-
ArcSwe mouse model of AD(Yang J. et al., 2011). In AD models,
researchers also identified several changes in the morphology of
astrocytes endfeet near aggregated vascular Aβ (Kimbrough et al.,
2015).

A mouse study showed that microglia stimulate TJ protein
claudin-5 expression and maintain BBB integrity (Haruwaka
et al., 2019). However, the BBB integrity becomes compromised
with prolonged inflammation through the changing of the
morphology of microglia (Lassman et al., 2012; Haruwaka et al.,
2019). In the AD brain, due to the accumulation of Aβ, microglia

activate and secret inflammatory cytokines, such as interleukins
(IL-1 and IL-6) and tumor necrosis factor (TNF-α, and TNF-
β) (Zhou et al., 2012) that cause BBB impairment (Wang et al.,
2014). As a result, the trafficking of neutrophils through the BBB
becomes elevated due to BBB breakdown (Allen et al., 2012;
Wang et al., 2014; Zenaro et al., 2015). Furthermore, it has
been observed that, in the tamoxifen-induced astrocyte knockout
adult mouse model, the loss of astrocytes causes the activation of
microglia (Heithoff et al., 2021); in turn, the activated microglia
produce reactive oxygen and reactive nitrogen species (RNS),
leading to BBB dysfunction and neurodegeneration (Block, 2008;
Sumi et al., 2010).

In the physiological state, perivascular macrophages (PVMs)
have a significant role in the maintenance of TJs between ECs.
They also decrease vessel leakage, degrade pathogens, and limit
inflammation (Lapenna et al., 2018) while contributing to BBB
breakdown in the disease state (Boyle et al., 2018). These PVMs
are enriched with scavenger receptors, might be involved in the
clearance of toxin products from the brain parenchyma (Faraco
et al., 2017), and have a diverse role in disease states such
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FIGURE 5 | Schematic diagram shows the mechanisms of blood–brain barrier (BBB) breakdown in a normal brain and one with Alzheimer’s disease (AD). (A) Normal

brain (1) Astrocytes release ApoE2/3, (2) bind with the low-density lipoprotein receptor-related protein-1 (LRP-1) on pericytes and repress CypA-NFkB, which, in turn,

stops matrix metalloproteinase 9 (MMP9) secretion in pericytes; (3) hence, maintaining BM and BBB integrity, with (4) LRP-1 and P-gp on endothelial cells (ECs) also

helping in amyloid-beta (Aβ) clearance. (5) Receptor for advanced glycosylation end products (RAGE) expression is repressed to stop the transport of Aβ into the

brain. (B) AD brain (1) Astrocytes secret ApoE4, (2) weakly interact with LRP-1 on pericytes which activates the cyclophilin-A nuclear factor kβ matrix

metalloproteinase 9 (CypA-NFkB-MMP9 pathways), (3) and result in BM and tight junctions (TJs) degradation leading to BBB breakdown, (4) associated with

neurodegeneration and dementia. (5) ApoE4 also weakly interacts with LRP-1 on ECs that cannot significantly clear Aβ from the brain; hence, Aβ accumulates in the

brain, causing neuronal damage. (6) Also, RAGE expression is upregulated, which promotes the transport of Aβ from blood to brain. (7) Blood cells and neurotoxins

diffuse into the brain and cause neuronal loss and dementia.

as AD (Lapenna et al., 2018). Perivascular macrophages have
been shown to phagocytose and alleviate Aβ plaques, and the
PVM-deficient mouse model showed an increased aggregation of
Aβ42 and cerebral amyloid angiopathy (CAA) related with AD
(Yang et al., 2019). Another study showed that PVMs that are
deficient in CD36 and Nox2 abrogated the production of ROS
and Aβ cerebrovascular impairment compared with wild-type
mice (Park et al., 2017).

In addition, perivascular fibroblasts (FBs) express the ECM
genes col1a2 and col5a1 and are considered to mediate
blood vessel integrity. Zebrafish deficient with col5a1 showed
spontaneous hemorrhage in the presence of the additional
genetic ablation of the col1a2 gene, suggesting the role of
perivascular FBs in stabilizing vascular integrity (Rajan et al.,
2020). Perivascular FBs also express Lama2, Lamb1, and
Lamc1, which encode laminin 211 that interacts with astrocytic
dystrophin, resulting in the regulation of AQP4 in astrocytic
endfeet. This study suggests that any impairment in perivascular
FBs result in the dysregulation of AQP4, which may cause
Aβ aggregation and AD as reviewed by Lendahl et al. (2019).
Furthermore, it has been reported that alteration in the activity
of perivascular FBs also leads to other neurological disorders
(Månberg et al., 2021).

Mechanisms of BBB Breakdown in AD

Various pathological and aberrant events such as oxidative stress,
inflammation, and the ApoE4 genotype cause BBB breakdown
associated with AD. Research has shown that, in AD, the
activation of the inflammatory and oxidative stress signaling
pathways is the primary event that causes BBB disruption (Perry
et al., 2002; Candore et al., 2010; Eikelenboom et al., 2012).
Cytokines (Pan et al., 2011), Aβ (Gonzalez-Velasquez et al., 2008;
Deli et al., 2010; Carrano et al., 2011), LPS (Bannerman and
Goldblum, 1999; Verma et al., 2006), and p-tau proteins (Kovac
et al., 2009) are the stimulus of inflammation for the activation
of inflammatory pathways in BBB ECs. Hence, increases of
the pro-inflammatory mediators and ROS/RNS in BBB ECs,
astrocytes (Tada et al., 1994), and pericytes (Kovac et al., 2011;
Takata et al., 2011) ultimately cause BBB breakdown. Recently we
reviewed the role of peripheral inflammation in BBB breakdown
(Huang et al., 2021). Glucose transporter protein (GLUT1) is
repressed in the endothelium of AD, which causes a decline in
the glucose level of the CNS (Mooradian et al., 1997; Winkler
et al., 2015). In human AD, LRP1, which is a primary receptor
for the clearance of amyloid-β, is downregulated with an increase
in oxidative stress (Deane et al., 2004; Donahue et al., 2006;
Sagare et al., 2007; Miller et al., 2008; Owen et al., 2010;
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Halliday et al., 2016); as a result, the transport of Aβ from the
brain becomes reduced and leads to amyloid-β accumulation
in the brain (Deane et al., 2004, 2008; Storck et al., 2016). In
mice, systemic inflammation with LPS has been observed to
downregulate both LRP-1 and P-gp efflux transporters and block
the Aβ clearance from the brain (Jaeger et al., 2011; Erickson
et al., 2012). Furthermore, it has been reported that the expression
levels of the receptor for advanced glycosylation end products
(RAGE) in both mural cells and brain endothelium were elevated
(Deane et al., 2003; Donahue et al., 2006; Miller et al., 2008). The
function of the RAGE is to transfer Aβ from blood to the brain
(opposite to LRP1), which enhances neuronal inflammation. In
AD patients, the RAGE is observed as a significant therapeutic
target (Bell et al., 2012). A transgenic mouse with overexpressed
APP (amyloid precursor protein) has been reported to show
vascular impairment due to the elevation of Aβ40 (Niwa et al.,
2000).

Aquaporin-4 (AQP4) is the prime water channel expressed in
the CNS and is primarily expressed in astrocytes, thus playing a
vital role in normal brain homeostasis and various neurological
diseases (Lan et al., 2016b). Specifically, AQP4 facilitates the
clearance of Aβ, and alteration in AQP4 expression leads to the
accumulation of amyloid-β in the brain (Hoshi et al., 2012; Yang
et al., 2012). Furthermore astrocytic AQP4-deficient animals
cannot efficiently remove Aβ from the brain (Iliff et al., 2012).
A study showed that AQP4 is crucial to regulate fluid flow in the
brain interstitial required to maintain the microenvironment for
neurons to function properly. The perturbed AQP4 expression
has been observed to cause Aβ deposition and inflammation in
the human brain, which leads to AD (Rasmussen et al., 2018). In
AD patients and animal models, the expression and distribution
of AQP4 were altered, leading to amyloid-β accumulation, which
plays a vital role in the pathogenesis of AD as reviewed by
Yang et al. (2016). Furthermore, it has been observed that, in
AD patients, the localization of AQP4 in the perivascular space
was reduced and is associated with an increase in neurofibrillary
and amyloid-β pathology (Zeppenfeld et al., 2017). In addition,
AQP4 facilitates the transport of potassium and calcium ions,
which plays an essential role in the pathogenesis of AD as
reviewed by Lan et al. (2016a). In AD, the chronic activation
of microglia leads to the release of abundant pro-inflammatory
cytokines and abolishes phagocytosis, thus causing the deposition
of Aβ and neuroinflammation (Krabbe et al., 2013; Heneka
et al., 2015) and subsequently producing ROS that causes BBB
dysfunction and neurotoxicity (Block, 2008; Sumi et al., 2010).
The activated microglia also release IL-1β (a pro-inflammatory
cytokine) that amplify the BBB leakage and diminish the ability of
the astrocytes to maintain the BBB (Wang et al., 2014). Therefore,
AQP4 can be a fascinating therapeutic target for AD and other
CNS diseases.

Apolipoprotein E (ApoE) is a protein encoded by the APOE
gene, located on chromosome 9 and associated with lipid
transport. APOE consists of three alleles, namely, ε2, ε3, and ε4,
translated to ApoE2, ApoE3, and ApoE4 isoforms. The APOE
isoform distributed as APOE3 is the most abundant in humans
at approximately 77.9%, while APOE4 and APOE2 distributions
are 13.7 and 8.4%, respectively (Farrer et al., 1997). In the CNS,

astrocytes produce ApoE, whereas, in peripheral tissue, ApoE
production occurs in the liver (Liu et al., 2013).

Studies reported that ApoE plays an essential role in
maintaining BBB integrity (Nishitsuji et al., 2011). An in vivo
study showed that ApoE2/3 induces BBB integrity by interacting
with LRP-1 on pericytes to block the cyclophilin-A nuclear factor
kβ matrix metalloproteinase 9 (CypA-NF-kβ-MMP-9) pathway,
thus resulting in the inhibition of MMPs (Bell et al., 2012).
Researchers also observed that the APOE4 isoform is a major
risk factor for AD, and that the binding of Aβ with apoE4
shifts fast clearance of soluble Aβ40/42 from LRP1 to VLDLR;
hence, Aβ-apoE4 complexes at the BBB are cleared with a slower
rate than LRP1 (Deane et al., 2008; Tachibana et al., 2019).
The expression of APOE4 causes a reduction in BBB integrity
by promoting pericyte degeneration in AD (Bell et al., 2012),
which is correlated with high BBB permeability to IgG and
fibrin (Halliday et al., 2016). In a transgenic mouse study, the
mice that had Apoe replaced with human APOE (TR-APOE)
showed astrocytes that secreted ApoE4 blocks pericytic LRP-1,
resulting in the activation of the proinflammatory CypA-NF-kB
MMP9 pathway, BBB disruption, and brain hemorrhage through
the enzymatic breakdown of the TJ and basement membrane
(Nishitsuji et al., 2011; Bell et al., 2012). A study showed that an
LRP1 endothelial knockout caused the activation of the CypA–
MMP9 pathway in the endothelium, which led to damage to
TJs and BBB breakdown (Nikolakopoulou et al., 2021). In TR-
APOE4mice, the repression of Glut1 and upregulation of RAGE
expression were also observed compared with TR-APOE3 or TR-
APOE2 (Alata et al., 2015). It has been reported that humans
carrying APOE4 are more prone to breakdown in the BBB
and loss of pericytes than non-APOE4 carriers (Hultman et al.,
2013; Zonneveld et al., 2014; Halliday et al., 2016). Furthermore,
CypA and MMP-9 levels increase in APOE4 carriers, leading
to the elevation of IgG and fibrinogen leakages (Halliday et al.,
2016). Overall, these results suggest that ApoE2/3 represses
inflammation by interacting with pericyte LRP-1, subsequently
inducing BBB integrity. In contrast, the ApoE4 might have
BBB impairment properties or cause a higher risk of BBB
breakdown. The repression of ApoE4 or inhibition of the CypA–
MMP9 pathway in humans with AD might be an exciting topic
in the future for the reduction the neurodegenerative process
(Figure 5).

BBB Breakdown in VaD
Vascular dementia is a neurodegenerative disease caused by
reduced CBF to the brain resulting in cognitive dysfunction.
After AD, VaD is considered the secondmost common dementia,
accounting for ∼15–30% of all dementia (Sloane et al., 2002;
Abou-Saleh et al., 2011; Gorelick et al., 2011; Goodman et al.,
2017).

Pathophysiology of VaD

Chronic hypoperfusion and thrombosis are the main factors
in VaD that cause reduced CBF and promote oxidative
stress, hypoxia, and inflammatory molecule expression
(cytokines/chemokines). These chronic events cause damage
to the periventricular WM, basal ganglia, and hippocampus.
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Cerebrovascular pathology has a significant contribution to
the pathogenesis of VaD by damaging the brain. Vascular
impairments include large vessel atherosclerosis (AS), small
vessel AS, and CAA. These cerebrovascular pathologies cause
microinfarcts in gray matter, WM lesions, and microbleeds (Thal
et al., 2012). These vascular abnormalities can occur throughout
the brain, resulting in VaD (Grinberg and Heinsen, 2010).

Phenotypes of BBB Breakdown in VaD

Hypertension is one of the factors that cause BBB breakdown
in VaD with the accumulation of perivascular collagen in
the hippocampus and WM lesions (Verhaaren et al., 2013).
Toxic molecules or high blood pressure cause damage to the
BBB endothelium. Hypertension also causes a reduction in the
integrity of ECs and pericytes, astrocytes endfeet swelling, and
retraction from the vessel wall, which results in BBB breakdown
and subsequently leading to a reduction in CBF (Wardlaw
et al., 2003). Studies reported that acute ischemia induces BBB
permeability by the secretion of ROS (Abboud et al., 2007;
Simpkins et al., 2016). A study also showed that, during vascular
pathology, chronic hypoperfusion causes BBB disruption in WM
lesions (Tomimoto et al., 1996). Another study showed that
BBB disruption due to the degeneration of pericytes results in
the disruption of WM circulation, deposition of fibrinogen, and
reduction of CBF that further induces damage to the myelin,
axons, and oligodendrocytes (Montagne et al., 2018) (Figure 6).
Furthermore, animal experiments showed that chronic cerebral
hypoperfusion (CCH) increases BBB leakage to intravenously
injected horseradish peroxidase (HRP) in the corpus callosum. In
animals, perivascular collagenwas also accumulated in the corpus
callosum associated with WM lesion formation and elevated
BBB permeability (Ueno et al., 2002). In VaD, PVMs have been
reported to induce oxidative stress leading to hypertension (Yang
et al., 2019).

Mechanisms of BBB Breakdown in VaD

Hypoxia upregulates oxidative stress, which produces NO, ROS,
and free radicals (Li et al., 2013; Ma et al., 2013; Zhang
et al., 2014). In addition, oxidative stress disrupts the ratio
of antioxidants, NO, and ROS and causes damage to the
endothelial, glial, and neuronal cells, resulting in the impairment
of the NVU, BBB disruption, and mediation of a reduction
in CBF (Liu and Zhang, 2012). In particular, ROS can further
lead to mitochondrial dysfunction resulting in cerebral hypoxia
that induces oxidative stress (Zhang et al., 2014). Cerebral
vascular hypoxia produces inflammatory molecules that cause
apoptosis and impairments in the function of microvessels. The
cytokines/chemokines cause damage to the endothelium, glial,
and neurons cells and, hence, enhance BBB permeability (Gill
et al., 2010). The inflammatory molecules such as IL-1, IL-6,
MMPs (MMP-2, MMP-9), TNFα, and TLR4 (toll-like receptor 4)
infiltrate the brain (Li and Lai, 2007; Gill et al., 2010; Candelario-
Jalil et al., 2011; Reuter et al., 2015), cause demyelination, and
damage the axons and oligodendrocytes associated with the
hippocampus and WM lesions (Chen et al., 2011).

Damage to oligodendrocytes represses remyelination (Ihara
et al., 2010), and demyelination retains the transmission of

neural signals, thus resulting in cognitive impairment. Overall,
hypoxia, oxidative stress, and inflammation cause defects in
neurogenesis, impairment in the proliferation of neuronal
progenitor cell, synaptic plasticity, and reduced spine density
in the hippocampus, thus resulting in cognitive impairment
(Stranahan et al., 2008; Park et al., 2010) (Figure 6). Furthermore,
several studies reported that CCH causes AD and VaD (Du
et al., 2017). It has also been reported that intercellular adhesion
molecule 1 (ICAM-1) and vascular adhesionmolecule 1 (VCAM-
1) were significantly upregulated in the vascular ECs of the CCH
animal model associated with cognitive impairment (Won et al.,
2013; Khan et al., 2015).

Overlap Between Alzheimer’s and Vascular
Dementia
As discussed above and in other studies, significant clinical
heterogeneity has been shown between AD and VaD (Sachdev
et al., 2014; Chui and Ramirez-Gomez, 2015); however, recent
studies reported that these two diseases co-occur in what is
called mixed dementia (Emrani et al., 2020). In mixed dementia,
vascular pathology not only mediates AD progression, but
the pathology of AD also potentiates vascular impairments,
suggesting that pure AD or VaD rarely occur (Emrani et al.,
2020). In addition, another study reported that, in aged
individuals, there is genetic overlap between vascular dysfunction
and AD that is primarily associated with apolipoprotein E (Lin
et al., 2019).

Community and epidemiological studies reported the mixed
neuropathology that is quite common in both AD and
VaD (Schneider et al., 2009; Wharton et al., 2011). The
clinical study observed that only 9% of 1,000 patients with
cognitive impairments have pure AD pathology; however, AD
pathology is mainly associated with vascular dysfunction or other
neurodegenerative diseases (Boyle et al., 2018). Another clinical
study examined 63 patients with mild cognitive impairment
(MCI), in which only 28% were reported as pure AD and
approximately 24% were diagnosed with mixed dementia (AD
and VaD) (Silbert et al., 2012). Researchers observed that
frontal lobe lesions and vascular pathology, e.g., white matter
hyperintensities (WMH), are associated with neuropsychiatric
symptoms and are common in both AD and VaD (Anor
et al., 2017). Alzheimer’s disease and VaD share many
similar clinical pathologies that lead to cognitive impairment
and neuropsychiatric symptoms associated with behavioral
alterations (Kalaria, 2002) as shown in Table 2. Hence, these
studies suggest that there might be considerable overlaps between
AD and VaD, and comprehensive studies should be considered
to understand the pathophysiology of dementia instead of
segregating AD from VaD.

BIOMARKERS ASSOCIATED WITH BBB
BREAKDOWN

Various imaging techniques and other methods are currently
being used to identify biomarkers associated with BBB
breakdown in different neurological disorders, which are
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FIGURE 6 | Diagram that shows the molecular mechanism of blood–brain barrier (BBB) breakdown in vascular dementia. (1) Hypoperfusion and thrombosis cause

reduced cerebral blood flow (CBF), thus generating oxidative stress and hypoxia (2), which upregulate nitric oxide and reactive oxygen species (ROS) that stimulate

the endothelial (ICAM-1, VCAM-1 upregulated), glial, and neuronal cells to release inflammatory factors that cause neurovascular unit (NVU) impairment and reduce

CBF and BBB disruption. (3) ROS damage mitochondria of the BBB cells that will further upregulate oxidative stress, resulting in BBB impairments. (4) Cytokines,

chemokines, toxins, and other inflammatory molecules infiltrate the brain and cause damage to the hippocampus and white matter (5) associated with neuronal loss,

vascular dementia, and cognitive impairments.

TABLE 2 | Pathologies associated to both Alzheimer’s disease and vascular

dementia.

Clinical pathologies Alzheimer’s disease (%) Vascular dementia (%)

Cerebral amyloid angiopathy 98 30

Microvascular degeneration 100 30

Total infarctions 36 100

Micro-infarcts 31 65

Intracerebral hemorrhage 7 15

White matter lesions 35 70

Loss of cholinergic neurones 70 40

Cardiovascular disease 77 60

helpful in healthcare decisions. However, during the acute phase
of BBB disruption, some of the clinical care places may lack the
facilities to perform MRIs; hence, the detection of peripheral
blood biomarkers is the best approach to identifying the status
of BBB.

Studies showed that, while the blood/CSF albumin ratio can
be used as a biomarker to detect BBB permeability, it cannot
distinguish BBB and blood-CSF permeability nor locate leakage

as reviewed by Farrall and Wardlaw (2009). Hence, nowadays,
the dynamic contrast-enhanced MRI (DCE-MRI) technique is
used to directly identify and localize these elusive permeability
values (Raja et al., 2018). A study in healthy, aged individuals
using DCE-MRI with a gadolinium-based contrast agent injected
intravenously identified that BBB leakage was high and localized
in the brain regions most vulnerable to damage from aging
(Verheggen et al., 2020). It has been observed that, by using
DCE-MRI, the BBB permeability index Ktrans was increased in
the hippocampus and some of its sub-regions, CA1 and dentate
gyrus (DG), but not in CA3. This study showed that, in the
hippocampus, the BBB integrity was lost progressively with age.
Still, no significant BBB leakage was observed in the cortical and
sub-cortical regions (Montagne et al., 2015), suggesting that, in
terms of aging, the BBB breakdown starts in the hippocampus.
A study using CSF biomarkers and the DCE-MRI technique
reported that aged people with prior cognitive impairment had
higher BBB permeability than healthy individuals (Nation et al.,
2019). These studies suggest that it is possible to detect and
localize BBB leakage by using DCE-MRI.

It has been observed that, in epileptic patients, the levels of
serum Visinin-like protein 1 (sVILIP-1) and serum caveolin 1
(sCAV-1) are higher, which may be used as biomarkers for the
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diagnosis of BBB breakdown (Tan et al., 2020). Another protein
biomarker is s100β, which is produced by astrocyte endfeet; when
the BBB becomes compromised, s100β is immediately released
into the peripheral blood (Kadry et al., 2020). Furthermore,
a study identified that the expression levels of A-kinase
anchoring protein 7 (AKAP7) were high in the peripheral blood
(lymphocyte), and thus might be considered to identify BBB
breakdown during ischemic stroke or post-stroke (O’Connell
et al., 2017). Neuron-specific enolase (NSE) and GFAP are also
promising biomarkers that can be detected in the CSF to identify
BBB breakdown (Kadry et al., 2020). A study reported that the
elevated level of sPDGFRβ is associated with damage to the
pericytes and BBB disruption leading to a decline in cognition
(Sweeney et al., 2020). Soluble PDGFRβ as a biomarker was
also observed in VaD (Iadecola, 2017; Sweeney et al., 2019a)
and various other neurological diseases (Sweeney et al., 2018a,
2019b). Soluble cell adhesion molecules (CAMS), zonulin, and
soluble 4-1BBL (transmembrane protein receptor) have also been
identified to be associated with BBB damage. PECAM-1, P-
selectin, and E-selectin are soluble adhesion molecules reported
to be upregulated in individuals with compromised BBB and
can be used as biomarkers for BBB breakdown (D’Ambrosio
et al., 2015). Increased leakage of gadolinium (DCE-MRI;
Ktrans), microbleeds (T2∗-weighted and SWI-MRI), reduced
glucose transport (FDG-PET), diminished P-glycoprotein 1
function (verapamil-PET), and CNS leukocyte infiltration (MMP
inhibitor-PET) are some of the techniques that can be used to
identify biomarkers associated with BBB damages in various CNS
diseases (Sweeney et al., 2018b).

CONCLUSIONS AND FUTURE
DIRECTIONS

The BBB consists of a set of physiological properties that
tightly regulate the normal microenvironment essential for
proper neuronal activities. Any impairment in these properties
either at the cellular or molecular level causes BBB breakdown.
Aging is one of the factors that contribute to BBB disruption.
During aging, the various physiological properties of the BBB
are impaired, leading to BBB dysfunction. The neurotoxins
infiltrating the brain can also cause cognitive impairments
and neurodegeneration. Furthermore, BBB breakdown also
contributes to dementia that includes ADs and VaD. In AD
with disruption of BBB, Aβ and NFT of p-tau accumulate in
the blood vessel, causing further inflammation in the NVU that,
in turn, induces the release inflammatory factors to degenerate
neurons associated with a decline in cognition. Another factor
that degrades the integrity of BBB associated with AD is
APOE4. In dementia, VaD accounts for the most cases next to
AD caused by BBB breakdown. In VaD, the CBF is reduced
and inflammatory molecules infiltrate the brain due to BBB
impairment, subsequently causing neuronal loss and, thus,
cognitive impairment. Hence, BBB breakdown can be used as a
novel biomarker to study various neurological impairments such
as AD, VaD, and other associated declines in cognition.

Recently, RepSox was identified to inhibit TGF-B, VEGFA,
and inflammatory gene networks (Roudnicky et al., 2020).
Furthermore, RepSox significantly elevated BBB resistance,
induced TJs and transporters, reduced paracellular permeability
by activating Notch and Wnt pathways, and, thus, might be
used as an emerging BBB therapeutics to treat neurological
diseases such as AD (Roudnicky et al., 2020). In addition, secreted
protein acidic and rich in cysteine (SPARC) was identified to
decrease transendothelial electrical resistance (TEER) and TJ
proteins (ZO-1, OCLN) and increase paracellular permeability
by regulating the tyrosine kinase pathway (Alkabie et al., 2016).
Hence, the SPARC–collagen binding domainmight be a potential
therapeutic target to treat AD (Pilozzi et al., 2020). Furthermore,
SPARC/Hevin normalization may also be considered as a novel
therapeutic target for the modulation of AD progression (Strunz
et al., 2019).

Although researchers have reported the contributions of
BBB disruption to the pathogenesis of cognitive impairment
associated with normal aging and dementia, more research
is needed to elucidate the precisely causing factors and the
cellular and molecular mechanisms of BBB maintenance,
breakdown, and repair correlated with neurodegeneration
and cognition decline. In the future, how aging and dementia
affect BBB function in health and disease state, thus leading
to neurodegeneration and cognitive impairment, should be
explored in living organisms. Clinical research pertaining to
this will boost our knowledge and help us better understand
the association between BBB breakdown and cognitive decline.
Such studies pave the way for the use of the BBB as a novel
biomarker and therapeutic target to treat dementia and other
neurological diseases associated with cognitive impairment.
Furthermore, these studies suggest that amelioration in the
cerebrovascular pathways (particularly BBB breakdown)
can alleviate neurodegeneration in dementia (particularly
AD) associated with cognitive impairment. Hence, the
characterization of the cellular and molecular constituents of the
cerebrovascular systems that contribute to the pathophysiology
of dementia will provide a systematic methodology of dementia
diagnosis. More profound knowledge of the vascular system
will also help design emerging efficient strategies that can be
used for the therapeutic interventions of cognitive impairment
and dementia.

AUTHOR CONTRIBUTIONS

BH drafted the manuscript and made the figures and
table. CF and JC discussed and revised the manuscript.
All authors contributed to the article and approved the
final manuscript.

FUNDING

This study was supported by the National Natural Science
Foundation of China (81771293), the Science Technology
and Innovation Commission of Shenzhen Municipality
(ZDSYS20190902093409851 and SGLH20180625142404672),

Frontiers in Neuroscience | www.frontiersin.org 13 August 2021 | Volume 15 | Article 688090230

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hussain et al. BBB in Aging and Dementia

the international collaboration project of the Chinese Academy
of Sciences (172644KYSB20200045), the CAS-Croucher Funding
Scheme for Joint Laboratories, and the Guangdong Innovation

Platform of Translational Research for Cerebrovascular Diseases.
BH is supported by the Chinese Government Scholarship (CSC
No. 2018SLJ023241) for International Students.

REFERENCES

Abbott, N. J. (2013). Blood-brain barrier structure and function and the

challenges for CNS drug delivery. J. Inherit. Metab. Dis. 36, 437–449.

doi: 10.1007/s10545-013-9608-0

Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., and Begley, D. J.

(2010). Structure and function of the blood-brain barrier. Neurobiol. Dis. 37,

13–25. doi: 10.1016/j.nbd.2009.07.030

Abbott, N. J., Rönnbäck, L., and Hansson, E. (2006). Astrocyte-endothelial

interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53.

doi: 10.1038/nrn1824

Abboud, H., Labreuche, J., Meseguer, E., Lavallee, P. C., Simon, O., Olivot, J.-M.,

et al. (2007). Ischemia-modified albumin in acute stroke. Cerebrovasc. Dis. 23,

216–220. doi: 10.1159/000097644

Abou-Saleh, M. T., Katona, C. L., and Kumar, A. (2011). Principles and Practice of

Geriatric Psychiatry.Hoboken, NJ: Wiley–Blackwell.

Ahmad, M. H., Fatima, M., and Mondal, A. C. (2019). Influence of microglia

and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s

disease: rational insights for the therapeutic approaches. J. Clin. Neurosci. 59,

6–11. doi: 10.1016/j.jocn.2018.10.034

Alata, W., Ye, Y., St-Amour, I., Vandal, M., and Calon, F. (2015). Human

apolipoprotein e ε4 expression impairs cerebral vascularization and blood-

brain barrier function in mice. J. Cereb. Blood Flow Metab. 35, 86–94.

doi: 10.1038/jcbfm.2014.172

Alexander, J. J. (2018). Blood-brain barrier (BBB) and the complement landscape.

Mol. Immunol. 102, 26–31. doi: 10.1016/j.molimm.2018.06.267

Alkabie, S., Basivireddy, J., Zhou, L., Roskams, J., Rieckmann, P., and Quandt, J. A.

(2016). SPARC expression by cerebral microvascular endothelial cells in vitro

and its influence on blood-brain barrier properties. J. Neuroinflammation 13,

1–17. doi: 10.1186/s12974-016-0657-9

Allen, C., Thornton, P., Denes, A., McColl, B. W., Pierozynski, A., Monestier,

M., et al. (2012). Neutrophil cerebrovascular transmigration triggers rapid

neurotoxicity through release of proteases associated with decondensed DNA.

J. Immunol. 189, 381–392. doi: 10.4049/jimmunol.1200409

Alvarez, J. I., Dodelet-Devillers, A., Kebir, H., Ifergan, I., Fabre, P. J.,

Terouz, S., et al. (2011). The Hedgehog pathway promotes blood-brain

barrier integrity and CNS immune quiescence. Science 334, 1727–1731.

doi: 10.1126/science.1206936

Anor, C. J., O’Connor, S., Saund, A., Tang-Wai, D. F., Keren, R., and

Tartaglia, M. C. (2017). Neuropsychiatric symptoms in Alzheimer disease,

vascular dementia, and mixed dementia. Neurodegener. Dis. 17, 127–134.

doi: 10.1159/000455127

Arendt, T., Brückner, M. K., Morawski, M., Jäger, C., and Gertz, H.-J. (2015). Early

neurone loss in Alzheimer’s disease: cortical or subcortical? Acta Neuropathol.

Commun. 3, 1–11. doi: 10.1186/s40478-015-0187-1

Aw, D., Silva, A. B., and Palmer, D. B. (2007). Immunosenescence:

emerging challenges for an ageing population. Immunology 120, 435–446.

doi: 10.1111/j.1365-2567.2007.02555.x

Bake, S., Friedman, J. A., and Sohrabji, F. (2009). Reproductive age-related changes

in the blood brain barrier: expression of IgG and tight junction proteins.

Microvasc. Res. 78, 413–424. doi: 10.1016/j.mvr.2009.06.009

Baker, S. K., Chen, Z.-L., Norris, E. H., Revenko, A. S., MacLeod, A.

R., and Strickland, S. (2018). Blood-derived plasminogen drives brain

inflammation and plaque deposition in a mouse model of Alzheimer’s disease.

Proc. Natl. Acad. Sci. U.S.A. 115, E9687–E9696. doi: 10.1073/pnas.181117

2115

Ballaed, C., Gauthier, S., Corbett, A., Brayne, C., and Aarsland,

D. (2011). Jones e. Alzheimer’s disease. Lancet 377, 1019–1031.

doi: 10.1016/S0140-6736(10)61349-9

Banks, W. A., Reed, M. J., Logsdon, A. F., Rhea, E. M., and Erickson, M. A.

(2021). Healthy aging and the blood-brain barrier. Nature Aging 1, 243–254.

doi: 10.1038/s43587-021-00043-5

Bannerman, D. D., and Goldblum, S. E. (1999). Direct effects of endotoxin on the

endothelium: barrier function and injury. Lab. Invest. 79, 1181–1199.

Bartels, T., De Schepper, S., and Hong, S. (2020). Microglia modulate

neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science 370, 66–69.

doi: 10.1126/science.abb8587

Bell, R. D., Winkler, E. A., Sagare, A. P., Singh, I., LaRue, B., Deane, R.,

et al. (2010). Pericytes control key neurovascular functions and neuronal

phenotype in the adult brain and during brain aging. Neuron 68, 409–427.

doi: 10.1016/j.neuron.2010.09.043

Bell, R. D., Winkler, E. A., Singh, I., Sagare, A. P., Deane, R., Wu, Z., et al. (2012).

Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature

485, 512–516. doi: 10.1038/nature11087

Bell, R. D., and Zlokovic, B. V. (2009). Neurovascular mechanisms and blood-

brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 118, 103–113.

doi: 10.1007/s00401-009-0522-3

Ben-Menachem, E., Johansson, B. B., and Svensson, T. (1982). Increased

vulnerability of the blood-brain barrier to acute hypertension following

depletion of brain noradrenaline. J. Neural Transm. 53, 159–167.

doi: 10.1007/BF01243407

Berezowski, V., Landry, C., Dehouck, M.-P., Cecchelli, R., and Fenart, L. (2004).

Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein

and multidrug resistance-associated proteins in an in vitro model of the

blood-brain barrier. Brain Res. 1018, 1–9. doi: 10.1016/j.brainres.2004.05.092

Bhaskar, K., Konerth, M., Kokiko-Cochran, O. N., Cardona, A., Ransohoff, R.

M., and Lamb, B. T. (2010). Regulation of tau pathology by the microglial

fractalkine receptor. Neuron 68, 19–31. doi: 10.1016/j.neuron.2010.08.023

Biron, K. E., Dickstein, D. L., Gopaul, R., and Jefferies, W. A. (2011).

Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier

permeability and hypervascularity in Alzheimer’s disease. PLoS ONE 6:e23789.

doi: 10.1371/journal.pone.0023789

Blanchette, M., and Daneman, R. (2015). Formation and maintenance of the BBB.

Mech. Dev. 138, 8–16. doi: 10.1016/j.mod.2015.07.007

Blau, C. W., Cowley, T. R., O’Sullivan, J., Grehan, B., Browne, T. C., Kelly,

L., et al. (2012). The age-related deficit in LTP is associated with changes

in perfusion and blood-brain barrier permeability. Neurobiol. Aging 33,

1005.e1023–1005.e1035. doi: 10.1016/j.neurobiolaging.2011.09.035

Block, M. L. (2008). NADPH oxidase as a therapeutic target in Alzheimer’s disease.

BMC Neurosci. 9:S8. doi: 10.1186/1471-2202-9-S2-S8

Boyle, P. A., Yu, L., Wilson, R. S., Leurgans, S. E., Schneider, J. A., and Bennett, D.

A. (2018). Person-specific contribution of neuropathologies to cognitive loss in

old age. Ann. Neurol. 83, 74–83. doi: 10.1002/ana.25123

Brown, W. R., and Thore, C. R. (2011). Cerebral microvascular pathology

in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol. 37, 56–74.

doi: 10.1111/j.1365-2990.2010.01139.x

Buschini, E., Piras, A., Nuzzi, R., and Vercelli, A. (2011). Age related macular

degeneration and drusen: neuroinflammation in the retina. Prog. Neurobiol. 95,

14–25. doi: 10.1016/j.pneurobio.2011.05.011

Bussian, T. J., Aziz, A., Meyer, C. F., Swenson, B. L., van Deursen, J. M., and Baker,

D. J. (2018). Clearance of senescent glial cells prevents tau-dependent pathology

and cognitive decline. Nature 562, 578–582. doi: 10.1038/s41586-018-0543-y

Cai, W., Zhang, K., Li, P., Zhu, L., Xu, J., Yang, B., et al. (2017). Dysfunction

of the neurovascular unit in ischemic stroke and neurodegenerative

diseases: an aging effect. Ageing Res. Rev. 34, 77–87. doi: 10.1016/j.arr.2016.

09.006

Cai, Z., Wan, C.-Q., and Liu, Z. (2017). Astrocyte and Alzheimer’s disease. J.

Neurol. 264, 2068–2074. doi: 10.1007/s00415-017-8593-x

Frontiers in Neuroscience | www.frontiersin.org 14 August 2021 | Volume 15 | Article 688090231

https://doi.org/10.1007/s10545-013-9608-0
https://doi.org/10.1016/j.nbd.2009.07.030
https://doi.org/10.1038/nrn1824
https://doi.org/10.1159/000097644
https://doi.org/10.1016/j.jocn.2018.10.034
https://doi.org/10.1038/jcbfm.2014.172
https://doi.org/10.1016/j.molimm.2018.06.267
https://doi.org/10.1186/s12974-016-0657-9
https://doi.org/10.4049/jimmunol.1200409
https://doi.org/10.1126/science.1206936
https://doi.org/10.1159/000455127
https://doi.org/10.1186/s40478-015-0187-1
https://doi.org/10.1111/j.1365-2567.2007.02555.x
https://doi.org/10.1016/j.mvr.2009.06.009
https://doi.org/10.1073/pnas.1811172115
https://doi.org/10.1016/S0140-6736(10)61349-9
https://doi.org/10.1038/s43587-021-00043-5
https://doi.org/10.1126/science.abb8587
https://doi.org/10.1016/j.neuron.2010.09.043
https://doi.org/10.1038/nature11087
https://doi.org/10.1007/s00401-009-0522-3
https://doi.org/10.1007/BF01243407
https://doi.org/10.1016/j.brainres.2004.05.092
https://doi.org/10.1016/j.neuron.2010.08.023
https://doi.org/10.1371/journal.pone.0023789
https://doi.org/10.1016/j.mod.2015.07.007
https://doi.org/10.1016/j.neurobiolaging.2011.09.035
https://doi.org/10.1186/1471-2202-9-S2-S8
https://doi.org/10.1002/ana.25123
https://doi.org/10.1111/j.1365-2990.2010.01139.x
https://doi.org/10.1016/j.pneurobio.2011.05.011
https://doi.org/10.1038/s41586-018-0543-y
https://doi.org/10.1016/j.arr.2016.09.006
https://doi.org/10.1007/s00415-017-8593-x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hussain et al. BBB in Aging and Dementia

Candelario-Jalil, E., Thompson, J., Taheri, S., Grossetete, M., Adair, J. C., Edmonds,

E., et al. (2011). Matrix metalloproteinases are associated with increased blood-

brain barrier opening in vascular cognitive impairment. Stroke 42, 1345–1350.

doi: 10.1161/STROKEAHA.110.600825

Candiello, J., Cole, G. J., and Halfter, W. (2010). Age-dependent changes in

the structure, composition and biophysical properties of a human basement

membrane.Matrix Biol. 29, 402–410. doi: 10.1016/j.matbio.2010.03.004

Candore, G., Bulati, M., Caruso, C., Castiglia, L., Colonna-Romano, G., Di Bona,

D., et al. (2010). Inflammation, cytokines, immune response, apolipoprotein E,

cholesterol, and oxidative stress in Alzheimer disease: therapeutic implications.

Rejuvenation Res. 13, 301–313. doi: 10.1089/rej.2009.0993

Carrano, A., Hoozemans, J. J., van der Vies, S. M., Rozemuller, A. J., van Horssen,

J., and de Vries, H. E. (2011). Amyloid beta induces oxidative stress-mediated

blood-brain barrier changes in capillary amyloid angiopathy. Antioxid. Redox

Signal. 15, 1167–1178. doi: 10.1089/ars.2011.3895

Castillo-Gomez, E., Kästner, A., Steiner, J., Schneider, A., Hettling, B., Poggi,

G., et al. (2016). The brain as immunoprecipitator of serum autoantibodies

against N-Methyl-D-aspartate receptor subunit NR1.Ann. Neurol. 79, 144–151.

doi: 10.1002/ana.24545

Cerbai, F., Lana, D., Nosi, D., Petkova-Kirova, P., Zecchi, S., Brothers, H. M., et al.

(2012). The neuron-astrocyte-microglia triad in normal brain ageing and in

a model of neuroinflammation in the rat hippocampus. PLoS ONE 7:e45250.

doi: 10.1371/journal.pone.0045250

Chacón-Quintero, M. V., Pineda-López, L. G., Villegas-Lanau, C. A., Posada-

Duque, R., and Cardona-Gómez, G. P. (2021). Beta-secretase 1 underlies

reactive astrocytes and endothelial disruption in neurodegeneration. Front.

Cell. Neurosci. 15:656832. doi: 10.3389/fncel.2021.656832

Chang, H.-C., and Guarente, L. (2014). SIRT1 and other sirtuins in metabolism.

Trends Endocrinol. Metab. 25, 138–145. doi: 10.1016/j.tem.2013.12.001

Chen, J., Cui, X., Zacharek, A., Cui, Y., Roberts, C., and Chopp, M. (2011). White

matter damage and the effect of matrix metalloproteinases in type 2 diabetic

mice after stroke. Stroke 42, 445–452. doi: 10.1161/STROKEAHA.110.596486

Cheng, T., Petraglia, A. L., Li, Z., Thiyagarajan, M., Zhong, Z., Wu, Z., et al.

(2006). Activated protein C inhibits tissue plasminogen activator-induced brain

hemorrhage. Nat. Med. 12, 1278–1285. doi: 10.1038/nm1498

Chiu, C., Miller, M. C., Monahan, R., Osgood, D. P., Stopa, E. G., and Silverberg,

G. D. (2015). P-glycoprotein expression and amyloid accumulation in human

aging and Alzheimer’s disease: preliminary observations. Neurobiol. Aging 36,

2475–2482. doi: 10.1016/j.neurobiolaging.2015.05.020

Choi, D.-H., Kim, J.-H., Seo, J.-H., Lee, J., Choi, W. S., and Kim, Y.-

S. (2014). Matrix metalloproteinase-3 causes dopaminergic neuronal

death through Nox1-regenerated oxidative stress. PLoS ONE 9:e115954.

doi: 10.1371/journal.pone.0115954

Chow, B. W., and Gu, C. (2015). The molecular constituents of the blood-brain

barrier. Trends Neurosci. 38, 598–608. doi: 10.1016/j.tins.2015.08.003

Chui, H. C., and Ramirez-Gomez, L. (2015). Clinical and imaging features

of mixed Alzheimer and vascular pathologies. Alzheimers Res. Ther. 7:21.

doi: 10.1186/s13195-015-0104-7

Cohen, Z., Bonvento, G., Lacombe, P., and, Hamel, E. (1996). Serotonin

in the regulation of brain microcirculation. Prog. Neurobiol. 50, 335–362.

doi: 10.1016/S0301-0082(96)00033-0

Cohen, Z., Molinatti, G., and Hamel, E. (1997). Astroglial and vascular interactions

of noradrenaline terminals in the rat cerebral cortex. J. Cereb. Blood FlowMetab.

17, 894–904. doi: 10.1097/00004647-199708000-00008

Cortes-Canteli, M., Mattei, L., Richards, A. T., Norris, E. H., and

Strickland, S. (2015). Fibrin deposited in the Alzheimer’s disease

brain promotes neuronal degeneration. Neurobiol. Aging 36, 608–617.

doi: 10.1016/j.neurobiolaging.2014.10.030

Cortes-Canteli, M., Paul, J., Norris, E. H., Bronstein, R., Ahn, H. J., Zamolodchikov,

D., et al. (2010). Fibrinogen and β-amyloid association alters thrombosis and

fibrinolysis: a possible contributing factor to Alzheimer’s disease. Neuron 66,

695–709. doi: 10.1016/j.neuron.2010.05.014

Crews, L., and Masliah, E. (2010). Molecular mechanisms of neurodegeneration in

Alzheimer’s disease. Hum. Mol. Genet. 19, R12–R20. doi: 10.1093/hmg/ddq160

Cuevas, E., Rosas-Hernandez, H., Burks, S. M., Ramirez-Lee, M. A., Guzman,

A., Imam, S. Z., et al. (2019). Amyloid Beta 25-35 induces blood-

brain barrier disruption in vitro. Metab. Brain Dis. 34, 1365–1374.

doi: 10.1007/s11011-019-00447-8

D’Ambrosio, A., Pontecorvo, S., Colasanti, T., Zamboni, S., Francia, A., and

Margutti, P. (2015). Peripheral blood biomarkers in multiple sclerosis.

Autoimmun. Rev. 14, 1097–1110. doi: 10.1016/j.autrev.2015.07.014

De Jong, G., Horvath, E., and Luiten, P. (1990). Effects of early onset of nimodipine

treatment on microvascular integrity in the aging rat brain. Stroke 21(12

Suppl), IV113–IV116.

Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., et al.

(2003). RAGE mediates amyloid-β peptide transport across the blood-brain

barrier and accumulation in brain. Nat. Med. 9, 907–913. doi: 10.1038/nm890

Deane, R., Sagare, A., Hamm, K., Parisi, M., Lane, S., Finn, M. B., et al. (2008). apoE

isoform-specific disruption of amyloid β peptide clearance from mouse brain.

J. Clin. Invest. 118, 4002–4013. doi: 10.1172/JCI36663

Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., et al. (2004).

LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ

isoforms. Neuron 43, 333–344. doi: 10.1016/j.neuron.2004.07.017

Deli, M. A., Veszelka, S., Csiszár, B., Tóth, A., Kittel, A., Csete, M., et al. (2010).

Protection of the blood-brain barrier by pentosan against amyloid-β-induced

toxicity. J. Alzheimers Dis. 22, 777–794. doi: 10.3233/JAD-2010-100759

Di Cataldo, V., Géloën, A., Langlois, J.-B., Chauveau, F., Thézé, B., Hubert, V., et al.

(2016). Exercise does not protect against peripheral and central effects of a high

cholesterol diet given ad libitum in old ApoE–/– mice. Front. Physiol. 7:453.

doi: 10.3389/fphys.2016.00453

Ding, F., Yao, J., Rettberg, J. R., Chen, S., and Brinton, R. D. (2013). Early decline in

glucose transport and metabolism precedes shift to ketogenic system in female

aging and Alzheimer’s mouse brain: implication for bioenergetic intervention.

PLoS ONE 8:e79977. doi: 10.1371/journal.pone.0079977

Doeuvre, L., Plawinski, L., Goux, D., Vivien, D., and Anglés-Cano, E. (2010).

Plasmin on adherent cells: frommicrovesiculation to apoptosis. Biochem. J. 432,

365–373. doi: 10.1042/BJ20100561

Donahue, J. E., Flaherty, S. L., Johanson, C. E., Duncan, J. A., Silverberg,

G. D., Miller, M. C., et al. (2006). RAGE, LRP-1, and amyloid-

beta protein in Alzheimer’s disease. Acta Neuropathol. 112, 405–415.

doi: 10.1007/s00401-006-0115-3

Donato, A. J., Eskurza, I., Silver, A. E., Levy, A. S., Pierce, G. L., Gates,

P. E., et al. (2007). Direct evidence of endothelial oxidative stress

with aging in humans: relation to impaired endothelium-dependent

dilation and upregulation of nuclear factor-κB. Circ. Res. 100, 1659–1666.

doi: 10.1161/01.RES.0000269183.13937.e8

Du, S.-Q., Wang, X.-R., Xiao, L.-Y., Tu, J.-F., Zhu, W., He, T., et al. (2017).

Molecular mechanisms of vascular dementia: what can be learned from animal

models of chronic cerebral hypoperfusion? Mol. Neurobiol. 54, 3670–3682.

doi: 10.1007/s12035-016-9915-1

Duncombe, J., Lennen, R. J., Jansen, M. A., Marshall, I., Wardlaw, J. M., and

Horsburgh, K. (2017). Ageing causes prominent neurovascular dysfunction

associated with loss of astrocytic contacts and gliosis. Neuropathol. Appl.

Neurobiol. 43, 477–491. doi: 10.1111/nan.12375

Edwards, G. A. III, Gamez, N., Escobedo Jr, G., Calderon, O., and Moreno-

Gonzalez, I. (2019). Modifiable risk factors for Alzheimer’s disease. Front. Aging

Neurosci. 11:146. doi: 10.3389/fnagi.2019.00146

Eikelenboom, P., Van Exel, E., Veerhuis, R., Rozemuller, A. J., Van Gool, W. A.,

and Hoozemans, J. J. (2012). Innate immunity and the etiology of late-onset

Alzheimer’s disease. Neurodegener. Dis. 10, 271–273. doi: 10.1159/000334287

Elahy, M., Jackaman, C., Mamo, J. C., Lam, V., Dhaliwal, S. S., Giles, C., et al.

(2015). Blood-brain barrier dysfunction developed during normal aging is

associated with inflammation and loss of tight junctions but not with leukocyte

recruitment. Immunity Ageing 12, 1–9. doi: 10.1186/s12979-015-0029-9

Ellison, D., White, D., and Farrar, F. C. (2015). Aging population. Nurs. Clin. 50,

185–213. doi: 10.1016/j.cnur.2014.10.014

Emrani, S., Lamar, M., Price, C. C., Wasserman, V., Matusz, E., Au, R., et al. (2020).

Alzheimer’s/vascular spectrum dementia: classification in addition to diagnosis.

J. Alzheimers Dis. 73, 63–71. doi: 10.3233/JAD-190654

Engelhardt, B., and Coisne, C. (2011). Fluids and barriers of the CNS

establish immune privilege by confining immune surveillance to a two-

walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8, 1–9.

doi: 10.1186/2045-8118-8-4

Engelhardt, B., and Ransohoff, R. M. (2012). Capture, crawl, cross: the T cell

code to breach the blood-brain barriers. Trends Immunol. 33, 579–589.

doi: 10.1016/j.it.2012.07.004

Frontiers in Neuroscience | www.frontiersin.org 15 August 2021 | Volume 15 | Article 688090232

https://doi.org/10.1161/STROKEAHA.110.600825
https://doi.org/10.1016/j.matbio.2010.03.004
https://doi.org/10.1089/rej.2009.0993
https://doi.org/10.1089/ars.2011.3895
https://doi.org/10.1002/ana.24545
https://doi.org/10.1371/journal.pone.0045250
https://doi.org/10.3389/fncel.2021.656832
https://doi.org/10.1016/j.tem.2013.12.001
https://doi.org/10.1161/STROKEAHA.110.596486
https://doi.org/10.1038/nm1498
https://doi.org/10.1016/j.neurobiolaging.2015.05.020
https://doi.org/10.1371/journal.pone.0115954
https://doi.org/10.1016/j.tins.2015.08.003
https://doi.org/10.1186/s13195-015-0104-7
https://doi.org/10.1016/S0301-0082(96)00033-0
https://doi.org/10.1097/00004647-199708000-00008
https://doi.org/10.1016/j.neurobiolaging.2014.10.030
https://doi.org/10.1016/j.neuron.2010.05.014
https://doi.org/10.1093/hmg/ddq160
https://doi.org/10.1007/s11011-019-00447-8
https://doi.org/10.1016/j.autrev.2015.07.014
https://doi.org/10.1038/nm890
https://doi.org/10.1172/JCI36663
https://doi.org/10.1016/j.neuron.2004.07.017
https://doi.org/10.3233/JAD-2010-100759
https://doi.org/10.3389/fphys.2016.00453
https://doi.org/10.1371/journal.pone.0079977
https://doi.org/10.1042/BJ20100561
https://doi.org/10.1007/s00401-006-0115-3
https://doi.org/10.1161/01.RES.0000269183.13937.e8
https://doi.org/10.1007/s12035-016-9915-1
https://doi.org/10.1111/nan.12375
https://doi.org/10.3389/fnagi.2019.00146
https://doi.org/10.1159/000334287
https://doi.org/10.1186/s12979-015-0029-9
https://doi.org/10.1016/j.cnur.2014.10.014
https://doi.org/10.3233/JAD-190654
https://doi.org/10.1186/2045-8118-8-4
https://doi.org/10.1016/j.it.2012.07.004
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hussain et al. BBB in Aging and Dementia

Erdo, F., Denes, L., and de Lange, E. (2017). Age-associated physiological and

pathological changes at the blood-brain barrier: a review. J. Cereb. Blood Flow

Metab. 37, 4–24. doi: 10.1177/0271678X16679420

Erickson, M. A., and Banks, W. A. (2013). Blood-brain barrier dysfunction as a

cause and consequence of Alzheimer’s disease. J. Cereb. Blood Flow Metab. 33,

1500–1513. doi: 10.1038/jcbfm.2013.135

Erickson, M. A., and Banks, W. A. (2018). Neuroimmune axes of the blood-

brain barriers and blood-brain interfaces: bases for physiological regulation,

disease states, and pharmacological interventions. Pharmacol. Rev. 70, 278–314.

doi: 10.1124/pr.117.014647

Erickson, M. A., Hansen, K., and Banks, W. A. (2012). Inflammation-induced

dysfunction of the low-density lipoprotein receptor-related protein-1 at the

blood-brain barrier: protection by the antioxidant N-acetylcysteine. Brain

Behav. Immun. 26, 1085–1094. doi: 10.1016/j.bbi.2012.07.003

Faraco, G., Park, L., Anrather, J., and Iadecola, C. (2017). Brain perivascular

macrophages: characterization and functional roles in health and disease. J.

Mol. Med. 95, 1143–1152. doi: 10.1007/s00109-017-1573-x

Farrall, A. J., and Wardlaw, J. M. (2009). Blood-brain barrier: ageing and

microvascular disease-systematic review and meta-analysis. Neurobiol. Aging

30, 337–352. doi: 10.1016/j.neurobiolaging.2007.07.015

Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux,

R., et al. (1997). Effects of age, sex, and ethnicity on the association between

apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA 278,

1349–1356. doi: 10.1001/jama.1997.03550160069041

Fivenson, E. M., Lautrup, S., Sun, N., Scheibye-Knudsen, M., Stevnsner, T., Nilsen,

H., et al. (2017). Mitophagy in neurodegeneration and aging. Neurochem. Int.

109, 202–209. doi: 10.1016/j.neuint.2017.02.007

Fonseca, M. I., Ager, R. R., Chu, S.-H., Yazan, O., Sanderson, S. D., LaFerla, F.

M., et al. (2009). Treatment with a C5aR antagonist decreases pathology and

enhances behavioral performance in murine models of Alzheimer’s disease. J.

Immunol. 183, 1375–1383. doi: 10.4049/jimmunol.0901005

Gao, T., Lin, Z., and Jin, X. (2009). Hydrocortisone suppression of the expression of

VEGFmay relate to toll-like receptor (TLR) 2 and 4.Curr. Eye Res. 34, 777–784.

doi: 10.1080/02713680903067919

Gill, R., Tsung, A., and Billiar, T. (2010). Linking oxidative stress to

inflammation: Toll-like receptors. Free Radic. Biol. Med. 48, 1121–1132.

doi: 10.1016/j.freeradbiomed.2010.01.006

González-Molina, L. A., Villar-Vesga, J., Henao-Restrepo, J., Villegas, A.,

Lopera, F., Cardona-Gómez, G. P., et al. (2021). Extracellular vesicles

from 3xTg-AD mouse and Alzheimer’s disease patient astrocytes impair

neuroglial and vascular components. Front. Aging Neurosci. 13:593927.

doi: 10.3389/fnagi.2021.593927

Gonzalez-Velasquez, F. J., Kotarek, J. A., and Moss, M. A. (2008). Soluble

aggregates of the amyloid-β protein selectively stimulate permeability in human

brain microvascular endothelial monolayers. J. Neurochem. 107, 466–477.

doi: 10.1111/j.1471-4159.2008.05618.x

Goodall, E. F., Wang, C., Simpson, J. E., Baker, D. J., Drew, D. R., Heath, P. R.,

et al. (2018). Age-associated changes in the blood-brain barrier: comparative

studies in human and mouse. Neuropathol. Appl. Neurobiol. 44, 328–340.

doi: 10.1111/nan.12408

Goodman, R. A., Lochner, K. A., Thambisetty, M., Wingo, T. S., Posner, S. F.,

and Ling, S. M. (2017). Prevalence of dementia subtypes in United States

Medicare fee-for-service beneficiaries, 2011-2013. Alzheimers Dement. 13,

28–37. doi: 10.1016/j.jalz.2016.04.002

Gorelick, P. B., Scuteri, A., Black, S. E., DeCarli, C., Greenberg, S. M.,

Iadecola, C., et al. (2011). Vascular contributions to cognitive impairment

and dementia: a statement for healthcare professionals from the American

Heart Association/American Stroke Association. Stroke 42, 2672–2713.

doi: 10.1161/STR.0b013e3182299496

Gredilla, R., Bohr, V. A., and Stevnsner, T. (2010). Mitochondrial DNA

repair and association with aging-an update. Exp. Gerontol. 45, 478–488.

doi: 10.1016/j.exger.2010.01.017

Grinberg, L. T., and Heinsen, H. (2010). Toward a pathological definition of

vascular dementia. J. Neurol. Sci. 299, 136–138. doi: 10.1016/j.jns.2010.08.055

Grinberg, L. T., and Thal, D. R. (2010). Vascular pathology in the aged human

brain. Acta Neuropathol. 119, 277–290. doi: 10.1007/s00401-010-0652-7

Halliday, M. R., Rege, S. V., Ma, Q., Zhao, Z., Miller, C. A., Winkler, E. A., et al.

(2016). Accelerated pericyte degeneration and blood-brain barrier breakdown

in apolipoprotein E4 carriers with Alzheimer’s disease. J. Cereb. Blood Flow

Metab. 36, 216–227. doi: 10.1038/jcbfm.2015.44

Hammer, C., Stepniak, B., Schneider, A., Papiol, S., Tantra, M., Begemann,M., et al.

(2014). Neuropsychiatric disease relevance of circulating anti-NMDA receptor

autoantibodies depends on blood-brain barrier integrity. Mol. Psychiatry 19,

1143–1149. doi: 10.1038/mp.2013.110

Hansen, D. V., Hanson, J. E., and Sheng, M. (2018). Microglia in Alzheimer’s

disease. J. Cell Biol. 217, 459–472. doi: 10.1083/jcb.201709069

Harry, G. J. (2013). Microglia during development and aging. Pharmacol.

Therapeut. 139, 313–326. doi: 10.1016/j.pharmthera.2013.04.013

Haruwaka, K., Ikegami, A., Tachibana, Y., Ohno, N., Konishi, H., Hashimoto,

A., et al. (2019). Dual microglia effects on blood brain barrier

permeability induced by systemic inflammation. Nat. Commun. 10, 1–17.

doi: 10.1038/s41467-019-13812-z

Hase, Y., Ding, R., Harrison, G., Hawthorne, E., King, A., Gettings, S., et al. (2019).

White matter capillaries in vascular and neurodegenerative dementias. Acta

Neuropathol. Commun. 7, 1–12. doi: 10.1186/s40478-019-0666-x

Hawkes, C. A., Gatherer, M., Sharp, M. M., Dorr, A., Yuen, H. M., Kalaria, R.,

et al. (2013). Regional differences in the morphological and functional effects of

aging on cerebral basement membranes and perivascular drainage of amyloid-β

from the mouse brain. Aging Cell 12, 224–236. doi: 10.1111/acel.12045

Hawkins, B. T., and Davis, T. P. (2005). The blood-brain barrier/neurovascular

unit in health and disease. Pharmacol. Rev. 57, 173–185. doi: 10.1124/pr.57.2.4

He, H., Lam, M., McCormick, T. S., and Distelhorst, C. W. (1997). Maintenance

of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J. Cell Biol. 138,

1219–1228. doi: 10.1083/jcb.138.6.1219

Heinsen, H., and Heinsen, Y. (1983). Cerebellar capillaries. Anat. Embryol. 168,

101–116. doi: 10.1007/BF00305402

Heithoff, B. P., George, K. K., Phares, A. N., Zuidhoek, I. A., Munoz-

Ballester, C., and Robel, S. (2021). Astrocytes are necessary for blood-

brain barrier maintenance in the adult mouse brain. Glia 69, 436–472.

doi: 10.1002/glia.23908

Hemonnot, A.-L., Hua, J., Ulmann, L., and Hirbec, H. (2019). Microglia in

Alzheimer disease: well-known targets and new opportunities. Front. Aging

Neurosci. 11:233. doi: 10.3389/fnagi.2019.00233

Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F.,

Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet

Neurol. 14, 388–405. doi: 10.1016/S1474-4422(15)70016-5

Hicks, P., Rolsten, C., Brizzee, D., and Samorajski, T. (1983). Age-

related changes in rat brain capillaries. Neurobiol. Aging 4, 69–75.

doi: 10.1016/0197-4580(83)90057-X

Hoarau, J.-J., Krejbich-Trotot, P., Jaffar-Bandjee, M.-C., Das, T., Thon-Hon,

G.-V., Kumar, S., et al. (2011). Activation and control of CNS innate

immune responses in health and diseases: a balancing act finely tuned by

neuroimmune regulators (NIReg). CNS Neurol. Disord. Drug Targets 10, 25–43.

doi: 10.2174/187152711794488601

Hoffman, J. D., Parikh, I., Green, S. J., Chlipala, G., Mohney, R. P., Keaton,

M., et al. (2017). Age drives distortion of brain metabolic, vascular and

cognitive functions, and the gut microbiome. Front. Aging Neurosci. 9:298.

doi: 10.3389/fnagi.2017.00298

Hoshi, A., Yamamoto, T., Shimizu, K., Ugawa, Y., Nishizawa, M., Takahashi,

H., et al. (2012). Characteristics of aquaporin expression surrounding senile

plaques and cerebral amyloid angiopathy in Alzheimer disease. J. Neuropathol.

Exp. Neurol. 71, 750–759. doi: 10.1097/NEN.0b013e3182632566

Howe, M. D., McCullough, L. D., and Urayama, A. (2020). The role of basement

membranes in cerebral amyloid angiopathy. Front. Physiol. 11:601320.

doi: 10.3389/fphys.2020.601320

Huang, X., Hussain, B., and Chang, J. (2021). Peripheral inflammation and blood-

brain barrier disruption: effects and mechanisms. CNS Neurosci. Therapeut. 27,

36–47. doi: 10.1111/cns.13569

Huber, J. D., Campos, C. R., Mark, K. S., and Davis, T. P. (2006). Alterations in

blood-brain barrier ICAM-1 expression and brain microglial activation after

λ-carrageenan-induced inflammatory pain. Am. J. Physiol. Heart Circ. Physiol.

290, H732–H740. doi: 10.1152/ajpheart.00747.2005

Hughes, S., Gardiner, T., Hu, P., Baxter, L., Rosinova, E., and Chan-Ling,

T. (2006). Altered pericyte-endothelial relations in the rat retina during

aging: implications for vessel stability. Neurobiol. Aging 27, 1838–1847.

doi: 10.1016/j.neurobiolaging.2005.10.021

Frontiers in Neuroscience | www.frontiersin.org 16 August 2021 | Volume 15 | Article 688090233

https://doi.org/10.1177/0271678X16679420
https://doi.org/10.1038/jcbfm.2013.135
https://doi.org/10.1124/pr.117.014647
https://doi.org/10.1016/j.bbi.2012.07.003
https://doi.org/10.1007/s00109-017-1573-x
https://doi.org/10.1016/j.neurobiolaging.2007.07.015
https://doi.org/10.1001/jama.1997.03550160069041
https://doi.org/10.1016/j.neuint.2017.02.007
https://doi.org/10.4049/jimmunol.0901005
https://doi.org/10.1080/02713680903067919
https://doi.org/10.1016/j.freeradbiomed.2010.01.006
https://doi.org/10.3389/fnagi.2021.593927
https://doi.org/10.1111/j.1471-4159.2008.05618.x
https://doi.org/10.1111/nan.12408
https://doi.org/10.1016/j.jalz.2016.04.002
https://doi.org/10.1161/STR.0b013e3182299496
https://doi.org/10.1016/j.exger.2010.01.017
https://doi.org/10.1016/j.jns.2010.08.055
https://doi.org/10.1007/s00401-010-0652-7
https://doi.org/10.1038/jcbfm.2015.44
https://doi.org/10.1038/mp.2013.110
https://doi.org/10.1083/jcb.201709069
https://doi.org/10.1016/j.pharmthera.2013.04.013
https://doi.org/10.1038/s41467-019-13812-z
https://doi.org/10.1186/s40478-019-0666-x
https://doi.org/10.1111/acel.12045
https://doi.org/10.1124/pr.57.2.4
https://doi.org/10.1083/jcb.138.6.1219
https://doi.org/10.1007/BF00305402
https://doi.org/10.1002/glia.23908
https://doi.org/10.3389/fnagi.2019.00233
https://doi.org/10.1016/S1474-4422(15)70016-5
https://doi.org/10.1016/0197-4580(83)90057-X
https://doi.org/10.2174/187152711794488601
https://doi.org/10.3389/fnagi.2017.00298
https://doi.org/10.1097/NEN.0b013e3182632566
https://doi.org/10.3389/fphys.2020.601320
https://doi.org/10.1111/cns.13569
https://doi.org/10.1152/ajpheart.00747.2005
https://doi.org/10.1016/j.neurobiolaging.2005.10.021
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hussain et al. BBB in Aging and Dementia

Hultman, K., Strickland, S., and Norris, E. H. (2013). The APOE ε4/ε4 genotype

potentiates vascular fibrin (ogen) deposition in amyloid-laden vessels in

the brains of Alzheimer’s disease patients. J. Cereb. Blood Flow Metab. 33,

1251–1258. doi: 10.1038/jcbfm.2013.76

Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M.

C., et al. (2012). National Institute on Aging-Alzheimer’s Association guidelines

for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement.

8, 1–13. doi: 10.1016/j.jalz.2011.10.007

Iadecola, C. (2013). The pathobiology of vascular dementia. Neuron 80, 844–866.

doi: 10.1016/j.neuron.2013.10.008

Iadecola, C. (2017). The neurovascular unit coming of age: a journey

through neurovascular coupling in health and disease. Neuron 96, 17–42.

doi: 10.1016/j.neuron.2017.07.030

Iadecola, C., and Davisson, R. L. (2008). Hypertension and cerebrovascular

dysfunction. Cell Metab. 7, 476–484. doi: 10.1016/j.cmet.2008.03.010

Ihara, M., Polvikoski, T. M., Hall, R., Slade, J. Y., Perry, R. H., Oakley, A. E.,

et al. (2010). Quantification of myelin loss in frontal lobe white matter in

vascular dementia, Alzheimer’s disease, and dementia with Lewy bodies. Acta

Neuropathol. 119, 579–589. doi: 10.1007/s00401-009-0635-8

Iliff, J. J., Wang, M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., et al. (2012).

A paravascular pathway facilitates CSF flow through the brain parenchyma

and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med.

4:147ra111. doi: 10.1126/scitranslmed.3003748

Imai, S.-I., and Guarente, L. (2014). NAD+ and sirtuins in aging and disease.

Trends Cell Biol. 24, 464–471. doi: 10.1016/j.tcb.2014.04.002

Jack, C. (2010). Vascular risk factor detection and control may prevent Alzheimer’s

disease. Ageing Res. Rev. 9, 218–225. doi: 10.1016/j.arr.2010.04.002

Jacob, A., and Alexander, J. J. (2014). Complement and blood-brain barrier

integrity.Mol. Immunol. 61, 149–152. doi: 10.1016/j.molimm.2014.06.039

Jaeger, L., Dohgu, S., Sultana, R., Lynch, J., Owen, J., Erickson, M., et al. (2011).

Lipopolysaccharide alters the blood-brain barrier transport of amyloid β

protein: a mechanism for inflammation in the progression of Alzheimer’s

disease. Brain Behav. Immun. 23, 507–517. doi: 10.1016/j.bbi.2010.11.019

Jiang, T., Yin, F., Yao, J., Brinton, R. D., and Cadenas, E. (2013). Lipoic acid restores

age-associated impairment of brain energymetabolism through themodulation

of A kt/JNK signaling and PGC 1α transcriptional pathway. Aging Cell 12,

1021–1031. doi: 10.1111/acel.12127

Kadry, H., Noorani, B., and Cucullo, L. (2020). A blood-brain barrier overview on

structure, function, impairment, and biomarkers of integrity. Fluids Barriers

CNS 17, 1–24. doi: 10.1186/s12987-020-00230-3

Kalaria, R. (2002). Similarities between Alzheimer’s disease and vascular dementia.

J. Neurol. Sci. 203, 29–34. doi: 10.1016/S0022-510X(02)00256-3

Kang, S., Lee, Y.-H., and Lee, J. E. (2017). Metabolism-centric overview

of the pathogenesis of Alzheimer’s disease. Yonsei Med. J. 58, 479–488.

doi: 10.3349/ymj.2017.58.3.479

Kettenmann, H., Hanisch, U.-K., Noda, M., and Verkhratsky,

A. (2011). Physiology of microglia. Physiol. Rev. 91, 461–553.

doi: 10.1152/physrev.00011.2010

Khan, M. B., Hoda, M. N., Vaibhav, K., Giri, S., Wang, P., Waller, J. L., et al.

(2015). Remote ischemic postconditioning: harnessing endogenous protection

in a murine model of vascular cognitive impairment. Transl. Stroke Res. 6,

69–77. doi: 10.1007/s12975-014-0374-6

Kimbrough, I. F., Robel, S., Roberson, E. D., and Sontheimer, H. (2015). Vascular

amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s

disease. Brain 138, 3716–3733. doi: 10.1093/brain/awv327

Kinnecom, C., Lev, M., Wendell, L., Smith, E., Rosand, J., Frosch, M., et al. (2007).

Course of cerebral amyloid angiopathy-related inflammation. Neurology 68,

1411–1416. doi: 10.1212/01.wnl.0000260066.98681.2e

Kirshner, H. S. (2009). Vascular dementia: a review of recent evidence

for prevention and treatment. Curr. Neurol. Neurosci. Rep. 9, 437–442.

doi: 10.1007/s11910-009-0065-y

Kofler, J., andWiley, C. A. (2011). Microglia: key innate immune cells of the brain.

Toxicol. Pathol. 39, 103–114. doi: 10.1177/0192623310387619

Kovac, A., Erickson, M. A., and Banks,W. A. (2011). Brain microvascular pericytes

are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1

expression in response to lipopolysaccharide. J. Neuroinflammation 8, 1–9.

doi: 10.1186/1742-2094-8-139

Kovac, A., Zilkova, M., Deli, M. A., Zilka, N., and Novak, M. (2009).

Human truncated tau is using a different mechanism from amyloid-β

to damage the blood-brain barrier. J. Alzheimers Dis. 18, 897–906.

doi: 10.3233/JAD-2009-1197

Krabbe, G., Halle, A., Matyash, V., Rinnenthal, J. L., Eom, G. D., Bernhardt, U.,

et al. (2013). Functional impairment of microglia coincides with Beta-amyloid

deposition in mice with Alzheimer-like pathology. PLoS ONE 8:e60921.

doi: 10.1371/journal.pone.0060921

Kritsilis, M., V., Rizou, S., Koutsoudaki, P. N., Evangelou, K., Gorgoulis, V. G., et al.

(2018). Ageing, cellular senescence and neurodegenerative disease. Int. J. Mol.

Sci. 19:2937. doi: 10.3390/ijms19102937

Kyrtata, N., Emsley, H. C., Sparasci, O., Parkes, L. M., and Dickie, B. R. (2021). A

Systematic review of glucose transport alterations in Alzheimer’s disease. Front.

Neurosci. 15:626636. doi: 10.3389/fnins.2021.626636

Lan, Y.-L., Zhao, J., Ma, T., and Li, S. (2016a). The potential roles

of aquaporin 4 in Alzheimer’s disease. Mol. Neurobiol. 53, 5300–5309.

doi: 10.1007/s12035-015-9446-1

Lan, Y.-L., Zou, S., Chen, J.-J., Zhao, J., and Li, S. (2016b). The neuroprotective

effect of the association of aquaporin-4/glutamate transporter-1 against

Alzheimer’s disease. Neural Plast. 2016:4626593. doi: 10.1155/2016/4626593

Lapenna, A., De Palma, M., and Lewis, C. E. (2018). Perivascular

macrophages in health and disease. Nat. Rev. Immunol. 18, 689–702.

doi: 10.1038/s41577-018-0056-9

Lassman, M. E., McLaughlin, T. M., Somers, E. P., Stefanni, A. C., Chen, Z.,

Murphy, B. A., et al. (2012). A rapid method for cross-species quantitation

of apolipoproteins A1, B48 and B100 in plasma by ultra-performance liquid

chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom.

26, 101–108. doi: 10.1002/rcm.5296

Lee, P., Kim, J., Williams, R., Sandhir, R., Gregory, E., Brooks, W. M., et al.

(2012). Effects of aging on blood brain barrier and matrix metalloproteases

following controlled cortical impact in mice. Exp. Neurol. 234, 50–61.

doi: 10.1016/j.expneurol.2011.12.016

Lendahl, U., Nilsson, P., and Betsholtz, C. (2019). Emerging links between

cerebrovascular and neurodegenerative diseases-a special role for pericytes.

EMBO Rep. 20:e48070. doi: 10.15252/embr.201948070

Leng, F., and Edison, P. (2020). Neuroinflammation and microglial activation in

Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172.

doi: 10.1038/s41582-020-00435-y

Levit, A., Hachinski, V., and Whitehead, S. N. (2020). Neurovascular unit

dysregulation, white matter disease, and executive dysfunction: the shared

triad of vascular cognitive impairment and Alzheimer disease. GeroScience 42,

445–465. doi: 10.1007/s11357-020-00164-6

Li,W., and Lai, X.-S. (2007). Changes of interleukin-1beta and TNF-alpha contents

in the hippocampus and the interventional effect of electroacupuncture in

vascular dementia rats. Zhen Ci Yan Jiu 32, 34–37.

Li, W. Z., Wu, W. Y., Huang, H., Wu, Y. Y., and Yin, Y. Y. (2013).

Protective effect of bilobalide on learning and memory impairment in rats

with vascular dementia. Mol. Med. Rep. 8, 935–941. doi: 10.3892/mmr.201

3.1573

Lin, Y.-F., Smith, A. V., Aspelund, T., Betensky, R. A., Smoller, J. W., Gudnason,

V., et al. (2019). Genetic overlap between vascular pathologies and Alzheimer’s

dementia and potential causal mechanisms. Alzheimers Dement. 15, 65–75.

doi: 10.1016/j.jalz.2018.08.002

Liu, C.-C., Kanekiyo, T., Xu, H., and Bu, G. (2013). Apolipoprotein E and

Alzheimer disease: risk, mechanisms and therapy.Nat. Rev. Neurol. 9, 106–118.

doi: 10.1038/nrneurol.2012.263

Liu, H., and Zhang, J. (2012). Cerebral hypoperfusion and cognitive impairment:

the pathogenic role of vascular oxidative stress. Int. J. Neurosci. 122, 494–499.

doi: 10.3109/00207454.2012.686543

Lucke-Wold, B. P., Logsdon, A. F., Turner, R. C., Rosen, C. L., and

Huber, J. D. (2014). Aging, the metabolic syndrome, and ischemic stroke:

redefining the approach for studying the blood-brain barrier in a complex

neurological disease. Adv. Pharmacol. 71, 411–449. doi: 10.1016/bs.apha.2014.

07.001

Månberg, A., Skene, N., Sanders, F., Trusohamn, M., Remnestål, J., Szczepińska,
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